

Sustaining the Usefulness of
eHealth Research Software
Lessons Learned in Action Design Research

Mudassir Imran Mustafa

Dissertation presented at Uppsala University to be publicly examined in Lecture Hall 2,
Ekonomikum, Kyrkogårdsgatan 10 A, Uppsala, Monday, 10 June 2019 at 13:15 for the degree
of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner:
Associate Professor Anders Hjalmarsson Jordanius (University of Borås).

Abstract
Mustafa, M. I. 2019. Sustaining the Usefulness of eHealth Research Software. Lessons
Learned in Action Design Research. 316 pp. Uppsala: Department of Informatics and Media.
ISBN 978-91-506-2758-9.

Research software is vital to advancement in the sciences, engineering, humanities, and all other
fields. Scientific research is dependent on the quality of and accessibility to research software.
Research software is often developed hastily to solve one-off problems, leading to flimsy code
that is not sustainable or usable beyond the lifetime of a given research project and is difficult
for researchers, outside of the original context, to use, reuse or extend. It is critical to address
the many challenges related to the development, deployment, and maintenance of research
software. Therefore, there is a growing concern in the scientific community regarding designing
sustainable research software. The academic research context refers to the environment or
community concerned with scientific research, sponsored by research grants and public funding.
Despite the increasing dependence on research software, software development practices in
academia lag far behind those in the commercial sector.

Health care relies on a very complex information technology architecture with many
different IT components and also has a highly complex governance structure alongside the
very rapid technology development. Additionally, there are ever-increasing demands and
needs from health care users for more flexibility, more functionality and making the care
transparent and patient-centred. Taken together, this poses significant challenges for eHealth
and Information Systems researchers, as each artefact, depending on the context, has different
quality characteristics to operationalise the requirements under consideration.

The research objective is to explore what Information Systems researchers and practitioners
need to be aware of for sustaining the usefulness of eHealth research software, in the academic
research context. This longitudinal action design research (ADR) project, with its three cases,
was conducted in an eHealth research project over a period of six years. Contributions from this
research include the identification of quality characteristics and their enactment in the actual
organisational settings, as well as empirically grounded design principles and a typology for
sustaining the usefulness of eHealth research software, based on a formalisation of learning in
the three ADR cases. This dissertation also contributes to the method space with the introduction
of the augmented action design research (AADR) method, an extension of ADR, on how to
conduct multiple ADR projects that build towards an overarching knowledge aim.

Practice contributions are the design and development of internet-based eHealth research
software to offer patients psychological treatment and support for issues resulting from physical
illnesses, while also providing a chance for researchers to study the effectiveness of the
aid provided. The dissertation also contributed in a broader sense to the research software
development practice, as the findings extend to research areas in which research software is
needed to read and interpret research data, and where software must continue to function so that
it allows continued access and use of research data.

Keywords: research software, eHealth, sustaining usefulness, action design research, academic
research context, quality characteristics, design principles, fitness-utility, data export,
technology adaptation, mobile adaptation, design science research

Mudassir Imran Mustafa, Department of Informatics and Media, Kyrkogårdsg. 10, Uppsala
University, SE-751 20 Uppsala, Sweden.

© Mudassir Imran Mustafa 2019

ISBN 978-91-506-2758-9
urn:nbn:se:uu:diva-381473 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381473)

Dedicated to my parents, wife and

daughters, as well as to the memory of

my late grandfathers.

Acknowledgements

مِيْحِرلا نِمٰحْرلا اللهِ مِسِْب

In the name of Allah, the Most Gracious, the Most Merciful

I praise and give thanks to Allah, the Almighty, for granting me the capability
to proceed successfully to complete this dissertation.

First and foremost, I would like to express my sincere gratitude to my main
supervisor Dr Jenny Eriksson Lundström (Uppsala University) who has sup-
ported me throughout this process. Thanks for being patient, believing in me
and for helping me develop as a researcher and as a person. Your endless com-
ments have improved my work immensely. I am grateful to my co-supervisor
Dr Jonas Sjöström (Uppsala University) for considering me, seven years ago,
as a master thesis student and for introducing me to U-CARE. Without that
introduction, this experience would not have happened. I am grateful that you
allowed me to follow wherever the research was leading. I am grateful to my
co-supervisor Dr Helena Grönqvist (Uppsala University) for your feedback
and support since my first day at U-CARE in January 2012. I am also grateful
to my co-supervisor Associate Prof. Dr Owen Eriksson (Uppsala University)
for your brilliant comments which have been invaluable to my research work.

Prof. Dr Pär Ågerfalk (Uppsala University) I am thankful to have had you
as a co-supervisor, for considering me as a possible PhD candidate, giving me
access to your network and guiding me.

I am particularly grateful to Prof. Dr Louise von Essen (Uppsala Univer-
sity) and my colleagues in the U-CARE research group, Clinical Psychology
in Healthcare, for opening their doors and allowing me to conduct research
and participate in this multi-disciplinary context. The time I spent at U-CARE
was vital for conducting my research, thank you. I would also like to give
credit to U-CARE for the financial support that made this dissertation possi-
ble.

I am grateful to Prof. Dr Tuure Tuunanen (University of Jyväskylä, Fin-
land) for his critical but insightful comments on an earlier draft of this disser-
tation at my halftime seminar. The questions, feedback and perceptive ideas
from Prof. Dr Maung Kyaw Sein (University of Agder, Norway) during the
final seminar were endlessly valuable in finalising this dissertation. I would
also like to gratefully acknowledge helpful comments received from anony-
mous reviewers within Design Science Research in Information Systems and

Technology (DESRIST) community on my conference publications and thesis
proposals in the doctoral consortium. The feedback, guidance and support al-
lowed me to expand and further develop this manuscript.

I would like to thank researchers from whom I have been fortunate enough
to get guidance in one way or another. These people include Prof. emeritus Dr
Lars Engwall (Uppsala University, Sweden), Prof. Dr Sabine Koch (Karolin-
ska Institutet, Sweden), Prof. Dr Carole Goble (The University of Manchester,
UK), Prof. Dr Pim Cuijpers (Vrije Universiteit Amsterdam, Netherlands),
Prof. Dr Robbert Sanderman (University Twente, Netherlands), Prof. Dr Theo
van Achterberg (KU Leuven, Belgium), Associate Prof. Dr Annika Lindahl
Norberg (Karolinska Institutet, Sweden), Associate Prof. Dr John Venable
(Curtin University, Australia), Prof. Dr Matti Rossi (Aalto University, Fin-
land), Prof. Dr Sandeep Purao (Bentley University, USA), Prof. Dr Samir
Chatterjee (Claremont Graduate University, USA), Prof. Dr Shirley Gregor
(Australian National University, Australia), Prof. Dr Jan vom Brocke (Uni-
versity of Liechtenstein, Liechtenstein), Prof. Dr Mark Aakhus (Rutgers Uni-
versity, USA), Prof. Dr Sven Carlsson (Lund University, Sweden), Prof. Dr
Erik Bongcam-Rudloff (Swedish University of Agricultural Sciences, Swe-
den), and last but not least Prof. Dr Alan R. Hevner (University of South Flor-
ida, USA). Hevner has been an essential source of inspiration and support for
my research. Thank you all for your inspiration and support!

I would like to express my heartfelt thanks to everyone at the Department
of Informatics and Media (Uppsala University, Sweden). Special thanks to
teachers and colleagues: Prof. Dr Andreas Hamfelt, Prof. Dr Annika Waern,
Prof. Dr Mats Edenius, Prof. Dr Darek Haftor, Associate Prof. Dr Steve
McKeever, Dr Franck Tetard, Dr Claes Thorén, Dr Tomas Eklund, Dr Ylva
Ekström, Dr Therese Monstad, Dr Henrik Åhman, Dr Göran Svensson, Dr
David Johnson, Dr Simone Callegari, Associate Prof. Dr Lina Eklund, (late)
Associate Prof. Dr Vladislav Valkovsky, Madelen Hermelin, Fredrik Bengts-
son, Andreas Hedrén, Anton Backe, Christer Stuxberg, and Evelina Anders-
son. Thanks to all current and past Ph.D. students for making my years in the
department pleasant Mohammad Hafijur Rahman, Asma Rafiq, Christopher
Okhravi, Siddharth Chadha, Yiming Chen, Kirill Filimonov, Cristina Ghita,
Paulina Rajkowska, Martin Stojanov, Laia Turmo Vidal, Thomas Ejnefjäll,
Katya (Katerina) Linden, Dr Ruth Lochan, Dr Görkem Paçacı, Dr Daniel Lö-
vgren, Dr Patrick Prax, Dr Mareike Glöss, Dr Sylvain Firer-Blaess, Dr Emma
Svensson, Dr Stanislaw Zabramski, and Dr Elena Márquez. Thanks to the
most supportive administrative and technical team: Tina Kekkonen, Deqa
Farah-Asbury, Lotta Lundell, Eva Karlsson, Eva Enefjord, Christian Sand-
ström, Anna Henriksson, Klara Runesson, Sophie Skogehall, Carina Boson,
Lars-Göran Svensk and Pierre Hjälm for their help and support.

Dr Anneli Edman, you are the best teacher and one of my role models.
Teaching a Master’s course under your supervision for seven years consecu-
tively was an honour. You have set the bar so high it will be a challenge to

keep it up for the rest of my professional life. Thank you for making me feel
welcome here from the first day of the Master of Information Systems pro-
gramme at Uppsala University and encouraging me to continue to the PhD.
Thank you for being always available at a personal level and listening to me
in difficult times.

I would also like to express my heartfelt thanks to colleagues at the Depart-
ment of Women's and Children's Health (Uppsala University, Sweden). Espe-
cially, I want to thank Associate Prof. Dr Erik Olsson, Dr Martin Cernvall, Dr
Sven Alfonsson, Dr Malin Ander, Dr Anders Brantnell, Dr Fredrika Norlund,
Dr Mattias Öhman, Fabian Holmberg, Ian Horne, Ylva Hägg Sylvén, Laura
Kukkola, John Wallert, and Teolinda Toft.

I would also like to remember my fellow PhD students in the Swedish Na-
tional Research School of Management and IT (MIT) for making PhD courses
cool: Dr Jason Crawford, Dr Fahd Omair Zaffar, Dr Christian Fischer, Dr Ed-
ward Gillmore, Dr Daniel Nylén, Dr Sofie Wass, Dr Parisa Aasi, and the list
goes on. To MIT for providing a platform which enabled me to share ideas
with other MIT researchers and also received constructive feedback from
them, I am very grateful.

I would acknowledge the Pakistani community whose presence in Uppsala
made me feel I am not too far away from my homeland Pakistan.

Finally, and most importantly, I would like to express my sincere gratitude
to my parents Ghulam Mustafa and Riaz Begum, my in-laws Qazi Zahoor ul
Haq and Tahira Parveen, my wife Dr Saima Zubair, and my daughters Emaan
Mudassir, Fakiha Mudassir and Hamna Mudassir, my siblings Ghosia Tabas-
sum, Tajammal Kamran, and Sofia Tabassum. I would acknowledge my fam-
ily, relatives, friends and teachers for their prayers and support. May Allah
give them long, happy, and healthy lives!

وک دوخ ںود اٹم ہک وہ یبن قِشع ردق سِا

ںؤاج وہ رڈن ہک وہ ادخ فِوخ ردق سِا
دادعتلا ںوگل وت ےس نا وج وک دوخ ںود برض
ںؤاج وہ رفص ںيئاج لکن ےس ںيم ھجم وج هو

 (یثراو رفظم :ملاک)

Uppsala, June 2019
Mudassir Imran Mustafa

Contents

Part I: Inspiration ...23

1 Introduction ..25
1.1 Research Software ...25
1.2 Sustainable Research Software ..25
1.3 Design Artefacts ..26
1.4 eHealth Research Software ..27
1.5 Research Problem: Sustaining the Usefulness29
1.6 Research Aim ..31
1.7 Demarcation ..33
1.8 Dissertation Outline ...33

2 Knowledge Base ...35
2.1 Design Science Research ...35
2.2 Evaluation ...37

The Fitness-Utility Model ...37
2.3 Ecology of Artefacts ..39
2.4 Agile Software Development ...40

Refactoring ...42

Part II: Relevance and Rigour ..45

3 Empirical Foundation ...47
3.1 Academic Research Context Challenges ..47
3.2 U-CARE ...49
3.3 The U-CARE Software System – The Artefact54
3.4 Design Science Research at U-CARE ..58
3.5 U-CARE Design Process ...59

U-CARE Stakeholders ..61
An Example of the Stakeholder-centric Evolving Design Process61
Another Example of the Stakeholder-centric Evolving Design
Process ...67

3.6 eHealth Challenges and U-CARE Research Context69

4 Research Design ...71
4.1 Design Research Methods ...71
4.2 Action Design Research ..72

4.3 Appropriation of ADR ...75
Timeline ...79
The Author’s Role(s) ..79
Data Collection ...82
Data Presentation ..84
Data Interpretation and Analysis ...85
Ethical Considerations ..87
Method Limitations ..87
ADR Case Selection Rationale ..87

Part III: Design in Three Cases ..91

5 Case I: The Data Export Feature – the U-CARE Formation Phase93
5.1 Problem Formulation ...93
5.2 Building, Intervention and Evaluation Cycles95

BIE Cycle I...96
BIE Cycle II ... 100
BIE Cycle III .. 102
Artefact Use Over Time and Learning... 105
BIE Cycle IV .. 106
BIE Cycle V ... 110
Artefact Use Over Time and Learning... 117

5.3 Formalisation of Learning ... 127

6 Case II: The Technology Adaptation Process – the U-CARE Maturing
Phase ... 129

6.1 Problem Formulation ... 129
6.2 Building, Intervention and Evaluation Cycles 131

BIE Cycle I... 132
BIE Cycle II ... 138
BIE Cycle III .. 145
Artefact Use Over Time and Learning... 150

6.3 Formalisation of Learning ... 151

7 Case III: Extending the Artefact – the U-CARE Mature Phase 153
7.1 Problem Formulation ... 153
7.2 Building, Intervention and Evaluation Cycles 156

BIE Cycle I... 157
BIE Cycle II ... 166
Artefact Use Over Time and Learning... 183

7.3 Formalisation of Learning ... 188

Part IV: Analysis and Reflection .. 193

8 Retrospective Reflection and Learning .. 195
8.1 Retrospective Analysis .. 195

Quality Characteristics .. 200
Design Principles .. 212
Typology of Sustaining Usefulness ... 216
Looking Back, Moving Forward – Re-visiting the Design
Principles.. 220

8.2 Reflecting on ADR .. 223
Being an ADR Researcher .. 226

8.3 ADR across Multiple Cases ... 227
Augmented Action Design Research ... 228
Augmented Reflection and Learning ... 229
Appropriation of ARL in this Dissertation 230

Part V: Conclusion .. 233

9 Concluding Discussion ... 235
9.1 Re-visiting the Research Questions .. 235
9.2 Research Contributions.. 236

Design Principles, Quality Characteristics and Typology 238
Augmented Action Design Research ... 238
Instantiation .. 238

9.3 Implications .. 239
Implication for Practice... 239
Implication for Research ... 240

9.4 Future Work .. 242

References ... 243

Part VI: Appendices .. 261

Abbreviations

AADR Augmented Action Design Research
ADR Action Design Research
ARL Augmented Reflection and Learning (a stage in AADR)
BIE Building, Intervention, and Evaluation (a stage in ADR)
CSS Cascading Style Sheets
CTMS Clinical Trial Management System
DBMS Database Management System
DSR Design Science Research
eHealth The use of ICT in health care
FEDS Framework for Evaluation in Design Science research
FL Formalisation of Learning (a stage in ADR)
FLV Flash Live Video
GDPR General Data Protection Regulation
HADS Hospital Anxiety and Depression Scale
HTML Hypertext Markup Language
ICBT Internet-based Cognitive Behavioural Therapy
ICT Information and Communication Technology
IM Instant/Internal Message
IP Intellectual Property
IS Information Systems
IT Information Technology
JS JavaScript
JSON JavaScript Object Notation
MVC Model-View-Controller
PCs Personal Computers
PL Problem Formulation (a stage in ADR)
POC Proof of Concept
RBL Respondent Behaviour Logging
RCT Randomised Controlled Trial
RL Reflection and Learning (a stage in ADR)
RQ Research Question
SAB Scientific Advisory Board
SMS Short Message Service

SSL Secure Sockets Layer
SVN Subversion or Apache Subversion
TDD Test-driven Development
TFS Team Foundation Server
U-CARE Uppsala University Psychosocial Care programme
UI User Interface
URL Uniform Resource Locator
UU Uppsala University

List of Definitions

Word or phrase Meaning in the dissertation
Academic research
context

Academic research context refers to the environment or community
concerned with scientific research sponsored by research grants and
public funding. Other researchers used similar terms, for example,
academia or academic settings.

Artefact The term artefact is used to describe something that is artificial or
constructed by humans, usually for a practical purpose, in contrast to
something that occurs naturally (Simon, 1996). Artefact denote the
idea of ensemble IT artefacts, as proposed by Sein et al. (2011), rec-
ognising the technology as structure view of Orlikowski & Iacono
(2001).

CBT Aaron Beck developed cognitive behavioural therapy in the 1970s.
CBT is an active, directive, time-limited, structured approach used to
treat a variety of psychiatric disorders, for example, depression and
anxiety.

Chronic disease Long lasting disease that can be managed and may not affect a per-
son’s lifespan.

Design principles Design principles are design decisions and design knowledge that is
in-tended to be manifested or encapsulated in an artefact (Gregor,
2002). Design principles recommend how to address a specific class
of problems or class of solutions in a range of settings (Markus et al.,
2002; Sein et al., 2011; Mckenney & Reeves, 2012).

IS design “IS design in general emphasises the process of defining, designing,
implementing and evaluating architecture, components and features
of an information system” (Sjöström et al., 2016).

Psychosocial care A term that is used interchangeable with psychosocial support, re-
lated to meeting the emotional, mental, spiritual and social needs of
the individual.

Research participant Research participant refers individuals who were taking part in the
clinical research in the empirical context.

Research study The research study refers to empirical context related eHealth inter-
ventions. In the empirical data sometimes referred to just study.
Also, study, study protocol, study design and RCT terms refer to re-
search studies.

Somatic disease Disease affecting the physical body.
Sustainable A literal definition of the term ‘sustainable’ means, “the ability of an

activity to endure or function for a certain period of time or perhaps
indefinitely”.

Sustainable research
software

Sustainable research software means that software functionality con-
tinues to be improved, supported and, available. Likewise, research
software is sustainable when researchers – outside of the original de-
sign context – can use, reuse, or extend software with reasonable ef-
fort in future projects.

Usefulness Usefulness is defined as the extent to which a system can be used to
achieve specific goals. Usefulness and utility are treated as a syno-
nym (i.e., the quality of being useful).

Utility The term utility is referred to as a characteristic of the design artefact
in addition to other characteristics (e.g., quality, efficacy). In the de-
sign science research context, the utility is applied as a utility of a
tool, which generally means the usefulness of a tool (Gill & Hevner,
2013). Design artefact utility typically means usefulness (e.g., effi-
cacy to perform task, ease of use, ease of learning, et cetera)

Utility function Within economics the utility function refers to a function which
ranks alternatives according to their utility to an individual in the
context of decision-making (Gill & Hevner, 2013). Economic utility
involves a complex utility function used to rank alternatives in order
to maximise utility.

Note: British English used in this dissertation.

List of Tables

Table 1. Fitness characteristics...39
Table 2. Research studies using the U-CARE software system52
Table 3. Activities and functionalities in the U-CARE software system

according to user roles ...57
Table 4. U-CARE stakeholders in the design process and their relevance ...60
Table 5. Feedback categories and description ...65
Table 6. ADR stages and principles ...73
Table 7. Data collected during the research, extent or quantity, and duration

 ...83
Table 8. List of stakeholder codes ..84
Table 9. Klein & Myers’ principles for interpretive field research85
Table 10. Selected cases ..89
Table 11. Motivation and aim of three ADR cases89
Table 12. Design principles for data export in eHealth research software

(version 1) ...99
Table 13. Design principles for data export in eHealth research software

(version 2) ... 101
Table 14. Design principles for data export in eHealth research software

(version 3) ... 105
Table 15. Design principles for data export in eHealth research software

(version 4) ... 109
Table 16. Data exported using the one-click data export feature 114
Table 17. Design principles for data export in eHealth research software

(version 5) ... 116
Table 18. Data exported using custom-made data export applications....... 119
Table 19. Design principles for data export in eHealth research software

(version 6) ... 126
Table 20. Design principles for data export in eHealth research software . 128
Table 21. Design principles for sustaining the usefulness of eHealth research

software (version 1)... 138
Table 22. Design principles for sustaining the usefulness of eHealth research

software (version 2)... 145
Table 23. Design principles for sustaining the usefulness of eHealth research

software (version 3)... 150
Table 24. Design principles for sustaining the usefulness of eHealth research

software .. 152
Table 25. Mobile adaptation requirements ... 160

Table 26. Design principles for sustaining the usefulness of eHealth research
software (version 1)... 166

Table 27. Research participants’ mobile devices usage statistics 179
Table 28. Design principles for sustaining the usefulness of eHealth research

software (version 2)... 183
Table 29. Design principles for sustaining the usefulness of eHealth research

software .. 190
Table 30. Appropriation of Klein and Myers’ principles........................... 197
Table 31. Summary of three ADR cases ... 199
Table 32. Design principles from three ADR cases 212
Table 33. Design principles for sustaining the usefulness of eHealth research

software (final version) ... 215
Table 34. The typology of sustaining usefulness 217
Table 35. Appropriation of ADR principles ... 225
Table 36. Research contributions ... 237
Table A.1-1. Product quality characteristics ... 263
Table A.2-1. Quality-in-use characteristics .. 265
Table B.2-1. Internet-based psychology projects 269
Table B.2-2. CTMS in the U-CARE ecology ... 269
Table D.2-1. Design decisions for software quality assurance 276
Table D.3-1. Follow-up summary of progress on design decisions 277
Table D.4-1. Follow-up summary of progress on quality assurance goals . 278
Table E.1-1. Mobile adaptation choices ... 280
Table E.4-1. Design workshop I – task list and feedbacks 285
Table E.5-1. Design workshop II – task list and feedback......................... 286
Table E.6-1. Design workshop III – task list and feedback 292
Table E.7-1. Design workshop IV – task list and feedback 293
Table E.8-1. Iteration V feedback .. 299
Table E.9-1. Design workshop VI – task list and feedback 304
Table E.10-1. Design workshop VII – task list and feedback 310
Table F.1-1. Design principles for sustaining the usefulness of eHealth

research software .. 315

List of Figures

Figure 1. DSR knowledge contribution framework (Gregor & Hevner,
2013). ...36

Figure 2. Design fitness characteristics and usefulness (according to Gill &
Hevner, 2013). ..38

Figure 3. The relationship between agile values, principles, and practices. .41
Figure 4. Technical debt landscape (adapted from Kruchten et al., 2012;

Tom et al., 2013). ..42
Figure 5. U-CARE organisational chart..50
Figure 6. The U-CARE software system. ...55
Figure 7. Text to-do list – product backlog and feedback.62
Figure 8. The 'lightbulb' to get feedback from stakeholders.63
Figure 9. Spreadsheet to-do list – product backlog and feedback.64
Figure 10. Feedback screenshot #78. ..64
Figure 11. U-CARE product backlog and feedback feature.66
Figure 12. Feedback comment, context data, and developer response.66
Figure 13. Support feature screenshot. ...68
Figure 14. ADR method: Stages and principles (from Sein et al., 2011).72
Figure 15. Timeline of the author’s engagement and the ADR appropriation

in the U-CARE context. ..78
Figure 16. Different roles in the U-CARE context.80
Figure 17. The BIE cycles of the data export feature including contributions

and stakeholders involved in the design. ..96
Figure 18. The timeline of the BIE cycles of the data export feature.96
Figure 19. The data hierarchy in the research study questionnaires.97
Figure 20. Architecture of the generic data export feature.98
Figure 21. Generic data export UI. ... 102
Figure 22. One-click data export UI. .. 107
Figure 23. Whiteboard output from the brainstorming during the developers’

workshop. ... 112
Figure 24. The initial conceptual architecture of the two-stage periodic data

export.. 113
Figure 25. The improved conceptual architecture of the two-stage periodic

data export. ... 123
Figure 26. Data export feature source code changes vs. the discussions in IT

meetings regarding the data export feature. 125
Figure 27. The BIE cycles during the technology adaptation process

including contributions and stakeholders involved in the design. 131

Figure 28. Changes in source code files committed during front-end
refactoring. .. 136

Figure 29. Product backlog and feedback feature. 147
Figure 30. The BIE cycle during adaptation to mobile devices including

contributions and stakeholders involved in the design. 156
Figure 31. The timeline for the BIE cycles of adaptation to mobile devices.

 ... 157
Figure 32. A rudimentary model for comparison of development approaches

(Mustafa et al. 2014). .. 158
Figure 33. Proof-of-concept prototype – home page on desktop. 162
Figure 34. Proof-of-concept prototype – home page on tablet. 162
Figure 35. Proof-of-concept prototype – research participant dashboard on

tablet. .. 163
Figure 36. Proof-of-concept prototype – home page on mobile................. 163
Figure 37. Mobile adaptation UI – participant dashboard. 175
Figure 38. Mobile adaptation UI – menu options. 176
Figure 39. Mobile adaptation UI – CBT modules. 176
Figure 40. Mobile adaptation UI – video player. 177
Figure 41. Mobile adaptation UI – library. ... 177
Figure 42. Source code changes vs. the discussions in IT meetings regarding

the mobile adaptation. ... 180
Figure 43. Technical debt during mobile adaptation. 181
Figure 44. Approximate developer hours available monthly. 184
Figure 45. Retrospective analysis process. ... 196
Figure 46. Typology (re-)construction in the U-CARE context. 219
Figure 47. Longitudinal action design research. 224
Figure 48. Augmented action design research. ... 229
Figure 49. Positioning AADR (adapted from Westin, 2014). 231
Figure B.1-1.An illustration of an RCT flow diagram 267
Figure D.1-1. A comparison tool for UI testing. 273
Figure D.1-2. Screenshot of web application ‘A’. 274
Figure D.1-3. Screenshot of web application ‘B’. 274
Figure D.1-4. Perceptual difference image. .. 274
Figure E.2-1. Proof-of-concept prototype – homework on mobile device

(part a). ... 281
Figure E.2-2. Proof-of-concept prototype – homework on mobile device

(part b). ... 282
Figure E.2-3. Proof-of-concept prototype – questionnaire on tablet. 283
Figure E.3-1. Advertisement for mobile app developer............................. 284
Figure E.5-1. Design workshop II – table label too wide. 287
Figure E.5-2. Design workshop II – suggestion for table labels. 288
Figure E.5-3. Design workshop II – homework layout problem (a)........... 289
Figure E.5-4. Design workshop II – homework layout problem (b). 290
Figure E.5-5. Design workshop II – homework layout problem (c)........... 291
Figure E.7-1. Design workshop IV – screenshot a. 295

Figure E.7-2. Design workshop IV – screenshot b. 295
Figure E.7-3. Design workshop IV – screenshot c. 296
Figure E.7-4. Design workshop IV – screenshot d. 296
Figure E.7-5. Design workshop IV – screenshot e. 297
Figure E.7-6. Design workshop IV – screenshot f. 297
Figure E.7-7. Design workshop IV – screenshot g. 298
Figure E.7-8. Design workshop IV – screenshot h. 298
Figure E.7-9. Design workshop IV – screenshot i. 299
Figure E.11-1. Desktop adaptation for research participant. 313

 23

Part I: Inspiration

 25

1 Introduction

This chapter defines design artefacts, research software, sustainable research
software, and the academic research context. Further, it examines the chal-
lenges associated with the academic research context and eHealth research
software design. The chapter concludes with a discussion of the research prob-
lem, research aim, research questions, and demarcation of the dissertation.

1.1 Research Software
The advance of information technology (IT) presents enormous opportunities
in how research can be conducted. Researchers in all disciplines are increas-
ingly adopting and adapting practices, techniques and digital tools. These new
tools – particularly software1 – allow for more creative and productive re-
search as they facilitate the collection, manipulation, and dissemination of in-
formation. In other words, software is an integral part of today’s research com-
munity, as contemporary research is not possible without it (Goble, 2014).
Research software is vital to advancement in the sciences, engineering, hu-
manities, and all other fields (Carver et al., 2018). A portion of contemporary
research data depends on, or is retrieved and manipulated by, research soft-
ware. Differentiated from industrial software, research software is used “to
explore, test, verify, disprove, or serve as an aid for academic research ideas
rather than bring commercial value directly” (Liu et al., 2008, p. 626).
Research software ranges from small utility scripts written by researchers for
their own use to highly developed applications (millions of lines of code) with
significant user bases.

1.2 Sustainable Research Software
Sustainable research software means that software functionality continues to
be improved, supported, and available. Sustainable research software is be-
coming increasingly important as researchers are gradually moving towards

1 In this dissertation, software is used as an umbrella term for software, software systems, soft-
ware-intensive systems, and software as a component of an information system.

 26

open research, sometimes referred to as open science2 (Nosek et al., 2015;
Aalst et al., 2016; Munafò et al., 2017). This openness trend means that re-
search software needs to be kept and maintained as long as the data are rele-
vant. Reproducibility3 is a core principle of science. Researchers from various
computational science disciplines have been calling for reproducibility or re-
producible research (Schwab et al., 2000; Laine et al., 2007; Mesirov, 2010;
Stodden, 2010; Peng, 2011; Morin et al., 2012). Currently, a significant trend,
particularly related to journals in the computational sciences, is that of de-
manding increased availability of research data and research software code,
so researchers can attempt to reproduce published findings or extend the orig-
inal findings and knowledge (Alsheikh-Ali et al., 2011; Stodden et al., 2013;
Munafò et al., 2017; Crick et al., 2017).

Regardless of the context in which the software originated, the sustained
availability of research software is essential to reproduce the software-depend-
ent research results (Gentleman & Lang, 2004; Stodden et al., 2013; Stodden et
al., 2015). However, research software is often developed hastily to solve one-
off problems, leading to flimsy code that is unsustainable or not usable beyond
the lifetime of a given research project (Baxter et al., 2012). Furthermore, it is
difficult for researchers, outside of the original context, to read and understand
the code so as to use, reuse, or extend it. In this context, research software is
sustainable when researchers – outside of the original design context – can use,
reuse, or extend software with reasonable effort in future projects. Therefore,
there is a growing concern in the scientific community related to the design of
sustainable research software (Crouch et al., 2013; Katz et al., 2014; Downs et
al., 2015; Katz et al., 2016a; Hettrick, 2016; Katz et al., 2016b).

1.3 Design Artefacts
Design Science Research4 (DSR) has become a recognised research paradigm
in the Information Systems (IS) discipline (Gregor & Hevner, 2013), explor-

2 “Open science is the practice of science in such a way that others can collaborate and contrib-
ute, where research data, lab notes and other research processes are freely available, under terms
that enable reuse, redistribution and reproduction of the research and its underlying data and
methods” (The European-funded project Facilitate Open Science Training for European Re-
search (FOSTER), https://www.fosteropenscience.eu/, [accessed: July 11, 2017]).
3 Reproducibility is the ability to duplicate an entire analysis of an experiment or study, either
by the same researcher or by someone else working independently, whereas duplicating only
an experiment is called replicating it [source: https://en.wikipedia.org/wiki/Reproducibility, ac-
cessed: July 11, 2017].
4 DSR traces its root to the 1969 book Science of the Artificial by Herbert Simon. The purpose
of design is to change existing situations into preferred ones (Simon, 1996). The term DSR was
coined by Hevner et al. (2004). Multiple terms are used in literature to give the idea of design
as research, for example, design science, design research and design-oriented research.

 27

ing the relationship between Information Systems design activities and re-
search. Design scientists create design artefacts5 as part of their research
(Hevner & Chatterjee, 2010). The term artefact is used to describe something
that is artificial or constructed by humans, usually for a practical purpose, in
contrast to something that occurs naturally (Simon, 1996). Baskerville et al.
(2015) consolidated the number of ways that design artefacts have been de-
fined in Information Systems literature: design theories (Walls et al., 1992;
Gregor & Jonas, 2007); design patterns (Gamma et al., 1995); constructs,
models, methods, and instantiations (March & Smith, 1995); design principles
(Markus et al., 2002; Sein et al., 2011); design propositions (Romme, 2003);
technological rules (van Aken, 2004); new properties of technical, social, or
informational resources (Järvinen, 2007); and organisational designs and man-
agement practices (Niederman & March, 2012).

DSR focuses on solving problems that have unstable requirements and con-
straints, as well as complex interactions among their subcomponents (Hevner
& Chatterjee, 2010). DSR encourages researchers to develop knowledge that
the Information Systems practitioners can use in their professional domain
(e.g., Routine Design) to design solutions to their problems (Hevner &
Chatterjee, 2010; Alturki & Gable, 2014). A design activity involves a
malleable process and artefacts, creativity, and teamwork to produce effective
solutions (Hevner & Chatterjee, 2010, p. ix). DSR is not only research about
design, but also research through design (Iivari, 2015). In DSR, an artefact is
developed and rigorously evaluated to gain an understanding, to address an
organisational problem, and to contribute to the knowledge base (Hevner et
al., 2004). In other words, DSR is a research approach that aims to integrate
design and science (Baskerville et al., 2015) and is therefore well-suited for
the research in this dissertation (i.e., associating research software with an ar-
tefact and vice versa).

1.4 eHealth Research Software
eHealth involves the use of information and communication technology in
health care (Eysenbach, 2001; Pagliari et al., 2005). eHealth is a vital area of
the Digital Agenda for Europe and the Europe 2020 strategy presented by the
European Commission in 2010. Acknowledging the importance of eHealth,
several countries have incorporated eHealth strategies into their national
health strategies. eHealth is growing and has produced many innovative inter-
ventions (van Rooij & Marsh, 2016).

5 As this dissertation is aimed at a multi-disciplinarily audience, I use the term design artefact
for simplicity, to denote the idea of ensemble IT artefacts, as proposed by Sein et al. (2011),
recognising the technology as structure view of Orlikowski & Iacono (2001).

 28

Recently, the number of eHealth applications for patients and citizens has
increased tremendously. Some projects have been running as part of Sweden’s
national strategy for eHealth (Ministry of Health and Social Affairs, 2010) –
for example, Electronic Health Records, ePrescriptions, national eID for
health professionals, information structure, and terminology (Snomed CT)
(Doupi et al., 2010). Sweden’s eHealth strategy, which was adopted in 2006
and was updated in 2010, focuses on use, benefit, and deployment of technol-
ogy for the development of health care and social services (Ministry of Health
and Social Affairs, 2010). An issue of continuous importance, in 2016 the
eHealth strategy was replaced by a vision for eHealth 2025 (Ministry of Health
and Social Affairs, 2016). One of the challenges for the Swedish health care
sector is how to provide psychosocial support and psychological help to peo-
ple who need such help because of physical illnesses. In recent years, cogni-
tive behavioural therapy (CBT) has been proven to be effective for a range of
psychological disorders, including insomnia, depression, schizophrenia, eat-
ing disorders, anxiety disorders, personality disorders, chronic pain and fa-
tigue, substance use disorders, post-traumatic stress disorders, and other psy-
chotic disorders (Hofmann et al., 2012).

The internet has become more assimilated into the daily lives of most of
Sweden’s population and offers new opportunities for internet-delivered psy-
chological interventions. Internet-based CBT (ICBT) has several advantages
over traditional face-to-face CBT regarding accessibility, timing, and pacing
for the individual patient. ICBT reduces the amount of time a therapist needs
to spend with a patient and maintain efficacy, as the extent of therapist in-
volvement can be tailored to the actual needs of the patient (Cuijpers et al.,
2010; Andersson et al., 2013). The evidence is accumulating that ICBT can
achieve similar outcomes as traditional face-to-face CBT (Andersson, 2009;
Cuijpers et al., 2010; Hedman et al., 2012; Andersson et al., 2013). ICBT
appears to work well in populations with various somatic disorders (Cuijpers
et al., 2008). Individually tailored interventions seem especially beneficial for
patients with emotional distress associated with a somatic disease (Baasterlar
et al., 2011). There is a need for more, and large-scale, studies to determine
the effectiveness of ICBT on different types of symptoms (Andersson & Titov,
2014), such as symptoms of anxiety or depression associated with a physical
disease (Mattsson et al., 2013; Norlund et al., 2015; Ander et al., 2017;
Ternström et al., 2017). However, these interventions are complex to design
and evaluate due to legal, ethical, technical, organisational, and methodologi-
cal challenges (Sjöström, von Essen, et al., 2014).

Innovative use of IT holds enormous potential for health care (Lundberg et
al., 2013). However, since IT is no panacea, such interventions need to be
researched for their clinical effect and cost-effectiveness. Randomised con-
trolled trials (RCT) represent the gold standard in evaluating the safety and
the efficacy of health care interventions. Conducting clinical trials is an im-
portant practice in medical research. A clinical trial management system

 29

(CTMS) is crucial in conducting a clinical trial and managing trial data (Raptis
et al., 2014). eHealth interventions, typically behaviourally based, can be de-
livered via the internet (Eysenbach, 2011). eHealth RCTs require a system to
deliver and evaluate internet-based interventions, as well as a CTMS. Such a
specialised system can be characterised as an eHealth research software, con-
sidering that its purpose is to conduct academic research in eHealth.

1.5 Research Problem: Sustaining the Usefulness
Hevner et al. (2004), March & Smith (1995) and Walls et al. (1992) advocate
the need for DSR in Information Systems. The purpose of DSR is to achieve
knowledge and understanding of a problem domain, and its solution, in the
building and application of the designed artefact. Evaluation has been high-
lighted as a fundamental activity in DSR (March & Smith, 1995; Hevner et
al., 2004; Vaishnavi & Kuechler, 2004; Venable, 2006; Venable et al., 2016).
Through evaluation, the researcher demonstrates the usefulness and efficacy
of proposed artefacts (Hevner et al., 2004). Design is inherently an iterative
and incremental activity; evaluation provides feedback to the build phase for
further artefact development and the continued design process. Hevner et al.
describe artefact evaluation as follows:

IT artefact can be evaluated in terms of functionality, completeness, con-
sistency, accuracy, performance, reliability, usability, fit with the organisation,
and other relevant quality attributes. (2004, p. 85)

Following Hevner et al. (2004), many researchers (such as, Vaishnavi &
Kuechler, 2004; Tremblay et al., 2010; Gill & Hevner, 2013; Prat et al., 2014;
Prat et al., 2015; Venable et al., 2016) have argued for utility, quality, and
efficacy of a design artefact as the essential criteria for evaluation methods. In
the Information Systems literature, different terms are used in discussing the
evaluation of an artefact, for example, characteristics, attributes, and proper-
ties. In this dissertation, such characteristics are labelled as quality character-
istics following ISO/IEC Standard 25010:20116.

Quality characteristics are key factors in ensuring value to stakeholders and
can be further used to determine requirements, their satisfaction criteria, and
the corresponding measures (ISO/IEC Standard 25010: 2011). Stakeholders
assign different weights7 (or priorities or levels of importance) to different
characteristics, depending on their subjective judgment and knowledge (ibid.).

6 ISO/IEC Standard 25010:2011 provides a consistent terminology for specifying, measuring,
and evaluating system and software product quality.
7 An example of such a weight assignment is assignment of priority to product backlog items,
based on different prioritisation factors, by the product owner in the Scrum agile development
methodology.

 30

Each artefact, depending on the context, has different quality characteristics
concerning operationalisation of stakeholders’ requirements (Sjöström, 2010;
Helfert et al., 2012). Given the importance of quality characteristics and their
significant impact on artefact development, there is much interest regarding
research into quality characteristics and how to evaluate artefacts (Hevner et
al., 2004, p. 83; Venable et al., 2016).

Gill & Hevner (2013) point out that an artefact’s usefulness8 attribute has
been widely used in Information Systems as the main evaluation criterion for
its success (Delone & Mclean, 1992; Delone & Mclean, 2003). In this setting,
utility9 and usefulness are treated as synonyms. Gill & Hevner (2013) ex-
tended the ideas of evaluation of the artefacts from usefulness (i.e., the quality
of being useful) to fitness (i.e., ability to sustain its usefulness over time). To
sustain usefulness, artefacts require what Gill & Hevner (2013) refer to as a
fitness characteristic (such as novelty, openness, and elegance) which involves
the adaptation and evolution of the artefacts. Lakew (2013) further elaborated
this as the end-users continuously defining the usefulness of the artefact (i.e.,
making contextual affordances using the artefact functions and properties),
while the designer of the artefact insets fitness characteristics to sustain the
usefulness of design artefact (i.e., perpetuates fitness and enables long-term
use of artefact). So, in this dissertation, sustaining usefulness refers to the ap-
propriation (estimation, inset, and enactment) of fitness characteristics in the
design process by the designer(s) to ensure that the functionality of the artefact
remains available – improved and supported – and used (survives), reused, or
extended with reasonable efforts (reproduced and evolved) in the future. As
fitness characteristics were only recently introduced for DSR, there is a lack
of empirical studies that show how designers relate to the fitness characteris-
tics in actual design practice. In fact, Gill & Hevner call for revision and clar-
ification of fitness through future empirical and explanatory research (2013,
p. 14).

As commented by Ambati and Kishore (2004), Hastings et al. (2014), and
Störrle et al. (2016), the academic research context is different from the com-
mercial. Hence, in this dissertation, it is postulated that the quality character-
istics of design artefacts in academic settings will likely be different from
those of other artefacts. The academic research context refers to the environ-
ment or community concerned with scientific research, sponsored by research
grants and public funding. The academic research context is unique regarding
its goals of exploring the unknown and its demands on quality assurance and
reproducibility. Despite research software being used in most academic re-
search settings and extensively so in eHealth, characteristics that impact on

8 Usefulness can be defined as the extent to which a system can be used to achieve specific
goals.
9 In the design science research context, the term utility is applied as the utility of a tool, which
generally means the usefulness of a tool. Utility is referred to as a characteristic of the design
artefact in addition to other characteristics (e.g., quality, efficacy).

 31

sustaining the usefulness of eHealth research software have not yet been stud-
ied in an academic research context or at least not for a prolonged period
throughout all stages of its lifecycle (i.e., proof-of-concept, development, pro-
duction, operational/maintenance, and phase-out or withdrawal). We recall
that eHealth interventions are very complex to design and evaluate; conse-
quently, the same applies to eHealth research software. There are additional
stakeholders in the academic research context, including those who develop,
implement, use/re-use, support, control, study, extend, make decisions, and
provide funding. Stakeholders are likely to have differing views of the system
and different criteria for success (Venable et al., 2016). Consequently, in sus-
taining the usefulness of eHealth research software, the stakeholder perspec-
tive needs to be included, as the selection of the quality characteristics is also
subject to the stakeholders’ goals and objectives for the system (Cho et al.,
2012).

1.6 Research Aim
Based on the described problems and knowledge gaps, this dissertation aims
to contribute with design knowledge on sustaining the usefulness of eHealth
research software. The dissertation draws on six years’ engagement and eight
years of data from designing eHealth research software in an academic re-
search context in Sweden. I seek to develop relevant and useful design
knowledge (Hevner et al., 2004). In doing so, I pursue the ongoing quest for
answering Orlikowski & Iacono’s (2001) call to theorise the artefact in a spe-
cific domain (i.e., eHealth research software) (Akhlaghpour et al., 2013). Gill
& Hevner (2011) suggested that “we need to move beyond just thinking about
usefulness as the nature of utility of the artefact” and ask ourselves “How can
I make that artefact sustainable? How can it adapt to change in an environ-
ment?”. The overall research aim is to explore what Information Systems re-
searchers and practitioners need to be aware of for sustaining the usefulness
of eHealth research software in the academic research context. The primary
research aim has been divided into three sub-questions.

RQ1: Which quality characteristics of eHealth research software im-
pact on sustaining its usefulness in the academic research context?

Researching this question would provide insights on the use of quality char-
acteristics by Information Systems researchers and practitioners in sustaining
the usefulness of eHealth research software in the academic research context.
This is the main concern of the next question:

 32

RQ2: How do Information Systems researchers and practitioners ap-
proach quality characteristics for sustaining the usefulness of eHealth
research software in the academic research context?

Further, this dissertation aims to move beyond mere descriptive and explana-
tory knowledge, into prescriptive knowledge. Design principles are design de-
cisions and design knowledge that are intended to be manifested or encapsu-
lated in an artefact (Gregor, 2002). Design principles recommend how to ad-
dress a specific class of problems or class of solutions in a range of settings
(Markus et al., 2002; Sein et al., 2011; Mckenney & Reeves, 2012). Answers
to RQ2 would provide insights to generate and articulate prescriptive
knowledge (i.e., design principles) to guide Information Systems researchers
and practitioners in sustaining the usefulness of eHealth research software.
The design principles are one of the effective ways to capture abstract
knowledge about the design artefact in Information Systems (Chandra Kruse
et al., 2016). This leads us to the third question:

RQ3: What design principles should guide Information Systems re-
searchers and practitioners in sustaining the usefulness of eHealth re-
search software in the academic research context?

The dissertation is aimed primarily at Information Systems researchers and
practitioners. Considering the academic research context and research soft-
ware, this dissertation might be of interest to researchers and practitioners in
other fields. Following Baskerville & Myers’ (2002) suggestion, the disserta-
tion also aims to disseminate the research output to a broader audience. The
dissertation targets practitioner communities, such as Information Systems,
software engineering, health informatics, and research software engineering,
providing quality characteristics, design principles, and lessons learned as re-
gards designing and sustaining the usefulness of eHealth research software in
an academic research context. The design principles are formulated as a ready
guide for the practitioners to apply in their design contexts.

Another target audience is the research community (i.e., Information Sys-
tems researchers, design science researchers, and action design researchers)
informing about the appropriation of the fitness-utility model and action de-
sign research (ADR) method, while presenting longitudinal and rich (in-depth
contextualised) empirical cases to show how designers relate to the quality
characteristics in actual design practice. One of the aims is to gain an in-depth
understanding of the problem domain and how results that emanate from this
understanding can be generalised (e.g., design principles), given that multiple
cases of evidence emerge in a complex research context during a longitudinal
study.

 33

1.7 Demarcation
There are different types of design artefacts (e.g., a construct, a model, a
method, an instantiation, or a design theory), but this dissertation’s primary
focus is on instantiation design artefacts (e.g., prototypes, software, and infor-
mation systems). This research merely examines the design practice regarding
Information Systems researchers’ and practitioners’ general attentiveness to
the quality characteristics of eHealth research software, while assessment of
usefulness and sustainability of the outcome of the research (efficacy of re-
search), for example, the eHealth intervention itself, is beyond the scope of
this research at this point. The research is focused on one eHealth research
project in an academic research context that is sponsored through academic
research grants and public funding. Thus, it excludes research contexts that
are industry-funded, academic-industry collaborations or partnership, as they
may differ from purely academic pursuits regarding research objectives, meth-
odological rigour, transparency, duration, and anticipated outcomes (Pham et
al., 2016).

1.8 Dissertation Outline
This dissertation is written as a monograph with nine chapters. The chapters
are ordered so as to optimise flow and make it easier for the reader to gain a
progressive understanding of the research work. Therefore, it is suggested to
read the text in sequential order. In some cases, readers may benefit from con-
sulting the appendices for a more comprehensive understanding of the issues
in focus, as some text, figures, and tables are presented therein for reasons of
clarity. The structure of the dissertation is as follows:

Chapter 1 describes the research problem (class of problems). This chapter
defines design artefacts, research software, sustainable research software, and
the academic research context. Further, it examines the challenges associated
with the academic research context and eHealth research software design. The
chapter concludes with a discussion of the research problem, research aim,
research questions, and demarcation of the dissertation.

Chapter 2 presents the knowledge base. This dissertation is positioned in
the research domain of design-oriented Information Systems research and In-
formation Systems Design. This chapter presents – and motivates the use of –
essential theories and introduces the reader to some relevant concepts.

Chapter 3 discusses the empirical foundation. The organisational context is
described in detail, considering the importance given thereto in the research
method chosen (i.e., ADR). Relevance is a key attribute in DSR. This chapter
makes the empirical context (i.e., relevance cycle) explicit.

Chapter 4 explain the research design (i.e., rigour cycle). The ADR method
– a practice-inspired DSR approach – is presented. ADR allowed me to engage

 34

directly and collaborate actively with stakeholders, in order to learn about sus-
taining the usefulness of eHealth research software.

Chapters 5–7 present three longitudinal ADR cases (i.e., design cycles) to
provide rich insights (such as design principles) and the evaluation of the ar-
tefact in practice. The activities during the iterative Building, Intervention, and
Evaluation cycles are described in detail to provide transparency in how the
artefact was built, evaluated in practice, and the resulting changes that were
made in the relevant context.

Chapter 8 synthesises learnings from the three ADR cases over an extended
period (longitudinal) and presents retrospective analysis and reflections.

Chapter 9 discusses, concludes, and communicates the research contribu-
tions and present implications for research, practice, and future work.

 35

2 Knowledge Base

This dissertation is positioned in the research domain of DSR and Information
Systems Design. This chapter presents – and motivates the use of – essential
theories and introduces the reader10 to some relevant concepts. The first two
sections (2.1 and 2.2) familiarise the reader with the DSR approach to re-
searching and designing (including evaluating) research software, in particular
to the fitness-utility model that serves as the point of departure for this re-
search. The research software is part of an ecology of technology; Section 2.3
presents the ecology of artefacts theory that is used in this dissertation to
acknowledge this phenomenon. The academic research context has many
stakeholders and uncertain requirements that evolve over time; therefore, the
agile software development methodology was used in the design of the re-
search software in this dissertation. Therefore, a presentation of agile software
development and refactoring is made in Section 2.4.

2.1 Design Science Research
Design science traces its roots to the 1969 book Science of the Artificial by
Herbert Simon. The purpose of design is “to change existing situations into
preferred ones” (Simon, 1996). Design scientists creates artefacts: “something
created by humans usually for a practical purpose.” Walls et al. (1992), March
& Smith (1995), and Hevner et al. (2004) highlight the need for DSR in In-
formation Systems. The purpose of DSR is to achieve knowledge and under-
standing of a problem domain, and its solution, in the building and application
of the designed artefact. DSR encourages researchers to develop knowledge
that Information Systems practitioners can use in their professional domain
(e.g., Routine Design) to design solutions to their problems (Hevner &
Chatterjee, 2010). In DSR, the artefact design cycle (building and evaluating)
is informed by the rigour cycle (i.e., providing a grounding from and addition

10 Information Systems researchers and practitioners are presumably knowledgeable about DSR
and Information Systems development. The dissertation also targets to a broader academic re-
search audience. Furthermore, the research presented in this dissertation was conducted in a
multi-disciplinary research setting. It is necessary to explain the essential theories and relevant
concepts considering the heterogeneous background of the target audience. If the reader is fa-
miliar with the topic presented, s/he can skip the section. Nonetheless, the following sections
are essential in enabling the reader to understand the empirical context.

 36

to the knowledge base) and the relevance cycle (i.e., inputting requirements
and acceptance criteria from the relevant context and introducing the evalua-
tion environment) (Hevner, 2007).

The knowledge contribution of a DSR project is difficult to identify, as one
has to recognise the nature of the artefact being designed, the audience to com-
municate with, the publication outlet, and the state of the knowledge field
(Gregor & Hevner, 2013). To facilitate and position DSR contributions,
Gregor and Hevner (2013) provided a DSR Knowledge Contribution Frame-
work (a 2 x 2 matrix). The framework consists of two dimensions, i.e., the
application domain maturity (the opportunities or problems) and the solution
maturity (the possibilities of existing artefacts). Based on these two dimen-
sions, there are four quadrants.

Figure 1. DSR knowledge contribution framework (Gregor & Hevner, 2013).

Figure 1 describes the four quadrants as invention, improvement, exaptation,
and routine design. According to the framework, DSR contributions can fall
into any one of these quadrants. This framework is used to position the ma-
turity of the artefact of this dissertation (i.e., the U-CARE software system).

 37

2.2 Evaluation
Evaluation has been highlighted as a fundamental activity in DSR (March &
Smith, 1995; Hevner et al., 2004; Vaishnavi & Kuechler, 2004; Venable,
2006). Through evaluation, the researcher demonstrates the usefulness and ef-
ficacy of proposed design artefacts (Hevner et al., 2004). Evaluation provides
feedback for further development and assures the rigour of the research. The
extant DSR literature identifies a variety of different evaluation methods
(March & Smith, 1995; Hevner et al., 2004; Vaishnavi & Kuechler, 2004;
Venable, 2006; Peffers et al., 2007; Tremblay et al., 2010; Sonnenberg &
Vom Brocke, 2012; Gill & Hevner, 2013; Prat et al., 2014; Venable et al.,
2016). Two methods are relevant to this dissertation regarding the quality
characteristics: the framework for evaluation in design science research
(FEDS) (Venable et al., 2016) and the fitness-utility model (Gill & Hevner,
2013). Determining the properties to evaluate is an essential step in the FEDS
(Venable et al., 2016). During the tutorial at CAiSE 2015 conference, while
discussing the FEDS, Venable described an explicit list of quality character-
istics (he referred to them as properties) for evaluating design artefacts
(Venable et al., 2015). While the list provides an excellent starting point for
reflecting and considering quality characteristics, it is not as explicit as the
fitness-utility model (Gill & Hevner, 2013) regarding sustaining the useful-
ness of design artefacts. Gill & Hevner (2013) postulate that artefacts need to
exhibit a certain number of fitness characteristics to be of long-term value in
society. As long-term value is especially important in the eHealth domain,
given the need to sustain eHealth research software, the fitness-utility model
is considered as a point of departure for the evaluation method in this disser-
tation, and is explained in detail in the next section.

The Fitness-Utility Model
Gill & Hevner (2013) provided a view on design artefact quality that expands
the prevailing focus on utility as usefulness in DSR. They proposed to con-
sider artefacts’ fitness aspects in addition to their usefulness. They understand
fitness in an evolutionary sense in two ways: first, an abstract artefact can be
adapted to (i.e., be useful in) different contexts (reproduction) and, second, an
artefact at the instance level can provide sustained usefulness by adapting to a
changing context (survival).

Gill & Hevner (ibid.) argued that the design system that supports the emer-
gence of an artefact is important for the long-term evolution and diffusion of
the artefact in the evolving design landscape. They proposed that designers (in
practice) base their designs on more or less explicit utility functions. These
choices of the designers evolve as the designers interact with various stake-
holders in the design process. An artefact that does not continuously evolve
through design actions is likely to become obsolete more quickly than one that

 38

is frequently revised based on new requirements from stakeholders in its ap-
plication environment. Over time, the evolutionary fitness of a design artefact
becomes far more interesting than the use fitness at any particular point in
time. Gill & Hevner operationalised the fitness concept by proposing a pre-
liminary list of fitness characteristics to be included in the utility function of
the artefact designer(s).

Figure 2. Design fitness characteristics and usefulness (according to Gill & Hevner,
2013).

The fitness-utility model also recognises that usefulness characteristics have
a significant role in design fitness, as illustrated in Figure 2. Those character-
istics that impact task performance directly can be classified under usefulness
(e.g., usability). The area within the fitness ellipse outside of the intersection
with the usefulness ellipse reflects other characteristics that impact on fitness
(e.g., decomposability).

 39

Table 1. Fitness characteristics

Characteristic Definition
Decomposability Artefacts that are decomposable into smaller units allow a redesign of

singular units to cope with external changes, instead of requiring re-
design of the entire artefact.

Malleability Artefacts that are malleable can be adapted to cope with changing en-
vironments. They can also be adapted to be used for unintended pur-
poses.

Openness Artefacts that are open for inspection and change allow their end-us-
ers a rapid adaptation to changing environments. Malleability, de-
composability, and openness are complementary and enhance each
other.

Embedded in de-
sign system

When artefacts are part of systems where design and changes are
common, it can be expected that they evolve more rapidly than when
design and change are uncommon.

Novelty Novel artefacts, provided they are viable, can trigger and lead a wave
of innovation or change for an entire landscape of artefacts

Interestingness Interesting artefacts may fascinate designers, researchers, or users
and thus lead to a wave of change or innovation – especially when ar-
tefacts are novel and interesting at the same time.

Elegance Artefacts perceived as elegant – in addition to being functional
(useful) – may trigger positive reactions in users and therefore be
adopted or used more often or have increased longevity.

Table 1 describes fitness characteristics (referred to as quality characteristics
in this dissertation).

2.3 Ecology of Artefacts
“Ecology is a theory of how large numbers of species of organisms interact
with one another and in that process feed on each other, reproduce, proliferate,
find their niches, or die” (Krippendorff, 2006, p. 193). Like biological species,
human-designed artefacts also interact with each other, both with their own
kind, but also, more importantly, with artefacts of other species; the important
difference is that the former interact on their own terms and the latter on hu-
man terms. Designers cannot ignore these interactions, as their designs will
enter into relations with other artefacts and must be designed to survive such
ecological interactions. Designers need to recognise the meaning of an
ecology of artefacts to produce successful designs (Krippendorff, 2006). Krip-
pendorff suggests that “designers who can handle the ecological meanings of
their proposals have a better chance of keeping their designs alive” (2006, p.
202).

In the ecology of artefacts, the meanings attached to an artefact consist of
its possible interactions with other artefacts. When designing a new artefact,
designers need to build upon existing artefacts and relate their new artefact to
the knowledge base (Sjöström et al., 2012). For example, from a developer

 40

perspective, a design artefact depends on software development tools, lan-
guages, frameworks, and design patterns; from an architect perspective, it de-
pends on infrastructure; from a management perspective, it depends on pro-
cesses, procedures, rules, and regulations in the organisation; and from other
stakeholders’ perspectives, the ecology may look different. From a technolog-
ical point of view, ecology includes the dependencies between the artefact in
focus and boundary objects (e.g., plug-ins, APIs, and frameworks). There is a
need to continuously keep an artefact in sync with such boundary objects to
promote artefact mutability.

In the academic research context, research software is similarly connected
to an ecology of artefacts. Researcher/practitioners need to design new re-
search software using multiple technologies11 and relate them to the existing
ecology of research software.

2.4 Agile Software Development
Globalised and uncertain business environments, combined with rapid ad-
vancements in technology, put new strains on software developers. This is
especially true in the complex eHealth research environment and academic
research context. The software developers have to face constant changes in
the user requirements, the organisation, and the environment. Also, user re-
quirements are often hard to define or visualise and can rarely be anticipated
to be stable throughout a project. As a consequence, a software development
methodology referred to as agile has emerged (Cockburn, 2001). In an agile
process, software is developed and tested in short repeated cycles. The practi-
tioners claim agile software development to be more responsive to changes in
business needs than other, traditional methods (Beck et al., 2001).

11 I have chosen technology as an umbrella term for tools, programming languages, frameworks,
libraries, scripts, plugin-ins, add-ons, templates, IDEs, compilers, interpreters, browsers, oper-
ating systems, software applications, web applications, web services, design patterns, design
principles, design (best) practices, design methods, recommendations, specifications, standards,
laws, protocols, and hardware related to Information Systems development.

 41

Figure 3. The relationship between agile values, principles, and practices.

Agile is not another software development process – it is more of a mind-set,
a way of thinking about software development. The best way to illustrate our
understanding of agile is through Figure 3. The agile software development
lifecycle is flexible enough to enable organisations to have the ability to re-
spond to constant change. Agile values attempt to focus on what adds value in
a software development process. A set of 12 principles, defined in the agile
manifesto12, represents the characteristics of an agile process that welcome
change and focus of work are on the customer. For example, the principle –
customer satisfaction through early and continuous delivery of valuable soft-
ware – emphasises provision of working software at regular intervals. Simi-
larly, another principle – regular reflections on how to become more effective
– emphasises the importance of reflecting on how to become more effective,
and adjusting the process accordingly.

Agile practices are activities that are used to manifest or implement agile
principles and values. The agile mind-set can be applied to any process using
any set of practices. There are numerous agile practices, such as user stories,
test-driven development (TDD), daily stand-up meetings, et cetera. Specific
tools and techniques, such as automated unit testing, continuous integration,
pair programming, design patterns, code refactoring, and other techniques are
often used to improve quality, enhance project agility, and make it easier to
build the product evolutionarily (Beck et al., 2001).

Agile software development involves delivering working and tested soft-
ware in two- to four-week iterations. As the iterations flow, software develop-
ers are coding more and modifying code more, while staying focused on dead-
lines. Agile teams have to maintain and extend their code a lot from one iter-
ation to the next. Refactoring is used to keep the code easy to maintain and
extend.

12 https://agilemanifesto.org/principles.html [accessed: January 9, 2012].

Agile
Practices

Agile
Principles

Agile
Values

The need
to respond
to constant

change

 42

Refactoring
Martin Fowler popularised the term refactoring (Fowler et al., 1999; Fowler,
2018), defining it as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its ob-
servable behaviour.” In the agile methodology, continuous evolution in soft-
ware design requires regular refactoring. If not, the code will rot, to paraphrase
Martin (2000). Every time developers change code without refactoring it, rot
worsens and spreads. Code rot frustrates us, costs time, and ultimately short-
ens the lifespan of useful systems. Refactoring leads to two main benefits:
maintainability (it is easier to fix bugs, as the source code is easy to read and
easy to grasp); and extensibility (it is easier to extend the capabilities of the
application by providing some flexibility where none may have existed be-
fore).

Almost invariably, in agile projects, software developers can be so focused
on achieving the needed functionality that the software itself grows less com-
prehensible, more complex, and harder to change. Since such a deterioration
of the system usually reflects a lack of refactoring, it can be viewed as a kind
of [technical] debt13 that software developers owe the system (Shull, 2011).

Figure 4. Technical debt landscape (adapted from Kruchten et al., 2012; Tom et al.,
2013).

Kruchten et al. (2012) presented a possible structure of a technical debt land-
scape during system evolution. Figure 4 shows a likely technical debt land-
scape after incorporating constructs like knowledge distribution debt and en-
vironmental debt (Tom et al., 2013). New functionalities to be added and de-
fects to be fixed are visible elements, while technical debt is mostly invisible

13 Technical debt is a metaphor coined by Ward Cunningham (in his experience report presented
at the OOPSLA'92 conference) to help software developers think about this problem.

Architecture Code

Design and architectural debt Low internal quality

Structural debt Code complexity Code smells

Testing debt Coding style violations

Knowledge distribution and Documentation debt

Environmental Debt

M o s t l y i n v i s i b l eVi s i b l e Vi s i b l e

E v o l u t i o n i s s u e s : e v o l v a b i l i t y Q u a l i t y i s s u e s : m a i n t a i n a b i l i t y

New features

Additional
functionality

Defects

Low external quality

Te
ch

no
lo

gi
ca

l g
ap

 43

(or rather, visible only to software developers). The ideal situation is to
minimise the technical debt in the rectangular box (Kruchten et al., 2012). The
left side of the landscape deals primarily with evolution or its challenges,
whereas the right deals with internal and external quality issues.

 45

Part II: Relevance and Rigour

 47

3 Empirical Foundation

Relevance is a key attribute in DSR (Hevner, 2007). This chapter clarifies the
empirical context (relevance cycle). Researchers need to explicitly consider
the context of their research (Davison & Martinsons, 2016). The organisa-
tional context is described in detail, considering the importance it is given in
the research method chosen (i.e., ADR). The explicit specification of the con-
text in which the research was conducted will facilitate an understanding of
the research design and the contexts in which the research results may be use-
ful. The empirical context of the dissertation is the U-CARE research pro-
gramme, hosted by the research group Clinical Psychology in Healthcare at
Uppsala University; it has similar complexity and constraints that any aca-
demic research context might have. This chapter first presents the U-CARE
case organisation. After that, a detailed description of the eHealth research
software, the U-CARE software system (the artefact), and the U-CARE design
process are given. Lastly, an account of design science research at U-CARE
and the representative and unique characteristics of U-CARE as an academic
research context are presented.

3.1 Academic Research Context Challenges
The academic research context is continually influenced by and adapted to the
academic community through, for example, academic journals, funding agen-
cies, government institutions, and research ethics boards (Sjöström, von
Essen, et al., 2014). Despite an increasing dependence on research software,
software development practices14 in academia lag far behind those in the com-
mercial sector. One reason for this is that developing software in an academic
research context is very challenging (Hastings et al., 2014). For example, ac-

14 For example, modularity, documentation, version control, shared code ownership, code com-
ments, coding consistency (coding style), test coverage, code review, test driven development,
automated builds and tests, continuous integration, continuous deployment, technical commu-
nications, group decision-making, et cetera.

 48

ademic research projects largely depend on public funding and require trans-
parency and openness. Störrle et al. summarise these challenges (in his talk15)
as follows:

i) a high degree of unknown unknowns, finding out about the requirements is
an essential part of the journey; ii) diverse stakeholders with strong opinions,
diverging priorities, limited availability, and no software engineering exper-
tise; iii) long-lasting development on a shoestring budget, but with highly qual-
ified personnel; iv) involvement of substantial numbers of junior subject matter
experts (a.k.a., students), that are acting as programmers. (2016, p. 1)

Groen et al. (2015) argue that software development practices in academia
differ from those in commercial development settings and described the rea-
sons as follows:

the relatively small and transient development teams found in academic set-
tings, […the] project-focused development [… and the fact that] academic
software development is rarely performed by full time code developers, and if
so, these members are typically hired on short-term contracts with a focus on
a specific subset of the code. Most scientific software is developed by research-
ers such as PhD students and [post-docs] who split their time between code
development and research activity. This dichotomy has led to a some-what re-
luctant and heterogeneous adoption of rigorous software engineering practices
in academic contexts. (2015, p. 2)

Groen et al. (2015) further argue that limited research has been conducted on
assessing software development practices in academia. Liu et al. (2008) also
point out that there is much less research on the research software develop-
ment process in an academic context than on the industrial software develop-
ment process. As the academic research context evolves from a simple to a
complex or even a mission/life-critical context, the software can quickly be-
come very complex (Sommerville, 2011). Hence, sustaining the usefulness of
the research software (i.e., the design artefact) is important for the long-term
evolution and diffusion of the research software in the changing design
landscape (Gill & Hevner, 2013).

eHealth research contexts, due to the complexity of health care organisa-
tions, are particularly complex (Plsek, 2003; Lipsitz, 2012). Many eHealth in-
novations do not result in sustainable health care practices (van Gemert-Pijnen

15 The talk was held at the first Research Software Engineers Conference in Manchester, UK,
in September 2016. It is important to note that the working paper (an experience report) regard-
ing the talk was received from Associate Professor Harald Störrle (Technical University of
Denmark, hsto@dtu.dk) [February 26, 2017] on personal request, while the abstract of the talk
is available at https://ukrse.github.io/conf2016_talks [accessed: September 16, 2016] and the
presentation of itself is available at https://drive.google.com/open?id=0BxBBX2ag-
SwZhcV9YTFl6VzdqZmM [accessed: September 16, 2016].

 49

et al., 2011). Nijland (2011) identifies three types of difficulties with the up-
take of eHealth: slow diffusion, low acceptance, and low adherence. Many
eHealth projects fail to survive beyond the pilot phase, so questions remain
about how eHealth innovations can be sustainable (Nijland, 2011). Therefore,
there is a need for research to fully understand practices in an academic
research context that enable sustaining the usefulness of the research software
in the complex and evolving eHealth research context.

3.2 U-CARE
The Uppsala University Psychosocial Care Programme (U-CARE)16 is one of
the Swedish government’s strategic research programmes, started in 2010 to:

offer internet-based psychosocial support and psychological self-help to all
those who need such help because of a physical illness, no matter where in
Sweden they live and no matter what kind of psychosocial resources are avail-
able to them locally. (u-care.uu.se, 2012)

The key task of this research programme was to establish the foundation for a
new research environment for psychological support and treatment via the in-
ternet. In the early stages of the process, the decision was made to develop a
specific system to meet the requirements of the programme, since existing
systems did not meet the diverse requirements. One way this was to be
achieved was in the form of the U-CARE software system, which facilitates
patients’ psychological treatment and support for issues resulting from physi-
cal illnesses, while also providing a chance to study the effectiveness of the
aid provided. The U-CARE specialises in the development, piloting, and eval-
uation of Mental Health interventions for people with somatic disease, and
their significant others, for example e-Health interventions. In this ongoing
research programme, researchers from caring sciences, clinical psychology,
health economics, and Information Systems at Uppsala University collaborate
closely to design, develop, and use the U-CARE software system to run ran-
domised control trials (RCTs), deliver eHealth interventions, and study their
effectiveness. Initially, the software was built to support three RCTs with their
different programmes, to study the effects on anxiety and depression of self-
help programmes, delivered via the internet, among adolescents with cancer,
among adults with cancer, and among adults after myocardial infarction, re-
spectively. Since its inception, many research groups have started collabora-
tions with U-CARE to use the U-CARE software system to run their studies
(referred to as associated studies in the U-CARE context).

16 http://www.u-care.uu.se [accessed: January 9, 2012].

 50

Figure 5. U-CARE organisational chart17.

U-CARE has gone through some structural changes within its organisation
over the years. Figure 5 gives an overview of the present organisation in U-
CARE and categories of stakeholders. The steering committee decides on
guidelines and establishes regulations for operations. The executive commit-
tee is responsible for the implementation of the project plan. The advisory
board (also referred to as a scientific advisory board – SAB) consists of well-
known expert researchers from various fields as well as people with lived ex-
perience of being a patient or relative, and being a research partner. The advi-
sory board reviews the studies and proposes changes. The advisory board
meets co-workers within the research programme at least once a year18. The
programme director leads operations in U-CARE. The advisory board and
management team support the programme director in executing research ac-
tivities. The U-CARE is further divided into three areas:

i) Research – To carry out innovative research of high international
quality with regard to the importance of psychological factors for
somatic diseases, psychological and economic consequences of
somatic diseases, as well as development, testing, and evaluation
of psychological interventions.

ii) Education – To offer high-quality education at the undergraduate
level, master’s level, and postgraduate level in clinical
psychology, eHealth and implementation.

17 http://www.u-care.uu.se/vision-goals-organisation/organisation-and-documents/Organisa-
tion-of-U-CARE/ [accessed: November 13, 2017].
18 SAB meetings were conducted once a year for five years (2011 to 2015). Now, these meetings
have been moved to coincides with U-CARE Venue, held bi-annually.

 51

iii) Collaboration – To contribute to interventions developed within
U-CARE being implemented within health care.

U-CARE has three activities across three areas:

i) U-CARE Healthcare – provides care to patients (only within
research).

ii) U-CARE Venue – a bi-annual interdisciplinary forum for
research within the field of psychosocial care.

iii) U-CARE Portal – develops and continuously improves the U-
CARE software system, through which self-help programmes are
offered and their effects studied.

The treatment provided through U-CARE falls within the framework of re-
search at Uppsala University. U-CARE complies with the Swedish laws and
regulations that govern health care, which means that persons receiving care
in U-CARE have the same protection and rights as they would when receiving
care from any other Swedish caregiver. The treatment provided by U-CARE
is free of charge, and it is offered to research participants in the target groups
within research studies. As U-CARE provides the care to research partici-
pants, it has a health care provider responsibility as well (i.e., U-CARE
Healthcare – a system/organisation for the caregiving part). The research par-
ticipants (only the ones who actually receive care, not control or reference
groups, nor in observational studies) are considered to be patients in U-
CARE’s health care provider context. U-CARE has treatment materials li-
censed under Creative Commons (CC BY 2.5), to facilitate efficient use/re-
use of resources. Such a licence enables treatment material created across var-
ious research groups and research studies to be shared.

From the above overview of U-CARE, it is evident that this dissertation
emanated from a multi-disciplinary research setting. U-CARE research stud-
ies follow scientific methods and standards in medical studies. An overview
of what a study looks like in the U-CARE context is given in Appendix B.1;
this may help a medical layperson to understand the research studies, empiri-
cal data, and quotes from the clinical researchers.

Ta
bl

e
2.

 R
es

ea
rc

h
st

ud
ie

s u
si

ng
 th

e
U

-C
A

R
E

so
ftw

ar
e

sy
st

em

N
am

e
D

es
cr

ip
tio

n
C

at
eg

or
y

In
cl

us
io

n
du

ra
tio

n
Pa

rt
ic

ip
an

ts
19

U
-C

A
R

E
A

du
ltC

an

A
 ra

nd
om

is
ed

 c
on

tro
lle

d
tri

al
 to

 st
ud

y
th

e
ef

fe
ct

 o
f a

 st
ep

pe
d

ca
re

 se
lf-

he
lp

 p
ro

gr
am

m
e

vi
a

th
e

in
te

rn
et

 o
n

an
xi

et
y

an
d

de
pr

es
si

on
 a

m
on

g
ad

ul
ts

 w
ith

 c
an

ce
r.

U
-C

A
R

E
20

13
–2

01
7

1,
11

7

U
-C

A
R

E
H

ea
rt

A
 ra

nd
om

is
ed

 c
on

tro
lle

d
st

ud
y

of
 th

e
ef

fe
ct

 o
f a

n
in

te
rn

et
-b

as
ed

 p
sy

-
ch

ol
og

ic
al

 se
lf-

he
lp

 p
ro

gr
am

m
e

on
 a

nx
ie

ty
 a

nd
 d

ep
re

ss
io

n
in

 p
os

t-m
y-

oc
ar

di
al

 in
fa

rc
tio

n
(M

I)
 a

du
lt

pa
tie

nt
s.

Th
e

st
ud

y
ai

m
s t

o
ex

am
in

e
th

e
cl

in
ic

al
 e

ff
ic

ac
y

an
d

co
st

-e
ff

ec
tiv

en
es

s o
f i

nt
er

ne
t-b

as
ed

 c
og

ni
tiv

e
be

-
ha

vi
ou

ra
l t

he
ra

py
 fo

r p
os

t-M
I p

at
ie

nt
s.

U
-C

A
R

E
20

13
–2

01
6

1,
05

2

U
-C

A
R

E
Y

ou
ng

-
C

an

A
 fe

as
ib

ili
ty

 st
ud

y
of

 a
n

in
te

rv
en

tio
n

in
cl

ud
in

g
ps

yc
ho

so
ci

al
 su

pp
or

t
an

d
ps

yc
ho

lo
gi

ca
l t

re
at

m
en

t v
ia

 th
e

in
te

rn
et

 to
 a

do
le

sc
en

ts
 a

nd
 y

ou
ng

ad

ul
ts

 st
ru

ck
 w

ith
 c

an
ce

r d
ur

in
g

ad
ol

es
ce

nc
e.

U
-C

A
R

E
20

15
–2

01
6

6

U
-C

A
R

E
Pa

r-
en

ts
C

an

A
 st

ud
y

fo
cu

se
d

on
 o

ff
er

in
g

ps
yc

ho
lo

gi
ca

l h
el

p
vi

a
th

e
in

te
rn

et
 to

 p
ar

-
en

ts
 o

f c
hi

ld
re

n
w

ith
 c

an
ce

r.
[P

ar
en

ts
C

an
 h

as
 m

ul
tip

le
 p

ha
se

s.
In

 th
e

fir
st

 p
ha

se
, t

he
 st

ud
y

w
as

 d
es

ig
ne

d.
 In

 th
e

se
co

nd
 p

ha
se

, a
 su

b-
st

ud
y

(P
U

SS
EL

) w
as

 e
xe

cu
te

d.
]

U
-C

A
R

E
20

16
–2

01
7

12
1

U
-C

A
R

E
M

A
Y

A

A
 st

ud
y

to
 id

en
tif

y
ca

nc
er

-r
el

at
ed

 e
m

ot
io

na
l s

uf
fe

rin
g

in
 y

ou
ng

 p
eo

pl
e

di
ag

no
se

d
w

ith
 c

an
ce

r d
ur

in
g

th
ei

r t
ee

na
ge

 y
ea

rs
 a

nd
 to

 d
ev

el
op

 p
sy

-
ch

ol
og

ic
al

 tr
ea

tm
en

ts
 to

 a
lle

vi
at

e
su

ch
 su

ff
er

in
g.

 [T
he

 st
ud

y
us

ed
 th

e
U

-C
A

R
E

so
ftw

ar
e

sy
st

em
 o

nl
y

to
 c

ol
le

ct
 re

se
ar

ch
 p

ar
tic

ip
an

ts
’ c

on
-

se
nt

.]

U
-C

A
R

E

20
15

–2
01

5
10

U
PP

S
A

n
ob

se
rv

at
io

na
l s

tu
dy

, U
pp

sa
la

 P
el

vi
c

Pa
in

 S
tu

dy
, c

on
ce

rn
in

g
pe

lv
ic

pa

in
 a

ris
in

g
du

rin
g

pr
eg

na
nc

y.

A
ss

oc
ia

te
d

st
ud

y
20

14
–2

01
9

35
6

IS
A

K

A
 ra

nd
om

is
ed

 c
on

tro
lle

d
st

ud
y

of
 th

e
ef

fe
ct

 o
f i

nt
er

ne
t-b

as
ed

 re
la

ps
e

pr
ev

en
tio

n
as

 a
n

ad
ju

nc
t t

o
an

ti-
de

pr
es

si
ve

 m
ed

ic
at

io
n.

A

ss
oc

ia
te

d
st

ud
y

20
14

–2
01

6
10

5

U
-C

A
R

E
Pr

eg
na

nt

A
 ra

nd
om

is
ed

 c
on

tro
lle

d
st

ud
y

of
 th

e
ef

fe
ct

 o
f a

n
in

te
rn

et
-b

as
ed

 in
te

r-
ve

nt
io

n
ai

m
ed

 a
t p

re
gn

an
t w

om
en

 w
ith

 c
hi

ld
be

ar
in

g
fe

ar
s.

A

ss
oc

ia
te

d
st

ud
y

20
15

–2
01

6
27

0

19
 P

ar
tic

ip
an

t c
ou

nt
s u

pd
at

ed
 o

n
M

ar
ch

 0
6,

 2
01

9.

JU
N

O

A
 ra

nd
om

is
ed

 c
on

tro
lle

d
st

ud
y

of
 th

e
ef

fe
ct

 o
f a

n
in

te
rn

et
-b

as
ed

 in
te

r-
ve

nt
io

n
fo

r w
om

en
 w

ith
 n

eg
at

iv
e

or
 tr

au
m

at
ic

 e
xp

er
ie

nc
es

 re
la

te
d

to

ch
ild

bi
rth

 o
r a

bo
rti

on
. T

hi
s a

ls
o

in
vo

lv
ed

 th
e

w
om

en
’s

 p
ar

tn
er

s.

A
ss

oc
ia

te
d

st
ud

y
20

15
–2

01
8

40
1

A
ID

A
-I

 &
 A

ID
A

-I
I

A
 p

ro
je

ct
 a

im
ed

 a
t e

xp
er

im
en

ta
lly

 in
ve

st
ig

at
in

g
ho

w
 p

eo
pl

e
ar

e
re

in
fo

rc
ed

 in
 p

sy
ch

ot
he

ra
py

 a
nd

 h
ow

 th
is

 a
ff

ec
ts

 a
dh

er
en

ce
 a

nd
 d

ro
p-

ou

t.
A

 fu
rth

er
 a

im
 w

as
 to

 e
xa

m
in

e
w

he
th

er
 li

ve
 a

nd
 in

te
rn

et
-b

as
ed

 in
-

te
rv

en
tio

ns
 d

iff
er

ed
 in

 th
es

e
as

pe
ct

s.

A
ss

oc
ia

te
d

st
ud

y
20

15
–2

01
6

18
5

an
d

10
0

EN
G

A
G

E
(1

00
0g

)
A

n
ob

se
rv

at
io

na
l s

tu
dy

 a
im

ed
 a

t g
et

tin
g

an
 o

ve
ra

ll
vi

ew
 o

f t
he

 p
hy

si
ca

l
an

d
m

en
ta

l h
ea

lth
 in

 y
ou

ng
 a

du
lts

 b
or

n
w

ith
 a

n
ex

tre
m

el
y

lo
w

 b
irt

h
w

ei
gh

t.

A
ss

oc
ia

te
d

st
ud

y
20

18
–2

01
9

17
0

 54

A number of research studies are using, have used, or are planning to use the
U-CARE software system (see Table 2 for a brief description). Although most
of the studies focus on clinical psychology and particularly cognitive behav-
ioural therapy (CBT) interventions, the target populations of patients (i.e., re-
search participants) vary as regards cause of their need (e.g., cancer, myocar-
dial infarction, pelvic pain, et cetera), age group, and gender. This shows how
diverse the research studies’ uses of U-CARE are (e.g., design and evaluation
of CBT intervention using RCT, observational or experimental studies, or col-
lection of online consent), yet all depend on the U-CARE software system to
achieve their research goals.

From the perspective of this dissertation, the multiple research studies per-
formed in the U-CARE context can be seen as multiple empirical contexts;
also, U-CARE and the associated studies can be regarded as a variety of aca-
demic research contexts in eHealth. Regardless, the important thing here is
that the U-CARE system has been developed to support various circum-
stances, and also been used in ‘production mode’ under various circumstances.
The different cases have affected the study process and enriched it through the
use by and feedback from a large number of stakeholders with differing views
and empirical contexts. These include various stakeholders representing dif-
ferent research studies with diverging priorities, differing availabilities, and
various expertise connected to clinical research, rather than to software engi-
neering. Also, the table shows the total numbers of participants included in the
research studies and inclusion duration. Inclusion duration refers to the length
of time from addition of the first participant to addition of the last participant.
This is a small part of the overall research study execution period, as it does
not include study design and analysis duration. However, it is important to see
that different studies have different durations and were started at different
dates. Different starting dates and different durations are important for two
reasons. Firstly, different starting dates means that different stakeholders’ re-
quirements came at different times and that the system evolved gradually.
Studies were at different stages, exerting different pressures on the software
development team concerning software development, deployment, and oper-
ation. This means there would be different consequences for stakeholders in
case of any failure. Secondly, the durations show the length of time during
which the software development team had to maintain and support consistent
functionality. The object of study is thus “richer” than a single-use situation.

3.3 The U-CARE Software System – The Artefact
The U-CARE software system is referred to in different ways, for example,
the U-CARE platform, the U-CARE Portal, the U-CARE software, the U-

 55

CARE system, and the U-CARE infrastructure20. The U-CARE software sys-
tem is the main artefact21 discussed in this dissertation. This system is designed
to enable delivery of psychological treatment interventions and data collection
in all research projects undertaken within the framework of the research pro-
gramme.

Figure 6. The U-CARE software system.

20 Hence, any mention of ‘U-CARE’ with ‘platform’, ‘portal’, ‘software, ‘system’, and ‘infra-
structure’ in the text or empirical material of this dissertation refers to the U-CARE software
system.
21 In this dissertation, the U-CARE software system refers to an ‘ensemble artefact’ embed-
ded/immersed in the U-CARE practical/social setting, not the software system or technology
per se.

 56

Figure 6, above, shows a visualisation of the U-CARE software system and
its components. The U-CARE software system consists of various subsys-
tems, such as i) the U-CARE portal (web-based software), ii) a personal data
web service, iii) an event windows service, iv) a cache windows service, v) an
email service, and vi) external services (SMS22, EQ-5D23, Klonk pain survey24,
et cetera). Additionally, there are a few desktop applications for data export,
verification, analysis, and reporting. The Uppsala University25 IT infrastruc-
ture is used for email, database, and web servers. The U-CARE software sys-
tem uses four web servers. First, the production server hosts the U-CARE por-
tal and the content delivery portal. Second, the personal server hosts the per-
sonal data web service and event and cache windows services. Third, the test
server hosts the alpha and beta portals for testing purposes. Fourth, a develop-
ment server hosts Git26 to support source code version control and the team
foundation server (TFS)27 for automatic system builds and testing. Many da-
tabase servers are used for data storage for different web services, for example,
the U-CARE portal, personal web service, alpha, beta, and test portals. Access
to the personal database is restricted, to ensure the security and privacy of
research participants’ personal data.

The U-CARE software system comprises ~200k lines of code and 100+
database tables. Several design patterns from object-oriented design have been
applied, such as the factory design pattern (e.g., Gamma et al., 1995). Inter-
faces28 are used to achieve a weak coupling between classes (e.g., Parnas,
1972; Parnas, 1976; Canning et al., 1989), and to facilitate unit testing29
(Sjöström et al., 2011). Software development using interfaces reduces de-
pendency on implementation specifics and improves the code reusability (e.g.,
Gamma et al., 1995). The U-CARE portal, the central web-based software,
has a layered architecture which includes the foundation, data access, commu-
nication, business logic, and presentation layers. The presentation layer, fol-
lowing the Model-View-Controller (MVC) design pattern, has three further
layers. The U-CARE software system supports various activities and function-
alities regarding research and treatment delivery. Table 3, below, explains
core activities and functionalities related to different user roles.

22 It is offered by http://www.pixie.se/ [accessed: October 9, 2014].
23 EQ-5D is a standardised questionnaire for use as a measure of health outcome. The question-
naire is copyright-protected, and requires a licence, meaning it can only can be used through a
dedicated web service. http://www.euroqol.org/ [accessed: October 9, 2014].
24 http://drawsurvey.com/ [accessed: October 9, 2014].
25 http://www.uu.se [accessed: October 9, 2014].
26 https://git-scm.com/ [accessed: January 16, 2017].
27 https://www.visualstudio.com/tfs/ [accessed: October 9, 2014].
28 Interfaces in object-oriented programming languages are used to define and abstract types
that contains no data or code.
29 Interfaces facilitate unit testing as they are used to create a mock (dummy) implementation
(mocking frameworks are available to do this automatically) to run the tests, without having to
use concrete (real) implementation.

 57

Table 3. Activities and functionalities in the U-CARE software system according to
user roles

User roles Activities and functionalities
[Clinical] Researcher Create and design research studies (according to protocol)
 Customises study-specific features (e.g., allow the user to ac-

cess chat, forum, internal/instant messages (IM) and library)
 Manage research studies
 Schedule events (e.g., reminders)
 Design questionnaires (using generic questionnaire design

tool)
 Design treatment content for psycho-education (i.e., audio,

video, PDF, text, images, et cetera) using the library
 Design intervention treatment (e.g., ICBT modules which in-

clude treatment contents, questionnaires and homework)
 Manage research participants’ consent
 Add a research participant to the research study and send login

information
 Use decision support (i.e., dashboard which provides an

overview of current state of activities)
 Create FAQs
 Choose staff to be shown on About us page
Therapist [i.e., psycholo-
gist]

Design questionnaires (using generic questionnaire design
tool)
Design treatment content for psycho-education (i.e., audio,
video, PDF, text, images, et cetera) using the library

 Design intervention treatment (e.g., ICBT modules which in-
clude treatment contents, questionnaires and homework)

 Follow treatments in accordance with study protocol
 Approve ICBT modules
 Respond to homework tasks
 Communicate with research participants (e.g., using IM)
 Use decision support (using patient indicators framework)
 Moderate forum and chat
 Define flag words (i.e. suicide) that when uses in chat or forum

will alert moderators that they need to pay attention to a partic-
ular conversation

 Answer and monitor FAQ
[Research] Participant *Provide consent online
 *Fill in questionnaires
 *Choose nickname
 *Upload picture [if they want to upload]
 +Go through treatment by completing a list of ICBT modules
 +Access self-help and homework
 +Communicate with therapists (e.g., using IM)
 +Communicate with peers through chat and forum
 + Choose to be visible or not in chat and forum
 +Write personal diary
 +Ask questions to health care professionals
 [*any participant in reference, control or treatment group]

[+functions for treatment group only]
Health care professional Get patient approval to participate in research or be contacted

 58

 Add research participants (at various health care sites across
Sweden)

 Design treatment content for psycho-education (i.e., audio,
video, PDF, text, images, et cetera) using the library

 Moderate forum and chat
 Answer and monitor FAQ
Registrator Add research participants
 Fill in participant-specific questionnaires, often regarding clin-

ical data
 [a Registrator may be assigned to a specific health care site and

can only register data for participants from their site]
U-CARE support Add support issues (received through phone calls or support

emails)
 View research participant and activity snapshots
 Reset research participant flow
[Research] Coordinator Coordinate research groups and studies
[also, product owner] Monitor research study events (reminder, role change, ICBT

offer, et cetera)
 Audit privacy breaches
Any user (except research
participants)

Translate text to research study-specific language (using in-
place translation feature)

The above description of the U-CARE software system shows its complexity.
The U-CARE software system is continuously evolving, expanding, and being
extended, primarily due to new feature requirements from existing and asso-
ciated studies. In addition, the system provides functionality such as (double)
authentication (using dynamic authorisation management), system log for er-
rors and exceptions, log user events and interactions (i.e., referred as respond-
ent behavioural logging – RBL), event management (rule-based engine), data
security and privacy, security/privacy breach monitoring, risk detection re-
garding suicidal patients, send reminders (messages that are scheduled within
a specified timeframe after a specific event), and research participant stratifi-
cation and randomisation.

3.4 Design Science Research at U-CARE
Information Systems researchers, being part of the U-CARE multi-discipli-
nary research environment, have ingrained the design process with knowledge
from the Information Systems field and its sibling disciplines, for example,
software engineering including design patterns (e.g., Gamma et al., 1995), in-
teraction design (e.g., Preece et al., 2002), and internet-based psychosocial
care and cognitive behavioural therapy (e.g., Kraft et al., 2009). The Infor-
mation Systems input is based on a stakeholder-centric (Sjöström & Goldkuhl,
2010; Sjöström, 2010) and iterative approach, promoting a focus on value cre-
ation, combined with ADR (Sein et al., 2011) – a practice-inspired DSR ap-
proach – which allows for ideas and design principles to be gradually refined.

 59

The multi-disciplinary approach in U-CARE resonates well with the ideals of
rigorous evaluation in Information Systems design research, as put forth by
Hevner et al. (2004). Contributions from psychology and economics, disci-
plines with a strong quantitative evaluation tradition, have ingrained the de-
sign research with evaluation methods. The relevance, design, and rigour cy-
cles (Hevner, 2007) were used in the iterative development of the U-CARE
software system.

The overarching ambition among Information Systems researchers, in the
U-CARE context, was to employ a DSR approach to develop novel design
knowledge drawing on their experiences in designing the U-CARE software
system (ISR-1, 2010, IT meetings minutes). Over time, with an increased un-
derstanding of the problem domain, new knowledge interests emerged, for in-
stance in the design process, relating design challenges that were not expected
by U-CARE researchers at the inception of the research process. Such
knowledge interests concern, among other things, decision support for thera-
pists (Sjöström & Alfonsson, 2012), crowd translation (Sjöström & Hermelin,
2013), design principles for data export (Mustafa & Sjöström, 2013), online
survey evaluation techniques (Sjöström, Rahman, et al., 2013), technological-
ecological adaptability (Mustafa et al., 2014), design process exploration
(Sjöström, 2017), privacy and accountability (Sjöström & Ågerfalk, 2013;
Sjöström, Ågerfalk, et al., 2014; Sjöström et al., 2017), and software-embed-
ded evaluation (Sjöström et al., 2018). Several design features were built and
evaluated, for example, a generic questionnaire design tool, an intervention
design tool, dynamic actions, an authentication, authorisation and menu tool,
in-place translation, and respondent behaviour logging (RBL). It could be
noted that the U-CARE context is unique, as it enables for the study of a design
process both as the creation and enactment of design research, as well as the
appropriation of the design activities as conducted by Information Systems
practitioners.

3.5 U-CARE Design Process
The U-CARE development team, consisting of Information Systems research-
ers and software developers, used Scrum, an interactive and incremental agile
software development framework (Beck et al., 2001). Scrum uses three roles
(Development team, Scrum Master, Product owner), three artefacts (Product
backlog, Sprint backlog, Burndown chart), and time-boxed sprints. Each
sprint consists of four events (Sprint planning, Daily Scrum, Sprint reviews,
Sprint retrospectives). In U-CARE, development sprints last two weeks. At
the end of each sprint, a sprint review meeting is held where customers – var-
ious stakeholders (mainly researchers from multiple disciplines) – are shown
the latest version of the system. These meetings are followed by design meet-
ings, in which stakeholders provided feedback to the development team, who

 60

use the feedback in the continued development efforts. In total, 250+ design
meetings have been organised thus far, engaging a wide variety of stakehold-
ers, including representatives from the different academic disciplines, such as
the clinical researchers, Information Systems researchers, economists, health
care professionals, and psychologists. Also, external specialists and patient
groups have been invited to explore the system. The stakeholder-centric
(Sjöström & Goldkuhl, 2010) and iterative approach promotes a focus on
value creation – a continuous assessment of the U-CARE software system as
a means to contribute to the overarching goals of the U-CARE programme.

Table 4. U-CARE stakeholders in the design process and their relevance

Stakeholder Relevance in U-CARE context Relevance in this dissertation
Clinical researchers The clinical researchers are con-

ducting clinical trials to study
various emotional and mental
health problems that may arise
due to physical illnesses. They
are usually psychologists, nurses,
and cognitive scientists.

They are the customers for whom
the U-CARE software system
was designed, as well as being
users of the system.

Psychologists A psychologist is a mental health
professional who develops and
delivers psychosocial interven-
tions, for example, CBT.

Psychologists, who have the role
of therapists, design CBT con-
tents, manage these contents in
the U-CARE software system,
design CBT treatments, manage
CBT treatments in the system,
and interact with research partici-
pants.

Health economists Health economists are studying
and evaluating the cost of U-
CARE interventions.

They provide feedback on the U-
CARE software system design at
various stages.

Associated research-
ers

The researchers from associated
research groups run associated
studies in the U-CARE context.

They provide diverse require-
ments for the U-CARE software
system, influence the design
choices, and evaluate it.

Health care profes-
sionals

Physicians, nurses, and hospital
staff add research participants to
the U-CARE software system.
They also moderate discussion
forums and answer FAQs.

They also give feedback on their
task-related issues.

Research participants People taking part in research
studies and using the U-CARE
software system. They are from
various groups, for example pa-
tients, relatives of patients, or
healthy persons.

They provide indirect feedback
on the U-CARE software system.

Information systems
researchers

The Information Systems re-
searchers design the system and
abstract novel design knowledge
drawing on their experiences of
designing online psychosocial
care. Information Systems re-

Information Systems researchers
are also part of the ADR team.

 61

searchers are part of the develop-
ment team. They work alongside
the software developers with the
goal of shortening the develop-
ment time and overall cost for the
U-CARE software system.

Software developers They develop and maintain the
U-CARE software system. They
are part of an in-house develop-
ment team which includes both
software developers and Infor-
mation Systems researchers.

They are also part of ADR team.

U-CARE Stakeholders
Since the empirical setting – the academic research context – and the stake-
holders in the context are an integral part in designing eHealth research soft-
ware, in the research method, and thus also in this dissertation, it is important
to describe the stakeholders and their involvement in the performance of this
research. This will promote the understanding of the empirical data and their
interpretations.

Table 4 describes the list of U-CARE stakeholders, as found in the U-
CARE software system and IT meeting minutes, and their relevance in the U-
CARE context, as well as in this dissertation. A few groups of stakeholders
consist of two or more stakeholder categories mentioned above, for example,
development team, U-CARE management, U-CARE healthcare, U-CARE
support, and external stakeholders. For the purpose of this dissertation, when
working together, the Information Systems researchers and Information Sys-
tems practitioners (i.e., software developers) are denoted in the following as
the ADR team.

The next section gives an example of the design process and stakeholders,
and its relevance to U-CARE context, as well as to this dissertation. It is es-
sential to understand the design process in order to understand later sections
about data collection, research methods, and ADR cases. One of the critical
points to note is the evolution of the design process, which has implications
for data collection over time concerning data type, quantity, quality, and for-
mat.

An Example of the Stakeholder-centric Evolving Design Process
At a very early stage in the design process, it was realised that receiving and
managing continuous feedback from a diverse and large number of stakehold-
ers was a challenge. At this point, software feature requests were managed in
text to-do lists using a Microsoft Word document and feedback was shared

 62

through various communication channels, for example, face-to-face, via
email, phone, or Skype30.

Figure 7. Text to-do list – product backlog and feedback.

Figure 7 is a screenshot of part of the document that described feedback/user
stories related to the ‘participant view’ feature, user story priority, user story

30 https://www.skype.com/ [accessed: October 9, 2014].

 63

status, and the research group responsible (i.e., Information Systems). The
feedback process was later improved by sharing the to-do list document using
file synchronisation and a cloud storage service (i.e., Dropbox31). This enabled
the use of a single central document for managing the information and feed-
back from the stakeholders.

Figure 8. The 'lightbulb' to get feedback from stakeholders.

In November 2011, a feedback feature was built into the system to allow any
user (excluding research participants) to provide direct feedback about the
system. Figure 8 (intentionally blurred) shows a screenshot from an arbitrary
web page in the system. A click on the lightbulb icon opens a dialogue win-
dow, in which a free text comment can be written. This allows users to report
problems and easily give feedback on the system design.

31 https://www.dropbox.com [accessed: October 9, 2014].

 64

Figure 9. Spreadsheet to-do list – product backlog and feedback.

Figure 10. Feedback screenshot #78.

In August 2012, the text to-do list was moved to a Microsoft Excel spread-
sheet. This was more efficient, as it made sorting and filtering easier. Addi-
tional information was included in the form of columns like Where (the fea-

 65

ture), ID (user story identification number), What (user story text), Prio (pri-
ority like 1, 2, 3), Status (done), Doer (responsible developer), Comments
(comments on or related to the user story), and Owner (stakeholder who initi-
ated or was concerned with the user story). The design process was also im-
proved through the addition of a screenshot folder, where stakeholders could
add a screenshot (that showed and helped explain requirements, changes, or
problems in the system). The screenshots could be connected to the user story
by tagging them #ID, where ID was the user story identification number. For
example, Issue #78 in Figure 9 and the screenshot related to Issue #78 in Fig-
ure 10 provide the information about a bug in the item name in the heading of
the web page.

Table 5. Feedback categories and description

Category Description
Aesthetics The aesthetics (colours and layout) do not appeal to me!
Bug I found an error!
Affordance It is unclear how (or if) I can do something!
Consistency The design of this page is not consistent with other pages.
Context I do not understand what this page is about.
Feedback It is hard to understand what just happened!
Ideas I have got a great idea!
Performance Everything is too slow!
Relevance and clarity Information is missing, too extensive, or unclear!
Reply This is a response to a previous comment.
Social It is unclear who submitted something, or who can access what I

submitted!
Unspecified I just want to express something.

In March 2013, the feedback feature of the U-CARE software system was
enhanced to act as a product backlog. The existing spreadsheet to-do list was
imported into the database. The new routine was introduced for issue report-
ing, feedback, and feature management. Now, the clinical researchers could
not only report bugs, they could also request new features and changes in ex-
isting features through the U-CARE software system. When the clinical re-
searchers clicked on the lightbulb and enter comments, these were stored in
the product backlog, along with a screenshot of the page they were on and
contextual information derived from the logged-in user’s context. They could
also select a comment category. The categories reflected system usability
needs and made feedback interpretation easier for the development team (see
Table 5).

 66

Figure 11. U-CARE product backlog and feedback feature.

Figure 12. Feedback comment, context data, and developer response.

This new product backlog feature was further enhanced over time to include
a full development cycle, for example, issue priority, sprint planning, splitting
user stories into manageable tasks, and assigning complexity points to tasks.
In a way, the product backlog feature became a software development tool for

 67

an agile team, where the product owner could manage the product backlog
(e.g., set user story priority) and the development team could manage issues
(i.e., user stories in product backlog), sprints, tasks, and release info. Figure
11 is a screenshot of the product backlog including issue ID, status, priority,
creation date, and – if resolved – who resolved the issue and when. Developers
can directly comment and give updates directly in ongoing issues. The re-
searchers receive an update on their reported issues either upon logging in to
the system or by email. Figure 12 displays the feedback comment, screenshot,
and use context of a clinical researcher, with developers’ comment and issue
status. As all stakeholders had access to the product backlog, they could see
the status of development work, which enabled even further transparency. All
other communication (e.g., research-related) was directed to the research co-
ordinator (who was also the product owner). In this way, the development
team did not receive information that was not related to or would not be han-
dled by them.

Over time, the simple feedback feature became a rich design process man-
agement feature. The development history – a subpart of the product backlog
feature – allowed addition of an annotation by the design researcher for a ret-
rospective analysis of the process. The development history also integrated
the product backlog and source code changes related to the backlog issue. This
increased transparency enabled discoverability, from the issue creation
through to the final changes in the source code. The backlog feature was a
comprehensive repository, encompassing stakeholders’ impressions of system
qualities. This repository was one of the rich sources used in this dissertation
to answer the research questions (this feature is no longer in use since it re-
quired to much attention to keep “fit”).

Another Example of the Stakeholder-centric Evolving Design
Process
Once the system was in the live mode, running real studies, developers had to
provide support and system performance monitoring. This was done by creat-
ing a support role.

 68

Figure 13. Support feature screenshot.

The support role served to handle immediate support issues from the U-CARE
support staff (e.g., research assistants and psychologists) who were responsi-
ble for handling research participant issues, for example, related to system
login, following intervention steps, and completing the questionnaires (see
Figure 13). Over time, a support feature was introduced which provided the
U-CARE support staff with the information necessary to handle support issue
themselves in so far as possible. This also resulted in a rich repository of re-
search participant issues and feedback on the system. However, it is important
to note that the developers received some feedback from research participants
(solely) indirectly through clinical researchers, support staff, and system logs.
Similarly, due to privacy concerns and the requirement for separate approval
from the ethical review board, the research participant issues and their feed-
back-related data have not been accessed or used directly in this dissertation.
My role in the U-CARE context is explained in Section 4.3.

 69

3.6 eHealth Challenges and U-CARE Research Context
The U-CARE research encompasses some chronic diseases and clinical issues
that may cause symptoms of depression and anxiety; thus, the research results
may have an impact on a large part of society. Multiple studies are running at
the same time and are at various stages. The research participant enrolment
methods differ between studies, for example, in clinics by routine health care
professionals, through advertisements, and Sweden’s national patient regis-
ters. There are various external stakeholders, for example, health care and pa-
tient organisations, research funding and monitoring bodies, et cetera. The re-
search group has international collaborations, but also competes with research
groups in various countries (e.g., see Appendix B.2). The group is unique in
that it supports therapist-guided internet-based cognitive behavioural therapy.

Current openness trends mean that researchers have more open, transpar-
ent, and accountable research processes, for example, sharing research data
for meta-analyses and results’ validation, better utilisation of taxpayers’
money, and the greater good of society. U-CARE promotes transparency of
all activities to promote (open) research, while protecting research partici-
pants’ data and privacy. Last, but not least, the potential issues related to pa-
tient safety, security and ethics are of great importance as compared with in
other research projects due to the research participants’ conditions. Thus, the
open and accessible U-CARE context provides a unique opportunity for re-
searching eHealth research software as it has the following properties:

• Multi-disciplinarity.
• Being at the intersection of health care, social care and self-care.
• Multiple target end-users, for example, patients, citizens, health care pro-

fessional, researchers, and service recipients.
• Providing services to associated health care research groups.
• Acting as a health care provider and running a care ward.
• Engaging in providing education at various levels.

The U-CARE software system is developed, maintained, and managed by an
in-house development team. The system is the central point, and the U-CARE
research programme functions around it. The development team has a very
central role in this complex environment, as it has the crucial responsibility of
keeping the system functioning. On the one hand, the development team has
very diverse issues, like changing requirements, goals, laws and regulations,
and technological landscape, while, on the other hand, it has limited resources
(e.g., team members). Since 2013, the U-CARE software system has continu-
ously been running (RCT) studies, meaning that new releases of the system
are required to be stable, to prevent damage to ongoing health care and re-
search activities. The Information Systems researchers use DSR to understand
this problem domain and design innovative artefacts as solutions. Moreover,

 70

when finding out about the requirements for eHealth research software (the
essential part of the design journey), the U-CARE context exhibits a high de-
gree of unknown unknowns, diverse stakeholders (several without previous
software engineering expertise) that are engaged in many other academic ac-
tivities, and long-lasting development based on public funding. Consequently,
the U-CARE context gives a unique opportunity for studying how to guide
researchers and practitioners in sustaining the usefulness of eHealth research
software, as it has the complexity and constraints of an academic research
context and, as shown in this chapter, fits well with the research objectives of
this dissertation.

 71

4 Research Design

In this chapter, the research design employed in this dissertation is presented
in detail. First, in Section 4.1, the design science research methods used are
presented. The research method ADR is presented in Section 4.2. Lastly, in
Section 4.3, the appropriation of ADR is presented, including the timeline, the
author’s role(s), data collection, data representation, data interpretation and
analysis, ethical considerations, method limitation, and ADR case selection
and criteria.

4.1 Design Research Methods
Design research encourages researchers to design novel solutions and then
systematically study them, to build up the scientific knowledge about new de-
signs. Particularly: what works, what fails, and why? Without such
knowledge, we will not be able to understand the large-scale systems of today
(Hevner & Chatterjee, 2010). Design research helps us understand complex
systems (i.e., research domains) by participating in their settings, rather than
observing them. In other words, design researchers learn more about design
practice by doing design, as explained by Baskerville et al. (2011). This view
resonates with the pragmatic idea that inquiry into a situation leads to an in-
depth understanding of it (Dewey, 1938), and that attempts to change a situa-
tion will disclose forces that prevent or support the attempted change. In this
dissertation, the goal was to understand how to sustain the usefulness of
eHealth research software. It was significant to understand the thoughts and
actions of stakeholders while engaging with the artefact within its actual
empirical context. Hence, research in this dissertation was conducted using
ADR – a practice-inspired DSR approach (Sein et al., 2011), combined with
the evaluation ideals of Hevner et al. (2004), Venable et al. (2016) and Gill &
Hevner (2013), in multiple ADR cases. First of all, this enabled me to gain a
holistic view of the academic research context. Secondly, it was useful in cap-
turing the emergent properties of an unstable empirical context, like U-CARE,
that was always changing and evolving. Thirdly, this was suitable in an ex-
ploratory analysis, when the goal was to provide an answer to a question of
how, which aims to explain a certain phenomenon, such as RQ2: “How do
Information Systems researchers and practitioners approach the quality char-
acteristics …”. In the next section, ADR is briefly presented.

 72

4.2 Action Design Research
ADR is an interpretive research method, based on the sociomaterial recogni-
tion that human practice emerges (Orlikowski, 2010; Leonardi, 2012). Sein et
al. define ADR as:

A method for generating prescriptive design knowledge through the building
and evaluating ensemble IT artefacts in an organisational setting. It deals with
two seemingly disparate challenges: 1) addressing a problem situation encoun-
tered in a specific organisational setting by intervening and evaluating; and 2)
constructing and evaluating an IT artefact that addresses the class of problems
typified by the encountered situation. (2011, p. 40)

In other words, Sein et al. (ibid.) propose that artefacts should be designed in
the organisational setting in which they would be used, with extensive partic-
ipation from key stakeholders, using a structured and predefined process and
learning from the intervention while addressing a problem situation.

Figure 14. ADR method: Stages and principles (from Sein et al., 2011).

 73

Table 6. ADR stages and principles

Stages and principles Description

1: Problem Formulation (PF) In the first stage, the research questions are formulated
based on problem perceived in practice, anticipated by re-
searchers or practitioners, encountered in existing technol-
ogies, or identified in prior research. The problem is
regarded as an instance of a class of problems for which
the research aims to generate knowledge. This stage also
includes determining the initial scope, and deciding on the
roles and scope of practitioner participation. A critical is-
sue at this stage is getting the long-term commitment of
the organisation.

Principle 1: Practice-Inspired
Research

Emphasises viewing field problems as knowledge-creation
opportunities.

Principle 2: Theory-Ingrained
Artefact

Emphasises that theories inform the artefact created and
evaluated.

2: Building, Intervention, and
Evaluation (BIE)

Problem framing and theoretical premises adopted in the
first stage are used to carry out a change in the target or-
ganisation. During the BIE stage, the artefact is developed
(B) and put into the organisational situation (I). As the ar-
tefact is used in the organisational context, it is continu-
ously assessed and refined (E) to meet the needs of the
end-users. BIE activities are simultaneous.

Principle 3: Reciprocal Shaping Means that the artefact and the organisation shape one an-
other.

Principle 4: Mutually Influen-
tial Roles

Means that practitioners and researchers influence one an-
other.

Principle 5: Authentic and Con-
current Evaluation

Emphasises that evaluation needs to be continuous and or-
ganisationally situated.

3: Reflection and Learning (RL) Deals with the experiences and insights from the BIE
stage, with respect to the problem formulated in the first
stage.

Principle 6: Guided emergence Emphasises that the design of the artefact will emerge
through its ongoing shaping by organisational use and by
concurrent evaluation during repeated cycles of BIE.

4: Formalisation of Learning
(FL)

The solutions are formalised as design principles to ad-
dress the class of problems derived from learning during
the organisationally situated intervention and artefact
building.

Principle 7: Generalised Out-
comes

Means that the situated learning in the organisational con-
text should be further developed into general solutions for
a class of similar problems.

The ADR research method consists of four different stages, i.e., Problem For-
mulation (PF), Building, Intervention, and Evaluation (BIE), Reflection and
Learning (RL) and Formalisation of Learning (FL), incorporated with guiding
principles (shown in Figure 14). Table 6 summarises activities within ADR
stages and explains the guiding principles. The ADR method has been elabo-
rated by scholars, for example, Haj-Bolouri et al. (2016) incorporated

 74

knowledge from related approaches (such as participatory action research and
participatory design), and Mullarkey & Hevner (2015; 2018) identified four
distinct types of ADR cycles and expanded with multiple activities in each
BIE cycle.

Haj-Bolouri et al. (2016) emphasised the importance of engaging stake-
holders through a participatory approach in their participatory action design
research (PADRE) method. They proposed four components (i.e., plan, im-
plement, evaluate, reflect) centred around a learning nexus with activities to
perform reflection and learning (RL) collaboratively with stakeholders in
three stages of ADR (i.e., PF, BIE, and FL). They argued that the learning
nexus would serves as a repository to be filled with accumulated knowledge
from the continuous iterative cycle of activities in the RL stage of ADR.

Mullarkey & Hevner (2018) proposed an elaborated action design research
(eADR32) process model identifying four distinct types of ADR cycles (i.e.,
diagnosis, design, implementation, and evolution). They expanded ADR with
multiple activities (i.e., problem formulation, artefact creation, evaluation, re-
flection, and learning) in each BIE cycle and argued that the formalisation of
learning could occur as a result of each stage. They proposed multiple entry
points for conducting ADR at various levels of engagement (i.e., problem-
centred, objective-centred, development-centred and observation-centred),
combining the DSR process described by Peffers, Tuunanen, Rothenberger,
and Chatterjee (2007) with ADR. Sein & Rossi (2019) disagreed with Mul-
larkey & Hevner (2018), arguing for ADR’s single entry and inductive epis-
temology. Mullarkey & Hevner responded to this critique primarily based on
empirical grounding and proof-of-use (Ågerfalk, 2019). This dialogue in-
spired my appropriation of the ADR method.

 Nonetheless, neither ADR nor the two extended ADR methods focus on
how to synthesise learning across multiple ADR cases to generate design
knowledge through reflection and abstraction. To the best of my knowledge,
most, if not all, DSR methods describe knowledge abstraction from a single
case of artefact instantiation at a time. In the course of my research, while
adopting stages and principles of ADR method, I have encountered multiple
ADR intervention cases. Also, each case had a different priority, design pace,
design duration, and design stage at any particular time. I found that the re-
flection and learnings of an individual case, in my research context, led to
knowledge abstraction (i.e., design principles) for a class of problems; across
multiple cases, the abstraction could generate design knowledge and thus ap-
ply to an even broader class of problems. Hence, the ADR method is
supplemented with an additional stage of augmented reflection and learning
to accumulate incremental prescriptive knowledge based on multiple ADR
over an extended period (longitudinal) in multiple cases. In a similar vein,

32 This is the latest version of eADR, which is an improved version of an early publication by
Mullarkey & Hevner (2015).

 75

Haj-Bolouri et al. (2017) suggested refinements to ADR, engaging in reflec-
tion and deriving outcomes.

The next section aims to give the reader information about the appropria-
tion of the ADR method, and different orientations and choices made to con-
duct the research. While Sein et al. (2011) defined different stages of ADR,
they did not go into details, leaving it up to the researchers who apply ADR to
provide more details on how they use the method (Sein & Rossi, 2019). There-
fore, the adaptation of the ADR method and how it has emerged in use in the
U-CARE empirical context is explained. Lastly, a timeline of the research, the
role of the researcher, data collection, data representation, data interpretation
and analysis, ethical considerations, and method limitations are described.

4.3 Appropriation of ADR
The first stage in ADR is problem formulation, which emphasises the view of
field problems as knowledge-creation opportunities. Problem formulation is
the entry point to the BIE cycles in ADR (Sein & Rossi, 2019). In the U-CARE
context, new requirements were continuously added during the development
of the artefact (i.e., the U-CARE software system); either clinical researchers
needed them or they were required by various other stakeholders. The need to
modify the artefact to achieve the desired state provided ample opportunities
for the ADR researcher to generate design knowledge by bridging this gap
(Sein & Rossi, 2019). Hence, multiple ADR cases were initiated, each with its
own specific problem. It was challenging to identify the class of problems
when there were multi-disciplinary stakeholders in the U-CARE context and
the problems evolved. Haj-Bolouri et al. (2017) have also pointed out that
“new and interesting research problems continue to crop up as the [ADR] team
engages in the research life cycle.” Engaging the stakeholders in this stage
was a challenge, due to time priorities and lack of knowledge of the ADR
method in general.

The second stage in ADR is building, intervention, and evaluation (BIE),
during which the artefact is (re-)built and put into the organisational situation.
The artefact was assessed and refined continuously to meet the needs of the
stakeholders during its use in the U-CARE context. Following the agile ap-
proach of continuously delivering artefact increments (see Conboy et al.,
2015) and demonstrating them in periodic IT meetings (a.k.a., sprint reviews)
was useful in engaging and motivating the stakeholders. The engagement and
motivation increased over time as stakeholders interacted with the early beta
versions. It is evident that in the U-CARE context the ADR team followed the

 76

Scandinavian approach to Participatory Design (Gregory et al., 2003), as In-
formation Systems researchers worked in close co-operation (co-designing33)
with the software developers, clinical researchers and other stakeholders.

The BIE cycles in ADR are iterative loops where “the artefact and the de-
signer’s and user’s understanding of the artefact evolve through a series of
trials and their evaluation” (Sein & Rossi, 2019, p. 3). The activities during
the iterative BIE cycles are described in detail to make it transparent how the
artefact was built and evaluated in the practice, and the resulting changes that
were made in the U-CARE context. The opportunity of continuous and longi-
tudinal observation and actively participating in the artefact design process in
the empirical settings has enabled me to communicate explicitly regarding
how the artefact evolved through BIE cycles.

The third stage in ADR is reflection and learning (RL). Sein et al. (2011)
framed RL as running in parallel with PF and BIE stages. Although Sein et al.
(ibid.) postulate that reflection and learning occur continuously during ADR
research, they conceptualise formalisation of learning (FL) as an activity of
its own. In practice, formalisation of learning took place at the end of each
BIE cycle (e.g., different versions of the set of design principles). Haj-Bolouri
et al. (2016, p. 19) argued that “the ADR method can benefit from incorporat-
ing learning within and across each and every stage iteratively.” Sein & Rossi
(2019) have also suggested, while agreeing with Mullarkey & Hevner (2018)
regarding publishing results from various phases of an ADR project, that new
knowledge can be formalised and that generalised outcomes emerge through-
out a project. An explicit and transparent formalisation of learning in the form
of a set of design principles was achieved by providing details on how the
design principles emerged (i.e., initial and multiple revisions). The continuous
formalisation was useful in disseminating intermediate results through publi-
cations, such as Mustafa and Sjöström (2013) and Mustafa et al. (2014). This
facilitated early feedback on research from the design researcher community.
For example, subsequent revisions of the design principles were formulated
using the effective and actionable structure proposed by Chandra et al. to
make design principles clearer and more precise:

Provide the system with [material property – in terms of form and function]
in order for users to [activity of user/group of users – in terms of action],
given that [boundary conditions – user group’s characteristics or implemen-
tation settings] (2015, p. 4045)

33 In this dissertation, ‘co-design’ is used in a broad sense to refer to actively involving all
stakeholders in the design process to help ensure the result meets their needs and is usable. The
designer (who may be the researcher or practitioner) takes on the role of a facilitator. The stake-
holders in co-design are the people who are likely to be impacted by or will benefit from the
process and the outcome, either directly or indirectly.

 77

As argued above, in this dissertation, the formalisation of learning was con-
tinuous during the BIE cycles. Hence, the fourth stage in ADR, the formalisa-
tion of learning (FL), simply entails presentation of a summary of the learn-
ings, and a final version of the design principles, as the incremental and con-
tinuous formalisation of learning is part of the preceding RL stage. It is im-
portant to note that while the ADR cases, stages, and BIE cycles are presented
as being linear, there were, in practice, multiple iterations within and between
different cases, stages, and cycles.

Fi

gu
re

 1
5.

 T
im

el
in

e
of

 th
e

au
th

or
’s

 e
ng

ag
em

en
t a

nd
 th

e
A

D
R

 a
pp

ro
pr

ia
tio

n
in

 th
e

U
-C

A
R

E
co

nt
ex

t.

–

’

’
’

–

–

–
’

’

– –
–

 79

Timeline
The aim of the timeline is to provide an illustration of the research process,
which consists of many overlapping research activities from the multi-year
engagement in U-CARE. Figure 15 shows research activities in multiple ADR
cases ordered in a timeline with the main activities keyed: events, insights,
workshops, formalisation of learnings, and BIE cycles’ duration. In narrating
the story of the ADR cases, this figure is referred to, along with specific keys.
Figure 15 also enlarged and provided at the (folded) back cover of this disser-
tation to make it easier to read.

The Author’s Role(s)
In this section, my rationale and engagement in the empirical context and the
gradual evolution of my research interests related to sustaining the usefulness
of eHealth research software in the academic research context are presented.
Likewise, my engagement as an ADR researcher and how I actively partici-
pated (and intervened), together with Information Systems practitioners and
various stakeholders at all levels in the U-CARE context, are discussed.

The practical relevance of the U-CARE research programme and its impact
on society34, described above, inspired me to join U-CARE. ADR focuses on
practical problems with theoretical relevance. The opportunity for continuous
and longitudinal observation, while taking part in the software development
process in the empirical settings (being deeply immersed in the organisation
myself), enabled me to understand problems better, intervene with the design
artefact, and reflect on the design processes. The ADR approach promotes
participation and mutual learning through the iterative design cycles, involv-
ing both the researcher and practitioners. The hands-on experience of design-
ing artefacts in the context facilitated an in-depth understanding of the context
and design problems. I firmly believe that my value as an ADR researcher lies
not only in the artefact I designed or the research I published, but also in what
I learned while designing and publishing. This has had an influence on my
writing style in describing my experiences and letting the readers know why
things are the way they are; helping them learn about the context and its intri-
cacies, and eventually, enabling them to appropriate learning to their con-
text(s). I argue that I, as a result of this, am able to make the research material
accessible to the reader.

34 The application of research results has an impact beyond academia and could have a real
influence on society.

 80

Figure 16. Different roles in the U-CARE context.

In the U-CARE context, I as an ADR researcher, in the ADR team, engaged
in building, intervention, and evaluation of the U-CARE software system. Fig-
ure 16 provides an overview of different roles in the U-CARE context. My
first engagement in U-CARE was as a Master’s student in January 2012 (Fig-
ure 15, pt. i-a). I was involved in designing the data export feature for the U-
CARE software system. At the time, I had more than ten years’ experience in
web development in both the Microsoft .Net platform and open source tech-
nologies, with an academic background in computer science, technology man-
agement, and Information Systems. Most of my professional experience was
in the academic context. This enabled me to understand the complex U-CARE
software system and design a generic data export feature for it (case i). During
January to June 2012, when I was using the ADR method in my Master thesis,
I consider my involvement in the context to be that of an ADR researcher
(Figure 15, pt. i-b). For a brief time, from July to August 2012, I worked as a
full-time developer on some features of the U-CARE software system (Figure
15, pt. ii-a). During the period January to August 2012, I took an active part,
as member of the development team, in all workshops organised in U-CARE.
My research interest in the Information Systems field led me to apply and
subsequently enrol as a PhD student in the U-CARE research programme.

U-CARE
Software
System

U-CARE Context

U-CARE
Developers

U-CARE
Management

ADR
Researcher

Various
Stakeholders

Psychologist
Research

Participants
(End-users)

Associated
Researchers

Clinical
Researchers

Information
Systems

Researchers

U-CARE
Healthcare

U-CARE
Support

Healthcare
Professionals

Health
Economists

 81

When I joined U-CARE as a PhD student in September 2012, the decision
was made that PhD students would dedicate 10% of their time to the develop-
ment of the U-CARE software system, primarily to conduct their research
(Figure 15, pt. iii-a). My previous insider experience as a Master’s student and
software developer enabled me to understand and reflect on the problems in
the U-CARE context. During the first year of my PhD studies, I was mainly
focused on learning research methods in Information Systems, interdiscipli-
nary research, and clinical research. During this time, I observed that the U-
CARE software system faced problems on mobile devices, because the system
was not built to accommodate them; that had been an early design decision
made. However, there was a growing trend in Sweden of accessing the inter-
net through mobile devices. Eventually, many users (i.e., research partici-
pants) of the U-CARE software system were using or wanted to use mobile
devices to access it. This led to my initial research interest in the U-CARE
software system’s adaptation to mobile devices (Figure 15, pt. iii-b). In paral-
lel, I was able to reflect on the actual use of the generic data export feature
and proposed data export design principles in the U-CARE context. I learned
that there were a number of difficulties in maintaining the U-CARE software
system (Figure 15, pt. i-f). I was specifically interested in sustaining the data
export feature and adoption of data export design principles over time. I found
out that designing innovative artefacts was interesting, but that looking at our
design artefact’s actual use and appropriation by the developers in routine de-
sign was much more interesting. In September 2013, the outcome of the mo-
bile adaptation35 exploration resulted in an understanding of the need for up-
dating technologies used in the U-CARE software system or software devel-
opment process (Figure 15, pt. ii-b). The technology upgrade and subsequent
improvement in the design process became another interesting research case
(case ii). In 2015, an actual adaptation of the U-CARE software system began
(case iii).

Being an ADR researcher, I was guiding the emergence of design artefact
and design process. Based on learnings from the technology upgrade (case II)
and prototype development (case III, BIE cycle I), I took a step back and let
the development team take initiatives and make design decisions. While facil-
itating stakeholders through the design process, I leveraged my expertise of
design and research and helped the stakeholders to develop their ideas.

Inspired by the ADR approach, with continuous reflection and learning
during build-intervention-evaluate cycles across different cases, I began to
consider a broader class of problems. In the middle phase of my work with U-
CARE, my research interest developed around the need for sustaining the use-
fulness of eHealth research software in the academic research context (Figure

35 Mobile adaptation, adaptation to mobile devices and extending the artefact are used inter-
changeably to refer to the same third ADR case, i.e., adapting the U-CARE software system
for better user experience on mobile devices such as mobile phones and tablets.

 82

15, pt. ii-d and ii-g). This increase in my understanding of the research prob-
lem was not a linear process and included multiple inputs from the stakehold-
ers in the described context. The evolved research interest (i.e., sustaining the
usefulness of eHealth research software in an academic research context) is
summarised in the introduction chapter of this dissertation. Agile software de-
velopment facilitated the BIE cycles and continuous engagement with stake-
holders. The first-hand and intimate knowledge of the empirical context and
data, and participation in dedicated design workshops enabled reflection and
learning. I used a personal research log to write on-the-spot reflections and
take field notes.

I collected the empirical data for research while developing the U-CARE
software system and observed the stakeholders in action in the context. The
intention was to gain in-depth understanding of how researchers and practi-
tioners approached sustaining the usefulness of eHealth research software
throughout the lifecycle of the U-CARE software system and how they ad-
dressed issues that arose over time. The various roles of the author facilitated
the collection of in-depth views from stakeholders, who participated in or
were observed during the research in this dissertation. In accordance with the
iterative nature of ADR, the collaboration within the development team not
only resulted in knowledge acquisition, but also gave the team members the
opportunity to reflect. Also, working together with a team, I was able to con-
tinuously observe and write down on-the-spot reflections about the artefact
and the design process. Thus, a critical aspect of the research was achieved:
access to and understanding of the problem domain. The U-CARE context
provided me with opportunities to come close to the object of study and to
gain access to what was happening. This resulted in in-depth knowledge and
insights that would have been very difficult for a non-participating researcher
to gain. Still, it should be acknowledged that the empirical context is too rich
to be comprehensively captured.

Data Collection
The research process was non-linear, longitudinal in nature, and iterative, and
therefore demanded different data collection methods, instruments, and tools.
Thus, to seek answers to the research questions, I collected and analysed pri-
mary data via interviews, direct participatory observations, workshop ses-
sions, seminars, brainstorming sessions, focus group and field notes. Addi-
tionally, U-CARE software system documentation, IT meeting minutes, prod-
uct and sprint backlogs, and code repository comments were collected (from
the existing data repositories) and analysed. Also, e-mail correspondence,
brainstorming diagrams, and developers’ self-notes have been collected.

The audio-recorded semi-structured interviews were transcribed and for-
matted as pdf documents. Field notes were formatted as a pdf document. The
product backlog was exported from the database to a Microsoft Excel file and

 83

formatted as a pdf document. The source code repository’s commit history
was exported and formatted as pdf a document. IT meeting minutes, developer
notes and emails, and U-CARE documentations, such as SAB reports, data
extraction guidelines, et cetera were formatted as pdf documents. All collected
empirical data (2010–2019) were then imported into Atlas.ti36 for coding and
to perform a qualitative content analysis.

In this dissertation, I report findings based on an analysis of multiple
sources of evidence. This reflects positively on the overall quality and validity
of qualitative data and also enhances the trustworthiness in the research ap-
proach used. Data collection was an iterative process based on unfolding
events, the author’s maturity as a researcher, and an evolving understanding
of the U-CARE context. It was also based on my understanding of the research
process and the maturity of the research design of this dissertation. For exam-
ple, the first case, (Ch. 5) the data export feature, has less empirical material
than the third case, (Ch. 7) extending the artefact, which was more fully doc-
umented. This is in part due to how the software development process evolved
and changes in the stakeholders’ interest over time. The software development
experience enabled me to extract and understand heterogeneous data.

Table 7. Data collected during the research, extent or quantity, and duration

Type of source Description Amount/oc-
currence

Period

Participatory
observations

In-office, co-located with software
developers, participation/observation
in stand-ups, planning and retrospec-
tive meetings, research meetings,
presentations, workshops, discus-
sions, and informal chats

Five years/2–3
days a week

January 2012 to
January 2017

Interviews Audio-recorded semi-structured in-
terviews with software developers
and researchers

12 (275
minutes)

June 2012 to
January 2017

Work-
shops/seminars

Audio-recorded workshops and semi-
nars

13 (1,652
minutes)

February 2014 to
October 2015

Field notes Recording of day-to-day events, par-
ticipatory observations and personal
reflections

1 (175 pages) June 2013 to
January 2017

IT meeting
minutes

Contain information about the bi-
weekly progress of software develop-
ment, stakeholders’ feedback and de-
sign decisions

172 doc. (every
two weeks)

November 2010
to December
2018

Product back-
log and sprint
log

Product features, their prioritisation
and completion. [Used in the analysis
of the U-CARE software system de-
sign process]

1,873 entries November 2010
to February 2016

[Technology]
Log

Log technologies in end-users’ envi-
ronment. Used to design and evaluate
during mobile adaptation

20,000 entries
(when a user
logged in)

June 2013 to
November 2017

36 http://atlasti.com/ [accessed: September 29, 2015].

 84

Exception log Errors, their occurrences, and resolu-
tion. [Technical debt extraction]

16,695 entries May 2012 to
November 2017

Code repository U-CARE code repository (through
SVN version control), used to review
code revisions history and develop-
ers’ annotations for code commits.
[A type of self-reflection done by the
development team]

5,072 entries
(almost every
day)

February 2011 to
March 2017

Table 7 contains a comprehensive description of data collected from the U-
CARE context. The periods reflected in the above table represent the first and
last date of data collection for each respective data source.

Data Presentation
In this dissertation, due to the small numbers of stakeholders, I do not report
frequencies, relying instead on real quotes from the stakeholders and interpre-
tations. The representation of these quotes and diverse empirical data needs to
include information to facilitate readers’ understanding and interpretation.
The empirical data is in the form of: 1) stakeholder codes, based on their roles
(e.g., clinical researcher) in the U-CARE context, combined with a number
(e.g., 1,2,3) assigned as a unique identifier; 2) timeline (e.g., year, period);
and 3) source (e.g., interview, focus group, observation, IT meeting minutes,
workshop, seminar, repository, backlog, and so forth). Here is an example of
a quote:

it is quite impressive, it is good, I think it is more customisable and user-
friendly than I thought it would be. I thought it would be a lot difficult; that we
are would go running to [specific] developer every time we needed some data.
(CR-5, 2012, Interview)

Any text in the quotes enclosed in square brackets ([]) is additional infor-
mation added by the author for completing the sentences, to increase reada-
bility, to clarify, or to give context. With the stakeholders’ consent, I do not
use the stakeholders’ names; the stakeholder codes are used instead. In some
cases, when the quotes may be of a sensitive nature for the stakeholder, the
unique number in the stakeholder code is removed to preserve privacy; for
example, Abc-1 would be written as Abc-#.

Table 8. List of stakeholder codes

Stakeholder role Code Profile

Clinical researcher CR-{1-9} The clinical researcher role includes the programme di-
rector, psychologists, oncology nurses, PhD students and
post-doctoral researchers. They had additional roles, for
example, one clinical researcher was the principal inves-
tigator. Another clinical researcher was the study coordi-
nator, product owner, and later become a team leader as

 85

well (Jan 2015 onward). Some clinical researchers also
acted as therapists in some studies. Some clinical re-
searchers joined the project as PhD students and later be-
come post-doctoral researchers.

Information Sys-
tems researcher

ISR-{1-4} Information Systems researchers include PhD students
and Master’s thesis students participating as members of
the software development team. One of the Information
Systems researchers acted as team leader, technical lead
and Scrum Master as well (until Dec 2014). Information
Systems researchers also switched from part-time to the
full-time developers and vice versa.

Software developer Dev-{1-7} Developers worked part-time or full-time. They also had
different additional roles over time, for example, one of
the developers become a technical lead (Jan 2015 on-
ward), another acted as Scrum Master (from August
2014 onward). One developer joined as a Master’s thesis
student and later become a full-time developer.

Research assistant RA-{1,2} This role includes research assistants, support staff, and
project coordinators.

Table 8 shows a list of the stakeholder codes used in this research with com-
ments/reflections about the stakeholders’ profiles within each role.

Data Interpretation and Analysis
The interpretive research perspective is used to facilitate the process of under-
standing and to produce profound insights into the studied phenomenon
(Klein & Myers, 1999). Interpretive research is a well-established part of the
Information Systems field (Walsham, 2006). As outlined by Orlikowski &
Baroudi (1991), interpretive research aims at clarifying phenomena by at-
tempting to enable understanding of the meaning that participants assigned to
them, which fits the focus of this research well. In the data interpretation and
analysis, an interpretive approach was used that was inspired by Klein & My-
ers’ (1999) principles for conducting and evaluating interpretive field research
(see Table 9).

Table 9. Klein & Myers’ principles for interpretive field research

Principle and description*

1. The fundamental principle of the hermeneutic circle
“This principle suggests that all human understanding is achieved by iterating between con-
sidering the interdependent meaning of parts and the whole that they form. This principle of
human understanding is fundamental to all the other principles.”

2. The principle of contextualisation
“Requires critical reflection of the social and historical background of the research setting,
so that the intended audience can see how the current situation under investigation
emerged.”

3. The principle of interaction between the researchers and the subjects

 86

“Requires critical reflection on how the research materials (or ‘data’) were socially con-
structed through the interaction between the researchers and participants.”
4. The principle of abstraction and generalisation
“Requires relating the idiographic details revealed by the data interpretation through the ap-
plication of principles one and two to theoretical, general concepts that describe the nature
of human understanding and social action.”

5. The principle of dialogical reasoning
“Requires sensitivity to possible contradictions between the theoretical preconceptions guid-
ing the research design and actual findings (‘the story which the data tell’) with subsequent
cycles of revision.”

6. The principle of multiple interpretations
“Requires sensitivity to possible differences in interpretations among the participants as are
typically expressed in multiple narratives or stories of the same sequence of events under
study. Similar to multiple witness accounts even if all tell it as they saw it.”

7. The principle of suspicion
“Requires sensitivity to possible ‘biases’ and systematic ‘distortions’ in the narratives col-
lected from the participants.”
* The description of principles is presented as-is from Klein & Myers (1999).

Being an insider and involved action design researcher, it was important to
consider my subjectivity regarding the collection and analysis of data
(Walsham, 1995). There is a need to mitigate the mediation of language and
preconception associated with understanding reality, to paraphrase Orlikow-
ski & Baroudi (1991). A triangulation approach was employed to analyse data,
motivated by the author’s subjectivity and bias. The triangulation approach is
beneficial in addressing the principle of interaction between the researchers
and their subjects (Klein & Myers, 1999). I initially approached the process
of interpretation independently. Then, I discussed my interpretation with an
independent Information Systems researcher, who was not directly involved
in the U-CARE context, to validate the interpretation against empirical data.

As a final step, I sent the outcome of the analysis (in the form of a draft
version of this dissertation) to the key stakeholders for member checking
(Creswell & Miller, 2000). Acquiring data from multiple sources led to data
triangulation. There was various software used in the qualitative content anal-
ysis, for example, Atlas.ti, SVNStat37, Microsoft Excel, MS SQL Server Man-
agement Studio, and mobile-usage38. In addition, the CoDisclose39 (Sjöström,
Eriksson, et al., 2013) tool was used for retrospective analysis.

37 http://svnstat.sourceforge.net/ [accessed: August 18, 2015].
38 https://github.com/hgoebl/mobile-usage [accessed: February 24, 2016].
39 Renamed and improved as DeProX – A Design Process Exploration Tool (Sjöström 2017).

 87

Ethical Considerations
Myers & Venable (2014) proposed an ethical principle for DSR such as i) the
public interest, ii) informed consent, iii) privacy, iv) honesty and accuracy, v)
property, and vi) quality of the artefact. The privacy of stakeholders who con-
tributed in this research (e.g., software developers, clinical researchers, and
focus group participants) has been protected by de-identifying their responses,
interview transcripts, and other sources (e.g., documents, source code, et
cetera). Some figures have been intentionally blurred to protect the privacy of
stakeholders. The software development team was observed directly, for
which reason its members were informed of and consented to participate in
the research via a written consent form. The research design has been adapted
to maximise privacy and eliminate unnecessary risks (e.g., the views of soft-
ware developers were not directly revealed to other stakeholders). Data were
not revealed directly to stakeholders working in the U-CARE setting; instead,
the interpretation of the data was presented. If the stakeholders explicitly con-
sented to them being referred to in the empirical material, they might not have
revealed their real views. On the other hand, removing stakeholder-related in-
formation might lower the transparency of the research. The original data was
triangulated through another researcher’s interpretation who was not directly
involved in the U-CARE context. Still, it is possible that the stakeholders
might disagree with the interpretations made.

Method Limitations
Clearly the real world is more complex than what can be captured by a re-
searcher. Despite the research in this dissertation being conducted in a rigor-
ous and longitudinal study, the contextual nature of the design poses a chal-
lenge for how the research methodology can be operationalised in practice
(Haj-Bolouri et al., 2017). The current design research project was performed
in a specific application context, and the resulting designs and design research
contributions are influenced by the opportunities and constraints of the appli-
cation domain. For example, it was neither possible nor would it have been
ethically correct to take part in all workshops or access all documents and
data. My interpretation of the empirical context can only paint a limited pic-
ture. Furthermore, interpretation and contextualisation are inherently subjec-
tive. Moreover, despite all efforts for rigorous research design, the stakehold-
ers’ views may have evolved, as this was a longitudinal study of an ongoing
research project. I consider this a challenge for ADR researchers.

ADR Case Selection Rationale
Multiple ADR cases were used to increase the in-depth understanding and
learnings, as well as the analytical generalisability of the research results. The

 88

iterative character of ADR, the multiple designs and the use contexts (U-
CARE and associated studies) can be seen as comparable to more than ten
different empirical contexts. Also, the use of multiple ADR cases and several
revisions of the artefact design and development are in line with the idea of
abstracting this work from one case to another.

The primary objectives of this dissertation were to highlight the practices
of sustaining the usefulness of eHealth research software in an academic re-
search context from each case and across all cases.

A paradoxical, but perhaps realistic, view of design goals is that their function
is to motivate activity which in turn will generate new goals […] Each step of
implementation created a new situation; and the new situation provided a start-
ing point for fresh design activity. (Simon, 1996, p. 162–163)

This description of Simon (1996) aligns well with the U-CARE context and
in some sense also with the research design of this dissertation as well. As the
research progressed through the different ADR cases, the research aims, ques-
tions, and objectives evolved and were adapted to new insights. The research
benefited from feedback obtained continuously from U-CARE stakeholders.
The research design was continuously refined through engagement and inter-
action with the academic research context.

Stakeholders
As stated above, stakeholders are those who are impacted by (or have an im-
pact on) the project and their perspectives need to be considered for a project
to be successful. From a systems perspective, stakeholders are individuals or
groups of individuals who stand to gain or lose from the success or failure of
a system. eHealth research software, in the academic research context, has
multiple and varied stakeholders, including researchers (who need the re-
search software and whose research depends on it), developers (who design
and maintain the software), research participants (who use the software during
the research), decision-makers (i.e., implementers, funding agencies, ethical
approval boards, government agencies, research community, and – not least –
citizens), and end-users.

Stakeholders are likely to have different viewpoints of the system and dif-
ferent criteria for success (Venable et al., 2016). Stakeholders assign different
weights (or priorities or levels of importance) to different characteristics, de-
pending on their subjective judgment and knowledge (ISO/IEC Standard
25010: 2011, p. 5). Consequently, the relevance of the quality characteristics
is also subject to the stakeholders’ goals and objectives for the eHealth re-
search software (Cho et al., 2012). At the same time, quality characteristics
are critical factors in ensuring value to stakeholders and can be further used
to determine requirements and their criteria for satisfaction.

 89

Selected cases
As stated above, the cases were selected to increase the in-depth understand-
ing and learnings, as well as analytical generalisability of the research results.
Hence, three cases were selected to presenting different key stakeholder’s per-
spectives, different objects of study (feature, design process, design product),
different states of maturity of the U-CARE context (forming, maturing, ma-
tured), and to include instances of both success and failure. All cases provided
accessibility and closeness, availability of rich data, and the opportunity for
involvement and participation.

Table 10. Selected cases

Case Key stakeholder Object of study Maturity
of context

1 Data export feature Clinical researchers Feature Forming
2 Technology adaptation process Software developers Design process Maturing
3 Extending the artefact Research participants Design product Matured

Each case addresses a slightly different aspect of the U-CARE software sys-
tem and its academic research context. The key stakeholders of the ADR cases
are mentioned in Table 10, based on the U-CARE empirical context. For ex-
ample, the clinical researchers were key stakeholders in the data export feature
case, as they needed to export the research data from the software for analysis.
A data export feature is a must-have requirement in eHealth research software.
The data export feature design started at the U-CARE forming stage. The soft-
ware developers were key stakeholders in the technology adaptation process
case, as they had to learn, implement, and maintain the technologies in the
software system. The technological-ecological changes posed challenges for
software developers and required attention in the design process through the
U-CARE maturing stage. In the matured stage of U-CARE, several research
studies were ongoing. The research participants varied in age and tech-savvi-
ness. They accessed the software system through different mobile devices,
and they were key stakeholders impacted by the adaptation in the mobile de-
vices case. Extending the artefact to mobile devices increased the U-CARE
software system’s reach. Some wanted to access and were accessing the U-
CARE software system on mobile devices, and others are comfortable with
the desktop product.

Table 11. Motivation and aim of three ADR cases

Case Description

1 Data export feature
 Motivation Data export is a crucial functionality for eHealth research software in

an academic research context. The clinical researchers need to export
the data for analysis, to interpret research results, and draw conclu-
sions. The data export feature design started at the U-CARE forming
stage.

 90

 Aim The case aimed to develop design principles and quality characteristics
for data export in eHealth research software in an academic research
context.

2 Technology adaptation process
 Motivation Software developers have to cope with a continuously changing design

landscape, due to changes in user requirements, the organisation and
the environment, while designing eHealth research software in an aca-
demic research context with limited resources. The technological-eco-
logical changes posed challenges for software developers and required
attention in the design process through the U-CARE maturing stage.

 Aim The case aimed to develop design principles and quality characteristics,
to guide the design process, and to support a continuously changing de-
sign landscape in an academic research context.

3 Extending the artefact
 Motivation Technological innovations in the surrounding environment can affect

the usefulness of eHealth research software. eHealth research soft-
ware’s access/availability is essential for the end-users (i.e., research
participants in a research context). In the matured stage of U-CARE,
several research studies were ongoing. Extending the artefact to mobile
devices increased reach toward research participants.

 Aim The case aimed to develop design principles and quality characteristics,
to guide the design process, and to support a continuously changing de-
sign landscape in an academic research context.

Each ADR case was used to investigate the quality characteristics of eHealth
research software, how researchers and practitioners approached these quality
characteristics, and design principles for sustaining research software useful-
ness. The case results have served as lessons learned. The ADR cases were
neither sequential nor independent of one another; rather, they progressed
simultaneously, albeit at different stages. The motivation and aims of each
case are presented in Table 11. See Chapters 5–7 for a detailed account of the
cases.

 91

Part III: Design in Three Cases

 93

5 Case I: The Data Export Feature
– the U-CARE Formation Phase

This chapter describes the design and evaluation of the data export feature, a
crucial functionality for eHealth research software in an academic research
context. The functionality is highly stakeholder-centric, as it is used for ex-
porting research data from the U-CARE software system. This case highlights
quality characteristics that impact on sustaining the usefulness of the eHealth
research software studied and the need for parallel and continuous adaptation
of the eHealth research software throughout its lifecycle. The initial BIE cy-
cles (i–iii, presented in Section 5.2) helped the author to understand and en-
gage further in the empirical context. The evolution of the data export feature
served as a springboard to exploring the design process for sustaining the use-
fulness of the artefact over time during the subsequent BIE cycles (iv–v, pre-
sented in Section 5.2). This ADR case resulted in proposing a set of design
principles expressing key aspects that needed to be addressed when designing
a data export feature in an eHealth research software in an academic research
context. This was the first ADR case, and it has continued throughout the re-
search period. Section 5.1 explains the design context and problem relevance.
The iterative building, intervention and evaluation cycles are presented in Sec-
tion 5.2. Formalisation of learning is presented in Section 5.3 as a (final) set
of design principles which emerged during the iterative BIE cycles

5.1 Problem Formulation
Information technology allows for large-scale data collection and data analy-
sis, for example, data collection through online surveys (Lumsden & Morgan,
2005) and data analysis of user behaviour logs (Sjöström, Rahman, et al.,
2013). While the issue of data access, sharing, reuse, and reproducibility is
extremely important in an academic research context (Murray-Rust, 2008;
Peters et al., 2012; Dallmeier-Tiessen et al., 2014; Hettrick, 2016), previous
research has not sufficiently emphasised the design of data export for research
purposes. Data extraction, data migration, data mining, and data analysis are
well-explored topics in Information Systems and related disciplines. In most
cases, researchers only mentioned the availability of a data export feature,
without detailing design issues related to such feature. There is an increased

 94

interest among researchers, funding agencies, and policymakers to make data
open (i.e., accessible by peers) for validation or further analysis (Arzberger et
al., 2004; Peters et al., 2012; Ross et al., 2012; EU, 2016), to support innova-
tion (Nature, 2008) as well as to create additional value for the scientific com-
munity (Murray-Rust, 2008). Researchers must be empowered to export data
flexibly from eHealth research software to make data accessible.

The U-CARE clinical researchers’ primary objective was to develop and
test eHealth interventions. They achieved this objective by designing RCTs,
running RCTs, collecting data, and providing psychosocial care using the U-
CARE software system. At the end of RCTs, they needed to export data from
the U-CARE software system for analysis, to interpret and draw conclusions
from the RCT results regarding whether an intervention or treatment had any
effect. Based on its significance, data export was one of the required features
listed early on in the U-CARE software system product backlog. U-CARE
stakeholders also emphasised that the availability of a research data export
feature was important:

it [data export] is extremely important as we have so much data a lot of data
which is unusual for us. We [Clinical researchers] often have quite a few data,
but now on this platform [the U-CARE software system] with the internet and
so on [… we get] large amounts of data. And it has to have a smart and well-
functioning way to export data and to be able to use it, so I think [data export]
is very important. (CR-5, 2012, Interview)

it is [necessary] because you need some material to do your analysis […] so
you can calculate the effect of the treatment. (CR-3, 2012, Interview)

it is an important part of the research process. (CR-6, 2012, Interview)

Information Systems researchers, in U-CARE, also initiated the development
of a data export feature. During the initial investigation, the U-CARE software
system was studied in detail to identify challenges in designing a data export
feature. The U-CARE software system at the time was designed with data
collection in mind. While designing the data export feature, the development
team anticipated and handled many challenges, such as a non-normalised da-
tabase and continuously changing data models40. However, not all problems
were foreseen during the initial problem formulation stage. Additional prob-
lems and challenges were identified through iterative BIE cycles. The U-
CARE software system was a large, generic, and flexible system based on a
dynamic web application. Mostly, features were designed using a flexible da-
tabase structure to store data and metadata regarding the U-CARE RCT stud-
ies. This provided a generic and flexible application, but the extraction of data

40 Data models are fundamental entities to introduce abstraction in a DBMS. Data models de-
fine how data are connected to each other and how they are processed and stored inside the
system.

 95

was a challenge. The data export process took time and was fraught with errors
or defects. Continuous changes in the requirements from the U-CARE stake-
holders forced changes in the system design and the database schema was
another challenge in designing the data export feature.

The Information Systems researchers and practitioners of U-CARE could
export data directly from the database using SQL queries or the built-in data
export functionality of the database management system (DBMS), while the
clinical researchers in U-CARE had little or no knowledge of SQL and
DBMS. The Information Systems researchers and practitioners required an
easy and efficient solution to export data with less effort in a suitable format
compatible with data analysis tools. Thus, the fundamental challenge was to
find an easy, effective, and efficient way to export data that satisfied all stake-
holders in U-CARE. A data-centric clinical research software, such as the U-
CARE software system, holds data from many research studies or clinical tri-
als. Typically, the database is designed to manage data related to research
studies. For that reason, the data collected by eHealth research software
needed to be interoperable between different applications.

The design problem mentioned above about the U-CARE software system
can be taken as an instance of a class of problems, (i.e., designing a data ex-
port feature) faced during data export in any eHealth research software. Fol-
lowing the ADR method, the ADR team wanted to consider the design prin-
ciples of the data export feature that would apply to a class of similar prob-
lems. Therefore, the initial case-specific research questions were: RQ1) What
principles should guide data export design? and RQ2) What are the implica-
tions of RQ1 for software design?

5.2 Building, Intervention and Evaluation Cycles
The data export feature went through multiple BIE cycles, i.e., i–iii (generic),
and iv–v (one-click). The ‘generic’ and ‘one-click’ denote different function-
alities that were used to build the data export feature in the U-CARE software
system.

 96

Figure 17. The BIE cycles of the data export feature including contributions and
stakeholders involved in the design.

Figure 17 shows the BIE cycles, in which the data export feature was built in
the U-CARE software system, put into the organisational situation, and
formatively evaluated to meet the stakeholders’ needs. The ADR team con-
sisted of the Information Systems researchers and Information Systems prac-
titioners (i.e., software developers) in the U-CARE context.

Figure 18. The timeline of the BIE cycles of the data export feature.

Figure 18 shows the timeline of the BIE cycles. Each BIE cycle is detailed in
the following subsections: the build activities, intervention activities, and
evaluation activities are presented. At the end of each cycle, an account is
provided of lessons learned. I built most of the generic data export feature
during the BIE cycles i–iii (Figure 15, pt. i-b). The design and evaluation of
the BIE cycles i–iii have previously been published in Mustafa & Sjöström
(2013), here they are summarised for the subsequent BIE cycles (i.e., iv and
v), to accommodate the readers (Figure 15, pt. i-g and i-i, respectively). The
one-click data export feature was built jointly by the ADR team.

BIE Cycle I
Build
The development of the generic data export feature’s first version was
profoundly influenced by the characteristics of the U-CARE software system,
and the challenges it implied. As described in Chapter 3, the U-CARE soft-
ware system is a relatively large and complex system, built to collect a variety

 97

of research data, for example, research study events (inclusion date, random-
isation date, CBT intervention version, and assignment date, et cetera), ques-
tionnaire responses from different observation points, treatment consumption
(i.e., treatment modules, steps, items, and homework), research participants’
activities (number of logins, library items visits, forum visits, FAQ visits, et
cetera), communication (i.e., chat, forum, IMs), et cetera. Therefore, the deci-
sion was made that the first version would only support the export of ques-
tionnaire responses (a small subset of the research data).

Figure 19. The data hierarchy in the research study questionnaires.

There was a hierarchical structure to the data. Figure 19 visualises this hierar-
chical structure. Each research participant [Part.] goes through several obser-
vation points [OP], which in turn includes several questionnaires (a.k.a., re-
search instruments) [Inst.], consisting of multiple questions [Q]. Each ques-
tion has multiple options [Op], choices [Ch], Text, Range with minimum val-
ues [Min] and maximum values [Max], et cetera. The clinical researchers were
used to analysing data using cross-tabulations, i.e., getting all the data about
a research participant in one row, where the answers to questions would be
put in columns. This forced the design to include a pivoting functionality
(row-to-column transformation), which entailed converting the hierarchical
structure to a linear (flat) structure. It is important to note that different re-
search participants can be at different observation points at any given time and
may respond to different questionnaires or skip questions in any question-
naire. This had implications on data export, meaning that it had to align/map
different research participants’ data to an exact, unique sequence of columns.

Several features of the U-CARE software system were designed for malle-
ability and offered configuration possibilities for U-CARE stakeholders, for
example, software developers and clinical researchers. It made sense that the

 98

data export feature should also be configurable by the clinical researchers
themselves. The main idea was that the software as a whole should be useful
in a new context as-is, without further software development involved. The
data export feature was loosely coupled to the existing software, to achieve
this generic property, through the use of data objects (DO), so as to minimise
dependencies between the export feature and other parts of the software. The
reflection utility was based on the reflection design pattern (see Appendix
C.1). It inspects assemblies, types, and members of the U-CARE data models,
and creates instances of them, and populates them with data. The reflection
and data objects enabled easy adaptation of the data export feature to the
changing U-CARE data models.

The reflection design pattern is used in other U-CARE features as well, for
example, the authorisation feature (also referred to as the action framework in
various publications by U-CARE Information Systems researchers) (Sjöström
et al. (2011), Sjöström and Ågerfalk (2013) and Sjöström et al. (2017)). The
generic data export feature’s design is partially based on the authorisation fea-
ture41. The authorisation feature is briefly described in Appendix C.2.

Figure 20. Architecture of the generic data export feature.

41 The authorisation feature is referred to multiple times in the dissertation, for example, when
data access is discussed.

 99

Figure 20 illustrates the conceptual architecture for the generic data export
feature that emerged during the design process. The export utility acted in its
own layer, which facilitated data export into different formats, as well as per-
sistent storage of user-defined export templates.

Intervention and evaluation
The intervention and formative evaluation sessions were performed as a part
of weekly IT meetings between the clinical researchers and the development
team. As stated by Venable et al. (2012), formative evaluation is such “in
which an artefact still under development is evaluated to determine areas for
improvement and refinement” (p. 426). The evaluation process showed that
the clinical researchers appreciated the flexibility of the data export feature,
which allowed them to extract data without needing the help of software de-
velopers. The software developers suggested a series of performance im-
provements including that a) user selections could be saved, and that the same
selection of fields or small variation should be exported efficiently with fewer
clicks during subsequent data export; and b) metadata should be generated
whenever the data objects were changed.

Reflection and learning
In this BIE cycle, the clinical researchers were at an early stage of maturity as
regards research study design. The research study design was directly related
to data export, as a change in the study design can change the hierarchical
structure of data or how research participants might respond to questionnaires
and questions. There were multiple changes in study design requested by clin-
ical researchers. As a result, the developers had to change the data models of
the system. It should be noted that the reflection utility of the data export fea-
ture performed satisfactorily, as both the data objects and the user interface
(UI) automatically adapted as expected whenever the developers modified the
U-CARE software system’s models. This highlights the empirical enactment
of malleability as a key quality characteristic in the U-CARE software system,
as this automatic adaptation enabled developers to focus on core features of
the system without being concerned with dependencies in the data export
functionality. Not everything in the data export feature could be adapted au-
tomatically. The addition of new models required minor adaptations of the
data object classes. The first draft of the design principles was formulated
based on the learnings during this cycle (see Table 12).

Table 12. Design principles for data export in eHealth research software (version 1)

Design principle Specification

The principle of simplicity Data export feature should be easy to use.
The principle of developer
independency

Data export feature should be designed for end-users (research-
ers) and should not require deep technical knowledge.

 100

BIE Cycle II
Build
The lessons learned from the first BIE cycle were the basis for improving the
data export feature and implementing additional functionalities. Reflection is
a costly operation, performance-wise, and especially if the database is hit each
time an object or collection of objects is retrieved from the production code.
The reflection utility was revised to improve the performance of the data
export feature, so that it ran only when a change was detected in the underly-
ing U-CARE software system’s data model. This was addressed by storing a
persistent structure of metadata in the database and reusing it in subsequent
data export requests. New functionality was added to manage templates (i.e.,
data export packages), so as to improve the efficiency for clinical researchers,
who could create a template for data export and could then export data by
reusing saved templates. The second version of the data export feature was
integrated with the U-CARE software system and released on the U-CARE
production server.

Intervention and evaluation
Initially, access to the data export feature was given only to the software de-
velopers. At that time, the U-CARE software system had a substantive amount
of test data available (provided by various stakeholders during beta-testing
throughout the design process). The test data were used to evaluate the data
export feature in a production environment. Furthermore, a scenario-based
evaluation (Hevner et al., 2004) was conducted at an IT meeting where U-
CARE management, clinical researchers and other stakeholders were present.
The second version of the data export feature was explained and demonstrated
using a test study with test data. The overall interpretation of evaluation was
that all stakeholders appreciated the data export feature. However, questions
were raised about the data export feature’s access authorisations.

The principle of mutability
(emergence)

Data export should adapt itself to new data export require-
ments or changes in the software that hosts data.

The principle of compati-
bility

Data export should render output in standardised or de facto
formats (such as CSV, XML, or spreadsheet), to facilitate im-
port into data analysis applications and statistical applications.

The principle of easy de-
velopment

The API for data export should be built in a way that mini-
mises the development resources required to add new export
functionality. Developers should be able to develop core sys-
tem features without continuously addressing data export is-
sues.

The principle of export as a
separate concern

Data export should not require development for every data ex-
port request. The data export software should be prepared for
present and future data export requirements and adapt automat-
ically to changes in the underlying data model.

 101

Reflection and learning
The key lesson learned from the evaluation was that the data export module
should have access restrictions regarding who was allowed to export data,
which data, and when. The anonymity of U-CARE research participants
needed to be preserved. Another lesson learned during the cycle was the need
for user-controlled row filtering, as in the existing data export feature only
columns could be filtered. Based on these lessons, the design principles were
revised. Table 13 lists design principles and any changes from the previous
version, with additions highlighted in bold.

Table 13. Design principles for data export in eHealth research software (version 2)

Design principle Specification

The principle of simplicity Data export feature should be easy to use. Preferably, data
export should be triggered by a single click, and the users
should be guided to filter data based on their needs.

The principle of developer
independency

Data export feature should be designed for end-users (research-
ers) and should not require deep technical knowledge. End-us-
ers should be empowered to design their own export tem-
plates based on access to a view of exportable items.

The principle of mutability
(emergence)

Data export should adapt itself or be easily adaptable to new
data export requirements or changes in the software that hosts
data.

The principle of compati-
bility

Data export should render output in standardised or de facto
formats (such as CSV, XML, or spreadsheet), to facilitate im-
port into data analysis applications and statistical applications.

The principle of easy de-
velopment

The API for data export should be built in a way that mini-
mises the development resources required to add new export
functionality. Developers should be able to develop core sys-
tem features without continuously addressing data export is-
sues.

The principle of export as a
separate concern

Data export should require a minimum of development for
every data export request. Insofar as possible, the data export
software should be prepared for present and future data export
requirements and adapt automatically to changes in the under-
lying data model. The data export layer should depend on
the core features, but not the other way around.

The principle of restricted
data access

The access to the data export feature should be restricted
to those who are allowed to export data. Authentication
and authorisation schemes should be applied so that only
those who are permitted to retrieve data for analysis can
access them. Time restrictions may also apply to data ex-
port (e.g., only permitted after the trial is closed).

The principle of anonym-
ity

All data must be de-identified so that a re-identification by
use of different sets of published data or by linking ex-
ported data with other publicly available data sources is
impossible. The information needed to re-identify individu-
als should be separated from collected data insofar as pos-
sible.

 102

BIE Cycle III
Build
The data export feature’s second version was further improved based on learn-
ing from BIE cycle ii. New functionalities were added regarding data access
issues and row filtering. The U-CARE software system already had support
for role-based authentication and authorisation. The data access issue was
handled merely by configuring access to the data export feature in a produc-
tion environment. The U-CARE software system was designed to store data
related to the U-CARE research participants in two separate databases. One
database kept the research participants’ identifiable data, while the other da-
tabase kept all other study-related data (e.g., answers to questionnaires). Ac-
cess to both databases was required to identify research participants, while the
data export feature only gave access to the study-related de-identified data. In
this way, data de-identification was achieved for the data export feature. In
summary, there were trivial changes made to the data export feature to satisfy
the data access and privacy requirements. However, it was clear that in other
contexts there might be a need to adapt the data export feature to manage data
access and privacy issues.

Figure 21. Generic data export UI.

 103

New row filtering options were designed to filter a number of records before
export, for example a filter that allowed exporting data of specific observation
point(s). Figure 21 shows a screenshot of the generic data export feature’s UI,
how it adapts dynamically according to the data object structure and allows
granular-level control over data export by letting researchers select individual
fields to export both metadata from questionnaires and data collected through
questionnaires.

Intervention and evaluation
In this cycle, the data export feature was evaluated based on feedback col-
lected in four semi-structured interviews with open-ended questions, followed
by a walkthrough demonstration. Three respondents were clinical researchers,
and the fourth respondent was a software developer with an interest in the
technical and conceptual qualities of the data export feature. In each interview,
the data export feature, its intended use, and its UI were presented. This was
followed by a demonstration of how to use the different functionalities in the
data export feature, using a test dataset. The software developer was asked
questions focused on software design. In general, responses were positive:

the data export [feature] is very good as it follows design patterns […] one of
the major concerns regarding data export performance is when we have huge
[amounts of] data accumulated […] the good thing about data objects is that
when you need to export another type of data you only [need to] work on the
export engine, and rest [of the data export feature] will work […] the data ex-
port can work independently [from other features] […] this very fantastic work
actually […] the system is growing very fast and there is always a challenge
due to the growing needs for features, so extensibility is important, which is
good […] Different design aspects are well implemented. (ISR-3, 2012, Inter-
view)

The clinical researchers were asked about both benefits and drawbacks, as
well as usability-oriented issues (e.g., ease-of-use). The clinical researchers
expressed generally positive views about generic data export features:

I think some training is required to use the tree view […] there should be a
Save as function for packages […] the system should provide a facility for
choosing headers from selected fields when creating a data export package
[…] the CSV data export format looks OK after importing to the statistical tool
[…] I am looking forward to exploiting the possibilities of the data export.
(CR-3, 2012, Interview)

However, the data export feature’s UI now showed many fields, including
unimportant ones (e.g., fields to manage the business logic, such as
timestamps, status flags, et cetera). Due to this, the UI was perceived as com-
plicated. Two respondents expressed this as follows:

 104

I think data export is not complicated when using the system, but I am inter-
ested in understanding the system [better] [… the] data export interface is ab-
solutely ok and understandable […] I think it looks more complicated than
actually it is, and the first impression is Oh my God! This cannot work! but
once it runs you [begin] to understand how it works [you would] need docu-
mentation or help to understand what fields [you do not need to worry] about
while exporting […] [overall] it is quite impressive, it is good, I think actually
it is more customisable and user-friendly than I thought it would be. I thought
it would be [a lot more difficult; that] we [would] go running to [specific de-
veloper] every time we needed some data. (CR-5, 2012, Interview)

it is very good that we have these extra functions [pivoting] [… the data export
feature] is straightforward […]. it seems very flexible and has a lot of options
[…] especially like the option to choose conversion of columns into rows […]
it is very good […] I guess the interface is a bit complex, I mean if you are not
used to working with this type of tree structure […] but with some practice, it
can be done, when you know what these items [in tree structure] correspond
to […] I guess there will be a learning curve, but it should be manageable for
everyone […] I can extract data right now based on what is shown to me […]
it is quite straightforward I think. (CR-6, 2012, Interview)

Another concern was that the feature exported the metadata of questionnaires
along with the research participants’ responses. This led to more columns than
required by the clinical researchers for analysis. The researchers stated that
they did not need metadata for analysis and that in a case where they did need
it, they could access it through the U-CARE software system. One clinical
researcher stressed the potential for improvement of the data export feature by
providing the possibility of labelling columns and highlighted the importance
of a minimal number of clicks for exporting data.

The main output of the intervention and evaluation was that there should
not be too much customisation and that the UI should not present irrelevant
data. Still, most of the end-users were satisfied with this version of the data
export feature.

Reflection and learning
The data export feature displayed all the fields/properties of the data models.
Due to this, the UI became complicated and as a result the clinical researchers
required training and information about all the fields while exporting data.
The data export feature faced the design challenge that Sjöström et al. (2011)
explained as “a trade-off situation between simplicity and mutability-in-use”
due to its generic design. This cycle resulted in the addition of another design
principle regarding UI (highlighted with bold letters in Table 14 below) (Fig-
ure 15, pt. i-c).

 105

Table 14. Design principles for data export in eHealth research software (ver-
sion 3)

Artefact Use Over Time and Learning
The generic data export feature was evaluated using test studies with test data,
and U-CARE stakeholders were satisfied with its functionality. Over time, the
stakeholders experienced various problems while exporting data from real (pi-
lot) research studies. For example, empty responses from research participants

Design principle Specification

The principle of simplicity Data export feature should be easy to use. Preferably, data ex-
port should be triggered by a single click, and the users should
be guided to filter data based on their needs.

The principle of developer
independency

Data export feature should be designed for end-users (research-
ers) and should not require deep technical knowledge. End-us-
ers should be empowered to design their own export templates
based on access to a view of exportable items.

The principle of mutability
(emergence)

Data export should adapt itself or be easily adaptable to new
data export requirements or changes in the software that hosts
data.

The principle of compati-
bility

Data export should render output in standardised or de facto
formats (such as CSV, XML, or spreadsheet), to facilitate im-
port into data analysis applications and statistical applications.

The principle of easy de-
velopment

The API for data export should be built in a way that mini-
mises the development resources required to add new export
functionality. Developers should be able to develop core sys-
tem features without continuously addressing data export is-
sues.

The principle of export as a
separate concern

Data export should require a minimum of development for
every data export request. Insofar as possible, the data export
software should be prepared for present and future data export
requirements and adapt automatically to changes in the under-
lying data model. The data export layer should depend on the
core features, but not the other way around.

The principle of restricted
data access

The access to the data export feature should be restricted to
those who are allowed to export data. Authentication and au-
thorisation schemes should be applied so that only those who
are permitted to retrieve data for analysis can access them.
Time restrictions may also apply to data export (e.g., only per-
mitted after the trial is closed).

The principle of anonymity All data must be de-identified so that a re-identification by use
of different sets of published data or by linking exported data
with other publicly available data sources is impossible. The
information needed to re-identify individuals should be sepa-
rated from collected data insofar as possible.

The principle of adequate
customisation

Customisation should be afforded for end-users, and
should not be too difficult. Only relevant information
should be displayed. Customisation options should be pre-
sented in semantic layers to allow basic features to all,
while allowing advanced users more advanced options.

 106

were not handled properly. They resulted in misaligned row data from corre-
sponding column headers. The development team also faced problems in
maintaining the data export feature. Generic features increased the complexity
of the software (Sjöström et al., 2011). Although the generic data export fea-
ture was supposed to function even if the U-CARE software system changed,
the feature stopped working when a big refactoring was performed.

During the refactoring (Figure 15, pt. i-d), the source code of the U-CARE
software system changed from being very feature-oriented to being more ac-
tivity-oriented, as it was assumed this would “be a better long-term solution
[… which] will also make testing easier when new functions are added […
and] will also make data export easier” (ISR-1, 2012, IT meeting minutes).
However, during this process, the middle layer (i.e., data objects) integrating
the data export feature and the U-CARE software system became incompati-
ble with the U-CARE data models, because this layer was not refactored along
with the rest of the system (ISR-4, Research log, 2014-12-03).

Maintaining the data export feature was also difficult as the original devel-
oper of the data export feature (the author of this dissertation) began working
on other development tasks (i.e., mobile adaptation and technology upgrade).
Although the number of developers increased in the development team, new
members were not yet acquainted with the existing software and application
domain. Knowledge of the generic data export design was not adequately
transferred to all members of the development team. Another source of com-
plexity was the use of composition, reflection, and recursion design patterns
in the data export feature. In the U-CARE context, composition, reflection,
and recursion made the feature design easier or perhaps more elegant in cases
of design problems like tree traversal and whole-part hierarchies’ data repre-
sentation. However, in cases of failure, it was hard to follow the code during
debugging. Specifically, this meant that the input data had different hierar-
chical structures.

The failure in maintaining the generic data export feature made one thing
very evident: there was a need for continuous adaptation of the data export
feature due to changes in data collection, business rules, and components of
the U-CARE software system. The experiences related to the generic data ex-
port feature’s design led the ADR team to consider a design that acknowl-
edged the quality characteristic of simplicity as a key to enabling a maintain-
able solution over time.

BIE Cycle IV
The generic data export feature was designed in accordance with the clinical
researchers’ initial data export requirements. User needs, and the users’ abili-
ties to express their needs, were honed over time (Mustafa & Sjöström, 2013).
This was the case with the data export feature requirements as well. The data
export feature was re-designed based on more elaborated requirements and

 107

lessons learned during BIE cycles i–iii. The re-designed and improved feature
was called the one-click data export feature (Figure 15, pt. i-g).

Build
The initial requirements’ elicitation started with a data export request from the
AdultCan pilot study (2013, IT meeting minutes). The data export require-
ments were discussed during a design workshop dedicated to this topic (2013,
design workshop). Initially, due to the failure of the generic data export fea-
ture, data were exported directly from the DBMS. However, when similar data
export requests were received from other clinical researchers (e.g., JUNO, an
associated research study, 2013, IT meeting minutes), the ADR team decided
to build a one-click data export feature instead of providing data export di-
rectly from the DBMS. During the development process of this data export
feature, the output, data filtering, and variables’ labelling were discussed with
clinical researchers from the JUNO study.

The modular design of the generic data export feature allowed the ADR
team to use part of the existing source code (i.e., export utility) to develop a
simple and improved feature. The simple data export design was achieved by
simplifying a complex design problem to the most fundamental unit of the
research data, the RCT questionnaire in U-CARE. Thus, the one-click data
export feature was designed to export questionnaire data only. Consequently,
errors could easily be rectified and the code could easily be debugged and
improved by narrowing down data related to a particular questionnaire.

Figure 22. One-click data export UI.

The one-click data export feature’s UI was also very simple. When a clinical
researcher logged in to the U-CARE software system, a dropdown list was

 108

shown with observation points (OP) based on his/her selected default research
study. By default, the first OP (e.g., baseline) was selected in the dropdown
list. Depending on the selected OP, each questionnaire was listed as a link for
downloading respondents’ data from that particular questionnaire. The clini-
cal researchers could download a Microsoft Excel spreadsheet containing data
from one questionnaire at a time with just one click (see Figure 22). The ques-
tionnaire data was exported in the clinical researchers’ desired pre-defined
format (i.e., question number as the column heading and one row per research
participant, with responses to questions in the corresponding column). The
clinical researchers could import data into their choice of data analysis soft-
ware and perform data manipulation themselves; for example, filtering data
by research participant groups, removing unwanted columns or rows, et
cetera.

Intervention and evaluation
The one-click data export feature was designed to allow clinical researchers
to export questionnaire data themselves, instead of having developers export
data. However, only developers had access to the one-click data export feature
initially. During multiple evaluation sessions (December 2013–May 2014),
the ADR team received feedback from various stakeholders. For example,
there was a problem with exporting a questionnaire (the PBQ questionnaire)
in the JUNO study. While fixing this bug, the ADR team also identified an-
other questionnaire (the WCQ questionnaire) that did not export correctly.
HTML elements in the data affected data export while generating the XML
document.

After some use, the clinical researchers stated that “it would be good to
have a link to a [one-click data export] page somewhere in the [clinical] re-
searcher view [in the U-CARE software system]” (2014, Product backlog,
#1076). The ADR team configured a menu that allowed the clinical research-
ers to export data. At this stage, the one-click data export was not in compli-
ance with the principle of restricted data access. The Information Systems
researcher pointed out the importance of considering data export design prin-
ciples while commenting on the development task: “an important issue to ad-
dress is [the use of] policies for what, when and by whom data may be
exported” (ISR-1, 2014, Product backlog, #1076). At a later stage, access to
the menu was reconfigured to allow access only for the clinical researchers,
thus limiting access to data to emphasise accountability as a key quality char-
acteristic for eHealth research software (2014, Product backlog, #1152).

Reflection and learning
As a consequence of the one-click data export feature and the clinical re-
searchers’ need to export data themselves, the U-CARE management pre-
pared guidelines for the clinical researchers regarding data extraction before
the research study was completed. The guidelines consisted of two main

 109

points, to emphasise the need for careful reflection before extracting data from
an ongoing study as:

First, it is possible to extract some data before the study is completed, as long
as variables that are primary outcome measure and variables that compare the
study groups are not analysed. Second, variables or analysis of variables that
may be important in the final analysis of the study should not be used. (2013,
U-CARE data extraction guidelines)

In this state, the one-click data export allowed any researcher (with a re-
searcher user role) to log in and export data at any point in time in the research
study. This was not only contrary to the data export policies, regarding when,
by whom, and what data may be exported, but also contrary to the principle
of restricted data access. As an afterthought, developers added a warning
message stating “Researchers: beware that the data available through this
[web] page might bias your judgment.” Design principles and guidelines
helped the ADR team make design decisions and build the software. Clearly,
the principle of restricted data access was not yet fully implemented. The
lesson learned from this scenario was that design principles were not useful
until they were applied during the development process. The data export
design principles were refined, grouped, and formulated using the structure
discussed in Section 4.3 to make design principles clearer and more precise
(see Table 15).

Table 15. Design principles for data export in eHealth research software (version 4)

42 All data must be de-identified so that a re-identification by use of different sets of published
data or by linking exported data with other publicly available data sources is impossible. Note

Design principle Specification

The principle of simplicity Provide easy-to-use data export functionality in order for [clin-
ical] researchers to export data, preferably by a single click via
a simple UI, given that such functionality should not require
in-depth technical knowledge and should not overwhelm the
researcher with details.

The principle of modularity Data export functionality should be divided into modules in or-
der for software developers to maintain and reuse, given that
each module is simple, cohesive, and loosely coupled, such
that a change to one module has minimal impact on other mod-
ules.

The principle of malleabil-
ity

Data export functionality should be customisable in order for
[clinical] researchers to tailor [their own] research data export
and to import data to data analysis applications and statistical
applications, given that such data export output should be in
standardised or de facto formats such as CSV, XML, or
spreadsheet.

The principle of accounta-
bility

a) Privacy: Data export functionality should anonymise42 data
in order to ensure research participants’ privacy, given that

 110

BIE Cycle V
Build
The one-click data export feature encountered performance-related issues dur-
ing its use over time. Sometimes, when the clinical researchers were exporting
data, the U-CARE software system took too much time to respond, and was
perceived as not responding. This happened when the data export process run-
ning on the web server took too long, and the web application UI was waiting
for the data export response. The clinical researchers felt frustrated and be-
came impatient, making it difficult for them to wait for the U-CARE software
system to generate the data export file. As a result, the clinical researchers
often clicked on the browser’s back button or clicked on the export link again,
causing the data export web request to resend and be restarted. Sometimes,
there was a session timeout from the web server, forcing clinical researchers
to login and start the process again.

There were multiple reasons for slow responses from the data export fea-
ture. First, there were large amounts of data, and metadata43 needed to be pro-
cessed in order to generate data export results. Second, for every data export
request, the process started from scratch for all research participants who re-
sponded to a particular questionnaire. With time, this performance issue be-
came critical. In November 2014, a three-day workshop44 (Figure 15, pt. ii-i)
was organised with the primary objective of improving the software develop-
ment process with a focus on quality assurance. The data export performance
issue was also discussed. Various refactoring possibilities of the data export
feature were suggested:

that terms de-identification and anonymisation are often used interchangeably in different con-
texts in the literature.
43 Metadata is data [information] that provides information about other data. Here, this refers
to data that are stored when the questionnaires are designed by clinical researchers, defining
the questions, the types of questions, the flow of the questions, et cetera. Such metadata about
questionnaires are required to present a questionnaire to research participants, to collect the
responses and to export responses.
44 This workshop is discussed in detail in relation to Case-ii (i.e., technology upgrade).

such anonymised data do not contain identifiable data or that
ID fields are encrypted.
b) Security: Data export functionality that enables the clinical
researcher (i.e., study owner or principal investigator) to re-
strict data access in order to enforce governance policies, data
extraction and ethical guidelines, given that such data access
restrictions can be researcher-specific (based on access privi-
leges).
c) Auditability: Data export functionality should log all activi-
ties related to data export in order for study owner to fulfil au-
dit and regulatory requirements, given that such logs store all
data export events to facilitate follow-up by the study owner.

 111

[…] one of the reasons this [data export] is complex, is that [the clinical re-
searchers] have very specific requirements on how this exported data should
be formatted. For instance, the current export function is very slow but solved
this formatting requirement. What happens is that for instance if there are
checkboxes [multiple choice questions for research participant, where you are
supposed to] mark the alternatives that fit your mood, like [a)] I am alert, [b)]
I am happy [c)] I am sad, and the [research participants] select a number of
those [options, the clinical researchers] want the values of the selected [check-
boxes]. However, if radio buttons are used, they [clinical researchers] might
want something else. The way it is presented is very dynamic, the number of
columns varies, and it can be even be different for different [research partici-
pants], and so forth. So, one of the things that was tricky was not just to get the
right data and put in the right column, but also to format it in different ways
depending on the [question type and] actual response […]. (ISR-1, 2014, De-
velopers’ workshop)

Storing the intermediate data export result in the database was suggested:

the merits of the current solution are that they solve the requirements and reuse
some of the business logic code to find things. The drawback of the current
solution is that it takes time. […] Once we have extracted a lot of [question-
naires], most of them never have to recalculate, because they do not change
once they are submitted. So, if we use the current logic and just cache or store
old results in a table, it could be very easy. (ISR-1, 2014, Developers’ work-
shop)

that is what [ISR-4] was saying; that was his idea […] do data transfor-
mation at once, and once it is transformed then it is much more easily extracted
and reported, but right now we transform every time we export data. (Dev-6,
2014, Developers’ workshop)

all we need to do is to say When was the last time this thing was exported? and
then in the stored table we have all the already transformed things, and then
when we do it again we just pick the new things that happen after that. (ISR-
1, 2014, Developers’ workshop)

Also, the suggestion was made to refactor parts of the code where (overly)
complex queries were phrased in LINQ to SQL (.Net language-integrated
query for relational data), to improve readability, maintainability, and possi-
bly performance. One interesting thing was pointed out by Dev-4, during the
data export feature’s design discussion, regarding the relationship between
study design and data export. He said:

[…] we can have a generated [static database table] when [clinical researchers]
configure the studies […] when [they] decided which questionnaire goes
where then we could design this [static table]. (Dev-4, 2014, Developers’
workshop)

When a study is frozen [the static table is frozen too]. When a study is unfrozen
then [there may be a change in the static table]. (ISR-4, 2014, Developers’
workshop)

 112

 […] we do not really know what they want in the end. That is the problem,
but there are two things here. There is an immediate problem which is we have
an export function which does not perform well. That can be quite easily
solved by not recalculating things every time. And then we have another issue
here [related to our thoughts on] what they will want in the future […] if things
change, we still need to know what it looked like before that change. So, we
can match the actual results […] And we can do that, but it requires quite a lot
of queries to do it, so this will help us to better understand, at a given point in
time, what the configuration of the study [is] like. (ISR-1, 2014, Developers’
workshop)

Figure 23. Whiteboard output from the brainstorming during the developers’ work-
shop.

A conceptual architecture for the data export feature was proposed and drawn
on a whiteboard (see Figure 23):

[…] when we have a [static linear] table in the system. And the [data manipu-
lation engine] is filling this [table] with data daily. And then we can make a
[user] interface for the [clinical researchers]. They can select what fields they
wanted [for example] they want just the results of a questionnaire, not all the
[responses], then it can be more [customised and user-friendly] […] the current
[one-click] data export [feature is creating a temporary table] that [part] is a
sort of [data extraction engine] and the second part is inserting the data [which
is already functioning as well]. (ISR-4, 2014, Developers’ workshop)

 113

Figure 24. The initial conceptual architecture of the two-stage periodic data export.

The initial conceptual architecture led to further discussion within the ADR
team and resulted in an improved conceptual architecture (see Figure 24). The
conceptual architecture is referred to as the two-stage periodic data export in
the U-CARE context (Figure 15, pt. i-j). The one-click feature improvements
were suggested based on learnings from the data export feature, the data ma-
nipulation features (i.e., respondent behavioural log, event service, and cache
service), and deliberations within the U-CARE development team. Based on
the discussion, it was suggested that the data export feature needed to work
periodically, like the existing feature event service, and export a small chunk
of data from the hierarchical structure into a linear form, as a single row per
research participant in another static database. In this way, data would not be
processed at the time of the data export request; instead, data would be
prepared periodically, over time. In this way, two separate databases would
balance the load and the U-CARE software system would remain responsive
all the time. Also, the data export feature was to be made more efficient
through the use of a static database with pre-processed data.

The two-stage periodic architecture for data export assumed that once the
research participant submitted the responses, there was no possibility of mak-
ing changes. Data collection was designed with consideration of the ease of
representation and storage in hierarchical form, whereas the data export fea-
ture design required a static linear form. Instead of exporting data from scratch

 114

each time, proactively preparing the data would make subsequent data exports
simple, consistent, robust, and efficient. In case of any bugs, the developers
could focus on a specific period only and regenerate data from a particular
point forward.

At the time of the three-day workshop, due to the limited resources for
development and the presence of high priority items in the product backlog,
the two-stage periodic data export architecture was postponed for future re-
factoring. To make data export efficient for the time being and the U-CARE
software system responsive while executing data export requests, the ADR
team stored all the responses of a research participant to a particular question-
naire together, in a specific observation point, in XML format in the database
(2015, Source code repository log). It was a quick fix, based on the ideas dis-
cussed during the workshop. Whenever a questionnaire was exported, the data
export feature looped through the research participants (who were supposed
to respond); if the responses to the questionnaire were stored already they
were used as-is, otherwise the responses were processed, stored as XML for
future use, and used in the current request. In this way, every time a clinical
researcher exported a particular questionnaire, stored data were used and only
the latest response submissions were processed. This improved the data export
feature’s response time enormously (2015, IT meeting minutes).

Intervention and evaluation
The one-click data export feature was not only evaluated using test studies
with test data, but also using some real pilot and full-scale studies with real
data. Table 16 lists research studies whose data were exported using the one-
click feature. Each data export request led to refinement and improvement in
the one-click data export feature, for example with regards to performance
and the handling of inconsistent and incomplete data.

Table 16. Data exported using the one-click data export feature

Research Study

1 U-CARE AdultCan Pilot
2 JUNO Pilot
3 U-CARE Heart Pilot
4 AIDA I {A, B, C, D}
The list of studies is based on the IT meeting minutes, the product backlog, the U-CARE soft-
ware system’s log, and the clinical researchers’ own recollections of their use of the one-click
data export feature.

Further development of the one-click data export feature was stopped, though
the feature still had four known limitations. First, the clinical researchers had
to export all questionnaires, one by one, for every observation point of a study
and then put them together in one file for further analysis. The process of

 115

merging data from multiple data files was error-prone, difficult and time-con-
suming. It was easier to maintain consistency across data sets with fewer,
larger files. It was also more convenient for researchers to select a subset from
a more substantial dataset, as compared with manipulating and filtering data
in the files. Furthermore, they could export only data related to question-
naires45. Thirdly, clinical researchers could export data at any stage in the
research study lifecycle, which was against the data export policies. Fourthly,
the U-CARE software system logged the data export event, but it was not
possible to trace46 what data had been exported (based on a 2014–2016 log
analysis).

Reflection and learning
During the one-click feature evaluation, one important realisation was made:
that the design principles were mainly focused on the design of the data export
feature and that the intended target audience was the software developers.
However, during the appropriation in the empirical context, it was realised
that the design principles needed to communicate key characteristics of the
data export feature to a wide variety of stakeholders. In the U-CARE context,
other stakeholders like clinical researchers and the management needed to be
included in the intended audience. Also, there was a need for considering the
research study design. Implementation of design principles required addi-
tional features in the study design section of the U-CARE software system, so
it could be specified what data could be exported, when, and by whom. Much
like the research study freeze function that existed in the study design section
of the U-CARE software system, there was a need for study owners to enable
or disable data export. Furthermore, any export of data needed to be saved for
audit and to ensure adherence to data export guidelines. This was based on the
existing practice of the clinical researchers in U-CARE, who kept track of
changes in the study design. These study design change records were sup-
posed to be used during data analysis to discuss any implications of such

45 The clinical researchers could export reminders from another feature in the U-CARE soft-
ware system that was partially based on the one-click data export feature. Reminders were short
messages sent to the research participants to prompt them to engage or update with ongoing
treatment activities. Reminders were automatically sent by the U-CARE software system event
service. However, to make sure that they were sent, the clinical researchers needed to export
the log related to the reminders.
46 This refers to a configuration error in the U-CARE software system logging mechanism (the
authorisation feature discussed in the data export feature’s BIE cycle-i) with an unknown cause.
There were two actions that needed to be logged, i.e., QuizResultService and QuizResultToEx-
cel. QuizResultService was logged (the user ID, time, session ID, URL, et cetera) and provided
some information on when the feature was used to export a specific study and by whom. But
the action QuizResultToExcel was not logged, though it was required (for accountability com-
pliance) to get additional context data that included the observation point and the questionnaire
references that were exported. This realisation of the logical error occurred at a later stage dur-
ing analysis of the design process by ISR-1, ISR-4, and Dev-6.

 116

changes. Likewise, the study design changes had implications for the data ex-
port. The data extraction guidelines highlighted the role of the research study
owner and it was advised that the clinical researchers “reconcile [their] re-
search questions with the [study owner] who is responsible for the study, who
has an overview of the planned research questions, articles and possible anal-
yses in conjunction with the final evaluation” before data extraction (2013, U-
CARE data extraction guidelines). Again, this could be ensured by adding
additional configuration capabilities in the study design regarding data export.

Table 17. Design principles for data export in eHealth research software (version 5)

Table 17 lists the revised design principles (any changes from the previous
version and additions are highlighted in bold). The opportunities for learning

Design principle Specification

The principle of simplicity Provide easy-to-use data export functionality in order for [clin-
ical] researchers to export data, preferably by a single click via
a simple UI, given that such functionality should not require
in-depth technical knowledge and should not overwhelm the
researcher with details.

The principle of modularity Data export functionality should be divided into modules in or-
der for software developers to maintain and reuse, given that
each module is simple, cohesive, and loosely coupled, such
that a change to one module has minimal impact on other mod-
ules.

The principle of malleabil-
ity

Data export functionality should be customisable in order for
[clinical] researchers to tailor [their own] research data export
and to import data to data analysis applications and statistical
applications, given that such data export output should be in
standardised or de facto formats such as CSV, XML, or
spreadsheet.

The principle of accounta-
bility

a) Privacy: Data export functionality should anonymise data in
order to ensure research participants’ privacy, given that such
anonymised data do not contain identifiable data or that ID
fields are encrypted, and datetime field(s) are removed or
offset.
b) Security: Data export functionality that enables the clinical
researcher (i.e., study owner or principal investigator) to re-
strict data access in order to enforce governance policies, data
extraction, and ethical guidelines, given that such data access
restrictions can be researcher-specific (based on access privi-
leges), time-specific (i.e., at multiple intervals with the
same/refreshed/additional datasets, or one-off after the
study completion or termination) and data-specific (i.e.,
partial, full, or selected datasets).
c) Auditability: Data export functionality should log all activi-
ties related to data export in order for study owner to fulfil au-
dit and regulatory requirements, given that such logs store all
data export events to facilitate follow-up by the study owner
and enable udit organisations to confirm compliance with
legislation and ethics.

 117

and refinements in the design principles continued during the prolonged and
actual use of the data export feature in the U-CARE context. This reveals the
need to consolidate design principles and evaluate their usefulness in the ac-
tual context over time.

Artefact Use Over Time and Learning
The one-click data export feature was limited to export of questionnaire data.
The clinical researchers’ data needs emerged over time, and they expressed
additional requirements. They required being able to export of a variety of
data. The U-CARE management streamlined the process for the clinical re-
searchers, considering these complex and resource-hungry data export re-
quirements, as follows:

when you [clinical researchers] want to extract data, you put a description in
the [product] backlog and then a developer will make contact, and you can
discuss the details. (2014, IT meeting minutes)

The diversity of the clinical researchers’ data export requirements can be rec-
ognised in the data export requests, such as:

We at U-CARE Heart want to export [small sample of N] research participants
as follows: evenly distributed within each group based on 1) group (treatment,
control, reference) and 2) randomisation date between autumn 2013 and spring
2016.

i. Answers to all questionnaires from all observation points (OP)
ii. Hospital, Inclusion Date, Randomisation Date, CBT Intervention (Ver-

sion), OP Date (All)
iii. Number of logins (date/time, if possible, for all logins)
iv. Number of visits to different items in the library (date/time, if possible)
v. Number of visits to forums (possibly which threads) (date/time, if pos-

sible)
vi. Number of visits to Questions & Answers (date/time, if possible)
vii. Number of logins not related to OP (for processing only) (date/time, if

possible)
viii. First activity (item opened?) in treatment (date and time)
ix. Last activity in treatment (date and time)
x. Number of items done (marked cleared) (date/time, if possible)
xi. Number of steps done (marked cleared) (date/time, if possible)
xii. Submission of first homework (date and time)
xiii. Submission of last homework (date and time)
xiv. Number of homework [items] sent (date and time)
xv. Number of modules started and finished (date and time)
xvi. Number of messages sent to IM service (in addition to home assign-

ments) (date/time)

 118

Also, we would like you to have a code key with personal number and ID
number prepared for these [N research participants] to send to UCR [Uppsala
Clinical Research Center] when they are ready. (CR-3, 2016, Product backlog)

Another data export request related to research participants, even if they were
not randomised.

We would like to combine all the questionnaires from all observation points in
all groups, into a master extract for all answers to all quizzes, with one row per
research participant. Each row will include the study group: control, treatment,
reference; as well as the baseline research participants who were not
randomised. (2017, Product backlog)

Here is a data export request is related to research participants’ communica-
tion with additional requirements on data presentation:

Create extracts from IM communication between therapists and patients dur-
ing CBT treatment on the portal. For each IM, detail to or from therapist,
sender or receiver, reason for IM (feedback, and communication), timestamp,
subject, and body of the message.

Create a simple matrix template with one column per day of CBT from 1
to 98, with one row per research participant, and a count of IMs to or from
therapist per day.

Produce three versions of the template, depending on the type of IM: 1)
message from user [research participant] to therapist, 2) feedback from the
therapist on homework and 3) message from therapist to the patient [research
participant] (not feedback).

The final report is a simple matrix of the 11 modules in columns, with one
row per patient, showing the date the module was activated, if this happened.
(2017, Product backlog)

The development team did not have any idea how the clinical researchers’
data export requirements would develop over time. The above rich illustration
of data export requirements was useful in the U-CARE context. Also, it might
be helpful for researchers and practitioners in other contexts.

There were multiple studies in the U-CARE software system and these all
had different study designs (protocols). The volume, variety and velocity of
data entailed different challenges. For example, the U-CARE log accumulated
rich information regarding research participant activities and events in the U-
CARE software system. The log contained more than 7 million entries (in
December 2017). The potential to gain valuable insights from log data at-
tracted substantial interest from the clinical researchers. However, data
cleansing, interpretation, understanding, and analysing has its challenges. The
clinical researchers in U-CARE hinted at them, as illustrated by the following
quote:

 119

The log needs to be pre-processed to get the information needed to create re-
ports based on [research participant] activity. Need to analyse the current re-
quests for extracts, and compare with what is stored in the log table parameters
field for the relevant actions. (CR-2 and CR-3, 2017, Product backlog)

Data related to treatments (e.g., CBT) ware very complex and the tree struc-
ture was comparable to the previously discussed hierarchical structure of the
questionnaires. Different research studies had different CBT treatment struc-
tures, for example, a) fixed, adaptive or self-tailored modules, b) modules
contain zero or more steps, c) modules or steps contain different set of items,
and d) modules available at once or sequentially, one by one. Above all, re-
search participants’ CBT items deviated from one another.

Practitioners (e.g., database administrators, developers, et cetera) tended to
export data directly from databases using the DBMS features (Aspin, 2012)
such as built-in data export and structured query language (SQL). Due to the
diversity of data export requests, and the need to get things done quickly, the
development team started to export the data directly from the DBMS using
SQL. Later, multiple custom-made data export applications were developed
and used to export data (see Appendix C.3). The use of the custom-made ap-
plication(s) over time also uncovered many unanticipated challenges and
problems concerning data export, such as missing data. Most of the real stud-
ies exported their data through the custom-made application(s). Table 18 lists
names of full-scale studies, types of data exported, dates of data export
requests (issue number if an issue was created in the product backlog), and
dates when the clinical researchers received data. There was a waiting time
between a data export request and data being received by the clinical
researcher. The waiting time differed between data export requests, for vari-
ous reasons. Waiting time as mentioned in the table below does not represent
the development time or the development team’s engagement in the data ex-
port task. The objective here is to show that data export was not instantaneous
for the clinical researchers. This caused a problem, as the clinical researchers
did not feel in control of their own research data; a deviation from the princi-
ple of malleability, which was articulated by the ADR team as a key principle
for the design of data export feature in the U-CARE software system.

Table 18. Data exported using custom-made data export applications

Research study Data Requested (issue) Exported

1 U-CARE AdultCan Activities in the portal 2014-08-18 (#1298) 2014-08-28
2 U-CARE Heart Library and forum visits 2014-08-18 2014-10-27
3 AIDA I Communications between re-

search participants and thera-
pists

2014-11-06 (#1415) 2015-01-09

4 JUNO Questionnaires 2015-03-25 *
5 ISAK Questionnaires 2015-07-23 2015-07-23

 120

6 AIDA II (A and B) Library items visited, logged in
time, and user behaviours

2015-10-12 (#1912) 2015-10-12

7 U-CARE AdultCan Questionnaires 2015-10-13 *
8 U-CARE Pregnant Questionnaires 2016-02-08 (#2094) 2016-03-16
9 U-CARE Heart All data with limited research

participants
2016-10-31 (UC-
241)

2017-01-24

10 U-CARE AdultCan Limited extracts of baseline
data

2017-04-11 (UC-
590)

2017-04-24

11 U-CARE Heart Extracts from IM communica-
tions between therapists and
patients during CBT treatment

2017-09-21 (UC-
722)

2017-09-26

12 UPPS Collected observation point
data from the study, including
questionnaires filled out by
staff on behalf of the [research
participants] patients

2017-09-21 (UC-
723)

2017-11-20

13 U-CARE AdultCan A reduced observation point
(OP) extraction, up to and in-
cluding OP 8

2018-01-15 (UC-
910)

2018-02-05

14 U-CARE AdultCan Extraction to merge control and
treatment research participants’
answers

2018-02-05 (UC-
941)

2018-02-06

15 U-CARE AdultCan A matrix extraction of number
of accesses and total view
times for library multimedia
views [of research participants
in treatment group (in step
one)]

2018-04-04 (UC-
1028)

2018-05-02

16 U-CARE: Online
behaviour patterns
in internet-based
intervention studies

Extraction of log data to under-
stand behaviour patterns [on
the U-CARE software system]

2018-05-28 (UC-
1086)

Ongoing

17 JUNO All quizzes from the first two
observation points, using the
same OP format (non-merged)
as in April

2018-06-21 (UC-
1142)

2018-06-25

18 UPPS An updated extraction for data
collected since February 2018

2018-09-20 (UC-
1278)

2018-09-20

The list of studies and related data is based on IT meeting minutes, product backlog, and the
recollections of the development team, based on email correspondence with the clinical re-
searchers [updated: March 06, 2019]. * data was exported but date is unknown.

These custom-made applications were developed, maintained, and executed
by a single developer. It led to critical knowledge being confined to one indi-
vidual (a.k.a., a knowledge silo). Ignoring proven best practices, for example,
collective code ownership, code review, test-driven development, quality as-
surance, and several others, led to a technical debt in the U-CARE software
system.

The custom-made data export applications dealt with three of the four lim-
itations of the one-click feature. First, the clinical researchers received a single
consolidated file in their desired format. Second, they could request any data
that was available in the U-CARE software system. Third, the data export

 121

requests were routed through the U-CARE management and the management
handled the data export policies. The clinical researchers did not have direct
access to these applications. It was appropriate that the U-CARE manage-
ment, in a sense, controlled data access (by whom, what data, and when), but
it was not empowering for the clinical researchers. The existing log mecha-
nism of the U-CARE software system did not track these custom-made appli-
cations. Also, there was no manual audit log maintained regarding data export.
Due to this, there was no record available that enabled audit trails and tracea-
bility. Not even the product backlog contained any record of all the data export
requests. It was also evident in discussions with the clinical researcher that
they wanted to export data themselves. The clinical researchers needed to be
able to export data themselves, which was expressed as follows during an
evaluation session:

[regarding custom-made data export applications] it would be good if I could
do [the export] it myself, maybe they [management] want to have control over
who [does the] exports, but that can be managed with some functionality […]
it could be timestamped, and id-stamped […] what export et cetera. […] [it is]
very good if you can export yourself […] normally it would be enough to have
the export at one time, but often something goes wrong or something comes to
mind and you export and […] then it would be very inflexible to have it going
through [specific developer] all the time, so it would be better or I think it
would be preferable to do it yourself […]

[regarding one-click data export feature] here you have separate files for
every questionnaire […] so if we have a tree structure [… it] can be opened up
to all the questionnaires […] and we could have some checkboxes [… that]
could be to select questionnaires for export [… and] then have some grouping
options […]

But then things need to be exported from a behavioural log […] that could
be in a separate file […] it would be ok if data export requests were processed
overnight and [that you on the] next day receive a link to download the result.
(CR-3, 2017, Interview)

Both the one-click data export feature and the custom-made data export ap-
plications were used at this time. There were full-scale research studies for
which data already had been exported, analysed, and where the clinical re-
searchers had published their results; which demonstrated the utility of these
features. In addition, there were many ongoing research studies which had to
export data. Nonetheless, further development on the feature remained neces-
sary due to three limitations. First, the custom-made applications did not have
an accountability log, which the previous data export feature versions did. For
example, there had been log entries that showed how many times a clinical
researcher had exported the data. Second, there was a dependence on a spe-
cific individual developer for the data export. Third, the clinical researchers
were not empowered to export data themselves.

 122

In February 2017, CR-2 and Dev-6 proposed a strategy for developing a
comprehensive data extraction for the U-CARE software system. They de-
scribed the data collection and execution of RCTs in the U-CARE software
system with an analogy to a banking system. A banking system allows cus-
tomers to manage their accounts, given that they observe the complex rules of
the bank. Such a system is optimised to save customer transactions, but not to
facilitate any future analysis, for example, customer behaviour. Similarly, the
U-CARE software system could be viewed as a transaction-based system and
“its purpose is to correctly move each study research participant through the
various paths of the system, while collecting data along the way, and verifying
that the business rules of the study have been followed to the letter.” In this
strategy, it was argued that most of the data collected would not be subject to
any retrospective changes, except in a few very exceptional cases. CR-2 and
Dev-6 proposed “to build an archive model, which is add only – as new infor-
mation becomes available in real time, it can be appended to the archive, but
there is no need to edit the archive.” The purpose of the archive was “to con-
solidate participant-based behavioural data, for easy and meaningful extrac-
tion by authorised users.” They also cautioned that such an archive posed a
security risk for unauthorised access. So, they proposed data security rules to
be followed for any data extraction from the archive such as:

i) The data officer, often the [principal investigator], defines and publishes
exactly what data is extractable, by whom, and under which circumstances; ii)
All successful production extractions from the database archive need to be
logged by timestamp and authorised user; iii) Rogue attempts to access
extractions must be reported to the security officer. (CR-2 and Dev-6, 2017,
Data extraction strategy)

The strategy also emphasised that the data export presentation would be in the
form of rows and columns, including both a linear and a matrix format. Based
on previous data export experience, they argued that data export is a (sort of)
sequential narrative, as most of data extraction requests include timestamps
and durations of research participant activities. The activities are performed
either by or for the research participants. Activities also included automated
events by the system acting on behalf of the stakeholders (e.g., a study owner,
or psychologist). The data extraction strategy was based on learnings from
previous use of the data export feature(s) and influenced by discussions
around the two-stage periodic data export architecture (Figure 15, pt. i-j). In
the ADR context, this is well aligned with the BIE stage principles, i.e., recip-
rocal shaping (the artefact and U-CARE organisation shaping one another)
and mutually influential roles (software developers, Information Systems re-
searchers and the clinical researchers influencing one another). Based on the
discussion within the development team, an improved conceptual architecture
was proposed (Figure 15, pt. i-k).

 123

Figure 25. The improved conceptual architecture of the two-stage periodic data ex-
port.

Figure 25 shows the conceptual architecture for the data export feature, con-
sisting of two stages. The ADR team concluded that the data export feature
construction would be easier with a two-stage decomposability (the principle
of modularity). In the first stage, a data extraction engine was to use the
metadata (related to the research study, questionnaires, and treatment) and
parse them to create/modify static tables (ideally one table per research study).
This step would be linked and activated based on the study design freeze-
unfreeze mechanism. It was assumed that once a research study was frozen,
its structure would not change until it was unfrozen. The engine would also
be responsible for periodically extracting data from the production database
and inserting them into the static reporting database. In the second stage, the
proposed data export module would be used by the clinical researchers to ex-
port data. The proposed data export module was to keep track of when, what,
and how much data was to be exported by whom, and also to anonymise it. In
other words, it would enforce the principle of accountability. In accordance
with the one-click data export feature and the principle of simplicity, the UI
of the proposed data export module would be simple. Similarly, the proposed
data export module would be simple with regards to functionality, thanks to
reduction and hiding of complexity, decomposition, and organisation into
multiple layers and modules. Also, the data export module would allow data
filtering and saving the data export as a template for subsequent exports, sim-
ilar to the generic data export feature, as it was requested by the clinical re-
searchers (CR-3, 2017, Interview). Data filtering and the data export template
would enable user-malleability, as the clinical researchers could customise

Static-
reporting
database

Data extraction engine

Get metadata

Parse
(generate/modify

table for each study)

Get state and create/
modify static table

Add/update
study data

Get state and add/
update data & state

Get data
(periodically)

Data export
module

(with data filtering
possibility)

Respondent behavior log
(RBL)

Dash board reporting

Production
database

Add/update
user behavior data

Add/update
system behavior

data

 124

their data export requests. This led the ADR team to revise the principle of
malleability (see Table 19).

This two-stage architecture would also facilitate features47 like RBL, dash-
board reporting, et cetera. Research data collected automatically via logs (sys-
tem log, event log, exception log, et cetera) and extracted to the static report-
ing database could be quickly analysed and reported by other features. For
example, RBL could process user behaviour data (i.e., clicks, pages viewed,
library items visited, interventions followed, questionnaires answered) and
dashboard reporting can process system behaviour data (i.e., send text mes-
sages, send emails, send IMs, send reminders, send alerts, and make role
changes) from the static reporting database. The data extraction engine could
also be enhanced to support the U-CARE software system event and cache
services data processing. It is important to note that the two-stage architecture
is partially based on the event and cache services’ architecture. In essence, the
two-stage periodic data export feature would provide a better and simpler data
export functionality, allowing the clinical researchers to export consolidated
data efficiently.

Although the conceptual architecture of the two-stage periodic data export
had been reviewed by the development team for an extended period, it re-
mained under consideration. The ADR team convinced the U-CARE stake-
holders to use the existing knowledge and experience to develop a data export
using the two-stage periodic data export architecture. Stakeholders like Dev-
6, CR-2, CR-3, ISR-4 and others, were inclined towards data export feature
refinement, but the decision was made not to prioritise and allocate resources
for such large-scale refactoring at that point. Nonetheless, the conceptual ar-
chitecture served as a tool for discussion. The development of a proof-of-con-
cept prototype based on the proposed architecture was considered as a way
forward in subsequent BIE cycle(s).

47 It is not possible to provide complete details of these artefacts as they fall outside of the scope
of the dissertation; details will be published by fellow Information Systems researchers sepa-
rately.

 125

Figure 26. Data export feature source code changes vs. the discussions in IT meet-
ings regarding the data export feature.

Retrospective analysis of the design process, using CoDisclose, revealed that
the data export feature remained active throughout the U-CARE software sys-
tem development. Figure 26 represents IT meeting instances48 in which the
discussion of stakeholders concerned the data export (black bars) and
changes49 in the U-CARE software system source code (light grey bars) based
on data from February 2011 to February 2017. The code changes are only
related to the generic and the one-click data export features because – as
explained above – the custom-made applications were not part of the code
repository.

The data export design principles were revised and augmented based on
the lessons learned from the prolonged and actual use of the data export
feature in the U-CARE context (Figure 15, pt. i-l). One such lesson was that
data export was as important as data collection for eHealth research software
in an academic research context. There was a need for continuous reflection
on the data export functionality, in each system development phase, for ex-
ample, during every sprint (following the agile methodology), to identify any

48 Number of data export related keywords found in IT meeting minutes.
49 Number of data export related source code files.

 126

adjustments needed in the data export feature due to changes in data collec-
tion, business rules/domain, and parts of the software system. Also, such re-
flections require sample data exported from real studies to identify data dis-
crepancies, investigate the reasons for these, and resolve them.

Table 19. Design principles for data export in eHealth research software (version 6)

Design principle Specification

The principle of simplicity Provide easy-to-use data export functionality in order for [clin-
ical] researchers to export data, preferably by a single click via
a simple UI, given that such functionality should not require
in-depth technical knowledge and should not overwhelm the
researcher with details.

The principle of modularity Data export functionality should be divided into modules in or-
der for software developers to maintain and reuse, given that
each module is simple, cohesive, and loosely coupled, such
that a change to one module has minimal impact on other mod-
ules.

The principle of malleabil-
ity

a) Customise: Data export functionality should be customisa-
ble in order for [clinical] researchers to tailor [their own] re-
search data and descriptive metadata export and to import
data to data analysis applications and statistical applications,
given that such data export output should be in standardised or
de facto formats, such as CSV or XML, or tailored for spread-
sheets or common statistical packages, in a way that is use-
ful for downstream applications.
b) Filter: Data export functionality should allow data filter-
ing in order for [experienced clinical] researchers to cus-
tomise data export according to their preferences and
needs, given that such functionality should guide the re-
searcher to filter exportable data and allow the researcher
to save and reuse their data exports as templates.
c) Schedule: Data export functionality should allow sched-
uling data export requests in order to get data after speci-
fied intervals [based on study design] or when data is avail-
able [in cases where the volume of data would increase
data export processing time].

The principle of accounta-
bility

a) Privacy: Data export functionality should anonymise data in
order to ensure research participants’ privacy, given that such
anonymised data do not contain identifiable data or that ID
fields are encrypted, and datetime field(s) are removed or off-
set.
b) Security: Data export functionality that enables the clinical
researcher (i.e., study owner or principal investigator) to re-
strict data access in order to enforce governance policies, data
extraction, and ethical guidelines, given that such data access
restrictions can be researcher-specific (based on access privi-
leges), time-specific (i.e., at multiple intervals with the
same/refreshed/additional datasets, or one-off after the study
completion or termination) and data-specific (i.e., partial, full,
or selected datasets).

 127

Table 19 lists the resulting design principles (any changes from the previous
version and additions are highlighted in bold).

5.3 Formalisation of Learning
Design artefacts are evaluated mainly based on the functions and properties
they possess, and how these matches the end-users’ requirements. However,
requirements change as the end-users’ environment is always changing (Truex
et al., 1999). Data export is a key functionality for eHealth research software
in an academic research context. Given the emergent character of eHealth re-
search software, data export, in order to be useful, needs to be based on: a) an
understanding of the needs of the stakeholders (mainly the clinical research-
ers) who want to export [or reuse] data; b) a data export design that complies
with design principles which enact best practices in eHealth software design,
while designing data export in eHealth research software; c) appropriate key
quality characteristics in order for eHealth software to be sustainable; and d)
the data export functionality should be reflected upon continuously by both
researchers and software developers in order to ensure data integrity. The case
shows that malleability, decomposability, simplicity, and accountability are
the key quality characteristics for sustaining the usefulness of eHealth re-
search software in the academic research context. From the software develop-
ment perspective, the most significant hurdle would be the continuous refac-
toring and quality assurance of a data export feature in a changing operational
environment where the clinical researchers’ data export requirements evolve.
Hence, sustaining such quality characteristics is a challenge due to the nor-
mally very limited resources for software development in an academic re-
search context. However, I agree with Störrle et al. (2016) recommendation
that “as software complexity (and cost) grows exponentially with size, you
simply have to invest in quality. Don't hesitate to scrap and redo a project or
component.” The learnings from this case are articulated and formalised as
design principles in the following table.

c) Auditability: Data export functionality should log all activi-
ties related to data export in order for study owner to fulfil au-
dit and regulatory requirements, given that such logs store all
data export events [when (timestamp), who (user identity –
role), how (encrypted/plain text), why (purpose specifica-
tion and use) and what (data specification)] to facilitate fol-
low-up by the study owner and enable udit organisations to
confirm compliance with legislation and ethics.

 128

Table 20. Design principles for data export in eHealth research software

Design principle Specification

The principle of simplicity Provide easy-to-use data export functionality in order for [clin-
ical] researchers to export data, preferably by a single click via
a simple UI, given that such functionality should not require
in-depth technical knowledge and should not overwhelm the
researcher with details.

The principle of modularity Data export functionality should be divided into modules in or-
der for software developers to maintain and reuse, given that
each module is simple, cohesive, and loosely coupled, such
that a change to one module has minimal impact on other mod-
ules.

The principle of malleabil-
ity

a) Customise: Data export functionality should be customisa-
ble in order for [clinical] researchers to tailor [their own] re-
search data and descriptive metadata export and to import data
to data analysis applications and statistical applications, given
that such data export output should be in standardised or de
facto formats, such as CSV or XML or tailored for spread-
sheets or common statistical packages, in a way that is useful
for downstream applications.
b) Filter: Data export functionality should allow data filtering
in order for [experienced clinical] researchers to customise
data export according to their preferences and needs, given that
such functionality should guide the researcher to filter exporta-
ble data and allow the researcher to save and reuse their data
exports as templates.
c) Schedule: Data export functionality should allow scheduling
data export requests in order to get data after specified inter-
vals [based on study design] or when data is available [in cases
where the volume of data would increase data export pro-
cessing time].

The principle of accounta-
bility

a) Privacy: Data export functionality should anonymise data in
order to ensure research participants’ privacy, given that such
anonymised data do not contain identifiable data or that ID
fields are encrypted, and datetime field(s) are removed or off-
set.
b) Security: Data export functionality that enables the clinical
researcher (i.e., study owner or principal investigator) to re-
strict data access in order to enforce governance policies, data
extraction and ethical guidelines, given that such data access
restrictions can be researcher-specific (based on access privi-
leges), time-specific (i.e., at multiple intervals with the
same/refreshed/additional datasets, or one-off after the study
completion or termination) and data-specific (i.e., partial, full,
or selected datasets).
c) Auditability: Data export functionality should log all activi-
ties related to data export in order for study owner to fulfil au-
dit and regulatory requirements, given that such logs store all
data export events [when (timestamp), who (user identity –
role), how (encrypted/plain text), why (purpose specification
and use) and what (data specification)] to facilitate follow-up
by the study owner and enable udit organisations to confirm
compliance with legislation and ethics.

 129

6 Case II: The Technology Adaptation Process
– the U-CARE Maturing Phase

This chapter describes the design and evaluation of the U-CARE software
system development process during a technology upgrade. The case is a rich
illustration of how technological innovations in the surrounding environment
affected the design process in an academic research context. The case aims to
explore the impact of changes in the environment on sustaining the usefulness
of eHealth research software. Section 6.1 explains the design context and
problem relevance. The iterative building, intervention and evaluation cycles
are presented in Section 6.2. Formalisation of learning is presented in Section
6.3 as a (final) set of design principles which emerged during iterative BIE
cycles.

6.1 Problem Formulation
Rapid advancements in technology put strains on software developers. The
developers have to face constant changes in user requirements, the organisa-
tion, and the environment. User requirements are often hard to define or vis-
ualise and can rarely be anticipated to be stable throughout a project. Agile
software development is claimed to be more responsive to changes than other
traditional methods. Its lifecycle is flexible enough to enable for organisations
to respond to constant changes (Beck et al., 2001). In agile development, the
software design continuously evolves, which requires regular refactoring. If
this is not done, the code will rot, to paraphrase Martin (2000). Every time
developers change code without refactoring it, rot worsens and spreads. Code
rot frustrates them, costs them time, and ultimately shortens the lifespan of
useful software.

In recent years, rapid growth has occurred in software development-related
technologies (specifically open source, with freedom of use in software de-
velopment at no cost), for example, availability of reusable components50. In-

50 In computing, a reusable software component adds a specific feature to an existing computer
program.

 130

creasingly, web development has embraced the use of open source compo-
nents (e.g., frameworks51, libraries52) often implementing core functionality,
extending system capabilities, and contributing significant resources to such
projects (Sojer & Henkel, 2010). These technologies are growing, evolving,
and being upgraded at a rapid pace, especially in the web development area.
The technology landscape is changing quickly, and as a result, software de-
velopment needs to be flexible enough to incorporate the latest technologies
to ensure sustainable eHealth research software.

Likewise, in the U-CARE research context, the environment is continu-
ously changing due to changes in the existing studies and additions of new
research groups and their studies (i.e., associated studies). As a result, the U-
CARE software system continuously evolves, expands, and is extended, pri-
marily due to new feature requirements from existing and associated studies.
The development team needs to support the usefulness of the U-CARE soft-
ware system in this evolving design landscape. Furthermore, they must bal-
ance productivity gains (i.e., facilitating the clinical researchers’ needs) with
quality improvements (that are needed due to the complexity and evolution of
the system and its environment). Furthermore, the software developers in this
eHealth academic research context must develop a system with scarce devel-
opment resources, junior developers (Master’s students), a small budget and
tight schedule, high uncertainty (unknown unknowns), strict regulatory com-
pliance, and life-critical consequences (at least for some end-users).

The increasing complexity of the U-CARE software system and the
system’s steady ageing in the face of rapid technological change made it less
responsive over time. The system needed refactoring and technology upgrades
to meet the changing needs of the clinical researchers, the U-CARE context,
and the external technological environment. At the time of this case, an in-
creasing number of individuals were using their mobile devices to access the
internet in Sweden. Mobile internet use provides additional opportunities to
offer psychosocial care. Research has supported the use of mobile apps to
provide psychological treatment for behavioural health care (Luxton et al.,
2011; Cohn et al., 2011; Smedberg & Sandmark, 2012; Rini et al., 2012).
Furthermore, research has also revealed that participants are willing to use
mobile apps (Weaver et al., 2007; Harrison et al., 2011). Advantages of mo-
bile-adapted self-help programs are not solely restricted to their broader reach,
but also encompass increased convenience for the research participants and
the opportunity to provide information in an interactive and timely manner.
Considering this technological change in the end-users’ environment, the
ADR team initiated the U-CARE software system adaptation to mobile de-
vices (Figure 15, pt. iii-b), which is explained in detail in the third ADR case

51 A software framework provides a generic functionality that can be adapted to or changed
with additional user-written code, thus used to resolve many things.
52 A library is a reusable code to resolve just one specific thing.

 131

in Chapter 7. Due to steady ageing and increased complexity in the existing
system, the team initiated the technology adaptation process (Figure 15, pt. ii-
b).

The problems mentioned above related to the U-CARE software system
can be taken as an instance of a class of problems (i.e., coping with a contin-
uously changing design landscape) faced when designing any eHealth re-
search software in an academic research context with limited resources. Fol-
lowing the ADR method, Information Systems researchers wanted to consider
design principles for the design process that would apply to a class of similar
problems. Therefore, the case-specific research question was: What principles
should guide the design process to sustaining the usefulness of the eHealth
research software in the continuously changing design landscape in the aca-
demic research context? The next section presents the BIE cycles in this ADR
case.

6.2 Building, Intervention and Evaluation Cycles
During the technology adaptation process case, the U-CARE software system
went through three BIE cycles: i) proactive refactoring, ii) reactive refactor-
ing, and iii) quality assurance. Proactive refactoring and reactive refactoring
led to improvements in the U-CARE software system through refactoring,
while quality assurance led to improvements in the design process of the U-
CARE software system.

Figure 27. The BIE cycles during the technology adaptation process including con-
tributions and stakeholders involved in the design.

Figure 27 shows the BIE cycles, in which the U-CARE software system and
design process were improved, put into the organisational context, and

 132

formatively evaluated to meet the stakeholders’ needs. The ADR team con-
sisted of Information Systems researchers and Information Systems practi-
tioners (i.e., software developers) in the U-CARE context. The following sec-
tions provide a detailed description of each BIE cycle.

BIE Cycle I
The technology adaptation process started when there was already back-end
refactoring underway. Actually, two instances of significant refactoring had
been performed in the U-CARE software system before the technology adap-
tation process case. The first refactoring53, performed in September 2012 (Fig-
ure 15, pt. i-d), was related to the system back-end; the system was
restructured from feature-oriented to activity-oriented, to make it a better
long-term solution. This refactoring was discussed within the development
team in a group programming54 session in order to disseminate knowledge
within the team. The second refactoring, from August 2013 to October 2013
(Figure 15, pt. i-e), was also related to the back-end and aimed for quality
improvement. The development team focused on optimising the source code
and improving maintainability. The development team also focused on the
development process by learning about how they could work as a team, what
their knowledge gaps were, their knowledge of the source code, et cetera.
Additionally, the development team participated in two workshops about de-
sign patterns and testing, respectively. As a consequence, the development
team set up a test server to test new features before publishing on a production
server55. This deployment on a test server allowed quicker identification of
software bugs. During this time, additional developers joined the development
team. A document about code conventions was created to improve code read-
ability and maintainability. The development process was also improved by
adding new functionalities into the product backlog feature of the U-CARE
software system (for details see Section 3.5, particularly Figure 11 and Figure
12). Now, a stakeholder who submitted an item (i.e., feature, bug, et cetera)
to the product backlog could be notified when the item was completed.

Build
In September 2013, two design workshops (Figure 15, pt. iii-c and iii-d) were
held to discuss adaptation of the U-CARE software system for mobile devices.

53 Also mentioned previously in the data export feature case.
54 Group programming is very similar to pair programming, except one person is coding, while
the others observe, comment, and make suggestions.
55 A similar practice exists in the industry, where a portion of users are given access to a new
version of the software. In U-CARE, only clinical researchers were given access to the latest
software version before it was published on a live server. The test application on the test server
had the same database as the production application. This has a benefit for developers, as they
do not have to populate a test database, but has a downside as changes made during test appli-
cation usage affect the production database and consequently the live application as well.

 133

The development team assessed that the U-CARE software system required
substantive refactoring on the front-end side to be compatible with suitable
third-party technologies for mobile adaptation. In this BIE cycle, the third
(proactive) refactoring was performed. The team split into two small develop-
ment teams. One development team kept working on the back-end refactoring
in a one code branch. Another team started front-end refactoring in another
code branch. For simplicity, the code branches are referred to as b branch and
f branch, respectively, in this text. The front-end refactoring required a revi-
sion of more than 400 view pages. The HTML markup of the view pages was
adapted to Razor (a view engine that needs a specific markup) and HTML5.
The .Net framework was upgraded from 4.0 to 4.5 and ASP.Net MVC from 2
to 4. The integrated development environment (IDE) was upgraded from Mi-
crosoft Visual Studio 2010 to 2012 with an additional extension in the form
of Web Essentials 3.2.

The use of the Razor view engine enhanced the U-CARE software system
in terms of malleability, decomposability, and simplicity, through its multiple
layouts and its source code cleanness, readability, and maintainability56. Also,
it allowed unit testable and pre-compiled views, which enabled detection of
errors at compile time instead of at run time. Furthermore, it supported partial
views, which enabled code reusability and extensibility, and reduced code du-
plication. Web Essentials facilitated the minimisation of JavaScript (JS), and
Cascading Style Sheets (CSS) files to decrease the size of the views.
Additionally, multiple JS and CSS files were grouped into bundles. The bun-
dles of files minimised the number of requests to the web server, resulting in
increased efficiency and improved performance.

The technology upgrade had a significant impact on the software develop-
ment process of the development team, for instance through the NuGet57 pack-
age manager for the Microsoft Visual Studio. The package manager enabled
the development team to have one central reference list58 of all useful packages
with their version numbers (including both top-level and down-level depend-
encies). The package manager facilitated for the development team to install
or upgrade packages seamlessly in their projects. Packages could be effort-
lessly moved between developer computers, source control repositories, build
servers, and so forth, with the help of just one reference list file. Thus, the
need to commit these packages was eliminated, meaning less space in the
source control repositories was wasted. The use of the package manager by

56 Developers have described several advantages of the Razor view engine and technology up-
grade in 2015 interviews and later, during the during the mobile adaptation in 2016.
57 https://www.nuget.org/ [accessed: August 24, 2017] (The package manager had 89,585
unique packages when it was last checked).
58 The package manager enables for production and consumption of packages from the NuGet
central package repository. The repository contains third-party libraries in the form of packages
(CSS, JS, and other languages), with their versions and references. The package manager pro-
vides the means to restore all referenced packages upon request.

 134

the development team minimised discrepancies across their development en-
vironment. Hence, it enhanced the quality of the software development pro-
cess and indirectly the quality of the U-CARE software system, thanks to con-
sistency in the development, test, and production environments.

Intervention and evaluation
In the case of back-end refactoring, there was decent test coverage59 through
unit tests. However, in the case of front-end refactoring, the UI – consisting
of 400+ views in MVC context – had little-to-no test coverage in the front-
end. Thus, automatic testing (which would have been ideal in this case) could
not be carried out. During the front-end refactoring, there were too many
changes in the system, mainly in the HTML syntax of UI. However, the
changes were not supposed to affect the UI itself. The development team de-
vised a test approach based on the criterion that the changed views should
interact with users, present information and receive data for further pro-
cessing in the same manner as existing views did (Design workshop, 2013).
The development team identified that data collection through questionnaires
was the most critical part of the system, due to the risk of a negative impact
on the ongoing research studies as a result of bugs.

The development team selected a pilot (small-scale) research study which
used nearly all the U-CARE software system’s features and functionalities.
The pilot study was designed and run by the clinical researchers as a feasibility
study ahead of a future full-scale RCT study. They planned to test the U-
CARE software system by going through the selected pilot study steps using
test user accounts on both the existing and the refactored version in parallel.
The assumption was that if both U-CARE software system versions behaved
in the same manner, using the same set of conditions (e.g., participants, study
design, data, browser, et cetera), then the front-end refactored code could also
be considered reliable for production release. As the existing software system
was equipped with a logging function, the development team was able to list
the most frequently accessed URLs (i.e., browser requests mapped to control-
ler/actions in MVC) concerning user roles and frequencies. In this way, the
development team had a systematic test plan with a list of tasks to be carried
out, reported errors for specific tasks, and could later verify corrections for
any particular task. The manual process of comparing the two versions was
very tedious, time-consuming and error-prone. The development team mem-
bers also expressed that it was difficult to compare them in two different tabs
of a browser. A comparison tool was developed to ease and simplify compar-
ative analysis of the two system versions (see tool-related details in Appendix
D.1) (Figure 15, pt. ii-c).

59 In software testing, test coverage refers to a measure used to describe the degree to which
the source code of a software is executed when a particular test suite runs.

 135

During the testing workshops, the development team evaluated the system
in three ways. First, they performed a comparison of UIs while logged in to
both systems using test user accounts. Second, database records were analysed
and compared. Third, the database log table entries were analysed. The pro-
cess was repeated using different user accounts and following different paths
in the intervention flow. The screenshots taken in the comparison tool were
analysed after every workshop to find errors and remaining URLs that were
not yet dealt with. The testing workshops led to the detection and handling of
some errors in the source code. Also, during the process, errors were found
and fixed.

The comparison tool made the evaluation very simple for the development
team, as they could go through all web pages of the existing and refactored
software system, take screenshots, and compare differences. It helped in find-
ing tiny errors in the layout or content, even if only a single pixel had changed.
For example, the translation of a few web pages was not working; though the
system had been tested many times, the development team had not been able
to spot the difference. The comparison tool spotted this and many other bugs
efficiently, even when things look similar at first glance. The translation bug
found in the existing system related to the unique key generation of a transla-
tion phrase when a partial view was loaded in the parent view. This error em-
anated from the back-end logic layer of the translation feature, so the devel-
opment team fixed the translation feature. Another related bug in the existing
system was also fixed by returning partial views from the controller, as it was
incorrectly returning partial views as main views. This was not a problem for
the old web form view engine, but for the Razor view engine, a correct spec-
ification as either a partial or a full view was required.

 136

Figure 28. Changes in source code files committed during front-end refactoring.

In Figure 28, it can be seen that testing and evaluation resulted in significant
code changes in December 2013, almost double those in the original develop-
ment from September to November 2013. The back-end and front-end refac-
toring code branches are denoted b and f, respectively. After testing work-
shops, the evaluation results of critical parts of the system were considered to
be satisfactory. The development team agreed to release the latest version of
the software system to the clinical researchers for beta testing, and that the
beta version would go into production when it showed sufficient stability.

The development team kept working on the b code branch, although back-
end refactoring ended in October 2013. After testing some releases on the test
server, the b branch with the refactored code was released on a production
server for the first time in January 2014. This was the first production release
since the refactoring started in August 2013. Later and fewer releases (i.e., 06-
2013, 08-2013, 01-2014 and 02-2014) were one of the significant conse-
quences of proactive refactoring. The back-end refactoring also impacted on
the front-end refactoring. More developers were working on the b code
branch; as a result, there were more changes in the b branch compared with
the front-end refactoring code branch f. Often, the version control system
(e.g., Subversion and Git) facilitated the merging of the two code branches,
but since there were significant changes in the structure and code of the source
files, merging could not be done automatically. So, each change in the b code

N
o

of
 so

ur
ce

 co
de

 fi
le

s c
ha

ng
ed

Commit Date

 Commit in f branch Commit in f branch for merging b branch changes

 137

branch was manually rewritten in the f branch. Figure 28 shows the code com-
mitted in the f branch and code committed due to merging the b branch
changes with the f branch. This led to more work for the developers who
worked with the f branch when they had to merge the changes with their
branch.

On one hand, this extra work put pressure on the development team to
merge both teams into one and to start working in a single branch. On the
other hand, there was a pressure to release the latest version of the production
server. However, this could not be done until the system had been thoroughly
tested. So, the f branch refactoring release was delayed multiple times and
needed to keep the two code branches continuously synchronised. After nearly
three major and one minor production release of the b branch, the developers
finally switched to the f branch completely. In March 2014, the f branch was
released in a production environment for the first time. The technology up-
grade and adaptation to the Razor view engine made the U-CARE software
system more compatible with other devices than just personal computers
(PCs), such as mobile phones and tablets. The Razor view engine also sup-
ported unit testing of UI, which was better for any future upgrades. It was also
much better in terms of the maintainability of the U-CARE software system,
as it had improved readability and organised the source code syntax, in a much
more simple, cleaner and better way.

Reflection and learning
During the proactive refactoring, the development team recognised the im-
portance of considering the ecology of artefacts in order to sustain the existing
U-CARE software system over time. The development team considered
boundary resources, such as development tools, frameworks, et cetera in the
ecology of the U-CARE software system. They also realised that they needed
to continuously keep the U-CARE software system in sync with such bound-
ary resources to keep it aligned with the changing design landscape. For ex-
ample, the U-CARE software system’s compliance with new versions of the
framework made it easier to utilise new capabilities that supported a better
user experience for the users of the U-CARE software system. As a result, the
development team was able to comply with new requirements from the U-
CARE stakeholders and sustain the usefulness of the U-CARE software sys-
tem in the emerging technological landscape. The development team had to
consider trade-offs such as resource efficiency and alignment with existing
technology, as well as the utility of the software system. These trade-offs in-
fluenced the design process and the quality of the software system over time.

The U-CARE stakeholders were accustomed to an iterative process of
providing feedback on the features. During the technology upgrade refactor-
ing, a change of the existing release process was introduced in the form of
alpha-beta releases in a test environment before production release. The intro-
duction of a test server facilitated this process further by enabling early alpha-

 138

beta releases on the test server and subsequently facilitated the receipt of early
feedback from the stakeholders. The development team also realised the im-
portance of test coverage and started writing more test code, which was re-
flected on by the team leader as follows:

The culture of the team is changed, now more developers have started writing
test code. (ISR-1, 2014, IT meeting minutes)

During refactoring, the product backlog was frozen. The development team
support was only allocated for urgent situations in ongoing studies in the pro-
duction system. Although the product owner kept adding new items to the
product backlog, there were no more features implemented during refactoring
and only limited development was visible to U-CARE stakeholders. Thus, it
was not only hard to convince the U-CARE management to allocate resources
for refactoring, but also to show the long-term value of the time and resources
invested in refactoring. The development team was under pressure, as they
were not able to show any progress during refactoring. The refactoring was
challenging, given the limited resources and that maintenance of existing sys-
tem functionality and addition of more features were ongoing as well. The
first draft of the design principles that considers the technological-ecological
adaptation was phrased based on the learnings in this cycle (see Table 21).

Table 21. Design principles for sustaining the usefulness of eHealth research soft-
ware (version 1)

The next BIE cycle (Figure 15, pt. ii-f) describes the reactive refactoring in
the U-CARE software system.

BIE Cycle II
Build
After proactive refactoring, there were some errors encountered once the soft-
ware system was released on the production server. The system failures were
problematic, as they appeared seemingly at random. Here is an example report
of the system failure:

Today, the U-CARE production server was once again very slow. I did some
checks on the server while the problem occurred, and it turns out that the

Design principle Specification

The principle of
technological-eco-
logical adaptation

The eHealth research software should continuously be adapted by the
software developers, regarding both its compliance with new require-
ments from its stakeholders and its fitness to the emerging technologi-
cal landscape, in order to promote the research software’s fitness to the
changing design landscape.

 139

w3wp.exe process (i.e., the host process for IIS) is consuming nearly all CPU
time (~98%). Restarting the web server from the management view (tempo-
rarily) solved the problem.

Some conclusions: (1) The problem does not reside on the database side.
(2) We need to understand why our application builds up to consume so much
server time. I have got a feeling that the problem may be related to all the Ajax
requests made by clients (checking for chat messages, new instant messages,
et cetera). If many people leave their browsers on while logged in, we will
have a fair number of requests piling up.

I think we need to make a collaborative effort to identify and remove this
problem. Perhaps some change in the server settings (quicker timeout/clean-
up of old requests?) could fix it, in concert with changes to the code to mini-
mise the pressure on the server. (ISR-#, 2014, Email)

One reason for the problems was that there was less test coverage of the code,
leaving errors unchecked in the system. Also, no code review was performed.
There were some changes in the business logic just before moving to the Ra-
zor view engine. Most times when the system went live, the development team
focused on the Razor view engine as a source of performance errors. For ex-
ample, the system shut down at night or was not responsive. Using a trial and
error method, the development team changed some code. For example, action
rendering was changed to partial rendering, which led to other problems such
as that the translation and logs entries being changed, as they were specific to
the URL context. This was also due to differences in the Razor view engine’s
rendering of different parts of the system UI. It was later discovered that there
was a logic error in the event service that made the database too busy to allow
the core system to access the database for login et cetera.

The proactive refactoring (Figure 15, pt. ii-b) also led to problems in the
system log mechanism. This happened in part due to the technology upgrade
when intermediate calls (a kind of user controls, technically ASP.Net MVC
RenderAction) to a parent web page (which was composed from many user
controls – technically a view inside another view) bypassed the controller;
hence, they were not subjected to the log mechanism of the U-CARE software
system. This log was the basis for accountability and traceability of the system
events, in addition to its other areas of use. The reminders were also not trig-
gering correctly, due to both incorrect configuration and changes in the design
of the studies during a six-month period (January to June 2014) (2014, IT
meeting minutes).

Because of these system failures, the development team initiated reactive
refactoring (Figure 15, pt. ii-f) of the source code. The development team was
continuously engaged in fire-fighting60. This tied up resources that were
needed for designing and adding more functionality. Detecting the reasons for

60 In software development, fire-fighting is an emergency allocation of resources, required to
deal with an unforeseen problem, for example, assigning extra programmers to fix coding bugs
that are discovered close to a product's release date.

 140

errors in the system drained resources and led to many unanticipated refactor-
ing measures to improve code clarity and page rendering performance. During
this fire-fighting, the development team got new members. Still, it was hard
for new team members to understand the U-CARE software system and
quickly resolve problems. The new team members were not familiar with the
existing code base and domain knowledge. Additionally, to strengthen the de-
velopment team, one of the Information Systems researchers started working
as a full-time developer for a three-month period. The Information Systems
researcher’s main task was to fix the bugs, as he was familiar with the existing
code base and domain knowledge (business rules and process).

Intervention and evaluation
The development team started to monitor the U-CARE software system to
confirm that it was running and doing what it was supposed to. For example,
24/7 monitoring and diagnostics of the web server were set up through a third-
party application, LeanSentry61. This application helped in understanding how
the U-CARE software system behaved on the web server. The U-CARE soft-
ware system logged all errors in an exception log. The development team
started monitoring this log for error analysis. Performance testing was also
performed indirectly by analysing and comparing average code execution
times.

The technology adaptation process resulted in a change in software devel-
opment tools and practices. There were changes in the steps during the devel-
opment and deployment of the system, such as the addition of new tools like
the NuGet package manager, for addition and upgrade of library packages,
and the Microsoft ASP.NET Web Optimisation Framework, for bun-
dling/configuration and minification for CSS and JS. On many occasions, the
development team forgot that the above changes in the development process
had been introduced. Sometimes they forgot to install the frameworks and
sometimes they forgot to deploy the minified files. These inconsistencies led
to errors in the production environment, as the system in the development en-
vironment behaved differently due to non-minimisation JS vs. minimisation
JS in the production environment. This indicates that it took some time for the
development team to understand the new tools.

There were also improvements to the system that came with fixing these
bugs, for example, optimisation of the U-CARE software system, improved
performance, elimination of redundant views, and placement of business logic
in the business layer separate from the presentation layer (i.e., views). The
Razor view engine allowed the rendering of the same view as a full and partial
view with the same contents in it. During the technology adaptation process,
one obvious result was that the development team did not have a suitable
mechanism for UI testing. The comparison tool was good, but required that

61 https://www.leansentry.com/ [accessed: March 10, 2014].

 141

the development team manually went through the URLs one by one, took
screenshots, and reviewed them. To improve this process, a design workshop
to introduce Selenium62 was organised (Figure 15, pt. ii-e). During the UI test-
ing workshop, the functionality of Selenium was demonstrated, and the de-
velopment team members discussed how they could use it to improve testing
in their development process. The open discussion highlighted the following
fundamental design implications, design decisions, and design actions regard-
ing

a) the functionality and use of Selenium:

It simulates keyboard events […] here we can make assertions and check that
the page is rendered properly […] we can access the entire DOM [Document
Object Model63] in the rendered page and see for instance if a specific div has
the class hidden or any test of the actual result on the user side […] currently,
we can only see what is returned by the controller […] we can export the clicks
and actions […] Selenium looks simple to me […].

b) assessing Selenium relative to current testing tools and routines:

The main difference here is that the Selenium framework requires us to have
an actual web server running and it makes the request properly using an engine
for a web browser. Then we make assertions based on what is a return to that
web browser. What we are doing right now in the unit test is that we simulated
the entire web context. There is no real web server involved, and there is no
real web client involved, it is just a simulation of these things […].

c) the reflection on Selenium’s usefulness in the U-CARE context:

What we gain from this [Selenium] is that we have [Java]Scripts in many
pages and this will also indicate if the scripts work or not. We can make asser-
tions on how the page rendered rather than just [what is returned by the con-
troller] […] since we can combine things here, we can use the Selenium engine
to make some calls. But if we can do this in test mode, then we could also
make assertions about the state of the web server and messages sent and so
forth […] that combination would be very powerful. That would be real inte-
gration testing, showing a lot of things and also for different web browsers […]
so it seems very powerful.

d) proposed changes/improvements in testing:

62 Selenium is a suite of tools to automate web browsers across many platforms. It can be con-
trolled by many programming languages and testing frameworks. Selenium WebDriver and
Selenium IDE, parts of Selenium, were necessary packages for developers. Selenium Web-
Driver helps to create robust, browser-based regression automation tests and distribute scripts
across many environments. Selenium IDE is a Firefox add-on that can be used for record-and-
export interactions with the browser. http://www.seleniumhq.org/ [accessed: February 13,
2014].
63 https://en.wikipedia.org/wiki/Document_Object_Model [accessed: August 08, 2017].

 142

The test project is quite messy […] we should have at least two projects. One
in which we have the real unit tests […] [where we call] these isolated func-
tions and do real unit testing, and then we have integration testing maybe in
there both the current way we do it, and this could be [combined] […]

What we would need to do would be to run these UI tests against a database
that is clean and configured before each test and then the test should run. So
basically, when we create a test we need to set up environments and then run
the tests […]

[We should] set up the database wisely […] we should create at least one
study, and we should add some basic data that allows us to record, walking
through each function basically or based on each role we should do things […]
so log in as a research participant, fill in the baseline, [get] randomised, [and]
then the module should be activated, we submit a homework [assignment].
Then we log in as a therapist and provide feedback. Then you know to test this
entire chain it would not take that much time and if we can run that every time
before we publish than we have come far […].

e) the usefulness of the improved testing process:

It could be a simulation of the entire system […] this could also help the new
developer to see the whole system, how it is working […] we can simulate an
error and put a breakpoint to understand what is going on at a particular point
in time or in a sequence of events […].

f) identification of possible challenges in the implementation:

The problem is if you are recording things then [a presumption would be] that
the database base has a certain content when you start using it, so the next time
you run that script you might get a different result for instance or the script
might even do things that change the database. So I think we need – if we want
to use it in a systematic way – we need to make sure that we set the database
in a certain state before recording the tests and before each test it should be
reset to that state […].

g) improvement in running and writing tests:

I agree that the sooner we get this thing going, the better it would be, because
it would really help us to quickly create new tests every time we have a new
feature or a bug or something. Then we can do this straight away and then just
get the code out of it to make it possible to repeat the test basically. The optimal
way if we find a bug would be to reproduce the bug and record this as a test
using Selenium and then we have the test. We know this should pass, and then
we change the code and then when the test passes we know we have solved it.
Then the next [test] could be to use some of these combinations to simulate
through different browsers and different input values on the same test […]

When we are about to test something, we have to consider which type of
test is the most suitable for this particular thing and sometimes it might be a
mock unit test and sometimes [it might be to] simulate a typical user behaviour,
flow or how people do things in the [system] […].

 143

The above workshop, relating to the testing process, led to the addition of
Selenium tests in the existing testing framework. The addition of Selenium
tests made the U-CARE software system more testable and resulted in an in-
creased test coverage.

Reflection and learning
During this trial and error process, the development team realised that they
needed an improved design process to solve problems in the U-CARE soft-
ware system. Continuous upskilling of the development team was needed. The
system refactoring impacted negatively on the team members’ experiences of
the existing system and technologies, in particular for team members new to
the system. The results indicated that the development team was frustrated
during this BIE cycle:

We wait until a problem occurs. We drive our development based on problems.
Dev-#, 2014, Observation)

We do not follow the sprint plan. (Dev-#, 2014, Observation)

Every time we publish it is worse than before. (Dev-#, 2014, Observation)

Whenever the development team publishes on the production server, there are
always some bugs, and that becomes a priority to solve, [rather] than following
the sprint plan. [There] seems [to be] a problem with testing, as testing is not
performed [before] release of the system to production and also there is no beta
testing for the last few releases. (ISR-#, 2014, Research log)

There is no one responsible for anything. There is a need for a leader to lead
the project and be full time and make decisions as and when required. (Dev-#,
2014, Research log)

The clinical researchers were not as engaged in the beta testing during tech-
nology upgrade as they were during initial system design. There was no in-
centive and motivation for the clinical researchers to test the system again.
They were busy with their research and not very interested in testing the sys-
tem. Also, it was difficult for them to identify errors. Consequently, the sys-
tem failure after the refactoring made the clinical researchers and the U-CARE
management dissatisfied, as they became less confident in the system.

The development team had mainly been occupied with bugs. The bugs had
been reported by stakeholders on a continuous basis, with the implication that
the development resources were allocated to correcting problems rather than
preventing them in the first place. However, this did have one positive result:
the development team became more conscious of taking too big steps and be-
gan testing the changes in the system thoroughly before releasing them into
production. Though tests had been conducted, the fact that they were not run

 144

on a daily basis meant that as the code changed, new bugs could occur and, as
the tests were not automated, all changes were not always tested. With this in
mind, a decision was made to create a batch script to automate the execution
of tests (a.k.a., continuous testing64). However, the continuous testing was the
result of the learnings and implementations of multiple tools over a long pe-
riod of time.

The development team also decided to increase the test coverage. This was
achieved by adding the Selenium recorded test65. However, the path to intro-
ducing Selenium was not straightforward. Many workshops were held by the
development team to discuss how to utilise the existing testing framework
better and how to integrate Selenium. Selenium IDE was used to create quick
bug reproduction scripts, which were used in the tests. In a way, these scripts
simulated research participant and system behaviours. Scripts replicating
known bugs were used to prevent new occurrences of these bugs. The devel-
opment team decided to focus on the most critical components first, for ex-
ample, the core need of the researchers that research participants would be
able to login:

To get the research participants to start working on the [system] it is important
that the first impression be good. That is, when logging in and answering ques-
tionnaires for the first time and when starting an intervention. This must be
user-friendly and working. (ISR-1, 2014, IT meeting minutes)

The development team also decided to use ReSharper66, a Visual Studio Ex-
tension, for static code inspection. ReSharper helped in cleaning and fixing
the source code. ReSharper provided an excellent facility for code refactoring.
Every new version of Microsoft Visual Studio IDE also improved its features
related to refactoring. However, utilising such refactoring features required
continuous upgrades of IDE.

Based on the lessons learned during this cycle, the design principles were
revised. Table 22 lists the revised design principles. Changes (if any) from the
previous version are highlighted in bold.

64 Continuous testing is the process of executing automated tests to obtain immediate feedback
on the defects associated with a software release candidate. This reduces the time and effort
that must be spent finding and fixing defects. As a result, it increases the velocity of the devel-
opment team and the frequency at which quality software is delivered. Continuous testing is
part of continuous integration and continuous delivery.
65 Selenium IDE is Record/playback tool. The tool allows the recording of test scripts that can
be exported to a high-level language (e.g., C#).
66 https://www.jetbrains.com/resharper/ [accessed: March 24, 2013].

 145

Table 22. Design principles for sustaining the usefulness of eHealth research soft-
ware (version 2)

BIE Cycle III
Build
In this BIE cycle, the development team reflected on their development pro-
cess and organisation together with the U-CARE management and the product
owner. The result of the reflections was a realisation that the Scrum-based
development process needed to be followed and improved (Figure 15, pt. ii-
h). Also, there was a need to go through the software system more thoroughly
as a team. The development team organised a three-day workshop (Figure 15,
pt. ii-i) to assess the limitations of the current software development process
and to devise a new plan with improved quality control. They focused on: 1)
where we are; 2) how we got here; and 3) where we want to be.

During this workshop, the development team discussed the existing design
process, the consequences of refactoring, and technical debt. The develop-
ment team believed that despite the quality assurance efforts in the design
process (during the previous BIE cycles), there had been quality problems in
the U-CARE software system. The testing activities had not been given a con-
tinuous high priority. The development team had been working under high
pressure due to a continuous influx of new requirements from the U-CARE
stakeholders, leading to a reduced focus on quality. The bugs reached a peak
in early Autumn 2014, causing problems with impact on the U-CARE context.
Bugs, however, had been reported continuously by the clinical researchers,
with the implication that development resources were allocated to correcting
problems rather than preventing them in the first place. This phenomenon is
referred to as technical debt. An analysis was undertaken to see how much
technical debt the team had been dealing with over the preceding year. The
analysis revealed the problem of the technical debt, i.e., at any given time
there were high priority bugs to fix that forced the development team to work
on correcting errors made in the past (technical debt) rather than on building
new features, making improvements to existing features, et cetera. It turned
out that technical debt had not been decreasing; rather, it had increased
slightly.

Design principle Specification

The principle of
technological-eco-
logical adaptation

The eHealth research software should continuously be adapted by soft-
ware developers, regarding both its compliance with new requirements
from its stakeholders and its fitness to the emerging technological
landscape, in order to promote fitness to the changing design land-
scape, given that the development process is supported by ade-
quate test coverage, automated and continuous/frequent test-de-
liver-feedback practices, a set of appropriate supporting tools, and
continuous upskilling of the development team.

 146

The workshop focused on three themes: i) core business activities in U-
CARE; ii) database issues; and iii) a new testing strategy. The core business
activities in U-CARE served as the starting point for the new testing strategy.
The product owner helped the development team to identify and focus on core
business activities in U-CARE. The DBMS was an important design aspect of
the U-CARE software system. The development team came up with a set of
decisions to use features of the DBMS to simplify the design of the U-CARE
software system and to improve the overall software performance. The devel-
opment team identified and assessed four approaches that were in use at the
time: System tests from the user perspective, based on Selenium, were (1)
recorded tests (RecTest) and (2) programmed tests (ProTest); (3) Generic tests
(GenTest) were unit and integration tests based on web context simulation;
(4) Data, database and schema consistency tests (DbTest). RecTests were fur-
ther categorised as core business processes, issue verification, and study-spe-
cific tests. ProTest made use of an evolving tests to produce combinatorial
tests automatically. GenTest programmed tests that tried out functionality up
to the controller level. DbTests were tests based on SQL queries and stored
procedures with the purpose of checking the integrity of the database. The
main points in the new testing strategy, which was developed in the workshop,
were to:

1. Automate build-and-test [code] every night before publication on
beta and production servers. Test results must be reviewed before
publication, and all tests must be passed.

2. [Draw up] an improved and explicit definition of done67 that in-
cluded: a) The developer having interacted with stakeholders to
understand the requirements; b) Backlog task description being up-
dated to include an understandable description of the requirements;
c) The code being implemented; d) The feature being sufficiently
tested, with a note in the sprint backlog stating ‘what was done in
the testing while solving the task’; e) After an issue being marked
as done, it would be annotated; and f) After publication, a revision
report would be generated (based on the annotations of completed
issues) and sent to the product owner for further distribution.

3. [Define] sufficiently tested at the task level. i) A basic task
(complexity point < 5) is sufficiently tested when existing test code
is considered comprehensive enough to cover the changes made to
the code, or existing test code has been complemented with new
tests to achieve coverage of the code written to solve the task, ii) A

67 The definition of done is a simple list of activities (writing code, coding comments, unit
testing, integration testing, design documents, et cetera) that add demonstrable value to the
product. Highlighting value-adding steps allows the team to focus on what must be completed
in order to build software.

 147

complex task (5 ≤ complexity points ≤ 8) is sufficiently tested when
the testing requirements for a basic task are fulfilled, and another
developer has reviewed the code changes.

4. [Ensure] human validation of data – in interaction with the stake-
holders, the team should make core business indicators visible to
the [clinical researchers] so that they can assess if activity in the
[software system] is reasonable.

The workshop also resulted in design decisions (see the full list in Appendix
D.2, which includes details about rationale, requirements, and follow-up). The
most significant decision was that the software developers in U-CARE would
work half-time with proactive practices, i.e., testing, refactoring and docu-
mentation. This decision was reflected in the definition of done as well. No
backlog item, whether it was a bug fix or new feature, was considered
complete until: a) Tests have been written as part of the resolving backlog
item; b) In-code documentation was adequately produced upon resolving the
backlog item. The new definition of done required the development team to
take on half of the usual complexity points per sprint for testing. This allowed
the development team to work half-time with testing and documentation.

Figure 29. Product backlog and feedback feature.

 148

The new definition of done was implemented in the development process by
enhancing the existing product backlog and feedback feature of the U-CARE
software system (explained in detail in Section 3.5). New fields were added,
for example, test date, test annotation, and annotation (see Figure 29).

Intervention and evaluation
The development team organised multiple workshops (Figure 15, pt. ii-j and
pt. ii-k) to evaluate and further improve the software development process
with a focus on test coverage and quality assurance (see details about deci-
sions in the workshop in Appendices D.3 and D.4). The development team
complied with the new testing strategy by including the date of the test with a
brief description and adding annotations regarding testing for all completed
tasks. The development team used the backlog feature to follow up on and
report the testing strategy. The development team also improved the continu-
ous integration by using TeamCity68 for running automated builds and tests.
The TeamCity was better than batch script running, as it supported the web-
based administration of the continuous integration process. All tests were ex-
ecuted at least once a day and the development team received a daily build
report (i.e., the number of passed and failed tests) to validate the quality of
existing and new code. This enabled a rigorous quality control ensuring that
any changes to the current system did not introduce unintended errors. The
development team also configured automated deployment of the system on
the web server. Automated deployment not only eliminated the possibility of
errors being introduced through manual deployment on the web server, but
also made the process simple and efficient.

The testing framework was further improved to facilitate the design and
construction of advanced tests of the U-CARE software system. The develop-
ment team added recorded tests for core processes related explicitly to re-
search participants. The development team added a recorded test for every
bug identified. They also added many recorded tests for every research study
running on the U-CARE system. The study-specific recorded tests simulated
a research participant completing observation points one by one while going
through the CBT and interacting with the system. Selenium-recorded tests en-
abled system integration testing of the U-CARE system across the full tech-
nology stack. The development team also improved and coded additional pro-
grammed tests (ProTest), generic tests (GenTest), and database consistency
tests (DbTest). The development team started generating a bi-weekly system
status report for all stakeholders, particularly the clinical researchers. The re-
port contained core indicators to enable the clinical researchers to assess the
activity of the system and make sure the system was functioning as it should.
These reports resulted in further strengthened testing with stakeholder-centric
human data validation.

68 https://www.jetbrains.com/teamcity/ [accessed: February 7, 2015].

 149

The development team also started working half-time with proactive qual-
ity assurance tasks, i.e., testing, refactoring, and documentation. This was
achieved by considering testing, refactoring, and documentation in the story
points while estimating the complexity involved in the user stories. The focus
on quality assurance resulted in stabilisation of the system, while new features
were developed at a slower pace than before. The increased focus and priority
on refactoring needs led to the identification of a need for adaptation of the
system for mobile devices (see case III). Also, the real efforts made by the
development team in increasing the test coverage of the system were made
visible in the subsequent successful extension of the artefact, as presented in
case III.

Reflection and learning
The main challenge emphasised by the development team during the third BIE
cycle was that the software system needed to evolve in response to the changes
in the technical landscape, as well as in the U-CARE context. The develop-
ment team communicated the difficulties they had experienced during the pro-
active refactoring and the U-CARE management allocated development time
for such refactoring. The development team learned that reducing the level of
testing led to an increase in unplanned development which was time-consum-
ing. Also, as seen in this case, fixing the problem could cost more than it
would have cost to prevent it. It was also difficult for new developers to un-
derstand and use the existing code without documentation. The documented
and refactored code let the development team build new features faster and
led to a potential velocity increase.

Development of new features was more interesting to the stakeholders, es-
pecially as the internal software quality was not visible to them. This made it
hard to allocate resources or prioritise quality-related issues such as refactor-
ing, increasing test coverage, and technology upgrades. The stakeholders
learned that they had to wait with development of new features, to resolve the
technical debt. They also agreed to provide resources for proactive software
development practices, such as refactoring, documentation, et cetera. The def-
inition of done forced a structure onto the development team ensuring that the
development tasks were indeed completed, not only regarding functionality,
but concerning quality as well. Based on the learnings from this BIE cycle,
the design principles were revised (see Table 23) (Figure 15, pt. ii-l).

 150

Table 23. Design principles for sustaining the usefulness of eHealth research soft-
ware (version 3)

Artefact Use Over Time and Learning
The U-CARE software system evolved from the design and development of a
system to offer psychosocial care in a specific research setting to a research
software system as a service for associated studies and ultimately to a health
care provider in psychosocial care. The system was initially designed for
three RCTs, and up to the start of 2019, it handled at least 16 studies with
approximately 4,000 research participants. The source code volume increased
as well, and became divided into multiple layers. The evolution of the system
resulted in a move of the existing servers, which had been placed at different
locations, to a centralised and dedicated infrastructure at Uppsala University.

The technological landscape also changed during the U-CARE software
system evolution, for example, Microsoft Visual Studio 2010 evolved to 2019,
HTML 4 to HTML5.1, CSS 2.1 to CSS 3, ASP.Net 4.0 to 4.7 and .NET Core
2.0, and ASP.Net MVC 2 to 6. JS frameworks evolved for a more interactive
web experience and implementation of advanced design framework at the cli-
ent side (i.e., Angular, Backbone.js, et cetera), jQuery 1.7 evolved to 3.2, et
cetera. Other technologies that changed included hardware, operating sys-
tems, platforms, and client software, like browsers.

The above changes have severe implications for Information Systems prac-
titioners and researchers in designing the U-CARE software system, as
substantial functionality of the software system was dependent on reusable
components (e.g., libraries) and adaptation of third-party software assets (e.g.,
frameworks). The technologies that were used, whether commercial or free,
were changing continuously. As these were multiple interdependent technol-
ogies in a hierarchy (Xu et al., 2010), they could not be treated as singular and
independent of each other. These technologies co-evolved in an endless recip-
rocal cycle – in which changes in one technology set the stage for changes in

Design principle Specification

The principle of tech-
nological-ecological
adaptation

The eHealth research software should continuously be adapted by
software developers, regarding both its compliance with new re-
quirements from its stakeholders and its fitness to the emerging tech-
nological landscape, in order to promote fitness to the changing de-
sign landscape, given that the development process is supported by
adequate test coverage, automated and continuous/frequent test-de-
liver-feedback development practices, a set of appropriate tools,
and continuous upskilling of the development team.

The principle of em-
bracing proactive
practices

The software developers of eHealth research software should
embrace proactive practices in order to improve code readabil-
ity, extensibility, testability, simplicity, and potential velocity in-
crease, given that resources (time, money, and attention) are al-
located for such practices.

 151

others and vice versa (Magnusson & Bygstad, 2014). There is a growing trend
to make the latest versions of technologies compatible with each other, so as
to make it is easy to use the latest versions of technologies, particularly in
web-based software development (de Bayser et al., 2015). Such a trend can
be seen in the NuGet ecosystem69 on the Microsoft development platform.
However, as the U-CARE software system ages, its source code and the li-
braries it depends on are becoming increasingly hard to maintain. This case
showed that there was a need to constantly keep track of the updates, update
frequency, major improvements, obsolete functionalities, other alternatives,
et cetera, in order to understand and maintain the involved technologies. One
way this can be achieved by relying on tools and package managers “to check
that the right versions of required packages are installed and install or upgrade
them if they are not” (Taschuk & Wilson, 2017). Lightweight virtualisation
containers like Docker70 make technology adaptation process easier as
multiple combinations of technologies can be tested on a virtual machine or
container system and development team can see what breaks and discover
dependencies (Taschuk & Wilson, 2017). Also, virtual machine or container
system, which contains a copy of software system, data and the environment
– everything needed to run the software, can be used to have consistent
development (even production) envirnoment among the entire team, testing,
deployment, and replication a system stated at a later date.

6.3 Formalisation of Learning
Technology has and will continue to change the landscape of the software
industry. Software developers need to frequently adapt, adopt, and shape the
technology available to them, based on their existing development practices,
to ease the design and development of systems and satisfy end-users’ needs.
The case showed that malleability, decomposability, simplicity, and account-
ability are the key quality characteristics for sustaining the usefulness of
eHealth research software in the academic research context. However, sus-
taining such quality characteristics is a challenge in the software development
process due to limited resources in an academic research context. Advanced
technical knowledge and expertise are significant for effective use of agile
practices (Senapathi & Srinivasan, 2012). The case resulted in improving the
design process by augmenting the definition of done with testing and alloca-
tion of fifty per cent of the development team’s time in each sprint to proactive
practices such as testing, refactoring, and documentation. Evaluation of the
design process was found to be equally important as evaluation of the design

69 https://docs.microsoft.com/en-us/nuget/policies/ecosystem [accessed: January 18, 2018].
70 https://www.docker.com/ [accessed: January 18, 2018].

 152

artefact (Alturki et al., 2013). Adequate support from management was nec-
essary to enable the development team to gain the skills required. The learn-
ings from this case have been articulated and formalised as design principles
in the following table.

Table 24. Design principles for sustaining the usefulness of eHealth research soft-
ware

Design principle Specification

The principle of tech-
nological-ecological
adaptation

The eHealth research software should continuously be adapted by
software developers, regarding both its compliance with new re-
quirements from its stakeholders and its fitness to the emerging tech-
nological landscape, in order to promote fitness to the changing de-
sign landscape, given that the development process is supported by
adequate test coverage, automated and continuous/frequent test-de-
liver-feedback development practices, a set of appropriate tools, and
continuous upskilling of the development team.

The principle of em-
bracing proactive
practices

The software developers of eHealth research software should em-
brace proactive practices in order to improve code readability, exten-
sibility, testability, simplicity, and potential velocity increase, given
that resources (time, money, and attention) are allocated for such
practices.

 153

7 Case III: Extending the Artefact
– the U-CARE Mature Phase

This chapter describes the design and evaluation of the U-CARE software
system adaptation to mobile devices (referred to as the mobile adaptation). In
this ADR case, the main focus was on the research participants. Some research
participants accessed the U-CARE software system through mobile devices,
and the system was not designed for this (i.e., not compatible with mobile
devices). Section 7.1 explains the design context and problem relevance. The
iterative building, intervention and evaluation cycles are presented in Section
7.2. Formalisation of learning is presented in Section 7.3 as a (final) set of
design principles which emerged during iterative BIE cycles.

7.1 Problem Formulation
The internet is one of the vital components in providing psychosocial care and
support (Lochan, 2012) and mobile internet adoption is increasing across the
world. A growing number of individuals use their mobile devices (which af-
ford advanced computing and internet connectivity) to access the internet. In
Sweden, there are 14.2 million mobile broadband subscriptions, and there has
been a sharp increase in mobile surfing71, more than doubling since 2014. This
remarkable growth in mobile internet use provides additional opportunities to
offer psychosocial care. The usage of mobile applications (or apps) has grown
dramatically (Barak & Grohol, 2011). Research has supported the use of mo-
bile apps to provide psychological treatment for behavioural health care
(Luxton et al., 2011; Cohn et al., 2011; Smedberg & Sandmark, 2012; Rini et
al., 2012). Furthermore, research has also revealed that participants are will-
ing to use mobile apps (Weaver et al., 2007; Harrison et al., 2011). Ad-
vantages of mobile self-help programs can be seen not only in their broader
reach, but also in the increasing convenience for the research participants, who
can get/access information in an interactive and timely manner.

Systematic reviews of mobile health suggest the following: there is a strik-
ing difference in the number of commercial apps compared with the small

71 http://statistik.pts.se/, Swedish telecommunications market first six months 2018, report pub-
lished on 2018-11-19 [accessed: March, 13, 2019].

 154

number of reliable, evidence-based apps (Wac, 2012; Donker et al., 2013;
Bastawrous & Armstrong, 2013); there is a limited number of apps for health
behaviour change interventions (Clough & Casey, 2011; Free, Phillips, Galli,
et al., 2013; Bastawrous & Armstrong, 2013); there is limited use of mobile
technologies for mental health (e.g., use of SMS service only) (Clough &
Casey, 2011; Gurman et al., 2012; Free, Phillips, Galli, et al., 2013); industry
regulation and scientific rigour (evidence base) should be considered (Wac,
2012; Donker et al., 2013); and further research and development are called
for (Clough & Casey, 2011; Gurman et al., 2012; Donker et al., 2013; Free,
Phillips, Watson, et al., 2013; Free, Phillips, Galli, et al., 2013; Bastawrous &
Armstrong, 2013). Little or no evidence has been found regarding therapist-
guided mobile applications, even though guided approaches (that combine
structured self-help material with the vital role of a therapist who provides
support) have been found to be superior to unguided online treatment
(Andersson, 2009). Although the future of internet-supported psychotherapy
appears bright, there is an essential need for additional research to examine
whether therapeutic goals are being met and that interventions are optimised
for delivered through mobile devices.

According to the futuristic view of Alcañiz et al. (2009), an e-therapy sys-
tem should be based on ubiquitous computing72 for using the system in any
location, at any time, and on any of several technological platforms. Miller
(2012), also a proponent of smartphone use in psychology research, stated that
a smartphone could collect vast amounts of ecologically valid data, easily and
quickly, from large global samples, which could transform behavioural re-
search even more profoundly than PCs and brain imaging have done. Internet
interventions will likely follow the move towards mobile internet access,
which ultimately will allow for greater patient access (Mewton et al., 2014).
Innovative use of information technology for interventions holds tremendous
potential for health care, but developing a comprehensive software system that
adapts to technological advancements and innovative ideas, such as mobile
devices, carries with it legal, ethical, privacy, security, and practical hazards
and problems.

Dadgar et al. (2013) in their literature review and analysis, concluded that
although the health care industry has begun using mobile health, and patient
care could be significantly transformed from this, research in this area is
sparse and at its initial stages. They call on Information Systems researchers
to design and conduct research in the mobile health area (Dadgar et al., 2013).
Sørensen & Landau (2014) stated that the Information Systems field had not
established a significant response to the challenge of mobile information and
communication technologies (mobile ICT). What they suggested was that the

72 Ubiquitous computing is a concept in software engineering and computer science which
means that computing can be performed anytime and anywhere, (https://en.wikipe-
dia.org/wiki/Ubiquitous_computing) [accessed: September 4, 2014].

 155

Information Systems field should respond in an agile manner to these emerg-
ing socio-technical phenomena by applying a qualitative, explorative ap-
proach and incorporating mobile ICT into the mainstream academic discus-
sions.

Mobile devices are an essentially personal possessions, which most people
carry at all times, and psychosocial care self-help applications can tap into the
common habit of playing with a device during moments of free time
(Nylander et al., 2009). Effective psychosocial care depends on how patients
collaborate with their caregivers to manage their care. The patients need not
only comply with their psychological treatment; they also need to adopt a life-
style behaviour that optimises their care. Online psychosocial care requires
patients to access and use the platform for a certain amount of time to produce
the desired outcome or effect. The convenience of access and therapist inter-
action influences online treatment satisfaction. Online psychosocial care can
be provided using several technological platforms, including desktop, web,
and mobile applications. The advantages of mobile applications include their
ease of access, increasingly widespread use, and better user engagement. Mo-
bile applications enable patient involvement and the provision of ubiquitous
and instant feedback to realise new behaviours and sustain desired perfor-
mance. The mobile applications can help health care professionals to interact
with patients in a timely manner, which can lead to treatment satisfaction.

In 2014, the U-CARE software system provided research participants ac-
cess through desktop only. There were many compatibility issues when the
U-CARE software system was accessed on mobile devices. Among other
things, videos were not compatible with iOS devices. Facilitating access
through mobile devices, like smartphones and tablets, could engage research
participants, specifically young people, who already used such devices for a
significant part of their activities. Psychosocial care could easily be delivered
through the internet. As more people began accessing the internet through
mobile devices, adapting the U-CARE system to mobile devices was seen as
an effective way to increase psychosocial care access and use. The ADR team
initiated the U-CARE software system adaptation to mobile devices because
of this change in the research participants’ technology environment.

The problems mentioned above relating to the U-CARE software system
can also be taken as an instance of a class of problems (i.e., coping with con-
tinuously changing design landscape) faced while designing any eHealth re-
search software in an academic research context with limited resources. Fol-
lowing the ADR method, Information Systems researchers wanted to consider
design principles for the design process that would apply to a class of similar
problems. Therefore, the case-specific research question was: What principles
should guide the design process to sustaining the usefulness of the eHealth
research software in the continuously changing design landscape in the aca-
demic research context? However, in this case, the design process involved
multiple stakeholders, and resulted in changes in many parts of the U-CARE

 156

software system. Hence, the problem class and research question are the same
as in Chapter 6, but this case is richer as it considers multiple stakeholders and
deals with the whole system. The next section presents the BIE cycles in this
ADR case.

7.2 Building, Intervention and Evaluation Cycles
The U-CARE software system adaptation to mobile devices went through two
BIE cycles (i.e., proof-of-concept and the U-CARE software system adapta-
tion to the mobile devices).

Figure 30. The BIE cycle during adaptation to mobile devices including contribu-
tions and stakeholders involved in the design.

Figure 30 shows the BIE cycles in which the U-CARE software system adap-
tation to mobile devices was put into the organisational situation, and
formatively evaluated to meet the stakeholders’ needs. Initially, in the first
BIE cycle, the ADR team consisted of Information Systems researchers and
Information Systems practitioners (i.e., software developers) in the U-CARE
context. In the second BIE cycle, the ADR team was extended by including
representatives from other stakeholders’ groups, such as clinical researchers,
associated researchers, psychologists, research assistants, et cetera.

 157

Figure 31. The timeline for the BIE cycles of adaptation to mobile devices.

Figure 31 gives an overview of development iterations and design workshops
during the BIE cycles. Each BIE cycle is detailed in the following subsections,
by discussing the build, intervention, and evaluation activities. At the end of
each cycle description, an account of the lessons learned is provided. I built
the proof-of-concept prototype during the first BIE cycles (Figure 15, pt. iii-
e). The ADR team built the full adaptation of the U-CARE system in the sec-
ond BIE cycle (Figure 15, pt. iii-h). The first three design workshops in the
second BIE cycle were an evaluation of the existing system, and they were
independent of build iteration sequences. The rest of the design workshops
were linked to and based on the sequence of build iterations in the system
adaptation.

BIE Cycle I
Build
The adaptation to mobile devices started as an explorative process with the
purpose of better understanding the context of the design as regards (i) adap-
tation needs and the installed base, and (ii) the technology landscape, i.e.,
technologies and development strategies that might be relevant in the context.

 158

Figure 32. A rudimentary model for comparison of development approaches (Mus-
tafa et al. 2014).

Literature and online resources (e.g., blogs and forums) were studied to learn
more about mobile adaptation, including devices, operating systems, frame-
works, standards, regulatory organisations, and developer resources. There
are different types of applications when it comes to internet connectivity:
some work offline, some need occasional internet connectivity, and some
need the internet all the time. Appendix E.1 describes various approaches,
which could be used to achieve mobile adaptation. Based on this, a rudimen-
tary model (Figure 32) was created, to characterise various development ap-
proaches used in mobile adaptation. [A] refers to responsive design frame-
works for making a website adapt to different screen sizes; [B] relates to var-
ious hybrid app solutions that mix web and native code using scripting frame-
works, such as jQuery mobile, and thus enable websites to get the look and
feel of the UIs of native mobile apps; [C] denotes dedicated mobile websites
or separate mobile themes; and [D] represents completely native apps. Given
the requirements R1–R6 (listed in Table 25), [A] was the ideal quadrant in the
U-CARE setting for the following reasons: 1) The range of devices was in-
creasing so fast that creating an app for each platform was not feasible for the
U-CARE development team with its limited development resources; 2) Max-
imising the use of existing resources built on the installed base allowed re-use
of infrastructure (e.g., privacy, security, et cetera); and 3) There would be only
one system to design and maintain.

Following knowledge exploration, the ADR team presented the idea of ad-
aptation to mobile devices as an innovation challenge during the U-CARE
scientific advisory board (SAB) meeting in 2013, to engage with all stake-
holders (Figure 15, pt. iii-c). Open feedback on the issue was gathered from
the U-CARE stakeholders, and particularly the SAB members. There were
two key results from the discussions: technology could be used more effec-
tively to promote behaviour change and [this could] enhance recruitment to
intervention studies, for example, via the design of the [U-CARE software sys-
tem]’s layout. The SAB meeting resulted in an increased awareness of issues

 159

related to mobile devices and triggered a further discussion on the adaptation
to mobile devices within U-CARE.

The ADR team organised a second design workshop to discuss design
choices regarding mobile adaptation (Figure 15, pt. iii-d). The workshop in-
cluded a presentation of mobile adaptation choices and arguments for or
against them, followed by a Q&A session and an open discussion. Here are a
few highlights of the discussion:

Adaptation with minimal changes

The review of the options we have is valuable […] I want to see if you run the
(existing) system on mobile devices, how can we find the minimal situations
to adapt the system for better user experience. I agree that it is elegant to adapt
the system using Bootstrap [CSS framework] […] one way forward is experi-
mental refactoring and modernising the development environment. (ISR-1,
2013, Design workshop)

Architectural challenges, limited resources and risks of change

[…] architectural issues prevent a mobile [native] app approach implementa-
tion […] if we redesign the entire software as a platform […] then we can have
apps interact with the platform […] right now an app cannot be considered an
option […] while solving one problem we may be creating more problems […]
the change in the system is a risk too.

[…] we have to balance long-term goals and the vision for the platform
with the immediate requirements […] there are issues related to resources, and
our work is governed by the organisational context we are working in.

[…] this is most important at times when the system is running in a
production environment and the studies (RCTs) are going on, with real re-
search participants. Any change in views [UI] without thoroughly testing could
result in discrepancies in the RCTs’ research data, disruptions in information
flow, and scrambled study material related to interventions. Ultimately, this
could cause undesired (negative) effects on [research] participants’ health.
(ISR-1, 2013, Design workshop)

The discussion highlighted the characteristics of mobile adaptation as ele-
gance from a user’s perspective and robustness from a developer’s perspec-
tive. The development team agreed to follow the mobile first philosophy and
to implement responsive web design on an experimental basis using a CSS
framework. At the time, the development team was working on the back-end
refactoring of the existing software. The development team agreed that they
should work on front-end refactoring as well, to implement the mobile adap-
tation needs. The development team assessed that the software required sub-
stantive refactoring on the front-end to be compatible with relevant third-party
technologies for mobile adaptation. The details of this refactoring have al-
ready been discussed in Chapter 6.

 160

Table 25. Mobile adaptation requirements

No Requirement description Stakeholders

R 1 The system should be accessible through the research partici-
pant’s choice of devices

Clinical researchers

R 2 The system should provide security and protect the privacy of
research participant

Clinical researchers

R 3 The system should require minimal development/maintenance
effort

Development team

R 4 The system should use existing infrastructure in so far as possi-
ble

Development team

R 5 The system data collection should be consistent with the exist-
ing web-based system and should not corrupt the existing study
data that have been collected over time

Clinical researchers

R 6 The system should remain in a stable state (we should be sure
that it is working with 100% accuracy)

Clinical researchers

Basic requirements for the U-CARE software system adaptation to mobile
devices were drawn up through a series of informal discussions with U-CARE
stakeholders. Mobile adaptation had been recognised as necessary since the
inception of U-CARE, but it had never been at the fore in the design process.
However, early discussions during the design workshops for the technology
adaptation process made it possible to identify a set of requirements for adap-
tation of the system for mobile use (see R1–R6 in Table 25). These require-
ments illustrate important conditions that governed the process of adapting
the system for mobile devices.

After the technology upgrade (presented in Chapter 6), a proof-of-concept
prototype was developed. The significant changes in the existing system were
that a few JS and CSS libraries had to be removed, the code should be stand-
ardised using only one framework (i.e., Bootstrap), and the core UI should be
changed for all users (i.e., the clinical researchers, research participants, psy-
chologists, et cetera). Some architectural design decisions were made to ac-
commodate the responsive design while utilising and maintaining the existing
system architecture in so far as possible.

Intervention and evaluation
The proof-of-concept prototype was presented in a design workshop with only
a few UIs converted to responsive design using the Bootstrap framework, such
as home, log in and the developers’ dashboard screen. The workshop partici-
pants (CR-3, CR-5, Dev-4, ISR-4, CR-2) were representatives of different
stakeholder groups: a clinical researcher, a therapist, a developer, an Infor-
mation Systems researcher and a person from the U-CARE management (i.e.,
product owner). The objective of the workshop was to show the stakeholders
the responsive concept and how different UI screens responded when the
screen size was changed. The workshop participants suggested three key rec-
ommendations as:

 161

1. We should focus first on the research participant views.
2. We should get feedback on the prototype at bi-weekly sprint meet-

ings.
3. We should get in touch with the research participants (i.e., end-us-

ers) for their feedback early on.

Once again, the development team was in the same situation as it was in dur-
ing the technology adaptation process case (Figure 15, pt. ii-b). On one hand,
there was a need for systematic testing and refactoring to achieve stability in
the system; on the other hand, to continue the development of the prototype
would have required extra effort in code synchronisation (due to parallel de-
velopment in two teams). Therefore, prototype development was stopped until
the development team had a stable system, and the management could repri-
oritise mobile adaptation.

 162

Figure 33. Proof-of-concept prototype – home page on desktop.

Figure 34. Proof-of-concept prototype – home page on tablet.

 163

Figure 35. Proof-of-concept prototype – research participant dashboard on tablet.

Figure 36. Proof-of-concept prototype – home page on mobile.

 164

As mentioned above, at a previous SAB meeting (2013), a mobile adaptation
idea had been presented. During the 2014 SAB meeting (Figure 15, pt. iii-f),
Information Systems researchers described the importance and difficulties of
designing flexible and interactive eHealth solutions. The proof-of-concept
prototype was presented to demonstrate the interactive user experience on dif-
ferent mobile devices. Figures 33–36 are examples of the UI design of the
prototype (more examples can be seen in Appendix E.2).

Open feedback on the matter was gathered from representatives of the var-
ious stakeholder groups, particularly the SAB members and associated clini-
cal researchers. The demonstration led to an interesting discussion. Here are
a few highlights:

Colour and readability

How do you decide on colours? […] Well, it has to do with the readability. A
very light green colour is not easy to read […] You might also have different
profiles so that the user can choose. Either an old-fashioned black-and-white
thing or something with colours or different colours […]. (Board member,
2014, SAB meeting)

Sustainability and adaptation to new releases of mobile platforms

I was wondering about sustainability, if you program all of this and Apple de-
cide [to release] iOS 10 or something, do you have to re-program everything,
or it is simple to achieve it? Do you have to change all of it? (Board member,
2014, SAB meeting)

It is platform-independent as well as hardware-independent. That is why we
are using responsive design […]. (ISR-4, 2014, SAB meeting)

UI, user experience, attractiveness and appealing design

Just a quick comment on the presentation here is that if the intervention is ac-
cessible from a broader range of devices such as mobile phones, we find it
likely that more people [will] go there and use it. And if it is not accessible,
we find it likely that they [will] consider this software to be old-fashioned and
not appealing and that […] might scare people away basically. If the technol-
ogy is old and non-accessible, so that is my interpretation of [what ISR-4 is
saying] the sense that if it feels old and not as good as the other software, they
are using […]. (ISR-1, 2014, SAB meeting)

But this is also a complicated aspect. We have been trying to, we talk a lot
about the design, the layout, or the [U-CARE software system] which we use
at the moment, and we always end up with different opinions about what is
nice and what is not nice and how should be presented […]. (CR-1, 2014, SAB
meeting)

For most patients, I think the simple design with basic texts is enough for them
to get started with the treatment and the behavioural changes what we think

 165

are good for them. And then I think there is a group that may be thinks What?
I can’t log in with my mobile phone! Then I will not do it. And maybe they are
not text people, so they need pictures and multimedia […]. (SAB participant,
2014, SAB meeting)

User engagement and usability

I think it is hard to [imagine] that you will be able to redesign the whole [sys-
tem] and see as a global increase in treatment response. I think you have to be
more like guided by usability design and what is good practice, rather than test
everything and randomise control trials. (Board member, 2014, SAB meeting)

There were two key results from the discussions: it is necessary to remove
technical obstacles to make the [U-CARE software system adapt for] all de-
vices and to keep the design simple but attractive. The workshop resulted in
an increased awareness of design issues regarding the U-CARE software sys-
tem adaptation to mobile devices and triggered a further discussion on the UI
design within U-CARE.

During the subsequent IT meeting, it was suggested to make a new, more
modern theme for the U-CARE software system; in other words, to adapt the
UI for mobile devices. Furthermore, it was also suggested to outsource this
task as a Master’s thesis project due to a limit of resources, skill sets and
knowledge required for such adaptation within the development team. This
resulted in publishing an advertisement for a degree project for a Master’s
student to develop a responsive web application for smartphones and tablets
(see Appendix E.3). It is important to note that during this period, the existing
development resources were prioritised for stabilising the system, the quality
of the system, and the design process improvement. One such example is the
developers’ three-day workshop (Figure 15, pt. ii-i). Core processes for re-
search participants on the U-CARE software system were documented. The
objective of this documentation was to enable for itemisation of requirements
for developing the mobile web application by the Master’s thesis student.

Reflection and learning
Due to the complexity of the existing system, the comprehensive redesign of
the system for mobile adaptation was resource-heavy and required the invest-
ment of a significant amount of time and engagement from the stakeholders.
The prototype design was not the final design solution, but it enabled the ADR
team to instil design curiosity among the stakeholders and enabled the stake-
holders to explain what they wanted. The interactive prototype showed the
idea of mobile adaptation and what the development team was trying to ac-
complish with their concept. The prototype generated actionable feedback
from stakeholders. The first draft of design principles was phrased based on
learnings during this cycle (see Table 26).

 166

Table 26. Design principles for sustaining the usefulness of eHealth research soft-
ware (version 1)

The next cycle elaborates on the design activities that enabled the U-CARE software
system adaptation and its actual use by the research participants.

BIE Cycle II

Build
The proof-of-concept prototype demonstration and discussion around the U-
CARE software system’s UI resulted in the system’s adaptation to mobile de-
vices. The feature request was added to the product backlog and given high
priority. The effort to find a Master’s thesis student to adapt the U-CARE
software system for mobile devices failed, due to a lack of applicants with the
right competence. Ultimately, the task was assigned to the development team.
Previously, the development team’s main focus had been on system quality,
developing the test framework, and design process improvements. Once the
development team was back on track after the bumpy road of the technology
upgrade, the U-CARE management decided to give top priority to the mobile
adaptation.

At this stage, the Information Systems researcher who was team leader and
technical lead left the development team. The product owner took over the
role as team leader, and one of the developers was given the technical lead
role. This change affected the design process, which is discussed in the inter-
vention and evaluation section below. In this BIE cycle, the ADR team was
reorganised and extended by including representatives from various stake-
holder groups. Meanwhile, the development team became smaller in size due
to two full-time development team members leaving, and also some of the
Information Systems researchers, who contributed 10% in the development,
becoming less involved, as they were busy with their research work (Figure
15, pt. iii-g).

The product owner and team leader took the leading role in the ADR team.
The team leader also held many design workshops. The technical lead was
responsible for ongoing system maintenance (bug fixes) and support-related
issues. The rest of the development team, consisting of two full-time develop-
ers, had mobile adaptation responsibilities. The development team investi-
gated the adaptation of the U-CARE system to mobile devices with minimal

Design principle Specification

The principle of en-
gagement with
stakeholders

The software developers of eHealth research software should
continuously engage with stakeholders, in order to adapt the
software in a direction which will satisfy stakeholders, given
that the stakeholders are willing and committed to such engage-
ment in the long term.

 167

development efforts. The technical lead prepared an initial plan on how to
proceed in this regard, while the ADR team determined the goals of the mobile
adaptation. They were as follows:

1. Adapt the research participant views (UI) for mobile devices.
2. Changes should not compromise research (i.e., research participants

should have the same functionality and content on mobile and desktop
devices).

3. Ensure better user experience on mobile devices.
a. Resolve mobile-specific issues (e.g., PDF, video, et cetera).
b. Adapt in accordance with user expectations based on experiences

from using other mobile apps, for example as regards look and feel.

The project went through multiple iterations to achieve the aforementioned
goals. The length of the sprints was different in each iteration, while mainte-
nance of the existing system remained based on two-week sprints. The devel-
opment team started from scratch and learned the Bootstrap framework by the
trial and error method. Based on their experience and knowledge, they con-
sidered different design decisions and design practices to achieve the goals.
One such decision was to keep the existing jQuery UI framework and jQuery
plugins. Due to this decision, the existing proof-of-concept prototype could
not be used as-is. Instead, the development team used bits and pieces from the
prototype to implement the Bootstrap framework. Later in the adaptation pro-
cess, the design decisions were revised. For example, the development team
started to test the system using real mobile devices and tablets instead of em-
ulators, for a more accurate and actual user experience. The following section
describes in detail how the ADR team went through several iterations and
adapted the system based on the feedback received during various design
workshops. During design workshops and between iterations, exploratory
tests were performed by focus groups, the development team, and a few se-
lected individuals. Notes were taken and used for next iteration of testing.

Iteration I
The development team investigated different technical solutions to make the
system usable on mobile devices. Microsoft Word documents were used to
communicate the tasks, schedule, feedback, design decisions, and problems
and their resolutions, instead of using the existing product backlog and feed-
back feature. The documents were stored centrally and shared among all
stakeholders to make the process transparent. All stakeholders, particularly
the clinical researchers, were heavily involved in this effort and provided lots
of feedback about the design. During this iteration, a learning session was
organised with an expert on usability, to understand the challenges of mobile
application development. It focused on usability in UI design.

 168

Design decisions and implications
The development team created a separate branch of the code for this project
(i.e., mobile-legacy). They decided to design a new theme/template for the
system, which could be adapted to different mobile device screens. The deci-
sion was made that a strong base of UI should be created during the initial
adaptation, which would be used to convert the whole existing U-CARE sys-
tem to a more modern, responsive design. In other words, the effort was fo-
cused on learning the technologies and identifying the challenges. The deci-
sion was made to keep the existing functionality in so far as possible, to rely
solely on CSS, which should be purely cosmetic, and to avoid changes to the
HTML at this point. The branch name mobile-legacy indicated the intention
that the goal was to keep as much of the legacy code as possible, until a com-
plete redesign of the entire visual layer could be carried out. The decision was
made to perform the beta testing on all supported [real] mobile devices. The
development team also decided to implement the responsive design using
Bootstrap framework, but they kept the existing library jQuery UI framework.
Initially, they decided to only design a theme, but over time they learned that
they had to change the HTML in the views as well. Then they decided that
they would only change views that were related to research participants’ ac-
tions/activities and keep the overall existing architecture unchanged. Later,
this resulted in challenges.

Design actions undertaken
The developers trained themselves in HTML, CSS, and JS, skills needed for
responsive design development. They assessed the viability of the refactoring
with fewer developers, who were ready to learn but had limited experience
with the latest technologies. They prepared a UI policy for the process. Each
iteration was deployed on the test server for alpha testing. In the beginning,
the mobile adaptation was tested using mobile device emulators. In some de-
velopment cycles, the responsive design was implemented. The developers
built a theme specifically for mobile devices, which loaded if a user accessed
the system on a mobile device and a clinical researcher had enabled the mobile
theme for the particular study. In the theme logic, the Bootstrap library was
overridden by the jQuery UI to keep the existing CSS classes working like
they had before. The developers created theme-specific CSS to deal with CSS
class conflicts, consisting of additional CSS classes to implement the respon-
sive design.

Iteration II
The development team demonstrated their new mobile adaptation prototype
to the U-CARE stakeholders. The most notable visual changes at this stage
were that the existing left icon menu had been removed and added as a small

 169

icon menu at the bottom of the screen. Based on the feedback from stakehold-
ers, the development team improved the menu design, and started working on
the second iteration.

Design decisions and implications
The decision was made to invite a clinical researcher to act as a test user (a
surrogate for research participants) and go through the list of views in the
Google Chrome web browser, which needed to be configured to emulate dif-
ferent mobile screen sizes. The suggestion was also made to invite all U-
CARE researchers73 (i.e., IT meetings participants) by email whenever testing
of the mobile adaptation prototype was needed. Their task would be to provide
feedback on the visual and functional aspects of the system. Examination was
done of the technical limitations of mobile technologies, to uncover potential
show-stoppers early on. The clinical researchers were informed that there was
still a risk that adding new functionality for mobile devices might not be fea-
sible within the short timeframe given (four months). The decision was made
to go through three major parts of the U-CARE software system and get feed-
back from stakeholders to identify any problems and then fix the problems in
the next iteration. The development team organised three workshops to get all
stakeholders on board (see below, Design workshops I–III).

The development team decided to keep the documentation of any improve-
ments or changes to the code of the existing system for use later in merging
both branches. The decision was made not to duplicate existing UIs for mobile
adaptation. Later, the development team was required to add tasks to the prod-
uct backlog and to keep the task status updated. The research participants’
views were divided between two software developers, who worked on them
separately. The decision was also made to continue the exploration and train-
ing on CSS and JS during the next iteration (which was going to deal with
strategies for managing multi-media audio/video content and PDF files on
mobile devices). The Klonk pain survey74 was excluded from the process, as
it did not seem likely to work on mobile devices [being an external service,
the development team had no control over its design]. The library and the CBT
section of the system were also excluded.

Design actions undertaken
In the first iteration, the development team’ main focus had been on the UI
design and configuration of the JS and CSS assets. In the second iteration, the
team mostly focused on adapting different features of the U-CARE software
system to responsive design, such as IM, chat, forum, questionnaires, home-

73 All researchers who are working in the U-CARE context, including clinical researchers, as-
sociated researchers, health economists and Information Systems researchers.
74 http://drawsurvey.com/ [accessed: October 9, 2014, an external questionnaire service].

 170

work, and user navigation. They also adjusted the font size of the text depend-
ing to the device screen size. The business logic regarding the handling of
actions and loading assets was refactored to accommodate the responsive de-
sign implementation. Three design workshops were organised.

Design workshop I
This workshop mainly focused on the features of navigation, forum, chat, IM,
and ‘ask an expert.’ The workshop participants (CR-2, CR-3, CR-8, ISR-4,
Dev-4, Dev-5, Dev-6, RA-1, and RA-2) were given a list of tasks to perform
before the workshop, using test user accounts on the alpha version of the U-
CARE software system. It was deployed on the test server for this purpose
with a test database. The workshop participants reflected on their first impres-
sions of the system and how the navigation worked. They also described and
provided feedback on the problems they encountered while using the naviga-
tion, forum, chat, IM, and ‘ask an expert,’ for instance regarding ‘navigating
on the homepage,’ it was stated that the “top buttons are too small” (see Ap-
pendix E.4, for additional details on the task list and feedback given).

Design workshop II
At this workshop, the mobile UI was discussed in regards to the questionnaires
and homework. The clinical researchers investigated the existing studies to
see what could be improved to enable use of the existing material for future
studies on mobile devices. The workshop participants (CR-2, CR-3, CR-4,
CR-8, ISR-4, Dev-4, Dev-5, Dev-6, RA-1, and RA-2) were asked to log in to
the system and to try to answer questionnaires using test user accounts. After
filling out the questionnaires, they received a mock intervention. At this stage,
the PDFs in the intervention were not working, so the workshop participants
were asked to try to answer the homework only. They described their experi-
ences of filling out the questionnaires and homework. They also provided
feedback on the problems they had encountered in the process, for instance
regarding ‘filling out questionnaires,’ it was stated that “table labels are too
wide” (see Appendix E.5, for additional details on the task list and feedback
given).

Design workshop III
At the third design workshop, the library and PDF files were discussed. Before
the workshop, the invited workshop participants (CR-2, CR-3, CR-4, ISR-4,
Dev-4, Dev-5, RA-1, and RA-2) logged in using test accounts and navigated
the library section. They were asked to explore the library slide menu and
provide suggestions on optimal design, as there were already several menus
on the page. At the workshop, the workshop participants (CR-2, CR-3, Dev-
4, Dev-5, RA-1, and RA-2) provided feedback on the problems they had en-
countered while using the library and footer menu, for instance regarding ‘try
to navigate in the library slide menu,’ it was suggested to “replace the current

 171

library slider with a slider plugin that works well on mobile” (see Appendix
E.6, for additional details on the task list and feedback given).

The design workshops (I–III) not only engaged the stakeholders, but also in-
volved them as co-designers in the mobile adaptation design process. This led
to initiation of a design activity to redesign and adapt the CBT content in the
U-CARE software system.

Iteration III
During this iteration, the main focus was to improve the UI for different com-
ponents of the system based on the feedback received in three design work-
shops during Iteration II. The clinical researchers also considered the CBT
part of the system, which had been left out in previous design workshops.
How different media formats (PDF, video, and audio) were rendered on dif-
ferent mobile devices with different operating systems and browsers was also
investigated in this iteration.

Design decisions and implications
The main decision in this iteration was to change the HTML of views, as well
as to implement responsive behaviour using the Bootstrap framework. It was
suggested to use text instead of PDF format. The existing video files were in
the Flash video (Flash Live Video – FLV) format. This video format did not
work on Apple devices. The decision was made to convert all video files to a
supported format. There was no decision made regarding the image files (e.g.,
resizing and rendering different resolutions on different devices). It was sug-
gested to the clinical researchers to change the CBT, homework tasks, and
questionnaires to support mobile devices. Audio files were already in MP3
audio format, which was compatible with mobile devices. The decision was
made to keep them as-is without any changes.

Design actions undertaken
The homepage was made responsive, and the pictures from the original
homepage were hidden. Only the login feature was displayed at the top. Fo-
rum, chat, and IM were adapted to mobile devices. The development team
integrated notifications in the footer based on the activities in the chat and IM.
Menu options were reorganised and moved. Various issues were fixed regard-
ing pop-up screens and alignment on the chat page. This made it more obvious
when a user was visible to others in the chat feature. The library section was
adapted using wiki-style75 for titles and subtitles, and aligned images based on
the size of device browsing the library pages. The forum and questionnaire

75 In the U-CARE context, wiki-style refers to the Wikipedia heading style seen when the wik-
ipedia.org website is accessed on mobile devices.

 172

layouts were improved; for example, some questions were changed from col-
umns to rows to look better on mobile devices.

In the first stage, the development team performed a preliminary test of
CBT modules. They activated modules, viewed items, submitted homework
tasks, and read feedback. Based on this, they suggested to the clinical re-
searchers to avoid having more than four tabs in any CBT homework/ques-
tionnaire. They also provided a list of homework that needed to be rewritten
by the psychologists to fit on mobile devices in accordance with the sugges-
tions discussed in the second design workshop. In the second stage, the devel-
opment team created test user accounts for the clinical researchers to go
through the CBT. As a result, they also received additional feedback from the
clinical researchers. The development team converted all FLV video format
files to MP4 format. They also replaced the old JS video player plugin with
an HTML5 video element.

Design workshop IV
This workshop was organised to test all components of the system (i.e., navi-
gation, communication, questionnaire, homework, library, multimedia con-
tent, and CBT module). The workshop participants (CR-2, CR-3, CR-4, ISR-
4, Dev-4, Dev-5, Dev-7, RA-1, and RA-2) were given a list of tasks to com-
plete and to provide feedback on during the workshop. The workshop partic-
ipants provided feedback on the problems they encountered while using vari-
ous components of the U-CARE software system (see Appendix E.7, for ad-
ditional details on the task list and feedback given).

Iteration IV
In this iteration, the development team went over the feedback from workshop
IV and implemented the requested changes.

Design decisions and implications
The decision was made to test the functionality of the portal thoroughly, after
changes were made for mobile adaptation and before going live. The reason
was that the previous iterations had been more focused on if the UI of the U-
CARE software system worked well on mobile devices. The development
team also decided to implement a new version of responsive EQ5D. The clin-
ical researchers had created a new study with mobile-adapted questionnaires76.
They also created a mobile-adapted CBT and homework tasks for this new
study. The new study was tested on the alpha server.

76 Research on how to adapt the standard questionnaire for mobile devices is still in its infancy.
There were no guidelines for making a standard questionnaire adapted to the mobile device
while minimising the effect that may have on questionnaire responses due to different charac-
teristics of mobile devices compared with PCs (e.g., smaller screen sizes).

 173

Design actions undertaken
The library wiki-style headers (not just the text) were made clickable. They
integrated Glyphicons (font format icons). The carousel slide menu was im-
proved, and it was no longer greyed out when not selected. Instead, a high-
lighted box appeared. Also, a swipe functionality was added to the carousel
menu. The images in the slide menu were aligned based on the size of the
device that was browsing the library pages. General issues with clicking on
carousel items, viewing the first library section, loading times, as well as pag-
ing that was not working, were all fixed. The FAQ, forum, IM, and navigation
sections were improved. The new EQ5D link that supported mobile devices
was incorporated.

During the mobile adaptation, the HTML markup of the UI was also
changed. The questionnaire now worked correctly with the newly created mo-
bile theme. However, to verify that the UI was still functional with the old
desktop themes (backward compatibility), the questionnaires were tested us-
ing the old desktop theme, but with the changed code in the views. The testing
was performed using one study and running a few questionnaires as a sample
to identify possible bugs or visual inconsistencies.

Design workshop V
This workshop focused mainly on planning the testing. During the mobile ad-
aptation, there were many changes in the system views (i.e., UI). During this
workshop, the development team planned to test the system using the existing
themes and rendering functionality. The main objective was to test backward
compatibility, to make sure the mobile adaptation did not affect the desktop
version. The system had to work in the desktop environment as well. During
the workshop, the decision was made to use the existing recorded test using
Selenium. These was also a discussion regarding use of an automatic tool like
Eyes.Selenium77 for visual testing. This tool would add automated visual val-
idation for Selenium tests to verify that the UI appeared correctly across all
devices and browsers. Another in-house developed tool was also discussed
which would use the perceptual image difference to test two parallel versions
during the technology upgrade.

Iteration V
In this iteration, the development team implemented the test plan prepared in
workshop V by increasing the test coverage of recorded tests, executing tests,
and correcting the code to pass failed tests.

77 https://www.nuget.org/packages/Eyes.Selenium and https://applitools.com/ [accessed: Octo-
ber 14, 2015].

 174

Design decisions and implications
The development team decided to proceed with recorded tests for the time
being and to consider integrating automated visual testing tools into the testing
framework at a later stage. As the recorded tests did not cover all parts of the
system, the decision was made that the development team should work on test
coverage first and then execute the test on both branches of the code (the old
version and the mobile adaptation). It was also decided to verify any infor-
mation stored in the database and that was a consequence of user activity. It
should be identical when running either branch of the code, which would val-
idate the data storage accuracy.

Design actions undertaken
The development team ran tests on the old code branch. They also ran the tests
on the new mobile adaptation branch and on the merged branch. The team
documented all errors during the revisions (see Appendix E.8) and corrected
the bugs. This was done as part of the alpha testing. After this, a beta version
was released on the test server. Once again, the design workshops were held
for beta testing (see below for details).

Design workshop VI
This workshop was organised for beta testing. Instructions were sent to the
workshop participants (CR-2, CR-3, CR-4, CR-5, CR-7, ISR-4, Dev-4, Dev-
5, Dev-7, RA-1, and RA-2) with a list of tasks to be completed, so they could
provide feedback during the workshop. The workshop participants provided
feedback on any problems they had encountered while using various compo-
nents of the U-CARE software system (see Appendix E.9, for additional de-
tails on the task list, scenarios and feedback given).

Design workshop VII
This workshop was held to perform a second round of beta testing after ad-
dressing most of the feedback from the previous workshop. These very in-
tense, continuous, and interactive feedback sessions were organised with a
limited number of participants (ISR-4, Dev-4, Dev-5, RA-1, and RA-2). Test-
ing steps from previous sections were already matured and most of the prob-
lems were identified, so a limited number of workshop participants went
through all the steps and spent more time on evaluation. Small numbers al-
lowed them to perform evaluation continuously for an extended period and in
a more interactive and shorter feedback cycle with the development team. The
workshop participants once again provided feedback about the U-CARE soft-
ware system (see Appendix E.10, for additional details on the task list and
feedback given). There was also feedback which was not directly related to
the mobile adaptation, but which was valuable all the same. The additional
feedback resulted in improvements to the existing system at a later stage.

 175

Iteration VI
This was the final iteration. The code was published in a production environ-
ment and tested again before the clinical researchers could enable access
through mobile devices. Here are some screenshots of the UI design that was
published in the production environment at the end of this iteration (see Fig-
ures 37–41).

Figure 37. Mobile adaptation UI – participant dashboard.

 176

Figure 38. Mobile adaptation UI – menu options.

Figure 39. Mobile adaptation UI – CBT modules.

 177

Figure 40. Mobile adaptation UI – video player.

Figure 41. Mobile adaptation UI – library.

 178

Design decisions and implications
The development team decided to release the new version of the U-CARE
system once the test results were satisfactory and feedback was positive. The
development team communicated to all stakeholders that the system was
ready for use on mobile devices. They also communicated that although the
system supported several types of devices and operating systems, it did not
support all types, as some features required the latest versions of the operating
systems and browsers. The development team also recommended tablet mo-
bile devices, as some mobile phone screens were too small. Use of such de-
vices would make the user experience sub-optimal, especially if research par-
ticipants accessed the intervention or answered questionnaires. The develop-
ment team enabled system access through mobile devices one study at a time.
The possibility to configure research studies enabled switching to the mobile-
adapted UI through theme settings, which allowed some studies to enable the
mobile-adapted UI, while others could keep the desktop-adapted UI.

Design actions undertaken
The development team kept track of the research participants’ devices and
only allowed access to the mobile-adapted study and content if the device was
supported. If a research participant had a device that was not supported by the
system, the system informed the user with a message and recommended use
of a computer.

Intervention and evaluation
In early March 2016, the latest version of the system was deployed in produc-
tion after mobile adaptation (Figure 15, pt. iii-i). U-CARE Heart was the first
study which allowed their research participants to use mobile devices. This
was a smooth transition with next to no errors or system failures.

The success of the U-CARE software system adaptation to mobile devices
was evident in the usage statistics, based on an analysis of environment logs
performed after one year of system use (see Table 27). In fact, over a quarter
(25%) of the research participants began to use the adapted system once it was
deployed. Interestingly (as elaborated on below), in the U-CARE Pregnant
study, many research participants were accessing the system through mobile
devices before the adaptation, and after mobile adaptation, this number of re-
search participants increased even further. The analysis of environment logs
also revealed other relevant findings, for example in relation to the operating
systems of mobile devices (only those known and detected). In the case of the
Pregnant study’s research participants during 2013–2015, 69.5% used iOS
and 30.5% Android. However, describing and presenting the detailed analysis
falls outside the scope of this dissertation.

 179

Table 27. Research participants’ mobile devices usage statistics

No Duration Entries All Heart* AdultCan* Pregnant

1 2013-06-28 to 2014-03-15 1,802 4.1% 5.4% 5.0%
2 2014-03-15 to 2015-03-15 7,379 16.7% 8.9% 6.8% 29.6%
3 2015-03-15 to 2016-03-15 8,244 14.3% 8.0% 12.0% 41.2%
4* 2016-03-15 to 2017-03-15 4,165 24.1% 23.6% 24.4% 56.7%
* Only the indicated research studies enabled the mobile-adapted theme and only during 2016–
2017. In other cases, research participants had accessed to the U-CARE software system using
the previous theme, which was not adapted to mobile devices. Data are based on analysis of the
research participants’ environment logs from 2013–2017.

The success was also evident in the product backlog and feedback log, where
there were no system failures or major bugs reported regarding the mobile
adaptation. The support issues log also did not show any mobile adaptation-
related issues reported by the research participants. The results indicated that
the clinical researchers were satisfied with both the content and the system
adaptation for mobile devices, and that the system was stable over the year.

The U-CARE software system was adapted to mobile devices based on the
assumption that this would lead to increased research participants’ engage-
ment (or simply increased activity and use of the system), inclusion, and re-
tention. While we could see that access to the system through mobile devices
had increased through the environment log, comparing research participants’
activity on mobile vs. desktop would require further investigation. The clini-
cal researchers had not only planned such analysis, they also had ethical ap-
proval for it. Such investigations are to be conducted once the intervention
studies of the clinical researchers are concluded. It is beyond the scope of this
dissertation to go into the details of the evaluation of engagement and effec-
tiveness.

Reflection and learning
The research participants’ age and tech-savviness are significant factors to
consider when adapting the eHealth interventions for mobile devices. The re-
search study Pregnant did not require a lot of support or reveal many technical
issues, possibly because the age of the research participants was lower than
that of the research participants in the research studies U-CARE Heart and U-
CARE AdultCan. The analysis of the environment log also revealed that a
large percentage of the research participants in the Pregnant study accessed
the U-CARE software system through mobile devices even before the system
and the CBT contents officially supported the mobile devices. In January
2016, when the U-CARE software system was adapted to mobile devices, the
Pregnant study was nearing its end. The clinical researchers also realised that
older research participants would not be able to interact with the contents on
mobile phones (particularly with a small screen), as contents were not tailored

 180

for such an audience. Therefore, older research participants were recom-
mended to use mobile devices with large screens, such as tablets or desktop
computers.

During the second BIE cycles, the ADR team instantiated design princi-
ples, that were formulated during the technology adaptation process case (Fig-
ure 15, pt. ii-l), into the U-CARE software system and the design process. The
design process was supported by a) adequate test coverage, b) frequent and
automatic running of tests (daily builds), c) continuous and iterative develop-
ment, frequent design workshops with detailed feedback, d) tools like
TeamCity, Selenium IDE, and multiple real mobile devices for proper testing,
and e) a development team with continuous upskilling regarding the tools and
technologies for mobile development (e.g., HTML5, CSS3, Bootstrap,
jQuery, FFmpeg for audio/video format conversion, et cetera). The improved
design process enabled the development team to adapt the U-CARE software
system in accordance with the changes in the technological landscape, as well
as to fulfil the requirements of stakeholders. This meant that the development
team followed the principle of technological-ecological adaptation. As a re-
sult, the design principles guided the design process in sustaining the useful-
ness of the U-CARE software system.

Figure 42. Source code changes vs. the discussions in IT meetings regarding the mo-
bile adaptation.

 181

Retrospective analysis of the design process, using CoDisclose, revealed that
the mobile adaptation, like the data export feature, remained in active devel-
opment for an extended period. Figure 42 shows the changes in the U-CARE
software system source code (light grey bar), based on data from September
2013 to March 2017. It is important to note that there were many source code
changes during the technology upgrade within a short period (September 2013
to December 2013). Similarly, many source code changes were made during
the mobile prototype development in the first BIE cycle, which took place
during a short period (March 2014 to April 2014). However, the source code
changes during the second BIE cycle were fewer and took place over a long
period (May 2015 to March 2017). The small changes during the long period
indicate that the development team was embracing the proactive quality as-
surance practices in the design process. Figure 42 also represents instances of
IT meetings at which the stakeholders’ discussions concerned the mobile ad-
aptation (black bars). It is important to note that the instances of stakeholders’
discussions are almost invisible in Figure 42, because most of the process was
not discussed at the IT meetings, but rather at specialised and documented
design meetings (see, e.g., Appendices E.4 to E.10).

Figure 43. Technical debt during mobile adaptation.

An analysis of technical debt revealed that it had decreased over time. Figure
43 shows the number of bugs to fix (top area, in black) and the number of non-
bugs to fix (bottom area, in grey). The figure includes only high priority issues
that were reported in the product backlog. The diagram illustrates that the
technical debt decreased over time as more features were developed, while

 182

bug-fixing decreased. Also, this shows that the development team was suc-
cessful over time in sustaining system functionality, while minimising bugs
and errors. Following quality assurance, the development team gave a contin-
uous high priority to testing activities. The testing safety net enabled the de-
velopment team to adapt the system to changing requirements. The U-CARE
management, especially the product owner, allocated the resources for refac-
toring, documentation, writing tests, and design workshops. The development
team used a learning by doing approach, which also required time being ded-
icated to gaining skills regarding various technologies. Thus, the development
team was given extra time for learning in this case. This resulted in the U-
CARE system increasing in testability and extensibility. In other words, the
development team observed the principle of embracing proactive practices.

During BIE cycle II, the development team involved all stakeholders early
in the mobile adaptation, observing following the principle engagement with
stakeholders. The stakeholders also showed their willingness and commit-
ment to engage in mobile adaptation. They were engaged throughout the sec-
ond BIE cycle, which can be seen in the participation in design workshops
and their detailed feedback (see, e.g., Appendices E.4 to E.10). The develop-
ment team not only engaged with stakeholders, but also made the mobile ad-
aptation in a co-design with them. The co-design led to an increase in engage-
ment and collaboration between the stakeholders. The stakeholders provided
continuous feedback. The development team was also able to get requirements
and knowledge about the CBT contents iteratively. The clinical researchers
and psychologists were motivated in adapting the system for mobile devices
and had the incentive to participate in the co-design not only to present their
requirements and feedback, but also to get a possibility to reflect on their re-
search studies. Furthermore, they could consider adaptation of CBT contents,
such as videos, PDF and questionnaires, which was required due to the mobile
adaptation. During the co-design, the development team also gained the trust
of stakeholders as regards the design process and the adapted system. Thanks
to the stakeholders’ multi-disciplinarity, the development team received very
creative ideas for solving various problems. The U-CARE management allo-
cated time and other resources to this co-design process. The clinical research-
ers performed continuous beta testing, supported by automated recorded UI
tests using Selenium. The design principles were revised based on learnings
from this cycle (see Table 28) (Figure 15, pt. iii-j).

 183

Table 28. Design principles for sustaining the usefulness of eHealth research soft-
ware (version 2)

Artefact Use Over Time and Learning
The artefact improved over time, and the design process went through various
changes, such as a) manual to automated deployment of the latest system re-
lease in the test and production environments; b) manual visual testing to au-
tomated testing using Selenium; c) manual builds and test execution to auto-
mated builds and test execution using TFS; d) backlog and sprint management
using MS Excel to U-CARE backlog feature and later through JIRA; and e)
source code version control from Subversion78 to Git79. Various technologies
were used and later discontinued, for example, the development team used
LeanSentry to monitor the portal performance, Re-Sharper for static code in-
spection, and TeamCity for automated builds and test execution. Also, rou-
tines emerged regarding for instance the data extraction guidelines, profes-
sional secrecy, and a General Data Protection Regulation (GDPR) compliance
policy.

78 Apache Subversion (abbreviated SVN) is a software versioning and revision control system.
79 Git is a version control system for tracking changes in computer files and coordinating work
on those files among multiple people. It is primarily used for source code management in soft-
ware development.

Design principle Specification

The principle of en-
gagement with
stakeholders

The software developers of eHealth research software should continu-
ously engage with stakeholders, in order to adapt the software in a di-
rection which will satisfy stakeholders, given that the stakeholders are
willing and committed to such engagement in the long term.

The principle of
co-design with
stakeholders

The software developers of eHealth research software should co-
design with stakeholders, in order to obtain continuous and early
feedback, knowledge and requirements elicitation, gain trust, in-
crease relevance and usefulness, and enhance creativity, engage-
ment, and collaboration, given that there are incentives or motiva-
tion for stakeholders to participate in co-design and an availability
of resources to make co-design possible.

 184

Figure 44. Approximate developer hours available monthly.

The development team increased from one to four members and then shrank
back to three full-time developers. The Information Systems researchers also
worked as developers. In addition, this stakeholder group included PhD stu-
dents and Master’s thesis students, either full-time or part-time, adding further
variety to the development team. As the team grew, different roles emerged,
for example, team leader, scrum master, support, and technical lead. The
changing development team composition over time can be seen in Figure 44
(approximate developer hours available monthly are stacked). The incon-
sistent development hours, lack of continuity, and developer turnover were
challenges in the U-CARE context. At several occasions, the development
team fluctuated either in the number of developers or the team members’
availability for development activities (e.g., 10%, 50%, 100%).

The most crucial problem was preserving the valuable technical knowledge
of developers who were leaving, and ensuring a transfer of knowledge to new
or existing developers in the team. The developers had invested a great deal
of expertise and time in the U-CARE software system. The departure of a
developer resulted in a loss of project-related skills and familiarity, leaving
the development team unable to do their work. For example, when the tech-
nical lead left the development team, a lot of critical software development
knowledge was lost, particularly related to systems architecture and design
decisions. The Information Systems researchers’ motto was continuous im-
provement in the artefact and the design process. The departing technical lead,
being a design science researcher and team leader, had a significant role in the
U-CARE context as regards innovative ideas, refactoring and, in particular,
the malleable design of the U-CARE software system. Another developer left
the team immediately after the mobile adaptation went live, resulting in a loss

 185

of knowledge regarding mobile-related technologies and familiarity with the
testing framework in the U-CARE software system. As a result, bug fixes,
maintenance, and development of new features took significantly more time.
Another example was the impending risk of knowledge loss related to the data
export feature if the development team were to lose another developer.

The ease of designing new research studies led to a steadily growing sys-
tem, and it took an ever-increasing amount of time to keep everything opera-
tional. The development team could not keep up with their daily workload.
The development team did not have the time to fix longstanding problems
with the U-CARE software system, much less redesign them to make the best
use of new technologies. Due to limited development resources, the technical
lead adopted a break-fix approach in line with the popular saying if it ain't
broke, don't fix it.

The focus of the development team also changed over time. For example,
Information Systems researchers led the development process initially, and
the main focus was then on designing an innovative artefact and exploring the
problem domain. When the artefact went into production, this changed the
focus of the development team to development and operation (i.e., DevOps).
They also worked with maintenance and providing support. Meanwhile, the
focus of the Information Systems researchers shifted to follow-up and evalu-
ation of the artefact.

Eventually, the development team’s focus shifted back to innovation, for
example, online consent, integration of BankID80 (for two-factor authentica-
tion), and the addition of video chat and enhancement to the U-CARE soft-
ware system for the ENGAGE (1000g) study. One key factor was that the U-
CARE context had matured and the development team had become confident
in making big changes to the codebase. The design process had also stabilised
thanks to the appropriation of learnings from designing the U-CARE software
system over time; having the same team members for an extended period;
gaining a balance in the innovation, DevOps, support, and maintenance activ-
ities; and maturation of the requirements elicitation process.

The development team used the proposed design principles in practice. The
effectiveness of the design principles was evident in that the design principles
were actionable by the development team and instantiated into the U-CARE
software system, which afforded the action described by the design principle.
For example, the principle of technological-ecological adaptation was instan-
tiated as presented in the following section.

The instantiation of the principle of technological-ecological adaptation
The test coverage of the U-CARE software system had increased. The devel-
opment team automated the execution of repetitive tasks, like testing, integra-
tion, and deployment, which enabled them to solve the problems quickly by

80 https://www.bankid.com/en/ [accessed: October 09, 2017].

 186

detecting errors in the U-CARE software system more readily and locating
them more easily. Selenium recorded tests were very rigorous and simulated
the actions of various user roles in the system. Running the Selenium recorded
tests minimised or even eliminated the need of clinical researchers’ beta test-
ing the U-CARE software system multiple times. Moreover, the automated
process enabled running tests more often and more quickly than before, when
tests were manually conducted by the clinical researchers, a process which
was time-consuming and error-prone. The development team adopted JIRA,
Git, TFS, and SourceTree81 (Graphical UI Tool for Git), recognising the need
for the tools in software development. They also acquired hardware, such as
different mobile phones and computers, to test the U-CARE software system
on real devices (instead of an emulator), with various operating platforms and
web browsers. The development team also focused on upskilling, so that they
learned about mobile app development-related technologies. For example,
Dev-4 and Dev-5 spent their time learning mobile app development during
the mobile adaptation, while Dev-6 learned through designing an app for the
U-CARE ParentsCan study (i.e., the PUSSEL app, see Appendix E.12). Sim-
ilarly, Dev-7 had to learn during enhancement of the responsive design for the
desktop environment in the U-CARE software system (see Appendix E.11).
It is important to note that the development team learned native mobile app
development only recently.

One significant change was related to the development team moving from
the existing product backlog/feedback feature82 of the U-CARE software sys-
tem to JIRA, and from SVN to Git. The development team was pleased with
JIRA as it meant that they had one less feature in the system to support, while
giving them a lot more functionality (Dev-4, 2017, Discussion). Similarly, the
development team felt more productive with the implementation of Git:

Moving to Git was successful. We are much more productive. We can work
on different features seamlessly by shifting between different branches. Also,
before merging code, we can see the differences between branches and possi-
ble conflicts, which saves the team a lot of time in removing conflicts on their
branches before merging to the master branch. (Dev-4, 2017, Discussion)

Git enabled the development team to shift between feature83, bug or hotfix
branches quickly while working on new features as well as on maintenance
tasks. Git also enabled them to act immediately by merging the hotfix to a

81 https://www.sourcetreeapp.com/ [accessed: January 16, 2017].
82 The backlog feature was essential to Information Systems researchers (to document the de-
sign process), and was made to cater their research needs, among others things. However, for
the software developers, it was less useful than JIRA.
83 Technically Git, being a distributed version control, supports the use of multiple (feature. or
design epic.specific) branches on the local computer of a developer and switching to a different
branch is easier than in other version control systems.

 187

stable branch (which was the same as the live production version) and deploy-
ing code to live production without waiting for the hotfix to be pushed during
a scheduled deployment. Git enabled knowledge sharing across team mem-
bers during development.

The development of the U-CARE software system was a long project, en-
compassing diverse functionalities, multiple ongoing research studies, and
enormous amount of research data. In the struggle to meet the continuous need
of building new features, proactive software development practices (e.g.,
TDD) were sacrificed and became a non-priority. However, the development
team eventually caught up on writing tests and were able to increase their test
coverage. The principle of embracing proactive practices was instantiated as
presented in the following section.

The instantiation of the principle of embracing proactive practices
The development team realised that they had to write code that could be in-
trinsically maintainable. The development team observed good coding prac-
tices such as code review and documentation (both in code and separately) for
better code readability; refactoring, and modular coding for simplicity and ex-
tensibility; and estimating efforts for writing tests and dealing with technical
debt while estimating the user story points for testability. JIRA enabled the
development team to visualise the product backlog. This visual backlog board
provided the development team with a streamlined development process, in-
cluding what needed to be done and what needed attention. Additional tools
were also used in the improved design process, such as Fisheye84 (to view code
changes side-by-side in the integrated development environment and JIRA)
and Confluence85 (a wiki for sharing information). The development team in-
sisted on a well-defined scope during IT meetings. They also separated the
code committing and code integration with the production branch, so these
were no longer performed by the same developer. The code committing of a
feature created by one developer was integrated by another. Hence, quality
assurance was achieved through separating contribution from integration86.
The U-CARE software system’s bi-weekly monitoring report was another
proactive practice embraced by the development team. This report not only
provided insights into the existing system state, but also gave stakeholders
trust in the system and the ability to take prompt actions regarding ongoing
RCTs. The monitoring report consisted of information such as a) total re-
search participant logins; b) time from SMS code receipt to successful login
(to identify issues regarding login); c) number of research participant logins
using mobile devices; d) issues related to reminders, if any; e) CBTs offered;

84 Visualises and reports on activity and searches for code commits, files, revisions, or team-
mates across it. https://www.atlassian.com/software/fisheye [accessed: January 16, 2017].
85 https://www.atlassian.com/software/confluence [accessed: January 16, 2017].
86 In open source projects, it is a proven practice to have dedicated code review and to separate
contributors and committers.

 188

f) suicide risks; g) welcome e-mails; and h) observation point completions.
The team leader regularly monitored the product backlog to balance between
user requirements with the technical debt. The team leader (and product
owner) also realised the limitations of the small development team and pro-
vided flexible deadlines on feature development, allocated fifty percent of the
team’s time to proactive practices, and provided more development resources,
such as tools, hardware, servers, and infrastructure services. In this way, the
development team embraced agility without compromising quality. As a re-
sult, the aforementioned software development practices contributed to miti-
gating issues related to sustaining the usefulness of the U-CARE software sys-
tem.

The lessons from the instantiations of the two design principles above were
that the focus on state-of-the-art tools and best (proactive) practices alleviated
many problems that software developers faced when sustaining the usefulness
of eHealth research software. There were instances of instantiations of the two
design principles above during the early stage of the U-CARE software de-
velopment, such as:

The endeavour to have a well-reflected architecture and rigorous testing is re-
lated to a high initial cost (in terms of time), while at the same time it aims at
(i) promoting the maintainability and quality of our software product and (ii)
increasing the development speed in future sprints. (ISR-1, IT meeting
minutes, 2010)

The U-CARE software system was refactored from a .NET web application
into an MVC-based one and changes were made in the architecture to allow
for automated unit testing. At that time, the short-term productivity was ham-
pered due to the allocation of resources to educate the development team (as
two out of three members were inadequately skilled in MVC) and to imple-
ment automated unit tests (which required design changes and a team member
focused on testing, as well as educating the team in TDD). However, in the
long term, adoption of new technology and proactive practices (an upfront
investment) had a positive impact on sustaining the usefulness of the U-CARE
software system.

7.3 Formalisation of Learning
Health care implements only evidence-based interventions and the evidence
takes a long time to accumulate. This creates a particular difficulty in eHealth
interventions, where technological development is fast. At the time when a
sufficient level of evidence is reached, the technology might be outdated or
there may be a better one available (Glasgow et al., 2014). During an ongoing

 189

RCT, the intervention must be locked down for evaluation. Such locking
down of interventions reduces the opportunities for adaptation to the changing
technological environment (Mohr et al., 2015). This was a challenge in the U-
CARE context, considering its goal of implementing the successful interven-
tions in regular care (Grönqvist et al., 2017). Mohr et al. (2015) conclude that
there is a need for clinical evaluations to keep pace with the level of innova-
tion in eHealth. This case shows the successful implementation of a techno-
logical change in the U-CARE software system in parallel with ongoing
RCTs, while minimising the risks associated with in-trial changes. This suc-
cess was due to the participation of all U-CARE stakeholders in the co-design
activities, the efforts of the development team in streamlining the design pro-
cess, and the adoption of the proactive practices. The case shows that the qual-
ity characteristics simplicity and embedded in design system are the key to
sustaining the usefulness of eHealth research software in the academic re-
search context, as the eHealth research software was used by many stake-
holder categories and large numbers of individuals.

Groen et al. investigated the relation between development practices and
the size of a development team, observing that: “new practices are typically
adopted when a development team has recently increased in size [… and were
] slightly reduced when the respective development teams became smaller”
(2015, p. 16). In U-CARE, the development team size fluctuated over time
(see Figure 44) and it was observed that this had a similar effect on the adop-
tion of best practices. Groen et al. (2015, p. 12), while discussing the difficul-
ties of achieving a consistent application of best practices in an academic re-
search context, stated that “the extent to which best practices are applied de-
pends strongly on personal commitment of the individual developers.” This
was observed also in the U-CARE context.

Lessons learned from this case were that proactive practices, such as con-
tinuous refactoring, strict TDD87, unit testing, better test coverage88, code re-
view, pair programming, continuous integration and documentation helped
the development team to deliver faster and to sustain the usefulness of the
eHealth research software. However, it is important to allocate resources for
such proactive practices. For example, training, learning, and trying new tech-
nologies impacted the software development team’s velocity, but costs asso-
ciated with upskilling the team paid off in the long run. The development team

87 It was evident in Chapter 6 (Case II) that when the development team's quality assurance
practices did not match to their development pace, their agile became fragile. This was due to
the pressure to develop the U-CARE software system faster. They learned that without strict
adherence to TDD and creating and maintaining a test safety net, their incremental design might
never be realised. The development team needed to make sure that they had a solid suite of
tests (a.k.a., a safety net) before refactoring (Fowler et al., 1999; Fowler, 2018).
88 For example, Code Refinery (an organisation that provides training and e-infrastructure for
research software development – https://coderefinery.org) suggests that one should “not trust a
research software if: a) its tests do not cover its claimed capabilities (test coverage); b) its tests
do not pass; c) there are no tests at all; and d) the tests are never run.”

 190

needed to fully understand the libraries and frameworks they used in software
development. Hence, they needed to practice in a safe-to-fail or proof-of-con-
cept environment before making changes in the production environment. Sim-
ilarly, they required support tools to track their progress and receive fast feed-
back from end-users.

The development of eHealth research software in an academic research
context was a long-term endeavour and required additional resources to sup-
port a small development team to follow best practices, as was evident in the
U-CARE context. As a consequence, the clinical researchers (particularly the
principal investigator) needed to be aware of recurring and ongoing costs as-
sociated with eHealth research software development and sustaining its use-
fulness over time. Additionally, they also needed to consider hiring a devel-
opment team with an adequate number of developers (preferably from the
start), to keep the team consistent for an extended period, and plan for the
development team turnover in advance. The clinical researchers (particularly
the principal investigator) also needed to be aware of that continuous training
of the development team was essential for an acceptable development process
when agile methods were used. Such continuous learning and training had a
positive and significant impact on team productivity. The learnings from this
case are articulated and formalised as design principles in the following table.

Table 29. Design principles for sustaining the usefulness of eHealth research soft-
ware

In conclusion, as in the context of wicked problems, an essential aspect of the
design process is that the problem domain is better understood over time
through the design activities taking place (Gregor & Hevner, 2013). Follow-
ing ADR, the contributions to theory (including empirical) and practice are
formulated as they emerged in the longitudinal design and use narratives in
Chapters 5, 6, and 7. In summary, design principles and quality characteristics
for sustaining the usefulness of eHealth research software in an academic re-
search context were identified through the empirical instantiation of ADR in

Design principle Specification

The principle of en-
gagement with stake-
holders

The software developers of eHealth research software should contin-
uously engage with stakeholders, in order to adapt the software in a
direction which will satisfy stakeholders, given that the stakeholders
are willing and committed to such engagement in the long term.

The principle of co-
design with stake-
holders

The software developers of eHealth research software should co-de-
sign with stakeholders, in order to obtain continuous and early feed-
back, knowledge and requirements elicitation, gain trust, increase
relevance and usefulness, and enhance creativity, engagement, and
collaboration, given that there are incentives or motivation for stake-
holders to participate in co-design and an availability of resources to
make co-design possible.

 191

the U-CARE context which contributed to practice by addressing real-life or-
ganisational problems, concerning the design and use of the data export fea-
ture, the process of technology adaptation due to continuous technological-
ecological changes in the design landscape, and the adaptation of the U-CARE
software system to mobile devices.

Similarly, research interest or a class of problems may also be identified
over time through reflections on design experiences (Sjöström, 2010). In the
following chapter, the retrospective analysis is presented.

 193

Part IV: Analysis and Reflection

 195

8 Retrospective Reflection and Learning

In this chapter, the analysis and reflection are presented in detail. First, in Sec-
tion 8.1, the details of how the retrospective analysis was conducted are pre-
sented. This section also discusses design principles, quality characteristics,
and typology for sustaining the usefulness of eHealth research software in an
academic research context. A reflection on the ADR research method is
presented in Section 8.2. Lastly, in Section 8.3, ADR across multiple cases is
presented, including augmented action design research (AADR), augmented
reflection and learning (ARL), and appropriation of ARL in this dissertation.

8.1 Retrospective Analysis
The problems perceived during the multiple ADR cases, presented in the pre-
vious chapters, were retrospectively reinterpreted and mapped to the class of
problems. The class of problems, for which research in this dissertation aims
to generate knowledge, is sustaining the usefulness of eHealth research soft-
ware in the academic research context. Following the advice of Gill & Hevner
(2013), I looked back over time and analysed the past in order to trace the
evolution of the U-CARE software system (from its inception via design and
construction, implementation in U-CARE context, to the stage when it was
almost ready for transition into real-world operational environments).

 196

Figure 45. Retrospective analysis process.

The retrospective analysis was conducted in four steps as shown in Figure 45.
In step one, based on the broad class of problems and research questions, the
text phrases were sorted into categories, for example, activities, design deci-
sions, events, and features, which had been inductively identified and revised
during the analysis. This process was followed by axial coding to relate cate-
gories to sub-categories, for example, activity – development, activity – doc-
umentation, design decisions – technology-centred, design decisions – client-
centred, feature – authentication, feature – backlog, et cetera. The categories
and sub-categories were grouped based on ADR cases (e.g., data export fea-
ture and mobile adaptation) or with a basis in the entire U-CARE software
system. These categories helped in understanding the design processes.

During the prolonged engagement in the U-CARE context, I was not only
involved in my own ADR cases, but also in the development of multiple fea-
tures and participatory observations (2012–2017). This prolonged engage-
ment allowed me to reflect on the overall U-CARE software system and the
design process. The field notes (a.k.a. the research log) contained continuous

 197

on-the-spot rich records of reflections and learnings. There were occasions
when I was not part of the empirical context (2010–2011) or was not directly
observing (2018–2019). In such cases, additional data were studied, for ex-
ample, IT meeting minutes, product backlog history, code repository, et
cetera. Beyond the data collected during my active time in the project (2012–
2017), additional data sources were used in the analysis (see Table 7 for de-
tails). Step one resulted in reconstructing the whole design process, establish-
ing a chain of evidence and understanding the steps through which the design
of the U-CARE software system had evolved.

In step two, the quality characteristics were initially identified inductively
and labelled based on characteristics mentioned in ISO/IEC Standard
25010:2011, for example, characteristic – testability, characteristic – reusabil-
ity, characteristic – modularity, et cetera (see Appendices A.1 and A.2 for a
full list). Later, based on the fitness-utility model (Gill & Hevner, 2013), the
quality characteristics that contributed to sustaining usefulness were grouped
as fitness characteristics while others were grouped as usefulness characteris-
tics, for example, fitness – malleability, fitness – openness, usefulness – test-
ability, usefulness – usability, et cetera. In this way, quality characteristics that
had impacted on sustaining the usefulness of the U-CARE software system
were identified systematically, and theoretically validated.

In step three, learning across multiple ADR cases was synthesised to gen-
erate more abstract design knowledge. The objective was to have a broad
enough level of abstraction to enable researchers and practitioners in other
contexts to enact the design principles while designing their research software.
The abstraction process started with combining the designing principles for-
mulated across three cases.

In step four, in order to establish the relationship between the design prin-
ciples and quality characteristics, a typology of sustaining usefulness and (re-
)construction thereof concluded the retrospective analysis.

Overall, in the retrospective analysis, I closely followed the principles for
interpretive research (Klein & Myers, 1999, see also Section 4.3). Table 30
shows how the principles were used in the present work.

Table 30. Appropriation of Klein and Myers’ principles

Principle Appropriation in this dissertation
1. The fundamental prin-
ciple of the hermeneutic
circle

The focus shifted between details (e.g., actions, events, design
decisions, quality characteristics, design principles, design pro-
cess, design artefacts and features) and the understanding of the
phenomenon as a whole that sustained the usefulness of eHealth
research software. The retrospective analysis was based on the it-
erative process of moving around data, concepts, and categories.

2. The principle of con-
textualisation

The understanding of the phenomenon was further increased by
investigating the historical background of the empirical context.
Data were retrieved and analysed from the very inception of the
U-CARE research programme (e.g., IT meeting minutes, source
code, documentation, et cetera). The original motivation of U-

 198

CARE stakeholders enabled me to better understand how the
phenomenon of interest emerged.

3. The principle of inter-
action between the re-
searchers and the sub-
jects

During the ADR cases, data were collected and interpreted to-
gether with the ADR team. For example, IT meeting minutes and
design workshop reports represented an overall and shared view
of stakeholders. U-CARE being an academic research context,
was very transparent and open. Hence the data and interactions
between me and the stakeholders were also very transparent and
open. However, interviews, discussions, observations and field
notes were of sensitive nature, making ethical and privacy con-
siderations necessary. As I was an ADR researcher and an in-
sider, additional steps were taken in data interpretation and data
presentation, as discussed in Chapter 4. For example, due to my
familiarity with the context and data, another Information Sys-
tem researcher was involved in interpretation to remove bias
(prejudices) in the analysis. Additionally, the research log was
useful for building a chain of evidence to reduce my bias.

4. The principle of ab-
straction and generalisa-
tion

The design principles were abstracted based on both empirical
findings and theoretical understanding through a fitness-utility
model and quality characteristics. The emergence of the princi-
ples and the typology, and their interrelationships, shows the
progressively more generalised and abstract concepts to support
designing sustainable research software.

5. The principle of dia-
logical reasoning

The identification of quality characteristics in the empirical con-
text was based on a continuous cycle between the guiding fit-
ness-utility model (theoretical basis) and the actual empirical
findings. This is apparent in differences between the proposed
quality characteristics and an existing list of candidate fitness
characteristics.

6. The principle of multi-
ple interpretations

The data was triangulated through multiple sources of evidence
for integrating multiple interpretations into a coherent under-
standing of the phenomena. Examples include interviews, partic-
ipatory observations, field notes, IT meeting minutes, source
code comments, code commit history, design workshop reports,
system logs, product backlog, developers’ notes, developers’ dia-
grams and informal discussions. The secondary data enabled tri-
angulation of data during the analysis. Discussions with stake-
holders, particularly with Information System researchers and
practitioners, were conducted throughout the research project to
ensure the validity of the interpretations from various stakehold-
ers’ points of view.

7. The principle of suspi-
cion

The data were carefully interpreted recognising stakeholders’
different, sometimes conflicting, views based on their interpreta-
tions of the evolving context. For example, the development
team members revealed differing views of the U-CARE software
system at different interviews. Thus, why different views were
expressed was also considered during data analysis. Prolonged
engagement and persistent observations in the empirical context
facilitated data interpretation. Additionally, I constantly reflected
about the empirical context and kept notes of my reflections in
the research log. The research log was also used for data inter-
pretation.

 199

Before the retrospective analysis begins, here is a quick summary of motiva-
tion, aim, design principles and quality characteristics identified in the ADR
cases.

Table 31. Summary of three ADR cases

Case Description

1 Data export feature
 Motivation Data export is a crucial functionality for eHealth research soft-

ware in an academic research context. The clinical researchers
need to export the data for analysis, to interpret research results
and draw conclusions. The data export feature design started at
the U-CARE forming stage.

 Aim The case aimed to develop design principles and quality char-
acteristics for data export in eHealth research software in an
academic research context.

 Design principles The principle of simplicity
The principle of modularity
The principle of malleability
The principle of accountability

 Quality characteristics Malleability, decomposability, simplicity, and accountability
2 Technology adaptation process
 Motivation Software developers have to cope with a continuously chang-

ing design landscape, due to changes in user requirements, the
organisation and the environment, while designing eHealth re-
search software in an academic research context with limited
resources. The technological-ecological changes posed chal-
lenges for software developers and required attention in the de-
sign process through the U-CARE maturing stage.

 Aim The case aimed to develop design principles and quality char-
acteristics, to guide the design process, and to support a contin-
uously changing design landscape in an academic research
context.

 Design principles The principle of technological-ecological adaptation
The principle of embracing proactive practices

 Quality characteristics Malleability, decomposability, simplicity, and accountability
3 Extending the artefact
 Motivation Technological innovations in the surrounding environment can

affect the usefulness of eHealth research software. eHealth re-
search software’s access/availability is essential for the end-us-
ers (i.e., research participants in a research context). In the ma-
tured stage of U-CARE, several research studies were ongoing.
Extending the artefact to mobile devices increased reach to-
ward research participants.

 Aim The case aimed to develop design principles and quality char-
acteristics, to guide the design process, and to support a contin-
uously changing design landscape in an academic research
context.

 Design principles The principle of engagement with stakeholders
The principle of co-design with stakeholders

 Quality characteristics Simplicity and embedded in the design system

 200

In this dissertation, the fitness-utility model (Gill & Hevner, 2013) is consid-
ered a point of departure for the evaluation method, and the presented set of
candidate fitness characteristics was found to be useful in the U-CARE con-
text. In the following, I will reflect on the quality characteristics by means of
a retrospective analysis.

Quality Characteristics
The stakeholders of U-CARE observed and perceived the following as the
essential characteristics that impacted on sustaining the usefulness of the
eHealth research system: decomposability, malleability, openness and embed-
ded in design system. Also, simplicity and accountability were prevalent in
the empirical context, but they are not explicitly addressed in the utility-fitness
model (ibid.). Quality characteristics, such as novelty, interestingness and el-
egance were perceived as important considering the U-CARE software sys-
tem’s appeal to various research groups, funding agencies, research partici-
pants, and academic journals. However, there were only a few traces found in
the empirical context; thus, these quality characteristics require further inves-
tigation on if and how they impacted on sustaining the usefulness of the
eHealth research system. Decomposability, malleability, embedded in design
system, simplicity, and accountability were explicitly identified during the
ADR cases (see Table 31) and retrospective analysis validated them further.
However, openness was identified during the retrospective analysis.

The retrospective analysis drew on the empirical material, for example,
looking at the IT meeting minutes content for traces of fitness characteristics,
their emerging patterns and their impact at later stages during the evolution of
the artefact. The quality characteristics of eHealth research software identified
as likely to impact on sustaining its usefulness in the academic research con-
text, based on the synthesis of learnings gained through the retrospective anal-
ysis, are presented in detail below. As an illustration of each particular quality
characteristic identified, how it came into play and affected the U-CARE soft-
ware system and design process is exemplified and discussed for each case.
The quality characteristic is then discussed in relation to the full system con-
text.

Decomposability
Any system tends to evolve from nearly89 decomposable subsystems (Simon,
1996). A system that is composed of independent subsystems, modules or
components is easier to construct, since work on individual parts can be con-
ducted separately (Gill & Hevner, 2013). When a system is designed using a

89 Herbert Simon (1996) explained that in the complex systems there is always some interde-
pendence between independent modules, despite the designer’s effort to fully decompose the
system, what he calls near decomposability.

 201

number of independent components (or building blocks) the “chances that a
particular component will evolve into new useful future versions increase”
(Coenen et al., 2015, p. 4034).

In case I, the generic data export feature exhibited the decomposability
characteristic. The decomposable generic data export feature was made up of
many independent modules, for example, the reflection utility and the export
utility. The export utility module was reused in the one-click data export fea-
ture. The decomposability of the generic data export feature increased its ca-
pacity to evolve into a useful future version (i.e., one-click); without decom-
posability it would have been an all-or-nothing affair. It can be argued that the
data export feature construction using the proposed conceptual architecture of
two-stage periodic data export would have been simpler thanks to its two-
stage decomposability.

In case II, an example of decomposability of the U-CARE software system,
can be observed in the form of a layered architecture. This allowed changes
related to the technology upgrade to be limited to one layer (i.e., the presen-
tation layer). During case II, the testing framework was also improved to fa-
cilitate the design and construction of advanced tests of the U-CARE software
system. The development team divided testing framework into recorded tests
(RecTest), programmed tests (ProTest), generic tests (GenTest), and database
consistency tests (DbTest).

The decomposability of the artefact, in the form of a layered architecture,
also facilitated the adaptation to mobile devices in case III. Although changes
happened in the multiple layers in case III, they were easier to manage thanks
to decomposability. The analysis of the source code revealed that there were
very few changes in the business logic layer once it was mature (around half-
way through 2015). The testability of the software system enabled a smooth
transition in case III.

Most importantly, the core business logic of the U-CARE software system
was divided into individual modules, such as randomisation, intervention, in-
dicator, et cetera. This enabled a much simpler unit testing of core modules,
as they were separately testable (i.e., independent from the testing of the entire
system) and could be tested in isolation from other system modules. The mod-
ules were well devised, cohesive, self-contained, fully tested, and each with a
distinct function. Modular design, conversely, facilitated loose coupling and
made the source code easier to maintain.

Looking at the three cases combined, it is evident that the development
team had given weight to decomposability in different ways at different stages
of the development process. The level of decomposability also varied. In case
I, it was the decomposability of feature that was of significant importance,
whereas it in case II was that of the new technologies. Still, the system’s over-
all decomposability facilitated the design process in all three cases. In conclu-
sion, the decomposability quality characteristic was found to affect the design

 202

artefact greatly as regards the component and system level, the design product
and design process level, and the design and use.

Malleability
Malleability refers to the ability of the users to mould the artefact to their
needs. The malleability of an artefact represents the degree to which it can be
adapted by its users and respond to changing environments and user needs
(Williams et al., 2008; Gill & Hevner, 2013). If the artefact is malleable, the
chances are higher that it will survive in future generations, as users adopt it
and adapt it to their needs (Coenen et al., 2015). Malleable artefacts, that are
designed for multiple contexts of use, can also satisfy diverse user groups
(Lund, 2014). An artefact with high malleability means changes are easier,
with less risk and lower expenses (Williams et al., 2008). The context-specific
adaptation is also reflected as mutability and considered an important compo-
nent of design theory in Information Systems (Gregor & Iivari, 2007; Gregor
& Jonas, 2007). Gill & Hevner (2013) proposed three levels of user-mallea-
bility, i.e., customisation (the ability of an artefact to be tailored to a user’s
preferences), integration (the ability to conveniently share the capabilities of
one artefact with another), and extension (adding new capabilities to an arte-
fact). Through customisation, the users can modify the default version of the
artefact into something that fits their needs, in effect creating a new
instantiation of the artefact (Coenen et al., 2015). Sjöström et al. (2011) used
configuration (adapting the artefact to new situations), instead of customisa-
tion, to denote user-malleability. They suggested that configurable features
(in contrast to hard-coded features) made a system mutable.

In case I, the early design of the data export feature was generic and con-
figurable by the clinical researchers themselves. The main idea was that the
data export feature should be useful in new situations insofar as possible, with-
out further software development involved beyond user configurations. How-
ever, maintaining the generic data export feature turned out to be a challenge.
Nevertheless, the user-malleability was considered in the proposed conceptual
architecture of the two-stage periodic data export feature: for example, data
filtering and a data export template would enable the clinical researchers to
customise their data export requests. Privacy, security, and accountability
were managed for the data export feature through configuring the malleable
authorisation feature of the U-CARE software system.

In case II, the technology modernisation indirectly led to enhancement of
the artefact malleability through the malleability of the design process, for
example, minimisation of JS and CSS files based on configurable settings to
activate environments like production or debug. The Razor view engine al-
lowed the development team to develop different UI themes for the system.

In case III, responsive design using the Bootstrap CSS framework, CSS3
and HTML5 enabled flexibility in layouts, image sizes, text blocks, et cetera.
This flexibility combined with smart use of CSS media queries resulted in the

 203

malleability of UI fluidity, which enabled for the U-CARE software system
to adapt to fit any container, based on mobile device screen sizes.

Several features of the U-CARE software system were designed for malle-
ability and offered configuration possibilities for U-CARE stakeholders, such
as software developers and clinical researchers. Malleability (a proactive de-
sign effort by Information Systems researchers – an upfront investment) ena-
bled for the U-CARE software system to be configured to the design of any
RCT study within clinical psychology (arguably even in other related con-
texts) (Sjöström et al., 2011). In the U-CARE context, a large number of
stakeholders in the design process increased the complexity in making sense
of customer (i.e., the clinical researchers) needs, as they intended to conduct
multiple and diverse studies. As did Carroll (2004), I observed that a mallea-
ble design could be a means of overcoming the inability of stakeholders to
articulate their needs and determine the requirements on the system amid such
complexity. The clinical researchers were provided with a malleable system
which they could adapt to meet their needs. However, the actual needs, which
were more refined than the initial requirements, were revealed over time when
the system was used by clinical researchers and other stakeholders.

The system malleability led to extending the U-CARE research programme
to that of a service provider by allowing other research groups and researchers
to design and run their clinical studies through the U-CARE software system.
On one hand, funds received from associated research groups for using the
system enabled the U-CARE management to use additional development re-
sources, for example, one full-time developer. On the other hand, the execu-
tion of more research studies resulted in getting more funding, credibility, and
(re-)use in multiple situations. Indirectly, the malleability of the system aided
in sustaining the U-CARE software system.

In case III, the possibility to configure research studies enabled switching
of the mobile-adapted UI through theme settings to suit the target mobile de-
vices of research participants. Also, theme settings allowed some studies to
enable a mobile-adapted UI, while others could retain a desktop-adapted UI.
Another example could be found in the malleable design of psychological in-
terventions, which allowed the psychologists to set up mobile adapted inter-
ventions using existing interventions through a sort of save as functionality.
This allowed the easy configuration of a new mobile-adapted intervention by
adapting the contents only. Similarly, a questionnaire design tool, which al-
lowed clinical researchers to create custom questionnaires, enabled the saving
of questionnaires in mobile-adapted versions which could subsequently be re-
designed with minimal changes in the question design. Likewise, the transla-
tion module malleability allowed for quickly fixing any translation errors.

A final reflection is that the U-CARE software system was malleable,
which allowed it to survive, as the clinical researchers adapted and tweaked it
to their needs. However, the malleable design had consequences for the de-
velopment team in maintaining the system. One example that was observed

 204

was related to configuration management. It was found that the configuration
was different in the production system than in the developers’ system and on
the test servers. This meant that the system had a different behaviour based on
the database state in different working environments. In turn, this had impli-
cations for the operational management of the system; for example, the work
of developers did not end upon publishing code to production; they also had
to examine the configuration for consistency. Furthermore, to test any bugs,
they had to establish, on their local workstations, the same configuration that
the server had. In the U-CARE software system, configurations were stored
in the database; thus, synchronisation (at least the configuration data) of the
production database with a local database was required for establishing data
consistency. This synchronisation of databases, in turn, had implications for
privacy and accountability (which are discussed under the accountability
characteristic).

The U-CARE software system was built so that the clinical researchers
could design and configure their studies and questionnaires themselves. Also,
the overall U-CARE software system was designed so that it could be (re-
)used by other U-CARE stakeholder categories, for example, those working
with associated studies. However, if we, as design researchers, had designed
the system in such a way that other system designers could (re-)use it for de-
signing their systems, maybe we should have gone to the API or Platform
concept (which was discussed while adapting the U-CARE system for mobile
devices in case III).

In conclusion, decomposability and malleability appear to be of similar im-
portance in sustaining the usefulness of the U-CARE software system in all
three cases.

Embedded in design system
Gill & Hevner (2013) argue that when artefacts are part of systems where
design and changes are common, it can be expected that they evolve more
rapidly than when design and changes are uncommon. They suggest that “a
design system can also manifest itself as a community of users and designers,
providing contributors with intrinsic motivation to contribute” (ibid.). In U-
CARE, from its inception, the design of various artefacts, such as the design
of research protocols (research studies and trails), patient treatment (CBT in-
terventions), and the technology to provide treatment and do research online
(the U-CARE software system), was initiated by the community of multi-dis-
ciplinary researchers. This community established a design system in which
incremental but regular changes took place in the U-CARE software system,
as well as through continuous improvements in the design process. The design
processes were feeding off each other; for example, when the development
team designed a part of the system and demonstrated it to the clinical research-
ers, who were working on designing the research studies, the latter either re-
alised that this was not what they meant or suggested to the development team

 205

to do it in another way instead. Similarly, the development team gave feed-
back on the treatment design. Changes in the treatment design led to changes
in technology and vice versa. The U-CARE software system (the artefact) be-
ing embedded in this design system fostered the long-term survival of the sys-
tem.

The Information Systems researchers wanted to have domain knowledge
regarding the area for which they were building the software. Being develop-
ers, they always came up with different innovative ideas as they were familiar
with the software and knew what it could do for the clinical researchers. There
were countless collaborations between the development team, the clinical re-
searchers, and other stakeholders, as to what should be built. These groups
talked about all aspects of software development. It was not a one-way feeding
of requirements. Instead, it was a two-way collaboration (Section 3.5 provides
a detailed description of the design process and an emerging design system in
the U-CARE empirical context).

In case I, anticipating the continuous design of intervened design artefacts
(the study protocols, the interventions and the system), the data export feature
was developed to be generic in order to adapt to the changing U-CARE soft-
ware system. In case II, it was observed that the stakeholders, such as software
developers, clinical researchers and psychologists were engaged, but to lesser
extent than before, in the design system, which was one of the reasons for the
decline in the functioning of the U-CARE software system.

During case II (2014–2015), the U-CARE software system was in a devel-
opment and operations (DevOps) working mode, which resulted in fewer team
members in the development team able to take part in working with the design
system. Likewise, most of the Information Systems researchers were moved
from artefact design studies to follow-up and evaluation studies. The clinical
researchers were initially engaged in designing pilot studies and then (re)de-
signing full-scale studies based on pilot study results. Then, the clinical re-
searchers moved from design mode to research study execution mode, which
resulted in less activity in the design system. The psychologists, who had been
part of design system, also changed their focus, from designing CBT treatment
and creating CBT contents, to delivering the treatment to research partici-
pants. On the whole, the stakeholders remained active in the design system,
but grew steadily less engaged. From 2016 onward, the development team
also had to provide support, maintenance, and monitoring of the U-CARE
software system.

During case III, all stakeholders were once again engaged in the design
system. The U-CARE software system, as well as the software development
resources, were in a stable state, which allowed the development team to take
part in the design system. The clinical researchers were engaged in redesign-
ing studies to adapt them to mobile devices. Similarly, the psychologists were
engaged in adapting the treatment (CBT) and its contents to be delivered on

 206

mobile devices. The clinical researchers also designed new studies; for exam-
ple, those working on U-CARE ParentsCan considered adapting their RCT to
be used on mobile devices from the start. Information Systems researchers
who were interested in mobile adaptation also engaged in the design of the U-
CARE software system.

Additional important lessons from the retrospective analysis of the artefact
being embedded in the design system include that the stakeholders remained
engaged as long as there was something for them to interact with, preferably
something visual, such as an early version of the artefact, a test coverage re-
port, a system status report, et cetera. Another lesson from the retrospective
analysis revealed that the addition of lived experience representatives also
strengthened the design system; for example, young people with lived experi-
ence of cancer. Overall, U-CARE involved people with lived experience in
developing and testing interventions. The participatory approach affected the
development of the U-CARE software system by considering the user experi-
ence when designing new features.

In conclusion, based on the retrospective analysis, embedded in the design
system appeared to be the most important characteristic of all in sustaining the
usefulness of the U-CARE software system.

Simplicity
Simplicity is the degree to which an artefact has a straightforward and easy to
understand (comprehensible) design and implementation (ISO/IEC/IEEE,
2017). The definition of simplicity was adapted by Prat et al. (2015) as “the
degree to which the structure of the artefact contains the minimal number of
elements and relationships between elements.” The key components of sim-
plicity in a software system are code simplicity (following a coding standard),
structural simplicity (modular architecture), and functional simplicity (mini-
mum necessary to meet the requirements) (Pressman & Maxim, 2014). Gen-
erally, innovations that are simpler to understand are adopted faster than in-
novations that require the adopter to develop new skills and understanding
(Rogers, 2003). Beck and Andres (2004) mentioned simplicity as one of the
five values at the heart of the extreme programming (XP) agile method. In
XP, simplicity refers to keeping the design of the system as simple as possible,
so that it is easier to maintain, support, and revise.

Gill & Hevner (2013) also mentioned simplicity while associating it to the
elegance characteristic. They related the elegance to the artefact’s form (i.e.,
aesthetic elements such as appearance) only, whereas simplicity in the soft-
ware engineering literature, as mentioned earlier, is related to both form and
function. As observed in the U-CARE context, the quality characteristic of
simplicity was considered to be twofold: concerning simplicity as an aesthetic
quality of the artefact (form) and simplicity as a design quality embedded in
the artefact (function). Simplicity is important in relation to decomposability
as described by Parnas:

 207

The system is divided into a number of modules with well-defined interfaces;
each one is small enough and simple enough to be thoroughly understood and
well programmed. (1972, p. 1054)

In case I, the generic data export feature was developed considering the mu-
tability and relative malleability of the technology for a more scalable solu-
tion. It was disheartening to see the generic data export feature fell into disuse.
As a result, the development team started to pay more attention to design fit-
ness issues, to complement the existing focus on usefulness. Hence, the de-
velopment team chose simplicity over scalability during development of the
one-click data export feature. Also, the UI of the one-click data export feature
was very simple as compared with the generic data export feature.

In case II, the development team had carried out multiple refactoring of the
U-CARE software system to simplify it through reduction of complexity, doc-
umentation, decomposition to multiple layers, modularity and use of proper
coding practices to enhance code readability, code syntax cleanness, reusabil-
ity, and maintainability. As a result, the efficiency and performance of the
system increased.

In case III, the development team kept the design simple but attractive
while adapting the U-CARE software system to mobile devices. For example,
there were multiple scenarios in the system where the research participants
had to choose either ‘save,’ ‘submit’ or ‘cancel.’ It was easy for the research
participants to get confused and click on the save button, thinking that it would
submit their information as well. To keep things simple the development team
removed the cancel button and gave two options to the research participants,
to click on either ‘submit’ or ‘save and continue.’ Similarly, the layout of the
menu, header, footer, questionnaires, library, forum, chat, et cetera, was made
simpler and more intuitive.

The important lesson related to building a simpler artefact was that it re-
quired the development team to always keep the code as clear and simple as
possible. The development team had to balance malleability and simplicity. It
was observed that if an artefact was malleable, it could be too difficult for
newcomers to learn as only expert users could comprehend the malleable ar-
tefacts. Conversely, if an artefact was simple, it was easy for users to under-
stand and follow, as it could only be used for a single purpose.

In conclusion, based on the retrospective analysis, simplicity appears to be
important in sustaining the usefulness of the U-CARE software system, but
achieving it in the U-CARE context required significant extra resources (e.g.,
experienced team members90).

90 Team members experienced in the redesign and big refactoring to re-architecture the U-
CARE software system, considering ideas discussed within team, such as the use of reusable
stand-alone components, platform, API, microservices, et cetera.

 208

Accountability
The accountable artefact is defined as an artefact that adheres to information
accountability. Information accountability has attracted the attention of Infor-
mation Systems researchers as one among several desirable properties of de-
sign artefacts (Pearson & Charlesworth, 2009; Boos & Grote, 2012; Sjöström,
Ågerfalk, et al., 2014; Sjöström et al., 2017). Weitzner et al. described infor-
mation accountability as follows:

The use of information should be transparent, so it is possible to determine
whether a particular use is appropriate under a given set of rules and that the
system enables individuals and institutions to be held accountable for misuse.
(2008, p. 84)

System and software quality models (ISO/IEC Standard 25010: 2011) define
accountability as the “degree to which the actions of an entity can be traced
uniquely to the entity.” Accountability is one of the most important aspects of
the health care industry. In an eHealth research context, accountability con-
cerns information privacy and avoiding misuse of research participants’ infor-
mation (Sjöström, von Essen, et al., 2014). Similarly, in the academic research
context, accountability is conceptualised as being answerable to the academic
community (e.g., ethical approval boards, academic journals, government
agencies, funding agencies, et cetera) in conducting research in an ethical
manner. eHealth research software deals with particularly sensitive personal
information; thus, it needs to account for privacy, confidentiality, integrity,
and protection of sensitive data. It is particularly evident in the eHealth re-
search context that accountability is a factor that one would expect to be nec-
essary in an eHealth system to ensure privacy and transparency in dealing with
sensitive data. The eHealth research software requires the implementation and
use of technological measures to provide accountability and enable audit or-
ganisations to confirm compliance with legislation and ethics.

In the U-CARE context, researchers were also aware of and complied with
the legal and ethical aspects of the management of research participants’ data.
The U-CARE software system provided double (two-factor) authentication,
role-based privileges (i.e., authorisation) to access information and monitor
and log all research participants’ information-use events (establishing audit
trails) relevant to the assessment of accountability. Also, there were infor-
mation accountability mechanisms in place at the organisational level, for ex-
ample, security and privacy breach monitoring and auditing to ensure compli-
ance with existing regulatory requirements.

In case I, the data export feature was made to adhere to information ac-
countability by restricting access and use of research data (e.g., on a need-to-
know basis). Regulatory requirements, for example, data privacy, transpar-
ency, and accountability, required that data export events were logged to en-

 209

able regulatory audits and compliance reporting. The U-CARE software sys-
tem’s authorisation and logging features enabled accountability and traceabil-
ity of data export events, in addition to other uses. Data export feature logged
information on data export events, i.e., when (timestamp), who (user identity
– role), and what (data specification), to facilitate follow-ups by the study
owner. The proposed two-stage periodic data export architecture would fur-
ther extend accountability to the data export of reminders, logs, RBL, and
dashboard reporting of data.

In case II, the technology upgrade had consequences in sustaining the ac-
countability characteristic. Accountability required provenance of data, that is
the history or record of transactions performed on a data object. In the U-
CARE software system, the log must be kept to reveal the provenance of the
system use and to ensure accountability. Thus, during the technology adapta-
tion process, the development team invested efforts in keeping the log feature
intact. The development team often needed to synchronise the production da-
tabase with the local database to reproduce error states (e.g., during the system
failure). This synchronisation of databases, in turn, had implications for pri-
vacy and accountability. These were resolved by designing an additional tool
which not only anonymised (de-identified) data, but also only synchronised
limited data from a specific time interval (i.e., the data required to analyse the
error). There were additional measures taken to avoid human errors in updat-
ing the database, for example, restricting access and use of specific SQL com-
mands that could result in data record updates.

In case III, the responsive design was chosen because of its advantages in
compliance with accountability requirements, in addition to other usefulness;
not only did it not require a user to install apps (and store data) on mobile
devices, but it also allowed the use of existing accountability routines and
functionalities.

The overall U-CARE software system was built with traceability of actions
insofar as possible. The system architecture was designed to explicitly log all
activities (who did what and when). Also, there were two separate databases,
one for research data and one for research participants’ personal information.
The access to research participants’ personal information database was highly
restricted, and only the U-CARE software system accessed the data. Follow-
ing ethical considerations, any access to research participants’ personal infor-
mation through the U-CARE software system was considered a privacy
breach and logged. The clinical researchers were only shown the research par-
ticipants’ nicknames (i.e., a system-generated unique user name or user name
chosen by the research participant), to protect the research participants’ pri-
vacy. Only if there was a need (e.g., when suicide was feared, when required
to access medical records) were psychologist (with a therapist role in the sys-
tem) allowed to see a research participant’s full name and phone number; this
was logged as a privacy breach. The external communication messages (e.g.,
SMS and email) were carefully designed so they did not include any personal

 210

information that could identify the research participants, for example, per-
sonal identity number or phone number. Similarly, health care professionals
in the hospital (with a registrar role in the system) could enter data regarding
research participants using personal identity numbers, but were not able to
connect it to the nicknames used in the U-CARE software system. The infor-
mation that was collected through the system (e.g., chat conversations, private
messages, diary entries, et cetera) was processed based on the research partic-
ipants’ signed informed consent.

In the U-CARE context, the stakeholders encountered various privacy is-
sues related to legislative, cultural, conceptual, technological, organisational,
and methodological concerns. The development team ensured, insofar as pos-
sible, that the U-CARE software system was accountable and conformed with
the Swedish legislation in force. The accountability characteristic in the U-
CARE software system was another reason for extending the U-CARE re-
search programme to that of a service provider, allowing other research
groups and researchers to design and run studies with confidence in that the
U-CARE software system fulfilled all accountability requirements. Similarly,
the accountability characteristic indirectly resulted in securing additional
funding based on its credibility and (re-)use in multiple situations. The log-
ging mechanism also led to rich data which resulted in new insights.

The development of eHealth behaviour interventions should comply with
existing regulatory frameworks with consideration for emerging standards
around ethics (Michie et al., 2017). eHealth research software not only needs
to satisfy our functional requirements but also needs to satisfy our societal,
moral, and legal requirements. This is quite unusual and software developers
have traditionally not been trained for it. Integrity and ethical conduct are re-
quired on the part of software developers to maintain the confidentiality of
research participants’ data. The accountability mechanisms are necessary to
build trust in the system (Weitzner et al., 2008). However, heavily regulated
industries that demand accountability, transparency, and documentation may
require additional development sprint(s) after a few iterations of software de-
velopment, with the goal of enhancing rigour that may be lacking in regular
sprints (Fitzgerald et al., 2013).

In the DSR literature the accountability quality characteristic is discussed
under ethicality (e.g., Prat et al., 2015; Venable et al., 2016). Similarly, Myers
& Venable (2014) proposed a set of ethical principles for design science re-
search, highlighting ethical and legal issues. Sjöström, von Essen, et al. (2014)
suggested that accountability issues needed to be addressed in both the artefact
and the design process. The U-CARE software system’s accountability mech-
anisms not only built trust and maximised the possibility of accountability,
but also prevented intentional misuse.

In conclusion, based on the retrospective analysis, accountability appears
to be the most discussed and thus most pertinent characteristic in the U-CARE

 211

software system, given the eHealth context. However, when it comes to sus-
taining usefulness, the most important characteristic was “embedded in the
design system.”

Openness
The degree to which an artefact is open to inspection, modification, and reuse
has an impact on its sustenance (Gill & Hevner, 2013). The aspects of open-
ness make the artefact more reusable and available for modification and anal-
ysis, especially when combined with decomposability and malleability. Open-
ness makes it easier both to see how an artefact is constructed and to modify
existing components. The contemporary discourse on openness, for example,
open source, open data, open standards, open content, and open access, also
referred to as open science (Nosek et al., 2015; Aalst et al., 2016; Munafò et
al., 2017), is playing a significant role in making academic research transpar-
ent and accessible. Openness requires new skills and competencies, for exam-
ple, concerning intellectual property (IP) rights and other legislative issues
(Sjöström, von Essen, et al., 2014).

In the U-CARE context, the interventions were released under a Creative
Commons licence, allowing anyone to use them for non-commercial pur-
poses. This open content policy allowed the researchers, both within U-CARE
and associated with U-CARE, to reuse, revise, remix, retain and redistribute
the interventions for current and future (re-)use. In case III, this enabled psy-
chologists to adapt contents without requiring permission from the original
authors.

In order to promote openness and innovation, the U-CARE context strived
toward open sourcing of the U-CARE software system (Sjöström, von Essen,
et al., 2014), but at the time of this dissertation, the licensing of the system
has not yet been determined. Although the U-CARE software system is not
currently open source, it was designed using multiple open source components
that indirectly have had an impact on the evolution of the artefact design, as
the system evolved whenever the open design of components evolved (e.g.,
jQuery, jQuery plugins, and NuGet packages). In cases II and III, the devel-
opment team considered open source technologies in order to promote inno-
vation and openness.

Recently, U-CARE has decided to make data collected through the U-
CARE software system accessible91, a move toward embracing open data.
Also, “sharing of data from the clinical trials benefit patients by enabling new
discoveries, meta-analyses, and confirmation of published results” (Lo &
DeMets, 2016). In case I, with the two-stage periodic data export architecture,
the development team’s objective was to empower the clinical researchers to
flexibly export data from the U-CARE software system with the intent of mak-
ing data accessible. This feature will further foster data access, sharing, reuse,

91 https://www.u-care.uu.se/collaboration/u-care-accessibility/ [accessed: November 15, 2018].

 212

and reproducibility, which is extremely important in an academic research
context (Murray-Rust, 2008; Peters et al., 2012; Dallmeier-Tiessen et al.,
2014; Hettrick, 2016).

As a result of the retrospective analysis, it appears that openness remains
under discussion in U-CARE in regards its impact on sustaining the usefulness
of the U-CARE software system, but it is recognised for its value in the evo-
lution of the U-CARE software system.

The appropriate selection of quality characteristics depends on the context
(Hevner et al., 2013). Paying attention to these quality characteristics during
the development of an eHealth research software will provide a better future
for the resulting artefact in terms of sustaining its usefulness.

In the following, the design principles are abstracted with regards to a
broader class of solutions, taking into consideration the entire U-CARE con-
text, artefact and design process.

Design Principles
Design principles are recommendations on how to address a specific class of
problems or class of solutions in a range of settings (Markus et al., 2002; Sein
et al., 2011; Mckenney & Reeves, 2012). Practitioners need concrete/detailed
instructions on how to build an artefact, whereas researchers strive towards
general knowledge about creating other instances of artefacts that belong to
the same class (Chandra et al., 2015; Chandra Kruse et al., 2016). A more
specific formulation of design principles (through concretisation) provides
more practical instructions, but also narrows the class of problems and class
of solutions that can be addressed. On the other hand, a more generalised for-
mulation of the design principles (through abstraction) provides more general
instructions, while broadening the class of problems and class of solutions that
can be addressed. The objective at this stage is to have a broad enough level
of abstraction to enable researchers and practitioners in other contexts to in-
stantiate the design principles while designing their eHealth research soft-
ware. So, considering lessons learned through the three ADR cases to generate
more abstract design knowledge, the design principles formulated are pre-
sented in one place for analysis (see Table 32).

Table 32. Design principles from three ADR cases

Design principle Specification

Case I: Data export feature – design principles for data export in eHealth research software
The principle of simplicity Provide easy-to-use data export functionality in order for [clin-

ical] researchers to export data, preferably by a single click via
a simple UI, given that such functionality should not require

 213

in-depth technical knowledge and should not overwhelm the
researcher with details.

The principle of modularity Data export functionality should be divided into modules in or-
der for software developers to maintain and reuse, given that
each module is simple, cohesive, and loosely coupled, such
that a change to one module has minimal impact on other mod-
ules.

The principle of malleabil-
ity

a) Customise: Data export functionality should be customisa-
ble in order for [clinical] researchers to tailor [their own] re-
search data and descriptive metadata export and to import data
to data analysis applications and statistical applications, given
that such data export output should be in standardised or de
facto formats, such as CSV or XML, or tailored for spread-
sheets or common statistical packages, in a way that is useful
for downstream applications.
b) Filter: Data export functionality should allow data filtering
in order for [experienced clinical] researchers to customise
data export according to their preferences and needs, given that
such functionality should guide the researcher to filter exporta-
ble data and allow the researcher to save and reuse their data
exports as templates.
c) Schedule: Data export functionality should allow scheduling
data export requests in order to get data after specified inter-
vals [based on study design] or when data is available [in cases
where the volume of data would increase data export pro-
cessing time].

The principle of accounta-
bility

a) Privacy: Data export functionality should anonymise data in
order to ensure research participants’ privacy, given that such
anonymised data do not contain identifiable data or that ID
fields are encrypted, and datetime field(s) are removed or off-
set.
b) Security: Data export functionality that enables the clinical
researcher (i.e., study owner or principal investigator) to re-
strict data access in order to enforce governance policies, data
extraction, and ethical guidelines, given that such data access
restrictions can be researcher-specific (based on access privi-
leges), time-specific (i.e., at multiple intervals with the
same/refreshed/additional datasets, or one-off after the study
completion or termination) and data-specific (i.e., partial, full,
or selected dataset).
c) Auditability: Data export functionality should log all activi-
ties related to data export in order for study owner to fulfil au-
dit and regulatory requirements, given that such logs store all
data export events [when (timestamp), who (user identity –
role), how (encrypted/plain text), why (purpose specification
and use) and what (data specification)] to facilitate follow-up
by the study owner and enable udit organisations to confirm
compliance with legislation and ethics.

Case II: The technology adaptation process – design principles for sustaining the usefulness
of eHealth research software
The principle of technolog-
ical-ecological adaptation

The eHealth research software should continuously be adapted
by software developers, regarding both its compliance with
new requirements from its stakeholders and its fitness to the
emerging technological landscape, in order to promote fitness
to the changing design landscape, given that the development
process is supported by adequate test coverage, automated and

 214

The similarities within the design principles made it evident that the design
principles concerned the functionalities and features of the design product and
activities in the design process. In other words, design principles governed the
development or selection of system features and design principles guided the
development process (Walls et al., 1992). This was consistent with the views
of Gregor & Jones (2007) and Sjöström & Ågerfalk (2009), that design theo-
ries are about products and processes (or methods).

The design principles that pertain to the design product were simplified by
eliminating details related to the specific feature (i.e., data export functional-
ity) and reformulated to make them applicable to a broader class of solutions
(i.e., eHealth research software). Considering the full system view, knowledge
abstraction was based on hands-on experience of designing, participatory ob-
servations, and retrospective analysis of features in the U-CARE software sys-
tem. Appendix F.1 describes and presents the abstraction process in detail.

The design principles related to the design process emerged and were for-
mulated for the entire U-CARE software system and thus are already gener-
alised. In other words, these design principles are proposed to be useful as-is
for a broader class of solutions (i.e., eHealth research software).

Table 33 presents the reformulated product-related design principles and
as-is process-related design principles.

continuous/frequent test-deliver-feedback development prac-
tices, a set of appropriate tools, and continuous upskilling of
the development team.

The principle of embracing
proactive practices

The software developers of eHealth research software should
embrace proactive practices in order to improve code readabil-
ity, extensibility, testability, simplicity, and potential velocity
increase, given that resources (time, money, and attention) are
allocated for such practices.

Case III: Extending the artefact – design principles for sustaining the usefulness of eHealth
research software
The principle of engage-
ment with stakeholders

The software developers of eHealth research software should
continuously engage with stakeholders, in order to adapt the
software in a direction which will satisfy stakeholders, given
that the stakeholders are willing and committed to such en-
gagement in the long term.

The principle of co-design
with stakeholders

The software developers of eHealth research software should
co-design with stakeholders, in order to obtain continuous and
early feedback, knowledge and requirements elicitation, gain
trust, increase relevance and usefulness, and enhance creativ-
ity, engagement, and collaboration, given that there are incen-
tives or motivation for stakeholders to participate in co-design
and an availability of resources to make co-design possible.

 215

Table 33. Design principles for sustaining the usefulness of eHealth research soft-
ware (final version)

Design principle Specification
For design product
P1: The principle of sim-
plicity

Provide the eHealth research software with easy-to-use function-
alities in order for researchers to use it in their [eHealth] re-
search, preferably via a simple UI, given that such functionalities
should not require in-depth technical knowledge and should not
overwhelm the researchers with details.

P2: The principle of mod-
ularity

Provide the eHealth research software’s functionalities in mod-
ules, to enable for maintenance and reuse by software develop-
ers, given that each module is simple, cohesive, and loosely cou-
pled, such that a change to one module has minimal impact on
other modules.

P3: The principle of mal-
leability

Provide the eHealth research software with customisable func-
tionalities in order for [experienced] researchers to tailor them
according to their [potential] needs, preferences, or usage con-
text, given that such functionalities guide the researcher during
the customisation.

P4: The principle of ac-
countability

a) Privacy: Provide the eHealth research software with function-
ality that anonymises data in order to ensure research partici-
pants’ privacy, given that such anonymised data do not contain
identifiable data or that ID fields are encrypted, and datetime
field(s) are removed or offset.
b) Security: Provide the eHealth research software with function-
ality that enables the researcher (i.e., study owner or principal in-
vestigator) to restrict system and feature access in order to en-
force governance policies and ethical guidelines, given that such
access restrictions can be researcher-specific (based on access
privileges), and data-specific (i.e., partial, full, or selected da-
tasets).
c) Auditability: Provide the eHealth research software with func-
tionality to log activities related to research in order for study
owner to fulfil audit and regulatory requirements, given that such
logs store [accountability-related] events [when (timestamp),
who (user identity – role) and what (specification)] to facilitate
follow-up by the study owner and enable audit organisations to
confirm compliance with legislation and ethics.

For design process
P5: The principle of en-
gagement with stakehold-
ers

The software developers of eHealth research software should
continuously engage with stakeholders, in order to adapt the soft-
ware in a direction which will satisfy stakeholders, given that the
stakeholders are willing and committed to such engagement in
the long term.

P6: The principle of co-
design with stakeholders

The software developers of eHealth research software should co-
design with stakeholders, in order to obtain continuous and early
feedback, knowledge and requirements elicitation, gain trust, in-
crease relevance and usefulness, and enhance creativity, engage-
ment, and collaboration, given that there are incentives or moti-
vation for stakeholders to participate in co-design and an availa-
bility of resources to make co-design possible.

P7: The principle of tech-
nological-ecological ad-
aptation

The eHealth research software should continuously be adapted
by software developers, regarding both its compliance with new
requirements from its stakeholders and its fitness to the emerging

 216

technological landscape, in order to promote fitness to the chang-
ing design landscape, given that the development process is sup-
ported by adequate test coverage, automated and continuous/fre-
quent test-deliver-feedback development practices, a set of ap-
propriate tools, and continuous upskilling of the development
team.

P8: The principle of em-
bracing proactive prac-
tices

The software developers of eHealth research software should
embrace proactive practices in order to improve code readability,
extensibility, testability, simplicity, and potential velocity in-
crease, given that resources (time, money, and attention) are allo-
cated for such practices.

From the multiple ADR cases, it was observed that the quality characteristics
have an impact on or relationship with design principles and vice versa. In the
following sections, the identified quality characteristics’ relationships to the
above design principles, i.e., the typology of sustaining usefulness, are inves-
tigated through retrospective analysis.

Typology of Sustaining Usefulness
The significant role of typologies has been recognised in Information Systems
literature (e.g., Williams et al., 2008; Walsh, 2015). Typologies allow re-
searchers to postulate on the relationships between concepts (Nickerson et al.,
2013). During the retrospective analysis, following an empirical-to-concep-
tual (i.e., bottom-up) approach, the typology of sustaining usefulness was con-
structed, considering each design principle and grouping it with similar ones
based on its relationships with each particular quality characteristic. To estab-
lish the relationships between the design principles and quality characteristics,
the typology of sustaining usefulness, including the design principles (P1–P8)
with their qualifications (i.e., design product or design process), are presented
in Table 34. The identification of quality characteristics and the formulation
of design principles are empirically grounded in the multiple BIE cycles and
different ADR cases, resulting in a typology.

Ta
bl

e
34

. T
he

 ty
po

lo
gy

 o
f s

us
ta

in
in

g
us

ef
ul

ne
ss

Q
ua

lit
y

ch
ar

ac
te

ri
st

ic

C
on

ce
rn

s p
ro

du
ct

/p
ro

ce
ss

D

es
ig

n
pr

in
ci

pl
es

D
ec

om
po

sa
bi

lit
y

D
es

ig
n

pr
od

uc
t

Th
e

pr
in

ci
pl

e
of

 m
od

ul
ar

ity
 (P

2)

M
al

le
ab

ili
ty

D

es
ig

n
pr

od
uc

t
Th

e
pr

in
ci

pl
e

of
 m

al
le

ab
ili

ty
 (P

3)

Em
be

dd
ed

 in
 d

es
ig

n
sy

st
em

 D
es

ig
n

pr
oc

es
s

Th
e

pr
in

ci
pl

e
of

 e
ng

ag
em

en
t w

ith
 st

ak
eh

ol
de

rs
 (P

5)

D

es
ig

n
pr

oc
es

s
Th

e
pr

in
ci

pl
e

of
 c

o-
de

si
gn

 w
ith

 st
ak

eh
ol

de
rs

 (P
6)

D
es

ig
n

pr
oc

es
s

Th
e

pr
in

ci
pl

e
of

 te
ch

no
lo

gi
ca

l-e
co

lo
gi

ca
l a

da
pt

at
io

n
(P

7)

D

es
ig

n
pr

oc
es

s
Th

e
pr

in
ci

pl
e

of
 e

m
br

ac
in

g
pr

oa
ct

iv
e

pr
ac

tic
es

 (P
8)

Si

m
pl

ic
ity

D

es
ig

n
pr

od
uc

t
Th

e
pr

in
ci

pl
e

of
 si

m
pl

ic
ity

 (P
1)

A

cc
ou

nt
ab

ili
ty

D

es
ig

n
pr

od
uc

t
Th

e
pr

in
ci

pl
e

of
 a

cc
ou

nt
ab

ili
ty

 (P
4)

O

pe
nn

es
s

D
es

ig
n

pr
od

uc
t

Te
nt

at
iv

e:
 T

he
 p

ri
nc

ip
le

 o
f e

m
br

ac
in

g
op

en
ne

ss
 (P

9)

 218

It is important to note that the principle of technological-ecological adapta-
tion (P7) was initially perceived as a ‘technological-ecological fit’ quality
characteristic of the design product and was defined by Mustafa et al. as:

Technological-ecological fit highlights the IT artefact’s relations to emerging
boundary objects (e.g., plug-ins and APIs) and the way that those relations
constrain and/or enable the mutability of the IT artefact. (2014, p. 302)

During the formalisation of learning in case II (BIE cycle II), P7 was perceived
as a quality characteristic that concerned the design process; later, it became
a design principle (see P7 in Table 33). Gill and Hevner (2013) presented a
preliminary list of characteristics related to the design artefact only. However,
it was observed in the U-CARE context that the design process was equally
important. The formalisation of design principle P7 initiated deliberation con-
cerning other quality characteristics in the preliminary list. For example, ‘em-
bedded in design system’ was perceived as a quality characteristic that con-
cerned the design process. Similarly, accountability was perceived as a quality
characteristic that concerned both the design product and the design process.
However, in the typology, the accountability quality characteristic and P4
were related to the design product only. The design process related aspects
were handled in the U-CARE healthcare organisation which was not part of
the U-CARE software system.

Typology (Re-)Construction in the U-CARE Context
Gill and Hevner (2013) stated that designers (in practice) base their designs
on more or less explicit utility functions. They proposed an exaptation from
economics, where utility is posited as a function to rank choices in the context
of decision-making. Gill & Hevner suggest that:

the fitness of a design artefact must be estimated using a utility function that
considers the full range of characteristics that can impact the likelihood that
the artefact will further be reproduced and evolve. (2013, p. 247)

The typology consists a set of quality characteristics and a set of design prin-
ciples. Additionally, as described in Chapter 4, a design principle includes
material property, the activity of the user (or group of users), and boundary
conditions. In the U-CARE context, quality characteristics helped designers
in better estimating artefact fitness through informing their utility function. It
was observed that the design team was acting in line with the design principles
(P1–P8). As a result, quality characteristics and design principles ensured that
the functionality of the U-CARE software system remained available – im-
proved and supported – and will be used (survives), reused, or extended with
reasonable efforts (reproduced and evolved) in the future.

In this section, I illustrate (re-)construction of a typology for sustaining the
usefulness of eHealth research software in the U-CARE context. Although the

 219

typology was conceptualised in the retrospective analysis stage of this disser-
tation, over time, the enactment of quality characteristics and instantiation of
design principles resulted in construction and refinement of a typology. For
example, design principles P1–P4, related to quality characteristics of the de-
sign product, were instantiated in the U-CARE software system (see case I).
Over time, the design process received more attention and design principles
P7 and P8, related to quality characteristics of the design process, were instan-
tiated in the design process of the U-CARE software system (see case II). At
the intermediate maturity stage of the U-CARE software system, the typology
could be perceived as a premature version. At a later matured stage of the U-
CARE software system, design principles P7 and P8 were instantiated in case
III. Case III resulted in additional design principles P5 and P6, which led to
refinement of the typology.

Figure 46. Typology (re-)construction in the U-CARE context.

Figure 46 shows the (re-)construction of typology in the U-CARE context.
The figure represents the continuous improvement (refinement) of the typol-
ogy (i.e., typology evolves as the context changes). During multiple ADR
cases, quality characteristics were enacted and design principles were instan-
tiated for sustaining the usefulness of the eHealth research software in the ac-
ademic research context.

The proposed typology (in its current version, as presented above) was con-
sidered for further refinement and evaluation in subsequent BIE cycle(s). Over
time, however, the design researcher may dynamically (re-)construct the ty-
pology, by adding or refining design principles and quality characteristics, as
they interact with various stakeholders in the U-CARE context and through
the design and use of the U-CARE software system. Refinement and appro-
priation of the typology result in sustaining the usefulness of the system (i.e.,
creating a sustainable artefact). The typology helps the design team (i.e., the

 220

ADR team) in making design decisions, accumulating and sharing, and visu-
alising design knowledge.

The typology is not yet evaluated for its utility in the U-CARE context.
However, because I show a retrospective (re-)construction of the typology and
present transparent and rich descriptions of three ADR cases, I argue that the
use of a typology can facilitate a common understanding in the design team of
the quality characteristics and design principles for sustaining usefulness, as
well as providing a visual guide for reflecting on the design decisions made
by the design team, and facilitating communication and collaboration among
stakeholders.

The typology (re-)construction in Figure 46 can be generalised to suggest
how a typology can be constructed, refined, and instantiated in another
eHealth research software project. In this sense, the typology is prescriptive,
as it tells a designer what ought to be done. The typology that consists of both
a set of quality characteristic and a set of design principles can be generated
by appropriation of action design research (in single or multiple cases). Also,
quality characteristics and design principles might be related to the design
product or the design process. The appropriation of typology is estimation,
inset and enactment of fitness characteristics and instantiation of design prin-
ciples in the design process by a designer(s). Hence, I have derived an abstract
(meta-)design principle for this dissertation:

Design eHealth research software through the appropriation of a typology of
sustaining usefulness, so that stakeholders can sustain software usefulness in
the continuously changing design landscape in an academic research context.

Looking Back, Moving Forward – Re-visiting the Design
Principles
With a point of departure in the typology (see Table 34), which encompasses
the quality characteristics and design principles, it became apparent that there
was no design principle linked to openness quality characteristic. The impact
of openness on sustaining the usefulness of the U-CARE software system is
evident in the U-CARE context, as previously discussed. However, the deci-
sion to open source the artefact is still under discussion. The open source
model was discussed early on:

Open source is a business model among others, and we need to think about our
stakeholders when we decide whether the system is going to be open source or
not […] we will use Microsoft servers to store the system, but otherwise, we
have not used any other licensed software products. Consequently, at the mo-
ment, it is up to us whether we will make the [U-CARE software system] open
source or not. (ISR-1, 2010, IT meeting minutes)

 221

Similarly, during a number of SAB meetings, the pros and cons of open source
code were discussed, such as:

The decision to use or not to use open source may have implications on sus-
tainability. [The panel] was not agreed on which decision would be best for
sustainability. (Panel discussion on sustainability, 2013, SAB report)

[From a] technological point of view, it was suggested that using open source
could be one way to be innovative and to unleash the power of open innova-
tions. (Panel discussion on innovation, 2013, SAB report)

Another thing that we discussed a lot but [where] we never really [became]
active […] is the open source issue. When we started this, we were very eager
to get a working [software system] right away to start our studies. If I have
done this again I would spend more time reflecting about existing open source
products which you can build upon.

[…] if you look at this adaptation to mobile devices, if we had used an open
source platform like Joomla it would have worked on mobile devices because
that open source platform has such a big group of developers, so there are al-
ways people to make sure that things built for Joomla also work on mobile.
(ISR-1, 2015, SAB meeting)

The primary legal concerns tend to be around licensing and code ownership.
Open sourcing of the artefact from its inception would had helped the U-
CARE stakeholders create an IP ownership structure early on (e.g., appropri-
ate licensing), with the collaboration of stakeholders and legal experts, to
avoid otherwise complex legal issues, such as IP rights. The situation regard-
ing open sourcing of the U-CARE software system was described well by Ji-
ménez et al. (2017, p. 5) in citing Fogel (2005): “the longer a project is run in
a closed manner, the harder it is to open it later” and in the recommendation
to “make source code publicly accessible from day one,” while encouraging
the adoption of best practices in software development to promote research
software quality. Jiménez et al. suggest that embracing openness from day one
has the following benefits:

(1) Promotes trust in the software and broader project
(2) Facilitates the discovery of existing software development projects
(3) Provides a historical public record of contributions from the start of the

project and helps to track recognition
(4) Encourages contributions from the community
(5) Increases opportunities for collaboration and reuse
(6) Exposes work for community evaluation, suggestions and validation
(7) Increases transparency through community scrutiny
(8) Encourages developers to think about and showcase good coding prac-

tices
(9) Facilitates reproducibility of scientific results generated by all prior ver-

sions of the software

 222

(10) Encourages developers to provide documentation, including a detailed
user manual and clear in-code comments (2017, p. 5)

Doyle et al. (2019)92 recently conducted a literature review, using an open sci-
ence lens, to assess DSR literature. They found a few studies, such as
Hariharan et al. (2017) and Coenen et al. (2018), which mention that the arte-
facts built were made available on open source platforms [Bitbucket93 and
GitHub94, respectively]. Doyle et al. (2019, p. 1) suggested that the DSR com-
munity should strongly engage with open science as it “is facing significant
challenges related to limited accessibility of knowledge and artefacts pro-
duced.” They proposed ‘open artefacts’ for DSR researchers as a way to adopt
open science practices and defined them, adapting Pontika et al. (2015) and
Gill & Hevner (2013), as “DSR artefacts that can be accessed online for free,
with an open license that allows use, inspection, modification, and reuse.”
Similarly, I also defined sustainable research software and argue about sus-
taining the usefulness of the artefact (i.e., eHealth research software).

Considering the above discussion, I have formulated a tentative design
principle:

The principle of embracing openness (P9):
The stakeholders of eHealth research software should embrace openness (i.e.,
open science practices) from the start, in order to make the software, data, and
research more (re-)usable and available for modification and analysis (inspec-
tion and use), given that IP rights are discussed, managed and communicated
effectively to all stakeholders at an early stage.

Much eHealth research software is developed in the academic research con-
text(s). Such software (i.e., eHealth interventions) is no longer supported when
research funding expires (Glasgow et al., 2014), as is the case with research
data (Dallmeier-Tiessen et al., 2014). Embracing openness can lower the need
for start-up costs for future eHealth intervention. For example, Research Elec-
tronic Data Capture (REDCap) was initially developed and deployed in aca-
demic research context (at Vanderbilt University), “to provide scientific re-
search teams intuitive and reusable tools for collecting, storing and dissemi-
nating project-specific clinical and translational research data” (Harris et al.,
2009, p. 377). Although REDCap is not open-source software, it is available
at no charge for institutions that join the REDCap Consortium. I argue that
availability source code of eHealth research software can allow research
groups (like U-CARE) to reuse or extend rather than developing a complex
system from scratch. Similarly, open sourcing U-CARE could allow it to be
used (survives), reused, extended (reproduced and evolved) in the future.

92 Paper accepted for the DESRIST 2019 conference. Preprint available at https://osf.io/ye6xp
[accessed: April 03, 2019].
93 https://bitbucket.org/kit-iism/experimenttool/src [accessed: April 03, 2019].
94 https://github.com/d-pac [accessed: April 03, 2019].

 223

8.2 Reflecting on ADR
DSR has emerged as a viable approach to information systems research. Iivari
(2015) reflects on two strands of DSR: The laboratory approach and the prac-
tice approach. ADR, as originally articulated by Sein et al. (2011), is perhaps
the most well-known practice approach to design research. ADR promotes re-
search relevance as the ADR researcher works in concert with key stakehold-
ers in an organisational context. Purao et al., (2013) suggested that, in ADR,
the “domain of intervention should be the ensemble artefact, i.e., not only the
hardware-software instantiation but also the work practices of organisational
participants relevant to the context in which the IT-artefact is realised.” They
also suggested that “the design process should not be limited to the research-
ers’ own conscious decisions but should also be open to influences from the
organisational practices and participants.” The credibility of research is estab-
lished with prolonged engagement in the field, thick and rich descriptions, and
close collaboration with participants throughout the research process
(Creswell & Miller, 2000).

Gill & Hevner (2013), in their fitness-utility model, suggested that the evo-
lutionary fitness of a design artefact is more valuable than its immediate use-
fulness. Ågerfalk & Wiberg in their panel report 95 mentioned the following,
in reference to the fitness-utility model Hevner suggested:

As for how to move DSR thinking forward, [Alan Hevner] then turned to the
argument that Gill and Hevner (2011) offer and suggested that “we need to
move beyond just thinking about usefulness as the nature of utility of the arti-
fact” and ask ourselves “How can I make that artifact sustainable? How can it
adapt to change in an environment?”. (2018, p. 70)

Ågerfalk & Wiberg also stated that:

this [moving beyond immediate usefulness] ambition echoes the Scandinavian
participatory design tradition’s emphasis on “change and development, not
only technological change and systems development, but change and develop-
ment of people, organizations, and practices, occurring in changing socio-his-
torical contexts (Gregory et al., 2003, p. 63)”. (2018, p. 70)

It is evident that the ADR team, in the U-CARE context, followed the Scan-
dinavian participatory approach to design as Information Systems researchers
worked in close co-operation with the software developers, the clinical re-
searchers, and other stakeholders. In this participatory approach, the goal is
not just to design the artefact, but also to improve practice (Ågerfalk &

95 Panel held at the third Scandinavian Conference on Information Systems in Sigtuna, Sweden,
in August 2012. It is important to note at that time only an early version of the fitness-utility
model was published in DESRIST 2011.

 224

Wiberg, 2018), which becomes evident over time as ADR team not only de-
sign artefacts, but also reflect on and intervene in the design process. Based
on my experience in the U-CARE context, I agree with Sein & Rossi (2019)
that ADR is bringing us towards a more participatory approach to design. Haj-
Bolouri et al. (2016) also advocate a participatory design to involve stakehold-
ers and engage them early on in ADR cycles, and throughout the process.

Figure 47. Longitudinal action design research.

Figure 47 illustrates how ADR was appropriated in this dissertation. As men-
tioned in Chapter 4, reflection and learning (Stage 3 in ‘proper’ ADR) and
formalisation of learning (Stage 4 in ‘proper’ ADR) occurred continuously
during the ADR BIE cycles. Hence, both stages were merged into Stage 3, as
Stage 3.a and Stage 3.b (see Figure 47). “Problem re-interpretation in light of
solution construction is the hallmark of wicked problems – and the kinds of
problems we deal with during research do require such an approach” (Sandeep
Purao, personal communication, October 17, 2014). Westin (2014, p. 97) has
also proposed the modification to ADR by adding a feedback path from the
formalisation of learning (Stage 4 in ‘proper’ ADR) to the problem formula-
tion (Stage 1 in ‘proper’ ADR) to capture unanticipated consequences that are
vital for new iterations of BIE. As the stages were merged, the proposed feed-
back path was established and it enabled reformulating of the problem or even
identifying a class of problems in the broader context.

The longitudinal engagement allowed me to reflect on the artefact evolu-
tion over time after its implementation in the U-CARE context. Such reflec-
tions occurred between and after the BIE cycles and are presented in the re-
spective sections under the heading artefact use over time and learning.

 225

Mullarkey & Hevner (2018) have proposed evolution as a BIE cycle type,
arguing that evolution of the artefact over time will continue to generate
knowledge useful to the researcher and practitioner. Although I agree with
them regarding the possibilities of evolution of the artefact and knowledge
generation, I have, in my appropriation of ADR, presented artefact use over
time and learning as a supplement to reflection and learning in Stage 3.c (see
Figure 47). This was because I agreed with Sein & Rossi (2019) that it is not
directly part of a full-fledged BIE cycle as it does not contribute to design of
an artefact. In case I, Stage 3.c (artefact use over time and learning) led to
both a BIE cycle (i.e., iv) and formalisation of learning. Stage 3.c enabled the
ADR researchers, even after a long period had passed, to capture unanticipated
consequences that might lead to problem (re-)formulation, another BIE itera-
tion, or even a new ADR case. Hence, considering this ‘Longitudinal Action
Design Research’ (LADR) appropriation is suggested for cases where an ADR
researcher expects a prolonged engagement in the empirical context.

Through three ADR cases and multiple BIE cycles, the artefact in this study
emerged through interaction between design and use. The research should be
guided and evaluated based on explicit quality criteria (Sarker et al., 2013).
Table 35 highlights how research in this dissertation adheres to ADR DPs
(Sein et al., 2011).

Table 35. Appropriation of ADR principles

ADR principles (ADR stage) The actualisation of ADR principles

DP1. Practice-inspired research
(Problem Formulation)

Research was started due to the need for designing and
sustaining an eHealth research software system in U-
CARE context.

DP2. A theory-ingrained artefact
(Problem Formulation)

The design and development of the artefact was in-
formed by scientific theories, as described in the section
on reflection and learning.

DP3. Reciprocal shaping
(BIE)

The IT artefact was designed in the real organisation set-
tings. Multiple versions of the artefact were deployed in
the organisation and used over a long period of time.

DP4. Mutually influential roles
(BIE)

The ADR team consisted of researchers, practitioners
and representatives of various stakeholder groups. The
lead designer was an Information Systems researcher and
supervisor of a PhD student who was a co-designer.

DP5. Authentic & concurrent
evaluation (BIE)

The artefact was continuously evaluated as part of inter-
vention in the empirical context.

DP6. Guided emergence
(Reflection and Learning)

The ADR team guided the emergence of artefact by uti-
lising concurrent evaluation (DP5). The artefact reflects
the intentional design (DP2) as well as evolutionary
shaping by organisational use (DP3 & DP4).

DP7. Generalised outcomes
(Formalisation of Learning)

The research resulted in a generalised problem and solu-
tion, as well as design principles for sustaining the use-
fulness of eHealth research software, as described in the
contributions section.

 226

Being an ADR Researcher
Co-creating knowledge (i.e., formalisation of learning in the ADR context)
was a challenge. There were some academic courses organised in the U-CARE
context to introduce U-CARE stakeholders, particularly PhD students, to var-
ious disciplines and their research philosophies, for example, psychology, car-
ing sciences, economics, and Information Systems. These courses enabled us
to build a basic understanding and a common language. However, the goal of
jointly publishing interdisciplinary research was not achieved due to different
disciplinary requirements, particularly for PhD dissertations. For example,
there was a lack of author contribution mechanisms for interdisciplinary pub-
lications. Although there were many publications, mainly by senior research-
ers, these were in the eHealth domain with Information Systems researchers
contributing, or cases where clinical researchers contributed in Information
System researchers’ publications. Similarly, motivating the U-CARE stake-
holders to participate in co-creating and formalising the design knowledge was
a challenge due to epistemological and ontological differences in how research
is conducted in different disciplines. However, co-design was achieved mainly
thanks to the U-CARE software system’s central role in the U-CARE context.
The multi-disciplinary composition of the research team meant that different
individuals within the research team were busy at different times. Time prior-
itisation and accessibility to health care stakeholders were major difficulties
in involving the stakeholders in ADR. Despite this, the multi-disciplinary
ADR team contributed to my research by participating in the design work-
shops, providing feedback during evaluations, and allowing me to engage in
and observe their research.

Reflecting and documenting continuously was a challenge, mainly as I was
also participating in design workshops; for example, it was difficult to write
observations during the IT meetings while also being actively involved, and
vice versa. Another challenge was the lack of tools for keeping track of re-
search progress in regards to DSR in general, and ADR in particular, such as
tools for tracking or annotating the design process. Recently, the DSR com-
munity has realised this problem and designed artefacts for this purpose, for
example, MyDesignProcess.com (Brocke et al., 2017). It could have been
helpful if such tools had been available when I began the research project.
There is an emerging interest in the design of tools for use in design science
research (Morana et al., 2018).

Finally, the ADR researcher is, unlike in other research paradigms, not nec-
essarily in control of the project’s speed of progress, due to real-world prob-
lem situations encountered in a specific organisational setting (Drechsler &
Hevner, 2016). An example would be variations in the data export feature and
their use over time. The logged data provide additional opportunities that
could not have been anticipated by the clinical researchers in advance.

 227

8.3 ADR across Multiple Cases
As it was previously mentioned (in Section 4.2), the ADR method has been
elaborated by scholars, such as Haj-Bolouri et al. (2016) and Mullarkey &
Hevner, (2015; 2018). However, neither ‘proper’ ADR nor elaborated ADR
approaches focus on how to conduct ADR across multiple cases – the focus is
on design, implementation, and learning in a single organisational context.
With a few exceptions (e.g., Hovorka & Pries-Heje, 2013), DSR methods do
not explicitly emphasise knowledge abstraction from numerous design expe-
riences in a more extensive design and development context. Most of the de-
sign literature describes knowledge abstraction from a single artefact instanti-
ation at a time. Hovorka & Pries-Heje (2013) advocate that researchers should
avoid ‘ignoring the iceberg,’ by conducting multiple studies to gain more in-
depth knowledge about the phenomenon at hand, e.g., gaining better under-
standing of assumptions behind the design principles identified. Similarly,
many design research practices face a situation where research aims are
achieved through learning based on multiple design cases (Sjöström et al.,
2012; Nunamaker et al., 2017). Thus, design researchers encounter variations
in the design process, e.g., concerning organisational context, design goals,
design pace, and design duration. Such multiple-case theorising situations are
likely to occur in sizeable multi-disciplinary research environments address-
ing societal challenges. Nunamaker et al. (2017) argue that such environments
hold increased importance for high-impact Information Systems research. As
a consequce, our research approaches should factor in theory development
taking place over more extended periods and draw from multiple design ef-
forts. As argued by Baskerville & Pries-Heje (2016), the process of abstracting
knowledge from design science research is non-trivial. Thus, there is a need
for further discourse on how to develop abstract knowledge in design-oriented
research approaches.

As is evident in Section 8.1 (and this Section 8.2), retrospective analysis
and synthesis of learning across multiple ADR cases resulted in additional
(new) design knowledge through reflection and abstraction. The cases relate
in at least two ways. First, they were part of the same design context (outlined
in Chapter 0), although in different stages of maturity. Second, they all con-
cern designing key functionalities in eHealth research software and are likely
to contribute to an overarching knowledge interest. In other words: all cases
were relevant to a class of problems. Experiences from conducting ADR in
multiple cases over a more extended period and retrospective analysis served
to articulate ‘Augmented Action Design Research’ (AADR), an extension of
ADR. This approach guides how to conduct multiple ADR projects that build
towards an overarching knowledge aim. The following section elaborates how
the AADR method, with an additional stage of augmented reflection and
learning (ARL), facilitated multiple case design and interpretation.

 228

Augmented Action Design Research
The traditional (‘proper’) ADR approach is based on interpretations and for-
malisations of experiences from BIE cycles. AADR adds another level of anal-
ysis, following the ideas of Lee & Baskerville (2003), where generalisations
from empirical data to theory occur in several cases, thus providing insights
to support an emerging overall abstraction process.

A crucial question is when and why augmented action design research is
initiated. Two possible scenarios can be seen, both related to the articulation
of an overarching knowledge aim. More specifically: (1) a research aim that
cannot be sufficiently addressed through a single ADR project. In some cases,
that aim is known from the start, e.g., in the context of establishing research
environments around a complex topic (Nunamaker et al., 2017). The over-
arching knowledge aim may then be the very reason to establish a new re-
search environment. However, (2) a research interest may also be identified
over time through reflections on design experiences (Sjöström, 2010). In the
context of wicked problems, an essential aspect of the design process is that
the problem domain is better understood over time, through the design activi-
ties taking place (e.g., Gregor & Hevner, 2013). The sooner researchers can
articulate an overarching knowledge aim, the sooner they can appropriately
adapt their data collection strategies.

In AADR, research may address multiple problem classes. As outlined
above, the overarching knowledge aim may be articulated at a late stage. In
such cases, several ADR projects may have been conducted, addressing prob-
lem classes that are only peripherally related to the overarching knowledge
aim. Still, those projects may be beneficial to include in the AADR project
due to documented design experiences that relate to the overarching
knowledge aim. For instance, an individual ADR project may focus on the
problem class of designing support for therapists to provide psychosocial
counselling over the internet. The AADR knowledge aim, however, may con-
cern the problem class of incentivising users (or stakeholders) to do beta-test-
ing or engage in co-design activities. Despite an initial unawareness of the
beta-testing issue, the first ADR project may have resulted in rich data that
supports the AADR endeavour. The AADR model that I present here was con-
ceptualised independently of when the overarching knowledge interest was
identified. However, a late identification of the overarching knowledge aim
may create a need for additional data collection from the individual ADR pro-
jects, to facilitate retrospective analyses.

 229

Figure 48. Augmented action design research.

Given the perspective outlined above, the AADR approach extends traditional
ADR with a new stage (Figure 48): Augmented reflection and learning (ARL).
Below, I further elaborate on the ARL extension.

Augmented Reflection and Learning
This research stage enables a holistic view of the problem domain and aims at
a generalisation of results (e.g., design principles) drawing from the multiple
ADR cases. It enables reformulating the problem and identifying the class of
problems in a broader context or additional knowledge abstraction possibili-
ties. Thus, the first step in ARL is problem re-interpretation as a more general
class of problems. ADR suggests that reflection and learning occur continu-
ously in ADR research, and conceptualises formalisation of learning as a dis-
crete step. The AADR approach includes the formalisation of learning at the
end of each BIE cycle (as discussed in the previous Section 8.2, Reflecting on
ADR). The ARL stage is introduced to synthesise learning across multiple
ADR cases, possibly resulting in a higher abstraction level. In other words,
ARL combines both ‘reflection and learning’ and ‘formalisation of learning’
as one stage.

Haj-Bolouri et al. (2017) stated that “identifying the class of problems re-
quires making a choice.” Focusing on a single problem instance in every ADR
case not only allows the involvement of stakeholders, but also remains the
very essence of ADR: the single-entry point. ARL allowed me to cast the mul-
tiple problem instances as a broader class of solutions and abstract design
knowledge. Here is a tentative list of tasks for the ARL stage, based on my
experience:

 230

1. Perform retrospective analysis and reflect on artefact evolution dur-
ing the project.

2. Synthesise learning across cases.
3. Abstract the learning into a broader class of problems or class of

solutions.
4. Abstract design knowledge.

So, the first step in ARL was retrospective analysis. This ARL stage was re-
quired to synthesise learning across multiple ADR cases to generate more ab-
stract design knowledge. Figure 48 illustrates the individual case that followed
the four stages of ADR (or LADR) as explained in Table 6, while ARL sup-
plemented as a fifth stage (fourth stage, in the case of LADR).

Appropriation of ARL in this Dissertation
Unclear research interests coalesce into well-specified research questions over
time through increased understanding of the problem domain. In this situation,
there may be a need for retrospective analysis to reconstruct the design process
so as understand the steps through which the design has evolved (Sjöström,
2017). As stated above, Gill & Hevner (2013) argue that to understand fitness,
researchers need to look back in time in order to trace the evolution of an
artefact. Hence, in the ARL stage, considering the successive evolution of the
empirical context and research interests (i.e., sustaining the usefulness of
eHealth research software), I looked back in time and analysed the past (2010–
2019) to identify potential quality characteristics. The level of abstraction used
was broad enough to enable researchers and practitioners in other contexts to
materialise the design principles in use while designing their research soft-
ware. The entire U-CARE context, the artefact and design processes (particu-
larly the cases discussed in this dissertation) were considered, highlighting and
formalising the reflection and learning of the U-CARE context that had the
potential to benefit both research communities (e.g., design science) and prac-
titioners (e.g., research software engineers) in the academic research context
as a whole. The retrospective analysis required reconstructing the whole de-
sign process and the interventions that researchers had made. Here, the field
notes with reflections (research log), IT meeting minutes, product backlog his-
tory, code repository, et cetera were quite helpful in reconstruction and estab-
lishing a chain of evidence.

Haj-Bolouri et al. (2017) indicated that ADR is compatible with retrospec-
tive framing. ARL in this sense is retrospective framing of the U-CARE soft-
ware system and the design process. On the one hand, ARL is not part of ADR,
as I was not designing anything (Sein & Rossi, 2019), but on the other hand,
the ARL stage was focused around designing the artefact and design
knowledge abstraction. Also, considering the full system view, knowledge ab-
stractions were based on my own experiences of the development of features

 231

in the artefact and participatory observations in other feature development by
the development team. In a retrospective framing sense, I would argue that
ARL was not just an interpretive step, but a supplement to the ADR stages.
The ARL stage can also be considered as an ex-post summative evaluation. It
is important to note that the retrospective analysis during the BIE cycles in the
ADR cases was performed mainly for evaluation of the artefact.

Figure 49. Positioning AADR (adapted from Westin, 2014).

Figure 49 illustrates how the proposed research method AADR fits with an
ADR approach. The figure was originally adapted by Mathiassen (2002, p.
327), to illustrate different types of knowledge goals and activities, from Vid-
gen & Braa (1997, p. 527) and then adapted by Westin (2014, p. 31) for posi-
tioning ADR in the framework. Here, the positioning of AADR has been
added. The arrows inside the triangle represent distinct research activities (i.e.,
interpretation, design, and intervention) through which knowledge is devel-
oped (Mathiassen, 2002). Mathiassen explained the framework as:

 232

First, to develop our understanding of systems development we engage in in-
terpretations of practice; […] Second, to build new knowledge that can support
practice, we design normative propositions or artefacts; […] Third, to learn
what it takes actually to improve practice we engage in different forms of social
and technical intervention. (2002, p. 327)

ADR strongly emphasises combining design and intervention to build an ar-
tefact and to formulate design principles through intervention in the organisa-
tional settings. A variety of research approaches may be used and combined
within a larger project (Mathiassen, 2002), such as this dissertation. Chapters
5–7 illustrate the design and intervention that resulted in new knowledge
which can support and improve practice (i.e., design principles). Furthermore,
they illustrate the learning through engagement in the organisational context
that resulted in increased knowledge about practice, and insights into barriers
to and enablers of design process improvement efforts. Chapter 8 presents the
retrospective analysis of collected data about practices and interprets these us-
ing the fitness-utility model. The reflection upon practices resulted in addi-
tional insights, for example, typology of sustaining usefulness and the AADR
method.

In conclusion, it is worth considering the augmented action design research
(AADR) method with an additional stage of augmented reflection and learn-
ing (ARL), to facilitate multiple case design and interpretation.

 233

Part V: Conclusion

 235

9 Concluding Discussion

In this final chapter, it is explained, in Section 9.1, how the research questions
are addressed. The research contributions are discussed in Section 9.2. The
implications of the research results are presented in Section 9.3. Lastly, in
Section 9.4, future work is presented.

9.1 Re-visiting the Research Questions
The objective of this dissertation was to create an understanding of sustaining
the usefulness of eHealth research software in an academic research context.
The overall research aim was to explore what Information Systems research-
ers and practitioners need to be aware of for sustaining the usefulness of
eHealth research software in the academic research context. The primary re-
search aim has been divided into three sub-questions. This section is a sum-
mary of how I addressed the research questions, what I achieved, and how
results are enacted.

RQ1: What are the quality characteristics of eHealth research soft-
ware that impact on sustaining its usefulness in the academic research
context?

The first question was addressed by looking at the DSR literature to identify
whether any list of such characteristics existed. The fitness-utility model of
Gill & Hevner (2013) provided a preliminary list of such quality characteris-
tics. However, keeping an open mind, I took part in the design of the artefact
and observed the design processes in the empirical setting to identify context-
specific characteristics. Decomposability, malleability, openness, embedded
in design system, simplicity, and accountability were prevalent in the empiri-
cal context and perceived by the stakeholders as essential quality characteris-
tics that impacted on sustaining the usefulness of the eHealth research system
in an academic research context. Four quality characteristics, i.e., decompos-
ability, malleability, openness and embedded in design system, were men-
tioned by Gill & Hevner (ibid.). Simplicity and accountability, inductively de-
rived from the empirical material, have been proposed as revisions to the pre-
liminary list of quality characteristics.

 236

The second research question concerned the use of quality characteristics
by Information Systems researchers and practitioners in sustaining the useful-
ness of eHealth research software in the academic research context.

RQ2: How do Information Systems researchers and practitioners ap-
proach the quality characteristics for sustaining the usefulness of
eHealth research software in the academic research context?

Chapters 5–7 illustrate how quality characteristics were enacted in three ADR
cases while Chapter 8 presents how they developed over time considering the
evolution of the artefact, design landscape, and context. The three ADR cases
were carried out with real users (developers, researchers and focus group par-
ticipants), using the real artefact, and real problems in an academic research
context and in a real organisation’s settings (as opposed to in isolated experi-
ments).

RQ3: What design principles should guide Information Systems re-
searchers and practitioners in sustaining the usefulness of eHealth re-
search software in the academic research context?

Design principles were inductively articulated during multiple BIE cycles in
three ADR cases. Four of the design principles (regarding the design process)
serve to guide researchers and practitioners in sustaining usefulness of eHealth
research software, i.e., the principle of engagement with stakeholders, the
principle of co-design with stakeholders, the principle of technological-eco-
logical adaptation, and the principle of embracing proactive practices. In ad-
dition, five design principles (regarding the design product) serve to guide re-
searchers and practitioners in designing sustainable eHealth research software,
i.e., the principle of simplicity, the principle of modularity, the principle of
malleability, the principle of accountability, and the principle of embracing
openness.

The class of problems addressed by this dissertation is coping with the
evolving design landscape in an academic research context. This is addressed
by providing the researchers and practitioners with a set of design principles,
a list of quality characteristics, a typology of sustaining usefulness, and an
augmented ADR method. The dissertation provides an understanding of de-
sign theories for sustaining eHealth research software usefulness.

9.2 Research Contributions
Design theories give explicit prescriptions regarding how to do something and
correspond almost exactly to Gregor’s (2006, p. 620) design and action theory
type and the design theories of Walls et al. (1992; 2004). According to Rossi

 237

et al. (2013) “a significant portion of research on IS had little to do with what
the actual information system functioned, and how it was developed.” Some
design research methodologies lack empirical grounding, since they are based
on reconstructions of studies conducted for other purposes (Cronholm &
Göbel, 2015; Cronholm & Göbel, 2016). Iivari (2015) has observed that most
publications on ADR remain rather theoretical and calls for more actual ADR
papers to evaluate the efficacy of the method. Empirical studies of design re-
search have started to appear, but the descriptions of the development and
evaluation of design artefacts and iterative emergence are often kept short.
This dissertation fills this gap, answering the call of Gill & Hevner (2013) and
Iivari (2015): enacting and augmenting theory by doing action design re-
search, focusing on both practice and design research in information systems
design. In this pursuit, I draw on a longitudinal in-depth contextualised multi-
ple ADR study in the academic research context. The study generated descrip-
tive (e.g., rich descriptions of design processes) and prescriptive (e.g., design
principles, typology) knowledge of the problem space through empirical in-
sights. This dissertation, therefore, contributes to a more comprehensive de-
scription of the development of design artefacts, allowing other researchers
and practitioners to take part in the reasoning regarding design artefacts, de-
sign process and research design (see Table 36).

Table 36. Research contributions

Contribution Description

Design principles Prescriptive knowledge:
Design principles (regarding both design process and design prod-
uct) for sustaining the usefulness of eHealth research software in
an academic research context.

Quality characteristics Prescriptive (normative) knowledge:
Extended list of fitness characteristics for fitness-utility model.

Typology Prescriptive (explanatory) knowledge:
The quality characteristics and their relationships to the design
principles.

AADR method Prescriptive knowledge:
The method guides on how to conduct multiple action design re-
search projects.
Also: Reflections on the use of ADR.

Instantiation Descriptive knowledge:
Data export feature (improvement), Technology adaptation process
(improvement), U-CARE adaptation to mobile devices (exapta-
tion).

U-CARE practice Descriptive knowledge:
Extensive and rich descriptions of the development of a sophisti-
cated eHealth research software.

 238

Design Principles, Quality Characteristics and Typology
The dissertation resulted in a set of design principles that may guide designers
in sustaining the usefulness of eHealth research software in an academic re-
search context. By following best practices and design guidelines in software
development, sustainable research software can be created, and as a result, the
reproducibility and reusability of research can be improved (Goble, 2014;
Crusoe & Brown, 2016). Groen et al. (2015) also concluded that use of best
practices and design guidelines improves the quality of research software and
leads to an increase in the publication output. The usefulness of the design
principles was evaluated as the design principles were actionable by the de-
velopment team and instantiated into the artefact – and the artefact indeed af-
forded the action described by the design principle. In essence, the design
principles guide the interaction between design and use when sustaining the
usefulness of eHealth research software.

This dissertation also answers the calls to Information Systems researchers
to provide empirical instantiations of the fitness-utility model and extend the
candidate fitness characteristics list. To the best of my knowledge, this is the
first empirical instantiation and actual use of the fitness-utility model since it
was introduced by Gill & Hevner (2013).

As sustaining research software usefulness refers to the appropriation (es-
timation, inset, and enactment) of fitness characteristics in the design process
by designer(s) to ensure that the functionality of the research software remains
available – improved and supported – and used (survives), reused, or extended
with reasonable efforts (reproduced and evolved) in the future, this enactment
is used for empirical grounding of the (re-)construction of a typology for sus-
taining the usefulness of eHealth research software in the academic research
context.

Augmented Action Design Research
This dissertation also contributed to the method space. One of the key contri-
butions to the DSR is the introduction of augmented action design research
(AADR), an extension of ADR. The approach guides on how to conduct mul-
tiple action design research projects that build towards an overarching
knowledge aim.

Instantiation
The innovative artefact is also an empirical contribution with a rich descrip-
tions of the empirical context and evolution of the artefact (Ågerfalk, 2014).
The class of solution addressed by this dissertation is sustainable eHealth re-
search software. The U-CARE software system was designed to address real-
life organisational problems, concerning the design and use of the data export

 239

feature, the process of technology adaptation due to continuous technological-
ecological changes in the design landscape, and the adaptation of the U-CARE
software system to mobile devices. Sustaining the usefulness of eHealth re-
search software is an important factor in achieving sustained organisational or
societal impact.

9.3 Implications
In this section, I present how results from the dissertation about sustaining the
usefulness can be used to improve the design of eHealth research software in
academic research contexts.

Implication for Practice
Quality characteristics, design principles, typology, and rich descriptions (de-
sign examples) of the empirical context have implications for researchers and
practitioners in design practice. This research has shown the importance of
paying attention to quality characteristics for sustaining the usefulness of
eHealth research software in an academic research context and described how
they impact during software development. The practitioners in various design
disciplines can benefit from the proposed quality characteristics, identified in
this dissertation which include decomposability, malleability, openness, em-
bedded in design system, simplicity, and accountability, to sustain their design
artefacts over time. The various design situations in the ADR cases of sustain-
ing the usefulness of eHealth research software illustrate the consequences of
these six quality characteristics in the U-CARE software system. These rich
descriptions will make practitioners aware of the importance of identification
of quality characteristics in their contexts. Similarly, practitioners who are in-
terested in designing similar research software for use in an academic research
context will benefit from the design principles.

The typology of sustaining usefulness, in its current version, suggests that
one should pay attention to both the design product and the design process.
Furthermore, continuous formulation and refinement of design principles and
their instantiation into a concrete artefact and design process could enact qual-
ity characteristics. Given that the proposed typology, is based on a single ac-
ademic research context, it should be emphasised that a different context
might require other characteristics and design principles than those included
here. Hence, design practitioners need to embrace routines in their design pro-
cesses to continually address sustaining usefulness, for example, using typol-
ogy as an agile wall to discuss the enactment and instantiation of quality char-
acteristics and design principles into their eHealth research software. Includ-
ing various stakeholders in discussions will enable the practitioners to com-
municate which resources are required for sustaining usefulness in the long

 240

run. The typology will allow practitioners and stakeholders to specify quality
requirements and associate them with quality characteristics and design prin-
ciples. As a result, the typology will enable stakeholders to prioritise the qual-
ity-related requirements (i.e., user stories).

In practice, agile Scrum teams actively use and maintain physical/and or
electronic agile walls (i.e., JIRA, Trello, et cetera) in discussing, tracking, and
managing their projects. Agile walls also display and communicate the project
activities and progress status (e.g., in backlog, in progress, done), and are used
during the various meetings (e.g., the daily stand-up, sprint planning, retro-
spective, et cetera). Given this use of agile walls, keeping the typology as a
wall96 could support design team collaboration and awareness, as it could act
as a team’s external memory. A Typology wall alongside the traditional agile
walls would help the design team(s) to analyse and link their design decisions
to a larger overall context of sustaining usefulness. The typology can provide
an avenue for co-design and co-creating design knowledge, clarity, and trans-
parency in the design process for design team(s) and stakeholders.

Although the scope of this dissertation is limited to eHealth research soft-
ware, the quality characteristics, design principles and typology are broadly
applicable, thanks to rich descriptions of sustaining the usefulness of the re-
search software over time. Considering the academic research context and re-
search software, this dissertation might be of interest to both researchers and
practitioners in other fields and could potentially serve as a guide for research
projects that design software for research, particularly those with a small de-
velopment team, and provide empirically grounded design principles, quality
characteristics, and a typology for sustaining the usefulness of eHealth re-
search software. In particular, the dissertation demonstrates action design re-
search as a useful approach for developing research software. With regards to
the software development practice, the dissertation highlights practices that
encourage sustained usefulness.

Implication for Research
The extended list of quality characteristics, the typology for the fitness-utility
model, the instantiation and validation ADR in the empirical context, with rich
presentations of and reflections on the research process, and the AADR have
implications for researchers and practitioners in design research. It was argued
by Gill & Hevner (2013) that any design practice needs fitness [quality] char-
acteristics that involve adaptation and evolution of design artefacts to sustain
usefulness. The long-term fitness of the artefact can be extrapolated from a
talk by David Lorge Parnas, way back in the 1994, as follows:

96 ‘As a wall’ means that the typology would be available in public, where all stakeholders can
access it, collaborate around it and provide feedback on it.

 241

A sign that the Software Engineering profession has matured will be that we
lose our preoccupation with the first release and focus on the long-term health
of our products. (1994)

The insides gathered and presented in this research establishes the importance
of the quality characteristics in sustaining the usefulness of eHealth research
software in an academic research context. Based on the learnings from the
empirical grounding of the fitness-utility model in the multiple ADR cases in
the U-CARE context and the retrospective analysis, it is proposed that the fit-
ness-utility model may benefit from a revision of its candidate characteristics
to include ‘simplicity’ and ‘accountability’ as new candidates, particularly in
the eHealth research context. The proposed revisions are arguably too specific
to be incorporated into the existing general model, considering that the current
empirical evidence is based on only one of the possible IT artefacts (i.e., in-
stantiations). Still, this empirical account of quality characteristics constitutes
a contribution to the discourse on fitness-utility in DSR, primarily through a
rich illustration of how quality characteristics and the U-CARE stakeholders
influenced the emergence of an eHealth research software in an academic re-
search context. Furthermore, this illustration is evidence of the validity of the
fitness-utility model.

Recent advances in the DSR discourse – such as agile design science
(Conboy et al., 2015), the emergent nature of design science (Markus et al.,
2002; Pirkkalainen, 2015) and the four-cycle model, adding change and im-
pact (Drechsler & Hevner, 2016) – have proposed changes/adaptations in or-
der for the DSR process to cope with dynamics and time-related aspects. Alis-
mail et al. (2017) demonstrated a framework for identifying DSR objectives.
They represented the utility function, which considers either short- and me-
dium-term or long-term planning horizons for deciding the artefact trait (i.e.,
quality characteristics) as:

That is, if the researchers/practitioners are focusing on short-term and medium-
term planning horizons, then they will be employing the usefulness evaluation
model. On the other hand, the fitness-utility model is more compatible if they
are focusing on a long-term planning horizon. (Alismail et al., 2017, p. 225)

Utility for the short or medium term relates only to usefulness in fitness-utility
model. For the long term, utility is the choice mechanisms guiding the artefact
design and fitness (reproduction and evolution). This dissertation contributes
to the DSR discourse by taking an ensemble view and showing that the re-
searchers and practitioners need to consider sustaining usefulness which
means that they have to balance short-term (usefulness) and long-term (fit-
ness) goals in iterative BIE cycles in the organisational context, following the
ADR method. In other words, ADR can be used for stratifying immediate use-
fulness needs in the organisation, as well as the long-term fitness of an ensem-
ble artefact.

 242

9.4 Future Work
This research provides insights from a longitudinal ADR project, with three
ADR cases, on how quality characteristics and their enactment influence sus-
taining the usefulness of eHealth research software in an academic research
context. Moreover, this research also suggests empirically grounded design
principles for sustaining the usefulness of eHealth research software, based on
a formalisation of learning in the three ADR cases. Furthermore, an aug-
mented action design research (AADR) method, an extension of ADR, regard-
ing how to conduct multiple ADR projects, was discussed in this research. In
future research, the results of this project concerning sustaining the usefulness
of eHealth research software can be studied, validated, and extended in differ-
ent empirical context(s).

The future research can, for instance, investigate the quality characteristics
and design principles for sustaining the usefulness of research software in gen-
eral and taking into account wider groups of stakeholders, not only researchers
and practitioners in the original context, such as secondary designers who
would like to (re-)use and extend the research software. The future research
can also concern a broader class of solutions such as research infrastructure,
and study larger contexts, such as academic institutions at a national or even
global organisational level. Furthermore, future research can be a collabora-
tion between Information Systems researchers and designers in other fields
(or design communities), such as computer science and engineering, as sug-
gested by Gill and Hevner:

we will have a strong incentive to collaborate with these [design] communities
if we are to exert impact. Where we may be able to contribute most effectively
is in our understanding of the potential unintended consequences of artefacts
employed in an organizational setting. (2013, p. 17)

(☺☺)

 243

References

AALST WMP van der, BICHLER M and HEINZL A (2016) Open Research in
Business and Information Systems Engineering. Business & Information Systems
Engineering 58(6), 375–379. Available at:
http://link.springer.com/10.1007/s12599-016-0454-0.

ÅGERFALK PJ (2014) Insufficient theoretical contribution: a conclusive rationale
for rejection? European Journal of Information Systems 23(6), 593–599.
Available at: http://link.springer.com/10.1057/ejis.2014.35 (accessed 29/12/14).

ÅGERFALK PJ (2019) Stimulating academic discourse: a call for response.
European Journal of Information Systems 28(1), 1–5. Available at:
https://www.tandfonline.com/doi/full/10.1080/0960085X.2019.1557853.

ÅGERFALK PJ and WIBERG M (2018) Pragmatizing the normative artifact: Design
science research in scandinavia and beyond. Communications of the Association
for Information Systems 43(1), 68–77.

VAN AKEN JE (2004) Management Research Based on the Paradigm of the Design
Sciences: The Quest for Field-Tested and Grounded Technological Rules.
Journal of Management Studies 41(2), 219–246.

AKHLAGHPOUR S, WU J, LAPOINTE L and PINSONNEAULT A (2013) The
ongoing quest for the IT artifact: Looking back, moving forward. Journal of
Information Technology 28(2), 150–166. Available at: http://www.palgrave-
journals.com/doifinder/10.1057/jit.2013.10 (accessed 18/06/14).

ALCAÑIZ M, BOTELLA C, BAÑOS RM, ZARAGOZA I and GUIXERES J (2009)
The Intelligent e-Therapy system: a new paradigm for telepsychology and
cybertherapy. British Journal of Guidance & Counselling 37(3), 287–296.
Available at: http://www.tandfonline.com/doi/abs/10.1080/03069880902957015
(accessed 12/02/14).

ALISMAIL S, ZHANG H and CHATTERJEE S (2017) A Framework for Identifying
Design Science Research Objectives for Building and Evaluating IT Artifacts. In
DESRIST 2017 Proceedings, LNCS 10243 pp 218–230. Available at:
http://link.springer.com/10.1007/978-3-319-59144-5_13.

ALSHEIKH-ALI AA, QURESHI W, AL-MALLAH MH and IOANNIDIS JPA
(2011) Public Availability of Published Research Data in High-Impact Journals
(BOUTRON I, Ed). PLoS ONE 6(9), e24357. Available at:
http://dx.plos.org/10.1371/journal.pone.0024357.

ALTURKI A and GABLE GG (2014) Theorizing in Design Science Research: An
Abstraction Layers Framework. In PACIS 2014 Proceedings Available at:
http://aisel.aisnet.org/pacis2014/126.

ALTURKI A, GABLE GG and BANDARA W (2013) The design science research
roadmap: In progress evaluation. In PACIS 2013 Proceedings Available at:
http://aisel.aisnet.org/pacis2013/160.

 244

AMBATI V and KISHORE SP (2004) How can academic software research and open
source software development help each other? In The 4th Workshop on Open
Source Software Engineering W8S Workshop - 26th International Conference on
Software Engineering pp 5–8, IEE, Edinburgh, UK. Available at: http://digital-
library.theiet.org/content/conferences/10.1049/ic_20040256.

ANDER M, WIKMAN A, LJÓTSSON B, GRÖNQVIST H, LJUNGMAN G,
WOODFORD J, LINDAHL NORBERG A and VON ESSEN L (2017) Guided
internet-administered self-help to reduce symptoms of anxiety and depression
among adolescents and young adults diagnosed with cancer during adolescence
(U-CARE: YoungCan): a study protocol for a feasibility trial. BMJ Open 7(1), 1–
11.

ANDERSSON G (2009) Using the Internet to provide cognitive behaviour therapy.
Behaviour Research and Therapy 47(3), 175–80. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/19230862 (accessed 25/08/14).

ANDERSSON G, CARLBRING P, LJÓTSSON B and HEDMAN E (2013) Guided
Internet-Based CBT for Common Mental Disorders. Journal of Contemporary
Psychotherapy 43(4), 223–233.

ANDERSSON G and TITOV N (2014) Advantages and limitations of Internet-based
interventions for common mental disorders. World Psychiatry 13(1), 4–11.

ARZBERGER P, SCHROEDER P, BEAULIEU A, BOWKER G, CASEY K,
LAAKSONEN L, MOORMAN D, UHLIR P and WOUTERS P (2004)
Promoting Access to Public Research Data for Scientific, Economic, and Social
Development. Data Science Journal 3(29), 135–152. Available at:
http://www.ics.uci.edu/~gbowker/promoting access.pdf.

ASPIN A (2012) Exporting Data from SQL server. In SQL Server 2012 Data
Integration Recipes: Solutions for Integration Services and Other ETL Tools pp
343–424, Apress, New York.

BAASTERLAR KMP, POUWER F, CUIJPERS P, RIPER H and SNOEK FJ (2011)
Web-Based Depression Treatment for Type 1 and Type 2 Diabetic Patients.
Diabetes Care 34, 320–325.

BARAK A and GROHOL JM (2011) Current and Future Trends in Internet-
Supported Mental Health Interventions. Journal of Technology in Human
Services 29(3), 155–196. Available at:
http://www.tandfonline.com/doi/abs/10.1080/15228835.2011.616939 (accessed
07/11/12).

BASKERVILLE RL, KAUL M and STOREY VC (2015) Genres of inquiry in design-
science research: justification and evaluation of knowledge production. MIS
Quarterly 39(3), 541–564.

BASKERVILLE RL, KAUL M and STOREY VC (2011) Unpacking the duality of
design science. In ICIS 2011 Proceedings Shanghai. Available at:
https://aisel.aisnet.org/icis2011/proceedings/generaltopics/10.

BASKERVILLE RL and MYERS MD (2002) Information Systems as a Reference
Discipline. MIS Quarterly 26(1), 1–14.

BASKERVILLE RL and PRIES-HEJE J (2016) Discovering the Significance of
Scientific Design Practice: New-Science Wrapped in Old-Science? In European
Conference on Information Systems (ECIS 2016) Fraunhofer Publica,
İstanbul,Turkey. Available at: https://aisel.aisnet.org/ecis2016_rp/135.

BASTAWROUS A and ARMSTRONG MJ (2013) Mobile health use in low- and
high-income countries: an overview of the peer-reviewed literature. Journal of
the Royal Society of Medicine 106(4), 130–42. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/23564897 (accessed 16/08/13).

 245

BAXTER R, HONG NC, GORISSEN D, HETHERINGTON J and TODOROV I
(2012) The Research Software Engineer. In Digital Research Oxford, UK.
Available at: http://purl.org/net/epubs/work/63787.

DE BAYSER M, AZEVEDO LG and CERQUEIRA R (2015) ResearchOps: The case
for DevOps in scientific applications. In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM) pp 1398–1404, IEEE.
Available at: http://ieeexplore.ieee.org/document/7140503/.

BECK K and ANDRES C (2004) Extreme Programming Explained: Embrace
Change (2nd edition). Addison-Wesley.

BECK K, GRENNING J, MARTIN RC, BEEDLE M, HIGHSMITH J, MELLOR S,
BENNEKUM A van, HUNT A, SCHWABER K, COCKBURN A, JEFFRIES R,
SUTHERLAND J, CUNNINGHAM W, KERN J, THOMAS D, FOWLER M
and MARICK B (2001) Manifesto for Agile Software Development. [Online]
Available at: http://agilemanifesto.org/.

BHIDE A, SHAH PS and ACHARYA G (2018) A simplified guide to randomized
controlled trials. Acta Obstetricia et Gynecologica Scandinavica 97(4), 380–387.

BOOS D and GROTE G (2012) Designing controllable accountability of future
internet of things applications. Scandinavian Journal of Information Systems
24(1), 3–28.

BROCKE J, FETTKE P, GAU M, HOUY C, MAEDCHE A, MORANA S and
SEIDEL S (2017) Tool-Support for Design Science Research: Design Principles
and Instantiation. [Online] Available at: https://ssrn.com/abstract=2972803.

CANNING PS, COOK WR, HILL WL and OLTHOFF WG (1989) Interfaces for
strongly-typed object-oriented programming. ACM SIGPLAN Notices 24(10),
457–467. Available at: http://portal.acm.org/citation.cfm?doid=74878.74924.

CARROLL J (2004) Completing Design in Use: Closing the Appropriation Cycle. In
ECIS 2004 Proceedings p 11. Available at: http://aisel.aisnet.org/ecis2004/44.

CARVER JC, GESING S, KATZ DS, RAM K and WEBER N (2018)
Conceptualization of a US Research Software Sustainability Institute (URSSI).
Computing in Science and Engineering 20(3), 4–9.

CHANDRA KRUSE L, SEIDEL S and PURAO S (2016) Making Use of Design
Principles. In DESRIST 2016 Proceedings, LNCS 9661 (PARSONS J., TUUNANEN
T., VENABLE J., DONNELLAN B., HELFERT M. KJ, Ed), pp 37–51, Springer, Cham,
St. John, Canada. Available at: http://link.springer.com/10.1007/978-3-319-
39294-3_3.

CHANDRA L, SEIDEL S and GREGOR S (2015) Prescriptive Knowledge in IS
Research: Conceptualizing Design Principles in Terms of Materiality, Action, and
Boundary Conditions. In 48th Hawaii International Conference on System
Sciences pp 4039–4048, IEEE. Available at:
http://ieeexplore.ieee.org/document/7070304/.

CHO H, GRAY J and SUN Y (2012) Quality-Aware Academic Research Tool
Development. In 19th Asia-Pacific Software Engineering Conference pp 66–72,
IEEE, Hong Kong. Available at: http://ieeexplore.ieee.org/document/6462783/.

CLOUGH BA and CASEY LM (2011) Technological adjuncts to enhance current
psychotherapy practices: a review. Clinical Psychology Review 31(3), 279–92.

COCKBURN A (2001) Agile Software Development (1st edition). Addison-Wesley
Professional.

COENEN T, COERTJENS L, VLERICK P, LESTERHUIS M, MORTIER AV,
DONCHE V, BALLON P and DE MAEYER S (2018) An information system
design theory for the comparative judgement of competences. European Journal
of Information Systems 27(2), 248–261. Available at:
http://doi.org/10.1080/0960085X.2018.1445461.

 246

COENEN T, DONCHE V and BALLON P (2015) LL-ADR : Action Design Research
in Living Labs. In Proceedings of the 48th Hawaii International Conference on
System Sciences pp 4029–4038, IEEE Computer Society, Kauai, Hawai.

COHN AM, HUNTER-REEL D, HAGMAN BT and MITCHELL J (2011) Promoting
Behavior Change from Alcohol Use Through Mobile Technology: The Future of
Ecological Momentary Assessment. Alcoholism: Clinical and Experimental
Research 35, 2209–2215.

CONBOY K, GLEASURE R and CULLINA E (2015) Agile Design Science
Research. In DESRIST 2015 Proceedings, LNCS 9073 pp 168–180. Available at:
http://link.springer.com/10.1007/978-3-319-18714-3_11.

CRAIG P, DIEPPE P, MACINTYRE S, MICHIE S, NAZARETH I and
PETTICREW M (2008) Developing and evaluating complex interventions: the
new Medical Research Council guidance. BMJ 50(5), a1655. Available at:
http://www.bmj.com/lookup/doi/10.1136/bmj.a1655.

CRESWELL JW and MILLER DL (2000) Determining Validity in Qualitative
Inquiry. Theory Into Practice 39(3), 124–130. Available at:
http://www.tandfonline.com/doi/abs/10.1207/s15430421tip3903_2.

CRICK T, HALL BA and ISHTIAQ S (2017) Reproducibility in Research: Systems,
Infrastructure, Culture. Journal of Open Research Software 5, 1–12. Available at:
http://openresearchsoftware.metajnl.com/articles/10.5334/jors.73/.

CRONHOLM S and GÖBEL H (2015) Empirical Grounding of Design Science
Research Methodology. In New Horizons in Design Science: Broadening the
Research Agenda: 10th International Conference, DESRIST 2015 Proceedings
pp 471–478. Available at: http://link.springer.com/10.1007/978-3-319-18714-
3_40.

CRONHOLM S and GÖBEL H (2016) Evaluation of the Information Systems
Research Framework: Empirical Evidence from a Design Science Research
Project. The Electronic Journal Information Systems Evaluation 19(3), 158–168.

CROUCH S, HONG NC, HETTRICK S, JACKSON M, PAWLIK A, SUFI S, CARR
L, DE ROURE D, GOBLE C and PARSONS M (2013) The Software
Sustainability Institute: Changing Research Software Attitudes and Practices.
IEEE Computing in Science & Engineering 15(6), 74–80. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6731384
(accessed 20/01/15).

CRUSOE MR and BROWN CT (2016) Walking the Talk: Adopting and Adapting
Sustainable Scientific Software Development processes in a Small Biology Lab.
Journal of Open Research Software 4(1), 4–9. Available at:
http://openresearchsoftware.metajnl.com/articles/10.5334/jors.35/.

CRYER J (2013) Resemble.js : Image analysis and comparison. [Online] Available
at: http://huddle.github.io/Resemble.js/.

CUIJPERS P, DONKER T, VAN STRATEN A, LI J and ANDERSSON G (2010) Is
guided self-help as effective as face-to-face psychotherapy for depression and
anxiety disorders? A systematic review and meta-analysis of comparative
outcome studies. Psychological Medicine 40(12), 1943–1957.

CUIJPERS P, VAN STRATEN A and ANDERSSON G (2008) Internet-administered
cognitive behavior therapy for health problems: A systematic review. Journal of
Behavioral Medicine 31(2), 169–177.

DADGAR M, SAMHAN B and JOSHI KD (2013) Mobile Health Information
Technology and Patient Care: A Literature Review and Analysis. In AMCIS 2013
Proceedings pp 1–10, Chicago, Illinois.

 247

DALLMEIER-TIESSEN S, DARBY R, GITMANS K, LAMBERT S, MATTHEWS
B, MELE S, SUHONEN J and WILSON M (2014) Enabling Sharing and Reuse
of Scientific Data. New Review of Information Networking 19(1), 16–43.
Available at:
http://www.tandfonline.com/doi/abs/10.1080/13614576.2014.883936.

DAVISON RM and MARTINSONS MG (2016) Context is king! Considering
particularism in research design and reporting. Journal of Information
Technology 31(3), 241–249.

DELONE WH and MCLEAN ER (1992) Information Systems Success: The Quest
for the Dependent Variable. Information Systems Research 3(1), 60–95.

DELONE WH and MCLEAN ER (2003) The DeLone and McLean Model of
Information Systems Success: A Ten-Year Update. Journal of Management
Information Systems 19(4), 9–30.

DEWEY J (1938) Logic: The Theory of Inquiry. H. Holt and Company, New York.
DONKER T, PETRIE K, PROUDFOOT J, CLARKE J, BIRCH M-R and

CHRISTENSEN H (2013) Smartphones for Smarter Delivery of Mental Health
Programs: A Systematic Review. Journal of Medical Internet Research 15(11),
e247. Available at: http://www.jmir.org/2013/11/e247/ (accessed 19/11/13).

DOUPI P, RENKO E, GIEST S and DUMORTIER J (2010) Country Brief: Sweden.
DOWNS RR, LENHARDT WC, ROBINSON E, DAVIS E and WEBER N (2015)

Community Recommendations for Sustainable Scientific Software. Journal of
Open Research Software 3(11), e11.

DOYLE C, LUCZAK-ROESCH M and MITTAL A (2019) We need the open
artefact: Design Science as a pathway to Open Science in Information Systems
research. Available at: https://osf.io/ye6xp.

DRECHSLER A and HEVNER A (2016) A four-cycle model of IS design science
research: capturing the dynamic nature of IS artifact design. In Breakthroughs
and Emerging Insights from Ongoing Design Science Projects: Research-in-
progress papers and poster presentations DESRIST pp 1–8, St. John, Canada.
Available at: https://cora.ucc.ie/handle/10468/2560.

EU (2016) All European scientific articles to be freely accessible by 2020 – The
Netherlands EU presidency press release. [Online] Available at:
http://english.eu2016.nl/documents/press-releases/2016/05/27/all-
europeanscientific-articles-to-be-freely-accessible-by-2020 (accessed 27/10/16).

EYSENBACH G (2011) CONSORT-EHEALTH: Improving and Standardizing
Evaluation Reports of Web-based and Mobile Health Interventions. Journal of
Medical Internet Research 13(4), e126. Available at:
http://www.jmir.org/2011/4/e126/.

EYSENBACH G (2001) What is e-health. Journal of Medical Internet Research 3(2),
e20.

FITZGERALD B, STOL K-J, O’SULLIVAN R and O’BRIEN D (2013) Scaling agile
methods to regulated environments: An industry case study. In 35th International
Conference on Software Engineering (ICSE) pp 863–872, IEEE, San Francisco.
Available at: http://ieeexplore.ieee.org/document/6606635/.

FOGEL K (2005) Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Inc. Available at:
https://producingoss.com/en/producingoss.pdf.

FOWLER M (2018) Refactoring: Improving the Design of Existing Code (2nd
edition). Addison-Wesley Professional.

FOWLER M, BECK K, BRANT J, OPDYKE W and ROBERTS D (1999)
Refactoring: Improving the Design of Existing Code (1st edition). Addison-
Wesley Professional.

 248

FREE C, PHILLIPS G, GALLI L, WATSON L, FELIX L, EDWARDS P, PATEL V
and HAINES A (2013) The effectiveness of mobile-health technology-based
health behaviour change or disease management interventions for health care
consumers: a systematic review. (CORNFORD T, Ed). PLoS Medicine 10(1),
e1001362. Available at: http://dx.plos.org/10.1371/journal.pmed.1001362
(accessed 18/10/13).

FREE C, PHILLIPS G, WATSON L, GALLI L, FELIX L, EDWARDS P, PATEL V
and HAINES A (2013) The effectiveness of mobile-health technologies to
improve health care service delivery processes: a systematic review and meta-
analysis. (CORNFORD T, Ed). PLoS Medicine 10(1), e1001363. Available at:
http://dx.plos.org/10.1371/journal.pmed.1001363 (accessed 18/10/13).

GAMMA E, HELM R, JOHNSON R and VLISSIDES J (1995) Design Patterns:
Elements of Reusable Object-Oriented Software (1st edition). Addison-Wesley
Professional.

VAN GEMERT-PIJNEN JEWC, NIJLAND N, VAN LIMBURG M, OSSEBAARD
HC, KELDERS SM, EYSENBACH G and SEYDEL ER (2011) A holistic
framework to improve the uptake and impact of eHealth technologies. Journal of
Medical Internet Research 13(4), 1–26.

GENTLEMAN R and LANG DT (2004) Statistical Analyses and Reproducible
Research. Available at: http://biostats.bepress.com/bioconductor/paper2.

GILL TG and HEVNER AR (2011) A fitness-utility model for design science
research. In DESRIST 2011 Proceedings, LNCS 6629 (JAIN H, SINHA AP, &
VITHARANA P, Eds), pp 237–252, Berlin Heidelberg.

GILL TG and HEVNER AR (2013) A Fitness-Utility Model for Design Science
Research. ACM Transactions on Management Information Systems 4(2).

GLASGOW RE, PHILLIPS SM and SANCHEZ MA (2014) Implementation science
approaches for integrating eHealth research into practice and policy. International
Journal of Medical Informatics 83(7), e1–e11. Available at:
http://dx.doi.org/10.1016/j.ijmedinf.2013.07.002.

GOBLE C (2014) Better Software, Better Research. IEEE Internet Computing 18(5),
4–8.

GREGOR S (2002) Design theory in Information Systems. Australian Journal of
Information Systems 9(Special Edition), 14–22.

GREGOR S (2006) The nature of theory in information systems. MIS Quarterly 30(3),
611–642.

GREGOR S and HEVNER AR (2013) Positioning and Presenting Design Science
Research for Maximum Impact. MIS Quarterly 37(2), 337–355.

GREGOR S and IIVARI J (2007) Designing for Mutability in Information Systems
Artifacts. In Information Systems II: Theory, Representation and Reality
(GREGOR S & HART D, Eds), pp 3–24, ANU Press. Available at:
https://www.jstor.org/stable/j.ctt24hdw8.5.

GREGOR S and JONAS D (2007) The Anatomy of a Design Theory. Journal of the
Association for Information Systems 8(5), 312–335.

GREGORY J, NURMINEN M, ORR J, ROBERTSON T, STAR SL and SUCHMAN
L (2003) Scandinavian Approaches to Participatory Design. International
Journal of Engineering Education 19(1), 62–74.

GROEN D, GUO X, GROGAN JA, SCHILLER UD and OSBORNE JM (2015)
Software development practices in academia: a case study comparison. In
Proceedings of Cornel University Library p 22. Available at:
http://arxiv.org/abs/1506.05272.

 249

GRÖNQVIST H, OLSSON EMG, JOHANSSON B, HELD C, SJÖSTRÖM J,
LINDAHL NORBERG A, HOVÉN E, SANDERMAN R, VAN ACHTERBERG
T and VON ESSEN L (2017) Fifteen Challenges in Establishing a
Multidisciplinary Research Program on eHealth Research in a University Setting:
A Case Study. Journal of Medical Internet Research 19(5), e173. Available at:
http://www.jmir.org/2017/5/e173/.

GURMAN TA, RUBIN SE and ROESS AA (2012) Effectiveness of mHealth
Behavior Change Communication Interventions in Developing Countries: A
Systematic Review of the Literature. Journal of Health Communication 17(sup1),
82–104. Available at:
http://www.tandfonline.com/doi/abs/10.1080/10810730.2011.649160 (accessed
15/07/12).

HAJ-BOLOURI A, BERNHARDSSON L and ROSSI M (2016) PADRE: A Method
for Participatory Action Design Research. In Tackling Society’s Grand
Challenges with Design Science: 11th International Conference, DESRIST 2016
(PARSONS J, TUUNANEN T, VENABLE J, DONNELLAN B, HELFERT M, &
KENNEALLY J, Eds), pp 19–36, Springer International Publishing. Available at:
http://link.springer.com/10.1007/978-3-319-39294-3_2.

HAJ-BOLOURI A, PURAO S, ROSSI M and BERNHARDSSON L (2017) Action
Design Research as a Method-in-Use : Problems and Opportunities. In DESRIST
2017 Proceedings, LNCS 10243 pp 1–9.

HARIHARAN A, ADAM MTP, DORNER V, LUX E, MUELLER MB, PFEIFFER
J and WEINHARDT C (2017) Brownie: A Platform for Conducting NeuroIS
Experiments. Journal of the Association for Information Systems 18(4), 264–296.

HARRIS PA, TAYLOR R, THIELKE R, PAYNE J, GONZALEZ N and CONDE JG
(2009) Research electronic data capture (REDCap)--a metadata-driven
methodology and workflow process for providing translational research
informatics support. Journal of biomedical informatics 42(2), 377–81. Available
at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2700030&tool=pmc
entrez&rendertype=abstract (accessed 18/03/13).

HARRISON V, PROUDFOOT J, WEE PP, PARKER G, PAVLOVIC DH and
MANICAVASAGAR V (2011) Mobile mental health: Review of the emerging
field and proof of concept study. Journal of Mental Health 20, 509–524.

HASTINGS J, HAUG K and STEINBECK C (2014) Ten recommendations for
software engineering in research. GigaScience 3(1), 31. Available at:
http://gigascience.biomedcentral.com/articles/10.1186/2047-217X-3-31.

HEDMAN E, LJOTSSON B and LINDEFORS N (2012) Cognitive behavior therapy
via the Internet: a systematic review of applications, clinical efficacy and cost-
effectiveness. Expert Rev Pharmacoecon Outcomes Res 12, 745–64.

HELFERT M, DONNELLAN B and OSTROWSKI L (2012) The Case for Design
Science Utility and Quality - Evaluation of Design Science Artifact within the
Sustainable ICT Capability Maturity Framework. Systems, Signs and Actions
6(1), 46–66. Available at: http://www.sysiac.org/.

HETTRICK S (2016) Research Software Sustainability: Report on a Knowledge
Exchange Workshop. Available at: http://digitalcommons.unl.edu/scholcom/6/.

HEVNER A and CHATTERJEE S (2010) Design Research in Information Systems.
(SHARDA R & VOß S, Eds). Springer US, Boston, MA. Available at:
http://link.springer.com/10.1007/978-1-4419-5653-8.

HEVNER AR (2007) A Three Cycle View of Design Science Research. Scandinavian
Journal of Information Systems 19(2), 87–92.

 250

HEVNER AR, DONNELLAN B and ANDERSON J (2013) The DRIVES (Design
Research for Innovation Value, Evaluation, and Sustainability) Model of
Innovation. In Design Science: Perspectives from Europe (EDSS 2012).
Communications in Computer and Information Science (HELFERT M &
DONNELLAN B, Eds), pp 144–154, Springer International Publishing. Available
at: http://link.springer.com/10.1007/978-3-319-04090-5_13.

HEVNER AR, MARCH ST, PARK J and RAM S (2004) Design science in
information systems research. MIS Quarterly 28(1), 75–105.

HOFMANN SG, ASNAANI A, VONK IJJ, SAWYER AT and FANG A (2012) The
Efficacy of Cognitive Behavioral Therapy: A Review of Meta-analyses.
Cognitive Therapy and Research 36(5), 427–440. Available at:
http://link.springer.com/10.1007/s10608-012-9476-1.

HOVORKA DS and PRIES-HEJE J (2013) Don’t Ignore the Iceberg: Timely
Revelation of Justification in DSR. In DESRIST 2013 Proceedings, LNCS 7939
(BROCKE J VOM, Ed), pp 228–241, Springer, Helsinki, Finland. Available at:
http://link.springer.com/10.1007/978-3-642-38827-9_16.

IIVARI J (2015) Distinguishing and contrasting two strategies for design science
research. European Journal of Information Systems 24(1), 107–115. Available at:
http://link.springer.com/10.1057/ejis.2013.35 (accessed 14/05/15).

ISO/IEC/IEEE (2017) ISO/IEC/IEEE International Standard - Systems and software
engineering--Vocabulary. In ISO/IEC/IEEE 24765:2017(E) pp 1–541, IEEE.
Available at: https://ieeexplore.ieee.org/servlet/opac?punumber=8016710.

ISO/IEC (2011) Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models.
In ISO/IEC 25010:2011 p 34, ISO.

JÄRVINEN P (2007) Action Research is Similar to Design Science. Quality &
Quantity 41(1), 37–54. Available at:
http://www.springerlink.com/index/10.1007/s11135-005-5427-1 (accessed
12/11/12).

JIMÉNEZ RC, KUZAK M, ALHAMDOOSH M, BARKER M, BATUT B, BORG
M, CAPELLA-GUTIERREZ S, CHUE HONG N, COOK M, CORPAS M,
FLANNERY M, GARCIA L, GELPÍ JL, GLADMAN S, GOBLE C,
GONZÁLEZ FERREIRO M, GONZALEZ-BELTRAN A, GRIFFIN PC,
GRÜNING B, HAGBERG J, HOLUB P, HOOFT R, ISON J, KATZ DS,
LESKOŠEK B, LÓPEZ GÓMEZ F, OLIVEIRA LJ, MELLOR D,
MOSBERGEN R, MULDER N, PEREZ-RIVEROL Y, PERGL R, PICHLER H,
POPE B, SANZ F, SCHNEIDER M V., STODDEN V, SUCHECKI R,
SVOBODOVÁ VAŘEKOVÁ R, TALVIK H-A, TODOROV I, TRELOAR A,
TYAGI S, VAN GOMPEL M, VAUGHAN D, VIA A, WANG X, WATSON-
HAIGH NS and CROUCH S (2017) Four simple recommendations to encourage
best practices in research software. F1000Research 6, 876. Available at:
https://f1000research.com/articles/6-876/v1.

KATZ DS, CHOI S-CT, LAPP H, MAHESHWARI K, LÖFFLER F, TURK M,
HANWELL MD, WILKINS-DIEHR N, HETHERINGTON J, HOWISON J,
SWENSON S, ALLEN GD, ELSTER AC, BERRIMAN B and VENTERS C
(2014) Summary of the First Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE1). Journal of Open Research Software 2(1),
1–21.

 251

KATZ DS, CHOI S-CT, WILKINS-DIEHR N, CHUE HONG N, VENTERS CC,
HOWISON J, SEINSTRA F, JONES M, CRANSTON K, CLUNE TL, DE VAL-
BORRO M and LITTAUER R (2016a) Report on the Second Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE2). Journal
of Open Research Software 4(e7), 1–23.

KATZ DS, CHOI S-CT, WILKINS-DIEHR N, CHUE HONG N, VENTERS CC,
HOWISON J, SEINSTRA F, JONES M, CRANSTON K, CLUNE TL, DE VAL-
BORRO M and LITTAUER R (2016b) Report on the Third Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE3). Journal
of Open Research Software 4(e37), 1–23.

KLEIN HK and MYERS MD (1999) A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS Quarterly 23(1), 67–94.

KRAFT P, DROZD F and OLSEN E (2009) ePsychology: Designing theory-based
health promotion interventions. Communications of the Association for
Information Systems 24(1), 399–426.

KRIPPENDORFF K (2006) The Semantic Turn: A New Foundation for Design. CRC
Press, Boca Raton, FL.

KRUCHTEN P, NORD RL and OZKAYA I (2012) Technical Debt: From Metaphor
to Theory and Practice. IEEE Software 29(6), 18–21. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6336722
(accessed 20/07/14).

LAINE C, GOODMAN SN, GRISWOLD ME and SOX HC (2007) Reproducible
Research: Moving toward Research the Public Can Really Trust. Annals of
Internal Medicine 146(6), 450. Available at:
http://annals.org/article.aspx?doi=10.7326/0003-4819-146-6-200703200-00154.

LAKEW N (2013) Sustaining IT Usefulnes – Re-defining end users’ role as
contextual designers. In European Design Science Symposium (EDSS) pp 123–
134, Springer, Dublin, Ireland.

LEE AS and BASKERVILLE RL (2003) Generalizing Generalizability in
Information Systems Research. Information Systems Research 14(3), 221–243.
Available at: http://isr.journal.informs.org/cgi/doi/10.1287/isre.14.3.221.16560.

LEONARDI PM (2012) Materiality, Sociomateriality, and Socio-Technical Systems:
What Do These Terms Mean? How Are They Related? Do We Need Them? In
Materiality and Organizing: Social Interaction in a Technological World
(LEONARDI PM, NARDI BA, & KALLINIKOS J, Eds), pp 25–48, Oxford: Oxford
University Press.

LIPSITZ LA (2012) Understanding Health Care as a Complex System. Journal of
American Medical Association 308(3), 243–244. Available at:
http://archsurg.jamanetwork.com/data/Journals/JAMA/24475/jvp120042_243_2
44.pdf.

LIU DLD, XU SXS and BROCKMEYER M (2008) Investigation on Academic
Research Software Development. In International Conference on Computer
Science and Software Engineering pp 626–630.

LO B and DEMETS DL (2016) Incentives for Clinical Trialists to Share Data. New
England Journal of Medicine 375(12), 1112–1115. Available at:
http://www.nejm.org/doi/10.1056/NEJMp1608351.

LOCHAN R (2012) Technology and the Internet as a key component in psychosocial
care of Somatic diseases. In AMCIS 2012 Proceedings Seattle, Washington.
Available at: http://aisel.aisnet.org/amcis2012/proceedings/ISHealthcare/18.

 252

LUMSDEN J and MORGAN W (2005) Online-Questionnaire Design : Establishing
Guidelines and Evaluating Existing Support. In Proceedings of the 16th Annual
International Conference of the Information Resources Management
Organization (IRMA 2005) (KHOSROW-POUR M, Ed), p 1358, San Diego,
California. Available at: http://www.irma-international.org/viewtitle/32623/.

LUND J (2014) Activities to address challenges in digital innovation. In Working
Conference on Information Systems and Organizations, IFIP Advances in
Information and Communication Technology pp 115–131.

LUNDBERG N, KOCH S, HÄGGLUND M, BOLINA P, DAVOODY N, ELTES J,
JARLMAN O, PERLICH A, VIMARLUND V and WINSNES C (2013) My care
pathways - Creating open innovation in healthcare. Studies in Health Technology
and Informatics 192(1–2), 687–691.

LUXTON DD, MCCANN RA, BUSH NE, MISHKIND MC and REGER GM (2011)
mHealth for mental health: Integrating smartphone technology in behavioral
healthcare. Professional Psychology: Research and Practice 42(6), 505–512.
Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0024485 (accessed
15/07/12).

MAGNUSSON J and BYGSTAD B (2014) Technology debt: toward a new theory of
technology heritage. In ECIS 2014 Proceedings pp 0–15.

MARCH ST and SMITH GF (1995) Design and natural science research on
information technology. Decision Support Systems 15(4), 251–266. Available at:
http://www.sciencedirect.com/science/article/pii/0167923694000412 (accessed
18/09/14).

MARKUS ML, MAJCHRZAK A and GASSER L (2002) A design theory for systems
that support emergent knowledge processes. MIS Quarterly 26(3), 179–212.

MARTIN RC (2000) Design Principles and Design Patterns.
http://www.objectmentor.com.

MATHIASSEN L (2002) Collaborative practice research. Information Technology &
People 15(4), 321–345. Available at:
http://www.emeraldinsight.com/doi/10.1108/09593840210453115 (accessed
01/11/12).

MATTSSON S, ALFONSSON S, CARLSSON M, NYGREN P, OLSSON E and
JOHANSSON B (2013) U-CARE: Internet-based stepped care with interactive
support and cognitive behavioral therapy for reduction of anxiety and depressive
symptoms in cancer - a clinical trial protocol. BMC Cancer 13(1), 414. Available
at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3848442.

MCKENNEY S and REEVES TC (2012) Conducting Educational Design Research.
Routledge, London.

MESIROV JP (2010) Accessible Reproducible Research. Science 327(5964), 415–
416. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1179653.

MEWTON L, SMITH J, ROSSOUW P and ANDREWS G (2014) Current
perspectives on Internet-delivered cognitive behavioral therapy for adults with
anxiety and related disorders. Psychology research and behavior management 7,
37–46. Available at: http://www.dovepress.com/current-perspectives-on-
internet-delivered-cognitive-behavioral-therap-peer-reviewed-article-PRBM
(accessed 17/02/14).

MICHIE S, YARDLEY L, WEST R, PATRICK K and GREAVES F (2017)
Developing and Evaluating Digital Interventions to Promote Behavior Change in
Health and Health Care: Recommendations Resulting From an International
Workshop. Journal of Medical Internet Research 19(6), e232. Available at:
http://www.jmir.org/2017/6/e232/.

 253

MILLER G (2012) The Smartphone Psychology Manifesto. Perspectives on
Psychological Science 7(3), 221–237. Available at:
http://pps.sagepub.com/lookup/doi/10.1177/1745691612441215 (accessed
02/03/13).

MINISTRY OF HEALTH AND SOCIAL AFFAIRS (2010) National eHealth
(Sweden) - the strategy for accessible and secure information in health and social
care. Available at:
http://www.government.se/content/1/c6/16/79/85/8d4e6161.pdf.

MOHR DC, SCHUELLER SM, RILEY WT, BROWN CH, CUIJPERS P, DUAN N,
KWASNY MJ, STILES-SHIELDS C and CHEUNG K (2015) Trials of
intervention principles: Evaluation methods for evolving behavioral intervention
technologies. Journal of Medical Internet Research 17(7).

MORANA S, VOM BROCKE J, MAEDCHE A, SEIDEL S, ADAM MTP, BUB U,
FETTKE P, GAU M, HERWIX A, MULLARKEY MT, NGUYEN HD,
SJÖSTRÖM J, TOREINI P, WESSEL L and WINTER R (2018) Tool Support
for Design Science Research—Towards a Software Ecosystem: A Report from a
DESRIST 2017 Workshop. Communications of the Association for Information
Systems 43(1), 237–256.

MORIN A, URBAN J and SLIZ P (2012) A quick guide to software licensing for the
scientist-programmer. PLoS Computational Biology 8(7).

MULLARKEY MT and HEVNER AR (2018) An elaborated action design research
process model. European Journal of Information Systems 9344, 1–15. Available
at: http://doi.org/10.1080/0960085X.2018.1451811.

MULLARKEY MT and HEVNER AR (2015) Entering Action Design Research. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) pp 121–134.
Available at: http://link.springer.com/10.1007/978-3-319-18714-3_8.

MUNAFÒ MR, NOSEK BA, BISHOP DVM, BUTTON KS, CHAMBERS CD,
PERCIE DU SERT N, SIMONSOHN U, WAGENMAKERS E, WARE JJ and
IOANNIDIS JPA (2017) A manifesto for reproducible science. Nature Human
Behaviour 1(1), 0021. Available at: http://www.nature.com/articles/s41562-016-
0021.

MURRAY-RUST P (2008) Open data in science. Serials Review 34(1), 52–64.
MUSTAFA MI and SJÖSTRÖM J (2013) Design Principles for Research Data

Export: Lessons Learned in e-Health Design Research. In DESRIST 2013
Proceedings, LNCS 7939 (BROCKE J, HEKKALA R, RAM S, & ROSSI M, Eds), pp
34–49, Springer Berlin Heidelberg. Available at: http://dx.doi.org/10.1007/978-
3-642-38827-9_3.

MUSTAFA MI, SJÖSTRÖM J and ERIKSSON-LUNDSTRÖM J (2014) An
Empirical Account of Fitness-Utility: A Case of Radical Change towards
Mobility in DSR Practice. In DESRIST 2014 Proceedings, LNCS 8463
(TREMBLAY MC, VANDERMEER D, ROTHENBERGER M, GUPTA A, & YOON V,
Eds), pp 289–303, Springer International Publishing.

MYERS MD and VENABLE JR (2014) A set of ethical principles for design science
research in information systems. Information & Management 51(6), 801–809.
Available at: http://linkinghub.elsevier.com/retrieve/pii/S0378720614000081
(accessed 16/12/14).

NATURE (2008) Beta blockers? Nature 455(October), 708.
NICKERSON RC, VARSHNEY U and MUNTERMANN J (2013) A method for

taxonomy development and its application in information systems. European
Journal of Information Systems 22(3), 336–359.

 254

NIEDERMAN F and MARCH ST (2012) Design science and the accumulation of
knowledge in the information systems discipline. ACM Transactions on
Management Information Systems 3(1), 1–15. Available at:
http://dl.acm.org/citation.cfm?doid=2151163.2151164.

NIJLAND N (2011) Grounding eHealth - Towards a holistic framework for
sustainable eHealth technologies. University of Twente: Enschede. Available at:
http://doc.utwente.nl/75576/1/thesis_N_Nijland.pdf.

NORLUND F, OLSSON EM, BURELL G, WALLIN E and HELD C (2015)
Treatment of depression and anxiety with internet-based cognitive behavior
therapy in patients with a recent myocardial infarction (U-CARE Heart): study
protocol for a randomized controlled trial. Trials 16(1), 1–8. Available at:
http://www.trialsjournal.com/content/16/1/154.

NOSEK BA, ALTER G, BANKS GC, BORSBOOM D, BOWMAN SD,
BRECKLER SJ, BUCK S, CHAMBERS CD, CHIN G, CHRISTENSEN G,
CONTESTABILE M, DAFOE A, EICH E, FREESE J, GLENNERSTER R,
GOROFF D, GREEN DP, HESSE B, HUMPHREYS M, ISHIYAMA J,
KARLAN D, KRAUT A, LUPIA A, MABRY P, MADON T, MALHOTRA N,
MAYO-WILSON E, MCNUTT M, MIGUEL E, PALUCK EL, SIMONSOHN
U, SODERBERG C, SPELLMAN BA, TURITTO J, VANDENBOS G, VAZIRE
S, WAGENMAKERS EJ, WILSON R and YARKONI T (2015) Promoting an
open research culture. Science 348(6242), 1422–1425. Available at:
http://www.sciencemag.org/cgi/doi/10.1126/science.aab2374.

NUNAMAKER JF, TWYMAN NW, GIBONEY JS and BRIGGS RO (2017)
Creating High-Value Real-World Impact through Systematic Programs of
Research. MIS Quarterly 41(2), 335–351.

NYLANDER S, LUNDQUIST T, BRÄNNSTRÖM A and KARLSON B (2009) “It’s
Just Easier with the Phone” – A Diary Study of Internet Access from Cell Phones.
In Pervasive 2009, LNCS 5538 pp 354–371, Springer. Available at:
http://link.springer.com/10.1007/978-3-642-01516-8_24.

ORLIKOWSKI WJ (2010) The sociomateriality of organisational life: considering
technology in management research. Cambridge Journal of Economics 34(1),
125–141. Available at: http://cje.oxfordjournals.org/cgi/doi/10.1093/cje/bep058
(accessed 04/11/12).

ORLIKOWSKI WJ and BAROUDI JJ (1991) Studying Information Technology in
Organizations: Research Approaches and Assumptions. Information Systems
Research 2(1), 1–28. Available at:
http://isr.journal.informs.org/cgi/doi/10.1287/isre.2.1.1.

ORLIKOWSKI WJ and IACONO CS (2001) Research commentary : Desperately
seeking ‘IT’ in IT research - A call to theorizing the IT artifact. Information
Systems Research 12(2), 121–134.

PAGLIARI C, SLOAN D, GREGOR P, SULLIVAN F, DETMER D, KAHAN JP,
OORTWIJN W and MACGILLIVRAY S (2005) What is eHealth (4): a scoping
exercise to map the field. Journal of Medical Internet Research 7(1), e9.
Available at: http://www.jmir.org/2005/1/e9/ (accessed 25/04/15).

PARNAS DL (1972) On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058. Available at:
http://dl.acm.org/citation.cfm?id=361598.361623 (accessed 17/07/14).

PARNAS DL (1994) Software aging. In Proceedings of the 16th international
conference on Software engineering pp 279–287, IEEE Computer Society Press.
Available at: http://dl.acm.org/citation.cfm?id=257734.257788 (accessed
30/08/14).

 255

PARNAS DLL (1976) On the Design and Development of Program Families. IEEE
Transactions on Software Engineering SE-2(1), 1–9.

PEARSON S and CHARLESWORTH A (2009) Accountability as a Way Forward
for Privacy Protection in the Cloud. In Cloud Computing, LNCS 5931 (JAATUN
M, ZHAO G, & RONG C, Eds), Lecture Notes in Computer Science. pp 131–144,
Springer Berlin Heidelberg. Available at: http://dx.doi.org/10.1007/978-3-642-
10665-1_12.

PEFFERS K, TUUNANEN T, ROTHENBERGER MA and CHATTERJEE S (2007)
A Design Science Research Methodology for Information Systems Research.
Journal of Management Information Systems 24(3), 45–77. Available at:
http://mesharpe.metapress.com/openurl.asp?genre=article&id=doi:10.2753/MIS
0742-1222240302 (accessed 26/10/12).

PENG RD (2011) Reproducible Research in Computational Science. Science
334(6060), 1226–1227. Available at:
http://www.sciencemag.org/cgi/doi/10.1126/science.1213847.

PETERS GY, ABRAHAM C and CRUTZEN R (2012) Full disclosure : doing
behavioural science necessitates sharing. The European Health Psychologist
14(4), 77–84.

PHAM Q, WILJER D and CAFAZZO JA (2016) Beyond the Randomized Controlled
Trial: A Review of Alternatives in mHealth Clinical Trial Methods. JMIR
mHealth and uHealth 4(3), e107. Available at:
http://mhealth.jmir.org/2016/3/e107/.

PIRKKALAINEN H (2015) Dealing With Emergent Design Science Research
Projects in IS. In DESRIST 2015 Proceedings, LNCS 9073 (DONNELLAN B,
GLEASURE R, HELFERT M, KENNEALLY J, ROTHENBERGER M, CHIARINI
TREMBLAY M, VANDERMEER D, & WINTER R, Eds), pp 61–68, Dublin, Ireland.

PLSEK P (2003) Complexity and the Adoption of Innovation in Health Care
Complexity and the Adoption of Innovation in Health Care. In Accelerating
Quality Improvement in Health Care: Strategies to Speed the Diffusion of
Evidence-Based Innovations National Institute for Healthcare Management
Foundation and National Committee for Quality in Health Care, Washington,
D.C. Available at: https://www.nihcm.org/pdf/Plsek.pdf.

PONTIKA N, KNOTH P, CANCELLIERI M and PEARCE S (2015) Fostering open
science to research using a taxonomy and an eLearning portal. In Proceedings of
the 15th International Conference on Knowledge Technologies and Data-driven
Business - i-KNOW ’15 pp 1–8, ACM Press, New York, USA. Available at:
http://dl.acm.org/citation.cfm?doid=2809563.2809571.

PRAT N, COMYN-WATTIAU I and AKOKA J (2015) A Taxonomy of Evaluation
Methods for Information Systems Artifacts. Journal of Management Information
Systems 32(3), 229–267. Available at:
http://www.tandfonline.com/doi/abs/10.1080/07421222.2015.1099390#.VqXhC
YUrLmE.

PRAT N, COMYN-WATTIAU I and AKOKA J (2014) Artifact evaluation in
information systems design science research – a holistic view. In PACIS 2014
Proceedings Chengdu, China. Available at: https://aisel.aisnet.org/pacis2014/23.

PREECE J, ROGERS Y and SHARP H (2002) Interaction design: beyond human-
computer interaction (2nd edition). John Wiley & Sons, Inc. New York, USA.
Available at: http://www.lavoisier.fr/livre/notice.asp?ouvrage=1338089
(accessed 06/03/13).

PRESSMAN RS and MAXIM BR (2014) Software Engineering: A Practitioner’s
Approach (8th edition). McGraw-Hill Education.

 256

PURAO S, HENFRIDSSON O, ROSSI M and SEIN MK (2013) Ensemble Artifacts :
From Viewing to Designing in Action Design Research. Systems, Signs and
Actions 7(1), 73–81.

RAPTIS DA, METTLER T, FISCHER MA, PATAK M, LESURTEL M,
ESHMUMINOV D, DE ROUGEMONT O, GRAF R, CLAVIEN P-A and
BREITENSTEIN S (2014) Managing multicentre clinical trials with open source.
Informatics for Health and Social Care 39(2), 67–80. Available at:
http://www.tandfonline.com/doi/full/10.3109/17538157.2013.812647.

RINI C, WILLIAMS DA, BRODERICK JE and KEEFE FJ (2012) Meeting them
where they are: Using the Internet to deliver behavioral medicine interventions
for pain. Translational Behavioral Medicine 2, 1–11.

ROGERS EM (2003) Diffusion of innovations (5th edition). Free Press, New York.
ROMME AGL (2003) Making a difference: Organization as design. Organ. Sci 14(5),

14558–573.
VAN ROOIJ T and MARSH S (2016) eHealth: past and future perspectives.

Personalized Medicine 13(1), 57–70.
ROSS JS, LEHMAN R and GROSS CP (2012) The importance of clinical trial data

sharing: Toward more open science. Circulation: Cardiovascular Quality and
Outcomes 5(2), 238–240.

ROSSI M, HENFRIDSSON O, LYYTINEN K and SIAU K (2013) Design Science
Research: The Road Traveled and the Road That Lies Ahead. Journal of
Database Management 24(3), 1–8. Available at: http://www.igi-
global.com/article/design-science-research/94541 (accessed 25/01/14).

SARKER S, XIAO X and BEAULIEU T (2013) Qualitative Studies in Information
Systems : A Critical Review and Some Guiding Principles. MIS Quarterly 37(4),
iii–xviii.

SCHWAB M, KARRENBACH N and CLAERBOUT J (2000) Making scientific
computations reproducible. Computing in Science & Engineering 2(6), 61–67.
Available at: http://ieeexplore.ieee.org.ezp-
prod1.hul.harvard.edu/ielx5/5992/19077/00881708.pdf?tp=&arnumber=881708
&isnumber=19077%5Cnhttp://ieeexplore.ieee.org/document/881708/.

SEIN MK, HENFRIDSSON O, PURAO S, ROSSI M and LINDGREN R (2011)
Action Design Research. MIS Quarterly 35(1), 37–56.

SEIN MK and ROSSI M (2019) Elaborating ADR while drifting away from its
essence: A commentary on Mullarkey and Hevner. European Journal of
Information Systems 28(1), 21–25.

SENAPATHI M and SRINIVASAN A (2012) Understanding post-adoptive agile
usage: An exploratory cross-case analysis. Journal of Systems and Software
85(6), 1255–1268. Available at: http://www.sciencedirect.com/science/article/
pii/S0164121212000489 (accessed 11/08/14).

SHULL F (2011) Perfectionists in a World of Finite Resources. IEEE Software 28(2),
4–6. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5720703
(accessed 07/08/14).

SIMON HA (1996) The Sciences of the Artificial (3rd edition). MIT Press,
Cambridge, MA.

SJÖSTRÖM J (2017) DeProX: A Design Process Exploration Tool. In DESRIST 2017
Proceedings, LNCS 10243 pp 447–451. Available at:
http://link.springer.com/10.1007/978-3-319-59144-5_29.

SJÖSTRÖM J (2010) Designing Information Systems: A Pragmatic Account. Uppsala
University: Uppsala. Available at: http://uu.diva-
portal.org/smash/get/diva2:350209/FULLTEXT01.pdf.

 257

SJÖSTRÖM J and ÅGERFALK PJ (2009) An Analytic Framework for Design-
Oriented Research Concepts. In AMCIS 2009 Proceedings San Francisco,
California. Available at: http://aisel.aisnet.org/amcis2009/302.

SJÖSTRÖM J and ÅGERFALK PJ (2013) Architecting Social Interaction :
Experiences From E-Health Design Research in the U-Care Program. In SIG Prag
Workshop on IT Artefact Design & Workpractice Improvement pp 1–14, Tilburg,
the Netherlands.

SJÖSTRÖM J, AGERFALK PJ and HEVNER AR (2017) Scrutinizing Privacy and
Accountability in Online Psychosocial Care. IT Professional 19(3), 45–51.

SJÖSTRÖM J, ÅGERFALK PJ and HEVNER AR (2014) The Design of a Multi-
layer Scrutiny Protocol to Support Online Privacy and Accountability. In
DESRIST 2014 Proceedings, LNCS 8463 (TREMBLAY MC, VANDERMEER D,
ROTHENBERGER M, GUPTA A, & YOON V, Eds), pp 85–98, Springer International
Publishing, Cham.

SJÖSTRÖM J, ÅGERFALK PJ and LOCHAN R (2011) Mutability Matters:
Baselining the Consequences of Design. In Proceedings of MCIS 2011 Limassol,
Cyprus. Available at: http://aisel.aisnet.org/mcis2011/33.

SJÖSTRÖM J and ALFONSSON S (2012) Supporting the therapist in online therapy.
In ECIS 2012 Proceedings Available at: http://aisel.aisnet.org/ecis2012/69/
(accessed 06/03/13).

SJÖSTRÖM J, CHANDRA KRUSE L and HAJ-BOLOURI A (2016) A Design
Theory for Built-in Evaluation Support.

SJÖSTRÖM J, DONNELLAN B and HELFERT M (2012) Product Semantics in
Design Research Practice. In Shaping the Future of ICT Research. Methods and
Approaches (BHATTACHERJEE A & FITZGERALD B, Eds), IFIP Advances in
Information and Communication Technology. pp 35–48, Springer Berlin
Heidelberg, Berlin, Heidelberg. Available at:
http://www.springerlink.com/index/10.1007/978-3-642-35142-6 (accessed
16/01/14).

SJÖSTRÖM J, ERIKSSON O and ÅGERFALK PJ (2013) CoDisclose: An Approach
to Disclosing Design Rationale. In Proceedings of the SIGPrag 2013 workshop
at ICIS 2013 Milan. Available at: http://media.sigprag.net/2016/03/SIGPrag-
2013-Sjostrom-et-al.pdf.

SJÖSTRÖM J, VON ESSEN L and GRÖNQVIST H (2014) The Origin and Impact
of Ideals in eHealth Research: Experiences From the U-CARE Research
Environment. JMIR Research Protocols 3(2), e28. Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4051743&tool=pmc
entrez&rendertype=abstract (accessed 25/08/14).

SJÖSTRÖM J and GOLDKUHL G (2010) A Stakeholder-centric Approach to
Information Systems Design. In eChallenges (CUNNINGHAM P & CUNNINGHAM
M, Eds), pp 1–8, International Information Management Corporation, Warsaw.

SJÖSTRÖM J and HERMELIN M (2013) In-Place Translation in Information
Systems Drawing from the Knowledge Base. In Design Science: Perspectives
from Europe: European Design Science Symposium, EDSS 2012, CCIS 388
(HELFERT M & DONNELLAN B, Eds), pp 88–98, Springer International
Publishing, Leixlip, Ireland.

SJÖSTRÖM J, KRUSE LC, HAJ-BOLOURI A and FLENSBURG P (2018)
Software-Embedded Evaluation Support in Design Science Research. In
Designing for a Digital and Globalized World. DESRIST 2018. Lecture Notes in
Computer Science, vol 10844 (CHATTERJEE S, DUTTA K, & SUNDARRAJ R, Eds),
pp 348–362, Springer, Cham.

 258

SJÖSTRÖM J, RAHMAN MH, RAFIQ A, LOCHAN R and ÅGERFALK PJ (2013)
Respondent Behavior Logging: An Opportunity for Online Survey Design. In
DESRIST 2013 Proceedings, LNCS 7939 pp 511–518. Available at:
http://link.springer.com/10.1007/978-3-642-38827-9_44.

SMEDBERG Å and SANDMARK H (2012) Design of a Mobile Phone App
Prototype for Reflections on Perceived Stress. In The Fourth International
Conference on eHealth, Telemedicine, and Social Medicine (eTELEMED 2012)
pp 243–248, Valencia, Spain.

SOJER M and HENKEL J (2010) Code Reuse in Open Source Software
Development: Quantitative Evidence, Drivers, and Impediments. Journal of the
Association for Information Systems 11(12), 868–901.

SOMMERVILLE I (2011) Software Engineering (9th edition). Addison-Wesley.
SONNENBERG C and VOM BROCKE J (2012) Evaluation patterns for design

science research artefacts. In Practical Aspects of Design Science: European
Design Science Symposium (HELFERT M & DONNELLAN B, Eds), pp 71–83,
Springer-Verlag Berlin Heidelberg, Leixlip, Ireland.

SØRENSEN C and LANDAU J (2014) We’ve Got 99 Problems, but a Phone Ain’t
One: Mobile ICT and Academic Agility in Information Systems Research. In
ECIS 2014 Proceedings AISeL. Available at:
http://aisel.aisnet.org/ecis2014/proceedings/track03/7.

STODDEN V (2010) The Scientific Method in Practice: Reproducibility in the
Computational Sciences. MIT Sloan Research Paper, 1–33. Available at:
http://ssrn.com/abstract=1550193.

STODDEN V, GUO P and MA Z (2013) Toward Reproducible Computational
Research: An Empirical Analysis of Data and Code Policy Adoption by Journals.
PLoS ONE 8(6), 2–9.

STODDEN V, MIGUEZ S and SEILER J (2015) ResearchCompendia.org:
Cyberinfrastructure for reproducibility and collaboration in computational
science. Computing in Science and Engineering 17(1), 12–19.

STÖRRLE H, KRISTENSEN K and MADSEN J (2016) Taming your clients, or:
Defining and managing requirements in an academic research context. In
Proceedings of first conference of research software engineers Manchester, UK.
Available at: https://ukrse.github.io/conf2016_talks.

TASCHUK M and WILSON G (2017) Ten simple rules for making research software
more robust. PLOS Computational Biology 13(4), e1005412. Available at:
https://dx.plos.org/10.1371/journal.pcbi.1005412.

TERNSTRÖM E, HILDINGSSON I, HAINES H, KARLSTRÖM A, SUNDIN Ö,
EKDAHL J, SEGEBLAD B, LARSSON B, RONDUNG E and RUBERTSSON
C (2017) A randomized controlled study comparing internet-based cognitive
behavioral therapy and counselling by standard care for fear of birth – A study
protocol. Sexual & Reproductive Healthcare 13, 75–82. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S1877575617300356.

TOM E, AURUM A and VIDGEN R (2013) An exploration of technical debt. Journal
of Systems and Software 86(6), 1498–1516. Available at: http://www.
sciencedirect.com/science/article/pii/S0164121213000022 (accessed 22/08/14).

TREMBLAY MC, HEVNER AR and BERNDT DJ (2010) Focus Groups for Artifact
Refinement and Evaluation in Design Research. Communications of the AIS
26(June), 599–618.

TRUEX DP, BASKERVILLE RL and KLEIN H (1999) Growing systems in
emergent organizations. Communications of the ACM 42(8), 117–123. Available
at: http://dl.acm.org/ft_gateway.cfm?id=310984&type=html (accessed
17/10/14).

 259

VAISHNAVI V and KUECHLER B (2004) Design Science Research in Information
Systems. [Online] Available at: http://www.desrist.org/design-research-in-
information-systems/ (accessed 15/11/15).

VENABLE J (2006) A Framework for Design Science Research Activities. In
Emerging Trends and Challenges in Information Technology Management pp
184–187, Idea Group Publishing, Washington, DC.

VENABLE J, PRIES-HEJE J and BASKERVILLE R (2015) FEDS2: A Practical
Tutorial on the Framework for Evaluation in Design Science Research (v. 2). In
CAiSE 2015 Proceedings (LNCS 9097) pp 527–528, Springer International
Publishing Switzerland, Stockholm, Sweden. Available at:
https://link.springer.com/content/pdf/bbm%3A978-3-319-19069-3%2F1.pdf.

VENABLE JR, PRIES-HEJE J and BASKERVILLE R (2016) FEDS: a Framework
for Evaluation in Design Science Research. European Journal of Information
Systems 25(1), 77–89. Available at: http://dx.doi.org/10.1057/ejis.2014.36.

VENABLE JR, PRIES-HEJE J and BASKERVILLE RL (2012) A Comprehensive
Framework for Evaluation in Design Science Research. In DESRIST 2012
Proceedings, LNCS 7286 (PEFFERS K, ROTHENBERGER M, & KUECHLER B, Eds),
pp 423–438, Springer Verlag, Berlin Heidelberg.

VIDGEN R and BRAA K (1997) Balancing Interpretation and Intervention in
Information System Research: The Action Case Approach. In Information
Systems and Qualitative Research (A.S. L, J. L, & J.I. D, Eds), pp 524–541,
Springer US, Boston, MA. Available at: http://link.springer.com/10.1007/978-0-
387-35309-8_26.

WAC K (2012) Smartphone as a personal, pervasive health informatics services
platform: literature review. IMIA Yearbook of medical informatics 7(1), 83–93.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/22890347 (accessed
02/03/13).

WALLS JG, WIDMEYER GR and EL-SAWY OA (2004) Assessing information
system design theory in perspective: How useful was our 1992 initial rendition.
Journal of Information Technology Theory and Application 6(2), 43–58.
Available at:
http://iris.nyit.edu/~kkhoo/Spring2008/Topics/DS/DtheoryAssessing_JITTA200
4.pdf (accessed 06/03/13).

WALLS JG, WIDMEYER GR and EL-SAWY OA (1992) Building an Information
System Design Theory for Vigilant EIS. Information Systems Research 3(1), 36–
59. Available at: http://www.jstor.org/stable/23010780.

WALSH I (2015) Using quantitative data in mixed-design grounded theory studies:
An enhanced path to formal grounded theory in information systems. European
Journal of Information Systems 24(5), 531–557.

WALSHAM G (2006) Doing interpretive research. European Journal of Information
Systems 15(3), 320–330. Available at: http://www.palgrave-
journals.com/doifinder/10.1057/palgrave.ejis.3000589 (accessed 28/10/12).

WALSHAM G (1995) Interpretive case studies in IS research : nature and method.
European Journal of Information Systems 4(2), 74–81.

WEAVER A, YOUNG AM, ROWNTREE J, TOWNSEND N, PEARSON S, SMITH
J, GIBSON O, COBERN W, LARSEN M and TARASSENKO L (2007)
Application of mobile phone technology for managing chemotherapy-associated
side-effects. Annals of Oncology 18(11), 1887–1892. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/17921245 (accessed 08/12/12).

WEITZNER DJ, ABELSON H, BERNERS-LEE T, FEIGENBAUM J, HENDLER J
and SUSSMAN GJ (2008) Information accountability. Communications of the
ACM 51(6), 82–87.

 260

WESTIN S (2014) Managing data and information quality in construction
engineering: a system design approach. University of Agder: Agder.

WILLIAMS K, CHATTERJEE S and ROSSI M (2008) Design of emerging digital
services: a taxonomy. European Journal of Information Systems 17(5), 505–517.
Available at: http://link.springer.com/10.1057/ejis.2008.38.

WOODFORD J, WIKMAN A, CERNVALL M, LJUNGMAN G, ROMPPALA A,
GRÖNQVIST H and VON ESSEN L (2018) Study protocol for a feasibility study
of an internet-administered, guided, CBT-based, self-help intervention
(ENGAGE) for parents of children previously treated for cancer. BMJ Open 8(6).

XU X, VENKATESH V, TAM KY and HONG S-J (2010) Model of Migration and
Use of Platforms: Role of Hierarchy, Current Generation, and Complementarities
in Consumer Settings. Management Science 56(8), 1304–1323.

 261

Part VI: Appendices

 263

Appendix A: Quality Characteristics

A.1 Product Quality Characteristics
Table A.1-1. Product quality characteristics

(Sub-)Characteristics Definition
1 Functional suitability Degree to which a product or system provides functions

that meet stated and implied needs when used under speci-
fied conditions

1.2 Functional completeness Degree to which the set of functions covers all the specified
tasks and user objectives

1.3 Functional correctness Degree to which a product or system provides the correct
results with the required degree of precision

1.4 Functional appropriate-
ness

Degree to which the functions facilitate the accomplish-
ment of specified tasks and objectives

2 Performance efficiency Performance relative to the number of resources used under
specified conditions

2.1 Time behaviour Degree to which the response and processing times and
throughput rates of a product or system, when performing
its functions, meet requirements

2.2 Resource utilisation Degree to which the amounts and types of resources used
by a product or system, when performing its functions,
meet requirements

2.3 Capacity Degree to which the maximum limits of a product or sys-
tem parameter meet requirements

3 Compatibility Degree to which a product, system or component can ex-
change information with other products, systems or compo-
nents, and perform its required functions while sharing the
same hardware or software environment

3.1 Co-existence Degree to which a product can perform its required func-
tions efficiently while sharing a common environment and
resources with other products, without detrimental impact
on any other product

3.2 Interoperability Degree to which two or more systems, products or compo-
nents can exchange information and use the information
that has been exchanged

4 Usability Degree to which a product or system can be used by speci-
fied users to achieve specified goals with effectiveness, ef-
ficiency and satisfaction in a specified use context

4.1 Appropriateness recog-
nisability

Degree to which users can recognise whether a product or
system is appropriate for their needs

4.2 Learnability Degree to which a product or system can be used by speci-
fied users to achieve specified learning goals to use the
product or system with effectiveness, efficiency, freedom
from risk and satisfaction in a specified use context

 264

4.3 Operability Degree to which a product or system has attributes that
make it easy to operate and control

4.4 User error protection Degree to which a system protects users against making er-
rors

4.5 User interface aesthetics Degree to which a user interface enables pleasing and satis-
fying interaction for the user

4.6 Accessibility Degree to which a product or system can be used by people
with the widest range of characteristics and capabilities to
achieve a specified goal in a specified context of use

5 Reliability Degree to which a system, product or component performs
specified functions under specified conditions for a speci-
fied period

5.1 Maturity Degree to which a system, product or component meets
needs for reliability under normal operation

5.2 Availability Degree to which a system, product or component is opera-
tional and accessible when required for use

5.3 Fault tolerance Degree to which a system, product or component operates
as intended despite the presence of hardware or software
faults

5.4 Recoverability Degree to which, in the event of an interruption or a failure,
a product or system can recover the data directly affected
and re-establish the desired state of the product or system

6 Security Degree to which a product or system protects information
and data so that persons or other products or systems have
the degree of data access appropriate to their types and lev-
els of authorisation

6.1 Confidentiality Degree to which a product or system ensures that data are
accessible only to those authorised to have access

6.2 Integrity Degree to which a system, product or component prevents
unauthorised access to, or modification of, computer pro-
grams or data

6.3 Non-repudiation Degree to which actions or events can be proven to have
taken place so that the actions or events cannot be repudi-
ated later

6.4 Accountability Degree to which the actions of an entity can be traced
uniquely to that entity

6.5 Authenticity Degree to which the identity of a subject or resource can be
proved to be the one claimed

7 Maintainability Degree of effectiveness and efficiency with which the in-
tended maintainers can modify a product or system

7.1 Modularity Degree to which a system or computer program is com-
posed of discrete components such that a change to one
component has minimal impact on other components

7.2 Reusability Degree to which an asset can be used in more than one sys-
tem, or in building other assets

7.3 Analysability Degree of effectiveness and efficiency with which it is pos-
sible to assess the impact on a product or system of an in-
tended change to one or more of its parts, or to diagnose de-
ficiencies in a product or causes of failures, or to identify
parts to be modified

7.4 Modifiability Degree to which a product or system can be effectively and
efficiently modified without introducing defects or degrad-
ing existing product or system quality

 265

7.5 Testability Degree of effectiveness and efficiency with which test cri-
teria can be established for a system, product or component
and tests can be performed to determine whether those cri-
teria have been met

8 Portability Degree of effectiveness and efficiency with which a sys-
tem, product or component can be transferred from one
hardware, software or other operational or usage environ-
ment to another

8.1 Adaptability Degree to which a product or system can effectively and ef-
ficiently be adapted for different or evolving hardware,
software or other operational or usage environments

8.2 Installability Degree of effectiveness and efficiency with which a prod-
uct or system can be successfully installed and uninstalled
in a specified environment

8.3 Replaceability Degree to which a product can replace another specified
software product for the same purpose in the same environ-
ment

A.2 Quality-in-Use Characteristics
Table A.2-1. Quality-in-use characteristics

(Sub-)Characteristics Definition
1 Effectiveness Accuracy and completeness with which users achieve spec-

ified goals
2 Efficiency Resources expended on the accuracy and completeness

with which users achieve goals
3 Satisfaction Degree to which user needs are satisfied when a product or

system is used in a specified use context
3.1 Usefulness Degree to which a user is satisfied with their perceived

achievement of pragmatic goals, including the results of use
and the consequences of use

3.2 Trust Degree to which a user or other stakeholder has confidence
that a product or system will behave as intended

3.3 Pleasure Degree to which a user obtains pleasure from fulfilling their
personal needs

3.4 Comfort Degree to which the user is satisfied with [feels] physical
comfort

4 Freedom from risk Degree to which a product or system mitigates the potential
risk to economic status, human life, health, or the environ-
ment

4.1 Economic risk mitiga-
tion

Degree to which a product or system mitigates the potential
risk to financial status, efficient operation, commercial
property, reputation or other resources in the intended use
contexts

4.2 Health and safety risk
mitigation

Degree to which a product or system mitigates the potential
risk to people in the intended contexts of use

4.3 Environmental risk miti-
gation

Degree to which a product or system mitigates the potential
risk to property or the environment in the intended use con-
texts

5 Context coverage Degree to which a product or system can be used with ef-
fectiveness, efficiency, freedom from risk and satisfaction

266

in both specified use contexts and contexts beyond those in-
itially explicitly identified

5.1 Context completeness Degree to which a product or system can be used with ef-
fectiveness, efficiency, freedom from risk and satisfaction
in all the specified use contexts

5.2 Flexibility Degree to which a product or system can be used with ef-
fectiveness, efficiency, freedom from risk and satisfaction
in contexts beyond those initially specified in the require-
ments

267

Appendix B: eHealth Research Context

B.1 Randomised Controlled Trial

Figure B.1-1.An illustration of an RCT flow diagram

 268

The gold standard for evaluating the effectiveness of a clinical intervention is
the randomised controlled trial (RCT). Trial participants are randomly allo-
cated to a group receiving the intervention, or to comparator group(s), ena-
bling for the researcher to compare the groups. Random allocation of partici-
pants to each group minimises potentially confounding variables (e.g., sys-
tematic differences between participants in the respective groups), maximis-
ing the chance that a difference in outcome is due to the intervention, as
opposed to other factors (Bhide et al., 2018). Before conducting an RCT, a
study protocol is developed. The study protocol describes the background, ra-
tionale, objectives, design, methodology, details of the treatment, details about
how, when and what information (data) will be collected, and statistical con-
siderations. Examples from the U-CARE setting are Mattsson et al. (2013),
Norlund et al. (2015), Ander et al. (2017), and Woodford et al. (2018). The
study protocol requires approval from an ethics authority and registration in a
trial database for clinical studies before commencing the trial.

According to best practices, a pilot or feasibility study is conducted before
the full trial to test the feasibility and acceptability of the treatment as well as
the planned study procedures (Craig et al., 2008). Any changes in the study
design after the pilot/feasibility study need to be approved by the ethics au-
thority.

As illustrated in Figure B.1-1, an RCT can be divided into several phases.
In the enrolment phase, potential participants are identified based on inclusion
and exclusion criteria pre-defined in the study protocol. Eligible and interested
participants are asked to provide informed consent. In the allocation phase,
the participants are asked to perform a baseline assessment. The assessment
often consists of a number of self-report questionnaires where participants are
asked to provide data regarding their health as well as background de-
mographics. After the assessment, participants are randomised either into a
group receiving treatment (e.g., ICBT) or to a comparator group (for example,
receiving standard treatment or placebo treatment). Random allocation and
allocation concealment (meaning study personnel and participants do not
know whether the next participant will be in the intervention or comparator
group) minimises selection bias and allows the researchers to evaluate the
treatment effect. Observation Points (OP) refer to data collection at predefined
time points during the treatment phase. OP can be relative to study inclusion,
randomisation, diagnostic date, and another observation point. The follow-up
phase refers to data collection after the treatment is finished. Follow-up data
should be collected by study personnel who are blinded to which trial arm
(intervention or comparator) participants are allocated to. One way of ensuring
blinding is for follow-up data to be collected via self-report online, rather than
by study personnel. The baseline assessment is used as a reference point in the
analysis phase to evaluate the effect of the treatment.

 269

B.2 Related Artefacts in the U-CARE Ecology
There are a number of somewhat similar projects related to internet-based psy-
chology (based on RCT in CBT interventions) going on in different places,
for example, Sweden, the United Kingdom, the Netherlands, Australia and
Europe. Table B.2-1. lists a few interesting projects at different stages of im-
plementation, to give an idea of ongoing research, without an attempt to be
exhaustive.

Table B.2-1. Internet-based psychology projects

Name Description Geographic area

U-CARE http://www.u-care.uu.se Sweden
Internet Psykiatri http://web.internetpsykiatri.se Sweden
KBT Online http://www.kbtonline.se Sweden
Iterapi http://iterapi.se Sweden
Beating the Blues http://www.beatingtheblues.co.uk The United Kingdom
Mood Cafe http://www.moodcafe.co.uk The United Kingdom
E-COMPARED European Comparative Effectiveness Re-

search on internet-based Depression Treat-
ment http://www.e-compared.eu/

The Netherlands

MoodGYM https://moodgym.anu.edu.au/welcome Australia
ThisWayUp https://thiswayup.org.au/ Australia
Mental Health Online https://www.mentalhealthonline.org.au/ Australia
Beating the Blues http://www.beatingthebluesus.com Australia
MasterMind The MasterMind Consortium consists of

partners from Denmark, Scotland, Wales, the
Netherlands, Germany, Estonia, Belgium,
Spain, Italy, Turkey, Norway, and Greenland
http://mastermind-project.eu)

Europe

Table B.2-2 lists a few interesting CTMS projects, to give an idea of ongoing
research, without an attempt to be exhaustive.

Table B.2-2. CTMS in the U-CARE ecology

Name Description Type

OpenClinica https://www.openclinica.com/ Free – Open Source
REDCap http://project-redcap.org Free* – Close Source
TrialDB https://trialdb.med.yale.edu/** Free – Open Source*
*For academics only.
** TrialDB (an open-source software for the management of clinical trials) developed at Yale
Center for Medical Informatics (YCMI). The documentation and code were freely available to
investigators in academia. The system and code are not available anymore as they have been
decommissioned. It is important to note that the user/developer documentation regarding the
system was received from Prakash Nadkarni, MD (Yale University, prakash.nad-
karni@yale.edu) [November 7, 2017] on personal request.

270

Appendix C: Data Export

C.1 Reflection Design Pattern
Many programming languages including C# provide a built-in facility for re-
flection. Reflection allows inspection of classes, interfaces, properties, and
methods at runtime. It also allows dynamic creation of an instance of a type
and invocation of methods. Here is an example in C#:

/* Invoking a method without reflection */
Study study = new Study ();
study.listParticipants();

/* Invoking a method with reflection */
Object study = Activator.CreateInstance("complete_classpath.Study");
MethodInfo method = study.GetType().GetMethod("listParticipants");
method.Invoke(study, null);

C.2 Authorisation Feature
The authorisation feature (a.k.a., action framework) allows configuring of all
actions in the U-CARE software system. The authorisation feature allows the
U-CARE software developers to focus on the core task of development con-
troller actions97 in the source code of the software, while leaving the responsi-
bility for authorisation and logging to the authorisation feature. The authori-
sation feature requires multiple steps. First, when a developer creates an action
in any controller following the MVC design pattern and publishes code in the
production environment, the authorisation mechanism at runtime registers the
action and controller. This registration is based on a reflection design pattern
similar to what is used in the generic data export feature. This automatic and
dynamic registration of actions enables flexibility for developers in managing
the software and hence making software more malleable. Second, the devel-
opers have to configure user roles: who is allowed to access the action and the
action’s activity (e.g., research analysis), the action’s type (e.g., export data),
and whether or not the action requires authorisation. Third, configure if the

97 Refers to a controller in an MVC design pattern.

 271

action is required to be included in the log and if it is to appear on various
software menus. The action metadata allows investigation of the character of
a user request.

The authorisation feature enables changing the configuration at runtime
without compiling the code. The authorisation feature also logs the actor (user)
who is acting, the context (e.g., study), a timestamp, and the entire parameter
list in the HTTP request. This log enables accountability and traceability of
system events beside other use. The implications of log data are discussed in
a few places in the dissertation.

C.3 Custom-made Data Export Applications
This section describes the development of custom-made data export applica-
tions. This development was begun mainly due to the diversity of data export
requirements. Multiple C# console applications were developed to export data
from DBMS using stored procedures, to manipulate data and TO generate re-
sults in the required format. There were multiple custom-made applications
based on the specifications of individual data export requests. In the case of a
new, similar type of data export request, the existing application was cloned
and adapted. These custom-made applications were developed, maintained,
and executed by a single developer. The source code of applications was nei-
ther stored centrally in any version control system (e.g., SVN or Git) nor
shared with the rest of the development team. Furthermore, no one other than
the specific developer knew how to operate each specific application and ex-
port data.

There were multiple studies in the U-CARE software system, each with a
different study design (protocol). The custom-made application development
was simple, as each request was specific to a single research study and the
developer would focus on one study protocol at a time. The clinical research-
ers had to communicate with one specific developer directly and explain their
needs to get the required results. It was also convenient for the developer to
export requested data as he/she over time became well versed in the domain
knowledge and its representation in the database. This was beneficial for U-
CARE management as, over time, fewer resources (person-hours) were re-
quired to export data. Over time, many custom-made applications became ob-
solete, and some applications evolved and became more efficient. Sometimes,
customisation was not possible and the clinical researchers themselves would
manipulate data if necessary; this case is one example:

[the clinical researchers in the] UPPS [study] want to start reviewing the col-
lected observation point data from the study, including questionnaires filled in
by staff on behalf of the patients. The most pressing needs are the survey ques-

 272

tionnaires filled in by the registrars for the patients. However, rather than re-
write the extraction program to look for individual quizzes, it would be easier
to extract all questionnaires for all observation points, and the clinical research-
ers could then filter out what they do not want. (Dev-6, 2017, Product backlog)

Also, another problem occurred when data were not entered into the system
directly (a kind of missing data):

The [clinical] researchers in the UPPS filled in paper forms when [research]
participants were unable to use the [system] to complete their questionnaires
successfully. This is a situation similar to what we had with the U-CARE Heart
study. We will need to provide a mechanism for UPPS staff to enter data after
the fact for these study participants. (Dev-6, 2017, Product backlog)

Another problem occurred with external services such as EQ5D:

There may be issues with the storage and observation point updating of EQ5D
surveys. Keep in mind that we have to go to a different website for EQ5D, and
the results are stored in their tables.

Determine the following scenarios: a) User started EQ5D, but the com-
pleted survey date is not recorded with the user item, b) EQ5D was started, but
there is no record of values in the database.

Research EQ5D answers to see if there are irregularities: a) EQ5D is
marked as being completed, but the answers are not found in the database, b)
EQ5D was started, but was not completed anywhere in the observation point.

Keep in mind that when we show the EQ5D results in the researcher view,
all the accumulated EQ5D results for each user are shown at once, making it
difficult to identify the most recent answer. (Dev-6, 2016, Product backlog)

Evaluation of custom-made applications was indirect, based on the discussion
with the development team and feedback from the clinical researchers. The
clinical researchers were satisfied with the data export process at that point.
There were two key, large U-CARE studies which still had to export data. A
custom-made application was used to export a sample extract. This sample
extract enabled the clinical researchers to discuss the data and its format.
Based on the feedback, the custom-made application was modified. Study-
wide full-scale data will be extracted once the study is finished. This will be
the most massive data extraction in U-CARE.

 273

Appendix D: Technology Adaptation

D.1 A Comparison Tool for UI Testing

Figure D.1-1. A comparison tool for UI testing.

 274

Figure D.1-2. Screenshot of web application ‘A’.

Figure D.1-3. Screenshot of web application ‘B’.

Figure D.1-4. Perceptual difference image.

275

The comparison tool contains two windows (iFrames). The first window dis-
plays the existing system (as web application A) and the second displays re-
factored system (as web application B). The test server was configured to sup-
port this comparison tool. Two web applications, A and B, were deployed with
two databases having precisely the same structure and data, one for each ap-
plication. The third web application was the comparison tool itself. The web
applications were isolated by separate application pools on the web server. A
JS library was created to communicate between the three applications (see
Figure D.1-1).

The tool was improved in many iterations based on the feedback from test-
ing workshops. The comparison tool was redesigned to load a URL (e.g.,
https://domain/index.cshtml#controller/action) in both windows at once. The
scroll position synchronisation feature was added so that both windows
showed the same area of interest. The perceptual difference analyser feature
was added to discover differences in content, layout and information presented
in both windows using image analysis library (resemble.js98) developed by
Cryer (2013).

The tool took screenshots of current screens of both windows using the
html2canvas99 jQuery plugin and saved the screenshots in the screenshots
folder on the web server. Then, the image analysis tool used these two screen-
shots to create and save a third difference image with altered areas, if any such
exist, highlighted in distinct colour. In addition to visualisations, the tool pre-
sented the degree of discrepancy quantitatively as a percentage. For example,
Figure D.1-2 is 0.13% different from Figure D.1-3 and the discrepancy is
highlighted in Figure D.1-4. Another minor feature of the tool was to count
and compare the HTML tags. This feature resulted in correcting a few syntax
errors in the system. The naming convention of image files, as
date_time_type_[url/diff].jpg, helped in error reporting and tracking the test-
ing process. The tool supported the development team in identifying bugs
caused by the front-end refactoring, specifically conversion of a large number
of views to the Razor view engine standard.

98 https://github.com/Huddle/Resemble.js [accessed: November, 13, 2013].
99 https://html2canvas.hertzen.com/ [accessed: November 13, 2013].

 276

D.2 First Developers’ Workshop
Table D.2-1. Design decisions for software quality assurance

Decision Rationale Requirements Follow-up

1 A quarterly progress
report should be
produced by the
team leader, includ-
ing progress made
(regarding quality
assurance) and goals
for the next quarter.

Increase the overall
transparency of the
software develop-
ment work and in-
crease the orientation
towards long-term
goals.

The IT coordinator
needs to allocate
time to produce the
report. Parts of the
work will be dele-
gated to the devel-
opment team.

A report provided to
U-CARE manage-
ment every three
months.

2 The new testing
strategy should be
implemented right
away.

The rigour of quality
assurance should be
improved as soon as
possible.

Increased support
for the definition of
done in the product
backlog feature to
ensure compliance
with the process.

Implementation of
the strategy should
be reported at the
next two sprint meet-
ings, and followed
up in the first quar-
terly report.

3 The development
team should contin-
uously refactor the
software to better
distribute work be-
tween DBMS and
application in ac-
cordance with prin-
ciples.

Such refactoring is a
lean measure to in-
crease the maintaina-
bility of the software
and to improve per-
formance.

Time is allocated to
work with refactor-
ing.

Refactoring progress
will be included in
the quarterly report.

4 A pedagogical sum-
mary will be written
to increase the
transparency of the
software develop-
ment process.

Our stakeholders
need to better under-
stand the measures
taken to promote
software quality.

The text is phrased
and continuously
updated on the
www.u-care.uu.se
web page [for dis-
semination of infor-
mation and ongoing
activities].

The status of the
pedagogical sum-
mary will be re-
ported in the quar-
terly report.

5 The test coverage of
core business activi-
ties should steadily
increase.

Shortcomings in test
coverage increase the
risk of introducing
new bugs when re-
vising the software.

More time must be
allocated for testing
in the development
team.

As defined in the
new testing strategy.

6 The testing strategy
will be reviewed
and refined each
quarter.

New experiences and
knowledge need to
be incorporated into
every aspect of our
work.

There is a need for
a development
workshop every
quarter.

The latest version of
the testing strategy
will always be part
of the quarterly sum-
mary.

 277

7 The business-ori-
ented/end-user-ori-
ented documenta-
tion needs to be im-
proved.

More comprehensive
documentation will
make it easier for all
parties to understand
the U-CARE busi-
ness logic and its re-
quirements for devel-
opment and testing.

There is a need to
allocate time for
documentation –
among both devel-
opers and domain
experts (e.g., psy-
chologists and re-
searchers).

Advancements in
documentation will
always be part of the
quarterly summary.

8 Technical software
documentation
needs to be im-
proved.

The existing docu-
mentation has proven
to be too fragmented
to be useful for the
development team.

There is a need to
allocate more time
for documentation
in the development
team.

A documentation re-
pository needs to be
available so that rele-
vant staff can always
access the latest ver-
sion of documents.

9 Software developers
in U-CARE work
half-time with pro-
active work, i.e.,
testing, refactoring
and documentation.

The current ap-
proach/development
process is not sus-
tainable and consti-
tutes a risk to the U-
CARE operations.

A decision in the U-
CARE management
group that develop-
ment resources need
to be oriented more
toward quality as-
surance.

The proactive work
will be reported in
various ways (see the
rest of the table).

D.3 Second Developers’ Workshop
Table D.3-1. Follow-up summary of progress on design decisions

Decisions of the first workshop Comment

1 The team leader should produce a
quarterly progress report, including
progress made (e.g., regarding
quality assurance) and goals for the
next quarter.

This is the first issue of the quarterly report.

2 The new testing strategy should be
implemented right away.

The new testing strategy has been partially
implemented, as follows: i) Workflow improve-
ments (the sprint planning and reporting now has a
built-in annotation for testing for each task in the
backlog); ii) Implementation of continuous integra-
tion (an automated routine to validate the quality of
existing and new code have been set up). The auto-
mation means that all tests are executed at least
once a day. Rigorous quality control requires a
testing framework that ensures that any changes to
the current system do not introduce unintended er-
rors); iii) Infrastructure improvements (testing re-
lies on a functional testing infrastructure which
was improved to facilitate the design and construc-
tion of advanced tests of the U-CARE software
system).

3 The development team should con-
tinuously refactor the software to
better distribute work between

During the period Nov 2014–Jan 2015, [the devel-
opment team] has emphasised testing, bug fixing
and implementation of the decisions from the pre-
vious workshop. Given the increased focus on

 278

DBMS and application in accord-
ance with principles.

quality assurance, the development of new features
was conducted at a slower pace than before.

4 A pedagogical summary will be
written to increase the transparency
of the software development pro-
cess.

It is not started yet.

5 The test coverage of core business
activities should steadily increase.

The developers have continuously added tests of
core business activities since the previous work-
shop. The test coverage document needs to be up-
dated to reflect the changes made.

6 The testing strategy will be re-
viewed and refined each quarter.

This is not done, given the short period between
the workshops and the first issue of the report. The
revisions of the testing strategy should be on the
agenda at the next workshop.

7 The business-oriented/end-user-
oriented documentation needs to be
improved.

A draft document has been created. ISR-1 is cur-
rently responsible for the editing of the document.
The document should be delivered at the next
workshop.

8 Technical software documentation
needs to be improved.

No actions are taken yet.

9 Software developers in U-CARE
work half-time with quality assur-
ance work, i.e., testing, refactoring
and documentation.

Effective since the November 2014 workshop.

D.4 Third Developers’ Workshop
Table D.4-1. Follow-up summary of progress on quality assurance goals

Quality assurance goals set in the
second workshop Comment

1 Re-visit the decisions made at the first
developers’ workshop to ensure that
the development process fully com-
plies with the new testing strategy.

All completed items on the backlog for which a
test is appropriate now include the date of the
test with a brief description.

2 Implement routines to ensure a bi-
weekly update of the test coverage
document, so that there is always a test
coverage snapshot available.

Work on the test document to describe the core
business processes is ongoing.

3 The test coverage document should be
updated each time new tests are com-
mitted to the code repository.

 See comment for 2.

4 Finish version 1 of the end-user docu-
mentation (for staff) and disseminate it
to the U-CARE [system] users.

This document will be completed by the end of
quarter 4, 2015.

5 Finish pedagogical summary of the
software development process and
publish it on the U-CARE web page

Completed.

 279

6 Identify and document specific needs
for technical documentation of the U-
CARE [system].

Postponed to quarter 4.

7 Prioritise refactoring needs. The analysis of our existing code base, per-
formed as we develop the mobile application
interface, is the starting point of a process of
identifying areas which would be appropriate
for code refactoring.

8 Organise an additional developer
workshop to evaluate and further im-
prove the software development pro-
cess.

The developer workshop was held on May 13,
2015, with a focus on formal procedures for
test coverage, as well as quality assurance is-
sues.

D.5 jQuery Upgrade
The U-CARE software system has many intuitive features to let the user ex-
perience a rich graphical interface with nicely presented menus, sliders,
tooltips, sortable data tables, forms, popups, a calendar, an HTML editor, et
cetera. These features were developed using jQuery.1.4 plugins. However, the
jQuery plugins went out of date during the time that the development team
continued to develop UIs. Moreover, the opportunity to use many third-party
plugins became very limited as those third-party plugins were using the up-
graded version of jQuery. Therefore, the need for upgrading jQuery to the lat-
est version had become crucial, but at the same time very risky, as such a move
could damage the already used components in the U-CARE software system.

In 2012, the development team set up a separate code branch and dedicated
one software developer to take the initiative on upgrading the existing jQuery
version from 1.4 to 1.9. The point of having a separate code branch was to test
and solve all the bugs which might arise from the transformation of the jQuery
plugin. However, there was no test strategy beyond stumbling over bugs and
solving accordingly. The development team succeeded in solving most of the
problems, but was not ready to publish the changes to the production server.
Since there was pressure to work on new features that required the latest
jQuery plugin, the development team had to publish insufficiently tested code
to the production server. Thus, the development team faced many unintended
bugs reported by the clinical researchers. However, in the end, the develop-
ment team managed to clear up all the bugs within a month or two.

Similarly, during the mobile adaptation (case III), Bootstrap UI library im-
plementation led to a change of jQuery plugins. Also, during the mobile ad-
aptation, jQuery was upgraded, and as a result the development team once
again had to upgrade jQuery plugins. For example, for a responsive table, a
new plugin was required, but the new plugin required an upgrade in jQuery.
The lesson learned from this situation was that the technology upgrade was a
circular loop, an endless reciprocal cycle, which required careful planning.

 280

Appendix E: Adaptation to Mobile Devices

E.1 Mobile Adaptation Choices
Table E.1-1. Mobile adaptation choices

Type Description
Native App Native apps are platform-specific, and in most cases, the developer has

to create versions of their apps for multiple platforms. Android (Google),
Blackberry (RIM), iOS (Apple), and Windows Phone (Microsoft) are
some of the major app platforms. Apps may use hardware features like
multi-touch, physical location identification, video and still images from
the camera, along with audio and other capabilities.

Mobile Web App The mobile web is the World Wide Web, which is accessed through a
mobile device. The web app is a website that, in many ways, looks and
feels like a native application. A browser runs it and it is typically writ-
ten in HTML5.

Hybrid App Hybrid apps are part native apps, part web apps. Like native apps, they
can be installed from an app store and can take advantage of the many
device features available. Hybrid apps are usually developed using cross-
platform application frameworks (wrappers) like Appcelerator Titanium,
PhoneGap, Sencha Touch, et cetera. These mobile apps offer cross-plat-
form compatibility and can access the phone’s hardware (e.g., camera,
GPS, user contacts).

UI Framework UI-JS mobile framework, for example, Kendo UI, jQuery Mobile, and
Intel App Framework bring a native look and feel to Mobile Web Apps.
The basic concept behind these frameworks is write less, do more.

Mobile Website A mobile website which has been specifically designed for mobile view-
ing. Designing a mobile-specific website provides more freedom in the
design, content, and structure of a portable webpage

Separate Mobile
Theme

The separate mobile theme can be created geared specifically for mobile
devices. This theme is additional to the one which is used for a regular
website and is used when the user accesses the site from a mobile
browser. The theme’s stylesheet simplifies the layout and optimises the
website experience for the small screen display. This is a quick way to
develop a mobile presence without having to develop a separate website.

Custom Frame-
work

Last, but not the least: developing our custom framework for converting
an existing system to mobile devices.

281

E.2 Proof-of-Concept Prototype UI Design
Here are some screenshots of the proof-of-concept prototype’s UI design.

Homework on Mobile Device (Part A)

Figure E.2-1. Proof-of-concept prototype – homework on mobile device (part a).

 282

Homework on Mobile Device (Part B)

Figure E.2-2. Proof-of-concept prototype – homework on mobile device (part b).

 283

Questionnaire on Tablet

Figure E.2-3. Proof-of-concept prototype – questionnaire on tablet.

284

E.3 Advertisement for Mobile App Developer

Figure E.3-1. Advertisement for mobile app developer.

285

E.4 Mobile Adaptation – Design Workshop I
Table E.4-1. Design workshop I – task list and feedbacks

No Task Scenario Feedback

1 Navigate on
the homep-
age

Log in to the mobile ver-
sion of the U-CARE portal
via your mobile or tablet
device and try to use the
navigation panel to navi-
gate through the portal.

Top buttons are too small. Padding needed
on right side of intro text. Remove search
icon from footer if study is not using it.
Remove university logo and calendar from
footer and move to top menu. Remove
profile icon and move to top menu. Add
home, forum, and library icons. Move top
sandwich menu to the footer. Add confirm
dialogue for log out button. Make footer
icon informative. Interactive footer icons
for IM, chat, and forum (display number
of message unread, number of people
online, and new posts respectively).

2 Try to see if
you can chat
with anyone

You want to chat with a
peer. Locate the chat op-
tion and try to see if you
can chat with a peer if an-
yone is online.

Change colours to green
Make it clearer when moving between pri-
vate vs. public chat
You cannot see that there is the possibility
to read past chat messages
Too much grey space at the top
Create separate page
If you are online [your] name should be
visible in the list of online users

3 Make a post
on the forum

You want to post a mes-
sage on the forum. Locate
the forum icon, write your
message, and then post it
online.

Info button was not displayed
Remove HTML tags in the post
Too much space above, below, and to the
right of posts
Make Posts clickable and bigger
Remove Navigate forum

4 Send an IM
to User X

You want to send an IM.
Locate the IM option.
Click on the IM option,
add the person to whom
you want to send your IM,
write your message and
send it.

Send/Sent/Archive button should fill the
whole page, and if one button is clicked
on, the menus should disappear, and only
the corresponding IM table should be
shown
Correct spacing between the columns
Remove the pop-up dialogue when writing
a new message
On Android devices, after sending an IM,
the footer buttons change colour
You cannot see when you enter text to
send a new message

5 Ask an ex-
pert a ques-
tion

You want to ask an expert
a question (not via instant
messaging or forum). Lo-
cate this option, write
down your question and
send it.

Remove pop-up dialogue
After asking a question, the user needs to
be redirected to home page

 286

E.5 Mobile Adaptation – Design Workshop II
Table E.5-1. Design workshop II – task list and feedback

No Task Scenario Feedback

1 Fill in
question-
naires

Log in to the mobile version of
the U-CARE website via your
mobile or tablet device and try
to fill in all the questionnaires
(there are 5 of them).

Tables look ugly, and table labels are
too wide (see Figure E.5-1)
Can we use a legend like in another
questionnaire, BADS-SF (see Figure
E.5-2)?
Questions options too close and small
Need to see options when answering
the questions
EQ5D questionnaire has no mobile
version
Delay when filling in questions too
long
Need to research finding the mobile
version of HADS
Font size is a bit bigger
Keep the text within screen in case of
zooming

2 Report
homework

You want to report on your
homework. Locate your treat-
ment and report at least one
thing on each homework report
sheet.

Homework that contains a big table:
when I zoom in the footer grows too
large
Colour thing is bad
Zooming required when you write
Footer jumps up after a few questions,
make it stick
Text is a little bit small
Report homework has various layout
problems, for example, see Figure
E.5-3, Figure E.5-4, and Figure E.5-5.
The clinical researchers suggested
three solutions to these problems a)
Psychologist should change the report
card, b) Turn matrix into sequential list
of (scrollable) input fields, and c) Put
questions on top of text field

287

Design Workshop II – Table Label Too Wide

Figure E.5-1. Design workshop II – table label too wide.

 288

Design Workshop II – Suggestion for Table Labels

Figure E.5-2. Design workshop II – suggestion for table labels.

 289

Design Workshop II – Homework Layout Problem (a)

Figure E.5-3. Design workshop II – homework layout problem (a).

 290

Design Workshop II – Homework Layout Problem (b)

Figure E.5-4. Design workshop II – homework layout problem (b).

 291

Design Workshop II – Homework Layout Problem (c)

Figure E.5-5. Design workshop II – homework layout problem (c).

292

E.6 Mobile Adaptation – Design Workshop III
Table E.6-1. Design workshop III – task list and feedback

No Task Scenario Feedback

1 Visit li-
brary

Try to navigate in
the library slide
menu

Library slider menu redesign options:
1) Replace the current library slider with a slider
plugin that works well on mobile (this will affect
all themes).
a) Look for a slider where the selected section is
strongly highlighted, and all other sections are
greyed out. It is currently difficult to understand
which library section you are in; this needs to be
obvious to the user.
b) Consider slider with left and right arrows to get
to the previous and following elements (might be
easier to use on mobile).
2) If the slider does not give a satisfactory experi-
ence on mobile, replace it with a drop-up menu
containing all the library headings that would have
been available in the slider. This menu would [pop
up] from the footer when the library icon is
pressed.
In the library, there is often extra grey space to the
right: remove it.
Once a library section has been selected: don’t
show any text, only wiki-style headings. Do this
recursively for sub-headings: a) Remove all tables
containing heading links (turn them into wiki-style
headings) b) Remove all tabs (turn them into wiki-
style headings).
Pictures are visually compelling: add the library
heading symbol (i.e., the book icon) next to the
page header with the name of the selected section.

2 Navigate Navigate through
header and footer
menu while visiting
library

Remove the menu items from the main menu al-
ready shown in the footer icons menu.
Notifications on footer IM icon: shown as a little
red square with unread IM counter.
Footer chat icon: add colour coding and unread
counter as a) no other users are online in the chat
– grey chat button (just like all others), b) if other
users are visible in the chat – green button, c) if
other users are actively chatting in the common
room – blue button, d) if other users are actively
chatting with the current user – blue button and
red notification icon with number of unread chat
messages.
The size of characters in the headers of the chat is
not consistent: sub-headers should have smaller
char size than headers, (recursively for sub-sub-
headers and so on).

 293

E.7 Mobile Adaptation – Design Workshop IV
Table E.7-1. Design workshop IV – task list and feedback

No Task Scenario Feedback

1 Fill in ques-
tionnaires

Log in to the mobile
version of U-CARE
website via your mo-
bile or tablet device
and try to fill in all
questionnaires (there
are 5 of them).

When clicking on option in questionnaire, load-
ing is sometimes too slow.
When the question spans more than one line, the
second line should be indented below the num-
ber (screenshot A).

2 Navigate on
the homep-
age

Try to use navigation
panel to navigate on
the website.

Remove chat icon if study not using it or replace
it with other option, for example, replace chat
icon with “questions and answers”; create an
icon for it with a question mark and the text
“Question” below it.
On some Android devices, the bottom nav bar
gets covered by the browser bar: this is ‘very
confusing,’ it might take a while before the user
realises that the bar is even there.

3 Try to see if
you can chat
with anyone

You want to chat
with a peer. Locate
the chat option and
try to see if you can
chat with a peer if
anyone is online.

Chat pop-up (on iPhone 4): cannot agree to
“Regular” pop-up. Even so, the user is redi-
rected to the chat page and allowed to use it.
Though the pop-up works, it is possible to move
on without accepting.

4 Visit library Try to navigate in
the library slide
menu.

Library slide menu (carousel)
a) Current carousel does not work well (at least
on iPhone 4/5/6). It takes about half a second of
pressing on an icon before the click is registered
and the corresponding library section is shown.
b) Greying out of library icons is confusing, use
something else instead (for example a frame
around the selected item). Also: put selected
item in the middle.
c) Remove yellow tooltip on library icons (on
mobile only) (screenshot B).
Wiki-style sections
a) The whole tab should be clickable.
b) Add up/down arrows (open/close sections).
Pagination does not work
Cannot see last few lines (CC licence text) at the
bottom of the page.
Individual library items (inside wiki-style sec-
tions) are not evenly spaced (screenshot C).
Fix to padding according to UI Policy doc
(screenshot D).

5 Make a post
on the forum

You want to post a
message on the fo-
rum. Locate the fo-
rum icon, write your
message and then
post it online.

The whole subject area box needs to be clicka-
ble.
Fix to padding according to UI Policy doc.
When you choose a thread, post should be click-
able as well (not the whole box in this case).

 294

When you choose a thread, “created by […]”
should be smaller (screenshot E).
Add back buttons to each page and any other
pages in the forum.
When writing a post, the space between “write
post” and the box should be avoided.
Forum thread page: remove space between info
and box below it (screenshot F).
Footer: add number of new posts since last login
(little red number, just like IMs and chat).
Forum activity (to be discussed further): one
suggestion is to write, next to the subject, the
number of new posts that have been written
since the last time the user logged in.

6 Send an IM
to User X

You want to send an
IM. Locate the IM
option. Click on the
IM option, add the
person to whom you
want to send your
IM, write your mes-
sage and send it.

“Write a new message:” the “:” is on a new line?
iPhone 4 and Android Samsung had trouble
sending IMs.
Confirmation message that an IM has been sent
is not translated.
Make the whole box clickable in the menu (not
just “inbox”).
Read message/read the archived message: open
popup in full page and add a back button to re-
turn.
Clicking on the username from inbox brings you
to the user’s profile page: fix padding.
Selecting usernames in IM. If a correct
username is entered, but no option is selected,
the IM is not sent. This is confusing: either send
the IM or display an error message.
When answering an IM, the old message should
not be displayed (contains strange HTML)
(screenshot H).

7 Ask an ex-
pert a ques-
tion

You want to ask an
expert a question
(not via instant mes-
saging or forum).
Locate this option,
write your question
and send it.

Take away yellowish box at the top (it brings
you to the same page).
Fix width of text: make it one column (on both
phone and tablet), no space to the sides.
“Ask a question” button: put it at the top of the
page (on top of “questions and answers”).
“Ask a question” view: adjust padding (screen-
shot G).
“Ask an expert” and “question and answer —>
ask a question” should both redirect to the same
full page.
“View question and answers”: fix font size.
Make questions wiki-style.

8 Other issues Enforce pop-up policy everywhere.
Make background grey in all info boxes.
JS problems on HTC One X with Android 4.2.2
(screenshot I).

 295

Screenshot A

Figure E.7-1. Design workshop IV – screenshot a.

Screenshot B

Figure E.7-2. Design workshop IV – screenshot b.

 296

Screenshot C

Figure E.7-3. Design workshop IV – screenshot c.

Screenshot D

Figure E.7-4. Design workshop IV – screenshot d.

 297

Screenshot E

Figure E.7-5. Design workshop IV – screenshot e.

Screenshot F

Figure E.7-6. Design workshop IV – screenshot f.

 298

Screenshot G

Figure E.7-7. Design workshop IV – screenshot g.

Screenshot H

Figure E.7-8. Design workshop IV – screenshot h.

 299

Screenshot I

Figure E.7-9. Design workshop IV – screenshot i.

E.8 Mobile Adaptation – Iteration V Feedback
Table E.8-1. Iteration V feedback

No Sections Feedback

1 Navigation Top menu: missing last horizontal white line.
iPad: first button (profile) too much left padding.
U-CARE AdultCan Study: Shortcut to the library -> library items (in
boxes).
The separator line before “See all content” looks like an “i.” It is not
clear.
Need to update credentials on the first login.

2 Chat Need to make it full page.
The pop-up does not extend vertically to the bottom of the page (Sam-
sung).
“Visa inte igen” adds space between checkbox and text.
The left padding is wrong.
Scrolling horizontally with the pop-up should not be allowed: the text
disappears!
If you do not click on “godkänn,” you still have access to chat for a few
secs, then you are redirected to start page. Suggestion: JSON error in reg-
ular pop-up is asking the user to click on “godkänn.”
Cannot log out from chat page.

 300

“Öppen chatt” title:
Samsung/iPhone: not displayed at all! Don't know if I am in public or
private; if in private I don't know with whom I am chatting.
iPad: too much left padding.
When the chat space is filled with messages, there is no left bar to indi-
cate that you can scroll.
When starting to chat, a date is displayed at the top: use format YYYY-
MM-DD.
When the user receives a private chat, a little bubble appears next to
his/her name in the “inloggade” list.
This is not visible enough since on mobile the list is not visible all the
time!
“Gå till den öppna chatten/Inloggade deltagare”: font size too big.
Chat: Log in as user x, go to chat, make visible, click on “x”: opens pri-
vate chat with self. This should not be allowed.
Emoticons do not work: they come up as “?”.
On iPad, the whole page “periodically” blinks (every five secs or so).
Sometimes the sent chat messages are displayed twice, and sometimes
whole chunks of conversations are displayed twice.
When accessing chat, by default visible true; still, you are not visible to
others.
User Y on iPhone 6 wrote to [user] Z in private, but text was shown in
open chat!

3 Library Padding:
Below slider, fix left padding of title, text and wiki-style sections.
“Hela biblioteket” has different padding than the other sections
Too much space between slider dots and sections title.
It is easy to click on the slider element when trying to click on the arrow.
Suggestion 1: move arrows below the slider, position dynamically based
on the position of the dots.
Suggestion 2: otherwise just remove them.
vuxna -> “Föreläsningar om cancerdiag”-> intro section -> introduction:
Too much empty vertical space inside the wiki-style section (other wiki-
style sections in the introduction have a little space in the text).
In the popup that appears: left padding of the title is off with respect to
the text.
Size of text in pop-up is too big compared with text outside and title.
In the popup that appears, “Skriv ut”, does not work.
Slider: (Samsung only)
If we slide (with finger) to some element not currently displayed, we
need to click on the item twice to select it.
When there are too few elements the elements, do not appear centred
(e.g., Hjärta library on iPad).
The text below the slider items:
Text overlaps with that of neighbouring elements; needs to be nicely
spaced and centred in relation to the element (e.g., vuxna -> “Före-
läsningar om cancerdiag”) (iPhone5/6 only).
Similarly: text below the item in the slider is not centred in relation to the
blue box.
Page buttons (e.g., Vuxna library -> “hela biblioteket” -> bottom of the
page).
The left padding of the page buttons is not the same as the rest of
elements on the page.

 301

When clicking on a page button, we lose the slider selection marker (blue
square on selected slider element): the user does not know where s/he is
in the library.
“Hela biblioteket” (Vuxna) -> (iPhone) when item name is too long, the
text wraps on two lines and the padding of the second line is wrong.
“Extramaterial till modulerna” (Hjärta) -> “Introduktion:” not enough
vertical space between text and wiki-style sections.
It is confusing that the content associated with the first slider element is
displayed from the beginning! (CR-9 had not understood that clicking on
the slider would update the content below!). Suggestion: Show content
only after the click.
Slider dots:
They are not horizontally centred.
They only change if you touch the arrows or slide with fingers, not if you
touch the slider elements.
Wiki-style tabs: change colour, for example, use the background colour
of the page title (“Bibliotek”).
General: why do we have a “Hela biblioteket”? Does it just contain the
same content as the rest of the sections? Duplication of info?
PDF: when accessing a PDF, we are redirected to a page without a
back/cancel button. The only way to go back is to use the browser's back
button, but that redirects us to a different page than the one [where] we
started.

4. PDF Can't find a way to open PDF, it only downloads. In CR-9’s opinion, this
is too confusing (on Samsung).
PDF in library (hjärta): “Hela biblioteket” -> 3rd button -> “Så går
behandlingen till” Network error when opening with Adobe Acrobat
Reader.

5 CBT Read completed homework, question headers: fix left padding when on
more than one line.
Read feedback: too much space before feedback, also fix left padding.
Composite item (Hjärta last item of stage-2 of intro module): fix to the
pad of submitted homework.
Composite item: centre video and adjusts size.
Composite item: does not have an icon. Also “Klar” does not appear in
parentheses.

6 Login page Upon tilting the device, any text that has been entered is removed. Check
to see if it applies once logged in. [The login page is special in this re-
spect: for technical reasons (the carousel is visible/hidden depending on
the width of the screen) the page is reloaded upon tilting. Does not apply
to the rest of the portal.]
iPad: padding of radio box; too close to the text.
iPhone: text alignment is bad.
“Har du problem att logga in” text is too big for all devices.
iPhone: in pop-up, too much scrolling, and scrolling is cumbersome
(sometimes page moves instead of box content).
Eliminate all pop-ups, including the one, that asking for the new pass-
word, on the login page.
Brute force: text should be: “Har du glömt lösenord” – “Du kan tidigast
logga in” should come first.

7 Edit profile Samsung/iPad: “Ändra Profilbild” text is misaligned.
Text to describe what is needed in a password is missing sometimes. Was
there the first time. Then upon logging in again, it disappeared.

302

Can't change the password without JSON untranslated errors popping up.
The user is not informed why the password is invalid (e.g., minimum
length, one capital letter required, and one number required).
Change profile picture: Picture is flipped at a wrong angle upon upload-
ing.
Edit about me: JSON Message for text change is not translated.
Edit settings:
iPad/Samsung: “Inställningar” text is badly aligned with regard to radio
boxes, the semicolon is missing.
“Spara ändringar” button too close to everything.
No back buttons.
Make whole text clickable (not just radio box).
Change Mobile and Email:
Pop-up no good. Kill all pop-ups in profile/settings.
Bad mobile number format gives untranslated JSON error.
Access UU Links:
There is no pop-up (if there needs to be one).
The user should be warned about navigating to another link.
Access About us:
Names are displayed twice.
Bad alignment of items (not evenly aligned).
Samsung: Text is squeezed. Bad formatting.

8 IM Make whole box (cell) selectable instead of just text within it.
No possibility to delete sent IMs.
“Svara” link in the message does not work.
IMs ViewInbox
From inbox, clicking on sender’s name works, but there is no back button
to navigate back to the inbox.
Manually selecting or deselecting specific inbox items does not always
work (similar to tap swipe in the library).
Clicking on Forum message title takes you to a page without translated
text.
IMs Send:
Write a new message: Padding on bottom text content needs to be
aligned with other text boxes.
Write a new message: Top text box is of a different type than the other
two.
When sending a message to someone not on the list, it does not go
through, and the user is not notified.
Translation incomplete when sending a message successfully.
Username (subject) – colon is missing.
IMs ViewSent:
When clicking on own profile, redirected to the homepage instead of to
profile.
When clicking on a user with no profile, directed to a page with no trans-
lation and missing back button.
Missing translation when clicking on email content via subject.
TYPE column in sent messages is capitalised and not in Swedish.

9 Calendar Upon clicking on a day box, pop-up has underscores before the dates.
“Skapad” should be “Starta” instead.
We saw the year 1970 for test user account XYZ.
Translation is missing when expiry date precedes creation date.

 303

On iPad: input pop-up calendar dates for start and finish does not always
work.

10 Diary AddPrivateEntry:
Test User 4 has no access to the logbook.
“Rubrik” textbox not aligned.
Translation is missing when expiry date precedes creation date.

11 Forum Regular: upon clicking on the x button, you are still allowed to use forum
without being redirected.
Samsung: in topic window (not thread) with two threads or more, pad-
ding is inconsistent between items, borders also missing.
Post page: page numbering not aligned with everything else.
Post page: there is a spacing difference between “Skrivet av”/“Citera
rapportera” in posts in the thread. Should always be two lines on small
devices.
When citing someone, you still have square quotes in original message.
When starting to write a new message in a thread, it sometimes happens
(randomly) that user cannot click on any items above which have links.

11 FAQ OK
12 General iPad/iPhone: when writing in a text area (e.g., a new post in a thread, or

an IM), the software keyboard which is displayed does not disappear if
the user touches other areas of the screen.
CBT, composite folder: does not have an icon.
Brute force: text should be: “Har du glömt lösenord? – Du kan tidigast
logga in” should come first.
When sending a message to someone not on the list, it does not go
through, and the user is not notified.
IMs ViewSent: when clicking on own nickname, the user is redirected to
his/her start page instead of the personal profile (clicking on other users’
nicknames in the IM pages redirects to their profile).
Edit Profile: the bullet points do not look good in the context of the page.
Calendar. The RA-1/Dev-4 report “we saw the year 1970 for [test user
x].” Investigate.
Calendar bug (on phone/iPad/PC): Steps to reproduce: open calendar and
try to add a note in a date in the past; in the pop-up that appears, click on
the input field for “end date”; a tiny calendar is supposed to appear, but it
does not; then close the pop-up and try adding another note (at any date):
the “end date” tiny calendar will not appear. Refresh the page and try to
add a note for a date in the present/future. The tiny calendar appears as
expected.
A thin white box appears on the pages: “Write new diary entry” (mo-
bilelegacy [theme]), profile (U2013 [theme]), calendar (mobilelegacy
[theme]). It is not in the view; it is created on the fly by one of our under-
lying frameworks (I suspect Bootstrap).

 304

E.9 Mobile Adaptation – Design Workshop VI
The following was the instruction for the workshop participants:

a. On your phone/tablet, navigate to https://beta.u-care.se:xxxx.
b. Log in: “mr1_[your_name]” (e.g., “mr1_abcd”), password:

“xxxxxxx”.
c. Carry out each task (note: the description was written before the mo-

bile conversion),
i. Note down any feedback (related to mobile conversion only!),
ii. Cross out the task and move to the next one.

d. When done: submit all feedback.

Table E.9-1. Design workshop VI – task list and feedback

No Task Scenario Feedback

1 Reset/forgot-
ten password

Navigate to the login page
and click on “Har du pro-
blem att logga in?”, then
“Jag vet inte vad jag har för
lösenord”: input participant
email.

2 Login Navigate to the login page,
input participant email and
password and click on
“Logga in.”

3 Update cre-
dentials (first
login only)

Navigate to the login page,
input participant credentials
and click on “Logga in.”
Upon the first login, the
participant is redirected to a
page where s/he is asked to
fill in a form to update
his/her username and pass-
word.

4 Answer base-
line question-
naires

The participant login for
the first time and is pre-
sented with a pop-up sug-
gesting completion of the
baseline questionnaires.
The participant confirms
the pop-up, then completes
and submits each question-
naire.

(Dev-7):
- “Cancel” button has the same effect as
“Save and continue later” button. Sug-
gestion remove “Save and continue
later.”
- Save and continue later” is slow. De-
tails: “save and continue took a long
time, then pressed the browser's back but-
ton, and then came back but now could
not save and continue or submit without
interrupting. I pressed cancel and then
opened it again. My answers were from
before were gone, and when I filled in the
answers again, I received a message
about object instance for each response.
Only the cancel button was left. I logged
out and logged in again; then the buttons
came back.”

 305

- No confirm pop-up for “Save and con-
tinue later.” Should we add one?
- I pressed cancel due to background is-
sues, but got an error trying to load the
page. I had been inactive for a long time.
It forced me to log in again. When I got
in, some answers had not been saved.
- I can press start to leave the question-
naires as well. I do not get anything then.
- Questions 11 & 16 on Background is-
sues are indexed.
- Background issues: The fields for alco-
holic beverages are not in line with each
other.
- There is a “__” after the intro text in
each questionnaire.
- It took a very long time to load after
submitting the last BADS-SF (BASE-
LINE HEART).
(Dev-5):
- Questionnaire submission is slow (base-
line Vuxna).
- Almost all users in Vuxna got stuck on
questionnaires (“mr1_user_x”,
“Mr1_user_y”, “Mr1_user_z”).
- Example 1: “MADRS” remained
greyed out for several minutes, and the
wheel was not present. When I closed the
confirm submission pop-up and navi-
gated back to start, the questionnaire had
been submitted.
- Example 2: “PCL-C” (last question-
naire) remained greyed out for several
minutes. I left the phone, and when I got
back, the questionnaire had been submit-
ted.
(CR-4):
- Questionnaire submission (baseline
Vuxna).
- The page “hanged” [froze] when I tried
to move the marker to an exact place at
VAS-skalan. I had to force Chrome to
close and log in again. It was very
hard/impossible to give an exact answer.
The EORTC breast cancer module was
slow, but I could complete it.

5 Logout From any location in the
portal login page, the par-
ticipant clicks on the
“Logga ut” button.

6 Change pass-
word

From any location in the
portal, click on the “Per-
sonliga inställningar” icon,
then on the “Byt lösenord”

 306

link; the participant fills in
the form and submits.

7 Change pro-
file picture

From any location in the
Portal, click on the “Per-
sonliga inställningar” icon,
then on “Ändra profilbild.”
Choose a file from the local
file system and submit the
form.

8 Edit about me From any location in the
portal, click on the “Per-
sonliga inställningar” icon,
then on “Om mig”. Fill in
the text box and click on
“Spara.”

- (Dev-7) I would like the text to be visi-
ble on the profile page. I would like to re-
ceive the confirmation on the profile
page, instead of in the window.
- (RA-2 and CR-3) After submitting, the
pop-up does not close automatically
- (CR-3) The box where you write is not
white.
- (CR-3) The message is in English:
“JSONMSG_CHANGES_WERE_SUC-
CESSFUL”.

9 Edit settings From any location in the
portal, click on the “Per-
sonliga inställningar” icon,
then on “Inställningar”; the
participant is redirected to a
page with options: all com-
binations of options are
valid.

- (CR-3) Works, but the box will not
close when you click on “Save Changes.”
- (CR-3) I chose “Do not show my pro-
file picture,” but it appears in “Personal
settings.”

10 Change mo-
bile and email

From any location in the
portal, click on the “Per-
sonliga inställningar” icon,
then on “Byt
telefonnummer eller e-post-
adress”; fill in email or mo-
bile information and sub-
mit.

- (Dev-7 and CR-3) Text on the length of
the mobile number does not work: JSon-
err_Mobile_NUMBER[…] Could per-
haps be made eaiser to understand?
- (CR-3) After submitting, the pop-up
does not close automatically.
- (CR-3) The box where you write is not
white.

11 Access UU
link

Click on the “Uppsala Uni-
versity” icon.

- (RA-2) Names could be made into links
to user profiles.

12 Access ‘about
us’

From any location in the
portal, click on the “Om
oss” menu link.

13 IM view in-
box

Click on the “IM” icon,
then in the IM menu click
on “Inkorg”; the table with
incoming IMs is presented.
For each IM: clicking on
the sender’s name will redi-
rect the participant to the
sender’s profile; clicking
on the IM subject will redi-
rect to the IM itself. The
links “Välj alla brev på
denna sida” and “Avmark-
era alla brev” select and de-
select all IMs and the

- (CR-2) The IM notification counter
(footer icons on mobilelegacy [theme],
side icons on U2013 [theme]) is incre-
mented when a new IM is received, but
never reset to 0 when the page is re-
loaded.

 307

dropdown menu next to
them marks them as read or
moves them to “Archived”
folder.

14 IM send (re-
cipient cannot
be therapist)

Click on the “IM” icon,
then in the IM menu click
on “Skriv ett nytt
meddelande”; the partici-
pant is then asked to pro-
vide a recipient, a subject
and body for the IM. The
participant sends the IM by
clicking on “Skicka
meddelande.”

- (Dev-7) I could only send to me and
CR-7. I tried to send to RA-2, but it did
not work. I received no message that it
was not working. However, I did not get
any field for RA-2. I think it may be that
the others have not completed the base-
line. I am left on the same page after I
had sent the message.

15 IM view sent Click on the “IM” icon,
then in the IM menu click
on “Skickade
meddelanden”; the table
with Sent IMs is presented.
For each IM: clicking on
the Recipient’s name will
redirect the participant to
the Recipient’s profile;
clicking on the IM subject
will redirect to the IM it-
self.

16 IM view ar-
chived

Click on the “IM” icon,
then in the IM menu click
on “Arkiverade
meddelanden”; the table
with archived IMs is pre-
sented. For each IM: click-
ing on the sender’s name
will redirect the participant
to the sender’s profile;
clicking on the IM subject
will redirect to the IM it-
self. The links “Välj alla
brev på denna sida” and
“Avmarkera alla brev” se-
lect and deselect all IMs
and the dropdown menu
next to them marks them as
read or moves them to in-
box folder.

- (CR-4) There is test in English “The
user does not have any profile.”

17 Calendar add
note

Click on the “calendar”
icon; when the calendar
page is presented, click on
any of the squares corre-
sponding to a day of the
month; a pop-up appears
where the participant can
input the title, begin-
ning/end date and the mes-
sage corresponding to the
calendar note s/he wants to

- (Dev-7) A bit difficult to enter the dates
by hand instead of scrolling.

 308

add. Submit by clicking on
“Lägg till.”

18 Navigate li-
brary

Click on the “Library”
link/icon, then select one of
the items in the carousel:
sections, divided into sub-
sections, containing library
items.

- (Dev-7) The dots under the carousel are
not used.
- (Dev-7) I cannot open the PDF files. It
says that the network is not available.
- (CR-4) I got a message that I had no
network connection when I tried to open
a PDF in “Krisreaktioner” in the library.
- (CR-3) There's something strange going
on here. When I select “Interviews with
[…]” then all subcategories and items
from “Extras” are possible to view and
select. When I click on arrows, the selec-
tion will not move on the icons, and the
content will not change either.

19 Ask an expert
(FAQ)

Click on the link “Frågor &
Svar”, then “Visa Frågor &
Svar” and finally click on
the button “Fråga en ex-
pert”. The participant fills
in the form and submits.

- (Dev-7) Why no heading on the mes-
sage to the expert?

20 Read FAQs Click on the link “Frågor &
Svar”, then “Visa Frågor &
Svar” and finally click on
one of the question topics.

21 Diary – add
private entry

Click on the link
“Loggbok”, then “Skriv i
loggbok”; the participant
fills in the form with the ti-
tle, message and date of the
diary entry. The option
“Private” is selected under
“Vem får se?”.

22 Diary – add
public entry

Click on the link
“Loggbok”, then “Skriv i
loggbok”; the participant
fills in the form with the ti-
tle, message and date of the
diary entry. The option
“Andra deltagare” is se-
lected under “Vem får se?”.

23 Diary – read
own entries

Click on the link
“Loggbok”, then “Läs
loggboken.”

24 Diary – read
others entries

click on the link
“Loggbok”, then “Andras
tankar.”

25 Forum navi-
gate

When the participant clicks
on the link “Forum”, s/he is
redirected to a page with a
list of Forum topics; a but-
ton called “Regler” at the
top of the page opens a
pop-up with terms and con-

- (Dev-7) I was in forum before I got to
this point, and I am not sure if the rules
came up automatically the first time. I
pressed the “Rules” button and then
opened the window to approve the rules.
I do not know if I have approved the
rules, but I can write in the forum. I did

 309

ditions: the pop-up auto-
matically opens the first
time a participant accesses
the Forum and s/he is re-
quired to click on “Jag god-
känner” in order to con-
tinue. Below the “Regler”
button, there is a list of Fo-
rum topics. Clicking on a
topic name opens a page
with a list of related
threads. There are two links
for actions associated with
each thread (“Rapportera”
and “Prenumerera”). Click-
ing on a thread name opens
a page with a list of related
posts. There are two links
for actions associated with
each post (“Citera” and
“Rapportera”). At the bot-
tom of the post page there
is an input text field which
allows the participant to
contribute to a discussion.
At the top of the thread and
post pages, there is a button
to create a new thread/post
(“Skapa ny diskussion”/
“Skriv ett inlägg”) and
links to go back to previous
pages in the forum. Each
thread and post is accompa-
nied by a picture of the par-
ticipant who created it:
clicking on the pictures re-
directs to the participant
profile.

not get any confirmation that I had ap-
proved the rules. I opened the window
with rules and pressed accept. I opened it
again and could still accept. Suggestion: I
think we should take away the “godkänn”
button as it does nothing.
- (CR-4) “Regler” did not pop up.
- (CR-2) When a participant logs in for
the first time, s/he should not get any fo-
rum notifications (“xxx posts since you
last logged in”).

26 Forum con-
tribute to
thread

Click on the link “Forum”
(if needed, accept the con-
ditions in the “Regler” pop-
up), click on a topic, click
on a thread, click on “Skriv
ett inlägg” – the participant
is presented with a text in-
put field where the post
content can be entered and
submitted via the “Skicka”
button.

27 CBT activate
new module

If there are less than two
active CBT modules, the
participant page will in-
clude a button called “Akti-
vera modul”; the partici-
pant clicks on it and selects

 310

a module from the list that
pops up.

28 CBT view
item

The participant clicks on a
CBT item (e.g., a PDF file,
video/audio content).

- (Dev-7) I cannot open the PDF.
- (CR-3) Two PDF files cannot be
opened (Basic text1 and 2).

29 CBT com-
plete home-
work

The participant clicks on a
CBT homework, and s/he is
redirected to a page con-
taining the homework; the
participant can fill in the
cells and submit.

- (Dev-7) Cancel does not work as it
says. Everything is saved.

30 CBT read
feedback

The participant clicks on a
CBT homework that s/he
has already submitted and
on which the responsible
psychologist has given
feedback.

31 View com-
pleted item

The participant clicks on a
CBT homework, and s/he is
redirected to a page con-
taining a static version of
the homework.

[Note: the user needs to have completed baseline to proceed – Task “IM view inbox” onward]

E.10 Mobile Adaptation – Design Workshop VII
The instructions, tasks and scenario for this workshop were the same as given
for previous workshop VI. Hence, the scenario column is skipped in the table
below and tasks are listed only when there was feedback provided for them.

Table E.10-1. Design workshop VII – task list and feedback

No Task Feedback

1 Reset/forgot-
ten password

- (RA-1) iPhone 5: the text rows are not aligned for the three options.
Very big white box.

2 Login - (RA-1) I insert the username (and password) and turn the phone from
vertical to horizontal or vice versa, the page is reloaded and the in-
serted information is deleted.
- (CR-2) No space between the login button and the box for input of
SMS code. This page is not adjusted for mobile in vertical positioning.
The page looks ugly on iPhone 6.

3 Answer base
question-
naires

- (Dev-7) Questions 11 & 16 in ‘Bakgrundsfrågor’ are indexed com-
pared with the other. Also, the answer options are not in line with each
other. There is an “_” after the intro text of each questionnaire. It took
a very long time to load after submitting the last questionnaire (BADS-
SF in baseline U-CARE Heart study).
- (Dev-5) Questionnaire submission is slow (baseline U-CARE
AdultCan study). The spinning wheel is not displayed, it is outside of
the screen (it can be seen by turning the phone to landscape).
- (CR-4) Questionnaire submission (baseline Vuxna). The page “froze”
when I tried to move the marker to an exact place at VAS-skalan. I had

 311

to force Chrome to close and log in again. It was very hard or impossi-
ble to give an exact answer. The EORTC breast cancer module was
slow, but I could complete it.
- (RA-1) Text is not aligned where there are multiple choice answers
on two rows. EQ5D: The window is too big, it doesn’t fit on the
screen.
- (CR-2) LLI, ESSI and ELSS questionnaires are quite difficult/slow to
check/tick the boxes/circles.

4 Edit about me - (RA-1) When saving, the top “About Me” and “Save” button “don’t
fit” in the pop-up box. When saved, the textbox it is not responsive, it
goes beyond the “borders.” This goes for the system in general but es-
pecially noticeable when you have a smaller screen. For example, I
was writing in the box and accidently clicked outside on the greyed
area and then the pop-up closes and you lose what you have written.
- (CR-3) The message is in English
“_JSONMSG_CHANGES_WERE_SUCCESSFUL”.

5 Change mo-
bile and email

- (RA-1) Box doesn’t fit in pop-up, this applies both before and after
saving.
- (Dev-7 and CR-3) Warning text about the length of the mobile num-
ber is not working “_jsonerr_Mobile_NUMBER[…].” Could perhaps
be made easier to understand?

6 IM view in-
box

- (RA-1) I had a red indication on the mailbox, but when opening the
mail menu, it didn’t show. When a notification is shown, I would think
it would say “Inbox (1)” for example.
- (CR-2) The IM notification counter (footer icon) is incremented
when a new IM is received, but never reset to 0 when the page is re-
loaded.

7 IM send (re-
cipient cannot
be therapist)

- (RA-1) When an IM is sent, the page is updated so the text box is
emptied, and the green line saying it has been sent is quite high up and
not visible if not scrolling (on iPhone 5). A bit confusing at first
glance, whether it has been sent or not.
- (Dev-7) I could only send to me and CR-7. I tried to send to RA-2,
but it did not work. I received no message that it was not working. But
I did not get any field for RA-2. I think it may be that the others have
not completed the baseline. I'm on the same page after I have sent the
message.

8 IM view sent - (RA-1): Looking at a sent IM it says “skickat till” (after clicking on
sent messages) but then it only shows the date and the hour sent, not
the recipient. The window when opening a sent IM is not “fixed,” it
moves around.

9 IM view ar-
chived

- (RA-1): I chose to archive the IM and it got archived, but it didn’t get
removed from the inbox. I tried again with two IMs and it worked.
Tried removing them one by one, had more difficulties. Had to go back
and forth and then it worked.
- (CR-4) There is English “The user doesn’t have any profile.”

10 Calendar add
note

- (Dev-7) A bit difficult to enter the dates by hand instead of scrolling.

11 Navigate li-
brary

- (RA-1) Video pop-up is not responsive. When opening a PDF there is
no close button, you have to go “back.” Doing that, you come to the
starting page of the library and don’t know where you were or which
the next file is. It would be good if one was moved to the place where
one left.
- (Dev-7) The dots under the carousel are not used. I cannot open the
pdf files. It says that the network is not available.

 312

- (CR-4) I got a message that I had no network connection when I tried
to open a pdf in “Krisreaktioner” in the library.
- (CR-3) There’s something going on strange here. When I select “In-
terviews with,” then all subcategories and items from “Extra material”
is possible to view and select. When I click the arrows, the selection
will not move across the icons and the content will not change either.

12 Read FAQs - (RA-1): I immediately get redirected to a topic and not to the list of
topics.

13 Diary – add
private entry

- (RA-1) The window is not responsive. The “Save” button is not
aligned with the textbox. There is something weird with the row at the
bottom.

14 Diary – add
public entry

- (RA-1) Bullets from bullet points are not visible in the diary once it
has been saved.

15 Forum navi-
gate

- (RA-1) When the participant clicks on the link “Forum”, s/he is redi-
rected to a page with a list of forum topics; a button called “Regler” at
the top of the page opens a pop-up with terms and conditions: The
pop-up automatically opens the first time that a participant accesses the
forum and s/he is required to click on “I agree” in order to continue. It
did not pop up automatically.
Both threads and posts are accompanied by a picture of the participant
who created it. Clicking on the pictures redirects to the participant pro-
file. It is supposed to work like this. I clicked on my own picture and I
was redirected to the starting page.
- (CR-4) “Regler” didn’t pop up.
- (CR-2) When a participant logs in for the first time s/he should not
get any forum notifications (“xxx posts since you last logged in”).

16 CBT view
item

- (RA-1) The starting view of the video is not good.
- (Dev-7) I cannot open the pdfs.
- (CR-3) Two PDF files cannot be opened (basic text1 and 2).

17 Other - (RA-1) When clicking on the “?” sign, a small yellow help pop-up
appears to the right, it is not visible if you don’t swipe the window to
the left (at the same time the window becomes unresponsive). When
clicking one more time a white box with information pops up and the
text is not adjusted for the pop-up!

E.11 Mobile Adaptation – Desktop Adaptation
The desktop adaptation extended the existing mobile theme for research par-
ticipants to have the same UI on the desktop as well (see Figure E.11-1). This
project was assigned to a single developer, and the design process was based
on informal discussions with the stakeholders during the adaptation. A few
redundant views, which had previously been duplicated for mobile and desk-
top, were removed. After going live with the desktop adaptation, the system
remained remarkably stable, and no errors were reported. One reason was that
the changes were very small and mostly global. Another reason was the in-
creased test coverage during the mobile adaptation, which allowed for through
testing before going live.

 313

Figure E.11-1. Desktop adaptation for research participant.

E.12 Mobile Adaptation – Study-Specific App
In 2016, the Study PUSSEL (in the U-CARE project ParentsCan) wanted to
use the U-CARE Portal to examine attitudes and preferences toward partici-
pating in an internet-administrated psychological intervention. For more in-
formation about the study, see Woodford et al. (2018). However, the study
had requirements which were not met by the U-CARE software system. To
meet these requirements, the decision was made to design and develop a mo-
bile-adapted stand-alone application for the study, not using the existing U-
CARE software system. The required functionality of the app was to first col-
lect online consent from the participants and then show the participants a page
with a short film and a questionnaire. At the time, neither online consent nor
films on the questionnaire page were designed in the U-CARE software sys-
tem.

The PUSSEL app was developed by a single developer, while clinical re-
searchers suggested the UI design. The product owner/team leader allowed
the developer to spend extra time in learning and designing the app from
scratch. It was beneficial for the developer as s/he learned MVC design pat-
tern, C#, CSS, Bootstrap, jQuery, Visual Studio 2015, and translation mecha-
nisms. Although the project took longer than initially planned, the developer
learned more about the technology stack used in the U-CARE software sys-
tem, in the process. It is possible that the functionality could have been
achieved in a shorter time if it had been implemented in the existing U-CARE

 314

software system. However, the developer reported a number of learning ben-
efits from developing the application such as: i) Becoming more productive
in the long run due to the experience gained in the development of this one-
time use app. The learning later went into the development of similar func-
tionalities in the U-CARE software system; ii) An increased understanding of
the full development cycle from development to deployment; iii) Learning
how to set up a Windows server 2012 and install a secure socket layer (SSL)
certificate; iv) Learning that s/he vastly underestimated the time needed to
learn and set up a new Windows server 2012.

There were several advantages to stand-alone and one-time use application
development, such as i) Quick turnaround on last-minute changes from stake-
holders; ii) The source code was shorter and simple because the functionally
was extremely limited; iii) Adhering to the accountability principle was
achieved with very simple XML-based logging concept. Instead of columns
and rows with a fixed structure, an XML node was created for every user ac-
tion; iv) Since the app was deployed on a different server, the developer could
do beta testing on the production environment, start and stop the web server,
and restructure the database, with no negative impact on the existing U-CARE
software system.

There were a few disadvantages to stand-alone and one-time use applica-
tion development by a single developer, such as i) It led to critical knowledge
being confined to one individual (a.k.a. a knowledge silo); ii) The total time
spent was much greater than if the development team had updated the existing
system; iii) The application was for one-time use only, since it was specifically
tailored to a very narrow use case; iv) While working on this app, the devel-
oper was unable to work on the existing U-CARE software system.

A valuable lesson learned by the development team was that they could
design a new simple software system for new research studies while keeping
the existing U-CARE software system running with existing research studies
and only consider cosmetic updates. Also, a new system could be run on the
latest technological stack, whereas the existing technological stack could re-
main as-is for the existing U-CARE software system.

 315

Appendix F: Design Principles Reformulation

F.1 Design Principles – Design Product
Table F.1-1 presents a walk-through of two versions, i.e., simplified (deleted
text is stricken out while changes or additions are shown in bold) and refor-
mulated (changes are underlined), of every design principle in the description.
The product-related design principles were reformulated based on the hands-
on design experiences from development of multiple features in U-CARE
software system and retrospective mapping of design principles with multiple
features.

Table F.1-1. Design principles for sustaining the usefulness of eHealth research soft-
ware

Design principle Specification
The principle of
simplicity

Simplified: Provide easy-to-use data export functionalities in order for
[clinical] researchers to export data do research, preferably by a single
click via a simple UI, given that such functionalities should not require
in-depth technical knowledge and should not overwhelm the researcher
with details.
Reformulated: Provide the eHealth research software with easy-to-use
functionalities in order for researchers to use it in their [eHealth] re-
search, preferably via a simple UI, given that such functionalities should
not require in-depth technical knowledge and should not overwhelm the
researcher with details.

The principle of
modularity

Simplified: Data export functionalities should be divided into modules in
order for software developers to maintain and reuse, given that each
module is simple, cohesive, and loosely coupled, such that a change to
one module has minimal impact on other modules.
Reformulated: Provide the eHealth research software’s functionalities in
modules to enable for maintenance and reuse by software developers,
given that each module is simple, cohesive, and loosely coupled, such
that a change to one module has minimal impact on other modules.

The principle of
malleability

Simplified:
 a) Customise: Data export functionalities should be customisable in or-
der for [clinical] researchers to tailor [their own] research data and de-
scriptive metadata export and to import data to data analysis applications
and statistical applications, given that such data export output should be
in standardised or de facto formats, such as CSV or XML or tailored for
spreadsheets or common statistical packages, in a way that is useful for
downstream applications.
b) Filter: Data export functionality should allow data filtering in order
for [experienced clinical] researchers to customise data export according
to their preferences and needs, given that such functionality should guide

 316

the researcher to filter exportable data and allow the researcher to save
and reuse their data exports as templates.
c) Schedule: Data export functionality should allow scheduling data ex-
port requests in order to get data after specified intervals [based on study
design] or when data is available [in cases where the volume of data
would increase data export processing time].
Reformulated:
Provide the eHealth research software with customisable functionalities
in order for [experienced] researchers to tailor them according to their
[potential] needs, preferences, or usage context, given that such func-
tionalities guide the researcher during the customisation.

The principle of
accountability

Simplified:
a) Privacy: Data export functionality should anonymise data in order to
ensure research participants’ privacy, given that such anonymised data
do not contain identifiable data or that ID fields are encrypted, and
datetime field(s) are removed or offset.
b) Security: Data export functionality that enables the clinical researcher
(i.e., study owner or principal investigator) to restrict data access in or-
der to enforce governance policies, data extraction and ethical guide-
lines, given that such data access restrictions can be researcher-specific
(based on access privileges), time-specific (i.e., at multiple intervals with
the same/refreshed/additional datasets, or one-off after the study comple-
tion or termination) and data-specific (i.e., partial, full, or selected da-
tasets).
c) Auditability: Data export functionality should log all activities related
to data export research in order for study owner to fulfil audit and regu-
latory requirements, given that such logs store all data export events
[when (timestamp), who (user identity – role), how (encrypted/plain
text), why (purpose specification and use) and what (data specification)]
to facilitate follow-up by the study owner and enable udit organisations
to confirm compliance with legislation and ethics.
Reformulated:
a) Privacy: Provide the eHealth research software with functionality that
anonymise data in order to ensure research participants’ privacy, given
that such anonymised data do not contain identifiable data or that ID
fields are encrypted, and datetime field(s) are removed or offset.
b) Security: Provide the eHealth research software with functionality that
enables the researcher (i.e., study owner or principal investigator) to re-
strict system and feature access in order to enforce governance policies
and ethical guidelines, given that such access restrictions can be re-
searcher-specific (based on sufficient access privileges), and data-spe-
cific (i.e., partial, full, or selected datasets).
c) Auditability: Provide the eHealth research software with functionality
to log activities related to research in order for study owner to fulfil audit
and regulatory requirements, given that such logs store [accountability
related] events [when (timestamp), who (user identity – role) and what
(specification)] to facilitate follow-up by the study owner and enable au-
dit organisations to confirm compliance with legislation and ethics.

	Abstract
	Acknowledgements
	Contents
	Abbreviations
	List of Definitions
	List of Tables
	List of Figures
	Part I: Inspiration
	1 Introduction
	1.1 Research Software
	1.2 Sustainable Research Software
	1.3 Design Artefacts
	1.4 eHealth Research Software
	1.5 Research Problem: Sustaining the Usefulness
	1.6 Research Aim
	1.7 Demarcation
	1.8 Dissertation Outline

	2 Knowledge Base
	2.1 Design Science Research
	2.2 Evaluation
	The Fitness-Utility Model

	2.3 Ecology of Artefacts
	2.4 Agile Software Development
	Refactoring

	Part II: Relevance and Rigour
	3 Empirical Foundation
	3.1 Academic Research Context Challenges
	3.2 U-CARE
	3.3 The U-CARE Software System – The Artefact
	3.4 Design Science Research at U-CARE
	3.5 U-CARE Design Process
	U-CARE Stakeholders
	An Example of the Stakeholder-centric Evolving Design Process
	Another Example of the Stakeholder-centric Evolving Design Process

	3.6 eHealth Challenges and U-CARE Research Context

	4 Research Design
	4.1 Design Research Methods
	4.2 Action Design Research
	4.3 Appropriation of ADR
	Timeline
	The Author’s Role(s)
	Data Collection
	Data Presentation
	Data Interpretation and Analysis
	Ethical Considerations
	Method Limitations
	ADR Case Selection Rationale

	Part III: Design in Three Cases
	5 Case I: The Data Export Feature – the U-CARE Formation Phase
	5.1 Problem Formulation
	5.2 Building, Intervention and Evaluation Cycles
	BIE Cycle I
	BIE Cycle II
	BIE Cycle III
	Artefact Use Over Time and Learning
	BIE Cycle IV
	BIE Cycle V
	Artefact Use Over Time and Learning

	5.3 Formalisation of Learning

	6 Case II: The Technology Adaptation Process – the U-CARE Maturing Phase
	6.1 Problem Formulation
	6.2 Building, Intervention and Evaluation Cycles
	BIE Cycle I
	BIE Cycle II
	BIE Cycle III
	Artefact Use Over Time and Learning

	6.3 Formalisation of Learning

	7 Case III: Extending the Artefact – the U-CARE Mature Phase
	7.1 Problem Formulation
	7.2 Building, Intervention and Evaluation Cycles
	BIE Cycle I
	BIE Cycle II
	Artefact Use Over Time and Learning

	7.3 Formalisation of Learning

	Part IV: Analysis and Reflection
	8 Retrospective Reflection and Learning
	8.1 Retrospective Analysis
	Quality Characteristics
	Design Principles
	Typology of Sustaining Usefulness
	Looking Back, Moving Forward – Re-visiting the Design Principles

	8.2 Reflecting on ADR
	Being an ADR Researcher

	8.3 ADR across Multiple Cases
	Augmented Action Design Research
	Augmented Reflection and Learning
	Appropriation of ARL in this Dissertation

	Part V: Conclusion
	9 Concluding Discussion
	9.1 Re-visiting the Research Questions
	9.2 Research Contributions
	Design Principles, Quality Characteristics and Typology
	Augmented Action Design Research
	Instantiation

	9.3 Implications
	Implication for Practice
	Implication for Research

	9.4 Future Work

	References
	Part VI: Appendices
	Appendix A: Quality Characteristics
	A.1 Product Quality Characteristics
	A.2 Quality-in-Use Characteristics

	Appendix B: eHealth Research Context
	B.1 Randomised Controlled Trial
	B.2 Related Artefacts in the U-CARE Ecology

	Appendix C: Data Export
	C.1 Reflection Design Pattern
	C.2 Authorisation Feature
	C.3 Custom-made Data Export Applications

	Appendix D: Technology Adaptation
	D.1 A Comparison Tool for UI Testing
	D.2 First Developers’ Workshop
	D.3 Second Developers’ Workshop
	D.4 Third Developers’ Workshop
	D.5 jQuery Upgrade

	Appendix E: Adaptation to Mobile Devices
	E.1 Mobile Adaptation Choices
	E.2 Proof-of-Concept Prototype UI Design
	Homework on Mobile Device (Part A)
	Homework on Mobile Device (Part B)
	Questionnaire on Tablet

	E.3 Advertisement for Mobile App Developer
	E.4 Mobile Adaptation – Design Workshop I
	E.5 Mobile Adaptation – Design Workshop II
	E.6 Mobile Adaptation – Design Workshop III
	E.7 Mobile Adaptation – Design Workshop IV
	Screenshot A
	Screenshot B
	Screenshot C
	Screenshot D
	Screenshot E
	Screenshot F
	Screenshot G
	Screenshot H
	Screenshot I

	E.8 Mobile Adaptation – Iteration V Feedback
	E.9 Mobile Adaptation – Design Workshop VI
	E.10 Mobile Adaptation – Design Workshop VII
	E.11 Mobile Adaptation – Desktop Adaptation
	E.12 Mobile Adaptation – Study-Specific App

	Appendix F: Design Principles Reformulation
	F.1 Design Principles – Design Product

