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There seems something else in life besides time, something which may conveniently be 
called “value,” something which is measured not by minutes or hours but by intensity, so 

that when we look in our past. It does not stretch back evenly, but piles up in a few 
notable pinnacles, and when we look at the future it seems sometimes a wall, sometimes 

a cloud, sometimes a sun, but never a chronological chart.  
E. M. Forester 

Aspects of the Novel 
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SCIENTIFIC ABSTRACT 

Emerging topic detection algorithms have the potential to assist researchers in 

maintaining awareness of current trends in biomedical fields—a feat not easily achieved 

with existing methods.  Though topic detection algorithms for news cycles exist, several 

aspects of this particular area make applying them directly to scientific literature 

problematic.  

This dissertation offers a framework for emerging topic detection. It builds upon 

the probabilistic burst detection algorithm developed by Kleinberg. STC and Lingo 

Clustering algorithms were used to create an overlapping hierarchical structure of 

scientific literature at the discipline level. This allows for granularity adjustment (e.g. 

discipline level or research area level) in emerging topic detection for different users. 

Using cluster analysis allows for the identification of terms that may not be included in 

annotated taxonomies, as they are new or not considered as relevant at the time the 

taxonomy was last updated. Characterization of bursts over an extended planning horizon 

by discipline was performed to understand what a typical burst trend looks like in this 

space to better understand how to identify important or emerging trends.  

 

The framework includes a novel set of topic frequency weightings based on the 

historical importance of each topic identified.  The weightings are current term 

frequency-inverse archive frequency (CTF-IAF), current term frequency -square root- 

inverse archive frequency (CTF-SQRT-IAF), and for current inverse term frequency-

inverse archive frequency (CITF-IAF). These measures were compared to the un-

weighted frequency (current term frequency, or CTF). All three weightings identified rare 

topics as bursty which the CTF measure did not, based on their novelty. CITF performed 

the best at finding bursty topics which remain bursty, and have the highest future citation 

rates. Each measure’s performance was compared at differing levels of granularity. CITF 
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performs the best on topics with low frequency counts. At higher frequency counts, CTF-

SQRT-IAF, CTF-IAF, and CTF, performed best.  

Frequency counts were further weighted with measures such as normalized 

journal impact factor, normalized h-index, and normalized funding to develop a fitness 

score to identify which topics are likely to burst in the future. Each fitness score was able 

to detect bursts earlier for each frequency measure.  
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PUBLIC ABSTRACT 

Emerging topic detection algorithms have the potential to assist researchers in 

maintaining awareness of current trends in biomedical fields—a feat not easily achieved 

with existing methods.  Though topic detection algorithms for news-cycles exist, several 

aspects of this particular area make applying them directly to scientific literature 

problematic. 

This dissertation offers a framework for emerging topic detection in biomedicine. 

The framework includes a novel set of weightings based on the historical importance of 

each topic identified.  Features such as journal impact factor and funding data are used to 

develop a fitness score to identify which topics are likely to burst in the future. 

Characterization of bursts over an extended planning horizon by discipline was 

performed to understand what a typical burst trend looks like in this space to better 

understand how to identify important or emerging trends. Cluster analysis was used to 

create an overlapping hierarchical structure of scientific literature at the discipline level. 

This allows for granularity adjustment (e.g. discipline level or research area level) in 

emerging topic detection for different users. Using cluster analysis allows for the 

identification of terms that may not be included in annotated taxonomies, as they are new 

or not considered as relevant at the time the taxonomy was last updated. Weighting topics 

by historical frequency allows for better identification of bursts that are associated with 

less well-known areas, and therefore more surprising. The fitness score allows for the 

early identification of bursty terms. This framework will benefit policy makers, clinicians 

and researchers. 
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CHAPTER 1 INTRODUCTION 

Thomas Kuhn’s structure of scientific revolutions captures the development of science 

[1]. According to Kuhn, science progresses by means of revolutionary ideas, which drastically 

alter the shape of the scientific world.  Though many changes occur by means of small 

incremental developments, there are ideas that create abrupt and dynamic shifts in focus.  Large-

scale examples of scientific revolutions include the discovery of DNA, and Einstein’s theory of 

relativity. On a smaller scale, discipline, or domain-level revolutions happen all the time from 

major breakthroughs to minor discoveries [2].  New research topics, which can be a specific area 

of study, method or tool studied in the scientific community, are constantly altering scientific 

thought.  Maintaining awareness of trends at different levels of granularity is a must for the 

biomedical community. The question, however, is how this is to be accomplished. My goal is to 

develop an emerging topic detection framework.  

Policy makers, funding agencies and researchers need tools for emerging trend analysis 

of scientific research. The rate of scientific publication is increasing every year and it is 

impossible to stay completely up-to-date with traditional methods. NIH program officers need to 

understand the scope of research fields despite the complexities of the scientific production 

process. Department and university administrators could more effectively evaluate institutional 

publication history by determining the relevance of investigators’ fields of research. Scientists, 

who are using online tools to scan more and read less [3] need better methods to stay current.  

Existing search engines are most useful for aggregation of articles but not detecting new, 

reemerging, or increasingly popular trends. Being able to detect emerging topics would allow 

researchers to stay competitive by assisting in finding current related topics to help expand or 
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support their own work. Clinicians, providing service at point-of-care, will additionally benefit 

by being able to reevaluate existing patient care based on the newest developments.  

Emerging topics are characterized by an increase in topic occurrence frequency in a 

document stream. Developing successful emerging topic detection methods for scientific work 

has proved difficult [4].  Though topic detection algorithms for news-cycles exist, several issues 

make applying them directly to scientific literature problematic. At any given point there are 

numerous topics in varying stages of the developmental process. At no time does the scientific 

literature converge on a few topics as can happen at the end of a new cycle. Arrival rates are 

slower and more difficult to characterize in the scientific literature than in the news. These issues 

make modeling scientific research trends prohibitive. Despite the limitation of existing 

technology, emerging topic methods have proved somewhat useful in this area, though emerging 

topics are discovered at a very coarse-grained level [5]. The burst detection algorithm [6], 

developed by Kleinberg used widely for emergent topic detection in the news [7], has been 

adapted in this area [4], [5]. This method identifies bursty or high intensity states of topic 

frequency by tracking changes in the arrival rate of topics in a stream.  

Merely identifying bursty or emerging topics does not sufficiently address the needs of 

the scientific community.  Bursts have many characteristics, and the importance of a burst to a 

specific person will be based on the value of each characteristic. First, science is cyclical.  

Research topics can reemerge and what may seem like a new topic could be merely a revisit of 

an old question [4]. Second, bursts can occur at varying levels of granularity. A burst of activity 

could correspond to fifty, one hundred or thousands of documents. A burst of fifty or even less 

could be immensely important to researchers whose work is relevant to the associated topic. NIH 

program officers, on the other-hand, may only be interested in large-scale trends at the discipline 
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level.  Third, merely identifying all bursts, without any context is unlikely to be useful to 

researchers. At any time there are numerous bursts for various research topics, and a given 

person will need a way of ascertaining which bursts are most relevant to them.  Fourth, it is 

important to determine which bursts are likely to last, and identify them as early as possible. 

Bursts can be at a high frequency level for long periods, with steady increase in intensity. 

Conversely, some topics are only relevant for a short period of time. What is really needed is a 

way to determine which emerging topics are likely to stay bursty. Also, if a topic has been bursty 

for a long time, one may need to ask is this trend as interesting as one that is newly in the 

literature, or re-emerging? 

Though emerging topic detection could be performed for any research domain, I focus on 

biomedicine for several reasons.  First, in biomedicine, curated article information and numerous 

classifications systems are made freely available by the National Library of Medicine, (unlike 

many other research areas). Conducting a comprehensive study with sufficient data is, hence, 

more easily achievable in this domain. Second, in biomedicine, interdisciplinary research is 

conducted in a more deliberate manner than almost any other field. Translational medicine, a 

methodology that bridges gaps between basic and clinical science, has gained attention by both 

the medical research community as well as government funding agencies. Both groups identify a 

need for coordinated efforts to assist researchers in translating basic science research to clinical 

for the end goal of improving patient care. The signal-to-noise ratio problem is a significant 

impediment as identifying what of basic science can or should be translated is a difficult task for 

clinicians [8].  In addition, the U.S. approach to clinical and translational research (CTR) has 

been characterized as fragmented, slow, and expensive [9], [10].  This makes identifying 

emerging topics at the discipline level significantly important – allowing researchers in a 
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particular field to keep up-to-date to translational trends in their own field, and be better able to 

identify trends in other related fields. Third, this domain was chosen because patient care can be 

significantly affected by the lack of knowledge of what is current. A framework that is as 

comprehensive and detailed as possible is a must for this domain, and it is likely it would be 

more widely used in this domain than any other.  

The framework, described in this work, will benefit policy makers. An emerging topic detection 

application could assist with both the selection of research profiles to fund, and for evaluation. 

An emerging topic detection algorithm could help in many ways. For example, decisions about 

whether to fund research based on the degree of stability of associated research topics for a high-

risk project can be more efficiently made.  This could potentially reduce the number of projects 

that are too high-risk. Early signs of burstiness could be used to determine the extent to which 

the research is gaining traction. That could boost a project’s perceived viability. Emerging topic 

detection would be most useful in the evaluation stage. As noted above, there does not currently 

exist a method for quantifying transformative research. Performing burst detection analysis on a 

hierarchical topic structure has the potential to provide that. By modeling the emergence of a 

topic and its growth across the hierarchy, a given research area’s transformation of the landscape 

can potentially be assessed. This will be discussed further in chapter 6. An emerging topic 

detection application could help NIH reach its goals. For instance, emerging trend detection 

could help evaluate interdisciplinary research proposals to identify novel research that has gained 

traction. It could help with research assessment by determining whether emerging trends in basic 

science are getting projected into clinical science. Large-scale interdisciplinary big science 

research proposal include the coordination of complex research areas, and a tool to determine 

novelty would be useful in assessing their potential. 
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The primary goal of this work is to provide a framework for identifying and 

understanding the significance of bursts within scientific literature by accounting for the 

development of topics, and the fitness of those topics.  This research is meant not just to identify 

bursts but also to help different interest groups find important bursts early. Important bursts are 

those that are likely to stay bursty, be associated with somewhat novel or reemerging topics, and 

be at specific levels of granularity. This framework could then be used in the future to develop a 

burst detection application that could be used for scientists, administrations and governmental 

groups.  

The main components of this burst detection framework are: 

 A hierarchical topic structure so that topic relatedness can be used to improve burst 

identification. This will make it easier to develop a topic granularity model.  

 Specific characterization of bursts, and generalizations of burst structure at various levels 

of granularity. 

  Archival measures combined with fitness measures used in conjunctions with 

Kleinberg’s method. 

 Noise Reduction of result-set. For each weighting scheme, the same method is used to 

reduce noise. Level of granularity is used, as well as burst strength, and the impact of 

modifying results with h-index and impact factor. The top bursts for each measure are 

selected. 

 Evaluation of the effectiveness of this framework based on how well modified methods 

identify bursts early as compared to Kleinberg method and how well my method 
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identifies topics which truly had a significant change in frequency for the given period in 

real-time.  
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CHAPTER 2 RELATED WORK 

2.1 Research Policy Making 

For decades, the progress of science has been propelled by funding decisions of policy makers 

like the National Institutes of Health (NIH) and the National Science Foundation (NSF) [11]. In 

the scientific literature, bibliometric methods have been used to both evaluate research 

initiatives, and for effective resource allocation by those institutions [12]. However, peer-review 

remains the most common method used, for those tasks, by funding agencies. Limitations of the 

peer-review methods, and the cost of process has made many suggest that more comprehensive 

biblometric methods need to be developed [13]–[17].  

NIH and NSF have tried to find innovative, cutting-edge research to fund for decades [18], [19]. 

Wagner et al. conducted a retrospective study on NSF small grants for exploratory research [16]. 

The aim of the 16-year NSF program was to identify and fund transformative research. 

Transformative research alters the paradigms of a research area through innovative techniques. It 

is high-risk and high-stakes.  It is high risk because it proposes ideas sufficiently divergent from 

accepted evidence as to seem transgressive, and is potentially impractical. It is high-stakes 

because it has the potential for high impact both in academia and society. It was deemed 

necessary to create an initiative to support this research type, because of the belief that the peer-

review journal process is biased against it. Several aspects of this initiative are worthy of note. 

First, identifying transformative research is difficult. It can only be truly identified in retrospect. 

Therefore, one characteristic of programs to support it is that they will inevitably fund research 

that has little to no impact or long term utility. Second, there is no clear set of requirements upon 

which quantifiable assessment measures for transformative research should be based. These two 
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caveats mean that at the resource allocation stage and the evaluation stage, policy makers could 

benefit from tools to help them make decisions.  

NSF is not alone in this focus on innovation.  Beginning in the early 2000s, the National 

Institutes of Health (NIH) began a process now referred to as the “NIH Roadmap” [20]. The 

main purpose was to define a set of priorities to address current pressing scientific challenges. 

Three major themes emerged from this endeavor; among them was New Pathways to Discovery. 

This theme is focused on the use of genetics, molecular and cell biology to create innovative 

toolkits for biomedical researchers. Another was Research Teams of the Future – developed 

based on the need to solve present-day complex social, medical, technical and environmental 

problems using knowledge integrated from a diverse set of disciplines. This focus on research 

teams or mega-science is focused on using cutting edge-technologies for the purposed of 

knowledge production [11], [21]–[23].  These endeavors are very important as output of novel 

medical research has declined in recent years due to the difficulty in translating basic science to 

clinical research [24].  

Using bibliometrics to assist policy makers is not a novel exercise. Rafols et al. generated 

overlay maps to assist policy makers visually locate bodies of research that do not fit into 

traditional disciplinary boundaries [15]. Ordonez-Matamoros  et al. provided an example of 

national level team performance assessment with bibliographic methods as a response to policy 

to encourage team-based research [25]. Ponomariov et al. [26] used bibliometric methods to 

analyze the effects of research institutions as the institutional policy response to technical and 

scientific demands. These large-scale analyses demonstrate the ability of bibliometric methods to 

identify large-scale structural trends that could not feasibly be performed manually. 

Bibliometrics are not only effective in those cases, however. Compared to bibliometric methods, 
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there are many limitations of the peer review process used for policy decision-making[12]. Peer-

review suffers from subjectivity, and high-cost. The time that experts take to evaluate portfolios 

is time away from other research. Bibliometric methods have proven efficient at a guaranteed 

lower cost. Though bibliometric methods have advantages over peer-review, peer review is the 

more common method used for research evaluation, and resource allocation by policy makers. 

There are potentially many reasons for this. For instance, using bibliometric methods requires a 

specialized skill-set, and the necessary applications linked to data may not be available.  

On the other hand, there are also issues inherent in bibliometric methods that make 

applying them problematic. For instance, ranking-based methods, which are often used for these 

tasks, lack the interpretive flexibility that an overlap map has [15].  Bibliometric methods are not 

silver-bullet policy decision-making tools.  They will be most useful when the information they 

present is rich and dynamic enough to support decision-making.  

2.2 Use Cases for Researchers and Clinicians: Medical 

Literature Search Tools 

In addition to policy makers, clinicians and researchers could benefit from an emerging topic 

detection application. Researchers could identify updates in both their main area of research and, 

in related areas. Emerging topic detection would be extremely useful for researchers aiming to 

write reviews. For clinicians, tools that help them keep up to date in their discipline would be 

extremely useful.  

Biomedical researchers are tasked with solving intricate problems. Complex problem solving 

requires planning and an understanding of the relationship between many concepts, which is very 

difficult without external aides. Studies of the information seeking behavior of scientists suggest 
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that researchers are often confronted with what is referred to as weak problem solving, associated 

with a vague understanding of the problem space, an inability to come up with a systematic plan 

to resolve information needs and a lack of prior domain knowledge [27]. These issues can be 

exacerbated by the difficulty of determining what is considered the most current in a given 

research area. A researcher’s career prospects are contingent on how impactful his/her research is 

to the development of scientific knowledge [28].  If researchers can assess whether a given 

research area’s topic occurrence rate is declining or increasing that knowledge can help them 

make decisions that will affect the impact they have on their field 

Clinicians need skills and tools to find evidence at point of care. Numerous tools exist to 

summarize, or improve search of Medline citations for point of care discovery [29]–[35]. 

Clinicians have very limited time to answers questions during a typical day [36], [37].  Most 

clinicians rely on summaries and practice guidelines regardless of whether these resources are 

evidence based [38], [39]. Those who study these behaviors are calling for information tools, 

which alert clinicians to new, relevant or valid information[40]; tools which tailor information to 

the appropriate specialty of each physician.  Such tools could be greatly improved with the use of 

a robust emerging topic detection framework, as it would allow for the identification of new 

ideas gaining traction in the research community. 

2.3 Topic Detection and Tracking 

Related to the area of emergent topic detection is topic detection and tracking (TDT).  In 

the topic detection literature a topic is defined as a set of items strongly related. In the context of 

news, a topic is a set of news items strongly related by a special event. Topics can also be 

defined in terms of about-ness. Cluster analysis in topic detection is the process of grouping 
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related items into bins that represent a topic.  For TDT, clusters are created and updated based on 

documents arriving in a document stream. Topic detection and tracking research is concerned 

with two major tasks [41] : 

 Segmenting a stream of data into distinct stories. 

 Given a sample number of sample news stories about an event find all the following 

stories in a stream. 

One approach is that used by Eichmann et al.[42]. First, the TF-IDF weighting scheme is 

used to perform cosine similarity to find related documents: 

 

where TF is the term frequency in a document, D is the number of documents  in a specific 

collection, and {d∈D:t∈d}  is the number of documents in which term t appears.  IDF (

  is the inverse-document- frequency of a term within a larger document. TF-IDF 

boosts a word’s importance to a document based on how important it is to all documents. So, if a 

term appears a few times in a document, but is rare in the corpus it will have a higher TF-DF 

score than if it appeared in many documents. After TF-IDF is computed for each term for each 

document, cosine similarity is calculated pair-wise between documents: 

 

where A  and B represent the TF-IDF term vectors for document di and dj respectively. Cosine is 

calculated by multiplying the dot product between the two vectors, and dividing that by the 
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multiplication of the magnitude of each vector. Once cosine is calculated, documents can be 

grouped together into clusters using the pair-wise similarity scores between documents.  

Since one is dealing with a stream of data, one can choose a point at which term weights 

are updated [42].
 
At each iteration, a topic must be within a certain threshold of similarity to a 

given cluster to be clustered at all. Items not clustered in one iteration may be part of a cluster in 

a future iteration. This method makes it possible to account for the need to update the 

categorizations as new items come in. However, if items are added to existing clusters as they 

arrive in the document stream, bias can be introduced because new items cannot influence the 

formation of clusters as the older documents did. The order of cluster merging is then different 

from what it would be if all documents were considered in the first iteration. 

Another method used for topic detection is the Dragon method [41]. The distance 

measure used is Kullback-Leibler:  

 

where cn and sn are story (i.e. topic) and cluster counts for word wn.  For each subsequent 

iteration, the algorithm considers switching each item to another story based on the same 

measure as before.  This algorithm is then able to account for bias that is introduced using 

comparisons between new documents and clusters of early documents.  

To evaluate TDT algorithms, two errors are considered: misses (in which the target event 

was not detected), and false alarms (an event was detected but it is not valid). Precision and 

recall scores are typically used for evaluation [43]. Precision is the proportion of retrieved items 

for which the target event was detected, and recall is the proportion of target events that were 
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detected. TDT tasks are usually tested on datasets for which class labels are known, so, this is not 

an unsupervised learning problem, and typical clustering evaluation methods do not need to be 

used. 

There are several aspects of this problem area that are relevant to emerging topic 

detection.  First, before one can determine whether a topic is bursting, topics must be identified 

and documents associated with them. Second, topics exist at different levels of granularity. 

Topics can be broad and cover a wide spectrum of data. Within broad clusters, there could be 

many nested clusters that can only be identified by sub-cluster identification, or by changing the 

threshold of similarity to determine cluster membership [44].  There are many difficulties 

associated with TDT. Among those are determining ideal cluster parameters to identify 

meaningful clusters, and to characterize those clusters appropriately [45].  

2.4 Kleinberg’s Burst Detection  

One method for identifying emergent topics in a stream of data is Kleinberg’s burst detection 

algorithm. This algorithm, principally used to analyze news timelines, detects sharp increases in 

occurrences of topics over time by analyzing their arrival rates. It has become a popular method 

in analyzing both news and social media trends [46]–[50].  This method has also been adapted 

for use in detecting scientific research trends [4], [51]–[53].  

 Kleinberg’s burst detection algorithm [6] can be used to find moments of intensity for a 

topic amidst the noise of unrelated documents in a text stream. This model uses a probabilistic 

automaton to model the conditional prior probability of each potential state of intensity (q) based 

on the arrival rate for each item (x) associated with a given topic: 
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where t represents a particular time interval, b is a scaling parameter; PR[q] is the 

probability of q. Gap x  between messages i and i+1 is emitted in a probabilistic manner 

distributed according to the exponential density function f(x) = , for a parameter α>0. This 

means that the probability that a gap exceeds x is equal to . The parameter α can be referred 

to as the rate of message arrivals. To better understand how this method works, consider the 

following scenario. Imagine an automaton A with two states q0 and q1, which correspond to a 

low, and high state respectively. When A is in the state q0, messages are emitted at a slow rate. 

When A is in state q1, messages are emitted at a faster rate. Between messages, A changes state 

with a probability p, and with the probability of staying in its current state with the probability 1-

p. 

There is a cost for jumping to a higher intensity state from a lower intensity state. Finding 

a state sequence that maximizes the previous equation is equivalent to minimizing the following 

cost function: 

 

The first part of this cost function favors sequences with few transitions, and the second part 

conforms well to the sequences of gaps. Using this model, one can define a burst of intensity j to 

be the maximal interval over which state sequence q is in a state of index j or higher.  More 

precisely, it is the interval [t, t’] so that it,…it’>=j, but ii-1 and it’+1 are less than j. Using this 

model, one can also identify the natural nested structure of bursts.  Sub-intervals that are bursts 
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of intensity j+1 may be contained in the burst of intensity j.  This method can be used to find 

terms that exhibit the most prominent rising and falling patter over a limited period of time.  

 

 
Figure 1 Kleinberg's hierarchical representation of bursts [6]. 

Figure 1 presents an example of the hierarchy of bursts. The use of this model leads to 

identifying bursts with clear beginnings and endings. By focusing of the boundaries of burst 

intervals one can determine the extent to which state transitions are “sharp.” 

2.5 Probabilistic Burst Detection Different from Kleinberg’s 

 

Morinaga et al. developed a finite mixture model to detect bursts [54]. Mixture models are 

used to make statistical inferences about the characteristics of sub-groups within a larger set.  A 

mixture model corresponds to the mixture distribution that represents the probability distribution 

of observations for the entire set. For the purposes of burst detection analysis the full set is the set 

of documents, and the sub-groups to be detected are the topics to be found. K is defined to be a 

positive integer representing the different topics.  Morinanga et al. assume each text has only one 
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topic and a text having the ith topic is distributed across the vocabulary space according the 

probability distribution with a density: pi(x|θ)(i=1,2,…K), where θi is the real-valued parameter 

vector for each topic. Each document d is distributed according to a finite mixture distribution 

with K components: 

 

where πi >0 and . πi denotes the likelihood that the i-th topic is to appear in a given 

text stream. The finite mixture model allows for the representation of the topic structure of a set of 

documents, something not achievable with the Kleinberg method. In terms of their model, topic 

structure is identified by A) the number of components K,  B) the weight vector (π1,…, πk) and C) 

the parameter values. Topics must first be characterized by classifying each text into the 

component for which the posterior is largest, and then extracting features terms which best 

characterize the classified text.  

Components are selected by starting out with a large set of components, and dynamically 

reducing those based on how well their results distribute documents across the components based 

on the topic structure described above. The method was tested on a help-desk dataset, and the 

authors claim that the algorithm is able to detect emerging topics in a timely manner.  However, 

they do not measure against any standard, or compare their results from those from other methods.  

The work of Chen et al. uses Expectation Maximization for emerging trend detection. The 

Expectation Maximization (EM) algorithm is an iterative optimization method consisting of two 

steps [55], [56]. This method is used to estimate the maximum likelihood of an event, when there 

are unknown probabilities that must be accounted for. It is used when distributions are not well 
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behaved, or there are too many parameters. The method uses two variables: observed variable x, 

and hidden variable y which generates x. The method assumes two probabilities: P(x), and P(y). 

 represents the set of all parameters of the distribution. The two steps of the algorithm are: 

1. Expectation step: Compute expectation of log(P(y,x)).  This step tests 

different sets of distributions of hidden variable y and finds the probability 

that it generates observed variable x. 

2. Maximization step: Find y distribution that maximizes the likelihood of x. 

In this space, EM algorithms are useful for several reasons.  For clustering based methods, 

EM is effective because they make it easy to compare clustering results based on log-likelihood 

levels, and it can be used to make predictions of cluster membership.  

Chen et al. tested their method on three datasets retrieved from Web-of-Science: Social 

Network Analysis (1992-2004), Mass extinction (1981-2004), and Terrorism (1989-2004).  Each 

dataset included article title, abstract, and citations to existing articles.  They used CiteSpace, a 

program implemented in java, to analyze and visualize citation networks. Using this application, 

the authors were able to select a time interval for analysis, and then partition that interval into 

equal-length intervals referred to as time-slices. The networks can then be merged. The following 

attributes were compiled for each article and used in the EM-step: citation counts throughout the 

entire time interval, betweenness centrality, the first author of the article, the year of publication, 

the source of publication, and the half-life of the article. The half-life of an article is the time at 

which an article has received 50% of the citations it will receive in its lifetime. Betweenness 

centrality is a connectivity measure based on how many shortest paths from all nodes to all others 

that pass through a given node. It gives an indication of how central a node is to the network. 
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Network nodes are then clustered by these attributes using the EM algorithm implemented in the 

Weka open-source data mining toolkit. 

To evaluate their method, they tested the ability of their algorithm to identify emerging 

terms in a datasets where the paradigm-shifting terms to discover are already known. Their 

methodology was successful in identify those emerging terms. However, how it would perform in 

an open domain setting where the emerging terms to discover are unknown was not determined. 

After running their analysis they found that betweenness centrality was the only attribute that 

really accounted for global structure and had a significant impact on how well their algorithm 

performed. That the other measures could not be made useful is important to note. They may 

account for the importance of a node, but not its place in the network.  

2.6 Physics Inspired Burst Detection  

He et al. use concepts from physics to characterize burst of Medical Subject Heading 

(MeSH) terms [57]. The authors expand on the idea of burst detection by incorporating physics 

concepts such as velocity, acceleration and mass.  The authors provide several criticisms of 

Kleinberg’s method for scientific burst detection.  First, they claim the underlying arrival process 

may not be clearly Poisson, an assumption made by Kleinberg. Gaps between occurrences could 

be wide for instances. Second, the number of publications in PubMed has increased in recent 

years, which means that it could appear that the arrival rate is higher even if the overall proportion 

of documents on a particular topic remains the same.  Third, the Kleinberg model is memory-less; 

future state depends on the present state not past state.  However, He et al claim that in the case of 

scientific topic emergence this is problematic. The probability of a term reoccurring in the 

literature is not independent of all the past times it occurred.  The more popular a topic already is 
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the more popular it is more likely to be. This is referred to as the Mathew effect, and it has been 

demonstrated to be true when one considers the popularity of a document (where popularity is 

defined by the number of citations), and the prominence of an author (where prominence is 

characterized in terms of productivity and impact) [58], [59]. Fourth, and this will be discussed 

further below, science articles are published at established intervals, and do not arrive at sporadic 

intervals. Therefore, the authors state, an arrival-rate based algorithm is not the most appropriate.  

Instead of characterizing bursts in terms of the arrival rate they characterize them in terms 

of changes in momentum. Using the concept of momentum makes sense, because each research 

area can have its own maximum level of intensity. Also, some topics just stay bursty.  Consider 

cancer – at any given time there is a constant increase in documents concerning this topic. The 

Kleinberg method may flag it as bursty when it is really a commonly studied topic.  He et al. 

borrow terms from classical mechanics, such as mass, position, and momentum. In physics 

momentum is the product of mass and velocity. Heavy objects have greater momentum than 

lighter ones going at the same speed.  The greater the mass, the harder it is to bring an object to a 

stop.  Position in this context refers to the count of documents at any given interval. Mass refers to 

the current importance of the topic, which can be inferred from article citation counts, journal 

impact factors, and journal relevance measures. The idea behind using momentum as a metaphor 

for importance is that prominent topics should be more likely to stay up to a particular “speed” for 

a longer period of time. A burst is a period where acceleration of velocity is positive.  Identifying 

acceleration is achieved by taking the second derivative of positions across a time-line. According 

to their definition, a topic “burst” is an interval of positive acceleration.   

Adapting the data to popular stock market trend analysis techniques, such as Exponential 

Moving Average (EMA), circumvents the difficulty of measuring momentum directly [60].  
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Moving Average (MA) is used to smooth out the noise of price in stock market analysis. He et al. 

[57] adapt it to the problem of scientific emergent topic detection to smooth out the noise of gaps 

in the arrival rate of topics.  It is a moving window in which to calculate the average.  In financial 

settings, a simple moving average (SMA) is the un-weighted mean of the previous n data points. 

An exponential moving average (EMA), also known as an exponentially weighted moving average 

(EWMA), applies weighting factors, which decrease exponentially. The weighting for each older 

data point decreases exponentially, though it never reaches zero.  He et al. use moving average 

convergence/divergence (MACD) to estimate velocity, which is a type of EMA.  This method 

takes the difference between moving averages for consecutive intervals.  

The authors generate MACD histogram, which is the second derivative estimate, to 

indicate positive acceleration.  It takes the third day moving average, and the MACD from the 

previous interval. They define bursts as a kind of linear filter. Given a two-MACD histogram the 

difference in their parameters corresponds to the differences of specific burst intervals. This allows 

for a better definition of bursts, according to the authors, as the Kleinberg model identifies periods 

of intensity, and not necessarily increases in the rate of occurrence of a term. 
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        Figure 2 Result of He et al.’s comparison with the  

             Kleinberg method for a select set of gene names [57]. 

To test the accuracy of their model, they test for the detection of major developments in 

science, such as the flurry of genetic research in the 90’s after the human genome product.  Their 

model does not actually identify momentum. They do not incorporate their notion of mass into 

their algorithm. They did not choose an example to test their model that demonstrates how well it 

performs on topics for which trend characterization is unknown. Rather, they chose what appears 

to be an easy example, as they are running their model on what is among the most bursty topics in 

scientific history, during a period when there are constant publications on the given topic. Their 

results are displayed in figure 2. 
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When compared with the Kleinberg model, their method did a better job detecting bursts 

earlier in the time-line. Therefore, it could be successful at predicting oncoming bursts, or 

predicting a high level of intensity before it happens. However, their methodology could be 

improved by viewing the maximum velocity of neighboring topics. Positive acceleration by itself 

will not identify the most important bursts. A slight increase in momentum is not always going to 

represent a truly trending topic. One of the advantages of the Kleinberg model is that it makes use 

of a threshold of intensity for each state. That makes it easier to compare bursts and assess the 

popularity of a given trend.  Figure 2 shows that the burst period for the Kleinberg method ends 

later. A topic can experience a decline in popularity, while still being relatively popular.  

He et al. claim that a model that analyzes the arrival-rate of a topic is inappropriate for this 

task because the interval of scientific publications is standard, and discretized already. Scientific 

articles are published at specific intervals. However, there are two problems with their 

assumptions. First, not all journals publish at the same interval. Some have publications every 

month, some every three months, and others even fewer times a year. Between the intervals for 

one journal, many other articles are being published. Second, when the burst detection algorithm is 

operationalized, an interval of time must be chosen. Within that interval there could be many 

instances of a topic, which arrive at slightly different times. However, because of the difficulty in 

representing exact times, the Kleinberg algorithm must treat them as all arriving at the same time. 

So, the way the arrival rate is represented is the same whether one is talking about news items, for 

which arrivals are more sporadic, or scientific documents for which arrivals are regular.  Choosing 

an interval in which there are likely to be occurrences makes detecting the arrival rate easier. 

Consider an example from news.  There may well be periods during the day in which there are 

very few news stories. If one is interested in detecting bursts, one will set up the interval to ensure 
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that there is the opportunity for occurrences of the most important news items within each news 

interval. For instance, say that between 11:00am and 12:00pm there are typically no news stories 

and again at 3:00pm to 4:0pm there are few news stories. If an interval of an hour is chosen to 

group items appearing together, there will be fluctuations in the trend-line for most topics. On the 

other hand, if a larger interval were to be selected the trend lines would fluctuate less as each 

interval would correspond to greater activity. This will make it possible to detect the highest 

arrival rates. Choosing an interval that will smooth over gaps of low activity makes it possible to 

have arrival rates with the smallest between arrival times.  Also, He et al. use concepts from 

physics that are inappropriate given their claims.  These concepts are meant for continuous, not 

discrete data, and therefore do not solve the interval problem. The estimates are inappropriate for 

discrete datasets when the gaps are large.  Further, momentum can itself be characterized as the 

arrival rate of a topic within their framework. Therefore, velocity is very similar in concept to 

changes in arrival rate. 

Their model appears to be more effective than Kleinberg’s detection model because they 

are able to identify bursts earlier. This is deceptive.  The burst detection model identifies bursts 

that are of certain intensity.  He et al.’s methodology is focused on changes in momentum. A 

change in momentum can be very slight. Though they are able to identify bursts early on, their 

method would identify momentum of topics which were merely experiencing a temporary 

fluctuation. There is no way to know how much more noise would exist in their results if they 

used an open domain problem.   

He et al. claim that an advantage of using moving average is that it smooths over gaps. 

However, if the interval of time is selected correctly, gaps should not need to be smoothed over as 

they reflect the actual fluctuation in interest many topics experience.  Consider the following. Say 
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I have two data points in interval 1, none in intervals 2 and 3, and two data points higher than 

interval 1 in interval four.  Their model would make it appear that there is a constant increase 

because it would smooth over the gap of the two intervals for which there are no values. The 

Kleinberg method will actually show the fluctuation and the topic will appear to have a more 

intense burst in the fourth interval than would be identified in He et al.’s. It is in fact possible that 

the latter’s model will not even identify a change in acceleration, because the smoothing over may 

end up making momentum appear steady. 

One other major limitation of He et al.’s evaluation is the use of the MeSH hierarchy. 

According to the developers of this classification system, treating it as an ontology is 

inappropriate1. It provides descriptive terms (words and/or phrases) that are useful when searching 

for categories of documents.  The hierarchy is used to provide context. In other words it is not a 

conceptual hierarchy meant to give an overview of the disciplines in medicine. It does not provide 

breadth and scope of fields in terms of topical relatedness.  For instance, if term b appears under a 

term it does not mean that b is part of a subset of a. It means that b is considered in context of a. B 

could be a drug that is used to treat disease a, and the terms are related but not in the way they 

would in a true ontology. Therefore how terms are grouped using MeSH can be problematic.  

Another limitation of using MeSH for burst detection is it can’t detect new terms as they 

emerge. This is an important problem in this space.  New terms are added to this classification 

system retrospectively, not when they appear, and therefore any burst detection system using this 

methodology will not be able to account for terms not yet in MeSH. Lastly documents are only 

                                                 
1 I called the MeSH office July 12 of 2011, and discussed this issue with the developers. 
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tagged with MeSH terms once. If a new term appears that is relevant to an old document, that 

document’s metadata is not updated. 

Moerchen et al. use a similar method based on the change in the relative frequency terms 

in biomedicine [61]. They evaluate their method by testing how well they are able to predict the 

inclusion of new MeSH terms. There method suffers from the same limitations of He et al.’s. 

2.7 Citation Based Burst Detection  

Because of the difficulty in identifying and tracking emergent areas through raw text, the 

study of this phenomenon has typically been accomplished by tracking shifts and progress in a 

known new area using citation networks.   

Novel research produces changes in the structure of citation networks.  Linkages between 

unconnected or loosely connected areas are generated as emergent research can help re-cast, 

reformulate, and extend previous research.  New findings also create their own clusters of 

documents. The detection of evolving topics in a particular research area, based on shifts in 

citation patterns over time, has been studied extensively in the literature [62]–[67].  The goal is to 

track the research front, i.e. the topic area and people involved. This is typically achieved by using 

citation-based methods, such as co-citation analysis and bibliographic coupling. Mapping science 

can assist policy makers and funding agencies keep track of disciplines, and make informed 

decisions when determining which research areas to support.  

Analyzing the research network, and attempting to identify topic drift may improve the 

ability of algorithms to identify important bursts. Small’s model of scientific development [68] is 
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useful for understanding the relationship between burst detection as detected from citation 

networks and identifying seminal papers:  

 Upon the nascence of a research area, discovery papers attract many citations.  

 A series of papers extending the ideas of the original papers appear--becoming a group 

of highly cited papers.  

 A series of papers appear that are cited at a more “normal” rate. Citation rates for the 

discovery papers decreases.  

  Normal production of papers continues until the research area becomes obsolete, 

whether or not it is replaced by a new area.  

Analysis of the distributions of papers at different stages of the research front bear this out 

[65]. With this model in mind, bibliographic techniques can be used to analyze the citation 

network to identify bursts and seminal papers.  

 Morris et al. use bibliographic coupling to group related documents [62]. Data from ISI 

was used to map several research fronts based on identifying coarse-grained keywords. 

Bibliographic coupling uses the reference lists between documents to determine similarity:  

 

where bcij represents the number of references paper i and paper j have in common. Ni represents 

the number of references for paper i and Nj represents the number of references for paper j. Once 
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similarity between documents is determined a clustering algorithm is used to group documents 

together. In this area agglomerative hierarchical clustering is often used [69].  

Agglomerative hierarchical clustering is a bottom up approach. In the initial phase each 

document is a cluster. Similarity scores are calculated for each pair-wise cluster. At each step, 

the clusters with the highest average score are merged, until a specific number of clusters is 

identified or the threshold of similarity is met.  In Morris et al.’s work this method was extended 

with Ward’s linkage algorithm, in which merges are done such that variance in inter-cluster 

distances is minimized.  

    Figure 3 Morris et al.'s document timeline for the anthranx dataset. Information 

    flow, derived from exploration of citation patterns, is shown as heavy arrows [62]. 

 

Document titles were manually inspected to find appropriate cluster labels. Some clusters 
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were subdivided based on manual inspection. Information flow between clusters across time was 

identified by exploring citation patterns. From figure 3, from Morris et al.’s work, one could 

identify seminal papers by analyzing the flow of information across time.  

Takeda et al. use a slightly different method and analyze the clusters to identify emerging 

topics [63]. Their method makes use of inter-linkage and clustering based on modularity 

 

where nm is the number of clusters, ls is the number of links between nodes in cluster s. ds is the 

sum of degrees in cluster s. Modularity measures the relationship between the connectivity of 

nodes within groups with the connectivity of nodes between groups. A modularity based 

clustering method optimizes for cluster density.  

Cluster labels were generated with a bottom up method. Topics were first identified from 

sub-topics. Then these topics are aggregated. Once the clusters were identified, the authors 

generated a timeline of the publications for each cluster. Not all tightly coupled documents 

constitute a research front. Therefore, they identified average publications by year, and manually 

identify emerging trends. They found that as the research network emerges, it is characterized by 

loosely related clusters.  

If one were to combine the approach of Morris et al.’s with Takeda et al.’s one can see 

there is potential for both identifying topics bursts, and finding seminal papers from those bursts.  

The semantics of similarity is different for each method. For Morris et al., clustered documents 

cite the same papers. In Takeda’s method, nodes are linked because one cites the other. 
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Identifying seminal papers using the former method requires identifying information flow 

between clusters, whereas for Takeda’s method one would need to identify information flow 

between nodes in a particular cluster as well. A true research front would also need to be 

identified. Assuming one identified emerging research papers how effective would these 

mappings of clusters across time be in identifying seminal papers.  

de Salla demonstrated that scientists tend to cite recent papers [70]. Therefore, the most 

relevant seminal papers may not be heavily cited. Consider Small’s model of scientific 

development mentioned earlier in this section. He states that many papers do not cite the earliest 

papers, but typically more recent ones. One can infer that many of the papers that might seem 

seminal are actually not the discovery papers, but are the second phase of highly cited papers. de 

Salla found that papers published in 1961 cite earlier papers at a rate that falls off by a factor of 2 

for every 13.5-year interval measured backward from 1961. Thirty percent of papers cited are 

between 1 and 6 years old. Will the seminal paper actually be the one cited? This has been a 

question that has been asked by prominent researchers in the area of bibliometrics [71]. During 

the period between 1961 and 1975 Watson and Crick’s famous paper presenting the double helix 

structure of DNA had relatively low citation counts [72]. When an area is new, it is not always 

well defined. Takeda et al. found that in the early stages of development research areas are 

defined by loosely related clusters [63]. Not only will the area lack tight connection between 

clusters, it will lack a standard of terminology. The may make using citation analysis for 

emerging trend detection more difficult.   

Ahlgren et al. compared text-based methods with citation-based methods for research 

front detection [73]. They had experts categorize documents into groups and then tested the 

ability of various clustering methods to match those categorizations. The citation-based methods 
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performed the worst, perhaps for the reasons stated above. 

2.8 Burst Detection Based on Topic Drift 

The concept of topic drift has also been used to develop emerging topic algorithms. Topic 

drift can be defined as small successive modifications in a topic [74]. When a topic drifts, the 

original formulation of the topic and the changed topic share a significant amount of similarity, 

but the actual topic has changed. Citations-based methods to identify topic evolution have been 

studied in the literature [75].  There are several related reasons why this is useful for burst 

detection analysis. When a topic is introduced into a particular field, it flourishes only under 

certain conditions. There must be interest in the field, and researchers capable of dealing with it. 

The support it receives (in terms of related research that can support it) is dependent on time, 

recent work, popularity, visibility of associated journals, and conceptual models of active 

researchers.  

One method, used by Qian et al., clusters documents and then tracks the change in cluster 

membership for the top nodes [76].  They first construct citation graphs using a modularity-based 

method. The authors defined topic emergence as the separation of the top cited paper from the old 

cluster and formation of a new cluster.  They base their research on the hypothesis that “a new 

research topic must include recently most cited papers (top papers), otherwise it could not draw 

enough attention”. They distinguish two clusters using the Jaccard coefficient to measure the 

similarity between cluster Ci and Cj as defined by: 
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The authors evaluate their method with a high-energy physics dataset from the KDD Cup 

2003. They use a citation turnover value of similarity (i.e. the number of documents that 

eventually join to new community) instead of a using the Jaccard method for evaluation purposes. 

Though they don’t have a gold standard to use for comparison, their results indicate that when 

they detect a new cluster there is an eventual high turnover rate between 44 and 88 percent to 

newly identified areas from the research areas they are presumed to come from.  

Their work helps support the idea that one can identify emergent trends using topic drift.  

However, there is no actual way to determine how many bursts their methodology did not detect. 

What if the new topic does not cited the most highly cited node in the old community, but a 

medium cited one? Some bursts may be associated with topics that have hitherto been somewhat 

obscure and then became more prominent. More analysis would need to be conducted to test the 

viability of their method. Also any citation-based method is going to suffer from the problems 

identified with citation-based methods described at the end of section 2.4. 

2.9 Co-word and/or Cluster Based Burst Detection  

Co-word frequency, often coupled with Kleinberg’s method can be used to identify the 

relationship between bursts. Mane et al. [5]  use the complete set of papers published in PNAS 

from 1982-2001. They first chose the top 10% most highly cited documents in the entire span.  

They track the burstiness of each terms associated with those documents using Kleinberg’s model, 

tracked the co-word occurrence of topics and topic bursts, and had experts review the results.  

Once the most highly cited documents were identified, the team mapped their terms Figure 

4 displays the trend-lines for the top 10 most important words. Importance is based on frequency, 

and the review of experts in the field. 
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            Figure 4 Mane et al.'s results for PNAS' most highly cited documents [5]. 

The topics discovered are all highly related and very coarse-grained. They all related to 

DNA. The team used raw counts, which is problematic. In the past several decades, there has been 

an increase in papers published in nearly every discipline in science.  Relative to rate of 

publication for other topics there may not actually be a burst for some of these categories.  

They then analyzed the topics using the Kleinberg method. For the 10% most cited 

documents there were 1027 words mapped and 991 experienced at least one burst, and 34 had a 

least two bursts. The next step in their process was co-word correlation analysis, which measures 

the strength of association between two words.  This was done to apprehend the association 

between bursts. They were interested in understanding the association between the top fifty terms 

with a combination of high burstiness and frequency. Figure 5 represents the co-word space. 
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Figure 5 Mane et al.'s results of co-word analysis [5]. 

Figure 5 displays temporal information as well as burst strength information.  The shift 

from the focus on structural properties of cells in the 80s to the focus of sequencing data in the 

nineties can be easily gleaned from this data. Their co-word analysis demonstrates that burst 

detection can, in fact, be used to give a very detailed overview of the progression of a field. 

They found there was a low correlation with frequency and burstiness, which surprised 

the authors.  This confusion indicates a clear lack of understanding of what a burst should look 

like. The most frequently used words in any field are likely to be words that are used in the most 

documents consistently, and therefore fluctuate the least. A burst can occur only when a word is 

not already common despite its frequency. By focusing on the words only at the top, the 

researchers have identified the trends most likely to be visible to the community and not 

necessarily helpful. They have provided a nice overview of the history on the PNAS journal, but 

have not demonstrated its utility for emergent topic detection in real time. They created a 

methodology to identify not what is new, but what is most dominant.  
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Some researchers use text-based clustering to detect emerging trends [77], [78]. Terms 

are clustered in each time step and then clusters are connected across time. Clusters that cannot 

be connected to clusters from a previous time period are candidates for new ontological 

concepts. . While this methodology may make it possible to find strictly new terms there is no 

representation of the structure of its topic growth, and it is therefore limited as a methodology for 

burst detection.  

2.10 Burst Detection Using Eigen-Trends 

Eigen trends have been used for burst detection of scientific research. Chi et al. uses 

eigenvectors to identify trends [56] . An eigenvector of a square matrix A is a non-zero vector v, 

that when multiplied by v yields a constant multiple of v. Many of the values will now be zero and 

or will change such that only certain values will appear large or small and that is believed to 

correspond to a particular portion of the dimensional space that can then be analyzed. It is a 

feature identification and reduction method.  It is based on time-series derived through single-

value decomposition of an arrival matrix: 

 

where n is the number of intervals and did is the number of documents at interval i, and m is the 

source (e.g., country of origin).  Single value decomposition is a method that transforms a matrix 

into simpler meaningful pieces.  Through single value decomposition the matrix D can be recast 

into the multiplication of three matrices D=USV
t
.  The first eigen-trend is most important as it 

correlates to the importance of an individual source for a particular trend. Chi et al. (44) showed 


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eigen-trends can be more sensitive to the over-all contributions of high-authority sources while 

less affected by noise.  

A trend prediction index can then be generated from the above trend matrix. One method is 

to identify the slope of the linear regression line that bests fits the data. This is the most commonly 

used prediction method in statistics [79]. Evaluating the success of the trend prediction index is a 

widely used appraoch in TREC evaluations [80]. This approach outputs two metrics.  The first is 

precision rate at recall (Pre@R). This metric denotes the precision rate at the r-th position in the 

ordering. Precision rate refers to the relevance of the articles retrieved. Recall relates to the 

percentage of relevant articles that are retrieved. So Pre@r is r/R where r is the number of relevant 

items in the top R items. The second metric is non-interpolated average precision rate (NAP) 

defined as: 

 

where r is the number of relevant terms, and Ranki is the position of the ith  relevant item in the 

ordering. Average precision rates at intervals are interpolated to avoid recall of zero. 

In analyzing the effectiveness of the eigen-trend based methods for identifying research 

trends using the trec_eval tool, Tseng et al. found that a linear regression of the simple trend 

D=[d1, d2, …dn] performed better than the eigen-trend methods [7]. Upon analyzing the data they 

found that the simple authority vectors which identify the authority of each source, is almost the 

same as the eigen-trend authority. Eigen vectors are most useful for feature reduction tasks. Chi et 

al. found that it performed well at identifying authority sources contributions. This is not 
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surprising as this is the type of task Eigen vectors are most useful for; isolating features and 

determining the direction of their vectors.  

2.11 Burst Detection to Identify Burst Novelty 

This dissertation was motivated by the observation that burst detection algorithms are 

inadequately equipped to access how novel bursty topics are. Therefore they do not effectively 

identify emerging trends in scientific literature. Tu et al. proposed a set of novelty indices to help 

mitigate this aspect of the burst detection problem [81]. The authors generated a novelty index 

(NI) and a published volume index (PVI) to identify the detection point (DP) of a topic. They 

define a topic’s DP as the point at which the topic becomes emerging and valuable. For a novel 

topic to be considered emerging, its NI must be greater before the detection period than after, and, 

conversely, the PVI is higher after the detection period than before. 

In this context, aging theory is used to model the life-cycle of a research topic to determine 

whether it is emerging and when it has stopped emerging. In the case of news the cycle  modeled 

involved: birth, growth, decay and then death [82]. Applications based on this method use the 

concept of energy to indicate the different stages of the news cycle. The energy of a topic 

increases when a topic becomes popular, and decreases as its popularity wanes. Tu et al. adapted 

this method to the case of scientific research. To define NI it is necessary to first define the 

potential development year (PDY). The PDY is the first year to the current year when a topic will 

have no following years for which it has years with 0 publications (until topic death). This is the 

earliest period for which it can be seen to constantly growing in popularity. The NI is the inverse 

of PDY. If the PDY is 5, then NI is 1/5=0.20. To insure NI is between zero and 1 (without 
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normalization when NI and PDY are the same the result is undefined) it is normalized in the 

following way: 

 

where k is the current year. The PVI of a topic in the kth year is formulated as follows: 

  

where SUMi is the accumulated number of papers from the first year to the ith year for the topic, 

and SUMj is the accumulated number of papers for the set of articles analyzed. The DP is 

defined as the point at which NI and PVI intersect.  It is the maximal value of the two indices of 

novelty and hotness. The detection point value is value of the DP when it intersects the Y-axis. If 

the Year of detection point (YDP) is i the VDP is calculated as follows: 

 

To determine the effectiveness of their method, they analyzed title and abstracts from the 

ACM digital library. This is a large database of information systems and computer science 

journals. They validated their results by surveying previously published related works to find 

information about the candidate emergent topics, and interviewed experts on the topic. The first 

part of their experiment is to review how well their method detected emergent topics identified in 

the paper by Jo et al. [83], (who used a different dataset) to assess the effectiveness of their 

results. They analyzed the detection points of four topics u that paper and their selection of the 

year for which the topics could said to begin to emerge was the same as the results of Jo et al. 

They also interviewed five experts and asked them if they thought those areas were emerging 

during the year they identify as YDP for each, and their experts agreed. 
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There are several aspects of their methodology worth noting. First, using this 

methodology there is no way to assess the intensity level of a burst. They analyzed using known 

emerging topics, so they have not addressed the issue of noise in the data. This method could not 

be used for reemerging topics as they start by finding the first year for which there are no 

preceding zero counts for topic arrivals. They do not compare their method with the Kleinberg 

method, so it is difficult to know in what way their method is an improvement. Also, using 

expert review is problematic. As noted in Chapter 1 and section 2.2 it is very difficult for 

researchers to stay current of scientific trends. If that is true, how can we be sure an expert can 

pinpoint the time a topic is trending? It may be possible that the experts may recall the time an 

article was frequent, and not necessarily bursty. As mentioned in section 2.9 frequent topics are 

not always those that are bursty. 

Other researchers such as Yin et al. [84] build upon Tu et al.’s methodology by using 

term relatedness methodology to generate a better candidate set of terms. Term relatedness may 

be a good way to reduce noise in the dataset. 

2.12 Limitations of Existing Methods 

After reviewing various burst detection methods, it becomes clear that one important 

problem is the lack of a clear set of requirements for burst detection methods.  Consider 

Kleinberg’s conceptualization of the problems. Kleinberg’s model identifies more information 

about a burst than mere change in rate. By characterizing burstiness in terms of level of intensity, 

Kleinberg’s method allows for an easy comparison of bursts. If multiple topics burst concurrently, 

their relative levels of intensity can be used to compare them. Also, this method characterizes 

burst duration at different levels of intensity. This method is flexible enough to characterize many 
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different burst structures.  The model of He et al.’s addresses changes in rate but does not 

characterize bursts at different overlapping levels of intensity [57]. For some methods, e.g., topic 

drift, very specific assumptions are made about emerging topics that may make modeling many 

emerging trends with different citation structures difficult.  Qian et al’s topic drift based model 

assumes that top nodes actually always become the center of new clusters without demonstrating 

the validity of that assumption [76]. Recall may be a significant issue for their methodology as 

may be true for many of the citation-based methods as information about the relatedness of topics 

can be lost when text is not used. Tu et al.  make assumptions about the growth model of topics 

[81], and the EM and eigen-vector based methods assume there are many parameters of unknown 

underlying features [55], [56], which does not seem to be an appropriate assumption in this space.  

Another major limitation in the conceptualization of topic growth demonstrated by all the 

approaches is the assumption that bursts in the scientific literature should be modeled like bursts in 

the news. When a topic is popular in the news it means that many news programs mention the 

same topic. When a tweet is considered popular it means that the exact same words have been 

replicated numerous times. When it comes to scientific research, the popularity of a topic means 

that new discoveries have been made. In science, a topic remaining viable at a consistent 

publication rate or fluctuating in occurrence can still be associated with novelty and interest in the 

community. The lack of a consistent change in rate may merely be due to the difficulty of finding 

new discoveries.  A topic burst, maintained at a given level, could be representative of an 

emerging topic.  Methods such as Tu et al.’s, which assume a topic growth model like that of news 

topics, will miss many such emergent trends. Tu et al.’s method is designed to recognize only one 

burst from the time at which a topic has occurrences every year, without occurrence gaps.  If there 

were occurrences of a topic every year between bursts ,the second burst would not be recognized. 
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Therefore, I consider the burst model to be best able to capture emerging terms as it does not 

depend on a specific growth model, but instead on intensity level. 

Evaluation of methods is another significant problem in this space. Most of the work on 

burst detection, particularly involving detection of bursts in a stream of scientific documents, has 

defined evaluation metrics that are inappropriate for the task.  The basic problem in that, as I have 

mentioned earlier, is they start with topics known to be bursty (e.g., the physics-based model, 

novelty indices method, the research front detection methods, and the EM method). These datasets 

have limited noise, and there is no indication on how well the algorithm would perform in an open 

domain discovery context. He el al. use MeSH, which does not allow for the discovery of new 

terms based on content in new documents in the document stream. Morinaga et al. generate topics 

with dynamic methods, which is better than many of the other methods. However, they only 

assign one topic to each document, which is limiting. If documents can only be identified with one 

topic, the frequency counts of other topics mentioned in the paper will be lower than they would if 

documents could have many associated topics. Also, Tu et al. use expert reviewers, despite the 

fact that they do not justify the assumption that an expert will be able to pinpoint the year a topic 

was bursty. As mentioned in Chapter 1 and section 2.2 researchers have a difficult time stay 

current on research trends, so this may not be a useful evaluation method.  

In the next chapter, I introduce my framework for emerging topic detection. It relies on an 

overlapping hierarchy of topics, which classifies each document by a variable number of topics. It 

uses weightings based on the historical importance of documents to identify novel, though 

potentially reemerging bursts. The framework relies on characterization to of bursts, so that 

untested assumptions are not made. A fitness score is introduced to detect bursts early in the topic 

life cycle of bursts detected. 
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CHAPTER 3 A BURST DETECTION FRAMEWORK FOR REAL-TIME USE 

3.1 Outline for Burst Detection Framework 

I now propose a framework for identifying and vetting bursty topics in biomedicine that 

meets the specific needs of users identified in sections 2.1 and 2.2, based upon the Kleinberg 

burst detection model. This framework addresses many of the limitations of existing methods. 

For example, topic counts at each interval are weighted based on the historical importance of the 

topic. If a topic has experienced a high degree of activity for an extended period of time, its 

bursts should not be considered as important as those of new or reemerging trends. The main 

components of my model are as follows: 

 Archival weighting: A novel set of weightings based on the historical importance of each 

topic identified.  

 Fitness mode: Features such as journal impact factor, and  associated funding data are 

used to develop a fitness score, for each of the topics to identity which new topics are 

likely to burst in the future.  

 Bursts are characterized over an extended planning horizon for the cardiology discipline 

to understand what a typical burst trend looks like in this space and to better understand 

how to identify important or emerging trends. 

 Cluster analysis is used to create an overlapping hierarchical structure of scientific 

literature at the discipline level. This allows for granularity adjustment (e.g. discipline 

level or research area level) in emerging topic detection for different users.  



 
 

42 

3.2 Archival Weighting 

Research is cyclical.  Ideas studied decades ago re-emerge. Research topics are ever 

expanding. The focus of the study of a particular disease changes over time as new developments 

are made related to treatment. Because of this tendency, it is possible for a new topic in a stream to 

appear to be a novel topic, without actually being new. For that reason I weight the number of 

publications at each interval. My weighting is based on the term frequency-inverse document 

frequency-weighting scheme (TF-IDF). TF-IDF is used to calculate the importance of a term for a 

given document based on how common the term for a collection of documents. If a term is 

common in the set of documents considered, the TF-IDF weighting would decrease its importance 

for each paper it appears in. This way, the terms that distinguish a particular document will be 

used to define it.  TF is the frequency of a term in a document, and IDF is the log of the number of 

documents in the corpus divided by the number of documents where the term appears: tf * log (D/ 

(d € D: t € d)).  

To weigh the number of times a term appears at each interval, inverse document frequency 

of the term for a previous period is considered. In a preliminary study of all cardiology journals 

represented in MEDLINE for the period of 2006-2009, IDF was calculated for the term for the 

period of 1995-2005. How important a topic was in the past, when determining its importance in 

the present, was considered. The metric developed, current term frequency inverse archive 

frequency (CTF-IAF), performed well in a preliminary analysis.  The results demonstrated that our 

score did a better job of finding long-term bursting terms, with 63% of those terms continuing to 

burst in the following year. Using unmodified  term frequency, only 25% of identified burst within 

the range studied continue to burst in the following year.  
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3.3 Granularity Adjustment 

A burst of activity in this space can occur at many different levels of granularity. Burst 

detection models in the literature have mapped large-scale topic bursts like DNA, which have 

affected almost every biomedical domain. Bursts can occur within a smaller research area as well. 

In order to make burst detection results most useful to various interest groups, one must consider 

the degree of burstiness. To appropriately identify relevant levels of granularity, a topic hierarchy 

is used to create thresholds of topic frequency and document counts to categorize topics. A topic 

hierarchy provides the ability to further contextualize bursts so that a potential researcher could 

identify bursts similar to a set of topics.  

3.4 Burst Characterization 

In addition to weighting the arrival-rate of topics in a scientific document stream, 

characteristics of bursts were analyzed. Theories about the growth structure of topics have 

precipitated algorithmic design choices.  Tu et al. assume that a topic’s popularity in science is 

characterized by a birth, growth, decay and death structure. They then set out to identify  trends by 

analyzing topic frequencies across time. They do not actually attempt to determine if this is the 

most appropriate assumption, as do the other approaches discussed in chapter 2.  

Understanding what a typical burst structure actually looks like in this space can help to 

determine which bursts, at what level of intensity are of interest. For example, if one knew the 

typical burst duration for a topic at a given frequency range, one could set the planning window, or 

timeframe, to analyze with better accuracy. If one knew a burst typically lasts for 4 years, one 

would want to set the timeframe to identify bursts for a longer period. If one knew that a burst at a 

given level of intensity indicates that it is likely to stay bursty for at least ‘x’ years, that 
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information could be very useful in the attempt to find significant or important bursts.  Further, if 

the assumption that research is indeed cyclical and there is ample evidence that a given topic can 

experience multiple bursts separated by a long time period, one can try to ensure that my 

algorithm can pick up on those bursts. Tu et al.’s burst structure would not allow for the 

identification for such bursts.   

3.5 Fitness Score 

When a topic is introduced into a particular field, it flourishes under certain conditions. 

There must be interest in the field, and researchers capable of dealing with it. The support it 

receives (in terms of related research that can back it up) is dependent on time, recent work, 

popularity, visibility of associated journals, and conceptual models of active researchers. Its 

likeliness to flourish, or its fitness, can be, to some extent, quantified and that can be used to 

predict its future growth. To try to identify topics that will be bursty at the earliest possible time, I 

develop my own fitness scoring. 

There is a need for change within any given research area as researchers need to maintain a 

given threshold of productivity and/or establish themselves to be viable. Publication is dependent 

on new findings and methodology, shifts in focus, or the generation of new topics. Considering 

Small’s model of scientific development one can understand why this is. Without change scientists 

can exhaust a research area, which then declines and may eventually become obsolete.  

Citation growth is a process of accumulative advantage [58], [59], [85]. Citation networks 

demonstrate scale-free properties. The network grows based on preferential attachment, where 

some nodes are more likely to gain connections. Co-authorship networks demonstrate a power-law 

region followed by an exponential or Gaussian cutoff because of individual capacities to 
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collaborate[86]. A node’s ability to attract new connections is not just based on preferential 

attachment, but on its fitness to connect to other nodes. Fitness, in this context, can be defined as 

in complex systems such as citation networks, nodes effectively compete for links in a constantly 

evolving system [87]. Competitive latecomers do have a chance to break up the network because 

of their ability to serve a particular purpose, as well as their ability to remain relevant as the 

context changes. 

Networks evolve and the nature of that evolution can be derived from structural changes. 

Understanding that at a particular time the node introducing a change in a concept will alter the 

network makes it easier to identify those concepts.  Researchers compete within a specific 

research area. In order for a research area to evolve, there must be new discoveries. Bibliometric 

research describing the evolution of research fields typically identifies conceptual changes in how 

researchers describe a subject area. However, there can be changes in approach and methodology 

that also give a competitive edge. Topics can drift from more specific topics to more general 

topics. Identifying shifts that will be associated with important bursts is necessary.   A fitness 

score for a research topic can be generated by looking at various factors: early citation counts, 

impact factor of journals associated with it, and associated funding. Ke et al. [86] developed a 

fitness model to predict the impact of scholarly work at the document level which is relevant for 

my work: 

 

where ki is the node’s degree over time, τ is the time factor, β is a scaling parameter estimated 

empirically, and represents a set of factors associated with the node’s competitiveness. They 

identify several variables to associate with documents that can be used to predict the number of 
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citations they will accumulate.  Their variables used to identify the fitness of a node are: merit of 

research presented in the paper, existing influence of authors and publication venue, and age of the 

paper. Their predictions of future citations counts were very close to actual values. 

A model similar to Ke et al.’s fitness model, can be used to identification for important 

burst based on the extent to which it represents a fit mutation can be developed. To develop my 

model I consider the following:  

 How quickly papers already associated with the topic gain citations.  Papers with the 

same citations counts within a five-year period often have widely different long-term 

citation counts. A full citation history, (i.e. the number of citations received during each 

year), can be used to predict future citation counts as early citations appear to play a 

serious role in determining long-term impact[88]. 

 Journal impact factor will be another feature used for this fitness score. Average impact 

factor is among traditional scientific performance measures that help indicate how visible 

a document is [89]. It is calculated by dividing the number of citations a journal received 

in the previous two years over the number of articles published in that journal during the 

same period. 

 Associated NIH funding is also a feature used for the fitness score for this work. Funding 

gives a sense of how impactful expert reviewers at funding agencies believe the work to 

be. 

Each of the scientific archive measures, and the raw count measure with be weighted 

with a combination of weights from the selected features: 
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where M is the measure and K is the set of normalized features.  
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CHAPTER 4 ANALYZING CARDIOLOGY LITERATURE WITH THE 

BURST DETECTION FRAMEWORK 

4.1 Characterizing Topics for Burst Detection 

I used the STC and Lingo clustering algorithms [90] to generate an overlapping hierarchy 

to characterize topics in cardiology. Clustering algorithms were chosen over existing topic 

hierarchies such as MeSH and UMLS (Unified Medical Language System) for several reasons.  

According to  the National Library of Medicine (NLM) the purpose of UMLS is to make it 

possible for researchers, clinicians etc. to create “conceptual connections to machine-readable 

biomedical information” [91], [92].  It is the largest collection of medical terms. All of the three 

tools that make up UMLS allow one to either manually map information to a controlled 

vocabulary (the way library of congress uses subject headings) or for purposes of text retrieval. 

Papers are tagged with MeSH terms once only, and those terms are never updated. UMLS has an 

advantage over MeSH in that it allows for the tagging of documents with terms irrespective of 

what terms would have seemed appropriate at the time of publication. The limitation of using 

UMLS in a real-world context where researchers are trying to stay up-to-date with current trends 

is that new emerging terms will not be included.  For those reasons neither UMLS nor MeSH 

will not be used for the dissertation work. 

Many of the clustering algorithms used for scientific emergent topic detection rely on 

citation-based methods to cluster documents. However, text based clustering solutions are more 

suitable in this problem space. First, as mentioned in section 2.7, articles tend to cite recent 

papers, so the relationship between papers is often lost. I believe this is one of the main reasons 

citation based methods have as yet not solved the problem of emerging topic detection to any 

significant degree. Also, emerging trends may be part of a large discipline-based trends and 
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researchers may only cited the research area specific papers that mention a given sub-topic even 

though their work is strongly related to other larger topics. To truly understand the relationship 

between new and old topics one must have a complete understanding of how they relate and text-

based clustering methods will be useful in attempting to achieve this.  

Clustering algorithms can be used on text collections to separate documents into 

meaningful collections. STC (suffix tree clustering) is an algorithm that uses a suffix tree to 

generate clusters. It keeps track of all n-grams of any length in a set of word strings while 

allowing strings to be inserted incrementally.  A suffix tree is a data structure that essentially has 

a node for every possible phrase in a collection of documents. Clusters are either nodes with a 

high number of documents associated with it, or are a product of merged nodes. Labels are 

generated from phrases at each node. For the purposes of topic detection clusters need to be 

identified with terms that are the most representative of the set of documents and characterize the 

distinctiveness of these documents from other clusters. Most text-based clustering algorithms are 

not able to achieve this. For instance, methods like STC use linear algebra operations to compare 

texts. It is difficult to generate good labels based on a numerical comparison of similarity (43). 

Also, it is even more difficult to generate labels that are distinct with this method. Lingo is an 

algorithm that has been designed to help alleviate some of these problems [90], [94].  It is based 

on single value decomposition, and method that has been developed based on the assumption 

that words used in a similar context have similar meanings. This algorithm uses single-value 

decomposition to generate labels that for each cluster that help make it appear to be distinct from 

other clusters. The following two figures demonstration the difference between STC and Lingo. 

They show the clustering results for an ‘exome sequencing’ search of the PubMed dataset. This 
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network analysis was performed by me using the Carrot
2
 toolkit[95] an open-source clustering 

application. 

  

Figure 6 Search results for the STC algorithm. 

           |Figure 7 Search results for the Lingo clustering  

           algorithm. 
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The STC labels are less specific than the results from Lingo, and also less distinct.  In a 

comparison, by the creators of Lingo, of both techniques, using a cluster contamination measure 

on datasets previously partitioned by experts, Lingo produced purer clusters. The authors merged 

datasets with either very distinct or closely related data. The cluster contamination measure 

defines a cluster’s contamination score as the number of pairs of objects in the same cluster, but 

not in any of the partitions, divided by the maximum potential number of such pairs in that 

cluster. The results indicated that the clusters identified by Lingo were less contaminated. In the 

analysis, Lingo also created significantly purer clusters than STC. Purity is a precision-based 

measure that focuses on the frequency of the most common category in each cluster. It is among 

the most widely used evaluation metrics for clustering methods [96]. 

One other aspect that makes the Lingo algorithm useful is that no assumption need be 

made about the number of clusters, a limitation of many other clustering methods [97].  

Sub-clusters were generated and this process was performed recursively until cluster size 

is less than 10.  For the period of 1990 through 2007, 195,441 documents were identified for 

clustering analysis. STC was used at the top level, as Lingo does not perform well, and clusters 

all documents together, when the document size is  too large. Both Lingo and STC allow for 

overlapping hierarchies. At each level a document can appear in several clusters. At the highest 

level, manual inspection of output was performed. This was done because at the highest-level 

documents were clustered around general scientific terms such as significance, ratio, and 

analyze. Stop words, and stop label patterns were added to the existing list appear in the 

appendix.  Due to the time-consuming nature of this task, the entire document set was not fully 

clustered. At the highest level 70% of the documents were clustered into meaningful clusters 

ranging from sizes of 61, 666 documents to 14. At the next level, and down to clusters of size 20 
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or less, 40% of total documents were clustered. These documents were taken from the top two 

clusters at the highest level: Left Ventricular, and Coronary Artery. Once cluster size was smaller 

than 10,000 Lingo was used to cluster documents.  

4.2 Characterizing Bursty Topics 

The discovery of bursts within a hierarchy of terms allows for the discovery of local 

bursts based on the area of interest for a given user.  The following charts and tables, help 

characterize bursty behavior.  All clusters with associated documents between 1990 and 1999 

were analyzed using Klienberg’s burst detection model. Statistical analysis was used to 

determine the relationship between cluster size during the timeframe and the volatility of yearly 

frequency.  Bursts with less variability (or volatility) of their yearly frequency indicate bursts at a 

steady level during this period. Relative standard deviation is used to determine volatility of the 

trend-line.  Levels of granularities are determined by analyzing the distribution of cluster sizes.  

For each level, bursts with the longest burst length, and burst strength are plotted on a yearly 

frequency graph. Topics experiencing reemerging bursts were also identified.  

In finance, standard deviation is often used to measure volatility. This is accomplished by 

taking the standard deviation of the departures from the trade growth trend [98].  To better 

understand the volatility of bursty topics, relative standard deviation and linear regression was 

used to assess the behavior of topic trends. Relative standard deviation is standard deviation 

normalized by dividing it by the mean.  The greater the relative standard deviation, the more 

volatile the trend.  The correlation between relative standard deviation with: cluster size, the 

mean of yearly frequencies of the cluster, and the median of yearly frequencies is used to 

determine this relationship.  
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Table 1 Pearson's R correlation between relative standard deviation and three statistics. 

Statistic R 

Total document count -.083 

Mean  -.121 

Median -.223 

 

Table 1 shows that there is a negative correlation between relative standard deviation 

against the cluster size, the mean and the median. This indicates that bursty clusters with high 

frequencies are less volatile. Their trend-lines do not vary as much. Bursty clusters with low 

frequency have trend-lines that are more variable. This will have implications for burst detection, 

as it will be more beneficial to find the bursty clusters that are likely to stay bursty and not 

fluctuate in frequency too much. The following figures show the relationship between relative 

standard deviation and total count, mean, and median.   

The following three tables further illustrate the relationship between relative standard 

deviation and the three statistics. 

 

 

                     Figure 8 Total Count vs. relative standard deviation for  bursty topics  

                     between 1900 and 2000. 
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                     Figure 9 Mean for yearly frequency counts vs. relative standard  

                     deviation for bursty topics between 1900 and 2000. 

                       Figure 10 Total Count vs. relative standard deviation for bursty topics 

                       between 1900 and 2000. 

Figures 8-10 show a negative linear trend. The trend for median of yearly frequency is 

the most pronounced. This is most likely because median is a measure more sensitive to outliers. 

In some cases, relative standard deviation is greater than one. This happens when standard 

deviation is greater than the mean due to many outliers. The graphs show that there are very 
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infrequent bursty topics that have low relative standard deviation, and do not have volatile 

trends. These are trends that typically do not have document counts in every year.  At the low 

end of the scale there is a wide range of relative standard deviation scores. Because of the 

variability of relative standard deviation, investigation of different burst topic identification 

methods at different levels of granularity was done and is described in section 4.3. 

Relative standard deviation gives a sense of the variation of frequency counts. It does not give an 

indication of the direction of the trend. It is possible for relative standard deviation to be high, 

even when the frequency counts are increasing steadily in a linear manner. Performing linear 

regression and identifying trend slope and r-square further highlights the relationship between 

total frequency and bursty behavior. Linear regression gives an indication of the direction of the 

trend. R-square is a statistical measure determining how well the data is to fitting the model. The 

higher r-sqaure is, the closer the data is to fitting the model. The set of bursts analyzed was 

limited to those that burst for at least three years total during the period of 1990 and 2000. There 

were 1038 bursts that meet those criteria. 

Table 2 Correlations between r-square and three features for clusters with positive linear  

slope.  

Statistic R 

Total Count 0.338 

Mean 0.347 

Median 0.328 

 

 Table 2 shows that the higher the frequency, the more stable the linear trend is. All three 

variables have positively correlated relative standard deviation--indicating that the higher the 

frequency of a topic the better it can be fitted to a linear trend. Understanding the trend of 

increase in frequency over time is crucial in developing a burst detection framework, as steady 

increases over time may be associated with more stable bursts. 
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            Figure 11 Number of topics by total count for the period between 1990 and 2000 

            that experience a burst of occurrence during that period. 

 

 The distribution of total count for bursty topics was examined to develop levels of 

granularity for analysis. The distribution in figure 11 is skewed to the left. Most topics, 

represented by clustered documents, have total frequency counts of less than 200, though there 

are a number of outliers, which have total counts greater than 400.  The following figure shows 

the box plot for the distribution that is used to derive the levels of granularity for analysis of 

bursty topics.  
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            Figure 12 Box plot for total document count for bursty topics between 1990 and  

            2000. 

 

Figure 12 shows that 75% of the clusters are of size 137 or smaller. The max cluster size 

(31,589) is not shown on the chart as it would make figure 12 difficult to read.  The first quartile 

is 15-20, the section quartile is 20-35, and the third quartile is 35-137.. Because the distribution 

of the fourth quartile is so large, it was also separated into quartiles.  Breakdown for forth 

quartile: the lowest 24% between are 138 and 169, the second 24%  are between 169 and 222, 

the third 25% are between 222 and 342 and the last 25% are between 342 and 31,589. 

The following figures display the trend-lines for top bursty topics in each range. Bursty 

topics were ranked by length and strength. Strength corresponds to the level of frequency during 

the period in which the topic bursts. The tables appearing below the figures indicate how many 

of the bursts occur at different burst lengths.  
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      Figure 13 Yearly frequencies for bursty topics of cluster size 342 or greater.  These are  

      topics that have the longest burst length during this period. 

Table 3 Number of bursts by length for topics of cluster size 342 or greater. 

Length Number of bursts 

4 5 (10%) 

3 7 (14%) 

2 10 (20%) 

1 28 (56%) 
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Figure 14 Yearly frequencies for bursty topics of cluster size between 222 and 342.  These  

are topics that have the longest burst length during this period. 

Table 4 Number of bursts by length for topics with cluster size between 222 and 342. 

Length Number of bursts 

4 22 (19%) 

3 14 (12%) 

2 19 (17%) 

1 58 (51%) 
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Figure 15 Yearly frequencies for bursty topics between cluster size between 169 and 222.   

These are topics that have the longest burst length during this period. 

Table 5 Number of topics by burst length for topics with cluster size between 169 and 222. 

Length Number of bursts 

4 12 (10%) 

3 18 (15%) 

2 25 (20%) 

1 69 (56%) 
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Figure 16 Yearly frequencies for bursty topics between cluster size between 137 and 169. 

 These are topics that have the longest burst length during this period. 

Table 6 Number of topics by burst length for topics with cluster size between 137 and 169. 

Length Number of bursts 

5 4 (3%) 

4 16 (12%) 

3 16 (12%) 

2 38 (29%) 

1 56 (43%) 
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Figure 17 Yearly frequencies for bursty topics between cluster size between 35 and 137.   

These are topics that have the longest burst length during this period. 

Table 7 Number of topics by burst length for topics with cluster size between 35 and 137. 

Length Number of bursts 

7 1 (>1%) 

6 2 (>1%)  

5 28 (3%) 

4 160 (14%) 

3 252 (23%) 

2 316 (28%) 

1 361 (32%) 
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Figure 18 Yearly frequencies for bursty topics between cluster size between 20 and 35.   

These are topics that have the longest burst length during this period. 

Table 8 Number of topics by burst length for topics with cluster size between 20 and 35. 

Length Number of bursts 

7 2 (>1%) 

6 12 (3%) 

5 49 (11%) 

4 69 (15%) 

3 123 (26%) 

2 129 (28%) 

1 81 (17%) 

Figures 13-18 demonstrate the differences in volatility at different levels of granularity. 

Figure 18 shows trends at the lowest level of granularity are unstable compared to the higher 

ranges. However, there is a significant burst for many of these terms with yearly frequency 

counts. For each of the ranges, with the exception of the range displayed in figure 13, the terms 

appear to fluctuate significantly. Terms with spikes in the 342+ range are terms that appear 
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frequently even in years where there are not spikes. Mane et al., who used burst detection to 

analyze PNAS data, were surprised that frequency and burstyness had a low correlation. The 

above charts help demonstrate the problem with Mane et al.’s assumptions about bursty topics. 

Highly frequent words are often already common. There may be a spike in the occurrence of the 

term for a few years, but it may not be as significant as it appears. Clusters that do have 

significant bursts do not become common quickly.  

Tables 3-8 give an indication of the relationship between burst length and topic 

frequency. For topics in the top ranges burst length ranges from 4 to 1 years, with the majority 

bursting for two years at most. Though topics in the lower ranges appear to be more volatile, the 

burst length is often longer, with bursts ranging from1 to seven years. 

Burst weight can also be used to characterize and understand bursts. The weight of the 

bursts is the reduction in cost of going from one state to another over its bursty interval. Words 

with high overall frequency have high weighting. Kleinberg proposed using weight to rank bursts 

[6].  The following table gives information on correlations of length and weight with mean, 

median and total count.  

Table 9 Relationship between burst weight and various topic features.  

Topic Feature Burst characteristic R 

Mean Length -0.033 

Mean  Weight 0.664 

Total Count Weight 0.650 

Total Count Length -0.024 

Weight Length -0.003 

Table 9 shows that weight is negatively correlated with length and appears to be a 

function of total frequency. This indicates that weight is not a good criterion for ranking, in this 

context, as Kleinberg suggested.  
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The following chart displays the trends for terms selected from the above charts that 

demonstrate reemergence.  

       Figure 19 Results for terms whose frequency demonstrates reemerging burstiness. 

The cyclical behavior of the trend-lines displayed in Figure 19 indicates that emerging 

trends can indeed be associated with old topics. In fact, during the period analyzed, 75 of the 

topics that burst have two separate topic bursts.  Emerging trend detection algorithms will be 

very limited if, as Tu et. al. assume, topics burst once only. Topics that experience reemergence 

can be associated with new developments. Researchers whose work is related may be very 

interested in those reemerging trends.  
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4.3 Weighting Topic Frequency Counts with Archival 

Measures 

To determine how best to account for the scientific literature archive, three weights were 

developed based on the historical frequency of each topic. These archival measures were then 

compared them with un-weighted burst detection results.  The first measure is CTF-IAF, or 

current term frequency-inverse archive frequency:  

 

where CTF is the number of documents using the term in the current window of interest, N7yr is 

the number of documents in the seven year period which represents the archive, and 7TF is the 

number of documents in the cluster for the seven year period.  This is the simplest measure I use 

to account for the cluster history.   

The second measure is CTF-SQRT-IAF or current term frequency -square root- inverse 

archive frequency: 

  

The above equation is almost identical to the first one with the exception that instead of using 

N7yr it uses the square root of N7yr. This measure penalizes terms that appear frequently even 

more than CTF-IAF. Taking a log of smaller number will result in even lower values. Using this 

measure, terms that appear frequently in the archive, will have CTF-SQRT-IAF close to 0 or at 0 

even if they appear frequently currently. This is an attempt to find bursts of terms that appear 

very infrequently in the archive.   
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The last measure is CITF-IAF, which stands for current inverse term frequency-inverse 

archive frequency: 

 

This last one differs from the first in that instead of TF at the beginning there is log(cn/ctf) which 

is the log of the current document count divided by the current term frequency. This accounts for 

the prominence of a term in the current window of interest. I compare these measures to TF, 

which is the raw count of each term in the window of interest.  

As discussed previously, the arrival rate for science must be discretized as journals 

publish in consistent intervals. I chose a window of one year. This is the smallest period of time 

in which activity can be seen for most journals. The planning horizon for this project was a ten-

year period. The period of 1997 to 2006 inclusive was chosen to identify bursts.  The percentage 

of bursts in that period for which there was a burst in the following year were identified.  The 

results are displayed below. Kleinberg’s method implemented in the Network Workbench 

Toolkit2 was used to find bursts. 

To understand how infrequent bursty clusters identified by each measure were in the 7yr 

historical period are, IAF scores were plotted for each burst against the number of clusters of that 

IAF score for each measure. IAF scores are large for clusters with low membership in the 

previous period. For this study I identified a planning horizon of bursts between 1997 and 2006 

inclusive. The window size was one year. To generate IAF scores, cluster membership counts 

were generated for the period between 1990 and 1996 inclusive.  IAF scores were rounded to the 

                                                 
2 http://nwb.cns.iu.edu/ 
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first decimal place. Each measure was used to identify bursts. The results are given in the figures 

and tables below.  Figure 20 displays the number topic burst counts by IAF scores for each 

measure.  

  Figure 20 Displays the number of concept burst by IAF score for the non-weighted topic  

   count. 

Figure 20 demonstrates a noticeable difference in IAF ranges, which produce bursts for 

the different measures. CTF, CTF-IAF, and CTF-SQRT-IAF, all have similar shapes, but have 

different rates of increase. CITF-IAF has the smallest range of IAF scores. It only identifies as 

bursty, topics that are historically rare. Not only are the ranges different the number of bursts 

found at each IAF score differs.  This tells us that the some scores are better for finding bursts for 

very rare scores. 

A methodology was developed to reduce the number of bursts analyzed. Each of the 

measures identifies bursts that have an overall low frequency of occurrence--especially the 
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weighted measures.  Manually sifting through these bursts would be incredibly time consuming. 

At each level of granularity there will be bursts that are associated with high burst strength, 

significant frequency, high average impact factor and a high-normalized impact factor. These 

features will be used to select the top burst by measure. Also, based on an analysis of typical 

burst behavior at each level of granularity a threshold of frequency will be set to reduce the set of 

bursts found. 

For each measure correlations between burst strength in the first part of the time period, 

and future burst strength were determined.  Noise reduction in this step is based on cluster size. 

The cluster membership during the period of analysis must be 30 or higher, and the length of 

bursts must be 3 years or more. The following four charts show the cluster size distribution for 

bursty topics for each measure. 

 

 Figure 21 Cluster count by size for topics bursting at least three 

 months with cluster size 30+ for un-weighted topic counts. 
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                         Figure 22 Cluster count by size for topics bursting at least three  

                         months with cluster size 30+ for clusters frequencies weighted with  

                         CTF-IAF. 

 

            Figure 23 Cluster count by size for topics bursting at least three  

      months with cluster size 30+ for clusters frequencies weighted 

     with CITF-IAF. 
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Figure 24 Cluster count by size for topics bursting at least three  

months with cluster size 30+ for clusters frequencies weighted 

 with CTF-SQRT-IAF. 

 

Figures 21-24 show the distribution of burst count is similar for each measure except for 

CITF-IAF, which has a smaller distribution range. Each distribution is skewed toward the left. 

With the exception of CITF-IAF, the distribution is similar to the distribution used in section 4.2. 

Since these distributions are so similar, the levels of topic granularity used in section 4.2 those 

levels will be used in this section.  

To make a burst detection framework useful, it is important to identify bursty topics that 

remain bursty. The following table shows the percentage of topics that burst between 1997 and 

2003 and remain bursty between 2003 and 2006.  
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Table 10 Results by weighted frequency showing the percent of bursts found which burst in 

 the future. 

Measure Total number 

of bursts 

Total number 

of bursts 

between 1997-

2003 

Total number 

of early bursts 

still bursting 

after 2003 

Percent still 

bursting after 

2003 

CTF 1218 957 510 53% 

CTF-IAF 1958 1563 735 47% 

CITF-IAF 143 143 113 79% 

CTF-SQRT-

IAF 

1628 1340 498 37% 

Table 10 shows the differences between the measures in terms of their total number of 

bursts identified, and their ability to identify long-lasting bursts. This research indicates that 

when trying to identify how new a term truly is for a given area, one can increase the precision of 

burst detection methods. In this sense, precision would correspond to bursts which remain 

emergent.  Precision is higher for CITF-IAF than any other measure. In terms of trying to find 

lasting bursts, it identifies the fewest false postivies. CTIF-IAF and CTF-SQRT-IAF identified 

the most bursts, though many of them are not long lasting.  

Another important feature of a useful burst detection framework is the ability to identify 

bursts earlier than other methods. The following table shows which measures find bursts earlier 

than other measures. 

Table 11 Displays the number of topic bursts a particular weighting identified earlier than 

another weighting.  

Measure Earlier than CTF Earlier than 

CTF-IAF 

Earlier than 

CITF-IAF 

Earlier than 

CTF-SQRT-IAF 

CTF  3 0 9 

CTF-IAF 138  0 105 

CITF-IAF 47 53  49 

CTF-SQRT-IAF 132 108 0  
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Table 11 demonstrates that weighted topics are better able to detect bursts identified by 

raw counts than the reverse. Also, no measure is able to detect bursts earlier than CITF-IAF. This 

indicates that it does a better job of early burst detection, when compared to other measures. 

 Linear regression on the current timeframe was performed, for each bursty topic 

identified by each measure that experiences a burst of at least three years total, was performed.  

This was done for topics with bursts that either ended in 2006, or were still bursting at the end of 

the period.  

Table 12 Average R-square, total number of bursts, and average relative standard deviation for 
each measure. 

Measure  Average R-square Total number of 

bursts 

Average Relative 

standard deviation 

CTF .46 783 .62 

CTF-IAF .39 1197 .59 

CITF-IAF .41 143 .56 

CTF-SQRT-IAF .48 883 .59 

Table 12 shows that CTF-SQRT-IAF has the highest r-square, while CTF has the highest 

relative standard deviation for the period.  High r-square means the data fits the liniear trend the 

best. A measure that finds trends easy to model is very important, as it can find trends easier to 

predict. To improve the results of other methods a fitness score will be used so that the most 

stable as well as newly bursting topics can be found.  

Burst slope identification was done to assess how well each measure detects topics that 

have a significant increasing trend. This was achieved by creating burst strength trend-lines at 

each level of granularity. Linear regression was performed to find the slope of each trend line so 

that increases in intensity can be assessed, and compared. Only bursts with positive slope were 

used in this part of the analysis. 
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Table 13 Average slope by range for each measure. 

Range CTF-IAF CITF-IAF SQRT-IAF CTF 

Avg. for cluster 

size 342+ 

5.50 2.00 5.70 5.90 

Avg. for cluster 

size between 222 

and 342 

3.36 2.9 3.27 3.50 

Avg. for cluster 

size between 169 

and 222 

2.95 0.9 2.56 2.97 

Avg. for cluster 

size between 137 

and 169 

2.57 3.60 2.81 2.88 

Avg. for cluster 

size between 30 

and 137 

1.45  2.53 1.71 1.90 

Table 13 shows that at the highest level of granularity, CTF finds bursts with higher 

average slope than the other methods. This indicates that at those levels it is identifying bursty 

topics with high average yearly increase in frequency. At the lower levels of granularity, CITF-

IAF finds bursts with higher average slope than the other methods. This indicates that at those 

levels it is identifying bursty topics with high average yearly increase in frequency.  

Google scholar data was used estimate the degree to which the documents identified by 

each burst are cited in the future.  This will give an indication of the impact of the field and its 

continued stability. Some identified bursts may not continue to burst, but begin to remain 

constant. However, if the documents from the bursty period have on average higher citation 

counts than they had previously, the identified burst can be deemed valid. For each cluster, the 
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sum of citations counts were be analyzed for each range. The average of that number for each 

measure is displayed in the following table.  

Table 14 Average citations for bursty clusters by measure. 

Range CTF-IAF CITF-IAF SQRT-IAF CTF 

Avg. for cluster 

size 342+ 

2101 N/A 1545 2062 

Avg. for cluster 

size between 222 

and 342 

956 1402 944 995 

Avg. for cluster 

size between 169 

and 222 

559 1155 566 627 

Avg. for cluster 

size between 137 

and 169 

437 1113 400 443 

Avg. for cluster 

size between 30 

and 137 

182 310 173 200 

In the highest range CTF-IAF has the highest average citation count. For each other 

measure CTF has a higher average citation count than CTF-IAF. For each range except the 

highest one CITF-IAF consistently has the highest average citation count. This indicates that at 

the highest range CTF-IAF identifies bursty topics with high impact, and at all other ranges 

CITF-IAF identifies bursty topics with high impact. 

4.4 Early Burst Detection with a Fitness Model 

The results from section 4.3 demonstrate that my framework improves upon existing 

methods.  To increase the effectiveness of this framework, a fitness score was developed. A 
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fitness score can help identify bursty behavior early in a topic’s life-cycle. Early signs of 

prominence could help researchers identify an impactful research agenda. In the following 

subsections I identify my weightings for my fitness model. Once bursts have been identified for 

each measure. The effects of each fitness feature are examined. It will be important for future 

analysis to pinpoint which feature improves which measure, and to what extent. Normalized 

journal impact factor and normalized h-index are both impact measures. Funding data gives an 

indication of how important a topic is to policy makers. It would be useful to know if all features 

are necessary for improving bursts, as citation data is not easy to come by. This will also indicate 

which features should be weighted more.  

4.4.1 Weighting with Normalized H-Index 

Early impact in terms of citations is a good sign that a topic will continue to be a focus of 

research. H-index is citation-based method to determine impact of documents. A normalized h-

index measure was developed to weight each measure from section 4.3. A researcher has index h 

if they have h papers with at least h citations [99].  It is a useful measure because it combines 

productivity with impact as it relates to not only how many papers published, but also how often 

they are cited. It is additionally not sensitive to extreme values and hard to inflate [100].   

However, for the timeframe of my initial analysis h-index could not be generated, as 

Google scholar did not have information on citation for the overwhelming majority of papers in 

1997 and 1998. Because H-Index is a good fitness measure, I performed a different analysis for 

H-index. To determine what would be a reasonable timeframe to expect enough citations for a 

set of documents to reach a relatively high h-index I analyzed the citation half-life data provided 

by JCR. The citation half-life of a document is the number of years after publication in which it 
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receives half of the citations it will ever receive. The average citation half-life is made available 

for the journals in this study by JCR. For cardiology the average citation half-life is 4.9. The 

maximum is 9.9 and the minimum is 1.4.  If most of the citations are in a short time frame then 

citation counts for documents in the previous few years can be used to bolster occurrences of the 

term in the current time frame. 

Normalized h-index score was developed in the following manner. First, of interest is not  

simply the impact of topics, but the impact in terms of the total number of documents.  Also, 

comparing impact across topics even with the topic count is different is necessary.  To achieve 

that the following formula h/d was developed, where d is the total number of documents 

associated with a given term and h is the h-index. This will allow for a simple weight with values 

between 0 and 1.  The closer normalized h-index is to 1, the more documents were cited at least 

d times. The closer normalized h-index is to 0, fewer documents were cited at least d times. An 

analysis of h-index data using the data generated by my clustering analysis was not possible. 

During the period of 1997 through 1999 very little citation data was available. Because h-index 

has potential as a fitness measure I include the results from a preliminary study about h-index.  

The setup for this experiment was as follows. The interval for document arrivals is six 

months.  The time frame for the experiment is January 2004 to December 2009.  Each documents 

was tagged with UMLS terms. For each term, normalized h-index was be calculated based on 

citations of documents published between January 2004 and December 2006. The reason 

citations are only gathered for 2004 to 2006 is that by the start of January 2010 they will receive 

most of the citations they will ever receive, and is therefore a good reflection of their scientific 

impact.  Google scholar was web-crawled for citations for all cardiology documents for the 

period of 2004 to 2006. For each term normalized h-index was calculated based on the results. 
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Each measure discussed in section 5.1 was multiplied by normalized h-index and the results are 

displayed in the table below.  

Table 15 Early detection results for measured weighted with normalized h-index. 

Results ctf-iaf * (1+nh-

index) 

citf-iaf *(1+ nh-

index) 

ctf-sqrt-

iaf*(1+nh-index) 

ctf*(1+nh-index) 

Bursts 

detected 

earlier than 

unmodified 

measure 

6406 (22%) 4123 (8%) 2700 (33%) 997 (41%) 

Table 15 demonstrates that weighting with normalized h-index make it possible to detect 

some bursts at an early time. However, for the reason mentioned earlier in this section, h-index is 

not used for the complete fitness score.  

4.4.2 Weighting with Normalized Journal Impact Factor 

Average journal impact factor was used for terms for each time interval to weight each 

measure. Increases in journal impact measure can help bolster the apparent burstiness of terms.  

Journal impact factors were obtained from the Journal Citation Reports.  I analyzed impact factor 

for journals in cardiology to determine the best way to normalize impact factor. First, I 

determined the maximum average impact factor for clusters for each year in this area.  Then I 

determined the average impact factor for each year. To normalize impact factor the average 

journal impact factor for each cluster is determined.  The normalized funding measure is:  

for clust-avg>year_avg 

Norm-impact= (clust_avg-year_avg)/year_max-year_avg) 
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Each weighted measures was multiplied by 1+ Norm-impact. To determine whether 

journal impact actor is in fact a good criterion to weight term counts with the following 

experiment was performed. The time frame for the experiment is the same from the previous 

section.  For each cluster the normalized journal impact factor was calculated and each measures 

was multiplied by normalized impact factor.  

Table 16 Early detection results for measures weighted with normalized impact 

 factor. 

Results ctf-iaf * N-

Impact Factor 

citf-iaf * N-

Inpact Factor 

ctf-sqrt-iaf*N-

Impact Factor 

ctf*N-Impact 

Factor 

Bursts 

detected 

earlier than 

unmodified 

measure 

348 (3%) 2(>1%) 193(3%) 121(10%) 

The results from table 16 demonstrate that weighting with normalized impact-factor 

make it possible to detect some bursts at an early time. Weighting with impact-factor has the 

greatest affect on the un-weighted measure. 

4.4.3 Weighting with Normalized Funding  

NIH-Reporter funding data is also used for the fitness measure3. Funding associated with 

each pmid in each cluster by year is averaged.  The average rate for clusters for each year is 

determined, as well as the maximum average. The normalized funding measure is:  

                                                 
3 http://projectreporter.nih.gov/reporter.cfm 

http://projectreporter.nih.gov/reporter.cfm
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for clust-avg>year_avg 

norm-funding=(clust_avg-year_avg)/year_max-year_avg) 

Each weighted measures was multiplied by 1+ Norm-funding.  

Table 17 Early detection results for measures weighted with normalized funding. 

Results ctf-iaf * N-

funding 

citf-iaf * N-

funding 

ctf-sqrt-iaf*N-

funding 

ctf*N-funding 

Bursts 

detected 

earlier than 

unmodified 

measure 

1097 (9%) 1(>1%) 629(9%) 469(14%) 

Weighting each measure with funding data finds more bursts earlier than weighting with 

impact factor. Similarly to impact factor, weighting with funding has the greatest impact on the 

un-weighted measure. 

4.4.4 Weighting with Combined Features 

Normalized funding, and journal impact factor were combined to create a more robust 

fitness measure: 

 

where M is the measure and K is the set of normalized features. The set of normalized features 

are: 1+normalized journal impact factor, and normalized funding. 

M Ki
k

i


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Table 18 Early detection results for measures weighted with normalized funding and  

average impact factor. 

Results ctf-iaf * 

fitness 

measure 

citf-iaf * 

fitness-measure 

ctf-sqrt-

iaf*fitness 

measure 

ctf*fitness 

measure 

Bursts 

detected 

earlier than 

unmodified 

measure 

1099(9%) 1(>1%) 590 (8%) 509(15%) 

The results for the combined measure were almost identical to these results that just make 

use of funding. There is a slight improvement for the un-weighted measure, and CTF-IAF. 

However, there are fewer bursts identified by CTF-SQRT-IAF, than were found weighting CTF-

SQRT-IAF with funding only.  
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CHAPTER 5 DISCUSSION 

5.1 Burst Detection Framework Discussion 

5.1.1 Characterizing Bursts 

Burst characterization provides extremely important foundational knowledge for burst 

detection.  For instance, approaches such as those of Tu et al. are based on specific assumptions 

about the life-cycle of bursts [81]. In doing so, they generated a model which did not account for 

the actually progression of emergent topics. For instance, their model assumed a single burst 

cycle, and only identified the first period at which a topic can be bursty, which is inappropriate in 

the scientific literature context as bursts can be cyclic. 

 In this work, an open discovery context was setup to evaluate bursts. Approaches such as 

those of Chen et al., use existing distinct datasets that include closely related documents and report 

the ability of the algorithm to find new scientific paradigms [55]. The advantage of the approach 

outlined in this dissertation is that it is not dependent on how thorough and up-to-date existing 

taxonomies are, allowing for a more complete topic model. 

Section 4.2 demonstrates the differences in burst behavior by level of granularity. For 

instance, figures 13-18 illustrate that volatility decreases by level of frequency. Bursts last longer 

at lower levels of volatility. Bursts likely to be short give information about current/recent trends. 

Potentially long bursts indicate topics that can be planned around.  

As show in table 9, weight is slightly negatively correlated with length.  Kleinberg 

suggests that weight would be a good criterion for ranking. As discussed in section 4.2, weight 

may not be a good method for ranking bursts. My results indicate that the hierarchy could be used 
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to discover bursts through topic relatedness. For instance, documents in the overlapping hierarchy 

can be in multiple topics at multiple levels. Topic relatedness could be identified by grouping 

topics that share documents or that are sub-clusters of the same cluster. “Echocardiography for 

Assessment of Lv” is a topic that bursts for at least three years and has more than 30 documents 

associated with it during the planning horizon for experiments in section 4.3.  It shares many 

documents with other clusters, which do not have topic bursts during that period, such as “Left 

Ventricular Ejection Fraction.” A system could be built such that if a user did a search for the 

latter topic, they would be shown the former topic as a related bursty topic.  

Figures 13-19 illustrates differences in bursty behavior by level of granularity.  At the 

highest level, trend-lines are less volatile for the ten-year period.  The highest level also has a 

limitation on the length of bursts discovered, with the maximum length of 4 years. This implies 

that if a burst at that level has been bursting for 3 years, it in very unlikely to burst for more than 

one more year. This information could be used at every level of granularity to find topics likely to 

burst in the future.   

Reemergence information is very important.  This is the reason why topics that have 

bursted in the past, are not removed from the list of possible bursty topics. An emerging topic 

detection application could alert uses of reemerging topics of interest. 

5.1.2 Comparing Archival Weighting Measures 

 

Archival weighting is a core component of my framework. My weightings performed 

better than the un-weighted Kleinberg method in several areas. These novel measures allow for a 

more comprehensive framework for burst detection.  
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Table 10 shows that CITF-IAF finds the highest number of bursts between 1997 and 

2003 that are still bursting after 2003. One good potential criterion for a burst detection 

framework is that it helps identify bursts that stay bursty. If it could identify stable bursts, it 

could be used not only to understand the present, but also to pan for the future. This framework 

could, therefore, be used by researchers to plan a research agenda.  

One significant motivator for this framework is that some topics that could be identified 

as bursty, are associated with well known important topics.  The distribution of the number of 

clusters by IAF scores in figure 21 shows differences between the different measures.  IAF 

scores indicate how common a term was in the historical period. The higher the IAF score the 

more common it was in the past.  As illustrated in figure 21, CTF and DF-IAF finds the bursts 

with highest IAF. This means many of the bursty topics it finds are already quite common.  Both 

measures identify "Cardiopulmonary Bypass" as a topic bursting during the period between 1997 

and 2006, and it has the lowest IAF score of any topic identified as bursty. By this time, that was 

a well-known topic. CTF-SQRT-IAF, and CITF do not identify bursty topics as historically 

common as the aforementioned methods. That may make them more useful for finding bursty 

behavior that is not expected. CITF-IDF finds bursts at the lowest levels of historical frequency. 

These topics are ones that have never become highly frequent, and may be more interesting as a 

burst associated with these topics may be more surprising. In figure 21, the trend-lines are  very 

similar for CTF-SQRT-IAF, CTF, and CTF-IAF, with the topic counts at the greater IAF ranges 

being higher in this order: CTF, CTF-SQRT-IAF, CTF-IAF.  This implies that these three 

measures are behaving in a very similar way. The decision to use one over the other could be 

made based on how important IAF scores are.  
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5.1.4 Implications of Using a Topic Hierarchy 

 

Generating a topic hierarchy allows for the automatic development of a vocabulary and 

has advantage over manual methods. For an emerging topic detection application this is very 

important.  Emerging topics may not yet be added to MeSH or UMLS. Also, though those 

systems were not developed to be specific at the discipline level. Using a dynamically generated 

overlapping hierarchy allows for a more comprehensive and current topic structure at the 

discipline level.  

Topic relatedness shows excellent potential as a tool for burst discovery.  An application 

implementing the framework outlined in this work could support users entering search terms and 

finding bursty topics related to those terms. This would be a useful way to limit the number of 

bursty topics displayed to users, avoiding the pains of information overload.  

A topic hierarchy would further allow policy makers to assess large-scale structural 

patterns and understand how certain initiatives fit within it. It would be very useful for initiative 

evaluation to see the level of each initiative’s associated topics and whether they are bursty at the 

highest level. A topic hierarchy would be useful for researchers and clinicians as well. 

Researchers are often faced with solving complex problems, and perform many interrelated 

queries of literature search engines. Understanding topic bursts in relation to other topics would 

be very useful.  A research may want to know if a given topic burst has bursty related topics that 

are emerging at a higher level of intensity.  A researcher may decide to investigate those topics 

because they are bursty to determine if that increased burstiness correlates to more promising 

methodology, conceptual develop or techniques. 
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5.1.4 Measuring Performance at Different Levels of Granularity 

Identifying typical burst behaviors at various levels of granularity can help policy makers, 

clinicians, and researchers assess where a given topic is in its life cycle. If policy makers want to 

fund emergent research that is somewhat stable, burst characterization data would help. Decision-

making about whether to fund portfolios associated with unstable but potentially impactful bursty 

topics could also be supported.  If researchers are trying to reference work outside their area of 

expertise they may want to stick to work that is current and associated with a relatively established 

area. 

Citation counts for clusters were used to determine the extent to which the topics were 

impactful in the future. As show in table 11, at the highest level, CTF-IAF gets the highest 

average citation count. For every other level of granularity, CITF_IAF has the highest average 

citation count. This indicates that these measures do not just find bursty topics, but topics with 

significant impact when compared to the un-modifed Kleinberg method.  

One issue with each of the different measures is the amount of noise reduction that must 

be performed to get a similarly short list of candidate bursts for review. Both CTF-SQRT-IAF 

and CTF-IAF identify more bursty topics than CTF. CTF-IAF and CTF identify the same 

number of bursts at the highest level of granularity. After noise reduction was performed, bursts 

identified by the criteria described in section 4.3 still included many highly frequent bursts for 

CTF-IAF – considerably more than for any other measure.  However, with that criterion, CITF-

IAF identified the most manageable number of bursts, 143. Each of the other three measures 

identified more than 1000 bursts, which will require further noise reduction in a real-time use 

case.  
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5.1.5 Early Detection with the Fitness Model 

The fitness score was developed to help identify potentially more important bursts by 

indicating a burst’s likeliness to continue in frequency. Unfortunately, normalized h-index could 

be used for the combined measure. As shown in table 12, this score was able to identify 22% to 

41% of bursts early for each weighted measure with the exception of CITF-IAF.  The score, 

described in section 4.4.3, using funding data does much better than when using impact factor. 

Adding the two factors together only gave a slight improvement for CTF.  It is interesting that 

normalized impact factor has little effect. Hence, it is not just topics associated with top journals 

that burst. Funding has a great impact on what is studied, as researchers are dependent on 

funding opportunities to do research. This information can be used not only to find important 

bursts, but also to understand the development of research topics. 

To find bursts one can use the effect of the fitness measure to find prominent bursts. The 

difference in burst strength and length after using this score can be use to find the most 

promising bursts. The fitness score that improves burst detection the most provides information 

regarding how bursts develop. If funding has a greater impact than impact factor it indicates that 

it is a far greater driver for research development.  

5.1.6 Evaluation Methods 

As noted earlier, developing an appropriate evaluation for emerging detection algorithms 

has proved difficult. Coming up with a set of criteria for a burst detection algorithm is not easy. 

Several other researchers use experts to determine how well their algorithms perform. However, it 

is difficult for even experts to stay abreast of trends, so their input is of limited value.  Some of the 

approaches do not rely on characterizing the burstiness of previously identified emerging topic 
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drift. Mane et al.’s method analyzing  the PNAS dataset is one [5]. However, the authors were 

only interested in most frequent terms. That may not be useful as those are the most large scale-

trends, and don’t provide users with new information. If a trend is at a large enough scale, one 

may safely assume most researchers within the discipline know about it. The new and emergent 

trends would be the most significant.  

As mentioned in chapter 1, there are differences between a topic bursting in science as 

opposed to news. In science, a topic remaining viable at a consistent level of burstiness can still 

be associated with novelty and interest in the community. Therefore, while comparing the slope 

of bursty topics is important, it may not be as important as an evaluative tool as others. CTF-

SQRT-IAF and CTF-IAF both had smaller average slopes for each level of granularity than CTF. 

However, if a topic experiences a burst but does not increase that may still be novel, it may just 

be that there are not many researchers dedicating themselves to the topic or that it takes a long 

time for developments to take place. For that reason the difference in slope between these 

measure does not mean they should be ruled out as relevant. In fact, CTF-SQRT-IAF has the 

highest average r-squared, indicating that it is identify trends that can be better modeled. This 

may indicate that it identifies bursts that behave in a manner more easily predicatable.  CITF had 

the highest average slope for the lower two levels of granularity. This indicates that it does a 

good job at that level of finding bursts with an upward trend.  

Method comparison based on future impact, linear trend, and burst length provides 

information on bursts that are useful. Researchers looking to find bursty topics would benefit 

from finding bursts that have a significant impact, as it increases the likelihood that their work 

will have a lasting impact. Topics with a linear trend would indicate that the burst might get to a 

higher level of intensity. Finding topics of greater burst length indicates that a burst may be 
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stable for several years. Finding topics with the potential to burst for a few more years would be 

very useful for those conducting research.  

5.2 Parameterizing the Burst Detect Framework for Various 

Use Cases 

Section 2.1 and 2.2 detailed many of the needs of policy makers, researchers and 

clinicians. The emerging topic detection algorithms reviewed in section 2 are insufficient in deal 

with them. Both clinicians and researchers need to find not just emerging research, but research 

relevant to them. Policy makers need tools to help them determine which portfolios to fund, and 

need to know whether a topic is emergent.  

As mentioned in section 2.1, policy makers fund high-risk high-rewards emerging research 

projects. Knowing which bursts may be more likely to stay emergent would also be helpful as 

policy makers do not want to fund too many projects which don’t pan out. For that reason this 

framework includes a fitness model to assess whether bursts are likely to stay bursty.  Researchers, 

benefit as they can associate themselves with an emerging area, leading to more visibility, greater 

impact, and publication opportunities. Clinicians could benefit, as they could stay up-to-date on 

current trends. 

5.2.1 Implications for Policy 

My framework has clear potential to assist policy makers based on their information 

needs, and provides interpretive flexibility. An emerging topic detection application would not 

require the understanding of bibliometric methods and would use the publicly available 

MEDLINE data set, making it easy to use. 
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In section 2.1, two issues funding agencies like NIH and NSF have were identified. The 

first issue is the identification of promising high-risk high rewards research. The second issue is 

the evaluation of initiatives aimed at increasing the speed of knowledge production.  

The first issue can be addressed through the application of IDF-IAF scoring. High-risk 

high-rewards research is transformative research with the potential for high impact. As 

mentioned in section 2.1, there are difficulties selecting promising high-risk high-rewards 

research. Identifying potentially transformative research is difficult. It is difficult because it can 

only truly be identified in retrospect, and many of the projects that get funded have little or no 

long term utility. Using IDF-IAF could help improve the search for potentially transformative 

research. This score finds bursts of longest length, for topics that are not only infrequent in the 

past, but also infrequent in the present. Therefore it can identify topics that are associated with 

topics that have not developed enough to reach the mainstream, and are potentially high-risk.  

Giving precedent to topics associated with IDF-IAF can be beneficial for several reasons.  First, 

a topic bursting, even on a small scale, on a small scale is likely an indication that a promising 

discovery has been made and the research community is responding to it. As bursty topics 

identified with IDF-IAF tend to burst for a long period, it can indicate that research projects 

associated with those topics would be successful as they are likely to both continue in frequency 

and be associated with a high average citation count. The topic hierarchy could be used to 

identify bursty topics of potential impact. The topic hierarchy provides relationship information 

between topics. A rare bursty topic related to a more prominent research area, such as cancer, for 

which a new treatment could have a huge impact, scould be identified with the topic hierarchy. 

Using this measure may reduce the risk of funding high -risk high-rewards research that does not 

produce results.  
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The second issue identified in section 2.1 is the problem of initiative evaluation.  NIH has 

recently focused on awarding large grants to large research teams using cutting-edge technology 

to speed up the process of novel medical research output. A burst in a topic is likely an indication 

of an important discovery which has propelled a given research area. NIH could use my 

framework to evaluate research by assessing the extent to which initiatives funded are associated 

with bursty, and potentially novel medical research. Consider the CTSA awards, which are 

among the biggest grants given to universities.  If the 60-some institutions receiving these 

awards are associated with large-scale bursty topics, there may be cause to view the program as 

successful. Temporal analysis could be used to determine if there was an increase in association 

with bursty topics over time. Using CTF-SQRT-IAF would help reduce the number of 

historically frequent topics identified, (it do not find bursty topics with quite as high of IAF 

scores as CTF, or CTF-IAF). Compared to CITF-IAF, it finds topics that are not necessarily so 

rare, as to limit its potential at different levels of granularity.  By generating levels of granularity 

for bursts, a richer exploration of bursty topics can be performed.  Large-scale multi-university 

initiatives may be associated with large-scale bursts or many small-scale bursts. It may be that 

the desired effect is to create large-scale burst in a specific area. However, without knowing how 

to quantify the range for large-scale bursts, that will not be possible. Again, the most frequent 

topics do not burst. Understanding the behavior of bursts at different levels of granularity, and 

the frequency of bursts at each level is important. Also, individual research sites may be 

associated with small-scale bursts, which may not seem very impressive. However, knowing that 

most bursts are small scale, and if the fitness score could be used to suggest that some of these 

bursts might be more significant in the future, that will assist evaluators. Also, knowing what is 
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typical for research groups at each level of granularity can help evaluators know who is reaching 

the base-line and who is exceeding expectations.  

Policy makers typically use peer review to for the tasks mentioned.  There are many 

potential benefits to using bibliometric methods instead. Peer-review suffers from subjectivity, 

and high cost. In some cases, replacing peer-review with bibliometric methods for policy 

decision-making has proven efficient at a guaranteed lower cost. Though bibliometrics have 

great potentially in this area, they are not frequently used. This is in part do to the fact that many 

bibliometric methods require a specialized skill-set, or the necessary applications like to data 

may not be available. Many bibliometric methods lack interpretive flexibility. An application 

could be built using this framework that would not require a specialized skill-set, only an 

understanding of the type of emerging topic of interest (e.g. historically rare and currently rare). 

It would be dynamic enough to answer many different types of questions. 

5.2.3 Improving Tools for Clinicians and Medical Researchers 

Researchers have different needs than policy makers and the framework could be 

parameratized in a different way to meet their needs. Biomedical researchers as tasked wit 

solving complex problems that require planning, and an understanding of the relationship 

between concepts. Researchers of often confronted with what is referred to as weak problem 

solving, which is associated with a vague understanding of the problem space, and an inability to 

come up with a systematic plan to resolve information needs.  The issues can be exacerbated 

with the difficulty of determining what is most current in a given research area.  A researchers 

carrer prospect can be effected by their success at these takes. The fitness score in conjunction 

with CTF-SQRT-IAF would be very useful in assisting with these tasks, as it identifies bursts 
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with trend-lines easiest to model and it does not identify bursts as historically common as CTF or 

CTF-IAF. CTF-SQRT-IAF identifies more topics than CITF. Researchers typically work on 

topics where they have expertise. Limiting the number of bursts found by too large a degree may 

decrease the frameworks usefulness, as identifying too few bursty topics may mean most 

researchers cannot find bursty topics related to their area. Researchers face difficulty determining 

which topics are currently emerging. At various levels of granularity, researchers may want to 

find bursty topics. A topic bursting at the lowest level of granularity, can give a researcher an 

opportunity to make a huge impact in a slowly growing research area. Alternatively, if the 

research area of interest is associated with a burst at a more coarse grain topic level, they may be 

able to publish more as that area may have several interrelated topics that are bursting, and 

creating the burst at the more coarse grain topic level. Doing work associated with that bursty 

topic at that level of granularity might give them the opportunity to have more projects, which 

can have an impact. Using the fitness score would be very beneficial for researchers who want to 

publish on a topic before it becomes too popular and well known, allowing them to make an 

impact when the area is still forming. Topics identified as bursting based on the fitness score can 

help indicate future bursty behavior. Topics whose length or burst strength is increased by use of 

the fitness score would make very promising candidate topics for analysis.  

An emerging topic detection application, generating information on new developments 

by discipline, specific to a given research area, would be instrumental in the development of a 

point of care toolkit. The framework presented in this work could be used to enhance up-to-date 

tools for use by clinicians. As mentioned in section 2.2, clinicians have very limited time during 

the course of the day to answer clinical questions and rely on summaries and practice guidelines, 

regardless of whether those resources are evidence based. In the scientific literature, there have 
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been calls information tools, which alert clinicians to new, relevant, and valid information; tools 

which tailor information to the appropriate specialty of each physician. A topic’s history could 

be used to alert clinicians to new discoveries and allow them to search for new treatments. If a 

topic burst for a significant amount of time in the recent past, was associated with large levels of 

funding, and had high citation counts it would indicate that it was considered an important area, 

and potentially, that the burstyness is a sign of novel research. Information provided could be 

tailored to the specialty of each physician by using the topic hierarchy to find bursty topics 

related to specialty areas.  Using the framework to find such work would allow for better 

identification of emergent topics that could help clinicians make decisions.  
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

This dissertation offers a novel framework for emerging topic detection in biomedicine.  

My method is more robust than other methods for several reasons, resulting in a framework that 

takes the typical life-cycle of bursts into consideration. Instead of making assumptions about 

bursts, they were characterized from a representative corpus drawn from the biomedical 

literature. Characterizing bursts supported the identification of differences between news topic 

burst life-cycles, and scientific topic burst life-cycle.  It also allowed for the identification of 

differences between bursts at different levels of granularity. These differences helped shape this 

framework so that it was more comprehensive than other methods. 

There are many aspects of my model that are novel, and produce good results. First, the 

topic hierarchy was generated using clustering techniques.  Modeling the topic hierarchy in this 

way has many advantages over using curated taxonomies that other researchers in this area have 

used.  Using cluster analysis allows for the identification of terms that may not be included in 

annotated taxonomies, as these terms are new or not considered as relevant at the time the 

taxonomy was last updated. Second, weighting topics by historical frequency allows for better 

identification of bursts that are associated with less well-known areas, and therefore more 

surprising. If identified bursts are associated with stable topics, the framework may be informing 

users of what they already know.  Third, the fitness score allows for the early identification of 

bursty terms. This feature can help researchers stay on the cutting edge. These three aspects of 

the framework presented in this work make it a robust, novel, and useful framework for the 

identification of bursty terms.  
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Using this framework as a basis, there are numerous research projects that would further 

the understanding of the structure of scientific development. Not only could these research 

projects be used to understand this structure, but also to improve the framework outlined. 

This framework could be used to compare different disciplines. Burst characterization 

may be different for different fields, and different areas could benefit from a different 

parameterization. This would allow for a more robust, comprehensive framework, and would 

make the framework more beneficial to a larger group. Researchers and clinicians could find 

results that would more specifically help them with their particular research area, and policy 

makers could use differences between disciplines to inform decision-making.  

This framework could be improved by generating a more dynamic historical period. For 

the research described in this dissertation, the historical period used to develop archival scores 

was static. It was developed so that it ended before the first year in the planning horizon. A 

sliding window for the historical period would further contextualize the frequency counts for 

each year.  

Another aspect of the framework that could benefit from dynamic modeling is the 

parameterization of the fitness score. For instance, funding patterns change over time.  At 

different times, weighting frequency counts with associated funding information can have 

differing effects on early burst detection. Dynamically parameterizing the fitness score could be 

achieved by identifying how well each feature performs in 3-5 year sliding windows. This could 

improve the results of my framework.  

My framework could be used in conjunction with algorithms other thank Kleinberg’s. 

The algorithm used is really just one feature of the framework.  The topic hierarchy, historical 
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weightings, and fitness score could all be used with other emerging detection algorithms, if 

another one was deemed more useful for a giving use-case. The framework is flexible enough to 

be used independently of any particular algorithm.  

This dissertation analyzed the single discipline of cardiology. This framework could be 

used to identify bursts on the combined topic hierarchies from different disciplines. This could 

be done for all clinical disciplines, just surgery-related disciplines, or only basic scientists, for 

example. This would allow for further stratification of research topics at various levels of 

granularity. Large-scale structural analysis could be used not only for burst detection, but also for 

planning a research agenda at an institutional or national level. 

An obvious research project to pursue using this framework involves achieving a greater 

understanding of translational medicine. As mentioned in section 2.1, NIH has focused 

considerable efforts to support and speed up the process of translation of basic to clinical 

research. This framework could be used to further elucidate translational research trends. An 

analysis of the projection of basic science bursty topics into clinical research could achieve this. 

If the literature was initially stratified into basic and clinical science this approach could detect 

translational even in the absence of citation linking the two. One could analyze clinical science 

research to determine the typical time period for translation of bursty topics from basic to 

clinical. This framework could also be used to identify current translation trends by discipline. 

This would inform policy makers trying to understand current trends to determine what work 

needs to be done.  

Finally, the effectiveness of this framework could be further evaluated with the use of 

user reviews. Evaluations from policy makers, medical researchers, and clinicians could help 
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determine which aspects of the framework are most useful, and what could be done to improve 

the model. 
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APPENDIX 

Words added to the stop-word list for the STC and Lingo 

Clustering Algorithms 

study 

studies 

decreased 

decrease 

increase 

increased 

hypothesis 

investigate 

statistically 

useful 

analyze 

analyzed 

indicate 

association 

Comparison 

Considered 

techniques 

seen 

Comparison 

Considered 

techniques 

seen 

characteristics 

improve 

previously 

conclusion 

additional 

presented 

purpose 

defined 

tested 

better 

remains 

conclude 

remained 

review 

second 

described 

degree 

elevated 

efficacy 

randomized 

show 

calculated 

various 

died 

enhanced 

impaired 

impair 

combined 

combine 

overall 

alter 

altered 

experience 

reduce 

history 

contribute 

given 

result 

resulted 

Increasing 

direct 

produce 

produced 

property 

properties 

rapid 

course 
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onset 

subsequent 

diagnostic 

implemented 

influence 

population 

implanted 

procedures 

procedure 

maximum 

involve 

involved 

extent 

approximately 

pattern 

Regression 

Complex 

Significant 

Significantly 

correlated 

healthy 

absence 

specific 

despite 

compare 

compared 

clinical 

associated 

results 

mean 

treatment 

effects 

blood 

effect 

right 

used 

performed 

control 

detected 

performance 

maximal 

successfully 

good 

examination 

surface 

0.5 

year 

weight 

median 

intervention 

resulting 

recently 

prior 

groups  

analysis 

data 

time 

age  

patient 

years 
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Patterns added to the stop-label list for the STC and Lingo 

Clustering Algorithms 

 (?i)0.* 

(?i)1.* 

(?i)28.* 

(?i)3.* 

(?i)4.* 

(?i)5.* 

(?i)6.* 

(?i)7.* 

(?i)8.* 

(?i)9.* 

(?i)recently 

(?i)limited 

(?i)median 

(?i)year 

(?i)Resulting 

(?i)\d+.* 

(?i)\d+ 

(?i)acute 

(?i).*\d+.* 

(?i).*group.* 

(?i).*groups.* 

(?i).*patient.* 
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