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Abstract

In this dissertation, we study constraints imposed by locality, unitarity, gauge invari-

ance, the Adler zero, and constructability (scaling under BCFW shifts).

In the first part we study scattering amplitudes as the unique mathematical objects

which can satisfy various combinations of such principles. In all cases we find that

locality and unitarity may be derived from gauge invariance (for Yang-Mills and

General Relativity) or from the Adler zero (for the non-linear sigma model and the

Dirac-Born-Infeld model), together with mild assumptions on the singularity structure

and mass dimension. We also conjecture that constructability and locality together

imply gauge invariance, hence also unitarity. All claims are proved through a soft

expansion, and in the process we end re-deriving the well-known leading soft theorems

for all four theories. Unlike other proofs of these theorems, we do not assume any

form of factorization (unitarity).

In the second part we show how tensions arising between gauge invariance (as

encoded by spinor helicity variables in four dimensions), locality, unitarity and con-

structability give rise to various physical properties. These include high-spin no-go

theorems, the equivalence principle, and the emergence of supersymmetry from spin

3/2 particles. We also complete the fully on-shell constructability proof of gravity

amplitudes, by showing that the improved “bonus” behavior of gravity under BCFW

shifts is a simple consequence of Bose symmetry.
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Chapter 1

Introduction

Scattering amplitudes lie at the heart of quantum field theory, and at the intersec-

tion between theory and experiment. We are lucky that scattering amplitudes also

posses a rare and valuable property: they are sufficiently simple to compute for many

theories, and at the same time they are rich enough to uncover new symmetries and

structures, completely hidden by the Lagrangian formulation. In the last few decades

the study of amplitudes has greatly developed both computationally and conceptu-

ally, transforming scattering amplitudes into table-top experiments for theoretical

physics. Much of this progress is due to the 1986 discovery of Parke and Taylor that

the very complicated Feynman diagram expansion for gluon scattering amplitudes

can be simplified to an amazingly concise formula [1]:

A(1−, 2−, 3+, . . . , n+) =
〈12〉4

〈12〉〈23〉 . . . 〈n− 1n〉
(1.0.1)

The existence of this very simple formula eventually lead to the current perspective

that scattering amplitudes may have a different origin, or that at least some simpler

methods for computing them should exist, based not on Feynman diagrams and

Lagrangians, but rather on physical principles and symmetries.
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One such approach, which formed the power-house of the modern S-matrix pro-

gram, is the on-shell BCFW recursion [2]. Here the locality (pole structure) and uni-

tarity (factorization on those poles) are used to recursively build amplitudes. When

certain conditions are met (ie., the theory is constructible), the BCFW recursion

expresses an amplitude as:

An(1, 2, . . . , n) =
∑
{L,R}

ALi+1(1, 2, . . . , i, P )× ARn−i+1(−P, i+ 1, . . . , n)

P 2
(1.0.2)

This computational method is immensely more efficient than Feynman diagrams,

especially when used with spinor helicity variables in four dimensions, and can be ap-

plied to a wide variety of theories. Further probing this approach also helped reveal

many new surprising properties of scattering amplitudes, such as the Yangian invari-

ance of N = 4 Yang-Mills amplitudes [3], the polytope interpretation of amplitudes

[4], and ultimately the Amplituhedron [5].

In parallel, another remarkable development by Kawai, Lewellen, and Tye in the

same year was using string theory to show that graviton amplitudes are tightly con-

nected to gluon amplitudes. Although the theories and Lagrangians describing Gen-

eral Relativity and Yang-Mills look completely different, their scattering amplitudes

actually follow a simple relationship: Gravity = (Yang-Mills)2. To be precise, gravi-

ton amplitudes can be expressed in terms of gluon amplitudes through the KLT

relations [6] as:

M3(1, 2, 3) = A3(1, 2, 3)2

M4(1, 2, 3, 4) = s12A4(1, 2, 3, 4)A4(1, 2, 4, 3) (1.0.3)

M5(1, 2, 3, 4, 5) = s12s34A5(1, 2, 3, 4, 5)A5(2, 1, 4, 3, 5)

+ s13s24A5(1, 3, 2, 4, 5)A5(3, 1, 4, 2, 5)
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and so on. Further refinement of this idea lead to the BCJ duality [7], or color-

kinematic duality, which was also extended to loop level. Using this method high

loop gravity calculations become possible for the first time, and revealed very sur-

prising cancellations happening in N = 8 supergravity, leading to a conjecture of its

perturbative finitness [8].

Yet another avenue that has recently been revived is that of soft theorems. Ini-

tially, Weinberg showed that considerations of gauge invariance, locality and unitarity,

when a particle is taken soft, pi → 0, fix QED and GR amplitudes to take the form:

An+1 → S0An (1.0.4)

In turn, this implies both charge conservation and the equivalence principle [9]. Since

then, the theorems have been extended to sub-leading order [10], as well as to Yang-

Mills and scalar theories [11]. Most recently, the newly found subleading graviton

theorem was found to have implications for black-hole information [12].

Other developments include generalized unitarity [13], scattering equations [14],

twistor string theory [15], pure spinors methods [16], to name a few. The common

theme of these recent developments, forming the modern S-matrix program, has been

moving away from the Lagrangian formulation, and putting basic principles and sym-

metries in the forefront. The goal of this dissertation is to establish the constraining

power and interdependence of various such principles (whether physical or purely

mathematical), which we define in the next section.

1.1 Five basic principles of scattering amplitudes

Locality Broadly speaking, locality means that an object can only be influenced

by its immediate surroundings. In position space that means that a Lagrangian can

only be a function of fields (and their derivatives) at a single point in spacetime.
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For scattering amplitudes in momentum space, locality imposes constraints on the

singularity structure, and comes in two versions. The weak version only requires

singularities to have a form 1/(
∑

i pi)
2. Full locality requires these singularities to

correspond to propagators of tree graphs, with momentum conservation holding at

each vertex.

Unitarity For scattering amplitudes unitarity is actually dependent on locality:

on any singularity, the amplitude must factorize into two parts, both identifiable as

lower point amplitudes. Both locality and unitarity are of course manifest in Feynman

diagrams.

Gauge invariance At the level of amplitudes, gauge invariance is the property

that the amplitude vanishes when sending any ei → pi. Diffeomorphism invariance

for gravity can also be understood in this way, by separating the two indices of the

polarization tensor eµν → eµeν . In the Feynman diagram approach this property

is not manifest - individual diagrams are not gauge invariant, as easily seen from

the mass dimension of the numerators. For example, a Yang-Mills amplitude has

numerators with mass dimension n− 2, while gauge invariance in n particles requires

a mass dimension of n.

Adler zero The Adler zero [17] is in some ways the equivalent of gauge invari-

ance for theories containing Goldstone bosons. This states that amplitudes must

vanish when we take one of the bosons to be soft, pi → 0. Amplitudes in different

theories vanish at different rates. NLSM amplitudes vanish as O(z), DBI as O(z2),

and galileon amplitudes as O(z3) [18]-[19]. Like gauge invariance, this property in

only present in the complete sum of diagrams, again due to simple mass dimension

considerations.
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Constructability In the usual literature, constructability means that an arbitrary

n-point amplitude can be constructed from lower point ones through on-shell re-

cursions, typically BCFW (see for example [20, 21]). For this to be possible a few

properties must be satisfied. First, under an [i, j〉 BCFW shift, which schematically

sends some pi → pi + zq and pj → pj − zq, the amplitude must vanish for z → ∞.

Then, if the amplitude only has simple poles (is local), through the Cauchy theorem

it can be rebuilt solely from the residues on those poles. Finally, if the amplitude

is unitary, those residues are just products of lower point amplitudes. It very nicely

rounds up (and puts to very practical use) the previous principles.

In the first part of the dissertation, we will take constructability in a more abstract

sense, and use it to refer only to scaling under BCFW shifts, for lack of a better

name of this property. We will see that in this very restricted sense, constructability

somehow manages to incorporate gauge invariance.

1.2 Overview of this thesis

In the first part of this thesis, we take an orthogonal approach to the recent on-shell

perspective, and propose that gauge invariance is more than a cumbersome tool whose

only role is to make locality and unitarity manifest.

In chapters 1 and 2, based on work in collaboration with Nima Arkani-Hamed and

Jaroslav Trnka, [22, 23], we prove that Yang-Mills and General Relativity amplitudes

are uniquely fixed by gauge invariance in n−1 particles, and very mild assumptions on

the singularity structure and mass dimension. Specifically, we allow only singularities

of the form 1/(
∑

i pi)
2, with consecutive momenta in the case of Yang-Mills. It follows

that both their locality (cubic propagator structure) and unitarity (factorization) are

emergent properties. This very strange phenomenon is also shown to hold for the
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scalar non-linear sigma model and Dirac-Born-Infeld amplitudes, by replacing gauge

invariance with the Adler zero condition, again for n− 1 of the particles.

Next, in chapter 3, based on [24] we extend these ideas even further, and show that

locality and correct BCFW behavior in a sufficient number of shifts are also enough

to fix the Yang-Mills amplitude. This is accomplished by introducing a new BCFW

shift compatible with polarization vectors, which can also be used to recursively build

the full amplitude.

In all cases described above, the proofs are carried out through soft expansions,

enabling the use of a very simple inductive argument. In the process we end up

re-deriving the known leading soft theorems for YM, gravity, NLSM and DBI.

Besides the surprising conceptual implications of both locality and unitarity

emerging from gauge invariance, the uniqueness results have two main implications.

First, they settle the long-standing conjecture that if an object has the right singu-

larity structure and factorizes correctly, it must be the scattering amplitude. This

has been the main method for checking the validity of new results, since direct com-

parisons with Feynman diagrams are not always feasible. Now, if gauge invariance is

present (and it is in most formalisms, like those involving spinor helicity variables,

or the Cachazo-He-Yuan scattering equations [14]), simply checking the presence of

the correct singularity structure is sufficient to validate any expression. Similarly,

it allows a more transparent understanding of the Bern-Carrasco-Johansson gravity

squaring relations [7]. Second, these results suggest that a new mathematical defini-

tion of the amplitude might exist, complementing the recent amplituhedron program

[5], where the goal is to see both locality and unitarity emerge from geometric

principles.

In the second part of the dissertation we return to the 4 dimensional on-shell

approach, where gauge invariance is automatically included (and therefore ignored)
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in the power of spinor helicity variables. In doing so manifest locality and unitarity

are lost, and we turn to deriving physical constraints from manually imposing locality

and unitarity, as well as constructability.

In chapter 4, based on [25] with David McGady, we show that such constraints

can be sharply expressed by using a very simple counting argument. It turns out

that simply specifying the helicities of the participating particles is enough to fix

the mass dimension of the denominator for any 4-point massless scattering ampli-

tude. Then locality and unitarity force the [mass dimension]2 to give the number

of different factorization channels. The high-spin no go theorems, the emergence of

supersymmetry and supergravity from spin 3/2 particles, as well as the unique struc-

ture of self-interacting spin 1 and spin 2 particles, all become simple consequences of

counting the allowed number of factorization channels.

In chapter 5, based on [26] with David McGady, we investigate the origin of

the mysterious “bonus” behavior of gravity amplitudes under BCFW shifts. As

mentioned above, BCFW shifts, which roughly deform two momenta as p1 → p1 + zq

and p2 → p2 − zq, enable the use of recursion relations to construct amplitudes, as

long as A(z) ∝ O(z−1). However, it has been long known that gravity manifests a

stronger O(z−2) behavior, which is hidden by the Lagrangian, but necessary for on-

shell consistency. We show that this behavior is a direct consequence of permutation

invariance between gravitons, and that the non-adjacent shifts in Yang-Mills theory

can be understood in a similar way. This also completes the fully on-shell proof of

gravity constructability, initiated in [21].
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Chapter 2

Locality and unitarity from

singularities and gauge invariance

2.1 Gauge Redundancy

The importance of gauge invariance in our description of physics can hardly be over-

stated, but the fundamental status of “gauge symmetry” has evolved considerably

over the decades. While many older textbooks rhapsodize about the beauty of gauge

symmetry, and wax eloquent on how “it fully determines interactions from symmetry

principles”, from a modern point of view gauge invariance can also be thought of as

by itself an empty statement. Indeed any theory can be made gauge-invariant by

the “Stuckelberg trick”–elevating gauge-transformation parameters to fields–with the

“special” gauge invariant theories distinguished only by realizing the gauge symmetry

with the fewest number of degrees of freedom.

Instead of gauge symmetry we speak of gauge “redundancy” as a convenient but

not necessarily fundamental way of describing the local physics of Yang-Mills and

gravity theories. Indeed in the sophisticated setting of quantum field theories and

string theories at strong coupling we have seen the crucial importance of understand-
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ing gauge symmetries as “redundancies”–for instance, in the famous gauge-gravity

duality, it is silly to ask “where is the gauge symmetry?” in the bulk or “where

is general covariance” on the boundary; these are merely two differently-redundant

descriptions of the same physical system.

If gauge “symmetries” are merely redundancies, why have they been so useful?

We can see the utility of gauge-redundancy [27] in the down-to-earth setting of scat-

tering processes for elementary particles even at weak coupling, where we encounter a

peculiarity in the Poincare transformation properties of scattering amplitudes. When

the momenta of particles are transformed, the amplitude transforms according to the

little group. Thus e.g. in four dimensions under a Lorentz transformation Λ the am-

plitude picks up phases eihθ(Λ,p) for each massless leg of momentum p helicity h, and

an SO(3) rotation on the massive particles. On the other hand, the standard formal-

ism of field theory, the amplitudes are computed using Feynman diagrams, which give

us “Feynman amplitudes” that are not the real amplitudes, but are instead Lorentz

tensors. We contract them with polarization vectors to get the actual amplitudes–

the polarization vectors are supposed to transform as “bi-fundamentals” under the

Lorentz and little groups. For massive particles of any spin, there is a canonical way

of associating polarization vectors with given spin states. But this is impossible for

massless particles. Say for massless spin 1, we associate ε±µ (p) with the ± polariza-

tions of photons: the εµ do not transform as vectors under the Lorentz group. Indeed

consider Lorentz transformations Λ that map p into itself (Λp)µ = pµ. Then, it is

trivial to see that (Λε) does not equal ε in general, rather we find (Λε)µ = εµ+α(p)pµ.

Thus the polarization vector itself does not transform properly as a four-vector, only

the full equivalence class {εµ|εµ ∼ εµ +α(p)pµ} is invariant. These are all the “gauge-

equivalent” polarization vectors. And so, for the amplitude obtained by contracting

with ε’s to be Lorentz-invariant, we must have that under replacing εµ → pµ the

amplitude vanishes; i.e. we must satisfy the “on-shell Ward identity’ pµMµ... = 0.
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In order to guarantee that the Lorentz tensors Mµ1···µn arising from Feynman dia-

grams from a Lagrangian satisfy this on-shell Ward-identity, the Lagrangian must be

carefully chosen to have an (often non-linearly completed) gauge-invariance, which is

then gauge-fixed. From the modern point of view, then, gauge symmetry is merely a

useful redundancy for describing the physics of interacting massless particles of spin

1 or 2, tied to the specific formalism of Feynman diagrams, that makes locality and

unitarity as manifest as possible.

But over the past few decades, we have seen entirely different formalisms for com-

puting scattering amplitudes not tied to this formalism, and here gauge redundancy

makes no appearance whatsoever. Instead of polarization vectors that only redun-

dantly describe massless particle states, we can use spinor-helicity variables λa, λ̃a

for the a’th particle, with momentum pαα̇a = λαa λ̃
α̇. The λ, λ̃’s do transform cleanly as

bi-fundamentals under the Lorentz and little groups; under a Lorentz transformation

Λ that maps (Λp) = p, we have λ → tλ, λ̃ → t−1λ̃. Thus while the description of

amplitude using polarization vectors is gauge-redundant, the amplitude is directly a

function of spinor-helicity variables, with the helicities encoded in its behavior under

rescaling M(taλa, t
−1
a λ̃a) = t−2ha

a M(λa, λ̃a).

With this invariant description of the fundamental symmetries and kinematics

of amplitudes at hand, it becomes possible to pursue entirely new strategies for de-

termining the amplitudes. In a first stage, one can speak of a modern incarnation

of the S-matrix program, where the fundamental physics of locality and unitarity

are imposed to determine the amplitudes from first principles. This has allowed the

computation of amplitudes in an enormous range of theories, from Yang-Mills and

gravity to goldstone bosons, revealing stunning simplicity and deep new mathemat-

ical structures that are completely hidden in the usual, gauge-redundant Feynman

diagram formalism. Conversely and more ambitiously, these developments suggest

that what we think of as “scattering amplitudes from local evolution in spacetime”
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might fundamentally be something entirely different: instead of merely exploiting lo-

cality and unitarity to determine the amplitudes, we seek “scattering amplitudes” as

the answer to very different natural mathematical questions, and only later discover

that the results are local and unitary. Carrying this program out in full generality

for all interesting theories would likely shed powerful new light on a deeper origin for

both space-time and quantum mechanics itself.

A step in this direction has been taken with the discovery of the “Amplituhedron”

[28], a geometric object generalizing plane polygons to higher-dimensional spaces,

whose “volume” computes scattering amplitudes for maximally supersymmetric four-

dimensional theories in the planar limit (in particular giving tree-level gluon scattering

amplitudes for the real theory of strong interactions relevant for particle collisions at

the LHC). In this example we can see concretely how the usual rules of spacetime

and quantum mechanics emerge from more primitive principles.

2.2 Role Reversal

In this letter, we will explore aspects of locality and unitarity from a point of view

entirely orthogonal to these recent developments. As emphasized above, much of the

explosion of progress in understanding scattering amplitudes has taken place precisely

by eschewing any reference to gauge-redundancy, and working directly with the phys-

ical on-shell amplitudes. Here we instead return to the requirement of on-shell gauge

invariance as primary, and consider rational functions built out of polarization vectors

and momenta, without making any reference to an underlying Lagrangian, Feynman

rules or diagrams of any kind. Surprisingly, we find that with mild restrictions on

the form of functions we consider, the requirement of on-shell gauge-invariance alone

uniquely fixes the functions to match the tree amplitudes of Yang-Mills theory for

spin one and gravity for spin two. There is a similar story determining the amplitudes
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for goldstone bosons of the non-linear sigma model and the Dirac-Born-Infeld action,

where the requirement of on-shell gauge invariance is replaced by an appropriate

vanishing of amplitudes in soft-limits.

Suppose that we are handed a rational function of momenta and polarization

vectors. What constraints determine this function to correspond to “scattering am-

plitudes”? One might imagine that both locality and unitarity are crucially needed

for this purpose. In other words, we have to assume that this function has only sim-

ple poles when the sum of a subset S of the momenta P µ
S =

∑
i⊂S p

µ
i goes on-shell

i.e. the only singularities look like ∼ 1/P 2
S , and that the function factorizes on the

poles into the product of lower-point objects on the left and right, with an extra

intermediate line. Note that locality and unitarity are intertwined in an interesting

way. Factorization on simple poles guarantees that (in Lorentzian signature with the

Feynman iε’s included) the imaginary part of amplitudes correspond to particle pro-

duction. But factorization also implies that the singularities must be associated with

a graph structure: sitting on a factorization channel, we can seek further singularities

to deeper channels, but the longest sequence of poles we can encounter in this way

all correspond to the (n− 3) propagators of some cubic graph.

The expectation that both locality and unitarity are needed to fix the form of the

amplitude comes from our direct familiarity with simple theories of scalars, like φ3

or φ4 theory. If we only impose poles when P 2 → 0 and the usual mass dimensions

of amplitudes associated with, say, φ3 theory, nothing forbids the presence of various

trivially “illegal” terms of the form e.g. for n = 5

1

(p1 + p2)2(p2 + p3)2
,

1

((p1 + p2)2)2
(2.2.1)

The first term has legal simple poles, but in overlapping channels in a way that never

arises from Feynman diagrams; thus while at the coarsest level its singularities are
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“local poles”, it does not correspond to any local spacetime process. The second does

not suffer from overlapping poles but has double poles. We can choose to also enforce

locality by declaring that our functions can only have the poles corresponding to cubic

graphs. If we again imagine objects with the mass dimension corresponding to a φ3

theory, we would get a sum over cubic graphs Γ with some numerical coefficient nΓ:

∑
Γ

nΓ

DΓ

(2.2.2)

where DΓ is the product of the propagators of the cubic graph Γ. This expression

corresponds to the amplitude only if the coefficients nΓ are all equal but this is

obviously not an automatic consequence of our rules. We must demand unitarity–

factorization into products of lower amplitudes–to force all the nΓ to be equal.

Our central claim in this note is that while locality and unitarity must be imposed

to determine amplitudes for garden-variety scalar theories, much less than this is

needed to uniquely fix the function to be “the amplitude” for gauge theories and

gravity. In fact, we conjecture that simply specifying that the only singularities

occur when the sum of a subset of momenta goes on-shell P 2 → 0, together usual

power-counting (which also enforces non-trivial gauge invariance) uniquely fixes the

function! We will sketch the essential ideas in this note, a more detailed exposition

of our proof and other related results can be found in [23].1

To begin with, we can enforce only locality, in the form of the location of singu-

larities of the amplitudes. This tells us to only look at functions whose singularities

are (powers of) propagator poles appearing in cubic graphs, as we did above in the

scalar case. But we don’t demand unitarity: we don’t ask the poles to be simple,

and we don’t demand that the function factorizes on the poles. We find that in-

stead the leading non-trivial gauge-invariants with the singularities of cubic graphs

1Other observations about the surprisingly restrictive power of on-shell gauge invariance have
also been made in [29, 30].
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are unique in both Yang-Mills and gravity, and give us the amplitude! The necessity

of simple poles and factorization–and thus unitarity–therefore follows from locality

and gauge invariance. We will sketch a straightforward proof of this fact, which be-

gins by showing that given the poles of cubic graphs, gauge-invariance alone (with no

assumption about factorization) fixes the structure of the soft limit of any expressions

to reproduce the usual Weinberg soft theorems [31].

But we are making a stronger conjecture, that even the structure of singularities

associated with cubic graphs need not be enforced: we need only assume that the

singularities occur when P 2
S → 0. We will consider functions that have at most

degree β singularities of this form, that is our most general ansatz is

∑
{S1,··· ,Sβ}

N
(α)
i

P 2
S1 · · ·P

2
Sβ

(2.2.3)

Here N(α)i is a polynomial in the momenta (and linear in all the polarization vectors),

with a total of α momenta in the numerator.

We will now only ask for this expression to be on-shell gauge-invariant. Clearly,

even if there are no singularities at all i.e. β = 0, we can of course trivially build

gauge-invariants simply starting with linearized field strengths fµν = pµεν−pνεµ, and

contracting n of these together in any way we like. This would give us a number

α ≥ n of momenta. These correspond to the amplitudes from local higher-dimension

operators. We will thus ask that our functions are non-trivially gauge invariant,

and so we will demand that α < n; the only hope for making gauge-invariants now

crucially must use momentum-conservation pµ1 + · · · pµn = 0. It is then easy to see that

this is impossible with purely local expressions, and we must allow poles, so β > 0.

Our precise claim is that it is impossible to build a gauge-invariant unless α = (n−2)

for gauge-theory and α = 2(n− 2) for gravity, and furthermore this is impossible for

all β = 0, 1, · · · , (n − 4), but that there is a unique gauge-invariant at β = (n − 3).
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In fact just demanding gauge-invariance in (n − 1) legs suffices to fix the function.

This unique object picks out the singularities from cubic graphs and factorizes on

poles; locality and unitarity arise from singularities and gauge invariance. While we

haven’t yet completed a proof of this conjecture, we will show how it works in some

non-trivial examples which suggest the structure a proof should take.

All of these statements are made in general D spacetime dimensions: we are

simply working with lorentz-invariants multilinear in the polarization vectors, of the

form (εi · εj), (εi · pj) and (pi · pj), only satisfying the relations p2
i = 0, εi · pi = 0,

and momentum-conservation
∑

i p
µ
i = 0. Thus the gauge-invariance checks where we

demand the vanishing of the amplitude upon substituting εµi → pµi can only follow

from these relations.

2.3 Locality, Unitarity and Gauge Invariance

Let us begin by focusing on the tree-level scattering amplitudes in Yang-Mills

theory; we will later summarize the precisely analogous statements for gravity.

The group structure of gluon amplitudes can be stripped off in trace factors

An =
∑

σ/Z Tr(T σ1T σ2 . . . T σn)An(123 . . . n), where An is an ordered amplitude

which is a gauge invariant cyclic object. All poles in An are local cyclic factors,

P 2
ij = (pi + pi+1 + . . . pj)

2. And on these poles An factorizes as a product of two

ordered amplitudes,

lim
P 2→0

An =
∑
h

A
(hL)
L

1

P 2
A

(hR)
R (2.3.1)

were we sum over all internal degrees of freedom h. In practice we can replace the

helicity sum over the intermediate line I by
∑

h ε
µ
I,hε

ν
I,−h → ηµν ; this differs from

the true polarization sum by terms proportional to pµI , p
ν
I which vanish by gauge

invariance, when contracted into the lower-point amplitude factors.

15



The cyclic amplitude An can by calculated using color-ordered Feynman rules.

For each cubic graph Γ we get

D(Γ)
n =

N
(Γ)
n (εi, pj)

P 2
σ1
P 2
σ2
. . . P 2

σn−3

(2.3.2)

where all the factors P 2
σa in the denominator come from Feynman propagators of

cubic diagrams. The numerator is a polynomial in all polarization vectors εi and

n− 2 momenta pj, which appear in the scalar products (pi · pj), (pi · εj) and (εi · εj).

For diagrams with four point vertices we get fewer than n− 3 propagators, but they

can be also put (non-uniquely) in the cubic form by multiplying both numerator and

denominator by some P 2.

Feynman diagrams are designed to make locality and unitarity as manifest as

possible, but gauge-invariance is not manifest diagram-by-diagram: we have to sum

over all Feynman diagrams to get a gauge invariant expression. The tension between

locality, unitarity and gauge invariance is vividly seen in the four-particle amplitude.

The color ordered amplitude A4 is a sum of three Feynman diagrams, schematically

written as (ignoring all indices)

A4 ∼
(ε · p)(ε · p)(ε · ε)

s
+

(ε · p)(ε · p)(ε · ε)
t

+ (ε · ε)(ε · ε) (2.3.3)

Only the sum of all three terms is gauge invariant which can be made manifest once

we write A4 as

A4 ∼
F 4

st
(2.3.4)

where the numerator is just a (color-ordered) local amplitude. This expression is

trivially gauge-invariant but we don’t have manifest locality and unitarity: we see

the product of st in the denominator. It is impossible to write the amplitude as a sum

over s and t channels in a way that is both Lorentz invariant and gauge invariant.
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2.4 Unitarity From Locality and Gauge Invariance

Elaborating further on the example from the previous section we can ask what is the

minimal number of momenta pj we need in order to make a polynomial in ε1, . . . , εn

gauge invariant. Obviously, if we take n momenta we can always build gauge invariant

tensors ε[µpν] = (pµεν − pνεµ) and contract n of them in an arbitrary way. But can

we make a non-trivial invariant, one which has fewer than n momenta? This has a

chance of being possible because of momentum conservation. The first non-trivial

case is with n− 2 momenta pi. It is easy to see that if we demand the object is just a

polynomial we find there exist no gauge invariant, but if we allow poles we certainly

find at least one solution which is the amplitude An, written as a sum of Feynman

diagrams.

Let us now consider a set of all cubic graphs with cyclic ordering of external legs

and for each of them we write an expression D̃
(Γ)
n of the form (2.3.2) where the poles

in the denominator are dictated by the internal lines of the given graph. Unlike in

Feynman diagrams we do not demand the numerator comes from Feynman rules,

and therefore we are not imposing unitarity; more invariantly we are not asking the

amplitude to actually factorize on factorization channels. Instead we take N
(Γ)
n to be

an arbitrary polynomial of degree n− 2 in momenta pj and n polarization vectors εi.

For four points we get,

N4 =α1(ε1 · p2)(ε2 · p3)(ε3 · ε4) + α2(ε1 · p2)(ε3 · p4)(ε2 · ε4)

+ α3(p1 · p2)(ε1 · ε2)(ε3 · ε4) + . . . (2.4.1)

We of course impose (εi · pi) = 0 and momentum conservation
∑

i pi = 0. The same

structure of numerator is used for the s and t channels, but with different parameters
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α
(1)
k and α

(2)
k . Now we consider a sum of all expressions associated with graphs Γ,

Ãn =
∑

Γ

D̃(Γ)
n (2.4.2)

and impose gauge invariance in n − 1 legs. We claim that this specifies a unique

expression which is an n point tree-level amplitude, Ãn = An. Note we do not have

to even check gauge invariance in the nth leg, everything is fixed already.

The proof goes as follows: First, it is easy to show that polynomials with at

most k factors of ei.pj per term can be gauge invariant in at most k particles, when

momentum conservation is not used. If we allow momentum conservation, the same is

true, but only for k < n− 2. This statement can then be extended from polynomials

to general functions B(pk) containing poles, but which have only k momenta in the

numerators. A stronger statement also holds for tensors Bµν(pk) containing poles,

which can be gauge invariant in at most k particles for k < n− 1.

Next, we assume inductively that Ãn(pn−2) = An(pn−2) is unique for the n particle

case. Now we take the expansion (2.4.2) for n + 1 particles and go to the soft limit

of one of the particles, pn+1 ≡ q → 0. It is easy to show that gauge invariance in the

soft particle requires the leading divergent term to be proportional to the Weinberg

soft factor,

Ãn+1 =

(
ε · p1

q · p1

− ε · pn
q · pn

)
Bn(pn−2) +O(1) (2.4.3)

where Bn is the gauge invariant function in n legs with n−2 powers of momenta which

is Bn = An by induction. The important point here is that the soft limit is controlled

by the usual Weinberg soft factor purely as a consequence of gauge invariance, without

any further assumption about factorization.

Now since both An+1 and Ãn+1 have equal leading pieces, we can consider instead

the object Mn+1 = Ãn+1 − An+1, which has vanishing leading piece. Then the sub-
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leading piece in the soft limit receives no contributions from its leading order2, and

has the form

δ1Mn+1 =
εµqνBµν

n (pn−2)

q · p1

+
εµqνB

µν

n (pn−2)

q · pn
(2.4.4)

where we omitted the terms with double poles which are directly ruled out by gauge

invariance. The tensors Bµν
n , B

µν

n have k = n − 2 and therefore are ruled out. At

higher orders, terms in the soft limit always have a form δpMn+1 ∼ Xµν
n (pn−2) for

some tensor X, which is then ruled out by gauge invariance, and all these terms must

vanish. This implies Mn+1 = 0 to all orders in the soft expansion, so Ãn+1 = An+1.

It is interesting that in these arguments, it suffices to check gauge invariance only

in (n− 1) legs to uniquely fix the answer! This observation explains why the object

factorizes on poles. We’d like to determine what our unique gauge-invariant looks

like on a factorization channel. Since there is already a unique gauge invariant, only

checking invariance on (n−1) legs, we can take “left” and “right” gauge invariants ig-

noring gauge-invariance on the intermediate line; gluing together these unique objects

then gives us something that is gauge-invariant in all n legs, and therefore must match

the unique n-pt gauge-invariant on this channel. This shows that gauge-invariants

factorize on poles, allowing us to see the emergence of unitarity very directly.

2.5 Locality from Gauge Invariance

We showed that unitarity is a derived property of gluon amplitudes if we demand

only locality and gauge invariance. But we can go even further and even remove the

requirement of locality. We again consider a sum of terms (2.4.2) but now we give

up on the assumption that individual terms (2.3.2) have poles which correspond to

cubic diagrams. We just consider any cyclic poles P 2
ij = (pi + pi+1 + · · · + pj)

2, and

even allow powers (P 2
ij)

#. The only assumption is that the total number of poles in

2See also [32] for a discussion of this issue
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the denominator (the degree of P 2) is n−3. For example, for the n = 5 case we allow

terms of the form

N
(1)
5

s2
12

,
N

(2)
5

s12s23

(2.5.1)

While the double (or higher) poles can come from Lagrangians with non-canonical

kinetic term, the second term can not be associated with any local interaction as it

does not correspond to any “diagram” of particle scattering. The numerator is still

an arbitrary polynomial in n polarization vectors εi and n− 2 momenta pj.

We now conjecture that if we simply impose gauge invariance on the general sum

of all possible terms with n − 3 cyclic poles (2.4.2) the only solution is again the n

point scattering amplitude An. There are no other solutions and all numerators for

terms like (3.2.10) are forced to vanish as a consequence of gauge invariance. We have

directly checked this conjecture by brute force up to n = 5, which is already highly

non-trivial. We will also give an analytic proof of the analog of this conjecture for the

non-linear sigma model up to at n = 8 points (which is the NLSM analog of n = 5

for YM theory) below.

2.6 Gravity and BCJ

The story for gravitons is essentially identical. In particular, we can again consider

cubic graphs with no ordering of external legs. For each graph we associate an

expression (2.3.2). The denominator contains n − 3 propagators consistent with the

cubic graph, but the poles are not restricted to be cyclic sums of momenta anymore.

The numerator N
(Γ)
n is polynomial of degree 2(n − 2) in momenta pi, and it also

depends on n polarization tensors εµν = εµεν . For example the four point amplitude

has a schematic form,

(ε · p)4(ε · ε)2

s
+

(ε · p)4(ε · ε)2

t
+

(ε · p)4(ε · ε)2

u
+ (ε · p)2(ε · ε)6 (2.6.1)
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For each diagram we write an ansatz for the numerator N
(Γ)
n with free parameters

and impose the gauge invariance condition in n − 1 external legs. As a result, we

get an unique solution which is the graviton amplitude. Therefore, unitarity emerges

from locality and gauge invariance in the same sense as in the Yang-Mills case. The

proof is analogous to that case too, using the soft limit to show uniqueness.

For gravity we can also make the stronger statement, that even locality emerges

from gauge invariance. Assuming only the n− 3 poles in the denominator, including

multiple poles and with no reference to cubic graphs, we claim that there still emerges

a unique gauge-invariant, the amplitude itself.

We can also go back to the gluon case and consider now all possible P 2 poles, not

just the ones with cyclic momenta, maintaining the non-trivial power-counting in the

numerator, ie. n− 2 momenta pj, but now choosing n− 3 of all possible cubic graph

poles. Now imposing gauge invariance we conjecture (n− 2)! solutions corresponding

to different cyclic orderings of Yang-Mills amplitudes, modulo the relations following

from the U(1) decoupling and KK relations.

The uniqueness of gauge-invariants also gives a natural proof for the BCJ relation

[33] between the Yang-Mills and gravity amplitudes. If we write the Yang-Mills

amplitude in the BCJ form, then for each cubic graph the kinematical numerators

satisfy Ns+Nt = Nu, if the color factors satisfy the same Jacobi identity, cs+ct = cu.

Then the gravity amplitude is given by the simple replacement of the color factor by

one more power of the kinematical numerator,

A(YM)
n =

∑
Γ

NΓcΓ

DΓ

→ A(GR)
n =

∑
Γ

N2
Γ

DΓ

(2.6.2)

The reason is very simple. Under a gauge variation, the NΓ change by some ∆Γ; the

invariance of the full amplitude
∑

Γ cΓ∆Γ/DΓ = 0 can then only be ensured by the

Jacobi relations satisfied by cΓ. But if we now replace cΓ with some kinematical factor
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NΓ which satisfies the same identities, the gravity-gauge invariance check follows in

exactly the same way as for YM. Thus the object with cΓ → NΓ is a gravitational

gauge-invariant with 2(n− 2) powers of momenta in the numerator; since this object

is unique it gives the gravity amplitude.

2.7 Gauge-Invariance → Soft Limits and Gold-

stone Theories

We have seen that gauge and gravity amplitudes are much more special than garden-

variety scalar theories. But of course famously there is also no good reason to have

light scalars to begin with, unless they are goldstone bosons whose mass is appro-

priately protected by shift symmetries. Recent investigations revisiting some classic

aspects of goldstone scattering amplitudes have revealed precisely what is special

about these goldstone theories from a purely on-shell perspective. In the case of

the non-linear sigma model, soft limit behavior in the form of the Adler zero [17]

supplements unitarity and locality in certain cases to completely fix the tree-level

S-matrix [34, 35, 36]. In particular, we can ask what is the minimally derivatively

coupled theory whose amplitudes have vanishing soft-limit, An = 0 for pj → 0. The

answer appears to be non-linear sigma model (NLSM). If we demand the quadratic

vanishing, An = O(p2) this uniquely specifies the Dirac-Born-Infeld (DBI) theory and

An = O(p3) gives a special Galileon [34, 37]. The soft limit behavior was then used in

the recursion relations to reconstruct the amplitudes in these theories, supplementing

locality and unitarity.

In the spirit of our previous statements we can make similar claims for these

theories. Like in Yang-Mills we can strip the flavor factor in the NLSM [38] and

consider cyclically ordered amplitudes An. Now the individual Feynman diagrams
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are quartic diagrams Q, and we can write an expression for each of them

D(Q)
n =

N
(Q)
n (pj)

P 2
1P

2
2 . . . P

2
n/2−2

(2.7.1)

Then the poles in (2.7.1) are cyclically ordered and the numerator is degree n− 2 in

momenta. Imposing the soft-limit vanishing then requires summing over all Feynman

diagrams as only the full amplitude has this property. Now we forget the Lagrangian

and consider a general numerator,

N (Q)
n (pj) =

∑
k

αk∆k (2.7.2)

where ∆k is the product of n/2− 1 terms of the form sij = (pi · pj). Note that if we

allow one more sij factor in the numerator then we could always write an expression

which manifestly vanishes in the soft limit. For example, for the six point case one of

the Feynman diagrams is

D =
(s12 + s23)(s45 + s56)

s123

(2.7.3)

and it does not vanish in all soft limits, and no other numerator with two sij does.

If we replace the numerator by s12s34s56 we would have manifestly each diagram

vanishing.

Now we ask that the numerator N
(Q)
n is an arbitrary linear combination of prod-

ucts of n/2− 1 factors sij with free parameters. The statement is that imposing the

soft limit vanishing in n− 1 legs fixes all coefficients completely and there is a unique

expression, which is the n-pt tree-level amplitude in NLSM. The proof for this state-

ment uses the double soft limit where two of the momenta go to zero. In that case

the amplitude does not vanish but rather gives a finite expression, and in some sense

it is an analogue of the Weinberg soft factor for the Yang-Mills and gravity. One can

23



then prove the statement in a similar way to the soft limit argument for gluons and

gravitons. The soft limit and locality then imply unitarity of goldstone amplitudes.

The stronger claim is that we do not have to consider quartic graphs, but rather

take any expression with n/2− 2 factors in the denominator (allowing double poles,

and non-diagrammatic combinations of poles) and at most n/2 − 1 terms sij in the

numerator. Then only imposing the soft limit again fixes the result uniquely, and we

can see both locality and unitarity arising vanishing in the soft limit. We will give

evidence for this in the next section.

We can make analogous claims for the DBI and special Galileon. Now the power-

counting of the numerator is n − 2, resp. 3n/2 − 3 factors sij and n/2 − 2 poles in

the numerator. We have to consider all quartic graphs with no ordering. Imposing

the O(p2), resp. O(p3) vanishing in the soft limit of n − 1 legs fixes the numerators

uniquely to be the numerators of corresponding Feynman diagrams, and we get the

amplitude as the only soft limit (with certain degree) vanishing object. The stronger

statement again removes the requirement of single poles associated with quartic dia-

grams and we only consider the correct number n/2−2 poles P 2 with no restrictions.

2.8 Evidence for the strong conjecture

We have made two distinct claims: the first is that locality (in the form of the pole

structures of cubic graphs), together with numerator power-counting, uniquely fixes

the result when gauge-invariance/soft limits are imposed.

But we have also made a more striking conjecture, where we don’t even impose

locality, only ask that singularities are made of up to (n − 3) “P 2” poles, without

asking that these poles are associated with graphs at all. And we demand the non-

trivial number of momenta in the numerator which prohibits a trivial solution such

as the powers of (pµεν − pνεµ)n for gauge invariance of spin s, and the products of
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∏
j s

σ
j j+1 for the soft limit O(pσ). The claim is that the result is still unique: locality

and unitarity arise from (non-trivial) gauge-invariance/soft limits.

We do not currently have a proof of this conjecture, but if it is true, we suspect

that the mechanism behind it should be the same for gluons, gravitons and goldstone

theories. We will therefore confirm the conjecture for the case of the NLSM here; the

way the graph structure emerges “out of thin air” is already quite suggestive for what

might be going on at general n.

For the 6pt NLSM amplitude there are only three poles s123, s234, s345 which can

appear in the denominator, and there is always just one of such factor. Therefore,

locality here is directly imposed as we do not have any double poles or overlapping

poles. The first non-trivial case to test our conjecture is then 8pt. The general ansatz

is given by five different types of terms with two poles,

Ã8 =
N

(a)
8

s123s456

+
N

(b)
8

s123s567

+
N

(c)
8

s123s345

+
N

(d)
8

s123s234

+
N

(e)
8

s2
123

(2.8.1)

Only the first two terms correspond to quartic graphs as the last three terms are not

in the Feynman expansion as they violate locality. We will show that just soft limit

vanishing forces N
(c)
8 = N

(d)
8 = N

(e)
8 = 0, or more precisely we can rewrite everything

in terms of first two terms. Then we are left with the terms associated with quartic

graphs only when the double soft limit argument can be applied to fix the answer

uniquely to be an 8pt amplitude in NLSM.

The numerator is degree 6 in momenta, ie. degree 3 in invariants sij. It is

convenient to use the cyclic basis,

s12, . . . , s81, s123, . . . , s812, s1234, . . . , s4567. (2.8.2)

In the soft limit p8 → 0 these terms go to the 7pt cyclic basis made of s12, s123 and

the cyclic images. Two of the terms s78, s81 → 0, the other nine terms s23, s34, s45,
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s56, s234, s345, s456, s2345 → s671, s3456 → s712 stay the unique basis elements, while

the remaining become degenerate (2-to-1 map).

s12, s812 → s12; s1234, s567 → s567; s4567, s123 → s123

s678, s67 → s67; s812, s12 → s12 (2.8.3)

Analogously for all other soft limits. It is very easy to show that N
(e)
8 = 0, or the

corresponding term can be absorbed into first two terms in case we cancel one power

of s123. In the proof we critically use the relation between 7pt and 8pt basis of

kinematical invariants. In the soft limit Ã8 = 0 and therefore the 7pt expression

must vanish identically. Because the last term in (2.8.1) is the only term with that

particular double pole in s123 we apply different soft limits and demand that this term

cancels or becomes degenerate with other terms.

For soft limits in momenta p2, p5, p6, p7 the term s123 is a unique basis elements

also in the 7pt basis, and there is no way how to cancel a double pole. Therefore, the

numerator N
(e)
8 must simply vanish in all these four soft limits. For other four soft

limits s123 becomes degenerate with other kinematical invariants: with s23 for p1 → 0,

with s12 for p3 → 0, with s1234 for p4 → 0 and with s4567 for p8 → 0. Therefore, either

the numerator again vanishes or it is proportional to s23 for p1 → 0, s12 for p3 → 0

etc. It is easy to show that there is no such numerator N
(e)
8 which satisfies all these

constraints. As a result, N
(e)
8 ∼ s123 killing a double pole and being degenerate with

first two terms. The proofs for vanishing of N
(d)
8 and N

(c)
8 have the same flavor.

It is likely that this sort of reasoning can be generalized to any n. Ultimately all

statements about numerators N
(p)
n are translated to properties of basis elements of

kinematical invariants. The set of all cyclic invariants form a basis for any n and they

smoothly go to n− 1 point basis in the soft limit. It seems plausible that some clever

bookkeeping along the above lines can be done to prove the statement in general.
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2.9 Outlook

There are a number of avenues for further exploration suggested by this work. One

obvious question has to do with space-time dimensionality: all of our analyses find

objects that would be gauge-invariant in any number of dimensions. But could there

be functions that are only gauge-invariant in a specific dimension d? In a specific

space-time dimensionality d, there are further “gram determinant” conditions that

arise from the fact that any number k > (d+ 1) of momenta/vectors must be linearly

dependent. Could it be that there are objects whose gauge-variation is proportional

to gram determinant conditions in a specific number of dimensions, and so would be

gauge-invariant in those dimensions but not otherwise? It is overwhelmingly likely

that the answer to this question is “no”–all non-trivial gauge-invariants are the ones

that exist in all numbers of dimensions. This is certainly a fascinating feature of

amplitudes for fundamental (parity-invariant) theories like Yang-Mills and General

Relativity, and it would be nice to prove it directly along the lines of this note.

Resolving this issue about dimension-dependence would also settle a natural ques-

tion posed by thinking about scattering amplitudes, the pursuit of which led directly

to this work. Suppose we are given all the scattering amplitudes in some theory. These

are “boundary observables in flat space”–they can be measured by experiments not in

the interior of spacetime, but out at infinity. Given only this information, how could

we discover the description of the physics in terms of local quantum evolution through

the interior of the space-time? We can ask this question already at tree-level. We

often say that the “locality” and “unitarity” of amplitudes is reflected in the location

of their poles (locality) and the factorization of the poles on these poles (unitarity).

But what we colloquially mean by these concepts is much more detailed that this–we

would like to see that the amplitudes arise from local rules of particles moving and

colliding at points in spacetime. Thus most prosaically, given the final amplitudes,
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we would like to know: how could we discover that they can be computed by the

Feynman diagrams of a local theory?

As a trivial first step, we have to compare apples to apples. As we stressed

in our introductory remarks the amplitudes are not Lorentz tensors, but Feynman

amplitudes are. It is however trivial to associate on-shell amplitudes, written in

terms of spinor-helicity variables, in terms of gauge-invariant Lorentz tensors. We

can “rationalize” any expression for amplitudes so that the poles are mandelstam

invariants. Then e.g. an amplitude for a − helicity spin 1 particle would have weight

two in it’s λ and is thus of the form λαλβT
αβ for some tensor Tαβ. But we can associate

λαλβ directly with a gauge invariant field strength; indeed defining F±µν = Fµν ± iF̃µν ,

we have that F−
αα̇ββ̇

= λαλβεα̇β̇, and similarly F+

αα̇ββ̇
= εαβλ̃α̇λ̃β̇. These expressions

can be computed uniformly from Fµν = pµεν − pνεµ, making the familiar choices for

the helicity polarization vectors ε+αα̇ = λ̃α̇ξα/〈λξ〉 for any reference ξ, and similarly

for ε−αα̇ = λαξ̃α̇/[λ̃ξ̃].

In this way, any Lorentz-invariant expression of appropriate helicity weights can

be associated with a gauge-invariant expression made out of field strengths. Consider

for instance the 4 particle Parke-Taylor amplitude for (1−2−3+4+), we can associate

this with a gauge-invariant expression as

〈12〉2[34]2

st
→

(F−1µνF
−µν
2 )(F+

3αβF
+αβ
4 )

st
(2.9.1)

The right-hand side is non-vanishing only for this helicity configuration, so by sum-

ming over all helicities we construct a gauge-invariant expression that matches the

amplitude on all helicity configurations. It is amusing to carry out the exercise of con-

structing the Feynman amplitude from on-shell helicity amplitudes for the 4 gluon

and 4 graviton amplitudes. Of course the individual helicity expressions explicitly

involve εµναβ and thus make sense only in four dimensions. But since the theory is
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parity invariant, after summing over all helicities all terms with an odd number of

ε’s cancel. Terms with an even number of ε’s can be turned into expressions only in-

volving the metric ηµν using the fact that εabcdεxyzw = (ηaxηbyηczηdw ± permutations).

This gives us

A4 =
(FµνF

µν)2 − 2(FµνF
ναFαβF

βµ)

st
(2.9.2)

(where we expand Fµν = F1µν + · · ·F4µν and we only keep terms linear in the polar-

ization vectors). By construction matches the amplitude in four dimensions, but is a

gauge-invariant expression in any number of dimensions.

Thus, starting from on-shell amplitudes, we can trivially construct the gauge-

invariant Lorentz-tensor Mµ1···µn that matches all the helicity amplitudes making

appropriate choices for the polarization vectors. We can now ask, how can we see

that this object can be computed from local Feynman diagrams? Most naively, one

might have expected that the critical properties of the amplitude–location of poles

and factorization–would be needed in order to establish this fact. But we now see

that much less is needed; even our weakest (and proven) statement about unique

gauge-invariants requirements already shows that Mµ1···µn can be computed from

Feynman diagrams. The reason is simply that Feynman diagrams give us a local

gauge-invariant, and this object is unique, thus it must match the Mµ1···µn constructed

from scattering amplitudes!

Note that however that complete proof of this fact requires us to show that there

are no gauge-invariants special to any particular dimension. [It is trivial to see that no

“gram determinant” conditions are possible for four-points, so the above expression is

indeed valid in general D dimensions, but this is no longer immediately true starting

at five points].

Provided that the absence of dimension-specific invariants can be established, we

have found a simple conceptual understanding of a fact that has resisted a trans-

parent understanding for many years. There is an apparently straightforward proof
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that “amplitudes that factorize properly” must match feynman diagrams, by using

Cauchy’s theorem and the BCFW deformation to show that that if functions have

the same singularities they must be equal [?]. However, this famously needs a proof

of an absence of poles at infinity on the Feynman diagram side, which can only be

shown by a relatively indirect argument far afield from on-shell physics [39].

The uniqueness of gauge invariance implies further properties of the S-matrices.

In particular, it is trivial to show that it is impossible to have interactions of higher

spin particles. The standard modern S-matrix argument relies on the factorization of

the 4 point amplitude which is inconsistent in all three channels for s > 2 [40, 25].

In our story we do not use factorization, gauge invariance alone implies that any

amplitude with cubic graphs needs a Weinberg soft factor, and that is impossible to

construct for higher spins.

Our results also illuminate why the CHY construction [41] of YM and gravity

amplitudes must match the correct answer, without any detailed analysis of the poles

and factorization structure. We simply observe the poles of the CHY formula are

local, and the expressions are gauge invariant, with the correct units to match the

correct numerator power-counting.

As we have seen the uniqueness of gauge-invariants gives a one-line proof of the

passage from color-kinematics satisfying forms of Yang-Mills amplitudes to a gravity

amplitude; it would be satisfying if the act of building gauge invariants naturally led

to the color-kinematic structure for Yang-Mills to begin with.

Beyond these issues, the main open problem is to prove (or disprove) the strong

conjecture about the emergence of the graph structure. Also, we have only looked at

trees. Obviously the story at loop level will be much more interesting, and we can’t

expect uniqueness to follow simply from gauge invariance on external legs, since the

particles propagating in the loops will also matter.
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It is also natural to conjecture that maximal SUSY, together with degree (n− 3)

poles, gives same result: diagrams emerge and the result is unique. We know that

there is a tension between SUSY and locality/unitarity which is quite similar to

the case of gauge invariance. This idea has also been explored in the context of pure

spinors (see for instance [16]), where gauge invariance and supersymmetry are merged

into BRST invariance.

Finally, while the claims in this note are mathematically non-trivial and certainly

have physical content, their ultimate physical significance is not clear. It is intriguing

that locality and unitarity can be derived from a redundancy, inverting the usual

logic leading to the need for gauge invariance. If this is more than a curiosity, it

would be interesting to look for an abstract underlying system that gives rise to an

effective description–either exactly or approximately–with a gauge redundancy, from

which locality and unitarity emerge in the way we have seen here.
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Chapter 3

Uniqueness from gauge invariance

and the Adler zero

In this chapter we provide detailed proofs for some of the uniqueness results presented

in Ref. [22]. We show that: (1) Yang-Mills and General Relativity amplitudes are

completely determined by gauge invariance in n− 1 particles, with minimal assump-

tions on the singularity structure; (2) scalar non-linear sigma model and Dirac-Born-

Infeld amplitudes are fixed by imposing full locality and the Adler zero condition

(vanishing in the single soft limit) on n − 1 particles. We complete the proofs by

showing uniqueness order by order in the single soft expansion for Yang-Mills and

General Relativity, and the double soft expansion for NLSM and DBI. We further

present evidence for a greater conjecture regarding Yang-Mills amplitudes, that a

maximally constrained gauge invariance alone leads to both locality and unitarity,

without any assumptions on the existence of singularities. In this case the solution is

not unique, but a linear combination of amplitude numerators.
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3.1 Introduction

Recently, in Ref. [22] it was conjectured that after only fixing the number and form

of possible singularities, gauge invariance uniquely determines the Yang-Mills and

gravity scattering amplitudes. It was also stated that the same is true for scalar

theories like the non-linear sigma model (NLSM) and Dirac-Born-Infeld (DBI), when

gauge invariance is replaced by vanishing in the single soft limit. Crucially, in all

of these cases locality and unitarity are never assumed, and so arise automatically

as a consequence of uniqueness. Here by locality we mean that poles correspond to

propagators of cubic diagrams (for YM and GR), and quartic diagrams (for NLSM

and DBI), while by unitarity we mean factorization on those poles. In some sense

then we see the emergence of spacetime and local quantum interactions purely from

gauge invariance. A similar result was presented in Ref. [42], that locality and

vanishing under large BCFW shifts are also sufficient to completely fix the Yang-

Mills amplitude. Beyond their conceptual implications, these uniqueness results have

a very practical application: if a given expression can be verified to be gauge invariant

and contain the correct singularity structure, it is now guaranteed to match the

corresponding amplitude. This has many implications for a wide variety of recently

developed formalisms, like BCFW recursion relations [2], the BCJ duality [7], or the

CHY scattering equations [43]-[44], among others.

The proof used in this article also demonstrates a new powerful application of soft

limits, as well as novel derivations of the well-known leading theorems [9][11]. Leading

and subleading soft theorems have already proven very useful in a number of very

surprising ways. Originally, they showed that charge conservation or the equivalence

principle can be derived from S-matrix arguments [9]. More recently, the theorems

were interpreted as consequences of new symmetries [45, 46], with further implications
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for black-hole information [12]. They were also used for recursion relations for effective

field theories [47].

The goal of this paper is three-fold. First, we present the full details of the

argument used in Ref. [22] to prove the uniqueness claims for Yang-Mills, gravity,

NLSM, and DBI, when locality is assumed. Second, we extend the argument to prove

the conjecture that uniqueness still holds without assuming locality. And third, we

make an even larger conjecture, that gauge invariance alone, with no assumptions on

the presence of any singularities, is sufficient to imply both locality and unitarity.1

3.1.1 Assumptions and results

In all four theories, Yang-Mills, gravity, NLSM, and DBI, we start with an ansatz

Bn(pk), based on our assumptions of the singularity structure and mass dimension.

In general, this ansatz contains functions of the form:

Bn(pk) ≡
∑
i

Ni(p
k)

Pi
, (3.1.1)

where the numerators N(pk) are general polynomials with k powers of momenta, and

linear in some number of polarization vectors/tensors (for YM/GR). The denomina-

tors Pi can be any polynomial of pi.pj factors. If we assume locality, it means we

must restrict each Pi to be a product of simple poles, which can be associated to

propagators of cubic (for YM and GR) or quartic (for NLSM and DBI) diagrams.

That is, a local ansatz has a form:

Bn(pk) ≡
∑

diags. i

Ni(p
k)∏

αi
P 2
αi

, (3.1.2)

1This is similar to the results of [48, 49], where it was found that imposing full gauge invariance,
while also allowing extra kinematical invariants as coefficients, leads to (n−3)! independent solutions,
forming the BCJ basis of Yang-Mills amplitudes.
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with αi corresponding to the channels of each diagram. As discussed in [7], it is

always possible to put amplitudes in this cubic diagram form, by adding artificial

propagators to the higher point vertex interactions. For YM and NLSM the diagrams

are ordered, while for gravity and DBI they are not. We can relax locality by dropping

the underlying diagram structure, allowing each term to have some number s of any

singularities P 2
S = (

∑
i pi)

2, with the pi consecutive for YM and NLSM:

Bn(pk) ≡
∑
i

Ni(p
k)

P 2
S1 . . . P

2
Ss
, (3.1.3)

Then the claim is that for the smallest s and k which admit solutions, the ansatz

(3.1.3) is uniquely fixed by gauge invariance/vanishing in the single soft limit in n−1

particles. Concretely, these smallest values for s and k are:

• Yang-Mills: s = n− 3, k = n− 2

• Gravity: s = n− 3, k = 2n− 4

• NLSM: s = n/2− 2, k = n− 2

• DBI: s = n/2− 2, k = 2n− 4

In this article, we prove the following results:

1. Local Singularities + Gauge Invariance ⇒ Locality + Unitarity

2. Locality + Adler zero ⇒ Unitarity

The stronger version of claim number 2 for NLSM and DBI (that Local Singularities

+ Adler zero ⇒ Locality + Unitarity) is less susceptible to the argument we use

in this article, but a more direct approach was already presented in [22]. We also

prove a stronger result for Yang-Mills, by allowing non-local singularities (
∑

i aipi)
2,

with some mild restrictions. Further, we conjecture that completely ignoring the
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singularity structure, gauge invariance alone forces general polynomials to be linear

combinations of amplitude numerators.

Surprisingly, imposing gauge invariance/vanishing in the soft limit for the nth

particle is not required, and is automatic once the other n− 1 constraints have been

imposed. Without loss of generality we can take particle 3 to be this nth particle, and

we will always impose momentum conservation by expressing p3 in terms of the other

momenta. Tying the unneeded nth constraint to momentum conservation ensures

that we always avoid checks of the form e3 → p3 = −p1 − p2 − p4 − . . ., which would

complicate the analysis.

To begin, the above statements can be easily tested explicitly for a small number

of particles. For Yang-Mills, at four points, we can only have terms with one pole,

either (p1 + p2)2 or (p1 + p4)2. Then the most general term we can write down is a

linear combination of 60 terms, of the form

M4(p2) = a1
e1.e2 e3.e4 p1.p4

p1.p2

+ a2
e1.p2 e3.p2 e2.e4

p1.p2

+ . . . . (3.1.4)

Imposing gauge invariance in particles 1, 2, and 4 forces the coefficients ai to satisfy

some linear equations with a unique solution, which turns out to be precisely the

scattering amplitude of four gluons.

At five points, the most general non-local ansatz, where we only assume two

cyclic singularities per term, contains some 7500 terms, and it can be checked that

gauge invariance in four particles leads to the five point amplitude. It is indeed quite

remarkable that gauge invariance is so constraining to produce a unique solution.

Actually, it is even more remarkable that any solution exists at all! The amplitudes are

the result of a striking conspiracy between the propagator structure and momentum

conservation.
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It is easy to make a gauge invariant in n particles by taking different contractions

of
∏n

i=1(eµii p
νi
i − e

νi
i p

µi
i ), but this requires a mass dimension of [n]. No single diagram

has enough momenta in the numerator to accommodate this product, so different di-

agrams must cancel each other. But less obviously, without momentum conservation,

such contractions will always contain terms with at least n factors of ei.pj. This is

impossible to achieve even with several diagrams, since each diagram numerator can

have at most n− 2 such factors per term, while the denominators only contains pi.pj

factors. But with momentum conservation, together with a cubic propagator struc-

ture, it turns out that n − 2 factors are sufficient, creating an object which satisfies

more constraints than expected by simple counting. In fact, we will show that this

structure is indeed very special. There is no non-trivial way of deforming or adding

things to produce different solutions. Identical facts hold for the other theories as

well. For example, the NLSM requires vanishing under n− 1 particles, which naively

would require A ∝ O(pi) for n − 1 particles. Again, however, only at k = n − 2,

with momentum conservation and quartic diagrams we find an exception, which is

the amplitude itself. The absence of solutions below this critical mass dimension is

at the heart of the proof.

The basic strategy for the proof is the following. We start with an appropriate

ansatz (local, non-local, etc), and we take single/double soft expansions. Then order

by order we show that gauge invariance/the Adler zero condition uniquely fix the

corresponding amplitudes. In this process we do not assume any form of the soft

theorems, but we end up re-deriving the well known leading terms [9, 11]. Our

approach does not directly provide the subleading terms (which for gravity have a

particularly nice form [10]), but only proves their uniqueness.2 The whole proof

rests on showing that after the first non-vanishing order is fixed, none of the higher

orders can produce independent solutions. The reason for this is that the subleading

2See also [32] for a very illuminating discussion on fixing the subleading terms.
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orders must have a growing number of soft momenta in the numerator, leaving fewer

momenta to satisfy the necessary requirements.

3.1.2 Organization of the article

In section 3.2, we begin by exploring the notion of constrained gauge invariance. We

find a very simple proof that functions with at most k < n− 2 factors of momenta in

the numerator can be gauge invariant in at most k particles, while the same is true

for tensors with k ≤ n− 2.

In section 3.3, we first prove a weaker version of our statement for YM and GR,

by assuming locality. In section 3.4 the same argument is applied to the NLSM and

DBI amplitudes, with gauge invariance replaced by the Adler zero condition.

In section 3.5, relaxing our assumptions on the underlying cubic diagrams, we

instead consider a more general singularity structure. We only keep the requirement

of (local) singularities of the form (
∑

i pi)
2, and recover the unique amplitude, as long

as the number of such singularities per term is s = n−3. For fewer singularities there

are no solutions, while for more the answer can always be factorized as (
∑

poles) ×

(amplitude). This proves the conjecture originally made in Ref [22].

Finally, in section 3.6, we investigate the extent to which more general singulari-

ties can be used to fix the Yang-Mills amplitude. Completely non-local singularities of

the form (
∑

i aipi)
2, with some minor restrictions, are also shown to provide a unique

solution. Trying to find a less arbitrary ansatz, we are lead to consider polynomials

again, with no singularities at all. We conjecture that yet an even stronger statement

can be made, namely that the smallest mass dimension polynomial that admits a

solution is fixed to a linear combination of amplitude numerators, when gauge invari-

ance in all n particles is imposed. The usual argument can be used to provide leading

order evidence for this fact.
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3.2 Constrained gauge invariance

3.2.1 Polynomials

Let B(k) be a polynomial linear in polarization vectors, with at most k factors of

dot products of the type ei.pj in any given term. Let g be the total number of

gauge invariance requirements, and ∆ = g − k be the “excess” of gauge invariance

requirements compared to the maximum number of e.p factors. When appropriate,

we will use the notation ei to distinguish polarization vectors which are not used for

gauge invariance. We wish to prove that, without momentum conservation, B(k) can

be gauge invariant in at most k particles, ie. satisfy at most ∆ = 0 constraints. Then

we will prove that with momentum conservation the statement is still true, but only

for k < n− 2.

No momentum conservation

Having no momentum conservation implies gauge invariants in particle i must be

proportional to Gµν
i = eµi p

ν
i −eνi pνi . Therefore the only way to obtain gauge invariants

in k particles is with linear combinations of different contractions of products
∏

iG
µiνi
i .

We will show that such expressions always contain at least one term with k factors

of e.p.

By assumption there are always more e’s than e.p’s, so at least one of the polar-

ization vectors needed for gauge invariance will be in a factor e.e or e.e. Consider

first as an example the following term in a polynomial with k = 2:

e1.e2 e3.p e4.p p.p . (3.2.1)

We wish to show that such a term cannot be gauge invariant in three particles, say

particles 1, 2 and 3. We start with a polarization vector sitting in a e.e factor, for
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example e1. To make a gauge invariant in particle 1, at least one of the p′s above

must be a p1, and a pair term must exist with e1 and a p1 switched. We can use either

the p in the e3.p (or e4) factor, or one in the p.p factor, to make the gauge invariants:

G1 = (e1.e2) (e3.p1) e4.p p.p− (p1.e2) (e3.e1) e4.p p.p , (3.2.2)

or

G′1 = (e1.e2) e3.p e4.p (p1.p)− (p1.e2) e3.p e4.p (e1.p) . (3.2.3)

However, the second option leads to a term with four e.p factors, contradicting our

claim that just two factors are sufficient. The first option is fine, and so we can only

use p’s in e.p factors for this mark-and-switch procedure.

Now consider the second term in G1 above, and note that we ended up with

another e.e factor, namely e3.e1. Applying the same reasoning for gauge invariance in

3 forces us to fix the factor e4.p to e4.p3. Therefore the second piece of G1 can form

a gauge invariant in particle 3 in the pair:

G3 = (p1.e2) (e3.e1) e4.p3 p.p− p1.e2 p3.e1 e4.e3 p.p . (3.2.4)

Now we do not need gauge invariance in 4, so this chain 1→ 3→ 4 is finished. Note

we do not care about making the first piece of G1 gauge invariant in particle 3, we are

only interested in finding some minimal constraints. Instead, we go back to (3.2.1) to

check gauge invariance in the remaining particle 2. But the choices we made so far

by imposing gauge invariance in 1 and 3 fixed both e.p factors in this initial term to

e1.e2 e3.p1 e4.p3 p.p , (3.2.5)
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so now there is no way to make it gauge invariant in 2, as all the allowed p’s have

been used up. Therefore the term (3.2.1) is not compatible with gauge invariance in

{1,2,3}.

The general strategy is the same. New chains always start in the original term from

e.e or e.e factors, which are aways present by assumption. Next, for each jump we fix

a p in an e.p or e.p factor, which becomes unavailable for other gauge invariants. The

chain ends when reaching an e.p factor, and a new chain is started from the original

term, and so on. The process ends when all the chains have ended on e.p factors,

which means gauge invariance is compatible with this counting argument, or when

all the e.p’s have been marked and a chain is unable to continue, which means the

term is ruled out.

In general, we said we need gauge invariance in k + 1 = #[e.e] + 2#[e.e] + #[e.p]

particles, but have only k = #[e.p]+#[e.p] factors. This means the difference between

how many chains must start and how many can end is: (#[e.e] + 2#[e.e])−#[e.p] = 1.

Therefore there is always at least one chain which cannot end, so all possible starting

terms are ruled out. Then there is no way to make a polynomial B(k) gauge invariant

in k + 1 particles.

With momentum conservation

Now we consider the same type of polynomials from above, but on the support of

momentum conservation, Bn(k) ≡ B(k)δn. To impose momentum conservation ex-

plicitly, we can choose three particles (for example 2, 3, and 4), and use the following
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relations:

p3 = −
∑
i 6=3

pi , (3.2.6)

e3.p4 = −
∑
i 6=3,4

e3.pi , (3.2.7)

p2.p4 = −
∑
i,j 6=3

pi.pj ≡ P24 . (3.2.8)

This allows other ways of forming gauge invariance in particles 2, 3 and 4. For

example, for particle 2 we can now have a new gauge invariant of the form

Gµ
2 = e2.p4p

µ
2 − P24e

µ
2 . (3.2.9)

Such an expression avoids our previous argument: now both particles 2 and 4 can

share the same e2.p4 factor above. When checking gauge invariance in at most n− 3

particles this is not a problem, as we can always impose momentum conservation in

such a way as to avoid these three special particles. However, for more than n − 3

particles, at least one particle has to be affected by momentum conservation.

The worst case that we will need to prove is that Bn(n − 3) cannot be gauge

invariant in n − 2 particles. Without loss of generality, since we can change how we

impose momentum conservation, we can leave out 3 and 4, and assume that these

n− 2 particles are {1, 2, 5, 6, . . . , n}. Then n− 3 of the particles can only form gauge

invariants of the form eµi p
ν
i −eνi pνi , while particle 2 allows gauge invariants of the form

(3.2.9). Since we only have k = n−3 factors of e.p, the first n−3 constraints already

fix all such factors. However, we are not checking gauge invariance in particle 4, so

none of the factors will be fixed to e.p4, more specifically to the e2.p4 needed in eq.

(3.2.9). Therefore there is still no room to form the gauge invariant for particle 2.

This proves that a polynomial Bn(k) with k < n− 2 can be gauge invariant in at

most k particles. It is easy to see that the last step of the argument fails for k = n−2.
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In that case the counting allows for gauge invariance in not just n− 1 particles, but

all the way to n particles. This is of course what we should expect, since a polynomial

Bn(n − 2) corresponds to the full amplitude numerator, and is gauge invariant in n

particles.

3.2.2 Functions and tensors with singularities

The previous results for polynomials can be extended to functions with poles, such

as those we initially introduced in eq. (3.1.1):

Bn(pk) ≡
∑
i

Ni(p
k)

Pi
. (3.2.10)

Because the Pi are only functions of p.p factors, a function with at most k momenta

in the numerators can be expressed in terms of a polynomial with at most k factors

of e.p:

Bn(pk) =
Bn(k)∏

i Pi
. (3.2.11)

This implies that a function Bn(pk) cannot be gauge invariant in k + 1 particles, if

k < n− 2. This statement can be generalized to tensors Bµν
n (pk). We can write out

the components of such a tensor:

Bµν
n (pk) =

∑
i,j

pµi p
ν
jBij(p

k−2) +
∑
i,j

pµi e
ν
jCij(p

k−1) +
∑
i,j

eµi p
ν
jC
′
ij(p

k−1) +
∑
i 6=j

eµi e
ν
jDij(p

k) ,

(3.2.12)

and determine what constraints each of the functions above must satisfy in order for

Bµν
n (pk) to be gauge invariant in k + 1 particles. We can treat each different type of

function in order:
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• pµi pνjBij(p
k−2): if we check gauge invariance in some particle m, with m 6= i, j,

the prefactor remains unique, and none of the other terms in (3.2.12) may cancel

against Bij. This implies Bij(p
k−2) itself must be gauge invariant in at least

k + 1− |{i, j}| = k − 1 particles so is ruled out, if k − 2 < n− 2.

• eµi pνiCii(pk−1), or eµi p
ν
jCij(p

k−1): the same logic as before implies C(pk−1) must

be gauge invariant in k particles, so is also ruled out if k − 1 < n− 2.

• eµi pνjCij: can only form a gauge invariant in i together with a term pµi p
ν
jBij,

which was ruled out.

• eµi eνjDij(p
k), or eµi e

ν
jDij(p

k): under ei → pi, Dij can only form a gauge invariant

with Cij, which vanished, so this case is ruled out.

• eµi eνjDij(p
k): is only ruled out for k < n− 2

To summarize, we obtain just three types of cases:

Bn(pk−2), gauge invariant in k − 1 , (3.2.13)

Cn(pk−1), gauge invariant in k , (3.2.14)

Dn(pk), gauge invariant in k + 1 (3.2.15)

all of which vanish for k < n − 2. For k = n − 2, the first two also vanish, but for

the third we have an apparent contradiction, since we know that functions Dn(pn−2)

have sufficient momenta to satisfy gauge invariance in n−1 particles. However, when

k = n− 2, case (3.2.15) does not exist. The only tensor Bµν
n (pn−2) that will show up

in the actual proof has G = {e3}, so it does not contain a component eiejDij.

Therefore, the tensors we are interested in cannot be gauge invariant in k + 1

particles for k ≤ n− 2. In conclusion, so far we have shown that:

• functions Bn(pk) cannot satisfy ∆ = 1 constraints for k < n− 2
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• tensors Bµν
n (pk) cannot satisfy ∆ = 1 constraints for k ≤ n− 2

It turns out that these results can be generalized even further: we can take linear

combinations of the above functions/tensors, with factors of pi.pj as coefficients, and

still the above statements hold. These results will be necessary for the following

sections.

3.3 Unitarity from locality and gauge invariance

In this section we will consider local functions, as in eq. (3.1.2):

Bn(pk) =
∑

diags. i

Ni(p
k)∏

αi
P 2
αi

. (3.3.1)

In the above notation the actual gluon amplitude An(pn−2) is a subset of Bn(pn−2),

with G = {1, 2, 4, . . . , n} and G = {3}, so g = n−1 and ∆ = 1. Now we wish to prove

that An+1 is uniquely fixed by gauge invariance in n particles, under the assumption

that An is fixed by gauge invariance in n − 1 particles. Consider the most general

(n + 1)-point local function Mn+1, and let pn+1 = zq. The Taylor series expansion

around z = 0 is:

Mn+1δn+1 =(z−1M−1
n+1 + z0M0

n+1 + . . .)(δn + zq.δ′n + . . .)

=z−1M−1
n+1δn + z0

(
M−1

n+1q.δ
′
n +M0

n+1δn
)

+ . . .

=z−1M−1
n+1 + z0M0

n+1 + . . . . (3.3.2)

First we must investigate the pole structure of a local function in this limit. There

are two types of poles that can show up. First, there are q-poles which are singular.

These correspond to diagrams of the type:

45



q

i

and can be written as:

N

q.piPn(q)
= Dn+1 (3.3.3)

with i = 1 or i = n for Yang-Mills, because of ordering. In the limit q → 0, we can

factor out the q.pi pole and incorporate the remaining propagator structure into the

lower point local function:

Dn+1 →
1

q.pi

N

Pn(0)
=

1

q.pi
Bn . (3.3.4)

Then there are non-singular poles, which appear when two propagators become equal

in the q → 0 limit:

q

and can be written as:

Dn+1 =
N

PL(q)(p1 + p2 + . . .+ pi)2(q + p1 + p2 + . . .+ pi)2PR(q)
, (3.3.5)

where for Yang-Mills P 2
i = (p1 + p2 + . . . + pi)

2 contains only consecutive momenta

up to particle i, i = 2, n− 2. We will factor out one of the P 2
i ’s, and incorporate the

other into the lower point local function Bn:

Dn+1 →
N

(p1 + p2 + . . .+ pi)2Pn(q)
=

1

(p1 + p2 + . . .+ pi)2
Bn . (3.3.6)
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The argument by induction can be used precisely because of this factorization into

the lower point local functions.

3.3.1 Yang-Mills

Leading order The leading z−1 piece of the soft limit (3.3.2) can only come from

q-pole terms. Using linearity in en+1 = e, it can be written as:

M−1
n+1(pn−1) =

eµBµ
n(pn−1)

q.p1

+
eµCµ

n(pn−1)

q.pn
, (3.3.7)

where Bµ
n and Cµ

n are local (vectors) at n-points. Next, gauge invariance in q requires

Bµ
n = pµ1Bn, and Cµ

n = −pµnBn, where Bn is a local function at n points. Then the

leading piece is:

M−1
n+1(pn−1) =

(
e.p1

q.p1

− e.pn
q.pn

)
Bn(pn−2) . (3.3.8)

By assumption, gauge invariance in the remaining (n − 1) particles uniquely fixes

Bn = An, reproducing the well known Weinberg soft factor [9]. Note that unlike

other methods of obtaining the soft term, we have not used any information on

factorization, but only gauge invariance.

Now that the leading order is fixed, consider instead the function Bn+1 = Mn+1−

An+1. Bn+1 is also local, and must be gauge invariant in n particles, but has a

vanishing leading order. We will show that all higher orders in the soft expansion of

Bn+1 also vanish, implying that Mn+1 = An+1. This procedure will be identical for

gravity, NLSM and DBI.

47



Sub-leading order Because the leading order vanishes, the sub-leading piece is

given only by:

B0
n+1(pn−1) =

∑
i=1;n

eµqνBµν
n;i(p

n−2)

q.pi
+

n−2∑
i=2

eµCµ
n;i(p

n−1)

P 2
i

, (3.3.9)

which includes both singular and non-singular pole parts. The non-singular pole terms

are ruled out by gauge invariance in q, while the q-pole terms must be proportional

to e[µqν]. Bringing everything under a common denominator we can write

B0
n+1(pn−1) ∝ e[µqν]

(
q.pnB

µν
n;1(pn−2) + q.p1B

µν
n;n(pn−2)

)
≡ e[µqν]B′n

µν
(pn−2) , (3.3.10)

where B′n
µν(pn−2) is a linear combination of tensors with k = n − 2, so is ruled out

by requiring gauge invariance in n− 1 particles. Therefore B0
n+1 = 0.

Sub-sub-leading order The sub-sub-leading piece is given by:

B1
n+1(pn−1) = e[µqν]

(∑
i=1,n

qρBµνρ
n (pn−3)

q.pi
+

n−2∑
i=2

Cµν
n (pn−2)

P 2
i

)
. (3.3.11)

This time the non-singular pole terms are not ruled out just by gauge invariance in

q. We can still write:

B1
n+1(pn−1) ∝ e[µqν]B′n

µν
(pn−2) . (3.3.12)

We obtain similar constraints as in the subleading case, which imply B1
n+1 = 0.

Subs≥3-leading order At arbitrary order s ≥ 3 we can write:

Bs−1
n+1(pn−1) ∝ e[µqν]qρ1 . . . qρs−2Bµνρ1...ρs−2

n (pn−s) . (3.3.13)
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And all constraints will have k ≤ n−3, with ∆ = s−1 ≥ 1, so Bs−1
n+1 = 0 to all orders

up to s = n, where the soft expansion terminates. Therefore Mn+1 = An+1, proving

uniqueness.

3.3.2 Gravity

For gravity, we can simply write polarization tensors in terms of polarization vectors

as eµνi = eµi f
ν
i . Then gauge invariance in one graviton becomes equivalent to gauge

invariance in two “gluons”. The polynomial statement from section 2 still applies,

so ignoring momentum conservation, no polynomial with at most k e.p factors can

be gauge invariant in k + 1 “gluons”. With momentum conservation, in the case of

gravity this is true for k < 2n − 4. This implies that a tensor Bµν
n with k powers of

momenta in the numerator cannot be gauge invariant in k+1 particles for k ≤ 2n−4.

One other difference is that for gravity we are no longer restricted only to cyclic

poles, since there is no ordering. In the end, the proof is almost identical to that

for Yang-Mills. We assume that An(p2n−4) is unique, and prove the same is true for

An+1(p2n−2).

Leading order The leading piece has a form:

M−1
n+1 =

∑
i

eµf νBµν
n;i

q.pi
. (3.3.14)

Gauge invariance in e and f can only be satisfied on the support of momentum

conservation, by Bµν
n;i = pµi p

ν
iBn, where Bn is a local function at n points. Then the

leading piece is:

M−1
n+1(p2n−2) =

∑
i

e.pif.pi
q.pi

Bn(p2n−4) , (3.3.15)
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and now by assumption gauge invariance in the other particles fixes Bn = An. Using

the same trick as before, we consider instead the function Bn+1 = Mn+1 − An+1.

Sub-leading order The subleading piece is given by:

B0
n+1 =

∑
i

eµf νqρBµνρ
n;i

q.pi
+
∑
i

eµf νCµν
n;i

P 2
i

. (3.3.16)

Gauge invariance in e and f rules out the non-singular pole contributions, and fixes

the first term to:

B0
n+1(p2n−2) =

∑
i

e[µqν]f.piB
µν
n;i(p

2n−4)

q.pi

= e[µqν]Bµν
n (p2n−4) , (3.3.17)

which is ruled out by gauge invariance in the remaining particles.

Sub-sub-leading order For higher orders, which go up to s = 2n − 1, the same

argument rules out any other solutions, so An+1 is uniquely fixed by gauge invariance.

3.4 Unitarity from locality and the Adler zero

For the NLSM and DBI we will also deal with local functions Bn(pk), with k powers

of momenta in the numerator. However, the poles are now associated to propagators

of quartic diagrams, ordered for the NLSM, un-ordered for DBI. The Adler zero

condition [17] states that the amplitude An must vanish when a particle is taken soft.

Exactly how rapidly it must vanish sets the difference between the NLSM and DBI

[18]-[19]. The limit pi → 0 is taken as pi = wipi, wi → 0. Then for the NLSM we

require the amplitude to vanish as O(wi), while for DBI we require O(w2
i ), ∀i 6= 3.
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As for gauge invariance, it will be useful to quantify the difference between avail-

able momenta and total constraints. In general, if we require a function Bn(pk) to

vanish as O(wgii ) for some particle i, let the corresponding constraint be gi. Then

g =
∑

i gi will the total constraints Bn(pk) must satisfy, and define ∆ = g − k as

before. This time we wish to show that the NLSM amplitude An(pn−2) is the unique

object satisfying ∆ = 1 constraints, while the DBI amplitude An(p2n−4) uniquely

satisfies ∆ = 2 constraints.

We will also show this by counting possible solutions, order by order in the double

soft expansion q = zq, q̃ = zq̃, z → 0. The double soft expansion is chosen now, since

the functions simply vanish in the single soft limit. The proof will again be almost

identical with the ones for YM and GR, with one important difference. In the first

two cases, the simple polynomial statement of section 2 significantly streamlined the

argument. Remember that in the soft limit, we encountered tensors Bµν(pk), with

k ≤ n−2, which were immediately ruled out. The key in that case was that we could

always associate a polynomial with k e.p factors to a function with k momenta in the

numerator. For the NLSM, there is no such (simple) distinction to be made, since all

we have are pi.pj factors, both in the numerator and denominator.

Therefore, for scalars we do not have a direct proof for the following fact: a func-

tion Bn(pk) cannot satisfy k+1 constraints, if k < n−2. Instead, this statement must

be proven by induction. We will write the proof only for the uniqueness statement, ie

k = n− 2, under the assumption that the non-existence statement is true. The proof

for the latter case is identical, only with k < n− 2.

The Taylor series expansion is identical to eq. (3.3.2). We have the singular q-pole

terms:

q

i

q~
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of the form:

Dn+2 =
N

(q + q̃ + pi)2Pn(q, q̃)
(3.4.1)

where i = 1 or i = n for NLSM due to ordering. In the soft limit we can also write

this in terms of the lower point local function:

Dn+2 →
1

(q + q̃).pi

N

Pn(0, 0)
=

1

(q + q̃).pi
Bn . (3.4.2)

Next there are non-singular poles, which are more varied than in the cubic diagram

case. There is still the equivalent of the double poles from before:

q~ q

which we can write as:

Dn+2 =
N

PL(q, q̃)(p1 + p2 + . . .+ pi)2(q + q̃ + p1 + p2 + . . .+ pi)2PR(q, q̃)
, (3.4.3)

In the soft limit this becomes:

Dn+2 →
1

(p1 + p2 + . . .+ pi)2
Bn . (3.4.4)

There are also more complicated non-singular poles, when the q and q̃ legs are sepa-

rated. However, even in such cases it is easy to write the terms in a form:

Dn+2 →
1

P 2
i

Bn . (3.4.5)
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3.4.1 NLSM

Leading order The leading 1/z term can only come from q-pole terms:

M−1
n+2 =

N1(0, 0)

p1.(q + q̃)
+

N2(0, 0)

pn.(q + q̃)
, (3.4.6)

imposing vanishing under q̃ → 0 implies:

(
N1

q.p1

+
N2

q.pn

)
= 0 , (3.4.7)

so N1 = N2 = 0, and M−1
n+2 = 0.

Sub-leading order At this level both types of poles can contribute. The q-pole

piece is:

M0
n+2 =

qµBµ
n + q̃µCµ

n

(q + q̃).p1

+
qµDµ

n + q̃µEµ
n

(q + q̃).pn
. (3.4.8)

Vanishing under q̃ → 0 implies Bµ = pµ1Bn, and Dµ
n = −pµnBn, and similarly q → 0

leads to Cµ
n = pµ1Cn and Eµ

n = −pµnCn. The subleading term becomes:

M0
n+2(pn) =

(
q.p1

(q + q̃).p1

− q.pn
(q + q̃).pn

)
(Bn − Cn) . (3.4.9)

Now (Bn−Cn) ≡ Bn(pn−2) is also a general local function at n-points, so by assump-

tion vanishing in the other soft limits fixes Bn = An.

Terms with non-singular poles have a form:

∑
i

Ni

Pi
, (3.4.10)

but are quickly ruled out by requiring vanishing under q or q̃.
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Sub-sub-leading order The most general q-pole sub-sub-leading term is:

M1
n+2 =

1

(q + q̃).p1

(qµqνBµν + qµq̃νCµν + q̃µq̃νDµν + q.q̃E)

− 1

(q + q̃).pn
(qµqνF µν + qµq̃νGµν + q̃µq̃νHµν + q.q̃I) . (3.4.11)

Now we expand the remaining pi = wipi and require M1
n+2 ∝ O(w1

i ) for each of the

(n−1) particles left. All of the above functions can be treated as independent because

of their unique prefactors. Taking the p’s in the denominator into account, we obtain

the following constraints for all functions:

Bµν , Cµν Dµν , E ∝ O(w2
1),O(w1

i 6=1) , (3.4.12)

F µν , Gµν Hµν , I ∝ O(w2
n),O(w1

i 6=n) , (3.4.13)

while component-wise there will be two types of constraints. First:

B(pn−4), C(pn−4), D(pn−4), G(pn−4) ∝ n− 2 . (3.4.14)

These are ∆ = 2 with k < n− 2 so are ruled out. The other constraints are:

E(pn−2), I(pn−2) ∝ n . (3.4.15)

First, we can use n− 1 of the usual O(w1
i ) constraints to fix E = I = An. But then

An cannot satisfy the extra requirement of O(w2
1) or O(w2

n), so it must mean that

I = E = 0.

Non-singular poles are still ruled out by vanishing under q and q̃, and so M1
n+2 = 0.

Subs≥3-leading With each extra qµ or q̃µ being added, k decreases by 1, so ∆ can

only increase by at least 1, leading to ∆s = s ≥ 2 constraints. Therefore any subs-
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leading order vanishes, and so Mn+2 = 0, proving our statement, with the caveat

below.

Neutral poles At the sub3-leading order some special combinations of non-

singular pole terms are not directly ruled out. Consider for example the two diagrams,

which we take to have equal numerators:

i i

q

j

q

j

q~ q~

given by:

Dn+2(pn) =
N(pn)

P 2
L(PL + i+ j)2(PL + i+ j + q + q̃)2P 2

R(q, q̃)

− N(pn)

P 2
L(PL + i+ q̃)2(PL + i+ j + q + q̃)2P 2

R(q, q̃)
. (3.4.16)

At subs≥3-leading order their contribution is:

D2
n+2(pn) = qµq̃νNµν(pn−2)

(
1

P 2
L(PL + pi + pj)2P 2

R

− 1

P 2
L(PL + pi)2P 2

R

)
. (3.4.17)

Now Nµν(pn−2) has enough momenta to trivially satisfy n− 2 of the remaining n− 1

constraints. But vanishing in particle j is automatic because the two denominators

in (3.4.17) become equal when pj → 0. Therefore D2
n+2 is not ruled out by our

usual argument. Instead, such terms can be ruled out by taking different soft limits.

Specifically, it must be soft limits which lead to soft-singularities in P 2
L or P 2

R. This

ensures that D2
n+2 above avoids non-singular pole terms in the new soft limit.
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3.4.2 Dirac-Born-Infeld

For DBI we can use the same notation from the previous section. In this case, the

Adler zero condition is stronger, as we require An ∝ O(w2
i ) under pi = wipi → 0.

The proof is identical to the one for the NLSM, with the minor difference that now

non-cyclic poles are allowed. Also, in all cases non-singular poles can be ruled out

easily - the issue appearing in the NLSM is not present, since the vanishing under

pj → 0 ensured by eq. (3.4.17) can not provide the full O(w2
i ) needed. Instead, there

is a different issue appearing at the same order, which can be resolved by demanding

permutation invariance.

Leading order The leading piece is given by:

B−1
n+2 =

n∑
i=1

Ni

(q + q̃).pi
, (3.4.18)

but is ruled out by requiring B−1
n+2 ∝ O(w1) in q or q̃ .

Sub-leading order Regular q-pole terms have the form:

n∑
i=1

1

(q + q̃).pi
(qµBµ

i + q̃µCµ
i ) , (3.4.19)

but are ruled out by requiring O(w2) under q and q̃.

Sub-sub-leading order Have the form:

M1
n+2 =

∑
i

1

(q + q̃).pi
(qµqν Bµν

i + q̃µq̃ν Cµν
i + qµq̃νDµν

i + q.q̃Ei) . (3.4.20)
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Requiring O(w2) in q, q̃ we end up with:

M1
n+2(p2n) =

∑
i

1

(q + q̃).pi
((q.pi)

2B + (q̃.pi)
2C + q.piq̃.piD)

=
∑
i

q.piq̃.pi
(q + q̃).pi

(−B − C +D) . (3.4.21)

Now (−B − C +D) ≡ Bn(p2n−4) is a general local function at n-points, so imposing

the remaining 2n− 2 constraints fixes Bn = An by assumption.

Sub3-leading order Like for the NLSM, at this order extra care is required. The

usual arguments rule out all terms except:

D2
n+2(p2n) = q.q̃

∑
i

q.piBn;i + q̃.piCn;i

(q + q̃).pi
, (3.4.22)

under the condition that
∑

iBn;i =
∑

iCn;i = 0. The functions Bi(p
2n−4) and

Ci(p
2n−4) must satisfy ∆ = 2 constraints and are fixed (up to some coefficient) to

An by assumption. Then the extra conditions become
∑

iBn;i =
∑

i biAn = 0, and

similarly
∑
Ci =

∑
i ciAn = 0. The sub3-leading term becomes:

D2
n+2 = q.q̃An

∑
i

bi q.pi + ci q̃.pi
(q + q̃).pi

. (3.4.23)

But now if we require symmetry in q ↔ q̃, then bi = ci, so D2
n+2 = 0, and this order

vanishes.

Subs>3leading All such terms are ruled out, so Mn+2 = 0 to all orders, and An+2

is unique.
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3.5 Locality and unitarity from singularities and

gauge invariance

The general argument we used in the previous sections can be easily extended when

we relax our cubic graph assumptions, and instead consider a more general singularity

structure, as long as the singularities themselves have a form (
∑

i pi)
2, with consec-

utive momenta in the case of Yang-Mills. This means we allow double poles as well

as overlaps. There are three cases to consider depending on how many singularities

s we allow. We will show that:

• for s < n− 3 there is no solution

• for s = n− 3 there is a unique solution, An

• for s > n− 3 solutions can be factorized in a form (
∑

poles)× An

We prove these three results for five points Yang-Mills. It is easy to extend the proof

for general n, including for gravity.

In the following, we will call a function with s singularities Bn;s, and to simplify

notation, let:

S0 =
e.p1

q.p4

− e.p4

q.p4

. (3.5.1)

3.5.1 Case 1. s < n− 3

This case is easy to prove by induction. Assume that B4;0(p2) is ruled out by gauge

invariance. Then the five point function with just one singularity has a leading order:

M−1
5;1 (p3) = S0B4;0(p2) , (3.5.2)
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which by assumption is ruled out. Higher order terms are again ruled out as usual,

so there are no solutions for s < n− 3.

3.5.2 Case 2. s = n− 3

At five points, in this case we have two (cyclic) poles per term, and now we also allow

double poles and overlaps.

Order z−2 The lowest order is now z−2, coming from three possible terms, which

were not present before:

M−2
5;2 (p3) =

Na

(q.p1)2
+

Nb

(q.p1)(q.p4)
+

Nc

(q.p4)2
. (3.5.3)

Gauge invariance in q requires the forms:

M−2
5;2 (p3) =

1

q.p1

S0B4;0(p2) +
1

q.p4

S0C4;0(p2) , (3.5.4)

so both B4;0 and C4;0 vanish by the previous argument.

Order z−1 At this order we have the usual leading piece, but also terms with the

non-local poles from above:

M−1
5 =S0B4(p2) + e[µqν]

(
Nµν
a

(q.p1)2
+

Nµν
b

(q.p1)(q.p4)
+

Nµν
c

(q.p4)2

)
.

For the second piece we need tensors Nµν
4 (p2), gauge invariant in three particles,

which is not possible. Therefore the leading piece is just

M−1
5 = S0A4 , (3.5.5)
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and so far we get the same answer as usual. However, we must deal with a subtle

issue that was not present before. We have shown that at the leading order, all

possible functions must map onto the unique expression (3.5.5). But when we allow

a non-local singularity structure, it is possible for two different n+ 1 point functions

to have an identical leading order piece. Consider for example the actual amplitude,

which contains a local term such as:

A5 = . . .
e.p1N

q.p1(q + p1 + p2)2
+ . . . , (3.5.6)

and a similar function M5, but where we replace the term from above with a non-local

one:

M5 = . . .
e.p1N

q.p1(p1 + p2)2
+ . . . . (3.5.7)

In the soft limit q → 0 both functions are equal at the leading order, so apparently

we have two different solutions, contradicting our statement. The issue can still be

resolved by considering all orders of the soft expansion of B5 = M5−A5. The sublead-

ing order is now different than the usual (3.3.9), because B5 now has a contribution

originating from the Taylor series expansion of the denominator in eq. (3.5.6), which

was absent before. We obtain:

B0
5 =

eµqνBµν
4

q.pi
+ eµCµ

4 −
e.piq.(p1 + p2)N

q.pi(p1.p2)2
+ . . . (3.5.8)

where the third term is new. But using our previous arguments B0
5 is still ruled out by

gauge invariance. Higher order terms can be treated in a similar manner, so B5 = 0

to all orders. Therefore the five point Yang-Mills amplitude is completely fixed even

if we start with these non-local assumptions.
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3.5.3 Case 3. s > n− 3

For this case, where we are not expecting to obtain a unique answer, but the same

soft limit argument can be used to count the maximum total number of independent

solutions, order by order. First, at four points it is easy to check that with s = 2

poles, there are two solutions:

M4;2 =

(
a1

p1.p2

+
a2

p1.p4

)
A4 . (3.5.9)

Now at five points, with three poles, we want to show there are five solutions, corre-

sponding to the five different cyclic poles:

M5;3 =

(
a1

p1.p2

+
a2

p2.p3

+ . . .+
a5

p5.p1

)
A5 . (3.5.10)

Again taking a soft limit, and imposing gauge invariance in p5 = q, we obtain:

Order O(z−3)

M−3
5;3 =

1

(q.p1)2
S0B4;0 +

1

(q.p4)2
S0C4;0 , (3.5.11)

which was shown to vanish, so no solutions at this level.

Order O(z−2)

M−2
5;3 =

1

q.p1

S0B4;1 +
1

q.p4

S0C4;1 , (3.5.12)

which is fixed by gauge invariance to

M−2
5;3 =

(
a5

q.p1

+
a4

q.p4

)
S0A4 . (3.5.13)
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Therefore from this order we obtain two possible solutions.

Order O(z−1) Because we are only counting independent solutions, we can simply

ignore the contributions from the lower order above. Therefore we are only interested

in the term:

M−2
5;3 = S0B4;2 . (3.5.14)

By assumption this gives two independent solutions corresponding to the poles p1.p2

and p1.p4, but starting from five points there are three poles which map onto these

two in the soft limit:

p1.p2 → p1.p2 , (3.5.15)

p2.p3 = (p4 + p5 + p1)2 → p1.p4 , (3.5.16)

p3.p4 = (p5 + p1 + p2)2 → p1.p2 . (3.5.17)

And so we obtain three independent solutions at this order. For higher orders, the

usual arguments rule out other solutions, and so we end up with at most five possible

solutions. We have not derived what these must be, but since we can just write down

the five terms of Eq. (3.5.10), this must be all of them. The result is easy to generalize

to an arbitrary number of extra poles.

The argument can also easily be extended to general n-point amplitudes, as well

as gravity. Once it is shown that functions with s < n− 3 singularities are ruled out,

for s = n− 3 the only non-vanishing contribution will be the Weinberg term at order

1/z, which by the usual argument implies uniqueness. We suspect the same type of

argument can be used for NLSM and DBI, although some extra complications might

appear at the sub3-leading orders, which were already troublesome. Regardless, a
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more direct argument ruling out the non-local terms was already presented in Ref.

[22] for these theories.

3.6 Generalizing singularities

3.6.1 Non-local singularities

In the previous sections we have assumed that the denominators are always products

of singularities P 2
S = (

∑
i pi)

2. An obvious next step is to relax even this assumption,

and allow completely non-local singularities of the form (
∑

i aipi)
2. In full general-

ity, this doesn’t work out. Even at four points, allowing a singularity of the form

a p1.p2 + b p1.p4 no longer provides a unique local solution. We can write the four

point numerator as N4 = (tNs + sNt) = (t, s) · (Ns, Nt), with A4 = N4/(st). Now we

can do any 2D rotation to obtain N4 = (t′, s′) · (N ′s, N ′t), where s′ = s cos θ − t sin θ

and t′ = t cos θ + s sin θ. But now diving by (s′t′) we obtain a (non-unique) gauge

invariant with the non-local poles s′ and t′, so our claim is invalidated if we allow

such poles.

However, there exists a special set of non-local “cyclic” poles from which full

locality can still be derived, if we are careful about momentum conservation. To

obtain this set, we must start from a local cyclic pole P 2
jk = (

∑k
i=j pi)

2. Now only

after using momentum conservation p3 = −
∑
pi, we can add arbitrary coefficients

(
∑

i pi)
2 → (

∑
i aipi)

2. For example, from a six point local pole like (p1 + p2 + p3)2,

we can obtain (a p4 + b p5 + c p6)2. Note how this rule doesn’t allow the four point

pole a p1.p2 + b p1.p4 from above. It can only come from the pole p1.p3 = p1.p2 +p1.p4,

which is not cyclic. At five points, the most general set of singularities that can be
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used is:

(p1 + p2)2 = p1.p2

(p2 + p3)2 = (p1 + p4 + p5)2 → a1 p1.p4 + a2 p1.p5 + a3 p4.p5

(p3 + p4)2 = (p1 + p2 + p5)2 → a4 p1.p2 + a5 p1.p5 + a6 p2.p5

(p4 + p5)2 = p4.p5

(p5 + p1)2 = p1.p5 (3.6.1)

For an n point amplitude, n − 2 of the singularities keep the form pi.pi+1, while

the others are promoted to carry these extra coefficients. Now, the usual proof by

induction will work, as long as we avoid taking soft the particles adjacent to 3, which

is of course always possible from four points and higher. This procedure ensures that

the soft-singularities q.pi, critical for the leading term, are not affected in any way.

Then the leading term is as usual

Bnon-local
n+1 →

(
e.p1

q.p1

− e.pn
q.pn

)
Bnon-local
n , (3.6.2)

where now Bnon-local
n also contains the non-local singularities described above. If by

assumption even this non-local Bn is uniquely fixed by gauge invariance, ultimately

so will Bn+1. The claim is in fact trivial at four points, where none of the poles may

be modified, so Bnon-local
4 = Blocal

4 .

With a few extra restrictions, a similar result can be shown for gravity as

well, though the procedure is somewhat more complicated because for gravity

soft-singularities involving p3 are not so easily avoided. The solution is to require

several extra poles to keep their usual local form, in such a way to ensure that

even after taking multiple soft limits, there always exists a particle which forms no

soft-singularities with p3.
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3.6.2 No singularities

So far, we have mostly looked at functions with singularities of the form (
∑

i pi)
2,

and in some cases we showed that singularities of the type (
∑

i aipi)
2 also lead to

uniqueness. But what about allowing the denominators to be polynomials of some

degree s2, instead of s products of singularities? In general, this is a very difficult

question to systematically analyze, and given the four point counter-example from

the previous section, it might simply be an ill-posed question. But instead of trying

to understand all such completely general poles, there is an even more general alter-

native to pursue. We can completely disregard singularities, and investigate gauge

invariance directly at the level of the total numerator, by considering general poly-

nomials instead of functions with poles. Clearly, given sufficient mass dimension, a

general polynomial can always be thought of as originating from the most general sin-

gularity structure possible. We can start with the minimal polynomial which admits

any solution, which has n−2 e.p factors, and (n−2)2 total mass dimension, the same

as an actual amplitude numerator. It turns out that imposing our usual n− 1 gauge

invariance constraints does not provide a meaningful solution, but imposing the full

n constraints does: we obtain a linear combination of amplitude numerators! The

nth extra constraint essentially is required to replace the information we lost by not

considering denominators which are products of singularities. From this perspective,

the singularities do no play any crucial or physical role, but only provide a useful

method of organizing terms in the polynomial. While we do not have a proof for

this fact for n > 4, it is easily testable at five points. There we obtain six solutions,

which are linear combinations of five point amplitude numerators, corresponding to

different orderings. Below we provide leading order evidence for this fact.

We can again use our usual soft argument to count the solutions at leading order.

First, it is easy to check that imposing all four gauge invariance conditions on the
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four point polynomial N4((e.p)2, p4) gives a unique solution. This corresponds to the

fact that all four point amplitudes have the same numerator. That is, any amplitude

can be obtained by dividing the same numerator by the desired propagator structure:

A(1, 2, 3, 4) =
N

p1.p2 p1.p4

, (3.6.3)

A(1, 3, 2, 4) =
N

p1.p3 p1.p4

. (3.6.4)

At five points, the leading piece of the general polynomial must have a form:

N5((e.p)3, p9) = e[µqν]Nµν(p8) . (3.6.5)

After imposing the other four constraints all possible components are ruled out, except

the following:

N5((e.p)3, p9) = S12Na + S14Nb + S24Nc , (3.6.6)

where Sij = e.piq.pj − e.pjq.pi. Now the Ni((e.p)
2, p6) must also satisfy the four

constraints. First, we can rewrite N((e.p)2, p6) = N((e.p)2, p4)
∑

i,j aijpi.pj, after a

reshuffling of the coefficients. Then, the constraints imposed on N((e.p)2, p6) instead

act on N((e.p)2, p4), which by assumption is fixed uniquely to the four point numer-

ator. Finally, there are two independent pi.pj factors at four points. Therefore we

obtain

N((e.p)3, p9) = (a1p1.p2 + a2p1.p4)(b1S12 + b2S14 + b3S24)N4 , (3.6.7)

ie. six independent solutions, which are related to the leading pieces of amplitude

numerators. Unfortunately, the subleading order is not ruled out so quickly. The

N still have enough momenta to provide gauge invariant contributions even at this
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order:

N((e.p)3, p9) = (a1.q.p1 + a2q.p2 + a3q.p4)(b1S12 + b2S14 + b3S24)N4 , (3.6.8)

and so the usual argument fails in its simplest form. However, considering all orders,

eventually these extra solutions become tied to the original six, and in the end just

six solutions are left. The argument becomes even less well suited for higher points,

so clearly a better strategy is required.

3.7 Summary of the results and future directions

In this note we have presented the full proofs for some of the uniqueness claims

originally made in [22]. We summarize these results below. Let s be the number of

poles of the form (
∑

i pi)
2, and k the mass dimension of the numerators.

Yang-Mills and General Relativity:

• Unique solution for s = n− 3, with kYM = n− 2, kGR = 2n− 4

• No solutions for s or k smaller than above

• Factorized solutions (
∑

poles)× An for s larger than above

NLSM and DBI:

• Uniqueness assuming quartic diagrams, with kNLSM = n− 2, kDBI = 2n− 4

• No solutions for k smaller than above

For Yang-Mills, we also proved that uniqueness holds when allowing specific types

of non-local singularities (
∑

i aipi)
2. Finally, we conjectured that general polynomials
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of minimal mass dimension lead to linear combinations of amplitude numerators, and

so to both locality and unitarity.

The next step is understanding how to approach such polynomials with absolutely

no singularity structure. It would be very interesting to see if the soft limit argument

can be extended even further, or if an even more powerful argument is required.

Meanwhile, for NLSM and DBI, it is not even clear what the equivalent claim should

be, if it exists. For YM, the number of e.p factors always helped distinguish what

p’s come from numerators and which come from propagators. For scalar theories,

there is no distinction to be made: all the p’s are equal. We should note that an

equivalent claim for gravity does not exist. It is trivial to obtain many different

solutions by gluing together Yang-Mills amplitudes, while there is a unique gravity

numerator. Nevertheless, even if the numerator statement is less fundamental than

the other results, it is a very useful exercise. After all, thinking about polynomials

lead to the crucial results of section 3.2, so perhaps there is more to be learned from

this perspective.

A more important issue to be understood is that of the gram determinant relations.

When working in some fixed dimension D, at most D − 1 vectors can be linearly

independent (−1 because of momentum conservation). For example, if we restrict to

4D, starting at six points, we can express p6 in terms of the other four independent

momenta:

p6 = a p1 + b p2 + c p4 + d p5 (3.7.1)

This could allow for different solutions to our requirements. The linear dependence

(3.7.1) can be viewed as another form of momentum conservation:

p3 = −(p1 + p2 + p4 + p5 + p6) (3.7.2)
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We already saw that adding momentum conservation limited the applicability of our

initial polynomial argument to k < n − 2: at k = n − 2 momentum conservation

allowed for some “free” gauge invariants to be formed. Luckily, this was still suffi-

ciently constraining for our purposes. It is not inconceivable, though would be very

surprising, that the gram determinant relations could allow such free gauge invariants

starting at k = n− 3 for example.

Ultimately, these results strongly suggest that scattering amplitudes might have

a different definition, perhaps geometric, in line with the amplituhedron program

[5]. A formulation where both this minimal singularity structure and gauge invari-

ance/vanishing in the soft limit are manifest could potentially uncover yet more un-

known features of these theories.
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Chapter 4

Uniqueness from locality and

BCFW

4.1 Introduction

The traditional formulation of Quantum Field Theory is based on Feynman diagrams,

which ensure that locality and unitarity are manifest at all times. But to accomplish

this, Feynman diagrams introduce a large amount of unphysical redundancy, which

hides the ultimate simplicity of scattering amplitudes in many theories. Nowhere

is this more striking than in Yang-Mills and General Relativity, where gauge and

diffeomorphism invariance lead to very complicated Feynman diagram expansions,

containing thousands of terms even for five particle scattering. But quite surprisingly,

with the right variables, such expressions can ultimately be collapsed into remarkably

simple answers, such as the Parke-Taylor formula for Yang-Mills [1], or the Kawai-

Lewellen-Tye relations for gravity [6].

The S-matrix program on the other hand aims to replace the Lagrangian formula-

tion by directly imposing physical principles on scattering amplitudes. Motivated by

this hidden simplicity and dealing away with gauge invariance, the on-shell perspec-
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tive recently lead to many computational and conceptual advances, chiefly through

the use of recursion relations [50, 2]. Other recent developments have revealed more

and more previously unknown facets of scattering amplitudes: the twistor string pic-

ture [15], the BCJ duality [7], scattering equations [14], and many others. However,

in this approach the physical nature of scattering amplitudes - that is, particles scat-

tering off of each other in local quantum interactions - is completely lost in favor of

more abstract properties and symmetries. The amplituhedron [5] is a prime example

of this newer perspective. There, scattering amplitudes can be understood as volumes

of certain polytopes, with locality and unitarity emerging from the geometry itself.

The on-shell and off-shell techniques therefore capture very different aspects of

scattering amplitudes, and the goal of this paper is to explore the interface of these

two otherwise orthogonal perspectives.

In section 4.2, we bridge the gap between on-shell recursions and Feynman ampli-

tudes, by introducing a BCFW shift compatible with arbitrary polarization vectors.

This shift is in fact the manifestly covariant form of the shift used in Ref. [51], and

can be used in the usual way to recursively build the full amplitude, valid in any

dimension and for all helicity configurations.

In section 4.3, we show that the Yang-Mills amplitude is completely fixed by

imposing locality (singularity structure given by propagators associated to cubic dia-

grams) and constructability (vanishing of poles at infinity under BCFW shifts). Uni-

tarity (factorization) is never used, but instead emerges as a consequence of unique-

ness. This result is very similar to (and was motivated by), the recent results in

[22], which showed that gauge invariance uniquely fixes the Yang-Mills and gravity

amplitudes. It is worth noting that the needed asymptotic behaviors which will show

up are more general than those required in the usual BCFW recursion, and in fact

we will not use the Cauchy theorem at any point. Instead of building the scattering

amplitude directly via on-shell recursions (which would mean assuming unitarity), we
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simply prove that there is a unique local object satisfying the vanishing conditions

for z →∞.

The strategy is almost identical to the one in [22]: we show uniqueness order by

order in the soft expansion by using induction. However, checking BCFW behavior

is more complicated than checking gauge invariance. Instead of simply imposing

vanishing under ei → pi for n − 1 particles, now we must require some specific

O(zm) behavior under n(n − 1) BCFW shifts [i, j〉 which involve ei, pi, ej, and pj.

This makes finding a precise inductive argument more difficult. Even fixing only the

leading term, which was immediate with gauge invariance, is a lot more involved.

This time, we cannot even impose any shift involving the soft particle, as it interferes

with momentum conservation. In fact, in this case the process is reversed: the lower

point amplitude is fixed first, and the soft factor is fixed last. For this reason, we limit

our discussion to the leading order, and conjecture that the same argument can be

used for the subleading orders as well. Nevertheless, explicit checks of the all-order

statement have been made up to five points.

4.2 BCFW with polarization vectors

We define our [i, j〉 shift in the following way:

ei → êi ,

ej → êj + zpi
êi.êj
pi.pj

,

pi → pi + zêi ,

pj → pj − zêi ,

(4.2.1)

where êi = ei − pi ei.pjpi.pj
, and similarly for êj. The motivation for this peculiar shift,

which generalizes the shift in Ref. [51], is that it maintains the on shell conditions

ei.pi = 0 and ej.pj = 0. Alternativey, a simpler version of the shifts may used, by
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dropping the gauge shift on the polarization vectors, ê → e, but manually imposing

ei.pj = ej.pi = 0 after performing the shift. The shifts are then equivalent, and in

the rest of this paper the second shorter version will be used. It is also worth noting

that the shifts are gauge invariant in i and j, but non-local due to the extra poles.

It can be checked, though we do not prove, that any gluon amplitude satisfies the

usual BCFW behavior under this shift. That is, under any shift [i, j〉:

An ∝ O(z−1) for i and j adjacent ,

An ∝ O(z−2) for i and j non-adjacent .

(4.2.2)

In this case there is no “bad shift”, common to the on-shell method, as that is merely

a by-product of an asymmetry imposed on the λ’s and λ̃’s. This shift can be used in

the usual way to build general gluon amplitudes. For example, with a [1, n〉 shift:

An =
∑ ALi+1(1̂, 2, ..., i, P )ARn−i+1(−P, i+ 1, ..., n− 1, n̂)

P 2
i

, (4.2.3)

where zi =
P 2
i

êi.Pi
, and the usual summing over internal polarizations can be done using∑

eµeν = ηµν . Starting from the three point amplitude (which is just the three point

Feynman vertex):

A3(1, 2, 3) = V3(1, 2, 3) = e1.e2e3.p1 + e2.e3e1.p2 − e3.e1e2.p1 , (4.2.4)

the four point amplitude can be obtained from a [1, 4〉 shift as:

A4(1, 2, 3, 4) =
A3(1̂, 2, P )A3(−P, 3, 4̂)

p1.p2

, (4.2.5)
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with z = p1.p2/ê1.p2. It is easy to verify this is equal to the known amplitude, which

in terms of Feynman diagrams is given by:

A4(1, 2, 3, 4) =
V3(1, 2, P )V3(−P, 3, 4)

p1.p2

+
V3(1, 4, P )V3(−P, 3, 2)

p1.p4

+ V4(1, 2, 3, 4) ,

(4.2.6)

where V4 = e1.e3 e2.e4. Comparing eqs. (4.2.5) and (4.2.6) makes clear the purpose

of the non-local pole contained in the shifts: it generates the p1.p4 pole of the other

channel. The computational advantage of this approach comes from the fact that

fewer BCFW terms have to be considered compared to Feynman diagrams. In general,

to compute an n point amplitude there will be just n−3 BCFW terms to write down,

compared to the factorially growing number of Feynman diagrams.

4.3 Uniqueness from BCFW and locality

Besides the usual application of this shift to recursion relations, we conjecture that in

fact the Yang-Mills scattering amplitude is the unique local object of mass dimension

[4− n] compatible with the usual BCFW behavior (4.2.2). As in Ref. [22], we start

with an ansatz of local functions:

Mn(pn−2) =
∑
i

Ni(p
n−2)∏

αi
P 2
αi

, (4.3.1)

where the sum is taken over all ordered cubic diagrams i, and αi correspond to the

channels of diagram i. The numerators Ni are general polynomials of mass dimen-

sion [n − 2], and are linear in n polarization vectors, but carry no information of

factorization. Then, by requiring vanishing at infinity in a sufficient number of shifts,

we obtain a unique solution, the gluon amplitude An. Empirically, it turns out that

some shifts can be ignored completely, and the amplitude is still fixed. For example,
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at four points three shifts (for example, [1, 2〉, [2, 1〉, and [2, 3〉) are enough to fix the

answer, while at five points five shifts are needed. Furthermore, the required behavior

in some shifts can be relaxed, and still the amplitude is fixed.

For the purposes of this proof, we will impose the maximal number of shifts,

that is for all pairs i and j from 1 to n, but with one crucial modification. For

some shifts we will impose weaker constraints: under all the shifts involving some

particle h, we will demand only O(z0) for adjacent, and O(z−1) for non-adjacent

shifts. This modification will be necessary for the inductive argument, which is carried

out precisely by taking the special particle h soft. We leave to future work the issue

of finding the minimal set of shifts which fixes the amplitude.

4.3.1 Overview of the proof

It will be useful to introduce the following notation. Let En be the set of all polariza-

tion vectors at n points, and call Ghn(En) the constraints (4.2.2), relaxed for particle h.

Then we would like to prove that if Ghn(En) for all h = 1, n uniquely fixes An(En, p
n−2),

the equivalent higher point set Gh′n+1(En+1) uniquely fixes An+1(En+1, p
n−1), for all

h′ = 1, n+ 1. We will prove this statement for the choice h′ = n + 1, under the

assumption that An is fixed by both G1
n(En) and Gnn(En). All other choices for h′ can

be treated in an identical manner, by taking h′ soft.

The basic logic of the argument is identical to that in Ref. [22]. We consider a

general local object at n + 1 points, Mn+1(pn−1)δn+1, and show that imposing our

constraints forces Mn+1 = An+1, order by order in the soft expansion. Let en+1 = e,

pn+1 = z q, and expand Mn+1δn+1 around z = 0. Using momentum conservation to

express p3 in terms of the other momenta, the leading 1/z term has the general form:

M−1
n+1 =

∑
i e.eiB

i
n;1 +

∑
i 6=3 e.piC

i
n;1

q.p1

+

∑
i e.eiB

i
n;n +

∑
i 6=3 e.piC

i
n;n

q.pn
, (4.3.2)
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where Bi
n;h = Bi

n;h({e1, e2, . . . en} \ ei, pn−1) and Ci
n;h = Ci

n;h({e1, e2, . . . en}, pn−2),

with h = 1, n, are local functions at n-points. We will show that imposing the

BCFW constraints (4.2.2), relaxed for particle n+ 1, uniquely fixes:

M−1
n+1 =

(
e.p1

q.p1

− e.pn
q.pn

)
An , (4.3.3)

which is the known leading piece of the Yang-Mills scattering amplitude [9]. In

principle, the argument would then continue to show that all subleading order terms

of the object M ′
n+1 ≡ Mn+1 − An+1 vanish, impying that Mn+1 = An+1, completing

the induction.

Formula (4.3.2) also reveals why we must carry around this extra modification

due to h. Shifts involving h also shift the q.ph poles, producing one power of z

in the denominator. For example, if Mn+1 ∝ z−1 under a shift [1, 2〉, we should

expect Bn,1 ∝ z0 and Cn,1 ∝ z0 (ignoring the prefactors). But then in order for

the inductive argument to close, the n + 1 point constraints must also include such

modified behaviors under particular shifts, which should not carry over to the lower

point functions. Otherwise such relaxations would keep accumulating whenever we

take a soft limit. This is precisely why particle h is the one taken soft. After a soft

limit pn+1 → 0 we cannot not impose any shifts involving particle n+ 1, as it would

not be consistent with momentum conservation. This is the only way to ensure that

all functions always have just one particle with relaxed constraints.

The proof will have four steps:

1. We show by induction that all functions Bi
n;h in (4.3.2) are ruled out.

2. We show that the Ci
n;h are fixed by the uniqueness assumption at n-points, such

that Ci
n;1 = aiAn, and Ci

n;n = biAn.

3. Using shifts involving particle 3, which was chosen to impose momentum con-

servation, we show that ai = 0 for i 6= 1, and bi = 0 for i 6= n.

76



4. Finally, we use the [1, n〉 shift to fix a1 = −bn. This shift is special because it

is adjacent in An, but non-adjacent in An+1.

The first step is the most laborious, and is carried out in section (4.3.2). The last

three steps are completed in section (4.3.3).

4.3.2 Ruling out B(Ea
n) functions

First, to prove that the Bi
n;h(E

n−1
n , pn−1) functions are ruled out, we will have to

consider the whole set of functions:

Bn;h(a) ≡ Bn;h(E
a
n, p

2n−2−a)δn, a = 0, n− 1 , (4.3.4)

linear in just a polarization vectors, which form the set Ea
n. The second lower index

designates precisely the special particle h mentioned above. In this case we can have

h = 1 or h = n.

Now that Ea
n does not contain all polarization vectors at n points, we would like to

find general constraints Gh
n(a) which rule out a function Bn;h(a), and that also induct

correctly. That is, Gn+1 constraints imposed on Bn+1 should imply Gn constraints

imposed on Bn. Furthermore, for a = n− 1 the constraints should become the set we

obtain by imposing Gn+1(n) on Mn+1 in eq (4.3.2).

The expected BCFW behavior will change based on what polarization vectors are

missing. Let i designate particle i if Bn;h(a) is not a function of ei, ie ei /∈ Ea
n. We will

show that Bn;h(a) functions cannot satisfy the following general Ghn(a) constraints:

• i and j adjacent:

– [i, j〉, [j, i〉 ∝ z−1 , (4.3.5a)

– [i, j〉 ∝ z−1 , (4.3.5b)

– [i, j〉 ∝ z1 , (4.3.5c)
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– [i, j〉 ∝ z0 and [j, i〉 ∝ z1 , (4.3.5d)

• i and j non-adjacent: a zm from above becomes zm−1 , (4.3.6)

• shifts containing particle h: a zm from above becomes zm+1 . (4.3.7)

The cases (4.3.5a)-(4.3.5d) pertain to the polarization structure, while the modifica-

tions (4.3.6) and (4.3.7) are related to the pole structure.

It can be verified explicitely that at four points these constraints rule out all

functions:

a = 0 : B4,h(p
6) ,

a = 1 : B4;h(E
1
4 , p

5) ,

a = 2 : B4;h(E
2
4 , p

4) ,

a = 3 : B4;h(E
3
4 , p

3) ,

(4.3.8)

with h = 1 and h = 4. To be specific, a = 1 functions include B(e1, p
5), B(e2, p

5) and

so on, while functions with a = 2 include B(e1, e2, p
4), B(e1, e3, p

4), and so on. Now

we move to the inductive step, and assume that Bn functions (4.3.4) are indeed ruled

out by the n-point constraints. Then we must show this implies the higher point Bn+1

functions are ruled out by the (n + 1)-point constraints. The (n + 1)-point versions

of the functions (4.3.4) have the form:

Bn+1(Ea
n+1, p

2n−a)δn+1, a = 0, n . (4.3.9)

However, a function Bn+1 is not necessarily a function of en+1, just like not all func-

tions (4.3.8) contain e4. The absence of en+1 changes the form of the soft limit, so we

must treat each case separately.
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Functions with en+1 ∈ Ea
n+1

If en+1 ∈ Ea
n+1, the functions (4.3.9) can be written as:

Bn+1(a) ≡ Bn+1({Ea
n, en+1}, p2n−a−1)δn+1, a = 0, n− 1 . (4.3.10)

Again let en+1 = e. The soft expansion of a function (4.3.10) has the same form of

(4.3.2):

Bn+1(a)→
∑
h=1,n

1

q.ph

(∑
r

e.erB
r
h(a− 1) +

∑
r

e.prC
r
h(a)

)
. (4.3.11)

Therefore a function Bn+1(a) vanishes only if all functions Bh(a) and Bh(a− 1) also

vanish, explaining why we needed to consider the whole tower of functions in (4.3.4).

It is easy to see that, because of the different denominators, functions in one pole

do not mix with functions in the other pole under any shifts except [1, n〉 and [n, 1〉,

so we can treat the numerators as independent. The [1, n〉 and [n, 1〉 shifts will be

discussed separately.

We want to show that Gn+1
n+1(a) constraints on Bn+1(a) imply Gh

n(a) constraints

on Bn;h(a), or in other words that any shift [i, j〉 inducts appropriately. Consider a

function Bk
n corresponding to the q.pn pole in eq. (4.3.11), with i, j 6= k. Then we

can write out the numerator of q.pn pole term:

∑
r 6=i,j,k

e.erB
r
n + e.eiB

i
n + e.ejB

j
n + e.ekB

k
n

+
∑
r 6=i,j,k

e.prC
r
n + e.piC

i
n + e.pjC

j
n + e.pkC

k
n . (4.3.12)

Now assume that both Bn+1 and Bk
n are functions of ei and ej. Then this shift belongs

to case (4.3.5a) for both functions. We must show that if Bn+1 ∝ z−1 under this shift,
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this implies that Bk
n must have the same behavior. We can express this condition as:

[i, j〉[Bn+1] ∝ z−1 ⇒ [i, j〉[Bk
n] ∝ z−1 . (4.3.13)

To see this is the case, we apply the shift to eq. (4.3.12):

z−1 ∝
∑
r 6=i,j,k

e.erB
r
n + e.eiB

i
n + (e.ej + ze.pi

ei.pj
pi.pj

)Bj
n + e.ekB

k
n

+
∑
r 6=i,j,k

e.prC
r
n + (e.pi + ze.ei)C

i
n + (e.pj − ze.ei)Cj

n + e.pkC
k
n . (4.3.14)

The prefactor e.ek remains unique so Bk
n cannot cancel against any of the other

functions, and so must carry the same z−1 behavior as Bn+1.

Similar reasoning can be applied for all the other cases. For some shifts however,

such as [k, i〉, which is case (4.3.5a) for Bn+1, but becomes a [k, i〉 case (4.3.5c) for

Bk
n, the argument will not be so simple: the shift mixes several functions together.

The constraint can luckily be disentangled, and we can still obtain a (weaker, but

necessary) constraint for Bk
n. This case is treated in appendix A.1, and all the others

can be derived using identical arguments.

Next, we have to show that the modifications due to the pole structure also induct

correctly. This is easy to see, since shifts involving 1 or n also shift the q.p1 and q.pn

poles in eq. (4.3.11), contributing one power of z in the denominator. Therefore

these shifts weaken any constraints found above by one power of z. Finally, we have

to show that the [1, n〉 shift also transforms accordingly. This is covered in appendix

A.2.

Therefore all Bn;h functions in (4.3.11) vanish, and then the same reasoning can

be applied for the Ck
n functions, which will also vanish. This proves that all functions

of the type Bn+1(Ea
n+1) with en+1 ∈ Ea

n+1 vanish.
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Functions with en+1 /∈ Ea
n+1

In this case Ea
n+1 = Ea

n and we must consider all functions of the type:

Bn+1(a) = Bn+1(Ea
n, p

2n−a), a = 0, n . (4.3.15)

In the absence of en+1, the soft limit is given by a simpler expression:

Bn+1(a)→
∑
h=1,n

1

q.ph
Bn;h(E

a
n, p

2n−a) , (4.3.16)

but now the functions on the right side are not of the type (4.3.4): they have two

extra powers of momenta. We can distinguish between functions with a < n and

a = n, which we denote:

B′(a) ≡ Bn;h(E
a
n, p

2n−a) , (4.3.17)

B′ ≡ Bn;h(E
n
n , p

n) . (4.3.18)

For a < n, the functions can be written in terms of the previous functions (4.3.4),

as B′(a) = B(a)
∑
aijpipj, since they have more momenta than polarization vectors.

Then it is easy to show that if B(a) functions are ruled out by Gh
n(a) constraints, so

must the B′(a) functions. The details of this proof are given in appendix A.3.

Finally, the functions with a = n, B′, cannot be expressed in terms of

Bn(En
n , p

n−2). However, the higher point version of such functions, Bn+1(En+1
n+1 , p

n+1),

is always a function of en+1, so if we use the soft limit:

Bn+1(En+1
n+1 , p

n+1)→
∑
h=1,n

1

q.ph

(∑
e.erB

r
h(E

n−1
n , pn+1) + e.prC

r
h(E

n
n , p

n)
)
, (4.3.19)

we are guaranteed to land only on functions which were already shown to vanish. The

B functions are of type (4.3.17) with a = n−1 and were shown to vanish, while the C
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functions are just the original n-point functions (4.3.18), and vanish by assumption.

Therefore Bn+1 functions (4.3.15) with en+1 /∈ Ea
n+1 also vanish (at the leading level)

under the corresponding constraints.

In conclusion, all possible types of Bn+1 functions vanish under Gn+1, concluding

the inductive proof that all functions Bn;h(E
a
n, p

2n−a−2) vanish under Ghn(Ea
n) con-

straints, including those in our original eq. (4.3.2).

4.3.3 Fixing C(En
n) functions

Once the B functions in (4.3.2) have been shown to vanish, using the same arguments

as before it is easy to see that the C functions must satisfy Ghn(En
n) constraints.

But by assumption functions of the type Cn;h(E
n
n , p

n−2) are uniquely fixed by these

constraints, up to some numerical coefficient. Therefore we obtain Ci
1 = aiAn and

Ci
n = biAn, and eq. (4.3.2) becomes:

M−1
n+1 =

∑
i 6=3

(
ai
e.pi
q.p1

+ bi
e.pi
q.pn

)
An . (4.3.20)

Now we exploit the fact that due to our choice of imposing momentum conserva-

tion, p3 is not present in the sums above. Consider the q.p1 pole term first. Under a

shift [i, 3〉, i 6= 1, only the prefactor e.pi is affected, e.pi → e.pi − ze.ei. Both Mn+1

and An have the same scaling O(zm) (with m = −1 for adjacent and m = −2 for

non-adjacent), and we obtain:

O(zm) ∝M−1
n+1 =

∑
j aje.pj

q.p1

× An ∝
∑

j aje.pj − zaie.ei
q.p1

×O(zm) = O(zm) + aiO(zm+1) ,

(4.3.21)
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which implies ai = 0, for i 6= 1. The coefficient a1 is not ruled out by the same trick,

since under [1, 3〉 the pole is also shifted:

O(zm) ∝M−1
n+1 = a1

e.p1

q.p1

× An ∝ ai
e.p1 + ze.e1

q.p1 + zq.e1

×O(zm) ∝ a1O(zm) . (4.3.22)

Similarly we obtain that bi = 0 for i 6= n, and we are left with:

M−1
n+1 =

(
a1
e.p1

q.p1

+ bn
e.pn
q.pn

)
An . (4.3.23)

Finally, under the special [1, n〉 shift, which crucially is adjacent in An but non-

adjacent in Mn+1:

O(z−2) ∝M−1
n+1 =

(
a1
e.p1

q.p1

+ bn
e.pn
q.pn

)
× An ∝

(
(a1 + bn)

e.e1

q.e1

+O(z−1)

)
×O(z−1)

∝ (a1 + bn)O(z−1) +O(z−2) , (4.3.24)

so a1 = −bn, and we obtain Eq. (4.3.3):

M−1
n+1 =

(
e.p1

q.p1

− e.pn
q.pn

)
An , (4.3.25)

completing the leading order proof.

4.4 Future directions

In this article we have provided the leading order step in the proof that locality and

correct behavior under BCFW shifts uniquely fix the Yang-Mills amplitude. It is

very likely that the subleading terms can be treated in the same way, but finding a

more direct proof would be far more rewarding. The most direct approach would be

to show that large z BCFW shifts are somehow related to gauge invariance. Then
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the proof in Ref. [22] would immediately apply. But this connection would be very

surprising in its own right. For instance, it might help explain why Yang-Mills and

gravity have this surprising behavior in the first place. One option in this direction

would be to use the Cauchy theorem to build the amplitude from different shifts

(but without assuming unitarity). It is very peculiar that these shifts are gauge

invariant, but non-local, so the object they construct is guaranteed to unfortunately

inherit both properties, and thus avoid the locality+gauge invariance argument. Yet

somehow, constructing the object from many different shifts must eliminate the non-

local terms. Ultimately, this result suggests the notion of “constructability” [52]-[53]

might play a more fundamental role, beyond recursion relations.

Another obvious direction is determining whether an equivalent statement holds

for gravity. In this case it is likely that demanding the stronger O(z−2) behavior will

be required. We suspect this to be the case due to the fact that even though O(z−1) is

sufficient for recursion relations to exist, it was discovered that the so called “bonus”

behavior of gravity is actually required for full on-shell consistency [52]. In Ref. [26]

it was shown that this bonus behavior automatically emerges from Bose-symmetry,

but it was unclear whether the logic can be reversed: could O(z−2) behavior imply

Bose-symmetry? If the claim of this present article can indeed be extended to gravity,

then clearly the answer is yes. And not only would the Bose-symmetry emerge, but

(assuming locality) the whole amplitude emerges.

Scalar theories like the non-linear sigma model or Dirac-Born-Infeld are another

obvious target. Recently, it was shown that recursion relations can be applied to

such theories as well, when the soft behavior is taken into account [54]. On the other

hand, in Ref. [22] it was shown that locality and the soft behavior completely fix

the amplitude. It would be very interesting to fully work out the interplay between

locality, vanishing in the soft limit, and BCFW shifts, in the context of this article.
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As a by-product of this investigation, we have also uncovered a new method for

computing the full Feynman amplitude via BCFW recursion relations, a method

which to our knowledge has not yet been explored. It would be interesting to see

what applications might be derived from this new approach.
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Chapter 5

Consistency conditions on massless

S-matrices

5.1 Introduction

Pioneering work by Weinberg showed that simultaneously imposing Lorentz-

invariance and unitarity, while coupling a hard scattering process to photons,

necessitates both charge conservation and the Maxwell equations [55]. Similarly, he

showed the same holds for gravity: imposing Lorentz-invariance and unitarity on

hard scattering processes coupled to gravitons implies both the equivalence principle

and the Einstein equations [56]. Weinberg’s theorems were then extended to fermions

in [57], where it was shown that spin-3/2 particles lead to supersymmetry. In the case

of higher spin theories [58], which are closely related to string theory [59], it shown

that unitarity and locality impose severe restrictions, and many no-go theorems were

established [60][61], more recently including in CFT’s [62][63].

The goal of this paper is to provide a basis for systematic analyses of the leading-

order interactions between any set of massless states in four dimensions, within the

context of the on-shell perturbative S-matrix. In short, our results are: (1) a new
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classification of three-particle amplitudes in constructible massless S-matrices, (2)

ruling out all S-matrices built from three-point amplitudes with
∑3

i=1 hi = 0 (other

than φ3-theory), (3) a new on-shell proof of the uniqueness of interacting gravitons

and gluons, (4) development of a new test on four-particle S-matrices, and (5) showing

how supersymmetry naturally emerges from consistency constraints on certain four-

particle amplitudes which include spin-3/2 particles.

Massless vectors (gluons and photons) and tensors (gravitons) are naturally de-

scribed via on-shell methods [20]-[64]. On- and off-shell descriptions of these massless

higher-spin states are qualitatively different: on-shell they have only transverse po-

larization states, while off-shell all polarization states may be accessed. Local field

theory descriptions necessarily introduce these unphysical, longitudinal, polarization

states. They must be removed through introducing extra constraints which “gauge

them away”. Understanding consistency conditions on the interactions of massless

gravitons and gluons/photons, should therefore stand to benefit from moving more-

and-more on-shell, where gauge-invariance is automatic.

“Gauge anomalies” provide a recent example [65][66]. What is called a “gauge-

anomaly” in off-shell formulations, on-shell is simply a tension between parity-

violation and locality. Rational terms in parity-violating loop amplitudes either

do not have local descriptions, or require the Green-Schwarz two-form to restore

unitarity to the S-matrix [67].

Along these lines, there are recent, beautiful, papers by Benincasa and Cac-

hazo [20], and by Schuster and Toro [21] putting these consistency conditions more on-

shell. Ref. [20] explored the constraints imposed on a four-particle S-matrix through

demanding consistent on-shell BCFW-factorization in various channels on the cou-

pling constants in a given theory [2].1 Four-particle tests based on BCFW have been

used to show the inconsistency of some higher spin interactions in Refs. [69][70],

1This consistency condition is further explored, for instance, in ref. [68].
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where it was suggested that non-local objects must be included in order to provide

consistent theories (see also [71]).

The analysis of Ref. [20] hinged upon the existence of a “valid” BCF-shift,

An(z) = An({pi + qz, pj − qz}) , with pi · q = pj · q = 0 and q · q = 0,

of the amplitude that does not have a pole at infinity. If A(z) does not have a

large-z pole, then its physical value, A(0), is a sum over its residues at the finite-z

poles. These finite-z poles are factorization channels; their residues are themselves

products of lower-point on-shell amplitudes: an on-shell construction of the whole

S-matrix [50][72][73]. However, then extant existence proofs for such shifts resorted

to local field theory methods [2][39][74].

Hence, ref. [21] relaxes this assumption, through imposing a generalized notion

of unitarity, which they refer to as “complex factorization”. The consequences of

these consistency conditions are powerful. For example, they uniquely fix (1) the

equivalence of gravitational couplings to all matter, (2) decoupling of multiple species

of gravitons within S-matrix elements, and (3) the Lie Algebraic structure of spin-1

interactions.

Our paper is organized as follows. We begin in section 5.2 by developing a useful

classification of all on-shell massless three-point amplitudes. We here pause to make

contact with standard terminology for “relevant”, “marginal” and “irrelevant” opera-

tors in off-shell formulations of Field Theory, and to review basic tools of the on-shell

S-matrix.

This is applied in section 5.3, first, to constructible four-particle amplitudes in

these theories. Locality and unitarity sharply constrain the analytic structure of scat-

tering amplitudes. Specifically, four-point amplitudes cannot have more than three

poles. Simple pole-counting, using the classification system in section 5.2, rules out
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all lower-spin theories, save φ3-theory, (S)YM, and GR/SUGRA–and one pathological

example, containing the interaction vertex A3(1
2
,−1

2
, 0). In section 5.4, we show that

the gluons can only consistently interact via YM, GR and the higher-spin amplitude

A3(1, 1, 1). Similarly, gravitons can only interact via GR and the higher-spin ampli-

tude A3(2, 2, 2). Gravitons and gluons are unique, and cannot couple to higher-spin

states. These two sections strongly constrain the list of possible interacting high-spin

theories, in accordance with existing no-go theorems.

Utilizing the information in sections 5.3 and 5.4, in section 5.5 we derive and

apply a systematic four-particle test, originally discussed in Ref. [75]. This test in-

dependently demonstrates classic results known about S-matrices of massless states,

such as the equivalence principle, the impossibility of coupling gravitons to massless

states with s > 2 [76], decoupling of multiple spin-2 species, and the Lie Algebraic

structure of vector self-interactions.

Knowing the equivalence principle, in section 5.6 we then study the consistency

conditions of S-matrices involving massless spin-3/2 states. From our experience

with supersymmetry, we should expect that conserved fermionic currents correspond

to massless spin-3/2 states. In other words, we expect that a theory which interacts

with massless spin-3/2 particles should be supersymmetric.

Supersymmetry manifests itself through requiring all poles within four-point am-

plitudes have consistent interpretations. The number of poles is fixed, mandated by

locality and unitarity and the mass-dimension of the leading-order interactions. In-

variably, for S-matrices involving external massless spin-3/2 particles, at least one

of these poles begs for inclusion of a new particle into the spectrum, as a propa-

gating internal state on the associated factorization channel. For these S-matrices

to be consistent, they require both gravitons to be present in the spectrum [77] and

supersymmetry. We close with future directions in section 5.7.
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5.2 Basics of on-shell methods in four-dimensions

In this section, we briefly review three major facets of modern treatments of massless

S-matrices: the spinor-helicity formalism, kinematic structure of three-point ampli-

tudes in these theories, and the notion of constructibility. The main message is

three-fold:

• The kinematic dependence of three-point on-shell amplitudes is uniquely fixed

by Poincare invariance (and is best described with the spinor-helicity formal-

ism).

• On-shell construction methods, such as BCFW-recursion, allow one to recur-

sively build up the entire S-matrix from these on-shell three-point building

blocks. Amplitudes constructed this way are trivially “gauge-invariant”. There

are no gauges.

• Any pole in a local and unitary scattering amplitude must both (a) be a simple

pole in a kinematical invariant, e.g. 1/K2, and (b) have a corresponding residue

with a direct interpretation as a factorization channel of the amplitude into two

sub-amplitudes.

5.2.1 Massless asymptotic states and the spinor-helicity for-

malism

In a given theory, scattering amplitudes can only be functions of the asymptotic scat-

tering states. Relatively few pieces of information are needed to fully characterize an

asymptotic state: momentum, spin, and charge/species information. Spinor-helicity

variables automatically and fully encode both momentum and spin information for

massless states in four-dimensions.
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Four-dimensional Lorentz vectors map uniquely into bi-spinors, and vice versa

(the mapping is bijective): pαα̇ = pµσ
µ
αα̇. Determinants of on-shell momentum bi-

spinors are proportional to m2. Bi-spinors of massless particles thus have rank-1,

and must factorize into a product of a left-handed and a right-handed Weyl spinor:

p2 = 0⇒ pαα̇ = λαλ̃α̇.

These two Weyl spinors λ and λ̃ are the spinor-helicity variables, and are uniquely

fixed by their corresponding null-momentum, p, up to rescalings by the complex

parameter z: (λ, λ̃) → (zλ, λ̃/z). Further, they transform in the (1/2,0) and (0,1/2)

representations of the Lorentz group. Dot products of null momenta have the simple

form, pi · pj = 〈ij〉[ji], where the inner-product of the (complex) LH-spinor-helicity

variables, is 〈AB〉 ≡ λAαλ
B
β ε

αβ, and the contraction of the RH- Weyl spinors is [AB] ≡

λ̃Aα̇ λ̃
B
β̇
εα̇β̇.

A good deal of the power of the spinor-helicity formalism derives from the dissocia-

tion between the left-handed and right-handed degrees of freedom. Real null-momenta

are defined by the relation,

λ̃ = λ̄ (5.2.1)

between the two Weyl-spinors. Complex momenta are not similarly bound: the left-

handed and right-handed Weyl-spinors need not be related for complex momentum.

For this reason, they can be independently deformed by complex parameters; this

efficiently probes the analytic properties of on-shell amplitudes that depend on these

variables. From here on out, we refer to the left-handed Weyl-spinors, i.e. the λs, as

holomorphic variables; right-handed Weyl-spinors, i.e. the λ̃s are referred to as anti-

holomorphic variables. Similarly, holomorphic spinor-brackets and anti-holomorphic

spinor-brackets refer to 〈λ, χ〉- and [λ̃, χ̃]-contractions.
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Identifying the ambiguity (λ, λ̃) → (zλ, λ̃/z) with little-group (i.e. helicity) ro-

tations, (λ, λ̄) → (e−iθ/2λ, eiθ/2λ̄), allows one to use the spinor-helicity variables to

express not only the momenta of external states in a scattering process, but also their

spin (helicity). In other words, the spinor-helicity variables encode all of the data

needed to characterize massless asymptotic states, save species information.

5.2.2 Three-point amplitudes

Scattering processes involving three massless on-shell states have no non-trivial kine-

matical invariants. At higher-points, complicated functions of kinematical invariants

exist that allow rich perturbative structure at loop level. These invariants are absent

at three-points. Poincare invariance, up to coupling constants, thus uniquely and to-

tally fixes the kinematical structure of all three-point amplitudes for on-shell massless

states.

The standard approach to solving for the three-point amplitudes (see for example

Ref. [20]) involves first writing a general amplitude as:

A3 = A
(λ)
3 (〈12〉, 〈23〉, 〈31〉) + A

(λ̃)
3 ([12], [23], [31]) (5.2.2)

where (λ) denotes exclusive dependence on holomorphic spinors, and (λ̃) denotes the

same for anti-holomorphic spinors. Imposing momentum conservation forces [12] =

[23] = [31] = 0, and/or 〈12〉 = 〈23〉 = 〈31〉 = 0. Typically, only one of the two

functions in Eq. (5.2.2) is smooth in this limit, and is thus selected as the physical

one, while the other is discarded.
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Explicitly, in these cases, the amplitudes become:

A3(1h1a , 2
h2
b , 3

h3
c ) = g−abc〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 , for

3∑
i=1

hi < 0 ,

A3(1h1a , 2
h2
b , 3

h3
c ) = g+

abc[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , for
3∑
i=1

hi > 0 , (5.2.3)

where g±abc is the species dependent coupling constant.

However, this approach leads to ambiguities in the
∑3

i=1 hi = 0 case. Consider

for example a three-point interaction between two opposite-helicity fermions and a

scalar. Equation (5.2.2) reads in this case:

A3

(
10, 2−

1
2 , 3

1
2

)
= g−

〈12〉
〈13〉

+ g+ [13]

[12]
(5.2.4)

Imposing momentum conservation, for example by setting 〈12〉 = 〈23〉 = 〈31〉 =

0, is clearly ill-defined2. Because of this ambiguity,
∑3

i=1 hi = 0 amplitudes have

generally been ignored in most of the on-shell literature. However, the ambiguity is

only superficial.

The inconsistencies arise because we first find the most general eigenfunction of

the helicity operator, ie. Eq. (5.2.2), and only after that do we impose momentum

conservation. However, this order of operations is arbitrary. Since we always only deal

with on-shell amplitudes, we can simply first fix for example 〈12〉 = 〈23〉 = 〈31〉 = 0,

and then look for solutions which are functions only of λ̃s. In this case, the amplitudes

2Attempting to impose momentum conservation by a well-defined limit leads to other inconsis-
tencies as well, for example with the helicity operator.
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are perfectly well defined as:

A3 = g−abcf
−(λi), when [12] = [23] = [31] = 0 (5.2.5)

and

A3 = g+
abcf

+(λ̃i), when 〈12〉 = 〈23〉 = 〈31〉 = 0 (5.2.6)

Ultimately, it will in fact turn out that none of these amplitudes are consistent with

locality and unitarity, but this approach clears any ambiguities related to
∑3

i=1 hi = 0

amplitudes.

Before moving on, we pause to consider the role of parity in the on-shell formalism.

Parity conjugation swaps the left-handed and right-handed SU(2)s that define the

(double-cover) of the four-dimensional Lorentz-group. As such, parity swaps the

left-handed Weyl-spinors with the right-handed Weyl-spinors, (1/2, 0) ↔ (0, 1/2).

Therefore, within the spinor-helicity formalism, in the context of Eq. (5.2.3),

g−abc = g+
abc ⇐⇒ Parity − conserving interactions , and (5.2.7)

g−abc = −g+
abc ⇐⇒ Parity − violating interactions .

Further, as we associate the right-handed Weyl-spinors, i.e. the λs, with holomor-

phic degrees of freedom and the left-handed Weyl-spinors, i.e. the λ̃s, with anti-

holomorphic degrees of freedom, we see that parity-conjugation swaps the holomor-

phic and anti-holomorphic variables. In other words, parity- and complex- conjuga-

tion are one-and-the-same. The conjugate of a given three-point amplitude is the

same amplitude with all helicities flipped: the “conjugate” of A3(1+h1 , 2+h2 , 3+h3) is

A3(1−h1 , 2−h2 , 3−h3).
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We will find it useful to classify all such three-particle amplitudes by two numbers:

A =

∣∣∣∣ 3∑
i=1

hi

∣∣∣∣ , H = max

{
|h1|, |h2|, |h3|

}
. (5.2.8)

Comparing the relevant operator in φ3-theory to its corresponding primitive three-

point amplitude, we infer that three-point amplitudes with A = 0 correspond to

relevant operators. Similarly, QCD’s A = 1 three-point amplitude corresponds to

marginal operators; GR has A = 2, and interacts via irrelevant, 1/Mpl suppressed,

operators.

5.2.3 Four points and higher: Unitarity, Locality, and Con-

structibility

There are several, complimentary, ways to build up the full S-matrix of a theory,

given its fundamental interactions. Conventionally, this is through Feynman dia-

grams, the work-horse of any perturbative analysis of a given field theory. However,

this description of massless vector- (and higher-spin-) scattering via local interaction

Lagrangians necessarily introduces unphysical, longitudinal, modes into intermediate

expressions [78][75]. To project out these unphysical degrees of freedom, one must

impose the gauge conditions.

On the other hand, recent developments have elucidated methods to obtain the

full S-matrix, while keeping all states involved on-shell (and physical) throughout

the calculation [20][21][64][2][72][79]. We refer to these methods, loosely speaking, as

“constructive”. Crucially, because all states are on-shell, all degrees of freedom are

manifest, thus: amplitudes that are directly constructed through on-shell methods are

automatically gauge-invariant. This simple fact dramatically increases both (a) the

computational simplicity of calculations of scattering amplitudes, and (b) the physical

transparency of the final results.
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The cost is that amplitudes sewn together from on-shell, delocalized, asymptotic

states do not appear to be manifestly local. Specifically, at the level of the amplitude,

locality is reflected in the pole-structure of the amplitude. Scattering amplitudes

in local theories have exclusively propagator-like, ∼ 1/K2, poles (K =
∑

i pi is a

sum of external null momenta). Non-local poles correspond to higher-order poles, i.e.

1/(K2)4, and/or poles of the form, 1/〈i|K|j], where K is a sum of external momenta.3

An on-shell S-matrix is local if its only kinematical poles are of the form 1/(
∑

i pi)
2.

Unitarity, as well, has a slightly different incarnation in the on-shell S-matrix.

In its simplest guise, unitarity is simply the dual requirement that (a) the residue

on each and every pole in an amplitude must have an interpretation as a physical

factorization channel,

A(n) → 1

K2
A

(n−m+1)
L × A(m+1)

R , (5.2.9)

and (b) that any individual factorization channel, if it is a legitimate bridge between

known lower-point amplitudes in the theory, must be a residue of a fully legitimate

amplitude with the same external states in the theory. For example, given a factoriza-

tion channel of the form A3(1−2, 2−2, P+2
12 ) 1

s12
A3(P−2

12 , 3
+2, 4+2), within a theory con-

structed from the three-point amplitude A3(+2,−2,+2) and its parity-conjugate, then

this must be a factorization channel of the four-point amplitude A4(1−2, 2−2, 3+2, 4+2).

Poincare invariance uniquely fixes the three-particle S-matrix in a theory, up to

coupling constants. Constructive methods, such as the BCFW recursion relations,

use these fixed forms for the three-point amplitudes as input to build up the entire S-

matrix, without making reference to Feynman diagrams [2][72]. Basic symmetry con-

3Indeed, individual terms within gluon amplitudes generated by, for instance, BCFW-
recursion[50][2] contain “non-local” poles, specifically of this second type, ∼ 1/〈i|K|j]. These
non-local poles, however, always cancel in the total sum, and the final expression is manifestly
local [78][72].
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siderations, residue theorems, and judicious application of tree-level/single-particle

unitarity, fix the entire S-matrix!4

Before closing, we motivate the most famous on-shell construction of massless

scattering amplitudes: BCFW-recursion. In it, two null external momenta, pµ1 and

pµ2 , are deformed by a complex null-momentum, z× qµ. The shift is such that (a) the

shifted momenta p1(z) = p1 + qz and p2(z) = p2 − qz remain on-shell (possible, as

momentum qµ is complex), and (b) the total sum of external momenta remains zero.

As tree amplitudes are rational functions of their external kinematical invariants

with, at most, simple poles, this deformation allows one to probe the analytic pole

structure of the deformed amplitude, Atree(z):

Atree(z) ≡ Atree(ph11 (z), ph22 (z), ...phnn ) . (5.2.10)

Kinematical poles in Atree(z) are either un-shifted, or scale as 1/K2 → 1/(2z(q ·

K) + K2), if K includes only one of p̂1 or p̂2. Cauchy’s theorem then gives a simple

expression for the physical amplitude, Atree(z = 0),

Atree(z = 0) =
∑
zP

Res

{
A4(z)

z

}∣∣∣∣
zP=− K2

2q·K

+
(
Pole at z →∞

)
. (5.2.11)

Existence of such a BCFW-shift, in both Yang-Mills/QCD and in General Relativity,

that dies off at least as quickly as 1/z for large-z can be elegantly shown through

imposing complex factorization[21], and allows the entire on-shell S-matrix to be

built up from three-point amplitudes. Existence of valid BCFW-shifts were originally

shown within local formulations of field theory [2][80][39]. In section 5.5 we develop

a shift at four-points which is guaranteed to die off for large-z by simple dimensional

analysis.

4Invocations of “unitarity” in this paper do not refer to the standard two-particle unitarity-cuts.
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5.3 Ruling out constructible theories by pole-

counting

Pedestrian counting of poles, mandated by constructibility in four-point amplitudes,

strongly constrains on-shell theories. The number of poles in an amplitude must be

less than or equal to the number of accessible, physical, factorization channels at four

points. Tension arises, because the requisite number of poles in a four-point amplitude

increases with the highest-spin particle in the theory, while the number of possible

factorization channels is bounded from above by three, the number of Mandelstam

variables.

This tension explicitly rules out the following theories as inconsistent with con-

structibility, locality, and unitarity: (1) all relevant interactions (A = 0), save φ3

and an “exotic” Yukawa-like interaction, (2) all marginal interactions (A = 1) save

those in YM, QCD, Yukawa theory, and scalar QED, and another “exotic” interaction

between spin-3/2 particles and gluons, and (3) all first-order irrelevant interactions

(A = 2) save those in GR. Further consistency conditions later rule out those two

unknown, pathological, relevant (A = 0) and marginal (A = 1) interactions.

Further, incrementally more sophisticated pole-counting sharply constrains highly

irrelevant (A > 2) higher-spin amplitudes. Specifically, save for two notable examples,

they cannot consistently couple either to gravitational interactions or to more conven-

tional Yang-Mills theories or “gauge”-theories. This is the subject of section 5.4. It is

somewhat striking that simply counting poles in this way so powerfully constrains the

palate of three-point amplitudes which may construct local and unitary S-matrices.

The results of this pole-counting exercise are succinctly summarized in Fig. 5.1.
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5.3.1 The basic consistency condition

Explicitly we find that four-particle S-matrices constructed from primitive three-

particle amplitudes are inconsistent with locality and unitarity if there are more than

three poles in any given term in an amplitude. More specifically, the number of poles

in the simplest amplitudes has to be at least Np = 2H + 1 − A. Thus, a theory is

necessarily inconsistent if

2H + 1− A = Np > 3 ⇐⇒ Number of poles > cardinality of {s, t, u} . (5.3.1)

Recall that, in accordance with Eq. (5.2.8), A = |h1 + h2 + h3| and H =

max{|h1|, |h2|, |h3|}.

We prove constraint (5.3.1) below.5 First, we note there are A total spinor-brackets

in three-point amplitudes of the type in Eq. (5.2.3):

A3(1h1 , 2h2 , 3h3) = κA[12]c[13]b[23]a ⇒ a+ b+ c =
3∑
i=1

hi = A > 0 . (5.3.2)

Thus, on a factorization channel of a four-point amplitude, A4, constructed from a

given three-point amplitude multiplied by its parity conjugate amplitude, A3 × Ā3,

there will be A net holomorphic spinor-brackets and A net anti-holomorphic spinor-

brackets: A 〈 〉s and A [ ]s. Therefore, generically on such a factorization channel,

the mass-squared dimension of the amplitude is:

A4 →
κ2
A

sαβ
A3 × Ā3 ⇒

[
A4

κ2
A

]
= (K2)A−1 . (5.3.3)

By locality, an amplitude may only have 1/K2-type poles. Therefore the helicity

information, captured by the non-zero little-group weight of the spinor-products, can

only be present in an overall numerator factor multiplying the amplitude. Four-point

5For expediency, we defer discussion of one technical point, proof of Eq. (5.3.5), to appendix A.4.
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amplitudes thus naturally split into three parts: a numerator, N , which encodes

helicities of the states, a denominator, F (s, t, u), which encodes the pole-structure,

and the coupling constants, κ2
A, which encode the species-dependent characters of the

interactions (discussed in section 5.5):

A4 = κ2
A

N

F (s, t, u)
⇒
[

N

F (s, t, u)

]
= (K2)A−1 , (5.3.4)

where the last equality is inferred from Eq. (5.3.3). We prove in Appendix A.4,

that minimal numerators N which accomplish this goal are comprised of exactly

2H holomorphic and 2H anti-holomorphic spinor-brackets, none of which can cancel

against any pole in F (s, t, u):

N ∼ 〈 〉(1)...〈 〉(2H) [ ](1)...[ ](2H) ⇒ [N ] = (K2)2H . (5.3.5)

Thus, by (5.3.3), (5.3.4), and (5.3.5), we see

[
A4

κ2
A

]
=

[
N

F (s, t, u)

]
= (K2)A−1 , and [N ] = (K2)2H

⇒ [F (s, t, u)] = (K2)2H+1−A

⇒ Np = 2H + 1− A . (5.3.6)

Constraint (5.3.1) naturally falls out from Eq. (5.3.6), after observing that there

can be at most three legitimate, distinct, factorization channels in any four-point

tree amplitude. This specific constraint, and others arising from pole-counting from

minimal numerators, is extremely powerful. The catalogue of theories they together

rule out are succinctly listed in Fig. 5.1. We explore the consequences of this constraint

below.
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Figure 5.1: Summary of pole-counting results. Recall Np = 2H + 1 − A, where
A = |

∑3
i=1 hi| and H = max{|hi|}. (Color online.) In short: black-dots represent

sets of three-point amplitudes that define self-consistent S-matrices that can couple to
gravity; green-dots represent sets of three-point amplitudes which—save for two ex-
ceptions explicitly delineated in Eq. (5.4.6)—define S-matrices that cannot couple (in
the sense defined in section 5.4) to any S-matrix defined by the black-dots; red-dots
represent sets of three-point amplitudes that cannot ever form consistent S-matrices.
Straightforward application of constraint (5.3.1), in subsection 5.3.2, rules out all A3s
with (H,A)-above the Np = 3-line. More careful pole-counting, in subsection 5.3.3
and appendix A.5, rules out all interactions above the Np = 1 line, save for those
with (H,A) = (1/2, 0), (1, 1), (3/2, 2), and (2, 2). Further, in section 5.4, a modi-
fied pole-counting rules out interaction between the (H,A) = (2, 2) gravity theory
and any other theory with a spin-2 particle, save the unique (H,A) = (2, 6)-theory.
Similar results hold for gluon self-interactions: vectors present in any higher-spin
amplitude with A > 3, save the unique (H,A) = (1, 3)-theory, cannot couple to
the vectors interacting via leading (H,A) = (1, 1) interactions. Section 5.5.3 rules
out the (H,A) = (1/2, 0)-interaction. Amplitudes in the grey-shaded regions can
never be consistent with locality and unitarity. Higher-spin, A > 3, amplitudes be-
tween the H = A/2 and A = A/3 lines may be consistent. However, they cannot
be coupled either to GR or YM, save for (H,A) = (1, 3) or (2, 6). In section 5.6,
we show inclusion of leading-order interactions between massless spin-3/2 states, at
A = 2, promotes gravity to supergravity. Supergravity cannot couple to even these
two A > 2 interactions, as seen in appendix A.7.
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5.3.2 Relevant, marginal, and (first-order) irrelevant theo-

ries (A ≤ 2): constraints

To begin with, note that constraint (5.3.1) immediately rules out all theories with

Np > 3. Beginning with relevant, A = 0, interactions, we see that Np = 2H + 1 ≤

3 ⇒ H ≤ 1. Already this rules out relevant interactions between massless spin-3/2

and spin-2 states.

Next, argument by contradiction rules out relevant amplitudes involving massless

vectors, i.e. the (H,A) = (1, 0)-theories wh. Consider such a relevant amplitude,

for example A3(+1,−1/2,−1/2). It constructs a putative four-point amplitude with

external vectors,

A4

(
−1,−1

2
,
1

2
, 1

)
. (5.3.7)

This amplitude must have 2 + 1− 0 = 3 poles, each of which must have an interpre-

tation as a valid factorization channel of the amplitude. So it must have valid s-, t-,

and u-factorization channels, with relevant (A = 0) three-point amplitudes on either

side. However, on the s→ 0 pole, A4 factorizes as,

A4

(
−1,−1

2
,
1

2
, 1

) ∣∣∣∣
s→0

=
1

s
Ā3

(
−1,−1

2
, h

)
A3

(
1,

1

2
,−h

)
. (5.3.8)

where h must be 3/2 to make the interaction relevant. Thus, to be consistent with

locality and unitarity, relevant vector couplings must also include spin-3/2 particles.

But, as mentioned above, including these particles in the spectrum, and then taking

them as external state invariably leads to too many poles. An identical argument

shows that the remaining relevant vertex A3(+1,−1, 0) requires spin 2 particles, again

leading to an inconsistency. Thus all (H,A) = (1, 0) interactions are also ruled out.
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Thus the only admissible relevant three-point amplitudes are

A3(0, 0, 0) , and A3

(
0,

1

2
,−1

2

)
. (5.3.9)

The first amplitude is the familiar one from φ3-theory. We rule out the second am-

plitude in section 5.5.3.

Further, we see that marginal interactions cannot contain particles with helicities

larger than 3/2. Directly, requiring 2H + 1 − A ≤ 3 for A = 1 forces H ≤ 3/2.

(H, 1)-type three-point amplitudes cannot build S-matrices consistent with locality

and unitarity for H > 3/2.

We rule out marginal (H,A) = (3/2, 1) amplitudes, i.e. marginal coupling to

massless spin-3/2 states, using the same logic as above. This time, marginal ampli-

tudes with external 3/2 particles require all three poles. Two factorization channels

have consistent interpretations within the theory; however, the “third” channel does

not. It necessitates exchange of a spin-2 state between the three-point amplitudes.

But this violates constraint (5.3.1): marginal amplitudes with spin-2 states lead to

amplitudes with four kinematic poles. Thus, the only admissible marginal three-point

amplitudes are,

A3 (1, 1,−1) , A3

(
1,

1

2
,−1

2

)
, A3 (1, 0, 0) , and A3

(
0,

1

2
,
1

2

)
, (5.3.10)

and their conjugate three-point amplitudes. We refer to this set of three-point am-

plitudes, loosely, as “the N = 4 SYM interactions.”

Finally, constraint (5.3.1) rules out leading-order gravitational coupling to parti-

cles of spin-H > 2. Such three-point amplitudes, of the form A3(H,−H,±2), have

A = 2 and H > 2, and yield four-point amplitudes with 2H−1 > 3 poles; this cannot
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be both unitary and local for H > 2. Admissible A = 2 amplitudes are restricted to:

A3 (2, 2,−2) , A3

(
2,

3

2
,−3

2

)
, A3 (2, 1,−1) , A3

(
2,

1

2
,−1

2

)
, A3

(
2,

1

2
,−1

2

)
,

(5.3.11)

A3

(
3

2
,
3

2
,−1

)
, A3

(
3

2
, 1,−1

2

)
, A3

(
3

2
,
1

2
, 0

)
, A3

(
1,

1

2
,
1

2

)
, and A3 (1, 1, 0) ,

(5.3.12)

and their conjugate three-point amplitudes. We refer to the amplitudes in (5.3.11)

as “gravitational interactions.” More generally, we refer to this full set of three-point

amplitudes, loosely, as “the N = 8 SUGRA interactions.”

5.3.3 Killing Np = 3 and Np = 2 theories for A ≥ 3

It is relatively simple to show that any theory constructed from A3s with Np = 3

poles, beyond A = 2, cannot be consistent with unitarity and locality. To begin, we

note that

{
Np = 3⇐⇒ 2H + 1− A = 3

}
⇒ H = A/2 + 1 . (5.3.13)

We label the helicities in the three-point amplitudes with Np = 3, as A3(H, g, f).

Without loss of generality, we order them as f ≤ g ≤ H = A/2 + 1. As A > 2, then

g + f must be positive: at a minimum g > 0.

Now construct the four-point amplitude A4(H,−H, f,−f) from this three-point

amplitude and its parity-conjugate. By assumption, this amplitude must have three

poles, each of which must have an interpretation as a legitimate factorization channel

within the theory constructed from A3(A/2 + 1, g, f) (or some mild extension of the

theory/spectrum).
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However, in order for the t-channel pole in the amplitude A4(H,−H, g,−g) to

have a viable interpretation as a factorization channel, it requires a state with spin

greater than A/2 + 1 = H. Specifically, on this t-pole,

A4(H,−H, g,−g)

∣∣∣∣
t→0

=
1

K2
14

A3

(
A+ 2

2
,−g, A+ 2

2
+ g

)
Ā3

(
− A+ 2

2
, g,−A+ 2

2
− g
)

(5.3.14)

By assumption, g > 0: the intermediate state must have helicity H̃ = A/2 + 1 + g.

Clearly this new state has helicity larger than H = A/2 + 1. A priori, there is no

problem: new particles mandated by consistency conditions may be included into

the spectrum of a theory without necessarily introducing inconsistencies. However,

if these particles of spin H̃ > H = A/2 + 1 are put as external states of the new

three-point amplitudes in the modified theory, then these new four-point amplitudes

will necessarily have 3 + 2g > 3 poles, in violation of constraint (5.3.1).

Hence all theories constructed from A3s with Np ≥ 3 and A > 2 are inconsistent.

Similar arguments show that theories with Np = 2 cannot be consistent for A > 2;

they are however slightly more detailed, and involve several specific cases at low-A

values. Proof of this extended claim is relegated to Appendix A.5.

5.4 There is no GR (YM) but the true GR (YM)

In this section, we investigate further constraints imposed by coupling A ≥ 3 theories

to GR (YM) interactions. This is done by considering four-point amplitudes which

factorize as A4 → AGR × A3 and A4 → AYM × A3, where A3 is the vertex of some

other theory. Note however that the arguments in this section apply only to three-

point interactions which contain either a spin-2 or a spin-1 state. Other higher spin

theories are not constrained in any way by this reasoning.
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First, we find that all higher-spin theories are inconsistent if coupled to gravity.

This is in addition to the previous section, where spin s > 2 theories with A > 2

were allowed if Np ≤ 1. Further, we show that massless spin-2 states participating

in A > 2 three-point amplitudes must be identified with the graviton which appears

in the usual A = 2 A3(+2,−2,±2) three-point amplitudes defining the S-matrix of

General Relativity. Pure pole-counting shows that no massless spin-2 state in any

three-point amplitude with A > 2 can couple to GR, unless they are within the unique

(H,A) = (2, 6) three-point amplitudes, A3(2, 2, 2) and its complex conjugate. Similar

results hold for gluons.6

To rule out higher-spin theories interacting with gravity, we show that amplitudes

with factorization channels of the type,

A4(1+2, 2−2, 3−H , 4−h)→ 1

K2
A3(2,−2,+2)× A3(−2,−H,−h) (5.4.1)

cannot be consistent with unitarity and locality, unless |H| ≤ 2 and |h| ≤ 2.

It is relatively easy to see this, especially in light of the constraints from sec-

tions 5.3.2 and 5.3.3, which fix H ≤ A/2 for A ≥ 3. Note that, in order to even cou-

ple to GR’s defining three-graviton amplitude, the three-point amplitude in question

must have a spin-2 state. These two conditions admit only three possible three-point

amplitudes, for a given A:

A3(A/2− 1, A/2− 1, 2)⇒ A4(1+2, 2−2, 3−(A/2−1), 4−(A/2−1)) ,

A3(A/2− 1/2, A/2− 3/2, 2)⇒ A4(1+2, 2−2, 3−(A/2−1/2), 4−(A/2−3/2)) , and (5.4.2)

A3(A/2, A/2− 2, 2)⇒ A4(1+2, 2−2, 3−(A/2), 4−(A/2−2)) .

6We further show, in appendix A.6 that theories with spin-3/2 states are also unique in a similar
manner.
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The minimal numerator which encodes the spins of the extenal states in, for instance,

the first amplitude, must be,

N ∼ [1|P |2〉4
(
〈34〉2

)(A/2−1) ⇒ [N ] = (K2)3+A/2 . (5.4.3)

However, by power-counting, the kinematic-dependent part of the amplitude must

have mass-dimension,

[
N

f(s, t, u)

]
=

[
1

K2
A

(GR)
Left A

(A)
Right

]
=

(K2)2/2 (K2)A/2

(K2)
= (K2)A/2 , (5.4.4)

and thus the denominator, f(s, t, u), must have mass-dimension,

[f(s, t, u)] = (K2)3 ⇒ f(s, t, u) = s t u ! (5.4.5)

Casual inspection shows us that the “third” factorization channel, to be sensible,

requires an intermediary with spin A/2− 1 to couple directly via the leading A = 2

gravitational interactions. This, and similar analysis for the other two classes of

three-point amplitudes in Eq. (5.4.2), proves that the spin-2 particle associated with

the graviton in the leading-order, (H,A) = (2, 2), gravitational interactions can only

participate in three higher-derivative three-point amplitudes, namely,

A3 (+2,+1,+1) , A3

(
+2,+

3

2
,+

3

2

)
, A3 (+2,+2,+2) (5.4.6)

In the special case of the three-point amplitude A3(+2,+2,+2), the third channel

simply necessitates an intermediate spin-2 state, the “graviton.” Thus GR can couple

to itself, or amplitudes derived from Ra
bR

b
cR

c
a, its closely related higher-derivative

cousin [56][27].7

7The minimal numerators for the other candidate amplitudes in this theory, Eq. (5.4.2), have
the same number of spinor-brackets in their numerator as that in Eq. (5.4.3); thus have the same
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Second, gluons. Specifically, we show that gluons, i.e. the massless spin-1 particles

which couple to each-other at leading order via theH = A = 1 three-point amplitudes,

can not consistently couple to any spin s > 1 within A ≥ 3 amplitudes. This means

that any constructible amplitude with factorization channels of the type,

A4(1+1, 2−1, 3−H , 4−h)→ 1

K2
A3(1,−1,+1)× A3(−1,−H,−h) (5.4.7)

cannot be consistent with unitarity and locality, unless |H| ≤ 1 and |h| ≤ 1.

Again, in light of the constraints from sections 5.3.2 and 5.3.3, which fix H ≤ A/2

for A ≥ 3, it is relatively easy to see this. To even possibly couple to this three-gluon

amplitude, the three-point amplitude in question must have a spin-1 state. These

two conditions allow only two possible three-point amplitudes, for a given A:

A3(A/2− 1/2, A/2− 1/2, 1)⇒ A4(1+1, 2−1, 3−(A/2−1/2), 4−(A/2−1/2)) , and

A3(A/2, A/2− 1, 1)⇒ A4(1+1, 2−1, 3−(A/2), 4−(A/2−1)) . (5.4.8)

The minimal numerator which encodes the spins of the extenal states in, for instance,

the first amplitude, must be,

N ∼ [1|P |2〉2(〈34〉2)(A/2−1/2) ⇒ [N ] = (K2)A/2+3/2 . (5.4.9)

However, by power-counting, the kinematic-dependent part of the amplitude must

have mass-dimension,

[
N

f(s, t, u)

]
=

[
1

K2
A

(YM)
Left A

(A)
Right

]
=

(K2)1/2 (K2)A/2

(K2)
= (K2)A/2−1/2 , (5.4.10)

mass-dimensions. Therefore all amplitudes must identical number of poles, and as in Eq. (5.4.5),
they have f(s, t, u) = stu.
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and thus the denominator, f(s, t, u) must have mass-dimension two:

[f(s, t, u)] = (K2)2 ⇒ 1/f(s, t, u) must have at least two poles. (5.4.11)

Again, casual inspection shows that, while the one pole—that in Eq. (5.4.7)—indeed

has a legitimate interpretation as a factorization channel within this theory, the “sec-

ond” channel generically does not: it requires the gluon to marginally couple to

spin A/2 − 1/2 ≥ 1 states. As seen in section 5.3.2, this cannot happen—unless

A/2− 1/2 = 1⇔ A = 3.

For the second amplitude in Eq. (5.4.8) the argument is a bit more subtle when

A = 3. In this case, the u-channel is prohibited, but the t-channel is valid:

A4(1+1, 2−1, 3−3/2, 4−1/2)→ 1

K2
A3(1,−1/2, 1/2)× A3(−1/2,−3/2,−1) (5.4.12)

This interaction is ruled out through slightly more detailed arguments, involving

the structure of the vector self-coupling constant in A3(1,−1,±1)—discussed in sec-

tion 5.5. We pause to briefly describe how this is done, but will not revisit this partic-

ular, A3(1,−1/2, 1/2) interaction further (it is just a simple vector-fermion QED or

QCD interaction). Simply, we note that A3(1,−1,±1) ∝ fabc, the structure-constant

for a simple and compact Lie-Algebra; see Eq. (5.5.7). From here, it suffices to note

that either by choosing the external vectors to be photons, or gluons of the same color,

this amplitude vanishes, and then so does the original s-channel. Nothing is affected

in Eq. (5.4.12) and so Eq. (5.4.11) cannot be fulfilled, implying that the coupling

constant of A3(1, 1/2, 3/2) must vanish.

Thus at four-points YM can only couple to itself, gravity via the A3(±2, 1,−1)

three-point amplitude, or amplitudes derived from F a
bF

b
cF

c
a, its closely related

higher-derivative cousin.
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5.5 Behavior near poles, and a possible shift

In this section we explain a new shift which is guaranteed to vanish at infinity. Using

this shift, we re-derive classic results, such as (a) decoupling of multiple species of

massless spin-2 particles [61], (b) spin-2 particles coupling to all particles (with |H| ≤

2, of course!) with identical strength, κ = 1/Mpl, (c) Lie Algebraic structure-constants

for massless spin-1 self-interactions, and (d) arbitrary representations of Lie Algebra

for interactions between massless vectors and massless particles of helicity |H| ≤ 1/2.

Note that in section 5.3, we proved that a four point-amplitude, constructed from

a given three-point amplitude and its parity conjugate, A
(H,A)
3 and Ā

(H,A)
3 , takes the

generic form,

A4 ∼
(
〈 〉[ ]

)2H

(K2)2H−A+1
. (5.5.1)

Consequently in the vicinity of, say, the s-pole, the four-point amplitude behaves as,

lims→0A4 =
1

s

N

t2H−A
, where N ∼ ( 〈 〉[ ]

)2H
. (5.5.2)

We exploit this scaling to identify a useful shift that allows us to analyze constraints

on the coupling-constants, the “gabc”-factor in three-point amplitudes [see Eq. (5.2.3)].

Complex deformation of the Mandelstam invariants, which we justify in appendix A.8,

for arbitrary s̃ and t̃,

(s, t, u)→ (s+ zs̃, t+ zt̃, u+ zũ) , (5.5.3)

110



grants access to the poles of A4(s, t, u) without deforming the numerator. Partition-

ing,

A4(z = 0) ∼ κ2
A

N

f(s, t, u)
→ A4(z) ∼ κ2

A

N

f(s(z), t(z), u(z))
, (5.5.4)

accesses the poles in each term, while leaving the helicity-dependent numerator un-

shifted. Basic power-counting implies that four-point amplitudes, constructed from

three-point amplitudes of the type A
(H,A)
3 ×Ā(H,A)

3 , die off as z →∞ for 2H−A = 1, 2

under this shift. Thus, four-point amplitudes are uniquely fixed by their finite-z

residues under this deformation:

A4(z = 0) =
∑
zP

Res

(
A4(z)

z

)
. (5.5.5)

Straightforward calculation of the residues on the s-, t-, and u-poles yields,

A(1a, 2b, 3c, 4d) =

{
(s̃)2H−A

s
gabigicd +

(t̃)2H−A

t
gadigibc +

(ũ)2H−A

u
gacigibd

}
Num

(s̃t− t̃s)2H−A .

(5.5.6)

Notably, this closed-form expression for the amplitude contains a non-local, spurious,

pole which depends explicitly on the shift parameters, s̃ and t̃ (note: ũ = −s̃ − t̃).

Requiring these spurious parameters to cancel out of the final expression in theories,

of self-interacting spin-1 particles, forces the Lie Algebraic structure of Yang-Mills

[20][21]. Similarly, for theories of interacting spin-2 particles, we recover the decou-

pling of multiple species of massless spin-2 particles[61], and the equal coupling of all

spin |H| < 2 particles to a spin-2 state [56][20][21].
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5.5.1 Constraints on vector coupling (A = 1)

Here we derive consistency conditions on Eq. (5.5.6) for scattering amplitudes with

external vectors, interacting with matter via leading-order, A = 1, couplings; 2H −

A = 1. Now, if the amplitude is invariant under changes of s̃→ S̃, then it necessarily

follows that the same holds for re-definitions t̃ → T̃ , and thus that unphysical pole

cancels out of the amplitude.

Therefore, if ∂A
∂s̃

= 0, then it indeed follows that the amplitude is invariant

under redefinitions of the shift parameter, s̃, and the unphysical pole has trivial

residue. Beginning with the all-gluon amplitude, where the three-point amplitudes

are A3(1+1
a , 2−1

b , 3±1
c ) ∝ fabc, we see that the derivative is,

∂A4

∂s̃

∣∣∣∣
(H,A)=(1,1)

∝ fabif icd + facif ibd + fadif ibc . (5.5.7)

Requiring this to vanish is equivalent to imposing the Jacobi identity on these fabcs.

Thus, requiring the amplitude to be physical forces the gluon self-interaction to be

given by the adjoint representation of a Lie group [20][21][75].

Next, considering four-point amplitudes with two external gluons and two

external fermions or scalars, we are forced to introduce a new type of coupling:

A3(1±1
a , 2+h

b , 3−hc ) ∝ (Ta)bc. Concretely, we wish to understand the invariance of

A4(1+1
a , 2−1

b , 3−hc , 4+h
d ), constructed from the shift (5.5.3), under redefinitions s̃→ S̃.

Factorization channels on the t- and u-poles are given by the products of two A3s

with one gluon and two spin-h particles, and thus are proportional to (Ta)ci(Tb)di and

(Ta)di(Tb)ci, respectively–while the s-channel is proportional to fabi(Ti)cd. So, ∂A
∂s̃

is

proportional to,

(Ta)ci(Tb)id − (Ta)di(Tb)ic + fabi(Ti)cd . (5.5.8)
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This is nothing other than the definition of the commutator of two matrices, Ta

and Tb in an arbitrary representation of the Lie group “defined” by the gluons in

Eq. (5.5.7) [20][21][75].

5.5.2 Graviton coupling

Four-point amplitudes with two external gravitons have 2H−A = 2, and so Mandel-

stam deformation (5.5.3) yields,

A(1−2
a , 2−hb , 3+2

c , 4+h
d ) =

{
s̃2

s
κabih κicdh +

t̃2

t
κadih κibch +

ũ2

u
κacih=2κ

ibd
h

}
(〈12〉[34])4−2h〈1|2− 3|4]2h

(s̃t− t̃s)2
,

(5.5.9)

where κabch is the coupling constant in A3(1±2
a , 2−hb , 3+h

c ). Demanding this amplitude

be independent of redefinitions of s̃ → S̃, again reduces to the constraint that the

partial derivative of Eq. (5.5.9) must vanish. Evaluating the derivative, we see,

∂A4

∂s̃

∣∣∣∣
(H,A)=(2,2)

∝ s̃
(
κabih κicdh − κadih=2κ

ibc
h

)
+ t̃
(
κacih κibdh − κadih=2κ

ibc
h

)
, (5.5.10)

which vanishes only if,

κabih κicdh = κadih=2κ
ibc
h , and κacih κibdh = κadih=2κ

ibc
h . (5.5.11)

As noted in [20], for h = 2, this implies that the κabch s are a representation of a commu-

tative, associative algebra. Such algebras can be reduced to self-interacting theories

which decouple from each other. In other words, multiple gravitons, i.e. species of

massless spin-2 particles interacting via the leading-order (H,A) = (2, 2) three-point

amplitudes, necessarily decouple from each-other. This is the perturbative casting

of the Weinberg-Witten theorem [61]. As the multiple graviton species decouple, we

refer to the diagonal graviton self-interaction coupling as, simply, κ.
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Diagonal gravitational self-coupling powerfully restricts the class of solutions to

Eq. (5.5.11) for h < 2. Directly, it implies that any individual graviton can only

couple to a particle-antiparticle pair. In other words, κgabh = 0, for different particle

flavors a and b on the spin-±h lines. Similar to the purely gravitational case, we write

simply κgaah = κh. Furthermore, to solve Eq. (5.5.11) for h 6= 2 then it also must hold

that κh = κh=2 = κ. In other words, the graviton self-coupling constant κ is a simple

constant; all particles which interact with a given unique graviton do so diagonally

and with identical strengths. Thus multiple graviton species decouple into disparate

sectors, and, within a given sector, gravitons couple to all massless states with iden-

tical strength, κ—the perturbative version of the equivalence principle [56][20][21].

5.5.3 Killing the relevant A3

(
0, 1

2 ,−
1
2

)
-theory

This shift neatly kills the S-matrix constructed from the three-point amplitudes

A3(1
2
,−1

2
, 0). Just as before, we will see that in order for A4(0, 0, 1

2
,−1

2
) to be con-

structible (via complex Mandelstam - deformations) and consistent, the coupling

constant in the theory must vanish.

As in YM/QCD, in this theory 2H − A = 1. Invariance of A4(0, 0, 1
2
,−1

2
) under

deformation redefinitions s̃→ S̃ again boils down to a constraint akin to Eq. (5.5.7)—

with one exception. Namely, there are only two possible factorization channels in this

theory and not three: any putative s-channel pole would require a φ3 interaction, not

present in this minimal theory. And so invariance under redefinitions s̃→ S̃ reduces

to,

∂A4

∂s̃

∣∣∣∣
(H,A)=( 1

2
,0)

= facpf bdp + fadpf bcp . (5.5.12)
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The only solution to this constraint is for facpf bdp = 0 = fadpf bcp, i.e. for the coupling

constant to be trivially zero.8

5.6 Interacting spin-3
2 states, GR, and supersym-

metry

Supersymmetry automatically arises as a consistency condition on four-point am-

plitudes built from leading-order three-point amplitudes involving spin-3/2 states.

In a sense, this should be more-or-less obvious from inspection of the leading-order

spin-3/2 amplitudes in Eqs. (5.3.11), and (5.3.12). For convenience, they are,

A3

(
3

2
,
1

2
, 0

)
, A3

(
3

2
, 1,−1

2

)
, A3

(
3

2
,
3

2
,−1

)
, and A3

(
3

2
, 2,−3

2

)
. (5.6.1)

Clearly, every non-gravitational A = 2 amplitude with a spin-3/2 state involves one

boson and one fermion, with helicity (magnitudes) that differ by exactly a half-unit.

This should be unsurprising, as A − 3/2 = 1/2. Nonetheless, we should expect

supersymmetry to be an emergent phenomena: throughout the previous examples,

mandating a unitary interpretation of a factorization channel within novel four-point

amplitudes in a theory forced introduction of new states with new helicities into the

spectrum/theory. In a sense, the novelty of A = 2 amplitudes with external spin-3/2

states is that these new helicities do not lead to violations of locality and unitarity.

In amplitudes with external spin-3/2 states (and no external gravitons), each term

in the amplitude must have 2H + 1 − A → 3 + 1 − 2 = 2 poles. Generically, one of

these two poles will mandate inclusion of states with new helicities into the spectrum

8One may wonder why such an argument does not also rule out conventional well-known theories,
such as spinor-QED or GR coupled to spin-1/2 fermions, as inconsistent. The resolution to this
question is subtle, but boils down to the fact that amplitudes involving fermions in these A > 0
theories have extra, antisymmetric spinor-brackets in their numerators. These extra spinor-brackets
introduce a relative-sign between the two terms, and in effect modify the condition (5.5.12) from
{ff + ff = 0⇒ f = 0} to ff − ff = 0, which is trivially satisfied.
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of the theory. Fundamentally, we see that the minimal A = 2 theory with a single

species of spin-3/2 state is given by the two three-point amplitudes (and and their

parity-conjugates):

A3

(
3

2
, 2,−3

2

)
, and A3(2, 2,−2) . (5.6.2)

These interactions define pure N = 1 SUGRA, and are indicative of all other theories

which contain massless spin-3/2 states (at leading order). All non-minimal exten-

sions of any theory containing spin-3/2 states necessarily contain the graviton. As

we will make precise below, supersymmetry necessitates gravitational interactions—

supersymmetry requires the graviton.

Minimally, consider a four-particle amplitude which ties together four spin-3/2

states, two with helicity h = +3/2, and two with helicity h = −3/2, via leading-oder

A = 2 interactions: A
(A=2)
4 (1+ 3

2 , 2+ 3
2 , 3−

3
2 , 4−

3
2 ). As this is a minimal amplitude, we

consider the case where the like-helicity spin-3/2 states are identical: there is only one

flavor/species of a spin-3/2 state. How many poles would such an amplitude have?

By Eq. (5.3.1), there must be

2H + 1− A = Np −→ Np = 2 (5.6.3)

poles in any four-point amplitude constructed from A = 2 three-point amplitudes

which has spin-3/2 states as its highest-spin external state. The key point here is

really only that Np > 0: the amplitude must have a factorization channel. Because it

has two poles, at least one of them must be mediated by graviton exchange. In this

minimal theory, as (a) gravitons can only be produced through particle-antiparticle

annihilation channels and (b) the like-helicity spin-3/2 states are identical, both chan-

nels occur via graviton exchange. See Fig. 5.2(a) for specifics.
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Figure 5.2: Factorization necessitates gravitation in theories with massless spin-3/2
states. Specifically, figure (a) represents the two factorization channels in the minimal

four-point amplitude, A4(1+ 3
2 , 2+ 3

2 , 3−
3
2 , 4−

3
2 ) in an S-matrix involving massless spin-

3/2 states. Further, figure (b) shows the two factorization channels present in the
amplitude A4(3/2,−3/2,+a,−a).

Because this set of external states should always be present in any theory with

leading-order interactions between any number of spin-3/2 states, S-matrices of these

theories must always include the graviton.

This can be made even more explicit. Consider an S-matrix constructed, at least in

part, from a three-point amplitude, A3(3/2, a, b), and its conjugate, A3(−3/2,−a,−b),

where H = 3/2 and A = 2. These three-point amplitudes tie-together a spin-3/2 state

with two other states which, collectively, have helicity-magnitudes |H| ≤ 3/2. This

theory necessarily contains the four-point amplitude,

A4(1+ 3
2 , 2+a, 3−

3
2 , 4−a) . (5.6.4)

As noted in Eq. (5.6.3), the denominator within this amplitude has two kinematic

poles. Clearly the s-channel is has the spin-b state for an intermediary. However, as

(a) the three-point amplitudes in the theory all have A = 2, and (b) the opposite-

helicity spin-3/2 states (equivalently, the spin-a states) are antiparticles, the u-channel
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factorization channel must be mediated by a massless spin-2 state: the graviton. This

is depicted in Fig. 5.2.

Note that the t-channel is also possible, mediated by a helicity a + 1/2 particle.

However, repeating the above reasoning for the new A3(3/2, a + 1/2,−a) amplitude

will eventually lead to the necessity of introducing a graviton. This is because in each

step the helicity of a is increased by 1/2, and this process stops once a reaches 3/2,

when both the t and u-channels can only be mediated by a graviton. This pattern of

adding particles with incrementally different spin will be investigated further in the

following sections.

Before delving into details of the spectra in theories with multiple species of spin-

3/2 states, we note one final feature of these theories. Analysis of their four-particle

amplitudes, e.g. the amplitude in Eq. (5.6.4), via on-shell methods such as the Man-

delstam deformation introduced in the previous section, straightforwardly shows that

the coupling constants in this theory [the g±abcs in the language of Eq. (5.2.3)] are

equal to κ = 1/Mpl, the graviton self-coupling constant. More generally, in any

A = 2 theory with spin-3/2 states, each and every defining three-point amplitude,

A3(1haa , 2
hb
b , 3

hc
c ) = κabcMabc(〈 , 〉) has an identical coupling constant, κabc = κ =

1/Mpl, up to (SUSY preserving Kronecker) delta-functions in flavor-space.

It is important to emphasize here that, as the spin-3/2 gravitinos only interact

via A = 2 three-point amplitudes, they cannot change the A < 2 properties of

any state within the same amplitude. Concretely, a bosonic (fermonic) state which

transforms under a given specific representation of a compact Lie Algebra, i.e. a

particle which interacts with massless vectors (gluons) via leading order (A = 1)

interactions, can only interact with a fermonic (bosonic) state which transforms under

the same representation of the Lie Algebra when coupled to spin-3/2 states within

A = 2 three-point amplitudes. From the point of view of the marginal interactions,

only the spin of the states which interact with massless spin-3/2 “gravitino(s)” may
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change. This is the on-shell version of the statement that all states within a given

supermultiplet have the same quantum-numbers, but different spins.

We now consider the detailed structure of interactions between states of various

different helicities which participate in S-matrices that couple to massless spin-3/2

states. Minimally, such theories include a single graviton and a single spin-3/2 state

(and its antiparticle). Equipped with this, we can ask what the next-to-minimal

theory might be. There are two ways one may enlarge the theory: (1) introducing

a state with a new spin into the spectrum of the theory, or (2) introducing another

species of massless spin-3/2 state. We pursue each in turn.

5.6.1 Minimal extensions of the N = 1 supergravity theory

First, we ask what the minimal enlargement of the N = 1 SUGRA theory is, if we

require inclusion of a single spin-1 vector into the spectrum. In other words, what

three-particle amplitudes must be added to,

N = 1 SUGRA⇐⇒
{
A3(+2,±2,−2) , A3(+3/2,±2,−3/2)

}
, (5.6.5)

in order for all four-particle amplitudes to factorize properly on all possible poles,

once vectors are introduced into the spectrum. Clearly, inclusion of a vector requires

inclusion of,

A3(+1,±2,−1) , (5.6.6)

into the theory. It is useful to consider the four-particle amplitude, A4(−3/2,+3/2,+1,−1);

its external states are only those known from the minimal theory and this exten-

sion, i.e. a particle-antiparticle pair of the original spin-3/2 “gravitino” and a

particle-antiparticle pair of the new massless spin-1 vector.
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By Eq. (5.6.3), this amplitude must have two poles. The s-channel pole is clearly

mediated by graviton-exchange, as the amplitude’s external states are composed of

two distinct pairs of antiparticles. The second pole brings about new states. There

are two options for which channel the second pole is associated with: the u-channel

pole, or the t-channel pole. On the t-channel, the amplitude must factorize as,

A4(−3/2,+3/2,+1,−1)

∣∣∣∣
t→0

→ A3(1−
3
2 , 4−1, P

+ 1
2

14 )
1

(p1 + p4)2
A3(2+ 3

2 , 3+1,−P−
1
2

14 ) ,

(5.6.7)

and we see that, by virtue of the fact that the three-point amplitudes must have

A = 2, the new particle introduced into the spectrum is a spin-1/2 fermion. This

option corresponds to the CPT-complete spectrum for N = 1 SUGRA combined with

the CPT complete spectrum for N = 1 SYM. In this case, the full A = 2 sector of

the theory would be,

{
A3(2, 2,−2) , A3

(
2,

3

2
,−3

2

)
, A3 (2, 1,−1) , A3

(
2,

1

2
,−1

2

)
, A3

(
3

2
, 1,−1

2

)}
,

(5.6.8)

Note that, as the spin-2 and spin-3/2 states interact gravitationally, one can add

extra, leading-order A = 1 (“gauge”) interactions between the spin-H ≤ 1—but it is

not necessary.

If the second pole is in the u-channel, then the amplitude must factorize as,

A4(−3/2,+3/2,+1,−1)

∣∣∣∣
u→0

→ A3(1−
3
2 , 3+1, P

− 3
2

13 )
1

(p1 + p3)2
A3(2+ 3

2 , 4−1,−P+ 3
2

13 ) ,

(5.6.9)
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and we see that, by virtue of the fact that the three-point amplitudes must have A = 2,

the new particle introduced into the spectrum must be another spin-3/2 gravitino.

This option corresponds to the CPT-complete spectrum for N = 2 SUGRA.

It is not immediately obvious that this internal spin-3/2 state must be distinguish-

able from the original spin-3/2 state. Distinguishability comes from the fact that the

factorization channel A3(1
3/2
a , 2

3/2
b , P−1)A3(3

−3/2
ā , 4

−3/2

b̄
,−P+1)/K2

12 must be part of a

four-particle amplitude with both the “new” and the “old” spin-3/2 species as exter-

nal states. This amplitude also has only two poles. As one of them is mediated by

vector exchange, we see that there is only one graviton-exchange channel. Therefore

the new and old spin-3/2 states cannot be identical.

Constructing theories in this way is instructive. As a consequence of requiring a

unitary interpretation of all factorization channels in non-minimal S-matrices involv-

ing massless spin-3/2 states, we are forced to introduce a new fermion for every new

boson and vice-versa. Further, we see that through allowing minimal extensions to

this theory, we can either have extended supergravity theories, i.e. N = 2 SUGRA

theories, truncations of the full N = 8 SUGRA multiplet, or supergravity theories

and supersymmetric Yang-Mills theories in conjunction, i.e. N = 1 SUGRA × N = 1

SYM theories. The same lessons apply for more extended particle content. However,

it is difficult to make such constructions systematic. Below, we discuss the second,

more systematic, procedure which hinges upon the existence of N distinguishable

species of spin-3/2 fermions.

5.6.2 Multiple spin-3
2 states and (super)multiplets

Another way to understand these constructions is as follows: specify the number N

of distinguishable species of spin-3/2 states, and then specify what else (besides the

graviton) must be included into the theory. This amounts to specifying the number of

supersymmetries and the number and type of representations of the supersymmetry
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algebra. In the above discussion, the two minimal extensions to the N = 1 SUGRA

theory were: (a) N = 1 SUGRA × N = 1 SYM, and (b) N = 2 SUGRA, with two

gravitinos and one vector.

To render this construction plan unique, we require that all spins added to the

theory besides the graviton and the N gravitinos, i.e. all extra supermultiplets in-

cluded in the theory, be the “top” helicity component of whatever comes later. So,

again, the discussion in subsection 5.6.1 would cleanly fall into two pieces: (A) a

single gravitino (in the graviton supermultiplet) together with a gluon and its de-

scendants, and (B) two distinct gravitinos (in the graviton supermultiplet) and their

descendants. Clearly this procedure can be easily extended (see subsection 5.6.3).

The general strategy is to look at amplitudes which tie together gravitinos and

lower-spin descendants (ascendants) of the “top” (“bottom”) helicities in the theory,

of the type

A(1+3/2
x , 2−3/2

y , 3−su , 4+s
v ) . (5.6.10)

Here, the x and y labels describe the species information of the two gravitinos, and

u and v describe the species information of the lower-spin particles in the amplitude.

Note graviton-exchange can only happen in the s-channel. Unitary interpretation of

one of the other channels generically forces the existence of a new spin-s− 1
2

state into

the spectrum. For pure SUGRA (i.e. no spin-1, 1/2, or 0 “matter” supermultipets),

this works as follows,

1. One gravitino ({a}). The unique amplitude to consider, after the archetype

in Eq. (5.6.10), is A4

(
1

3/2
a , 2

−3/2
a , 3

3/2
a , 4

−3/2
a

)
. Both s- and t-channels occur via

graviton-exchange. The theory is self-complete: the other amplitude does not

require any new state.
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2. Two gravitinos ({a, b}). The unique amplitude to consider isA4

(
1

3/2
a , 2

−3/2
a , 3

3/2
b , 4

−3/2
b

)
.

Here, the t-channel is disallowed; the u-channel needs a vector with gravitino-

label {ab}. Inclusion of this state completes the theory.

3. Three gravitinos ({a, b, c}). Two classes amplitudes of the type in Eq. (5.6.10) to

consider. First, A4

(
1

3/2
a , 2

−3/2
a , 3

3/2
c , 4

−3/2
c

)
requires a vector with gravitino-label

ac in its u-channel; as there are three amplitudes of this type, there are three

distinguishable vectors: {ab, ac, bc}. Second, A4

(
1

3/2
a , 2

−3/2
a , 3+1

bc , 4
−1
bc

)
needs a

fermion with gravitino-label {abc} in the u-channel. No other amplitudes re-

quire any new states.

4. Four gravitinos ({a, b, c, d}). Here, the structure is slightly more complicated,

but similarly hierarchical. Three classes of amplitudes, each following from

its predecessor. First, there are
(

4
2

)
distinct A4

(
1

3/2
a , 2

−3/2
a , 3

3/2
c , 4

−3/2
c

)
s. They

require vectors with gravitino labels {ab, ac, ad, bc, bd, cd}. Second, there are
(

4
3

)
distinct A4

(
1

3/2
a , 2

−3/2
a , 3+1

bc , 4
−1
bc

)
s, which require spin-1/2 fermions with labels

{abc, abd, acd, bcd}. Third and finally, we consider A4

(
1

3/2
a , 2

−3/2
a , 3

1/2
bcd , 4

−1/2
bcd

)
.

On its u-channel, it requires a spin-0 state with gravitino-label {abcd}.

Crucially, we observe that all spins present in the graviton supermultiplet (the gravi-

ton and all of its descendants) with N gravitinos are still present in the graviton

supermultiplet with N + 1 gravitinos—but with higher multiplicities. These descen-

dant states are explicitly labeled by the gravitino species from whence they came.

Spin-s states in the graviton multiplet have
(N
s

)
distinct gravitino/SUSY labels.

Importantly, if h is the unique lowest helicity descendant of the graviton with N

gravitinos, then inclusion of an extra gravitino allows for N new helicity-h descen-

dants of the graviton. Now, studying A4

(
1

3/2
N+1, 2

−3/2
N+1, 3

+h
ab...N , 4

−h
ab...N

)
, we see that again

the u-channel requires a single new descendant with helicity h− 1/2 and SUSY-label

{ab...N ,N + 1}.
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This logic holds for the descendants of all “top” helicity states: isomorphic tests

and constructions, for example, allow one to construct and count the descendants from

the gluons of SYM theories. We see below that, by obeying the consistency conditions

derived from pole-counting and summarized in Fig. 5.1, this places strong constraints

on the number of distinct gravitinos in gravitational and mixed gravitational and

A < 2-theories.

5.6.3 Supersymmetry, locality, and unitarity: tension and

constraints

As we have seen, inclusion ofN distinguishable species of massless spin-3/2 states into

the spectrum of constructible theories forces particle helicities {H,H − 1/2, ..., H −

N /2} into the spectrum. But, as we have seen in sections 5.3 and 5.4, the A = 2

gravitational interactions cannot consistently couple to helicities |h| > 2. And so,

within the supersymmetric gravitational sector, we must have (a) H = 2, and (b)

H − N /2 ≥ −2. Otherwise, we must couple a spin-5/2 > 2 to gravity–which is

impossible. Locality and unitarity constrains N ≤ 8.

So there is tension between locality, unitarity, and supersymmetry. We now ask

about the spectrum of next-to-minimal theories coupled to spin-3/2 states. There

are two options for such next-to-minimal theories: either (relevant) self-interacting

scalars or (marginal) self-interacting vectors coupled to N flavors of spin-3/2 parti-

cles. Immediately, we see that φ3 cannot be consistently coupled to spin-3/2 states.

Coupling the spin-0 lines in φ3 to even one spin-3/2 state would force the existence of

non-zero A3(1/2,−1/2, 0)-type interactions. But these interactions, as discussed in

section 5.5.3, are not consistent with unitarity and locality. So relevant interactions

cannot be supersymmetrized in flat, four-dimensional, Minkowski space.

However, for (A = 1) self-interacting gluons, the story is different. By the argu-

ments above, unitarity and locality dictate that if N spin-3/2 particles are coupled
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to gluons, then gluons must couple via marginal interactions, to spin-±|1 − N /2|

states. Again basic pole-counting in section 5.3.2, A = 1 interactions are only valid

for |h| ≤ 1. And so, we must have N ≤ 4, if we would like to couple interacting vec-

tors to multiple distinct spin-3/2 particles while also respecting locality and unitarity

of the S-matrix.

5.7 Future directions and concluding remarks

Our results can be roughly separated into two categories. First, we classify and

systematically analyze all possible three-point massless S-matrix elements in four-

dimensions, via basic pole-counting. The results of this analysis are succinctly pre-

sented in Fig. 5.1. Second, we study the couplings and spectra of the few, special,

self-interactions allowed by this first, broader-brush, analysis. In this portion of the

paper, we reproduce standard results on the structures of massless S-matrices involv-

ing higher-spin particles, ranging from the classic Weinberg-Witten theorem and the

Equivalence Principle to the existence of supersymmetry, as consequences of consis-

tency conditions on various S-matrix elements. We recap the main results below.

Locality and constructibility fix the generic pole-structure of four-point tree-

amplitudes constructed from fundamental higher-spin three-point massless ampli-

tudes. Tension between the number of poles mandated by these two principles, and

unitarity, which bounds the number of poles in an amplitude from above (Np ≤ 3),

eliminates all but a small (yet infinite) sub-class of three-point amplitudes as leading

to four-particle tree-level S-matrices that are inconsistent with locality and unitarity.

Already from this point of view we see that, for low A = |
∑3

i=1 hi|, (Super-

)Gravity, (Super-)Yang-Mills, and φ3-theory are the unique, leading, interactions be-

tween particles of spin-|h| ≤ 2. Further, we see that gravitational interactions cannot

directly couple to particles of spin-|H| > 2. Similarly, massless vectors interacting
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at leading-order (A = 1) cannot consistently couple to massless states with helicity-

|H| > 1.

In light of these constraints, we study higher-A theories. The upper-bound on

the number of poles in four-particle amplitudes, imposed by unitarity and locality,

is even stronger for higher-spin self-interactions (Np ≤ 1 for A > 2). The set of

consistent three-point amplitudes with A > 2 is further reduced to lie between the

lines H = A/2 and H = A/3.

Exploiting this, we re-examine whether-or-not the primitive amplitudes which

define the S-matrices of General Relativity and Yang-Mills can indirectly couple

to higher-spin states in a consistent manner. As they cannot directly couple to

higher-spin states, this coupling can only happen within non-primitive four-point

(and higher) amplitudes, which factorize into GR/YM self-interaction amplitudes

(with H = A), multiplied by an A > 2 three-point amplitude with an external tensor

or vector. Again, simple pole-counting shows that amplitudes which couple the A ≤ 2

to the A > 2 theories generically have poles whose unitary interpretation mandates

existence of a particle with spin H̃ > A/2.

Having such a high-spin particle contradicts the most basic constraint (5.3.1), and

thus invalidates the interactions—save for two special examples. These examples are

simply the higher-derivative amplitudes which also couple three like-helicity gravitons,

A3(2, 2, 2), and/or like-helicity gluons, A3(1, 1, 1). There is a qualitative difference

between massless spin-2(1) particles participating in lower-spin (A ≤ 2) amplitudes,

and massless spin-2(1) particles participating in higher-spin (A > 3) amplitudes. The

graviton is unique. Gluons are also unique. They cannot be coupled to particles of

spin-|h| > 2!

Equipped with the (now) finite list of leading interactions between spin-1, spin-2,

and lower-spin states, we then analyze the structure of their interactions—i.e. their

coupling constants. To do this, we set up, and show the validity of, the Mandel-
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stam shift (5.5.3). Assuming parity-invariance, and thus g+
ijk = +g−ijk [in the notation

of Eq. (5.2.3)], we perform the Mandelstam shift on four-point amplitudes in these

theories. Invariance with respect to redefinitions of the unphysical shift-parameter

directly implies the Lie Algebraic structure of the marginal (A = 1) coupling to mass-

less vectors; similarly massless tensors must couple (a) diagonally (in flavor space),

and (b) with equal strength to all states.

Finally, we analyze consistency conditions on four-point amplitudes which couple

to massless spin-3/2 states. The minimal theory/set of interacting states, at leading

order, which include a single spin-3/2 state is the theory with a single graviton and a

single spin-3/2 state, at A = 2. From this observation, we identify the spin-3/2 state

with the gravitino. The gravitino also couples to matter with strength κ = 1/Mpl, but

as it is not a boson, it does not couple “diagonally”: coupling to non-graviton states

within the leading-order A = 2 interactions automatically necessitates introduction

of a fermion for every boson already present in the theory, and vice-versa. We recover

the usual supersymmetry constraints, such as fermion-boson level matching, and the

maximal amount of distinguishable gravitinos which may couple to gluons and/or

gravitons; above these bounds, the theories becomes inconsistent with locality and

unitarity.

We close with future directions. Clearly, it would be interesting to discuss on-shell

consistency conditions for theories which have primitive amplitudes which begin at

four points, rather than at three-points. Certain higher-derivative theories, such as

the nonlinear sigma model[81], are examples of this type of theory: in the on-shell

language, derivative interactions between scalars can only act to give factors of non-

trivial kinematical invariants within the numerator of a given amplitude. All kine-

matical invariants are identically zero at three points. So the first non-zero S-matrix

elements in derivatively-coupled scalar theories must be at four-points. Supported

by the existence of semi- on-shell recursions in these theories[82], it is conceivable
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that these theories are themselves constructible. Straightforwardly, this leads to the

on-shell conclusion that all S-matrix elements in these theories have an even number

of external legs. Much more could be said, and is left to future work.

Besides theories with derivative interactions, there is also a large of class of higher-

spin theories not constrained by any of the arguments presented in this paper. These

are A ≥ 3, Np ≤ 1 theories which do not contain any spin-1 or spin-2 states, for

example A3(3/2, 3/2, 0). It is not clear from this on-shell perspective whether such

theories are completely compatible with locality and unitarity, or more sophisticated

tests can still rule them out.

Indeed, an exhaustive proof of the spin-statistics theorem has yet to be produced

through exclusively on-shell methods. Proof of this theorem usually occurs, within

local formulations of field theory, through requiring no information propagation out-

side of the light-cone. In the manifestly on-shell formalism, all lines are on their

respective light-cones; superluminal propagation, and (micro-)causality violations are

naively inaccessible. Ideally some clever residue theorem, such as that in [83], should

prove the spin-statistics theorem in one fell swoop. Further, it would be interesting

to prove that parity-violation, with g+
abc = −g−abc, within three-point amplitudes only

leads to consistent four-particle amplitudes for parity-violating gluon/photon-fermion

amplitudes (A = 1).

Finally, one may reasonably ask what the corresponding analysis would yield for

massive states in constructible theories. As is well known, massive vectors must be

coupled to spinless bosons (such as the Higgs), to retain unitarity at ECM ∼ s &

mV [75]. It would be extremely interesting to see this consistency condition, and

analogous consistency conditions for higher-spin massive particles, naturally fall out

from manifestly on-shell analyses.

In conclusion, these results confirm the Coleman-Mandula and the Haag-

Lopuszanski-Sohnius theorems for exclusively massless states in four-dimensions [84][85].
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Through assuming a constructible, non-trivial, S-matrix that is compatible with local-

ity and unitarity, we see that the maximal structure of non-gravitational interactions

between low-spin particles is that of compact Lie groups. Only through coupling to

gravitons and gravitinos can additional structure be given to the massless tree-level

S-matrix (at four-points). This additional structure is simply supersymmetry; it

relates scattering amplitudes with asymptotic states of different spin, within the same

theory. Further, no gravitational, marginal, or relevant interaction may consistently

couple to massless asymptotic states with spin greater than two.
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Chapter 6

Bonus BCFW behavior from Bose

symmetry

6.1 Introduction

Modern on-shell S-matrix methods may dramatically improve our understanding of

perturbative quantum gravity, but current foundations of on-shell techniques for Gen-

eral Relativity still rely on off-shell Feynman diagram analysis. Here, we complete

the fully on-shell proof of Ref. [21] that the recursion relations of Britto, Cachazo,

Feng, and Witten (BCFW) apply to General Relativity tree amplitudes. We do so by

showing that the surprising requirement of “bonus” z−2 scaling under a BCFW shift

directly follows from Bose-symmetry. Moreover, we show that amplitudes in generic

theories subjected to BCFW deformations of identical particles necessarily scale as

zeven. When applied to the color ordered expansions of Yang-Mills, this directly im-

plies the improved behavior under non-adjacent gluon shifts. Using the same analysis,

three-dimensional gravity amplitudes scale as z−4, compared to the z−1 behavior for

conformal Chern-Simons matter theory.
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Mysteries abound at the interface between General Relativity and Quantum Field

Theory. Particularly, graviton scattering amplitudes in maximally supersymmetric

N = 8 Supergravity have surprisingly soft behavior in the deep ultraviolet (UV). To

four loops, it has been shown that the critical dimension of supergravity is the same as

N = 4 Super Yang-Mills, a conformally invariant theory free of UV divergences [86].

This result was obtained through the peculiar BCJ duality between color and kine-

matics, which relates graviton amplitudes to the squares of gluon amplitudes [7][87].

Other arguments, based the non-linearly realized E7(7) symmetry of N = 8 super-

gravity, predict UV finiteness to six-loops [88]. Yet others hint at a full finiteness (see

e.g. [89]).

Standard perturbative techniques, i.e. Feynman diagrams, lead to incredibly com-

plicated expressions, and obfuscate general features of the theory. Reframing the dis-

cussion in terms of the modern analytic S-matrix has so far proven incredibly useful

for discussing Yang-Mills theory (for example, in Ref. [90]), and may provide crucial

insights into quantum gravity as well. The on-shell program offers a different per-

spective on the principles of locality and unitarity, and their powerful consequences

[21][91]. It also provides a computational powerhouse, the BCFW on-shell recursion

relation [2].

Briefly, if two external momenta in the amplitude An are subjected to the on-shell

BCFW shift:

pµ1 → pµ1 + zqµ pµ2 → pµ2 − zqµ (6.1.1)

and An(z) → 0 for large z, then An(z = 0) can be recursively constructed from

lower-point on-shell amplitudes:

An =

∮
dz

z
An(z) =

∑
{L}

AL(1̂, {L}, P̂ )AR(P̂ , {R}, n̂)

P 2
. (6.1.2)
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Initial proofs required sophisticated Feynman diagram analyses, and found that gluon

amplitudes have the minimum scaling of z−1, but that graviton amplitudes have a

“bonus”, seemingly unnecessary, scaling of z−2 [2]-[78]. Surprisingly, Ref. [21] found

that a fully on-shell proof of BCFW constructability actually requires this improved

scaling for gravitons, in order for Eq. (6.1.2) to satisfy unitarity. The bonus scaling is

not just a “bonus”, but a critical property of General Relativity. This z−2 scaling, also

present in the case of non-adjacent gluon shifts [92], implies new residue theorems:

0 =

∮
An(z)dz =

∑
{L}

zP
AL(1̂, {L}, P̂ )AR(P̂ , {R}, n̂)

P 2
, (6.1.3)

i.e., new relations between terms in Eq. (6.1.2): the bonus relations. The bonus

scaling and the bonus relations have a number of important implications. In [93], it

was shown that BCJ relations can be extracted from bonus relations. In the case of

gravity, bonus relations have been used to simplify tree level calculations [26]. At loop

level, the large z scaling of the BCFW shift corresponds to the high loop momenta

limit; unsurprisingly improved scaling implies improved UV behavior [78][94][95].

In this paper, we prove that the inherent Bose-symmetry between gravitons di-

rectly implies this improved bonus scaling, completing the arguments of Ref. [21].

Bose-symmetry in General Relativity endows it with a purely on-shell description

and constrains its UV divergences1. We further apply the same argument to gauge

theories and gravity in various dimensions.

6.2 Completing on-shell constructability

Reference [21] first assumes n-point and lower amplitudes scale as z−1—thereby en-

suring Eq. (6.1.2) holds—and then checks if the BCFW expansion of the (n+1)-point

1The better than expected UV behavior was also at least partially understood from the “no-
triangle” hypothesis of N = 8 supergravity, as a consequence of crossing symmetry and the colorless
nature of gravitons in Ref. [96]
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amplitude factorizes correctly on all channels. Factorization on all channels is taken

to define the amplitude. Correct factorization in most channels requires z−1 scaling

of lower point amplitudes. However, some channels do not factor correctly without

improved z−2 scaling, as well as a z6 scaling on the “bad” shifts. In the following, we

present a proof for both of these scalings.

Essentially, the argument rests on a very simple observation: any symmetric func-

tion f(i, j), under deformations i→ i+ zk, j → j − zk, must scale as an even power

of z. In particular, any function with a strictly better than O(1) large z behavior (no

poles at infinity), is automatically guaranteed to decay at least as z−2.

Although straightforward, this is not manifest when constructing the amplitude.

BCFW terms typically scale as z−1, but only specific pairs have canceling leading

z−1 pieces. Similarly, the bad BCFW shift behavior of z6 is only obtained when the

leading z7 pieces cancel in pairs.

Consider the five point amplitude in N = 8 SUGRA, exposed by the [1, 5〉 BCFW

shift, where |1]→ |1]− z|5] and |n〉 → |n〉+ z|1〉,

M5 =M(123P )×M(P45)/P 2
123 + (4↔ 3) + (4↔ 2)

=
[23][45]

〈12〉〈13〉〈23〉〈24〉〈34〉〈45〉〈15〉2

+
[24][35]

〈12〉〈14〉〈24〉〈23〉〈43〉〈35〉〈15〉2

+
[43][25]

〈14〉〈13〉〈43〉〈42〉〈32〉〈25〉〈15〉2
, (6.2.1)

with the SUSY-conserving delta-function stripped out.

Under a [2, 3〉 shift, the first term scales as z−2, while the other two scale as z−1.

However, their sum (now symmetric in 2 and 3) scales as z−2: the whole amplitude has

the correct scaling. This pattern holds true in general. Where present, z−1’s cancel

between pairs of BCFW terms, ML(KL, i, P ) ×MR(−P, j,KR) and ML(KL, j, P ) ×

MR(−P, i,KR). Further, terms without pairs over saturate the bonus scaling.
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One such example is M(1−2−3+P+)M(P−4−5+6+), appearing in MNMHV
6 . Under

a [4, 3〉 shift, it has no corresponding pair: M(1−2−4−P )M(P 3+5+6+) vanishes for all

helicities hP . Luckily, it turns out these types of terms have a surprisingly improved

scaling of z−9. Hence, they never spoil the scaling of the full amplitude.

In the next section we classify and prove the scalings of all possible BCFW terms.

Following this, we demonstrate how leading z pieces cancel between BCFW terms.

6.3 BCFW terms under secondary z-shifts

Consider the [1, n〉 BCFW expansion of a n-point GR tree amplitude Mn (where

λ̃1 → λ̃1 − wλ̃n, λn → λn + wλ1):

Mn =
∑
L,R

ML(1̂, {L}, P̂ )MR(−P̂ , {R}, n̂)

P 2
(6.3.1)

We would like to understand how BCFW terms in Mn scale under secondary [i, j〉

z-shifts

λ̃i → λ̃i − zλ̃j λj → λj + zλi. (6.3.2)

We recall two features of these terms as they appear in Eq. (6.3.1). First, the value

of the primary deformation parameter w = wP , which accesses a given term, is

wP =
P 2

〈1|P |n]
, (6.3.3)

and, on this pole, the intermediate propagator factorizes:

P̂αα̇ =
{[λ̃n|P}α {〈λ1|P}α̇

〈λ1|P |λ̃n]
=

∣∣λP〉[λ̃P ∣∣
〈1|P |n]

≡ |P̂ 〉[P̂ |. (6.3.4)

134



The little-group ambiguity amounts to associating the denominator with either λP ,

λ̃P , or some combination of them. In what follows, we find it easiest to associate it

entirely with the anti-holomorphic spinor, |P̂ ] = |λ̃P ]/〈1|P |n]—see Eq. (6.3.5), below.

With this in hand, we now turn to the large z scalings of the various BCFW terms,

subjected to the secondary z-shifts in Eq. (6.3.2). There will be two different types

of BCFW terms: those with both i and j within the same subamplitude, and those

with i and j separated by the propagator. The former inherit all z dependence from

the lower point amplitudes in the theory, since the secondary shift acts like a usual

BCFW shift on the subamplitude. The latter are more complicated, since the z shift

affects the subamplitudes in several ways besides the simple shifts on i and j.

Specifically, both wP and the factorized form of the internal propagator acquire z

dependence:

wP =
P 2

〈1|P |n]
−→ P 2 + z〈i|P |j]

〈1|P |n] + z〈1i〉[jn]
,

∣∣P̂〉α ≡ ∣∣([n|P)〉α
[jn]

−→
∣∣P̂〉α + z

∣∣i〉α , (6.3.5)

∣∣P̂ ]α̇ ≡ ∣∣(〈1|P)]α̇
〈1|P |n]/[jn]

−→
∣∣λ̃P ]α̇ − z〈1i〉|j]α̇
〈1|P |n]/[jn]− z〈1i〉

.

With this factorized form of the propagator, it turns out that the left- and right-

hand subamplitudes have well defined individual z scalings, which depend only on

the helicity choices for ihi , jhj and P h:

ML(i−P−) ∼ z−2 MR(j−P−) ∼ z+2

ML(i−P+) ∼ z−2 MR(j−P+) ∼ z+2 (6.3.6)

ML(i+P−) ∼ z+6 MR(j+P−) ∼ z+2

ML(i+P+) ∼ z−2 MR(j+P+) ∼ z−6.
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The scaling of a full BCFW term MLMR/P
2 can then be easily determined from

these values, which we prove in two steps.

First, note that the large z scalings on the left of Eq. (6.3.6) match the familiar

BCFW scalings of full amplitudes. We prove this by showing that the large z be-

havior of the left-hand subamplitude maps isomorphically onto a BCFW shift of ML.

Looking at Eq. (6.3.5), we see that, in the large z limit, the spinors of i and P become

λi −→ λi λP −→ zλi

λ̃i −→ −zλ̃j λ̃P −→ λ̃j, (6.3.7)

which is just a regular BCFW [i, P 〉 shift within the left-hand subamplitude.

Now we turn to the slightly unusual scalings on the right-hand side of Eq. (6.3.6).

With the little-group choice in Eq. (6.3.5), the left-hand subamplitude has exactly

the correct spinor variables to map onto the usual BCFW shift. Now observe that,

starting with the other little-group choice for the spinors on the z shifted internal

propagator, we obtain the usual BCFW scalings on this side:

MR(j−P−) ∼ z−2

MR(j−P+) ∼ z+6

MR(j+P−) ∼ z−2

MR(j+P+) ∼ z−2. (6.3.8)

Proving these results is identical to the previous reasoning for the left-hand subam-

plitude.

It becomes clear now that to get the other half of the scalings, we need only

account for the change in z scaling when switching the 1/〈1|P (z)|n] factor between
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λP and λ̃P . Assume that the spinors of the propagator appear with weights2:

MR ∝
(
|P 〉
)a(|P ]

)b
, (6.3.9)

where −a+ b = 2hP , and hP is the helicity of the internal propagator as it enters the

right-hand subamplitude. Now, in the limiting cases where 1/〈1|P (z)|n] is entirely

associated with |λP 〉 or |λ̃P ] the amplitude scales as:

MR ∝
(
|λP 〉
〈1|P |n]

)a(
|λ̃P ]

)b → zs, or (6.3.10)

MR ∝
(
|λP 〉

)a( |λ̃P ]

〈1|P |n]

)b
→ zt, (6.3.11)

where s is the BCFW large z scaling exponent, obtained in Eq. (6.3.8), and t is the

related scaling, for the other internal little-group choice. It follows that s−t = b−a =

2hP , and so the t scalings can be easily derived as t = s±4, depending on the helicity

of the propagator.

Having proven all eight scaling relations in Eq. (6.3.6), we can classify the scaling

behavior of all possible types of BCF terms with i and j in different subamplitudes.

For these terms the propagator contributes a z−1 to each term, and so from Eq. (6.3.6)

we obtain eight possible types of terms:

• ML(i+P−)MR(j−P+)/P 2 scales as z+7, (6.3.12)

• ML(i−P−)MR(j+P+)/P 2 scales as z−9, (6.3.13)

• The other six BCFW terms scale as z−1 . (6.3.14)

In the next section we will see how pairing terms improves these scalings by one power

of z, such that we recover the required z−2 and z6 scalings.

2In general, the spinors need not appear with uniform homogeneity. The analysis below still
holds, but must be applied term by term. The same caveat applies to Eqs. (6.4.6) and (6.4.8).
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Finally, while the individual scalings in Eq. (6.3.6) are not invariant under z

dependent little-group rescalings on the internal line P̂ (z), the above results for full

BCFW terms are invariant under these rescalings.

6.4 Improved behavior from symmetric sums

We first study [+,+〉 and [−,−〉 shifts, with scalings in Eq. (6.3.14). Define

ML(KL, i, P ) × MR(−P, j,KR)/P 2 ≡ M(i|j), where KL is the momenta from the

other external states on the left-hand subamplitude. We wish to show that in the

large z limit

M(i|j) = −M(j|i). (6.4.1)

so the leading z−1 pieces cancel in the symmetric sum of BCFW terms, M(i|j) +

M(j|i).

Because i and j have the same helicity, M(j|i) is obtained directly from M(i|j)

by simply swapping labels:

M(i|j) = M(λi, λ̃i, λj, λ̃j) (6.4.2)

M(j|i) = M(λj, λ̃j, λi, λ̃i) (6.4.3)

In the large z limit, these become

M(i|j) = M(λi,−zλ̃j, zλi, λ̃j) (6.4.4)

M(i|j) = M(zλi, λ̃j, λi,−zλ̃j) (6.4.5)
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The two have equal z scaling, and so can only differ by a relative sign. The spinors

appear with weights

M(i|j) ∝ 〈ij〉F [ij]G(λi)
a(λ̃i)

b(λj)
c(λ̃j)

d

M(j|i) ∝ 〈ji〉F [ji]G(λj)
a(λ̃j)

b(λi)
c(λ̃i)

d, (6.4.6)

while in the large z limit, the leading terms are

M(i|j) ∝ zb+c
(
〈ij〉F [ij]G(λi)

a(−λ̃j)b(λi)c(λ̃j)d
)

M(j|i) ∝ za+d
(
〈ji〉F [ji]G(λi)

a(λ̃j)
b(λi)

c(−λ̃j)d
)
. (6.4.7)

These cancel if and only if F + G + b + d = odd. First, from Eq. (6.3.14), M(a|b)’s

scale as zodd. So b+ c = a+ d = odd. Second, by helicity counting in Eq. (6.4.6), we

know −F + G − c + d = 2hj = even. Therefore, we obtain the required result, and

the leading z−1 pieces cancel.

For the [−,+〉 and [+,−〉 shifts a simple modification of the above argument

is required. This is because we now expect the cancellation to occur between

the pair terms ML(KL, i
−, P+) × MR(−P−, j+, KR)/P 2 and ML(KL, j

+, P−) ×

MR(−P+, i−, KR)/P 2. Switching different helicity particles requires us to flip

the propagator’s helicity as well. It can be shown that, in the large z-limit,

ML(KL, i
−, P+) = ML(KL, j

+, P−); likewise for the right-hand subamplitude. Note

that switching i− and j+ requires more care now: functionally, the correct label

swaps for ML are i → P , P → j while for MR j → P and P → i. Therefore we can

write, as above,

ML(i−, P+) ∝ 〈iP 〉F [iP ]G(λi)
a(λ̃i)

b(λP )k(λ̃P )l

ML(j+, P−) ∝ 〈Pj〉F [Pj]G(λP )a(λ̃P )b(λj)
k(λ̃j)

l. (6.4.8)
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Crucially, the large z limit is also different for the two subamplitudes, since the limits

(6.3.7) were obtained with i ∈ P . The second subamplitude instead has j ∈ P , and in

this case the limits are λP → −zλi and λ̃P → λ̃j. In the large z limit then identical

counting as above shows that a + b = even, and the same will hold for MR. The

propagator is antisymmetric in the large z limit under swapping i and j, and therefore

the leading z pieces cancel as expected. This cancellation reduces the leading z−1 and

z+7 scalings for the opposite helicity shifted BCF terms in the previous section, down

to the well known z−2 and z+6 BCFW scalings for GR. This completes the proof of

the bonus scaling for GR, and closes the final gap in the on-shell proof of BCFW in

GR Ref. [21].

6.5 Analysis of the full amplitude.

The simple argument we used above can be applied directly to the whole amplitude,

if we restrict to like-helicity shifts. Consider

An(i, j) ∝ 〈ij〉F [ij]G(λi)
a(λ̃i)

b(λj)
c(λ̃j)

d. (6.5.1)

If this amplitude is manifestly symmetric under exchange of two (bosonic) particle

labels, then An(i, j) = An(j, i), which fixes a = c, b = d, and F + G = even. By

helicity counting, −F +G− a+ b = 2hi = even, and then a+ b = even. So, under a

[i, j〉 shift,

An(i(z), j(z)) ∼ zb+c = za+b = zeven. (6.5.2)

This same logic holds in Eq. (6.5.1), even if the shifted lines are identical fermions.

Permuting labels i and j again forces a = c, and b = d, and F + G = odd. But so
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must 2hi = −F + G − a + b. Hence a + b remains even. BCFW shifts of identical

particles, bosons or fermions, fix zeven scaling at large z.

To understand the opposite-helicity shifts, we are led to consider pure GR as

embedded within maximal N = 8 SUGRA. Amplitudes in maximal supergravity

do not distinguish between positive and negative helicity graviton states. Using the

methods of [97] to truncate to pure GR, we recover the usual BCFW scalings.

As an interesting corollary of our four-dimensional analysis, the large z scaling of

gravity amplitudes in three dimensions is drastically improved to z−4. Due to the fact

that the little group in three dimensions is a discrete group, the BCFW deformation

is non-linear. In particular the three dimensional spinors shift as [98]:

λi(z)=ch(z)λi+sh(z)λj , λj(z)=sh(z)λi+ch(z)λj (6.5.3)

where ch(z) = (z + z−1)/2 and sh(z) = (z − z−1)/2i. Thus, momenta shift as

pi(z) = Pij + yq +
1

y
q̃ , pj(z) = Pij − yq −

1

y
q̃ (6.5.4)

where Pij =
pi+pj

2
, y = z2, and q, q̃ can be read off from Eq. (6.5.3). Now let’s consider

three-dimensional gravity amplitudes that arise from the dimension reduction of four-

dimensional gravity theory. The degrees of freedom are given by a dilaton and a scalar.

Since both are bosons, little group dictates that one must have even power of λi.

Thus the large z behavior of gravity amplitudes is completely dictated by Eq. (6.5.4).

Permutation invariance then requires the function to be symmetric under y ↔ −y,

and so must be an even power of y. Thus if gravity amplitudes can be constructed via

BCFW shift, the large z asymptotic behavior must be at most y−2 = z−4. Indeed it is

straightforward to check that the four-point N = 16 supergravity amplitude behaves

as z−4 under a super-BCFW shift. This is to be compared with the z−1 scaling of

superconformal Chern-Simons theory [98].
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More generally, BCFW shifts in d ≥ 4 take the form,

pµi (z) = pµi + z qµ pµj (z) = pµj − z qµ, (6.5.5)

where q is null and orthogonal to pi and to pj. External wave-functions of shifted

boson lines also shift [39]. For identical bosons, Bose-symmetry disallows zodd scal-

ing, as it would introduce a sign change under label swaps. Identical fermions shift

similarly; here the antisymmetric contraction of the identical spinor wave-functions

absorbs their exchange-sign. BCFW shifts of identical particles must scale as zeven

for large z in dimensions d ≥ 4.

Symmetry between identical particles is crucial for these cancellations to occur.

Gluon partial amplitudes are not permutation invariant: distinct gluons generally

have different colors. This spoils the permutation invariance—as is clear from z−1

drop-off of adjacent shifts of a color-ordered tree amplitude in Yang-Mills. Gravi-

tons, however, are unique: they cannot have different “colors” [61]. Thus graviton

amplitudes are invariant under permutations from the outset: the discrete symme-

try group of graviton amplitudes is larger than for gluon amplitudes. Consequently,

gravity amplitudes are softer in the deep-UV than Yang-Mills amplitudes.

6.6 Bose-symmetry and color in Yang-Mills

Finally, we explore the interplay between color and the large z structure of Yang-Mills

amplitudes. For ease, we focus on Atree
4 (1−, 2−, 3+, 4+). It can be written in terms of

color-ordered partial amplitudes as

A4(1−2−3+4+)

〈12〉2[34]2
=
Tr(1234)

st
+
Tr(1243)

su
+
Tr(1324)

tu
. (6.6.1)

142



Under a [1, 2〉 shift, only t and u shift, and in opposite directions: t̂(z) = t+ z〈1|4|2],

and û(z) = u− z〈1|4|2]. The term proportional to Tr(1324) scales as z−2, while the

other two scale as z−1. The leading z terms,

A4(1̂−, 2̂−, 3+, 4+)

〈12〉2[34]2
∼ Tr(1234)− Tr(1243)

z〈1|4|2] s
+ · · · , (6.6.2)

cancel when gluons 1 and 2 are identical, and T1 = T2.

Cancellation of z−1 terms must hold for general tree amplitudes when the gluons

have the same color labels. However, only BCFW shifts of lines that are adjacent in

color-ordering cancel pairwise as in Eq. (6.6.2). For color-orderings where this shift is

non-adjacent, there are no pairs of BCF terms with canceling z−1-terms. This implies

that good non-adjacent BCFW shifts in gluon partial amplitudes must scale as z−2.

6.7 Future directions and concluding remarks.

We have shown the z−2 bonus scalings/relations, crucial for consistent on-shell con-

traction of Gravitational S-matrices, follow from Bose-symmetry. Similar z−1 can-

cellations occur in QED and GR [99]. Further, Bose-symmetry alone implies z−2

drop-off of non-adjacent BCFW shifts in Yang-Mills. More broadly, BCFW shifts

of identical particles—bosons and fermions—must scale as zeven in general settings,

beyond d = 4.

Graviton amplitudes in Refs. [100][101][102], which manifest permutation sym-

metry, also manifest z−2 drop-off. This is not a coincidence: permutation symmetry

automatically implies bonus behavior. A better understanding of gravity should be

tied to more natural manifestations of permutation invariance. However, not all im-

proved scalings obviously come from permutation invariance. Notably, Hodges’ obser-

vation that BCFW-terms, built from “bad” “opposite helicity” z−1 N = 7 SUGRA

143



shifts, term-by-term scale as z−2 [103]. As the legs are not identical, permutation

invariance is not prominent in the proof [104].

Permutation invariance has unrecognized and powerful consequences even at tree

level. Do new constraints appear when accounting for it in other shifts? Does it have

non-trivial consequences at high-loop orders in N = 8 SUGRA, or N = 4 SYM?

Would mandating it expose new facets of the “Amplituhedron” of Ref. [90]?
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Appendix A

Appendix

A.1 Inducting the [k, i〉 shift

In this section we show that the a shift [k, i〉 corresponding to case (4.3.5a), imposes

case (4.3.5c) constraints on Bk
n, since Bk

n is not a function of ek. Succinctly, we want

to show:

[k, i〉[Bn+1] ∝ z−1 ⇒ [k, i〉[Bk
n] ∝ z1 (A.1.1)

The numerator becomes (4.3.11):

O(z−1) ∝
∑
r 6=i,k

e.erB
r
n + (e.ei + ze.pk

ek.pi
pi.pk

)Bi
n + e.ekB

k
n

+
∑
r 6=i,k

e.prC
r
n + (e.pi − ze.ek)Ci

n + (e.pk + ze.ek)C
k
n (A.1.2)

in this case e.ek is no longer unique, so our constraint now involves other functions:

e.ek(B
k
n + z(Ck

n − Ci
n)) ∝ O(z−1) (A.1.3)

However we can still obtain an upper bound for Bk
n, if we find one for Ck

n and Ci
n.
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Observe that under this shift, the prefactors e.ei and e.pi are unique, so Bi, Ci ∝

z−1. Next the term proportional to e.pk is:

e.pk(C
k
n + z

ek.pi
pi.pk

Bi
n) ∝ e.pk(C

k
n +O(z0)) ∝ O(z−1) (A.1.4)

which implies Ck
n can be at most ∝ O(z0). Therefore eq. (A.1.3) becomes:

Bk
n + z(Ck

n − Ci
n) ∝ Bk

n +O(z1)−O(z0) ∝ O(z−1) (A.1.5)

so Bk
n is at most ∝ O(z1) under this shift, as required.

A.2 Inducting the [1, n〉 shift

In this section we consider the [1, n〉 and [n, 1〉 shifts. These are non-adjacent in

Bn+1, while in Bk
n they are adjacent, and are also affected by the pole shift. We will

consider just the case where both Bn+1 and Bk
n are functions of e1 and en. Therefore

if Bn+1 ∝ z−2 under the non-adjacent [1, n〉 shift, we expect to obtain Bk ∝ z0: one

power from the shift in the denominator, and one from becoming an adjacent shift.

So we want to show:

[1, n〉[Bn+1] ∝ z−2 ⇒ [i, j〉[Bk
n] ∝ z0 (A.2.1)

Since under this shift Bk
n can cancel against Bk

1 , we can no longer treat the numerators

as independent, so we must consider both functions in (4.3.11):

z−2 ∝ [1, n〉
[
e.ekB

k
1

q.p1

+
e.ekB

k
n

q.pn

]
= e.ek

(
Bk

1

q.p1 + zq.e1

+
Bk
n

q.pn − zq.e1

)
= (A.2.2)

=
1

z

Bk
1 −Bk

n

q.e1

− 1

z2

q.p1B
k
1 − q.pnBk

n

(q.e1)2
+O(z−3)

(A.2.3)
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which implies 1
z2
q.pnBkn
(q.e1)2

∝ z−2 due to the unique prefactor, so Bk
n ∝ z0, which is the

expected result.

A.3 Ruling out B′(a) functions with extra mo-

menta

We will show that B′(a) functions (4.3.17) vanish under Gh
n(a) constraints if B(a)

functions (4.3.4) also vanish. We can express the former in terms of the latter as:

B′(a) = B(a)
∑
r,s

arspr.ps (A.3.1)

Then we must show:

[i, j〉[B′(a)] ∝ zm ⇒ [i, j〉[B(a)] ∝ zm (A.3.2)

Under a shift [i, j〉, with r, s 6= i, j, we have:

pr.ps → pr.ps

pi.pj → pi.pj

pi.pr → pi.pr − zei.pk

pj.pr → pj.pr + zei.pk

(A.3.3)
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Assume that under this shift B′(a) ∝ O(zm), but that B(a) goes like a higher power,

O(zm+1). Equation (A.3.1) becomes:

zmB′0 +O(zm−1) =
(
zm+1B1 + zmB0 +O(zm−1)

)(
z
∑
r

(ajr − air)ei.pr +
∑
rs

arspr.ps

)
=

=zm+2

(
B1
∑
r

ei.pr(ajr − air)

)

+ zm+1

(
B1
∑
rs

arspr.ps +B0
∑
r

(ajr − air)ei.pr

)

+O(zm) (A.3.4)

On the left side we have only O(zm), so the higher orders on the right must vanish.

Order zm+2 vanishing implies either B1 = 0, or
∑

r ei.pr(ajr − air) = 0. In the latter

case, vanishing at order zm+1 implies B1 = 0. Either way then we must have B ∝ zm,

proving eq. (A.3.2), and so functions of the type (4.3.17) are ruled out.

A.4 Constructing minimal numerators

Here, we prove that the minimal numerator for a four-point amplitude of massless

particles satisfies Eq. (5.3.5) for the special case where the sum of all four helicities

vanishes.1 Given A4(1h1 , 2h2 , 3h3 , 4h4), we re-label the external states by increasing

helicity:

H1 ≥ H2 ≥ H3 ≥ H4 (A.4.1)

The total helicity vanishes, and thus H1 ≥ 0 and H4 ≤ 0. Now, define H+
1 = |H1|

and H−4 = |H4|: the numerator has at least 2H+
1 λ̃s, and at least 2H−4 λs.

1All four-point tree-amplitudes constructed from a set of three-point amplitudes and their con-
jugate amplitudes, A3 & Ā3, have this property.
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Now there must exist

N ext.
λ̃

= 2H+
1 +N rest

λ̃
≥ 2H+

1 (A.4.2)

total external λ̃s in the numerator. Similarly, the numerator must contain a total of

N ext.
λ = 2H−4 +N rest

λ ≥ 2H−4 (A.4.3)

external λs.

By definition, the numerator is both (a) Lorentz-invariant, and (b) little-group

covariant, and (c) encodes all of the helicity information of the asymptotic scattering

states. Therefore, it must be of the form

Numerator ∼ 〈 〉(1)...〈 〉(n) [ ](1)...[ ](m) . (A.4.4)

Notably, requiring
∑4

a=1Ha = 0 directly implies that the numerator contains equal

number of holomorphic and anti-holomorphic spinor-helicity variables,

4∑
a=1

Ha = 0⇔
{
N ext.
λ = N ext.

λ̃
, and N total

λ = N total
λ̃

}
(A.4.5)

We note that because the numerator contains the same number of λs as λ̃s, and

must be a product of spinor-brackets, then it must have the same number of each

type of spinor-product:

Nb = N〈 〉 = N[ ] . (A.4.6)

The reason is as follows. First, note that only inner-products of spinor-helicity vari-

ables are both (a) Lorentz-invariant and (b) little-group covariant. Because the nu-

merator has both of these properties, all of the λs and λ̃s which encapsulate the
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helicity information of the asymptotic scattering states must be placed within spinor-

brackets. If we take N〈 〉 6= N[ ], then there would be a mis-match between the number

of λs and λ̃s in the numerators. This contradicts the statement that the numerator

must contain the same number of positive- and negative- chirality spinor-helicity

variables. This proves Eq. (A.4.6).

Now, the minimal number of spinor-brackets N is simply given by

Nb = 2×max{H+
1 , H

−
4 } (A.4.7)

This can be seen in the following way. At the minimum, there must be 2H+
1 [ ]s

and 2H−4 〈 〉s within the numerator. Otherwise, at least two of the 2H+
1 copies of

λ̃1 within the numerator would have to within the same spinor bracket, [λ̃1, λ̃1]. But

this would force the numerator to vanish. As we are only concerned with non-trivial

amplitudes, we thus require N[ ] ≥ 2H+
1 . The same logic requires N〈 〉 ≥ 2H−4 .

But, by Eq. (A.4.6), we must have N[ ] = N〈 〉. So we must have Nb ≥

2 × max{H+
1 , H

−
4 }. The minimal numerator saturates this inequality. This proves

Eq. (A.4.7).

It is important to note that this minimal number of spinor-brackets of each type,

Nb = 2max{H+
1 , H

−
4 }, mandated by Eq. (A.4.7) to be present within the numerator

is “large” enough to encode the helicity information of all of the external scattering

states—not just the helicity information of 1+H+
1 and 4−H

−
4 .

In other words, there are “enough” 〈 〉s and [ ]s already present in the numerator

to fit in the remaining λs and λ̃s required to encode the helicity information of the

other two particles. I.e.,

N[ ] ≥ N rest
λ̃

, and N〈 〉 ≥ N rest
λ (A.4.8)
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Before proving this, first recall eqs. (A.4.2), (A.4.3), and (A.4.7). By (A.4.7), N[ ] =

N〈 〉 = 2max{H+
1 , H

−
4 }. Now, how many λs and λ̃s must be present in the numerator

to ensure all external helicity data is properly entered into the numerator? There are

only three cases to consider. In all cases, Eq. (A.4.8) holds:

1. Particles 1 and 2 have positive helicity, while particles 3 and 4 have negative he-

licity. Now, by definition, we would like to show that of the 2max{H+
1 , H

−
4 } [ ]s

required by Eq. (A.4.7) are sufficiently numerous to allow inclusion of 2|H2|

more λ̃2s. This is guaranteed by the orderings: H1 ≥ H2. So there are enough

empty slots in the anti-holomorphic spinor-brackets to encode the helicity of all

positive-helicity particles. The same holds for H3. For this case, Eq. (A.4.8)

holds.

2. Only particle 4 has negative helicity. All others have positive helicity. Because

the amplitudes under consideration have total helicity zero, we know that the

sum of helicities of the particles with positive helicity must equal H−4 . Hence

there must be 2H−4 λ4s and 2H−4 physical λ̃s in the numerator. Further, as only

particle 4 has negative helicity, it follows that Nb = 2max{H+
1 , H

−
4 } = 2H−4 .

And so there are 2H−4 spinor-brackets of each kind. For this case Eq. (A.4.8)

holds.

3. Only particle 1 has positive helicity. This case is logically equivalent to the

above.

This proves Eq. (A.4.8), and therefore proves Eq. (5.3.5):

N ∼ 〈 〉(1)...〈 〉(2H) [ ](1)...[ ](2H) ⇒ [N ] = (K2)2H , (A.4.9)

where H = max{|h1|, ..., |h4|}. Establishing this result concludes the proof.
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A.5 Ruling out theories with Np = 2, for A ≥ 3

In this section, we rule out self-interacting theories constructed from three-point am-

plitudes which necessitate two poles in the four-point amplitudes, for A > 2. This

is simple pole-counting, augmented by constraint (5.3.1) and the results of subsec-

tion 5.3.3 for Np = 3. Recall, for amplitudes within a self-interacting sector of a

theory, we have
∑4

i=1 h
ext
i = 0, and Np = 2H + 1 − A. For Np = 2, we must have

H = max{|f |, |H|, |g|} = (A+ 1)/2.

Within this sector we may construct A4(1+H , 2−H , 3+f , 4−f ) from A3(H, g, f). By

assumption, it has two factorization channels, specifically the t- and u-channels.2

Without loss of generality, we take f > 0. The intermediary in the u-channel pole

has spin g = A− (H + f) = (A− 1)/2− f < H = (A+ 1)/2, and poses no barrier to

a unitary & local interpretation of the amplitude/theory.

However, for the t-channel’s intermediary must have helicity H̃ = A + f − H =

(A − 1)/2 + f . And so, for f > 1, we must include a new state with larger helicity

H̃ = H + (f − 1) > H. As discussed in subsection 5.3.3, this does not a priori

spell doom for the theory. However, in this case it does: inclusion of this new,

larger helicity, state within the theory forces inclusion of four-point amplitudes with

these states on external lines. These new amplitudes have a larger number of poles:

2h̃+ 1− A = (2H + 1− A) + 2f = 2 + 2f ≥ 4 > 3, for f > 1.

Theories with H = (A + 1)/2, and f > 1 (or g > 1) cannot be consistent with

unitarity and locality. Inspection reveals that all theories with Np = 2 and A > 2 are

of this type, save for three special examples. Explicitly, for A = 3, 4, 5, and A = 6,

2The s-channel in this amplitude is disallowed, as it would require a new particle with helicity
H̃ = ±A, which would lead to amplitudes with Np = A + 1.
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the Np = 2 theories are defined by (H, g, f)s of the following types,

A = 3 : (2, 2,−1) ,

(
2,

3

2
,−1

2

)
, (2, 1, 0) ,

(
2,

1

2
,
1

2

)
, (A.5.1)

A = 4 :

(
5

2
,
5

2
,−1

)
,

(
5

2
, 2,−1

2

)
,

(
5

2
,
3

2
, 0

)
,

(
5

2
, 1,

1

2

)
, (A.5.2)

A = 5 : (3, 3,−1) ,

(
3,

5

2
,−1

2

)
, (3, 2, 0) ,

(
3,

3

2
,
1

2

)
, (3, 1, 1) , (A.5.3)

A = 6 :

(
7

2
,
7

2
,−1

)
,

(
7

2
, 3,−1

2

)
,

(
7

2
,
5

2
, 0

)
,

(
7

2
, 2,

1

2

)
,

(
7

2
,
3

2
, 1

)
, (A.5.4)

and their conjugate amplitudes. Clearly, all but the last two entries on line (A.5.1) and

the last entry on line (A.5.2) have f > 1 (thus H̃ > (A+ 1)/2), and are inconsistent.

Further, it is clear that all higher-A Np = 2 theories may only have pathological

three-point amplitudes, which indirectly lead to this same tension with locality and

unitarity: except for those three special cases, all Np = 2 theories must have fs that

are larger than unity.

It is a simple exercise to show that these three pathological examples are inconsis-

tent: playing around with the factorization channels of A4(H,−H, f,−f)s reveals that

again the t-channel is the problem. The t-channel requires the three-point amplitudes

on lines (A.5.1) or (A.5.2) which are directly ruled out, as they have H = (A + 1)/2

and f > 1.

No three-point amplitude with Np = 2H + 1− A = 2 can lead to a constructible

S-matrix consistent with locality and unitarity, for any A larger than two.

A.6 Uniqueness of spin-3/2 states

In this appendix, we will use similar arguments to those in section 5.4 to show that

massless spin-3/2 states can only couple consistently to massless particles with he-

licities |H| ≤ 2. Recall that for A > 2, no constructible theory can be consistent

with unitarity and locality unless A/3 ≤ H ≤ A/2. To see whether-or-not the grav-
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itino discussed in section 5.6 can couple to any higher-A amplitude, we simply study

four-point amplitudes with factorization channels of the type,

A4(1+2, 2−
3
2 , 3−c, 4−d)→ A

(GR)
3 (1+2, 2−

3
2 , P+ 3

2 )
1

s
A

(A)
3 (P−

3
2 , 3−c, 4−d) . (A.6.1)

Note that only two three-point amplitudes are consistent with the dual requirements

(a) A/3 ≤ H ≤ A/2 and (b) 3/2 ∈ {h1, h2, h3} for A > 2. These theories, and their

corresponding four-particle amplitudes, are:

A3(A/2− 1/2, 3/2, A/2− 1)⇒ A4(1+2, 2−
3
2 , 3−(A/2−1/2), 4−(A/2−1)) , and

A3(A/2, 3/2, A/2− 3/2)⇒ A4(1+2, 2−
3
2 , 3−A/2, 4−(A/2−3/2)) . (A.6.2)

Now, the minimal numerator which encodes the helicity information of, for instance,

the first amplitude is,

N ∼ [1|P |2〉3[1|Q|3〉
(
〈3, 4〉2

)A/2−1 ⇒ [N ] =
(
K2
)(A/2)+3

. (A.6.3)

However, by power-counting, the kinematic part of the amplitude must have mass-

dimension,

[
N

f(s, t, u)

]
=

[
1

K2
A

(GR)
Left A

(A)
Right

]
=

(K2)1/2(K2)A/2

(K2)
= (K2)A/2 , (A.6.4)

and thus the denominator, f(s, t, u) must have mass-dimension three:

[f(s, t, u)] = (K2)3 ⇒ f(s, t, u) = s t u ! (A.6.5)

However, as is obvious from inspection of any amplitude for A ≥ 4, two of these

factorization channels require inclusion of states with helicities which violate the most

basic constraint (5.3.1). Thus, no spin-3/2 state in any three-point amplitude with
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A ≥ 4 can be identified with the gravitino of section 5.6. The sole exception to this

is the three-point amplitude (H,A) = (3/2, 3):

A3(10, 2+ 3
2 , 3+ 3

2 )⇒ A4(1+2, 2−
3
2 , 3−

3
2 , 40) . (A.6.6)

Factorization channels in this putative amplitude necessitate only either scalar or

gravitino exchange, and are thus not in obvious violation of the consistency condi-

tion (5.3.1).

A.7 F 3- and R3-theories and SUSY

Basic counting arguments show us that the F 3- and R3- theories, i.e. the S-matrices

constructed from A3(1, 1, 1) and A3(2, 2, 2) and their conjugates, are not compatible

with leading-order (SUGRA) interactions with spin-3/2 states. The argument is

simple.

First, we show that F 3-theories are not supersymmetrizable. Begin by including

the minimal N = 1 SUGRA states, together with the three-particle amplitudes which

couple gluons to the single species of spin-3/2 (gravitino) state that construct theN =

1 SYM multiplet. Additionally, allow the F 3-three-point amplitude as a building-

block of the S-matrix. In other words, begin consider the four-particle S-matrix

constructed from,

A3

(
2,

3

2
,−3

2

)
, A3

(
3

2
, 1,−1

2

)
, A3

(
1,

1

2
,−3

2

)
, and A3 (1, 1, 1) , (A.7.1)

where all spin-1 states are gluons, and all spin-1/2 states are gluinos. Now, con-

sider the four-particle amplitude, A4(+3
2
,−1

2
,−1,−1). On the s-channel, it factorizes
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nicely:

A4

(
1+ 3

2 , 2−
1
2 , 3−1, 4−1

) ∣∣∣∣
s→0

→ 1

s
A3

(
1

3
2 , 2−

1
2 , P+1

)
A3

(
P−1, 3−1, 4−1

)
. (A.7.2)

Clearly, it fits into the theory defined in Eq. (A.7.1). To proceed further, we note

that its minimal numerator must have the form,

N ∼ [1|P |2〉[1|Q|3〉[1|K|4〉〈34〉, . (A.7.3)

Now, this amplitude must have kinematic mass-dimension,

[
ASUGRA

3 AF
3

3

K2

]
=

[
[ ]2〈 〉3

〈〉[ ]

]
=
(
K2
)1+ 1

2 . (A.7.4)

Combining Eq. (A.7.3) and Eq. (A.7.4), we see that 1/f(s, t, u) must have two poles.

On the other pole, say on the t→ 0 pole, it takes the form

A4

(
1+ 3

2 , 2−
1
2 , 3−1, 4−1

) ∣∣∣∣
t→0

→ 1

t
A3

(
1

3
2 , 4−1, P+∆

)
A3

(
P−∆, 2−

1
2 , 3−1

)
. (A.7.5)

Now, one of these two sub-amplitudes must have A = 3. However, recall that in

section 5.4 we showed that the only three-point amplitude which may have spin-1

states identified with the gluons is the A3(1, 1, 1) amplitude. Observe that, regardless

of which amplitude has A = 3, both amplitudes contain one spin-1 state and another

state with spin-s 6= 1. Therefore neither amplitude can consistently couple to the

A = 1 gluons. Therefore we conclude that N = 1 supersymmetry is incompatible

with F 3-type interactions amongst gluons.

Similar arguments show that the three-point amplitudes arising from R3-type in-

teractions cannot lead to consistent S-matrices, once spin-3/2 gravitinos are included

in the spectrum. Again, we first specify the four-particle S-matrix as constructed

156



from the following primitive three-particle amplitudes:

A3

(
2,

3

2
,−3

2

)
, and A3 (2, 2, 2) , (A.7.6)

Now, consider the four-particle amplitude, A4(+3
2
,−3

2
,−2,−2), an analog to that

considered in the F 3-discussion. On the s-channel, it factorizes nicely:

A4

(
1+ 3

2 , 2−
3
2 , 3−2, 4−2

) ∣∣∣∣
s→0

→ 1

s
A3

(
1

3
2 , 2−

3
2 , P+2

)
A3

(
P−2, 3−2, 4−2

)
. (A.7.7)

Clearly, it fits into the theory defined in Eq. (A.7.6). To proceed further, we note

that its minimal numerator must have the form,

N ∼ [1|P |2〉3
(
〈34〉2

)2
. (A.7.8)

Now, this new amplitude must have kinematic mass-dimension,

[
ASUGRA

3 AR
3

3

K2

]
=

[
[ ]2〈 〉6

〈〉[ ]

]
=
(
K2
)3
. (A.7.9)

Combining Eq. (A.7.8) and Eq. (A.7.9), we see that 1/f(s, t, u) must have two poles,

again, as in the F 3-discussion above. On the other pole, say on the t → 0 pole, it

takes the form

A4

(
1+ 3

2 , 2−
3
2 , 3−2, 4−2

) ∣∣∣∣
t→0

→ 1

t
A3

(
1

3
2 , 4−2, P+∆

)
A3

(
P−∆, 2−

3
2 , 3−2

)
. (A.7.10)

Reasoning isomorphic to that which disallowed N = 1 SUSY and F 3-gluonic inter-

actions rules out the compatibility of this given factorization channel with N = 1

SUSY and R3-effective gravitational interactions. Namely, it must be that one of

these two sub-amplitudes must have A = 6. However, recall that in section 5.4 we

showed that the only three-point amplitude which may have spin-1 states identified
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with the gluons is the A3(1, 1, 1) amplitude. Observe that, regardless of which am-

plitude has A = 6, both amplitudes contain one spin-1 state and another state with

spin-s 6= 2. Therefore neither amplitude can consistently couple to the A = 2 gravi-

tons. Therefore we conclude that N = 1 supersymmetry is also incompatible with

R3-type interactions amongst gravitons.

A.8 Justifying the complex deformation in sec-

tion 5.5

One might worry about the validity of such a shift, and how it could be realized in

practice. In other words, one could wonder whether-or-not shifting the Mandlsetam

invariants, (s, t, u)→ (s+ zs̃, t+ zt̃, u+ zũ) would not also shift the numerator of the

amplitude. Here, we prove that such a shift must always exist.

First, a concrete example. Suppose one desired to study the constraints on the

fabcs characterizing A3(1+1
a , 2−1

b , 3−1
c ) = fabc〈23〉3/{〈31〉〈12〉}, through looking at the

four-particle amplitude A4(1−1, 2−1, 3+1, 4+1). The numerator must be 〈12〉2[34]2. So,

recognizing that u = −s− t and ũ = −s̃− t̃, we see if we shift

s = 〈21〉[12]→ 〈21〉([12] + z s̃/〈21〉) = s+ zs̃ (A.8.1)

t = 〈41〉[14]→ (〈41〉+ z t̃/[14])[14] = t+ zt̃ (A.8.2)

u = −s− t→ u+ z ũ = −(s+ t)− z(s̃+ t̃) . (A.8.3)

Deforming the anti-holomorphic part of s and the holomorphic part of t allows the

z-shift to probe the s-, t-, and u-poles of the amplitude while leaving the numerator

〈12〉2[34]2 unshifted.

This is the general case for amplitudes with higher-spin poles, i.e. for amplitudes

with 3 ≥ 2H+ 1−A ≥ 2 (the only cases amenable to this general analysis); we prove
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this by contradiction. By virtue of having two or three poles in each term, we are

guaranteed that the numerator does not have any complete factors of s, t, and/or u:

if it did, then this would knock out one of the poles in a term, in violation of the

assumption that Np = 2 or 3.
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