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Abstract

Automated verification of heap-manipulating programs is a challenging task

due to the complexity of aliasing and mutability of data structures used in

these programs. The properties of a number of important data structures

do not only relate to one domain, but to combined multiple domains, such

as sorted list, priority queues, height-balanced trees and so on. The safety

and sometimes efficiency of programs do rely on the properties of those data

structures. This thesis focuses on developing a verification system for both

functional correctness and memory safety of such programs which involve

heap-based data structures.

Two automated inference mechanisms are presented for heap-manipulating

programs in this thesis. Firstly, an abstract interpretation based approach

is proposed to synthesise program invariants in a combined pure and shape

domain. Newly designed abstraction, join and widening operators have been

defined for the combined domain. Furthermore, a compositional analysis ap-

proach is described to discover both pre-/post-conditions of programs with

a bi-abduction technique in the combined domain.

As results of my thesis, both inference approaches have been implemented

and the obtained results validate the feasibility and precision of proposed ap-

proaches. The outcomes of the thesis confirm that it is possible and practical

to analyse heap-manipulating programs automatically and precisely by using

abstract interpretation in a sophisticated combined domain.
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Chapter 1

Introduction

Since electronic computers were developed in the mid-20th century (1940-

1945), electronic computing systems have increasingly become more power-

ful and more flexible, and played more essential roles in almost every area

of human’s life than anytime before. Modern human beings heavily rely on

various electrical computing apparatus, such as household electric appliances

like washing machines, microwave ovens, dryers and dishwashers, in mobile

devices like mobile telecommunication devices, navigators and PDAs, as well

as in safety critical systems such as automated teller machine, financial trad-

ing systems, military weapons, missiles, automotive, trains, e-health devices,

aircraft and avionics equipments, and so on. These systems greatly facili-

tate human’s life, improve efficiency of human’s works, and extend human’s

capabilities.
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Chapter 1. Introduction

However, computer is a double-edged sword. The greater power of computer

also brings the greater risk. A computer system may have unpredictable

behaviours because of software bugs, poor design, or other factors. Any fail-

ure of a safety critical system could lead to serious damage results (Basse,

2009). Some incidents cost billions of pounds. One recent example was a

stock market crash in the United States, the “flash crash” on May 6th, 2010,

which caused the second largest point swing (1,010.14 points) and the biggest

one-day point decline (998.5 points) in the history of the Dow Jones Indus-

trial Average. For a few minutes, one trillion US dollars in market value

vanished. This crash was led by an unknown error and accelerated by in-

appropriately designed computerized automated trading system (CFTC and

SEC, 2010). Another example was the Ariane 5 explosion accident which was

caused by an overflow error where the conversion from 64 bits to 16 bits was

not protected, resulting in a loss of more than 370 million US dollars (Dow-

son, 1997). Furthermore, software failure could be fatal to human lives. One

classic case of a deadly software failure is a radiation therapy medical de-

vice, the Therac-25, which involved in at least six serious injuries with three

deaths (Leveson and Turner, 1993). Another extreme example was the Pa-

triot missile system failure which resulted in 28 deaths. The missile failure

was ultimately attributable to poor handling of rounding errors (Skeel, 1992;

Blair et al., 1992). Moreover, a wide collection of computer mishaps that

address problems in reliability, safety, security, and privacy issues in day-to-

day computer activities could be found in Communications of ACM’s “Inside

Risk” columns.

Because of the serious risk of safety critical system failure, a systematic

method is needed to ensure that the developed software is error-free, safe,

2



1.1. Background

robust and fulfilled by the requirement of users. Due to the growing of

computer software in both size and complexity, checking by hand is almost

impossible. Besides that, software testing is very limited in its ability to

discover all latent defects to establish confidence that the software is fit for

its intended use (Dijkstra, 1972). Hoare and Milner (2004) suggest develop-

ing a strong software engineering toolset to assist the formal verification of

computer software system. It has been identified as an international grand

challenge to verify software by formal methods as automatically as possi-

ble (Jones et al., 2006; Woodcock, 2006).

1.1 Background

To ensure the quality of software, a number of approaches have been applied

to assist in design, development, analysis, testing and formal verification of

computer programs, such as formal specification language design, program

language design, software testing, model checking, program analysis, program

verification, and so on.

To formally describe the requirement and behaviour of computer software,

formal specification languages are designed and used during the requirement

analysis, systems design and systems analysis, such as UML (Jacobson et al.,

1999), CSP (Hoare, 1978), CASL (Bidoit and Mosses, 2004), Z (Spivey,

1989), and so on. Specification languages offer a standard way to specify

and construct the requirement and behaviour of programs. An important

3



1.1. Background

application of specification languages is for the proofs of program correct-

ness, likely used in theorem proving and model checking. The specification

languages are generally at a much higher level than a programming language,

and normally not directly executable.

To avoid certain kinds of programming errors, a set of specifically designed

languages was emerged. A live example is the design of Java language (Ven-

ners, 1999) which eliminates the needs of explicit memory allocation and

deallocation to try to prevent memory leaking by automatic garbage collec-

tion. An extension of Java language, Safety Critical Java (SCJ) (Henties

et al., 2009), requires explicit memory usage of each mission to ensure the

memory safety and avoid the delay that is caused by garbage collection.

Another example is the design of Haskell (Jones, 2003) and OCaml (Leroy

et al., 2010) which eliminates casting of types to be able to infer the types

of programs automatically and prevents type errors in running-time. More-

over, Ada (Rogers, 1984) programming language was designed to meet the

requirement of the United States Department of Defense and targeted at

safety critical embedded and real-time systems. On the other hand, the de-

sign of these languages cannot guarantee the fully correctness of programs,

and they may come with other problems or introduce extra complications, for

example, garbage collector threads of Java may delay other threads to make

it unsuitable for real-time systems (Petit-Bianco, 1998). The constraints

of Ada on the language implementation limit the definition of priority and

the task scheduling algorithm to preclude the use of selected algorithm for

scheduling jobs with hard deadlines (Cornhilll et al., 1987).

4



1.1. Background

Software testing is a widely applied approach to improve the reliability and

quality of software. By executing programs with certain sets of input values

and determining whether the programs terminate successfully and whether

the output results meet the required results, software testing is able to dis-

cover program bugs, and estimate quality and reliability. An abundance of

testing techniques are exploited to generate test cases automatically to im-

prove the applicability and scalability of this method (Bezier, 1990; Hetzel

and Hetzel, 1991). However, unlike physical processes, software is bizarre.

Due to the complexity of some software, complete test is infeasible (Dijkstra,

1972). One cannot prove the absence of bugs only by testing. Any one of the

undiscovered bugs may be the Achilles’ heel of the software and may cause

catastrophic accidents.

To overcome the weakness of dynamic testing for safety critical applications,

formal verifications which use mathematically based approaches to stati-

cally analysing and verifying software systems are required. Model check-

ing (Clarke and Emerson, 1981; Queille and Sifakis, 1982) is one of the formal

methods which was originally applied to automatically verify the correctness

of finite-state systems by an exhaustive exploration of the space of computa-

tion states according to a specification in temporal logic. To check software,

model checking was equipped with abstraction and specific techniques to

summarise potentially infinite sets of computation states to finite states. A

well known example is the SLAM project (Ball and Rajamani, 2002) which

was successfully applied to Microsoft’s Static Driver Verifier (SDV) (Ball

et al., 2004). Another successful model checker applied to software verifi-

cation is BLAST (Henzinger et al., 2003) which employs counterexample-

guided automatic abstraction refinement to construct abstract models for C

5



1.1. Background

programs.

Other formal verification methods are deductive verification and static pro-

gram analysis. Deductive verification was pioneered by Floyd (1967) and

Hoare (1969) to use logical formulas to describe program behaviour and in-

terpret program statements as predicate transformers to reason about pro-

grams with axioms and inference rules. The formal verification system is

named Hoare logic, and the central feature of Hoare logic is the Hoare triple.

This triple describes the requirement and effect of program codes. A major

task of deductive verification is to supply the specifications and loop invari-

ants. A loop invariant is a condition that is necessarily true before and after

each iteration of a loop. It characterizes the behaviour of a loop and plays

an important role to verify programs statically. Both program specifications

and loop invariants could be complex and laborious to specify.

Static program analysis is emerged to solve the specification problem. Static

program analysis is a systematical method which executes program code

symbolically to derive properties of program and verify the absence of errors

at compile-time. The core algorithm of the analysis is to simulate all the

program behaviours arising dynamically at run-time when executing a pro-

gram on a real computer. It intends to conceptually derive all possible set of

states the program may reach and to predict the safety of the reachable states

before deploying the program code on its running architectures. Since the

states of a program may be infinite, program analysis often need to choose

reasonable and computable approximations to the program states (Nielson

et al., 1999). This thesis mainly focuses on using static program analysis

6



1.2. Motivation

techniques to infer loop invariants and program specification in a combined

domain. Next section discusses the motivation of this research.

1.2 Motivation

As mentioned previously, the history of program verification and analysis

could be backtracked to 1960s. Due to the growing complexity of programs,

it is still a challenging task to analyse programs written in mainstream im-

perative heap-manipulating programming languages, such as C, Java and so

on. The problem is due to the wide use of recursive shared mutable data

structures which are dynamically allocated in memory. “Shared” means one

data structure could be pointed/referred to by multiple pointers/references,

i.e. these pointers/references are aliased, and “Mutable” means one data

structure could be altered after it is created by any access path, which both

make it hard to keep track of the properties of data structures statically in

a precise and concise way.

Since the emergence of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds,

2002), a number of tools have been developed to analyse and verify the cor-

rectness of heap-manipulating programs. As an extension of Hoare logic,

it presents a framework to reason about these programs by modelling the

program memory (both stack and heap) in a natural and accurate manner.

In the pure spatial domain (or called shape domain), Berdine et al. (2005a)

introduce the Smallfoot tool for automatic verification of separation logic

7



1.2. Motivation

specifications of programs that manipulate dynamically allocated recursive

data structures. As a successor of Smallfoot, the SpaceInvader tool (Diste-

fano et al., 2006; Yang et al., 2008; Calcagno et al., 2009) improves the au-

tomatization and infers loop invariants and method specifications on pointer

safety for list-manipulating programs. Other works such as SLAyer (Berdine

et al., 2007) and jStar (Distefano and Parkinson, 2008) are also focused on

the shape domain.

In the shape domain, data structure shapes portray the spatial relationship

amongst components of the data structures and their aliasing. However, the

properties of a large number of important recursive data structures, such as

sorted lists, priority queues, height-balanced trees, and so on, do not only

relate to shape domain, but to a combination of shape and pure domains. The

pure domain captures the numerical properties such as length/height of data

structures, the values stored in the data structures and relationship amongst

them. The THOR tool (Magill et al., 2007, 2008, 2010) proposes an analysis

mechanism which incorporates with relatively simple numerical information

to capture properties like length of list. To capture more general properties,

one state-of-the-art verification system Hip/Sleek (Nguyen et al., 2007;

Chin et al., 2007; Nguyen and Chin, 2008; Chin et al., 2010) has been built

over a combined shape and pure domain to verify richer properties like linked

lists and trees with relevant quantitative information such as list length and

sortedness, tree height and balanced property, and so on.

Compared with previous works, one advantage of Hip/Sleek is the expres-

siveness of its specification language to allow users to specify their preferred

8



1.2. Motivation

level of program correctness by defining predicates to depict the data struc-

tures used in their programs. Users can define different predicates to describe

the spatial relationship amongst components of their data structures and

relevant quantitative features that they care about. For example, users may

define a linked list predicate with only length information if they only care

about the length of lists, or a linked list with sortedness restriction over the

content of the list elements if they care about the sortedness of lists. Users

may also define the minimal or maximal boundary of the values of list ele-

ments if they care about the interval of list elements. Using Hip/Sleek to

reason about the program with these predicates allows users to control their

preferred level and aspect of verification of both memory safety and func-

tional correctness of heap-manipulating programs.

Besides its power and benefit, Hip/Sleek also has its own limitations. One

restriction of Hip/Sleek is that it requires user specified loop invariants.

Loop invariants are key conditions of verification of loops, and can be noto-

riously complex to provide for sophisticated analysis domain and can signif-

icantly restrict the scalability of the verification system. It will be good if

one can discover the loop invariants automatically for verification of loops in

the combined shape and pure domain.

Another motivation of my thesis is to infer the full specifications for any

given program code. Previous analysis researches over the combined domain

often require preconditions to be given, and Hip/Sleek also requires post-

conditions. Providing such information by hand is also cumbersome and

error-prone and restricts the scalability of the systems. Therefore, it is very

9



1.3. Objectives

useful if one can infer the full specification for given program in the combined

domain.

1.3 Objectives

The main objective of this thesis is to increase the level of automation of

program verification and free programmers’ labour, i.e. to reduce the need

of user annotations and increase the scalability of a verification system over

a combined shape and pure abstract domains, based on existing verification

system Hip/Sleek. The investigated aspects of programs are the functional

correctness and memory safety of heap-manipulating programs. The reduced

annotations are loop invariants and full program specifications. More specif-

ically, this thesis work has the following two aims:

• Loop Invariant Synthesis The first goal is to automatically infer

the loop invariants over the combined shape and pure domain. The

inferred loop invariants should make use of the user-specified recursive

data structures to characterize the loops and assist the verification of

the loops to be successful.

• Full Specification Discovery The second objective is to infer the

pre-/post-condition of program methods. The generated specification

should be precise and generic enough for further usage, and satisfy the

requirements for users. For example, by analysing an insertion sort

10



1.4. Challenges

method, if the user is only interested in length properties, sortedness

properties can be ignored; if the user is interested in sortedness prop-

erties, the length information can also be ignored. The user’s potential

requirements are guided by the definition of data structure predicates.

The inference mechanism is designed for generic propose. Different kinds

of data structure and different user-defined predicates could be handled by

the same framework. The meaning of generic contrasts with specialised ap-

proaches, such as Rugina (2004) and Habermehl et al. (2010), which are

designed to work with restricted “built-in” data structures.

1.4 Challenges

Several challenges are on the way of the research of inference mechanisms

for loop invariants and full specifications. The major problems of both loop

invariant and full specification inference are the shared mutable data struc-

tures, abstraction strategics, the combination of multiple domains/theories,

and fixed-point calculation. Besides of these difficulties, the precise pre-

condition synthesis and the abduction method in the combined domain are

additional tasks for full specification inference.

More specifically, for both loop invariant synthesis and full specification dis-

covery of programs which manipulate shared and mutable sophisticated data
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structures, the problems that need to be solved are followed:

• Sharing (Aliasing) and Mutability Aliasing refers to the situation

where the same memory location/object is shared by multiple point-

ers/references, namely the memory location/object can be accessed by

different access paths. Aliases manifest themselves in many different

forms: variable aliasing, parameter aliasing, array subscript aliasing,

and so on. The problem of aliasing is highlighted when mutability is

presented, which means one data structure could be altered after it is

created by any access path. The major difficulty of sharing/aliasing and

mutability is that updates one component may affect other seemingly

unrelated components.

• Abstraction Strategies Analysing about programs in their full de-

tails is infeasible due to the complexity of the programs, especially,

when handling infinite structures in programs, such as recursive data

structures, loops, recursion and so on. The irrelevant or uninterest-

ing details should be eliminated to keep the analysis within the reach

of automated tools and also guarantee the termination of the analy-

sis. Abstractions filter out the unnecessary information and improve

efficiency of the analysis. It is a non-trivial problem to choose right

abstraction strategies that keep as many relevant details and drop as

many irrelevant details as possible.

• Combination of Multiple Domains/Theories More often than

not, programs operate on many different domains and data structures.

For example, one single program may change the shape of a list and

compares numbers stored in the list at the same time. To verify the

12
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correctness of the program, the analysis need to work over a com-

bined shape and numerical domain to fully capture the behaviour of

the program. Combining provers and decision procedures for a range

of theories is a challenging problem. When we analyse structural and

quantitative aspects of data structures at the same time, we need ap-

proaches to combine different theories.

• Fixed-point calculation Fixed-point calculation plays a central role

in abstract interpretation of the analysis of loops and recursive meth-

ods. Widening can be used to guarantee the termination of the analysis

in infinite lattices. New widening operators need to be carefully de-

signed to guarantee the termination of the analysis over the combined

domain and also not lose too much information.

The following challenges are added to previous tasks for full specification

inference mechanism:

• Precondition Discovering Abstract interpretation usually needs pre-

conditions as the program context to reason about the program code.

It is very tedious to specify the preconditions for every method in siz-

able programs. An appropriate approach is needed to discover precise

preconditions with respect to the demand of users and based on the

behaviour and footprint of the unannotated code.

• Abduction Abduction is a technique used in the generation of pre-

/post-specification for unannotated code. Calcagno et al. (2009) have

13
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applied this technique to shape domain for compositional shape anal-

ysis. To extend the abduction technique to the combined shape and

pure domain is a challenging task.

1.5 Contributions

The main contributions of this dissertation are the analysis frameworks for

automated loop invariants synthesis and full specification discovery for pro-

grams manipulating shared and mutable sophisticated data structures. I

have demonstrated that it is possible and practical to analyse such programs

automatically and precisely by using abstract interpretation in a combined

shape and pure domain. More concretely, the main contributions of this

dissertation are followed below.

• Loop Invariant Synthesis An automated analysis system based on

abstract interpretation for loop invariant synthesis is proposed. The

analysis system is based on fixed-point computation with specifically

designed novel join and widening operators over the combined domain.

An abstraction function is defined to concentrate on concrete states

for the combined domain. The termination of the system is proved

based on the fixed-point algorithm and the widening operator. The

soundness of the analysis is proved with respect to the concrete pro-

gram semantics. The inference framework has been integrated with

Hip/Sleek verification system. The experimental results confirm the
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viability of the system and show that the need of user supplied loop

invariants can be effectively eliminated.

• Full Specification Discovery An automated analysis framework for

full specification discovery is presented. The framework can discover

program’s pre-/post-conditions without requiring any specification to

be given for the program. The analysis is based on abstract interpreta-

tion techniques and is a compositional analysis in the combined shape

and pure domain. A novel abstraction with bi-abduction techniques

over the combined domain is defined. The framework has been imple-

mented. The experiment results confirm the viability and precision of

the framework in finding interesting properties of non-trivial programs.

1.6 Thesis Outline

This thesis is constructed by 7 chapters including this introduction. Chap-

ter 2 provides a literature survey of program analysis and verification tech-

niques, and mainly focuses on numerical domain and separation logic do-

main. Chapter 3 presents the target programming language of the analysis,

and its operational semantics. The specification language used to express

our combined abstract domain is also introduced. Chapter 4 describes the

synthesis of loop invariants in the combined abstract domain as the first

contribution of this thesis. Specially designed abstraction, join and widen-

ing operators are explained. Chapter 5 presents the second contribution

of the work, a compositional analysis framework to infer both pre-/post-
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conditions of heap-manipulating programs with bi-abduction techniques in

the combined abstract domain. Chapter 6 shows the implementation, the

experimental results and the evaluation of the proposed methods. Chap-

ter 7 concludes and summarises the contributions of this dissertation, and

proposes some possible directions for future works.
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Chapter 2

Literature Review

Since 1960s and 1970s, formal program analysis and verification have been

proposed by pioneers (Floyd, 1967; Hoare, 1969; Dijkstra, 1976) to reason

about programs and guarantee the quality of software formally. This area

has been continually developed over the past 40 years due to the growing

requirements of software engineering. Various techniques have been invented

to fit for different scenarios. As this thesis mainly focuses on the functional

correctness and memory safety of pointer-based programs, this chapter gives

a brief survey of numerical related and memory related works in this field.

Many inspirations of this research are drawn among them.
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2.1 Hoare Logic and Program Verification

The approaches to describe program behaviours mathematically are the foun-

dation of program analysis and verification. Floyd (1967) and Hoare (1969)

took the lead in the race of the use of logical formulae to depict the behaviours

of programs. They proposed a formal system that uses a set of axioms and

logic rules for rigorously reasoning about the correctness of computer pro-

grams. This system has been called Floyd-Hoare logic or Hoare logic. The

central feature of Hoare logic is the Hoare triple.

{P} C {Q}

The precondition P and postcondition Q specify the behaviours of a program

command C. Standard Hoare logic proves only partial correctness, namely

program termination needs to be proved separately. Total correctness is built

upon the partial correctness and termination proof. A later work (Dijkstra,

1976) presents the notion of the weakest precondition which is proven as

equivalent as the former. Burstall (1974) integrates operational semantics

for programs with the formal verification method.

Since then a large number of publications is devoted to Hoare logic. The total

correctness version of Hoare calculus presented in Manna and Pnueli (1974),

is capable of proving that a program can terminate and is logically correct,

which extends Hoare’s method by proving correctness and termination at

once. The notions of expressiveness and relative completeness introduced

in Cook (1978), which finds that Hoare logic is only complete in certain

cases, are relative to his interpretive semantics. Clarke (1979) researches on
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the expressiveness of finite interpretations, with the result that certain pro-

gramming languages cannot possess a sound and relatively complete Hoare

calculus because the halting problem is undecidable for the languages, even

if the underlying interpretation is finite. Lipton (1977) claims that the only

expressive interpretations should be the standard interpretation of Peano

arithmetic and the finite interpretation.

The verification and analysis presented in this thesis are essentially founded

on the basis of Hoare logic. As it will be presented in later chapters, our

abstract program semantics used for symbolic executions of programs are

based on Hoare logic, or more specifically, separation logic (as an extension

of Hoare logic) which will be surveyed in a later section.

2.2 Abstract Interpretation

If one designs an abstraction or representation of the program states, then

it is possible to capture the interesting facts of the program and infer the

loop invariants and program specifications by extracting information from

the program code. This premise is the basis of data-flow analysis (Kildall,

1973) and abstract interpretation. The framework of abstract interpretation

was introduced in Patrick Cousot’s and his collaborations’ series of foun-

dational works (Cousot and Cousot, 1976, 1977a; Cousot and Halbwachs,

1978). Cousot and Cousot (1976) introduce the basic way to use “abstract”

(symbolic) values associated with variables instead of the “concrete” values
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during real execution of the program. For example, if we choose two domains,

one is natural numbers N as the concrete domain recording concrete values

of variables, and the other is the set S of integer intervals as the abstract

domain, then we define two functions α and γ as

α(N) = [min(N),max(N)], N ⊆ N

γ(s) = s, s ⊆ N

where we write [n,+∞) as [n,+∞] for expression convenience. Here we call

α the abstraction function and γ the concretisation function. The abstrac-

tion function maps a set of concrete values to an abstract value, and the

concretisation function runs in the reversed way. Note that we have the

relationship ∀N ∈ P(N) ·N ⊆ γ(α(N)) and ∀s ∈ S · s = α(γ(s)), these two

functions hence create a Galois connection to link both the concrete and

abstract domains together. In an analysis when we are confronted with an

infinite increasing chain 1, 2, 3, . . . as the value sequence of some variable, we

can condense it as an abstract value [1,+∞] in S to force convergence.

On the basis of the work (Cousot and Cousot, 1976), Cousot and Cousot

(1977a) propose an approach to an approximation of fixed-point to construct

a unified lattice model for static program analysis. Its general idea is to

have some ordering over both concrete and abstract states and an induced

(complete) semi-lattice over them, and regard the (recursive) program being

analysed as a transition function f , which is monotonic over the concrete

domain (and lifted to the abstract domain). Then the least fixed-point of f

(lfp f) can be considered as the semantics of f , which may be computed with

a fixed-point iteration process.
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Cousot and Halbwachs (1978) apply the above mentioned two pieces of work

to discover the assertions (of linear type) that can be deduced from the

semantics of the program. It can often discover relations which are never

stated explicitly in the program.

After that, Cousots still have sequent works to make the framework of ab-

stract interpretation more complete. Cousot and Cousot (1979) exhibit a

systematic way to design program analysis frameworks. It shows a (both

forward and backward) deductive semantics of programs as the standard of

soundness, based on which it studies the design of a space of approximate as-

sertions, and the design of the approximate predicate transformer induced by

such assertions. In this way, it brings forward some global program analysis

methods. This framework is an excellent foundation for other program anal-

ysis practice, while its semantics is rectified again in a later work (Cousot,

1981).

For the approximation methods in the fixed-point calculation of abstract in-

terpretation, Cousot and Cousot (1977a) also introduce some initial ways

which are still frequently referenced today. One is static in that it can be

understood as the simplification of the equation involved in the concrete se-

mantics into an approximate abstract equation. Galois connections are used

in this method to formalise this discrete approximation process. The sec-

ond is dynamic in that it takes place during the iterative resolution of the

abstract equation (or system of equations). This separation introduces addi-

tional flexibility which allows for both expressiveness and efficiency. It also

introduces the idea of using widening and narrowing operators (∇ and 4) to
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accelerate/force convergence for fixed-point approximation (especially when

the lattice is infinite and does not satisfy the ascending chain condition). An

instance of this follows the previous example of natural real numbers and

intervals. In this example, we may have a widening operator ∇ by choosing

a finite ramp

0 = r0 < r1 < · · · < rk = +∞

and the widening’s definition is

∅∇ [l′, h′] = [l′, h′], or

[l, h]∇ [l′, h′] =
[ if l′ < l then max{ri|ri ≤ l′} else l,

if h′ > h then min{ri|h′ ≤ ri} else h ]

so that if we make ri−ri−1 = 1, then we will have an infinite ascending chain

during the analysis [0, 0], [0, 1], [0, 2], · · · . We can use ∇ to widen each state

with its consecutive state in order to make the chain converge as [0, 0], [0, 1],

[0,+∞]. This idea is essential in the work because it offers a way to deal

with ascending chains in infinite lattices or to speed up convergence in case

of a combinatorial explosion.

To automate the verification process, program analysis techniques are widely

applied on the basis of abstract interpretation. More recently, Müller-Olm

and Seidl (2004) apply linear algebra techniques to precise dataflow analysis

to describe analyses which are determined for each program point identities

that are valid among the program variables whenever control reaches that

program point (as their main approach). They fully interpret assignment

statements with affine expressions on the right hand side to compute the

set of all affine relations and polynomial relations of bounded degree. Their

complexity is worth noting to be linear to program size and polynomial to
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the number of variables. Popeea and Chin (2006) also introduce the no-

tion of affinity to characterise how closely related two polyhedra are. Then

they try to find related elements in the polyhedron (base) domain to allow

the formulation of precise hull and widening operators to lift to the dis-

junctive (powerset extension of the) polyhedron domain. In this way, they

effectively prevent the original convex-hull’s loss of precision. Gulwani and

Tiwari (2007) use a backward analysis to propagate information with “generic

assertions” analysis and to simplify such assertions with unification. Their

analysis and implementation are constructed on this technique. The above

mentioned works are focused mostly on the numerical domains. Pham et al.

(2011) build an abstract interpretation tool for quantified bag constraints.

They also make use of affinity-based hulling and widening techniques to cal-

culate precise disjunctive fixpoints over bag domain. In this thesis, their

achievements can be utilised as solvers to the pure part of our combined

domain.

2.3 Shape property and Separation Logic

For the modelling of program’s memory state, we use the technique of sepa-

ration logic (O’Hearn and Pym, 1999; Reynolds, 2000; O’Hearn et al., 2001;

Reynolds, 2002). In this section, a brief background of it is introduced.

As a pioneer of separation logic, a logic of bunched implications (BI) is intro-

duced by O’Hearn and Pym (1999), which is merged from two parts: additive

23



2.3. Shape property and Separation Logic

intuitionistic logic and multiplicative intuitionistic linear logic. Models of

propositional BI’s proofs are given by bi-cartesian doubly closed categories,

combining freely semantics from both logic families. This work also devel-

ops a first-order predicate version of BI with newly invented universal and

existential quantifiers.

However, BI is no more than a theoretical logic model until Reynolds has

presented his work (Reynolds, 2000) to reason about resource-sensitive pro-

grams, and his logic model is analogous to BI’s. Generally, it is an extension

of Hoare’s approach to prove the correctness of imperative programs that

perform destructive updates to data structures, and that contain more than

one pointer to the same location. It invents an “independent conjunction”

P ∧Q that holds only when P and Q are both true and depend upon distinct

areas of storage, whose semantics is exactly the same as the linear conjunc-

tion of BI. It is a nice coincidence that they come to the same point from

two different ways, which happened several times in the history of computer

science such as Turing’s computing machine and Church’s λ-calculus.

After that, these two branches of research group have cooperated to deliver a

series of works (O’Hearn et al., 2001; Reynolds, 2002) to set up the foundation

of separation logic which can be used to reason about heap memory state. In

separation logic, two more connectives are added to classical logic: separation

conjunction ∗ and spacial implication −−∗. The formula P ∗ Q asserts that

two heaps described by P and Q are domain-disjoint. Meanwhile, P−−∗Q

asserts that if the current heap is extended with a disjoint heap which is

described by P , then Q holds in the extended heap. Such connectives are
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supported by a low-level storage model based on both the stack and the

heap memory. The model supports the basic program operations such as

lookup, mutation (update), allocation and deallocation with a series of Hoare

logic style reasoning rules. It also provides unrestricted memory address

arithmetic. The frame rule

{P} C {Q}
{P ∗R} C {Q ∗R}

where no variable occurring free in R is modified by C .

is emphasised as the base of local reasoning because it allows the reasoning of

programs to concentrate on programs’ footprint (the heap that the program

actually manipulates), instead of a large global heap state. This is signifi-

cant as it entitles the reasoning with the potential to scale up. Separation

logic’s assertion language is also formalised on a possible world model of BI.

The soundness and relative completeness are also discussed in the paper, as

well as latest results of separation logic with the illustration of its possible

applications in the field of program reasoning.

For separation logic itself, there are some other works to address. Yang and

O’Hearn (2002) present a semantic analysis of the soundness and relative

completeness of separation logic for the frame axiom to be inferred auto-

matically, with the result that it can be avoided when writing specifications.

Calcagno et al. (2001) discuss on some computability and complexity results

of separation logic, where it points out that the validity of separation logic

formulae is not decidable; however, the validity over a restricted subset of

separation logic formulae is fortunately decidable with certain complexity.

Following it, Berdine et al. (2004) provide a fragment of separation logic

whose entailment checking problem is decidable with a sound and complete
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algorithm to solve it, which plays an important theoretical role in their later

works of program analysis. Calcagno et al. (2007) study the semantic struc-

tures lying behind separation logic by the concept of local action, which is a

state transformer that mutates the state in a local way. It formulates local

actions for a class of models called separation algebras, abstracting from the

memory and other specific concrete models used in work on separation logic.

Local actions provide a semantics for a generalised form of (sequential) sep-

aration logic, and allow a general soundness proof for a separation logic for

concurrency.

Smallfoot (Berdine et al., 2005a) is a verification tool based on separation

logic. It makes use of a symbolic execution designed to work with a fixed

set of shape predicates, most notably, the list segment predicate (Berdine

et al., 2005b). It is the first attempt to use separation logic in the verifica-

tion of pointer safety and simple shape properties. The data structures and

properties that they verify are quite simple compared with the user-defined

predicates.

This thesis work is based on the improvement of another state-of-the-art

program verifier Hip/Sleek (Nguyen et al., 2007; Chin et al., 2007; Nguyen

and Chin, 2008). Its overview is given in Figure 2.1. The front-end of the

system is a standard Hoare-style forward verifier Hip, which invokes the

separation logic prover Sleek. The Hip verifier comprises a set of forward

verification rules to systematically check that the precondition is satisfied

at each call site, and that the declared postcondition is successfully verified

(assuming the given precondition) for each method definition. Given two
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Figure 2.1: The Hip/Sleek verification system.

states ∆1 and ∆2, the separation logic prover Sleek attempts to prove that

∆1 entails ∆2; if it succeeds, it returns a frame ∆R so that ∆1 ` ∆2 ∗ ∆R. As

discussed previously, it can express and process multiple types of program

properties such as shape, quantitative and content ones in states ∆. We want

to keep all of its merits and improve it by discovering loop invariant and full

specification automatically. Meanwhile, we use the Sleek tool as our main

solver for entailment checking.

This research will be different from the aforementioned ones in the employed

techniques (like separation logic and entailment checking) in that we can de-

scribe the shape properties in a more natural way from the user’s perspective

and will still remain expressive and computationally feasible.
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2.4 Model Checking

Model checking (Clarke and Emerson, 1981) represents a fairly different ap-

proach to the proof of software correctness. It was originally designed to

verify finite-state systems by exhausting the whole set of computation states

according to some specification described in temporal logic, and it achieved

great success on circuit design and implementation (McMillan, 1992). Such

success intrigued researchers’ interest in applying model checking to the field

of software. The key techniques for such application are abstraction (like

predicate abstraction (Ball et al., 2001) and counterexample-guided abstrac-

tion refinement (Clarke et al., 2000, 2003)), as software usually has infinite

computation states which are beyond the capability of model checking. These

abstractions are even borrowed into some analysis works, such as in Sa-

giv et al. (2002) and Balaban et al. (2005). With appropriate abstraction

techniques, model checking tools are generally automatic and thus requires

no user intervention. Some representatives of such tools include the gen-

eral framework of model checkers SPIN (Holzmann, 2004), the SLAM model

checker for drivers (Ball and Rajamani, 2001), the BLAST model checker for

C programs with lazy counterexample-guided abstraction refinement (Hen-

zinger et al., 2003) and Java PathFinder for Java programs by NASA (Visser

et al., 2003).
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2.5 Summary

This chapter has surveyed the state-of-the-art in the field of software quality

assurance, especially program verification and analysis. It mainly covers two

types of topics, one is the foundational techniques that we use in this thesis,

and the other is some related works by peers in the similar area of program

verification and analysis.
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Chapter 3

Language And Semantics

In this chapter, both target programming language and specification lan-

guage are introduced with their semantics. The target programming lan-

guage, i.e. the language is used to be verified, is a standard object-based

language, and the specification language is a predicate-based specification

language which is used to express the program specifications and abstract

program states.

Predicates are the core of the specification language. The predicates are in-

ductively defined as they are in Hip/Sleek (Nguyen et al., 2007; Chin et al.,

2007; Nguyen and Chin, 2008; Chin et al., 2010), and are able to capture re-

cursive data structures with sophisticated program properties involving not

only structural aspects but also quantitative aspects and content of data
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structures. In this chapter, firstly, the programming language is specified.

Then the base of our specification language, separation logic, is depicted.

Finally, the specification language itself is described.

3.1 Target Programming Language

3.1.1 Grammar

The target programming language used in our system is a fully typed object-

based language which may be viewed as a subset of popular type-safe pro-

gramming languages, such as Java or C]. Its grammar is formally defined

in Figure 3.1.

A program Prog in our language consists of a list of type declarations tdecl

and a list of method definitions meth. The type declarations include class

types classt used in programs, user-defined predicates spred for specifications.

spred is written in our specification language, thus we leave them until sec-

tion 3.3. Compared with those fully-fledged object-oriented languages, our

language has omitted some features which are orthogonal to this thesis’ in-

terest, such as inheritance, dynamic dispatch, concurrency, array, exception,

and so on. The semantics of most constructs of the language are understood

in the usual sense that one would find in languages such as Java or C], ex-

cept for the class declaration, which declares a class type without instance
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Program Prog ::= ~tdecl ~meth

Type declaration tdecl ::= classt | spred

Class declaration classt ::= class c { ~field }

Field declaration field ::= t v

Type t ::= c | τ

Procedure declaration meth ::= t mn ( ~(t v); ~(t v)) ~mspec {e}

Built-in type τ ::= int | bool | void

Expression e ::= d heap-insensitive atomic

| d[v] heap-sensitive atomic

| v=e assignment

| e1; e2 sequence

| t v; e local variable

| if (v) e1 else e2

| while v {e} where ~mspec

Heap-insensitive atomic d ::= - skip

| null null reference

| kτ constant

| v variable

| new c(~v) allocation

| mn(~u;~v) method call

Heap-sensitive atomic d[v] ::= v.f field read

| v.f=w field write

| free(v) deallocation

Figure 3.1: A target programming language.
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methods or dynamic dispatch. Other than that, they behave like normal

classes: instances of a class type can be (dynamically) allocated (new c(~v)),

their fields can be read (v.f) and updated (v.f = w), references to them can

be passed to and from methods, and so on. A type t can either be a class

type c or a primitive built-in type τ .

To express program specifications, users are allowed to express the speci-

fications mspec for each method or loop in our language. Like in C], we

support both pass-by-value and pass-by-reference parameters, which are sep-

arated with a semicolon (;) where the ones before ‘;’ are pass-by-value and

the ones after are pass-by-reference. The grammar for these annotations will

be presented in section 3.3. The meaning of a pair of precondition and post-

condition is that if the method is invoked in a program state that satisfies

its precondition, the method will not have any memory faults such as null

or dangling pointer dereferences. Furthermore, if the method terminates, it

terminates in a state that satisfies the postcondition. Otherwise, if the pro-

gram state does not satisfy the precondition, then the verification fails and

a catastrophic error is reported with its location in the program. In other

words, we adopt the partial correctness semantics of Hoare triples with tight

interpretation (Yang and O’Hearn, 2002).

Without loss of generality, our language is expression-oriented, the body of

a method hence is an expression composed of standard instructions and con-

structors of the language. e is the (recursively defined) program constructor,

and d and d[v] are atomic instructions. Here d[v] has some specific require-

ment over the memory state (such as v must be allocated at a valid part of
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heap memory) and is hence named heap-sensitive atomic instruction, whereas

d does not have such requirements and is called heap-insensitive atomic in-

struction. As these will be seen in later chapters, the two sorts of instructions

are treated differently during the analysis of a program.

We have some further assumptions over the programs, and they are well-

formed according to the following rules. Each program is type-safe. Classes,

predicates and methods should have distinct names. Local variables in the

same scope are distinct. Meanwhile, we do not allow the syntactic sugar for

local variables to hide variables from outer scopes or method parameters.

3.1.2 Operational Semantics

This section defines the operational semantics of our programming language.

Before doing that, we firstly define the semantic domains. Locations in our

system correspond to object identifiers (which can be practically regarded as

memory locations). Values include primitive values, locations, and the special

value null which does not correspond to any object identifier. Objects are

finite partial maps that map from field names to values. Primitive values

include integer numbers and boolean values. Return types of methods could

be Void.

We define a small-step operational semantics for our language as transitions

between machine configurations. Each machine configuration is a triple con-
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OS-VAR 〈s, h, v〉↪→〈s, h, s(v)〉

OS-CONST 〈s, h, k〉↪→〈s, h, k〉

OS-SEQ 〈s, h, -; e〉↪→〈s, h, e〉

OS-ASSIGN-1 〈s, h, v=k〉↪→〈s[v 7→k], h, -〉

OS-FIELD-READ 〈s, h, v.f〉↪→〈s, h, h(s(v))(f)〉

OS-LOCAL 〈s, h, {t v; e}〉↪→〈[v 7→⊥]+s, h, ret(v, e)〉

OS-RET-1 〈s, h, ret(~v, k)〉↪→〈s−{~v}, h, k〉

OS-PROG

〈s, h, e1〉↪→〈s1, h1, e3〉
〈s, h, e1; e2〉↪→〈s1, h1, e3; e2〉

OS-ASSIGN-2

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, v=e〉↪→〈s1, h1, v=e1〉

OS-RET-2

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, ret(~v, e)〉↪→〈s1, h1, ret(~v, e1)〉

OS-FIELD-WRITE

r = h(s(v1))[f 7→s(v2)] h1 = h[s(v1) 7→r]
〈s, h, v1.f = v2〉↪→〈(s, h1)〉

OS-IF-1

s(v)=true

〈s, h, if (v) e1 else e2〉↪→〈s, h, e1〉

OS-IF-2

s(v)=false

〈s, h, if (v) e1 else e2〉↪→〈s, h, e2〉

OS-NEW

data c {t1 f1, .., tn fn}
ι/∈dom(h) r=c[f1 7→s(v1), .., fn 7→s(vn)]

〈s, h, new c(~v)〉↪→〈s, h[ι 7→ r], ι〉

OS-WHILE-1

s(b)=true

〈s, h, while (b) {e}〉↪→〈s, h, e; while (b) {e}〉

OS-WHILE-2

s(b)=false

〈s, h, while (b) {e}〉↪→〈s, h, -〉

OS-CALL

s1=s[wi 7→s(vi)]m−1i=1

t0 mn((ti wi)
m−1
i=1 ; (ti wi)

n
i=m) {e}

〈s, h,mn(~v)〉↪→〈s1, h, ret({wi}m−1i=1 , [vi/wi]
n
i=me)〉

Figure 3.2: Operational semantics.
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sisting of:

• Stack s. Stacks are modelled as total maps from variables to values

and locations. Note that it is viewed as a “stackable” mapping, where

a variable v may occur several times, and s(v) always refers to the value

of the variable v which was the most recently popped one.1

s :: Var→ Val ∪ Loc

• Heap h. We model heaps as finite partial maps from locations to ob-

jects. Objects are expected to conform to their defined class types.

h :: Loc⇀fin ObjVal

• Current program code e. Program execution terminates when e is -, a

value of type void.

Each reduction step can then be formalised as a small-step transition of the

form:

〈s, h, e〉↪→〈s1, h1, e1〉

A configuration is final if e is a value or -. A configuration is stuck if it is

not final and there is no applicable transition. The full set of transitions

is given in Figure 3.2. The operation [v 7→ ν] + s “pushes” the variable

v to s with the value ν, and ([v 7→ ν] + s)(v) = ν. The operation s − ~v

1A more formal definition for s would mark different occurrences of the same variable

with different “frame” numbers. We omit the details here.
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“pops out” variables ~v from the stack s. s[v 7→k] is a mapping which keeps

all the mappings in s except that of v (which is now specified to be mapped

to k). We also abuse this notation for a class type identifier c to denote

a region of heap (mappings) in the form c[f1 7→s(v1), . . . , fn 7→s(vn)], which

is essentially a heap location where fields fi are further mapped to values

s(vi), i = 1, . . . , n. ⊥ represents an arbitrary value. We also introduce an

intermediate construct as result which is returned by expression/method call

ret(~v, e), where ~v will be dropped from s after the evaluation/invocation of

e as to simulate the behaviour of stack. Whenever such a result is yielded,

we assume it is stored in a special logical variable res although res is never

explicitly put in the stack s.

3.2 Separation Logic

Our specification language is built on top of separation logic (O’Hearn and

Pym, 1999; Reynolds, 2000; Ishtiaq and O’Hearn, 2001; Reynolds, 2002), de-

signed for reasoning about programs that manipulate shared mutable pointer-

based data structures. As mentioned in section 2.3, the distinguished feature

of separation logic is its local reasoning about data structures linked by point-

ers and allocated in heap (Distefano et al., 2006). It means that reasoning

about a command concerns only the part of the heap that the command

accesses, a.k.a. the command’s footprint. Note that local reasoning is not

only a registered patent for separation logic; it also exists in the original

formulation of Hoare logic (Hoare, 1969) with the substitution treatment
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in assignment. However, such local reasoning will be lost if heap-based data

structure and aliasing are introduced to the programming language. This loss

of locality is noted as the pointer swing problem by Hoare and He (1999).

In this scenario, separation logic restores the capability to reason locally by

means of two technical novelties: 1) the separation conjunction ∗ and 2) tight

interpretation of Hoare triples (Yang and O’Hearn, 2002).

A key insight leading to separation logic is that program logics for reasoning

about heap-manipulating programs should be explicit for the heap. In other

words, program heaps should be one part of the model of a program logic.

The satisfiability of a separation logic formula ∆ in a program state is thus

typically enforced by the semantics relation

s, h |= ∆

where s is a model of the program stack, and h is the program heap.

Separation logic introduces a relation points-to 7→, and three new operators:

empty heap emp, separating conjunction ∗, and separating implication −−∗.

A points-to formula x 7→ y describes a singleton heap with only one cell at

address x that stores value y. Formula emp holds on empty heap, namely,

no data/object is allocated on heap. Formula ∆1 ∗∆2 describes a heap that

can be partitioned into two domain-disjoint heaps described by ∆1 and ∆2.

Formula ∆1−∗∆2 describes a heap that if it is extended with a disjoint heap

represented by ∆1, then ∆2 holds in the extended heap. In other words,

∆1 −∗∆2 captures the heap described by ∆2, where the heap corresponding

to ∆1 is “taken away”. The formal semantics of these operators will be

defined formally in subsection 3.3.4.
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Tight interpretation is another key aspect of separation logic, which ensures

“well-specified programs do not go wrong” (Reynolds, 2005). Under this in-

terpretation, a valid Hoare triple {∆1} e {∆2} guarantees that command e

should never encounter a memory fault if it is started in a program state

that satisfies ∆1. One significant prerequisite of this interpretation requires

the precondition ∆1 of a command to guarantee that all memory locations

accessed by the command, except for the freshly allocated ones, are allocated

beforehand. In the setting of separation logic, a memory location x is con-

sidered allocated if the points-to fact x 7→ is presented. More specifically,

Hoare triples for heap-accessing commands in separation logic are described

as follows:

• Field read:

{x 7→[v1, . . . , vi, . . . , vn]}

x.fi

{x 7→[v1, . . . , vi, . . . , vn] ∧ res=vi}

where res is the special variable which denotes the resulted value of

an expression.

• Field write:

{x 7→[v1, ..., vi−1, vi, vi+1, ..., vn]}

x.fi=v

{x 7→[v1, ..., vi−1, v, vi+1, ..., vn]}

The above axioms illustrate the main characteristics of separation logic. In

order to analyse a heap-accessing command, it must be explicitly proved that
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the heap location under consideration is allocated. Meanwhile, the reward is

that any other heap locations can be ignored safely.

The interplay of separation conjunction and tight interpretation makes local

reasoning possible, which is formalised by the frame rule in separation logic:

{∆1} e {∆2}
{∆1 ∗∆3} e {∆2 ∗∆3}

mods(e) ∩ fv(∆3) = ∅

where mods(e) returns the set of variables modified by command e. Note

that mods(e) includes neither modified fields, nor the variables used to reach

these fields. fv(∆3) returns the set of free variables which occurs in formula

∆3. The crucial power of the frame rule is that it allows a global property to

be derived from a local one, without necessity to look at other parts of the

program.

3.3 Specification Language

The specification language is on the basis of a predicate-based specification

methodology, wherein the main annotation construct is the shape predicate,

each of which describes a data structure. The aim of using this scheme is

to allow users to design their own predicates for shapes and relevant prop-

erties (numerical and content ones), in order to capture the desired level of

program correctness. The advantages of this methodology include that it

unifies heterogeneous techniques and annotations in a homogeneous way for

the verification of linked data structures. Predicates also eliminate the need
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for an explicit ownership scheme; they capture sufficient information for us

to perform verification of properties that involve closures. Finally, it permits

us to easily decompose the properties to be verified for a shape predicate,

which is beneficial to verify various levels of program correctness.

The grammar for the specification language is given in Figure 3.3. Each shape

predicate spred has a name c, a list of parameters ~v, and a body Φ. Each

predicate also has a parameter root, written to the left of the predicate

name c, which denotes a root pointer to the data structure captured by

the predicate. A root pointer is one from which all objects in the data

structure can be reached. root is a reserved identifier used only in predicate

definitions. ∆ is the abstract state, and Φ is the normalised state which

is a separation logic formula essentially in disjunctive normal form. The

method specifications mspec are written in these states where Φpr and Φpo

denote the precondition and postcondition respectively. Each disjunct σ

consists of a heap formula κ in the shape domain and a pure formula π in

disjunctive convex polyhedra domain and bag (multi-set) domain, i.e. the

pure (numerical) domain. The heap formula κ consists of ∗-conjoined atomic

heap formulae p::c〈~v〉. Such atomic heap formula p::c〈~v〉 can denote either

(i) a points-to fact p 7→ c[~v] if c is a class name, or (ii) a predicate instance

c(p, ~v) if c is a predicate name. The pure part π consists of heap-independent

formulae, such as formulae for Presburger arithmetic, formulae for pointer

equality/disequality and formulae in multiset theory. As shown in the figure,

Presburger arithmetic formula (s) is made up of integer constraints, variables,

addition, subtraction, scalar multiplication, maximum/minimum values and

cardinality of multiset. As for multiset (bag) theory, we allow expression of

(quantified) value membership, subset relationship and bag arithmetic (such
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as union, intersection and subtraction). To make automated verification

possible, we require that there is a sound and terminating method to decide

the validity of heap-independent logic.

Shape predicate spred ::= root::c〈~v〉 ≡ Φ

Specification mspec ::= requires Φpr ensures Φpo

Abstract state ∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆

Normalised state Φ ::=
∨
~σ

Conjunctive state σ ::= ∃~v·κ∧π

Heap formula κ ::= emp | v::c〈~v〉 | κ1∗κ2
Pure formula π ::= γ∧φ | π1 ∧ π2

Aliasing γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
Pure constr. φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ

Boolean b ::=true | false | v | b1 =b2

Numerical constr. a ::=s1=s2 | s1<s2

Presburger arith. s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2)

| min(s1,s2) | |B|

Bag constr. ϕ ::= v∈B | B1=B2 | B1<B2 | ∀v∈B·φ | ∃v∈B·φ

Bag arith. B ::= B1tB2 | B1uB2 | B1−B2 | {~v}

k ∈ Integer constans

c ∈ Class or predicate names

v ∈ Variables

Figure 3.3: The specification language.

For the verification of programs, we regard σ as a conjunctive abstract pro-

gram state, and use SH to denote a set of such conjunctive states as symbolic

heaps. During a verification process, the abstract program state at each pro-
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gram point will be a disjunction of σ’s which is denoted as ∆, and we name

the set of such formulae as PSH which describes our analysis domain, i.e. the

combined shape and pure (numerical) domain.

A ∆ can always be normalised into the Φ form. The normalization rules for

separation constraints are given in Figure 3.4.

(∆1 ∨∆2) ∧ π ; (∆1 ∧ π) ∨ (∆2 ∧ π)

(∆1 ∨∆2) ∗∆ ; (∆1∗∆) ∨ (∆2 ∗∆)

(κ1 ∧ π1) ∗ (κ2 ∧ π2) ; (κ1 ∗ κ2) ∧ (π1 ∧ π2)

(κ1 ∧ π1) ∧ (π2) ; κ1 ∧ (π1 ∧ π2)

(γ1 ∧ φ1) ∧ (γ2 ∧ φ2) ; (γ1 ∧ γ2) ∧ (φ1 ∧ φ2)

(∃x ·∆) ∧ π ; ∃y · ([y/x]∆ ∧ π)

(∃x ·∆1) ∗∆2 ; ∃y · ([y/x]∆1 ∗∆2)

Figure 3.4: Normalization Rules for Separation logic formula

Finally, when we write abstract program states or program specifications,

we use three kinds of variables: program variables, logical variables as pa-

rameters of predicates related to program variables (such as xn in x::c〈xn〉),

and logical variables to record intermediate states. We denote a program

variable’s initial value as unprimed, and its current (and hence latest) value

as primed (Nguyen et al., 2007; Chin et al., 2007). For instance, for a code

segment x = x+1; x = x−2 starting with state {x>1}, we have the following
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reasoning method:

{x′=x ∧ x>1} x=x+1 {x>1 ∧ x′=x+1} x=x-2 {x>1 ∧ x′=x1−2 ∧ x1=x+1}

where the final value of x is recorded in variable x′, and x1 keeps an interme-

diate state of x.

3.3.1 Shape Predicates

Our specification language allows the user to describe both the shape of

data structures as well as their quantitative properties and contents, and

to use them to capture the desired level of program correctness. Shape con-

straints of the data structures are described by separation logic. Quantitative

constraints, such as numerical properties and content of collections, are de-

scribed by arithmetic or multiset formulae. For example, with a singly linked

list node

class Node { int val; Node next; }

as data structure, a user interested in pointer-safety may define a predicate

to depict the list shape as in Distefano et al. (2006); Calcagno et al. (2009):

root::list〈〉 ≡ (root=null) ∨ (∃i, q · root::Node〈i, q〉∗q::list〈〉)

The sole parameter root for the predicate list is the root pointer that refers

to the list. As mentioned earlier, we use a uniform notation p::c〈~v〉 to denote

either a singleton heap or a predicate. If c is a class type node, the notation

represents a singleton heap, p 7→c[~v], e.g. the root::Node〈i, q〉 above. If c

is a predicate name, then the data structure pointed to by p has the shape
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c with parameters ~v, e.g., the q::list〈〉 above. In the inductive case, the

separation conjunction ∗ ensures that two heap portions (representing the

head node and the tail list respectively) are domain-disjoint. Our predicates

use existential quantifiers for local values and pointers, such as i and q.

Yet another user may be interested to track the length of a list to analyse

quantitative measures, such as heap/stack resource usage. Therefore, the

predicate can be defined in a similar manner as in Magill et al. (2008):

ll〈n〉 ≡ (root=null ∧ n=0) ∨ (root::Node〈 , q〉∗q::ll〈m〉 ∧ n=m+1)

where we use the following syntax sugar: (i) default root parameter in LHS

may be omitted, (ii) unbound variables, such as q and m, are implicitly ex-

istentially quantified, and (iii) denotes existentially quantified anonymous

variable. The parameter n of the predicate represents an abstract value. Such

value is not taken from a concrete heap location, but rather computed from

the pure formulae, which are usually based on the structure of the underlying

heap. This value is derived automatically by entailment when a predicate is

proved from a program state during the verification.

Meanwhile, this predicate may still be extended to support a higher-level of

correctness with multiset (bag) property to capture the list’s content:

llB〈S〉 ≡ (root=null ∧ S=∅) ∨ (root::Node〈v, q〉∗q::llB〈S1〉 ∧ S={v}tS1)

which also implicitly suggests the list’s length with |S|. This predicate can be

strengthened furthermore if it is necessary, so as to verify a sorting algorithm:

sllB〈S〉 ≡ (root=null ∧ S=∅) ∨

(root::Node〈v, q〉∗q::sllB〈S1〉 ∧ S={v}tS1 ∧ (∀x∈S1·v≤x))
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The constraint ∀x∈S1·v≤x guarantees the sortedness property, which is ad-

hered in the predicate. Therefore, it can be seen that the user is expected to

provide predicate definitions in terms of their required correctness level and

program properties. These predicates may be non-trivial but can be reused

multiple times for specifications of different methods.

As an example, a sorted doubly linked list segment with multiset property

can be described by:

dlls〈pr, bo, bi, S〉 ≡ (root=bo ∧ pr=bi ∧ S=∅) ∨

(root::Node2〈v, pr, nx〉 ∗ nx::dlls〈root, bo, bi, S1〉

∧ S={v}tS1 ∧ (∀x∈S1·v≤x))

where Node2 is declared as:

class Node2 { int val; Node2 prev; Node2 next }

The dlls shape predicate captures a chain of nodes that are to be traversed

via the next field (starting from the current node root). The parameters pr,

bo and bi represent the front output pointer (the prev field of the first node

of the doubly linked list), the back output pointer (the next field of the last

node) and the back input pointer (the last node of the list) respectively.

3.3.2 Well-Formedness and Well-Foundedness

Our predicate-based specification language is a combination of separation

logic and pure (heap-independent) logics. A tailored entailment prover Sleek
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(Nguyen et al., 2007) has been built to generate the entailment relation of

formulae in the language. Given an antecedent ∆1 and a consequent ∆2, the

entailment checks that

∆1`∆2 ∗∆R

The entailment proves whether heap nodes in ∆1 are sufficiently precise to

cover all nodes in ∆2, and whether the pure formulae in ∆1 entails pure

formula in ∆2. During the proof, a frame ∆R is computed. The key steps

that may be used in such an entailment proof are 1) matching up heap node

from the antecedent and the consequent, 2) unfolding a shape predicate in

the antecedent, 3) folding against a shape predicates in the consequent.

In order to ensure the soundness and termination of such processes by avoid-

ing problem stemming from the interaction between garbage and program

logics, the shape predicates and specifications of programs are required to be

well−formed.

To define this concept, we firstly need to clarify the accessible variables and

the reachability of a heap constraint node from a variable:

Definition 1 (Accessible) A variable in a predicate or specification is ac-

cessible if it is one of the current method parameter or root or res.

Definition 2 (Reachability) Given a heap formula κ = p::c〈~v〉∗κ1, atomic

heap p::c〈~v〉 is reachable from a variable q if and only if the following recur-

sively defined relation holds:

reach(κ, q, p::c〈~v〉) =df (p = q) ∨

(κ1 = q::cq〈. . . , r, . . .〉 ∗ κ2 ∧ reach(κ2, r, p::c〈~v〉))
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On the basis of definitions of Accessible and Reachability, we define the

well-formedness of formulae:

Definition 3 (Well-Formed Formulae) A separation formula Φ is well-

formed if

• (i) every class node and shape predicate in Φ is reachable from its

accessible variables, and

• (ii) Φ is in a disjunctive normal form
∨
~σ, and σ is a conjunctive state

∃~v·κ∧π, where κ is for heap formula, π is for (i.e. heap-independent)

formula.

The well-formed condition is significant in the light of that all heap nodes

of a heap formula must be reachable from accessible variables, which allows

the entailment checking procedure to correctly match nodes from the conse-

quence with nodes from the antecedent. It is also required that root can

appear only in predicate definitions, res in procedure postconditions.

Another potential problem during the reasoning is that arbitrary recursive

shape relation can lead to non-termination entailment checking. To avoid

that problem, we propose to use only well-founded shape predicates in our

framework:

Definition 4 (Well-Founded Predicate) A shape predicate p::c〈~v〉 = Φ

is well-founded if

• (i) Φ is a well-formed formula,
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• (ii) the parameter root can only be bound to a class node and not a

predicate,

• (iii) each disjunct in the disjunctive body of Φ can contain at most one

class node and only root is allowed to be bound to that class node, and

• (iv) every predicate is reachable from root.

The shape predicates given in the last section are all well-founded. In con-

trast, the following three shape definitions are not well-founded:

foo〈n〉 ≡ root::foo〈m〉 ∧ n=m+1

goo〈〉 ≡ root::Node〈 , 〉∗q::goo〈〉

hoo〈〉 ≡ root::Node〈 , q〉∗q::Node〈 , 〉

For foo, the root identifier is bound to a shape predicate. For goo, the heap

node pointed by q is not reachable from variable root (thus it is even not

well-formed). For hoo, an extra object node is bound to a non-root variable.

The first example may cause non-termination of entailment proof. When

we want to rearrange a heap part of foo to expose an object from it, we

simply get another foo which requires another unfolding that leads to non-

termination. The second example goo captures an unreachable (junk) heap

that cannot be located by our entailment method. The last example hoo

shows the syntactic restriction imposed to facilitate termination of proof of

entailment checking, and can be easily overcome by introducing intermediate

predicates.
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A few more examples of well-founded shape predicates are given below:

root::treep〈p〉 ≡ root=null

∨ root::Node3〈 , l, r, p〉 ∗ l::treep〈root〉 ∗ r::treep〈root〉

root::avl〈h, S〉 ≡ root=null∧h=0 ∧ S=∅

∨ root::Node2〈v, l, r〉 ∗ l::avl〈hl, Sl〉 ∗ r::avl〈hr, Sr〉

∧ h=1+max(hl, hr) ∧ −1≤hl−hr≤1

∧ S=SltSr ∧ (∀x∈Sl·x≤v) ∧ (∀x∈Sr·v<x)

where Node3 is declared as:

class Node3 { int val; Node3 l; Node3 r; Node3 p }

and treep is a binary tree where each node has a pointer which points to

its parent, and avl is a self-balancing binary search tree with near balanced

height.

3.3.3 Precondition and Postcondition

To verify certain properties of methods, users are allowed to annotate each

method with preconditions and postconditions in our language to specify the

behaviours of the method. A precondition is an assertion that should be

satisfied when a method is called, thus the method body can assume it when

the method starts. A postcondition is an assertion that should be established

when the method exits, thus the caller can assume it after the call if the

method is successfully verified. According to separation logic semantics, a
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precondition further guarantees the existence of all memory locations that

the method accesses, and hence guarantees free of memory errors during

execution.

1 class Node { int val; Node next; }

2 Node insert_sort(Node x)

3 requires x::llB〈S〉 ∧ |S|≥1

4 ensures res::sllB〈T〉 ∧ S=T {

5 if (x.next == null) return x;

6 else { Node s = x.next;

7 Node r = insert_sort(s);

8 return insert(r, x);

9 }

10 }

11 Node insert(Node r, Node x)

12 requires r::sllB〈S〉∗x::Node〈v, 〉

13 ensures res::sllB〈T〉 ∧ T=St{v} {

14 if (r == null) {

15 x.next = null; return x;

16 } else if (x.val <= r.val) {

17 x.next = r; return x;

18 } else {

19 r.next = insert(r.next , x);

20 return r;

21 }

22 }

Figure 3.5: Insertion sort for singly linked list.
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For example, using the llB and sllB predicates, we can specify insertion

sort algorithm that operates on linked lists. The algorithm recursively sorts

the tail of the input list, and inserts the first element into a sorted list so

that the order is maintained. Its code is in Figure 3.5.

From the code, we can see the insert sort method sorts a singly linked

list. As its precondition x::llB〈S〉 ∧ |S|≥1 suggests, the method takes in an

unsorted list which starts from x with content S, and whose length should

be at least one (this constraint is equivalent to x6=null and S6=∅, which,

if the user specifies, can be captured by our entailment checker). Upon

successful return, it gives a sorted list with the same content, as captured by

the postcondition res::sllB〈T〉 ∧ S=T.

The method insert inserts an object pointed to by x into a sorted list

referenced by r. The separation conjunction ∗ constrains the object x not

to belong to the list r, thereby the resulting list has one more element.

Meanwhile, the returned pointer res points to a sorted list whose content is

the union of the two inputs as the postcondition indicates.

3.3.4 The Semantic Model

The semantics of our specification formulae is adapted from the “early ver-

sions” of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002), except

that we have extensions to handle user-defined shape predicates and related
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pure properties. We assume a number of sets: Loc of memory locations, Val

of primitive values, with 0 ∈ Val denoting null, Var of variables (program

and logical variables), and ObjVal of object values stored in the heap, with

c[f1 7→ν1, . . . , fn 7→νn] denoting an object value of class c where ν1, . . . , νn are

current values of the corresponding fields f1, . . . , fn. Let s, h |= ∆ denote

the model relation, i.e. the stack s and heap h satisfy ∆, with h, s from the

following concrete domains:

h ∈ Heaps =df Loc⇀fin ObjVal

s ∈ Stacks =df Var→ Val ∪ Loc

Note that each heap h is a finite partial mapping while each stack s is a

total mapping as in the classical separation logic (Ishtiaq and O’Hearn, 2001;

Reynolds, 2002). The detailed model definition is in Figure 3.6. Function

dom(f) returns the domain of function f . Note that we use 7→ to denote

mappings, not the points-to assertion in separation logic, which has been

replaced by p::c〈~v〉 in our notation.

We use h1⊥h2 to denote that the heaps h1 and h2 have disjoint domains,

i.e. dom(h1) ∩ dom(h2) = ∅, and h1 · h2 to indicate the union of such heaps.

The test IsObj(c) returns true only if c is a data node and IsPred(c) returns

true only if c is a shape predicate. The definition for s, h |= p::c〈~v〉 is split

into two cases: (1) c is a data node; (2) c is a shape predicate. In the first

case, h has to be a singleton heap. In the second case, the shape predicate

c may be inductively defined. For pure formulae π, as noted in the last line

of Figure 3.6, their semantics are defined with a specific notation |=A, which
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s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |= ∃~v · κ ∧ π iff ∃~ν · s[~v 7→ ~ν], h |= κ and s[~v 7→ ~ν] |= π

s, h |= κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1 · h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |= emp iff dom(h) = ∅

s, h |= p::c〈v1, . . . , vn〉 iff IsObj(c) and s(p) ∈ Loc and h = [s(p) 7→ r]

and r = c[f1 7→s(v1), . . . , fn 7→s(vn)]

or IsPred(c) and c〈v1, . . . , vn〉≡Φ

and s, h |= [p/root]Φ

s |= π1 ∧ π2 iff s |= π1 and s |= π2

s |= π iff s |=A π

Figure 3.6: The semantic model.

54



3.3. Specification Language

is preserved by the pure constraint provers that we use for soundness purpose.

Its definition is given in Figure 3.7. Note that s(v) returns the value of the

variable v that was the most recently popped one, and s(B) returns the most

recently popped bag of values of the variable B.

s |=A γ1 ∧ γ2 iff s |=A γ1 and s |=A γ2

s |=A p1 ./ p2 iff s(p1) ./ s(p2), where ./∈ {=, 6=}

s |=A p ./ null iff s(p) ./ 0, where ./∈ {=, 6=}

s |=A true always

s |=A false never

s |=A v iff s(v) = true

s |=A b1 = b2 iff s(b1) = s(b2)

s |=A v1 = v2 iff s(v1) = s(v2)

s |=A v1 ≤ v2 iff s(v1) ≤ s(v2)

s |=A φ1 ∧ φ2 iff s |=A φ1 and s |=A φ2

s |=A φ1 ∨ φ2 iff s |=A φ1 or s |=A φ2

s |=A ¬φ iff s |=A φ does not hold

s |=A ∃v · φ iff s |=A [k/v]φ for some k

s |=A ∀v · φ iff s |=A [k/v]φ for all k

s |=A v ∈ B iff s(v) ∈ s(B)

s |=A B1 = B2 iff s(B1) = s(B2)

s |=A B1 < B2 iff s(B1) ⊂ s(B2)

s |=A B1 v B2 iff s(B1) ⊆ s(B2)

s |=A ∀v ∈ B · φ iff s |=A [k/v]φ for all k ∈ s(B)

s |=A ∃v ∈ B · φ iff s |=A [k/v]φ for some k ∈ s(B)

Figure 3.7: The semantic model for pure constraints.
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3.4 Summary

This chapter gives the definitions of the target programming language which

is a fully typed object-based language, and the specification language which is

based on the separation logic and combined with numerical and bag formulae

to depict program contracts. For the purpose to prove the soundness of

our analysis, we introduce the operational semantics of the programming

language and the semantic model for the specification language. Meanwhile,

we also illustrate the language settings with several examples.
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Chapter 4

Loop Invariants Synthesis

Automated verification of memory safety and functional correctness for heap-

manipulating programs has been a challenging task, especially when dealing

with complex data structures with strong invariants involving both shape

and numerical properties. Existing verification systems usually require users

to supply loop invariants for loops to assist the verification, which can be

cumbersome and error-prone by hand and can significantly restrict the scal-

ability of the verification system. This chapter presents an automated loop

invariants synthesis framework to reduce such demand. The loop invari-

ant synthesis is conducted automatically by a fixed-point iteration process,

equipped with newly designed abstraction, join and widening operators over

an abstract domain with both shape and numerical information. We also

prove the soundness and termination of our approach.
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4.1 Introduction

As discussed previously, although research on software verification has a long

and distinguished history (dating back to the 1960s), it remains a challeng-

ing problem to automatically verify heap manipulating programs written in

mainstream imperative languages, such as C/C++ and Java. This is partly

due to the shared mutable data structures lying in programs, and the need to

track various program properties, such as structural numerical information

(e.g. length and height) and relational numerical information (e.g. sortedness

and binary search tree properties).

Since the emergence of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds,

2002), dramatic advances have been made in automated software verifica-

tion, e.g. the Smallfoot tool (Berdine et al., 2005a) for the verification on

pointer safety (that asserts pointers cannot go wrong), the verification on

termination (Berdine et al., 2006), the verification for object-oriented pro-

grams (Chin et al., 2008; Parkinson and Bierman, 2008), and Dafny (Leino,

2010) and Hip/Sleek (Chin et al., 2007, 2010; Nguyen and Chin, 2008;

Nguyen et al., 2007) for more general properties (both shape and numerical

ones) for heap-manipulating programs.

As a key to prove the correctness of loops, loop invariants of every loop

are required to be provided by users in these verification systems. However,

supplying invariants by hand in the sophisticated domain is both cumbersome

and error-prone. It also affects the scalability of these tools as a program
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may contain many loops.

To conquer this problem, separation logic based shape analysis techniques

are brought in. For example, the SpaceInvader tool (Calcagno et al., 2009;

Distefano et al., 2006; Yang et al., 2008), as a further step of Smallfoot, can

automatically infer loop invariants as well as method specifications for pointer

safety properties in the shape domain. Other works such as THOR (Magill

et al., 2008) incorporate simple numerical information into the shape domain

to automatically synthesise properties like length of list. Their success proves

the feasibility to generate loop invariant automatically for shape analysis to

help automate the program verification process.

However, the prior loop invariant analyses mainly focus on relatively simple

properties, such as pointer safety for lists and list length information. It

is difficult to apply them in the presence of more sophisticated program

properties, such as:

• More flexible user-defined data structures, e.g. trees;

• Relational numerical properties, like sortedness and binary search prop-

erty.

These properties can be part of the full functional correctness of heap-

manipulating programs. The (aforementioned) Hip/Sleek tool can handle

such properties and it allows users to define their own shape predicates to
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express their desired level of correctness.

In this chapter, we present a technique to automatically discover loop invari-

ants over the combined shape and numerical domain to improve the level of

automation for the Hip/Sleek verification system. Our approach is based

on the framework of abstract interpretation (Cousot and Cousot, 1977a) with

fixed-point computation. It makes the following contributions in summary:

• A loop invariant synthesis algorithm is proposed with novel operations

for abstraction, join and widening over a combined shape and numerical

domain.

• The soundness of the analysis is proven with respect to concrete pro-

gram semantics, and the termination of the analysis is also proven.

The rest of the chapter is structured as follows. We firstly illustrate our

approach informally via a motivating example (Section 4.2), and then discuss

the utility of the entailment checker in our analysis (Section 4.3). Formal

details about loop invariant synthesis are presented in Section 4.4. More

related works and concluding remarks come afterwards.

60



4.2. The Approach

4.2 The Approach

In this section, we use a motivating example to informally illustrate our analy-

sis approach. The example is an insertion sort algorithm for singly linked list.

As introduced in chapter 3, the programming language is a strongly-typed

object-based language, and the specification language is based on separation

logic to describe heap/shape property with numerical information to specify

related pure properties. The only difference here is that we do not require

any user annotations for while loops in our language since we are going to

infer it.

The class type Node used in our example is declared as

class Node { int val; Node next; }

As we described formerly, our specification language allows user-defined in-

ductive predicates to specify aspects of both shape and numerical properties

about the data structures in the programs that the user is interested in.

Based on the class type Node, in order to model singly linked list data struc-

ture, we assume user-defined predicates ll for singly linked list and lls for

singly linked list segment as follows:

ll〈n〉 ≡ (root=null∧n=0)∨(root::node〈v, q〉∗q::ll〈m〉∧n=m+1)

ls〈p, n〉 ≡ (root=p∧n=0)∨(root::node〈v, q〉∗q::ls〈p, m〉 ∧ n=m+1)

If users want to verify a sorting algorithm, they can incorporate sortedness
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property into the above predicates as follows:

sll〈n, mn, mx〉 ≡ (root::node〈mn, null〉 ∧ n=1 ∧ mn=mx) ∨

(root::node〈mn, q〉∗q::sll〈n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

sls〈p, n, mn, mx〉 ≡ (root::node〈mn, p〉 ∧ n=1 ∧ mn=mx) ∨

(root::node〈mn, q〉∗q::sls〈p, n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

where mn and mx denote the minimum and maximum values stored in the

sorted list respectively. Such predicates can be used for specifying method

specifications and for expressing loop invariants in the example.

4.2.1 Illustrative Example: Insertion Sort

We now illustrate our loop invariant synthesis process via an example. The

method ins sort (Figure 4.1) sorts a linked list with the insertion sort al-

gorithm. It is implemented with two nested while loops. The outer loop

traverses the whole list x, takes out each node from it (line 7), and inserts

that node into another already sorted list r (which is empty initially before

the sorting). This insertion process makes use of the inner while loop in lines

9-11 to look for a proper position in the already sorted list for the new node

to be inserted. The actual insertion takes place at lines 12-14.

To verify this program, we need to synthesise appropriate loop invariants for

both while loops. Our analysis follows a standard fixpoint iteration process.

It starts with the (abstract) program state immediately before the while loop

(i.e., the initial state) and symbolically executes the loop body for several
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1 class Node { int val; Node next; }

2 node ins_sort(node x)

3 requires x::ll〈n〉

4 ensures res::sll〈n, mn, mx〉

5 { int v; node r,cur ,srt ,prv=null;

6 while (x != null) {

7 cur=x; x=x.next; v=cur.val;

8 srt=r; prv=null;

9 while (srt != null && srt.val <= v) {

10 prv=srt; srt=srt.next;

11 }

12 cur.next=srt;

13 if (prv != null) prv.next=cur;

14 else r=cur;

15 }

16 return r;

17 }

Figure 4.1: Loop-based Insertion sort.
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iterations, until the obtained states converge to a fixpoint, which is the loop

invariant.1 At the start of each iteration, the obtained state from the previ-

ous iteration is joined with the initial state. In addition to this join operator,

we have also defined an abstraction function and a widening operator both

of which will help the fixpoint iteration to converge. The join and widen-

ing operators are specifically designed to handle both shape and numerical

information.

As for our example, due to the presence of nested loops, each iteration of the

analysis for the outer loop actually infers a loop invariant for the inner loop.

We shall now illustrate how we synthesise a loop invariant for the inner loop.

Supposing that in one iteration for the outer loop, the state at line 9 becomes

r::sll〈nr, a, b〉 ∗ cur::node〈v, x〉 ∗ x::ll〈nx〉

∧srt=r ∧ prv=null ∧ nr+nx+1=n

Note that since the inner loop does not mutate the heap part referred to

by cur and x (i.e., cur::node〈v, x〉∗x::ll〈nx〉), we can ignore it during the

invariant synthesis and add it back to the program state using the frame

rule of separation logic (Reynolds, 2002). Therefore, the initial state for loop

invariant synthesis becomes

r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n (4.1)

1The fixpoint iteration converges if one more iteration still yields the same result.
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From this state, symbolically executing the loop body once yields the state:

r::node〈a, srt〉∗srt::sll〈ns, c1, b〉 ∧ prv=r ∧

a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr

(4.2)

which says that pointer srt moves towards the tail of the list for one node.

Then we join it with the initial state (4.1) to obtain

(r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n)∨

(r::node〈a, srt〉∗srt::sll〈ns, c1, b〉 ∧

prv=r ∧ a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr)

(4.3)

The second iteration over the loop body starts with (4.3) and also exhibits

the case that srt runs two nodes towards tail, while prv goes one node. Its

result is then joined with pre-state (4.1) to become the current state:

(4.3) ∨ r::node〈a, prv〉∗prv::node〈c1, srt〉∗srt::sll〈ns, c2, b〉 ∧

a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr

(4.4)

Executing the loop body the third time returns a post-state where three

nodes are passed by srt, and two by prv as below:

(4.4) ∨ r::node〈a, r0〉∗r0::node〈c1, prv〉∗prv::node〈c2, srt〉 ∗

srt::sll〈ns, c3, b〉 ∧ a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr

where we have an auxiliary logical variable r0. Following this trend, it is

predictable that every iteration hereafter will introduce an additional logical

variable (referring to a list node). If we indulge in such increase in the

subsequent iterations, the analysis will never terminate. Our abstraction

process prevents this from happening by eliminating such logical variables as

follows:

(4.4) ∨ r::sls〈prv, n1, a, c1〉∗prv::node〈c2, srt〉∗srt::sll〈ns, c3, b〉 ∧

a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr ∧ n1=2
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Note that the heap part r::node〈a, r0〉∗r0::node〈c1, prv〉 is abstracted as a

sorted list segment r::sls〈prv, n1, a, c1〉 where n1 denotes the length of the

segment and n1=2 is added into the state. This abstraction process ensures

that our analysis does not allow the shape to increase infinitely.

The fourth iteration responds with a post-state where four nodes are passed

by srt, and three by prv. Therefore, an abstraction is performed to re-

move the logical pointer variables. As a simplification of the presentation,

we denote σ as r::sls〈prv,n1,a,c1〉∗prv::node〈c2,srt〉∗srt::sll〈ns,c3,b〉 ∧

a≤c1≤c2≤c3∧c2≤v∧nr+1=n−nx, and the abstracted result (after the fourth

iteration) is

(4.4) ∨ (σ ∧ ns+3=nr ∧ n1=2) ∨ (σ ∧ ns+4=nr ∧ n1=3)

from which we have an observation that the last two disjunctions share the

same shape part (as in σ). This disjunction will be transferred to the numer-

ical domain as follows:

(4.4) ∨ (σ ∧ (ns+3=nr ∧ n1=2 ∨ ns+4=nr ∧ n1=3))

This simplifies the abstraction further. After that, our widening operation

compares the current state with the previous one, in order to look for the same

(numerical) constraints that both states imply and to replace those numerical

constraints in the current state with the ones discovered by widening. This

operation eventually ensures termination of our analysis. As for the example,

some constraints among ns, nr and n1 can be found to make the widened

post-state become:

(4.4) ∨ (σ ∧ ns+n1=nr−1 ∧ n1≥2) (4.5)

66



4.2. The Approach

One more iteration of symbolic execution will produce the same result as (4.5),

suggesting that it is already the fixpoint (and hence the loop invariant):

r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+1=n−nx ∨

r::node〈a, srt〉∗srt::sll〈ns, c1, b〉 ∧ prv=r ∧

a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr ∨

r::node〈a, prv〉∗prv::node〈c1, srt〉∗srt::sll〈ns, c2, b〉 ∧

a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr ∨

r::sls〈prv, n1, a, c1〉∗prv::node〈c2, srt〉∗srt::sll〈ns, c3, b〉 ∧

a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+n1=nr−1 ∧ n1≥2

Note that although it is possible to further join the third disjunctive branch

with the fourth, our analysis does not do so as it tries to keep the result as

precise as possible by eliminating only auxiliary pointer variables.

With the frame part cur::node〈v, x〉∗x::ll〈nx〉 added back, the analysis for

the outer loop continues. Eventually, the following loop invariant is discov-

ered for the outer loop:

(x::ll〈nx〉 ∧ r=null ∧ nx=n) ∨ (r::node〈a, null〉∗x::ll〈nx〉 ∧ n=nx+1) ∨

(r::sll〈nr, a, b〉∗x::ll〈nx〉 ∧ n=nx+nr ∧ nr≥2)

which allows us to verify the whole method successfully by using automated

verification tools, such as Hip/Sleek.
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4.3 Entailment Checker

As we introduced in subsection 3.3.2, we use the separation logic prover

Sleek (Nguyen et al., 2007) to prove whether one abstract state ∆1 entails

another one ∆2: ∆1`∆2 ∗∆R. Along with the proof, Sleek also computes

the residue part ∆R (a.k.a the frame) which is useful for our inference frame-

work. To prove the heap entailment is to check whether heap nodes in the

antecedent ∆1 are sufficiently precise to cover all nodes from the consequent

∆2. The entailment checking procedure uses unfold/fold reasoning to deal

with user-defined shape predicates with sophisticated numerical properties.

During the entailment proof, the frame ∆R is generated and it contains the

nodes which are not consumed from the antecedent after matching up with

the formula from the consequent and numerical constraints which convey the

relationship between the variables in the antecedent and consequent formu-

lae. For instance, by entailment proof

∃y · x::node〈vx, y〉∗y::ll〈n〉 ` x::ll〈m〉 ∗ ∆R

we can generate the residue ∆R as m = n+1, which says that x is a list of

length n+1. Meanwhile, if we try to prove

∃y · x::node〈vx, y〉∗y::node〈vy, z〉 ∧ vx≤vy ` x::sls〈n, z, mn, mx〉∗∆R

the residue ∆R can be generated as n=2 ∧ mn=vx ∧ mx=vy ∧ mn≤mx, which

shows that the length of the sorted list from x to z is 2, and the minimal

value of the list is vx in node x and the maximal value is vy in node y. From

above examples, we can see that the Sleek entailment prover can be used

to eliminate quantified pointer variables, to generate more abstract shape

views, and to preserve useful numerical information.
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Based on the entailment relation, we define a partial order over the abstract

states:

∆2 � ∆1 =df ∆1 ` ∆2∗∆R for some ∆R

We also denote this by ∆1 � ∆2. Based on this partial order, we also have an

induced lattice over these states as the base of fixpoint calculation for loop

invariants.

4.4 Analysis Algorithm

Our proposed analysis algorithm is given in Figure 4.2. The algorithm takes

four input parameters: T as the program environment with all the method

specifications in the program, ∆pre as the precondition for the while loop

(i.e. the abstract state that is before the loop starts), the while loop itself

while b {e}, and the upper bound n on the number of shared logical variables

we keep during the analysis.

Our analysis is based on abstract interpretation (Cousot and Cousot, 1977a)

with specifically designed operations (abs, join and widen) over this combined

domain.2 At the beginning, we initialise the iteration variable (i) and two

states to begin with (∆i and ∆′i). The starting state of the calculation is

∆pre. Among the two states here, the unprimed version ∆i denotes the

2Note that our analysis uses lifted versions of these operations (indicated by †), which

will be explained in more details in Section 4.4.2.
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Fixpoint Computation in Combined Domain

Input: T , ∆pre, while b {e}, n ;

Local: i := 0; ∆i := ∆pre; ∆′i := ∆i;

1 repeat

2 i := i+ 1;

3 ∆i := widen†(∆i−1, join
†(∆i−1,∆

′
i−1));

4 ∆′i := abs†(|[e]|T (∆i ∧ b));

5 if ∆′i = false ∨ cp no(∆′i) > n

· then return fail end if

6 until ∆′i = ∆′i−1;

7 return ∆′i

Figure 4.2: Loop invariant synthesis main analysis algorithm .
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initial state before the ith execution of the loop body, and the primed one ∆′i

represents the result state after. Each iteration starts at line 1. Firstly, we

join together the initial state ∆i−1 of the previous iteration with the result

state ∆′i−1 obtained in the previous iteration, and widen it against the state

∆i−1 (line 3). Then we symbolically execute the loop body with the abstract

semantics in Section 4.4.1 (line 4), and apply the abstraction operation to the

obtained abstract state. If the symbolic execution cannot continue due to a

program bug, or if we find our abstraction cannot keep the number of shared

logical variables/cutpoints (counted by cp no) within a specified bound (n),

then a failure is reported (line 5). Otherwise we judge whether a fixpoint is

already reached by comparing the current abstract state with the previous

one (line 6). The fixpoint ∆′i is returned as the loop invariant.

We will elaborate the key techniques of our analysis: the abstract semantics,

the abstraction function, and the join and widening operators.

4.4.1 Abstract Semantics

The abstract semantics is used to execute the loop body symbolically to

obtain its post-state during the loop invariant synthesis. Its type is defined

as

|[e]| : AllSpec→ PSH → PSH

where AllSpec contains all the specifications of all methods (extracted from

the program Prog). For some expression e, given its precondition, the se-
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mantics returns the postcondition.

The foundation of the semantics is the basic transition functions which trans-

fer from a conjunctive abstract state to a conjunctive or disjunctive abstract

state as below:

unfold(x) : SH→ PSH[x] Rearrangement

exec(d[x]) : AllSpec→ SH[x]→ SH Heap-sensitive execution

exec(d) : AllSpec→ SH→ SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each

element has x exposed as the head of a data node (x::c〈v∗〉), and PSH[x]

contains all the (disjunctive) abstract states, each of which is composed by

such conjunctive states. Here unfold(x) rearranges the symbolic heap so that

the cell referred to by x is exposed for access by heap sensitive commands

d[x] via the second transition function exec(d[x]). The third function defined

for other (heap insensitive) commands d does not require such exposure of

x.
IsObj(c) σ ` x::c〈v∗〉∗σ′

unfold(x)σ =df σ

IsPred(c) σ ` x::c〈u∗〉∗σ′ root::c〈v∗〉≡Φ

unfold(x)σ =df σ
′∗[x/root, u∗/v∗]Φ

As mentioned earlier, the test IsObj(c) returns true only if c is a data node

and IsPred(c) returns true only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w,

or free(x)) assumes that the rearrangement unfold(x) has been done previ-
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ously:

IsObj(c) σ ` x::c〈v1, .., vn〉∗σ′

exec(x.fi)(T )σ =df σ
′∗x::c〈v1, .., vn〉 ∧ res=vi

IsObj(c) σ ` x::c〈v1, .., vn〉∗σ′

exec(x.fi := w)(T )σ =df σ
′∗x::c〈v1, .., vi−1, w, vi+1, .., vn〉

IsObj(c) σ ` x::c〈u∗〉∗σ′

exec(free(x))(T )σ =df σ
′

The symbolic execution rules for heap-insensitive commands are shown as

follows:

exec(k)(T )σ =df σ ∧ res=k

exec(x)(T )σ =df σ ∧ res=x

IsObj(c)

exec(new c(v∗))(T )σ =df σ∗res::c〈v∗〉

t mn ((ti ui)
m
i=1; (t′i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr∗σ′

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]
m
i=1 ◦ [y′i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

exec(mn(x1, .., xm; y1, .., yn))(T )σ =df (ρlσ
′)∗(ρoΦpo)
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Note that the first three rules deal with constant (k)3, variable (x) and data

node creation (new c(v∗)) respectively, while the last rule handles method

invocation. In the last rule, the call site is ensured to meet the precondition

of mn, as signified by σ ` ρΦpr∗σ′. In this case, the execution succeeds and

the post-state of the method call involves mn’s postcondition as signified by

ρoΦpo . The substitution ρ2 ◦ ρ1 works by first applying ρ1 and then ρ2.

A lifting function † is defined to lift unfold’s domain to PSH:

unfold†(x)
∨

σi =df

∨
(unfold(x)σi)

and this function is overloaded for exec to lift both its domain and range to

PSH:

exec†(d)(T )
∨

σi =df

∨
(exec(d)(T )σi)

Based on the transition functions above, we can define the abstract semantics

for a program command e as follows:

|[d[x]]|T∆ =df exec†(d[x])(T ) ◦ unfold†(x)∆

|[d]|T∆ =df exec†(d)(T )∆

|[e1; e2]|T∆ =df |[e2]|T ◦ |[e1]|T∆

|[x := e]|T∆ =df [x′/x, r′/res](|[e]|T∆) ∧ x=r′ fresh logical x′, r′

|[if (v) e1 else e2]|T∆ =df (|[e1]|T (v∧∆)) ∨ (|[e2]|T (¬v∧∆))

which forms the foundation for us to analyse the loop body.

3null is treated as a constant.
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4.4.2 Abstraction, Join and Widening

This section describes our specifically designed abstraction, join and widening

operations employed in our loop invariant synthesis process.

Abstraction operator. During the symbolic execution, we may be con-

fronted with many “concrete” shapes in postconditions of the loop body. As

an example of list traversal, the list may contain one node, two nodes, or even

more nodes in the list, which the analysis cannot enumerate infinitely. The

abstraction operator deals with those situations by abstracting the (poten-

tially infinite) concrete situations into more abstract shapes. Our rationale

is to keep only program variables and shared cutpoints; all other logical vari-

ables will be abstracted away. As an instance, the first state below can be

further abstracted (as shown), while the second one cannot:

abs(x::node〈 , z0〉∗z0::node〈 , null〉) = x::ll〈n〉 ∧ n=2

abs(x::node〈 , z0〉∗y::node〈 , z0〉∗z0::node〈 , null〉) = -
(4.6)

where both x and y are program variables, and z0 is an existentially quantified

logical variable. In the second case z0 is a shared cutpoint referenced by

both x and y, and thus the state is not changed. As illustrated above, the

abstraction transition operator abs eliminates unimportant cutpoints (during

analysis) to ensure termination. Its type is defined as follows:

abs : SH→ SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts

it as another conjunctive state σ′. Below are its rules.
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abs(σ ∧ x0=e) =df σ[e/x0]
(Subst1)

abs(σ ∧ e=x0) =df σ[e/x0]
(Subst2)

x0 /∈ Reach(σ)

abs(x0::c〈~v〉∗σ) =df σ∗true
(Unreach)

c2〈~u2〉 ≡ Φ p::c1〈~v1〉∗σ1 ` p::c2〈~v2〉∗σ2
Reach(p::c2〈~v2〉∗σ2) ∩ {~v1} = ∅

abs(p::c1〈~v1〉∗σ1) =df p::c2〈~v2〉∗σ2
(Abs)

The first two rules Sub1 and Sub2 eliminate logical variables (x0) by replacing

them with their equivalent expressions (e). The third rule Unreach is used

to eliminate any garbage (heap part led by a logical variable x0 unreachable

from the other part of the heap) that may exist in the heap. As x0 is already

unreachable from and unusable by the program variables, it is safe to treat

it as garbage true, for example, the x0 in x::node〈 , null〉∗x0::node〈 , null〉

where only x is a program variable.

The last rule Abs plays the most significant role which intends to elimi-

nate shape formulae led by logical variables (all variables in ~v1). It tries

to fold data nodes up to a predicate node. c2 is a predicate which is se-

lected from the set of user-defined predicates based on the data type of p.

We may have multiple predicates that are satisfied this rule, so that “abs”

is relational, rather than functional. However, we only choose one satisfied

predicate during one analysis, if this predicate is not sufficient to generate
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adequate loop invariant, we will try another one. Meanwhile, it also ensures

that the latter is a sound abstraction of the former by entailment proof, and

the logical parameters of c1 are not reachable from other part of the heap

(so that the abstraction does not lose necessary information). For example:

abs(x::node〈 , z0〉∗z0::node〈 , null〉) = x::ll〈n〉 ∧ n=2, where x is a program

variable and z0 is a logical variable. The function Reach is defined as follows:

Reach(σ) =df

⋃
v∈fv(σ)

ReachVar(κ∧π, v) where σ ::= ∃u∗·κ∧π

which returns all variables which are reachable from free variables in the

abstract state σ. The function ReachVar(κ ∧ π, v) returns the minimal set

of variables that satisfies the relationship below:

{v} ∪ {z2 | ∃z1, π1 · z1∈ReachVar(κ ∧ π, v) ∧ π=(z1=z2 ∧ π1)} ∪ {z2 |

∃z1, κ1 · z1∈ReachVar(κ∧π, v) ∧ κ=(z1::c〈.., z2, ..〉∗κ1)} ⊆ ReachVar(κ∧π, v)

viz. it is composed of aliases of v and variables reachable from v. For example,

ReachVar(x::node〈 , z0〉∗y::node〈 , z0〉∗z0::node〈 , p0〉, {x}) = {x, z0, p0}.

We apply the above abstraction rules (following the given order) onto an

abstract state exhaustively until it stabilises. Such convergence is confirmed

because the abstract shape domain is finite due to the bounded numbers of

variables and predicates, which will be discussed later.

Finally, the lifting function is overloaded for abs to lift both its domain and

range to disjunctive abstract states PSH:

abs†(
∨

σi) =df

∨
abs(σi)

which allows it to be used in the analysis.
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Join operator. The operator join is applied over two conjunctive abstract

states, trying to find a common shape as a sound abstraction for both:

join(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ
′
2 with (∃ ~x1 · κ1 ∧ π1), (∃ ~x2 · κ2 ∧ π2) in

if κ1 ` κ2∗true then ∃ ~x1, ~x2 · κ2 ∧ (joinπ(π1, π2))

else if κ2 ` κ1∗true then ∃ ~x1, ~x2 · κ1 ∧ (joinπ(π1, π2))

else σ1 ∨ σ2

where the rename function prevents naming clashes among logical variables of

σ1 and σ2, by renaming logical variables of same name in the two states with

fresh names. For example, it will reassign x0’s name in both states ∃x0 ·x0=0

and ∃x0 ·x0=1 to make them ∃x0 ·x0=0 and ∃x1 ·x1=1. After this procedure,

it judges whether σ2 is an abstraction of σ1, or the other way round. If

either case holds, it regards the shape from the weaker state (which is more

general/abstract) as the shape of the joined state, and performs joining for

numerical formulae with joinπ(π1, π2). The convex hull operator works over

numerical domain (Popeea and Chin, 2006). Otherwise it keeps a disjunction

of the two states (as it would be unsound to join their shapes together in

this case). Then we lift this operator for abstract state ∆ as follows:

join†(∆1,∆2) =df match ∆1,∆2 with (
∨
i σ

1
i ), (

∨
j σ

2
j ) in

∨
i,j join(σ1

i , σ
2
j )

which essentially joins all pairs of disjunctions from the two abstract states,

and makes a disjunction of them.

Widening operator. The finiteness of the shape domain is confirmed by

the abstraction function. To ensure the termination of the whole analysis,
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we still need to guarantee the convergence over the numerical domain. This

task is accomplished by the widening operator.

The widening operator widen(σ1, σ2) is defined as

widen(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ
′
2 with (∃ ~x1 · κ1 ∧ π1), (∃ ~x2 · κ2 ∧ π2) in

if κ1 ` κ2∗true then ∃ ~x1, ~x2 · κ2 ∧ (widenπ(π1, π2))

else σ1 ∨ σ2

where the rename function has the same effect as above. Generally, this

operator is analogous to join; the only difference is that we expect the second

operand σ2 is weaker than the first σ1, so that the widening reflects the

trend of such weakening from σ1 to σ2. In this case, it applies the widening

operation widenπ(π1, π2) over the numerical domain (Popeea and Chin, 2006).

Therefore, based on the widening over conjunctive abstract states, we lift the

operator over (disjunctive) abstract states:

widen†(∆1,∆2) =df match ∆1,∆2 with (
∨
i σ

1
i ), (

∨
j σ

2
j ) in

∨
i,j widen(σ1

i , σ
2
j )

which is similar to its counterpart of the join operator.

The above three operations (abstraction, join and widening) provide termina-

tion guarantee while preserving soundness as the following example demon-

strates.

Example 5 (Abstraction, join and widening) Assuming we have two ab-

stract states, ∆0 = x::node〈 , x0〉∗x0::node〈 , null〉 and ∆1 = x::node〈 , x0〉∗
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x0::node〈 , x1〉∗x1::node〈 , null〉, we would like to discover a sound approx-

imation for both states. Firstly, we perform abstractions on both to obtain

two abstract states, saying, ∆′0 = x::ll〈n0〉∧n0=2 and ∆′1 = x::ll〈n0〉∧n0=3.

Then these two are joined together according to shape similarity to be ∆′′1 =

x::ll〈n0〉 ∧ (n0=2∨ n0=3), which transfers disjunction to numerical domain.

Finally, based on the first state ∆′0, the joined state is widened to yield a state

x::ll〈n0〉 ∧ n0≥2. It is a sound abstraction of both ∆0 and ∆1, and finishes

the analysis with one more iteration. 2

4.4.3 Soundness and termination

Soundness

The soundness of our analysis relies on the underlying operational semantics

of our programming language, which is a small-step semantics that consists

of transitions of the form:

〈s, h, e〉↪→〈s1, h1, e1〉

where s/s1 and h/h1 denote respectively the stacks and the heaps, and where

e/e1 denotes the program codes (an empty program code is denoted by -).

The transitive closure of the above transition relation is denoted as ↪→∗.

Before proceeding to the soundness definition, as mentioned earlier, for pro-

gram variables we have both unprimed version (for their initial values in
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abstract states) and primed version (for their current values). We realise

that the concrete program states should always be linked to the primed ones.

Therefore, we have the following definition:

Definition 4.5 (Poststate) Given an abstract state ∆, Post(∆) captures

the relation between primed variables of ∆. That is,

Post(∆) =df ρ(∃V ·∆), where

V = {v1, . . . , vn} denotes all unprimed program variables in ∆, and

ρ = [v1/v
′
1, . . . , vn/v

′
n].

For example, let ∆ = x′::node〈v′, y′〉 ∧ v′=v ∧ y′=null, we have

Post(∆) = x::node〈v, y〉 ∧ y=null.

Then we define the soundness of our analysis as follows:

Definition 4.6 (Soundness) Let ∆ denote the loop invariant synthesised

by our analysis for a while loop while b {e}. The analysis is sound if ∀

s, h · s, h |= Post(∆) and 〈s, h, e〉↪→∗〈s′, h′, -〉 (for some s′, h′), we have

s′, h′ |= Post(∆).

The crux to prove the soundness of our analysis is to ensure that soundness

is preserved during each step of our analysis. That is to say, the abstract

semantics, the abstraction of shapes, the join operation and the widening

operation used in our analysis are all sound. From Lemma 7 and the later

parts, we will see that all these can be reduced to the soundness of entailment

proof/checking provided by Sleek .
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Lemma 6 (Soundness of entailment proof) For ∆1 and ∆2, if ∆1 ` ∆2

holds, then for all s, h |= ∆1, we have s, h |= ∆2.

Proof. The soundness of the entailment proof is proven by Chin et al.

(2010). 2

Lemma 7 (Soundness of abstract semantics) If |[e]|T∆ = ∆1, then for

all s, h, if s, h |= Post(∆) and 〈s, h, e〉↪→〈s1, h1, e1〉, then there always exists

∆0 so that

s1, h1 |= Post(∆0) and |[e1]|T∆0 = ∆1

Proof. The proof is done by structural induction over program construc-

tors and the details are left in the Appendix. 2

Lemma 8 (Soundness of abs) If abs(σ) = σ′, then σ � σ′.

Proof. The soundness proof of first two substitution rules is trivial. For

the Unreach rule, we can easily prove that x0::c〈~v〉∗σ ` true∗σ. σ is the

frame part of the entailment check. By the Frame Rule of separation logic,

we only need to show that x0::c〈~v〉 ` true, which obviously is true. The

result of rule Abs is checked by Sleek , the soundness of this rule hence is

guaranteed by the entailment proof. 2

Lemma 9 (Soundness of join) If join(σ1, σ2) = σj, then we have σ1 � σj

and σ2 � σj.

Proof. Let σ1 be (∃ ~x1 ·κ1∧π1), and σ2 be (∃ ~x2 ·κ2∧π2). By the definition
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of the join operator, we have three cases:

• If κ1 ` κ2∗true, we have σj = ∃ ~x1, ~x2 ·κ2∧ joinπ(π1, π2). Then we need

to show that ∃ ~x1 · κ1 ∧ π1 ` ∃ ~x1, ~x2 · κ2 ∧ joinπ(π1, π2) and ∃ ~x2 · κ2 ∧

π2 ` ∃ ~x1, ~x2 · κ2 ∧ joinπ(π1, π2), which are true because κ1 ` κ2∗true

by condition, κ2 ` κ2 by separation logic, and π1 ` joinπ(π1, π2) and

π2 ` joinπ(π1, π2) by soundness of convex hull operator over numerical

domains (Popeea and Chin, 2006).

• If κ2 ` κ1∗true, the soundness proof is similar to the first case.

• Otherwise, we have σj = σ1 ∨ σ2. The soundness proof of this case is

trivial. 2

Lemma 10 (Soundness of widen) If widen(σ1, σ2) = σw, then we have

σ1 � σw and σ2 � σw.

Proof. The proof of soundness of widen is similar to the soundness proof

of join. 2

Based on the results above, we have the following theorem.

Theorem 11 (Soundness) Our analysis is sound with respect to the un-

derlying operational semantics.

The soundness of our analysis ensures the generated formula is loop invariant
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of the input loop, but it cannot guarantee the invariant is “logical adequate”,

namely, it is strong enough to prove the given postcondition of the methods.

The logical adequacy of the synthesised invariant can be judged by comparing

the invariant with the postcondition. For example, if the shape predicate of

one program variable in the invariant has less information than the shape

predicate of the same variable in the postcondition, the synthesised invariant

may not be fit to prove the postcondition. During our analysis, we could try

to always use the strongest predicates as the abstraction target to make the

generated invariant be more adequate.

Termination

Next, we show the termination of our analysis algorithm, which is based on

two observations: the finiteness over the shape domain and the termination

over the numerical domain guaranteed by our widening operator. The first

can be proven by claiming the finiteness of the number of all possible shape

formulae. Recalling our analysis algorithm where we set an upper bound

n for shared cutpoints (logical variables) that we keep track of, we know

that the number of program variables and logical variables preserved in our

analysis are finite. Note that the number of all shape predicates are also

limited; thus all the shape formulae are finite. The second is proven in the

abstract interpretation frameworks for numerical domains (Popeea and Chin,

2006). These two facts guarantee the convergence of our analysis.

Lemma 12 (Finiteness of the abstract shape domain) With a finite num-

ber of program variables, logical variables, data node types and shape predi-
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cates, the abstract shape domain is finite.

Proof. Let the number of program variables, logical variables, data node

types and shape predicates be m, n, l1 and l2 respectively, and the maximal

number of fields of data nodes or arguments of the predicates be k, where

m,n, l1, l2, k ∈ N are finite numbers. Note that the root parameter of a data

structure is also counted in k. For example, the number of arguments of

predicate ll is 3. Based on the fact that the number of variables is (m+ n),

and k is the number of holes for variables in one single predicate, we then have

the possible number of atomic formulae of this predicate as (m+ n)k. The

number of shape structure is (l1 + l2), then the upper bound of the number

of all possible different atomic shape formulae is (l1 + l2) × (m+ n)k + 1,

where 1 is for the case when shape formula is true. Thus there are at most

2(l1+l2)×(m+n)k+1 shape formulae in this shape domain. Since m,n, l1, l2 and

k are finite natural numbers, the shape domain is finite. 2

Definition 4.7 A (conjunctive) state σ is reducible if and only if abs(σ) 0 σ.

If abs(σ) ` σ, then σ is irreducible, in which case we also say σ is stabilised.

Lemma 13 (Termination of abs) For all state σ, the procedure of apply-

ing the four abstraction operations over σ exhaustively (following the given

order) will terminate in finite steps within a finite shape domain.

Proof. Let us apply abs over σ0 exhaustively to obtain a sequence σ1, σ2,

· · · , σn−1, σn, where n ∈ N. By the soundness of abs, we have σ0 ` σ1, σ1 `

σ2, · · · , σn−1 ` σn, i.e. σ0 � σ1 � σ2 � · · · � σn−1 � σn. Since the shape

parts of σ0,··· ,n are in a finite shape domain, and the four abstraction rules
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do not alter the numerical parts of these states, there must exist a σi,0≤i≤n

which is irreducible/stablised, i.e., σk = σi for all k ≥ i. 2

Lemma 14 (Widening Termination) Within a finite shape domain, given

a sequence σ′n (n ∈ N), the sequence σn generated by σ0 = σ′0 and σn+1 =

widen(σn, σ
′
n+1) is ultimately stationary, i.e. ∃i · ∀k ≥ i · σk = σi.

Proof. The proof follows the idea of the widening termination proof in

cofibered domains (Venet, 1996). Similar to the proof of abs termination,

the shape part of σn will be stationary since the shape domain is finite.

The termination of numerical part can be guaranteed by numerical join and

widening operations (Popeea and Chin, 2006). Combining them together, σn

will be stationary. 2

Based on the above discussions, we have the following conclusion.

Theorem 15 (Termination) The iteration of our fixpoint computation will

terminate in finite steps for finite input parameters, specifications, and user-

defined predicates with a given finite upper bound for the number of logical

variables.
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4.8 Related Work

Loop invariants are key component of program verification. Two most widespread

frameworks for static invariant inference are abstract interpretation and the

constraint-based approach. Constraint-based techniques (Colón et al., 2003;

Sankaranarayanan et al., 2004; Kapur, 2005; Cousot, 2005a; Chen et al.,

2007) rely on decision procedures over mathematical domains to represent

concisely the semantics of loops with respect to certain template properties.

The constraint-based approach has the advantage in finding invariants on so-

phisticated numerical domains (such as polynomials and convex polyhedra),

but it lacks an effective method to choose the proper template of invariants.

Cousot and Cousot (1976) introduce abstract interpretation for discovering

loop invariants, which symbolically executes programs over the interval do-

main, and calculates a fixed point as the loop invariants. Based on this

work, a number of works have been proposed to work with other numerical

abstract domains, such as convex polyhedra abstract domain (Cousot and

Halbwachs, 1978), octagon abstract domain (Miné, 2001), polynomial equal-

ities with bounded degree abstract domain (Rodŕıguez-Carbonell and Kapur,

2007), weighted hexagons abstract domain (Fulara et al., 2010), linear equal-

ities abstract domain (Chen et al., 2010), and so on. These works mainly

focus on finding numerical program properties. Compared with their works,

our analysis is also founded on the abstract interpretation framework, but

tries to discover loop invariants with both shape and numerical information.

Meanwhile, we can also utilise their techniques of join and widening to reason

about the numerical domain, as we make use of the work (Popeea and Chin,
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2006) which works over a disjunctive convex polyhedra abstract domain that

allows our analysis to keep a number of disjuncts to achieve very precise

results.

For memory safety, Cousot and Cousot (1977b) apply abstract interpretation

for generating loop invariants in a simple abstract domain which can detect

that whether a pointer points to null or not. Later on, the local shape

analysis (Distefano et al., 2006) infers loop invariants for list-processing pro-

grams with separation logic support. To deal with the size information (such

as number of nodes in lists/trees), THOR (Magill et al., 2008, 2010) derives

a numerical program from the original heap-processing one in a sound way,

so that the size information can be obtained with a numerical only loop

invariant synthesis. Compared with these works, our approach can handle

data structures with stronger invariants such as sortedness and binary search

property, which have not been addressed in the previous works. The shape

analysis framework TVLA (Sagiv et al., 2002) is based on three-valued logic.

It is capable of handling complicated data structures and properties, such as

sortedness. Guo et al. (2007) report a global shape analysis that discovers

inductive structural shape invariants from the code. Compared with these

works, our analysis is based on separation logic which can be benefited from

its frame rule, and hence supports local reasoning.
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4.9 Summary

This chapter presents an analysis framework which allows us to synthesise

sound loop invariants over a combined separation and numerical domain. The

key components of our analysis include novel operations for abstraction, join

and widening in the combined domain. We have built a prototype system

and the initial experimental results are reported in chapter 6.
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Chapter 5

Full Specification Discovery

Discovering program specifications automatically for heap-manipulating pro-

grams is a challenging task due to the complexity of aliasing and mutability

of data structures used. In the previous chapter, we present a synthesis ap-

proach to generate loop invariants for heap-manipulating programs. In this

chapter, we describe a compositional analysis framework for discovering pro-

gram specifications in a combined abstract domain with shape, numerical

and bag (multi-set) information. The framework analyses each method and

derives its summary independently from its callers. We propose a novel ab-

straction method with a bi-abduction technique in the combined domain to

discover pre/post-conditions which cannot be automatically inferred before.

The analysis does not only prove the memory safety properties, but also

finds relationships between pure and shape domains towards full functional
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correctness of programs.

5.1 Introduction

In automatic program analysis, certain kinds of program properties have

been well explored over the last decades, such as numerical properties in lin-

ear abstraction domain, and shape properties for list-manipulating programs

in separation domain. However, previous works are not sufficient to auto-

matically analyse program properties in complex mixed domains, especially

for programs with sophisticated data structures and strong invariants that

involve both structural and pure information. Examples of such properties

include: a list remains sorted during the execution of a program, a binary

search tree is balanced before and after the execution of a program proce-

dure, the elements of a list remain unchanged after reversing the list. The

difficulty is not only due to sharing and mutability of data structures under

manipulation, but also the need to track often closely intertwined program

properties, such as structural numerical information (length and height),

symbolic contents of data structures (bag of values stored in a tree), and

relational numerical information (sortedness and balancedness).

In addition to classical shape analyses (e.g. (Bozga et al., 2003; Deutsch, 1994;

Jonkers, 1981; Sagiv et al., 2002)), separation logic (Ishtiaq and O’Hearn,

2001; Reynolds, 2002) has been applied to analyse shape properties of heap-

manipulating programs in recent years (Calcagno et al., 2009; Distefano et al.,
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2006; Yang et al., 2008). These works can automatically infer method specifi-

cations for shape properties of programs. A more recent work THOR (Magill

et al., 2008, 2010) also incorporates simple numerical information into the

shape domain to allow it to automatically synthesise properties like size in-

formation of data structures.

However, these previous analyses mainly focus on relatively simple proper-

ties, such as pointer safety for lists and list length information. To analyse

more complex properties of heap-manipulating programs, such as sorted-

ness and balancedness properties, our recent work (Qin et al., 2011) offers

a template-based approach, whereby users supply shape templates in pre-

/post-conditions of procedures and the analysis infers the missing pure in-

formation to complete the given templates. While that approach does not

require an analysis in the combined domain, one of its limitations is that it

relies on users to supply the pre-/post-shape templates. If the supplied tem-

plates do not cover all the required heap portion, or are not precise enough,

or even are essentially unsound for the program (an extreme example being

{true} Prog {false}), it will fail to discover the full specifications.

To overcome these limitations, in this chapter, we propose a direct one-pass

analysis in a combined abstraction with separation, numerical and bag in-

formation. To the best of our knowledge, this is the first time where such

a combination of domains have been used together for inferring pre/post

specifications. One advantage of doing so is that we do not only analyse

functional correctness and memory safety separately, but also find close re-

lationships between shape and pure (numerical and bag) domains. What
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we propose is a compositional analysis by abstract interpretation in such a

combined domain. In other words, we analyse a program fragment without

any given contextual information, and we analyse each method in a modular

way independent of its callers. To generate pre-/postconditions, our analy-

sis adopts a new bi-abduction mechanism over the combined domain, which

extends the bi-abduction technique proposed by Calcagno et al. (Calcagno

et al., 2009). As in our previous work, our analysis allows users to supply

creatively defined shape predicates, while it does not require users to supply

partial specifications or annotations for program code to be analysed.

In summary, this chapter makes the following contributions:

• We have designed a program analysis framework which can discover

program pre/post-conditions (involving heap, numerical and bag prop-

erties) automatically without given any specification about the pro-

gram.

• For such framework, we have described a compositional analysis for

abstract interpretation in a combined pure and shape domain.

• We have defined novel operations for abstraction, join and widening

with an extended bi-abduction technique over the combined domain.

Outline. The rest of the chapter is structured as follows. We firstly illustrate

our approach informally via three examples (Section 5.2). Formal details
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about specification discovery are presented in Section 5.4. Lastly, we present

related work and some concluding remarks.

5.2 The Approach

In this section, our approach is informally illustrated by demonstrating three

examples. The first example shows a simple program which counts the length

of a list. By using this example, we demonstrate our bi-abduction mechanism

with simple numerical properties. The second example uses a filter program

to show how our analysis works with bag properties. The last one shows

the analysis of an insertion sort algorithm by using our extended abstraction

with abduction support.

5.2.1 Illustrative Example: Length

Firstly, we illustrate our approach with describing how to discover pre-/post-

condition of a recursive method length in Figure 5.1. The data structure

used in this method is data Node { Int val; Node next; }. Based on

this data structure, we use a singly linked list segment shape predicate ls

for this method:

ls〈n, p〉 ≡ (root=p ∧ n=0) ∨ (root::Node〈 , q〉∗q::ls〈m, p〉 ∧ n=m+1)
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The method length takes a singly linked list as the input and counts the

length of the list recursively until the end of the list, i.e. the method stops

when null is reached.

1 data Node { Int val; Node next; }

2 Int length(Node x)

3 {

4 if (x == null)

5 { return 0; }

6 else {

7 Node t = x.next;

8 Int l = length(t);

9 return r+1;

10 }

11 }

Figure 5.1: Counting the length of a list.

Our analysis aims at finding sound and precise specification (summary) (Pre,

Post) of the method. Before the analysis, we use a pair (emp, false) as an

initial pre-/post-condition of the method, which means we have no knowl-

edge about the program’s requirement or effect yet. During the analysis, we

use a pair of states (Pre, Curr) to keep trace of the precondition we have

discovered and the current state we have reached respectively. If the current

precondition is not sufficient to operate the program command, we use an

abductive inference mechanism to synthesize a candidate precondition M as

the missing precondition. The starting point of the analysis is (emp, emp).
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We symbolically execute the method body a number of times until the pre-

/post-condition are fixed. To ensure the iteration convergence, we apply

abstraction, join and widening operations over both shape and pure domains

to achieve the fixed point.

First Iteration For the example length, in the first iteration, the analy-

sis starts with (emp, emp) before the condition statement (line 4). The else

branch from line 6 to 10 now is “short-circuited” since the recursive call is

in the code, and the current Post of the method is false. To enter the if

branch (line 5), the condition x == null needs to be satisfied with precon-

dition. However, the current Pre is emp. To find the missing precondition,

we apply abduction mechanism and discover x = null to add to precondi-

tion. We now have a paired state (emp ∧ x = null, emp ∧ x = null) before

executing line 5, and after executing return 0, we have a summary of the

method:

(Pre1,Post1) :=

(emp ∧ x = null, emp ∧ x = null ∧ res = 0), (5.1)

where res denotes the value returned by the program.

Second Iteration In the second iteration, specification (5.1) is updated

as a new summary of method length. The starting point of the analysis is

reset to (emp, emp). By executing the if branch, we have the same result as

summary (5.1). When entering the else branch, the state x 6= null is added

to the precondition. We have a paired state (emp∧x 6= null, emp∧x 6= null)

before line 7. The statement Node t = x.next tries to access the next field

of x. By abduction, x::Node〈fv0, fp0〉 is added to Pre, where fv0 and fp0
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are fresh logic variables. After line 7, the paired state is (x::Node〈fv0, fp0〉,

x::Node〈fv0, fp0〉 ∧ t = fp0). Now we can use the summary (5.1) for the

method call, which requires t = null, i.e. fp0 = null to add to Pre and

returns l = 0 to add to Curr. Note that x::Node〈fv0, fp0〉 as the frame part

is discovered by bi-abduction. The frame part is not altered by the method

call and passed to the post-state of this call. fp0 is a reachable variable from

program variable x, hence we add fp0 = null to Pre, not t = null to Pre.

After line 9, the summary of the else branch is found:

(x::Node〈fv0, null〉, x::Node〈fv0, null〉 ∧ res = 1) (5.2)

By joining the formulae (5.1) and (5.2), we update a new summary for the

method

(Pre2,Post2) :=

(Pre1 ∨ x::Node〈fv0, null〉,

Post1 ∨ x::Node〈fv0, null〉 ∧ res = 1) (5.3)

Note that the base branch, i.e. the branch without recursive call, is the exit

block of a recursive method. It is important to ensure that the precondition

allows the program to enter the base branch to guarantee the termination of

the method.

Third Iteration In the third iteration, we have specification (5.3) as

summary of method length. The result of the if branch is the same as the

last iteration. For the else branch, before the recursive call in line 8, we
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have a paired state which is the same as the last iteration (x::Node〈fv0, fp0〉,

x::Node〈fv0, fp0〉∧t = fp0). The bi-abduction utility uses updated summary

(5.3) and generates the anti-frame part emp ∧ fp0 = null ∨ fp0::Node〈fv1, fp1〉

∧fp1 = null and the frame part x::Node〈fv0, fp0〉. The paired state after

line 9 is

(x::Node〈fv0, null〉 ∨ x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉,

x::Node〈fv0, null〉 ∧ res = 1

∨ x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉 ∧ res = 2) (5.4)

Joining state (5.3) and state (5.4), the new summary of the method is

(Pre3,Post3) :=

(Pre2 ∨ x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉,

Post2 ∨ x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉 ∧ res = 2) (5.5)

Comparing with summary (5.3), we discover that it is possible that x points

to a list with two nodes in the precondition. Note that the auxiliary pointer

logical variable fp0 is presented in the summary. If we continue this trend,

we will get even longer formulae to cover successive iterations and more

additional logical variables. If we do not stop such increasing, the analysis

will be an infinite regress. We can interrupt this regress by using abstraction,

join and widening operators. By applying abstraction to summary (5.5), we
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have:

(Pre3,Post3) :=

(emp ∧ x = null ∨ x::Node〈fv0, null〉

∨ x::ls〈xn, null〉 ∧ xn = 2,

emp ∧ x = null ∧ res = 0 ∨ x::Node〈fv0, null〉 ∧ res = 1

∨ x::ls〈xn, null〉 ∧ xn = 2 ∧ res = 2) (5.6)

The heap part x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉 is abstracted as a list

x::ls〈xn, null〉 with xn denoting the length of the list and xn = 2 added into

the state. Note that shape parts of first two disjunctive branches, emp and

x::Node〈fv0, null〉, can be entailed by shape formula x::ls〈xn, null〉, and

generates numerical information xn = 0 ∧ xn = 1. We can apply the join

operator to the summary (5.6) to have:

(Pre3,Post3) :=

(x::ls〈xn, null〉 ∧ 0 ≤ xn ≤ 2,

x::ls〈xn, null〉 ∧ 0 ≤ xn ≤ 2 ∧ res = xn) (5.7)

After join, the widening operator compares summary (5.7) with (5.3). The

shape parts of both summaries can be unified. After applying widening

operator over the numerical parts, a new summary is updated for the method

(Pre3,Post3) :=

(x::ls〈xn, null〉 ∧ 0 ≤ xn,

x::ls〈xn, null〉 ∧ 0 ≤ xn ∧ res = xn) (5.8)

Fourth Iteration Following the similar symbolic execution process de-

scribed above, with the method summary (5.8), we compute a result of this
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iteration which is the same as the last one, i.e. the summary (5.8), which

means that it is the fixed point and thus the method summary we desired.

The essential steps to terminate the search for suitable preconditions are ab-

straction and widening. Both operators are tantamount to weakening a state,

and they are over-approximation and sound for synthesis of postcondition.

However, when such steps are applied to synthesis of precondition, it may

make the precondition too weak to be sound. Thus after the analysis, we

shall use a forward analysis process to check the discovered summary.

5.2.2 Illustrative Example: Filter

This example filter (Figure 5.2) selects elements from a list that satisfy

certain condition (≤ k), which shows how our approach deals with bag prop-

erty of data structures. The example is based on the data structure Node,

and the shape predicate we used is llB:

sllB〈S〉 ≡ (root=null∧S=∅)∨

(root::node〈v, q〉∗q::sllB〈S1〉∧S=S1t{v}∧∀u∈S1·v≤u)

First Iteration The analysis starts with (emp, emp) as the initial state.

The branch from line 5 to line 13 is “short-circuited” in the first iteration

because the current Post of the method (false) is applied as the effect

of the recursive call. To enter line 4, the condition x == null needs to be
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1 Node filter(Node x, int k)

2 {

3 if (x == null) {

4 return x;

5 } else if (x.val <= k) {

6 Node t = x.next;

7 x.next = filter(t, k);

8 return x;

9 } else {

10 Node t = x.next;

11 free(x);

12 x = filter(t, k);

13 return x;

14 } }

Figure 5.2: Filtering elements of a list.

101



5.2. The Approach

satisfied with precondition. We apply our abduction mechanism and discover

x=null to add to precondition. After executing return x, we have an initial

summary of the method:

(Pre1,Post1) := (emp∧x=null, emp∧res=null∧res=x) (5.9)

where res denotes the value returned by the program.

Second Iteration In the second iteration, the specification (5.9) is up-

dated as a new summary of the method. The starting point of the analy-

sis is reset to (emp, emp). By executing the branch in line 4, we have the

same result as summary (5.9). To enter the if branch in line 5, we abduct

x::Node〈fv0, fp0〉 ∧ fv0 ≤ k to Pre. The branch from line 5 to 8 accesses the

field of x, and recursively calls the method filter. By applying bi-abduction,

with the summary that is discovered in last iteration, the summary of this

branch is found:

(x::Node〈fv0, null〉∧fv0≤k,

res::Node〈fv0, null〉∧fv0≤k∧res=x) (5.10)

Similarly, the summary of line 9 to 14 is calculated as

(x::Node〈fv0, null〉∧fv0>k, emp∧fv0>k∧res=null) (5.11)

By joining the formulae (5.9), (5.10) and (5.11), and eliminating intermediate

logical variables, we update a new summary for the method

(Pre2,Post2) := (Pre1 ∨ x::Node〈fv0, null〉, (5.12)

Post1 ∨ emp∧fv0>k∧res=null ∨ res::Node〈fv0, null〉∧fv0≤k∧res=x)
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Third Iteration Based on specification (5.12), a third iteration of symbolic

execution is accomplished, and the calculated specification is

(Pre3,Post3) := (Pre2 ∨ x::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉,

Post2 ∨ res::Node〈fv0, null〉∧fv0≤k∧fv1>k (5.13)

∨ res::Node〈fv0, fp0〉 ∗ fp0::Node〈fv1, null〉∧fv0≤k∧fv1≤k)

Comparing with summary (5.12), we discover it is possible that x points to

a list with two nodes in the precondition. If we continue with this trend, the

analysis will have termination problem. Therefore, we firstly apply abstrac-

tion to the precondition against with the given predicate llB to eliminate the

logical variables, hence the heap part x::Node〈fv0, fp0〉∗fp0::Node〈fv1, null〉

is abstracted as x::llB〈n1, S1〉 ∧ n1=2∧S1={fv0, fv1}. Before we join this

with Pre2, the heap formula x::Node〈fv0, null〉 in Pre2 can be unified as

x::llB〈n1, S1〉∧n1=1 ∧ S1=fv0 and x=null be x::llB〈n1, S1〉 ∧ n1=0∧S1=∅.

Then we join the disjunctive formulae if they have the same shape and widen

with the Pre2 to have the precondition as x::llB〈n1, S1〉. By applying similar

operators to postcondition, a new summary is produced:

(Pre3,Post3) := (x::llB〈n1, S1〉∧0≤n1,

res::llB〈n2, S2〉∧0≤n2≤n1∧(∀v∈S2·v ≤ k)∧(∀v∈(S1−S2)·v>k)∧S2⊆S1)

(5.14)

Fourth Iteration By the similar symbolic execution process with the

method summary (5.14), we compute a result for the fourth iteration to be

the same as the last one, namely, (5.14), which is a fixed point desired for

our method summary.

103



5.2. The Approach

This example shows how our analysis works over the combined shape, numer-

ical and bag domain. The fixpoint calculation in bag domain is supported

by the tool Fixbag (Pham et al., 2011).

5.2.3 Illustrative Example: Insertion Sort

In this section, we illustrate our approach with another more interesting

example insertion sort in Figure 5.3. The method insert_sort recursively

sorts the tail of the input singly linked list, and inserts the first node into

the correct position of the already sorted list and maintains the sortedness

properties. The function insert takes a list and a node, finds a position of

the list, and inserts the node. If the input list is sorted in increasing order,

the return list is sorted. The data structure the program used is Node. Based

on this data structure, two user-defined shape predicates for the analysis are

linked list segment ls:

ls〈n, p〉 ≡ (root=p ∧ n=0) ∨ (root::Node〈 , q〉∗q::ls〈m, p〉 ∧ n=m+1)

and sorted linked list segment sls:

sls〈n, s, l, p〉 ≡ (root::Node〈s, p〉 ∧ n=1 ∧ l = s)∨

root::Node〈s, q〉∗q::sls〈m, s1, l, p〉 ∧ n=m+1 ∧ s ≤ s1 ∧ s1 ≤ l

One of the challenges of the analysis of insert is that the sortedness of input

list cannot be detected only based on the footprint of the method. However, if

the input list is not sorted, the return list will not be sorted, then the inferred
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specification of insert cannot be used for insert_sort to produce sorted

list. In this situation, the user defined predicates can offer some guidance for

the analysis. We use this example to show what the problem is, and how we

conquer it.

We analyse the method insert firstly due to the fact that insert_sort

depends on it. The initial summary is set to pair (emp, false), and the

starting point of every iteration of the analysis is (emp, emp).

First Iteration The analysis process of insert is analogous to above

examples. The path from line 20 to 22 is “short-circuited” in the initial

iteration. After the analysis of the first branch in 16, the found summary is

(r::Node〈rv0, rp0〉 ∗ x::Node〈xv0, xp0〉 ∧ xv0 ≤ rv0,

res::Node〈xv0, r〉 ∗ r::Node〈rv0, rp0〉 ∧ xv0 ≤ rv0 ∧ res = x) (5.15)

After line 19, the summary is

(r::Node〈rv0, rp0〉 ∗ x::Node〈xv0, xp0〉 ∧ xv0 > rv0 ∧ rp0 = null,

res::Node〈rv0, x〉 ∗ x::Node〈xv0, null〉 ∧ xv0 > rv0 ∧ res = r) (5.16)

By joining them, we have

(Pre1,Post1) :=

(r::Node〈rv0, rp0〉 ∗ x::Node〈xv0, xp0〉 ∧ (xv0 ≤ rv0 ∨ xv0 > rv0 ∧ rp0 = null),

res::Node〈xv0, r〉 ∗ r::Node〈rv0, rp0〉 ∧ xv0 ≤ rv0 ∧ res = x

∨ res::Node〈rv0, x〉 ∗ x::Node〈xv0, null〉 ∧ xv0 > rv0 ∧ res = r) (5.17)

where Pre1 means the method terminates in two cases, xv0 ≤ rv0 or xv0 > rv0∧

rp0 = null. Post1 denotes that if xv0 ≤ rv0, the return value will be x, and
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1 data Node { Int val; Node next; }

2 Node insert_sort(Node x)

3 {

4 if (x.next == null)

5 { return x; }

6 else {

7 Node s = x.next;

8 Node r = insert_sort(s);

9 Node t = insert(r, x);

10 return t;

11 }

12 }

13 Node insert(Node r, Node x)

14 {

15 if (x.val <= r.val)

16 { x.next = r; return x;}

17 else if (r.next == null)

18 { r.next = x; x.next = null;

19 return r; }

20 else {

21 r.next = insert(r.next , x);

22 return r;

23 }

24 }

Figure 5.3: Recursive-call based Insertion sort.
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next field of x will point to r; if xv0 > rv0 ∧ rp0 = null, the return value

will be x, next field of x will point to x, and the tail of the list will point to

null. It is a very precise description of current state.

Second Iteration In the second iteration, the analysis of the first two

branches have the same result as summary 5.17. For the recursive branch,

by bi-abduction, we have a paired state

(r::Node〈rv0, rp0〉 ∗ rp0::Node〈rv1, rp1〉 ∗ x::Node〈xv0, xp0〉 ∧ xv0 > rv0 ∧

(xv0 ≤ rv1 ∨ xv0 > rv1 ∧ rp1 = null),

res::Node〈rv0, x〉 ∗ x::Node〈xv0, rp0〉 ∗ rp0::Node〈rv1, rp1〉

∧ xv0 > rv0 ∧ res = r ∧ xv0 ≤ rv1∨

res::Node〈rv0, rp0〉 ∗ rp0::Node〈rv1, x〉 ∗ x::Node〈xv0, null〉

∧ xv0 > rv0 ∧ res = r ∧ xv0 > rv1) (5.18)

Now we need to apply abstraction to this state. The program variable r in the

precondition can be easily abstracted to a singly linked list by the technique

we used in the previous example. However, the specification is not sufficient

for sort algorithm, and the sortedness information is missing to abstract the

two nodes r::Node〈rv0, rp0〉 ∗ rp0::Node〈rv1, rp1〉 to a sorted list. The miss-

ing information is the numerical relation between rv0 and rv1. The guidance

of this abstraction comes from the user-defined predicate sls. The user-

defined predicates can be viewed as the abstraction strategies which are indi-

cated by the program designer. By applying the abstraction that is equipped

with an abduction mechanism to the precondition against the predicate sls,

we have r::sls〈rn0, rv0, rv1, rp1〉 ∗ x::Node〈xv0, xp0〉 ∧ xv0 > rv0 ∧ rn0 = 2∧

(xv0 ≤ rv1 ∨ xv0 > rv1 ∧ rp1 = null). By applying join and widening op-

erations with the Pre1, we have a precondition r::sls〈rn0, rs0, rl0, rp0〉 ∗
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x::Node〈xv0, xp0〉∧rn0 ≥ 1∧(xv0 ≤ rl0∨xv0 > rl1∧rp0 = null). Applying

similar process to postcondition, the result of this iteration with sortedness

property is calculated as

(Pre2,Post2) :=

(r::sls〈rn0, rs0, rl0, rp0〉 ∗ x::Node〈xv0, xp0〉 ∧ rn0 ≥ 1

∧ (xv0 ≤ rl0 ∨ xv0 > rl0 ∧ rp0 = null),

res::Node〈xv0, r〉 ∗ r::sls〈rn0, rs0, rl0, rp0〉 ∧ res = x ∧ xv0≤rs0∧rn0≥1

∨ res::sls〈rn1, rs0, rl1, x〉 ∗ x::sls〈xn1, xv0, xl0, xp1〉

∧ xv0>rl1∧res = r ∧ rn1≥1 ∧ xn1≥1 ∧ rn1+xn1 = rn0+1

∧ (xv0≤rl0 ∧ xl0 = rl0 ∨ xv0 > rl0 ∧ xl0 = xv0 ∧ xp1 = null)) (5.19)

Third Iteration The analysis of following iterations are similar to what we

described above. With join and widening operators, the fixed point of the

method summary is reached. The finial result with sortedness property of

the method is the same as the specification (5.19).

Similarly, but without bi-abduction for abstracting precondition, another

summary of insert with non-sortedness property is discovered with ls pred-

icate:

(Pre,Post) :=

(r::ls〈rn0, null〉 ∗ x::Node〈xv0, xp0〉 ∧ rn0 ≥ 1,

res::Node〈xv0, r〉 ∗ r::ls〈rn0, null〉 ∧ res = x ∧ rn0 ≥ 1

∨ res::ls〈rn1, x〉 ∗ x::ls〈xn1, null〉

∧ res=r ∧ rn0 ≥ 1 ∧ xn1 ≥ 1 ∧ rn0+xn0 = rn0+1) (5.20)
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With the discovered summaries of method sort, the specifications of method

insert_sort are three pairs:

(x::ls〈xn0, null〉∧xn0≥1, res::ls〈xn0, null〉∧xn0≥1);

(x::sls〈xn0, xs0, xl0, null〉∧xn0≥1, res::sls〈xn0, xs0, xl0, null〉∧xn0≥1);

(x::ls〈xn0, null〉∧xn0≥1, res::sls〈xn0, xs0, xl0, null〉∧xn0≥1);

5.3 Bi-Abduction

In this section, we introduce our bi-abduction algorithm for discovering miss-

ing information in precondition. The bi-abduction extends previous works

(Calcagno et al., 2009; Giacobazzi, 1994; Qin et al., 2010b) with more power

to work over our combined domain.

Given σ1 and σ2, bi-abduction aims to find the anti-frame σM and frame part

σR so that

σ1 ∗ [σM ] � σ2 ∗ σR

where σ1 and σ2 can be considered as the current program state and the

requirement of next instruction respectively, σM is the missing part which will

be propagated back to the precondition and make the analysis continue, and

frame part σR is the residue from σ1. The bi-abduction rules are exhibited

in Figure 5.4.

The first rule Residue triggers when the LHS (σ1) does not imply the RHS

(σ2) but the RHS implies the LHS with some formula (σM) as the residue.
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σ1 0 σ2 ∗ true σ2 ` σ1 ∗ σM σ1 ∗ σM ` σ2 ∗ σR
σ1 ∗ [σM ] � σ2 ∗ σR

Residue

σ1 0 σ2 ∗ true σ2 0 σ1 ∗ true

σ0 ∈ unroll(σ1) data no(σ0) ≤ data no(σ2)

σ0 ` σ2 ∗ σM or σ0 ∗ [σ′M ] � σ2 ∗ σM σ1 ∗ σM ` σ2 ∗ σR
σ1 ∗ [σM ] � σ2 ∗ σR

Unroll

σ1 0 σ2 ∗ true σ2 0 σ1 ∗ true

σ2 ∗ [σ′M ] � σ1 ∗ σM σ1 ∗ σM ` σ2 ∗ σR
σ1 ∗ [σM ] � σ2 ∗ σR

Reverse

σ1 0 σ2 ∗ true σ2 0 σ1 ∗ true σ1 ∗ σ2 ` σ2 ∗ σR
σ1 ∗ [σ2] � σ2 ∗ σR

Missing

σ1 0 σ2 ∗ σ′2 ∗ true σ2 ∗ σ′2 0 σ1 ∗ true σ1 ` σ′2 ∗ true

σ1 ∗ [σM ] � σ2 ∗ σ′R σ1 ∗ σM ` σ2 ∗ σ′2 ∗ σR
σ1 ∗ [σM ] � (σ2 ∗ σ′2) ∗ σR

Remove

Figure 5.4: Bi-Abduction rules.

This rule is quite general and applies in many cases. For the example emp 0

x::Node〈xv, xp〉, the RHS can entail the LHS with residue x::Node〈xv, xp〉.

The abduction then checks whether σ1 plus the residue implies σ2 ∗ σR for

some σR (emp in this example), and returns x::Node〈xv, xp〉 as the anti-frame.

The second rule Unroll deals with the cast that neither side implies the

other. For example, x::sls〈xn, xs, xl, xp〉 is LHS (σ1) and x::node〈u, p〉 ∗
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p::node〈v, q〉 is RHS (σ2). As the shape predicates in the antecedent σ1

are formed by disjunctions according to their definitions (like sls), its cer-

tain disjunctive branches may imply σ2. As the rule suggests, to accom-

plish bi-abduction σ1 ∗ [σM ] � σ2 ∗ σR, we firstly unfold σ1 (σ0 ∈ unroll(σ1))

and try entailment or further abduction with the results (σ0) against σ2. If

it succeeds with a frame σM , then we confirm the abduction by ensuring

σ1 ∧ σM ` σ2 ∗ σR. For the example above, the abduction returns xn=2 as

the anti-frame σM and discovers the nontrivial frame u=xs ∧ v=xl ∧ u≤v ∧

xp = q (σR). Note that the function data no returns the number of data nodes

in a state, e.g. it returns one for x::node〈v, p〉 ∗ p::llB〈n, T〉. (This syntactic

check is important for the termination of the abduction.) The unroll unfolds

all shape predicates once in σ1, normalises the result to a disjunctive form

(
∨n
i=1 σi), and returns the result as a set of formulae ({σ2, ..., σn}).An instance

is that it expands x::node〈v, p〉 ∗ p::llB〈T〉 to be {x::node〈v, p〉 ∧ p=null ∧

T=∅,∃u, q, T1, k · x::node〈v, p〉 ∗ p::node〈u, q〉 ∗ q::llB〈T1〉 ∧ T=T1∪{k}}.

In the third rule Reverse, neither side entails the other, and the second rule

does not apply. This happens frequently during the abstraction stage in the

verification when we need to fold up a “concrete” state of nodes against an

abstract shape predicate. For example, ·x::node〈u, p〉 ∗ p::node〈v, q〉 is LHS

(σ1) and x::sls〈xn, xs, xl, xp〉 is RHS (σ2). In this case the antecedent (σ1)

cannot be unfolded as they are already data nodes. As the rule suggests, it

reverses two sides of the entailment and applies the second rule to uncover

the constraints σ′M and σM . Then it checks that σ1 ∗ σM ` σ2 ∗ σR before

it returns σM . For the example above, the anti-frame u ≤ v is needed to

establish a sorted list.
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When an abduction is conducted, the first three rules should be tried firstly;

if they do not succeed in finding a solution, then the rule Missing is invoked

to add the consequence to the antecedent, provided that they are consistent.

It is effective for situations like x::node〈 , 〉 0 y::node〈 , 〉, where we should

add y::node〈 , 〉 to the LHS directly (as the other three rules do not apply

here). Note that we do not consider x and y point to the same node unless

the aliasing is suggested by the program code.

If the Missing rule also fails, we will try our last rule Remove which tries to

entail a part of consequent by antecedent (σ1), and remove this part from

the consequent if the entailment check succeeds. The anti-frame (σM) is

continuously calculated with the rest of the consequent.

Example 16 Considering the abduction question:

(x::sls〈xn, xs, xl, xp〉 ∧ xn > 2) ∗ [σM ] �

x::Node〈v0, p0〉 ∗ y::Node〈v1, p1〉 ∗ σR

Our abduction system firstly applies Remove rule to this case, and remove

x::Node〈v0, p0〉 from LHS since x::sls〈xn, xs, xl, xp〉∧xn > 2 ` x::Node〈v0, p0〉∗

true. Then Missing rule can be applied to find out y::Node〈v1, p1〉 is missed

in antecedent as σM . The frame σR is computed by entailment check as

p0::sls〈xn1, xs1, xl, xp〉 ∧ v0 ≤ xn1 ∧ xn = xn1 + 1 ∧ xn1 > 1. 2

The abduction procedures presented in earlier work (Qin et al., 2010b,

2011) have mainly focused on discovering pure information with the assump-

tion that either complete or partial shape information is available. Our bi-

abduction algorithm presented in this paper generalises them to cater for
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full specification discovery scenarios, whereby we do not have the hints to

guide the analysis anymore due to the absence of shape information; but

at the same time we can have more freedom as to discover what the miss-

ing information is. One observation on abduction is that there can be too

many solutions of the anti-frame σM for the entailment σ2 ∗ σM ` σR ∗ true

to succeed. Therefore, we define “quality” of anti-frame solutions with the

partial order � defined in the last section, i.e. the smaller (weaker) one in

two abduction solutions is regarded as the better one. We prefer to find solu-

tions that are (potentially locally) minimal with respect to � and consistent.

However, such solutions are generally not easy to compute and could incur

excess cost (with additional disjunction in the analysis). Therefore, our ab-

ductive inference is designed more from a practical perspective to discover

anti-frames that should be suitable as preconditions for programs, and the

partial order � sounds more like a guidance of the decision choices of our

abduction implementation, rather than a guarantee to find the best theoret-

ically solution.

5.4 Analysis Algorithm

Our proposed analysis algorithm is given in Figure 5.5. The algorithm takes

three input parameters: T as the program environment possibly with some

of the method specifications in the program and be ready for newly inferred

specifications to be added in, the procedure t mn ( ~(t x); ~(t y)) {e} to be anal-

ysed, and the upper bound n of shared logical variables that we keep during
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the analysis.

Our analysis is based on the abstract interpretation framework. It has two

distinct features: the abduction exploited in the abstract semantics, and

the specifically designed abstraction, join and widening operations over the

combined domain.1 At the beginning, we initialise the iteration variable (i)

and the states to record the computed pre- and postconditions (Prei and

Posti). The emp and false here act as initial values that denote the starting

point of the fixpoint iteration.

Each iteration starts at line 1. Firstly, we calculate the pre- and post-

conditions for the program based on the result from last iteration, with a

forward analysis using the abduction-based semantics (line 3). We perform

abstraction on both pre- and postconditions obtained to preserve shape do-

main’s finiteness. If the symbolic execution cannot continue due to a program

bug, or if we find our abstraction cannot keep the number of shared logical

variables/cutpoints (counted by cp no) within a specified bound (n), then a

failure is reported (line 5). Otherwise the obtained results are joined with

the results from last iteration (line 6 and 7), and a widening is conducted

over both to ensure termination of the analysis (line 8 and 9). Then the new

summary will be updated to the program environment (line 10). Finally, we

judge whether a fixed-point is already reached or not (line 11). The last few

lines (from line 12) are for soundness purposes. We will run a forward anal-

ysis over the method body with the discovered specifications to see whether

1Note that our analysis uses lifted versions of these operations (indicated by †), which

will be explained in more details later.

114



5.4. Analysis Algorithm

Fixpoint Computation in Combined Domain

Input: T , t mn ( ~(t x); ~(t y)) {e}, n

Local: i := 0; Prei := emp; Posti := false;

1 repeat

2 i := i+ 1;

3 (Prei,Posti) := |[e]|AT (emp, emp);

4 (Prei,Posti) := (absa
†(Prei), abs

†Posti);

5 if Prei∧Posti=false or cp no(Prei)>n or cp no(Posti)>n

· then return fail end if

6 Prei := join†(Prei−1,Prei);

7 Posti := join†(Posti−1,Posti);

8 Prei := widen†(Prei−1,Prei);

9 Posti := widen†(Posti−1,Posti);

10 T := T ∪ {t mn ( ~(t x); ~(t y)) requires Prei ensures Posti {e}};

11 until T does not changed;

12 Post = |[e]|T ′Prei;

13 if Post = false or Post 0 Posti∗true then return fail

14 else return T

15 end if

Figure 5.5: Main analysis algorithm.

they are sound. If so, then the analysis succeeds; otherwise, fail is returned.
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As mentioned previously, the kernel of our analysis include the abstract se-

mantics with abduction, and the abstraction with abduction, join and widen-

ing operators. Some of them like join and widening operators are introduced

in previous chapter. The new abstract semantics and abstraction are elabo-

rated respectively in the following parts.

5.4.1 Abstract semantics with abduction

As shown in the algorithms, our analysis utilises two semantics: an underly-

ing semantics and an abstract semantics with abduction. They are used to

conduct the forward analysis over program body. The type of our underlying

semantics is defined as

|[e]| : AllSpec→ PSH → PSH

where AllSpec contains procedure specifications (extracted from Prog). For

some expression e, given its precondition, the semantics calculates the post-

condition. The underlying semantics is built on two transition functions:

unfold(x) : SH→ PSH[x] Rearrangement

exec(ds) : AllSpec→ SH→ SH Execution

where ds can be either d[x] or d for heap-sensitive command

or heap-insensitive command respectively.

whose definitions have been introduced in subsection 4.4.1.
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The abstract semantics with abduction is of the type:

|[e]|A : AllSpec→ P(SH× SH)→ P(SH× SH)

It takes a piece of program and a specification table, to map a (disjunctive)

set of pair of symbolic heaps to another such set, where the first in the pair

is the accumulated precondition and the second is the current state.

This semantics also consists of the basic transition functions which compose

the atomic instructions’ semantics and then the program constructors’ se-

mantics. Here the basic transition functions are lifted as

Unfold(x)(σ, σM) =df

let ∆=unfold(x)σ and S={(σ1, σM) |σ1 ∈ ∆}

in if (false /∈ ∆) then S

else if (∆ ` x=a for some a∈Reach(σ1) ) and

(σM 0 a::c〈~y〉∗true for fresh {~y}⊆LVar)

then S ∪ {(σ1∗x::c〈~y〉, σM∗x::c〈~y〉) |σ1 ∈ ∆}

else S ∪ {(false, σM)}

Exec(ds)(σ, σM) =df let σ1=exec(ds)σ in {(σ1, σM)}

where ds is either d[x] or d, except procedure call

In the definition of Unfold, we view ∆ as a disjunctive set of conjunctive

formulae. σ ∈ ∆ denotes that σ is one branch of ∆. The function Reach is

defined in subsection 4.4.2 which returns all variables that are reachable from

free variables in the abstract state. In the definition of Exec, we need special
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treatment for instructions that may alter variable values, like procedure call.

As can be seen in the rule below, when a call-by-reference variable y is

assigned to a new value after the call, the original value is still preserved

with a substitution ρ = [y0/y] where y0 is fresh. Doing this allows us to keep

the connection among the history values of a variable and its latest value,

which may be essential as a link from the procedure’s precondition to its

postcondition.

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1

σ ` ρΦpr∗σ1 and σ′1=emp or σ∗[σ′1] � ρΦpr∗σ1
ρo = [ri/vi]

n
i=1 ◦ [x′i/u

′
i]
m
i=1 ◦ [y′i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

Exec(mn(x1, .., xm; y1, .., yn))(T )(σ, σ′) =df

{(σ2, ρo(σ′∗σ′1)) |σ2 ∈ (ρlσ1)∗(ρoΦpo)}

A similar lifting function † is defined to lift Unfold’s and Exec’s domains:

Unfold†(x){(σi, σ′i)} =df

⋃
(Unfold(x)(σi, σ

′
i))

Exec†(ds)(T ){(σi, σ′i)} =df

⋃
(Exec(ds)(T )(σi, σ

′
i))

Based on the above transition functions, the abstract semantics with abduc-

tion is defined as follows:
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|[d[x]]|AT {(σ, σ′)} =df Exec†(d[x])(T ) ◦ Unfold†(x){(σ, σ′)}

|[d]|AT {(σ, σ′)} =df Exec†(d)(T ){(σ, σ′)}

|[e1; e2]|AT {(σ, σ′)} =df |[e2]|AT ◦ |[e1]|
A
T {(σ, σ′)}

|[if (v) e1 else e2]|AT {(σ, σ′)} =df (|[e1]|AT {(v∧σ, σ′)}) ∪ (|[e2]|AT {(¬v∧σ, σ′)})

|[e]|AT {(σ, σ′)} = {(σ1, σ′1)} ρ = [x1/x
′, r1/res] fresh logical x1, r1

|[x := e]|AT {(σ, σ′)} =df {((ρσ1) ∧ x′=r1, ρσ′1)}

The abstract semantics forms the foundation of our forward analysis for

program body.

Example 17 Here the example tries to free a node given as input.

1 void f reeNode (Node x )

2 { f r e e ( x ) ; }

Since free is a heap sensitive command, the analysis applies Unfold to x and

abducts that x should be a node in the precondition.

However, if the example tries to free a node twice as

1 void f reeNode (Node x )

2 { f r e e ( x ) ; f r e e ( x ) ; }
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The abduction will generate x::Node〈 〉 ∗ x::Node〈 〉 that is false. This means

we may discover a bug in the program code. 2

Example 18 Considering the program which has if-else expression

1 void a s s e r t n e x t (Node x , Node y )

2 { if ( x . va l == 0) {x . next = y ;}

3 else {y . next = x ;} }

During the interpretation of the if-condition, our analysis will split the pre-

condition for case analysis. A pair of precondition can be discovered,

x::Node〈xv, 〉 ∧ xv = 0 ;

x::Node〈xv, 〉 ∗ y::Node〈 , 〉 ∧ xv 6= 0

The if-branch does not touch any field of y, hence no requirement for y is

needed if x.val = 0. However, if x.val 6= 0, y is a node will be required.

From this simple example, we can observe that some shape properties are

related to the numerical information. 2

5.4.2 Abstraction with Abduction

The definitions of abstraction, join and widening operations for full specifica-

tion discovery in this chapter are similar to the definitions of them in chap-

ter 4. The major difference is that we now have a specifically designed

abstraction with abduction for precondition (absa) which is used to discover
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extra obligations for the abstraction of precondition. It consists of two rules:

absa(σ) =df abs(σ)

c2〈 ~u2〉 ≡ Φ p::c1〈~v1〉∗σ1∗[σ′] � p::c2〈~v2〉∗σ2
Reach(p::c2〈~v2〉∗σ2) ∩ {~v1} = ∅

absa(p::c1〈~v1〉∗σ1) =df p::c2〈~v2〉∗σ2

The first rule makes use of abs and does not find new constraints for pre-

condition. The second rule tries to abstract the state p::c1〈~v1〉∗σ1 with a

stronger predicate c2 against it while abs failed to abstract, and discovers

extra σ′ to be propagated back to the precondition for the abstraction to

succeed. The lifting function for absa is analogously defined as that for abs.

absa
†(
∨

σi) =df

∨
absa(σi)

Example 19 Recalling the insertion sort example, we want to compute the

following abstraction:

absa(x::Node〈v0, p0〉 ∗ p0::Node〈v1, p1〉)

if we use user-defined predicate sls as the abstraction strategy, the numerical

relation of v0 and v1 is missing. Fortunately, the missing information can be

found by abduction to make the abstraction succeed, and have the result as

x::sls〈2, v0, v1, p1〉. 2

Note that, firstly, abduction is a strength process in abstracting the precondi-

tion, thus it is a safe process to add information to generate the precondition.
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Secondly, although finding the weakest precondition of programs is ideal, the

precondition may be too weak to guarantee its functional correctness if we

only look at the footprint of the program code. Therefore, it is reasonable

to make use of the user-defined predicates as the guidance to enhance the

abstraction strategy.

5.4.3 Soundness and Termination

Soundness

The soundness of our analysis is ensured by the soundness of the following:

the entailment prover (Nguyen et al., 2007; Chin et al., 2010), the abstract

semantics (w.r.t. concrete semantics), the bi-abduction, the abstraction, and

the join and widening operators. The underlying operational semantics of

our language, and its concrete program state are described in chapter 3.

Based on that, we have the following theorem:

Theorem 20 (Soundness) Let (Pre, Post) denote the pre- and postcondi-

tion discovered by our analysis for a program e. The analysis is sound if

∀ s, h · s, h |= Post(Pre) and 〈s, h, e〉↪→∗〈s′, h′, -〉 (for some s′, h′), we have

s′, h′ |= Post(Post).

where the function Post(∆) is defined in subsection 4.4.3. Our analysis is

sound following the soundness of entailment checking, abstract semantics,
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and the operations of bi-abduction, abstraction, join and widening. The

soundness of entailment checking is established by structural induction over

the abstract domain. The soundness of abstract semantics is proven by in-

duction over program constructors, and the soundness of bi-abduction is

proven by the soundness of entailment checking. The soundness of abstrac-

tion, join and widening is proven in subsection 4.4.3. Finally, as abstraction

and widening for precondition are essentially unsound, we perform in the

analysis algorithm a final check to ensure soundness, which is guaranteed by

the soundness of abstract semantics.

Lemma 21 (Soundness of entailment checking) If ∆ ` ∆′, we have ∀

s, h, if s, h |= ∆, then s, h |= ∆′.

Proof. The proof is done by structural induction over formulae construc-

tors of the abstract domain (Nguyen et al., 2007; Chin et al., 2010). 2

Lemma 22 (Soundness of abstract semantics) If |[e]|T (∆, 0) = (∆1, 0),

then for all s, h, if s, h |= Post(∆) and 〈s, h, e〉↪→〈s1, h1, e1〉, then there al-

ways exists ∆0 so that

s1, h1 |= Post(∆0) and |[e1]|T (∆0, 0) = (∆1, 0)

Proof. The proof is done by structural induction over program construc-

tors and is left in the Appendix. 2

Lemma 23 (Soundness of abduction) If σ1 ∗ [σM ] � σ2 ∗ σR, then ∀s, h |=

Post(σ1 ∗ σM), we have s, h |= Post(σ2 ∗ σR).
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Proof. This is ensured by the entailment relationship in the premise of

each of the abduction rules and the soundness of the entailment checking. 2

Termination

For the termination aspect, we have the following theorem:

Theorem 24 (Termination) The analysis of full specification discovery

will terminate in finite steps for finite input parameters and user-defined

predicates with a given finite upper bound for the number of logical variables.

Proof. The proof is based on two facts: 1), the finiteness over the shape

domain guaranteed by our abstraction and the restriction on the number of

logical variables 2), the termination over the numerical domain guaranteed

by our widening operator. These two facts guarantee the convergence of our

analysis. Both of them are proven in section 4.4.3.

5.5 Related Work

Dramatic advances have been made in synthesising heap-manipulating pro-

grams’ specifications since the emergence of separation logic. The SpaceIn-

vader tool (Yang et al., 2008; Calcagno et al., 2011) infers full method speci-
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fications over the separation domain, as to verify pointer safety for industrial

programs up to 10K lines of code. The SLAyer tool (Gotsman et al., 2006)

implements an inter-procedural analysis for programs with shape informa-

tion. To deal with size information (such as number of nodes in lists/trees),

THOR (Magill et al., 2010) derives a numerical program from the original

heap-processing one in a sound way, so that the size properties can be ob-

tained by numerical analysis. A similar approach (Gulwani et al., 2009)

combines a set domain (for shape) with its cardinality domain (for corre-

sponding numerical information) in a more general framework. Compared

with these works, our approach can discover specification with stronger in-

variants such as sortedness and bag-related properties, which have not been

addressed in the previous works. Two more works to be mentioned are re-

lational inductive shape analysis (Chang and Rival, 2008) and our previous

inference works (Qin et al., 2010a, 2011). These works can handle shape

and numerical information over a combined domain. However, they still re-

quire user annotation for the program code whereas we compute the whole

specification at once.

There are also other approaches that can synthesise shape-related program

invariants other than those based on separation logic. The shape analysis

framework TVLA (Sagiv et al., 2002) is based on three-valued logic. It

is capable of handling complicated data structures and properties, such as

sortedness. Guo et al. (2007) reported a global shape analysis that discover

inductive structural shape invariants from the code. Kuncak et al. (2002)

developed a role system to express and track referencing relationships among

objects, where an object’s role (type) depends on, and changes according to,

the mutation of its referencing. Hackett and Rugina (2005) can deal with
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AVL-trees but is customised to handle only tree-like structures with height

property. Type-based approaches (Rondon et al., 2008, 2010) are also used to

infer numerical constraints for given type templates, but limited to capture

flow sensitive constraints. Compared with these works, separation logic based

approach benefits from the frame rule with support for local reasoning.

5.6 Summary

We have reported in this chapter a program analysis which automatically dis-

covers program specifications over a combined separation and pure domain.

The key components of our analysis include an abduction for precondition

discovery, and novel operations for abstraction, join and widening in the com-

bined domain. We have built a prototype system and the initial experimental

results will be reported in chapter 6.
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Experiments and Evaluation

This chapter presents the experimental results from two implemented sys-

tems. One system synthesises loop invariants and the other discovers full

specifications for programs that manipulate shared and mutable sophisti-

cated data structures. The evaluations of this thesis is discussed based on

the results. The advantage and limitation of the proposed frameworks are

also discussed in this chapter.
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6.1 Experiments and Evaluation of Loop In-

variants Synthesis

We have implemented a prototype system of the loop invariants synthesis

framework for the evaluation purpose. The prototype system was built in

Objective Caml. We used Sleek (Nguyen et al., 2007) as the solver for en-

tailment checking over the heap domain, and Omega constraint solver (Pugh,

1991) and Fixcalc solver (Popeea and Chin, 2006) for join and widening op-

erations in the numerical domain. Our test platform was an Intel Core 2

CPU 2.66GHz system with 8Gb RAM.

Example [Merge] Fig. 6.1 shows a merge procedure which merges two sorted

lists left and right, and returns a sorted list as the result. The pre-

condition of the while loop within the merge procedure (starting at line 6) is

calculated as

left::sll〈n1, s1, l1〉∗right::sll〈n2, s2, l2〉 ∧ r = null

The function append concatenates two sorted lists, which requires that the

maximal value stored in the first input list is smaller than or equal to the

minimal value of the second input list, and ensures that it returns a concate-

nated sorted list (referred to by res). The following is the specification of

append:

1 node append(node x, node y)

2 requires x::sll〈n1, s1, l1〉∗y::sll〈n2, s2, l2〉∧l1≤s2

3 ensures res::sll〈n1+n2, s1, l2〉;
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1 node merge(node left , node right)

2 requires left::sll〈n1, s1, l1〉 ∗ right::sll〈n2, s2, l2〉
3 ensures res::sll〈n3, s3, l3〉 ∧ n3 = n1 + n2

4 ∧ s3 = min(s1, s2) ∧ l3 = max(l1, l2);
5 {

6 node r = null;

7 while (left != null && right != null) {

8 if (left.val <= right.val) {

9 node tmp = left;

10 left = left.next;

11 tmp.next = null;

12 r = append(r,tmp);

13 }

14 else {

15 node tmp = right;

16 right = right.next;

17 tmp.next = null;

18 r = append(r,tmp);

19 }

20 }

21 if (left == null) {

22 r = append(r, right);

23 }

24 else {

25 r = append(r, left);

26 }

27 return r;

28 }

Figure 6.1: Loop-based Merge.
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By applying our analysis system to the program code, the following loop

invariant is discovered for the while loop:

left::sll〈n1, s1, l1〉∗right::sll〈n2, s2, l2〉 ∧ r = null (6.1)

∨ r::node〈s1, null〉∗right::sll〈n2, s2, l2〉 ∧ left = null ∧ s1 = l1 ∧ s1<s2
(6.2)

∨ r::node〈s2, null〉∗left::sll〈n1, s1, l1〉 ∧ right = null ∧ s2 = l2 ∧ s2≤s1
(6.3)

∨ r::node〈s3, null〉∗left::sll〈n′1, s′1, l1〉∗right::sll〈n′2, s′2, l2〉

∧ (s3 = s1 ∧ s1<s2 ∧ n1 = n′1 + 1 ∧ n′2 = n2 ∧ s1≤s′1 ∧ s′2 = s2

∨ s3 = s2 ∧ s2≤s1 ∧ n2 = n′2 + 1 ∧ n′1 = n1 ∧ s2≤s′2 ∧ s′1 = s1) (6.4)

∨ r::sll〈n3, s3, l3〉∗right::sll〈n′2, s′2, l2〉 ∧ left = null ∧ n3 = n1 + n2 − n′2

∧ s3 = min(s1, s2) ∧ l3 = l1 ∧ l1<s′2 (6.5)

∨ r::sll〈n3, s3, l3〉∗left::sll〈n′1, s′1, l1〉 ∧ right = null ∧ n3 = n2 + n1 − n′1

∧ s3 = min(s1, s2) ∧ l3 = l2 ∧ l2≤s′1 (6.6)

∨ r::sll〈n3, s3, l3〉∗left::sll〈n′1, s′1, l1〉∗right::sll〈n′2, s′2, l2〉

∧ n3 = n1 − n′1 + n2 − n′2 ∧ s3 = min(s1, s2) ∧ l3≤min(s′1, s
′
2) (6.7)

The loop invariant contains seven different disjunctive branches, with each

branch describing a different situation. The branch (6.1) represents the state

before any iteration. The branches (6.2), (6.3), and (6.4) denote three special

scenarios after one iteration. The branch (6.2) (resp. (6.3)) denotes the case

where initially the left (resp. right) list contains only one node which

holds a value no bigger than any value stored in the right (resp. left) list,

and after one iteration, r refers to the sole node in the initial left (resp.

right) list and the left (resp. right) pointer becomes null. The branch

(6.4) denotes the scenario where after one iteration neither the left list
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nor the right list is empty but r still refers to the node with the smallest

value. The branches (6.5) , (6.6) and (6.7) denote possible states reached

after some (one or more) iterations. The branch (6.5) (resp. (6.6)) denotes

the state reached after some iterations where the left (resp. right) pointer

has traversed to the end of the list. The branch (6.7) denotes the case where

neither the left pointer nor the right pointer has reached the end of their

lists after some iterations. In all these three branches, r refers to the merged

list obtained so far.

Note that branches (6.2), (6.3) and (6.4) are, respectively, special cases of

branches (6.5), (6.6) and (6.7) (logically, the former formulae entail the latter

ones respectively). Thus we can simplify the loop invariant as

r::sll〈n3, s3, l3〉∗right::sll〈n′2, s′2, l2〉 ∧ left = null ∧ n3 = n1 + n2 − n′2

∧ s3 = min(s1, s2) ∧ l3 = l1 ∧ l1<s′2

∨ r::sll〈n3, s3, l3〉∗left::sll〈n′1, s′1, l1〉 ∧ right = null ∧ n3 = n2 + n1 − n′1

∧ s3 = min(s1, s2) ∧ l3 = l2 ∧ l2≤s′1

∨ r::sll〈n3, s3, l3〉∗left::sll〈n′1, s′1, l1〉∗right::sll〈n′2, s′2, l2〉

∧ n3 = n1 − n′1 + n2 − n′2 ∧ s3 = min(s1, s2) ∧ l3≤min(s′1, s
′
2)

The simplification of generated loop invariant increases the scalability of our

inference system, and also simplifies the verification process by using the loop

invariant. 2

We have four tables to depict the programs that we have used to conduct

experiments with, including list processing programs (Table 6.1), sorting

algorithms (Table 6.2), tree processing programs(Table 6.3), and loops from
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Program Function Time

create Creates a list with given length parameter 0.452

delete Disposes a list 0.720

traverse Traverses a list 0.636

length Counts the length of a list 0.772

append Appends two sorted lists 0.312

take Takes the first n elements of a list, or itself 0.852

drop Returns suffix of a list after the first n ele-

ments, or null

0.844

reverse Reverses the elements of the list, in place 1.032

filter Drops the elements bigger than k of a list 1.182

lookup Returns the first node whose values equals to

k, or null

0.876

drop even Drops all the elements whose indexes are

even

1.332

(Total LOC: 232)

Table 6.1: Loop invariants synthesis Experimental Results for Lists.
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Program Function Time

ins sort(inner) Inner loop of Fig. 4.1 0.824 .

ins sort(outer) Outer loop of Fig. 4.1 4.372

partition Auxiliary operation used by Quick-sort 1.497

merge Merges two sorted lists to be one sorted list 1.972

split Divides a list into two sublists with length

difference of at most one

0.354

select Selects the smallest node of a list 0.692

select sort Outer loop of selection sort 4.892

drop even Drops all the elements whose indexes are

even

1.332

(Total LOC: 178)

Table 6.2: Loop invariants synthesis Experimental Results for Sorting Algo-

rithm.

Program Function Time

tree search Finds a node in a binary search tree 1.294

tree insert Inserts a node into a binary search tree 1.364

list2tree Inserts nodes of a list into a binary search

tree

5.176

(Total LOC: 87)

Table 6.3: Loop invariants synthesis Experimental Results for Trees.
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Program Function Time

list.c One loop in FreeRTOS list.c with heap ma-

nipulation

4.124

task.c Six loops in FreeRTOS task.c with heap ma-

nipulation

32.18

(Total LOC: 331)

Table 6.4: Loop invariants synthesis Experimental Results for FreeRTOS.

FreeRTOS (Barry, 2009) (Table 6.4). Total LOC denotes the total number of

lines of the code. The first column denotes the names of the programs. The

second column states the programs’ functionalities. The last column exhibits

the time in second that is taken by our analysis. As can be seen from their

functions, these programs involve recursive data structures such as (sorted)

linked lists and binary (search) trees, and employ loops to manipulate these

data structures (and some of them even have nested loops). Our target is to

verify these programs with the help of our analysis over the loops they invoke,

so that user annotations for while loops can be avoided. Our experiments

confirm that Hip/Sleek can verify all these programs successfully when

supplying with loop invariants discovered by our analysis. According to

our experience, these experiments just require the bound of shared cutpoints

be a reasonably small number, saying no more than twice of the number of

program variables. Note that it takes a longer time to analyse the procedures

that have nested loops, such as select sort, list2tree, and so on (because

we need to analyse the inner loop multiple times). We transfer the source

code of FreeRTOS to our language, and successfully infer the loop invariants

of the loops which do not involve pointer arithmetic in list.c and task.c. We

employ doubly linked sorted list predicate for the verification of FreeRTOS.
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We have two main observations from our experimental results. The first is

that we can handle many data structures with rich program properties they

bear. To analyse these loops, we need to deal with both singly linked and

doubly linked list predicates to capture the list data structure, as well as

their sorted version for the sorting algorithms. We can also handle tree-

like predicates such as binary trees and binary search trees. Meanwhile,

these predicates also come along with many properties such as the length

of the list and size/height of the tree, and the minimum/maximum value of

a sorted list/binary search tree. Based on them, our analysis is capable of

expressing the invariants of these properties in terms of the constraints over

the predicates’ parameters.

Beyond the number of predicates and properties we can process, another

observation on our analysis is that we can process them rather precisely. For

example, the list creation program creates a list with the same length as user

input, list traverse does not change list’s length, all of elements of the return

list of filter program are smaller than or equal to the input value k, and the

length of return list of drop even is between half and half+1 of the original

list.

Besides these, some loops provide critical invariants for the method to process

them to function correctly. For example, the quicksort algorithm partitions

a list into three parts, where two are lists and the third just one node, whose

value is exactly in the middle of that of the two other lists (partition in

the table). We use a list bound predicate to indicate that fact which is suc-

cessfully inferred by our analysis. We can also infer that the first loop of a
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mergesort (split in the table) can divide the list into two portions whose

length difference is at most one, which is unimportant for the algorithm’s

functional correctness but essential for its performance. For tree insert,

we have the result that the tree’s height is increased at most one, and the

minimum/maximum value of the new binary search tree will be exactly the

inserted value, if that value is out of the value bounds of the original tree.

For code in FreeRTOS, the invariants we inferred maintains the sortedness

property for the doubly linked list used for tasks. The invariants we discov-

ered are sufficiently precise to prove the functional correctness of all these

programs with the given predicates.

We also observe that not all synthesised invariant are adequate to prove the

postcondition of the method. For the insertion sort example in Figure 4.1,

if we use the singly linked list predicate ll as the target of abstraction, the

synthesised loop invariant for the outer loop will be:

(x::ll〈nx〉 ∧ r=null ∧ nx=n) ∨ (r::node〈a, null〉∗x::ll〈nx〉 ∧ n=nx+1) ∨

(r::ll〈nr〉∗x::ll〈nx〉 ∧ n=nx+nr ∧ nr≥2)

This result is a sound invariant, but it is not sufficient to prove the given

postcondition. Such invariant will be filtered out in our post checking process.

Some data structures are beyond the capability of our system. For instance,

a pointer field of a class node is non-local, namely, it does not have a direct

relationship with fields of surrounding objects, but rather is determined by

some global constraint. For example, the skip lists (Pugh, 1990) are not

captured by our approach. Another limitation of our approach is to analyse

the programs with overlaid data structures. The overlaid data structure
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indicates that a set of data nodes have been used by multiple data structures,

and these data structures are manipulated at the same time (Lee et al., 2011).

For example, the deadline IO scheduler of Linux has a queue whose nodes

been used by a linked list and a tree. The linked list is used to record the order

of insertion of each node, and the tree supports an efficient indexing structure

of the nodes. For such data structure, we cannot define a recursive heap

predicate to capture all the shape and pure properties by our specification

mechanism. If we supply both list and tree shape predicates, since every

node are shared by the two data structures, we cannot apply our abstraction

operation over the program states.

6.2 Experiments and Evaluation of Full Spec-

ification Discovery

We have implemented a prototype system of the full specification discovery

framework and evaluated it over a number of heap-manipulating programs to

test its viability and precision. We used Sleek (Nguyen et al., 2007) as the

solver for entailment checking over the heap domain, and Fixcalc (Popeea

and Chin, 2006) and Fixbag (Pham et al., 2011) for numerical and bag do-

main. Our experimental results are achieved with an Intel Core 2 Quad CPU

2.66GHz with 8Gb RAM platform.

Example [Merge] We show a similar merge example without given precon-
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dition, which has been declared as an unverified example in Calcagno et al.

(2011) since their method does not keep track of values stored in the list.

This example (Figure 6.2) merges two sorted lists into one sorted list. If

either of the input list is empty, then the other one is returned; if not, we

select the smallest element of both sorted lists, and make the next field of the

smallest node points to the result of merging the tail list of this node with

the other list. The shape predicate selected for this example is sls which

keeps track on both the minimal (sm) and maximal (lg) values of a sorted

list.

sls〈n, sm, lg, p〉 ≡ root::Node〈sm, p〉 ∧ n=1 ∧ lg=sm ∨

root::Node〈sm, q〉∗q::sls〈n1, s1, lg, p〉 ∧ n=n1+1 ∧ sm≤s1 ∧ s1≤lg

Supposing after the third iteration of symbolically executing the code, we

have generated a precondition as follows:

x=null ∨ y=null ∨ x::Node〈xv1, xp1〉∗y::Node〈yv1, yp1〉

∧ (xv1≤yv1∧xp1=null ∨ xv1>yv1∧yp1=null) (6.8)

∨ x::Node〈xv1, xp1〉∗xp1::Node〈xv2, xp2〉∗y::Node〈yv1, yp1〉

∧ (xv1≤yv1∧(xv2≤yv1∧xp2=null ∨ xv2>yv1∧yp1=null)) (6.9)

∨ x::Node〈xv1, xp1〉∗y::Node〈yv1, yp1〉∗yp1::Node〈yv2, yp2〉

∧ (xv1>yv1∧(xv1≤yv2∧xp1=null ∨ xv1>yv2∧yp2=null)) (6.10)

Branch (6.8) says that the program only touches the second node of x if

138



6.2. Experiments and Evaluation of Full Specification Discovery

1 Node merge(Node x, Node y)

2 {

3 if (x == null) {

4 return y;

5 } else if (y == null) {

6 return x;

7 } else

8 if (x.val <= y.val) {

9 Node t = x.next;

10 x.next = merge(t, y);

11 return x;

12 } else {

13 Node t = y.next;

14 y.next = merge(x, t);

15 return y;

16 } }

Figure 6.2: Recursive-call based Merge.
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xv1≤yv1. If xv2≤yv1, xp2 should be null; otherwise yp1 must be null to

guarantee the termination of the method and memory safety. Branch (6.9)

states a similar condition when touching the second node of y. This formula

is very precise, but not scalable if the analysis continues. According to the

given user-defined predicate sls, we could abstract the shapes of x and y to

be a sorted list. However, the formula is not sufficient to do that, i.e. the

sortedness information about x and y is missing. This missing information

is the numerical relation between xv1 and xv2 in x list, and yv1 and yv2 in

y list. The guidance for this abstraction comes from the predicate sls. We

use such user-defined predicates to infer data structure properties that are

anticipated from some program codes. By applying abstraction (equipped

with an abduction mechanism) against the predicate sls and then joining the

branches with the same shape, the precondition from two iterations becomes:

x=null ∨ y=null ∨ x::sls〈xn0, xsm0, xlg0, xp0〉 ∗ y::sls〈yn0, ysm0, ylg0, yp0〉

∧ 1≤xn0≤2 ∧ 1≤yn0≤2 ∧ (xlg0≤ylg0 ∧ xp0=null ∨ xlg0>ylg0 ∧ yp0=null)

Continuing the analysis, the fixed point of the program summary is calculated

as

(Pre,Post) :=

(x=null ∨ y=null ∨ x::sls〈xn0, xsm0, xlg0, xp0〉∗y::sls〈yn0, ysm0, ylg0, yp0〉

∧ (xlg0≤ylg0∧xp0=null∨xlg0>ylg0∧yp0=null),

x=null∧res=y ∨ y=null∧res=x∨

x::sls〈xn1, xsm1, xlg1, xp1〉∗y::sls〈yn1, ysm1, ylg1, yp1〉 ∧ xn1+yn1=xn0+yn0

∧xsm1=xsm0 ∧ ysm1=ysm0∧(xsm0≤ysm0 ∧ res=x∧xp1=y ∧ xlg1≤ysm1

∨xsm0>ysm0 ∧ res=y ∧ yp1=x ∧ ylg1≤xsm1) )
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Figure 6.3: An Instance of Merge

Figure 6.3 illustrates the

specification via an instance

of merge. The aliasing and

heap shapes properties de-

pend on the numerical infor-

mation. res points to the

smallest element, i.e. the node that x points to. Both x and y point to

their original nodes, but some nodes of x are merged into the tail list from y.

The grey block is the untouched heap of the procedure, as the merge process

stops when the end of x list is reached, thus it is an unknown but safe heap

portion by the footprint guided analysis for this procedure.

From this example, we can observe that the memory safety of shape analysis

is related to the values stored in the list. Our analysis can find that only

one list is traversed to its end, i.e. until null is reached, and the other list is

partially traversed till it reaches an element that is larger than the maximal

value of the former list. As captured in the inferred precondition, the rest of

the list will not be accessed by the program. Similarly, the inferred postcon-

dition captures a fairly precise specification that represents the merged list

which uses two list segments that either begins from x or from y, depending

on which of the two input lists contains the smaller element. 2

The experiment results are presented in Table 6.5 which shows the analysed

methods, the number of code lines, and the analysis time in second respec-

tively. We have analysed all of the method successfully, including programs

processing AVL tree with its binary-search and height-balanced properties.
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Porg. LOC Time

Singly Linked List

create 10 1.12

delete 9 1.20

traverse 9 1.35

length 11 1.28

append 11 1.47

take 12 1.28

reverse 13 1.72

filter 15 2.37

drop 2nd 12 1.42

Sorting algorithm

insert sort 32 2.72

merge sort 78 4.18

quick sort 70 5.72

select sort 45 3.16

Porg. LOC Time

Doubly Linked List

create 15 1.47

append 24 2.53

insert 22 2.32

Binary Search Tree

create 18 2.58

delete 48 4.76

insert 22 3.57

search 22 2.78

height 15 1.56

count 17 1.63

flatten 32 2.74

AVL Tree

insert 114 27.57

delete 239 34.42

Table 6.5: Full specification discovery Experimental Results.

We note down two observations on the experimental results. The first is that

the analysis may discover more than one specifications for some programs.

For example, if we give two predicates, ordinary linked list and sorted list,

for sorting algorithm, we can obtain two specifications for most of them. The

reason is that a sorted list is also a linked list. When there are more than one

predicate definitions supplied, the analysis can have multiple choices during

the abstraction.
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The other observation concerns the precision of the analysis, which is wit-

nessed by the rich information inferred in the specifications. For precondition,

our analysis discovers sufficient information to guarantee memory safety. For

example, the preconditions of some programs require their input data struc-

tures are non-empty so that memory safety can be preserved. For the take

program which traverses the list down a user-specified number n of nodes,

we can find that the list length must be no less than n.

One restriction of our analysis we observed is that it requires a proper pred-

icate to depict the requirement of a program. For example, if we only give

an ordinary linked list for verifying merge sort, it will not succeed. This is

because the stored value information in the list will not be preserved during

the analysis.

6.3 Summary

This chapter has reported the experimental results obtained from our imple-

mented systems. The results validate the feasibility and precision of both

loop invariants and full specification discovering approaches. The advantage

and disadvantage of the systems are also exhibited. Based on the outcomes,

the achievement of this thesis confirms the contributions which generally

meet the previous proposed objectives.
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Chapter 7

Conclusions

This thesis focuses on analysis of both functional correctness and memory

safety of programs that manipulates pointer-based data structures. The work

has two steps by reducing the demand of user annotations. Firstly, we dis-

cover the loop invariants to assist the verification of loops. Secondly, we

synthesise the full specification of given program without user annotations

to free the labour of users. This chapter summaries the works presented in

this thesis with its achieved results and discusses the potential future works.
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7.1 Achieved Results

The main contributions of this dissertation is that I demonstrate it is possi-

ble and practical to analyse heap manipulating programs automatically and

precisely by using abstract interpretation techniques in a combined shape

and pure domain. To present this work, this thesis clearly defines a tar-

get programming language of the analysis. The language is simple, yet has

the essential features of mainstream imperative languages that manipulate

heap-based data structures. The operational semantics of the language is

declared.

The domain of properties of the programming language that we are interested

in is the combined shape and pure domain which can be used to capture both

functional correctness and memory safety of heap manipulating programs. A

specification language based on separation logic is defined in this combined

domain. This specification language has an advantage feature to allow users

to define their own predicates to specify the properties of data structures

that they are interested in. Sophisticated numerical and shape properties

can be expressed by this richly expressive language. The semantic model of

it is declared.

Base on the target and specification language, the approaches are built up

to discover loop invariants and full specification of the heap-manipulating

language.
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7.1.1 Loop Invariants Synthesis

Loop invariant is a key component of loop verification. An automated anal-

ysis system of discovery of loop invariant is proposed. The analysis system

is based on abstract interpretation with fixed point computation. Novel ab-

straction, join and widening operators are specifically designed over the com-

bined domain to guarantee the termination of the analysis. The soundness

of the analysis is proved. The system has been implemented and integrated

with Hip/Sleek verification system. The experimental results show the

viability of the system.

7.1.2 Full Specification Discovery

A novel compositional analysis system is presented for generating full specifi-

cation of programs without given any specification about the program codes

in the combined domain. The compositional analysis is based on abstract

interpretation technique with a novel bi-abduction algorithm over the com-

bined domain. The system has implemented and the experimental results

confirm the viability and precision of the framework in finding interesting

properties of non-trivial programs.
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7.2 Future works

In this section, I propose some possible application and improvement of this

thesis as future works.

7.2.1 Resource Analysis

One future application of this work is to predict the resource requirement of

heap-manipulating programs. The resource of a computing system is always

limited, like the CPU power, memory size and battery capacity, particularly

for embedded real-time systems. CPU time, memory usage and battery

consumption are quite restricted for programs that run on such platforms.

Paying insufficient attention to resource issues when developing such software

may result in a corresponding software failure after deployment.

In this thesis, we have successfully analysed the shape of data structures and

the related numerical properties. With the information that automatically

inferred by our system, it is possible to extend the technique to predict the

resource requirement of such programs. For instance, if we know the maxi-

mum sizes of recursive data structures allocated on the heap by a program,

it is possible to prevent “Out of memory” error by checking the free mem-

ory before the program runs. If we know the length of a list, the timing of

traversing the list is predictable.
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An extension of Java language, Safety Critical Java (SCJ) (Henties et al.,

2009), is based on a region-based memory management, which requires users

to specify the memory usage of each mission to ensure the memory safety and

avoid the delay caused by garbage collection. Equipped with our techniques,

it is possible to calculate out the memory requirement of each mission stati-

cally, to eliminate such requirement from users, and to guarantee the memory

safety of SCJ software.

We have had some achievements on the verification and analysis of memory

usage requirement via separation logic and related numerical information (He

et al., 2009; He and Luo, 2009). We will explore more and also study timing

and battery issues with our analysis result.

7.2.2 Scalability

Currently, the system implementation is not focused on dealing with program

code with large size. One restriction is that we still need to provide the user-

defined predicates to satisfy the requirement of the program code, which

will be discussed in next subsection. Another restriction is the limitation of

the tools we adopt in our system. The numerical solver used in our system

is Omega constraint solver (Pugh, 1991) which works in a compact convex

polyhedra domain. It is a well known precise solver to eliminate existential

variables and solve the Presburger Arithmetic. The advantage of Omega

solver is in its precision, the disadvantage is in its cost. The worst case of
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solving a Presburger formulae is exponential (222
O(n)

).

To speed up the analysis, we may adopt some simple numerical domain, like

interval abstract domain (Cousot and Cousot, 1976), linear equalities ab-

stract domain (Chen et al., 2010), weighted hexagons abstract domain (Fu-

lara et al., 2010), and octagon abstract domain (Miné, 2001). Users then

have a choice between the precision and the efficiency.

Another one of the optimization aspects of the system is benefited from dis-

tributed computing system. It is also one of the advantage of compositional

analysis. If some methods do not depend on each other from the call graph,

they can be distributed to multiple computers and analysed in parallel to

save analysis time. We hope the approaches addressed in this thesis could

apply to real industry software in the future.

7.2.3 Predicates Discovery

The demand of user-defined predicates is one limitation of the analysis. For

some sophisticated programs, the predicates are arduous to be defined unless

the user understands the requirement very well. One dreamy idea is to

discover the predicates automatically from the program code itself. It is not

just a dream. A possible solution is to adopt counterexample-guided (CEG)

approach (Podelski and Wies, 2010). Abduction is a kind of counterexample

guided process. If the information we hold is not enough to continue the
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verification of a program, i.e. a counterexample occurs, abduction analyses

the counterexample and tries to add more knowledge to the precondition as

the missing information to make the verification resume, and assumes that

the missing information is part of precondition which should be given. CEG

tries to strengthen the abstraction strategy of the analysis by analysing the

counterexample, and then re-verifies the program. The work (Podelski and

Wies, 2010) proposes a CEG algorithm to discover simple point-to relation

in shape domain. Our analysis method employs user-defined predicates as

the abstraction strategies. I believe it is possible to establish more complex

predicates in the combined domain by combining both abduction and CEG

techniques.

7.2.4 Arrays and Pointer Arithmetic

At the moment, we have not focused on dealing with arrays and pointer arith-

metic in our analysis. To handle such features of program languages, we could

exploit some techniques proposed by Calcagno et al. (2006) and Gulwani

et al. (2008). The work (Calcagno et al., 2006) is founded on separation logic,

where some restrictions are added over pointer arithmetics so that it is under

control of the verification. Gulwani et al. (2008) construct a lifted abstract

domain which is capable of representing universally quantified facts such as

“∀i · (0≤i<n)→ a[i]=0”. It is possible to incorporate such techniques to

arrays in our verifier in order to verify a wider range of heap-manipulating

programs.
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7.2.5 Concurrency

Due to the rapid development of multi-core processor architectures, the ver-

ification of concurrent programs becomes a quite worthwhile research topic.

Brookes (2004); O’Hearn (2007); Vafeiadis and Parkinson (2007); Feng et al.

(2007); Dodds et al. (2009) propose a number of approaches to verify concur-

rent programs with separation logic. However, these works do not consider

the numerical properties. It will be possible to extend our works to verify

the concurrent programs in the combined domain in the future.

7.2.6 Program Derivation

This thesis mainly focuses on extracting formal specifications from program

code to help the programmer debug and to verify the program. As a rever-

sal process, program derivation (Burstall and Darlington, 1977; Kaldewau,

1990; Chin and Hu, 2002) starts with the formal specification of the user’s

requirement. The specification is then constructed to an executable imple-

mentation, and the correctness is promised by construction. To the best of

my knowledge, no work based on separation logic has been done to derive

programs which manipulate shared and mutable data structures till now. It

will be an interesting research direction for future exploration.
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7.3 Summary

This chapter summarises the contributed works presented in this thesis, dis-

cusses the limitations of the works and the potential improvements to over

come the limitations. Two main contribution works are loop invariant syn-

thesis and full specification discovery in a combined numerical and shape

domain. The possible future improvements of the work include applying

the approach to resource requirement calculation, improving the efficiency

of the implementation, discovering predicates with counterexample-guided

techniques, and extending our analysis to programs with arrays, pointer

arithmetic and concurrency features. The future works depict possible di-

rections of this dissertation in further steps. I believe, with further exten-

sions, my works can make more contributions to the international grand

challenge (Jones et al., 2006; Woodcock, 2006) in computer science.
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Appendix A

Soundness of Abstract

Semantics

We show the soundness proof of the abstract semantics for our analysis as

below.

Lemma (Soundness of Abstract Semantics) If |[e]|T∆ = ∆1, then for

all s, h, if s, h |= Post(∆) and 〈s, h, e〉↪→〈s1, h1, e1〉, then there always exists

∆0 such that

s1, h1 |= Post(∆0) and |[e1]|T∆0 = ∆1

Proof. The proof is done by structural induction over program construc-
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tors:

• Case null | k | v | v.f . Straightforward.

• Case v = e. There are two cases according to the operational semantics:

– e is not a value. From operational semantics, there is e1 s.t.

〈s, h, e〉↪→〈s1, h1, e1〉, and 〈s, h, v=e〉↪→〈s1, h1, v=e1〉. From ab-

stract semantics for assignment, if |[e]|T∆ = ∆2, and ∆1 = [v1/v
′,

r1/res] (∆2) ∧ v′ = r1. By induction hypothesis, there exists ∆0,

s1, h1 |= ∆0 and |[e1]|T∆0 = ∆2. It concludes from the assignment

rule that |[v = e1]|T∆0 = ∆1.

– e is a value. Trivial.

• Case new c(~v). From abstract semantics for new, we have |[new c(~v)]|T∆ =

∆1, where ∆1 = ∆∗res::c〈v′1, . . . , v′n〉. Let ∆0 = ∆1. From the op-

erational semantics, we have 〈s, h, new c(~v)〉↪→〈s, h+[ι 7→ r], ι〉, where

ι /∈ dom(h). From s, h |= ∆, we have s, h+[ι 7→ r] |= ∆0. Moreover,

|[ι]|T∆0 = ∆1.

• Case v1.f = v2. Take ∆0 = ∆. It concludes immediately from the exec

rule for field update and the underlying operational semantics.

• Case free(x). Denote ∆ as
∨
i(x::c〈~yi〉∗σi) and ∆0 as

∨
i σi, then

from free’s operational semantics we know that if s, h |= Post(∆) and

〈s, h, free(x)〉↪→〈s1, h1, -〉, then s1, h1 |= Post(∆0) and ∆0 = ∆1.

• Case e1; e2. We consider the case where e1 is not a value (other-

wise it is straightforward). From the operational semantics, we have

〈s, h, e1〉↪→〈s1, h1, e3〉. From the abstract semantics rule for sequence,
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we have ` {∆}e1{∆2}. By induction hypothesis, there exists ∆0 s.t.

s1, h1 |= Post(∆0), and ` {∆0}e3{∆2}. By the sequential rule we have

|[e3; e2]|T∆0 = ∆1.

• Case if (v) e1 else e2. There are two possibilities in the operational

semantics:

– s(v)=true. We have 〈s, h, if (v) e1 else e2〉↪→〈s, h, e1〉. Let ∆0 =

(∆∧v′). It is obvious that s, h |= ∆0. From the if-conditional rule

of abstract semantics, we have:

|[e1]|T∆0 = ∆2

|[e2]|T∆∧¬v′ = ∆3

And we also have (due to sound weakening of postcondition)

|[e1]|T∆0 = ∆2∨∆3

That is, |[e1]|T∆0 = ∆1.

– s(v) = false. Analogous.

• Case mn(v1...n). For the method invocation rule, we know ∆`[v′j/vj]
n
j=1

Φi
pr ∗∆i, for i = 1, . . . , p. Take ∆0 =

∨p
i=1[v

′
j/vj]

n
j=1Φ

i
pr∗∆i. From

the operational semantics and the above heap entailment, we have

s1, h1 |= ∆0. Then the method invocation rule implies ∀i∈1 . . . p ·

|[e1]|T [v′j/vj]
n
j=1Φ

i
pr∗∆i = ∆i∗Φi

po. Therefore we have |[e1]|T∆0 = ∆1

which concludes.
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Appendix B

Collection of Shape Predicates

We list a collection of the definition of shape predicates used by the thesis

and the experiments.

list〈〉 ≡ (root=null) ∨ (root::Node〈i, q〉∗q::list〈〉)

ll〈n〉 ≡ (root=null ∧ n=0) ∨ (root::Node〈 , q〉∗q::ll〈m〉 ∧ n=m+1)
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ls〈n, p〉 ≡ (root=p ∧ n=0) ∨ (root::Node〈 , q〉∗q::ls〈m, p〉 ∧ n=m+1)

llB〈S〉 ≡ (root=null ∧ S=∅)

∨(root::Node〈v, q〉∗q::llB〈S1〉 ∧ S={v}tS1)

sllB〈S〉 ≡ (root=null ∧ S=∅) ∨

(root::Node〈v, q〉∗q::sllB〈S1〉 ∧ S={v}tS1 ∧ (∀x∈S1·v≤x))

dll〈p, n〉 ≡ (root=p ∧ n=0) ∨

(root::Node2〈v, p, q〉∗q::dll〈root, n1〉 ∧ n=n1+1)

dllB〈p, S〉 ≡ (root=p ∧ S=∅) ∨

(root::Node2〈v, p, q〉∗q::dllB〈root, S1〉 ∧ S=S1t{v})

dlls〈pr, bo, bi, S〉 ≡ (root=bo ∧ pr=bi ∧ S=∅) ∨

(root::Node2〈v, pr, nx〉 ∗ nx::dlls〈root, bo, bi, S1〉

∧S={v}tS1 ∧ (∀x∈S1·v≤x))
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sll〈n, mn, mx〉 ≡ (root::node〈mn, null〉 ∧ n=1 ∧ mn=mx) ∨

(root::node〈mn, q〉∗q::sll〈n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

slsB〈p, S〉 ≡ (root=p ∧ S=∅) ∨

(root::Node〈v, q〉∗q::slsB〈p, S1〉 ∧ S={v}tS1 ∧ (∀x∈S1·v≤x))

sls〈n, s, l, p〉 ≡ (root::Node〈s, p〉 ∧ n=1 ∧ l = s)∨

root::Node〈s, q〉∗q::sls〈m, s1, l, p〉 ∧ n=m+1 ∧ s ≤ s1 ∧ s1 ≤ l

bnd〈s, l, p〉 ≡ (root::Node〈v, p〉) ∧ s=v ∧ l=v∨

root::Node〈v, q〉 ∗ q::bnd〈s1, l1, p〉 ∧ s = min(s1, v) ∧ l = max(l1, v)

bt〈S, h〉 ≡ (root=null ∧ S=∅ ∧ h=0) ∨ (root::Node2〈v, p, q〉 ∗

p::bt〈Sp, hp〉∗q::bt〈Sq, hq〉 ∧ S=SptSq ∧ h=1+max(hp, hq))

treep〈p〉 ≡ root=null∨

root::Node3〈 , l, r, p〉 ∗ l::treep〈root〉 ∗ r::treep〈root〉

177



Chapter B. Collection of Shape Predicates

bst〈sm, lg〉 ≡ (root=null ∧ sm=lg) ∨

(root::Node2〈v, p, q〉∗p::bst〈sm, mn〉∗q::bst〈mx, lg〉 ∧ mn<v<mx)

avl1〈S, h〉 ≡ (root=null ∧ S=∅ ∧ h=0) ∨ (root::Node2〈v, p, q〉∗p::bt〈Sp, hp〉 ∗

q::bt〈Sq, hq〉 ∧ S=SptSq ∧ h=1+max(hp, hq) ∧ −1≤hp−hq≤1)

avl2〈h, S〉 ≡ root=null∧h=0 ∧ S=∅

∨root::Node2〈v, l, r〉 ∗ l::avl〈hl, Sl〉 ∗ r::avl〈hr, Sr〉

∧ h=1+max(hl, hr) ∧ −1≤hl−hr≤1

∧ S=SltSr ∧ (∀x∈Sl·x≤v) ∧ (∀x∈Sr·v<x)
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