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It matters not much now, but it might have significance in the long run. 
Onward! 
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ABSTRACT 

Modern Electronic Health Record (EHR) systems are now integral to healthcare. 

Having evolved from hospital billing and laboratory systems in the 80’s, EHR systems 

have grown considerably as we learn to represent more and more aspects of patient 

encounter, diagnosis and treatment digitally. EHR user interfaces, however, lag 

considerably behind their consumer-electronics counterparts in usability, most notably 

with respect to customizability. This limitation is especially evident in the 

implementation of audible alerts that are coupled to sensors or timing devices in 

intensive-care settings. The most current standard, (ISO/IEC 60601-1-8) has been 

designed for alerts that are intended to signal situations of varying priorities: however, it 

is not universally implemented, and has been criticized for the difficulty that healthcare 

providers have in discriminating between individual alarms, and for the failure to 

incorporate prior research with respect to “sense of urgency” as it applies to alarm 

efficacy. In the present work, however, we consider that there are more effective means 

to allow a user to identify an alarm correctly than  “sense of urgency” response. 

This thesis focuses on the problem of correct identification of alerts: what 

happens when a human subject is allowed to create or designate (i.e., personalize) one’s 

own alerts? Given the ubiquity, low costs and commoditization of consumer-electronics 

devices, we believe that it is just a matter of time before such devices become the norm in 

critical care and replace existing, special-purpose devices for information delivery at the 

point of patient care. 

We built a tool, PASA (Personalized Alerts Study Application), that would allow 

us to capture and edit sounds and orchestrate studies that would contrast any two types of 

sounds. PASA facilitated a study where study participant’s responses to “personalized” 

sounds were contrasted with sounds that meet the ISO/IEC 60601-1-8:2012 standard.  
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We performed two sub-studies that contrasted responses to two banks of 6-alerts 

and 10-alerts. The 6-alert study was repeated with the same subjects after two weeks 

without training to measure recall. We observed that accuracy, reaction time, and 

retention were significantly improved with the personalized sounds. For example, the 

median errors for the 6-alert baseline study were 4 for personalized vs. 27 for standard 

alerts. For the 6-alert repeat study it was 7 vs. 43. The median for the 10-alert study was 1 

for personalized vs. 55 for standard alerts. Accuracy for recognition, while remaining 

constant for personalized alerts, degraded considerably for standard alerts as the number 

of alerts increased from 6 to 10. 

We conclude that personalization of alerts may improve information delivery and 

reduce cognitive overload on the health care provider. This potential positive effect at the 

point of patient care merits further studies in a clinical or simulated clinical setting. 
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CHAPTER 1  
INTRODUCTION 

The field of healthcare poses a vast and exciting variety of computational 

challenges. Electronic health record (EHR) systems have the potential to evolve into 

becoming the hub for all aspects of health care delivery. Going beyond patient data, gene 

sequences, and imaging information, EHR systems of the future may provide real-time 

evidence-based decision support that will vastly improve patient safety, by providing 

“best practice” information needed for treatment of disease.  

The most important component of the "system" is the healthcare provider, who is 

required to perform specific actions on the patient after mentally processing diverse 

inputs. An important category of inputs, especially in critical-care settings, are audio 

alerts, which are the focus of the present proposal. Personalizing the alerts to the 

provider's preferences and previous level of skill and training can enable a more effective 

level of performance, as measured by faster response times and more accurate responses, 

especially during critical situations and when multiple alerts occur simultaneously. The 

potential positive impact on patient safety therefore requires that new ways of 

personalizing audio alert delivery be studied, through a quantitative experimental design 

that contrasts personalized alert delivery with the traditional “one size fits all” approach. 

This thesis will explore audible alerts in the context of medicine. We will look at 

previous research on audible alerts, and draw lessons from it. We will provide a fresh 

experiment design, one that uniquely builds upon elements from the research corpus that 

are applicable to personalized alerts and provides data that may give some insight into 

whether personalized alerts have the potential to improve patient safety. 

This chapter will discuss the significance of this research, hypotheses that we 

would like to test, why we should consider research that explores incorporating 
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personalized alerts in to the healthcare system, and limitations of our research 

methodology. 

Chapter 2 will look at previous research on audible alerts within medicine; 

methods, topics of focus, and limitations. Chapter 3 will focus on our research on 

personalized alerts with an overview of methodology and tools, and Chapter 4 will 

present our results. 

1.1 Significance of Study 

This research will advance the science of audible alert design by establishing a 

study on recognition, response and retention of sounds created by a group of subjects 

who have been enabled to create their own alert sounds. This approach should result in a 

unique contribution by examining a new modality for the design and delivery of audio 

alerts. This would serve as a basis for research that would make personal audio alerts a 

reality in clinical settings. 

1.2 Hypotheses 

Hypothesis #1: Users will respond to personalized alert sounds more accurately 

than to "standard" medical alert sounds. 

Hypothesis #2: Users will respond to personalized alert sounds more rapidly than 

to "standard" medical alert sounds. 

Hypothesis #3: Retention of personalized alert sounds will be superior to 

"standard" medical alert sounds. In other words, people who are allowed to create and 

train on alerts with their own alert sounds will remember them better than if they trained 

on alerts with the standard sounds currently in use.  

1.3 The Practical Importance of Personalizing  

Alert Sounds in Healthcare 

In the field of healthcare, the area of intensive patient care is especially 

challenging because taking care of seriously ill patients requires specialized healthcare 

provider skills at both the physician and nursing levels. Intensive-care-unit (ICU) settings 
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have a high ratio of providers to patients, because patients' physical status may change 

from stable to critical within minutes, and, consequently, they are required to be 

monitored around the clock. To facilitate such monitoring, patients are connected to a 

variety of biological sensors that monitor various essential functions, such as heart 

rhythm, blood pressure, oxygen saturation and respiratory rate. Other sensors detect 

potential problems with mechanical devices that are used to administer therapeutic 

measures such as respirators, intravenous fluid pumps and venous and arterial catheters. 

Yet other devices are timer-based, prompting the nurse, for example, to change the 

patient's position periodically to prevent pressure ulcers in immobilized or unconscious 

patients.  Finally, the patient may also summon the provider to their bedside by pressing a 

call button. 

Some sensors (e.g., physiological parameter monitors) provide feedback through 

visual displays. Given, however, that visual displays require the provider to be looking at 

them continually in order to serve their purpose, all sensing devices must also provide 

auditory feedback (an "alerting sound"), which is triggered by an abnormal physiological 

pattern such as a ventricular premature beat, an out-of-range value such as a very rapid or 

very slow heart rate, or a timer. Given the multitude of sensors, it is important for the 

provider to be able to discriminate immediately and accurately between the various 

sources of sounds. One would expect, therefore, that each sensor's sounds would be 

configured to be sufficiently distinctive to allow ready differentiation.  

In practice, this is not necessarily the case. At University of Iowa Hospitals and 

Clinics (UIHC), for example, all devices produce alerting sounds with a fixed frequency 

of 4000 Hz. Individual device alerts are distinguished by variations in the duration of a 

beep, the duration of silence between beeps, or by varying sequences of beeps (e.g., short 

beeps vs. long beeps, in the fashion of Morse code). Informal interviews with the ICU 

nurses indicate that it takes a minimum of three to four weeks to recognize alerts reliably.  

A practical issue is that the nurses do not undergo one or more training sessions that 
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include the full range of alerting sounds that they may be expected to encounter: learning 

is achieved by encountering an alert in an actual patient-care setting and asking 

colleagues what it indicates. As a result, even during the four-week phase, there may be 

an alert (or alerts) that a given nurse may never encounter because the particular device is 

not triggered by an abnormal patient parameter. 

Despite these issues, the system works currently, largely because of the large 

nurse-to-patient ratio under normal circumstances of patient load, so that there is plenty 

of skilled-personnel backup, and the number of alerts during a given time period per 

nurse stays relatively manageable. One can very well imagine that the system would 

work less well if patient load were suddenly increased – e.g., because of a large-scale 

emergency or disaster situation. Here, the shortage of skilled staff might require 

recruitment of individuals – e.g., medical or nursing students, or even volunteers and 

relatives of patients – who need to learn to discriminate between a set of not particularly 

distinctive or memorable sounds, with very little time to accomplish learning. 

Toward this goal, a significant body of research has been devoted to the issue of 

devising "standard" alert sounds in ICU and anesthesiology practice that have a universal 

meaning across medical contexts – e.g., high vs. medium vs. low priority – and that are 

also sufficiently memorable to be learned quickly and retained and responded to with 

high accuracy.  

Due to the rapidly increasing power, ease of use, lowered costs and consequent 

ubiquity of electronic technology and connected devices, however, much of this research 

may well have become obsolete, as discussed in the next chapter. Users of a technology 

differ greatly in cultural and professional background, interests, and skills. Consequently, 

a search for the perfect universal set of "standard" sounds may well be quixotic. For 

almost a decade, vendors in fields as diverse as computing hardware and software, 

consumer electronics (e.g., the iPhone and Android phones), e-Commerce (e.g., 

Amazon), social media (Facebook), Web-based media delivery (Netflix) and even 
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holiday resorts (e.g., Disneyland/ Disney World) have realized the importance of product 

customizability, to enable personalization of the user experience.  

With respect to audio, our creation, consumption and organization of sounds, as 

well as responses to sounds, have changed significantly since the time much of the 

research on audio alerts was performed.  When using their personal electronic devices, 

end-users combine sound clips, song fragments, or voices in unique ways that provide 

alerts with highly contextualized meaning, such as a specific ringtone for a specific 

relative, or a song that plays when we have run our tenth mile. This technology is starting 

to appear in more intimate objects, such as devices that will seem to preemptively sense 

location and intent, as they provide sensory augmentation with information that is 

contextualized situationally. Google Glass is an interesting early example.   

Healthcare technology, which at present continues to lag behind consumer 

technology considerably with respect to cost, usability, and commoditization, can benefit 

similarly from personalization. As technology and culture align, alert systems that will be 

ubiquitous and highly personalized with respect to situation, location, and role of the 

healthcare practitioner will be possible. It is important to explore research design for 

personalized alerts so that a research corpus can be formed that will more effectively 

influence future standards for various aspects of healthcare-provider-computer 

interaction. 

1.4 Scope and Limitations of the Present Work 

This research is limited to human response to auditory alerts, with a focus on 

personalized alerts. The human subjects tested all exhibited common abilities and 

limitations, and the only specific ability that we were interested in identifying was 

whether or not the subject had formal music training, as that has shown to correlate to 

better tone recognition in previous research [1]–[3]. Our research does not utilize all 

types of audible alerts, only a subset of those that adhere to the current international 

standard, ISO 60601-1-8. Further, while this study was performed in the context of health 
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care, it only serves as a model by which personalized alerts can be contrasted with other 

types of alerts. Much like previous research in audible alerts, an actual clinical trial in an 

intensive-care unit is beyond the current addressable scope of this work. However, the 

tools built to enable the work described in this thesis have been designed so that future 

studies that utilize clinical simulations may be considered without major re-engineering 

of the toolset. 

This thesis is not intended to address the problems of alarm accuracy, or 

alarm/alert fatigue.  All devices that generate alarms have a certain proportion of false 

positives (an alarm is generated when not necessary) and false negatives (failure to 

generate an alarm when necessary): alert fatigue is due to excessive false positive alerts.  

This problem is not limited to auditory alerts – excessive alerts, especially for drug-drug 

interactions, are a common complaint for users of Computerized Physician Order Entry 

(CPOE) systems.  

The multiple root causes of excessive false-positive alerts have been explored 

extensively in the informatics literature, such as acting on incomplete information about 

the patient, excessively simplistic algorithms that consider only a single input rather than 

integrating multiple inputs, and not allowing for physiologic variations. There is scope 

for personalization here: the level of alerting/prompting that might be acceptable to 

trainees in their first few weeks or months of work would be unacceptable to an expert 

and highly experienced healthcare provider. Such customization, however, involves 

algorithmic, knowledge-representation and database-content issues that are beyond the 

scope of the present work. 
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CHAPTER 2  
PREVIOUS WORK 

This chapter provides background into previous work on audible alerts. We begin 

Section 2.1 with a description of the search process through which the research corpus 

was obtained. Section 2.2 is a literature review where we start with some information on 

alarm fatalities and specific instances of death that has resulted in problems with existing 

alarms in section 2.2.1 In Section 2.2.2 we will examine the reasoning, methodology, and 

findings of previous research in the field. Section 2.3 provides a summary and discussion 

of observations and limitations of past work. 

2.1 Methodology for Corpus Acquisition 

Once the topic of research was identified, a systematic review was carried out of 

prior research on audible alerts. Google Scholar, PubMed, ACM Digital Library, and 

Questia served as starting points. Articles of interest were identified and obtained through 

any electronic database providing access to abstracts and full articles - in many instances 

a number of research portals had to be explored before a comprehensive version of a 

specific publication could be found. Searches were done systematically beginning with 

specific key words , e.g., “audible alerts”, “alarms”, “sense of urgency response”, “alarm 

fatigue”, “alarm sounds”, “auditory warning”, “clinical alarms”, “alarms and medical 

equipment”, “psychoacoustics”, “cognition of sound”, “earcons”, “auditory icons”, 

“ambient noise and alarms”, “alarm retention”, “perceived urgency”, “false alarms”, 

“sound attributes”. Citation links were examined and followed rigorously, especially 

where a citation appeared more than once across the journal collection.  

When electronic versions of articles were not available, an attempt to locate the 

associated journals was first made at The University of Iowa libraries, and, if necessary, 

procured through interlibrary loans. Articles were filtered with respect to applicability to 

audible alerts and their application in medicine. Also, with respect to early audible alert 
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research, an original typed manuscript was obtained  in an effort to clarify assessments 

made in research articles critiquing early work that were somewhat contradictory in 

nature.  

For a historical perspective, articles that were most commonly cited were 

reviewed repeatedly in an effort to identify and isolate the prevailing research design; the 

reasoning, methodology, and results from each set of experiment(s) performed in 

advancing the field of audible alerts. 

Of an original corpus in excess of 1200 articles, 261 were selected based upon 

relevancy to audible alerts and their application in medicine. Out of the 261, there was a 

high degree of similarity. Therefore, a smaller selection was utilized in an effort to focus 

on the more relevant topics for this thesis. 

2.2 Literature review 

 In the early 80s the medical community began questioning the extant design of 

audio alerts. Kerr et al. looked at the growing number of alarms in the intensive care unit, 

and found that “the provision of audible alarms is eminently logical when considered 

from viewpoint of the individual item of equipment but problems arise when several such 

items are collected together around a patient” and that “six or more sounds emanate from 

each patient” [4]. At that time most audible signals consisted of continuous or rapid 

intermittent tones of constant pitch whose loudness was often uncontrollable, to ensure 

attention across a moderately noisy room. Most equipment needed to be placed close to 

the patient’s bed; therefore exerting “their greatest effect on the patient” [4]. 

Even experienced intensive care nurses, capable of distinguishing signals emitted 

by different types of equipment, admitted to difficulties when several alarms with similar 

sounds were generated simultaneously. Less experienced nurses became “confused and 

unable to react rapidly when several alarms sound simultaneously or in quick succession” 

[4]. The stress in an ICU, combined with the fact that the number of alerts occurring 

simultaneously is a function of the number of patients in a ward, caused the nurses to 
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eagerly silence audible signals. As a result, the alarm designers were forced to go to 

considerable lengths to circumvent these tendencies. In 2010, Siebig et al., [5] examined 

the clinical and technical validity of ICU alarms to determine the potential value of new 

algorithms to maintain high sensitivity while improving alarm specificity. They noted 

that the correct identification of critical alarms by medical staff has been historically 

reported as low as 40% [6]. 

2.2.1 Problems with Alarms 

Inability to recognize alarms, often resulting from alarm fatigue has caused 

deaths. The Food and Drug administration received 862 death reports associated with 

alarms in the seven years that ended in 2012 [7]. Reporters for the Boston Globe, through 

public records requests, found at least 11 deaths in Massachusetts since 2005 linked 

specifically to lack of response, or inadequate response to alarms on cardiac monitors in 

hospitals [8]. 

The Joint Commission, which accredits hospitals, received 98 reports of alarm-

related incidents of which 80 resulted in deaths in the 42-month period ending June 2012. 

“Those voluntary reports are a gross undercount, says the commission, which estimates 

that there were close to 1,000 alarm incidents in which patients died or were injured, or 

faced those risks.” [7],[9]. 

In 2013 The Joint Commission directed facilities to make alarm safety a top 

priority or risk losing their accreditation. The commission is requiring hospitals, starting 

in January, to identify the alarms that pose the biggest safety risks by unnecessarily 

adding noise or being ignored. By 2016, hospitals must decide who has the authority to 

turn off alarms [7]. 

At John Hopkins, an alarm task force found that the average number of alarms 

that sounded per bed per day in one ICU was 771 [7]. 
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The ECRI Institute, a Pennsylvania-based patient-safety organization, listed alarm 

hazards as the No. 1 issue on its annual list of the top 10 health-technology dangers for 

2012 and 2013  [7],[10]. 

Some specific examples: 

In 2009, At St. Elizabeth’s Medical Center in Brighton, MA, a patient’s monitor 

cable became loose and the machine repeatedly sounded a low-pitched beep. Nurses said 

they did not hear the alarm. They did not discover the patient had stopped breathing until 

it was too late [8]. 

In August, 2010, a 60-year-old man died at UMass Memorial, Massachusetts, 

after alarms signaling a fast heart rate and potential breathing problems went unanswered 

for nearly an hour [8]. 

In January, 2009, Linda Knyff, 47, died at Massachusetts General Hospital in 

Boston after the tube that had been surgically inserted into her trachea to help her breathe 

became dislodged. Because of an apparent malfunction, her cardiac monitor was not 

setting off alarms at the central monitor at the nurses’ station. Nurses would have been 

alerted to the malfunction by icons and alarms on the central monitor and on hallway 

signs [8]. 

 In January, 2010, 89-year-old man died at Mass. General. Ten nurses on duty 

could not recall hearing the beeps at the nurses’ station or seeing scrolling ticker-style 

messages on three hallway signs that would have warned them as his heart slowed and 

finally stopped over a 20-minute span [8]. 

In Maryland an elderly woman’s heart-rate monitor beeped unnoticed by staff for 

several minutes. Her nurse was preparing medication in another room where she could 

not hear or see the patient or the monitoring system. (The hospital had cut the position of 

the technician whose job was to monitor alarms at a central station.) By the time the 

nurse responded, the patient had suffered irreversible damage, and she died shortly 

afterward [7]. 
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The parents of Mariah Edwards won a $6 million malpractice settlement after 

their 17-year-old daughter died in 2013 following a tonsillectomy at a Pennsylvania 

surgery center. After the surgery, the high school junior was given a potent painkiller that 

slowed her breathing. By the time nurses checked on her 25 minutes later, she had 

suffered profound and irreversible brain injury. She died 15 days later. A nurse said in 

her deposition that the alarm on the respiratory monitor was muted, said Joel Feller, an 

attorney for the family. After Edwards’s death, the center announced several changes, 

including that alarms would no longer be muted [7]. 

2.2.2 Audible Alarm Research 

2.2.2.1 Sense of Urgency Response 

Insights into sense of urgency response, and experiment design that might identify 

culturally agnostic aggregations of sound attributes began when Patterson published 

guidelines for auditory warning systems on civil aircraft [11]. In 1985 his team from The 

Applied Psychology Unit from Cambridge worked in conjunction with the Institute of 

Sound and Vibration research from Southampton to design alarm sounds for British 

nuclear and military applications. He made recommendations for auditory warning 

systems for workload environments [12], and then published a seminal work on medical 

alerts, which provided guidelines that explained the spectral characteristics required to 

make a pulsive sound that is distinctive and resistant to masking unexpected noise 

sources[13]. 

Patterson's sound categories formed the basis of an ISO committee draft 

pertaining to alert sounds, ISO/TC 1/SC3, and remained influential nine years later when 

ISO ISO:9703-2:1994, “Anaesthesia and respiratory care alarm signals – Part 2:Auditory 

Alarm signals” was published [14]. These categories also were used for sounds specified 

by IEC/ISO 60601-1-8:2006, the most current international standard for audible alerts in 

medical devices. 
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Category-specific sounds were constructed for general, oxygenation, ventilation, 

cardiovascular, artificial perfusion, drug administration and temperature. Each of these 

unique sounds was provided in Caution and Emergency forms, to be repeated at the same 

intervals as the general sound (30s and 15s respectively).  

All sounds were represented with two levels of urgency encoding with a third 

encoding representing general information sounds. Each alarm burst would have a period 

of silent time so that verbal staff communication could take place without interruption. 

The sounds would utilize highly distinctive, tonally complex sounds that would not easily 

be confused with anything else, and guidelines were provided for designing sound pulses 

that would provide this tonal complexity that specified pitch, harmonicity, pulse duration, 

delayed harmonics, and envelope type. The most important aspect to Patterson’s sounds 

was the use of psychoacoustic cues to indicate urgency (repetition, louder, faster, more 

abrupt onset for greater urgency), and that the Emergency form was essentially the same 

as the Caution form, but repeated twice, louder, faster and more intrusive. 

The ISO 9703.2 standard published in 1994 [14], described a sound set that was 

basically a simplified version of Patterson’s “general” sounds. It did not make use of any 

of Patterson’s psychoacoustic cues, and the underlying sounds, which were based on 

simple beeps, lacked an information signal and category specific sounds. It did, however, 

serve as the governing specification for alert sounds, since it provided a model for 

audible alerts that could be more easily emitted than Patterson’s sounds with the available 

technology. (This is the technology still employed in the critical-care units at the 

University of Iowa Hospitals and Clinics.) 

Only in 2005, when ISO IEC 60601-1-8 was published for international use [15], 

were any attempts made to improve on the 9703.2 standard. 60601-1-8 brought back an 

information signal, provided advice on how to implement psychoacoustic cues, and 

defined a standard for melodies that matched Patterson’s seven categories, plus an 

additional category for powering a device down.  60601-1-8 standard alerts are based on 
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melodies consisting of sequences of single notes within a single octave (e.g., c d e (pause) 

f g). Each individual sound pulse must have a fundamental frequency somewhere 

between 150 to 1000Hz, and there must be at least four harmonic sounds from 300 to 

4000Hz. 

The 60601-1-8 standard has created much controversy, and studies of the 60601-

1-8 melodic sounds have pointed out their inadequacies [2], [16], [17].  

High priority sounds closely resemble the medium priority melodies, with two 

additional beeps after the base melody, so that each medium priority alarm is readily 

confused with its high priority version and is easier to learn [18]. The resulting range of 

nearly 13 different sounds is problematic as people typically can only learn 6-8 sounds of 

similar form [19]. 

Studies have shown that the alarms are hard to learn and easily confused with one 

another. Sanderson, Wee and Lacherez have demonstrated the sounds are difficult to 

learn, favor listeners with musical training, and do not necessarily differentiate between 

high and medium priority [3], [1]. Block, a member of the ISO committee that designed 

the 60601-1-8 standard, has conceded that the alarms are not ideal [20] (“We have 

suffered long enough with poorly-designed alarm sounds. It is time to correct the 

mistakes of the past and move forward” [20]). 

Edworthy suggests that the idea of melodic alarms ignores practically all the 

research that has been done in the design of alarm sounds [21]–[23].  They are difficult to 

learn and retain and so are a disadvantage right from start. In 2013, Edworthy built three 

sets of eight alarms that were mapped to the categories in the 60601-1-8 standard. One set 

consisted of tonal alarms that met the standard, the second set consisted of abstract 

alarms randomly selected from a database, and the third set was designed as indirect 

metaphors of the functions. When participants were presented with the alarms and asked 

to indentify them across ten block of eight trials, the results indicated a significant 

difference in learnability between the alarm sets, with the non-standard alarms sets being 
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easier to learn that the standard, especially the “metaphor” sounds which the participants 

learned “significantly better” [24].   

Research that aims to identify sounds that are candidates for good audio alerts has 

mostly been performed with experiments that attempt to identify the "semantic 

differential" between sounds that are intended to suggest a specific meaning or induce 

specific emotional effects (e.g., a sense of urgency) [25]. The other most prominent 

theme in the research corpus has been retention and learnability. 

2.2.2.2 Semantic Differentiation. 

In " On the Sensations of Tone as a Physiological Basis for the Theory or Music" 

[26], Helmholtz provides an early example of semantically mapping timbre as a sound 

attribute, concluding that “the quality of the musical portion of a compound tone depends 

solely on the number and relative strength of its partial simple tones and in no respect on 

their difference in phase”. In the 1970s, Von Bismarck [27] and Pratt et al. [28] both 

found that construction of a verbal subjective rating scale for the timbre of sounds is 

feasible.  

The more recent work of several researchers in both healthcare and non-

healthcare settings has demonstrated effective models of timbre parameterization for 

consistently eliciting sense of urgency. In experimental settings that used steady-state, 

broadband, ambient noise (Haas et al 1995 [29] and Hass and Edworthy 1996 [30]), alerts 

suggesting increased urgency – typically loud, high-pitched sounds that repeat often in a 

given time interval- elicit responses with shorter reaction times in subjects [29]–[32]. 

Burt et al. [32] found physiological responses, including event-related potentials 

on the electroencephalogram (EEG) to correlate with decreased reaction time in response 

to high-urgency alerts. 

However, perceived urgency is not always the best indicator of the effectiveness 

of a sound as an audio alert.  
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As pointed out in [29], [30], [32], [33], there is often a serious mismatch between 

an alert's perceived (psycho- acoustic) urgency, which is a function of its sound 

parameters, and its situational urgency, which is the degree of urgency that the 

experienced operator (e.g., pilot, nurse) has learned to associate with the warning as a 

function of the situation itself.  

Loud, high-pitched, insistently repeating sounds, while appropriate to draw the 

operator's attention and to be noticed over ambient noise, are not necessarily most 

conducive to efficient operator functioning in addressing the indicated problem, 

especially if the corrective action involves a complex series of steps that require multi-

tasking and mental concentration (e.g., arresting ventricular fibrillation or cardiac arrest). 

Most individuals function best within a narrow range of stress, and anxiety-inducing, 

insistent repeated alerts then become a background distraction that the operator is 

required to mentally tune out in order to focus on the problem. The level of distraction 

can be significant when the operator is trying to process numerous simultaneous inputs.  

Some degree of operator control over alert parameters after the initial alert has sounded is 

therefore highly desirable. 

As pointed out by Kerr et al [4], such tones have the undesired side-effect of 

inducing anxiety in a patient who is rarely in a position to do anything about the problem. 

As this thesis discusses later, modern technology is readily capable of addressing this 

issue. 

2.2.2.3 Recognition and Retention 

Recognition and retention of audible alarms is important. Milligan et al. found 

that nursing staff could only recognize 83% of their alarms (compared to 43% of medical 

staff, who are in the unit for significantly less time per day than nurses), and that the three 

most critical alarms were recognized poorly [19]. Williams and Beatty, using 21 non-

clinician subjects to identify IEC 60601-1-8 alarms melodic alarms as defined by Block 

et al. [17], found that identification accuracy was only between 10% and 61% and the 
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participants often confused alarms .  Sanderson & Wee had 22 critical care nurses learn 

the IEC 60601-1-8 alarms over two training sessions more than a week apart and found 

an average recall rate of 66%, with only one nurse having 100% accuracy. They 

concluded that “IEC 60601-1-8 melodic alarms should be redesigned before they are 

adopted for clinical practice”[2]. 

2.3 Limitations of Past Work 

The premise of this thesis is that: 

1. Many of the efforts made toward devising "standard" alert sounds, while possibly 

relevant pre-2000 because of limitations in the ability of devices to store and 

reproduce complex sounds, may be much less relevant in today's era of affordable, 

high-powered, wireless-network-capable devices. Several previous research efforts, 

including many models for audio alert design, have been encumbered by implicit 

assumptions about hardware capabilities and technological stasis that are not valid 

anymore. Consider, for example, that hand-held devices like the iPhone and Android 

family have more computing power and memory than the world's most powerful 

supercomputers of the mid 1980s, and that they offer ubiquitous connectivity with 

other devices. 

2. Standardization is not necessarily compatible with rapidity of learning and accuracy 

of retention, especially across cultures and between individuals.  For example, while 

people with musical ability are able to learn and differentiate between 60601-1-8-

standard alerts more readily [3], one might expect that with particular individuals, 

specific samples of genres of music might be more memorable than others, and that 

non-musically-trained individuals might choose non-musical cues instead. This point 

is discussed in the Results chapter when we discuss the diverse population strategies 

employed by the users that we tested. 

3. As long as one achieves quick learning and high retention, it is not even certain that 

the search for the perfect,  "standard" set of sounds is meaningful, any more than the 
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search for a user-interface approach for software or hardware design that never needs 

customization or adaptation.  Many implicit assumptions in research of universal 

cultural norms may be questionable.  For example, there is evidence of cultural drift 

with respect to sense of urgency response to pulse based tones [31]: sequences or 

combinations of tones that a previous generation may have found alarming/discordant 

may not arouse the same emotional responses today. 

4. The trend in technology has been to progressively reduce the user's cognitive burden 

so as to minimize the possibility of human error, and personalization is one way to 

achieve this goal. A widely used textbook on software-user-interface design by Steve 

Krug is appropriately titled, "Do not Make me Think" [34]. Examples of technology 

that operates in this fashion are cited below.  

a. When numerous signals are generated near-simultaneously, there is a 

significant cognitive burden involved in mentally translating the corresponding alert 

sounds into their meaning, and then performing an action based on that meaning. In 

fields such as Formula One car racing, where alerts to drivers have long been 

personalized, a driver must track a very large number of simultaneous inputs: the 

driver's crew helps to minimize the driver's cognitive burden by monitoring the status 

of the car remotely and providing direct verbal input to the driver. 

b. In signal transmission, the historical dependence on Morse code, which can 

work in the most primitive and noisy conditions, but which requires significant 

operator skill and training, was largely eliminated as electronic transmission became a 

more reliable and error-recovery protocols became more robust. 

c. High-end automobiles use speech synthesis to directly prompt the driver to 

perform an action, as opposed to merely emitting beeps or alarms that the driver must 

interpret. GPS Navigation aids employ speech synthesis to provide directions. 

In summary, alarm design should take into account the opportunities for 

personalization that technology provides. The role of personalized alerts is now 
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envisaged in a futuristic scenario that is, however, well within the scope of today's 

technology. 

1. When a healthcare provider starts their shift at the ICU and logs in, a central server 

looks up the provider's personalized alert sounds and transfers them to the bedside 

devices that are connected to the patients that the provider is responsible for during 

the shift.  The peripheral device also possesses the ability to record sounds much like 

today's smartphones.  

2. The provider uses a mobile earpiece, to which the alert sounds are transmitted 

wirelessly from the bedside device. The personalized sounds, which are meaningful 

only to a particular provider, are therefore heard only by that provider rather than by 

the patient who is in no position to do anything about them. The use of earpieces will 

address a major concern about audible alarms today: being inundated with their own 

alarm sounds as well as everyone else’s makes it very difficult for patients in ICUs to 

get any rest. 

3. The bedside device may multi-cast, so that if more than one provider is responsible 

for that patient, each provider will hear different sounds. With proximity sensing, 

high-priority sounds may be sent to the physically most proximate provider even if 

that provider has not previously been designated to manage that particular patient.) 

4. In emergency situations, some patient-management chores that do not reqire nursing 

expertise– e.g., rotating the patient to prevent pressure ulcers, or to assist respiratory 

drainage – may make sense to delegate to volunteers or relatives. Unskilled 

volunteers cannot be expected to recognize the full range of alerting sounds. Instead, 

the range of alerts may be customized to allow them to recognize a narrower range – 

a set of sounds that they can act upon with respect to performing specific actions on 

the patient, and a "catch-all" sound that simply indicates that they should seek the 

help of a nurse. 
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5. The alert sounds need not necessarily be beeps or musical tones.  A short spoken 

phrase stating the problem (or the corrective action to be performed) might in fact be 

preferred, since it allows bypass of the step of mental translation of the sound into the 

action.   

Further, unlike speech synthesis or pre-recorded messages that are recorded in a 

particular language, personalized messages can be recorded in the user's own language, 

and even the user's own voice.  This makes them applicable to situations where clinical 

monitoring equipment designed in one country is deployed elsewhere (e.g., In the 

emergency situation, in a third-world country during international aid efforts for a natural 

disaster), customized alerts could be phrases in a non-English language that are recorded 

on location.  
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CHAPTER 3 METHODOLOGY 

This chapter describes the tools and methodology used to create our study, and the 

results and observations that the study provided.  First we’ll discuss the design criteria for 

a personalized alerts study platform in section 3.1. Section 3.2 will introduce the custom 

application that was built to meet that criteria; PASA. Section 3.3 will describe the study 

that was designed and executed with the application. The study results will be presented 

in section 3.4, and in section 3.5 we’ll summarize and discuss those results.  

3.1 Application design criteria 

With the exception of some studies that focused solely on measuring semantic 

differentiation, all of the previous experiments studying audible alerts utilized an 

integration of software and hardware that sounded alerts and recorded information of 

interest about a listener’s response to those alerts- usually recognition, retention, and 

response time, or some combination thereof. Typically the platform developed for the 

study was constrained to the specific parameters of the individual study and therefore was 

a “one off” and not intended to facilitate future research. 

It quickly became apparent that studying these responses with respect to 

personalized alerts required a platform that provided capabilities not previously 

considered or necessary. For instance, it was necessary to create a simple means for 

capturing the sounds that a user might want to use for their personal alerts, one that could 

readily accommodate the variety of sources that a study participant might draw upon for 

sounds such as CDs, ringtones, voice, video, etc. 

Once the sound was captured, the ability to edit clips consistently in an 

expeditious manner was also necessary in order to best facilitate subject participation in 

the creation of their personalized alerts. The sound had to be visible in a waveform editor 

so that cropping, normalization, and Hanning windowing [35] functions could be easily 

applied so as to homogenize gain levels and eliminate the annoying clicks and pops that 
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usually result from cutting pieces of audio out of a longer selection. Several DAW 

(Digital Audio workstation) applications were considered1, but they were deemed too 

cumbersome to allow timely collaboration between the researcher and study participant. 

Additionally, once an alert was created, there had to be a means to accommodate 

the participant’s sense of repetition, i.e., what type of looping and interburst attributes 

would make the sound more effectively convey the priority level that they were mapping 

it to. 

Because all of the alert attributes had to be persisted across test sessions, a data 

store that would respond to requests quickly enough to allow for individual sounds to be 

loaded into playback buffers in real time would have to be designed. Each sound needed 

to be indexed and recorded, along with volume information, looping parameters, and 

information the application needed to afford playback, such as sound type and clip 

length. 

All of the above requirements needed to be met not only for personalized sounds, 

but for any type of sound that a study might be designed to contrast against, e.g., sounds 

meeting different standards, abstract sounds, earcons, or simple voice commands. 

Since personalized alerts had not been studied before, it was also determined that 

building an interface that would allow study parameterization to be very flexible was also 

needed.  All previous research on retention and recognition had been done with 

predetermined sounds, and few of the research articles provided additional insight by 

running successive sessions with changed control parameters. We wanted our tool to 

function as a protocol designer that would serve as a hub not only for current research, 

but for future research on personalized information in the context of health care. 

                                                
1 Logic Pro, Ableton Live, Audacity, Protools, Garageband, Soundtrack Pro. 
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The interface that a study participant uses to make selections during the execution 

of a study is also important.  The interface must be simple to understand, easy to use, and 

offer a means to present any desired feedback to the study participant during the course 

of a test session. These attributes provide interface credibility [36], and in doing so, 

minimize bias that the interface might affect upon study results. 

The level of dynamic malleability that the touchscreen based interface provides 

makes it an ideal platform upon which direct manipulation interfaces can be developed. It 

is a device that has become highly ubiquitous and is easy to learn. It can easily host 

interface elements, such as buttons for instance- that dynamically change as required by 

parameters of the application, e.g., button location, number of buttons, and images within 

the buttons (icons). Touchscreen buttons, often referred to as “soft buttons”, offer 

performance that is similar, and in some cases, even superior to hard buttons [37]. 

3.2 PASA (Personalized Alerts Study Application) 

Once the design criteria was established, an appropriate combination of hardware 

and software was selected that could be used as a development platform for what would 

eventually become PASA, short for Personalized Alerts Study Application.  PASA can be 

run on either a Windows PC or a Macintosh. The touchscreen selected was Apple’s iPad. 

PASA communicates with an iPad through a wireless connection and PASA controls the 

interface that the study participant interacts with on the iPad. PASA also has the ability to 

synchronously control multiple iPads. This feature allows a study protocol to be designed 

that could host several participants reacting to personalized alerts simultaneously. See 

figure 1 for a screen shot of PASA and figure 2 for an example of an iPad screen 

rendered and controlled wirelessly by PASA.
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Figure 1. PASA interface
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PASA was developed with Max/MSP. The iPad interface is rendered by MIRA. 

Max/MSP and MIRA are both development tools available form Cycling ’74 Inc. [38]. 

Applications developed with these tools can run unmodified on both Macintosh and 

Windows computers. Max offers similar capabilities as Csound, the public domain 

application used by Wee and Sanderson to develop a study on melodic alarms in 2008 

[2], but adds a visual programming interface that combines elements of both traditional 

programming languages and circuit design. It is ideal for rapid prototyping, and its native 

programming environment can be augmented with libraries written in both Javascript and 

JAVA. 

 

Figure 2. iPad interface for 10 alerts 
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MIRA is an application that runs natively on the iPad. It allows a Max application 

to render and draw an interface, and control that interface in real time through a wireless 

connection.  This offers several advantages over the traditional iOS development 

environment. Applications can be developed that are not constrained to OS X, the 

development process does not require time consuming compile and load cycles, and the 

Max application can serve as the central hub for all interface and logic processing, which 

eliminates the need to develop separate applications for both computer (server) and 

touchpad (client). For a screen shot of the iPad interface that was created with PASA and 

rendered with MIRA for the 10 alert study, see figure 2.  

PASA allows sound to be extracted from an AIFF audio file and trimmed to be 

effectively used as an audio alert. PASA has a waveform display panel that allows the 

sound clip to be edited visually (i.e. cropped, normalized, trimmed), and can store up to 

ten sounds for each study participant. Each sound, corresponding to an alert, has a "slot" 

in the study design interface (fig 1., top left zone) for selection and manipulation. PASA 

displays clip length, so a sound clip can also be created that meets any sound pulse length 

desired. Additionally, PASA has ten inter-pulse delay controls, plus an inter-burst delay 

control.  This allows sounds to be created that comply with the inter-pulse and inter-burst 

requirements of both the ISO 9703.2 and ISO 60601-1-8 standards. Sound files can be 

dragged and dropped into the application, recorded into sound bank slots directly, or 

recorded as simple named files that can be edited and assigned to banks at a later time.  

As a tool that facilitates designing study protocols, PASA can be used to create 

banks of personalized sounds and run a study that tracks response time, retention ability 

and recognition between any two banks of sounds. In our case, the personalized sounds 

were contrasted with sounds that meet the most current ISO standard, ISO 60601-1-8. 

Study participants are keyed with a numerical ID, which the study designer can specify. 

In design mode, PASA will alert the study designer if they are attempting to modify a 

subject ID that has already been assigned, and suggests a study participant ID that has not 
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been used (see figure 11). In session mode, PASA will automatically begin and end a 

study, prompting the study participant when new sections of the study are to begin. For 

instance, in our first study session, there were four sections, (1) sound bank 1 training 

section, (2) sound bank 1 testing section, (3) sound bank 2 training section, and (4) sound 

bank 2 testing section. In the follow-up session there were only two: bank 1 testing 

section and bank 2 testing section. (see section 3.3). 

3.2.1 PASA audio capture and editing capabilities. 

The audio editing section of PASA is designed to allow comfortable interaction 

between the study participant and the researcher by providing a means to easily record a 

sound and quickly edit that sound to make an acceptable alert. Figure 3 shows the visual 

waveform editor that allows the researcher to quickly zero in on the specific section of an 

audio clip and respond to the study participant’s change requests interactively. This 

 

Figure 3. PASA waveform editor 
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visualization of the audio clip provides a simple, self-explanatory means to convey what 

each edit is doing to the sound, thus facilitating deeper collaboration between the 

researcher and study participant. In our study, all study participants, after seeing the 

results of an edit sub-step and listening to the result, immediately understood what was 

being done to their initial “raw” sounds and enthusiastically contributed to the editing 

process. This gave them confidence that they had indeed “personalized” their alerts. 

 

Figure 4. PASA alert sound slots 
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3.2.1.1 Adding Sounds to PASA 

Figure 4 shows the sound slots in PASA. To begin the process of creating an 

audio alerts PASA provides a number of starting points. (1) A Sound can be added with 

‘Drag and Drop’- by dragging the file from a directory window into the alert slot desired, 

(2) An alert sound can be recorded into a slot by clicking on an empty slot. The slot will 

go into record mode and begin recording. A second click on the slot will stop the 

recording and the recording will be immediately loaded into the waveform editor. (3) The 

‘record generic’ can be used to navigate to an area in the file directory and give a 

recording a name.  This can be useful if several recordings need to be made, and the 

sounds are to be dragged into slots at a later time. The ‘stop’ button will end a generic 

recording. Gain controls in slot recording and generic recording work the same, and the 

level is shown below the waveform editor (see figure 5). 

3.2.1.2 Editing Sound Clips in PASA 

Once a sound is recorded or loaded into a slot, clicking on the button will load the 

waveform editor with the sound. At this point the sound can be played once by clicking 

on ‘play’. Turning on looping will allow the sound to loop, and the looping 

characteristics can be set-up with the loop controls.  While looping, the sound can be 

 

Figure 5. PASA waveform editor 
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edited with the editing controls, and, as the individual edit function is applied, the 

waveform window will show the edit effect on the sound, and the sound will audibly 

change to reflect the effect. This allows for ‘real time’ editing; the result of an edit 

function is immediately reflected visually and audibly. The suggested steps for editing 

are: 

1. Select the section of the audio clip that is desired for the alert sound and use the 

cropping tool.  The selection function automatically floats the ends of the selection to 

zero crossing points in the audio clip. This is done to eliminate clicks that would 

otherwise occur. If looping is turned on, the selection will play in a continuous loop, 

which gives constant feedback of the selected audio, allowing the precise section of a clip 

 

Figure 7. Selection cropped 

 

 

Figure 6. Audio clip selection 
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to be identified audibly when selecting. The selection palette on the left side of the 

waveform editing window provides various types of selection (see figure 6). From top to 

bottom: 

a. I-beam icon: Click at a location and drag. 

b. Double beam icon with arrows pointing both ways: Click on a location 

and move up or down to expand selection equally to the left and right of 

the selection point. 

c. Hand icon: Zoom in on waveform. 

d. Pencil icon: Draw on waveform (currently disabled).  

2. Crop the selection. When section of the clip that will become the alert sound is 

selected, the ‘crop’ button will cut the selected section and fill the entire waveform 

editing window with it. This is the first step in editing and the crop button is labeled with 

the number ‘1’. See figure 7. 

3. Normalize the selection. This is a standard audio normalization function. A 

constant amount of gain is applied to the clip to bring the peak amplitude to a target level. 

This function works very well when the recording gain is too low for the gain control to 

increase amplitude to an acceptable level. The normalization button is labeled with the 

number ‘2’. See figure 8. 

 

Figure 8. Selection normalized 
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4. Trim the selection. This function uses a Hanning [35] window function to apply 

a waveform smoothing effect to the beginning and end of the selection. Smoothing 

parameters have been selected that result in a tone that slowly increases in amplitude as 

the tone starts, and gently decreases in amplitude as the tone ends. Often the normalized 

sound is appropriate for an alert, but if there is a desire to give the alert a ramp up and 

ramp down to increase effectiveness, the trim function can be very effective.  It also 

works well when the clip has an aggressive amplitude ramp, as this often can cause a pop. 

Trimming is designated by the ‘trim ends’ button which is label with number ‘3’. See 

figure 9. 

While the editing steps outlined above were designed to produce optimal results, 

the editing functions can be done in different orders than those outlined above. Practicing 

editing functions on audio clips will provide some insight into which edit functions work 

best with which type of audio clips. There is no undo, however, clicking on the sound 

bank button will reload the original clip for editing, allowing editing to be started over. 

When the study participant is pleased with the alert, the ‘write’ button will commit the 

edited alert to the sound bank. 

 

 

Figure 9. Selection trimmed 
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3.2.1.3 Looping Alerts in PASA 

PASA contains a loop controller that allows inter-burst timing.  This is the first 

slider in Figure 10 below. Used alone, this slider will allow the delay between an alert to 

be specified.  Additionally, PASA has ten inter-pulse interval sliders. These can be  

used to build a series of delays between alert sounds. With these controls, an alarm can be 

created that meets the tone burst requirements of the 60601-1-8:2012 standard (See Table 

Table 1. ISO 60601-1-8:2012  

 
 
Source: International Standards Organization, Geneva, Switzerland, IEC 
International Standard IEC 60601 (2012): Medical Electrical Equipment – 
Part 1–8: General Requirements for Safety. International Standards 
Organization, Geneva, Switzerland. 
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1).  Figure 11 shows an alert with pulse and burst parameters set to meet the requirements 

for a high-priority alert as specified in table 1, which is taken from the ISO 60601-1-8 

specification. 

To empty a slot, or set the looping controls to zero, there are radio buttons by each 

control. In the case of sound slots, clicking on the radio button will empty the sound slot 

so that it can be re-recorded, and clicking on the radio buttons by each loop control will 

zero the control.  Also the radio buttons by each loop control will illuminate while the 

sound is playing to indicate where in the inter-burst sequence the sound is playing. This 

gives a visual indicator that corresponds to the sound loop characteristics. Much like the 

waveform editor visual feedback, this gives visual feedback in an effort to understand 

what the loop controls are doing with respect to the alert sound characteristics. 

The gain (volume) and looping parameters are stored on a sound-by-sound basis. 

When a sound bank is loaded, each sound has a corresponding parameters record that is 

loaded with each sound into the playback engine during testing, or recall. When all of the 

alert sounds have been recorded and edited, clicking on the toggle box will lock the 

 

Figure 10. Alert pulse and burst parameters that meet 60601-1-8:2012 requirements 
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parameters, and, depending on the session selected either write out all information or 

begin a study (see figure 12 and figure 13).  

3.2.2 Designing a Study with PASA 

PASA’s study design control panel allows a researcher to customize their study 

protocol by providing a means to manipulate several study parameters (see figure 11): 

1. Total number of alerts to be played to the study participant for each study section. 

The control in figure 11 is set at 100 alerts, which means that the subject will 

respond to 100 alert events for their personalized sounds and 100 alert events for 

the sounds loaded into another sound bank. In our study, the second bank contains 

sounds that meet ISO 60601-1-8 requirements.  

2. Total number of different alert sounds to be used in the study (1-10). The control 

in figure 11 is set to use 6 different sounds. 

 

Figure 11. PASA study design control panel 
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3. Interval of time in which an alert can play specified in milliseconds. For instance, 

2000 milliseconds means that one alert will always play within two seconds after 

a previous alert has been responded to, unless a test session is just beginning and 

the alert being played is the first alert. The parameter in figure 11 is set for 2000 

milliseconds. 

4. Random alert setting. This indicates whether alerts should play after the timing 

interval has passed or randomly within the interval specified. The option selected 

in figure 11 is for random alerts. 

Figure 12. Session lock, training cycles and comparison bank 

5. If a study designer wants study more realistic alert scenarios, the study can also 

include events where more than one alert plays within the specified timing 

interval. In figure 11 the parameter is set to play simultaneous alerts 5 times. 

These events will be evenly distributed within the 100 alerts, so a simultaneous 

alert event will occur every 20 alerts (100/5 = 20). Also the number of 

simultaneous alerts can be specified – in figure 11 the number of simultaneous 

alerts played will be 2. Note: simultaneous alerts will occur randomly within the 
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alert time interval (3 above). This allows for a more realistic experience; alerts 

could occur at the same time, or stagger randomly. 

6. Different aspects of a study are executed with the session selector.  In figure 11 

the selection is “Sounds”, which indicates that PASA is in sound capture and 

design mode for the particular bank; “first” indicates that you want to do a study 

that begins with sound training, “second” and “third” are sessions in which a test 

can be conducted without training. 

7. Alert training cycles: number of times the application cycles through the alerts 

during the training phase of a test sequence. In figure 12, the study is set to cycle 

the alerts 10 times. 

8. Alert Bank for comparison: which bank contains the alerts that are to be included 

in the test with the personalized alerts. In figure 12, the study is set to compare the 

personalized alerts with the alerts in sound bank 300. 

 

Figure 13. Session write and study execute 
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9. Wait for Correct response: When this is checked the alert will continue to play 

until the study participant touches the correct response. In figure 12, the study is 

set to have a new alert play whenever a panel is touched. 

10. ID overwrite warning: when the study session is set to ‘sounds’, PASA is in alert 

design mode. When a study participant ID is entered into the ID box, PASA will 

warn that the ID may be overwritten if there is already alert data present for that 

participant ID. In figure 11, PASA is warning that participant ID 5 is already in 

use, and that participant ID 7 is available. Clicking on the green button within the 

dialog will automatically assign 7 as the participant ID. 

11. When the session information is correct, the check box in figure 12 will lock the 

session data. At this point the check box will turn green and the commit button, 

‘All systems go!’ will be displayed. Clicking on this button will write out all 

study session data if PASA is in design mode (session ‘sounds’). For any other 

mode, clicking the green button will begin the study. Session 1 will run the study 

with training sections, session 2 and 3 will run a study with just the testing cycles. 

3.2.3 PASA data collection and error recovery 

PASA automatically builds a persistent data table with records that include the 

following information. The index key into the table is the study participant’s ID. See 

Table 2. 

During the execution of a study, the following attributes are recorded: 

1. Which Section of the study does the record refer to, i.e., training for the 

personalized sounds, testing for the personal sounds, training for the contrasted 

sounds, or testing for the contrasted sounds. In Table 2, the section shown is 

‘PAT’ or personalized alert training. 

2. Target Alert: which alert was actually played 

3. Correct Response (1 = yes, 0 = no): whether the study participant selected the 

correct alert button. 
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4. Actual Alert Hit: which alert was selected. 

5. Total Time (seconds): this is calculated as a function of Alert Start Time – Alert 

Stop Time; the result is recorded as seconds, with a 1/1000 second accuracy. 

6. Alert Start Time (as CPU clock timestamp): this is the time that the alert was 

played. 

7. Alert Stop Time (as CPU clock timestamp): this is the time that the alert was 

stopped by the study participant making a selection. 

8. Participant ID: which participant does the record belong to. 

9. Simultaneous Alert (1 = yes, 0 = no): whether the alert was part of a simultaneous 

alert event. 

10. Which Study Session: 1, 2 or 3. 

Table 2. Data format key 

1 2 3 4 5 6 7 8 9 10 

PAT 1 1 1 1.746 949087.125 950833.3125 1 0 1 

PAT 2 1 2 2.556 952805.6875 955361.125 1 0 1 

PAT 3 1 3 2.183 955708.875 957891.75 1 0 1 

PAT 4 1 4 3.466 958655.125 962121 1 0 1 

PAT 5 1 5 2.473 963925.125 966398.4375 1 0 1 

PAT 6 1 6 2.407 966760.5 969167.375 1 0 1 

 

 

Study start and stop times are recorded in a separate table (see table 3): 

1. Section. 

2. Session Start Time (as CPU timestamp). 

3. Participant ID. 

4. Section. 

5. Session Stop Time (as CPU timestamp). 

6. Section. 
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7. Total Session Time: hours. 

8. Total Session Time: minutes. 

9. Total Session Time: seconds. 

10. Which Session. 

Table 3. Session timing table. 

1 2 3 4 5 6 7 8 9 10 

PAT 949040.375 1 PAT 1024162.625 PAT 0 1 15.122 1 

PA 1034160.625 1 PA 1393616.625 PA 0 5 59.456001 1 

SAT 1403612.75 1 SAT 1497357.625 SAT 0 1 33.744999 1 

SA 1507354.625 1 SA 1930177.75 SA 0 7 2.823 1 

 

 

The set of personalized alerts are stored within the server’s host OS file directory 

system for reuse in future study sessions. Once the alert has been created and edited, a 

new sound file is written which is renamed 

[<StudyParicipantID>space<SoundNumber>.aiff]. So, for instance, if the Study 

Participant ID was 7 and the alert being created was alert 1 (the highest priority alert), the 

resulting filename would be “7 1.aiff”. This is done to allow for alert banks to be 

automatically reloaded under program control for study protocols in which follow-up 

study sessions have been designed, as the application is capable of running study sessions 

automatically. 

As a fail-safe, the program is designed to automatically resume the study after a 

period of 20 seconds if, for some reason, the system becomes temporarily unresponsive 

to the participant. In such a case, the data point affected by the delay is discarded.  

All data is tabulated in a table form that easily imports into tools that might be 

used for data analysis (e.g, Excel, Access, Minitab, R, SPSS, etc.). 



 

 

40 

 

3.3 Experimental Protocol 

3.3.1 Hardware configuration 

The study was conducted in a 12’ x 12’ room with no special treatment which 

would alter the acoustic signature. A table with two chairs was placed in the center of the 

room, upon which all of the equipment used was permanently placed throughout the 

duration of the study.  

The computer used as a study server was a quad-core 15’ Macbook Pro laptop 

computer. The audio interface used was a Focusrite Saffire 6 AD/DA convertor, which 

connects to a computer via a USB interface. The Saffire 6 provides two input channels 

and 4 output channels. 

Since the Sapphire 6 is class compliant it does not require special operating 

system drivers, and allows audio routing to be controlled with software. PASA takes 

advantage of this, and automatically switches channel routing when the transition is made 

between recording and editing. This removed any conditions that might create a feedback 

loop in the audio chain, and allowed the Saffire input and output gain settings to be 

permanently set at one level for the entire study. All gain settings for recording and 

playback were done through PASA’s audio editor. This allowed level controls to be 

easily manipulated and, most importantly, stored and linked to the individual sound files. 

Each sound, when played, could have its own volume level- which made it very easy to 

work with audio sources of varying amplitudes, as it normalized the output volumes of 

each personalized sound for each study participant and diminished the effect that 

amplitude might have in recognition and retention across the personalized alerts sound 

collection as a whole. 

The touchscreen device was a 3rd generation iPad, which communicated with the 

laptop through a wireless 802.11n network via a DHCP IP connection. The iPad was not 

tethered to a power source. For our purposes, the wireless network was configured to be 

closed, with only the Macbook Pro (server) and the iPad3 (client) connected to it. 
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Both the researcher and the study participant used headphones. The researcher 

used Sennheiser PX-100 headphones, and the study participant used AKG K501 studio 

monitor class headphones. These headphones were selected because they are open-

design. This allowed conversation to take place as necessary during audio editing and 

testing. 

A Shure SM57 microphone was used for all recordings that could not be 

accommodated with a direct line connection, (e.g., voice, acoustic instruments, etc.). It 

was permanently plugged into line input 1 of the audio interface and situated in a stand 

that allowed easy manipulation of location. A standard ¼” audio cable was plugged into 

input 2 of the audio interface. Audio connection adapters were utilized as needed to allow 

direct connections when necessary with electronic devices (e.g., smartphones, MP3 

players, CD players, etc.). All alerts were mixed mono – the same sound for both ears. 

3.3.2 Study Protocol 

Once the study received IRB approval, a recruiting effort was undertaken in The 

College of Nursing at The University of Iowa, where members of the faculty were kind 

enough to allow recruitment presentations to take place in their classes.  

Students signed up at the presentations, and were also provided flyers which 

contained contact information for the study coordinator, and a URL for a web site that 

was set-up for students to self-enroll for test session slots. Upon enrollment (either by in-

person or through the website) the participant was emailed a summary of the study 

procedures and a consent letter. They were asked to consider what they would like to use 

to create audible alerts and to bring their sounds or ideas about sounds to the study 

session. 

No personal information was recorded other than contributed contact information. 

At the beginning the participant was asked whether they had any formal musical 

training, since this was a factor that might influence performance: melodic alerts have 

been reported to be remembered better by musically trained subjects [3], [1]. 



 

 

42 

 

The protocol comprises of two sub-studies: 

1. Comparing performance of a subject with standard versus personalized audio 

alerts when discriminating within a set of six alerts, and then repeating this 

comparison with the same two sets of alerts in a second session after a gap of two 

weeks. 

a. The subject, who is identified by a sequentially generated integer (a participant 

ID), is tested with both sets of sounds in a single session.   

b. At the start of the first ("Baseline") session, the subject designates the sounds that 

are to be used for personalized alerts. These may be short phrases that the subject 

speaks into the microphone, music supplied by the subject as media files (e.g., 

WAV, MP3, MP4) from which samples of 2-10 seconds duration are made to the 

subject's specification, or a sound/music clip that is downloaded from an Internet 

resource such as YouTube and similarly cropped to 2-10 seconds duration. Each 

sound is designated by a number from 1 to 6, where 1 indicates the highest 

priority/ urgency, and 6 the lowest. 

c. In half the participants (participants with an even-numbered participant ID) the 

set of standard alerts is employed first for testing, while in the other half, the set 

of personalized alerts is employed first. 

d. Immediately prior to testing with a set of alerts, the participant has a "training 

run" of all six sounds played in sequence three times. The study coordinator 

reminds the participant that they may listen to each sound as long as they wish, 

and that the next sound will only be played when they touch the panel that is 

mapped to the sound. In the training session, if the subject does not select the 

correct alert, that alert will be repeated until selected correctly.  The user sees a 

blank screen divided into six columns, numbered 1-6 for highest to lowest 

priority. 
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e. The test run for a set consists of 105 randomly chosen alerts. In 100 of these, 

single sounds are played. The time interval between alerts falls within a timing 

window that varies randomly between 100 milliseconds and 2 seconds after the 

user makes a response. At every twentieth (100/5=20) single-sound alert, two 

sounds are played randomly within the 2-second interval. For the simultaneous 

alerts, the subject is instructed to attempt to respond to the highest-priority alert 

first, and the program goes back into single-sound mode only after the user has 

made two responses. 

f. The results recorded during the experiment (described in section 3.2.3) are stored 

within the application in a dedicated table space.  

g. The purpose of the second ("Repeat") session is to measure retention in long-

term memory, in order to test the hypothesis that alerts that have been 

personalized to a subject's preferences are recalled better than standard alerts. At 

the start of each set in the Repeat session, the experimenter sounds the alerts just 

once in sequence, at a 3-second gap between sounds, as a memory refresher. 

Such prompting, which primes the subject's mind for recall, is a legitimate 

intervention: it is too short to trigger another cycle of learning in the vast 

majority of subjects, who must rely instead on their long-term recall. Priming is 

necessary because the subjects have had no opportunity to rehearse their memory 

of the alerts after the Baseline session. The rest of the experiment is identical to 

the protocol as described for the baseline session.  

2. The second study compares performance of a subject with standard versus 

personalized audio alerts when discriminating within a set of ten alerts. The 

experimental design is identical to that of the Baseline session of the first experiment, 

with the difference that the user interface is divided into two rows of five areas each 

(see Figure 2), and each of the ten icons indicates a specific type of critical care alert. 

The icons, in order from highest to lowest priority are: 
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a. Heart alert 

b. Oxygen alert 

c. Ventilator alert 

d. Power failure alert 

e. Perfusion alert 

f. Drug/Medication alert 

g. Temperature alert 

h. General Alert, High Priority 

i. General Alert, High Priority 

j.  Information Alert 

There is no repeat session.  

3. Categorization of Sounds used by Subjects for Personalized Alerts 

Immediately after the baseline session concludes, the experimenter listens to the 

sounds designated by the subject for the personalized alerts, and categorizes them into 

four groups: 

i. Musical tones, including segments of recorded music. 

ii. Phrases recorded in the subject's own voice, or voice audio clips. 

iii. Abstract sounds – e.g., sound effects from cartoons, simple chimes or rings, 

etc. 

iv. Auditory Icons (“Earcons"): these are sounds that are auditory equivalents of 

the icons presented in the user interface, where the sound directly suggests 

the nature of the alert: Edworthy et al [23] refer to these as "auditory 

metaphors".  They apply only to the 10-alert experiment. Examples are the 

rhythmic sound of heartbeats, bubbling sounds to indicate oxygen, etc. One 

subject selected a sample of Darth Vader's breathing from a "Star Wars" clip 

on YouTube. Many of the visual icons corresponding to an alert (e.g., the 
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temperature or medication alerts) do not have an intuitively obvious auditory 

icon. 

3.4 Rationale of Experimental Design 

3.4.1 Study 1: Six Alerts, Personalized vs. Standard,  

Repeated after 2 weeks 

There are numerous variables that can affect performance in studies of recall, 

such as the sounds or music used for the alert, and the subject's general intelligence, 

musical ability, and memorization skills. Using a crossover (paired) design, with each 

subject as their own control, all factors other than the variable that we are testing – the 

choice of alert (the "intervention") – are controlled and eliminated in the comparison.  

The choice of six alerts was made for two reasons:  

• George Miller's highly cited 1956 paper, "The Magic Number seven, plus or 

minus two" [39] indicated that that the number of unrelated objects ("chunks") 

that an average human can hold in working memory is seven: later work indicated 

that the number of chunks depends on the category (i.e., span is seven for digits, 

six for letters, and around five for words.)  

• Our preliminary experiments with standard alerts on volunteers prior to 

conducting the test indicated that six is a reasonable number in terms of cognitive 

burden, the memorization task being neither insuperable nor too easy. 

It is our hypothesis that the participants' response to the personalized alerts will be 

faster and more accurate than the standard alerts. PASA records the response time to 

individual alerts is measured by total response time. 

3.4.1.1 1b. Sub-analysis of Error rate with Simultaneous Alerts 

As stated earlier in the description of the experimental protocol, in each session, 

after every 20th alert, the PASA software plays two alerts one after the other, and the 

subject is expected to make two responses in succession, indicating the higher-priority 

alert first and the lower-priority alert next. This is a simulation of a complex cognitive 
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task that occurs occasionally in real scenarios, where two alerts associated with a given 

patient may go off, and the healthcare provider is expected to attend to both (but attend to 

the more urgent one first). As stated earlier, one of the complaints against the ISO 60601-

8 standard alerts was that the high-priority alerts are essentially the same as medium-

priority alerts with the addition of two extra tones at the end. When both types of alerts 

fire near-simultaneously (and do so repeatedly), the subject is often likely to notice only 

one of the alerts (typically the higher-priority alert, because of the additional tones), and 

the medium-priority alert can be masked. One may therefore expect that the error rate 

with simultaneous alerts in general will be significantly higher than the overall error rate: 

it is worth studying whether personalization strategies, which typically result in subjects 

choosing sounds that are very distinct from each other, would reduce the error rate.  

One limitation of the current version of the software is that if the subject identifies both 

alerts correctly, but transposes the responses so that the lower-priority alert is responded 

to first, the alerts will both register correct as response order is not implicitly identified. 

This was done to allow correct alerts to register in the event that the participant 

responded to one alert before the second one sounded; alert events are still scored as 

individual events in a simultaneous alert. 

When performing the repeat session after a two-week gap, the subject has had 

minimal time to rehearse the alert sounds, relying on long-term memory, and the 

difficulty in responding to both of the simultaneous alerts in correct order may be 

somewhat magnified. We need to test whether this is in fact the case.  

3.4.2 Study 2: Ten Alerts with Icons,  

Personalized vs. Standard 

The ten-alert experiment was intended to simulate a scenario that more closely 

and realistically approximates the role of healthcare providers in ICUs, who have to deal 

with as many as 12-16 different types of audio alerts. The "7± 2" threshold was 

deliberately exceeded, posing a challenge to most subjects' capabilities of short-term 
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memorization. The user interface was altered based on feedback from one member of the 

thesis committee during presentation of the thesis proposal and demonstration of an 

earlier version of PASA. The concern raised was that indicating target areas on the touch-

screen interface with numbers only had a drawback: realistic control panels, e.g., as used 

in automobile dashboards or aircraft control panels use icons. Without icons, the subject 

has to make an explicit mental association between a specific area on the screen (i.e., a 

number) and a specific alert type. This results in an additional cognitive burden when the 

number of alerts increases, especially given the short training time in which the subject is 

expected to learn the alert sounds. Icons that actually represented the nature of the alert 

were therefore incorporated into the user interface, as stated earlier. 

As discussed in the Results section, our data from the six-alert baseline 

experiment indicated that, on average, our subjects, while getting only four personalized 

alerts wrong in a session, were getting almost 27 standard audio alerts wrong. The 

potential for confusion and errors in dealing with many more types of alerts is far greater: 

many of these alerts sound so similar that, in actual clinical scenarios, they may only 

provide information about the general direction where the alert is originating: once at the 

bedside, the healthcare provider generally has to spend additional time making a more 

precise diagnosis. 

The entire purpose of personalized alerts is to reduce cognitive burden on the user 

and greatly reduce (or even eliminate) training time, in the same way that, while 

manually deciphering a message that is being transmitted in Morse code requires 

specialized knowledge of a set of 36 symbols of dashes and dots, reading the equivalent 

plaintext (where technology has performed the signal translation) requires only basic 

literacy.  Through the 10-alert experiment, we wished to determine whether, as the 

number of distinct alerts increases to the point where it poses a challenge to memory, 

subjects who have the freedom to personalize their alerts use personalization approaches 

that minimize memorization burden. An ancillary question to be explored is whether 
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these strategies differ from those used in the 6-alert situation, where the number of 

distinct alerts is small enough to be readily memorized by the average subject. 

3.5 Statistical Analysis: Methodology and Justification 

3.5.1 Prior to the Experiments: Sample Size Estimates  

When we applied to the IRB for permission to recruit subjects, we performed a 

power analysis/sample size estimation using the freeware program PS from Vanderbilt 

University's Department of Statistics [40]. We estimated that if we assumed a difference 

between the control (standard) vs. test (personalized) interventions of 0.33 standard 

deviations, with an alpha error of 0.05 and a power of 80%, we would require a minimum 

of 73 subjects This number represents an upper bound: if the difference between the alert 

types were larger than this, the number of subjects required to demonstrate a difference 

between groups would be correspondingly fewer.  

As discussed in the Results, however, our estimate of a 33% difference turned out 

to be highly pessimistic. On analyzing our data after 8 subjects, we found a ratio of error 

rates for standard versus personalized alerts approaching 6:1 on average, with 

personalized alerts providing consistently better performance in every subject tested. We 

were consequently able to reach high statistical significance (p = 0.00185 for errors and 

p=0.00776 for response time) with only 8 subjects, and we decided to stop after testing 

the 11 subjects we had already scheduled, and moved on to testing a 10-alert scenario. 

3.5.2 Data Analysis after Completion of Experiments 

The appropriate choice of analytical method for experiments such as ours depends 

on whether the distributions of the critical parameters – error rate and reaction times – 

would fit Gaussian (normal) distribution patterns when measured across subjects. After 

our experiments were completed, we employed the Anderson-Darling test of normality.  

We found that the data for reaction times fit the assumption of normality. We 

therefore present reaction-time summary data using arithmetic mean, standard deviation 

and range. Levene's test for equality of variances showed that the variance of the reaction 
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time data for the 6-alert data did not differ significantly from that of the 10-alert data. 

When comparing six-alert data to 10-alert data for reaction time, we therefore employ the 

unpaired t test with assumption of equality of variances. We used a paired t-test for 

within-subject comparisons (e.g., personalized vs. standard alerts, baseline vs. repeat). 

However, the error data significantly departed from a Gaussian distribution (p < 

0.005 for both the 6-alert baseline and 10-alert experiments for personalized alerts). For 

example, with personalized alerts, while most subjects had seven or less errors in the six-

alert baseline experiment, one subject had 33 errors. When we present summary data for 

errors, therefore, we present medians and ranges, rather than using means and standard 

deviations. For comparisons of error data, we use the Wilcoxon signed-rank test (the non-

parametric analog of the paired t-test) for within-subject comparisons. To compare 

performance across subjects (6 alerts versus 10 alerts), we employ the Mann-Whitney test 

(the non-parametric analog of the unpaired t-test) for error data. 

We used Minitab version 16 (Minitab Inc., State College, PA) for all the data 

analyses. 
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CHAPTER 4 RESULTS 

4.1 Standard vs. Personalized Alerts, 

6 Alerts: Baseline Study 

4.1.1 Errors for session 1: training and test 

Table 4. Errors across session 1: training and test  

Measure Personalized Alerts Standard Alerts 

Median number of errors 

and range 

4 (0-33) 27 (2-59) 

P value for differences by Wilcoxon signed-rank test:  0.004 

 

Figure 14. Errors: 6-alerts 
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See table 4 and figure 14. While performance in terms of errors varied greatly 

across subjects, the error rate with personalized alerts was consistently less than for 

standard alerts in all 11 subjects.  

4.1.2 Reaction Time 

Table 5. Reaction times: 6-alerts 

Measure Personalized Alerts Standard Alerts 

Mean ± Standard Deviation of 

average reaction time (in 

milliseconds), with range 

across subjects 

2051 ± 451 (range 1317-2668) 2559 ± 638 

(range 1623-

3921) 

P value for differences by paired t-test: 0.004 

 

Figure 15. Reaction time: 6-alerts 
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Table 6. Errors for simultaneous alerts: 6-alerts 

See table 5 and figure 15. 10 of 11 subjects had shorter average reaction time with 

personalized alerts than with standard alerts. In the remaining subject, the numbers were 

2433 vs. 2163 milliseconds for personalized vs. standard alerts. This subject's errors, 

however, were 6 for personalized vs. 43 for standard. Reaction time is less important than 

accuracy in this context, and in most other contexts as well: one of Jon Bentley's tongue-

Measure Personalized Alerts Standard Alerts 

Median number of errors 

and range 

0 (0-1) 5 (0-10) 

P value for differences by Wilcoxon's Signed-Rank Test: 0.006 

 

Figure 16. Repeat study: 6-alerts 
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in-cheek dictums with respect to software development and algorithm performance 

(stated in his classic collection of columns, "Programming Pearls" [41]), goes: "If a 

program or human is not required to compute a correct answer, one can achieve almost 

infinite performance gain by simply generating a random answer". 

 

4.1.3 Errors for Simultaneous Alerts: 6-alerts 

See table 6. With personalized alerts, 9 out of 11 subjects had no errors at all: the 

remaining two had 1 error each. With standard alerts, on average the subjects got half the 

responses wrong.  

4.2 Standard vs. Personalized Alerts– 6 Alerts: 

 Repeat Study 

Two of the 11 subjects who took the baseline study were unable to perform the 

repeat study. We therefore illustrate the results only for the remaining nine. As shown 

from the numbers below, the drop-outs have not influenced the outcome of the 

experiment materially:  the differences between performance for personalized versus 

standard alerts continues to be demonstrated with only slightly larger p values.   

4.2.1 Errors across the session 2: repeat without training 

See table 7 and figure 16. While performance in terms of errors varied greatly 

across subjects, the error rate with personalized alerts was less than for standard alerts in 

8 of 9 subjects.  

 

Table 7. Errors across session 2: repeat without training 

Measure Personalized Alerts Standard Alerts 

Median number of errors 

and range across subjects 

7 (1-40) 43 (14-68) 

P value for differences by Wilcoxon's Signed-Rank Test: 0.038 
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Table 8. Reaction time across session 2: repeat without training 

Measure Personalized Alerts Standard Alerts 

Mean and Standard Deviation of 

average reaction time (in milliseconds), 

with range across subjects 

2776 ± 446 (range 

1805-3259) 

3377 ± 389 

(range 2778-

3886) 

P value for differences by paired t-test: 0.0018 

 

 

Figure 17. Reaction time for repeats: 6-alerts 
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Table 9. Errors for simultaneous alerts 

Measure Personalized Alerts Standard Alerts 

Median number of errors 

and range across subjects 

 0 (0-1) 5 (5-6) 

P value for differences by Wilcoxon's Signed-Rank Test: 0.009 

 

4.2.2 Reaction Time 

See table 8 and figure 17. 8 of 9 subjects had shorter reaction time with 

personalized alerts than with standard; the remaining subject's numbers were 2965 ms for 

personalized vs. 2941 for standard, with corresponding error rates of 7 versus 64. Again, 

as for the Baseline study, accuracy is more important than reaction time. 

4.2.3 Errors for Simultaneous Alerts 

See table 9. With personalized alerts, 9 out of 11 subjects had no errors at all: the 

remaining two had 1 error each. With standard alerts, on average the subjects got half the 

responses wrong.  

4.3 Musical Training vs. Error Rate for Standard and 

 Personalized Alerts:  6-alert experiment 

Of our 11 subjects, 8 stated that they had some degree of musical training: this 

proportion is probably fairly typical for the state of Iowa, where most subjects have had 

some exposure to band training in middle and high school. While the lowest error rate 

overall (zero errors with personalized alerts, only 2 errors with standard alerts) was with a 

subject who had majored in classical music, we found no statistically significant 

association between musical training and errors for either the standard alerts or the 

personalized alerts when these were analyzed separately, which corresponds to similar 
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findings in past research with alerts that were not melodic [19], but does not correspond 

to results reported in the literature for melodic alerts. 

While our results do not rule out such an association, which has been reported in 

the literature for alerts meeting the 60601-1-8 specification, as stated previously, this may 

be a consequence of the small number of subjects tested, with only 3 non-musically 

trained subjects. In any case, this association was not a r hypothesis that we intended to 

spend resources testing by recruiting additional subjects – the entire objective of 

personalization of alerts is that lack of musical training should not be a barrier to the 

ability to function effectively in ICU settings. The best that we can state, given our data, 

is that any effect that musical training may have on performance is dwarfed by the effect 

of personalization. 

4.4 Contrast of Baseline Experiment with Repeat Experiment 

See table 10. These results are only reported for the 9 subjects who performed 

both the Baseline and the Repeat Study. We present the comparisons in a single table (see 

table 10), with relatively minimal comment because the results are not particularly 

surprising: subjects perform more slowly /cautiously during the repeat session than 

during the baseline session because they are required to call on their long-term memory. 

The differences between the errors, however, do not reach statistical significance even 

though the worst-case performance with the Repeat study is poorer than with the Baseline 

study: a few subjects actually show modest improvement or no change in the Repeat 

study. Testing degradation of performance accuracy, if any, after an attempt at recall was 

not a hypothesis of this study, in any case, and we only conclude that the effect of a 

temporal delay on performance is too small to be picked up with the present sample size. 

Also, the subjects received an initial prompt by hearing the alerts in sequence just once 

immediately prior to the testing, and the act of prompting may have prevented significant 

accuracy degradation in several subjects.  
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Table 10. Baseline with repeat: 6-alert test 

 
Experimental parameter Summary Statistics Baseline Repeat P value for 

comparison 
Comments 

Personalized alerts: Errors, 
overall 

Median number of 
errors and range across 
subjects 

4 (0-33)  7(1-40) P = 0.15 (not 
significant) 

2 subjects had 
slightly better 
performance on 
repeat, 2 had no 
change 

Personalized alerts: Average 
Reaction time 

Mean, standard 
deviation and range 
across subjects 

1988  ± 450 
(1317-2591) 

2776  ± 446 (1805-
3259) 

P = 0.008 by paired t-
test 

 

Personalized alerts: Errors, 
simultaneous alerts 

Median number of 
errors and range across 
subjects 

0 (0-1) 0 (0-1) Differences not 
significant by Wilcoxon 
signed rank 

 

Standard alerts: Errors, overall Median number of 
errors and range across 
subjects 

27 (11-59) 43 (14-68) P = 0.234 (not 
significant)  by 
Wilcoxon's signed rank 
test 

3 subjects had 
slight 
improvement, 1 
had no change 

Standard alerts: Average 
Reaction time 

Mean, standard 
deviation and range 
across subjects 

2518  ± 489 
(1623-3238) 

3377  ± 389 (2778-
3866) 

P = 7.43x10-5 by paired 
t-test 

 

Standard alerts: Errors, 
simultaneous alerts 

Median number of 
errors and range across 
subjects 

5 (5-10) 5 (5-6) Differences not 
significant by Wilcoxon 
signed rank 
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4.5 Standard vs. Personalized Alerts– 10 Alert Experiment 

13 subjects participated in this experiment. As stated earlier, apart from increasing 

the number of distinct alerts, icons indicating the nature of each alert are placed in 

corresponding sections of the touch-screen interface. 

4.5.1 Errors across the session: training and test 

Table 11. Errors across session: training and test 

Measure Personalized Alerts Standard Alerts 

Median number of errors 

and range 

1 (0-13) 55 (15-95) 

P value for differences by Wilcoxon signed-rank test:  0.002 

 

Differences between personalized alerts and standard alerts were even more 

significant for the six-alert sessions: across subjects, the worst performance with 

personalized alerts was better than the best performance with standard alerts. See table 

11. 

4.5.2 Reaction Time 

Table 12. Reaction time 

Measure Personalized Alerts Standard Alerts 

Mean ± Standard Deviation of average 

reaction time (in milliseconds), with 

range across subjects 

2971 ± 364 (range 

2322-3761) 

4356 ± 639 (range 

3263-5569) 

P value for differences by paired t-test:  2.2 x  10-12 
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12 of 13 subjects had shorter average reaction time with personalized alerts than 

with standard alerts. In the remaining subject, the numbers were 3352 vs. 3264 

 

Figure 18. Reaction time: 10-alerts 

 

 

Figure 19. Errors: 10-alerts 
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milliseconds for personalized vs. standard alerts, with corresponding errors of 3 vs. 63. 

See table 12 and figure 18. 

4.5.3 Errors for Simultaneous Alerts 

Table 13. Errors for simultaneous alerts 

Measure Personalized Alerts Standard Alerts 

Median number of errors and 

range 

0 (0-2) 4 (0-10) 

P value for differences by Wilcoxon's Signed-Rank Test: 0.002 

 

 

With personalized alerts, 8 out of 13 subjects had no errors at all, 4 had one error 

and 1 had 2 errors. With standard alerts, on average the subjects got half the responses 

wrong. See table 13 and figure 19. 

4.6 Standard Alert Recognition Rates 

As stated earlier, a common complaint about the 60601-1-8 standard is that the 5-

note high-priority alerts are very similar to the 3-note medium-priority alerts. The low-

priority alerts, which have only 2 notes, may be easier to remember (though they may 

also be confused with each other, especially when there are many of them). From our 

data, we wished to test the hypothesis that, in the pooled subject data for a given session, 

the errors across individual alerts are non-uniform. 

In the tables presented below (see tables 14 and 15), we present the percentage of 

alerts that were incorrectly identified, by alert. (The raw numbers of errors and correct 

responses have not been presented to simplify interpretation: due to the random nature of 

alert generation, the numbers of individual alerts presented to the subjects are unequal 

across alerts). 
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Table 14. 6-alert data: pooled baseline and repeat data 

Target Alert 1 2 3 4 5 6 
Error Percent 29.1 29 42.8 41.7 47.6 21.1 

 

Table 15. 10-alert data 

Target Alert 1 2 3 4 5 6 7 8 9 10 
Error Percent 58 63 66 67 63 77 35 37 52 45 

 

In both cases, the distributions were non-uniform, as shown by figures 20 and 21. 

We tested for uniformity by using the chi-squared statistic: the "observed" values were 

the raw numbers of errors and correct responses, while the "expected values", assuming  

a uniform distribution of error across alerts, were computed by the simple formula (total 

errors (or correct responses)/ number of distinct alerts). 

 

Figure 20. Observed vs. expected error percentages (6-alerts) 
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The respective p values for the 6 alert set data and the 10 alert data were 2.7562 x 

10-17 and 9.979 x 10-12 respectively. The error rate for both peaks for the medium priority 

alerts. This may be due to the fact that the medium priority alerts are easily confused with 

the high priority alerts. 

4.7 Comparison of Error Rate and Reaction  

Times for 6 Alerts vs. 10 Alerts 

See table 16. We present the summary statistics and comparisons in a single table 

analogous to Table 8, noting that these numbers reflect different sets of subjects. We have 

omitted the sub-comparisons for simultaneous alerts, which were not statistically 

significant. The degradation in performance with standard alerts as the number of distinct 

alerts is increased, as expected. Of interest, however, are the numbers for personalized 

alerts. While the reaction time is slower (as expected), the errors do not worsen: in fact, 

 

Figure 21. Observed vs. expected error percentages (10-alerts) 
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Table 16. Error rate and reaction time for 6-alerts vs. 10-alerts 

Experimental parameter Summary Statistics 6 Alerts baseline 10 Alerts P value for 
comparison 

Personalized alerts: Errors, 
overall 

Median number of errors and 
range across subjects 

4 (0-33)  1 (0-13) P not significant by 
Mann-Whitney test 

Personalized alerts: Average 
Reaction time 

Mean , standard deviation and 
range across subjects 

2051 ± 451 (1317-
2668) 

2971 ± 364 (2322-
3761) 

P = 0.008 by 
unpaired t-test 

Standard alerts: Errors, overall Median number of errors and 
range across subjects 

27 (2-59) 55 (15-95) P = 0.0071 by Mann-
Whitney test 

Standard alerts: Average 
Reaction time 

Mean , standard deviation and 
range across subjects 

2559 ± 638 (1623-
3921) 

4356 ± 640 (range 
3263-5569) 

P=1.3x10-16 by 
unpaired t-test 
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while the differences are not statistically significant, the median number of errors with 10 

alerts (1 error) is actually less than for six alerts (4 errors).  Though this result may seem 

paradoxical, it is actually not, as discussed in the next subsection. The use of icons in the 

user interface that suggest specific alerts allows subjects to choose personalization 

strategies that maximize the likelihood of not making a mistake. 

4.8 Personalization Strategies: Comparison  

As stated earlier, we have categorized the personalized-alert sounds that subjects 

chose into four categories: voice (spoken words or phrases), musical segments, abstract 

sounds and earcons/auditory icons. Table 17 shows the distribution of categories in each 

study.  

Table 17. Personal alert categories 

Study Voice Music Abstract Earcons Total 
6 Alerts 29 25 12 0 66 
10 alerts (with icons) 78 20 16 16 130 
Totals 107 45 28 16 196 

 

 

P value by Chi-square test = 0.00011. 

The p value above shows that the strategies employed by subjects differ based on 

the experimental scenario. For the 6-alert study, participants more quickly selected 

sounds for the high, medium, and low priority alerts than the 10-alert study participants, 

who selected sounds that would correspond to the icons representing physiological 

conditions. 

For the 10-alert study, participants were more careful and selective when creating 

sounds, often referring to the iPad interface to make sure that they understood the 

functions that the individual icons represented. When icons are presented in the user 

interface, the user preference shifts towards voice – short phrases in the subject's voice 
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that directly name the alert ("heart", "oxygen", "perfusion", "meds"), with some subjects 

choosing sounds – heartbeats, heavy breathing, the sound of a fan – that directly suggest 

the alert.  

Others chose music exclusively: two subjects chose classical music segments, 

while another chose theme song clips from Disney movies. Horns and sirens were 

commonly selected for the highest priority alerts; one participant wanted a very specific 

siren that was used in a scene from the movie “Despicable Me 2”, another wanted the 

opening to Beethoven’s 5th symphony. For the oxygen alert in the 10-alert study, bubbles 

were often requested, and one participant wanted the sound of Darth Vader breathing. For 

perfusion, dripping water was commonly requested. 

For low priority alerts, softer music or sounds were the norm, with “low priority” 

or “information only” occasionally vocalized. 

With the exception of three participants, everyone chose to record themselves 

saying “drugs” for the drug alert. Of the three exceptions, one was the person who 

exclusively used Disney theme songs, and the other exceptions were the two who chose 

all classical music. 

Participants who had spent time in a clinical setting were more apt to use voice 

recordings; for example, “code” was assigned to the cardiac alert, and “check vent” was 

used for the ventilation alert. 

Many of the participants came into their sessions with a clear idea of what they 

wanted for some, if not all, of their sounds; many had lists prepared, and one participant 

came with a USB drive upon which they had already placed some sound files that they 

wanted to use. 

For the 10-alert study, voice alerts were used the most (78 out of 130 alerts), 

which might imply that as the number of alerts to be recognized increases, the reliance on 

phrases will go up. For example, in an actual clinical-care setting, a healthcare provider 

who is managing several patients, given the ability to customize alerts for individual 
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sensor devices from a single console, might choose a phrase such as "Patient Jane Smith, 

oxygen": in such cases, the auditory alert conveys maximal information that requires no 

additional cognitive effort to process beyond that required to understand one's own 

speech.  

4.9 Discussion 

4.9.1 Key observations 

It seems clear that personalized alerts provide an opportunity for improving 

information management at the point of patient care. In our study, personalized alerts 

were much more accurately retained and recalled in both the 6-alert and 10-alert tests 

Response times, while not showing quite the ratio of difference exhibited in recollection 

and retention, were still better for personalized alerts than standard alerts. These results, 

while expected, were surprisingly decisive with respect to the potential that personalized 

alerts may have in health care. Our study sheds light on a new modality for alert design 

that merits continued study- not only with existing patient monitoring information 

technology (IT) artifacts, but especially new IT artifacts that are being explored for usage 

in point of patient care; smartphones, tablets, and wearable computers. 

At the end of their study sessions, all of our participants expressed a better 

understanding of the complexity and challenges that audio alerts can impose in a critical 

care setting, and while they all “got it”, the participants who had actually spent time 

working in critical care environments were especially adamant expressing appreciation 

for our research, further adding credibility to the value of continued research of this type. 

4.9.2 Additional Study Observations 

As a tool for constructing audio alerts PASA worked quite well. All requests for 

sound sources were accommodated, and sound editing was intuitive enough to allow 

study participants to understand what was taking place and simple enough to inspire 

participants to feel comfortable asking questions and not settle for anything less than their 

“ideal” alerts. 
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When, after looking at the results from the 6-alert test, we decided to move to a 

10-alert test, the study designer allowed us to quickly make the shift, and it took less than 

an hour to modify the PASA framework to change a single row format to double rows 

with icons for the 10-alert iPad interface. 

The sound strategies employed by the participants, may form the focus of future 

experiments. While the 6-alert and 10-alert participants often shared commonalities 

between types of sounds that were used for certain alerts such as highest priority and 

lowest priority, the 10-alert participants were more deliberate in their sound creation. 

They often referred to the icons on the iPad and asked enough questions to be sure of the 

physiological functions they represented. Also, while the 6-alert participants usually 

created their alerts in priority sequence, the 10-alert participants did not always create 

their alerts in sequence; they often started with alerts that they understood best, or those 

that immediately stood out in their minds as a candidate for a match with a specific icon.  

4.9.3 Future experiments with Personalized Alerts designed with PASA. 

A future study protocol might involve making the icons an independent variable. 

The students might be asked to create alerts that meet one of the physiological categories 

and then choose from a selection of icons for each category that they perceive matches 

best. In such an experiment, the control group might assign alerts to predetermined icons, 

while the test group would get to choose their own icons. It would be interesting to see if 

the personalization of icons correlates to an increase in response rate. Such 

personalization might also help our ability to quickly make an informed decision during a 

critical care alarm event, and certainly would not be unreasonable if future EHR systems 

accommodated information delivery that was situationally contextualized. 

A key influence behind the design of PASA was to extend personalized alert 

study protocols into health care simulation protocols. PASA can control several iPad 

interfaces simultaneously, and those interfaces can be highly accurate touchscreen 

representations of actual medical equipment. PASA could serve as a controller for a study 
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protocol where one of the study groups could be shown biometric information and hear 

alerts through a device such as Google Glass. iPads could be placed where actual medical 

devices exist and, by simulating the functionality of the device with fully functional 

controls such as buttons sliders, etc., PASA could be used to generate alarm scenarios 

and record reaction and response times, as well as action taken by the participant. This 

would allow various strategies for information delivery at the point of patient care to be 

tested in an environment that approximates actual clinical care settings. In 2012, Bennett 

and McNeer built a tool for designing audible alerts and integrating the alert annunciation 

function with actual medical devices. Their tool required expertise in C++, Matlab, and 

the ability to interface directly into the medical devices. It also had 11 audio drop-outs 

when the number of alarms exceeded 16; problems that do not exist within the PASA 

framework. However, their findings indicate that a tool that could rapidly stage multiple 

audible alarm sets from the laboratory to a simulation environment for the purpose of 

evaluating novel alarm designs could produce valuable findings for medical audible 

alarm standardization; an important consideration since IEC stipulates that all new alarm 

designs should be subjected to clinical or simulated clinical usability testing [42]. 

A more simple use of PASA would be to make existing simulation more realistic. 

A student holding an iPad and facing a mannequin could have a number of buttons that 

are labeled with questions that could be asked, such as “how are you feeling”, “what 

hurts”, or, “what medications are you on”, etc. A video of an actor could then appear on 

the iPad screen that exhibits the symptoms and answers the questions. This would add an 

aspect of realism to a mannequin based simulation, maximize the utility of human actors 

performances, and also serve as another means to quantitatively measure performance 

[43]. 

Because the iPad interface is controlled entirely by PASA, many of issues related 

to acquiring data from a stand-alone iPad application are eliminated, e.g, synchronizing 

the tablet, merging the data, assigning data to the proper study participant, etc. Since 
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PASA serves as the controller for the simulation and the date repository for measurement 

metrics for an experiment, instructors and students could review response data to a 

simulation immediately upon completion of the simulation. Building this capability is 

more labor intensive and requires much broader programming skills in web applications 

or stand-alone applications that run natively on the iPad. 

4.9.4 PASA in other contexts 

PASA could also have utility in other areas beside personalized alerts. With minor 

modification, PASA could be used as a tool for teaching audio-to-visual mapping skills; 

something that would benefit autistic children [44]–[49] and elderly patients suffering 

from disabilities such as Alzheimer’s, stroke, or age-related dementia [50]–[53]. 

It would also be interesting to use PASA to build studies that test various theories 

for learning alert sounds. While we trained our participants by cycling through alerts that 

played in priority order a number of times, different training procedures could also be 

tested for retention characteristics. One such candidate would be the training sequence 

suggested by Patterson [13] where single sounds are played with additional sounds being 

aggregated to the sequence whenever recognition rates rise to a certain level. This would 

allow individualized training routines to be developed for a population, as one training 

methodology might not be optimal for everyone. 
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