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Abstract

The first part of this dissertation reports recent progress on natural quasicrystals. We

present new evidence from a fragment of the quasicrystal-bearing CV3 carbonaceous

chondritic meteorite Khatyrka that shows cross-cutting relationships and redox reac-

tion between Al-Cu-bearing alloys and silicate phases. The new evidence establishes

that the Al-Cu-bearing alloys (including quasicrystals) formed in outer space during a

complex, multi-stage process. Some Al-bearing grains (including some quasicrystals)

formed as a direct result of an impact in space a few 100 Ma. Most other Al-bearing

grains (including quasicrystals) existed prior to the impact and thus formed in space

at an earlier time. We also present the discovery of two new quasicrystals, including a

second distinct Al-Cu-Fe icosahedral phase in Khatyrka—the first quasicrystal found

in nature prior to discovery in the lab—and a synthetic Al-Fe-Cu-Cr-Ni icosahedral

phase—the first quasicrystal to be synthesized in a laboratory shock experiment.

In the second part of this dissertation, we explore how different local isomorphism

(LI) classes of quasicrystals vary in their structural and physical properties. We

examine the continuum of LI classes of pentagonal quasicrystal tilings obtained by

direct projection from a five-dimensional hypercubic lattice.

Our initial focus is on hyperuniformity, the suppression of long-wavelength den-

sity fluctuations relative to typical structurally disordered systems. We study how

the degree of hyperuniformity [Λ(∞)] depends on LI class. The results show that

Λ(∞) is dominantly determined by the local distribution of vertex environments, and

also exhibits a non-negligible dependence on the restorability. Among the pentagonal

quasicrystal tilings, the Penrose tiling is the most hyperuniform [smallest Λ(∞)]. The

difference in the degree of hyperuniformity is expected to affect physical characteris-

tics, such as transport properties.

We then turn to a study of photonic quasicrystal heterostructures derived from

the continuum of pentagonal quasicrystal tilings. We demonstrate that, with the
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exception of the Penrose LI class, all other LI classes result in degenerate, effectively

localized states, with precisely predictable and tunable properties (frequencies, fre-

quency splittings, spatial configurations). A relationship between the degeneracy of

these states and the number of certain vertex environments is discussed, and potential

applications for these states are described.
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Chapter 1

Introduction

1.1 Shechtman’s Al-Mn alloy

The field of crystallography was forever changed in 1984, when Dan Shechtman and

his colleagues reported the observation of an unusual diffraction pattern from a grain

of a rapidly quenched Al-Mn alloy [1]. The diffraction pattern consisted of sharp spots

arranged with icosahedral point group symmetry, which consists of six independent

axes of five-fold rotational symmetry, ten of three-fold symmetry, and fifteen of two-

fold symmetry.

At the time, solid-state materials were predominantly categorized as either crys-

talline or amorphous. A crystalline material can be described as the perfect space-

filling repetition of a suitably decorated unit cell, with a diffraction pattern that is

composed of sharp, delta-function (“Bragg”) peaks. An amorphous material can be

described as a random arrangement of some basic set of units (e.g., atoms, molecules,

tiles), with a diffraction pattern that consists of broad, diffuse rings.

While the diffraction pattern of Shechtman’s Al-Mn alloy had sharp spots in-

dicative of crystals, its icosahedral symmetry was not a permissible crystallographic
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point group symmetry. Only one-, two-, three-, four-, and six-fold axes are allowed

in crystals; the observed five-fold axes are forbidden [2].

Thus, Shechtman’s Al-Mn alloy appeared to be neither amorphous nor crystalline.

This created immense intrigue among the solid state and materials science communi-

ties, with everyone wondering: Is this a new state of matter?

1.2 Three models for the Al-Mn alloy

There were three leading models that were proposed to describe and understand the

new observations.

One model, suggested by Dan Shechtman and Ilan Blech and further developed

by Peter Stephens and Alan Goldman, is the “icosahedral glass” model [3, 4]. An

icosahedral glass is a dense random packing of icosahedra connected to one another

vertex-to-vertex. Starting with one icosahedron, additional icosahedra are attached,

one at a time, to a randomly chosen vertex, such that the icosahedra never overlap.

The icosahedra represent atomic clusters that have local icosahedral symmetry. The

resulting diffraction pattern (using the point pattern obtained by placing points on

the vertices) for the icosahedral glass has icosahedral symmetry and sharp diffraction

peaks with finite width.

A second model (or set of models) is based on standard ideas in crystallography.

One possibility is that the Al-Mn alloy is a crystal with a large unit cell. The atomic

basis would consist of thousands of atoms that are arranged with near-icosahedral

symmetry [5]. Another possibility is that the alloy is a multiple-twinned crystal, with

crystallites made of icosahedral clusters [5, 6, 7]. The most notable and most vocal

proponent for explaining the peculiar alloy as a complex crystal was Linus Pauling.

Finally, there is the model proposed by Paul Steinhardt and his student Dov

Levine [8], which explains that the alloy is a new solid state of matter that they

2



called the “quasicrystal state”, the theory of which they had been developing since

1981, before the Al-Mn pattern was observed [9]. A quasicrystal can be seen as a

space-filling arrangement of two or more fundamental repeating units (e.g., tiles,

atoms, molecules), with the arrangement exhibiting long-range orientational order

and quasiperiodic translational order [10, 11, 12, 13]. The diffraction pattern of a

quasicrystalline point pattern is composed of a dense set of Bragg peaks, arranged

with a crystallographically forbidden point group symmetry. Quasicrystals are gen-

eralizations of the Penrose tiling in two-dimensions [14].

1.3 Thermodynamically stable quasicrystal

All of these models could produce the icosahedral pattern of Shechtman’s Al-Mn al-

loy, so it remains debatable which one is best. However, in 1987, a discovery was

made that decisively favored the quasicrystal model. An-Pang Tsai et al. [15] grew

an Al-Cu-Fe phase with a diffraction pattern exhibiting icosahedral symmetry and

resolution-limited peaks. The icosahedral phase was grown by conventional solidi-

fication, i.e., cooling an alloy melt at a rate of ∼10◦C h−1 [16]. After heating, then

annealing for two days, there were no other phases observed besides the icosahedral

phase. Upon further heating, differential thermal analysis showed only one endother-

mic peak—corresponding to the latent heat of fusion at the melting point of the

icosahedral phase—which indicated that the phase was stable and did not undergo

any phase transitions until it melted. The phase was later shown to have compo-

sition Al63Cu24Fe13 [17]. Based on the experimental evidence, the icosahedral phase

synthesized by Tsai et al. is considered to be the first practically perfect quasicrys-

tal that is thermodynamically stable at finite temperature. After this discovery, it

was generally accepted that the quasicrystal model provided the simplest explanation
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for Shechtman’s icosahedral Al-Mn alloy. This culminated in Dan Shechtman being

awarded the Nobel Prize in Chemistry “for the discovery of quasicrystals” in 2011.

Despite Tsai et al.’s discovery, quasicrystals continued to be viewed as a peculiar

state of matter that could only be synthesized under highly controlled laboratory

conditions. Though it was accepted that quasicrystals were thermodynamically stable

at finite temperature, it was debatable whether quasicrystals were global minima in

the energy landscape at low temperatures and, hence, ground states on the same

footing as crystals. An entropic theory was proposed, based on random arrangements

of tiles, in which the quasicrystalline state maximizes the entropy but is not the

ground state [18]. There was support for this entropic viewpoint from the fact that,

while several hundred more quasicrystals were discovered in the laboratory [13, 19],

no natural specimen had been found, thus suggesting that quasicrystals are unstable

over geologic time scales.

The opposing view was that quasicrystals can be ground states and as robust as

crystals, and that nature may have already produced quasicrystals that man simply

had not yet found or characterized. The discovery of such a specimen, at the very

least, would indicate that quasicrystals are stable on geologic time scales and would

point to exotic, previously unrecognized geological processes.

1.4 Natural quasicrystals

We now turn to an overview of the first study presented in this thesis. In Chapter 2, we

report on the current status of the search for natural quasicrystals by the Princeton-

Florence group led by Paul Steinhardt and Luca Bindi, including a history of the

search in detail. The major events of the search are as follows: The search began in

1999 [9] and circuitously led to the discovery of the first natural quasicrystal (called

“icosahedrite”) in 2009 [20, 21], which was later determined to have originated from
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the Khatyrka meteorite, a CV3 carbonaceous chondrite [22, 23]. Icosahedrite has the

same composition and symmetry as the Al-Cu-Fe alloy synthesized by Tsai et al. in

1987 [15]

The occurrence of Al-Cu alloys in nature runs counter to all previously known

stellar and geologic processes for two main reasons: (i) metallic Al is not expected

to occur naturally because of its extremely strong affinity to oxygen, and (ii) Al and

Cu are highly dissimilar in their cosmochemical properties and how they condense.

Because of the difficulty in developing an explanation for how these alloys formed

naturally, there have remained skeptics who believe that icosahedrite and the other

Al-Cu alloys were produced by anthropogenic means, despite much evidence pointing

to the contrary.

However, in Chapter 2, we present new evidence showing cross-cutting relation-

ships and redox reactions between Al-Cu-Fe alloys and silicate melt. This new

evidence firmly establishes that the Al-Cu-bearing alloys (including quasicrystals)

formed in outer space during a complex, multi-stage process. The results also include

the discovery of a second distinct icosahedral phase of Al-Cu-Fe that is the first qua-

sicrystal found in nature prior to discovery in the lab. We also discuss a laboratory

shock experiment that resulted in the first shock-induced synthesis of a quasicrystal.

Chapter 2 is based on work published in [24] (with Lincoln Hollister, Glenn

MacPherson, Luca Bindi, Chi Ma, Chris Andronicos, and Paul Steinhardt)1, [25]

(with Chi Ma, Luca Bindi, and Paul Steinhardt)1, [26] (with Luca Bindi, Chi Ma,

and Paul Steinhardt)1, and [27] (with Paul Asimow, Luca Bindi, Chi Ma, Oliver

Tschauner, Lincoln Hollister, and Paul Steinhardt)2.

1C.L. performed research and analyzed data in [24, 25, 26], led the writing of [24], and wrote
parts of [25, 26].

2P.A. and P.S. designed the experiment reported in [27], motivated in part by results obtained
by C.L. et al. that were later reported in [24]. P.A. and O.T. carried out the experiment. C.L.
performed the initial survey studies of the run products by SEM and was advised by L.B., L.H.,
and P.S. During the survey studies, C.L. discovered Khatyrka-like features, as well as grains whose
compositions had ratios of Al/Cu and Cu/Fe similar to those of known quasicrystals. The grains
were observed to be quasicrystalline by EBSD (C.M.) and XRD (L.B.).
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1.5 Local isomorphism classes of quasicrystals

There are uncountably many, physically distinct quasicrystals, which have the

same symmetry, same fundamental repeating units (e.g., tiles, clusters of atoms or

molecules), and same support for their diffraction patterns, but which have different

space-filling arrangements of the repeating units and different peak intensities for

their diffraction patterns [8, 10, 11, 12]. These distinct quasicrystals are said to

belong to different local isomorphism (LI) classes.

In Chapters 3 and 4, we present two numerical studies of the continuous set of

LI classes of pentagonal quasicrystal tilings obtained by direct projection from a five-

dimensional hypercubic lattice. This set of tilings includes the Penrose tiling [14].

Chapter 3 is based on work published in [28] (with Paul Steinhardt and Salvatore

Torquato)3.

1.5.1 Degree of hyperuniformity

All quasicrystals—and hence all LI classes—have long-wavelength density fluctuations

that, like crystals and special amorphous systems, are suppressed relative to typical

structurally disordered systems (e.g., glasses and amorphous solids); this large-scale

structural property is known as hyperuniformity [29, 30, 31]. Some measures of hy-

peruniformity have been observed to be correlated with physical properties, e.g.,

electromagnetic [32, 33], electronic [34], and mechanical [35]. Thus, it has been an

open question of physical interest whether these measures of hyperuniformity vary

with LI class.

In Chapter 3, we report that the degree of hyperuniformity, as measured by the

leading coefficient of the number variance (defined in Section 3.2), does vary with

LI class. Additionally, we report that among the continuum of LI classes studied,

the Penrose LI class is the most hyperuniform. We further show that the degree of

3C.L. led the research and writing of [28].
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hyperuniformity is dominantly determined by the local structure (e.g., by Voronoi

areas) and has a subdominant contribution from the restorability of the LI class.

The restorable LI classes, roughly speaking, contain a lower variance in their local

neighborhoods than nearby LI classes. The results give us a better understanding of

what determines the degree of hyperuniformity.

1.5.2 Photonic properties

In Chapter 4, we study the photonic properties of the continuum of LI classes associ-

ated with pentagonal quasicrystal tilings to determine if they differ from one another.

Our results show that, with the sole exception of the Penrose LI class, all other LI

classes result in degenerate, effectively localized states, with precisely predictable and

tunable properties (frequencies, frequency splittings, and spatial configurations). We

discuss a relationship between the degeneracy of these states and the number of cer-

tain vertex environments, as well as describe potential applications for these states.

7



Chapter 2

Natural quasicrystals

2.1 History of natural quasicrystals

2.1.1 Search beginnings

We begin by briefly reviewing the search for natural quasicrystals led by Paul Stein-

hardt and Luca Bindi, which is largely based on their own personal accounts of the

events [9, 20, 36, 37, 38, 39, 40].

In 1999, Peter Lu, then a senior at Princeton University, began working with Paul

Steinhardt, as well as Ken Deffeyes (Professor of Geosciences, Princeton University)

and Nan Yao (Director of the Imaging and Analysis Center, Princeton University),

on a systematic search for natural quasicrystals. They sifted through a database con-

taining some 80,000 powder diffraction patterns, including over 9,000 patterns from

natural samples [41]. To systematically search through the database for promising

candidates, they constructed a novel metric that scored the powder patterns based

on their similarity to patterns generated from ideal icosahedral quasicrystals. Known

quasicrystals scored highly according to the metric. After the metric was computed for

all of the patterns in the database, a few dozen promising candidates were identified.

Samples from many of them were obtained and analyzed, but no new quasicrystals
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were found. This was all reported in the 2001 paper by Lu et al. ([41]), which invited

anyone interested in collaborating to contact Lu and Steinhardt.

The first response came six years later, in 2007, when Steinhardt was contacted by

Luca Bindi, who was head of mineralogy at the Natural History Museum of the Uni-

versity of Florence in Italy. Bindi began going through rocks in the collection at the

Florence museum, starting with candidates that had already been identified earlier in

[41]. After a year, when nothing promising was found, the search was expanded be-

yond the catalogue to rocks that contained metals with compositions similar to those

of known quasicrystals. The search soon focused on a sample labeled “khatyrkite”.

Khatyrkite itself is an Al-bearing alloy mineral (CuAl2) that was first reported in 1985

and found in association with another Al-bearing alloy mineral, cupalite (CuAl). The

holotype material (i.e., the specimen upon which the description and name of a new

mineral is based) for both khatyrkite and cupalite is kept at the St. Petersburg Min-

ing Institute. The sample labeled “khatyrkite” in the Florence museum (hereafter

referred to as the “Florence sample”) was not pure khatyrkite but, rather, a rock

three millimeters in maximum dimension, which to the naked eye appeared to be a

complex mineral assemblage containing silicates and metallic phases. The samples in

Florence and St. Petersburg were the only two rocks known to contain khatyrkite and

cupalite. The Florence sample had been acquired by the Florence museum in 1990

and had been catalogued as coming from “the Khatyrka region of the Koryak moun-

tains in the Chukotka autonomous okrug on the north-eastern part of the Kamchatka

peninsula” (i.e., the far north-eastern corner of Russia) [9, 36, 37, 38].

Thin sections of the Florence sample were prepared, and the chemical compo-

sitions of the constituent phases were analyzed with wavelength dispersive X-ray

spectroscopy (WDS). The WDS studies confirmed that the sample contained grains

of khatyrkite and cupalite. But there were also some unknown Al-Cu-Fe phases.

The unknown phases were removed and analyzed by powder X-ray diffraction. One
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scored highly according to the Lu-Steinhardt metric [41] and was prepared for study

by transmission electron microscopy (TEM) to obtain a diffraction pattern. After

much anticipation, finally, on New Year’s Day 2009, Steinhardt and Yao analyzed a

grain by TEM. The resulting diffraction pattern exhibited the same icosahedral sym-

metry as Tsai’s Al-Cu-Fe alloy and Shechtman’s Al-Mn alloy, but with virtually no

phason strain. The result was a spectacular and unambiguous sign that the team had

found a quasicrystal. The composition was measured and compared to a synthetic

Al63Cu24Fe13 standard and found to match, within 1 atomic % [20]. The unknown

icosahedral phase appeared to be the natural analogue of the thermodynamically

stable quasicrystal discovered two decades earlier by Tsai et al. [15].

2.1.2 The Florence sample

The main question was then: how did the quasicrystal form? Clues were found

among the remaining material of the Florence sample [22]. The first clue was a five-

nanometer quasicrystal inclusion found in a fifty-nanometer grain of stishovite, which

is a high-pressure polymorph of SiO2. This occurrence indicates that the quasicrystal

either formed before or during the high-pressure event that led to the formation of

stishovite. The pressure required to form stishovite ruled out the possibility that

the quasicrystal originated as slag from an aluminum smelter. It pointed instead to

formation at high pressures, which could be found either in the lower mantle or in an

impact. The latter opened up the possibility of formation in outer space.

To gain insight into whether the formation was terrestrial or not, the oxygen

isotopes of some of the oxides and silicates were analyzed using secondary ion mass

spectrometry (SIMS). Minerals that form terrestrially have significantly different oxy-

gen isotope ratios 18O/16O, 17O/16O than those that formed in the early solar system

and remained unaltered, with the reason being that minerals forming in the early

solar system underwent isotopic exchange with the early solar nebula [42]. The SIMS

10



analyses conclusively showed that the oxides and silicates were meteoritic, with some

that resembled minerals found in Ca-Al-rich inclusions (CAIs), which are among the

oldest solids in the solar system [22, 43]. With the evidence showing that the Florence

sample was of natural origin, the quasicrystal was accepted in 2011 as a mineral under

the name “icosahedrite” [21].

Although it was becoming clear that the icosahedrite-bearing rock had a rich,

outer-space history, the investigation was unfortunately reaching its limits. Not

much remained of the Florence sample after the slicing, dicing, and pulverizing; and,

among the material that was destroyed were most of the contacts between icosa-

hedrite and other phases. These contacts—the neighboring phases and the textures

between phases—provide the context with which one could begin to piece together

how icosahedrite first formed. More material was needed to resolve the history of

icosahedrite. Thus began a strange and incredible expedition to Chukotka [23, 39,

40].

2.1.3 The Khatyrka meteorite

The expedition involved extracting and panning &1.5 tons of clay from a variety of

depositional environments (i.e., lacustrine, alluvial, reworked) along the Listvenitovyi

stream in the Khatyrka ultramafic (i.e., SiO2-poor) zone within the Koryak Moun-

tains, which runs alongside the Eurasian coast of the Bering Sea in far north-eastern

Russia. Bags of clay recovered from the expedition were then laboriously picked

through in the laboratory. Around ten meteoritic grains have been found to-date,

mostly from &7000 year-old undisturbed alluvium, with many having components

that resemble what was originally found in the Florence sample. The chemical and

petrological study of these grains has shown that they are fragments of the same

parent meteorite body, which has been officially named the “Khatyrka” meteorite.
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The Khatyrka meteorite [22, 23] resembles the widely studied Allende meteorite

and, like Allende, is classified as an oxidized-subgroup CV3 carbonaceous chondrite.

Khatyrka contains silicates and oxides that are typical of CV3 (ox) chondrites [44,

45, 46, 47, 48], including: (1) a highly porous matrix, dominated by platy olivines

with ferroan compositions (50-56 mol % forsterite, denoted Fo50−56) typical of CV3

chondrites [46]; (2) Type IA porphyritic olivine chondrules, with minor element vari-

ations typical of CV3 chondrule olivines [49]; and (3) CAIs that are identical to those

in oxidized CV3 chondrites [43].

While the silicates and oxides (and, generally, the presence of chondrules and

CAIs) may be quite typical, the quasicrystals and Al-bearing alloys are not. So

far, the only known natural occurences of these phases are in the Khatyrka mete-

orite, and these phases are ubiquitous among the recovered grains [23, 25, 26, 50, 51,

52]. Many more examples of icosahedrite, khatyrkite, and cupalite have been found,

in addition to several new metallic alloy minerals that include: (i) “steinhardtite”

(Al38−50Ni32−40Fe10−30), an allotrope of aluminum, with a body-centered cubic lattice

[51]; (ii) “decagonite” (Al70.2(3)Ni24.5(4)Fe5.3(2)), the second natural quasicrystal and

first with decagonal symmetry [50]; and (iii) an as-yet-unnamed quasicrystal with

icosahedral symmetry and composition Al62Cu31Fe7, the first quasicrystal to be dis-

covered in nature prior to discovery in the laboratory [26].

2.2 Puzzles

We now turn to the puzzles that have been largely resolved by the results presented

in this Chapter.
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2.2.1 Natural origin of Al-Cu alloys

There is indisputable evidence for the meteoritic origin of the silicates and oxides

of the Khatyrka meteorite, e.g., the oxygen isotope measurements reported earlier.

However, direct analytical evidence either for or against the natural meteoritic origin

of the Al-Cu alloys has been lacking, and there have been no clear signs of chemical

reaction between the reduced metal alloys and the oxidized meteoritic silicates. A

further complication in interpreting the Al-Cu alloys to be of natural origin has been

that such alloys were previously unexpected to occur in nature [22, 23].

Metallic Al requires extremely reducing conditions to form. For example, at

1200◦C, to stabilize pure metallic Al requires a log-oxygen fugacity log10 fO2 . −28

[22]. However, even the highly-reducing innermost hot regions of the pre-solar nebula

at 4.567 Ga had log10 fO2 ≈ −20 ± 1 at 1200◦C, which is nowhere near as reduc-

ing as is needed [53]. For comparison, at 1200◦C, the FeO/Fe redox buffer curve has

log10 fO2 ≈ −11 and SiO2/Si has log10 fO2 ≈ −20 [22].

Another puzzle is that Al and Cu have greatly differing cosmochemical behaviors:

Al is a refractory lithophile element that condenses at very high temperatures out

of a hot and cooling gas of Solar composition, whereas Cu is a moderately volatile

siderophile/chalcophile element that condenses at a much lower temperature than Al.

2.2.2 Formation history of Al-Cu-Fe alloys

Earlier investigations of Khatyrka have produced abundant petrologic and chemical

evidence showing that Khatyrka experienced at least one high-velocity impact event

[54, 55]. This includes, in addition to the stishovite in the Florence sample, the obser-

vation of two high-pressure Fe-bearing phases: ahrensite (Fe2SiO4), which only forms

at >5 GPa [56], and an unnamed oxide with composition Fe2.6Si0.4O4 that has the

structure of spinelloid V, which only forms at 3-8 GPa [57].
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Measurements of noble gas cosmogenic nuclides in the olivine of 126 show that

the most recent major impact event experienced by Khatyrka occurred in space a few

100 Ma [58, 59]. and produced shocks consistent with the range S3 to S5 (though

probably closer to S4), corresponding to approximately 10-35 GPa [60]. An impact

of this magnitude could account for the high-pressure phases, as well as the silicate

melt and reactions that we report herein. Because there is currently no evidence to

the contrary, we will assume this is the case for the purpose of our discussion here,

referring only to a single ‘impact event’ occurring a few 100 Ma, while acknowledging

that we could also be observing the results of a series of impact events occurring over

eons of time.

Based on the evidence of impact, two competing hypotheses were proposed in

[55] to explain the relationship between the ‘impact event’ that led to the formation

of high-pressure FeO-bearing phases and the event that formed the Al-Cu-Fe metal,

which we refer to as the ‘metal-forming event’. Observations that rule out either

hypothesis would have implications for how the Al-Cu-Fe alloys first formed, such as

the age of the Al-Cu-Fe alloys and whether the alloys formed in outer space or on

Earth.

In the first hypothesis, the ‘impact event’ and ‘metal-forming event’ are the same.

In this hypothesis, the Al-Cu-Fe alloys did not exist prior to the impact; instead, the

Al, Cu, and Fe were incorporated in other phases, possibly Al- and Cu-bearing Fe-Ni

metals, which then melted upon impact. Post-shock liberation of Cu has been dis-

cussed in the literature [61, 62], and Cu-bearing metal phases are commonly observed

in meteorites (see, e.g., [61]). The Al would be similarly exsolved; however, Al-bearing

Fe-Ni metals have only been observed and extensively studied in Khatyrka [50, 51],

although an unconfirmed example has also been noted in a study of the shocked

Suizhou L6 chondrite [63]. A challenge for this hypothesis is to explain the amount
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of Al and Cu that would have to be liberated to account for the observed volume of

Al-Cu alloys in Khatyrka.

In the second hypothesis, the ‘impact event’ and ‘metal-forming event’ are not the

same. The essential difference is that, according to this hypothesis, whatever event

formed the Al-Cu-Fe metals is different from the impact event(s) that produced the

observed high-pressure FeO-bearing mineral phases. As stated, this hypothesis does

not make any claims as to the specific mechanism for how the first Al-Cu-Fe alloys

formed.

2.2.3 Recent progress

In this Chapter, we resolve the puzzles described above by presenting evidence of

cross-cutting relationships and chemical reaction between the reduced Al-Cu-Fe metal

alloys and the oxidized meteoritic silicates. (Cross-cutting relationships provide a

time ordering between two or more materials. A material which cuts across another

material is the younger of the two.) The new evidence occurs in a recently identified

fragment of Grain 126, found during our continued study of grains from the Khatyrka

meteorite. To distinguish the fragment from others of Grain 126, we refer to it as

“Grain 126A”. It is deposited at the Smithsonian Institution’s National Museum of

Natural History, Washington DC, USA under the catalogue number USNM 7908. We

also document the petrological context of four new Al-Cu-Fe minerals, discovered in

Grain 126A and recently reported in [26], [52], and [25]. We note that the interpre-

tation here of a reaction history is supported by preliminary studies on Grain 129,

some results of which were reported in [54].

The evidence of cross-cutting relationships and redox reactions support the sec-

ond hypothesis of Section 2.2.2—that the ‘impact event’ and ‘metal-forming event’

are distinct from one another—and provide clues about the sequence of events that

occurred in 126A during the most recent impact a few 100 Ma. The results indicate
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that some, but not most, of the Al-bearing grains observed in 126A (including some

quasicrystals) were formed as a direct result of the impact in space. An important

corollary is that most of the Al-bearing alloys (including quasicrystals) existed prior

to the impact, and so had to have formed in space at some earlier time.

The outline of this Chapter is as follows: We begin in Section 2.3 by describing the

mineralogy and petrographical characteristics of Grain 126A. Then, in Section 2.4,

we present the evidence for the redox reaction between the Al-Cu-Fe metal phases

and silicate melt. Section 2.5 explains how the observed cross-cutting relationships

between Al-Cu-Fe metal and silicate glass indicate that the ‘metal-forming event’ is

distinct from and occurred prior to the ‘impact event’. In Section 2.6, we demonstrate

that there are two generations of quasicrystals in 126A: some formed during the ‘im-

pact event’, and some formed prior. Moreover, among the quasicrystals that formed

during the ‘impact event’, there is a quasicrystalline phase that is notable for at least

two reasons: (i) it is the third ever quasicrystal to be discovered in nature; and, (ii)

it is the first to be found in nature prior to discovery of a synthetic analogue. We

describe two possible formation pathways for this novel quasicrystal and report on a

related shock recovery experiment [27]. In Section 2.7, new temperature constraints

and new evidence for rapid cooling and heterogeneous temperature distribution are

provided. Finally, in Section 2.8, we conclude by discussing how the new results

resolve the puzzles presented in Sections 2.2.1 and 2.2.2.

2.3 Description of sample

Grain 126A (Fig. 2.1) is dominated by relatively large (100-300 µm), irregularly

shaped assemblages of Al-Cu-Fe metals (lighter, Fig. 2.1a; blue/purple, Fig. 2.1b)

and, in the center-right of the figure, irregularly shaped olivine grains (10-30 µm).

There are also smaller Al-Cu-Fe metal grains (5-20 µm), Fe-Ni globules (3-25 µm,
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A 

BSE Al-Cu-Fe 

Figure 2.1: Overview of Khatyrka Grain 126A. (a) Backscattered electron
(BSE) image of Grain 126A. Bright regions are mostly Al-Cu-Fe metal assemblages;
they have an irregular, cuspate-lobate appearance and consist predominantly of
khatyrkite (“kh”), stolperite, and eutectoid regions (“eut”; further detail in Fig. 2.3)
that contain a vermicular mixture of metallic Al (up to 13.3 weight% Cu) and
khatyrkite. The darker regions mostly comprise crystals of olivine (“ol”; further
detail in Figs. 2.2c, 2.2d) and spinel-group minerals with varying composition, which
we call “spinel” (“sp”; further detail in Fig. 2.6)—all surrounded by silicate glass. (b)
Al-Cu-Fe combined X-ray area map, overlaid on a BSE image. Light purple regions
are Al-Cu metal (khatyrkite, stolperite); blue/dark purple regions are predominantly
glass and spinel; green regions are mainly the silicate glass and crystals that grew
within the melt (olivine, spinel); the relatively large white grains are predominantly
Fe-Ni (appearing white because of the underlying BSE image, despite containing Fe).
The different compositions of spinel manifest here as different degrees of brightness
(a) and different colors (b).

round and bright in Fig. 2.1), and a fine-grained, hypohyaline assemblage of olivine

(2-10 µm) and spinel-group (<2 µm) crystals. (We refer to the spinel-group minerals,

which occur in 126A with various compositions, as “spinel”.) Each Al-Cu-Fe metal

assemblage is surrounded by a rim of spinel crystals (<1 µm). Most assemblages

have, adjacent to this spinel layer, Fe and Fe-Si metal beads, varying in size from

<10 nm to ∼5 µm. All of these phases are set in a glass. Small fragments of Al-Cu-Fe

assemblages occur immediately above and below the region dominated by olivine,

in the center-right of Fig. 2.1. The upper half and the left half of the figure are

dominated by the relatively large Al-Cu-Fe assemblages. Averaged and representative
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f.3b 

f.7a 

f.8 

Figure 2.2: BSE images, marked to show locations of EPMA-WDS and
SEM-EDS analyses, with close up views of olivine in (c) and (d). Red
squares in (a) indicate metal regions referred to in Table 2.1. Blue squares in (b)
indicate glass regions referred to in Table 2.2b and Fig. 2.5. Yellow ovals in (a) and
(b) are referred to in Figs. 2.3b, 2.7a, and 2.10. (c) Close up of area boxed in blue in
(b). This region contains several olivine crystals. The larger grains are cross-cut by
Fe-rich veins that are continuously connected to glass. Analyses of numbered spots
are provided in Table 2.2a. These appear to be relict olivine grains. (d) Close up
of area boxed in red in (c) showing small euhedral to subhedral olivine grains that
appear to be a non-relict, second generation of olivine that grew from the matrix
melt. Analyses of numbered spots are provided in Table 2.2a.
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analyses of the different phases are presented in Tables 2.1-2.2; regions that were

analyzed are shown in Fig. 2.2. For the olivine and spinel compositions, we took

care to center the electron beam on individual crystals to minimize excitation of

elements in neighboring phases. Similarly, for the glass compositions, we took care to

avoid crystalline material. Electron backscatter diffraction was used to identify the

structure of various phases.
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Table 2.1: Averaged elemental compositions of metal phases in 126A by EPMA-WDS. All in elemental weight %.
n: number of analyses included in average, n.a.: not analyzed, b.d.l.: below detection limits, 0.07 wt% Al, 0.2% Ni, 0.05% Si, 0.04% Mg, 0.03% Ca, 0.05% Cr; SEM-EDS detection limit 0.1 wt%.

Uncertainty given in parentheses represents one standard deviation from the mean based on all analyses (e.g., 50.3 (13) = 50.3 ± 1.3). a Location refers to Figure 2.2a. bIron composition is averaged over
multiple iron beads. cXifengite analyzed by SEM-EDS (normalized total to 100%).

Phase Locationa n Al Fe Cu Ni Si Mg Ca Cr Total
khatyrkite 1 16 47.89 (17) 0.54 (14) 51.22 (51) b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 99.65

2 9 48.01 (27) 0.72 (20) 51.73 (48) b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 100.46
3 13 47.70 (28) 0.61 (14) 51.34 (54) b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 99.65
4 9 47.97 (43) 1.04 (6) 50.97 (51) b.d.l. 0.06 (2) b.d.l. b.d.l. b.d.l. 100.04
5 5 48.88 (49) 1.40 (12) 50.07 (78) b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 100.35
6 8 48.16 (24) 0.85 (13) 50.94 (49) b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 99.95
7 11 48.06 (42) 1.34 (18) 50.78 (87) b.d.l. b.d.l. b.d.l. 0.03 (2) b.d.l. 100.21
8 2 47.82 (19) 2.68 (1) 49.31 (3) b.d.l. 0.16 (1) b.d.l. 0.03 (2) 0.07 (3) 100.08
9 2 48.74 (50) 2.10 (3) 49.94 (9) b.d.l. 0.09 (5) 0.07 (10) b.d.l. b.d.l. 100.94
10 2 48.42 (5) 2.16 (7) 49.37 (91) b.d.l. 0.10 (2) b.d.l. 0.05 (4) b.d.l. 100.10
11 2 47.24 (11) 1.55 (15) 50.20 (3) b.d.l. 0.20 (11) b.d.l. b.d.l. b.d.l. 99.19

stolperite 4 3 38.71 (20) 1.45 (12) 59.53 (59) b.d.l. b.d.l. b.d.l. 0.03 (1) b.d.l. 99.72
5 3 38.33 (11) 2.70 (32) 57.77 (46) b.d.l. b.d.l. b.d.l. b.d.l. 0.05 (3) 98.85
8 2 35.94 (37) 4.23 (4) 61.23 (42) b.d.l. b.d.l. b.d.l. b.d.l. 0.07 (2) 101.47
9 3 33.921 (76) 3.09 (11) 62.71 (62) b.d.l. b.d.l. b.d.l. b.d.l. 0.05 (1) 99.78
10 2 35.80 (5) 2.65 (26) 60.80 (11) b.d.l. b.d.l. b.d.l. 0.04 (1) b.d.l. 99.29
11 2 36.13 (29) 2.73 (9) 60.83 (86) b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 99.69

i-I 8 3 43.16 (13) 15.04 (50) 41.03 (41) b.d.l. 0.14 (1) b.d.l. 0.04 (1) 0.14 (1) 99.55
i-II 9 3 41.98 (67) 9.43 (94) 47.26 (92) b.d.l. 0.08 (1) 0.04 (6) b.d.l. 0.09 (3) 98.88
i-II 10 9 40.32 (47) 9.16 (35) 48.74 (64) b.d.l. 0.06 (3) 0.06 (6) 0.04 (1) 0.11 (2) 98.49

kryachkoite 4 3 59.95 (65) 11.80 (14) 26.38 (30) b.d.l. 0.16 (3) b.d.l. b.d.l. 0.32 (2) 98.61
hollisterite 8 4 55.04 (40) 30.42 (64) 14.15 (25) b.d.l. 0.30 (1) b.d.l. 0.03 (1) 0.16 (3) 100.11

ironb 5 b.d.l. 95.02 (52) 1.02 (13) 2.04 (9) b.d.l. n.a. n.a. n.a. 98.08
suessite su 3 b.d.l. 80.89 (61) 1.85 (14) 0.55 (4) 14.23 (19) n.a. n.a. n.a. 97.52
naquite na 3 0.83 (38) 57.22 (64) 2.09 (39) 0.73 (4) 35.33 (19) 0.31 (12) 0.09 (3) 1.06 (1) 97.66
nickel Ni 3 b.d.l. 3.86 (11) 3.53 (15) 90.45 (43) b.d.l. b.d.l. b.d.l. b.d.l. 97.84
copper Cu 2 b.d.l. 3.82 (21) 94.19 (29) b.d.l. b.d.l. n.a. n.a. n.a. 98.01
taenite ta 4 b.d.l. 66.03 (40) 0.67 (9) 30.36 (30) b.d.l. n.a. n.a. n.a. 97.06

xifengitec xi 1 b.d.l. 72.27 (42) 2.10 (43) b.d.l. 24.46 (27) b.d.l. b.d.l. 1.17 (14) 100.00
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Table 2.2: Point analyses of olivine (a) and averaged compositions of glass (b) and spinel (c) in 126A by EPMA-WDS. All in
compound weight %.
n: number of analyses included in average, b.d.l.: below detection limits, 0.02 wt% Ca, 0.03% Na, 0.02% P, 0.08% Cu, 0.06% Cr, 0.06% Ni; SEM-EDS detection limit ∼0.1 wt%. Uncertainty given in
parentheses represents one standard deviation from the mean based on: counting statistics (for olivine); all analyses (for spinel and glass), (e.g., 50.3(13) = 50.3(1.3) = 50.3 ± 1.3). aS# refers to a point

analysis of olivine, where the # corresponds to a location specified in Figures 2.2c or 2.2d. bForsterite content (“Fo”) calculated as average of [Mg]/2 and 1 - [Fe]/2, where [Mg], [Fe] are atomic ratios

of Mg and Fe, respectively, normalized to 3 cations. cLocation refers to Figure 2.2b. dAll Fe in glass compositions considered as FeO. eFe2O3 content calculated by charge balancing on the basis of 4

Oxygen atoms. fSp-Mg analyzed by SEM-EDS (unnormalized).

a. Olivine
Spota Fob SiO2 Al2O3 FeO Fe2O3 MgO CaO Na2O P2O5 CuO Cr2O3 NiO Total
S1 98 42.7 (2) 0.11 (2) 1.45 (8) 55.5 (2) 0.61 (2) b.d.l. b.d.l. b.d.l. 0.18 (5) b.d.l. 100.55
S2 98 42.7 (2) 0.14 (2) 1.23 (7) 55.4 (2) 0.65 (2) b.d.l. b.d.l. b.d.l. 0.18 (5) b.d.l. 100.30
S3 99 42.7 (2) 0.17 (2) 1.00 (7) 56.3 (2) 0.66 (2) b.d.l. b.d.l. b.d.l. 0.13 (5) b.d.l. 100.96
S4 95 41.7 (2) 0.11 (2) 5.0 (1) 53.3 (2) 0.57 (2) b.d.l. b.d.l. 0.09 (4) 0.21 (5) b.d.l. 100.98
S5 92 41.1 (2) 0.09 (2) 8.0 (2) 50.4 (2) 0.49 (1) b.d.l. b.d.l. 0.11 (4) 0.15 (5) b.d.l. 100.34
S6 84 39.9 (2) 0.07 (2) 14.9 (2) 43.9 (2) 0.56 (2) 0.03 (2) b.d.l. b.d.l. 0.13 (5) b.d.l. 99.49
S7 77 38.8 (2) 0.05 (2) 21.2 (3) 39.6 (2) 0.39 (1) b.d.l. b.d.l. b.d.l. b.d.l. 0.08 (4) 100.12
S8 88 40.6 (2) 0.11 (2) 11.1 (2) 47.6 (2) 0.25 (1) b.d.l. b.d.l. 0.19 (4) 0.10 (5) b.d.l. 99.95
S9 85 39.5 (2) 0.10 (2) 14.3 (2) 44.9 (2) 0.27 (1) 0.05 (2) b.d.l. 0.16 (4) b.d.l. 0.27 (4) 99.55
S10 79 39.0 (2) 0.06 (2) 18.1 (2) 40.6 (2) 0.23 (1) b.d.l. b.d.l. 0.25 (5) 0.21 (5) 1.83 (6) 100.28
S11 82 39.5 (2) 0.10 (2) 16.7 (2) 43.2 (2) 0.44 (1) b.d.l. b.d.l. 0.20 (5) 0.13 (5) 0.11 (4) 100.38
S12 78 37.9 (1) 1.12 (3) 19.6 (2) 40.4 (2) 0.25 (1) b.d.l. 0.06 (3) 0.15 (5) 0.36 (6) 0.67 (4) 100.51
S13 73 37.6 (1) 0.80 (3) 22.9 (3) 36.1 (2) 0.17 (1) b.d.l. 0.73 (5) 0.44 (5) 0.35 (6) b.d.l. 99.09
S14 64 36.4 (1) 0.98 (3) 29.9 (3) 29.9 (1) 0.18 (1) b.d.l. 0.82 (5) 0.80 (5) 0.14 (5) b.d.l. 99.12
S15 61 35.4 (1) 0.97 (3) 32.0 (3) 28.7 (1) 0.17 (1) b.d.l. 0.97 (5) 0.62 (5) 0.11 (5) 0.08 (4) 99.02
S16 45 33.6 (1) 0.87 (3) 43.6 (4) 20.1 (1) 0.31 (1) b.d.l. 1.07 (6) 0.83 (6) 0.11 (4) b.d.l. 100.49
S17 57 35.2 (1) 0.69 (3) 35.4 (3) 26.4 (1) 0.18 (1) b.d.l. 0.86 (5) 0.67 (5) b.d.l. b.d.l. 99.40

b. Glass
Locationc n SiO2 Al2O3 FeOd Fe2O3 MgO CaO Na2O P2O5 CuO Cr2O3 NiO Total

12 3 40.7 (42) 15.4 (29) 10.9 (10) 16.66 (32) 9.0 (11) 1.263 (73) 0.350 (60) 1.403 (27) b.d.l. 0.21 (10) 95.90
13 6 46.57 (66) 28.4 (22) 0.60 (26) 14.9 (27) 7.47 (62) 1.07 (32) b.d.l. 0.897 (85) b.d.l. b.d.l. 99.96
14 4 44.9 (21) 22.9 (59) 9.0 (66) 15.6 (27) 4.25 (65) 1.37 (78) 0.17 (17) 0.87 (10) 0.12 (10) b.d.l. 99.12
15 4 42.9 (34) 16.49 (66) 23.8 (35) 8.1 (22) 4.10 (41) 0.41 (10) 0.54 (11) 0.83 (25) b.d.l. b.d.l. 97.20
16 2 35.2 (46) 18.4 (12) 35.11 (79) 3.1 (28) 5.6 (14) 0.450 (43) 1.63 (36) 0.80 (35) b.d.l. b.d.l. 100.30
17 19 34 (10) 30 (10) 15.7 (81) 13.9 (23) 1.94 (68) 0.38 (22) 0.54 (74) 0.68 (32) 0.63 (54) b.d.l. 97.80
18 6 45.94 (49) 32.07 (78) 4.53 (88) 12.7 (12) 2.862 (76) 0.40 (12) b.d.l. 0.626 (59) 0.302 (53) b.d.l. 99.42
19 4 42.0 (51) 15.3 (31) 18.8 (14) 13.7 (15) 2.39 (23) 0.264 (27) 0.68 (13) 0.593 (53) 0.14 (23) b.d.l. 93.84
20 3 36.3 (38) 4.7 (36) 33.8 (38) 13.5 (75) 2.0 (18) 0.47 (59) 1.19 (58) 0.38 (25) b.d.l. 2.9 (38) 95.31

c. Spinel
Phase n SiO2 Al2O3 FeO Fe2O3

e MgO CaO Na2O P2O5 CuO Cr2O3 NiO Total
Crust 11 6.53 (5.86) 52.28 (13.89) 17.14 (4.73) 3.78 (9.37) 14.73 (2.56) 0.50 (0.42) 0.22 (0.14) 0.15 (0.09) 1.95 (2.17) 2.19 (1.60) 0.09 (0.01) 99.56
Sp-Al 15 3.60 (4.97) 39.87 (14.91) 21.08 (3.35) 18.85 (17.87) 12.30 (3.38) 0.25 (0.31) 0.06 (0.07) 0.16 (0.08) 0.14 (0.27) 2.53 (1.53) 2.74 (2.52) 101.57
Sp-Fe 17 3.53 (3.43) 12.81 (7.26) 25.01 (4.62) 48.41 (10.86) 6.56 (2.49) 0.24 (0.27) 0.10 (0.09) 0.11 (0.04) 0.09 (0.30) 0.64 (0.89) 4.10 (1.80) 101.61
Sp-Mgf 11 8.93 (4.16) 56.12 (6.25) 11.91 (4.55) 0.81 (2.03) 19.70 (2.45) b.d.l. b.d.l. b.d.l. b.d.l. 2.38 (5.23) b.d.l. 99.85
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2.3.1 Al-Cu-Fe metals

The Al-Cu-Fe metal grains have complex grain boundaries. Many of the grain bound-

aries display cuspate-lobate fold morphology, others are rounded to amoeboid, and

some are straight and angular. In many cases, the cuspate-lobate boundaries show

the cusps point to the metal grains. There is a halo of Al2O3-enrichment (appears

as blue/purple, Fig. 2.1b), extending beyond the metal boundaries into the silicate

regions. Averaged compositions of metal phases from regions marked in Fig. 2.2a are

presented in Table 2.1.

Among the metal grains are four new Al-Cu-Fe minerals, which were recently

reported in [26], [52], and [25]. They include stolperite (AlCu) [25, 52], kryachkoite

((Al,Cu)6(Fe,Cu)) [25, 52], hollisterite (Al3Fe) [25, 52], and an as-yet-unnamed qua-

sicrystal [26] (denoted ‘i-II’). The quasicrystal i-II has the same icosahedral symmetry

as icosahedrite [20, 21] (denoted ‘i-I’) but a composition Al62.0(8)Cu31.2(8)Fe6.8(4), which

is outside the measured equilibrium stability field at standard pressure of icosahedrite

(AlxCuyFez, with x between 61 and 64, y between 24 and 26, z between 12 and 13%)

[17, 64, 65].

The large (100-300 µm) Al-Cu-Fe metal fragments mostly comprise khatyrkite

(CuAl2, with up to 2.68 elemental weight % Fe) and variable amounts of stolperite.

Within some of the Al-Cu-Fe metal grains and sometimes along their edges, there

are mixtures of khatyrkite and Al, with a vermicular texture (Fig. 2.3). The Al

in these mixtures contains up to 13.3 elemental weight % Cu. Given their texture

and composition, we refer to these regions as “eutectoid”. In Figure 2.3a, the grain

boundaries between glass and the metal alloys are relatively straight. Straight grain

boundaries typically indicate formation by fracture or along crystal faces [66]. Here,

we infer that the glass may have filled a fracture. The glass appears to cross-cut what

may have been connected eutectoid regions. In Figure 2.3b, the eutectoid regions

22



Figure 2.3: BSE images of eutectoid regions. (a) Close up of region overlapping
with Locations 2 and 3 (Fig. 2.2a). The wedge-shaped silicate glass region appears
to cross-cut khatyrkite metal (“kh”) and what may have been previously connected
eutectoid regions (“eut”). (b) Close up of Location f.3b (Fig. 2.2a). Cuspate-lobate
boundaries of the eutectoid regions here suggest they were partially molten, whereas
the khatyrkite was solid.

have cuspate-lobate boundaries where they are in contact with the adjacent metal

grains. Along these edges, the cusps tend to point away from the eutectoid regions.

There is a single occurrence of hollisterite (Fig. 2.4a), which occurs immediately

adjacent to grains of i-I (Fig. 2.4b). The upper and lower ends of the hollisterite grain

are overlaid by a crust of spinel crystals (see discussion of the spinel crust below). The

grains of i-II are surrounded, sequentially, by stolperite, khatyrkite, and Al (Fig. 2.4c).

Kryachkoite appears as euhedral grains within some eutectoid mixtures.

2.3.2 Silicates and oxides

The material surrounding the Al-Cu-Fe metal grains is a fine-grained, hypohyaline

assemblage of olivine and spinel quench crystals embedded in a glassy groundmass.

Compositions taken from regions marked in Fig. 2.2b are presented in Table 2.2b.

In Figure 2.5, all of the compositions are plotted in the ternary diagrams in terms

of Al2O3-CaO-SiO2 weight % and MgO-FeO-SiO2 weight %. The compositions are
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Figure 2.4: BSE images of Al-Cu-Fe assemblages with two generations of
quasicrystals. Compositions for the metal phases shown here are listed in Ta-
ble 2.1. Contrast in (b) and (c) has been stretched to emphasize compositional dif-
ferences among the different metal phases. (a, b) Close up of Location 8 (Fig. 2.2a).
This assemblage contains khatyrkite (“kh”), stolperite (“st”), hollisterite (“ho”), and
icosahedrite (“i-I”). The red, dashed lines in (a) outline the icosahedrite grains to
distinguish these grains from the neighboring phases; these sketches of the phase
boundaries are based on higher contrast images of the same region, such as shown in
(b). The upper and lower ends of the hollisterite grain terminate against the spinel
crust (“crust”). We interpret this as a cross-cutting relationship that indicates the
hollisterite and i-I are relict. The dark area in the center of the Al-Cu-Fe assemblage
is a hole. (c) Close up of Location 10 (Fig. 2.2a). This assemblage contains qua-
sicrystals (“i-II”) that are distinct from i-I. Surrounding i-II is stolperite, which is
surrounded by khatyrkite. The dark area in the interior of this assemblage is metallic
Al (“Al”). The dark area external to this assemblage contains silicate phases, which
are not discernable in this image because of the high contrast.
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Figure 2.5: Compositions of glass regions in 126A. They are presented in terms
of weight % Al2O3-CaO-SiO2 (left) and MgO-FeO-SiO2 (right) and normalized to
100%. The three shaded regions are the convex hulls of glass (blue), spinel (green),
and olivine (red) compositions; each shaded region shows, roughly, the range of com-
positions for one of the three phases. Locations refer to those shown in Fig. 2.2b.
Compositions vary widely both within the same region (see, e.g., Location 17) as well
as across different regions. Also plotted for comparison are bulk compositions of the
Orgueil (CI1) chondrite [67] (Fe2O3 from original analyses has been recalculated to
FeO) and of the Allende (CV3) chondrite [68]. Orgueil’s composition reflects bulk
solar abundances, and Allende’s is prototypical of CV3 chondrites. Compared to the
bulk compositions of Orgueil and Allende, the glass in Grain 126A contains higher
relative abundances of Al2O3 and lower relative abundances of FeO. This is consis-
tent with modification of the matrix melt (which may originally have had composition
similar to that of Orgueil and Allende) by assimilation of oxidized Al following redox
reaction with Al-Cu-Fe metal. During the reaction, the FeO from the matrix melt
reduced to metallic Fe, which then formed Fe beads.
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Figure 2.6: BSE images of various spinel phases. Compositions for spinel phases
shown here are provided in Table 2.2c. (a) Close up of region overlapping with
Locations 11 (Fig. 2.2a) and 18 (Fig. 2.2b). Khatyrkite (“kh”) and stolperite (“st”)
have a texture indicating crystallization from a melt. Metallic Fe beads (“Fe”) line
the interior interface. Spinel crystals that grew here in the silicate melt (now glass)
are denoted as “Sp-Mg”. They have lower concentrations of FeO and Fe2O3 than the
spinel crystals shown in (b). (b) Close up of Location 20 (Fig. 2.2b) showing Fe-rich
spinel crystals (“Sp-Fe”) and zoned spinel crystals with Fe-rich rims (also marked
“Sp-Fe”) and Al-rich cores (“Sp-Al”), all surrounded by glass. In contrast to (a), this
region does not have Fe beads, but the spinel crystals here have higher concentrations
of FeO and Fe2O3 than those in (a). Also noted in the image are olivine crystals (“ol”,
Fo50−56).

widely distributed, varying not only across different regions of the sample, but also

within the same region. Besides the glass, there are olivine crystals, contained primar-

ily in the blue-boxed region in Fig. 2.2b that has been enlarged and shown separately

in Fig. 2.2c. They exhibit a brecciated texture consisting of relatively larger (10-30

µm), fractured olivine grains, surrounded by fine-grained (2-10 µm) angular olivine

fragments. Point analyses in this region are presented in Table 2.2a. All of the com-

positions are very close to stoichiometric olivine. The relatively larger grains have

Mg-rich cores (Fo77−99). Their appearance and composition resembles the chondrule

olivines found in Grains 5 and 121 of Khatyrka [23]. The relatively smaller grains

have subhedral to equant euhedral morphology, more ferroan cores (Fo61−73) than the
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larger grains, and rims that are Fe-rich (Fo45 in S16, Table 2.2a). Some of the smaller

grains are shown in Fig. 2.2d, an enlarged version of the red-boxed region in Fig. 2.2c.

Averaged compositions of different spinel phases (Fig. 2.6) are presented in Ta-

ble 2.2c. A layer of spinel crystals mantles each of the Al-Cu-Fe metal grains, sepa-

rating the metal from the silicate regions (this is called “Crust” in Table 2.2c). This

crust of spinel crystals forms part of the Al2O3-rich halo that envelops each of the

metal grains (blue, Fig. 2.1b). Most metal grains also have a submicron-thin layer

of Al-oxide located between the metal and the spinel crust. This Al-oxide layer is

too thin to analyze for precise composition. In addition to the spinel crust, there

are euhedral Mg-rich spinel crystals (.2 µm; “Sp-Mg”, Fig. 2.6a, Table 2.2c). These

spinel crystals tend to occur where the Al2O3 to FeO ratio in the adjacent glass is

relatively high (more dark blue/purple, Fig. 2.1b), such as Locations 14, 17, and 18

(Fig. 2.2b, 2.6a), where the observed weight % ratio of Al2O3 to FeO ranges from 1.09

to 13.95. There are also subhedral to equant euhedral spinel crystals, some that have

Al-rich cores (“Sp-Al”’, Fig. 2.6b, Table 2.2c) and Fe-rich rims (“Sp-Fe”, Fig. 2.6b,

Table 2.2c), and others that are more homogeneous and near magnetite (Fe3O4) in

composition (included in “Sp-Fe”, Fig. 2.6b, Table 2.2c). The Sp-Al and Sp-Fe phases

occur where the Al2O3 to FeO ratio in the adjacent glass is relatively low (more green,

Fig. 2.1b), such as Location 20 (Figs. 2.2b, 2.6b), where the observed weight % ratio

of Al2O3 to FeO ranges from 0.02 to 0.22.

Lastly, there are silicate phases surrounded by glass that are too fine-grained to

resolve analytically. They include, for example, skeletal, acicular crystallites and

others that exhibit granophyric textures (Fig. 2.7).

2.3.3 Metal beads and droplets (Fe, Fe-Si, Ni, Cu)

Near the interfaces between the Al-Cu-Fe metal grains and the silicates, there are

spherical metallic Fe beads varying in size from less than 10 nm to .5 µm (“Iron”,
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Figure 2.7: BSE images of skeletal, quench textures in the silicate glass.
Individual phases are too small to analyze for precise compositions. (a) Close up of
Location f.7a (Fig. 2.2b) showing granophyric textures. (b) Close up of Location 14
(Fig. 2.2b) showing feathery textures.

Table 2.1). Some of these beads are shown in Fig. 2.10a. The Fe beads contain variable

amounts of Si, from below detection limit up to 35 weight %. Among the Fe-silicide

beads are the minerals naquite (FeSi) [69], suessite (Fe3Si) [70] and xifengite (Fe5Si3)

[71] (Fig. 2.2a). Some of the larger Fe-beads contain S- and Cu-rich inclusions. The

Fe- and Fe-Si beads are Ni-poor (as low as <0.1 weight %) and visibly distinct from

the larger (3-25 µm) grains of taenite (“tae”, Table 2.1), which dominate the olivine

field in the center-right of the sample. A 1 µm Ni-rich droplet (90 weight % Ni) and

3-µm large Cu-rich droplet (94 weight % Cu) were also identified; their compositions

can be found in Table 2.1.

2.4 Chemical reaction between Al-Cu-Fe metal

and silicate matrix

Our study of Grain 126A shows that the melted silicate matrix and Al-Cu-Fe alloys

reacted, probably exothermically, at temperatures above the bulk silicate solidus.
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Oxidized Fe and Si in the silicate melt were reduced by metallic Al in the adjacent

alloy. In reciprocal fashion, the metallic Al was oxidized and incorporated into the

silicate melt. Subsequently, the reduced Fe and Si coalesced into beads. The oxidized

Al diffused into the adjacent silicate melt and formed an Al2O3-rich zone (Fig. 2.1b).

Some of the oxidized Al formed the Al-oxide layer and the aluminous spinel that

crystallized on the metal grains. This mantle of spinel sealed off the metal from

further reaction.

The reaction products (Fe, Fe-Si beads, Al2O3 halo, Al-oxide layer, and spinel)

are mostly present along the metal-matrix interfaces where the reaction would have

initiated (see, e.g., Fig. 2.10a). This is the clearest observation yet of a reaction

zone in Khatyrka. The further observation that these reaction zones are narrow,

extending only tens of microns at most away from the metal, argues for an extremely

rapid process. The observations here are qualitatively similar to what was found in

the impact experiments reported in [72]; there, a metallic Al projectile (with minor

Cu) was shot into a quartz sand target, resulting in a redox reaction that produced

a reaction zone of Al2O3 and beads of metallic Si.

Metallic Fe and Fe-silicide beads in 126A are similar to ones described in Grain 129

[54]. Such beads can be produced during impact [60, 69, 70, 71, 73, 74, 75, 76]. The

observation of metallic Si alloying with Fe further indicates that, during the impact,

the conditions were sufficiently reducing to favor formation of Fe-Si phases over Fe +

SiO2. However, there is no evidence that they were sufficiently reducing to produce

Fe-Al phases in the silicate melt. We do, however, observe droplets of metallic Cu

and Ni, consistent with these phases having fO2 requirements less stringent than even

metallic Fe. The presence of Cu droplets implies the simplified reaction (∆fH
o = 465

kJ, using parameters from [77, 78, 79]):

CuAl2 + MgFeSiO4 → Cu + Fe + Si + MgAl2O4 . (2.1)
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(We have assumed here for simplicity that the silicate melt originally had a bulk

composition similar to the porous matrix of the unshocked regions of Khatyrka [23].)

In addition to Cu appearing in metallic droplets surrounded by glass, we observe Cu

as a minor constituent in the glass (up to 1.4 weight % CuO).

The two varieties of olivine differ in both appearance and chemistry. The relatively

larger olivine crystals (S1-S7, Fig. 2.2c, Table 2.2a) have no detectable P2O5 and, on

average, no CuO. The smaller olivine grains (S13-S17, Fig. 2.2d, Table 2.2a) have

0.73-1.07 weight % P2O5 and 0.44-0.83 % CuO. (There does not appear to be mixing

of these analyses with neighboring glass, as there is no significant difference between

concentrations of Al2O3, Na2O, and CaO in the cores (S13, Fig. 2.2d) and in the rims

(S16 and S17, Fig. 2.2d).) The larger grains also have considerably less Al2O3: up to

0.17 % Al2O3, compared with 0.69-1.12 Al2O3 in the smaller grains. For comparison,

the neighboring glass has, on average, 1.63 % P2O5, 0.80 CuO, and 18.42 Al2O3

(Location 16, Table 2.2b). From the appearance and chemistry, we infer that the

larger olivine grains are pre-impact relics, whereas the smaller grains are a newer

generation that grew rapidly from the P2O5- and CuO-bearing silicate melt. This

interpretation is supported by experimental studies of P-rich olivine [80] and nano-

analytical studies of silicate inclusions in the Netschaëvo iron meteorite [81].

2.5 ‘Metal-forming event’ occurred prior to the

‘impact event’

As noted above, the cuspate-lobate boundaries between the Al-Cu-Fe metal grains

and the glass have cusps that tend to point into the metal grains. The cuspate-lobate

fold geometry forms as a buckling instability in compression, where the lobes point

to the weaker material, and cusps point toward the stronger material [66]. Silicate

melts have lower viscosities than solid metals, whereas in the solid-state metals are
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less viscous than silicates. We thus infer that the silicates were molten or partially

molten when the cuspate-lobate grain boundaries formed. The texture is consistent

with the Al-Cu-Fe metal grains being solid and the glass being a melt when they

reacted to form the spinel crust and thin Al-oxide layer.

In Figure 2.3a, the glass (formerly matrix melt) appears to cross-cut the eutectoid

regions, which would indicate a time sequencing: the now-cut Al-Cu-Fe alloy existed

before the fracturing and intrusion of the silicate melt.

The preceding observations suggest that the ‘metal-formation event’ occurred

prior to and is distinct from the event that produced the silicate melt. This is further

supported by the presence of cuspate-lobate eutectoid boundaries (Fig. 2.3b), which

have a fundamentally different texture than the angular eutectoid regions (Fig. 2.3a).

We infer from the difference in texture that two different processes generated them.

The rounded boundaries are consistent with the khatyrkite adjacent to the eutectoid

regions being incorporated into partially re-melted eutectic melt. Because these re-

gions were partially re-melted, they must have first formed prior to the event that led

to the partial re-melting.

2.6 Al-Cu-Fe quasicrystals

2.6.1 Two generations

The upper and lower ends of the hollisterite grain terminate against an overgrowth

of spinel crystals (Fig. 2.4a). We interpret this geometry to indicate a cross-cutting

relationship that shows the hollisterite grain existed prior to the formation of the

spinel layer, and, hence, the hollisterite grain is a pre-impact relict. This is further

supported by the fact that the crust embays the contact between the hollisterite and

stolperite where the arrow points to the crust in Fig. 2.4a. The icosahedrite grains

lying immediately adjacent to the hollisterite (see Fig. 2.4b) must also be relicts,
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and, thus, the icosahedrite grains are older than those formed during the most recent

impact a few 100 Ma.

The i-II-bearing assemblage (Fig. 2.4c) occurs ∼50 µm to the right of the

hollisterite-bearing assemblage. The metal grains are similar in size (∼15 µm). How-

ever, the i-II-bearing assemblage does not contain either hollisterite or i-I. Moreover,

the textures in the i-II-bearing assemblages strongly suggest that these assemblages

are not relicts but, rather, had solidified from completely re-melted metal following

the ‘impact event’. The enclosed phases, including the i-II phase, formed during

a new crystallization sequence: the i-II phase crystallized first from the Al-Cu-Fe

liquid; subsequently, the stolperite grew around the i-II phase, shielding the residual

Al-Cu-Fe liquid from the i-II phase; within this residual liquid, the khatyrkite

crystallized from a peritectic reaction. Finally, at the eutectic point, khatyrkite and

Al formed together. The age of the i-II phase would thus be a few 100 Ma (the time

of the latest impact).

With the i-I grains having formed prior to the impact event and the i-II phase

having formed after, we can make the following conclusions: first, there are at least

two generations of quasicrystals in Khatyrka; second, Khatyrka experienced condi-

tions suitable for producing quasicrystals both prior to and during the ‘impact event’;

and, third, the Al-Cu-Fe metal assemblages experienced different degrees of melting

during the ‘impact event’, with some completely melting (like the i-II-bearing assem-

blage, Fig. 2.4c), some only partially melting (like the eutectoid region in Fig. 2.3b),

and others not melting at all (like the relict eutectoid in Fig. 2.3a).

2.6.2 Novel pathways for quasicrystal formation

The i-II phase is only the third quasicrystal to be discovered in nature. Its two

predecessors (icosahedrite [21] and decagonite [50]) were discovered in nature after

synthetic analogues had already been discovered. The synthetic analogue of icosa-
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hedrite was discovered in 1987 [15], and the analogue of decagonite was discovered

in 1989 [82]. In contrast, the i-II phase is the first quasicrystal to be discovered in

nature prior to synthesis in the laboratory, despite the fact that the Al-Cu-Fe system

has been systematically studied in the laboratory near the region of the i-I phase [17,

83, 84, 85]. At this time, it has yet to be synthesized in the laboratory, which indi-

cates that there are processes for forming quasicrystals that have not been replicated

in laboratory synthesis. Understanding what these processes are would inform new

methods for synthesis and novel methods for uncovering new quasicrystals.

Equilibrium formation

The i-II phase may be an equilibrium phase (i.e., thermodynamically stable), and the

reason why it has not been synthesized yet is that the stability field of the quasicrys-

talline phase in the Al-Cu-Fe ternary system shifts or expands at higher temperature

and pressure conditions (present after shock) that have not yet been studied in the

laboratory. A textural interpretation of the i-I and i-II assemblages suggests an equi-

librium process. These assemblages are similar in size and in close proximity to one

another, and both assemblages have textures (described above) that are consistent

with solidification along liquid lines of descent with similar cooling rates but starting

from different bulk compositions. We note that the two quasicrystal-bearing assem-

blages share resemblance to those obtained in the experiments reported in Figures 13

and 15 of [84].

Non-equilibrium formation

Alternatively, the i-II phase may be a non-equilibrium phase (i.e., kinetically stable

but thermodynamically unstable), which has been preserved due to quench. Evi-

dence that Khatyrka experienced highly non-equilibrium conditions has been found

elsewhere, e.g., evidence of rapid quench and heterogeneous distribution of temper-
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ature and pressure. Furthermore, laboratory shock experiments could be used to

simulate non-equilibrium conditions to see whether they lead to the production of

new quasicrystals.

The Asimow experiment

Indeed, a laboratory shock experiment has already been performed that success-

fully produced a novel quasicrystal [27]. We refer to this experiment—led by Paul

Asimow—as the “Asimow experiment”. The setup and the results (some unpub-

lished) are discussed here.

The Asimow experiment was designed to simulate the impact shock condi-

tions between possible starting materials in Khatyrka. The starting materials

in the experiment consisted of a stainless steel recovery chamber made of 304SS

(Fe71Cr18Ni8Mn2Si1) enclosing a stack of discs of (in order from top to bottom,

according to Fig. 2.8a) synthetic forsteritic olivine (Mg0.75Fe0.25)2SiO4, synthetic

CuAl5 alloy composed of a eutectoid mixture of metallic Al and CuAl2, natural FeNi

from the Canyon Diablo meteorite, and a synthetic Al-bronze alloy (Al14Cu4Fe1Ni1).

Some of these materials underwent a redox reaction, which produced metallic Fe

beads and spinelloid group minerals (Fig. 2.9). The striking similarities between

the products of the shock experiment and the phases observed in 126A (described

in Sections 2.3 and 2.4) support our earlier conclusion that the impact event led to

a reaction whereby FeO from the silicate melt was reduced by metallic Al from the

Al-Cu-Fe metal.

The Asimow experiment also resulted unintentionally in the synthesis of a

novel quasicrystal. Among the run products is a new quasicrystalline phase,

shown in Fig. 2.8c, with icosahedral symmetry and with compositional range

Al68−73Fe11−16Cu10−12Cr1−4Ni1−2. Like the i-II phase, this new phase has an Fe/Cu

ratio outside the range previously reported for Al-Cu-Fe-based quasicrystals. Its
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(a) 

Figure 2.8: Shock-synthesized icosahedral quasicrystal from the Asimow
experiment. (a) Reflected light photomicrograph showing layout of discs used in
the Asimow experiment. Shown are the materials following the experiment, but the
layout of the starting materials is clearly visible. The starting materials (from top to
bottom) were: synthetic forsteritic olivine (Mg0.75Fe0.25)2SiO4, synthetic CuAl5 alloy
composed of a eutectoid mixture of metallic Al and CuAl2 (i.e., synthetic analogue
of khatyrkite-Al eutectic mixture), natural FeNi from the Canyon Diablo meteorite,
and synthetic Al-bronze alloy (Cu14Al4Fe1Ni1). The materials are contained in a
stainless steel 304 chamber with composition Fe71Cr18Ni8Mn2Si1. Arrow indicates
shock propagation direction. (b) BSE image of magnified portion of blue-outlined
region in (a). (c) BSE image of magnified portion of red-outlined region in (b),
indicating the location of the new quasicrystal (“i-phase”) with icosahedral symmetry
and compositional range Al68−73Fe11−16Cu10−12Cr1−4Ni1−2. Contrast in (b) and (c)
have been stretched to emphasize differences of the metal phases. The dark spaces
are not voids; they are grains of olivine and spinel.
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Figure 2.9: Evidence of redox reaction from the Asimow experiment. BSE
image (a) and X-ray area maps (b) of a magnified region slightly above the blue-
square-outlined area in Fig. 2.8a. A spinel-bearing glass (“Sp”) appears to be a
quenched melt, based on the observation of an apophysis cutting the olivine grain.
Metallic Fe-beads (“Fe”) occur within the apophysis and along the olivine (“Ol”)-
glass boundaries. The spinel and Fe-beads appear to be the products of redox reaction
between the olivine and the CuAl5 layers.
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Al/(Cu+Fe) ratio is also outside the previously reported range [17, 64, 65]. The

similarities observed between the Asimow experiment and 126A suggest they may

have shared a common route for forming these new quasicrystals.

The experiment does not conclude whether the synthesis can be attributable to

equilibrium formation (i.e., expanded thermodynamic stability at high pressure and

temperature), non-equilibrium formation (i.e., kinetic pathways that exist with shock

conditions), or a mixture of the two. Shock itself may be a sufficient condition for the

formation of natural quasicrystals, but it may not be necessary. However, the exper-

iment does demonstrate that shock recovery experiments provide a feasible way for

forming and discovering new quasicrystals in the future. This presents an alternative

to metallurgical methods that involve cooling (either quench or annealing) of bulk

melts. A systematic study of the Al-Fe-Cu-Cr-Ni quinary system would have been

impractical by existing metallurgical methods and computation, given the enormous

number of bulk combinations possible among five elements.

2.7 Rapid cooling, heterogeneous temperature

distribution, and new temperature constraints

The highly heterogeneous composition of the glass (as seen in the ternary diagrams in

Fig. 2.5) and the presence of skeletal crystals (Fig. 2.7) indicate that the silicate melt

cooled rapidly enough so that there was not enough time for compositional variations

to be smoothed out by diffusion. Hence, 126A experienced at least two stages of

extreme thermal changes caused by the latest impact event: first, a period of rapid

heating, initiated by the impact and assisted by the aluminothermic reaction; and,

subsequently, a rapid quench.

The effects of impact are heterogeneous at the grain scale. We can obtain local

constraints—not on the entire body but for particular spots—on the temperature
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attained during the ‘impact event’ by identifying phases that did not fully melt.

For these temperature constraints, we assume ambient pressures—even though high-

pressure phases were found in other fragments of 126 and in other grains of Khatyrka.

The presence of relict chondritic olivine implies that the meteorite was not 100%

melted during the ‘impact event’. Specifically, the presence of relict Fo77 implies that

the peak temperature in these relict cores during the ‘impact event’ was no higher

than ∼1,700◦C, the melting temperature of Fo77 at atmospheric pressure [86]. As

discussed previously, the appearance and composition of these relict olivine grains is

similar to the chondrule olivines observed elsewhere in Khatyrka [23].

Where the olivine was partially melted, we can infer that those regions were hot

enough to melt olivine and pyroxene; hence, they were heated to at least 1,200◦C,

which is set by the solidus in the Fa-Fo-SiO2 ternary [86]. This latter estimate is

corroborated by the presence of Fe-silicide beads. The crystallization of these beads

from the silicate melt implies that they experienced temperatures as high as 1,200◦C,

about the temperature of the solidi in the Fe-Si binary system [87]. This temperature

estimate is also consistent with that obtained in [55] from an interpretation of ladder-

like veins of ahrensite + SiO2.

The Al-Cu-Fe metal yields a much lower peak temperature estimate, based on the

relict eutectoid regions containing Al and khatyrkite. The cross-cut eutectoid regions

(Fig. 2.3a) were heated to at most ∼540◦C, the Al-khatyrkite eutectic temperature

[88]. If the peak temperature were higher, these regions would have completely re-

melted and the cross-cutting relationship would not be preserved.

The very different peak temperature estimates from the relict metal eutectoid

regions and the partially melted olivine regions, 540◦C and 1,200◦C respectively, re-

inforce the earlier conclusion that cold, solid metal was in contact with hot, molten

matrix material during the ‘impact event’. This also presents stark evidence for a

heterogeneous distribution of temperatures in 126A following the ‘impact event’.
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We can also constrain the maximum peak temperatures for the hollisterite grain

and the adjacent icosahedrite. As discussed previously, the cross-cutting relationship

with the spinel crust indicates that these phases are relict. If these phases were heated

above their melting temperatures after the onset of the aluminothermic reaction, they

would have melted and the cross-cutting relationship would not be preserved. We

conclude that the hollisterite and icosahedrite grains were heated to at most around

1,160◦C and 1,100◦C, their respective melting temperatures [17, 64, 89].

In those regions containing stolperite (e.g., the quasicrystal-bearing assemblages

and the region shown in Fig. 2.6a) we can constrain the temperature at the time of

quench, which may be different from the peak temperature. We interpret the texture

as crystallization from a melt, with the stolperite grains appearing to be partially

resorbed. The presence of stolperite implies that the temperature of the metal when

it was quenched was not higher than the melting temperature of stolperite, which is

around 640◦C [84].

2.8 Discussion and Outlook

We assume for the purposes of simplicity that a single shock event is associated with

the production of the high-pressure phases in 126 and in other grains, as well as

with the silicate melt and redox reaction observed in 126A. Features in 126A and

other samples indicate that this shock event produced a highly heterogeneous range

of temperatures and pressures, followed by rapid cooling. Our interpretations are

corroborated by the studies in [58] and [59] of noble gas measurements on forsteritic

olivine fragments of Grain 126 (not from 126A) that show a high-velocity impact

event occurred a few 100 Ma. This impact event resulted in shock stages ranging

from S3 to S5 but most likely around S4 [60].
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The textural relationships and evidence of redox reaction found in 126A clearly

demonstrate that some of the Al-Cu-Fe alloy phases (including quasicrystals) formed

prior to the impact event and some during, firmly establishing that the Al-Cu-Fe

alloys (including icosahedrite) are extraterrestrial in origin and have a shared history

with the chondritic material in outer space. The noble gas studies indicate that the

first Al-Cu-Fe alloys formed over a few 100 Ma. However, the formation of the first

Al-Cu-Fe alloys was probably no earlier than 4.564 Ga based on the absence of any

evidence of excess 26Mg (radiogenic from the decay of the short-lived nuclide 26Al) in

any of the measured Al-bearing metal grains from Khatyrka [22, 23]. (However, it is

possible that any excess 26Mg was reset during the most recent impact event.)

Our study also shows that the single event hypothesis’ of [55] can be ruled out. In

this hypothesis, the ‘metal-forming event’ and ‘impact event’ are the same. Although

this hypothesis was favored for its simplicity, the results in this Chapter show that

a more complex multiple-stage process is necessary to explain the observations: at

the very least, a ‘metal-forming event’ was followed by one or more later ‘impact-

events,’ with the most recent major impact occurring a few 100 Ma. Furthermore, the

original ‘metal-forming event’ must have entailed highly reduced conditions, at least

below the (CuO+Al2O3)/CuAl2 buffer, in order to form khatyrkite. This makes it

especially challenging to formulate a reasonable theory for how the Al-Cu-Fe metals

first came to be, and is thus a subject of ongoing research. Speculations include:

(i) condensation from the presolar nebula; and (ii) a carbon-mediated extraction

process (i.e., smelting), which could take place, for example, upon extreme heating of

neighboring Cu- and Al-rich phases within ureilite-like carbon-rich material (see [90]

and [91] for further discussion on such a reduction mechanism).

One of the striking features of 126A reported here is the presence of unmelted Al-

Cu alloy, with melting temperature ∼540◦C [88], in contact with silicate glass, with

melting temperature ∼1,200◦C [86]. We note that [92] observed similar textures to
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what we observe (Fig. 2.1) with respect to Fe-Ni metals in contact with silicates, in a

study of three CB carbonaceous chondrites (Queen Alexandra Range (QUE) 94411,

Hammadah al Hamra 237, and Bencubbin). One example, within QUE 94411, is a

relict grain of Fe-Ni embedded in a shock melt (see Figure 7 of [92]). They argue that

the precursor to the shock melt was fine-grained porous matrix material, and that,

during a shock event, differences in shock impedance between denser, non-porous Fe-

Ni metal and less dense, porous silicate matrix led to localized melting in the matrix

material, which formed the now-observed shock melt. (See [60] and [93] for further

discussion of disequilibrium shock effects.) The features observed in Grain 126A,

including the contact between cold metal and silicate melt, can also be interpreted

as the effects of highly localized, heterogeneous, shock-induced melting as a result

of fine-scaled shock impedance variation. The main difference from the study of [92]

and ours is that instead of relict Fe-Ni metal with melting temperature ∼300◦C [94],

Grain 126A contains the relatively higher melting-point Al-Cu(-Fe) alloys.

We suggest that, after the silicate melt formed, the melt interacted with the Al-Cu-

Fe metal grains as follows (see Fig. 2.10b for a schematic illustration): The Start panel

in Fig. 2.10b represents the initial contact between silicate melt and cold metal. (Step

1) The Al-Cu-Fe metal, beginning at the grain boundaries, was partially assimilated

into the melt. The metal-matrix interface retreated into the metal (indicated by

arrows, Fig. 2.10b), leaving behind a modified matrix melt (“assimilated metal”,

Fig. 2.10b) with elevated concentrations of Al, Cu, and Fe. (Step 2) While the

metal-matrix interfaces continued to retreat, the kinetic and chemical conditions were

eventually suitable for ignition of an aluminothermic reaction near the interfaces,

whereby Al was oxidized and Fe and Si were reduced (“reaction zone”, Fig. 2.10b).

(Step 3) The redox reaction and the retreat of the metal-matrix interface stopped.

A layer of oxidized aluminum and a crust of aluminous spinel crystals grew on the

metal grains into the modified matrix melt. Fe and Fe-silicide beads formed within the
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Figure 2.10: Redox reaction at metal-matrix interface. (a) BSE image showing
close-up of Location f.8 (Fig. 2.2b). Metallic Fe beads occur mostly along interface
between Al-Cu-Fe metal and glass. Spinel crust surrounds the Al-Cu-Fe metal grains.
The Fe beads and spinel crust are the products of a redox reaction between Al-Cu-Fe
metal and silicate melt. (b) Schematic illustration showing a proposed sequence of
how the interaction unfolded between Al-Cu-Fe metal and silicate melt. The Start
panel represents the initial contact between metal and silicate melt. In Step 1, the
metal is being partially assimilated into the melt, which leads to an enrichment of
Al, Cu, and Fe in the melt. The metal-matrix interface retreats into the metal. In
Step 2, the interface continues to retreat, while the redox reaction occurs in the
reaction zone, producing oxidized Al and metallic Fe and Si. In Step 3, the interface
stops retreating and the redox reaction stops, as various phases begin to crystallize,
including a layer of Al-oxide (“Al-O”), spinel crystals, and Fe and Fe-Si beads. In
Step 4, the metal grains are still being heated. Some, like the one represented here,
begin to melt, beginning at the metal-matrix interface. In Step 5, the system cools,
and the newly melted metal regions re-crystallize. This final panel reflects what is
observed in (a).
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modified matrix melt, mostly along the metal-matrix interface, and alongside spinel

crystals. These phases are indicated in Fig. 2.10b. At this stage, the Al-Cu-Fe metal

grains—including those enclosed by a crust of spinel crystals—were still solid but

continued to be heated. (Step 4) The metal grains heated to varying degrees. Some

did not melt, others partially melted, and others completely melted. Represented in

Fig. 2.10b is a melting grain, with the melt front advancing into the metal. (Step

5) Where there was newly melted metal encapsulated by the spinel crust, a new

crystallization sequence occurred (“re-crystallized metal”, Fig. 2.10b).

The new observations presented in this Chapter firmly establish that the quasicrys-

tals and other metallic Al-bearing alloys in Khatyrka indeed formed in outer space.

This should largely resolve the remaining uncertainty surrounding their natural ori-

gin. Looking forward, the discovery of the i-II phase in Khatyrka and the synthesis of

a quinary quasicrystalline alloy in the Asimow experiment give us promise that fur-

ther examples of exotic metallic alloy minerals and clues to their formation processes

will eventually be discovered—perhaps as new and different types of meteorites are

found and studied. The question of how the metallic Al was first reduced and then

alloyed with Cu remains unanswered. Resolving this puzzling question would mark

a new chapter in our understanding of stellar and geologic processes and of the early

solar system.

2.9 Appendix: Methods

2.9.1 Sample characterization techniques

The sample studied here (Grain 126A) was first embedded in epoxy resin, prepared

as a polished thick section, and coated with a 30-nm-thick carbon film. The results

included here are from SEM-EDS (scanning electron microscopy, energy dispersive
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spectroscopy) and EPMA-WDS (electron microprobe microanalysis, wavelength dis-

persive spectroscopy).

2.9.2 Scanning electron microscopy

X-ray compositional maps were obtained at the Centre for Electron Microscopy and

Microanalysis (MEMA) of the University of Florence, Italy, using a Zeiss EVO MA15

SEM coupled with an Oxford INCA250 energy-dispersive spectrometer, operating

at 25 kV accelerating potential, 500 pA probe current, and acquisition times of 10

ms per pixel. Further SEM-EDS studies were performed at Princeton University’s

Imaging and Analysis Center and at the Smithsonian Institution. Most of the SEM-

EDS compositions presented in this Chapter were obtained at the GPS analytical

facility at Caltech, using a GPS ZEISS 1550VP field emission SEM equipped with

an angle-sensitive back-scattered electron (BSE) detector, an Oxford X-Max SDD

EDS, and an HKL EBSD (electron backscatter diffraction) system. BSE imaging,

EDS and EBSD analyses were conducted using SmartSEM, AZtec and Channel 5

software. EBSD analyses at a sub-micrometer scale were performed at 20 kV and 6

nA in focused beam mode with a 70◦ tilted stage and in a variable pressure mode

(25 Pa), using methods described in [95] and [96]. The sample was vibro-polished to

remove the carbon coat prior to EBSD analysis.

2.9.3 Electron microprobe

Quantitative elemental microanalysis was carried out at the GPS analytical facility

at Caltech, using a JEOL 8200 electron microprobe (WDS mode, 12 kV and 5 nA for

metals, 15 kV and 10 nA for silicates and oxides, focused beam). Counting times were

20 s on-peak and 10 s each on upper and lower background positions. Data reduction

used the CITZAF routine built into the Probe for EPMA software. Standards used

for metals were: pure metal standards (Al, Si, Cr, Fe, Ni, Cu), forsterite (Mg) and
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anorthite (Ca). Standards used for silicate, oxide, and glass phases were: forsterite

(Si, Mg), fayalite (Fe), albite (Na), microcline (K), anorthite (Ca, Al), Cr2O3 (Cr),

NiO (Ni), apatite (P) and metal-Cu (Cu). For the spinel regions, it was difficult

to obtain clean analyses of the small individual crystals. This resulted in weight

percent totals for the spinel phases that deviated by several percentage points from

the ideal 100% and spinel analyses that regularly contained >1 weight % SiO2, which

is apparently from glass and/or olivine from the surroundings or from underneath.

In the spinel compositions presented in Table 2.2c, we have included in the average

only individual analyses whose weight % totals were between 90 and 110%. The total

shown in the rightmost column is the averaged total.
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Chapter 3

Hyperuniformity variation with

local isomorphism classes

The choice of orientatational symmetry, quasiperiodicity, and set of fundamental re-

peating units (e.g., tiles, atoms, molecules) does not uniquely specify a quasicrystal.

In fact, there are infinitely many possible space-filling arrangements of the same

repeating units, with the same symmetry and same support for their diffraction pat-

terns [8, 10, 11, 12]. They can be grouped into local isomorphism (LI) classes ; two

quasicrystals are in the same LI class if, and only if, any local configuration of the

repeating units found in one can be found with the same frequency in the other. In

this Chapter and the next, we report on two studies of local isomorphism classes of

quasicrystals.

3.1 Introduction

All quasicrystals have long-wavelength density fluctuations that, like crystals and

special amorphous systems, are suppressed relative to typical structurally disordered

systems; this large-scale structural property is known as hyperuniformity [29, 30, 31].

Whether the degree of hyperuniformity, as measured by the leading coefficient of the
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number variance (defined in Section 3.2), varies with LI class is an open question.

If it does vary, then it would be of interest to understand the following: (1) What

specific structural properties of an LI class determine the degree of hyperuniformity;

and, (2) How do these structural properties affect the physical properties, e.g., elec-

tromagnetic, electronic, mechanical properties?

On one hand, one might think the degree of hyperuniformity would not vary

with LI class, given what they have in common: the same symmetry, fundamental

repeating units, support for their diffraction patterns. They are also quite similar

in their construction. With the direct projection method, different LI classes can be

generated from using the same acceptance window (same shape and orientation) to

select a subset of points from the same hypercubic lattice that project onto the same

projection space. Their construction differs only in the position of the acceptance

window in the direction orthogonal to the projection space.

On the other hand, one might think the degree of hyperuniformity would vary

with LI class, with the following reasoning: We know that changing the decoration

of the fundamental unit cell of crystals affects the degree of hyperuniformity. (This

can be seen, e.g., with the triangular, kagome and honeycomb crystals [29, 30].)

Although different LI classes have identical fundamental repeating units (e.g., tiles

in the case of quasicrystal tesselations) and identical Bragg peak positions, their

diffraction patterns have different scattering intensities (similar to what occurs by

changing the decoration of the unit cell in a crystal pattern). Also, with the direct

projection method, while the acceptance window is the same for the different LI

classes, when the hypercubic lattice points are projected into the space that includes

the acceptance window, they are confined to planes that cut the acceptance window

in different ways for different LI classes. Therefore, one could consider the different

LI classes as having different accpetance windows, if one took the set of projected

planes as the “acceptance window”.
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ST 

M M 

Figure 3.1: Tilings from three different LI classes. The Penrose tiling is shown
at the left. From left to right, they correspond to γ = 0, γ = 0.2, and γ = 0.5.
Though all are constructed from the same fat (orange) and skinny (violet) tiles, they
differ in their distribution of vertex environments. The ST vertex is absent in the
γ = 0 and γ = 0.2 LI classes. The M vertex is absent in the γ = 0 class. (See
Figure 3.4 for notation and enumeration of the sixteen distinct vertex environments.)

In this Chapter, we examine how the degree of hyperuniformity varies with LI

class and why. The results we present clearly show that the latter intuition—that the

degree of hyperuniformity varies with LI class—is correct. We study a continuous

set of LI classes of two-dimensional, pentagonal quasicrystal tilings, which can be

obtained as duals to a multigrid composed of five overlapping sets of periodically

spaced lines or as direct projections from a five-dimensional hypercubic lattice [11, 97,

98]. The set of tilings includes a continuum of configurations with five-fold symmetry

and discrete instances with ten-fold symmetry, which includes the Penrose tiling [14].

Examples from different LI classes are shown in Figure 3.1. In determining their

degree of hyperuniformity, we treat the quasicrystal tilings as point patterns, with

points at the vertices of the tiles.

We begin in Section 3.2 by providing a brief review of the notion of hyperunifor-

mity and defining our choice of how to measure the degree of hyperuniformity, which

will be denoted by Λ(∞). Then, in 3.3, we describe how to mathematically construct

the quasicrystals studied in this Chapter and establish some terminology. Section 3.4

details our numerical methods for determining Λ(∞). Finally, in Section 3.5, we
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present and discuss our main results, which show that Λ(∞) varies continuously with

the LI class, has a global minimum at the Penrose LI class, and has local minima at

a special denumerable subset of LI classes known as restorable [99]. A restorable LI

class is one that, roughly speaking, has a lower variance in its local neighborhoods

than do nearby LI classes. We also present empirical evidence indicating that the

overall trend in Λ(∞) can be attributable to the distribution of vertex environments.

3.2 Hyperuniformity

3.2.1 Defining the degree of hyperuniformity

The notion of hyperuniformity can be formulated as follows: Given a point pattern

in d-dimensional Euclidean space Rd, we let N(R; x0) be the number of points within

a hyperspherical window of radius R with center at position x0, which is a random

variable. For a fixed R, we let σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2 be the number variance

associated with this random variable. For typical disordered systems, σ2(R) asymp-

totically follows a volume law σ2(R) ∼ Rd. A system is said to be hyperuniform if

σ2(R) grows more slowly than the volume of the window, i.e.,

σ2(R) ∼ Rα , (3.1)

where α < d. All ideal crystals and many quasicrystals are hyperuniform with α=d−1

[29, 30, 100], as are special disordered systems (a recent review of hyperuniform

disordered systems can be found in [31]).

Our numerical results suggest that the particular quasicrystal tilings studied here

are also hyperuniform with α= d−1, implying their local number variance has the
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asymptotic behavior [29, 30]

σ2(R) ∼ Λ(R)R + o(R) , (3.2)

where Λ(R) is a bounded function that fluctuates around some average value, and

o(R) denotes terms of lower order than R. We therefore conjecture that the same

holds for the entire continuous set of LI classes explored in this Chapter. It is useful to

average out the small-scale variations in Λ(R) and consider the running (cumulative

moving) average Λ(R) [101] and the global average Λ(∞) [29, 30], which are defined

as follows:

Λ(R) ≡ 1

R

∫ R

0

Λ(R′)dR′ , (3.3)

and

Λ(∞) ≡ lim
R→∞

Λ(R) . (3.4)

In Figure 3.2, we show Λ(R) (purple), Λ(R) (red), and Λ(∞) (black, dashed) for the

three tilings in Figure 3.1. Following [29] and [30], we shall use Λ(∞) to characterize

the degree of hyperuniformity of a given system.

3.2.2 Alternative formulations of hyperuniformity

Other formulations of hyperuniformity, described below, may be more suitable for

measuring the degree of hyperuniformity in other systems. These alternative formu-

lations may not be as efficient for estimating σ2(R) when closed-form expressions of

the pair correlation function g(r) or the structure factor S(k) are not known, as is

the case for the quasicrystalline point patterns studied here.

We begin with a formulation of hyperuniformity in terms of S(k) [29]. Assuming

the system is statistically homogeneous (i.e., correlation functions depend only on the

relative positions of points and not on their absolute positions), S(k) can be written
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Figure 3.2: Leading coefficient of the local number variance. The small-scale
function Λ(R) (purple), running average Λ(R) (red), and global average Λ(∞) (dashed
black line), as defined in the text are shown, calculated for the three tilings in Fig-
ure 3.1. The running average Λ(R) and the global average Λ(∞) are indistinguishable
for all but the smallest values of R. The small-scale function Λ(R) appears to have
bounded variations.

as

S(k) = 1 + ρh̃(k) , (3.5)

where ρ is the number density (i.e., the average number of points per unit area),

h̃(k) is the Fourier transform of the total correlation function h(r) = g(r)− 1, and a

delta-function peak at k = 0 has been subtracted out. A hyperuniform system is one

in which

lim
k→0

S(k)→ 0 , (3.6)

where k = |k| is the modulus of k.

The local number variance is related to the structure factor by

σ2(R) = ρv1(R)

[
1

(2π)d

∫
Rd

S(k)α̃2(k;R)dk

]
, (3.7)

where α̃2(k;R) is the Fourier transform of the scaled intersection volume α2(r;R),

which is the volume of overlap between two hyperspheres of radius R with centers
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separated by r, normalized by the volume of a single hypersphere v1(R). For systems

that are both statistically homogeneous and statistically isotropic (i.e., correlation

functions depend only on the distances between points), the structure factor depends

only on the modulus of k, i.e., S(k) = S(k). For such hyperuniform systems, when

S(k) ∼ kβ (β > 0) for small k,

σ2(R) =


Rd−β , β < 1

Rd−1 lnR , β = 1

Rd−1 , β > 1

(3.8)

for large R. The β ≤ 1 cases follow from Eq. (3.7) using v1(R) ∝ Rd and expanding

α̃2(k;R) ∝ k−d
(
Jd/2(kR)

)2
in k, where Jν(x) is the Bessel function of the first kind

of order ν. The β > 1 case follows from the fact that σ2(R) cannot grow more slowly

than Rd−1 [29].

For quasicrystals, S(k) is composed of dense Bragg peaks whose intensities do not

decrease monotonically as k → 0. Therefore, one cannot obtain the exponent α in

Eq. (3.1) directly from the small-k behavior of S(k). To determine the scaling ex-

ponent α for quasicrystals has motivated yet a third formulation for hyperuniformity

in terms of an integral over S(k) [100]. After integration by parts, Eq. (3.7) can be

written as

σ2(R) = −ρv1(R)

[
1

(2π)d

∫ ∞
0

Z(k)
∂α̃2(k;R)

∂k
dk

]
, (3.9)

where Z(k) =
∫
|q|<k S(q)dq is called the integrated spectral density intensity. For one-

dimensional quasicrystals, it has been shown (rigorously for some cases, numerically

for others) that Z(k) is bounded above and below by curves c+k
1+α, c−k

1+α, where

c−, c+ are constants, and α is the scaling exponent in Eq. (3.1) [100].
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Figure 3.3: Schematic illustration of the dual method. (a) Periodic pentagrid,
consisting of five grids (overlapping sets of periodically spaced lines), each normal to
one of the five vectors ri (inset). Each grid has been displaced from the origin by a
finite phase γi. The extent of the 0th phase γ0 is marked. Five open regions have been
numbered. (b) Tiling obtained by applying the dual transformation to the pentagrid
in (a). Vertices corresponding to the five numbered open regions in (a) are shown.

3.3 Quasicrystals

We now turn to the construction of the two-dimensional pentagonal quasicrystals

studied in this Chapter. Two equivalent methods are presented. We establish that

the LI classes can be continuously parameterized by a number γ and define the con-

dition for when two LI classes are locally isomorphic. The notion of restorability is

introduced, which is useful to understand how Λ(∞) varies with γ.

3.3.1 Dual method

A grid is an infinite set of parallel, straight lines, labeled by n ∈ Z corresponding to

their ordinal position in the grid. A multigrid is the union of multiple grids in which

no two grids are parallel, and in which the ith grid is oriented normal to the vector ri.

A periodic multigrid is one in which the spacing between adjacent gridlines is equal.
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The set of vectors ri are called star vectors. They determine the orientational order

of the resulting tiling: every tile edge is oriented parallel to one of the star vectors.

The displacement γi of the ith grid from the origin is called the phase.

The multigrid partitions space into open regions, each of which can be uniquely

labeled by a set of N integers K ≡ (k1, k2, . . . , kN) such that, if x is any point within

the region, it lies between lines ki and ki + 1 of the ith grid. The dual method maps

these open regions K to the vertices t of a tiling, according to the transformation

t =
∑N

i=1 kiri. Open regions that share an edge are mapped to vertices connected by

an edge.

The tilings studied in this Chapter are dual to periodic pentagrids, which are

periodic multigrids with star vectors ri = (cos 2πi/5, sin 2πi/5) (i = 1, 2, . . . , 5). The

vectors ri point to the corners of a pentagon; therefore, the resulting tilings will have

five-fold orientational order. The tilings so constructed comprise two rhombuses of

equal sides but with angles of 2π/5 (“fat”) and 2π/10 (“skinny”). The ratio of the

numbers of fat and skinny tiles equals τ = (1 +
√

5)/2 ≈ 1.618, the golden ratio. The

sum of the phases γ =
∑5

i=i γi labels the LI class.

3.3.2 Direct projection method

The dual method is the most general method for generating quasicrystals. It can be

used to generate quasicrystals that cannot be generated by other methods (e.g., direct

projection, inflation/substitution). However, the quasicrystals studied in this Chapter

are the same as those that can be generated by the direct projection method. Hence,

the tilings are referred to as “direct projection tilings” (DPTs). Here, we review the

direct projection method for constructing pentagonal tilings.

With the direct projection method, the tiles are obtained by projecting a subset

of points from a five-dimensional hypercubic lattice Z5. One divides real space R5

into two subspaces: a two-dimensional physical space R2
‖ spanned by the unit vectors
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a1
‖ =

√
2
5

(
1, cos 2π

5
, cos 4π

5
, cos 6π

5
, cos 8π

5

)
,

a2
‖ =

√
2
5

(
1, sin 2π

5
, sin 4π

5
, sin 6π

5
, sin 8π

5

)
,

(3.10)

and a three-dimensional perpendicular space R3
⊥ spanned by the unit vectors

a1
⊥ =

√
2
5

(
1, cos 4π

5
, cos 8π

5
, cos 2π

5
, cos 6π

5

)
,

a2
⊥ =

√
2
5

(
1, sin 4π

5
, sin 8π

5
, sin 2π

5
, sin 6π

5

)
,

a3
⊥ =

√
1
5

(
1, 1, 1, 1, 1

)
.

(3.11)

Points of the tiling are obtained from the projection onto R2
‖ of a subset C ⊂ Z5

composed of points which, when projected onto R3
⊥, fall within the projection of a unit

hypercube W . The body diagonal of W is oriented parallel to a3
⊥, and the projection

of W onto R3
⊥, a rhombic icosahedron in the case of pentagonal symmetry, is called

the acceptance volume. Neighboring points in Z5 that are accepted inW are projected

onto vertices connected by an edge. Translations of W along a1
⊥, a

2
⊥ correspond to

phason displacements; tilings related by phason displacements are locally isomorphic.

Translations of W along a3
⊥ result in changes in LI class. The LI class label γ is

the sum of the components of the offset (γ0, γ1, . . . , γ4) of W from the origin in R5:

γ =
∑4

i=0 γi.

3.3.3 Local isomorphism and restorability

Two tilings are said to be locally isomorphic if any configuration of tiles in any finite

region from one will occur with the same frequency in the other. It can be shown

[11] that two tilings are locally isomorphic (up to inversion) if, and only if, the sum
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of the phases γ ≡
∑4

i=0 γi, γ
′ ≡
∑4

i=0 γ
′
i are related by

∣∣−1
2

+ {γ}
∣∣ =

∣∣−1
2

+ {γ′}
∣∣ (3.12)

where {γ} denotes the fractional part of γ. An arbitrary γ can be mapped to a locally

isomorphic γ′ that lies within the range [0, 0.5] via

γ′ = 1
2
−
∣∣−1

2
+ {γ}

∣∣ . (3.13)

If γ, γ′ ∈ [0, 0.5] and γ 6= γ′, then γ, γ′ are not locally isomorphic.

To understand how Λ(∞) varies with γ, it is useful to characterize the tile config-

urations of the different LI classes. For this, we employ the concepts of r-maps and

r-atlases: Given a tiling, select a vertex and construct a circle of radius r centered at

that vertex. The collection of all tiles that are entirely contained within the circle is

called an r-map. Repeat this for every vertex in the tiling. The resulting collection of

r-maps is called the r-atlas for that tiling (taking out duplicates and configurations

equivalent under reflections and rotations).

An LI class is said to be restorable if there is some finite Rr, called the restorability

radius, such that the Rr-atlas is unique to that LI class, among all DPTs. A restorable

LI class γ with restorability radius Rr has the property that its Rr-atlas contains the

fewest number of Rr-maps, compared to LI classes with γ′ = γ ± δγ, in the limit

δγ → 0. For DPTs, it has been shown that the only restorable LI classes are those

with γ = nτ , where n ∈ Z and τ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio [99]. For

the γ = nτ class, Rr is proportional to n. That is, as n increases, one must consider

all tile configurations out to larger and larger sizes to distinguish the γ = nτ class

from all other LI classes.

Also useful in our discussion of how Λ(∞) varies with γ is the notion of vertex

environments. A vertex environment is defined to be a collection of tiles sharing a
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Figure 3.4: The sixteen distinct vertex environments. The vertex environments
are constructed from fat (orange) and skinny (violet) tiles. The Voronoi areas are
outlined in dashed, red lines. Notation follows that of [97], [98] and [102].
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Figure 3.5: Frequencies F of the sixteen vertex environments versus LI
class γ. The vertex environments are shown in Figure 3.4. The lower portion of
the top panel is magnified in the bottom panel. Dashed vertical lines mark γ ≈
0.236, 0.382, 0.472, which correspond to γ = 2τ, τ, 4τ ; at these values of γ (and at
γ = 0), certain vertex environments appear or disappear. Frequencies were calculated
in [103] but have been independently re-calculated here.
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common vertex. Up to rotations and reflections, there are sixteen distinct vertex

environments (shown in Figure 3.4) that can be constructed from the skinny and fat

rhombuses. Each LI class has a characteristic distribution of vertex environments

[102, 103, 104]. The distribution of vertex environments for the different LI classes is

shown in Figure 3.5.

Among all restorable LI classes, the Penrose LI class (γ = 0) has the smallest

restorability radius. It is also distinguished for having the fewest distinct vertex

environments.

3.4 Determining Λ(∞)

In this section, we describe how we numerically estimate the degree of hyperuniformity

Λ(∞), defined by Eq. (3.4), for the different LI classes.

We first generate a DPT from LI class γ using the dual method. This is necessarily

a finite portion of the perfect, infinite tiling and is not a periodic approximant. Treat-

ing the tilings as point patterns, with points at the vertices of the tiles, we estimate

the local number variance σ2(R) by, first, counting the number of points N(R; xi)

lying within M circular sampling windows of radius R with centers at positions xi

(i = 1, . . . ,M), then calculating the variance in these counts as follows:

σ2(R) =
1

M

M∑
i=1

N(R; xi)
2 − 1

M2

(
M∑
i=1

N(R; xi)

)2

. (3.14)

This is repeated for a set of radii Ri, uniformly distributed between Rmin and Rmax.

The window centers xi are uniformly distributed within a circular region of radius

Rmax about the center of mass of the quasicrystal point pattern. The fiducial area,

which contains all points that can be sampled, is a circular region about the center

of mass of radius 2Rmax. The DPT must be sufficiently large to contain within its
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Figure 3.6: Convergence test of Λ(∞) for crystalline point patterns. Estimates
of the degree of hyperuniformity Λ(∞), as the upper integration limit Rmax is varied,
for kagome, honeycomb, square, and triangle crystal point patterns. The ideal values
are overlaid in dashed lines (from [29] and [30]).

boundaries this fiducial area. (We have found that a sufficiently large DPT can be

generated from a pentagrid containing 2Rmax/a grid lines per grid.)

We calculate the running average Λ(R) by using a trapezoidal rule to numerically

integrate Eq. (3.3) up to Rmax:

Λ(Ri) ≡
1

Ri −Rmin

i∑
j=2

λj−1 + λj
2

∆Rj , (3.15)

where

λj ≡
1

2
√
πρ

(
σ2(Rj)

Rj

)
(3.16)
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and ∆Rj ≡ Rj − Rj−1. The coefficient 1/
(
2
√
πρ
)

is included in Eq. (3.16) so that

the results are independent of the number density ρ (the number of points per unit

area). Our estimate of the global average Λ(∞) is obtained by fitting Λ(Ri) to the

two-parameter curve

Λ(R) = Λ(∞) + C/R (3.17)

where C is a second free parameter. Using an F-test and a comparison of residual

sum of squares, we determined that the C/R subleading term is a better fit than (i)

no subleading term (C = 0), (ii) a subleading term C log(R)/R, and (iii) a subleading

term C/R2. Our definition of Λ(∞) corresponds to Λ/(4φ1/2) and φ1/2B in [29] and

to Λ/(4φ1/2) and φ1/2BN in [30].

As a test of our procedure, we evaluate Λ(∞), varying the upper integration limit

Rmax, for different crystal point patterns: kagome, honeycomb, square, and triangle

lattices. The lattice spacings have been chosen so that the number of points per unit

area is one. For each crystal point pattern, the window centers are chosen to be

uniformly distributed within the unit cell. These estimates are shown in Figure 3.6,

with the ideal values computed in [29] and [30] overlaid in dashed lines. Our procedure

approaches an accuracy that is within 0.1% of the ideal values for Rmax & 27 for the

triangle and square lattices and Rmax & 35 for the honeycomb and kagome crystals.

We perform a similar test with the quasicrystal point patterns. In Figure 3.7,

we show, for three representative LI classes, our estimates of Λ(∞) as the upper

integration limit Rmax is varied. Comparing with Λ(∞) evaluated at Rmax = 400

(dashed lines), the percentage difference is less than 0.1% for Rmax & 100 for the

γ = 0 class and Rmax & 150 for γ = 0.2 and γ = 0.5. We also tested how Λ(∞)

varies with the number of windows M and found that, comparing with M = 10000,

the percentage difference is less than 0.1% for M & 3500.

For the estimates of Λ(∞) presented in this Chapter, we used the conservative

choices of Rmax = 400 and M = 10000. Moreover, the sampling of LI classes γ must
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Figure 3.7: Convergence test of Λ(∞) for quasicrystal point patterns. Es-
timates of the degree of hyperuniformity Λ(∞), as the upper integration limit Rmax

is varied, for three quasicrystal point patterns. Portions of the corresponding tilings
are shown in Figure 3.1. Estimates of Λ(∞) evaluated at Rmax = 400 are overlaid in
dashed lines.

be treated with care, because random sampling would miss features that occur at the

discrete set of points γ = nτ . We do a uniform sampling from 0 to 0.5 in intervals of

0.005, in addition to sampling nτ for n from 1 to 15. The values of γ are mapped to

equivalent values lying within the interval [0,0.5] using Eq. (3.13).

3.5 Results and Discussion

Our calculation of Λ(∞) versus γ for pentagonal DPTs is shown in Figure 3.8. There

are noteworthy features in Λ(∞), as a function of γ, that may not have been expected.

The function appears to be continuous and increases on average. It also appears to
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have a global minimum at the Penrose LI class (γ = 0), a global maximum at γ = 0.5,

and local minima at the restorable LI classes (γ = nτ). The local minima are cusplike,

not smooth. Moreover, the depths of these local minima appear to decrease with

respect to n. In Figure 3.8, we have included a magnified portion of the curve around

γ = τ , where a finer resolution sampling of γ was performed.

As shown in the upper panel of Figure 3.9, the increasing trend of Λ(∞) with γ

is already exhibited by Rmax = 2. This indicates that the trend must be attributable

to local geometrical features on length scales of order ≤ 2, given that this estimate

of Λ(∞) was obtained from information contained in sampling windows with radius

≤ 2. As shown in the lower panel, by Rmax = 16, the cusp at n = 1 begins to appear,

with more cusps appearing as Rmax increases.

To explore the dependence of Λ(∞) on the local geometry of the DPTs, we con-

struct their Voronoi tesselations, considering the vertices as a point pattern. The

Voronoi cell of a vertex is the region of space within which all points in space are

closer to that vertex than to any other. Each of the sixteen vertex environments in

Figure 3.4 has a corresponding Voronoi cell (shown in Figure 3.4 as dashed, red lines),

with an area that we denote by Ai (i = 1, . . . , 16). The tesselation of space by the

Voronoi cells is the Voronoi tesselation. The distribution of Voronoi cell areas in the

Voronoi tesselation quantifies the local geometric structure of the point pattern.

We compute the standard deviation σV of the Voronoi cell areas as follows:

σV ≡

√√√√ 16∑
i=1

Fi (Ai − µV )2 , (3.18)

where we have used the frequencies Fi of the vertex environments from Figure 3.5, and

µV ≡
∑16

i=1 FiAi is the average Voronoi cell area. The normalized standard deviation

σV /µV of the areas is shown in Figure 3.10 as a function of γ. We observe that the
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Figure 3.8: Degree of hyperuniformity Λ(∞) versus LI class γ. The vertical
lines mark the restorable LI classes γ = τ, 2τ, . . . , 15τ , mapped to equivalent values
lying within the interval [0,0.5] using Eq. (3.13). Magnified portion around γ = τ
shows the typical structure of the local minima. Each point represents an average
over ten tilings from the same LI class γ. The error bars represent the standard
deviation of the estimates of Λ(∞). Pentagrids contain 800 grid lines per grid; each
tiling contains approximately 3.5 × 106 vertices; upper integration limit Rmax = 400
and number of windows M = 10000.

64



Rmax =2

0.0 0.1 0.2 0.3 0.4 0.5

τ

Rmax =16

Λ
(∞

)

γ
Figure 3.9: Degree of hyperuniformity Λ(∞) evaluated at Rmax = 2 and 16.
Values at Rmax = 2 (blue, upper panel) and 16 (green, lower panel) are overlaid on
the curve from Figure 3.8, which was evaluated at Rmax = 400. The curves have been
rescaled so that Λ(∞) at γ = 0 and at γ = 0.5 are set to 0 and 1, respectively. The
dashed vertical line at γ ≈ 0.382 marks the γ = τ class.
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Figure 3.10: Normalized standard deviation σV /µV of the Voronoi cell areas
versus LI class γ.

distribution of vertex environments, as characterized by σV /µV , is monotonic with γ

and increases with γ in a manner similar to Λ(∞) in Figure 3.8, excluding the cusps.

We therefore see two competing effects: the local ordering (e.g., as measured by

σV /µV ) and the restorability (e.g., as measured by the restorability radius Rr). The

restorability radius is a characteristic length scale of the restorable LI classes. It is

smallest for the Penrose LI class, which has the highest degree of hyperuniformity,

so one might have expected Λ(∞) to grow monotonically with Rr. Instead, we claim

that the leading effect is the local ordering, which is monotonic with γ. The deviations

from monotonicity with γ (i.e., the depths of the cusps) are a subdominant effect that

is monotonic with the restorability radius. The evidence that the local ordering is

the dominant factor in determining the degree of hyperuniformity is that the value

of Λ(∞) is not monotonic in Rr, but, instead, is more correlated with γ.

As noted in the Introduction, it had been an open question whether the degree of

hyperuniformity varies with LI class. The results above clearly show the answer is yes.
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Figure 3.11: Degree of hyperuniformity Λ(∞) versus LI class γ of quasicrys-
talline point patterns obtained by placing points at tile centers. The curve
is virtually identically to the one obtained by placing points at vertices (Fig. 3.8).
(Same parameters were used here as those used for the curve in Fig. 3.8.)

Evidently, the repeating units and the symmetry do not, by themselves, determine

the degree of hyperuniformity—the continuum of DPTs studied here are constructed

from the same tiles and have the same five-fold symmetry (with the exceptions of

γ = 0 and γ = 0.5, which have ten-fold symmetry, although the tilings corresponding

to these two special choices of γ also have different values of Λ(∞)). The results also

show, for the DPTs studied here, that the differences in hyperuniformity are largely

attributable to local differences in point (or tile) configurations and that restorability

plays a factor. We have also studied point patterns obtained by placing points at the

centers of the tiles instead of at the vertices, shown in Fig. 3.11. Comparing with

Fig. 3.8, the results are virtually identical.
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A primary question of interest is whether the differing degree of hyperuniformity

among LI classes has any physical consequence, such as on electronic and photonic

transport properties. In the next Chapter, we will report on the photonic properties

of the set of LI classes studied here.

3.6 Appendix: Implementation of the dual method

We solve for the points of intersection between gridlines and present a solution in

vector form, which lends itself to faster computational evaluation than solutions in

component form. We use the fact that a straight line in R2 can be written in terms

of a vector v = (vx, vy) parallel to the line and a point (x0, y0) lying on the line as

follows:

y − y0 = vy
vx

(x− x0) . (3.19)

We start with a periodic pentagrid. Each of the five grids contains 2N + 1 equally

spaced gridlines (we take the spacing to be one), oriented normal to one of the unit

star vectors

ri = (cos 2πi/5, sin 2πi/5) , i = 1, 2, . . . , 5 . (3.20)

Every gridline has an index µ ∈ {−N,−N + 1, . . . , N − 1, N} corresponding to its

ordinal position in the grid. The gridline with index 0 is displaced from the origin by

a phase γi ∈ [0, 1]. The gridline with index µ from grid i is denoted by gµi .

We now write an equation for a gridline gµi in the form of Eq. (3.19). Because gµi

is normal to the star vector ri = (rix, riy), a vector that is parallel to gµi is

v = r⊥i = (−riy, rix) . (3.21)

A point on gµi is

(x0, y0) = ri (µ− γi) = αµi (rix, riy) , (3.22)
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where αµi ≡ µ− γi. Therefore, following Eq. (3.19), we can write the equation for gµi

as

y − αµi riy = − rix
riy

(x− αµi rix) , (3.23)

which can be simplified as follows, because the star vectors are of unit length:

y =
αµi − xrix

riy
. (3.24)

We can straightforwardly solve for the point of intersection X between two grid-

lines gµi , gνj , where i 6= j:

X =
1

ri · r⊥j

(
ανj riy − α

µ
i rjy, α

µ
i rjx − ανj rix

)
, (3.25)

which can be written in vector form (the key result of this Appendix):

X =
αµi r

⊥
j − ανj r⊥i
ri · r⊥j

. (3.26)

The kth grid index Kk is obtained as

Kk = dX · rk + γke , (3.27)

where d·e is the greatest integer function. The tile (i.e. set of four vertices) corre-

sponding to X can then be obtained

{t, t + ri, t + ri + rj, t + rj} (3.28)

where t =
∑5

i=1Kiri.

69



Chapter 4

Light localization in local

isomorphism classes of

quasicrystals

In this Chapter, we report on the photonic properties of the same continuum of

pentagonal quasicrystal tilings studied in Chapter 3.

4.1 Introduction

The results described herein represent the first systematic investigation of how a

continuous set of LI classes differ in their photonic properties. We examine dielectric

heterostructures generated from the pentagonal quasicrystal tilings. We demonstrate

that a generic feature of their photonic bandstructure is that it contains effectively

localized states, lying inside the fundamental bandgap, with frequencies, frequency

splittings, and degeneracies that are predictable and tunable. The predictability and

tunability of these effectively localized states significantly improves one’s ability to

control the design of photonic quasicrystal heterostructures; existing methods for

generating such states have relied on the introduction of defects into the structure.

70



The one LI class for which these states are absent is the Penrose tiling. Consequently,

it has the largest bandgap.

We begin in Section 4.2 by describing how we generate periodic approximants

of the ideal, infinite tilings so that Maxwell’s equations can be exactly solved. In

Section 4.3, the details are provided for how the dielectric heterostructures are derived

from the tilings and how the bandstructure calculation is performed. Our main results

are presented in Section 4.4. Concluding remarks are provided in Section 4.5.

4.2 Periodic approximants

The approximants are generated using the dual method described in Section 3.3.1

with one modification: instead of ri = (cos 2πi/5, sin 2πi/5), the star vectors are

chosen as follows:

r̂0 = (1, 0) , r̂1 = (cos 2π/5, sin 2π/5) ,

r̂2(n) = (−1, τ−1n ) · (r̂0, r̂1) ,

r̂3(n) = −(τ−1n , τ−1n ) · (r̂0, r̂1) ,

r̂4(n) = (τ−1n ,−1) · (r̂0, r̂1) ,

where τn = Fn+1/Fn (= 1/1, 2/1, 3/2, 5/3, . . . ) and Fn is the nth Fibonacci number

(F0 = F1 = 1). Examples from different LI classes are shown in Fig. 4.1. For

the Penrose LI class, this procedure minimizes the density of defects—necessary to

make the tilings periodic—to two mismatched edges per unit cell [105]. As n → ∞:

the approximants approach the ideal tiling; the number of vertices in the unit cell

increases; τn → τ = (1 +
√

5)/2 ≈ 1.618, the golden ratio; and r̂i(n) → ri, the star

vectors of the ideal tiling.
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N = 76
γ = 0.0

N = 199
γ = 0.0

N = 521
γ = 0.0

N = 76
γ = 0.2

N = 199
γ = 0.2

N = 521
γ = 0.2

N = 76
γ = 0.5

N = 199
γ = 0.5

N = 521
γ = 0.5

Figure 4.1: Examples of periodic approximants from three LI classes (top
to bottom) and from different degrees of approximant (left to right). The
LI classes are: γ = 0 (top row), γ = 0.2 (middle row), and γ = 0.5 (bottom row).
The number of points in the unit cell for each approximant is: N = 76 (left column),
N = 199 (middle column), and N = 521 (right column). The unit cell for each
approximant is outlined in dashed red lines. The tiles that form the unit cell are
filled in, with fat tiles filled in with green and skinny tiles filled in with yellow. (Some
of the unit-cell tiles extend beyond the dashed red lines, because we have chosen here
to completely fill in tiles (without repeats) that occur at the boundary of the unit
cell, instead of truncating them.)
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Figure 4.2: The four special vertex environments.

x

y

z
Figure 4.3: Example of a dielectric structure (right panel) derived from
the tiling shown in the left panel. The unit cell is outlined in dashed red lines.
Dielectric cylinders (filled in with green) have axes oriented along the z-axis, which
points out of the page.
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4.3 Photonic bandstructure calculation

We compute the photonic bandstructure of dielectric heterostructures constructed by

placing, on the tile vertices and oriented normal to the tiling plane, an array of parallel,

infinitely long cylindrical rods with dielectric constant 11.56 (silicon) and radius 0.18a

(filling fraction ∼12.5%) in a background of air. The same radius (equivalently, same

filling fraction) is chosen for all structures to allow for fair comparison. An example

of such a dielectric structure is shown in Fig. 4.3.

Maxwell’s equations are solved for states with transverse magnetic (TM) polar-

ization, i.e., with the electric field oriented parallel to the cylindrical axis (the z-axis

in Fig. 4.3). Details can be found in Appendix 4.6. The TM bandstructure is cal-

culated using a supercell approximation and the plane-wave expansion method [106,

107]. Spatial resolution of the unit cell is chosen to be 512× 512 pixels. For N = 521

approximants, the frequencies computed at this resolution differ by less than 0.3% of

those computed at 1024 × 1024 resolution. We compute the lowest 1.1 × N bands,

which reliably contains the first sizeable bandgap.

For quasicrystals, the photonic bandgaps and the neighboring bands are known

to be highly isotropic [32, 108]. Therefore, we simplify our analysis by restricting our

computation of spectra to the Γ = (0, 0) and M = (b, 0) symmetry points, where

b is one of the basis vectors of the reciprocal lattice. These are defined for the

hexagonal first Brillouin zone, corresponding to the rhombic unit cell of the approxi-

mant. (Because the basis vectors of the rhombic unit cell are not equal in magnitude,

the hexagonal first Brillouin zone is flattened/stretched along one of the symmetry

directions.)
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4.4 Results

4.4.1 Effectively localized states

Whenever a SVE appears in a tiling, the TM bandstructure contains states in which

the electric field is highly concentrated on the SVE, either on one isolated site or on

many sites. Figure 4.4 shows representative examples of these states on isolated sites.

Take one of these states and let r be the radial distance from the central vertex. We

observe that the energy density (the square of the field) peaks around r ≈ a—where

the first nearest neighbors are located—then decays to . 1% of the peak values by

r/a ≈ 2 and . .01% of the peak values by r/a ≈ 3. There appears to be a log-linear

decay, which is consistent with being localized on the SVE. However, because some

states are observed to have support on multiple sites, they are not localized in the

strict sense but, instead, may be multifractal, critical states [109, 110]. Determining

whether this is the case is worthy of further investigation. Some initial studies are

reported in Appendix 4.7. Here, we describe the states as effectively localized.

We note that similar states have been observed [111, 112] in a particular (unspec-

ified) LI class, as well as in dodecagonal [113, 114] and octagonal [115] quasicrystal

heterostructures. The states have been described as local resonances between closely

neighboring scatterers that are arranged in highly symmetric configurations [111, 112,

115]. A review of these earlier studies can be found in [116].

4.4.2 Degeneracy of effectively localized states

The number of effectively localized states is directly related to the number of SVEs.

We empirically observe that there is one state for every X vertex (Fig. 4.4a), one for

every Y (Fig. 4.4b); two for every Z (Fig. 4.4c,d); and three for every ST (Fig. 4.4e,f;

there are two orthogonal states that look like Fig. 4.4e). Thus, the total number of
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(a) (b)

(c) (d)

(e) (f)

X Y

Z1 Z2

ST1 ST2

Figure 4.4: Representative electric field distribution for the six observed
types of effectively localized states. Blue/red/white correspond to nega-
tive/positive/zero power for a given state. Contours of dielectric cylinders are shown,
and the vertex environments are overlaid (see Fig. 4.2). (a) X, (b) Y, (c) Z1, (d) Z2,
(e) ST1, and (f) ST2.
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Figure 4.5: Special vertex environments. (a) Density F of the four special vertex
environments (shown in Figure 4.2), versus LI class γ. (b) Expected fraction φ of
special states (shown in Fig. 4.4) versus LI class γ.
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effectively localized states nloc is given by

nloc ≡ NX +NY + 2NZ + 3NST , (4.1)

where NV is the number of SVEs of type V. For different renditions (i.e., choices of

γi) from the same LI class, the number will differ.

In the infinite-system limit, the fraction of effectively localized states for LI class

γ is given by

φ(γ) = FX(γ) + FY(γ) + 2FZ(γ) + 3FST(γ) , (4.2)

where FV is the density of SVEs of type V, shown in Fig. 4.5a. We plot φ(γ) in

Fig. 4.5b. All of our numerical results thus far, which are summarized below, support

the counting of effectively localized states according to Eqs. (4.1) and (4.2). The SVEs

that are composed of a greater number of skinny tiles and which are more symmetric

(i.e., Z and ST) have a larger number of states per SVE.

4.4.3 TM spectrum and characteristic frequencies of effec-

tively localized states

Let ωLi , ω
H
i be the lower and upper frequencies of the ith band. It is useful to define,

for a given tiling, the upper band edge frequency ω+ and the lower band edge frequency

ω− as follows:

ω+ ≡ ωLN , ω− ≡ ωHN−nloc
(4.3)

where N is the number of vertices in the unit cell. Figure 4.6 shows ω+, ω−, and their

average, plotted for several samples from different LI classes γ, for different degrees

of approximants. Several observations can be made:
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Figure 4.6: Upper and lower band edge frequencies. Upper band edge frequency
ω+ ≡ ωLN (blue circles, top), lower band edge frequency ω− ≡ ωHN−nloc

(red triangles,
bottom), and the central frequency (green squares, middle), versus γ. As discussed
in the text, ω+ and ω− correspond to the upper and lower edges, respectively, of the
fundamental bandgap. Dashed lines represent the average value for a given curve.
Each panel is a different degree of approximant, with increasing degree from left to
right. Number of points in the unit cell is shown above each panel (N = 76, 199, 521).

First, none of these quantities changes significantly versus the degree of the ap-

proximant, characterized by N . This indicates that these quantities quickly converge

to the values of the ideal, infinite system.

Second, the upper and lower band edges remain approximately constant versus

γ. For the Penrose LI class, the region between ω− and ω+ is called the fundamen-

tal bandgap. Extending this definition to all LI classes, we find that the effectively

localized states counted by Eq. (4.1) are high-frequency states lying within the fun-

damental bandgap.

Third, none of these quantities changes significantly versus LI class γ, even though

the number of effectively localized states typically varies for different samples and for

different values of γ. This indicates that we are correctly counting the number of

states lying within the fundamental bandgap, which supports the counting conjecture

in Eq. (4.1). This is also consistent with the states being localized.

Finally, the fraction of these states appears to stay constant, as the degree of the

approximant increases. This is contrary to what we would expect if these effectively
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Figure 4.7: The average frequencies of effectively localized states. The states
are shown in Fig. 4.4. In the left panel, the green, solid regions at the upper and
lower ends represent the continuum of states adajcent to the fundamental bandgap.
The right panel, which is a blown up portion of the left panel around the effectively
localized states, identifies which effectively localized states correspond to the different
frequencies.

localized states arose from defects. We thus conclude that these effectively localized

states are not defects, but are, rather, robust states that arise due to the SVEs.

Figure 4.7 shows the averaged midband frequency for each type of state. Within

uncertainties, all states of a given type have the same frequency, i.e., are degenerate.

Moreover, frequencies for different types do not overlap. This indicates that each

type of state has a characteristic frequency.

We also observe that the characteristic frequencies do not vary significantly versus

γ, which suggests that these states are primarily attributable to the presence of SVEs

and not to the global structure of the tiling. This supports a hypothesis, based on the

study of one unspecified LI class [111, 112, 115], that these states can be described
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Figure 4.8: Expected TM spectrum around the fundamental bandgap versus
LI class γ. Average frequencies of effectively localized states shown within each range
of γ that their corresponding SVEs appear. Also labeled are the SVE types occurring
within each range of γ. Green, solid regions at upper and lower ends represent the
continuum of states adajcent to the bandgap. Note: γ = 0 (Penrose LI class) has no
SVEs and no corresponding effectively localized states.

as local resonances between closely neighboring scatterers that are arranged in highly

symmetric configurations. Further evidence is that the four SVEs have the largest

numbers of adjacent skinny tiles (at least four); all other vertex environments contain

fewer than four adjacent skinny tiles.

From these observations, we expect that the TM spectrum around the fundamental

bandgap will vary with γ according to Fig. 4.8. We also expect the outer bandgap—

which is the width of the gap between bands N and N +1, normalized by the midgap

frequency—to vary with γ according to Fig. 4.9.
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Figure 4.9: Expected outer bandgap versus LI class γ.

We thus discover that the Penrose LI class is exceptional for being the only class

with no effectively localized TM states; as a consequence, it has the largest outer

bandgap. All other LI classes have, generically, effectively localized TM states within

the fundamental bandgap with predictable and tunable degeneracies (Fig. 4.5) and

frequencies (Fig. 4.7) and are related to the presence of SVEs. In our initial studies us-

ing other choices of dielectric decoration, we have found qualitatively the same results,

although we note that some choices of decoration also produce effectively localized

states within the air component of the heterostructure (this is further described in

Appendix 4.8).
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4.5 Discussion

4.5.1 Order and disorder

We have presented the first systematic study of how the photonic bandstructure varies

with the LI class for a continuum of photonic quasicrystals. Our results introduce a

new form of control over the properties of localized states in photonic quasicrystal

heterostructures (PQCs), which may find utility in the design of optical cavities for use

as radiation sources [117] or sensors [118]. Existing methods for generating localized

states have relied on disorder to produce localized states by intentionally introducing

defects into the heterostructure, e.g., removing, adding, or changing the geometry of

one or several scatterers. A disorder-based design procedure presents challenges, such

as minimizing interference between defects and obtaining a desired set of frequencies.

As shown in this Chapter, these design challenges are not present in the PQCs, where

the effectively localized states are not defects. We have shown that the effectively

localized states in PQCs are a consequence of the ordered structure of the underlying

quasicrystal. We have further shown that the frequencies, frequency splittings, spatial

configuration, and concentration of the effectively localized states can all be predicted

and tuned in advance, by varying the LI class and/or other parameters, such as the

dielectric contrast or the cylinder radius. It would be of interest to see whether

similarly localized states are present in LI classes of icosahedral quasicrystals.

It would also be of interest to understand how robust the effectively localized

states are to the introduction of disorder, which is of practical relevance during fabri-

cation. It is possible that uncorrelated disorder causes the effectively localized states

to couple to one another to form extended states, leading to enhanced transport.

Disorder-enhanced transport in quasicrystals was discussed in [119]. A tight-binding

nearest-neighbor model on a Penrose tiling was used to calculate how the conductance

changes as phason disorder increases [119]. The disorder was introduced by allowing
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random perturbations of the spacing between adjacent gridlines, which manifests in

the tiling as local rearrangements of tiles. It was reported that at some values of the

Fermi energy, the conductance decreases with the strength of the disorder (indicating

localization of states), while at other values of the Fermi energy, the conductance

increases (i.e., enhanced transport).

Disorder-enhanced transport was experimentally observed for light in a photonic

quasicrystalline lattice [120], generated using optical induction following the methods

described in [121]. The resulting lattice contains centers of local ten-fold symmetry,

resembling the ST SVE. It was found that localized states lie near the pseudo-gap

(where there is a sharp reduction in the density of states) that are centered on the ST-

like sites. When disorder is introduced, these localized states couple to one another,

which results in extended states. As the disorder strength increases, eventually dif-

fusive transport is observed; upon further increasing, the behavior becomes localized

once again.

4.5.2 Hyperuniformity and photonics

It was proposed in [32, 33] that the “width of the photonic bandgap” is correlated

with the “degree of hyperuniformity”. As discussed in Chapter 3, hyperuniformity

is the suppression of long-wavelength density fluctuations relative to typical struc-

turally disordered systems (e.g., glasses, amorphous solids) [29]. Thus, a measure of

the “degree of hyperuniformity” would also be a measure of long-range order. The

proposed relationship between the photonic bandgap and hyperuniformity is based

on the intuition that more long-range order leads to more interference, which leads to

larger bandgaps (the origin of photonic bandgaps can be traced to interference due to

Mie scattering and Bragg scattering [122, 123, 124]). Here, we briefly review how two

measures of hyperuniformity are currently understood to be related to the photonic

bandgap, informed by our results in this and the previous Chapter.

84



We begin by clarifying the term “photonic bandgap”, which can take on many

definitions—not all equivalent—depending on context. Any finite range of frequencies

over which the density of states vanishes can be called a photonic bandgap. A photonic

bandstructure can contain many photonic bandgaps, all of varying widths, where the

width is defined as the difference between the upper band edge frequency and the

lower band edge frequency, normalized by the midgap frequency. Therefore, further

qualification is needed to know which photonic bandgap (of the possibly many that

exist in a given bandstructure) is being referred to. Usually, the bandgap of interest

is the one separating the air states (i.e., states in which the field is concentrated in the

air component) from the dielectric states (i.e., states in which the field is concentrated

in the dielectric component). When many such bandgaps exist, the one of interest is

typically the bandgap with the lowest midgap frequency.

In this Chapter, we have introduced the notions of the fundamental bandgap and

the outer bandgap. The fundamental bandgap refers to the bandgap that lies between

bands N−nloc and N+1, where N is the number of scatterers in the unit cell and nloc

is the number of effectively localized states as defined in Eq. (4.1). When nloc 6= 0,

there are effectively localized states lying within the fundamental bandgap. Hence,

the fundamental bandgap is not a photonic bandgap per se, but, instead, represents

what the photonic bandgap would be in the absence of effectively localized states.

The outer bandgap refers to the bandgap that lies between bands N and N + 1.

When nloc = 0 and when there are no air states (described in Appendix 4.8), the

fundamental bandgap and outer bandgap coincide.

When a dielectric structure is effectively two-dimensional (i.e., homogeneous along

one direction, say, z), the eigenstates can be divided into two polarizations. This

Chapter has studied only TM (transverse magnetic) states, in which the electric field

is parallel to the z axis. There are also TE (transverse electric) states, in which the

magnetic field is parallel to the z axis. Photonic bandgaps that exist in a spectrum
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restricted to only TM (TE) polarized states are called TM (TE) bandgaps. A complete

bandgap is a bandgap for both polarizations.

We now turn to one measure of the “degree of hyperuniformity”, which is called

the degree of stealthiness and applies only to stealthy hyperuniform point patterns [33,

125, 126]. Our discussion focuses on stealthy disordered point patterns, a subclass of

disordered hyperuniform point patterns (i.e., neither crystalline nor quasicrystalline).

Stealthy disordered point patterns have an isotropic, continuous structure factor S(k).

For stealthy disordered point patterns, the degree of stealthiness can be defined to be

the largest wavenumber kC ≥ 0 such that S(k) = 0 for all |k| < kC . Alternatively, the

degree of stealthiness is the fraction χ of the first Brillouin zone over which S(k) = 0.

Among two-dimensional stealthy disordered point patterns, all numerical evidence to

date indicates that the degree of stealthiness (both kC and χ) of a point pattern is

correlated with the TM, TE, and complete bandgap of a dielectric decoration of the

pattern [33].

A second measure of the “degree of hyperuniformity” is the leading coefficient in

the local number variance (denoted here by Λ(∞)), which was described and com-

puted in Chapter 3 for the pentagonal quasicrystal tilings (see Fig. 3.8). The measure

Λ(∞) can be defined for the subclass of two-dimensional hyperuniform point patterns

in which the local number variance scales with the perimeter in the large-R limit, i.e.,

σ2(R) ∼ R as R→∞ (see Eq. (3.1)). In two dimensions, all crystalline point patterns

and all stealthy disordered patterns fall in this subclass [29, 30, 126], and numerical

evidence strongly indicates that many quasicrystalline point patterns do as well, in-

cluding those derived from the pentagonal quasicrystal tilings (see Chapter 3). For

entropically favored stealthy disordered patterns in the canonical ensemble, Λ(∞) is

equivalent to the degree of stealthiness, in the sense that the two measures can be

mapped one-to-one, and when χ (or kC) increases, Λ(∞) decreases [126, 127].
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The results of this Chapter show that the fundamental TM bandgap for the pen-

tagonal quasicrystal tilings appears to stay constant versus LI class γ (Fig. 4.8),

whereas the outer TM bandgap decreases in discrete steps (Fig. 4.9), which is at-

tributable to the appearance of special vertex environments at particular values of

γ. Thus, comparing to how Λ(∞) varies with LI class (as shown in Fig. 3.8), we

find that neither the fundamental TM bandgap nor the outer TM bandgap displays

a clear correlation with Λ(∞). The results suggest that, among quasicrystals, Λ(∞)

is not correlated with the TM bandgap or complete bandgap.

4.6 Appendix: Computing the photonic band-

structure

We review the approximations used when solving Maxwell’s equations to determine

the photonic bandstructure of a dielectric medium. The numerical calculations em-

ploy a freely available software package [107] that implements a block-iterative plane-

wave solver. A more complete review can be found in [106].

In the absence of any free charges or currents, Maxwell’s equations are given by

∇ · E = 0 , ∇ ·D = 0

∇× E +
∂B

∂t
= 0 , ∇×H− ∂D

∂t
= 0 ,

(4.4)

where E is the electric field, B the magnetic field, and D,H are auxiliary fields whose

components are related to E and B (respectively) by a power series. For example,

the components of D can be written in terms of the components of the electric field

as

Di =
∑
j

aijEj +
∑
jk

bijkEjEk +
∑
jkl

cijklEjEkEl + . . . (4.5)
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where aij, bijk, cijkl, . . . are material parameters that depend on the dielectric medium.

The fields are functions of position r and time t.

A few realistic approximations can be made that simplify the analysis: First, we

take the strengths of the fields to be sufficiently small so that the auxiliary fields are

linearly related to E and B, i.e., Eq. (4.5) is truncated at first order. In this case, the

components of the fields are related as follows:

Di = ε0

3∑
j=1

εijEj , Bi = µ0

3∑
j=1

µijHj , (4.6)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and εij, µij are a

set of coefficients relating the auxiliary fields to the electric and magnetic fields.

Second, we approximate the dielectric materials as isotropic, which simplifies

Eq. (4.6):

D(r) = ε0ε(r)E(r) , B = µ0µ(r)H(r) , (4.7)

where ε(r) and µ(r) are the relative permittivity and permeability, respectively.

Finally, we restrict our analysis to materials that are not dispersive (ε, µ do not

depend on frequency), do not absorb the field (real ε, µ), are transparent to the field

(positive ε, µ), and for which µ(r) ≈ 1.

Considering the fixed-frequency Fourier components of the fields

E(r, t) = E(r)e−iωt , B(r, t) = B(r)e−iωt , (4.8)

the above approximations allow us to recast Eqs. (4.4) as an eigenvalue problem for

the spatial part of the fields:

∇×
(
ε−1(r)∇×H(r)

)
= (ω/c)2 H(r) , (4.9)
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and E can be obtained from H via

ωE(r) =
i

ε0ε(r)
∇×H(r) (4.10)

Given a dielectric medium, as characterized by ε(r), Eqs. (4.9) and (4.10) are

solved to obtain the frequency eigenstates, which are the electromagnetic waves that

can propagate through the medium with a definite frequency.

The dielectric structures studied in this Chapter are obtained from two-

dimensional point patterns by decorating the points with infinitely long cylinders

that are oriented out of the plane. The structures are uniform in the direction

normal to the plane, which we call the z direction. Because of this symmetry, the

eigenstates have zero momentum along z. They can be separated into two distinct

sets of polarizations: (i) states in which H is parallel to z (transverse electric (TE)

states); and (ii) states in which E is parallel to z (transverse magnetic (TM) states).

Here, we study only the TM spectrum.

4.7 Appendix: Effectively localized states: local-

ized versus extended

This Appendix reports on two studies that explore to what extent the effectively

localized states are truly extended or localized. The studies presented here do not

lead to definitive conclusions, but are intended to inform and guide how further studies

might be performed. A couple notes on terminology: Because only effectively localized

states are discussed here, we drop the “effectively localized” descriptor. Moreover, all

states of a given type (e.g., ST1 type, Z1 type) are said to form a miniband.

Observing that the states within a miniband are degenerate would support the

hypothesis that the states are localized and not extended. In Appendix 4.7.1, we ex-
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amine whether the states within a miniband have a measurable difference in frequency.

We identify and estimate the uncertainty stemming from discretization of the unit cell

to numerically solve Maxwell’s equations for the photonic bandstructure. The band

width (i.e., the difference between the maximum and minimum eigenfrequencies in a

miniband) is also estimated. We observe that the uncertainty is typically larger than

the band width and, therefore, the frequencies of states within the miniband cannot

be discriminated from one another (if the differences are theoretically nonzero). The

results are also consistent with the states forming a miniband being degenerate in

frequency.

There are some effectively localized states in which the electric field is concentrated

on a single SVE site. We refer to such states as single site (SS) states. There are

other effectively localized states in which the field is distributed over multiple SVE

sites. Such states are referred to as multiple site (MS) states. A characteristic feature

of a localized state is an exponential falloff of the energy density from the localized

site. In Appendix 4.7.2, we check whether the exponential falloff is observed in

examples of SS and MS states to determine to what extent the states are localized.

The results show that both SS and MS states are composed of exponentially localized

field configurations, which are centered on individual SVE sites.

4.7.1 Degenerate states in minibands

To determine whether the frequencies of a set of states forming a miniband can be

discriminated from one another, we need an estimate of the numerical uncertainty

stemming from the procedure used to compute the bandstructure. In this Appendix,

we estimate the uncertainty that stems from the fact that, when numerically solving

Maxwell’s equations, an initial step is to discretize the unit cell into a grid of pixels.

The number of pixels N × N per unit cell, which we call the resolution, is a

simulation parameter that can be changed. In the N → ∞ limit (assuming the
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pixels are uniformly distributed in the unit cell), the pixelated unit cell approaches

the ideal unit cell. However, for all simulations, N is necessarily finite. Therefore,

the discretized unit cell is always an approximation of—and never equal to—the

analytically defined unit cell. This approximation leads to some amount of numerical

uncertainty in the computed values of frequency ω. We call this the uncertainty from

resolution and denote it by dω.

We denote the frequency range of a miniband (i.e., the difference between the

largest and smallest frequencies in a miniband) by ∆ω and call it the band width. To

resolve the frequency differences between states within a miniband—if the states are

not degenerate—the uncertainty dω must be less than ∆ω, i.e.,

∆ω > dω . (4.11)

However, as we show below, our estimates indicate that dω/∆ω ∼ 102. Therefore,

within the uncertainties, the observations are consistent with the states forming a

miniband being degenerate in frequency.

Uncertainty from resolution

We obtain an estimate of the uncertainty from resolution dω using the following

procedure: We first choose an LI class γ and make a rendition (i.e., choose a set

of phases γi and degree of approximant). Next, we compute the bandstructure of

this rendition, first using 512 × 512 pixels in the unit cell. Let ωi512 denote the ith

largest eigenfrequency. We then compute the bandstructure of the same rendition,

now using 1024 × 1024 resolution. Let ωi1024 denote the ith largest eigenfrequency

computed at 1024× 1024 resolution. The relative change δωi in the computed values

of the frequencies

δωi ≡ ωi521 − ωi1024
ωi1024

(4.12)
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Figure 4.10: Estimating the uncertainty from resolution dω. For a fixed ren-
dition from LI class γ and with dielectric constant ε, the bandstructure is computed,
first at 512 × 512 resolution, then at 1024 × 1024 resolution. The relative change in
the frequencies δωi (defined in Eq. (4.12)) for states in the minibands is shown here
(colored circles, left vertical axis). Each position along the horizontal axis corresponds
to a fixed rendition from an LI class γ and with dielectric constant ε. The LI class
is labeled above each subpanel. The dielectric constant is shown as a +, with values
along the right vertical axis.

gives an estimate of dω/ω.

We compute δωi for all of the states lying in the minibands. We repeat this

calculation for three LI classes (γ = 0.42, 0.45, 0.50), three renditions from each LI

class, and six values of the dielectric constant ε. The results are shown in Fig. 4.10.

We observe that all of the values of δωi are less than 0.3%. This upper bound

gives a conservative estimate of dω/ω:

dω

ω
∼ 3× 10−3 . (4.13)
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Using a typical frequency of these states ω ∼ 0.3 (in units of 2πc/a), we obtain an

estimate of the absolute uncertainty from resolution dω (the main result):

dω =

(
dω

ω

)
ω ∼

(
3× 10−3

)
0.3 ∼ 10−3 . (4.14)

There are some additional observations that can be made from Fig. 4.10: The relative

change in frequency δωi is always positive. Therefore, as the resolution increases, the

computed values of ω systematically decrease. Such a systematic trend is consistent

with the values of ω converging from above as the resolution increases. We also observe

that, for the same dielectric constant, there does not appear to be any systematic

difference in δωi between different LI classes or between different renditions from the

same LI class. However, as ε increases, there appears to also be an increase (on

average) in δωi.

Band width

We now turn to an estimate the band width ∆ω. Our procedure is as follows: We

first choose an LI class γ, make a rendition (i.e., choice of degree of approximant and

choice of phases γi whose sum is γ), and compute the bandstructure. The bandstruc-

ture will, in general, contain minibands. For each miniband, the band width ∆ω is

computed by subtracting the minimum frequency in the miniband from the maximum

frequency in the miniband. The band widths are plotted in Fig. 4.11, where different

rows correspond to the different minibands. Each position along the horizontal axis

corresponds to one rendition. Each miniband is divided into subpanels according to

the number of SVEs n in the rendition of the miniband type (e.g., for the ST1 mini-

band shown in the topmost plot, n is the number of ST1 sites). Within each subpanel,

the value of n is shown, and the renditions are ordered according to increasing ∆ω.
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Figure 4.11: Estimating band width ∆ω. For a fixed rendition from LI class γ, the
bandstructure is computed. For each miniband, we compute the band width ∆ω (i.e.,
the difference between the maximum and minimum eigenfrequencies in the miniband).
This is repeated for several renditions from four LI classes (γ = 0.38, 0.42, 0.45, 0.50).
Shown here are the band widths ∆ω. The different rows correspond to the different
minibands. Each row has been divided into subpanels according to the number of
SVE sites n of the miniband type (e.g., for the first row, n is the number of ST1 sites
and, for the second row, n is the number of Z1 sites). The values of n are shown at
the top of each subpanel. Within each subpanel, the renditions are ordered according
to increasing ∆ω.
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The minibands—with the possible exception of the X miniband—have a band

width ∆ω that does not systematically increase as the number of SVEs increases.

Moreover, it appears that

∆ω ∼ 10−4 . (4.15)

(The ST2 band is an exception, which has band width 10−5.)

We have estimated the uncertainty due to finite resolution (pixelization) to be

dω ∼ 10−3 and the band width to be ∆ω ∼ 10−4. Our estimates show that the

uncertainty is greater than the band width. Thus, the frequencies of different states

within a given miniband cannot be discriminated from one another. The results are

consistent with the states forming a miniband being degenerate in frequency. Initial

studies using increased resolutions up to 2048 × 2048 show that ∆ω decreases with

resolution, which is also consistent with the minibands comprising degenerate states.

4.7.2 Exponentially localized electric-field energy density

A characteristic feature of a localized state is an exponential falloff of the energy

density from the localized site. In this Appendix, we check whether the exponential

falloff is observed in examples of SS and MS states to determine to what extent the

states are localized. Three states are examined. The states are frequency eigenstates

of the same rendition (i.e., the same phases γi and same approximant) of LI class

γ = 0.45.

We first establish notation. Let E2(r) be the electric-field energy density of a

frequency eigenstate from a miniband, where r denotes the position in the unit cell.

Let x denote the position of the central vertex of one of the sites of the SVE type

corresponding to the miniband. We compute the maximum value of the energy density
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Site 1 
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Site 2 

Figure 4.12: Electric-field energy density E2 of an ST1 MS state versus
distance r from central vertex of ST site. The distance r is in units of the
tile edge length a. (Left) The electric field distribution in unit cell for an MS state
from the ST1 miniband, overlaid on the point pattern. Blue/red/white correspond
to negative/positive/zero field. (Upper Right) The maximum value of E2 at distance
r from Site 1 is shown as a red, solid line. This quantity is defined in Eq. (4.16).
The average value of E2 at distance r from Site 1 is shown as a black, dotted line.
This quantity is defined in Eq. (4.17). Vertical dashed lines denote r/a = 1 (green,
dashed), which is where the first nearest neighbors are located, and r/a = 2 (purple,
dashed), which is roughly where the second nearest neighbors are located. Dashed
circles with radii r/a = 1, 2 and centered at Site 1 are shown in the Left panel. (Lower
Right) Same quantities as plotted in the the Upper Right panel but for Site 2.
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Figure 4.13: Electric-field energy density E2 of an ST2 SS state versus dis-
tance r from central vertex of ST site. Quantities that are described in the
Fig. 4.12 caption are presented here for an ST2 SS state.

E2(r) around a circle of radius r centered at x

max
r=|r−x|

{
E2(r)

}
, (4.16)

as well as the average value of the energy density around the circle of radius r centered

at x:

avg
r=|r−x|

{
E2(r)

}
. (4.17)

The first state we consider is an ST1 MS state. Its electric field distribution E(r) is

shown in the left panel of Fig. 4.12. There are three ST sites in this rendition and the

field is non-negligible on each site. For illustrative purposes, we show the quantities
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Figure 4.14: Electric-field energy density E2 of an X MS state versus dis-
tance r from central vertex of X site. Quantities that are described in the
Fig. 4.12 caption are presented here for an X MS state.

defined in Eq. (4.16) and Eq. (4.17) evaluated (right panel of Fig. 4.12) at two of the

three ST sites. The maximum energy density at distance r, computed according to

Eq. (4.16), is shown as red solid lines versus r. The average energy density at distance

r, computed according to Eq. (4.17), is shown as black, dotted lines. Both quantities

have been normalized so that the peak value is set to one.

In Fig. 4.12, we observe that the maximum and average values of E2 peak around

r/a ≈ 1, which is where the first nearest neighbors are located. The values drop to

. 1% of the peak values by r/a ≈ 2 and . .01% of the peak values by r/a ≈ 3.

There appears to initially be a log-linear falloff as r/a increases from r/a = 1. There

is then a flattening around r/a = 2, which roughly corresponds to the positions of
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the second nearest neighbors. Finally, at r/a & 2, there appears to a be a faster than

log-linear falloff. The curves appear to be viritually identical for the two sites. The

observed log-linear behavior and the observed similarities of the curves for the two

ST sites both suggest that the energy density is exponentially localized on individual

ST sites. For both sites, the background energy density, which we take to be the peak

energy density in a region at the top left of the unit cell far removed from the ST

sites, is ∼ 10−6 (on the normalized scale).

The analysis is repeated for an ST2 SS state. Its electric field distribution E(r) is

shown in the left panel of Fig. 4.13. The right panels here contain the same quantities

that were evaluated above in the right panels of Fig. 4.12. We consider the energy

density profiles around the same two ST sites as before. In Fig. 4.13, we continue

to observe a log-linear falloff of the energy density. The degree of flattening around

r/a ≈ 2 is less than for the ST1 states. Instead of the second resonance that was

observed at r/a ≈ 2 in Fig. 4.12, there is now a second resonance around r/a ≈ 2.5.

Interestingly, despite the fact that the power of E(r) is largely concentrated around

Site 1 and not on Site 2, the normalized profiles of the curves appear to be virtually

identical. As with the ST1 states, the log-linear behavior and similarities of the

curves for the two ST sites suggest that the energy density is exponentially localized

on individual ST sites. For Site 1, the background energy density, which is computed

in the same way as it was for the ST1 MS state, is ∼ 10−6 (on the normalized scale).

For Site 2, the background is ∼ 10−4.

The third state we examine is an X MS state. Its electric field distribution E(r)

is shown in the left panel of Fig. 4.14. There are four X sites in this rendition and the

field is non-negligible on each site. We repeat the procedure to compute Eq. (4.16)

and Eq. (4.17) for two of the sites, the results of which are contained in the right panel

of Fig. 4.14. There are some similarities with the ST1 and ST2 states. For example,

(i) the energy density peaks at the position of the first nearest neighbors r/a = 1, (ii)
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there is a falloff for r/a > 1 that is initially log-linear, and (iii) the curves are virtually

identical for the two X sites. There are also some differences. There appears to be

both a resonance at r/a ≈ 2 and a resonance at r/a ≈ 2.5. Moreover, the curves turn

upward around r/a ≈ 2.75. The midpoint between the two sites lies approximately

at r/a ≈ 2.5, which suggests that the upturn in the energy density is simply due to

the fact that the two X sites are adjacent. Altogether, the observations for the X sites

are consistent with the energy density being exponentially localized on individual X

sites. For both sites, the background energy density, which we take to be the peak

energy density in a region at the bottom left of the unit cell far removed from the X

sites, is ∼ 10−5 (on the normalized scale).

The above analysis suggests that the frequency eigenstates—both SS and MS—are

composed of exponentially localized configurations centered on individual SVE sites.

4.8 Appendix: Decorations and air-localized

states

In this Appendix, we present results showing that the presence of effectively localized

states persists upon changing the decoration of the tiling. Two further choices of

decoration are studied, one in which the scatterers are placed at tile centers, and

one in which the scatterers are placed at the centroids of the Delaunay-triangulated

tiling. The latter construction can be performed simply as follows: Take a tile (fat or

skinny) and draw perpendicular bisectors from each edge, extending into the interior

of the tile, until the bisectors each encounter another bisector. (Because the rhombus

tiles are not squares, there will never be a point of intersection between more than

two bisectors). At that point of intersection, place a scatterer. By this construction,

every tile will contain two scatterers.
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Figure 4.15: SVEs for center-decorated structures (left) and for Delaunay-decorated
structures (right). Overlaid on the SVEs are the scatterer configurations.

Following the same procedure as discussed in Section 4.3 to calculate the TM

bandstructure, we find that both center-decorated structures and Delaunay-decorated

structures have effectively localized states. The X, Y, Z and ST vertex environments

continue to be SVEs. The center-decorated structures have one additional SVE in

the W vertex environment. The decorated SVEs are shown in Fig. 4.15. We also find

analogous counting formulae for the new structures.

We continue to observe effectively localized states lying in the fundamental

bandgap in which the field is concentrated in the dielectric component. However,

there is an additional novelty in the center-decorated structures. There are states

in which the field is concentrated in the air component. Representative examples

of these “air-localized states” are shown in Fig. 4.16b, where they are labeled with

asterisks (∗). The frequencies of the air-localized states lie near the upper edge of

the fundamental bandgap. This is intuitively expected; typically, states below the

fundamental bandgap have an electric field distribution that is concentrated in the

dielectric component, whereas states above the bandgap have field concentrated in

the air component.
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Figure 4.16: Representative examples of effectively localized states in center-
decorated structures. (a) Examples of states that have electric field concen-
trated in the dielectric component (i.e., within scatterers). (b) Examples of states
that have electric field concentrated in the air component (i.e., between scatterers).
Blue/red/white correspond to negative/positive/zero field.
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Chapter 5

Conclusion and Outlook

Throughout this thesis, we have focused on recent studies of natural quasicrystals

and quasicrystal tilings. Now, in this Chapter, we reflect upon the main conclusions

from these studies to see what they suggest about future developments.

In Chapter 2, we presented direct evidence from fragment 126A of the Khatyrka

meteorite that shows cross-cutting relationships and redox reaction between Al-Cu-Fe

alloys and silicate melt. The new evidence clearly demonstrates that some Al-Cu-

Fe alloys (including quasicrystals) formed prior to an impact event a few 100 Ma.

The alloy phases may even have formed as early as 4.564 Ga, which would place them

among the oldest condensed phases in the Solar System. The new evidence settles the

question about the natural origin of the Al-Cu phases and places the focus squarely

on the main scientific quandary, namely, how did the metallic Al and Cu first form

and come together? Resolving this question requires new and previously unrecognized

processes in the early Solar System. Our earlier discoveries of the first observed Al-

bearing Fe-Ni alloy minerals (steinhardtite and decagonite) have already confronted

the conventional thinking of planetary structure: their existence suggests that Al may

be a contributor to the anomalously low density of the Earth’s core, which is thought

to be predominantly Fe-Ni. Before the discoveries of steinhardtite and decagonite,
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such a proposal would have been unthinkable because natural metallic Al was not

thought to exist at all!

The results from Chapter 2 also have implications for our understanding of the

stability and formation of quasicrystals. Some of the quasicrystals in Khatyrka formed

during the most recent impact event a few 100 Ma and have been pristinely preserved

to the present day. Among these is the as-yet-unnamed icosahedral phase of Al-Cu-Fe.

The formation of this new quasicrystalline phase during the impact event is consis-

tent with the hypothesis that shock conditions are sufficient for forming quasicrystals.

This hypothesis was supported by the Asimow shock recovery experiment, which led

to the production of a novel quinary icosahedral quasicrystal. Shock-synthesis of qua-

sicrystals is vastly different from the established metallurgical techniques for growing

quasicrystals, e.g., rapid quench or conventional solidification. The unanticipated dis-

coveries of novel quasicrystals in Khatyrka and in the shock experiment indicate that

we do not yet fully know or understand all of the mechanisms through which qua-

sicrystals form. We expect that ongoing investigations of Khatyrka and other rocks

and meteorites will reveal additional novel phases and, possibly, new quasicrystals.

Such discoveries would inform us about novel routes for quasicrystal synthesis and

would deepen our understanding of quasicrystal stability and formation.

In Chapters 3 and 4, we uncovered unexpected structural and physical differences

between local isomorphism classes of quasicrystals. One may have thought that the

degree of hyperuniformity does not vary with LI class, but as we showed in Chapter 3,

this is clearly not true. The degree of hyperuniformity does vary with LI class, and,

moreover, the variation appears to be largely determined by the local structure (e.g.,

by the Voronoi area distribution). In Chapter 4, we showed that photonic quasicrystal

heterostructures derived from a continuous set of LI classes have effectively localized

TM states in the fundamental bandgap. We also found that the Penrose LI class—

by far the most heavily studied LI class of pentagonal quasicrystals—is the one LI
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class that does not have effectively localized states. This exemplifies how systematic

ignorance of the continuum of LI classes could lead one to overlook potentially inter-

esting physics. In a broader context, our results demonstrate that the physical and

structural properties of the full continuum of LI classes—beyond a select subset of LI

classes—warrants further study. While our studies of local isomorphism classes have

specifically been on pentagonal quasicrystal tilings, the notion of local isomorphism

classes applies generally to all quasicrystals. For example, it is known that among

icosahedral quasicrystals, only one LI class can be generated by the direct projection

method from six-dimensions with a standard window. We expect that new and useful

physical properties remain to be discovered among the continuum of LI classes. These

discoveries will come at a time when continued innovations in fabrication techniques

allow for greater flexibility in the design and production of perfect quasicrystalline

structures.
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