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Abstract

The integer quantum Hall effect (IQHE) is usually modeled by a Galilean or rotation-

ally invariant Hamiltonian. These are not generic symmetries for electrons moving

in a crystal background and can potentially confuse non-topological quantities with

topological ones and identify otherwise distinct geometrical properties. In this thesis

we present a generic theory for the IQHE. First we show that a generic guiding-center

coherent state, defined by a natural metric in each Landau level, has the form of an

antiholomorphic function times an exponential factor. Then by numerically solving

the eigen problem for a quartic Hamiltonian and finding the roots of the antiholomor-

phic part we are able to define a topological spin sn = n + 1
2

where n is the number

of central roots that are enclosed by the semiclassical orbit. We derive a generic

formula for the Hall viscosity in the absence of rotational symmetry and show that

the previous interpretation of the scalar Hall viscosity as the “intrinsic orbital angu-

lar momentum” breaks down since the concept of angular momentum requires the

presence of rotational symmetry. We also calculate generic electromagnetic responses

and differentiate between universal terms that are diagonal with respect to Landau

level index and non-universal terms that depend on inter-Landau-level mixing. We

conclude that the generic theory offers a fundamental definition for the topological

spin and reveals finer structure in the geometrical properties of the IQHE.
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Chapter 1

Introduction

In this chapter an overview of the integer quantum Hall effect (IQHE) will be pro-

vided. The usual theoretical treatment in the literature where the single-particle

Hamiltonian has a quadratic dispersion will be reviewed in detail in order to see both

its achievements and limitations. We argue that Galilean symmetry and the more

general rotational symmetry are not generic symmetries of electrons moving in a crys-

tal background. The goal of this thesis is then to present a generic theory for the

IQHE without these special symmetries.

1.1 IQHE

The quantum Hall effect (QHE) has been a field of active research since the monu-

mental discovery of the integer case by Klitzing et al. in 1980[26]. The phenomenon is

demonstrated by a two-dimensional electron gas (2DEG) under a constant magnetic

field that is perpendicular to the 2D plane. A 2DEG can be realized at the surface of

a semiconductor (like Si or GaAs) in contact with an insulating material (SiO2 for Si

and AlxGa1−xAs for GaAs). Electrons are confined to the surface by an electrostatic

field normal to the surface. For electrical measurements on a 2DEG, heavily doped

n+ (the plus sign standing for “heavily doped”) contacts are used as current and
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Figure 1.1: Typical configuration and cross section of a GaAs-AlxGa1−xAs het-
erostructure used for Hall-effect measurements[41].

potential probes. A typical sample used for the QHE experiments is shown in Fig.

(1.1).

The curve of the off-diagonal element of the conductivity tensor against the mag-

netic field has the so-called plateaus where it stays at a fixed value (see Fig.(1.2)),

which is an integer number ν, called the filling factor, times a physical constant,

σxy = ν
e2

h
, (1.1)

and dramatic transitions occur between neighboring plateaus with different ν. The

diagonal elements of the conductivity tensor are only nonzero within the transitional

ranges, i.e., the quantum Hall system is a perfect insulator at the plateaus.

The amazing property of the IQHE is that the quantization of the Hall conductiv-

ity is robust to disorders in the system. Laughlin[28] showed that this is guaranteed by

2



Figure 1.2: Experimental curves for the Hall resistance ρxy and the diagonal resistivity
ρxx[41].

the gauge invariance of the Hamiltonian, a built-in fundamental symmetry. Consider

imposing a periodical boundary condition in one direction on a 2DEG and effectively

making the system into a ribbon-like structure (see Fig.(1.3)). The magnetic field

is still perpendicular to the surface of the ribbon and there is another magnetic flux

Φ threading through the area enclosed by the ribbon. Now imagine that we slowly

crank up the magnetic flux φ, which induces an electric field circulating the ribbon

and because of the Hall conductivity, there will be an electric flow from one open

3



Figure 1.3: Configuration of a two-dimensional loop used for the thought-experiment
proving robustness of quantized Hall conductivity[41].

boundary to the other. After we add exactly one more flux quantum

Φ0 = h/e, (1.2)

the transferred charge σxyΦ0 should be an integer multiple of e and we arrive at the

conclusion that σxy should be quantized as in Eq.(1.1).

Thouless et al.[39] gave the Kubo formula for the Hall conductivity within the

framework of band theory and showed that the integer is mathematically the first

Chern number of a U(1) bundle (associated with the arbitrary phase for the eigen-

states) in the first Brillouin zone, which is topologically a torus.

The IQHE is the first example of phases that do not fit in Landau’s symmetry

breaking regime and opens the door to a whole new world of topological phases.

In addition, it is not protected by any symmetry and can be called “intrinsically

topological” compared to, e.g., topological insulators which are protected by time-

reversal symmetry[23].
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Figure 1.4: Schematic plot of the broadened density of states for the Landau levels
due to disorders. Extended states sitting at the center are separated from localized
states along the tails[41].

Interestingly, it’s the presence of disorders that gives rise to the plateaus. The

disorders broaden the Landau levels with extended states sitting at the center sepa-

rated from localized states along the tails. See Fig.(1.4). A phase transition occurs

when the Fermi energy sweeps through the extended states within a Landau level. In

the range of the localized states transport property doesn’t change, and therefore we

see plateaus in the Hall conductivity curve. From a semiclassical point of view, the

phase transition in the IQHE can be considered in a percolation picture. Model the

disorders by a random potential that changes in a length scale much larger than the

magnetic length lB =
√

~/eB and the wave-packets of the electrons follow classical

trajectories that are equipotential lines. In this picture localized states correspond

to closed loops while extended states to open orbits. Increasing the Fermi is analo-
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gous to filling a random landscape with water. When there is only a small amount

of water, only the deepest valleys are filled. As the water level increases the small

“puddles” will grow larger and start to merge. At a certain level a phase transition

occurs where the boundaries of some large “lakes” percolate from one side of the

system to the other. These boundaries are the extended states. Fig.(1.5) illustrates

this process.

Another important feature of the IQHE is the presence of chiral edge currents.

These chiral currents can only exist on the boundary of a 2D system, but not within

an intrinsically 1D system. To understand why these edge modes emerge, we need

the knowledge of Landau levels which is discussed in Sec.(1.3). Here we use classical

mechanics to show that the chirality of the edge states is opposite to that of the

Landau orbits. Fig.(1.6) shows an electron bouncing off the edge of a QHE droplet

and the overall direction (clock-wise) is just opposite to that of the original Landau

orbits (anti-clockwise).

1.2 FQHE

Although the fractional quantum Hall effect (FQHE) will not be the subject of this

thesis, many important concepts that will be used in this thesis originally emerged

from the study of the FQHE.

The FQHE was first discovered by Tsui et al. at 1/3 filling[40] and later at a filling

with an even-denominator 5/2[44] (see Fig.(1.2)). The explanation provided in the

experimental paper[40] was the formation of a Wigner solid or charge-density-wave

state. It was not until Laughlin’s enlightening paper[29] that people really started to

understand the FQHE. By numerically studying a 3-electron system, Laughlin wrote

6



Figure 1.5: Contours of a random potential. Closed dashed lines are around “moun-
tain peaks” and closed solid lines are around “valleys”. Filled areas are regions below
a certain level of the potential that increases from top to bottom. The bottom panel
shows the extended boundary of the filled area that percolates from one side of the
system to the other[12].
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Figure 1.6: A schematic drawing showing anticlockwise Landau orbits (dashed lines
are) and clockwise edge currents.

down his famous model wavefunction for the ground state on the Euclidean plane

Ψm =
∏
i<j

(zi − zj)me−
1
2

∑
i |zi|2 , (1.3)

where z = x+iy is the complex coordinate andm is an odd (even) integer for fermionic

(bosonic) systems. He also constructed wavefunctions for charged excitations, namely

quasiholes and quasiparticles. By realizing that

ln |Ψm|2 =
∑
i<j

2m ln |zi − zj| −
∑
i

|zi|2 (1.4)

can be interpreted as the energy for a 2D Coulomb gas in a uniform neutralizing

background, he argued that these excitations have a fractional charge 1/m. Later

their statistics were also calculated[2] and they were found to obey fractional statistics

meaning that exchanging two such excitations results in a phase factor not necessarily

8



Figure 1.7: Integer and fractional quantum Hall plateaus for the Hall resistance ρxy
and associated dips in the dissipative resistance ρxx[44].

equal to ±1, as is the case for bosons and fermions. Despite all these achievements,

the fact that the Laughlin wavefunction has a nearly perfect overlap with the true

ground state under Coulomb interaction still seemed to be a magic at that time.

To understand the Laughlin wavefunction, Haldane[17] considered a quantum Hall

system on the sphere, a compact manifold without boundary, and found that the

Laughlin wavefunction is the exact eigenstate of a certain type of interaction called

pseudopotentials. For example, on the plane a pseudopotential Vm is an operator

projecting the relative angular momentum of two electron into Lz = m sector. Ψm

has the property that it is an exact zero state with Vm′ = 0 for all m′ > m, i.e., in

the Laughlin state no two electrons have a relative angular momentum ≤ m. The

Laughlin wave function works because it captures the behavior of the electrons when
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they come close to each other. In other words, the FQHE is governed by the short-

range part of the Coulomb interaction. In the same paper, Haldane also proposed

a scheme for constructing a hierarchy of quantum Hall states at different fillings by

proliferating the quasiholes or quasiparticles. For example, a quasiparticle in the 1/3

state can be viewed as a 2/5 droplet surrounded by all the other 1/3 droplets where

a p/q droplet contains p electrons and q flux quanta. A similar construction was also

proposed by Halperin[22]. The composite-fermion approach proposed by Jain is also

an alternative to generate quantum Hall states[25].

The construction of neutral excitations came with the seminal paper by Girvin,

Macdonald and Platzman[13]. The technique used there is closely analogous to Feyn-

man’s theory of superfluid helium. The neutral excitation is created by acting ρq, the

density operator in the momentum space, on the ground state. The expression for

the energy of the excitation is

E(q) =
O(q4l4)

S(ql)
, (1.5)

where S(ql) is the static structure factor. This is called the magneto-roton mode and

Fig.(1.2) shows the structure factor of 1/3 and 1/5 fillings. The peak of the structure

factor gives rise to the minimum of the mode called the roton-minimum. At small

q, the structure factors goes as q4 so there is a finite gap at long wave length. The

ripples at large q will become increasingly violent as the filling factor gets smaller

signifying a possible phase transition to a periodic Wigner crystal[9].

Apart from the Laughlin series and the hierarchy series, there exist other types of

quantum hall states. In their paper, Moore and Read[31] pointed out that the Laugh-

lin wavefunctions were mathematical related to conformal blocks of 2D conformal field

10



Figure 1.8: Static structure factor for Laughlin 1/3 state and 1/5 state. Solid line
is modified-hypernetted-chain calculation. Dashed line is from fit to Monte Carlo
data[13]. The peak of the structure factor gives rise to a roton-minimum at finite
wave vector in the magneto-roton mode.

theory. They used this observation to construct a state in the form of

ΨMR = Pfaff

(
1

zi − zj

)∏
i<j

(zi − zj)2e−
1
2

∑
i |zi|2 , (1.6)

where the Pfaffian is defined by

Pfaff(Mij) =
1

2N/2(N/2)!

∑
σ∈SN

sgnσ

N/2∏
k=1

Mσ(2k−1),σ(2k) (1.7)

with SN being the permutation group. It is now called the Moore-Read state and

is a candidate for the ground state of 5/2 filling (1/2 filling in the second Landau

level). An amazing property of this state is that it possesses excitations that obey
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Figure 1.9: Order of slater determinants in the expansion of Laughlin 1/3 state with 3
electrons. The root configuration is 1001001, which is always the highest in order, and
each Slater determinant corresponds to a partition (in this case of 10) by transcribing
the position of each electron. The order of the partitions is determined by comparing
the positions from left to right. The lower states can be obtained from squeezing two
electrons closer to each other from higher states.

non-abelian braiding statistics[6]. They are building blocks of topological quantum

computing[33]. The Read-Rezayi series are even more complicated states[37].

Notice that the model wavefunctions are all written in the first-quantized language.

To transform them into the second-quantized language, i.e., as an expansion in Fock

basis (Slater determinants for fermionic systems) is not straightforward. Bernevig and

Haldane[4] observed that the bosonic version of these model wavefunctions, for both

the ground states and the excitations, were Jack polynomials. These polynomials

are homogeneous and symmetric, constructed from a partition λ (called the “root

configuration”) and a parameter α. Each partition corresponds to a basis state in the

Fock space and only those basis states that are lower in the order compared to the

root configuration can appear in the expansion, where the order is defined by that

of the partition. Fig.(1.9) shows an example. The coefficients of the expansion have

a recursive relation that depends on α, which facilitates numerical generation of the

wavefunctions. Model wavefunctions for neutral excitations constructed with Jack

polynomials were proposed in Ref[45]. The interpretation of the neutral excitations

is that (at least at large q) they are dipole moments formed by a quasiparticle and a

quasihole. See Fig.(1.10).

The jack polynomials are still exact model wavefunctions while the matrix-

product-state (MPS) representation[47] is a useful approximation of the model

12



Figure 1.10: Root configurations of model wavefunctions for neutral excitations for
the Langhlin 1/3 system. The total angular momentum L is calculated with respect
to the ground state (with root configuration 1001001 · · · 1001). Note the smallest L
that can be created is 2. The black dots indicate the positions of quasiparticles while
the white dots those of quasiholes. They are determined by counting the number
of electrons in three consecutive orbitals. When L increases, the excitation can be
roughly viewed as a pair of quasihole and quasiparticle that forms a dipole moment.

wavefunctions that further enables numerical calculations of various properties of

the FQHE. This is closely related to the concept of entanglement spectrum that

was introduced by Li and Haldane[30]. The universality within the entanglement

spectrum of the model wavefunctions are closely related to the fact that they are

identical to conformal blocks of a “bulk CFT” and that the cut that divides the

system into two parts mimics the physical edge where an “edge CFT” describes the

gapless edge excitations, which is investigated by Wen[42].

At first sight the models wavefunctions appear to be rigid in the sense that they

contain no variational parameters. In a geometric description of the FQHE initiated

by Haldane[19], a hidden degree of freedom called the guiding-center metric that de-

fines the shape of the “correlation hole” around an electron can be tuned to minimize

the Coulomb energy. This is numerically done in Ref[46]. Also the zero fluctuation

of this metric gives rise to the gap at zero momentum. This metric is a dynamic

quantity that has nothing to do with that of the underlying manifold. A metric of

13



free choice will be a critical concept in the generic theory for the IQHE presented in

this thesis.

1.3 Continuous model

In this section we want to review the usual Galilean-invariant continuous model to

illustrate some basic concepts and prepare the reader for later (more generic) discus-

sions. Consider a 2DEG living on the infinite 2D Euclidean plane under a uniform

magnetic field B. The dispersion is quadratic, i.e., the Hamiltonian is in the form of

H =
1

2m

(
p2x + p2y

)
, px,y = −i~∂x,y − eAx,y. (1.8)

We will use the so-called symmetry gauge Ax = 1
2
By and Ay = −1

2
Bx. The commu-

tator of the momentum operators has a simple form,

[px, py] = i~eB, (1.9)

which is reminiscent of the canonical commutator [x, px] = i~. Indeed, we can build

ladder operators out of the momentum operators by

a =
px + ipy√

2~eB
, a† =

px − ipy√
2~eB

, (1.10)

so that [a, a†] = 1. The Hamiltonian is then

H = ~ωc(a†a+ 1
2
), ωc = eB/m. (1.11)

The spectrum is thus equivalent to that of a harmonic oscillator

En = ~ωc(n+ 1
2
), (1.12)

14



Figure 1.11: Lowest Landau level states zme−
1
2
z∗z/
√
m! with m = 0, 2, 4, 6, 8 plotted

against |z|. Except the m = 0 state, they vanish at |z| = 0 and have a peak at
|z| =

√
m.

except that now each level (called a Landau level) is macroscopically degenerate with

a degeneracy equal to the number of flux quanta (at least for a flat geometry like the

Euclidean plane). The eigenstates of the lowest Landau level satisfy a|Ψ0〉 = 0 and

have a nice form using complex variable z = (x+ iy)/
√

2

|Ψ0〉 = f(z)e−
1
2
z∗z, (1.13)

i.e., a holomorphic function times an exponential factor. An orthonormal basis can

be chosen to be

|Ψ0,m〉 =
zm√
m!
e−

1
2
z∗z, m = 0, 1, 2, . . . (1.14)

They are eigenstates of the angular momentum operator Lz = x∂y − y∂x with eigen-

15



Figure 1.12: Landau levels under a rotationally invariant confining potential. The
Fermi energy EF is between the 2nd and the 3rd Landau levels and has three inter-
sections with the lowest three Landau levels. Theses intersections correspond to three
branches of gapless edge modes.

value m. Notice that the peak of |Ψ0,m| is at |z| =
√
m (see Fig.(1.11)) so if we add a

rotationally invariant confining potential that increases monotonically with |z| then

we will have a spectrum where (in each Landau level) energy increases with angular

momentum index. See Fig. (1.12). Then if we set the Fermi energy just above the

nth Landau level, it will have n intersections with the lowest n bands, creating n

gapless edge modes.

We want to look at in particular |Ψ0,0〉 = e−
1
2
z∗z, which is a coherent state centered

at the origin. If we “raise” the state using a† we will have a series of states

(a†)k|Ψ0,0〉 = (z∗)ke−
1
2
z∗z. (1.15)

16



These can be called coherent states in the kth Landau level. In the next chapter we

will see that a coherent state (in any Landau level) will have a generic form

f(z∗)e−
1
2
z∗z (1.16)

in the absence of Galilean or rotational symmetry.

1.4 Galilean and rotational symmetries

In the previous section we modeled the IQHE using a quadratic Hamiltonian with

Euclidean metric. That Hamiltonian has both Galilean and rotational symmetries.

A general Galilean-invariant Hamiltonian is

H =
1

2
mabpapb, (1.17)

where mab is the inverse mass tensor inherited from the band structure. A general

rotationally invariant Hamiltonian is

H =
K∑
k=1

ck
(
gabpapb

)k
, (1.18)

where the metric is the same for every term. A Hamiltonian in this form can still be

exactly diagonalized using the same technique as in the Galilean invariant case. It’s

just that the energy levels are not evenly separated.

There has been recent interest in geometrical properties of the QHE[7, 8, 1, 15,

10, 11, 16, 38]. A typical field-theoretical model that is used in the literature is

S =

∫
d2xdt

√
g

[
i

2
~ψ†∂0ψ −

i

2
~(∂0ψ

†)ψ + eA0ψ
†ψ − ~2

2m
gij(Diψ)†Djψ +

gsB

4m
ψ†ψ

]
,

(1.19)

17



which clearly has Galilean symmetry. The Newton-Cartan geometry proposed in

Ref.[38] is also a generalization of the Galilean symmetry. However, these are not

generic symmetries for electrons moving in a crystal background and can only be

viewed as a lowest order expansion of the band structure around a band minimum.

A simple toy model is certainly useful in revealing the basic properties of the QHE,

especially the topological ones since they are, by nature, not related to the presence

or absence of symmetries and a simple model offers an easy way to calculate them.

However, for geometrical properties of the QHE the use of special symmetries might

obscure fine structures in the system and thus can be potentially misleading. We

would like to overcome this obstacle in understanding the IQHE.

1.5 Road map

The purpose of this thesis is to present a generic theory of the IQHE in the absence

of Galilean or rotational symmetry. Preparatory material discussing the algebra of

Landau orbits and guiding centers is provided in Chap.(2). There we also construct

guiding-center coherent states that will be studied in detail later. After that we will

achieve two goals. The first is to properly characterize the coherent state in each

Landau level, which is done numerically in Chap.(3) for a quartic Hamiltonian. A

topological quantity called the topological spin will be introduced there by investi-

gating the root distribution of the antiholomorphic part of the coherent states. The

second goal is to clarify distinct geometrical properties for the IQHE. In Chap.(4) a

generic formula for the Hall viscosity, response to a non-uniform flow velocity field,

will be derived and compared to previous results in the literature. In Chap.(5) we

will calculate generic electromagnetic responses and differentiate between universal

terms that are diagonal in the Landau levels and non-universal terms that depend on

inter-Landau-level mixing. Conclusions can be found in Chap.(6).

18



Chapter 2

A generic approach

Since we want to forfeit Galilean and rotational symmetries, we need a generic ap-

proach to address the IQHE problem. We will first introduce the algebra of Landau

orbits and guiding centers, two independent degrees of freedom. They both possess

a metric of free choice. Then we will define the guiding-center coherent states by

providing a natural choice for the guiding-center metric. After presenting a generic

form of the single-particle Hamiltonian we will look closely at the quartic case, which

will be studied in detail numerically in the next chapter.

2.1 The algebra of Landau orbits and guiding cen-

ters

As mentioned in Sec.(1.3), the 2D dynamic momentum operator is defined as

pa = −i~∂a − eAa(x), (2.1)
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with the commutator being

[pa, pb] = i~eεabB(x). (2.2)

We have used the fact that

∂aAb − ∂bAa = B(x)εab (2.3)

which is true regardless of gauge choice. We will focus on the case of a uniform

magnetic field B(x) = B and leave perturbations to Chap.(5) where we discuss elec-

tromagnetic response functions. Now decompose the electron coordinate as follows,

xa = Ra + R̃a, (2.4)

R̃a ≡ (eB)−1εabpb, (2.5)

where Ra is the “guiding-center” coordinate and R̃a is the Landau-orbit coordinate.

The physical interpretation of this decomposition is that the guiding-center coordinate

describes the position of the center of the orbit with respect to the origin while the

Landau-level coordinate describes the relative position of the electron to the orbit

center, as shown in Fig.(2.1). An amazing property of this decomposition is that the

two parts are independent degrees of freedom, i.e.,

[Ra, R̃b] = 0. (2.6)
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Figure 2.1: Landau-orbit coordinate R̃ and guiding-center coordinate R.

However these coordinates are not classical quantities, i.e., they have non-trivial

commutators,

[Ra, Rb] = −i~(eB)−1εab, (2.7)

[R̃a, R̃b] = i~(eB)−1εab, (2.8)

and thus can not be diagonalized simultaneously, unlike the usual coordinate opera-

tors in the Schrödinger picture where x̂|x〉 = x|x〉. The best we can do is to construct

a coherent state that is physically a fuzzy object saturating Heisenberg’s uncertainty

principle, which is detailed in the next section. Also notice that the commutators have

opposite signs, which is another manifestation of the opposite chiralities of Landau

orbits and edge states (guiding-center flow) mentioned in Sec.(1.1).
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We can define two sets of harmonic-oscillator operators for Landau-orbit and

guiding-center degrees of freedom respectively,

a =

√
eB

2~
ẽaR̃

a, b =

√
eB

2~
ēaR

a, (2.9)

a† =

√
eB

2~
ẽ∗aR̃

a, b† =

√
eB

2~
ē∗aR

a, (2.10)

where the ea, called (complex 2D) frame fields, satisfy

εabẽ∗aẽb = εabē∗aēb = i, (2.11)

so that the harmonic-oscillator operators have the expected commutation relations

[a, a†] = [b, b†] = 1, [a, b] = [a, b†] = 0. This fixes the antisymmetric part of eaeb and

we can define a metric from the symmetric part for both Landau-orbit and guiding-

center sectors,

g̃ab = ẽ∗aẽb + ẽ∗b ẽa, ḡab = ē∗aēb + ē∗b ēa. (2.12)

These metrics are unimodular meaning that the determinant

det g = 1
2
εacεbdgabgcd (2.13)

is 1. The inverse metrics are then

g̃ab = εacεbdg̃cd, ḡab = εacεbdḡcd. (2.14)
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Figure 2.2: Schematic drawing of the effect of three area-preserving generators γ22,
γ11, and γ12. γ22 and γ11 translate one of the two momentum operators while γ12 is a
rotation.

Up until now we have not specified the frame fields or the metrics. In fact different

choices are related by Bogliubov transformations

 a′

a′†

 =

 eiφ1 cosh θ eiφ2 sinh θ

e−iφ2 sinh θ e−iφ1 cosh θ


 a

a†

 (2.15)

parametrized by three parameters φ1, φ2 and θ. This can also be viewed from the

perspective of area-preserving deformations of the momentum-space

pa → U(β)paU(β)−1. (2.16)

The unitary operator U(β) is defined as

U(β) = exp(iπβabγab), (2.17)

γab = (4~eB)−1{pa, pb}, (2.18)
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where βab is a real symmetric matrix. The action of the generators can be understood

by calculating their commutators with the momentum operators

[pa, γbc] = 1
2
i(εabpc + εacpb). (2.19)

We can see that γ11 leaves p1 invariant while translates p2 in the direction of p1. γ22

acts in a similar way and γ12 corresponds to a rotation, as illustrated in Fig. (2.2).

These generators obey a Lie-algebra

[γab, γcd] = 1
2
i(εacγbd + εbcγad + εadγbc + εbdγac) (2.20)

that will be useful in deriving the Hall viscosity in Sec. (4.3).

If the system under study has rotational symmetry, it’s natural to identify the

two metrics, then the z-component of the angular momentum operator written as

Lz = b†b− a†a = b†b+ 1
2
− (a†a+ 1

2
) (2.21)

is a good quantum number. We have a finer structure of the spectrum now by realizing

that in nth Landau level the smallest Lz is −n, as illustrated in Fig.(2.3).

The differentiation between two independent and fundamentally arbitrary metrics

is critical in our generic description for the IQHE without Galilean or rotational

symmetry. In the next section we will introduce what we think is the most natural

choice for the guiding-center metric in the process of defining guiding-center coherent

states.
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Figure 2.3: Sketch of the single-particle spectrum for a rotationally invariant quantum
Hall system. The z-component of the angular momentum Lz = b†b − a†a is a good
quantum number and the lowest Lz for the nth Landau level is −n. a† raises a state
to the next Landau level and lowers Lz by 1 while b† raises a state to the next Lz
eigenstate within the same Landau level.

2.2 Guiding-center coherent states

We said at the end of the introductory chapter that we wanted to characterize the

eigenstates at the absence of rotational symmetry. Since a Landau level is macroscop-

ically degenerate (this is due to the existence of two independent sets of algebra), we

need to look at a specific state in each Landau level and a coherent state would be a

good candidate. Then comes the problem of how to construct these coherent states.

We inherit the spirit of a usual coherent state, which is the closest quantum

mechanical state to the classical state, and define here a guiding-center coherent

state with a fixed guiding center

〈Ψn(x̄, ḡ)|R|〈Ψn(x̄, ḡ)〉 = x̄ (2.22)
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Figure 2.4: A coherent state on the guiding-center plane (analogous to the phase
space of a harmonic oscillator). The coordinates of the center of the coherent state
indicate the expectation values of the guiding-center operators. The shape of the
coherent state is determined by the guiding-center metric and the area of the fuzzy
region is πl2B. The combination of this uncertainty with that of the Landau orbits,
also πl2B, gives the area per flux quantum 2πl2B.

that satisfies

ḡab(〈Ψ|RaRb|Ψ〉 − 〈Ψ|Ra|Ψ〉〈Ψ|Rb|Ψ〉) =
~
eB
≡ l2B, (2.23)

i.e., the guiding-center part saturates Heisenberg’s uncertainty principle as an equal-

ity. Fig.(2.4) illustrates such a coherent state on the guiding-center plane (similar to

the phase space of a harmonic oscillator). Without loss of generality, we will only

consider the case x̄ = 0, a coherent state centered at the origin. Notice that the

coherent state explicitly depends on the guiding-center metric and different choices

of the metric correspond to physically distinct states. It turns out that there is a

“natural” choice for each Landau level that is proportional to the expectation value
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Figure 2.5: Shape of Landau orbits (dashed) determined by the expectation values
of the area-preserving transformation generators γab and that of guiding centers de-
termined by ḡab (solid). In the right plot the two shapes are congruent, which is the
case for the guiding-center coherent states that will be of interest to us.

of the γab operators in that level

ḡab ∝ 〈Ψn|γab|Ψn〉. (2.24)

This natural metric, denoted gnab, is generically different for each Landau level at

the absence of rotational symmetry as it characterizes the shape of the orbits in

each level. Using it to define the guiding-center coherent states, we are intentionally

identifying the shape of guiding centers and that of Landau orbits. See Fig. (2.5). We

will provide a more convincing justification of this choice in the next chapter where

we investigate numerical solutions for the coherent states. The same metric is also

proportional to the “2D Hall viscosity tensor” that will be introduced in Chap. (4).
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We can obtain a more explicit expression for the coherent states by defining a

complex structure on the 2D Euclidean plane

z = ēax
a/(
√

2lB), (2.25)

and picking a “symmetric” gauge for the vector potential

Aa(x) =
1√
2
i(z∗ēa − zē∗a). (2.26)

This gauge is more generic in the sense that it contains an arbitrary field ēa that goes

hand in hand with the guiding-center metric ḡab. Notice that when ē = (1, i)/
√

2 we

go back to the usual symmetric gauge introduced in Sec.(1.3). Now the guiding-center

harmonic-oscillator operators have explicit expressions

b = 1
2
z∗ + ∂z, b† = 1

2
z − ∂z∗ . (2.27)

We use an alternative definition of a coherent state (centered at the origin)

b|Ψn〉 = 0 (2.28)

to obtain a generic form

Ψn(z, z∗) = fn(z∗)e−
1
2
z∗z, (2.29)

where the metric dependence is implicit in the definition of z. We see that it is

an anti-holomorphic function times an exponential part. This is quite reminiscent

(but should be differentiated from) the well-known property of lowest Landau level

wavefunctions (a holomorphic function times an exponential factor) mentioned in Sec.

(1.3) .
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2.3 A generic Hamiltonian

In Sec.(1.4) we clarified what we meant by Galilean and rotational symmetries for a

single-particle Hamiltonian. Now we will introduce a generic Hamiltonian in terms

of the momentum operators

H(p) =
n∑
k=1

1

(2k)!
Ha1a2...a2kpa1pa2 . . . pa2k , (2.30)

where the coefficients Ha1a2...a2k are fully symmetric in the indices. The Hamiltonian

contains only even order terms and has inversion symmetry

H(p) = H(−p). (2.31)

For an arbitrary function f(p) to be well-defined when the two variables pa are non-

commuting, it should be an entire function meaning that for any c-number p0, f(p0+

(p− p0)) expanded in powers of δp = p− p0

f(p) =
∞∑
n=0

fa1a2...an(p0){δpa1 , . . . , δpan}, (2.32)

where {. . . } is a symmetrized product, is absolutely convergent. The Hamiltonian

defined here is a polynomial in pa so the condition is always satisfied. For it to be

bounded below, the coefficient for the highest term needs to be positive semi-definite,

i.e.,

Aa1a2...a2npa1pa2 . . . pa2n ≥ 0 (2.33)

for all p 6= 0. But we will impose a stricter condition here that for all p 6= 0, ε(λp),

the classical version of H(λp) by treating p as a c-number, is strictly monotonically

increasing for 0 ≤ λ <∞ and unbounded as λ→∞. This constraint guarantees that
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Figure 2.6: Semiclassical quantization of Landau orbits. The semiclassical orbits are
closed equipotential lines of the dispersion relation ε(p) and the area enclosed by the
orbit is quantized according to A(En) = 2π~eB(n+ 1

2
).

any curve determined by the equation ε(p) = E > ε(0) is topologically equivalent

to a circle S1 that encloses the origin. The curves are actually classical orbits as the

equations of motion are

dxa

dt
=

∂ε

∂pa
≡ va,

dpa
dt

= eBεabv
b, (2.34)

so the change in p is always perpendicular to the gradient field v. Bohr-Sommerfeld

quantization can be applied so the area enclosed by these curves are quantized as

A(En) = 2π~eB(n+ 1
2
), (2.35)

and the corresponding En are the Landau level energies. See Fig. (2.6). This will be

revisited for numerical solutions in the next chapter.
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To diagonalize the Hamiltonian, we still need to transform the momentum opera-

tors to harmonic-oscillator operators a and a†. When rotational symmetry is absent,

there is no “best” choice of the metric g̃ab that puts the Hamiltonian in a readily

diagonalizable form. However, since we introduced a natural metric for the guiding-

center coherent states defined in the last section, using the same metric for g̃ab will

make a and a† expressible with the same complex structure z as

a = 1
2
z + ∂z∗ , a† = 1

2
z∗ − ∂z, (2.36)

and a coherent state that is also an eigenstate of a†a with eigenvalue n is

Ψ0
n =

(z∗)n√
n!
e−

1
2
z∗z. (2.37)

Thus a coherent state in the nth Landau level Ψn as an expansion in the Ψ0
n, a result

of diagonalizing the Hamiltonian, can be readily expressed as a Taylor expansion in

terms of z∗, i.e.,

Ψn =
∞∑
k=0

ckΨ
0
k =

∞∑
k=0

ck
(z∗)k√
k!
e−

1
2
z∗z, (2.38)

which is a clean form for further investigation. In the next chapter we will employ

numerical methods to diagonalize the Hamiltonian and obtain the expansion with a

cutoff on the number of available Ψ0
n.
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2.4 The quartic case

From now on we will focus on the simplest non-trivial case where the Hamiltonian

only has quadratic and quartic terms, i.e.,

H = Aab1 papb + Aabcd2 papbpcpd. (2.39)

Let’s look at the quartic term. If we treat the components of p as classical variables,

Aabcd2 papbpcpd is then a homogeneous polynomial of degree four and can be trans-

formed into a univariate polynomial of p1/p2. This polynomial can have: I) two pairs

of complex conjugate roots, II) one pair of complex conjugate roots and a real root

of multiplicity 2, III) two real roots each of multiplicity 2, and IV) one real root of

multiplicity 4. The existence of a pair of complex conjugate roots means the corre-

sponding quadratic form is positive-definite and therefore the coefficient matrix can

be interpreted as a metric. Based on this consideration, those four cases correspond

to four different classes (labeled by Roman numerals) of the quartic term

Aab,cd2,I = gab1 g
cd
2 + gab2 g

cd
1 ,

1
2
(gab1 + gab2 ) = cgab0 , (2.40)

Aab,cd2,II = gab1 u
c
1u

d
1 + ua1u

b
1g
cd
1 , (2.41)

Aab,cd2,III = ua1u
b
1u

c
2u

d
2 + ua2u

b
2u

c
1u

d
1, u

a
1u

b
1 + ua2u

b
2 = λgab0 , (2.42)

Aab,cd2,IV = ua1u
b
1u

c
1u

d
1, (2.43)

where λ > 0, and c ≥ 1. The contour plots in the momentum space for a typical

member in each class is plotted in Fig.(2.7). It can be seen that only class I has

closed contours so it will be our main focus. There are two metrics gab1 and gab2 in the

definition. After a SL(2, R) transformation, as illustrated in Fig.(2.8), we can put
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Figure 2.7: Contour plots in the momentum space of a typical member in each class
of the quartic term. The quartic terms are I) {5p21 + p22, p

2
1 + 5p22}, II) {p21, p21 + p22},

III) {p21, p22} and IV) p41. Notice that only the contours for class I are closed.
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Figure 2.8: Sketch of creating C4 symmetry under a SL(2, R) transformation. Start-
ing from gab1 = δab (which can always be achieved under a certain basis), a rotation
can put gab2 into a diagonal form. Then a scaling of one axis can put the two metrics
into the final configuration where gab1 and gab2 are both diagonal and related by a 90
degree rotation.

these two metrics in the form

gab1 =

d1 0

0 d2

 , gab2 =

d2 0

0 d1

 . (2.44)

This is indeed the case for the example provided in Fig.(2.7). The quartic term is

then

H = E0

(
(γ11 + γ22)

2 + (c− 1){γ11, γ22}
)
. (2.45)

This form has an explicit C4 symmetry under (p1, p2) → (−p2, p1) or γ11 ↔ γ22.

However we should remark that this C4 symmetry is only possessed by a pure quartic

term and has no generic significance.
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Chapter 3

Numerics

In the previous chapter we introduced a generic form of the single-particle Hamil-

tonian and looked closely at the quartic case. Unfortunately we were not able to

diagonalize the Hamiltonian analytically, so in this chapter we will employ numerical

methods. By imposing a cutoff on the number of available basis states we transform

the problem into matrix diagonalization. After we obtain the eigenstates, which are

in the form of a polynomial in z∗ times a exponential factor, we will look at the root

distribution of that polynomial and define a “topological spin” sn = n+ 1
2

where n is

the number of the central roots separated from the outer roots by the semiclassical

orbit. Its connection to the “shift” will be explained. At the end of this chapter

we will briefly talk about Nevanlinna theory that studies the zero distribution and

growth rate for solutions of complex differential equations.

3.1 Algorithm

The major steps of the algorithm are shown in Fig.(3.1). In Eq.(2.24) we have specified

the guiding-center metric for the coherent states to be the expectation values of γab.

However, before we diagonalize the Hamiltonian and obtain the eigenstates, we don’t

have that metric at hand. Nonetheless, diagonalization only requires specifying the
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Landau-orbit metric and the choice doesn’t affect the results (at least when there is no

cutoff). Therefore as a first step, we pick the Euclidean metric δab to define Landau-

orbit harmonic-oscillator operators a and a†. After calculating the expectation values

of γab in a certain Landau level indexed by n, we re-define a and a† using that natural

metric gnab and re-diagonalize the Hamiltonian under the new basis (eigenstates of

a†a). To obtain the frame fields, use

ẽa = gabẽ
b = iεabẽ

b, (3.1)

or in matrix form (letting ẽa ∝ (1, α))

g11 g12

g21 g22


1

α

 =

 0 i

−i 0


1

α

 . (3.2)

We have

ẽa =

√
g22
2

(
1,
−g12 − i
g22

)
, (3.3)

and a = ẽapa/
√
~eB. If we define

pE1 = (a+ a†)/
√

2, pE2 = −i(a− a†)/
√

2, (3.4)

then the expectation value of {pEa , pEb } in the nth eigenstate should be the Euclidean

metric δab. This can be checked to make sure that the algorithm is working properly.

We then pick the nth eigenstate, whose natural metric now defines both a† and

b†. The eigenstate has a representation (with a cutoff on the available orbitals)

Ψn =
N∑
k=0

ck
(z∗)k√
k!
e−

1
2
z∗z, (3.5)
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where ck are the components of the eigenvector and the complex structure z is asso-

ciated with the natural metric. We will investigate how the cutoff might affect the

eigenstate.

Since the eigenstate is represented as an antiholomorphic polynomial completely

determined by its roots, our idea is to characterize the eigenstate from the perspective

of the distribution of its roots on the complex plane. The algorithm that is used to

find the roots is called Jenkins-Traub algorithm[35]. The basic idea is as follows.

Consider a polynomial

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0 =

p∏
j=1

(z − αj)mj (3.6)

where the ai are complex numbers with a0 6= 0. The zero αj has multiplicity mj, j =

1, . . . , p so that
∑p

j=1mj = n. We have

P ′(z) =

p∑
j=1

mjPj(z), (3.7)

Pj(z) =
P (z)

z − αj
. (3.8)

Generate a sequence of polynomials H(λ)(z) starting with H(0)(z) = P ′(z), each of

the form

H(λ)(z) =

p∑
j=1

c
(λ)
j Pj(z), (3.9)

and the goal is to let H(λ)(z)→ c
(λ)
1 P1(z), then a sequence {tλ}

tλ+1 = sλ −
P (sλ)

H̃(λ+1)(sλ)
, (3.10)

H̃(λ)(z) =
H(λ)(z)∑p
j=1 c

(λ)
j

, (3.11)
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Figure 3.1: Diagram of numerical procedures. The Hamiltonian is diagonalized with
the Landau-orbit metric identical to the Euclidean metric. After the natural metric
for a specific Landau level indexed by n is calculated, diagonalize the Hamiltonian for
a second time using that metric to define a and a†. The roots of the polynomial part of
the nth eigenstate (which is in nth Landau level) are then found using Jenkins-Traub
algorithm. For another Landau level n′ 6= n, restart from the second step.

where sλ is an arbitrary sequence, approaches sλ − (sλ − α1) = α1. The H(λ)(z) are

generated by the formula

H(λ+1)(zλ) =
1

z − sλ

(
H(λ)(z)− H(λ)(sλ)

P (sλ)
P (z)

)
(3.12)

=
P (z)

z − sλ

p∑
j=1

c
(λ)
j

(
1

z − αj
− 1

sλ − αj

)

=

p∑
j=1

c
(λ)
j

αj − sλ
Pj(z). (3.13)

If we choose sλ so that it approaches α1 (e.g., let sλ = tλ) we will achieve our goal.
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A practical problem in the process described above is that the factor 1/
√
k! present

in Eq.(3.5) decays so fast that at k ∼ 170 it already reaches the limit of double-

precision floating-point format. To achieve a higher cutoff, we used the arbitrary-

precision data type provided by the GMP library in the root-finding algorithm.

We also needed to transform the LAPACK routines used for diagonalization into

arbitrary-precision versions and we found an open-source package called MPACK[32]

that suited our purpose.

3.2 Topological spin

In this section we will present numerical results, particularly the distribution of com-

plex roots for a guiding-center coherent state. An important concept dubbed a topo-

logical spin will be introduced to characterize different Landau levels.

Before jumping into the details, let’s get some taste from a benchmark case where

we calculate the roots of an expansion of the modified Bessel function of the first kind

I0(2z) =
N∑
k=0

1

(k!)2
z2k. (3.14)

To mimic the C4 symmetry of a pure quartic term, we will use I0(2z
2) instead. The

function I0(z) has inversion symmetry I0(z) = I0(−z) and all its zeros lie on the imag-

inary axis. Therefore the zeros of I0(2z
2) should be aligned on four rays emanating

from the origin with arguments ±π/4 and ±3π/4. Fig.(3.2) verifies this (along with

numerical artifacts).

We will start with class I quartic case (for the definition of the four classes, see

Sec.(2.4)). A typical layout of the roots is presented in Fig.(3.3). The central zeros

are organized in a cross shape due to the C4 symmetry. There are n mod 4 degenerate

roots at the origin where n is the Landau-level index, and the degeneracy will be lifted

once we add quadratic terms to the Hamiltonian (as the C4 symmetry is broken). The
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Figure 3.2: Roots of an expansion of I0(2z
2) at cutoff N = 500. The four rays of

roots at arguments ±π/4 and ±3π/4 are true roots while the arcs on the outside are
due to a finite cutoff and will be pushed further outward when the cutoff increases.

feature that also appears in the benchmark case is the presence of four “spikes” that

point to the origin at ±45 and ±135 degrees. The new features are the regions with

quasi-uniform 2D distributions bounded by lines of roots also with nearly constant

density. The precise locations of the roots inside those 2D regions are sensitive to

perturbation of the Hamiltonian, but we believe the very existence of such “dark”

areas is universal.

Note that there are also truncation-dependent features tied to the boundary

|z| ≈ RN , where N is the cutoff, but the structure for |z| � RN becomes inde-

pendent of N as it, and consequently RN , is increased, as illustrated in Fig.(3.4). We
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Figure 3.3: Root distribution on the complex plane of the coherent state in the 10th
Landau level for class I quartic term in Eq.(2.45) with c−1 = 4 at a truncation of 500
even-parity states. Ten central zeros, with two being degenerate at the origin, form
a cross due to the C4 symmetry. The peripheral zeros also have interesting features,
such as four “spikes” pointing to the origin and line charges with constant density
that bound 2D regions of quasi-uniform distributions. The arcs on the boundary are
generated due to finite truncation and should not be regarded as part of the zero
pattern.
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Figure 3.4: Root distribution on the complex plane of the coherent state in the 10th
Landau level for class I quartic term in Eq.(2.45) with c−1 = 4 at a truncation of 500,
750 and 1000 even-parity states. For each N , we used a sufficiently high precision in
diagonalization so that further increasing the precision would not do any better in
terms of the locations of the zeros. As N increases, the region covered by the zeros
expands. However, the existing pattern of zero distribution doesn’t change, which
justifies the validity of our results.
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therefore believe that this calculational method reveals the true structure of roots

of the antiholomorphic non-polynomial function fn(z∗) in a range |z| < R that can

be increased at will at the expense of increasing the floating-point precision of the

numerical diagonalization.

Let’s now look at other features of the distribution. There is a 2D electrostatic

analogy by interpreting

ln |Ψn|2 = 2
N∑
k=0

ln |z − zk| − z∗z + const., (3.15)

where zk are the roots, as the Coulomb potential at z of a 2D distribution of charges

located at the roots and a neutralizing background charge density 1/π (if each root

carries a unit charge). To visualize that, we show in Fig.(3.5) the contours of ln |Ψn|2.

We see piecewise segments with different curvatures as the 2D regions change effective

background charge density and the linear alignments of roots act as branch cuts.

Notice the “volcano crater” at the center enclosed by an annulus-like region containing

local maxima and saddle points. The free parameter c− 1 controls the shape of the

annulus. A simple calculation reveals that c− 1 > 2 corresponds to a concave shape,

while c− 1 < 2 convex. This annulus is a fattened version of the semiclassical orbit.

Actually if we define a “ridge” inside the annulus as the boundary between two regions

where the gradient field flows toward either the origin or infinity (the local maxima

and the saddle points are all right on the boundary), as shown in Fig. (3.6), we find

that the area enclosed by that ridge is exactly πn with n being the Landau level

index, which corresponds to an area of 2π~eBn on the momentum plane. This is just

the Bohr-Sommerfeld quantization mentioned in Sec.(2.3) shifted by a constant.

To obtain an intuitive understanding of the structure, recall that in the rotation-

ally invariant case, Ψn ∝ (z∗)n exp(−1
2
z∗z) has n zeros at the origin, a ring of maxima

at a radius of
√
n and a Gaussian tail extending to infinity. With a moderate per-
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Figure 3.5: Contour plots of ln |Ψ10(z, z
∗)|2 where Ψ10(z, z

∗) is the coherent state in
the 10th Landau level for class I quartic term (2.45) with c − 1 = 4 > 2 (top) and
c − 1 = 1 < 2 (bottom). Both plots show piece-wise contours with the four spikes
and the line charges as branch cuts. Another common feature is the existence of four
maxima along the directions of the central cross and four saddle points along those
of the spikes. Despite the similarities, the two plots also show qualitatively different
shapes of the semiclassical orbits. We see that c − 1 > 2 corresponds to concave
shapes while c− 1 < 2 to convex ones.
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Figure 3.6: A “ridge” (dashed) defined as the boundary between two regions where
the gradient field flows to the origin (inside) or infinity (outside). The roots are those
of the coherent state in the 10th Landau level for class I quartic term with c− 1 = 2.
Contours are also shown. Notice that the local maxima and the saddle points are all
right on the ridge. The area enclosed by the ridge is πn, corresponding to an area
of 2π~eB on the momentum plane, which is consistent with (shifted) semiclassical
quantization.

turbation that breaks rotational invariance, the new zeros will only appear where the

original wavefunction has a small amplitude, namely, around the origin or along the

Gaussian tail separated by the peak in between which contains most of the weight of

the wave function. In Fig.(3.7) we show that the peak region can encompass as much

as 90 percent of the total weight.

The existence of a clean separation between the central zeros and the rest of the

pattern by an annulus-like region, or more rigorously a region with Euler characteristic

χ = 0, defined by |Ψn| ≥ V, V ∈ R+, is critical for our definition of a topological spin,
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Figure 3.7: Black region accounting for 90 percent of the total weight (probability)
of |Ψ20|2, the coherent state in the 20th Landau level of the Hamiltonian p2x + p2y +
2p4x + 3p4y + 4{p2x, p2y} + {px, p3y}. The annulus is bounded by contours at the same
value of the amplitude |Ψ20| and cleanly separates the central zeros from the rest of
the structure.

which is

sn = n+ 1
2

(3.16)

where n is the number of central zeros. Now we can provide a more convincing

justification for the natural metric used to define the coherent states. If we deform

the metric, at some point the central zeros will leak out of the “crater” region and

the coherent state doesn’t have a semiclassical counterpart anymore. An example is

shown in Fig.(3.8) where the guiding-center metric is chosen to be δab even though
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Figure 3.8: Contours of ln |Ψ10(z, z
∗)|2, a coherent state in the 20th Landau level

with the guiding-center metric ḡab equal to the Euclidean metric δab while the natural
metric is extremely squeezed, which can be told from the elongated distribution of the
central roots and the contours. Those roots are no longer separated from the outer
ones by an annulus-like region defined by |Ψ10(z, z

∗)| > V where V is a constant.
Instead, they are divided into subgroups by those local maxima.

the natural metric is in a extremely elongated shape. The central zeros can not be

enclosed by a region that meets our requirements.

Let’s briefly look at the other three classes of pure quartic term. As mentioned

in Sec.(2.4) the classical orbits for the three classes are not closed. Although the

noncommutativity of pa gives rise to effective quadratic terms for classes II and III,

thus closing the quantum orbits, we expect that a clean separation of the central zeros

cannot be achieved for any of the three classes, which is verified in Fig.(3.9).

We now combine quartic terms with quadratic terms. We adopt a different

parametrization here

H =Ap2x +Bp2y + Cp4x +Dp4y

+ E{p2x, p2y}+ F{px, p3y}+G{p3x, py}. (3.17)

The C4 symmetry generically breaks down. However, as we go to high-energy states,

the quartic terms will eventually dominate and therefore a quasi-C4 symmetry will
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Figure 3.9: Contour plots of ln |Ψ10(z, z
∗)|2 , where Ψ10(z, z

∗) is the coherent state
in the 10th Landau level, for class II-IV quartic terms, with the Hamiltonian being
{p2x, p2x + p2y}, {p2x, p2y}, p4x respectively. Although classes II&III have closed contours
that enclose part of the central zeros (red pluses), none of the three has a clean
separation between all the central zeros and the rest ones. The contours inside the
2D-distribution regions also demonstrate qualitatively different features from those
of class I : the puddle-like shapes indicate uniformly vanishing amplitudes.
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Figure 3.10: Root distribution on the complex plane of the coherent states in the
(from top to bottom) 0th, 2nd and 10th Landau level. The Hamiltonian assumes the
form 20p2x + 20p2y + 2p4x + 3p4y + 4{p2x, p2y} + {px, p3y}. As the Landau level index n
increases, the C4 symmetry gradually restores as quartic terms dominate.

49



-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-10

-5

 0

 5

 10

-10 -5  0  5  10
-10

-5

 0

 5

 10

-10 -5  0  5  10
-10

-5

 0

 5

 10

-10 -5  0  5  10

Figure 3.11: Contour plots of ln |Ψ20|2 where Ψ20 is the coherent state in the 20th
Landau level of the Hamiltonian p2x + p2y + 2p4x + 3p4y + 4{p2x, p2y} + {px, p3y}. The
lower plot is a zoom-in on the central region. The contours have the same piece-wise
structures as in the case of pure quartic terms. Also note that the central cross still
points to the maxima and that the spikes to the saddle points.
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gradually appear as the Landau index n increases, as shown in Fig.(3.10). Due to this

asymptotic C4 symmetry, the generic features of the root structure and the contours

still hold for a mixture of quadratic and quartic terms, as illustrated in Fig.(3.11).

To make connection with the usual Galilean theory, we remark that as we reduce

the weights of the quartic terms, the central zeros will shrink toward the origin and

the outer zeros will be pushed toward infinity (but the overall pattern doesn’t change),

consistent with the fact that at the limit of a pure quadratic term fn(z∗) becomes a

monomial (z∗)n whose roots all sit at the origin.

3.3 The “shift”

The topological spin introduced in the previous section is related to a topological

quantity called the ”shift” S that was first defined by Wen and Zee[43] in the relation

between the number of electrons Ne and the number of flux quanta Nφ on a manifold

with Euler characteristic χ,

Nφ = ν−1Ne − Sχ/2. (3.18)

The relation between the topological spin and the shift for the IQHE is

∑
n

νnsn = S/2. (3.19)

The Euler characteristic is a topological invariant related to the genus, another topo-

logical invariant counting the number of ”handles” in a closed orientable 2D manifold,

by

χ = 2− 2g. (3.20)
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Figure 3.12: Demonstration of calculation of the guiding-center spin for Laughlin 1/3
state. Each composite boson is a 100 segment, and the guiding-center spin is defined
as the difference between the angular momentum of a composite boson to that of a
uniformly distributed droplet, in this case 1

3
1
3
1
3
.

For example, a sphere has g = 0 and χ = 2, so the nth Landau level will have

2sn = 2n+ 1 extra orbitals. The exact spectrum was first calculated by Haldane[17],

who showed that the orbitals in the nth Landau level on the sphere with a charge-2S

magnetic monopole sitting at the center can be represented by a spin S + n object,

i.e., the degeneracy is 2(S + n) + 1 = 2S + (2n + 1). Another examples is the 2D

torus. It has g = 1 and χ = 0, and therefore the number of available orbitals is still

equal to Nφ. The first exact calculation was by Haldane and Rezayi[20].

For the FQHE, the shift has another contribution coming from the guiding-center

degree of freedom. The guiding-center spin is defined as the residual angular momen-

tum of a composite boson with respect to a uniform distribution of electrons. See

Fig.(3.3).

An explanation from the perspective of the effective theory is that the topological

spin couples to the Gaussian curvature of the underlying manifold and it is the total

effective curvature combining the magnetic field (U(1) curvature) and the Gaussian

curvature that determines the number of available orbitals, as illustrated in Fig.(3.3).
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Figure 3.13: The effective curvature for a topological spin sn moving on the sphere
with a Gaussian curvature Kg. The effective curvature consists of the magnetic
field (curvature of U(1) gauge fields) with coupling constant e/~ and the Gaussian
curvature (curvature of the spin connection) with coupling constant sn.

The Gauss-Bonnet theorem states that

∫
M

KdA = 2πχ(M), (3.21)

i.e., the integral of the Gaussian curvature K over a closed 2D manifold M is equal

to its Euler characteristic χ(M). As a result, there will be snχ extra orbitals in the

nth Landau level. However, the Gaussian curvature doesn’t need to be that of the

underlying manifold. In his geometrical description of the QHE, Haldane[19] pointed

out that even on a flat manifold there can be Gaussian curvature due to a spatially

varying guiding-center metric that minimizes local interaction.
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We have seen that the topological spin is a well-defined topological quantity. In

the next chapter where we reformulate the Hall viscosity, we will show that the usual

identification between the scalar viscosity, a non-topological quantity, and the shift

(or equivalently the topological spin) is only a coincidence at the presence of rotational

symmetry and should not be treated as a fundamental identity.

3.4 Nevanlinna theory

In this section we would like to revisit the problem of diagonalizing the Hamiltonian

but from the perspective of solving a complex differential equation. Using the complex

representation for a and a† in Eq.(2.36) and the parametrization for the Hamiltonian

in Eq.(2.45) the eigen-problem

H|Ψ〉 = E|Ψ〉 (3.22)

can be written as a fourth order complex differential equation on the antiholomorphic

part of the wavefunction:

(∂4z∗ + α2(z
∗)∂2z∗ + α1(z

∗)∂z∗ + α0(z
∗))f(z∗) = 0,

α2 = −(2 +
8

c− 1
)z∗2,

α1 = −(4 +
16

c− 1
)z∗,

α0 = z∗4 − 1− 2

c− 1
(1− E

E0

). (3.23)

In the mathematical literature Nevanlinna theory has been applied to the study of

global properties of solutions of complex differential equations[27]. One critical result

is that for a complex differential equation of any order with the coefficients being

entire functions of z (holomorphic functions at all finite points over the whole complex

plane), the solutions are guaranteed to be entire functions. This nice property justifies

our power-expansion method in the numerical analysis.
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To look at the theory in more detail we need to introduce several concepts. Let f

be a meromorphic function not identically equal to 0. Let n(r, f) (the unintegrated

counting function) denote the number of roots f(z) = 0 in |z| ≤ r, each root according

to its multiplicity. We define (the counting function)

N(r, f) ≡
∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r, (3.24)

and (the proximity function)

m(r, f) ≡ 1

2π

∫ 2π

0

log+

∣∣∣∣ 1

f(reiϕ)

∣∣∣∣ dϕ, (3.25)

log+ α ≡ max(0, logα).

The counting function measures how the number of roots grows with r while the

proximity function calculates the average of log+ |1/f | on a circle with radius r. Then

the characteristic function is defined as

T (r, f) ≡ m(r, f) +N(r, f), (3.26)

which leads us to a very important quantity called the order of a meromorphic func-

tion,

σ(f) ≡ lim sup
r→∞

log T (r, f)

log r
. (3.27)

If f is also an entire function, by Liouville’s theorem it is either unbounded or con-

stant. Excluding the constant case, we would generically expect m(r, f) → 0 as

r →∞ and the characteristic function is dominated by the counting function, so the

order is the exponent in the power law N(r, f) ∼ rσ. Notice that 1/f is also a mero-

morphic function, and the corresponding functions n(r, 1/f), N(r, 1/f) and T (r, 1/f)
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can be defined. The first main theorem states that

T (r, 1/f) = T (r, f) +O(1), (3.28)

which implies that f and 1/f have the same order. For an entire function f , 1/f

doesn’t have roots at finite points, so N(r, 1/f) ≡ 0 and T (r, 1/f) ≡ m(r, 1/f). Now

the order appears in log+ |f | ∼ rσ. We see that the asymptotic growth of an entire

function is closely related to that of the number of its roots.

For an nth order complex differential equation

f (n) + an−1(z)f (n−1) + · · ·+ a1(z)f ′ + a0(z)f = 0 (3.29)

with the coefficients being entire functions, the possible orders for the solutions are

rational numbers. If the coefficients are polynomials

aj(z) =

αj∑
i=0

cijz
i, j = 0, . . . , n− 1, (3.30)

then the order satisfies

σ(f) ≤ 1 + max
j=0,...,n−1

αj
n− j

. (3.31)

Let’s look at our case. Notice that the operators a and a† are linear in z∗ and ∂z∗ ,

which means the total power of z∗ and ∂z∗ is at most n where n is the highest order

term in the Hamiltonian (n=4 for a quartic Hamiltonian). This is equivalent to the

following inequality

αj + j ≤ n, (3.32)
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which says

σ(f) ≤ 2. (3.33)

This means the counting function N(r, f) can not grow faster than r2 (in our numer-

ical case it appears to grow as r2) or log+|f | can not grow faster than r2, which is

consistent with the fact that f(z∗) exp−1
2
z∗z is a normalizable wavefunction.
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Chapter 4

Hall viscosity

In the previous chapter we looked at the topological property of the guiding-center

coherent states. From this chapter on, we will start to investigate generic response

functions in the absence of Galilean or rotational symmetry. In particular, this chapter

is devoted to the study of the Hall viscosity, linear response of the stress tensor to a

non-uniform flow velocity field. We will have an overview of viscosity in a classical

fluid and in a quantum Hall fluid. Then by clarifying the definition of the stress

tensor as variation of an action against a strain field, we present a generic formula for

the Hall viscosity that forfeits the concept of “intrinsic orbital angular momentum”

as interpreted in previous work.

4.1 Viscosity

The viscosity of a fluid is the linear response of its stress tensor T ab (current-density

of momentum) to a non-uniform flow velocity field va

T ab(x, t) = ηa cb d(x, t)∂cv
d(x, t) +O(v2). (4.1)
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Notice that we have differentiated between covariant (lower) and contravariant (up-

per) indices, which is essential in clarifying the structure of the viscosity tensor at the

absence of rotational invariance. Both the stress tensor T ab and the viscosity tensor

ηa cb d are locally-defined (implying they should not be related to any topological quan-

tity) mixed-index tensors. The stress tensor appears in the equation of conservation

of momentum density T 0
a (assuming the system preserves translational invariance)

∂tT
0
a + ∂bT

b
a = 0, (4.2)

and it is clear that the stress tensor should be a (1,1) tensor.

The viscosity for a classical fluid is usually associated with its “thickness” or

“viscousness” (for example, honey has a much higher viscosity than water), as it

measures the internal resistance or friction against relative motion between different

parts of the fluid and is a source of dissipation of energy, as shown in Fig.(4.1). In the

next section we will investigate the viscosity in a QHE system. It has the amazing

property of being dissipationless and is given the name “Hall viscosity”.

4.2 Hall viscosity

The commonly studied (integer or fractional) quantum Hall systems are gapped in-

compressible fluids. To be more specific, there are two types of gaps (mentioned in

Sec.(1.2)), one for charged excitations and one for neutral excitations. For IQHE,

they are both in the order of the inter-Landau-level energy ~ωc. For FQHE, the

(gapped) charged excitation is a complex object called a quasiparticle that has frac-

tional charge and fractional statistics in the Laughlin series[29] while the neutral

excitation is the well-known magneto-roton mode first proposed by Girvin, MacDon-

ald and Platzman[13], which is interpreted as a dipole consisting of a quasihole and

a quasiparticle. Fig.(4.2) shows the spectrum for filling 1/3.
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Figure 4.1: Classical viscosity associated with dissipation. There is a gradient in the
y direction for a velocity field that flows in the x direction. The viscosity gives rise
to a shear stress that acts as a friction between layers of different velocities and the
fluid appears “viscous”, hence the name.

It’s the gap for neutral excitations that is of concern here. The presence of such

a gap forbids transmission of forces or dissipation of energy through the bulk. A

viscosity that satisfies the dissipationless property is called the Hall viscosity and can

only exist when time-reversal symmetry is broken. A typical configuration is shown

in Fig. (4.3). The mathematical expression for the condition is

T ba∂bv
a = 0, (4.3)

or equivalently the viscosity tensor ηa cb d must be antisymmetric under permutation

a, b↔ c, d

ηa cb d = −ηc ad b. (4.4)

60



Figure 4.2: Spectrum of 10 electrons in 30 orbitals on the torus with V1 pseudopoten-
tial interaction. The Laughlin ground state is set at the origin (zero momentum and
zero energy). The magneto-roton mode merges into the multi-roton continuum in
the long wavelength limit. The roton-minimum defines the gap for a FQHE system.
(Plot courtesy: F. D. M. Haldane).

The fact that there is no transmission of forces implies that a quantum Hall fluid

does not support a hydrostatic pressure. An external force acting upon the edge will

only modify the velocity of the edge currents and have no impact on the bulk, as

illustrated in Fig.(4.4). Since pressure is the trace of the stress tensor, this dictates

the traceless condition

T aa = 0. (4.5)

Note that a gapped quantum incompressible fluid is quite different than a classical

incompressible liquid. The incompressibility of a classical liquid is just a thought-
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Figure 4.3: Hall viscosity for a velocity field that flows in the x direction with a
gradient in the y direction . The stress on the top and bottom surfaces is perpendicular
to the flow velocity and therefore there is no dissipation of energy. The stress tries
to deform the local fluid while preserving the area, i.e., it is traceless.

experiment where we send the sound-wave velocity to infinity. The consequence is that

the liquid supports a hydrostatic pressure that is instantaneously uniform throughout

the liquid. In contrast, a quantum Hall fluid doesn’t support sound waves due to the

presence of a gap for collective excitations.

These two constraints (dissipationlessness and tracelessness) significantly reduce

the number of free matrix elements in the viscosity tensor. In particular, in 2D we

have 3 independent elements that can be represented by a symmetric rank-2 tensor
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Figure 4.4: Sketch of a quantum Hall droplet under a external force on the edge that
tries to compress the system. The edge flow velocity increases and absorbs the force
while the interior feels no impact.

ηHab. This is shown as

ηe fb d = εaeεcfηHabcd, (4.6)

ηHabcd = ηHbacd = ηHabdc = −ηHcdab

= 1
2
ε
(
εacη

H
bd + εadη

H
bc + εbcη

H
ad + εbdη

H
ac

)
, (4.7)

where ε ≡ ε12 is the Pfaffian of the 2D Levi-Civita symbol. The tensor ηHab is odd

under time-reversal and will be called the 2D Hall viscosity tensor.

The 2D Hall viscosity tensor was first calculated for the IQHE by Avron, Seiler and

Zograf[3]. Later Read[36] generalized the calculation to include the FQHE assuming
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rotational symmetry. There ηHab is proportional to the Euclidean metric

ηHab = ηHδab, (4.8)

with the scalar ηH interpreted as the density of “intrinsic orbital angular momentum”

ηH = 1
2
~nes̄, (4.9)

where ne = ν/2πl2B is the electron density and s̄ is the average orbital angular mo-

mentum. For the IQHE, the orbital angular momentum for the nth Landau level is

numerically equal to the topological spin sn = n + 1
2

defined in the previous chap-

ter, and this coincidence led to an identification in the literature between the scalar

Hall viscosity and the shift. However, the two quantities have completely different

origins. We elaborated on the topological nature of the shift (or the topological spin)

in Sec.(3.3) while the concept of “angular momentum” depends on the presence of

rotational symmetry. In a generic setting, these two quantities should have no rela-

tions. In the next section we will derive a generic formula for the 2D Hall viscosity

tensor, which is, perhaps not surprisingly, proportional to the natural metric specific

to each Landau level.

4.3 2D Hall viscosity tensor

Let’s revisit the definition of the stress tensor. In a variational approach, the stress

tensor is defined through the variation of an action under an infinitesimal diffeomor-

phism of the matter fields ϕ(x) 7→ ϕ(x′) = ϕ(x+ δu(x)),

δS =

∫
d4x
√

(−g)T µν∇µδu
ν , (4.10)
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where ∇a is the covariant derivative associated with the metric gµν and
√

(−g) is the

square root of the determinant of gµν . In field theory the stress tensor is also defined

as the variation against a change in the inverse metric

δS = −1
2

∫
d4x
√

(−g)Tµνδg
µν . (4.11)

However, it is clear that the two definitions give two tensors of different index place-

ment. We argued in Sec.(4.1) that the stress tensor should be a (1,1) tensor, so

the first definition is fundamental. Then what is wrong with the second definition?

Actually it assumes there is a Lorentz symmetry so that

gµσT
σ
ν − T σµgσν = 0, (4.12)

i.e., the tensor Tµν ≡ gµσT
σ
ν is symmetric, which is implicit in the second definition.

Notice that the change in the inverse metric under the diffeomorphism is

δgµν = −(gµσ∇σδu
ν + gνσ∇σδu

µ), (4.13)

with which we can show that the two definition are equivalent when Eq.(4.12) is valid.

To explicitly calculate the stress tensor for a generic Hamiltonian, we will use the

fundamental definition in Eq.(4.10) for an action describing a 2DEG in U(1) gauge

fields A0 and Aa

S =

∫
d2xdtL, (4.14)

L =
i

2
~ψ†∂0ψ −

i

2
~(∂0ψ

†)ψ + eA0ψ
†ψ −H, (4.15)
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where the fermionic fields obey the algebra

{ψ(x), ψ(x′)} = {ψ†(x), ψ†(x′)} = 0, (4.16)

{ψ(x), ψ†(x′)} = iδ(2)(x− x′). (4.17)

We have assumed that the underlying manifold is the 2D Euclidean plane, i.e., gab =

δab and
√
g = 1. The Hamiltonian density H is just the generic form (2.30) written

in the field theoretic language. For example, for a system with Galilean invariance it

is just

H =
1

2
mab(Daψ)†Dbψ, (4.18)

Da = ~∂a − ieAa. (4.19)

Under an infinitesimal spatial diffeomorphism x′a = xa + δua the U(1)-covariant

derivatives transform as

D′a = (δba − ∂aδub)Db, (4.20)

and the variation of the action is

δS =

∫
d2xdt T ab∂aδu

b, (4.21)

T ab =
δH

δ(Daψ)†
(Dbψ)† +

δH
δ(Daψ)

Dbψ + Lδab . (4.22)

For the IQHE, which is essentially a single-particle problem, the stress tensor can be

written in terms of single-particle operators by tracing out the guiding-center part

Tr(eiq·R) = 2πδ2(q`B). (4.23)
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The result is then (the Lδab term is identically zero and dropped)

T ab =
1

2πl2B
τab, (4.24)

τab =
1

2
{va, pb}, va =

∂H(p)

∂pa
= i(~eB)−1εab[pb, H], (4.25)

where H(p) is the single-particle Hamiltonian. The traceless part of the stress tensor

can also be obtained

τ̃ab = τab − 1
2
τ ccδ

a
b = −iεac[γbc, H(p)], (4.26)

where the γab operators are defined in Eq.(2.19).

Now we are ready to calculate the response of the stress tensor to a spatially-

uniform time-varying shear strain ∂aδu
b(t) ≡ λba(t). The perturbative Hamiltonian

is

δε(t) = −τab λba(t) = −τ̃abλba(t), (4.27)

where we have used the fact that λaa(t) = 0 (shear strain). According to linear

response theory, the induced stress is determined by the retarded stress-stress corre-

lation function,

τ̃ab(t) =

∫
dt′Ga c

b d(t− t′)λdc(t′), (4.28)

Ga c
b d(t) =

∑
n

νn
~
iΘ(t)〈Ψn|[τ̃ab(t), τ̃ cd(0)]|Ψn〉, (4.29)

where Θ(t) is the step function (Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 for t < 0), νn = 0 or

1 is the filling factor for the nth Landau level and Ψn are the eigenstates of H. We
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then Fourier-transform it into frequency space,

Ga c
b d(ω) =

∫
dt ei(ω+iη)tGa c

b d(t), (4.30)

where η is an infinitesimal positive number. The Hall viscosity is the response to

the time derivative of the strain, which corresponds to the first order term in the

ω-expansion,

dGa c
b d(ω)

dω

∣∣∣∣
ω=0

=
∑
n,n′

~νn
(En − En′)2

(〈n|τ̃ab|n′〉〈n′|τ̃ cd|n〉 − 〈n|τ̃ cd|n′〉〈n′|τ̃ab|n〉)

=
∑
n

~νnεaeεcf〈n|[γbe, γdf ]|n〉. (4.31)

where En are the Landau level energies and we simplified our notation by |Ψn〉 ≡ |n〉.

Comparing it to the definition of the viscosity (4.1), we arrive at the expression for

the rank-4 tensor

ηHabcd = − i~
2πl2B

∑
n

νn〈n|[γbc, γde]|n〉. (4.32)

Recall the commutator of the γab operators in Eq.(2.20), and we obtain the expression

for the 2D Hall viscosity tensor

ηHab =
~

2πl2B

∑
n

νn〈n|γab|n〉. (4.33)

We see that the contribution from each Landau level is proportional to its own natural

metric describing the shape of the orbits in that level. The natural metric has nothing

to do with the topological spin (although we used the natural metric to construct

coherent states that allowed us to define the topological spin). Only when rotational
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symmetry is restored, all Landau levels have the same metric and

ηHab =
~
2

1

2πl2B

(∑
n

νnsn

)
δab, (4.34)

where sn = n+ 1
2

is numerically equal to the topological spin.

The generic formula has a property that it is diagonal with respect to the Landau

level index and doesn’t depend on inter-Landau-level mixing. In the next chapter

where we calculate electromagnetic responses, we will differentiate between universal

terms that are diagonal and non-universal terms that depend on inter-Landau-level

mixing.

4.4 Dipole on the edge

In the last section we showed that the generic Hall viscosity should not be identified

with the topological spin. However it does have a relation with a property on the

edge. Haldane[18] first pointed out that the Hall viscosity, a quantity defined in the

bulk, is related to the intrinsic dipole moment on the edge. This is a manifestation

of the bulk-edge correspondence.

To understand this relation, note that there is a discontinuity of the Hall viscosity

on the boundary. This discontinuity leaves a net stress force on the boundary, which,

for the boundary to remain static, must be balanced by a force from the electric field

gradient (that induces the velocity gradient) on an intrinsic electric dipole moment

dpa. Let dLa be an infinitesimal line segment on the boundary, then

T badL
b = ηa cb d∇cv

ddLb = −dpb∇bEa. (4.35)
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Using

va =
εabEb
B

, (4.36)

we have

dpa = B−1εabηHbcdL
c. (4.37)

This correspondence allows a calculation of ηHbc from the edge dipole[34]. For the

IQHE, the dipole on the edge is related to the shape of the Gaussian tail and this is

consistent with our generic result Eq.(4.33) where ηHbc is proportional to the natural

metric that describes the shape of the Landau orbits. For the FQHE, apart from

the dipole of the Gaussian tail, there is another contribution coming from the dipole

of orbital occupation number. Fig.(4.4) gives the profile of occupation number for

Laughlin 1/3 state. Toward the edge the occupation number rises to a peak and

then drops steeply. This behavior is due to the squeezing property of the model

wavefunction mentioned in Sec.(1.2).
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Figure 4.5: Occupation number n(k) for 15 electrons in Lauglin 1/3 state on a cylinder
with varying circumferences L from 12.5 to 22 with an increment of 0.5. The dashed
line is the average 1/3.[34]
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Chapter 5

Electromagnetic responses

In this chapter we will discuss the electromagnetic responses of particle- and current-

density without Galilean or rotational symmetry. We will add ingredients to the

Heisenberg algebra that will come in handy in our calculation. Particularly, a formal

expansion for the current-density operator in momentum space is provided. Then the

generic response functions will be derived and compared with previous results in the

literature. The identification due to Galilean invariance between the 2D Hall viscosity

and the q2 term in the Hall conductivity will be shown to break down in the generic

case and our approach uncovers hidden geometrical properties in the IQHE.

5.1 Heisenberg algebra

In the previous chapters we have made use of the Heisenberg algebra h2 of the momen-

tum operators whose commutator is a c-number. The universal enveloping algebra

U(h2) is spanned by the basis

{1, pa, {pa, pb}, {pa, pb, pc}, . . . } (5.1)

72



where {A,B, . . . , C} is the symmetrized product of n operators normalized so that

{λA, λA, . . . , λA} = n!(λA)n. The single-particle Hamiltonian is built on U(h2). The

Hamiltonian in this chapter will be in its most generic form

h = H(p) ≡
∑
n

1

n!
Ha1,a2,...an
n pa1pa2 . . . pan (5.2)

where the coefficients Ha1...an
n are fully symmetric in all indices.

When deriving the Hall viscosity formula we used the derivative of the Hamiltonian

with the momentum components. Here we will define the derivative in a more formal

way using the unitary boost operator parametrized by a real c-number vector q

U(q) = U(−q)† = eiq·R̃, [qa, qb] = 0. (5.3)

Then

U(−q)pU(q) = p + ~q. (5.4)

and the derivatives ha1a2...an of h are defined by

h(q) ≡ U(−q)hU(q) =
∞∑
n=0

~n

n!
ha1a2...anqa1qa2 . . . qan , (5.5)

where the tensor-valued operators ha1a2...an are fully symmetric in their indices. In

particular, the first derivative ha is the velocity operator va. Note also that

U(−q)U(−q′)pU(q′)U(q) = U(−(q + q′))pU(q + q′). (5.6)

From this

U(−q)ha1,...amU(q) =
∞∑
n=0

~n

n!
ha1...amb1...bnqb1 . . . qbn . (5.7)

as in the differentiation of c-number functions, where (f ′)′ = f ′′.
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Now let a ∈ U(h) be a vector-valued operator and λ be a c-number. Then define

the expansion

H(p + λa) = h+ λh1(a) +O(λ2). (5.8)

The quantity h1(a) can be expressed in two equivalent ways as the nested-commutator

expansions

h1(a) = aa1h
a1 +

1

2!
[pa1 , aa2 ]h

a1a2 +
1

3!
[pa1 , [pa2 , aa3 ]]h

a1a2a3 + . . . (5.9)

= ha1aa1 +
1

2!
ha1a2 [aa1 , pa2 ] +

1

3!
ha1a2a3 [[aa1 , pa2 ], pa3 ] + . . . . (5.10)

This will be useful when we introduce perturbation to the gauge fields and thus to

the momentum operators.

The operator h is also a function of the scale factor B0, the constant magnetic

field, and more properly should be written as h(B0). The magnetization operator

m(p) is defined by

m ≡ − ∂h

∂B0

∣∣∣∣
{Hn}

= −1
2
B−10 h1(p)

= −1
2
B−10 v · p = −1

2
B−10 p · v = 1

2
B−10

(
h+ i`−2B εabR̃

ahR̃b
)
. (5.11)

If the Hamiltonian is a quadratic operator, h = 1
2
Hab

2 papb, then B0m = −h, i.e. the

shape of the Landau orbits is independent of the scaling of the magnetic field. This

is also true for a rotationally invariant Hamiltonian. Actually for any scalar operator

O ∈ U(h2), one can define the scale derivative

dO ≡ B0
∂O

∂B0

= 1
2

(
−i`−2B εabR̃

aOR̃b −O
)
, (5.12)

and by definition

dh = −B0m. (5.13)
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Higher orders of derivatives can be recursively defined as

dn+1O ≡ B0
∂(dnO)

∂B0

, d1O ≡ dO. (5.14)

Note that if Q ≡ q · R̃ ∈ h, then

QOR̃a − R̃aOQ = [Q,Ra](O + 2dO) (5.15)

where [Q,Ra] is a c-number,

For IQHE, the only formula we need for the guiding-center part is

Tr(eiq·R) = 2πδ2(q`B) (5.16)

where the trace is over the Hilbert space of the guiding-center, and δ2(x) is the 2D

Dirac delta-function.

5.2 Current density operator

In this section we will derive an expansion of the current-density operator to all orders

in q. Introduce an additional vector potential

Aa(x) =

∫
d2q

(2π)2
Ãa(q)eiq·x, (5.17)

with

δB(x) = ∂1A2(x)− ∂2A1(x), (5.18)

and define the operator

Aa ≡
∫

d2q

(2π)2
Ãa(q)eiq·RU(q). (5.19)
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The problem of the charged particle moving in the 2D plane x in the presence of a

non-uniform magnetic flux density B0 + δB(x) is then described by the Hamiltonian

H = H(p− eA). (5.20)

The electric charge density operator is given by

J0(x) = e

∫
d2q

(2π)2
eiq(R−x)U(q), (5.21)

and the electric current-density operator is given by

Ja(x) = e

∫
d2q

(2π)2
eiq·(R−x)Ja(q). (5.22)

To find the expression for Ja(q), notice the continuity equation (gauge invariance)

requires

(i~)−1[J0(x), h] + ∂aJ
a(x) = 0, (5.23)

or in the q space

[h, U(q)] = ~qaJa(q). (5.24)

Then the functional form of the expansion of Ja(q) must be

~Ja(q) = −i[αa(q), h] + iεbaqb`
2
Bβ(q). (5.25)

where

iqaα
a(q) = U(q)− 1 (5.26)

or

αa(q) = −i ∂
∂qa

(
∞∑
n=1

1

n

(iq · R̃)n

n!

)
=
∞∑
n=1

1

n

1

n!

n∑
k=1

(iQ)k−1R̃a(iQ)n−k. (5.27)
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This must be satisfied at each order of an expansion in Ãa(q) and to leading order

eaJ
a(q) = h1(eU(q)) +O(Ã), (5.28)

where e is a c-number unit vector. In this section we focus on the first term h1(eU(q)).

Using (5.9) the explicit form of Ja(q) can be written as

i~Ja = U(q)

(
[R̃a, h] +

1

2!
[−iQ, [R̃a, h]] +

1

3!
[−iQ, [−iQ, [R̃a, h]]] + · · ·

)
, (5.29)

where Q = q · R̃ as mentioned above. Expanding U(q) and the nested commutators

gives

i~Ja =
∞∑
m=0

(iQ)m

m!

∞∑
n=0

(−1)n
1

(n+ 1)!

n∑
k=0

(−1)k
(
n

k

)
(iQ)n−k[R̃a, h](iQ)k. (5.30)

Recollect the terms in the form of

(iQ)l[R̃a, h](iQ)k

and the corresponding coefficient Cl,k is (using l + k = m+ n)

Cl,k =
l∑

m=0

1

m!
(−1)l+k−m

1

(l + k −m+ 1)!
(−1)k

(
l + k −m

k

)

=
1

k!l!

l∑
m=0

(−1)m
1

k +m+ 1

(
l

m

)
=

1

(k + l + 1)!
. (5.31)

Now a significantly simplified form for Ja(q) can be written down

i~Ja =
∞∑
n=0

1

(n+ 1)!

n∑
k=0

(iQ)n−k[R̃a, h](iQ)k, (5.32)
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which is further reduced into the desired form:

i~Ja =
∞∑
n=0

1

(n+ 1)!

(
(iQ)nR̃ah− hR̃a(iQ)n − i

n−1∑
k=0

(iQ)n−1−k(QhR̃a − R̃ahQ)(iQ)k

)

=
∞∑
n=0

1

(n+ 1)!

(
1

2
{(iQ)n, R̃a}h+

1

2
[(iQ)n, R̃a]h− 1

2
h{R̃a, (iQ)n}+

1

2
h[(iQ)n, R̃a]

−i[Q, R̃a]
n−1∑
k=0

(iQ)n−1−k(h+ 2dh)(iQ)k

)

=
∞∑
n=0

1

(n+ 1)!

([
1

2
{(iQ)n, R̃a}, h

]
− i[Q, R̃a]

n−1∑
k=0

(iQ)n−1−k(2dh)(iQ)k

+i[Q, R̃a]

(
n

2
(iQ)n−1h+

n

2
h(iQ)n−1 −

n−1∑
k=0

(iQ)n−1−kh(iQ)k

))

= [αa(q), h] + i[Q, R̃a]β(q) (5.33)

where

αa(q) =
∞∑
n=0

1

2(n+ 1)!
{(iQ)n, R̃a}, (5.34)

β(q) = −
∞∑
n=0

2

(n+ 1)!

n−1∑
k=0

(iQ)n−1−k(dh)(iQ)k +
∞∑
n=0

1

2(n+ 1)!

n−1∑
k=0

[(iQ)n−1−k, [(iQ)k, h]].

(5.35)

The expansion for αa(q) agrees with the universal form (5.27), and the leading

term in β(q) is just −dh = B0m.
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5.3 Response functions

We are ready to calculate the responses for a non-uniform magnetic field and a non-

zero electric field. The perturbed Hamiltonian is

H = h− e
∫

d2q

(2π)2
Ã0(q)U(q)eiq·R − e

∫
d2q

(2π)2
Ãa(q)Ja(q)eiq·R

− e2
∫

d2q

(2π)2
Ãa(−q)Γab(q)Ãb(q)eiq·R +O(Ã3

a), (5.36)

where Γab(q) is a gauge counter-term that is important for ensuring gauge invariance.

It gives the O(Ã) dependence of the complete current-density operator. Its explicit

form is:

Γab(q) =
1

~2
∞∑
n=0

1

(n+ 2)!
[

n︷ ︸︸ ︷
iQ, · · · [iQ, [R̃a, [h, R̃b]]] · · · ]

+
1

~2
∞∑
n=0

1

(n+ 2)!
[

n︷ ︸︸ ︷
−iQ, · · · [−iQ, [R̃a, [h, R̃b]]] · · · ]

=
1

~2
∞∑
k=0

2

(2k + 2)!
[

n︷ ︸︸ ︷
iQ, · · · [iQ, [R̃a, [h, R̃b]]] · · · ]. (5.37)

The perturbed particle density and current density in the nth Landau level are

δJ0
n(x) = − e

2π`2B

(∫
d2q

(2π)2
χ00
n (q)Ũ(q)eiq·x +

∫
d2q

(2π)2
χ0a
n (q)Ãq(q)eiq·x

)
, (5.38)

δJan(x) = − e

2π`2B

(∫
d2q

(2π)2
χ0a
n (−q)Ã0(q)eiq·x +

∫
d2q

(2π)2
χ̃abn (q)Ãb(q)eiq·x

)
, (5.39)

where the correlation functions are density-density

χ00
n (q) =

∑
n′(6=n)

〈n|U(−q)|n′〉〈n′|Ua(q)|n〉+ 〈n|U(q)|n′〉〈n′|U(−q)|n〉
En − En′

, (5.40)
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density-current

χ0a
n (q) =

∑
n′(6=n)

〈n|U(−q)|n′〉〈n′|Ja(q)|n〉+ 〈n|Ja(q)|n′〉〈n′|U(−q)|n〉
En − En′

, (5.41)

current-current

χabn (q) =
∑
n′( 6=n)

〈n|Ja(−q)|n′〉〈n′|J b(q)|n〉+ 〈n|J b(q)|n′〉〈n′|Ja(−q)|n〉
En − En′

, (5.42)

and current-current plus counter-term

χ̃abn (q) = χabn (q) + 〈n|Γab(q)|n〉, (5.43)

and En and |n〉 are eigen-energies and eigenstates. Below we will simplify our notation

by defining

(A,B)n ≡
∑
n′ 6=n

〈n|A|n′〉〈n′|B|n〉+ 〈n|B|n′〉〈n′|A|n〉
En − En′

, (5.44)

so

χ00
n (q) = (U(−q), U(q))n, (5.45)

χ0a
n (q) = (U(−q), Ja(q))n, (5.46)

χabn (q) = (Ja(−q), J b(q))n. (5.47)

We will also denote the expectation value of some operator O in the nth Landau level

by 〈O〉n.
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Using the expansions of U(q) and Ja(q), these correlation functions are readily

obtained:

χ00
n (q) = −(Q,Q)n +O(|q|4), (5.48)

χ0a
n (q) = −1

~
[Q, R̃a]

(
1− 1

6
〈Q2〉n +

1

3
(Q, {Q, dh})n −

1

2
(Q2, dh)n

)
+O(|q|5),

(5.49)

χ̃abn (q) = − 1

~2
[Q, R̃a][Q, R̃b]

(
〈dh+ d2h〉n + (dh, dh)n

)
+O(|q|4). (5.50)

If we define

χabE,n = − e2

2πl2B
(R̃a, R̃b)n, (5.51)

σabn =
1

6
sng

ab
n −

[
1

6
(R̃a, {R̃b, dh})n + a↔ b

]
+

1

4
({R̃a, R̃b}, dh)n, (5.52)

sng
ab
n =

1

2
〈{R̃a, R̃b}〉n, (5.53)

χM,n =
e2l2B
2π~2

(
〈dh+ d2h〉n + (dh, dh)n

)
, (5.54)

then

χ00
n (q) = −2πl2B

e2
qaqbχ

ab
E,n +O(|q|4), (5.55)

χ0a
n (q) = −1

~
[Q, R̃a]

(
1− σabn qaqb

)
+O(|q|5), (5.56)

χ̃abn (q) = − 2π

e2l2B
[Q, R̃a][Q, R̃b]χM,n +O(|q|4). (5.57)

Now using

[Q, R̃a] = il2Bε
baqb, (5.58)

E(q) = iqÃ0(q), (5.59)

δB(q) = iεabqaÃb(q), (5.60)
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we are able to write down the generic responses (in the absence of rotational sym-

metry) of particle- and current- density against a non-vanishing electric field and a

non-uniform magnetic field:

δJan =
1

2πl2B

(
1 + σcdn ∂c∂d

)
va − χM,nε

ab∂bδB, (5.61)

δJ0
n =

1

2πl2B

(
δB

B0

+ σabn ∂a∂b ln
δB

B0

)
− χabE,n∂aEb, (5.62)

where the magnetic length lB is defined with respect to B0 and va = εabEb/B0 is the

flow velocity field. Now the physical meaning of the previously defined quantities are

obvious: χabE (dropping the Landau level index) is the electric susceptibility tensor

that produces a polarization density P a = χabEEb, σ
ab is the tensor in the q2 term of

the Hall conductivity and χM(B0) is the magnetic susceptibility at B0 that produces

an extra magnetic moment density δM = χMδB.

5.4 Discussion

We present here again the generic formula for σab, the q2 term of the Hall conductivity,

σabn =
1

6
sng

ab −
[

1

6
(R̃a, {R̃b, dh})n + a↔ b

]
+

1

4
({R̃a, R̃b}, dh)n. (5.63)

The first term is proportional to the inverse of the 2D Hall viscosity tensor ηHab. We

mentioned in the last chapter that terms being diagonal with respect to the Landau

level index are universal as they don’t depend on inter-Landau-level mixing. The

second and the third terms are inter-Landau-level mixing terms, with the second

term between states with opposite parity and the third term the same parity. They

depend on the details of the Hamiltonian and are non-universal. When there is

rotational symmetry, the third term vanishes because the eigenstates are invariant

with respect to rescaling of B0. When Galilean symmetry is present, the second term
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can be explicitly calculated to be

−[
1

6
(R̃a, {R̃b, dh})n + a↔ b] =

4

3
sng

ab, (5.64)

which combined with the first term gives

σabn =
3

2
sng

ab. (5.65)

This agrees with existing results in the literature[1, 38, 24, 5]. However a simple

identification of this tensor as the (inverse) 2D Hall viscosity tensor is not valid for a

realistic system and thus can not be relied on to measure the Hall viscosity.

The electric susceptibility tensor χabE measures the polarization energy at the pres-

ence of a electric field. In a quantum Hall fluid the electric field also induces a flow

velocity va = εabEb/B0 of the guiding centers. From the perspective of the guiding

centers the same energy can be interpreted as the kinetic energy of the guiding centers

and the tensor

mab = B2
0εacεbdχ

cd
E (5.66)

acts as the effective mass of the guiding centers. Fig.(5.1) illustrates this idea. Note

that this effective mass has nothing to do with the effective mass in a Galilean invari-

ant Hamiltonian that is induced from the band structure.

The magnetic susceptibility χM has two terms. The first term is universal and we

can write it as

1

2πl2B
〈2m
B0

+
∂m

∂B0

〉n. (5.67)
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Figure 5.1: Sketch of the formation of a polarization P as the displacement of the
center of the wave packet from the original guiding center under an electric field E.
The guiding center will have a flow velocity determined by va = εabEb/B. There-
fore the induced energy can be considered as either an polarization energy from the
Landau-orbit point of view or a kinetic energy from the guiding-center point of view.

The ∂m/∂B0 part accounts for the change in the magnetization m in the nth Landau

level and vanishes for a Galilean system. The second term in χM is inter-Landau-

level mixing and accounts for the change of the Landau-orbit shape under scaling of

the magnetic field when rotational symmetry is absent. Fig.(5.4) summarizes these

different cases.

84



Figure 5.2: Sketch of the magnetization m under a change in the magnetic field. The
area enclosed by the loops indicate the magnitude of m and the shape is that of the
Landau orbits. For a Galilean invariant system, m doesn’t change. For a rotationally
invariant system, the change in m originates within a single Landau level and the
shape of the Landau orbits doesn’t change. In the generic case, the change in m has
contributions both from within the Landau level and from inter-Landau-level mixing
that also changes the shape of the Landau orbits.
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Chapter 6

Conclusion

We presented a generic theory for the IQHE in the absence of Galilean or rotational

symmetry. We introduced the algebra of Landau orbits and guiding centers, and used

the natural metric of each Landau level to construct guiding-center coherent states.

Then we achieved the following three things:

• By numerically solving the eigen problem for a quartic Hamiltonian and in-

vestigating the root distribution of the polynomial solutions, we defined the

topological spin as the number of central zeros that are enclosed by a fattened

version of the semiclassical orbit.

• We calculated the generic formula for the 2D Hall viscosity tensor and found

that the contribution from each Landau level is proportional to its natural

metric. We also pointed out the identification of the scalar Hall viscosity with

the topological spin is only a coincidence at the presence of rotational symmetry.

• We obtained generic electromagnetic responses and clarified the structure of

the correlation functions. Particularly the q2 term of the Hall conductivity was

shown to differ from the (inverse) 2D Hall viscosity in the generic case as it

contains inter-Landau-mixing terms that are non-universal.
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These results have clearly shown that the generic approach is able to:

• differentiate between topological and non-topological quantities;

• reveal richer geometrical properties previously hidden by applying special sym-

metries.

A possible direction to carry this research further would be a close study on the

“gravitational anomaly” term that appears in the effective theory for the QHE[8, 1,

14, 10, 16]. Previous work has treated the metric as that of the underlying manifold.

Although the mathematics is well developed in the field theory, that approach doesn’t

explain much about the physical nature of the term. We believe a truly physical

interpretation should be that the metric is a dynamic quantity intrinsic to the system

and something that is able to induce a variation in the metric would be either acoustic

waves of the underlying crystal lattice or the interactive dynamics of the 2DEG itself.

Also Galilean symmetry is not essential to the presence of the term and we would

like to see a generic derivation.

It would certainly be wonderful if we could extend this generic approach to the

FQHE. In fact, all the concepts used in this thesis have their counterparts in the

FQHE and some are indeed mentioned in the discussion. For example, the guiding-

center counterpart of the polarization effect in the electromagnetic responses would be

due to a shift of the position of the electron away from the center of flux attachment

or correlation hole. It is also likely that new concepts, especially geometrical ones,

that have no counterparts in the IQHE can emerge in the FQHE when we pursue a

generic approach.
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