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Chapter 1

Introduction

The thesis defended in this dissertation is that:

Row and column symmetry is a common type of symmetry in constraint pro-
gramming. Ordering constraints can effectively break this symmetry. Efficient
global constraints can be designed for propagating such ordering constraints.

This chapter introduces the research presented in this dissertation and is organised as
follows. In Section 1.1, we briefly introduce constraint programming. In Section 1.2, we
discuss the motivations, and then in Section 1.3 we define the goals of our work. We give
an overview of the dissertation in Section 1.4 and summarise the major contributions in
Section 1.5. Finally, we present the organisation of the dissertation in Section 1.6.

1.1 Constraint Programming

Giving decisions in the presence of some constraints is an important part of our life. For
instance, we want to organise a meeting in one of a choice of places within the following
three months, and thus we need to decide when and where to hold this meeting. There are
some constraints which prevent us from giving a quick decision. First, each participant of
the meeting has a wish list specifying which days and places are suitable for her. Second,
each place has restricted availability, meaning that it may not be possible to hold the
meeting at a place on any day we want. Third, we cannot hold a meeting on a holiday.
Now, is it possible to find a place and day in a such a way that the day is not a holiday,
the place is available on the day, and every participant is happy about the choice?
Many decision problems, like deciding a meeting place and time, can be formulated as
constraint satisfaction problems (CSPs). A CSP has a set of decision variables and a set
of constraints. Each variable is associated with a finite set of values, called the domain
of the variable, giving the possible values that the variable can take. Each constraint
is defined on a subset of the variables restricting the possible values that the variables
can simultaneously take. An example is the map colouring problem. We have a map
of regions and a set of colours. We would like to colour the regions in such a way that
no neighbouring regions have the same colour. Assume that the regions we have are
some countries in western Europe: Belgium, Denmark, France, Germany, Netherlands,
and Luxembourg, and assume that the set of available colours is {red, blue, white, green}.
We can formulate this problem as a CSP using a set of variables {B, D, F, G, N, L}, each

16
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corresponding to a country in the map:

Belgium --» B
Denmark --+» D
France --» F
Germany --» G
Netherlands --» N
Luxembourg --» L

The domain of each variable is the set of colours {red,blue, white,green}. For each
pair of neighbouring countries, there is a constraint on the corresponding variables which
disallows them to take the same value:

F+B F#L F+G
L+#G L#+B B#N
B+#G G#N G#D

A solution to a CSP is an assignment of values to the variables such that all constraints
are satisfied simultaneously. For instance, the following is a solution to our map colouring
problem:

B «— blue D « blue
F «— white G + red
N «— white L «+ green

CSPs are ubiquitous in various fields as diverse as artificial intelligence (e.g. tem-
poral reasoning), control theory (e.g. design of controllers for sensory based robots),
concurrency (e.g. process communication and synchronisation), computer graphics (e.g.
geometric coherence), database systems (e.g. constraint databases), operations research
(e.g. optimisation problems) [vHS97], bioinformatics (e.g. sequence alignment) [GBY01],
and business applications (e.g. combinatorial auctions) [GMO03]. In general, solving CSPs
is NP-hard and so is computationally intractable [Mac77]. That is, no polynomial algo-
rithm for solving CSPs is known to exist.

Constraint programming (CP) provides a platform for solving CSPs [MS98|[Apt03]
and has proven successful in many real-life applications [Wal96][Ros00] despite this in-
tractability. The techniques used to solve CSPs originate from various fields of computer
science, such as artificial intelligence, operations research, computational logic, combina-
torial algorithms, discrete mathematics, and programming languages. The core of CP is
a combination of search and inference. Solutions for CSPs are searched in the space of
possible assignments using a search algorithm. Inference methods maintain various forms
of local consistency on the constraints and reduce the domains of the variables. The
inference can propagate across the constraints and can greatly reduce the effort involved
in searching for solutions. This helps to make CP a powerful technology to solve CSPs,
in some cases, more efficient than integer linear programming (ILP) methods (see for
instance [SBHW96][DL9S]).

To solve a problem using CP methods, we need first to formulate it as a CSP by
declaring the variables, their domains, and the constraints on the variables. This part
of the problem solving is called modelling. There are often many alternatives for each
modelling decision such as the choice of the decision variables and how we state the
constraints. For instance, we can just as well model the map colouring problem with a
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variable for each colour. Each variable then takes as a value a set of countries. To disallow
neighbouring countries having the same colour, we can enforce that no pair of countries in
the set assigned to a variable are neighbours. Different models have different properties.
Often, alternative models need to be tried because a small modification to a model can
have a huge impact on the efficiency of the solution method [Bor98][BT01][Hni03]. Hence,
formulating an effective model for a given problem requires considerable skills in modelling
and remains a challenging task even for modelling experts [Fre98].

1.2 Motivations

There are many recurring patterns in constraint programs [Wal03]. Identification of these
patterns has two important benefits. First, patterns can be used to pass on modelling
expertise. Second, special-purpose methods to support the patterns can be devised for
use by a (non-expert) modeller. This helps tackle the difficulty of effective modelling and
makes CP reachable to a wider audience.

One common pattern in constraint programs is a matrix model. Any formulation of a
problem as a CSP which employs one or more matrices of decision variables is a matrix
model. As an example, consider the sport scheduling problem which is about scheduling
games between n teams over n — 1 weeks (prob026 in CSPLib [CSP]). Each week is
divided into n/2 periods, and each period is divided into two slots. The team in the first
slot plays at home, while the team in the second slot plays away. The goal is to find a
schedule such that every team plays exactly once a week, every team plays against every
other team, and every team plays at most twice in the same period over the tournament.

As we need a table of meetings, a natural way to model this problem is to use a 2-
dimensional matrix of variables, S, ,, each of which is assigned a value corresponding to
the match played in a given week w and period p [vHMPR99]. To visualise, we have the
following matrix of variables for n = 8:

Sw.p Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7
Period 1 5171 SQ 1 33’1 54 1 85 1 56,1 57 1
Period 2 Sl 2 SQ 2 Sg 2 54 2 S5 2 SG 2 S7 2
Period 3 S13 So.3 S3.3 Si3 Ss 3 S6.3 S7.3
Period 4 Sl 4 524 534 544 554 SG4 574

Matrix models have been long advocated in 0/1 ILP [Sch86] and are commonly used in
CP. Of the 38 problems of CSPLib [CSP] on September 22, 2003, at least 33 of the 38
have matrix models, most of them already published and proved successful [FFH*01b].

An important aspect of modelling is symmetry. A symmetry is a transformation of an
entity which preserves the properties of the entity. For instance, rotating a chess board
90° gives us a board which is indistinguishable from the original one. A problem exhibits
symmetry when there are identical objects that cannot be distinguished. For instance, the
weeks, periods, and teams in the sport scheduling problem are essentially indistinguishable
and symmetric. When there is symmetry in a problem, it can be exploited in a powerful
way to reuse what we know about one object for its symmetrically equivalent objects.
This was first discussed in [BFP88] in the context of the search algorithms for problems
with symmetry, and has been considered in diverse areas including planning [FL99][FL02],
SAT [CGLR96][ARMS02], ILP [Mar02][Mar03], and model checking [ES93][ID93].
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Regarding CSPs, it is possible that a CSP has symmetries in the variables or domains
or both which preserve satisfiability. In the presence of symmetry, any assignment of values
to the variables can be transformed into a set of symmetrically equivalent assignments
without affecting whether or not the original assignment satisfies the constraints. As an
example, consider the map colouring problem. As long as the neighbouring countries
are coloured with a different colour, it does not matter how the countries are coloured.
Hence, the colours are indistinguishable, and the initial formulation of the problem has
symmetry in the domains. What does this mean? By changing the roles of the colours,
we can obtain symmetrically equivalent assignments to a given assignment. For instance,
given the solution:

B «— blue D « blue
F — white G « red
N «— white L «+ green

we can rename the colours as:

red --» green
blue --» white
white --» red

green --+ blue
and obtain another assignment which is also a solution:

B «— white D «— white
F —red G «— green
N «— red L « blue

These two solutions are not fundamentally different. In each of them, B and D are
assigned the same colour, F' and N are assigned the same colour, and these two colours
together with those assigned to G and L are all different.

As solutions to CSPs are found by searching through the space of possible assignments,
symmetry in a CSP creates symmetric but essentially equivalent states in its search space.
Visiting symmetric states can significantly slow down the search process. If a state leads
to a solution then all its symmetric states also do, and these symmetric solutions are
indistinguishable from each other. This could be a big problem when, for instance, proving
optimality because it is worthless to traverse repeatedly the states which do not lead to
any improvement in the objective function. Even if we are interested in one solution, we
may explore many failed and symmetrically equivalent states before finding a solution.
Hence, pruning the symmetric parts of the search space, which is often referred to as
symmetry breaking, is essential to speed up the search efficiency. This has attracted
many researchers in recent years, and several symmetry breaking methods such as SES
[BW99][BWO02], SBDS [GS00], and SBDD [FMO1][FSS01] have been devised (see Chapter
2 for a detailed discussion of methods for breaking symmetry in CSPs).

A common pattern in matrix models is row and column symmetry [FFHT01b]. A
2-dimensional matrix has row and column symmetry if its rows and columns represent
indistinguishable objects and are therefore symmetric. We can permute any two rows as
well as two columns of a matrix with row and column symmetry without affecting the
satisfiability of any assignments. For example, consider the matrix model of the sport
scheduling problem. The columns represent the weeks. As the order of the weeks is not
important in a schedule, we can freely swap the assignments of two different weeks. We
can visualise this on the following assignment which is a solution to the problem when
n=_a:
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Sw.p Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7
Period 1 | Owvs1 0vs2 4vs 7 3 vs 6 3vs 7 1vsh 2vs4
Period 2 | 2 vs 3 1vs7 0vs3 Hvs T 1vs4 0vs b6 5 vs 6
Period 3| 4vs 5 3vsH 1vs6 0Ovs4 2vs 6 2vs 7 Ovs 7
Period4 | 6 vs 7 4 vs 6 2vsH 1vs2 0OvsH 3vs4 1vs3

By swapping the assignments of, say weeks 2 and 5, we get:

Sw.p Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7
Period 1| Ovs1 3vs T 4vs 7 3vs 6 0vs?2 1vsh 2vs4
Period 2 | 2 vs 3 1vs4 0vs3 H5vs 7 1vs?7 0vs6 5vs 6
Period 3| 4vs 5 2vs 06 1vs6 0Ovs4 3vsH 2vs 7 Ovs 7
Period4 | 6 vs 7 0OvsH 2vsH 1vs?2 4 vs 6 3vs4 1vs3

This new assignment is another solution as the problem constraints are still satisfied. Let
us now consider the rows which represent the periods. As the periods are indistinguishable,
we can freely interchange the assignments of two different periods. By swapping the
assignments of, say periods 1 and 2, in the initial solution, we get:

Sw.p Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7
Period 1 | 2 vs 3 lvs7 | Ovs3 | Bvs7 | 1vs4 | Ovs6 | Bvsb6
Period2 | Ovs1l | Ovs2 | 4vs7 | 3vs6 | 3vs7 | 1vsH | 2vs4
Period 3| 4vsb | 3vsbh 1lvs6 | Ovs4d | 2vs6 | 2vs7 | Ovs 7
Period4 | 6vs7 | 4vs6 | 2vsH 1vs2 | Ovsb | 3vs4d | 1vs3

which is another solution. We have obtained two new solutions from the initial solution.
However, there is no fundamental difference between these three solutions. We can obtain
further symmetric solutions by permuting any two rows, any two columns, as well as by
combining a row and a column permutation. This gives us in total 7!4! symmetrically
equivalent solutions.

An n x m matrix with row and column symmetry has n!m! symmetries, which increase
super-exponentially. Thus, it can be very costly to visit all the symmetric branches in
a tree search. Ideally, we would like to cut off all the symmetric parts of the search
tree. Symmetry breaking methods such as SES [BW99][BW02], SBDS [GS00], and SBDD
[FMO1][FSS01] achieve this goal by not exploring the parts of the search tree which are
symmetric to the those that are already considered. Even though these methods are
applicable to any class of symmetries, they may not be a good way of dealing with row
and column symmetry for the following reasons. SES and SBDS treat each symmetry
individually, which is impractical when the number of symmetries is large. Similarly, the
dominance checks of SBDD can be very expensive in the presence of many symmetries.
We therefore need special techniques to deal with row and column symmetry effectively.

Another common pattern in matrix models is value symmetry. A matrix has value
symmetry if the values in the domain of the variables are indistinguishable and are there-
fore symmetric. We can then permute the values that the variables take without affecting
any assignments. For example, consider the assignment which is a solution to the sport
scheduling problem when n = 8:
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Sw.p Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7
Period 1 | Owvs1 0vs2 4vs 7 3 vs 6 3vs 7 1vsh 2vs4
Period 2 | 2 vs 3 1vs7 0vs3 Hvs T 1vs4 0vs b6 5vs 6
Period 3| 4vs 5 3vsH 1vs6 0Ovs4 2vs 6 2vs 7 Ovs 7
Period4 | 6 vs 7 4 vs 6 2vsH 1vs 2 0OvsH 3vs4 1vs3
As the teams are indistinguishable, we can permute the teams as:
0 --» 1 4 -— 5
1 - 2 5 -— 6
2 -—» 3 6 -— 7
3 -——» 4 7 -—— 0
and get another assignment which is also a solution:
Sw.p Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7
Period 1| 1 vs 2 1vs3 5vs 0 4vsT7 | 4vsO 2vs 6 3vsH
Period 2 | 3 vs4 2vs 0 1vs4 6vs O 2vsh 1vs?7 6vs T
Period 3| 5vs6 4vs 6 2vs 7 1vsh 3vs 7 3vs0 1vs8
Period 4 | 7vs 0 5vs 7 3 vs 6 2vs 3 1vs6 4vsH 2vs4

21

We have again obtained a new solution from a given solution, and again there is no fun-
damental difference between these two solutions. By permuting the values in 8! different
ways, we can get in total 8! symmetrically equivalent solutions.

A variable V' of an n dimensional matrix that takes a value from a domain of indistin-
guishable values {vy,...,v,} can be replaced by a vector (Vi,...,V,,) of 0/1 variables,
with the semantics V; = 1 « V = v;. Now, instead of the values, the new variables are
indistinguishable. This converts value symmetry into row or column symmetry. There-
fore, any effective technique for dealing with row and column symmetry can also deal with
value symmetry in a matrix.

1.3 Goals

Row and column symmetry is an important class of symmetries, as it is very common
and symmetry breaking methods like SES, SBDS, and SBDD have difficulty in dealing
with the super-exponential number of symmetries in a problem with row and column
symmetry. In many cases, large problems are intractable unless such symmetries are
significantly reduced. Value symmetry in a matrix can easily be transformed to, for
instance, row symmetry. Our main objective in this dissertation is therefore to develop
special techniques to deal with row and column symmetry effectively.

One of the easiest and most efficient ways of symmetry breaking is adding extra
constraints to the model of our problem [Pug93]. These constraints impose an ordering
on the symmetric objects. For instance, assume that we have a set of symmetric variables
{X,Y, Z} each associated with the domain {1,2,3}. To break the symmetry, we can post
the constraints:

X<Y ANY<Z
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As a consequence, among the set of symmetric assignments, only those that satisfy the
ordering constraints are chosen for consideration during search.

To achieve our objective, the approach adopted in this research is to attempt to impose
ordering constraints on the rows and columns of a matrix. This approach to breaking row
and column symmetry has at least two important benefits over using methods like SES,
SBDS, and SBDD. First, unlike SES and SBDS, we do not deal with each symmetry
individually. An n x m matrix has n columns and m rows. As ordering relations are
transitive, we can impose the ordering constraints between the adjacent rows and columns.
Even if the symmetries grow super-exponentially, we only need O(n + m) constraints to
deal with the symmetries. Second, in the presence of many symmetries, a subset of the
symmetries can be used to break some but not necessarily all symmetries using SES and
SBDS. This requires writing problem-specific search methods. Similarly, we need problem-
specific dominance checks when symmetry breaking using SBDD. Ordering constraint,
however, can be used to break the row and column symmetries of any problem modelled
using a matrix. Indeed, they can be used for matrices of arbitrary dimension.

Our approach to breaking row and column symmetry raises very important research
questions that need to be addressed. First, what are those ordering constraints that
we can impose? Care needs to be taken when posting ordering constraints. As the
ordering constraints remove some assignments from a set of symmetrically equivalent
assignments, it is important that at least one assignment remains in the set. Otherwise,
we may lose solutions by symmetry breaking. Second, how can we use these constraints
in practice? Global constraints play a central role in CP, as they facilitate problem
formulation, and encapsulate powerful propagation mechanisms to detect and remove
from the domains those values that cannot be a part of any solution (see Chapter 2
for a detailed discussion on global constraints). Can we devise global constraints to
post and propagate the ordering constraints effectively and efficiently? Third, are the
ordering constraints effective in breaking row and column symmetries? Even though our
approach has important benefits over using methods like SES, SBDS, and SBDD, there
are some drawbacks. First, posting ordering constraints on the rows and columns may not
eliminate all symmetries. Second, the ordering imposed by these constraints may conflict
with the way we conduct search, resulting in larger search space and longer run-times.
For instance, consider the symmetric variables X, Y, and Z. By posting the ordering
constraints X <Y A Y < Z, we do not admit an assignment like:

X+—3Y«—1 Z+2

as a solution, though it is a solution in the absence of the ordering constraints. During
search, if this assignment is found then it will be rejected as a solution, and alternative
parts of the space will be searched to find an assignment satisfying both the problem
constraints and the ordering constraints. Hence, we might decrease the search efficiency
while trying to increase it by symmetry breaking with ordering constraints.
Consequently, the goals of the research presented in this dissertation are:

1. to investigate the types of ordering constraints that can be posted on a matrix to
break row and column symmetries;

2. to devise global constraints to post and propagate the ordering constraints effectively
and efficiently;

3. to show the effectiveness of the ordering constraints in breaking row and column
symmetries.
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Our motivations and goals have been used to form a central thesis which will be
defended in this dissertation:

Row and column symmetry is a common type of symmetry in constraint pro-
gramming. Ordering constraints can effectively break this symmetry. Efficient
global constraints can be designed for propagating such ordering constraints.

It is not the goal of this research to study how many symmetries are eliminated by
posting ordering constraints. While this is a worthy area of study, we are concerned only
with how effective the ordering constraints are in breaking row and column symmetries.
We judge this by looking at how we reduce the size of the search space and the time to
solve the problem. We believe that noteworthy reductions in the search space and time
are significant steps towards the tractability of CSPs.

We do not compare our approach directly with the symmetry breaking methods SES,
SBDS, and SBDD for the following reasons. First, such a comparison is outside the scope
of the thesis we wish to defend. Second, not all the methods are incorporated into the
publicly available CP toolkits. Third, we tackle larger problems than those reported by
using SBDS and SBDD. Fourth, using SBDD and a subset of the symmetries in SES and
SBDS require writing problem-specific methods. Fifth, some of the recent experimental
results [Pug02al[Pug03a] depend on the symmetry breaking ordering constraints presented
in this dissertation.

Another way of symmetry breaking is the heuristic method adopted by Meseguer and
Torras [MT99][MTO01], which has been successfully applied to solving large instances of
a problem modelled using a matrix with row and column symmetry. Comparing our
approach and this heuristic approach on a wide range of problems with row and column
symmetry is a research area of its own, and thus we discuss this only in Chapter 9 as
future work.

1.4 Overview of the Dissertation

We start our research by exploring a wide range of problems originating from combina-
torics, design, configuration, scheduling, timetabling, bioinformatics, and code generation.
We observe that matrix modelling provides an effective way of representing these diverse
problems for the following reasons. First, the problem constraints can then be expressed in
terms of the well-known global constraints, such as all-different, global cardinality (gcc),
sum, and scalar product. There are powerful propagation algorithms for these constraints
and they are available in many constraint toolkits. Second, messy side constraints can
be effectively represented by using multiple matrices and chanelling between the different
matrices. This can, for instance, eliminate the need of posting large-arity constraints that
can only be efficiently implemented by means of a complex daemon. Many of the studied
matrix models were previously proposed and shown to be effective.

Having recognised the central role played in many constraint programs by matrix
models, we identify two patterns that commonly arise in matrix models: row and column
symmetry, and value symmetry. A 2-dimensional matrix has row (resp. column) sym-
metry iff its rows (resp. columns) represent indistinguishable objects and are therefore
symmetric. If, however, only a strict subset(s) of the rows (resp. columns) are indistin-
guishable, then the matrix has partial row (resp. column) symmetry. In each of the 12
matrix models we have studied, there is at least one matrix with (partial) row and/or
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— column permutations —

* *
01 0 0 0 1 1 0 0 1 00 0 0 1 01 0
0 2 3 0 3 2 2 0 3 2 3 0 3.0 2 3.2 0
1 0 1 11 0 0 1 1 0 1 1 1 1 0 1 0 1

1 °
10 0 0 1 1 0 1 00 0 0 1 01 0
1 0 1 11 0 0 1 1 01 1 1 10 1 0 1
0 2 3 0 3 2 2 0 3 2 30 3 0 2 3 20
0 2 3 0 3 2 2 0 3 2 3 0 3.0 2 3 .20
row (o 1 o0 0 0 1 1 0 0 1 00 0 0 1 01 0
1 0 1 1 1 0 0 1 1 01 1 110 1 0 1

permutations
0 2 3 0 3 2 2 0 3 2 3 0 3 0 2 3 20
1 1 01 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1
01 0 0 0 1 1 0 0 1 0 0 0 0 1 01 0
*

1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1
01 0 0 0 1 1 0 0 1 00 0 0 1 01 0
0 2 3 0 3 2 2 0 3 2 30 3 0 2 3 2 0
1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1
0 2 3 0 3 2 3 20 3.0 2 2 0 3 2 3 0
01 0 0 0 1 01 0 0 0 1 1 0 0 1 00

Figure 1.1: A set of symmetric assignments.

(partial) column symmetry. A matrix has value symmetry if all the values in the domain
of the variables are indistinguishable. If, however, only a strict subset(s) of the values are
indistinguishable then the matrix has partial value symmetry. Of the 12 matrix models we
have studied, 4 of them have (partial) value symmetry. Unlike row and column symmetry,
value symmetry is not confined to matrix models. For instance, the original formulation
of the map colouring problem has value symmetry. Moreover, value symmetry does not
occur as often as row and column symmetry. On the other hand, value symmetry in a
matrix can be transformed to, for instance, row symmetry. This is another advantage of
developing effective techniques for dealing with row and column symmetries. Such tech-
niques can deal with problems that naturally have row and column symmetry, as well as
with problems that have value symmetry.

An n X m matrix with row and column symmetry has n!m! symmetries. This means
that, given an assignment, we can permute its rows and columns in n!m! different ways,
and obtain a set of symmetric assignments. We show an example of this in Figure 1.1

01 0
on an assignment [0 2 3| to a 3 X 3 matrix of variables. By permuting its rows and
1 0 1

columns, we obtain 3!3! — 1 = 35 more assignments which are symmetric to the original
assignment. These 36 assignments form an equivalence class. We note that the size of an
equivalence class is not necessarily n!m! because different permutations may give identical
assignments due to the repeating values in the assignment.

The assignments in an equivalence class are indistinguishable from each other in terms
of satisfiability. One of them is a solution iff the remaining assignments are all solutions.
In search for solutions, we want to discard the symmetric assignments. So, how can we
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distinguish between these indistinguishable assignments? As the rows and columns of a
matrix are vectors, we can characterise the assignments according to how their row and
column vectors are ordered. One ordering of vectors is lexicographic ordering, which is also
used to order the words in a dictionary. A vector ¥ = (x,..., 2, 1) is lexicographically
less than a vector ¥ = (yo, . . ., Yn—1) iff there is an index k above which the subvectors are
equal, and zy < y,. For instance, (0,2, 3) is less than (0,3, 1) in the lexicographic order.
We say that the rows (resp. columns) of a matrix of values are lexicographically ordered
if each row (resp. column) is no greater than the rows (resp. columns) below (resp. to
the right of) it.

Lexicographic ordering is very focused on positions and it ignores values beneath the
position where the vectors differ. Multiset ordering, on the other hand, ignores positions
but focuses on values. A multiset is a set in which repetition is allowed. For instance,
{1,2,2,2,3,3} is a multiset because 2 and 3 occurs more than once. A multiset {x}
is less than a multiset {y}} iff {x}} is empty and {y}} is not, or the largest value in
{x}} is less than the largest value in {{y}}, or the largest values are the same and, if we
eliminate one occurrence of the largest value from both {x}} and {y}}, the resulting two
multisets are ordered. For instance, {1,1,1} is less than {0,0,2}} in the multiset order.
Even though the rows and columns of a matrix are vectors, it may be useful to ignore the
positions but rather concentrate on the values by treating the vectors as multisets. We
say that the rows (resp. columns) of a matrix of values are multiset ordered if each row
(resp. column), as a multiset, is no greater than the rows (resp. columns) below (resp.
to the right of) it.

Let us now analyse the assignments of the equivalence class shown in Figure 1.1. There
are exactly two assignments in this class, marked as x, where the rows and columns are
lexicographically ordered. On the other hand, there is exactly one assignment, marked
as T, where the rows and columns are multiset ordered. Similarly, there is exactly one
assignment, marked as *, where the rows are lexicographically ordered and the columns
are multiset ordered; and exactly one assignment, marked as e, where the rows are multiset
ordered and the columns are lexicographically ordered. Hence, we are able to distinguish
the assignments marked as x, {, *, and e from the rest of the assignments.

An important result in this dissertation is that in any equivalence class of assignments,
there is at least one assignment satisfying the properties of those marked as x, f, *, or e
in Figure 1.1. A consequence of this is that we can add extra constraints to the model
of our problem which enforce either that the rows and the columns are lexicographically
ordered, or that the rows and the columns are multiset ordered, or that the rows are
lexicographically ordered and the columns are multiset ordered, or that the rows are
multiset ordered and the columns are lexicographically ordered. In this way, among the
set of symmetric assignments, only those that satisfy the ordering constraints are chosen
for consideration during search for solutions.

The utility of the lexicographic ordering and multiset ordering constraints in breaking
row and column symmetries motivates us to devise global constraints to propagate these
constraints effectively and efficiently. Propagating a constraint involves examining the
domains of the variables participating in the constraint, and removing from the domains
those values that cannot be a part of an assignment satisfying the constraint (i.e. pruning).
As we can enforce the rows (resp. columns) to be in lexicographic or multiset order by
imposing the ordering between the adjacent or all pairs of row (resp. column) vectors,
we focus on propagating the ordering constraint posted on a pair of vectors. We devise
efficient linear time propagation algorithms for the lexicographic ordering and the multiset
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ordering constraints by exploiting the semantics of the constraints. We provide theoretical
and experimental evidence of the value of the algorithms.

We are now in the position of revisiting the matrix models that we have studied at
the beginning of our research, and posting ordering constraints on the rows and columns
to break the row and column symmetries. By adding ordering constraints to the matrix
models, we identify a new pattern in constraint programs: the lexicographic ordering con-
straint on a pair of vectors of 0/1 variables together with a sum constraint on each vector.
We frequently encounter this pattern in problems involving demand, capacity or partition-
ing that are modelled using matrices with row and/or column symmetry. A propagation
algorithm which exploits the semantics of the lexicographic ordering together with sums
can lead to more pruning than the total pruning obtained by the propagation algorithms
of the lexicographic ordering constraint and the sum constraint. This motivates us to
introduce a new global constraint which combines the lexicographic ordering constraint
with two sum constraints. We devise an efficient linear time algorithm to propagate this
combination of constraints. Our experimental results show that this new constraint is
very useful when the lexicographic ordering constraints conflict with the way we explore
the search space. Combining constraints is a step towards tackling one of the drawbacks
of using additional constraints to break symmetry.

As theory can only go part of the way in judging the effectiveness of these ordering
constraints in breaking row and column symmetries, we finish our research with an em-
pirical study. We perform a wide range of experiments using some of the matrix models
we have studied. In each experiment, we have a matrix of decision variables where the
rows and/or columns are (partially) symmetric. To break the symmetry, we post ordering
constraints on the rows and/or columns, and search for one solution or the best solution
according to some criterion. Our results show that these ordering constraints are effective
in breaking row and column symmetries as they significantly reduce the size of the search
space and the time to solve the problem.

1.5 Summary of Contributions

The contributions of this dissertation to advancing research in CP can be grouped into
three categories: identification of common constraint patterns, breaking row and column
symmetry, and design and implementation of algorithms for new global constraints.

Identification of Common Constraint Patterns We observe that one common pat-
tern in constraint programs is a matrix model. A wide range of problems can be effectively
represented and efficiently solved using a matrix model. This observation leads us to iden-
tify two patterns that commonly arise in matrix models: row and column symmetry, and
value symmetry.

Row and column symmetry is an important class of symmetries. In a problem with
row and column symmetry, the number of symmetries grows super-exponentially and
existing methods have difficulty in dealing with large number of symmetries effectively.
Therefore, identification of this pattern raises an important research question: how can
we tackle row and column symmetries effectively? By showing that value symmetry can
be transformed to row/column symmetry, we strengthen the need for developing effective
techniques for dealing with row and column symmetries.

Using our approach to breaking row and column symmetry, we identify a new pattern
in constraint programs: lexicographic ordering constraints together with sum constraints.
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This combination of constraints frequently occur in problems involving demand, capacity
or partitioning that are modelled using 0/1 matrices with row and column symmetry.

Identification of common patterns is an important contribution, as it enables modellers
to share their expertise and it initiates the development of special techniques to support
the patterns. This not only strengthens the power of CP, but also promotes the reach of
CP to a wider user base.

Breaking Row and Column Symmetry We propose some ordering constraints which
can effectively break the row and column symmetries of a 2-dimensional matrix. In par-
ticular, we show that we can enforce the rows and the columns to be lexicographically
ordered, or the rows and the columns to be multiset ordered, or the rows to be lexico-
graphically ordered and the columns to be multiset ordered, or the rows to be multiset
ordered and the columns to be lexicographically ordered. Whilst adding extra constraints
to a model to break symmetry has been previously proposed [Pug93], our novelty is in the
investigation of ordering constraints that can consistently be added to a matrix model to
break row and column symmetries.

We extend our results to deal with matrices of arbitrary number of dimensions, as well
as with matrices that contain partial symmetry or value symmetry. We identify special
and useful cases where all row and column symmetries can easily be broken.

We show that the ordering constraints are incomparable both in theory and in prac-
tice. We study the effectiveness of the ordering constraints in breaking row and column
symmetries both theoretically and experimentally. We show that in theory the ordering
constraints may not eliminate all symmetries. We also argue that it is difficult to assess
theoretically whether we can significantly reduce the search effort by imposing ordering
constraints. Our experimental results reveal that ordering constraints are effective in
breaking row and column symmetries as noteworthy reductions are obtained in the search
space created and the time taken to solve the problems.

Design and Implementation of Algorithms for New Global Constraints To use
the ordering constraints in practice and to support the frequent use of lexicographic or-
dering constraints together with sum constraints, we devise three new global constraints:
lexicographic ordering constraint, lexicographic ordering with sum constraints, and mul-
tiset ordering constraint. Each of the global constraints encapsulate a novel linear time
algorithm to propagate the constraint. The algorithms of the lexicographic ordering con-
straint and the lexicographic ordering with sum constraints are optimal. The algorithm of
the multiset ordering constraint is optimal provided that the domain size of the variables
is less than the vectors’ size, which is often the case.

We compare the algorithm of each global constraint with alternative ways of propa-
gating the constraint both theoretically and experimentally. We show that in theory each
algorithm is the preferred choice of propagating the associated constraint. In practice,
the algorithms of the lexicographic ordering constraint and the multiset ordering con-
straint propagate effectively and efficiently. The algorithm of the lexicographic ordering
with sum constraints is most useful when there is a very large space to explore, such as
when the problem is unsatisfiable, or when the way we explore the search space is poor
or conflicts with the lexicographic ordering constraints. With the latter result, we tackle
one of the drawbacks of using constraints to break symmetry. We show that a constraint
which combines together symmetry breaking and problem constraints can give additional
pruning and this can help compensate for the search heuristic trying to push the search
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in a different direction to the symmetry breaking constraints.

1.6 Organisation of the Dissertation

This dissertation is organised as follows.

Chapter 1, Introduction. We introduce our research. We first briefly introduce con-
straint programming. Then, we describe the motivations and the goals, present an
overview, and finally summarise the major contributions of the dissertation.

Chapter 2, Formal Background. We report on the background knowledge necessary
to read the dissertation. We briefly present constraint satisfaction problems, some
techniques to solve such problems, global constraints, symmetry in constraint sat-
isfaction problems, and ordering relations. We also present the notations we use
throughout the dissertation.

Chapter 3, Matrix Models. We recognise the central role played in constraint pro-
grams by matrix models. We identify that row and column symmetry, and value
symmetry are two patterns that frequently arise in matrix models. We discuss the
importance of tackling row and column symmetry.

Chapter 4, Breaking Row and Column Symmetry. We tackle row and column sym-
metry. We investigate what ordering constraints we can post on the rows and
columns of a matrix to break row and column symmetries. We compare the order-
ing constraints that we put forward and discuss their effectiveness in breaking row
and column symmetries from a theoretical view point. We extend our results in a
number of ways. We also identify special and useful cases where all row and column
symmetries can easily be broken. Finally, we compare with related work.

Chapter 5, Lexicographic Ordering Constraint. We propose an optimal linear time
algorithm to propagate the lexicographic ordering constraint. We extend the algo-
rithm in a number of ways. We discuss alternative ways of propagating the con-
straint, compare with related work, and provide both theoretical and experimental
evidence of the value of the algorithm.

Chapter 6, Lexicographic Ordering with Sum Constraints. We introduce a new
global constraint which combines the lexicographic ordering constraint with two
sum constraints. We show that this combination of constraints is another common
pattern in constraints programs, and provide theoretical evidence of the value of
combining the constraints. We propose an optimal linear time algorithm to prop-
agate this new constraint. We extend the algorithm in a number of ways, and
compare with related work. We experimentally evaluate the algorithm and discuss
when it is most useful. By studying in detail when combining lexicographical order-
ing with other constraints is useful, we propose a new heuristic for deciding when
to combine constraints together.

Chapter 7, Multiset Ordering Constraint. We propose an efficient linear time algo-
rithm to propagate the multiset ordering constraint. We extend the algorithm in
a number of ways. We propose an alternative algorithm which is useful when the
domains are large. We discuss alternative ways of propagating the constraint, and
provide both theoretical and experimental evidence of the value of the algorithm.



CHAPTER 1. INTRODUCTION 29

Chapter 8, Symmetry Breaking with Ordering Constraints. We carry out an ex-
perimental study. We show that the ordering constraints are effective in breaking
row and column symmetries in practice. The results of the theoretical comparison
of the ordering constraints are confirmed by the experimental results.

Chapter 9, Conclusions and Future Work. We bring the dissertation to a conclu-
sion. We present our contributions, discuss the lessons learnt, summarise the limi-
tations of our work, present our directions for future research, and finally conclude.



Chapter 2

Formal Background

In this chapter, we familiarise the reader with the concepts and notations used throughout
the dissertation. In particular, we introduce constraint satisfaction problems in Section
2.1, and briefly explain in Section 2.2 how such problems are solved. Then, in Section
2.3, we introduce global constraints and point out the major approaches to designing
algorithms for global constraints. We define symmetry in constraint satisfaction problems
and also discuss the various approaches to breaking symmetry in Section 2.4. Finally,
before giving our notations in Section 2.6, we present ordering relations in Section 2.5.

2.1 Constraint Satisfaction Problems

A constraint is a relation among several unknowns (or variables), each taking a value in a
given domain. Constraints thus restrict the possible values that the variables can simul-
taneously take. A constraint can be defined on any number of variables. If a constraint
affects only one variable then the constraint is unary, and if it affects two variables then
the constraint is binary. A constraint which is defined on n > 2 variables is a non-binary
or n-ary constraint.

Constraint satisfaction problems play a central role in various fields of computer science
[Tsa93] and are ubiquitous in many real-life application areas such as production planning,
staff scheduling, resource allocation, circuit design, option trading, and DNA sequencing.

Definition 1 A constraint satisfaction problem (CSP) consists of:

e a set of variables X = {Xy,..., X, };
e for each variable X;, a finite set D(X;) of values (its domain);

e a set C of constraints on the variables, where each constraint ¢(X;,...,X;) € C is
defined over the variables X;, ..., X; by a subset of D(X;) x ... x D(X;) giving the
set of allowed combinations of values.

A CSP is thus described by (X, D,C) where D = {D(X,),...,D(X,)}. A variable assign-
ment or instantiation is an assignment to a variable X; of one of the values from D(X;).
Whilst a partial assignment A to X is an assignment to some but not all X; € X, a total
assignment' A to X is an assignment to every X; € X. We use the notation A[S] to

!'Throughout the dissertation, we will often say assignment when we mean total assignment to the
problem variables.

30



CHAPTER 2. FORMAL BACKGROUND 31

denote the projection of A on to the set of variables S. A (partial) assignment A to the
set of variables 7 C X is consistent iff for all constraints c¢(X;,...,X;) € C such that
{Xi,...,X;} €7, we have A{X,,..., X;}] € ¢(X;,..., X;). A solution to the CSP is a
consistent assignment to X'. Typically, we are interested in finding one or all solutions,
or an optimal solution given some objective function. In the presence of an objective
function, a CSP is a constraint optimisation problem (COP) .

In general, solving CSPs is NP-hard and so is computationally intractable [Mac77].
Constraint programming (CP) provides a platform for solving CSPs [MS98]|[Apt03] and has
proven successful in many real-life applications [Wal96][Ros00] despite this intractability.
To solve a problem using CP methods, we need first to formulate it as a CSP by declaring
the variables, their domains, as well as the constraints on the variables. This part of the
problem solving is called modelling.

2.2 Search, Local Consistency and Propagation

Solutions to CSPs can be found by searching systematically through the possible assign-
ment of values to variables. A search algorithm traverses the space of partial assignments
and attempts to build up a solution. A common strategy for exploring the search space
is backtracking search (see [KvB97] for a detailed presentation). A backtracking search
traverses the space of partial assignments in a depth-first manner, and at each step it
extends a partial assignment by assigning a value to one more variable. If the extended
assignment is consistent then one more variable is instantiated and so on. Otherwise,
the variable is re-instantiated with another value. If none of the values in the domain
of the variable is consistent with the current partial assignment then one of the previous
variable assignments is reconsidered. This process is called backtracking. The simplest
backtracking search algorithm is the chronological backtracking, which backtracks to the
most recently instantiated variable [BR75].

A backtrack search may be seen as a search tree traversal. In this approach, each node
defines a partial assignment and each branch defines a variable assignment. A partial
assignment is extended by branching from the corresponding node to one of its subtrees
by assigning a value j to the next variable X; from the current D(X;). Upon backtracking,
Jj is removed from D(X;). This process is often called labelling. The order of the variables
and values chosen for consideration can have a profound effect on the size of the search
tree [HE80]. The order can be determined before search starts, in which case the labelling
heuristic is static. If the next variable and/or value are determined during search then
the labelling heuristic is dynamic.

The size of the search tree of a CSP is the product of the domain sizes of all vari-
ables and is thus too big in general to enumerate all possible assignments using a naive
backtracking algorithm. Therefore, many CP solution methods are based on inference
which reduces the problem to an equivalent (i.e. with the same solution set) but smaller
problem by making implicit constraint information explicit. If the inference is complete
then satisfiability is determined immediately. Since complete inference is computationally
expensive to be used in practice, inference methods are often incomplete. This requires
further search. On the other hand, the reduced problem is presumably easier to solve and
has a smaller search tree. Incomplete inference is often referred to as local consistency.

Local consistencies are properties of CSPs defined over “local” parts of the CSP, in
other words properties defined over subsets of the variables and constraints of the CSP.
Let S and 7 be two distinct sets of variables S, 7 C X in a CSP (X, D,(C), and A be a
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consistent assignment to 7. A support A’ of A for S is an assignment A’ to S such that
AN A’ is a consistent assignment. If A is not supported then A is inconsistent and does
not belong to any solution. The main idea behind the local consistency techniques is to
infer such inconsistent partial assignments to X and exclude them from the search tree.

Even though there exist many local consistency notions in the literature (see [Apt03]
for a list of references), in this dissertation we restrict our attention to node consistency,
(generalised) arc-consistency, and bounds consistency. These consistencies are concerned
with the support of partial assignments having only one variable. Problem reduction can
thus be performed by removing from the domains those values which lack support and
are thus inconsistent.

Definition 2 A unary constraint is node consistent iff its variable has a non-empty do-
main and every value in the domain satisfies the constraint.

Definition 3 ([Fre85]) A binary constraint is (i, j)-consistent iff its variables have non-
empty domains and any consistent assignment of 1 variables can be extended to a consistent
assignment involving j additional variables.

One of the most widely used local consistency techniques for binary constraints is arc-
consistency (AC) and is defined as follows.

Definition 4 A binary constraint is arc-consistent iff it is (1,1)-consistent.

A general notion of arc-consistency, which is not restricted to binary constraints, is gen-
eralised arc-consistency (GAC).

Definition 5 ([MMS88]) A constraint is generalised arc-consistent iff its variables have
non-empty domains, and for any value in the domain of a variable, there exist consistent
values in the domains of the other variables.

A weaker form of local consistency which is defined only for totally ordered domains is
bounds consistency (BC).

Definition 6 ([vHSD98]) A constraint whose variables have totally ordered domains is
bounds consistent ff its variables have non-empty domains, and for the minimum and the
mazimum values in the domain of a variable, there exist consistent values in the domains
of the other variables.

Different local consistency properties are compared in [DB97]. Let A and B be two
local consistency properties. We say that:

e Ais as strong as B (written A ~» B) iff in any problem in which A holds we have
that B holds;

A is stronger than B iff A ~> B but not B ~~ A;

o A is incomparable with B iff neither A ~» B nor B ~» A;

A is equivalent to B iff both A ~~ B and B ~» A.
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Local consistency properties are generally not sufficient conditions for CSPs to be satis-
fiable. For instance, a value in a domain may not be a part of a solution even though all
the constraints are arc-consistent. This is because a CSP typically has several constraints
that need to be satisfied simultaneously, whereas consistency is local to each constraint
and its variables.

In a constraint program, every variable participates in zero or more constraints.
Searching for solutions is interleaved with local consistency which is first enforced to
preprocess the problem to prune subsequent search and then maintained during search
at each node of the search tree with respect to the current variable assignment. In this
way, the domains of the uninstantiated variables shrink and the search tree gets smaller.
This result of maintaining local consistency during search can be explained as follows.
When the domain of a variable X; is modified (due to either an instantiation or removal
of inconsistent values), values in the domain of the other variables participating in the
same constraints as X; might lose their support and become inconsistent. If this is the
case then such constraints has to be examined and local consistency needs to be estab-
lished if necessary. The process of examining a constraint is called propagation, and a
modification to a variable which leads to propagation is called a propagation event. Prop-
agation may result in removal of inconsistent values, which is also known as pruning or
filtering. This change may lead to further inconsistencies and prunings, hence the result
of any modification is gradually propagated through the entire CSP. Finally, this process
terminates. We then have three possible situations: (1) a domain becomes empty and
thus a failure occurs; (2) a solution is found; (3) there exists one variable which is not
ground (i.e. uninstantiated) and all the constraints are locally consistent. In the first
case, the current branch is pruned and backtracking occurs as there exist no solutions
under this branch. In the third case, the search tree which is below the current node is
explored, as no solutions are yet found. If the domains have shrunk during propagation,
the new search tree is smaller.

2.3 Global Constraints

Y

The constraints arising in the real-life CSPs are often “complex” and non-binary. It is
generally hard to decompose such constraints into simple binary constraints like =, #,
<, <, etc. Even if such a decomposition is possible, the total pruning obtained by the
propagation of each simpler constraint is likely to be weak, as the global view of the
constraint is lost in the decomposition.

A global constraint is a predicate which involves more than 2 variables, and encapsu-
lates a generic or specialised filtering algorithm which is used to propagate the constraint.
Three notions of globality are introduced in [BvHO03]: semantic globality, operational
globality, and algorithmic globality. A constraint C' is semantically global if there exist
no constraint decomposition scheme for C. In this case, it is impossible to state C' by
a conjunction of simpler constraints and thus the global constraint facilitates problem
formulation. A constraint C' is operationally ®-global if there exist no constraint decom-
position scheme on the variables of C' for which the local consistency notion ® removes
as many local inconsistencies as on C'. In this case, a filtering algorithm which maintains
® on C provides powerful pruning. When a constraint C' is not operationally global wrt
a local consistency notion ®, then there is no benefit in using C' in a problem formulation
on which ® is used. However, if a filtering algorithm which maintains ® on C' provides
complexity and efficiency advantages, then C' is algorithmically ®-global.
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Many useful global constraints have been proposed in the last ten years [Bel02]. An
example is the all-different constraint:

all-different(( Xy, ..., Xp))

which holds iff no pair of variables in (X,...,X,) are assigned the same value. An
extension of the all-different constraint is the global cardinality constraint (gce):

gee(( X, .o, X)), (u1, ooy om), ((ly ),y ooy (L, )

which holds iff the number of variables in (Xj,..., X)) assigned to v; is between [; and
u; for all ¢ € [1,m)].

The filtering algorithm of a global constraint is either a generic algorithm, or a spe-
cialised algorithm which exploits the semantics of the constraint.

2.3.1 Generic Algorithms

Bessiere and Régin have defined GAC-schema [BR97] which is a general framework for
AC algorithms. GAC-schema is based on AC-7 arc-consistency algorithm for binary
constraints [BFR99] and allows enforcing GAC on constraints of arbitrary arity. There
are three instantiations of the schema to handle constraints defined by a set of allowed
tuples, by a set of forbidden tuples, and by a predicate whose semantics is unknown.

Bessiere and Régin have also defined a schema for enforcing GAC on an arbitrary
conjunction of constraints [BR98|. This form of local consistency is called conjunctive
consistency. The proposed filtering algorithm to achieve conjunctive consistency is based
on the instantiation of GAC-schema for constraints given as a predicate. Since the se-
mantics of the predicate is not known in such a general setting, finding a support for a
value a of a variable V' is done by searching for a solution for the problem derived when
V' is assigned a.

Bessiere and Régin later proposed another instantiation of the GAC-schema, in which
the related constraints are grouped together to form subproblems [BR99]. A subproblem
is thus a global constraint which is a conjunction of constraints. The main idea is that
maintaining GAC on subproblems independently may enhance the process of making the
whole problem GAC. The advantage over the previous instantiations of the GAC schema
is that the knowledge about the constraints in a subproblem can be taken into account
in a generic way, and that allowed tuples/solutions are computed “on the fly” by means
of a search algorithm.

The algorithms provided by the schemas are generic and can be used to achieve GAC
on any constraint. This is clearly a big advantage, as it eliminates the need of a new
filtering algorithm provided that an algorithm checking the consistency of a value is given.
However, the generic algorithms are not efficient as generality comes with a high cost. For
instance, the worst-case time complexity of the GAC-schema is O(ed”) where d is the size
of the largest domain, k is the maximal arity of the constraints, and e is the total number
of constraints. The high complexity of the algorithms restrict their use in practice.

2.3.2 Specialised Algorithms

The generic GAC algorithms of the GAC-schema and the schema for a conjunction of
constraints are too costly to be useful in practice, as they do not take into account
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any specific knowledge. Several specialised algorithms for global constraints have been
proposed in the past years, which exploit the semantics and the structure of the constraints
in concern. Thus, many global constraints in the various CP toolkits have their own
specific filtering algorithm, which typically achieve GAC at a lower cost compared to that
of a generic GAC algorithm. As an example, Régin in [Rég94] gives a filtering algorithm
for the all-different constraint which maintains GAC in time O(n?®) where n is the number
of variables. The algorithm exploits the nice correspondence between the semantics of
the constraint and the maximum matching problem in graph theory. The success of this
global constraint has lead to several alternative algorithms which maintain weaker forms
of local consistency but are very fast in practice (e.g. [Pug98][LQTvB03]). A survey on
the various algorithms for the all-different constraint can be found in [vHO1]. As another
example, Régin in [Rég96] makes use of the flow theory and proposes an O(n%d) GAC
algorithm for the gcc constraint, where n is the number of variables and d is the size
of the largest domain. This complexity is improved in an alternative GAC algorithm
[QvBLT03]. Weaker but faster algorithms have been developed in [QvBLT03], [KT03a],
and [KT03b]. The algorithms mentioned so far have all shown to be successful in tackling
hard problems.

The semantics of a constraint helps in devising an efficient filtering algorithm in many
ways. First, supports for values can be found quickly. The support of a value in the
domain of a variable can be the support also for some other values in the domain. Second,
inconsistent values can be identified without having to explore every value in the domain of
each variable. Third, the calls to the algorithm can be limited to the necessary propagation
events. Fourth, failure or success can be detected earlier. A constraint C'is entailed when
any assignment of values to its variables satisfy C, in which case C' is true; whereas C'
is disentailed when any assignment of values to its variables fail to satisfy the constraint,
in which case C' is false. If a constraint is entailed then there is no need to propagate
the constraint, and if it is disentailed then failure can immediately be established without
having to wait until a domain wipe-out occurs. Finally, repeated computation can be
avoided if identification of inconsistent values can be done incrementally.

2.4 Symmetry

A symmetry is a transformation of an entity which preserves the properties of the entity.
The transformed entity is thus identical to and indistinguishable from the original entity.
For instance, rotating a chess board 90° gives us a board which is indistinguishable from
the original board. Regarding CSPs, it is possible that a CSP has symmetries in the
variables or domains or both which preserve satisfiability. In the presence of symmetry,
any (partial) assignment can be transformed into a set of symmetrically equivalent assign-
ments without affecting whether or not the original assignment satisfies the constraints.

Definition 7 ([MTO01]) A symmetry o of a CSP (X, D,C) is a sequence of n+1 bijective
functions oy, 01, . ..,0, where:

og: X = X
i : D(X;) — D(oo(X3))

such that for any (partial) assignment p to X, p satisfies the constraints in C iff o applied
to the variables and their assignments in p does.
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Symmetries divide the set of possible assignments into equivalence classes. A symmetry
class is an equivalence class of assignments. Two assignments are equivalent if there is
a symmetry mapping one assignment into the other. Symmetry may be inherent in the
problem. Alternatively, it may be introduced as a result of modelling by distinguishing
the objects which are in fact indistinguishable.

Symmetry in a CSP creates symmetric but essentially equivalent states in its search
space. Visiting symmetric states can significantly slow down the search process. If a state
leads to a solution then all its symmetric states also do, and these symmetric solutions are
indistinguishable from each other. This could be a big problem when, for instance, proving
optimality because it is worthless to traverse repeatedly the states which do not lead to
any improvement in the objective function. Even if we are interested in one solution, we
may explore many failed and symmetrically equivalent states before finding a solution.
Therefore, problems often become very difficult to solve in the presence of symmetry.

Symmetry in a CSP can be exploited to improve the search efficiency. This can be done
by pruning the symmetric parts of the search space. This process is often referred to as
symmetry breaking. As can be witnessed by the proceedings of the recent CP conferences
[Wal01][vHO02][Ros03] and symmetry workshops [FP01][FP02b][GHS03], there has been
an increasing interest in breaking symmetry in CSPs. The approaches taken fall into four
categories: remodelling the problem, posting symmetry breaking constraints, modification
of the search algorithm, and using symmetries to guide the search.

2.4.1 Remodelling

One way of symmetry breaking is to remodel the problem to obtain a model with less
symmetries. There are no general guidelines on how to do this, as it all depends on
the problem and its model. However, it has been recognised that modelling a group
of indistinguishable objects using a set variable [Ger97] does not distinguish between
the objects and thus avoids introducing unnecessary symmetry. An example is Stefano
Novello’s model (available at www.icparc.ic.ac.uk/eclipse/examples/) of the social
golfers problem which is about scheduling g * s golfers to play in g groups, each of size s,
in each of w weeks. The model uses a set variable to represent each group of golfers in
each week. Since the order of the players within a group are not important, this model
has less symmetries compared to the one where each group is represented by a vector of
integer variables. Smith in [Smi01] discusses other models of this problem with even less
symmetries.

Modelling a problem in such a way that no symmetries are introduced may not be
easy due to the lack of proper constructs in the modelling language. For instance, in the
social golfers problem, each of the weeks, groups, and golfers are indistinguishable. As
the golfers are partitioned into g groups in every week, we can model the problem as a set
of w partitions (i.e., a set of sets of sets), which does not distinguish between the weeks,
between the groups, and between the players. Unfortunately, such constructs are not yet
available in any of the modelling languages. Recent progress in this direction is, however,
promising [BFM03].

2.4.2 Symmetry Breaking Constraints

Another approach to symmetry breaking is to add extra constraints to the model of
the problem [Pug93]. These constraints impose an ordering on the symmetric objects.
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As a consequence, among the set of symmetric assignments, only those that satisfy the
ordering constraints are chosen for consideration during the process of search. Since such
ordering constraints are not a requirement of the problem but rather serve for symmetry
breaking, they are called symmetry breaking constraints. Care needs to be taken when
posting symmetry breaking constraints. The goal is to define reductions in the space of
solutions in a such a way that the reduced space contains at least one solution from each
equivalence class of solutions. If symmetry breaking constraints remove all the elements
of an equivalence class of assignments then solutions can be lost.

Formulating appropriate symmetry breaking constraints is often done by hand [Pug93].
Crawford et al. compute symmetry breaking constraints automatically via a problem
independent transformation [CGLR96]. The generated symmetry breaking constraints are
satisfied by exactly one element, which is the smallest element, in each equivalence class of
assignments. Even though such an approach guarantees that the search algorithm never
visits two states in the search space that are symmetrically equivalent, the complexity
results suggest that generating the constraints will be intractable in the general case.
Puget in [Pug03b] states that it is not necessary to impose all the symmetry breaking
constraints at the start of search for solutions. His approach is to add some of the
symmetry breaking constraints during search. At each node of the search tree, only the
constraints for symmetries that are not yet broken are imposed.

2.4.3 DModification of Search Algorithm

There has been a great deal of interest in modifying the backtracking search algorithms
to break symmetry. The aim is to avoid exploring any part of the search tree that is
symmetric to a part which is already considered. To the best of our knowledge, the initial
work in this direction appears in [BFP88|[BFP96], where each state of the search tree
is checked whether it is an appropriate representative of all its symmetric states. The
algorithms proposed are variations of a colour automorphism algorithm and make use of
computational group theory. Even though the context is not CSPs, this approach can be
seen as the ancestor of the related methods to break symmetry in CSPs.

Earlier work on breaking symmetry in CSPs by modifying the search algorithm focused
on specific forms of symmetry. Freuder in [Fre91] introduces the notion of interchange-
able values. Benhamou in [Ben94] discusses permutation of domain values in binary
constraints. Both types of symmetries partition domain values into equivalence classes,
and thus the approaches taken to break such symmetries are similar: whenever a value v
is proved to be inconsistent for a variable V', all values belonging to the same equivalence
class as v are pruned from the domain of V', as they will also be proved inconsistent for V
in the future. In the context of permutable variables, Roy and Pachet propose a related
pruning algorithm [RP98]: whenever a value v is proved to be inconsistent for a variable
V', v is pruned from the domain of the variables permutable with V. All these approaches
can be seen as particular cases of a more general strategy presented in [MT99].

Recent work on breaking symmetry in CSPs by modifying the search algorithm can
be applied to arbitrary symmetries. The fundamental principle is to use every completely
traversed subtree as a nogood? to prevent the exploration of any of its symmetrical vari-
ants. This principle is applied in two different ways. In SES [BW99][BW02] and SBDS
[GS00], whenever a subtree is completely explored, a constraint for each symmetry of
the problem is imposed to exclude all symmetric subtrees from consideration later in the

2A nogood is an assignment which cannot appear in any unenumerated solution.
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search. Such constraints are enforced according to the current partial assignment. On the
other hand, in SBDD [F'SS01][FMO01], a check is performed at each node of the search tree
to see whether it is dominated by a symmetrically equivalent subtree already explored. If
this is the case then the branch is pruned. Dominance checks are problem dependent.

2.4.4 Heuristic Methods

Meseguer and Torras take a heuristic approach to symmetry breaking [MT99][MTO01].
The idea is to define a search heuristic which directs the search towards the subspaces
with a high density of non-symmetric states. The authors propose a variable ordering
heuristic which selects first the variables involved in the largest number of symmetries
local to the current state. This greedy heuristic tries to maximise the total number of
broken symmetries at each level of the search. It is argued that the more symmetries are
broken the less unproductive effort a lookahead® performs. Moreover, a variable involved
in many symmetries can have “good” values in its domain.

The proposed heuristic can also be combined with the popular smallest-domain first
principle. The result of such a combination is a new heuristic for variable selection, which
is shown to be more effective than each of the heuristics involved in the combination.

2.5 Ordering Relations

As symmetries are often broken by ordering symmetric objects, we now introduce some
notions about orderings.

Given two sets A and B, a subset R C A x B is a binary relation from A to B. For
each pair (a,b) € R, “ais related to b” via R. If A = B =S then a relation R from S to
S is a binary relation on S. If R is a binary relation on S then (a,b) € R is also denoted
by a R b, likewise (a,b) ¢ R is denoted by a R b. There are various properties of a binary
relation.

Definition 8 A binary relation R on S is:
o reflexive iff (s,s) € R for all s € S;
o irreflexive iff (s,s) € R for all s € S;
e antisymmetric iff (s,t) € R and (t,s) € R implies s =t for all s,t € S;

e transitive iff (r,s) € R and (s,t) € R implies (r,t) € R for all r,s,t € S.

A binary relation < on S is a partial ordering iff it is reflexive, antisymmetric, and
transitive. Hence, s = t denotes that a member s of S either precedes another member ¢
of S, or s =t. A set S with a partial ordering relation = is called a partially ordered set,
and is denoted by (S, X). Indeed, the word ordering implies that the objects in the set are
ordered according to some properties or criteria (e.g., smaller, larger, inferior, superior,
etc). Note that not all pairs of members of S may be related by =.

Each partial ordering < on a set S determines a converse relation >, where s < ¢ iff
t = s. The converse relation = is also a partial ordering. Given a partial ordering =
on a set S, we can define another binary relation < on S by s <t < st A s#t.

3 A lookahead is a search algorithm which enforces a local consistency property during search.
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The relation < is irreflexive, antisymmetric, and transitive, and is called a strict partial
ordering. A set S with a strict partial ordering < is called a strict partially ordered set and
is denoted by (S, <). Each partial ordering < on a set S yields a strict partial ordering <,
and conversely given < on a set S, we can define <on S by st < s<tV s=t.

Two elements s and ¢ of a partially ordered set (S, <) are comparable if either s < ¢,
ort <s,or s =t Otherwise they are incomparable. If every two elements of a partially
ordered set (S, <) are comparable then < is a total ordering on S, and (S, <) is called
a totally ordered set. Likewise, if every two elements of (S, <) are comparable then <
is a strict total ordering on S, and (S, <) is called a strict totally ordered set. For two
elements s and ¢ of a totally ordered set (S, =), s A tiff s = ¢, as s and ¢ are comparable,
and either s <t ort < s, or s =1t holds.

A binary relation < on S is a preordering iff it is reflexive and transitive. Each
preordering < on a set S determines a converse relation >, where s < t iff t = s. The
converse relation >~ is also a preordering. Given a preordering < on a set S, we can
define another binary relation < on S by s <t < s=<t A s#t. The relation < is
irreflexive and transitive, and is called a strict preordering. Each preordering < on a set
S yields a strict preordering <, and conversely given < on a set S, we can define < on &
by st < s<tV s=t.

2.6 Notation

Throughout the dissertation, we assume finite integer domains, which are totally ordered.
A variable designates a constrained variable that is bound to a finite non-empty integer
domain. The domain of a variable V' is denoted by D(V), and the minimum and the
maximum elements in this domain by min(V') and max(V).

If a variable V' is assigned a value a, then we denote this by V « a. If two variables
V and W are assigned the same values, that is the variables are now ground and equal,
then we write V' = W, otherwise we write =(V = W). If V' is assigned a value less than
that assigned to W, then we write V' < W. Similarly, we write V' > W if V is assigned a
value greater than that assigned to W.

A vector is an ordered list of elements. We denote a vector of n variables as X =
(Xo, ..., Xn_1), while we denote a vector of n integers as ¥ = (o, ...,Z,_1), where X or
Z can be any letter in the alphabet with an arrow on top. Unless otherwise stated, the
indexing of vectors is from left to right, with 0 being the most significant index, and the
variables of a vector X are assumed to be disjoint and not repeated.

The sub-vector of some 7 with start index a and last index b inclusive is denoted by
Lot Slmllarly, the sub-vector of some X with start mdex a and last index b inclusive
is denoted by Xa_,b The vector X X,—d 1S the vector X with some X; bemg assigned to
d. The functions floor(X) and ceiling(X) assign all the variables of X their minimum
and maximum values, respectively.

A vector Z in the domain of X is designated by # € X. We write {Z | C A &€ X} to
denote the set of vectors in the domain of X which satisfy condition C'. Consequently, (1)
min{z | Y x;=Sx AT € X} and maa:{x | Y,xi=Sx AT € X} are the minimum and
maximum vectors in the domain of X such that Yoixi =08z (2)min{Z | x;=kNT € X}
and maz{Z | z; =k A ¥ e X} are the minimum and maximum vectors in the domain
of X such that some z; is k; (3) min{Z | dYuri=8Sr Nz =k N T € X} and
maz{Z| >,z =95t N z; =k AN T € X} are the minimum and maximum vectors in
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the domain of X such that > ;i = Sz and some z; is k.
In the case of multiple vectors, n vectors of m finite integer domain variables are
denoted by:

)SO = <X0,07 X0,17 s 7X0,m71>
X1 = (X, Xu1, oo S Ximew)
Xn—l = <Xn—1,07 Xn—l,la ce 7Xn—1,m—1>

A set is an unordered list of elements in which repetition is not allowed. We denote
a set of n elements as X = {xg,..., 2,1}, where X can be any letter in the alphabet
or a word written calligraphically. A multiset is an unordered list of elements in which
repetition is allowed. We denote a multiset of n integers as x = {xo, ..., x,_1}}, where x
can be any letter in the alphabet written bold. We write max(x) or maz{{zo, ..., xn_1}

for the maximum element of a multiset x. By ignoring the order of elements in a vector,
we can view a vector as a multiset. For example, the vector (0,1,0) can be viewed as
the multiset {1,0,0}}. We will abuse notation and write {Z} or {(zo,...,x,—1)}} for the
multiset view of the vector ¥ = (g, ..., T,_1).

An occurrence vector occ(¥) associated with 7 is indexed in decreasing order of sig-
nificance from the maximum max{Z}} to the minimum min{Z} value from the values
in {Z}. The ith element of occ(Z) is the number of occurrences of max{{Z} — i in
{z}. When comparing two occurrence vectors, we assume they start and end with the
occurrence of the same value, adding leading/trailing zeroes as necessary.

Finally, sort(Z) is the vector obtained by sorting the values in Z in non-increasing
order.



Chapter 3

Matrix Models

3.1 Introduction

An important and active research area of CP is modelling. To solve a problem using
CP methods, we need first to model it as a CSP by specifying the decision variables,
their domains, and the constraints on the variables. There are often many alternatives
for each modelling decision, and a small modification to a model can have a huge impact
on the efficiency of the solution method [Bor98][BT01][Hni03]. Hence, formulating an
effective model for a given problem requires considerable skills in modelling and remains
a challenging task even for modelling experts [Fre98].

We have observed that there are many recurring patterns in constraint programs
[Wal03]. Identification of these patterns has two important benefits. First, patterns
can be used to pass on modelling expertise. Second, special-purpose methods to support
the patterns can be devised for use by a (non-expert) modeller. This helps tackle the
difficulty of effective modelling and makes CP reachable to a wider audience.

One common pattern in constraint programs is a matrix model. Any formulation of a
problem as a CSP which employs one or more matrices of decision variables is a matrix
model. A wide range of problems can be effectively represented and efficiently solved
using a matrix model. There are patterns that arise commonly within matrix models
and this chapter identifies two. The first common pattern is row and column symmetry,
which arises in 2-dimensional matrices where rows and columns represent indistinguishable
objects and are therefore symmetric. The second pattern is value symmetry, which arises
in matrices where the values taken by the variables are indistinguishable and are therefore
symmetric.

This chapter is organised as follows. In Section 3.2, we show that a matrix model is
a common pattern in constraint programs by going through some problems taken from a
wide range of real-life application domains, namely combinatorics, design, configuration,
scheduling, timetabling, bioinformatics, and code generation. We present an effective
matrix model for each problem, give the intuition behind it, and point to the associated
research work if the model has previously been proposed. Then, in Section 3.3, we identify
two common patterns in matrix models: row and column symmetry, and value symmetry.
We discuss why row and column symmetries are important and why techniques to deal
with row and column symmetries are useful. Finally, we summarise in Section 3.4.

41
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3.2 Matrix Models

A matriz model is the formulation of a problem as a CSP with one or more matrices of
decision variables. Matrix models are a natural way to represent functions and relations
[Hni03]. For example, assume we wish to assign papers for review to the programme
committee (PC) members of a scientific conference. As there are typically more papers
to be reviewed than the number of PC members, we want to assign multiple papers to a
PC member who has a certain capacity. Also, we want a paper to be reviewed by more
than one PC member to judge fairly the scientific quality of the paper. Hence, we are
looking for a relation between the set of PC members and the set of papers. This can be
modelled by a 2-dimensional 0/1 matrix X, where a variable X ; is assigned 1 iff paper
J is assigned to PC member 1.

In this example, one matrix is sufficient to model the problem. Sometimes, a matrix
model contains multiple matrices of variables. Channelling constraints can be used to link
the different matrices together [CCLW99]. For instance, consider the problem of assigning
papers to PC members, and assume every PC member has a cost described by the amount
we need to pay her for reviewing papers. To minimise the total cost, we need to choose
a subset of the PC members. In this case, we introduce a 1-dimensional 0/1 matrix Y,
where a variable Y; is assigned 1 iff PC member 7 is assigned at least one paper. The cost
function is then ), Y; x A;, where A is the 1-dimensional matrix of the cost of each PC
member. We link the variables of X and Y by imposing:

Matrix models have been long advocated in 0/1 ILP [Sch86] and are commonly used
in CP. Of the 38 problems of CSPLib [CSP] on September 22, 2003, at least 33 of the 38
have matrix models, most of them already published and proved successful [FFH*01b]. In
this section, we explore a number of problems taken from 7 different real-life application
domains, and show how each can be effectively represented by a matrix model.

The matrices of a matrix model can have an arbitrary number of dimensions. In what
follows, we index each dimension of a matrix by the elements taken from a set of values.
Hence, an n-dimensional (n-d) matrix of So X Sy X ... x S,_1 is an |Sp| X [S1| X ... X |Sp_1|
matrix. As we demonstrate later, 2-d matrices are often very useful to represent the
problem constraints. We assume a 2-d n x m matrix has n columns and m rows.

3.2.1 Combinatorics

The balanced incomplete block design (BIBD) problem is a standard combina-
torial problem from design theory [CD96] with applications in experimental design and
cryptography (prob028 in CSPLib). BIBD generation is to find a set of b > 0 subsets of
aset V of v > 2 elements such that:

e cach subset consists of exactly k elements (v > k > 0);
e cach element appears in exactly r subsets (r > 0);

e cach pair of elements appear simultaneously in exactly A subsets (A > 0).

A BIBD instance is thus explained by its parameters (v, b, 7, k, \).
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Matrix:
— B —
X;; 0000011111
001 110O0O0T1T1
/] 0101101100 (v,b,r,k,\) = (6,10,5,3,2)
Yy 1010110100
/' 1101010001
1110001010
Constraints:
(1) \V/] ev. ZiGB Xi,j =T
(2) VieB. > ,Xij=k
(3) Vg2, g1 <j2€V. Zieg Xij * Xij, = A

Figure 3.1: The matrix model of the BIBD problem in [MT99].

The first CP approach to BIBD generation is due to Meseguer and Torras [MT99],
where a BIBD instance is specified by a 2-d 0/1 matrix X of BxV, where B = {0,...,b—
1}. A variable X;; in this matrix takes the value 1 iff the subset i contains the element
j. The constraints therefore enforce exactly r 1s per row, k 1s per column, and a scalar
product of A between any pair of distinct rows (see Figure 3.1).

The ternary Steiner problem (tSp) is another combinatorial problem and origi-
nates from the computation of hypergraphs in combinatorial mathematics [LR80]. The
tSp of order n is to find b = n(n — 1)/6 subsets of N = {1,...,n} such that:

e cach subset is of cardinality 3;

e any two subsets have at most one element in common.

Gervet proposes in [Ger97] a model of this problem, where each subset is represented
by a set variable. Whilst a cardinality constraint on each set variable restricts the size of
each subset to 3, intersection constraints between every pair of set variables constrain the
subsets to share at most one element. We adapt this model by replacing each set variable
by a 1-d 0/1 matrix of N, representing the characteristic function of A/. A variable in
such a matrix is assigned 1 iff the corresponding element is in the subset. We thus have
a 2-d 0/1 matrix X of B x N, where B = {0,...,b — 1}, with the constraints enforcing
exactly 3 1s per column, and a scalar product of at most 1 between any pair of distinct
columns (see Figure 3.2).

Even though this model is similar to that of BIBD generation, there are two main
differences. First, the matrix of BIBD has sum constraints on its rows, but the matrix of
tSp does not. Second, the scalar product constraint is posted between every pair of rows
of the matrix of BIBD, but between every pair of columns of the matrix of tSp. Moreover,
the scalar product is to be at most 1 in the tSp but exactly 1 in the BIBD model.

Matrix modelling provides an effective way of representing the BIBD problem and
the tSp, as the problem constraints can be expressed in terms of sum and scalar product
constraints. Many constraint toolkits provide these constraints together with a filtering
algorithm which maintains BC during search.
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Matrix:
— B —
X;; 0010110
0011001
] 0100101 B
Noi1o1ot1o =7
/| 1.000O0T11
1001 100
1110000
Constraints:
(1) VieB. > cpnXij=3
(2) Viq,i9,11 < iy € B. Zje/\/XiLj*Xiijl

Figure 3.2: A matrix model of the ternary Steiner problem.

Many other combinatorial problems can be effectively modelled using matrix models;
e.g., quasigroup existence (prob003 in CSPLib), magic squares (prob019 in CSPLib), and
projective planes (prob025 in CSPLib).

3.2.2 Design

The steel mill slab design problem is a difficult problem that reduces to variable-
sized bin-packing with colour side-constraints (prob038 in CSPLib). Steel is produced by
casting molten iron into slabs, of which a steel mill is capable of making a finite number
of weights. A set Z of slab sizes is available. Given a set Orders of orders, the flexibility
lies in the number and size of slabs chosen to fulfill the orders. Each order ¢ in Orders
is described by a tuple (w;, ¢;), where w; is its weight and ¢; is the colour corresponding
to the route required through the steel mill. The problem is to decide how many slabs of
which size to chose in order to pack the orders, such that:

e cach order is assigned to exactly one slab;
e the total weight of orders assigned to a slab does not exceed the slab size;
e cach slab contains at most p colours (p is usually 2);

e the total slab size is minimised.

A matrix model of this problem is given in Figure 3.3. We use potentially redundant
variables to cope with the fact that the number of slabs in an optimal solution is unknown.
If we assume that the greatest order weight does not exceed the maximum slab size, the
worst case assigns each order to an individual slab. Hence, we assume we are given a set
Slabs of available slabs, where |Slabs| = |Orders|.

We use a 1-d matrix S, indexed by Slabs, taking values from Z, so as to decide what
size each slab is. As some slabs may remain unused, 0 is added to Z to represent when
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Matrices:
— Slabs —

S, 433300000

— Orders —

0; 000000111
000111000
L010000000 z = {0,1,3,4}
Slabs 1 01 0 0 0 0 0 0 Orders = {( ,1>,<3,2>,<172>7<1,3>,<1,4>,
L0O0DO0O0DO0O0DO0OO0 (1,4), (1,4),(2,5), (1,5)}

0000O0O0OO0OO0OO

— Colours —
Ci; 00011
1 00110
Slabs 01 0 0 0 Colours = {1,2,3,4,5}
] 11000 p = 2
00000
00000

Constraints:

vj € Slabs . ZiEOrders w; * Oivj < Sj
Vi€ Orders. 3 s Oij =1

)
)
; vj S Slabs . ZiEColours Ci,j S p

(
(
(
(4) Vie Orders. VjeSlabs. O0;; =1—C, ;=1

4
Objective:

MINIMIZE Y i Graps i

Figure 3.3: A matrix model of the steel mill slab design problem.

a slab is not used. In order to represent which orders are assigned to which slabs, a 2-d
0/1 matrix O of Orders x Slabs is introduced. We have O; ; = 1 iff order 7 is assigned to
slab j. The first two constraints enforce that the capacity of each slab is not exceeded,
and that each order is assigned to a slab and is not split between slabs. A second 2-d
0/1 matrix C' of Colours x Slabs is used to model the colour constraints, where Colours
is the set of the colours of the orders. A variable C; ; in this matrix is assigned 1 iff slab
7 is assigned an order whose colour is ¢. The third constraint ensures that the number of
colours in a slab does not exceed p. Finally, channelling constraints are used to connect
this to the order matrix. The objective is then to minimise the total slab size.
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Matrices:
— Templates —

Run; 51,000 107,000 250,000

— Templates —

T; 0

g 0 (1) |Templates| = 3
I3 1 0 s =
Variations 0 0 5 Variations = {(250,000), (255,000),
Lo 0 ; (260, 000), (500, 000),
X - , (500,000, (1,000, 000),
. ' y (1,100,000)}
Constraints:
(1) Vi€ Templates. 3 icyariations Lij =8

(2) Vj € Variations. ), Run; T} ; > d;

i€T emplates

Objective:

minimize Zie’]’emplates RUTLZ

Figure 3.4: The matrix model of the template design problem in [PS98].

Matrix modelling provides an effective way of representing the steel mill slab design
problem. For instance, without C, we need to post large-arity constraints on O that
can only be efficiently implemented by means of a complex daemon [FMWO01]. In Figure
3.3, however, the problem constraints are expressed in terms of sum and scalar product
constraints, which can be propagated effectively and efficiently in many constraint toolkits.

The template design problem is another design problem (prob002 in CSPLib).
It arises from printing products of the same brand with several variations which have
different display on them, but are identical in shape and size so they can be printed on
the same sheet of board. For instance, two variations of a cat food cartoon may differ only
in that one is printed “Chicken Flavour” whereas the other has “Rabbit Flavour” printed.
Each sheet is printed from a template that has s slots. Each variation ¢ in Variations
is described by a demand d;, giving the minimum number of pressings required. The
problem is to decide how many pressings of each template are needed, and how many
copies of which variation to include on each template such that:

e the minimum number of pressings for each variation is met;
e every slot in each template is occupied by a variation;
e the total number of templates being produced is minimised.

One way of tackling this problem is to fix the number of templates and then to minimise
the total number of pressings [PS98]. This can be modelled using a 1-d matrix Run giving
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Matrices:
— Racks —

R, 0 01 2 2

— Ctypes —
Ci; 0 000
l 0 000 |Racks| = 5
Racks 0 1 2 0 RackModels = {(150,8,150), (200, 16, 200) }
1 0 301 Ctypes = {(20,10), (40,4), (50,2), (75,1)}
10 0 0 O
Constraints:

(1) Vi€ Racks. D icciypes Ciq < Cr
(2) vj € Racks . i€Ctypes Civj * CP; < T'PR;
(3) Vie Ctypes. > C;j =d;

j€Racks — ]

Objective:

mnimaize ZieRacks SR;

Figure 3.5: The matrix model of the rack configuration problem in [ILO02].

the number of pressings of each template, and a 2-d matrix T specifying how many copies
of which variation are included on which template (see Figure 3.4). The matrix Run is
indexed by the set Templates of templates, taking values from {1,..., maxQuantity},
where maxQuantity is the maximum among the number of pressings demanded for each
variation. The matrix T is indexed by 7emplates and Variations, taking values from
{0,...,s} so that we might include 0 or more but maximum s of each variation on a
template. The constraints enforce that every template has all its s slots occupied, and
the total production of each variation is at least its demand. The objective is then to
minimise the total number of pressings. This matrix model of the problem was previously
proposed and showed effective in [PS98].

3.2.3 Configuration

The rack configuration problem consists of plugging a set of electronic cards into racks
with electronic connectors (prob031 in CSPLib). Each card is a certain card type. A card
type i in the set Ctypes is characterised by a tuple (cp;,d;), where cp; is the power it
requires, and d; is the demand, which designates how many cards of that type have to be
plugged. In order to plug a card into a rack, the rack needs to be assigned a rack model.

Each rack model 7 in the set RackM odels is characterised by a tuple (rp;, ¢;, s;), where
rp; is the maximal power it can supply, ¢; is its number of connectors, and s; is its price.
Each card plugged into a rack uses a connector. The problem is to decide how many
among the set Racks of available racks are needed, and which model the racks are in
order to plug all the cards such that:
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Matrix:
— Cards —

¢;; 0000O0OO0OO0OO0OO0OOOOOOOG® 0O
1 000O0O0O0OO0OOOOOOOSOTOTG OO

Racks 0 0 0 0 OOOOOOT1IO0OO0OO0OT1T10
1 000O0O0O0OO0OO0OO0OO0OOT1TT1T1TO0OTO0OS1
111111111 100O0O0O0TO0FPO0

Constraints:

(1) VjeRacks. Y .ccpasCij < Cr,

(2) Vj € Racks. iccaras Cij * pgrpR

(3) VieCards. ) icpaesCij=1

Figure 3.6: The modifications to the model in Figure 3.5 to obtain a new matrix model
of the rack configuration problem.

the number of cards plugged into a rack does not exceed its number of connectors;

the total power of the cards plugged into a rack does not exceed its power;

all the cards are plugged into some rack;

the total price of the racks is minimised.

A matrix model of this problem is given in [ILO02] and shown in Figure 3.5. The main
idea of this model is to assign a rack model to every available rack. Since some of the racks
might not be needed in an optimal solution, a “dummy” rack model is introduced (i.e.,
a rack is assigned the dummy rack model when the rack is not needed). Furthermore,
for every available rack, the number of cards — of a particular card type — plugged into
the rack has to be determined. The assignment of rack models to racks is represented
by a 1-d matrix R, indexed by Racks, taking values from RackModels which includes
the dummy rack model. In order to represent the number of cards — of a particular card
type — plugged into a particular rack, a 2-d matrix C of Ctypes x Racks is introduced.
A variable in this matrix takes values from {0, ..., maxConn} where maxConn is the
maximum number of cards that can be plugged into any rack.

The dummy rack model is defined as a rack model where the maximal power it can
supply, its number of connectors, and its price are all set to 0. The constraints enforce
that the connector and the power capacity of each rack is not exceeded and every card
type meets its demand. The objective is then to minimise the total cost of the racks.

Another way of modelling this problem, as also mentioned in [ILO02], is to manipulate
the cards rather than the number of cards of a given type plugged into a rack. In this
case, we only modify the 2-d matrix C' which is now indexed by the set Cards of cards
and Racks, taking values from {0,1}. We have C;; = 1 iff card ¢ is plugged into rack j.
Figure 3.6 shows how we modify the initial model.

Note the similarity between the rack configuration and the steel mill slab design prob-
lems. In the former, we need to find a model for each available rack, and decide which
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Matrix:
T;; — Groups —
L {1,2} {3,4} (w,g,s) = (2,2,2)

Weeks {1,3} {2,4}
Constraints:

(1) Vj € Weeks. Viy, i, iy <iy € Groups. T;, ; NT,,; ={}
(2) Vie Groups. Vj € Weeks. |T, | =s
(3) V<i17j1>> <i27j2>7 <i17j1> <lex (i27j2> € Groups x Weeks . ’Til,jl N Tz’z,jz’ <1

Figure 3.7: The matrix model of the social golfers problem by Novello.

cards are assigned to which racks; whereas in the latter, we need to find a size for each
available slab, and decide which orders are assigned to which slabs. We introduce a
dummy value in both problems as some racks or slabs might not be needed in an optimal
solution. Hence, the matrix models of the rack configuration problem are very similar to
that of the steel mill slab design problem. All problem constraints are expressed in terms
of sum and scalar product constraints, which can be propagated effectively and efficiently
in many constraint toolkits.

3.2.4 Scheduling

The social golfers problem, which is a variation of the Kirkman’s schoolgirls problem
[Bal38], has come from a question submitted on the newsgroups comp.constraints and
comp.op-research (prob010 in CSPLib). The problem is to determine if it is possible
for g * s golfers to play in g groups, each of size s, in each of w weeks in such a way that:

e cach golfer plays once a week;
e any two golfers play in the same group at most once.

An instance of this problem is thus explained by its parameters (w,g,s). The original
question is to find the largest w such that 32 golfers can play in 8 groups of size 4.

A matrix model of this problem has been employed by Stefano Novello (available
at www.icparc.ic.ac.uk/eclipse/examples/). The model uses a 2-d matrix T of
Groups x Weeks, where Groups is the set of g groups and Weeks is the set of w weeks.
Each variable T; ; of the matrix is a set variable, which is a subset of the set Golfers of
golfers, giving the set of golfers that play together as group ¢ in week j (see Figure 3.7).
The constraints enforce that the groups within a week are disjoint, every group is of size
s, and that any two golfers appear together in the same group at most once.

This model has proven very effective as it helped find the best known solution to
the original question, which is a 9 week schedule. Our model is a modification of this
model in which each set variable is replaced by a 1-d 0/1 matrix of Gol fers, representing
the characteristic function of Gol fers. A variable in such a matrix is assigned 1 iff the
corresponding golfer is in the set. Hence, we have a 3-d 0/1 matrix T of Groups x Weeks x
Golfers, where T; j, = 1 iff the kth player plays in group i of week j (see Figure 3.8).
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Matrix:
Golfers
01
01
10
T 1 0
J’Ij 0 1 <w7g75> - <27272>
Weeks 10
! 0 1
1 0
— Groups —
Constraints:
(1) VkeGolfers. Vj € Weeks. 3 iccroups Liik =1
(2) Vj € Weeks. Vi€ Groups. 3 i ccoifers Liik =8
(3) th k27 ki < ks € golfers : ZjGWeeks,iegroups Ti,j,kl * ﬂ:jylﬂ <1

Figure 3.8: A matrix model of the social golfers problem using a 3-d matrix.

The constraints ensure that every golfer plays once in every week, every group of every
week contains s players, and that every pair of players meet at most once. Replacing each
set variable by its characteristic function means that the problem constraints can now
be expressed in terms of sum and scalar product constraints, which can be propagated
effectively and efficiently in many constraint toolkits.

Another interesting scheduling problem is the sport scheduling problem which is
about scheduling games between n teams over n — 1 weeks (prob026 in CSPLib). Each
week is divided into n/2 periods, and each period is divided into two slots. The team in
the first slot plays at home, while the team in the second slot plays away. The goal is to
find a schedule such that:

e every team plays exactly once a week;
e every team plays against every other team;
e cvery team plays at most twice in the same period over the tournament.

Van Hentenryck et al. propose a model for this problem, where they introduce a
“dummy” final week to make the problem more uniform [vHMPR99]. The model consists
of two matrices: a 3-d matrix T of Eweeks x Periods x Slots and a 2-d matrix G of
Weeks x Periods, where Eweeks is the set of n extended weeks, Weeks is the set of n —1
weeks, Periods is the set of n/2 periods, and Slots is the set of 2 slots. In T', weeks are
extended to include the dummy week, and each variable takes a value from {1,...,n}
expressing that a team plays in a particular week in a particular period, in the home or
away slot. For the sake of simplicity, we will treat this matrix as 2-d where the rows
represent the periods and the columns represent the extended weeks, and each entry of
the matrix is a pair of variables. The variables of G takes values from {1,...,n%}, and
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Matrices:
Slots
/"3 26 6 5 5
To 1 123 44
! 4 5 45 6 6 _
Periods 2 3 3 2 1 1 "=
l 6 6 5 4 3 3
5 411 2 2
— Eweeks —

— Weeks —
Gy 3 2 12 18 23
!l 10 17 16 11 6
Periods 30 24 5 4 9

Constraints:

(1) Vi€ Eweeks. all-different(T;)
(2)  all-different(Q)
(3) Vj e Periods. gce({Toj0,Toj1s---> Tn-140s Tn-141),(1,2,...,n),(2,...,2))
(4) Vi€ Weeks. Vj € Periods.
(Tijo,Tij1,Gij) € {(hya,(h—1)*n+a)| hya,h <a€{l,...,n}}
(5) Vie Eweeks. Vj € Periods. T, o <T;1

Figure 3.9: The matrix model of the sport scheduling problem in [vHMPR99].

each denotes a particular unique combination of home and away teams. More precisely,
a game played between a home team h and an away team a is uniquely identified by
(h— 1) *n + a (see Figure 3.9).

Since there are n teams playing in each extended week, an all-different constraint on
the teams playing in every extended week enforces that every team plays exactly once a
week. As the 2-d matrix G represents the games, an all-different constraint on G ensures
that every team plays against every other team. With the extended weeks, the global
cardinality constraints (gcc) ensure that every team plays exactly twice in every period
of the tournament. The channelling constraints link the variables of 7" and G, and are
enforced by restricting every game between two teams h and a to be (h — 1) x n + a,
where h < a. Finally, an ordering constraint on the slot variables of each period and week
ensures correct channelling between the matrices.

This model employs two powerful global constraints which are propagated effectively
and efficiently: all-different, which is available in many constraint toolkits, and gce, which
is available in, for instance, ILOG Solver 5.3 [ILO02]|, SICStus Prolog constraint solver
3.10.1 [SICO03], and FaCiLe constraint solver 1.0 [FaC01]. Even though the chanelling
constraints are imposed via the set of allowed tuples, some constraint toolkits, such as
ILOG Solver 5.3 [ILO02], can maintain GAC on constraints expressed in terms of valid
combination of values. Van Hentenryck et al. demonstrate in vHMPR99] the effectiveness
of this matrix model of the sport scheduling problem.
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3.2.5 Timetabling

The progressive party problem arises in the context of organising the social programme
for a yachting rally (prob013 in CSPLib). In the original formulation of the progressive
party problem, there are 42 boats in total. Certain boats are to be designated as hosts,
and the crews of the remaining boats are in turn to visit the host boats for 6 half-hour
periods. The crew of a host boat remains on board to act as hosts while the crew of a
guest boat together visits several hosts. Every boat can only host a limited number of
guests at a time (its capacity). A guest boat cannot not revisit a host and guest crews
cannot meet more than once. The problem is to minimise the number of host boats. The
data of the problem can be found in CSPLib.

Smith et al. in [SBHWO96] first showed that ILP formulations of this problem resulted
in very large models. Even if several strategies were tried, an optimal solution could not
be found. Second, they recognised that the total capacity of the first 13 boats (arranged
in descending order of spare capacity) is sufficient to accommodate all the crews, but the
capacity of the first 12 is not. Also they found a feasible solution —using an ILP approach—
with the first 14 hosts by relaxing some constraints, and manually modifying the infeasible
assignments so as to satisfy the violated constraints. To determine whether 13 or 14 is the
optimal solution, they reformulated the progressive party problem with the 13 specified
host boats as a CSP: there is a set Hosts of host boats (2-12, 14, 16: the first 13 boats
arranged in descending order of spare capacity), and a set Guests of guest boats (the 29
remaining boats). Each host boat i is characterised by a tuple (h¢;, ¢;), where and he; is
its crew size and ¢; is its capacity; and each guest boat is described by gc¢; giving its crew
size. The problem is to assign hosts to guests over 6 time periods, such that:

e a guest crew never visits the same host twice;
® no two guest crews meet more than once;

e the spare capacity of each host boat, after accommodating its own crew, is not
exceeded.

A matrix model of this problem, as proposed in [SBHW96], is as follows. A 2-d matrix
H is used to represent the assignment of hosts to guests in time periods (see Figure 3.10).
The matrix H is indexed by the set Periods of time periods and Guests, taking values
from Hosts. The first constraint enforces that two guests can meet at most once by
introducing a new set of 0/1 variables:

Vi € Periods. Vji,J2,51 < j2 € Guests. M;; j, =1« H;; = H,;},

The sum of these new variables are then constrained to be at most 1. The all-different
constraints on the rows of this matrix ensure that no guest ever revisits a host. Addi-
tionally, a 3-d 0/1 matrix C' of Periods x Guests x Hosts is used. A variable C; ;; in
this new matrix is 1 iff the host boat k is visited by guest j in period i. Even though
C replicates the information held in the 2-d matrix, it allows capacity constraints to be
stated concisely. The sum constraints on C' ensure that a guest is assigned to exactly one
host on a time period. Finally, channelling constraints are used to link the variables of H
and C.

In this matrix model of the progressive party problem, the problem constraints are
stated using sum, scalar product, and all-different constraints, which are propagated
effectively and efficiently in many constraint toolkits. The effectiveness of this model is
discussed in [SBHW96].
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Matrices:
— Periods —
Hy,; 01 2
1210
Guests 0 2 1
110 2
Hosts 0 0 1
Cise / 0 100
1 0 0 0O
/1 0 0 1 11
Guests 1 0 0 0
1 0 1 0
— Periods —
Constraints:
(1) le,jg,jl < jo € Guests . ZiEPCTiOdS(Hivjl = Hi,jg) <1
(2) Vj € Guests. all-different((Hoj, Hyj, ..., Hp_1;))
(3) Vi€ Periods. Yk € Hosts. Zjeguests gc; x Cijp < ¢ — hey
(4) Vi€ Periods. Vj € Guests. Y qos Cigk = 1
(5) Vie Periods. Vj € Guests. Yk € Hosts. H;j =k« C; ;=1

Figure 3.10: The matrix model of the progressive party problem in [SBHW96].

3.2.6 Bioinformatics

The word design problem has its roots in bioinformatics and coding theory (prob033
in CSPLib). The problem is to find as large a set W of words (i.e. strings) of length 8
over the alphabet {A, C, T, G} such that:

e cach pair of distinct words in W differ in at least 4 positions;

e cach pair of words x and y in W (where x and y may be identical) are such that
2 and y© differ in at least 4 positions, where 2 is the reverse of x, and y© is the
Watson-Crick complement of y, i.e. the word where each A is replaced by a T" and
vice versa, and each C'is replaced by a GG and vice versa;

e the symbols A and T occur together 4 times in a word in W;

e the symbols C' and GG occur together 4 times in a word in W.

A model of this problem, proposed in [Hni02], is to maintain two 2-d matrices M
and CM of L x Words, where L = {0,...,7} and Words = {0,...,size — 1} where
size = |W)|. The symbols in {A,C,T,G} are represented by the integers {0, 1,2, 3}.
In M, the rows correspond to the words in the set V¥V, and each variable M, ; takes a
value from {0, 1,2,3}, giving the symbol of the word j at position i. In C'M, the rows
correspond to the complements of the words in W, and each variable C'M; ; takes a value
from {0, 1,2,3}, giving the symbol of the word j¢ at position i (see Figure 3.11).
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Matrices:
— L —
M;; 00001111
] 11110000
Words 1 1 1 1 2 2 2 2
1 33101000
331100 2 2
o size = 5
CM;; 2 2 2 2 3 3 3 3
1 33332 2 2 2
Words 3 3 3 3 0 0 0 O
] 113232 2 2
11332200
Constraints:
(1) le,j27j1 < jog € Words . ZieL(MiJl = i,jg) <4
(2) Vi1, e, gr < j2 € Words. Yo p(Mgizem1—ij, = CM,;5,) < 4
(3) V5 e Words. (Moj, Myj,...,Mgze—1,) €A
(4) Vie L. VjeWords. (M;;,CM, ;) €{(0,2),(1,3),(2,0),(3,1)}

Figure 3.11: The matrix model of the word design problem by Hnich.

Whilst the first constraint enforces each pair of distinct words to differ in at least 4
positions, the second constraint ensures that the reverse of a word and the complement of
any other word differ in at least 4 positions. These constraints are enforced by introducing
two new sets of 0/1 variables:

VieLl. le,jg,jl < jg € Words . Xi,jhjz =1+« Mi,j1 = ]\41',j2
Vie L. le,jg,jl < jg € Words . Y;:,jl,jQ =1« Msize—l—i,jl = CMi,jz

A sum constraint on each set of new variables ensures that at most 4 variables are set
to 1. The rest of the constraints are posted via the third constraint which restricts the
words to be a member of the set A. This set is a set of size-tuples, such that each tuple
a satisfies the following properties:

e o and o differ in at least 4 positions;
e ( and 2 occur together 4 times in a;
e 1 and 3 occur together 4 times in a.

The channelling constraints are then used to link the variables of M and C'M.
In this model of the word design problem, some of the problem constraints are enforced
using sum constraints which are effectively and efficiently propagated in many constraint
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Matrix:
—)B—)
Xi; 00000
1 00011
Codes 0 0 1 0 1 (n,b,d) = (5,5,2)
1 00110
01001
Constraints:
(1) Vi1, g2, 51 < j2 € Codes. ) i p(Xij = Xij) < d

Figure 3.12: The matrix model of generating Hamming codes.

toolkits. Even though the rest of the problem constraints and the chanelling constraints
are imposed via the set of allowed tuples, some constraint toolkits, such as ILOG Solver
5.3 [ILO02], can maintain GAC on constraints expressed in terms of valid combination
of values. This model of the word design problem is promising for finding large sets of
words [Hni02].

3.2.7 Code Generation

The problem of generating Hamming codes is to find b-bit words to code n symbols
where the Hamming distance between every two symbol codes is at least d [0z03]. The
Hamming distance between two codes is the number of positions where they differ. An
instance of this problem is thus described by its parameters (n,b, d).

A model of this problem, as given in [Oz03], is to represent each code by a set variable.
For a code w, we have s,, C B where B = {1,...,b} and e € s, iff the bit position e
is set. The Hamming distance between two codes a and b represented as sets s, and s,
is computed as b — |s, N sp| — [B\(sa U sp)|. We adapt this model by replacing each set
variable by a 1-d 0/1 matrix of B, representing the characteristic function of B. A variable
in such a matrix is assigned 1 iff the corresponding element is in the subset. We thus have
a 2-d 0/1 matrix X of B x Codes, where Codes = {0,...,n — 1}. The Hamming distance
between every pair of codes is ensured by introducing new 0/1 variables:

VieB. le,jz,jl < jg € Codes . Y;,jth =1« Xi,j1 = X@jQ

A sum constraint on these variables ensures that at most d variables are set to 1. Replacing
each set variable by its characteristic function means that the problem constraints can
now be expressed in terms of sum constraints, which can be propagated effectively and
efficiently in many constraint toolkits.

3.3 Symmetry

As shown in Section 3.2, many problems from a wide range of application domains can
be effectively formulated using matrix models. A common pattern in matrix models is
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row and column symmetry, as well as value symmetry. In this section, we identify these
patterns by examining the matrix models presented in Section 3.2.

3.3.1 Row and Column Symmetry

2-d matrices are often very useful to effectively represent some or all the problem con-
straints. We can witness this in the matrix models of the problems described in the
previous section: all models employ one or more 2-d matrices. A matrix symmetry of a
2-d matrix of variables is a permutation of its variables which preserves satisfiability.

Definition 9 Given an n x m matriz X of variables each with a domain D, and a set C
of constraints defined on the variables of X, a matrix symmetry is a bijective function:

FiA{Xij| 0<i<n ANO0<j<m}—={X,;| 0<i<n A 0<j<m}
such that for any (partial) assignment h to the variables of X :
h:{X;;] 0<i<n AN 0<j<m}—D
h satisfies the constraints in C iff ho f does.

A row symmetry of a 2-d matrix of variables is a matrix symmetry between the variables
of two of its rows.

Definition 10 Given an n x m matriz X of variables, a row symmetry is a matrix
symmetry:

Fi{Xi;] 0<i<n AO<j<m}—{X;;] 0<i<n A 0<j<m}
such that for some 0 < ji,jo < m, j1 # jo, and for all 0 < i < n:
f(Xig) = Xige N [(Xig) = Xy,

Hence, two rows are indistinguishable if the roles of their variables can pairwise be inter-
changed due to a row symmetry. A 2-d matrix of variables has row symmetry if all its rows
are indistinguishable. If, however, only a strict subset(s) of the rows are indistinguishable,
then the matrix has partial row symmetry.

Similar definitions hold for the columns. A column symmetry of a 2-d matrix of
variables is a matrix symmetry between the variables of two of its columns.

Definition 11 Given an n x m matriz X of variables, a column symmetry is a matrix
symmetry:

fi{Xi;] 0<i<n ANO<j<m}—{X,;,;] 0<i<n A 0<j<m}
such that for some 0 < iy,i5 <n, i1 # is, and for all 0 < j < m:

f(Xiy ) = Xipy N [(Xipy) = Xy
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Hence, two columns are indistinguishable if the roles of their variables can pairwise be
interchanged due to a column symmetry. A 2-d matrix of variables has column symmetry
if all its columns are indistinguishable. If, however, only a strict subset(s) of the columns
are indistinguishable, then the matrix has partial column symmetry.

A 2-d matrix of variables has row and column symmetry iff the matrix has row sym-
metry, as well as column symmetry. A matrix has row symmetry and/or column sym-
metry when, for example, its rows and/or columns represent indistinguishable objects.
In such a case, in any (partial) assignment to the variables, the rows and/or columns
can be swapped without affecting whether or not the (partial) assignment satisfies the
constraints. In the following, we give examples of (partial) row and/or (partial) column
symmetry by examining the matrix models presented in Section 3.2.

Matrix model of the BIBD problem In Figure 3.1, the rows of the 2-d matrix X
represent the elements, and the columns represent the subsets. Since the elements and
the subsets are indistinguishable, the matrix X has both row and column symmetry.

Matrix model the tSp problem The rows of the 2-d matrix X in Figure 3.2 represent
the elements of the set N, and the columns represent the subsets. Similar to the BIBD
problem, the elements and the subsets are indistinguishable. The matrix X has therefore
both row and column symmetry.

Matrix model of the steel mill slab design problem In Figure 3.3, the rows of the
2-d matrix O represent the slabs, whereas the columns represent the orders. The matrix
O has partial row symmetry because the slabs of the same size are indistinguishable. The
matrix O has also partial column symmetry because the orders of the same size and colour
are indistinguishable.

Matrix model of the template design problem The rows of the 2-d matrix 7" in
Figure 3.4 correspond to the variations, and the columns correspond to the templates.
The matrix T has partial row symmetry because the variations with equal demands are
indistinguishable. The matrix 7" has also partial column symmetry because the templates
with equal number of pressings are indistinguishable.

Matrix model of the rack configuration problem We have presented two matrix
models for this problem. In Figures 3.5 and 3.6, the rows of the 2-d matrix C' correspond
to the racks. Since the racks of the same model are indistinguishable, C' has partial row
symmetry in both models. Whilst the columns of C' correspond to the different card
types in Figure 3.5, they give the individual cards in Figure 3.6. Different card types are
distinguishable. Therefore, the matrix C' in Figure 3.5 does not have column symmetry.
On the other hand, the cards of the same type are indistinguishable. The matrix C' in 3.6
therefore has also partial column symmetry.

Matrix model of the social golfers problem In this problem, the weeks are indis-
tinguishable, and so are the groups and the golfers. In Figure 3.7, the 2-d matrix 7" has
row and column symmetry, as the rows represent the weeks and the columns represent
the groups. Similarly, the matrix 7" in Figure 3.8 has symmetry along each of the three
dimensions.
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Matrix model of the sport scheduling problem We treat the 3-d matrix 7" as 2-d
in Figure 3.9, where the rows represent the periods and columns represent the extended
weeks, and each entry of the matrix is a pair of variables. The extended weeks over which
the tournament is held, as well the periods are indistinguishable. The matrix 7" thus has
row and column symmetry.

Matrix model of the progressive party problem In Figure 3.10, the rows of the
2-d matrix H correspond to the guest boats, whereas the columns correspond to the time
periods. The matrix H has partial row symmetry, as the guest boats with equal crew size
are indistinguishable. The matrix H has also column symmetry, as the time periods are
indistinguishable.

Matrix model of the word design problem Whilst the rows of the 2-d matrix M
in Figure 3.11 represent the words in the set W, the columns represent the position of
the symbols. This matrix has row symmetry since a set of words is modelled as a list of
words, and the order of the words in the set are not important. However, M does not
have column symmetry, because the positions are distinguishable due to the constraint
which enforces two words z and y to be such that z and 3¢ differ in at least 4 positions.

Matrix model of the problem of generating Hamming codes In this problem,
the codes are indistinguishable, so are the positions of the bits. In Figure 3.12, the 2-d
matrix X has row and column symmetry, as the rows describe the codes and the columns
give the positions.

Given an n X m matrix with row and column symmetry, there are n!m! permutations of
the rows and columns. Hence, the number of symmetries grows super-exponentially as the
matrix size gets larger. This dramatically increases the size of the search space, as during
search there will be many states (e.g., partial assignments, solutions, failures) that are
symmetric but essentially equivalent to the already visited states. Consequently, this class
of symmetries is very important. In many cases, large problems are intractable unless these
symmetries are significantly reduced. We therefore need to develop special techniques to
deal with a super-exponential number of symmetries effectively and efficiently.

3.3.2 Value Symmetry

Value symmetry arises when the values taken by some variables can be permuted without
affecting satisfiability.

Definition 12 Given a set X of variables each associated with a domain D, and a set C
of constraints defined on the variables in X, value symmetry is a bijective function:

f:D—-7D
such that for any (partial) assignment h to the variables in X :
h:X —1D

h satisfies the constraints in C iff f o h does.
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Hence, two values in a domain are indistinguishable if their roles can be interchanged
due to a value symmetry. A matrix of variables has value symmetry if all the values in
the domain of the variables are indistinguishable. If, however, only a strict subset(s) of
the values are indistinguishable, then the matrix has partial value symmetry. In such
cases, in any (partial) assignment to the variables, some or all values can be swapped
without affecting whether or not the (partial) assignment satisfies the constraints. In the
following, we give examples of (partial) value symmetry by examining 4 of the matrix
models presented in Section 3.2.

Matrix model of the social golfers problem In this problem, the golfers are indis-
tinguishable. In Figure 3.7, the 2-d matrix 7" has value symmetry, as the set variables of
the matrix are constrained to be the subset of Gol fers which is a set of indistinguishable
elements.

Matrix model of the sport scheduling problem In this problem, the teams are
indistinguishable. The 2-d matrix 7" in Figure 3.9 has value symmetry, as each variable
of T takes a value from {1,...,n} which is the set of indistinguishable teams.

Matrix model of the progressive party problem A variable of the 2-d matrix H
in Figure 3.10 takes a value from Hosts. As the host boats of the same capacity are
indistinguishable, the matrix H has partial value symmetry.

Matrix model of the word design problem In this problem, the symbols 0 and 2,
and the symbols 1 and 3 are indistinguishable. The 2-d matrix M in Figure 3.11 has
partial value symmetry, as each variable of M takes a value from {0,...,3} which is the
set of partially indistinguishable symbols.

Unlike row and column symmetry, value symmetry is not confined to matrix models.
Any CSP may have value symmetry, whether it is formulated using a matrix model or
not. On the other hand, as we will show later, value symmetry in a matrix can be
transformed to, for instance, row symmetry. This is another advantage of developing
effective techniques for dealing with row and column symmetries. Such techniques can
deal both with problems that naturally have row and column symmetry, as well as with
problems that have value symmetry. We will elaborate on this topic in Chapter 4.

3.4 Summary

In this chapter, we have recognised the central role played in many constraints programs
by matrix models, and identified two patterns that commonly arise in matrix models: row
and column symmetry, and value symmetry.

Symmetry in constraint programs causes wasted search effort, as it generates sym-
metrically equivalent states in the search space. Some symmetry breaking methods have
been devised in the past years, such as SES [BW99|[BW02]|, SBDS [GS00], and SBDD
[FMO1][FSS01], all of which can directly be used to break all row and column symmetries.
SES and SBDS treat each symmetry individually, which is impractical when the number
of symmetries is large. Even though it is correct to use a subset of the symmetries to
break some but not necessarily all symmetries using these methods, it requires writing
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problem-specific search methods. The dominance checks of SBDD can be very expensive
in the presence of many symmetries. Moreover, the dominance checks are problem de-
pendent. Row and column symmetry is therefore an important class of symmetries, as
it is very common and often generates too many symmetries to be handled effectively,
efficiently, and easily by methods like SES, SBDS, and SBDD. In many cases, large prob-
lems are intractable unless row and column symmetries are significantly reduced. We
therefore need to develop special techniques to deal with this pattern effectively. As we
will show later, value symmetry in a matrix can easily be transformed to, for instance,
row symmetry. This demonstrates another benefit of tackling row and column symmetry.

By extending constraint toolkits to support these patterns, we believe that we help
many constraint programmers towards formulating effective models. This not only strength-
ens the power of CP, but also promotes the reach of CP to a wider user base.



Chapter 4

Breaking Row and Column
Symmetry

4.1 Introduction

In Chapter 3, we identified an important class of symmetries in CP, which arises in
matrices of decision variables where rows and columns represent indistinguishable objects
and are therefore symmetric. We can permute any two rows as well as two columns of a 2-d
matrix with row and column symmetry without affecting the satisfiability of any (partial)
assignments. An n x m matrix with row and column symmetry has n!m! symmetries,
which increase super-exponentially. Consequently, it can be very costly to visit all the
symmetric branches in a tree search. In this chapter, we help tackle this problem.

Ideally, we would like to cut off all the symmetric parts of the search tree. Symmetry
breaking methods such as SES [BW99|[BW02], SBDS [GS00], and SBDD [FMO01][FSS01]
achieve this goal by not exploring the parts of the search tree which are symmetric to
the those that are already considered. Even though these methods are applicable to any
class of symmetries, they have difficulty in dealing with the super-exponential number
of symmetries in a problem with row and column symmetry. SES and SBDS treat each
symmetry individually, and the dominance checks of SBDD are costly. Moreover, using
SBDD and a subset of the symmetries in the presence of many symmetries in SES and
SBDS require problem-specific adjustments. In order to break row and column symmetries
in a simpler and efficient way, we investigate ordering constraints that can be posted on
the rows and columns of matrices. Ordering constraints can be used to break the row and
column symmetries of any problem modelled using a matrix. Indeed, they can be used
for matrices of arbitrary dimension.

This chapter is organised as follows. In Section 4.2, we propose some ordering con-
straints for breaking row and column symmetries of a 2-d matrix. In particular, we show
that we can enforce lexicographic ordering or multiset ordering constraints on the sym-
metric rows and columns with the guarantee of finding at least one solution from each
equivalence class of solutions. These constraints can also be combined to obtain new
symmetry breaking constraints. The effectiveness of the ordering constraints in breaking
symmetry, from a theoretical point of view, is discussed in Section 4.3. We extend our
results in Section 4.4 to deal with matrices of arbitrary dimension, as well as with matri-
ces that contain partial symmetry or value symmetry. In Section 4.5, we identify special
cases where all row and column symmetries can easily be broken. Finally, we compare
with related work in Section 4.6, and summarise our contributions in Section 4.7.

61
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4.2 Ordering Constraints

One of the easiest and most efficient ways of symmetry breaking is adding extra con-
straints to the model of our problem [Pug93]. These constraints impose an ordering on
the symmetric objects. As a consequence, among the set of symmetric assignments, only
those that satisfy the ordering constraints are chosen for consideration during the process
of search.

As the symmetry breaking constraints remove some assignments from a symmetry
class, it is important that at least one element remains in the class. Otherwise, we may
lose solutions by symmetry breaking. We say that an ordering constraint is a consistent
symmetry breaking constraint iff for every assignment to the variables that does not satisfy
the ordering constraint, there is a symmetric assignment that does.

In this section, we investigate what consistent ordering constraints we can post on
the rows and columns of a 2-d matrix of decision variables to break row and column
symmetries.

4.2.1 Lexicographic Ordering Constraint

One popular approach to sorting vectors of values is to order them lexicographically
[CGLR96]. Lexicographic ordering is a total ordering on vectors and is used, for instance,
to order the words in a dictionary. Lexicographic ordering is defined on equal sized vectors
as follows.

Definition 13 Strict lexicographic ordering I <i.. Yy between two vectors of integers
= (20, 21,...,Tpn-1) and ¥ = (Yo, Y1, - -,Yn—1) holds iff Ik 0 < k < n such that z; = y;
for all 0 <i <k and xp < yi.

That is, there exists an index k above which the subvectors are equal, and x;, is less than
yr. We can weaken the ordering to include equality.

Definition 14 Two vectors of integers & = (xo, T1,...,Tn_1) and § = (Yo, Y1, - > Yn—1)
are lexicographically ordered ¥ <jop U iff T <iex ¥ o7 T = 1.

As the rows of a matrix are vectors, lexicographic ordering is a very natural ordering
of the rows. We say that the rows of a matrix of values are lexicographically ordered if
each row is lexicographically less than or equal to the next row (if any), where the first
row is the top-most row of the matrix. More formally:

Definition 15 The rows of an n x m matriz x of values are lexicographically ordered iff
fO?" all 0 S 1 <m — 1 we have <ZE07Z‘, Llgyen- axn—l,i> Slew <I0,i+17 T1i41y - - - 7xn—1,i+1>-

Similarly, as the columns of a matrix are vectors, we say that the columns of a matrix of
values are lexicographically ordered if each column is lexicographically less than or equal
to the next column (if any), where the first column is the left-most column of the matrix.

Definition 16 The columns of an n X m matriz x of values are lexicographically ordered
iﬁfOT’ all 0 S 1 <n—1 we have <5L‘i,0; Lidyen- 7xi,m—1> Sle$ <Ii+1’0, Tit1,1y - 7xi+1,m—1>-
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Given two vectors of variables X = (Xo, Xl, oo, Xpo1) and Y = (Yo, Y1,..., Y1), we
write a lex1cographlc ordering constraint as X <4er Y and a strict leX1cograph1C orderlng
constramt as X <lew Y. These constraints ensure that the vectors # and 7 1y assigned to X
and Y are ordered according to Definitions 14 and 13, respectively. We can utilise such
constraints to break row or column symmetry. Lexicographic ordering constraints in one
of the symmetric dimensions of a matrix are consistent symmetry breaking constraints.

Theorem 1 Given a 2-d matrix with row symmetry, each symmetry class has exactly one
element where the rows are lexicographically ordered. Similarly, given a 2-d matriz with
column symmetry, each symmetry class has exactly one element where the columns are
lexicographically ordered.

Proof: We consider only the row symmetry, as the proof for the column symmetry is
entirely analogous. Suppose there is an assignment a of values to the variables of the ma-
trix. Since lexicographic ordering is total, the rows of a can be ordered lexicographically,
and swapping any two rows of a breaks the lexicographic ordering unless the rows are
identical. Swapping two identical rows does not give us a new assignment. Hence, there
is exactly one element in the symmetry class of a where the rows are lexicographically
ordered. QED.

That is, we can break the row symmetry of an n x m matrix by enforcing that the
rOws Ro, Rl, e Rm 1 are lexicographically ordered:

RO Sleaz Rl s Sleaz Rm—l

If no pair of rows can be equal to each other, we can then enforce strict lexicographic
ordering constraints:

RO <lex Rl v <lex Rmfl
Similarly, we can break the column symmetry of an n x m matrix by insisting that the
columns Cy, C1, ..., C,_1 are lexicographically ordered:

C(O Slew Cl <lex Cn 1

and strengthen the model by imposing instead strict lexicographic ordering constraints if
no pair of columns can be equal to each other:

CVO <lex Cl v <lex C1n—1

Whilst it is easy to break symmetry in one dimension of the matrix, it is not obvious
how to break symmetry in both dimensions, as the rows and columns intersect. After
constraining the rows to be lexicographically ordered, we distinguish the columns and
thus the columns are not symmetric anymore. Nevertheless, given a matrix with row and
column symmetry, each symmetry class has at least one element where both the rows
and columns are lexicographically ordered. This result is due to a theorem by Lubiw,
in which a “doubly lexical ordering” of a matrix is defined as “an ordering of the rows
and the columns so that the rows — as vectors — are lexicographically increasing and the
columns — as vectors — are lexicographically increasing”.

Theorem 2 ([Lub85][Lub87]) Every real-valued matriz has a doubly lexical ordering.
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Consequently, we can break the row and column symmetries by insisting that the rows
R}, }?1, . ,ém,l and the columns 670, 61, e ,én,l are both lexicographically ordered:
Ry <jex R1 -« <jex Bin1 A Co <jex C1 -0 Sper Cna

We refer to such symmetry breaking constraints as double-lex constraints. Depending on
whether any pair of rows and/or columns can be equal or not, we can strengthen the sym-
metry breaking constraints by enforcing instead strict lexicographic ordering constraints
on the rows and/or columns.

Note that Lubiw’s theorem applies to any matrix where the values are drawn from
a totally ordered set and thus is sufficient to prove that the double-lex constraints are
consistent. We can reach this conclusion via another approach. One way to break variable
symmetry is to force an assignment — within its equivalence class of assignments — to be
lexicographically the smallest [CGLR96]. To do this, we first select a configuration of the
variables where we place the variables in a vector in the order we prefer. Second, we insist
that an assignment of variables in the selected configuration is lexicographically less than
or equal to any assignment in the configuration obtained by permuting the symmetric
variables of the selected configuration. For instance, assume we have three symmetric
variables Xy, X7, and X5 subject to permutation. To break the symmetry, we can enforce
the following constraints:

(X0, X1, X2) <iew (Xo, X2, Xq)
(X0, X1,X2) <iew (X1, X0, X2)
(X0, X1, X2) <iew (X1, X9, Xo)
(X0, X1, X9) <iew (X2, X0, X7)
(X0, X1, X0) <iew (X2, X1, Xp)

where (Xj, X1, X3) is the chosen configuration. Indeed, these constraints simplify to
Xo < Xy < Xo.

This technique can easily be applied to break row and column symmetries. Assume
we have the following matrix of variables where the rows and columns are symmetric:

X17 X27 X37 ) Xn
Y., Y, Vi ... Y,
v . (4.1)
Zla ZQa Z3) I ZTL

We first need to choose a configuration of the variables. By, for instance, appending the
rows of the matrix, we get:

(Xq, Xoy X3, ..., X, Y0, Yo, Vs, oo, Yo, o 2y, Zy, Zs, ..., Zn)
(4.2)
Second, we need to enforce that 4.2 is lexicographically less than or equal to any con-
figuration obtained by swapping the blocks of variables in 4.2 as a result of permuting
the rows and/or columns of 4.1. Consider the first column of 4.1. Permuting it with the
second column swaps the following variables in 4.2:

m ) m N m N
<X17 X27 X37 ER) Xn7 }/17 }/27 }/37 ) Yn7 EIR) Zla Z27 Z37 ERCI) Zn)
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This gives us the configuration:

(Xo, Xy, X3, ..., X, Yo, Vi, Y5, ..., Y., .., Zo, Zh, Zs, ..., Zn)
(4.3)
We then insist that 4.2 is lexicographically less than or equal to 4.3. Ignoring the variables
whose position are the same in 4.2 and 4.3, we have the following constraint:

<X17 X27 %7 > >§<7 lea Yv?; ){7 > ;<) Zlv Z27 % > % Slex
(Xa, X1, 2K > X0 Yo, Vi, XK > K >0 Doy, 21y B > B

which simplifies to:
<X17 le; ey Zl> Slex <X27 Yv27 R Z2>

By permuting the first and the third column of 4.1, we get:

<X17 %7 X37 > %7 Yla %7 }/537 > ;< Zh % Z37 > Z{) Slex
<X37 Ka X17 > %7 }/E% %7 Yia > ;< Z37 %y Zla >< Z{)

which simplifies to:
<X17 Yl; RIS Zl> Slem <X37 }/37 ceey Z3>

By permuting the first column with every other column, we obtain the following con-
straints:

(X1, Y1, .., Z0) <iex (X2, Yo, ..., Z5)
<X17Y17 .. ‘7zl> Slex <X37Y37' . 'aZ3>

<X17}/1a teey Z1> Slea) <Xn7Yn7 ceey Zn>

Now consider the second column of 4.1. Permuting it with the third column swaps
the following variables in 4.2:

m N m N mn N
<X17 X27 X37 ERI) X’I’H }/17 }/27 }/E% ) Yn7 BRI Zla ZQ? Z37 LRI Zn>

giving the configuration:

(X1, X3, Xo, ..., Xo, Y4, Vs, Yo, ... Y., .., 21, Zs, Zoy ..., Zp)
(4.4)
Now we enforce that 4.2 is lexicographically less than or equal to 4.4. We obtain the
following constraint, after eliminating those variables whose position are the same in 4.2
and 4.4:

<><a X27 X37 > >€<a Xa YVQa Yéa > ;o< % ZQ? Z37 < %
%7 X37 X27 > %7 Xa }/}n }/27 < ;< % Z37 Z27 > %

This constraint simplifies to:
<X27 Y27 ceey ZQ> Sle;r <X37 YEM sy Z3>

By permuting the second column with every other column (except the first one), we obtain
the following constraints:

<X27 Yv2; ey ZQ> Slex <X37 Yéa R Z3>
<X27 }/27 ceey Z2> Slem <X47 }/;17 ey Z4>

<X2) }/Qa teey ZQ> Slea: <Xn7 Y’ru ey Zn>
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By considering every (g) permutation, we obtain lexicographic ordering constraints be-
tween every pair of columns:

<X17}/la"'7ZI> <lex <X27§/27--'7Z2>
<X17YVD ceey Zl> <lex <X37Y337 ey ZS>

(X1,Y,00,21) <iew (XYoo, Zn)
<X2)Y27"'7ZQ> <lez <X37}/37"'7Z3>
(X2, Yo,..., Z9) <iew (X4, Ya,...,Zs)

<X27 }/2; ceey Z2> Sle:c <Xn7 Yna ceey Zn>

<Xn727 Yn727 ceey an2> Slex <Xn717 Ynfla cee Zn71>
<Xn727 Yn727 ey Zn72> Slem <Xn> Yn; sy Zn)
<Xn—17 Yn—l, R Zn—1> Slez <Xn7 Ym sy Zn)

Repeating the same procedure on the rows, we have lexicographic ordering constraints
also between every pair of rows:

<X1,X2,X3...,Xn> Slex <3/1>3/275/£)>7--~7Yn>
<X17X27X37"'7Xn> Slem <217227Z37"'7Zn>

(Y1,Y5,Y3,.... Y, <iex (Z1,72,7Z3,...,7y,)

Hence, the double-lex constraints are generated by applying the technique proposed in
[CGLR96] to break the row and column symmetries of a matrix.

So far we have defined (strict) lexicographic ordering in non-decreasing order, and
identified consistent symmetry breaking ordering constraints based on this definition. We
can obtain totally dual ordering constraints by defining new lexicographic orderings. If
two vectors are ordered lexicographically in non-increasing order, then we call the (strict)
lexicographic ordering a (strict) anti-lexicographic ordering.

Definition 17 Strict anti-lexicographic ordering I >, § between two vectors of integers
T = (20, 21,...,Tpn-1) and ¥ = (Yo, Y1, - -, Yn—1) holds iff Ik 0 < k < n such that z; = y;
for all 0 <i <k and xp > yy.

1> and 37 = <?Jo,y17 s 7yn71>

Definition 18 Two vectors of integers & = (xo, T1, ..., Tn_
rT=71.

—

are anti-lexicographically ordered T >y i iff £ >z Y 0

Given two vectors of variables X = (Xo, X1, ..., Xoo ) and Y = (Yo, Y1,..., Y1), we
write an anti- lex1cograph1(: orderlng constraint as X >, Y and a strict anti- lexmographlc
ordering constramt as X > e Y. These constraints ensure that the vectors # and i
assigned to X and Y are ordered according to Definitions 18 and 17, respectively. Given
a matrix with row (resp. column) symmetry, the rows (resp. columns) of an assignment
to the variables of the matrix can as well be made anti-lexicographically ordered. Hence,
we can as well post anti-lexicographic ordering constrains on the rows (resp. columns)
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to break the symmetry, and strengthen the constraints by enforcing instead strict anti-
lexicographic ordering constraints if no pair of rows (resp. columns) can be equal.

Given a matrix with row and column symmetry, it is not hard to prove that anti-
lexicographic ordering constraints both on the rows and columns, called double anti-lex
constraints, are consistent symmetry breaking constraints. By forcing an assignment —
within its symmetry class — to be lexicographically the largest, as opposed to be the
smallest, double anti-lex constraints are generated by the method given in [CGLR96] to
break the row and column symmetries of a matrix. Therefore, we can as well post double
anti-lex constraints to break row and column symmetries. Depending on whether any pair
of rows and/or columns can be equal or not, we can strengthen the symmetry breaking
constraints by enforcing instead strict anti-lexicographic ordering constraints on the rows
and/or columns.

Regrettably, lexicographic ordering constraints in one dimension and anti-lexicographic
ordering constraints in the other dimension of a matrix with row and column symmetry
are not consistent symmetry breaking constraints. This is because a symmetry class
may not have an element where the rows are lexicographically ordered but the columns
are anti-lexicographically ordered, or vice-versa. As an example, consider a 2 X 2 ma-

trix X with row and column symmetry, and suppose xq = <g i’) is an assignment to
the variables of X. By permuting the rows and columns of x,, we get x| = ((2) i),
To = <‘;’ g), and x5 = ; (2) as symmetric assignments. Whilst xy and x3 have both the

rows and columns lexicographically ordered, x; and x5 have both the rows and columns
anti-lexicographically ordered. There is, however, no symmetric assignment in which the
rows are lexicographically ordered and the columns are anti-lexicographically ordered, or
vice versa.

4.2.2 Multiset Ordering Constraint

Lexicographic ordering is very focused on positions and ignores values beneath the position
where the vectors differ. Multiset ordering, on the other hand, ignores positions but
focuses on values. Multiset ordering is a way of sorting unordered lists of values, and
has been successfully used for proving program termination [DM79] and termination of
term rewriting systems [KB70]. Multiset ordering is a total ordering on multisets and is
defined as follows.

Definition 19 Strict multiset ordering x <,, y between two multisets of integers x and
y holds iff:

x={} nyz{} Vv

maz(x) < maz(y) V
max(x) = mazx(y) N x—{mazx(x)} <, y — {maz(y)}

That is, either x is empty and y is not, or the largest value in x is less than the largest
value in y, or the largest values are the same and, if we eliminate one occurrence of the
largest value from both x and y, the resulting two multisets are ordered. We can weaken
the ordering to include multiset equality.

Definition 20 Two multisets of integers x and'y are multiset ordered x <,, y iff x <., ¥
orxX=y.
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Even though the rows and columns of a matrix are vectors, it may be useful to ignore
the positions but rather concentrate on the values taken by the variables when ordering
the rows and/or columns. We can do this by treating each row and/or column of a matrix
as a multiset. We say that the rows of a matrix of values are multiset ordered if each row,
as a multiset, is no greater than the rows below it. More formally:

Definition 21 The rows of an n X m matrix x of values are multiset ordered iff for all
0 <i<m—1we have {(xoi, T1is s Tn13) F <m Lo, Trivt, -+, Tuo1i1) |-

Similarly, we say that the columns of a matrix of values are multiset ordered if each
column, as a multiset, is no greater than the columns to the right of it.

Definition 22 The columns of an n X m matriz x of values are multiset ordered iff for
all 0 <i <n—1we have {(zio, ity s Tin-1)F <o LTir1.0, Tivr1, -+ Tivrm—1) I

Whilst multiset ordering is a total ordering on multisets, it is not a total ordering on
vectors. In fact, it is a preordering as it is not antisymmetric. Consider = (1,2, 3) and
¥ =(3,2,1). We have {7} <,, {y} and {y}} <., {Z}, but not & = y. Hence, multiset
ordering on the vectors is a different ordering than multiset ordering on multisets.

Given two vectors of variables X = (Xo, X1,...,Xp_1) and Y = (Yo, Y1,..., Y, 1), we
write a multiset ordering constraint as X < Y and a strict multiset ordering constraint
as X <,, Y. These constraints ensure that the vectors  and Y assigned to X and 17, when
viewed as multisets, are multiset ordered according to Definitions 20 and 19, respectively.
We can break row or column symmetry by imposing multiset ordering constraints on the
rows or columns. Such constraints are consistent symmetry breaking constraints.

Theorem 3 Given a 2-d matrix with row symmetry, each symmetry class has at least one
element where the rows are multiset ordered. Similarly, given a 2-d matriz with column
symmetry, each symmetry class has at least one element where the columns are multiset
ordered.

Proof: We consider only the row symmetry, as the proof for the column symmetry is
entirely analogous. Suppose there is an assignment a of values to the variables of the
matrix. Any two rows can be multiset ordered. Since multiset ordering is transitive, the
rows of a can be multiset ordered. Hence, there is at least one element in the symmetry
class of a where the rows are multiset ordered. QED.

As multiset ordering is not a total ordering on vectors, each symmetry class may have
more than one element where the rows (resp. columns) are multiset ordered.

Due to Theorem 3, we can break the row symmetry of an n x m matrix by enforcing
that the rows Ro, Rl, o Rm 1 are multiset ordered:

—

RO Sm Rl Sm Rmfl

If no pair of rows, when viewed as multisets, can be equal to each other, we can then
enforce strict multiset ordering constraints:

—

Ro < Ri...<pm Rm_1

Similarly, we can break the column symmetry of an n X m matrix by insisting that the
columns CO, C’l, e C’n 1 are multiset ordered:

C10 Sm Cl Sm Cn—l



CHAPTER 4. BREAKING ROW AND COLUMN SYMMETRY 69

and strengthen the model by imposing instead strict multiset ordering constraints if no
pair of columns, when viewed as multisets, can be equal to each other:

CO <m Ch...<m Ch_q
By defining multiset orderings in non-increasing order, we can obtain the dual ordering
constraints. If two multisets are ordered in non-increasing order then we call the (strict)
multiset ordering a (strict) anti-multiset ordering.

Definition 23 Strict anti-multiset ordering x >,, y between two multisets of integers
x = {{xo,x1,...,xna}t andy = {yo,v1,- -, Yn_1}} holds iff:

x#{F Ay={} Vv

mazx(x) > mazx(y) V
mazr(x) = max(y) N x— {max(x)} >,y — {mazx(y)}

Definition 24 Two multisets of integers x = {xo, 1, ..., xn_1} andy = {vo, v1,- -, Yn_1}
are anti-multiset ordered X >, y iff x >,y orx =Yy.

Given two vectors of variables X = (Xo, X1,...,Xp_1) and Y = (Yo, Y1,..., Y, 1), we
write an anti-multiset ordering constraint as X >m }7, and a strict anti-multiset ordering
constraint as X >, Y. These constraints ensure that the vectors # and Y assigned
to X and }7, when viewed as multisets, are ordered according to Definitions 24 and 23,
respectively. Given a matrix with row (resp. column) symmetry, the rows (resp. columns)
of an assignment to the variables of the matrix can as well be made anti-multiset ordered.
Hence, we can as well post anti-multiset ordering constrains on the rows (resp. columns)
to break the symmetry, and strengthen the constraints by enforcing instead strict anti-
multiset ordering constrains if no pair of rows (resp. columns), as multisets, can be equal.

How can we utilise multiset ordering constraints for breaking row and column symme-
tries? One of the nice features of using multiset ordering for breaking symmetry is that
by constraining the rows of a matrix to be (anti-)multiset ordered, we do not distinguish
the columns. We can still freely permute the columns, as (anti-)multiset ordering the
rows ignores positions and is invariant to column permutation. It follows that we can
consistently post multiset or anti-multiset ordering constraints on the columns together
with (anti-)multiset ordering constraints on the rows. Given the rows ﬁo, R}, ce ﬁm_l
and the columns 60,61, e ,én,l, there are thus four ways to break row and column
symmetries using multiset orderings. We insist that:

1. the rows and columns are both multiset ordered:

ROSmRIH-SmRm—I A COSmCI---San—l

2. the rows and columns are both anti-multiset ordered:

—

ROEle-"szm—l A COZmCl---Zan—l

3. the rows are multiset ordered but the columns are anti-multiset ordered:

—

ROSmRIH'SmRm—I A COZmOI---ZmOn—l

4. the rows are anti-multiset ordered but the columns are multiset-ordered:

ROZle-'-szmfl A C()Smcl---gmcnfl

If no pair of rows and/or columns, when viewed as multisets, can be equal, we can then
instead impose strict (anti-)multiset ordering constraints on the rows and/or columns.
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4.2.3 Lexicographic or Multiset Ordering Constraints?

We have shown that we can make use of lexicographic ordering or multiset ordering con-
straints for breaking row and/or column symmetries. This naturally raises the following
questions. Does any of the orderings dominate the other? When we have row (resp. col-
umn) symmetry, is it better to post lexicographic ordering or multiset ordering constraints
on the rows (resp. columns)? Similarly, when we have row and column symmetry, is it
better to post lexicographic ordering or multiset ordering constraints on the rows and
columns? Is posting multiset ordering constraints in both dimensions preferable to post-
ing multiset ordering constraints in one dimension but anti-multiset ordering constraints
in the other? Before answering these questions, we note that, for ease of presentation,
we write < R for posting the ordering constraint < on the rows. Similarly, posting the
ordering constraint < on the columns is specified as < C, and on the rows and columns
as =X RC.

Assume we have a 2 x 2 matrix X with row symmetry, and suppose zy = (? 3)
10

0 2
assignment to xp, which is obtained by permuting the rows of xy. The assignments xy and

x1 together form a symmetry class S. Even though the rows of x( are lexicographically
ordered, they are not multiset ordered. The situation is the other way around for ;. The
rows of x; are multiset ordered but not lexicographically ordered. This shows that lexi-
cographic ordering and multiset ordering are incomparable. As a result, <,, R eliminates
xo from S but <., R does not, and <;., R removes x; from S while <,, does not. This
shows that the elements removed by <., R from a symmetry class are not necessarily the
same elements eliminated by <,, R, and therefore <;., R and <,,, R are incomparable. A
similar argument holds between >;., R and >,, R, as well as between <;., C' and <,,, C,
and between >, C' and >,, C', when we want to break column symmetry.

Since <;., R and <,, R are incomparable, as well as >, R and >,, R, <., C
and <, C, and >, C and >,, C, it is not hard to show that <., RC, <,, RC,
<m R >, C, >, R <, C, and >,, RC are all incomparable. Assume we have a

is an assignment to the variables of X. The matrix z; = ( ) is the only symmetric

00 2
3 X 3 matrix X with row and column symmetry, and suppose xo = (0 0 ) is an
11

3
1
) . 111
assignment to the variables of X. In the symmetry class S of xg, only xg, 1 = (o 0 2) ,
0 0 3

111 00 3 3 0
x2:(200>,x3:(002,andx4:2 0

3.0 0 11 1 1 1
ordered. In particular, only xy has both the rows and columns lexicographically ordered,
only x; has both the rows and columns multiset ordered, only x5 has its rows multiset
ordered but the columns anti-multiset ordered, only x3 has its rows anti-multiset ordered
but the columns multiset ordered, and only x4 has both the rows and columns anti-
multiset ordered. Whilst <;., RC' leaves only z( in S, <,,, RC leaves only x1, <,, R >, C
leaves only z9, >,, R <,, C leaves only x3, and >,, RC only x4. Since <;., RC, <,, RC,
<mR>,C, >, R<, C,and >,, RC do not necessarily remove the same elements from
a symmetry class, they are incomparable. A similar argument holds between >, RC,
>m RC, 20 R <, C) <y R 25, O and <, RC.

= o o

) have both the rows and columns
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4.2.4 Combining Lexicographic and Multiset Ordering Constraints

Lexicographic ordering and multiset ordering are two different ways of ordering vectors.
Whilst the former looks at positions, the latter ignores positions but looks at values
in vectors. It is therefore natural that lexicographic ordering constraints and multiset
ordering constraints on the rows (resp. columns) are incomparable symmetry breaking
constraints. An alternative way to deal with row and column symmetries is to combine
lexicographic ordering and multiset ordering constraints, and post this combination of
constraints on the rows and columns. In this way, we benefit from each of the orderings,
and we conjecture that such a combination of constraints can in practice be superior to
both constraints.

As lexicographic ordering and multiset ordering are incomparable, we need to be
careful when we combine the two different ways of symmetry breaking. For instance, given
a matrix with row symmetry, we cannot simultaneously enforce lexicographic ordering
and multiset ordering constraints on the rows. This is because a symmetry class may
not have an element where the rows are both lexicographically and multiset ordered. As
an example, suppose we have a 2 x 2 matrix X with row symmetry, and zq = (0 2)

1 0

is an assignment to the variables of X. The matrix z; = (é g) is the only symmetric

assignment to xg, which is obtained by permuting the rows of xy. Whilst xg has its rows
lexicographically ordered but not multiset ordered, x; has its rows multiset ordered but
not lexicographically ordered. There is, however, no symmetric assignment to xy in which
the rows are both lexicographically and multiset ordered.

Even though we cannot enforce lexicographic and multiset ordering constraints in the
same dimension of a matrix, it is consistent to impose one ordering in one dimension and
the other ordering in the other dimension. As explained in Section 4.2.2, by constraining
the rows of a matrix to be (anti-)multiset ordered, we do not distinguish the columns.
We can still freely permute the columns, as (anti-)multiset ordering the rows is invariant
to column permutation. This shows that we can consistently post lexicographic or anti-
lexicographic ordering constraints on the columns together with (anti-)multiset ordering
constraints on the rows. By a similar argument, we can consistently post lexicographic
or anti-lexicographic ordering constraints on the rows together with (anti-)multiset or-
dering constraints on the columns. Given the rows ﬁo, Bi, e ,ém,l and the columns
670, C’:, ceey (jn_l, there are thus eight ways to break row and column symmetries by com-
bining lexicographic ordering constraints in one dimension together with multiset ordering
constraints in the other.

If no pair of rows, when viewed as vectors or multisets, can be equal, we can then
replace (anti-)lexicographic ordering or (anti-)multiset ordering constraints on the rows
by strict (anti-)lexicographic ordering constraints or strict (anti-)multiset ordering con-
straints, respectively. Similarly, if no pair of columns, when viewed as vectors or mul-
tisets, can be equal, we can then instead impose strict (anti-)lexicographic ordering or
strict (anti-)multiset ordering constraints on the columns, respectively.

Since lexicographic ordering and multiset ordering are incomparable, imposing one
ordering in one dimension and the other ordering in the other dimension of a matrix is

incomparable to imposing the same ordering on both dimensions of the matrix. Assume
01 0

we have a 3 X 3 matrix X with row and column symmetry, and suppose o = [0 2 3
10 1

is an assignment to the variables of X. By swapping the last two columns, the last two
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rows, and the last two columns and rows of xy, we get:

0 0 1 0 1 0 0 0 1
X1 =10 3 2] 2= 1[1 0 1) x3=1[(1 1 O
1 1 0 0 2 3 0 3 2

respectively. The assignment xy has its rows lexicographically ordered and the columns
multiset ordered, but neither the rows are multiset ordered nor the columns are lexico-
graphically ordered. The assignment x; has both the rows and columns lexicographically
ordered, but neither the rows nor the columns are multiset ordered. The assignment z-
has both the rows and columns multiset ordered, but neither the rows nor the columns are
lexicographically ordered. Finally, x3 has its rows multiset ordered and the columns lexi-
cographically ordered, but neither the rows are lexicographically ordered nor the columns
are multiset ordered.

4.3 Symmetry Breaking with Ordering Constraints:
A Theoretical Perspective

Imposing ordering constraints to a model changes the structure of the search tree. Among
the set of symmetric assignments, only those that satisfy the ordering constraints are
chosen for consideration during search. Hence, enforcing an ordering on the symmetric
objects is a very easy way to break symmetry. However, enforcing ordering constraints
does not necessarily break all symmetries, as this all depends on whether the ordering
imposed is total or not. If the ordering is total then there is exactly one element in an
equivalence class of assignments satisfying the ordering constraints. In this way, only
one element is chosen from each symmetry class, and all its symmetric assignments are
eliminated.

Let us consider only the row (resp. column) symmetry of a matrix. As lexicographic
ordering is total, there is exactly one element in each equivalence class of assignments
where the rows (resp. columns) are lexicographically ordered (Theorem 1). As a result,
enforcing the rows (resp. columns) to be lexicographically ordered breaks all symmetries.
Indeed, imposing any total ordering on the rows (resp. columns) breaks all symmetries.
On the other hand, multiset ordering is not a total ordering on vectors. Two non-identical
rows (resp. columns) may be identical when viewed as multisets. If swapping two non-
identical rows (resp. columns) does not change the satisfiability of an assignment when the
rows (resp. columns) are treated as multisets, then there may be more than one element
in its symmetry class where the rows (resp. columns) are multiset ordered. Hence,
enforcing the rows (resp. columns) to be multiset ordered may not break all symmetries.
As an example, consider a 2 x 2 matrix X with row symmetry, and suppose xg = (g g)

is an assignment to the variables of X. By permuting the rows of zy, we obtain only
T = <§ g) Both 2y and z; have their rows multiset ordered. Despite imposing an
ordering which is not total, the multiset ordering constraint is still an interesting ordering
constraint, as lexicographic ordering constraints and multiset ordering constraints on the
rows (resp. columns) are two incomparable symmetry breaking constraints, as discussed
in Section 4.2.3.

Let us now consider the row and column symmetry of a matrix. Since imposing
multiset ordering on the rows (resp. columns) may not break all row (resp. column)
symmetries, we expect that enforcing both the rows and columns to be multiset ordered
may not break all row and column symmetries either. Indeed, the example given above
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supports this argument. Assume X has row and column symmetry. By permuting the

rows and columns of zy, we again obtain only z; = g g . Both zy and z; have their

rows and columns multiset ordered. Even though lexicographic ordering is total and
imposing this ordering in one dimension of the matrix breaks all the symmetries of that
dimension, enforcing both the rows and columns to be lexicographically ordered (double-
lex constraints) may leave some symmetry. This is because double-lex constraints are a
strict subset of the constraints generated by applying the technique of [CGLR96] which
break all symmetries. The situation is not different when we insist multiset ordering in one
dimension and lexicographic ordering in the other dimension of the matrix. For instance,

01 2
consider a 3 x 3 matrix X with row and column symmetry, and suppose zy = (1 0 2)

12 3

is an assignment to X. By permuting the first two rows and the first two columns of x,
01 2

we get r1 = |1 o 2|. Both xg and x; have their columns lexicographically ordered, and
2 1 3

rows both lexicographically and multiset ordered.

By imposing ordering constraints some symmetries may remain, but then how much
symmetry is broken? Due to the repeating values in an assignment to the variables, the
size of a symmetry class is not necessarily equal to the number of symmetries. Also, not
every symmetry class has the same number of elements satisfying the ordering constraints.
Suppose X is a 3 X 3 matrix with row and column symmetry, and zq = (8 8 }) and

. 00 1
r1 =10
1
all the rows, and also two columns of z are the same, the size of the symmetry class of

xg is 36/2!3! = 3. On the other hand, the size of the symmetry class of z; is 36/2!2! = 9
as only two rows, and also two columns are the same. Whilst there is only one element
in the symmetry class of x( in which the rows and columns are lexicographically ordered,
there are two such elements in the symmetry class of x1. It is therefore not obvious how to
judge the effectiveness of the ordering constraints in breaking symmetry from a theoretical
point of view.

Posting ordering constraints does not necessarily reduce the size of the search tree,
even if the ordering imposed is total. Since we search for a solution by a sequence of par-
tial assignments and constraint propagation, a solution satisfying the ordering constraints
might be obtained without having to enforce the ordering constraints, thanks to the de-
cisions we make at every node of the search tree. For instance, by enforcing the rows of a
matrix with row symmetry to be lexicographically ordered, we break all symmetries. Now,
consider a 2 x 2 matrix of 0/1 variables, X; j, with the constraints } .,y Xi; = 1 for all
0 < j < 2. That is, every row of the matrix is constrained to have a single 1. Suppose that
we look for a solution by labelling the variables in the order Xy o, X¢1, X10, X1, and ex-
ploring the domains in ascending order, and that we maintain generalised arc-consistency

after every labelling. After the first branching (i.e., Xoo < 0), we get <0?1 0.1.1>, as the

= o O

1
1 | are two different assignments to X. There are 3!3! = 36 symmetries. Since
0

0 1
branching (i.e., Xo1 < 0) which triggers the sum constraint in the second row. Since the
rows of the matrix are symmetric, we can post (Xo 0, X1,0) <iex (Xo1, X1,1). Every value
in the partial assignment, which is obtained at the first node, is a consistent value for the
lexicographic ordering constraint. Therefore, no extra value is pruned, and the solution,
in which the rows are lexicographically ordered, is found at the second node. Since the
labelling heuristic has been pushing the search towards a solution satisfying the ordering

sum constraint in the first row is propagated. We obtain a solution (0 1) after the second
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constraint, the search tree has remained unchanged.

In the previous example, we have seen that a solution satisfying the ordering con-
straints may easily be found even if the ordering constraints are not posted. Hence,
imposing the ordering constraints may not reduce the size of the search tree when search-
ing for one solution, or when searching for the first solution if all solutions need to be
found. A similar phenomenon occurs if the problem constraints imply the ordering con-
straints. The ordering constraints then may serve as redundant constraints [Tsa93], which
give no extra propagation, rather than as symmetry breaking constraints. As an example,
consider the sport scheduling problem which was introduced in Chapter 3.2.4. In Figure
3.9, one way of modelling the problem is presented. The (extended) weeks over which the
tournament is held, as well the periods are indistinguishable. The rows and the columns
of T"and G are therefore symmetric. Note that we treat T" as a 2-d matrix where the rows
represent the periods and columns represent the extended weeks, and each entry of the
matrix is a pair of variables.

Consider the rows of T'. The global cardinality constraints posted on the rows ensure
that each of 1...n occur exactly twice in every row. This means that in any solu-
tion to the problem, the rows are equal, when viewed as multisets. Now consider the
columns of T'. The all-different constraints posted on the columns state that each column
is a permutation of 1...n. This suggests that in any solution to the problem, also the
columns are equal when viewed as multisets. The multiset ordering constraint on a pair of
rows/columns of 7" is a logical consequence of the problem constraints which may not give
any additional constraint propagation. Therefore, enforcing multiset ordering constraints
does not necessarily reduce the size of the search tree. Similarly, imposing multiset order-
ing constraints on the rows and columns of the matrix model of the quasigroup existence
problem (see prob003 in CSPLib) and the BIBD problem (see Chapter 3.2.1) may not be
effective.

In summary, it is difficult to assess theoretically how much symmetry we can break
and whether we can significantly reduce the size of the search tree by imposing ordering
constraints. Also, as discussed in Sections 4.2.3 and 4.2.4, theory cannot distinguish
the ordering constraints which impose incomparable orderings. It is therefore desirable
to study the ordering constraints explored in Section 4.2 experimentally to judge their
effectiveness in breaking row and column symmetries.

4.4 Extensions

In this section, we argue that we can benefit from lexicographic ordering and multiset
ordering constraints for breaking symmetry in matrices of arbitrary number of dimensions
(Section 4.4.1), for breaking partial symmetry (Section 4.4.2), and finally for breaking
value symmetry (Section 4.4.3).

4.4.1 Higher Dimensions

Many problems can be effectively modelled and efficiently solved using a matrix of more
than two dimensions. For instance, consider the sport scheduling problem which was
introduced in Chapter 3.2.4. In Figure 3.9, one way of modelling the problem is presented.
One of the matrices in the model is a 3-d matrix T" whose dimensions correspond to n
extended weeks, n/2 periods, and 2 slots. A variable T} ; in this matrix takes a value
between 1 and n expressing that a team plays in a particular week in a particular period,
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in the home or away slot. The matrix T has symmetry along each of the three dimensions:
the extended weeks are indistinguishable, and so are the periods and the slots. Another
example is the social golfers problem which was also introduced in Chapter 3.2.4. A
model of this problem, as shown in Figure 3.8, is a 3-d 0/1 matrix 7" whose dimensions
correspond to w weeks, g groups, and g * s players. A variable T}, in this matrix is
1 iff the kth player plays in group ¢ of week j. As the groups are indistinguishable,
and so are the weeks and the golfers, this matrix has symmetry along each of the three
dimensions. As in the case of 2-d matrices with row and column symmetry, we can break
some of these symmetries by imposing ordering constraints in each symmetric dimension.
We now generalise the lexicographic ordering and multiset ordering constraints to any
number of dimensions.

Consider a 2-d matrix. If we look along a particular dimension, we see 1-d matrices
at right angles to this axis. To break the symmetries, we enforce lexicographic ordering
constraints on these matrices, when we treat them as vectors, or we enforce multiset
ordering constraints on the matrices, when we treat them as multisets. Now consider
a 3-d matrix. If we look along a particular dimension, we see 2-d slices of the matrix
that are orthogonal to this axis. To break the symmetries, we need to impose ordering
constraints on these slices. One way is first to flatten the slices onto 1-d matrices and
then insisting that they are either lexicographically or multiset ordered. In n dimensions,
we see slices that are n — 1 dimensional hypercubes, which can be compared by flattening
onto 1-d matrices and insisting that they are either lexicographically or multiset ordered.

Definition 25 An n-dimensional matrixz x of values, with n > 1, is multi-dimensionally
lexicographically ordered iff the following conditions hold:

Vi flatten(z[i][]...[]) <ier flatten(z[i+1][]...[])

Vi flatten(z] ][j]...[]) <iex flatten(z[ |[7+1]...]])

VE flatten(z[ ][ ]. .. [k]) .Slem flatten(z] ][ ]... [k +1])
where x[ ]...[][i][]...]] denotes the n — 1 dimensional hypercube obtained by taking the
slice of x at position i in the dimension where [i] appears in [|...[][i][]...[], and where

flatten is used to flatten a slice of a matrix into a 1-d vector and is defined by:

flatten(z[1..m]) = x[1..m]

flatten(z[1..m][ ]...[]) = append( flatten(z[1][]...[]),
flatten(z[m][]...[]))
with append(vy, . .., v,) denoting the left-to-right concatenation of the 1-d vectors vy, ..., vy.

Definition 26 An n-dimensional matrix x of values, with n > 1, is multi-dimensionally
multiset ordered iff the following conditions hold:

Vi {atten(@[i][]... [} <w ffatten(zli +1[]...[]}
Vi {fatten(z[ |[j]... [} <m {flatten(z[][j+1]...[D}

Vi {flatten(z[ ][ ]...[k])} ém {fatten(z] ][ ]...[k+ 1))}
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where x[ ]...[]|[i][]...]] denotes the n — 1 dimensional hypercube obtained by taking the
slice of x at position i in the dimension where [i] appears in []...[][i][]...[], and where
flatten is used to flatten a slice of a matrix into a 1-d vector and is defined by:

flatten(z[1..m]) = x[1..m]

flatten(z[1..m][ ]...[]) = append( flatten(z[1][]...[]),
flatten(z[m][ ]...[]))
with append(vy, . .., v,) denoting the left-to-right concatenation of the 1-d vectors vy, . .., vy.

As in the 2-d case, we can show that multi-dimensional lexicographic ordering or mul-
tiset ordering constraints are consistent symmetry breaking constraints. Unfortunately,
such constraints may not break all the symmetries as the 2-d counter examples generalise
to other numbers of dimensions.

Theorem 4 Given a matriz with symmetry along each of its n dimension, where n > 1,
each symmetry class has at least one element where the matrixz is multi-dimensionally
lexicographically ordered.

Proof: A proof for the 3-d case is in [FFH"01a]; it generalises to any number of dimen-
sions. QED.

Theorem 5 Given a matrixz with symmetry along each of its n dimension, where n > 1,
each symmetry class has at least one element where the matrixz is multi-dimensionally
multiset ordered.

Proof: Suppose a is an assignment of values to the variables of the matrix. In one
dimension of a, we have slices which are n — 1 dimensional hypercubes. Since multiset
ordering is transitive, we can always multiset order the slices by flattening each slice into
a one dimensional matrix and treating each matrix as a multiset. By multiset ordering
one dimension of a matrix, we do not distinguish the other dimensions. We can still freely
permute the slices of the other dimensions, as multiset ordering one dimension is invariant
to the permutation of the slices in the other dimensions. This shows that we can always
make a multi-dimensionally multiset ordered by permuting the slices in each dimension.

QED.

4.4.2 Partial Symmetry

We may only have partial row and/or column symmetry in a matrix, namely when only
strict subset(s) of the rows and/or columns are indistinguishable. As an example, consider
the steel mill slab design problem which was introduced in Chapter 3.2.2. A model of this
problem, as shown in Figure 3.3, uses a 2-d 0/1 matrix O to represent which orders are
assigned to which slabs. This matrix has partial row symmetry since only the slabs of the
same size are indistinguishable. This matrix has also partial column symmetry because
only the orders of the same size and colour are indistinguishable. As another example,
consider the progressive party problem which was introduced in Chapter 3.2.5. A matrix
model for this problem is shown in Figure 3.10. The matrix H is indexed by the set of
time periods and the set of guests. A variable H; ; in this matrix gives the host assigned
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to guest 7 at time period ¢. Even though the columns of H are all symmetric, because
the time periods are all indistinguishable, only the rows which correspond to the guests
of the same crew size are indistinguishable. Hence, H has partial row symmetry as well
as column symmetry. Further examples of partial symmetry are in the matrix models of
the template design problem (see Chapter 3.2.2) and the rack configuration problem (see
Chapter 3.2.3).

To tackle partial row and/or column symmetry, we impose lexicographic or multiset
ordering constraints only on the rows and/or columns that are indistinguishable, assuming
that the indistinguishable rows and/or columns are in neighbouring positions. To show
that this is a correct way to break partial symmetry, suppose we have partial column
symmetry and the symmetric columns are in neighbouring positions. We add an extra
row to the top of the matrix, in which we label identically those columns that are subject to
permutation, and increase the label as we switch from one subset of the symmetric columns
to another subset. Now the columns are all indistinguishable. Enforcing lexicographic
or multiset ordering constraints on all the columns are consistent symmetry breaking
constraints. As the recursive definition of lexicographic or multiset ordering separates the
columns into disjoint sets of permutable columns that have to be ordered, imposing the
ordering constraints only on the symmetric rows and/or columns is correct.

4.4.3 Value Symmetry

As argued in the last chapter, we often have (partial) value symmetry in a matrix model.
We can deal with symmetric values using the techniques we have developed above for
dealing with symmetric variables. A variable V' of an n dimensional matrix that takes a
value from a domain of indistinguishable values {vy, ..., v,,} can be replaced by a vector
(Vi,..., V) of 0/1 variables, with the semantics V; = 1 <+ V = v;. A set variable V taking
a set of values from a similar domain of indistinguishable values can also be replaced by a
vector of 0/1 variables with the semantics (V; = 1 < v; € V'). Hence, we have introduced
n x m 0/1 variables and constraints. In other words, the (set) variable is replaced by a
characteristic function, whose variables take values that are not indistinguishable. This
converts indistinguishable values into indistinguishable variables, which become a new
dimension in the now n + 1 dimensional matrix.

As an example, consider the social golfers problem which was introduced in Chapter
3.2.4. A model of this problem, as shown in Figure 3.7, employs a 2-d matrix 7" of set
variables, where each row represents a week and each column represents a group. Each
element T; ; of the matrix is a set of golfers that play together as group ¢ in week j. This
matrix has row and column symmetry as the weeks are indistinguishable, and so are the
groups. This matrix has also value symmetry because the golfers are indistinguishable.
Another model of the problem, as shown in Figure 3.8, replaces each set variable of the ini-
tial model by a 0/1 vector of integer variables of length g+ s representing the characteristic
function of the set. For example, given 4 golfers, the set of golfers {1,2} is represented by
the vector (0,0,1,1). Hence, we have a 3-d matrix T" of variables where 7} ;, = 1 iff the
kth player plays in group 7 of week j. As the groups are indistinguishable, and so are the
weeks and the golfers, this matrix has symmetry along each of the three dimensions. The
advantage of this approach is that we can use the multi-dimensional symmetry breaking
constraints to deal simultaneously with symmetric variables and symmetric values.

We can also use the techniques outlined in Section 4.4.2 to deal with values that are
only partially symmetric. Consider the progressive party problem which was introduced
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in Chapter 3.2.5. A model of this problem, as shown in Figure 3.10, uses a 2-d matrix H.
A variable H; ; in this matrix takes as a value the host boat visited by guest j in period i.
The matrix H has column symmetry, because the time periods are all indistinguishable.
The matrix H has partial row symmetry because only the rows which correspond to the
guests of the same crew size are indistinguishable. As the host boats of the same capacity
are indistinguishable, the matrix H has also partial value symmetry. We can turn this
partial value symmetry into a partial variable symmetry by channelling H into a new 3-d
0/1 matrix C. A variable C;;j in this new matrix is 1 iff the host boat k is visited by
guest j in period i. The new matrix C' has partial symmetry along its third dimension.

4.5 Breaking All Symmetries

It is always possible to break all row and column symmetries of a matrix of decision
variables by using the method proposed in [CGLR96] and described in Section 4.2.1.
This method requires posting a lexicographic ordering constraint for each symmetry. As
the number of row and column symmetries grows super-exponentially, it is not practical
to break all symmetries in this way. We therefore identify special and useful cases where
all row and column symmetries can easily be broken.

Quite often, we have a matrix with row and column symmetry and the variables of the
matrix are constrained to be all different. As an example, consider the sport scheduling
problem which was introduced in Chapter 3.2.4. In Figure 3.9, one way of modelling
the problem is presented. As the 2-d matrix G represents the games, an all-different on
G ensures that every team plays against every other team. The weeks over which the
tournament is held, as well the periods are indistinguishable. The rows and the columns
of G are therefore symmetric. Another example is the problem of finding graceful graphs
which is about deciding whether a graph has a graceful labelling [Gal02]. Petrie and
Smith have studied a number of graphs whose gracefulness are unknown, and showed
that a class of graphs can be modelled using a matrix of variables with an all-different
constraint on the variables [PS03], where the rows and columns are symmetric.

Theorem 6 If a 2-d matrix with row and column symmetry, as well as with a constraint
requiring all the values in that matriz to be distinct, has a solution, then each symmetry
class has:

e a unique member with the largest value placed in the bottom-right corner as well as
the last row and the last column ordered;

e a unique member with the largest value placed in the top-right corner as well as the
first row and the last column ordered;

e a unique member with the largest value placed in the top-left corner as well as the
first row and the first column ordered;

e a unique member with the largest value placed in the bottom-left corner as well as
the last row and the first column ordered.

Proof: A proof for the first case is in [FFHT02]. Dual arguments hold if the largest
value is placed in one of the remaining three corners. QED.

As a result, enforcing the largest element to be in one corner, as well as enforcing the
row and the column, where the largest value is, to be ordered breaks all row and column
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symmetries. In fact, we will break all symmetries even if the other rows and columns
contain repeated values. By enforcing the row and the column, where the largest value is,
to be ordered, we prevent any permutation of the rows and columns. We do not therefore
need every value in the matrix to be distinct.

Another special case which is of interest is 0/1 matrices with row and column symmetry
and the constraints enforcing a single one in each row or column. Such matrices frequently
arise when modelling problems involving demand constraints. As an example, consider
the steel mill slab design problem introduced in Chapter 3.2.2. Every order is to be packed
onto exactly one slab. A model of this problem, as shown in Figure 3.3, uses a 2-d 0/1
matrix O to decide which orders are packed onto which slabs. Sum constraints on the
columns of O ensure that every order is packed onto one slab:

Vi € Orders. Z 0;; =1

j€Slabs

The matrix O has partial row symmetry because the slabs of the same size are indistin-
guishable. The matrix O has also partial column symmetry because the orders of the
same size and colour are indistinguishable. A similar problem is the rack configuration
problem introduced in Chapter 3.2.3. Every card is to be plugged into exactly one rack.
In the second model of the problem shown in Figure 3.6, we manipulate the cards rather
than the number of cards of a given type plugged into a rack. Hence, a 2-d 0/1 matrix C
is used to determine which cards are plugged into which racks. Sum constraints on the
columns of C' ensure that every card is plugged into one rack:

Vi € Cards . Z Ci,j =1

JjE€Racks

The matrix C' has partial row symmetry because the racks of the same model are indis-
tinguishable. The matrix C has also partial column symmetry because the cards of the
same type are indistinguishable.

The following theorem shows that in such cases it is possible to break all row and
column symmetries. A similar theorem appears also in [Shl01].

Theorem 7 Given a 2-d 0/1 matriz with row and column symmetry, as well as with a
constraint requiring every row to have a single 1, each symmetry class has a unique member
with the rows ordered lexicographically, as well as the columns ordered lexicographically and
by their sums. Similarly, given a 2-d 0/1 matriz with row and column symmetry, as well
as with a constraint requiring every column to have a single 1, each symmetry class has
a unique member with the columns ordered lexicographically, as well as the rows ordered
lexicographically and by their sums.

Proof: See [FFH'02]. QED.

4.6 Related Work

Even though row and column symmetries have not been previously identified and studied
as a class of symmetries, instances of such symmetries have been encountered and ad-
dressed in a simple way. For instance, the symmetry between the racks of the same rack
model in the rack configuration problem is tackled in [ILO02] by insisting the first ele-
ments of the symmetric rows in the matrix modelling the problem to be equal or ordered.
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This is a very weak form of symmetry breaking, as it can well be the case that the first
elements are assigned the same values. In this case, symmetry between the remaining
elements of the rows are not eliminated.

Crawford et al. in [CGLR96] propose a method of eliminating all symmetries which
requires posting a lexicographic ordering constraint for each symmetry. An n x m matrix
with row and column symmetry has n!m! symmetries, which increase super-exponentially.
Whilst in theory we can eliminate all symmetries using the method of [CGLR96], in prac-
tice there are too many constraints to post and propagate. We call the set of constraints
generated by the method of [CGLR96] to break all row and column symmetries as the full
symmetry breaking constraints. Our approach to tackling row and column symmetries
is instead posting ordering constraints between the symmetric rows and columns. Lex-
icographic ordering constraints on the rows and columns (called double-lex constraints)
are a subset of the full symmetry breaking constraints. A similar conclusion is also due
to Shlyakhter in [Shl01] in parallel to [FFH*01la], but his results are restricted to 0/1
matrices where all the rows and/or columns are symmetric. Our results are, however,
applicable to matrices of any domain, with (partial) row and (partial) column symmetry.

Subsequent to [FFHT01a][FFHT02], the full symmetry breaking constraints have been
analysed by a number of researchers. Flener and Pearson have attempted simplifying
these constraints to obtain a polynomial size subset which is small enough to break all
symmetries [FP02a]. They conjecture that for 0/1 matrices there is a strict subset of the
full symmetry breaking constraints which break all symmetries. Even if the conjecture is
true, the size of the subset may be super-polynomial, and it is not clear how the study
can be extended for matrices of any domain. Frisch et al., on the other hand, have
shown that a subset of the full symmetry breaking constraints impose that the first row
is lexicographically less than or equal to all permutations of all other rows [FJMO03]. It
is also argued that it is consistent to enforce this subset of the constraints (called the
allperm constraint) together with the double-lex constraints. The experimental results
in [FJMO03] show that enforcing both all-perm and double-lex constraints reduces the
search effort more than the double-lex constraints alone, but still leaves some symmetry.
Puget in [Pug03b] states that it is not necessary to impose the full symmetry breaking
constraints at the start of search for solutions. His approach to breaking row and column
symmetries is to impose some of the full symmetry breaking constraints during search. At
each node of the search tree, only the constraints for symmetries that are not yet broken
are imposed. The computational results in [Pug03b] show a clear benefit of using this
technique in preference to the double-lex constraints to tackle row and column symmetries
effectively and efficiently.

Many symmetry breaking methods have been devised in the past years, such as SES
[BW99][BWO02], SBDS [GS00], and SBDD [FMO01][FSSO01], all of which can directly be
used to break all row and column symmetries. Unfortunately, these techniques work well
when the number of symmetries is small, and are not practical to use when the number of
symmetries is large, as in the case of row and columns symmetries. Following [FFH'01a],
several researchers have started investigating ways to improve these techniques to elimi-
nate large number of symmetries much more efficiently.

As an n X m matrix with row and column symmetry has n!m! symmetries, breaking
all symmetries using SBDS would require as many SBDS functions, so SBDS can only be
used for small matrices (e.g. 3x3 and 4x4). Therefore, in [GS01], using a subset of the full
SBDS functions is proposed, to reduce row and column symmetries in large matrices. Since
row (resp. column) symmetry alone can entirely be eliminated by row (resp. column)
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transpositions, a promising subset is the row transpositions and the column transpositions,
which require only O(n?) SBDS functions for an n x n matrix. Adding all combinations
of a row transposition and a column transposition to the row and column transpositions
would eliminate even more symmetry. This, however, increases the number of SBDS
functions to O(n?). In [GS01], combining SBDS with symmetry breaking constraints is
also explored. One can for instance use column transpositions in SBDS to remove the
column symmetry. This would require only O(n?) SBDS functions. To reduce the row
symmetry, one can add constraints that order the rows by their sums.

Just like the double-lex constraints, none of the methods described in [GS01] eliminate
all row and column symmetries. Some experiments are carried out in [GS01] to see which
of these methods and the double-lex constraints breaks more symmetry. According to the
experimental results, the double-lex constraints eliminate less symmetric solutions than
the combination of the column transpositions with the row-sum ordering constraints,
as well as less than the row and column transpositions and their combinations. In the
experiments, however, any constraints on the matrix to be constructed are ignored. Only
the size of the matrix and the domain size of the elements in the matrix are specified, and
then a set of matrices such that no two can be generated from each other by permuting the
rows and/or columns are searched. The methods are then compared only with respect
to the number of matrices found. For instance, imposing double-lex constraints on an
3 x 3 0/1 matrix returns 45 matrices. Moreover, the lexicographic ordering constraints
are implemented using the arithmetic constraint approach, which is expensive to calculate
as the matrix size gets larger (see Chapter 5.5.1 for a detailed discussion on this). It is
therefore not clear which of the techniques gives the most significant improvement to the
search effort.

As the symmetries of a CSP form a group, computational group theory methods have
proven useful in dealing with large number of symmetries efficiently. In [GHKO02], an
implementation of SBDS combined with the GAP system [GAPO00] (called GAP-SBDS)
is presented, which allows the symmetries of a CSP to be represented by the genera-
tors of the group. GAP-SBDS can handle around 10° symmetries, many more than the
initial implementation of SBDS [GS00]. This is a promising approach, but the experi-
ments reported show that GAP-SBDS is much slower than the double-lex constraints to
solve a BIBD instance represented by a 6 x 10 matrix with row and column symmetry.
In [GHKLO3], a generic implementation of SBDD is introduced (called GAP-SBDD), in
which the GAP system forms the symmetry group. Also, GAP-SBDD eliminates the need
of implementing a dominance checker, either directly [FSS01][FMO01] or as a separate CSP
[Pug02c|, because dominance checks are performed by GAP via the search for the domi-
nating group element. GAP-SBDD is able to handle around 10** symmetries, many more
than GAP-SBDS. Even though the authors experiment with row and column symmetries
using the BIBD problem, they do not report whether GAP-SBDD is faster or slower than
the double-lex constraints. Later, the authors state that they do not report the best
run-times compared to the related work. It is hard to tell therefore if, unlike GAP-SBDS,
GAP-SBDD is faster than the double-lex constraints to solve BIBD instances represented
by matrices with row and column symmetry.

Puget in [Pug02c| improves SBDD [FSS01][FMO01] by generalising the way the nogoods
are recorded. This significantly reduces the number of dominance checks, as well the
size and the number of nogoods, giving superior performance. Puget does not use his
method in [Pug02c| to tackle row and column symmetries. However, as he indicates in
the presentation of his work [Pug02a], this version of SBDD together with the double-
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lex constraints solves many BIBD instances modelled by matrices with row and column
symmetry much faster than the double-lex constraints alone. We are also informed by
Puget [Pug02b] that without the double-lex constraints, SBDD alone cannot cope with
the large number of row and column symmetries.

Another implementation of SBDD [FSS01][FMO01], which is combined with the nauty
system [nau], is due to Pearson [Pea03|. During search, each nogood and partial solution
is converted into a graph, and graph isomorphism is used for dominance check. Pearson
experiments with some instances of the problem of generating comma free codes [Lam03],
which can be modelled by a matrix with row symmetry. The results of the experiments
show that as the instances become larger, this implementation of SBDD reduces the search
effort more than enforcing lexicographic ordering constraints on the rows. It is, however,
not clear whether the implementation is engineered for the comma free codes or works for
any CSP.

4.7 Summary

In this chapter, we have tackled an important class of symmetries: row and column
symmetries of a matrix of decision variables. An n x m matrix with row and column
symmetry has n!m! symmetries, which makes it very difficult and costly to break all
the symmetries. To deal with such symmetries in an easy and efficient way, we have
investigated what ordering constraints we can post on the rows and columns.

We have shown that we can insist the rows and columns to be lexicographically or-
dered. Alternatively, we can treat each row and column of a matrix as a multiset and
impose that the rows and columns are multiset ordered. These symmetry breaking order-
ing constraints guarantee that we can find at least one solution from each equivalence class
of solutions. One of the nice features of using multiset ordering for breaking symmetry is
that by constraining the rows (resp. columns) of a matrix to be multiset ordered, we do
not distinguish the columns (resp. rows). We can still freely permute the columns (resp.
rows), as multiset ordering the rows (resp. columns) is invariant to column (resp. row)
permutation. We have therefore suggested combining multiset ordering constraints in one
dimension of a matrix with lexicographic ordering constraints in the other dimension,
so as to obtain new symmetry breaking ordering constraints. We have also argued that
lexicographic ordering and multiset ordering are incomparable. This has lead us to dis-
cover that imposing lexicographic ordering constraints on the rows and columns, imposing
multiset ordering constraints on the rows and columns, and imposing one ordering in one
dimension and the other ordering in the other dimension of a matrix are all incomparable.

We have extended these results to cope with symmetries in any number of dimensions,
with partial symmetries, and with symmetric values. We have also identified a couple of
special and useful cases where all compositions of the row and column symmetries can be
broken by means of adding only a linear number of constraints. Finally, we have compared
with related work.

Symmetry breaking is very easy by enforcing an ordering on the symmetric objects
via some ordering constraints. However, we need to be able to post and propagate such
constraints effectively and efficiently. Moreover, we may not eliminate all the symmetries
by enforcing the ordering constraints. Furthermore, the presence of the ordering con-
straints may not reduce the size of the search tree. Finally, theory cannot distinguish the
ordering constraints which impose incomparable orderings. These lead us to the following
questions:
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e how can we post and propagate the lexicographic ordering constraint effectively and
efficiently?

e how can we post and propagate the multiset ordering constraint effectively and
efficiently?

e are the ordering constraints explored in Section 4.2 often not redundant and bring
additional pruning?

e are the ordering constraints explored in Section 4.2 effective in breaking row and
column symmetries in practice?

e how do the ordering constraints explored in Section 4.2 compare in practice?

Addressing these questions is important and will be the concern of the following chapters.



Chapter 5

Lexicographic Ordering Constraint

5.1 Introduction

Given two vectors X = (Xo, X1,...,Xp1) and Y = (Yo, Y1,...,Y, 1), we write a lexico-
graphic ordering constraint as X <4e Y and a strict lexicographic ordering constraint as
X <lex Y. The lex1cographlc ordering constraint X <ex Y ensures that the vectors Z and
i/ assigned to X and Y respectively are lexicographically ordered according to Definition
14. That is, either ¥ = ¢, or dk 0 < k < n such that x; = y; for all 0 <7 < k and xp < yi.
The strict lexicographic ordering constraint disallows ¥ = /.

We can utilise lexicographic ordering constraints for breaking row and column sym-
metries, but how can we post and propagate these constraints effectively and efficiently?
In this chapter, we design global constraints for lexicographic orderings, each of which
encapsulates its own filtering algorithm.

This chapter is organised as follows. In Sectlon 5.2, we present a filtering algorithm
for the lexicographic ordering constraint X <lex Y. Then in Section 5.3, we discuss the
complexity of the algorithm, and prove that the algorithm is correct and complete. In
Section 5.4, we show how we can extend the algorithm to obtain filtering algorithms
for X <lex Y and X #+ 37, to detect entailment, and to handle vectors of any length.
Alternative approaches to propagating the lexicographic ordering constraint are discussed
in Section 5.5. We demonstrate in Section 5.6 that decomposing a chain of lexicographic
ordering constraints into lexicographic ordering constraints between adjacent or all pairs of
vectors hinders constraint propagation. In Section 5.7, we show how we can generalise the
algorithm for vectors whose variables are repeated and shared. Related work is discussed
in Section 5.8 and computational results are presented in Section 5.9. Finally, before
summarising in Section 5.11, we give in Section 5.10 the details of the implementation.

5.2 A Filtering Algorithm for Lexicographic Order-
ing Constraint

In this section, we present a filtering algorithm for _the lexicographic ordering constraint
which either detects the dlsentallment of X <lex Y or prunes inconsistent values so as
to achieve GAC on X <., Y. Before giving the details in Section 5.2.3, we first sketch
the main features of the algorithm in Section 5.2.1 and then in Section 5.2.2 provide the
theoretical background from which the algorithm is derived.

84
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5.2.1 A Worked Example

The main idea behind the algorithm is to maintain two pointers a and ( which save us
from repeatedly traversing the vectors. The pointer o points to the most significant index
of the vectors above which the variables are all ground and they are pairwise equal. The
pointer 3 points to the most significant index such that )Z'ﬁ_,n_l > o }75_,n_1 is true.
That is, starting from index (3, the vectors are ordered the wrong way around no matter
what values are assigned to the future variables. If this is not the case then ( points to
00.
Consider the lexicographic ordering constraint X <4 Y with:

X =1} {2 {2, {134} {12345} {12}, {3.45)
Yo={1} {2} {012} {1}, {0,1,2,3,4}, {0,1}, {0,1,2})
We traverse the vectors once in linear time in order to initialise the pointers. Starting
from index 0, we move first to index 1 and then to index 2 because Xy = Yy and X; =Y.
We stop at 2 and set a = 2 as Y5 is not ground.

= ({1}, {2}, {2}, {1,3,4}, {1,2,3,4,5}, {1,2}, {3,4,5})
= ({1}, {2}, {0,1,2}, {1}, {0,1,2,3,4}, {0,1}, {0,1,2})
T

T

~iL <y

al

We give an initial temporary value —1 to 3 and then look for the position of 3 starting
from a. At index 2 we have min(Xs) = maxz(Y;), which means that Xy > Y5 is true.
Starting from this index, the vectors could be ordered the wrong way around for any
combination of assignments to the future variables, so we set § = 2. We move to index
3, where min(X3) = maxz(Y3). Since [ is supposed to be the leftmost index and ( has
already been set a value before, we move to index 4. Here, it is possible to satisfy X, <Y},
therefore 3 cannot point to 2. We reset 3 = —1 and move to index 5. We now set 3 =5
because min(X;) = maz(Ys). At index 6, we have min(Xs) > max(Ys) which means
that X¢ > Y is true. However, (3 is pointing to an earlier index. To keep [ as the most
significant index we do not change its value.

—

X = <{1}7 {2}7 {2}’ {1737 4}’ {1727 37 4’ 5}’ {172}7 {37 47 5}>
}7 = <{1}7 {2}7 {O’ 1’2}7 {1}7 {0717273’4}a {Oa 1}7 {Oa 172}>
B 1 al
alpl
alpl 1
71 o i
ol 7
al 61 7

The algorithm restricts domain prunings to the index a. As variables are assigned, «
moves monotonically right, # moves monotonically left, and they are both bounded by
n. The constraint is disentailed if the pointers meet. Down one branch of the search tree
until all the 2n variables are assigned, o moves at most n positions. On the average, «
moves one position for each assignment. Hence, the algorithm runs amortised! in time
O(b), where b is the cost of adjusting the bounds of a variable.

'In an amortised analysis, the time required to perform a sequence of operations is averaged over all
the operations performed [Tar85].
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Consider the vectors again. As the vectors above «a are ground and equal, there is no
support for any value in D(Y,,) which is less than min(X,). We therefore remove 0 and
1 from D(Y,) and increment « to 3:

{1} {23, {2} {1.3,4}, {1,2,3.4,5}, {12}, {3,4,5})
({1 {23 {2 {1%; 10,1,2,3, 4}, {?3;}, {0,1,2})

Similar to the previous case, there is no support for any value in D(X,,) which is greater
than max(Y,). We therefore remove 3 and 4 from D(X,) and increment « to 4:

= (1 {25 {28 {1 {123,455} {12}, {3,4,5))
= ({1 {2 {2 {1} {0,1,2%3,4}7 {?3;}, {0,1,2})

Since « has now reached (3— 1, there is no support for any value in D(X,,) which is greater
than or equal to max(Y,). Similarly, there is no support for any value in D(Y,) which
is less than or equal to min(X,). We must therefore enforce AC(X, < Y,). That is, we
remove 4 and 5 from D(X,), and also 0 and 1 from D(Y,):

{1y, {24 {24 {1} {1,2,3}, {1,2}, {3,4,5})
{1y, {24 {24 {1} {2,3}4}» {%3;}7 {0,1,2})

=<y

~i

=iy

The constraint X <lex Y is now GAC.

5.2.2 Theoretical Background

The filtering algorithm of the lexicographic ordering constraint is based on two theoretical
results which show in turn when X <., Y is disentailed and what condition ensures GAC
on X <., Y.

As seen in the running example of the algorithm, the pointers o and ( play an impor-
tant role. These pointers are in fact the main ingredients of the theoretical foundation of
the algorithm. We start by defining the pointer a.

Definition 27 Given X and Y where 3k 0 < k < n such that —(Xg = Yy), the pointer
« is set to the indez in [0,n) such that:

( Xy =Y,) A
Vio<i<a.X;, =Y,

Informally, o points to the most significant index in [0, n) such that all the variables above
it are ground and pairwise equal. That is, )?oﬂa,l = 17[)4,&,1 is true. The importance of
« is that it gives us the most significant index where the vectors can either take equal
values or be ordered. Note that we define o on a pair of vectors that are not ground and
equal.

A constraint is said to be disentailed when the constraint is false. In the case of
lexicographic ordering constraint, it is important to know the most significant index after
which the constraint is disentailed. This knowledge helps us to decide whether the vectors
can be assigned equal values or not at index «. For this purpose, we introduce the pointer

3.
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Definition 28 Given X and 17, the pointer B is set either to the index in [a,n) such
that:

Jk B <k<n.(min(Xg) >max(Yy) AVi 8 <i<k.min(X;) =max(Y;))

where:
min(Xs_1) # max(Yg_1) A (Vi a <i < (. min(X;) < max(Y;) )

or (if this is not the case) to oc.

Informally, the pointer 3 points to the most significant index in [a, n) such that X Bon—1 lex
)75_m_1 is true. That is, starting from index 3, the vectors are ordered the wrong way
around no matter what values are assigned to the future variables. If this is not the case
then (8 points to co. It is important to set 3 to co when such an index does not exist.
Consider two vectors X = (X,) and Y = (Y) with D(X;) = D(Yp) = {0,1}. The pointer
« is set to 0 and if we set the pointer 3 to 1, then our rule would prune 1 from D(X,) and
0 from D(X;), which is wrong. To avoid such situations, the pointer (3 is set to a value
greater than the length of the vectors.

We can make use of the pointers o and 3 to prune inconsistent values as well as detect
disentailment. Moreover, the pointers save us from repeatedly traversing the vectors.

Theorem 8 Given 3 = «, X <lex Y is disentailed.

Proof By Definition 27, Xoﬂa 1= Y}Ha 1 is true, and by Deﬁmtlon 28 XOHn 1 Slex
Ya_,n 1 is true, whatever the remaining assignments are. Hence, X > e Y is true. QED.

It is not hard to show that given 3 > «, generalised arc-inconsistent values can exist
only in the interval [o,min{n,}). As the following theorem shows, generalised arc-
inconsistent values exist only at index a indeed.

Theorem 9 Given > «, G’AC()? <lex }7) iff:
L B=a+1— AC(Xa < Y,)
2. B>a+1— AC(X, <Y,)

(=) Assume X <. Y is GAC but either X,, < Y, is not AC when b=a+1lor X, <Y,
is not AC when # > a + 1. Then either there exists no value in D(Y,) greater than (or
equal to) a value a in D(X,), or there exists no value in D(X,,) less than (or equal to)
a value b in D(Y,). Since the variables are all ground and pairwise equal above «, a or
b lacks support from all the variables in the vectors. This contradicts that X <lex Y is
GAC.
(<) All variables above « are ground and pairwise equal. The assignment X, >Y,, cannot
be extended to a consistent assignment to satisfy X <lex }7 because in this case X is
already greater than Y at position a. The reverse holds for the assignment Xo <Y, In
this case, any future assignment satisfies X <4p Y as X is already less than Y at position
a. Whether assigning the same values to X, and Y, is consistent or not depends on the
index (3 points to.

If 6=a+1 then:

Jk o<k <n.(min(Xy) >maz(Yy) A\Via <i<k.min(X;) =maz(Y;))
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Algorithm 1: Initialise
Data <X0,X1,...,Xn_1>, <}/E),Yi,...,Yn_1>
Result : o and [ are initialised, GAC()Z <lex 17)
1 i:=0;
2 whilei<n AN X;=Y,doi:=i+1;
3 if ¢ = n then return;
4
5

else a :=i;

fi=-1L
6 whilei#n A min(X;) < maz(Y;) do

6.1 if min(X;) = max(Y;) then
6.1.1 ‘ if 3= —1 then 3 :=i;
else
621 | f=-1L
end
6.3 i=i4 1
end

7 if 1 = n then [§ := o0;

8 elseif §=—1then 3 :=71;
9 if a = [ then fail,

10 LexLeq(a);

That is, there is an index k between o and n, and X, > Y}, is true. Moreover, X; > Y;
for all @« < ¢ < k is true. The assignment X, = Y, cannot therefore be extended to
a consistent assignment satisfying X <lew Y. This proves that AC(X, < Y,) implies
GAC(X <ip Y) when 3 = a + 1.

If 3 > a+1 then we consider two cases, namely when a+1 < < n and when # = oo.
In the first case:

min(Xg_1) # maz(Ys_1) A (Vi a <i < 3. min(X;) < maz(Y;) )

That is, we can find values in D(X;) and D(Y;) for all & < i < f — 1 to satisfy X; <Y,
and in D(Xz_;) and D(Ys_1) to satisfy Xg_1 < Ys_1. In the second case we have:

Via<i<n.min(X;) <max(Y;)

That is, we can find values in D(X;) and D(Y;) now for all @ < i < n to satisfy X; <Y;.
Either case shows that the assignment X, = Y,, can be extended to a consistent assignment
satisfying X <lex 17, and proves that AC(X, < Y,) implies GAC()? <lex }7) when
08> a+1. QED.

5.2.3 Algorithm Detalils

Based on Theorems 8 and 9, we have designed an efficient linear time filtering algorithm,
LexLeq, which either detects the disentailment of X <lex Y or prunes inconsistent values
S0 as to achieve GAC on X <lex Y.

When the constraint is first posted, we need to initialise the pointers o and (3, and
call the filtering algorithm LexLeq to establish the generalised arc-consistent state with
the initial values of o and . In Algorithm 1, we show the steps of this initialisation.
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Algorithm 2: LexLeq(7)
Data : (Xo, Xy,..., X-1), (Yo, Y1,...,Y, 1), Integer i
Result : GAC(X <, Y)
1 ifi=a A i+ 1=/ then
1.1 ‘ AC(X; <Yy,
end
2 ifi=a AN i+1<[then
2.1 AC(X; <Y));
2.2 if X; =Y, then UpdateAlpha(i+ 1);
end
3 if a <i < then
3.1 if (i=0-1 A min(X;) =mazx(Y;) ) V min(X;) > maz(Y;) then
3.1.1 ‘ UpdateBeta(i — 1);
end
end

Line 2 of Initialise traverses X and }7, starting at index 0, until either it reaches the
end of the vectors (all pairs of variables are ground and equal), or it finds an index where
the pair of variables are not ground and equal. In the first case, the algorithm returns
(line 3) as X <lew Y is true. In the second case, « is set to the most significant index
where the pair of variables are not ground and equal (line 4). The vectors are traversed
in line 6, starting at index «, until either the end of the vectors are reached (none of the
pairs of variables have min(X;) > maz(Y;)), or an index ¢ where min(X;) > max(Y;) is
found. In the first case, (3 is set to oo (line 7). In the second case, [ is guaranteed to be
at most ¢ (line 8). If, however, there exist a pair of sub-vectors Xh_,i_l and )_/'h—n'—l such
that min(X;) = max(Y;) for all h < j <i—1, then (3 can be revised to A (lines 6.1-6.1.1).

If a = 3 then disentailment is detected and Initialise terminates with failure (line
9). Theorem 9 established that GAC(X <, Y) iff: AC(X, < Y,) when f = o+ 1, and
AC(X, <Y,) when 3 > a+ 1. We can therefore restrict pruning to the index «. In line
10, the filtering algorithm LexLeq(a) is called if 3 > a.

When X <, Y is GAC, every value a in D(X,) is supported by maz(Y,), and
also by (min(Xa41), ..., min(Xminn,g—-1)) and (maz(Yo11), - .., max(Yomingn,g-1)) if a =
max(Yy,). Similar argument holds for the values in D(Y,). Every value a in D(Y,) is sup-
ported by min(X,), and also by (min(Xa41), ..., min(Xpingn,s-1)) and (maz(Yaq1), ...,
max(Ymingn,gy3-1)) if @ = min(X,). Therefore, LexLeq(4) is also called by the event han-
dler whenever min(X;) or maz(Y;) of some i in [o, min{n, 5}) changes.

In Algorithm 2, we show the steps of LexLeq. Lines 1-1.1, 2-2.2, and 3-3.1.1 are
mutually exclusive, and will be referred to as blocks 1, 2, and 3, respectively.

Block 1: AC(X; < Y;) maintains arc-consistency on X; < Y;. This is implemented
as follows. If maz(X;) < maxz(Y;) then all the other elements in D(X;) are supported.
Otherwise, maz(X;) is tightened. Similarly, if min(X;) < min(Y;) then all the other
elements in D(Y;) are supported. Otherwise, min(Y;) is tightened. If i =a A i+1=7
then we need to ensure that AC(X; <Y;). Now X <., Y is GAC.

Block 2: If i =a A i+ 1 < 3 then we need to ensure AC(X; <Y;). Now X <1 Y
is GAC. If X; and Y; are ground and equal after executing line 2.1 then « is updated by
calling UpdateAlpha(i + 1).
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Procedure UpdateAlpha(z)

1 if i = (§ then fail;

2 if i = n then return;

3 if =(X; =Y]) then

3.1 o =1

3.2 LexLeq(i);
else

4.1 ‘ UpdateAlpha(i+ 1);
end

In lines 3 and 4.1 of UpdateAlpha(i), the vectors are traversed until the most signifi-
cant index k where —( X}, = Y}) is found. If such an index does not exist then the vectors
are ground and equal, so the procedure returns (line 2). Otherwise, « is set to &k (line
3.1). LexLeq is then called with this new value of a (line 3.2).

Block 3: If a < i <  then ¢ now might be a more significant position for (3, in which
case we need to update 3. The condition for updating ( is derived from Definition 28: at
i we either have min(X;) > max(Y;), or i is § — 1 and min(X;) = max(Y;). The pointer
[ is updated by calling UpdateBeta(z — 1).

Procedure UpdateBeta(s)
1  if i+ 1 = « then fail;
2 if min(X;) < maz(Y;) then
2.1 B=1i+1;
2.2 LexLeq(7);
else
3.1 ‘ if min(X;) = max(Y;) then UpdateBeta(i — 1);

end

In lines 2 and 3.1 of UpdateBeta(i), the vectors are traversed until the most significant
index k where min(Xy) < maz(Yy) is found. The pointer (3 is set to k& + 1 (line 2.1).
LexLeq (k) is then called in line 2.2 in case k = o and we need to ensure AC(X < Yy).

When updating « or 3, if these pointers meet then disentailment is detected and thus
failure is established (line 1 in UpdateAlpha and UpdateBeta). This situation can only
arise if the event queue contains several domain prunings due to other constraints, for the
following reasons. After initialising the pointers, the lexicographic ordering constraint is
either disentailed or is GAC. In the second case, every value is supported. If after every
single assignment we enforce GAC, this property persists. Therefore, we can only fail
when the queue contains a series of updates which must be dealt with simultaneously.

When we prune a value, we do not need to check recursively for previous support. In
the worst case o moves one index at a time until it reaches min{n, 3} — 1 and on each
occasion AC is enforced. This tightens max(X;) and min(Y;) without touching min(X;)
and max(Y;) for all @ < i < min{n,}, which provide support for the values in the
vectors. The exception is when a domain wipe out occurs. In this case, the constraint is
disentailed and the algorithm fails.
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5.3 Theoretical Properties

The algorithm Initialise runs in linear time in the length of the vectors. The filtering
algorithm LexLeq runs amortised in constant time, but in the worst in linear time in the
length of the vectors.

Theorem 10 Initialise runs in time O(n).

Proof: In the worst case both vectors are traversed once from the beginning till the end.
QED.

Theorem 11 LexLeq runs in time O(nb) where b is the cost of adjusting the bounds of
a variable, but runs amortised in time O(b).

Proof: Since arc-consistency on X; < Y; or X; <Y is achieved by adjusting max(X;)
and min(Y;), the worst-case complexity of AC(X; < ¥;) and AC(X; <Y;) is O(b). We
now analyse LexLeq block-by-block.

Block 1: This block of the algorithm has an O(b) complexity.

Block 2: In the worst case o moves one index at a time and on each occasion AC is
enforced. Hence, this block of the algorithm gives an O(nb) complexity.

Block 3: In the worst case the whole vectors are traversed to update 5. Once 3 is
set to its new value, LexLeq(4) is called recursively. In this recursive call, since i = 3 — 1
and min(X;) < max(Y;), only Block 1 can be executed to ensure AC(X <Y,) in case
£ is now « + 1. Hence, this block of the algorithm gives an O(n + b) complexity.

The worst-case complexity of LexLeq is bounded by O(nb). The pointer a moves
monotonically right, § moves monotonically left, and they are both bounded by n. The
lexicographic ordering constraint is disentailed if the pointers meet. Down one branch of
the search tree until all the 2n variables are assigned, a moves at most n positions. On
the average, a moves one position for each assignment. Hence, the amortised complexity
of LexLeq is bounded by O(b). QED.

Both Initialise and LexLeq are correct and complete.

Theorem 12 Initialise initialises the pointers o and [ as per their definitions. Then
it either establishes failure if X <. Y is disentailed, or prunes all inconsistent values
from X and 'Y to ensure GAC(X <ier Y ).

Proof: Line 2 of Initialise traverses X and 17, starting at index 0, until either it
reaches the end of the vectors (all pairs of variables are ground and equal), or it finds an
index where the pair of variables are not ground and equal. In the first case, we have
GAC()? <lex 17) and the algorithm returns (line 3). In the second case, « is set to the
most significant index where the pair of variables are not ground and equal (line 4) as per
Definition 27. The vectors are traversed in line 6, starting at index «, until either the end
of the vectors are reached (none of the pairs of variables have min(X;) > max(Y;)), or an
index i where min(X;) > maz(Y;) is found. In the first case, 3 is set to oo (line 7) as per
Definition 28. In the second case, (3 is guaranteed to be at most ¢ (line 8). If, however,
there exist a pair of sub-vectors X, i1 and Y),_;_; such that min(X;) = max(Y;) for all
h < j <i—1, then § can be revised to h (lines 6.1-6.1.1) as per Definition 28.

If « = 3 then X <lex Y is disentailed by Theorem 8 and thus Initialise terminates
with failure (line 9). Otherwise, in line 10, the filtering algorithm LexLeq(«) is called to
ensure GAC()? <iex 37) QED.
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Theorem 13 Whenever min(X;) ormax(Y;) of some i in [, min{n, 3}) changes, LexLeq(i)

either establishes failure zf)? <1 Y is disentailed, or prunes all inconsistent values from
X and Y to ensure GAC(X <i.. Y).

Proof: LexLeq may update the values of o and 3. We first give the pre- and post-
conditions of UpdateAlpha and UpdateBeta, and show that these two procedures establish
their post-conditions given the necessary pre-conditions.

UpdateAlpha (i) must be invoked only when X, = Y, which violates the definition
of o, and 7 is the most significant candidate index that can be assigned to «. If there
is any index satisfying Definition 27 then o must be updated to that index. With the
new value of «, UpdateAlpha (i) must either establish failure if X <lew Y is disentailed,
or ensure GAC()? <lex )7) Assuming that the pre-condition is satisfied, in lines 3 and
4.1 of UpdateAlpha(i) the vectors are traversed until the most significant index k where

—(Xy = Y) is found. If such an index does not exist (the vectors are ground and equal)
then we have GAC(X <., Y) and the algorithm returns (line 2). Otherwise, a is set to
k (line 3.1) as per Definition 27. LexLeq(«) is then called to ensure GAC()Z' <lew }7)
During this traversal, if 3 is encountered then X <, Y is disentailed by Theorem 8 and
UpdateAlpha(i) terminates with failure (line 1). Hence, UpdateAlpha(i) establishes its
post-condition.

UpdateBeta(z) must be invoked only when the definition of 3 is violated, and 7 +
1 is the least significant candidate index that can be assigned to 3. The pointer [
must be set to most significant index satisfying Definition 28. With this new value
of 3, UpdateBeta(z) must either establish failure if X <lex Y is disentailed, or en-
sure GAC(X <lex }7) Assuming that the pre-condition is satisfied, in lines 2 and 3.1
of UpdateBeta(:), the vectors are traversed until the most significant index k where
min(Xy) < max(Yy) is found. The pointer 3 is set to k + 1 (line 2.1) as per Definition
28. LexLeq(k) is then called to ensure GAC()? <lex }7) During this traversal, if « is en-
countered then X <lex Y is disentailed by Theorem 8 and thus UpdateBeta(z) terminates
with failure (line 1). Hence, UpdateBeta(i) establishes its post-condition.

We now analyse LexLeq block-by-block.

Block 1: If : = a A i+ 1 = [ then AC(X; < Y;) is executed, which maintains
arc-consistency on X; < Y;. This ensures GAC()Z' <lex 37) by Theorem 9.

Block 2: If i = a A 1+ 1 < (8 then AC(X; < Y;) is executed, which maintains
arc-consistency on X; <'Y;. This ensures GAC()? <lew }7) by Theorem 9. Afterwards, if
X; =Y, then UpdateAlpha(i+ 1) is called satisfying its precondition. The post-condition
of UpdateAlpha(i + 1) is either failure or GAC(X <iex }7)

Block 3: If a <i < fand (i = -1 A min(X;) = mazx(Y;) )V min(X;) >
max(Y;) then UpdateBeta (i —1) is called satisfying its pre-condition. The post-condition
of UpdateBeta(i — 1) is either failure or GAC()? <iex 37)

LexLeq is a correct and complete filtering algorithm as it elther estabhshes failure
it X <iex Y 1s disentailed, or prunes all inconsistent values from X and Y to ensure

GAC(X <, V). QED.

5.4 Extensions

In this section, we consider a number of interesting extensions to the filtering algorithm
of the lexicographic ordering constraint. Section 5.4.1 shows how we can obtain a filtering
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algorithm for the strict lexicographic ordering constraint. Section 5.4.2 presents how
we can catch entailment. Section 5.4.3 discusses that propagating vector disequality
and vector equality constraints using (strict) lexicographic ordering constraints hinders
constraint propagation, shows how we can obtain a filtering algorithm for the vector
disequality constraint, and discusses how we can propagate the vector equality constraint.
Finally, Section 5.4.4 describes how we can deal with a pair of vectors of different length.

5.4.1 Strict Lexicographic Ordering Constraint

With very little effort, LexLeq can be adapted to obtain a filtering algorithm, LexLess,
which either detects the disentailment of X <lex Y or prunes inconsistent values so as to
achieve GAC on X <lew Y. The reason of the similarity is that, as soon as ( is assigned
a value other than oo, LexLeq enforces strict lexicographic ordering on the vectors.

Before showing how we modify LexLeq, we give the necessary theoretical background.
We define the pointer a between two vectors X and Y as in Definition 27. Also, the
pointer § again points to the index starting from which the vectors are ordered the wrong
way around no matter what values are assigned to the future variables. However, we
redefine (3, because [ should now point to the index such that Xﬂﬂn 1 <lex Ygﬁn 1 18
disentailed.

Definition 29 Given X and 37, the pointer (3 is set either to the index in [, n) such
that:

Jk B <k <n.(min(Xy) >max(Yy) AVi § <i<k.min(X;) =mazx(Y;) ) V

Vi 8 <i<n.min(X;) = max(Y;)

where:
min(Xs_1) # max(Yg_1) A (Vi a <i < (. min(X;) < max(Y;) )

or (if this is not the case) to n.

Informally, the pointer 3 points to the most significant index in [a, n) such that X Bon—1 Zlex
}7'5%” 1 is true. If this is not the case then [ points to n. It is important to set [ to
n when such an index does not exist because by this way equality between the vectors
is not allowed. Consider two vectors X = (X0, X1,..., X, 1) and Y = (Yo, Y1,..., Y, 1)
with X; =Y; forall 0 <i<n—1and D(X,_1) =D(Y,—1) = {0, 1}. The pointer « is set
to n — 1. Setting § to co would allow equality between the vectors, which is wrong.

We can now make use of the pointers to detect disentailment as well as prune incon-
sistent values.

Theorem 14 Given [ = «, X <lew Y s disentailed.

Proof By Definition 27, XO—>a 1= YO_,a 1 is true, and by Deﬁmtlon 29 Xa_,n 1 Zlex
Ya_,n 1 1s true, whatever the remaining assignments are. Hence, X >lex Y is true. QED.

It is again not hard to show that given 0 > «, generalised arc-inconsistent values
can exist only in the interval [, 3). We can again show that generalised arc-inconsistent
values exist only at index « indeed.

Theorem 15 Given 8> o, GAC(X <i. Y ) iff:
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1. B=a+1— AC(X, < Y,)
2. 8>a+1— AC(X, < Ya)

(=) Similar to the proof of Theorem 9.
(<) All variables above « are ground and pairwise equal. The assignment X, >Y,, cannot
be extended to a consistent assignment to satisfy X <lex 57, because in this case X is
already greater than Y at position «. The reverse holds for the assignment X, < Y,. In
this case, any future assignment satisfies X <pep Y as X is already less than Y at position
a. Whether assigning the same values to X, and Y, is consistent or not depends on the
index 3 points to.

If 5 = a+ 1 then we consider two cases, namely when § < n and when § = n. In the
first case:

Jka<k<n.(min(Xy) >mar(Yy) A\Via <i<k.min(X;) =maz(Y;)) V
Via<i<mn.min(X;) =max(Y;)
This means that either there is an index k between a and n such that X, > Y} is true
and additionally for all a < i < k we have X; > Y; is true, or for all @ < i < n we have
X, > Y, is true. The assignment X, = Y,, cannot therefore be extended to a consistent
assignment satisfying X <., Y. In the second case, we have a =n — 1 and # =n. The
only position to strictly order the vectors is index n — 1. Equality at this position only
makes the vectors equal. Either case proves that AC(X, < Y,) implies GAC(X <., Y)

when 8 =a + 1.
If > a+ 1 then:

min(Xs_1) # max(Yg_1) A (Vi a <i < . min(X;) < mazx(Y;) )

That is, we can find values in D(X;) and D(Y;) for all @ < i < f — 1 to satisfy X; <Y},
and in D(X3_1) and D(Ys_1) to satisfy Xz_; < Ys_;. This shows that the assignment
X, = Y, can be extended to a consistent assignment satisfying X <ier }7, and proves
that AC(X, <Y,) implies GAC(X <., Y) when > o+ 1. QED.

How do we modify LexLeq to obtain the filtering algorithm LexLess for propagating
the strict lexicographic ordering constraint? Theorems 14-15 are identical to Theorems
8-9. Even though the definition of 3 is now slightly different, we have:

min(Xg_1) # maz(Ys_1) A (Vi o <i < 3. min(X;) < maz(Y;) )

in both Definitions 28 and 29. This suggests that we do not need to change LexLeq, includ-
ing the part where we update 5. On the other hand, small modifications to Initialise
are needed. Algorithm 5 shows how we modify Algorithm 1.

We fail if the vectors are initially ground and equal. In fact, similar modification is
necessary also for UpdateAlpha. Note that the vectors can later become ground and equal
only if the event queue contains a series of domain prunings which must be dealt with
simultaneously. Otherwise, after initialisation, the lexicographic ordering constraint is
either disentailed or GAC. In the second case, every value is supported. After every single
assignment, by maintaining the generalised arc-consistent state, this property persists.

Moreover, we cancel line 7 for two reasons: first, we want to initialise 3 to n if there is
no index starting from which the vectors are ordered the wrong way around whatever the
remaining assignments are. Second, if there is no index k such that min(Xy) > max(Y%)
but rather there is an index i such that for all ¢ < j < n we have min(X;) = maz(Y;)
and ¢ is the most significant such index, then we want to initialise 3 to i.
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Algorithm 5: Initialise
Data : <X0aX1a"'7Xn—1>a <}/E)aYia"'7Yn—1>

Result : o and [ are initialised, GAC()Z <lex 17)

3 if i = n then fail;

Procedure UpdateAlpha(z)

2 if i = n then fail;

5.4.2 Entailment

Even though LexLeq is a complete and correct filtering algorithm, it does not detect
entailment. Incorporating entailment changes neither the worst-case nor the amortised
complexity of the algorithm but is very useful for avoiding unnecessary work.

A constraint is said to be entailed when the constraint is true. If a constraint is
entailed, then it is not necessary to execute the filtering algorithm: we can simply return
without having to do any pruning. For this purpose, we introduce a Boolean flag called
entailed which indicates whether X <lex Y is entailed. More formally:

Definition 30 Given X and 57, the flag entailed is set to true zﬁ)? <10 Y is true.

It is not hard to show when X <lex Y is true.
Theorem 16 X <., Y is true iff ceiling()?) <lex floor(?).

Proof: (=) Since X <lex Y is true any combination of assignments, including X
ceiling(X) and Y — floor(Y), satisfies X <;., Y. Hence, ceiling(X) <., floor(Y).
(<) Any Z € X is lexicographically less than or equal to any 7 € Y. Hence, X <jop Y
is true. QED.
To know when we have ceiling(X) <. floor(Y), we introduce a third pointer,
called v, whose purpose is dual to that of 3.

Definition 31 Given X and 17, the pointer ~y is set either to the index in [o,n) such
that:

kv <k<n.(mar(Xy) <min(Ye) AVi v <i<k.max(X;) =min(Y;) ) V

Viy <i<n.mazr(X;) =min(Y;)

where:
maz(X,y_1) # min(Y,_1) A (Vi a < <. maz(X;) > min(Y;) )

or (if this is not the case) to n.
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Algorithm 7: Initialise
Data : <X0aX1a"'7Xn—1>a <}/E)aYia"'7Yn—1>

Result : «, 3, entailed, and  are initialised, GAC(X <lex 37)
0 entailed := false;

3 if i =n then

3.1 entailed = true;
3.2 return;

end
10 ~v:=—1;

11 while i #n A max(X;) > min(Y;) do

11.1 | if maz(X;) = min(Y;) then
11.1.1 ‘ if v = —1 then ~ :=1;
else
11.2.1 ‘ v = —1;
end
11.3 1:=1+1;
end

12 if v = —1 then ~ :=i;
13 if o =~ then

13.1 entailed := true;
13.2 return;

end
14 LexLeq(a);

Informally, v points to the most significant index in [a, 1) such that )&Hn,l <lex 177%”,1
is true. That is, starting from index =, the vectors are ordered lexicographically no matter
what values are assigned to the future variables. If this is not the case then ~ points to n.
The purpose of the pointers # and + are dual. The former points to the index below
which the vectors are ordered the other way around whatever the remaining assignments
are. We make use of it to prune inconsistent values as well as detect disentailment. The
latter points to the index starting from which the vectors are ordered lexicographically
independent of the future assignments. We can therefore use it to detect entailment.

Theorem 17 X <lex Y is entailed iff v =«

Proof: (=) As Xoon1 <tew Yom_1 is true, we have v = a.

(<) By Definition 27, Xoo1 = Yooa_1 is true, and by Definition 31 X1 <tew
Y, .n_1 18 true, whatever the remaining assignments are. Hence, X <lex Y is true. QED.

The lexicographic ordering constraint is entailed also when the vectors are ground and
equal. In this case none of the variables are left uninstantiated and the constraint cannot
wake up anymore. We nevertheless set the flag entailed to true for completeness.

We now need to integrate the entailment knowledge into the filtering algorithm of the
lexicographic ordering constraint. First, we initialise the values of entailed and . In
Algorithm 7, we show how we modify Algorithm 1 for this purpose. We add line 0 to
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initialise the flag entailed to false. We modify line 3 by setting entailed to true before
returning. In fact, we do a similar modification in UpdateAlpha.

Procedure UpdateAlpha(z)

2 ifi=n then
2.1 entatled := true;
2.2 return;

end

We replace line 10 of the original algorithm Initialise with lines 10-14. Now, lines
10-12 initialise v in a dual manner of the initialisation of 5. In case v = «a, we set entailed
to true and return (lines 13-13.2) by Theorem 17. Otherwise, we call LexLeq(«) for an
initial pruning at « in case needed.

LexLeq (i) is called whenever min(X;) or maz(Y;) of some i in [a, min{n, 3}) changes.
The position of ¢ with respect to that of @ determines two different response. First, ifi = «
then we maintain the generalised arc-consistent state. After this, if we have i = a = 7
then X <lex Y is entailed by Theorem 17. Second, if ¢ > « then we do not have to
maintain the generalised arc-consistent state. However, we might have to update the
pointer -, just like we might have to update the pointer § when i > «. In Algorithm 10,
we show how we modify Algorithm 2 in the presence of ~.

We add lines 4-4.1.1 for updating v in case ¢ is after a and ¢ is a more significant
position for . The condition for updating « is derived from Definition 31: at ¢ we either
have max(X;) < min(Y;), or i is v —1 and maxz(X;) = min(Y;). The pointer v is updated
by calling UpdateGamma(z — 1).

Procedure UpdateGamma (i)
1 if i+ 1=« then

1.1 entatled = true;

1.2 return;

end
2 if max(X;) > min(Y;) then v := i+ 1;
3 else if maz(X;) = min(Y;) then UpdateGamma(i — 1);

In lines 2 and 3 of UpdateGamma, the vectors are traversed until the index & where
max(Xy) > min(Yy) is found. The pointer v is set to k+1 (line 2). During this traversal,
if v is met then UpdateGamma sets entailed to true and then returns (lines 1.1 and 1.2).

We modify LexLeq further to catch entailment in case initially i = o and we get
1 = « = vy after maintaining the generalised arc-consistent state. In other words, v moves
all the way to «a after executing the line 1.1 or 2.1. There are two cases. First, if initially
t=a A 1+ 1= [ then ¢ cannot be v — 1 because at ¢ + 1 we have 3, and by definition
{3 cannot point to the same index as v. We get i = o = v if we have maz(X;) < min(Y;)
after AC(X; < Y;). Second, if initially t = a A 7+ 1 < (8 then we get i = a = v provided
that initially ¢ was v — 1 and we have maz(X;) = min(Y;) after AC(X; < Y;). Another
alternative is that after AC(X; <Y;) we have maz(X;) < min(Y;). In any case, whenever
we get i = o = v (lines 1.2 and 2.2, respectively), we set entailed to true (lines 1.2.1 and
2.2.1 resp.), and return from the algorithm (lines 1.2.2 and 2.2.2 resp.).
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Algorithm 10: LexLeq(2)
Data : (Xo, Xy,..., X-1), (Yo, Y1,...,Y, 1), Integer i
Result : GAC(X <, Y)

0 if entailed then return;

1 ifi=a A i+ 1=/ then

1.1 AC(X; <YD);

1.2 if max(X;) < min(Y;) then

1.2.1 entatled := true;
1.2.2 return;
end
end

2 ifi=a AN i+1<fthen
21 | AC(X; <Y));
2.2 if (i=~v—1 A maz(X;) =min(Y;) ) V mazx(X;) < min(Y;) then

2.2.1 entailed := true;
2.2.2 return;
end
2.3 if X; =Y, then UpdateAlpha(i+ 1);

end

4 if a <i <y then
4.1 if (i=~v—1 A maz(X;) =min(Y;) ) V mazx(X;) < min(Y;) then
4.1.1 ‘ UpdateGamma (i — 1);
end
end

Finally, we add line 0, where we return if the constraint was previously entailed. If the
constraint is entailed due to the latest modification at i, we catch this after AC. To avoid
running AC in such a case, we can repeat lines 1.2-1.2.2 and 2.2-2.2.2 before AC(X; <Y})
and AC(X; < Y}), respectively.

Initialisation and update of v require, in the worst case, a complete scan of the vec-
tors. Hence, the worst-case and amortised complexity of LexLeq remain O(nb) and O(b),
respectively.

5.4.3 Vector Disequality and Equality

Two vectors of integers ¥ = (xg,...,2,_1) and ¥ = (yo, ..., yn_1) are different T # ¢ iff

T <yez Y O Y <jep . Therefore, we can decompose a vector disequality constraint X +Y
by insisting that one of the vectors must be lexicographically less than the other:

—

X<lem? V }7<lemX

Most solvers will delay such a disjunction until one of the disjuncts becomes false (see
Chapter 5.5.2). At this point, we can enforce GAC on the other disjunct. As the following
theorem shows, such a decomposition hinders constraint propagation.

Theorem 18 GAC()Z =+ 17) 18 strictly stronger than X <lex Y VY <lex X, assuming
that GAC' is enforced on the delayed disjunctive constraint.
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Proof GAC(X { + 17') is as strong as its decomposition. To show strictness, consider

= ({0,1,2}) and Y = <{1}> where 1 in D(X,) cannot be extended to a consistent
as&gnment and therefore X #+ Y is not GAC. Since neither of X <lex Y and Y ez X is
false yet, the decomposition does not post any constraint, leaving the vectors unchanged.
QED.

Even though we cannot directly use strict lexicographic ordering constraint to prop-
agate the disequality constraint, we can slightly modify LexLess to obtain a filtering
algorithm for the disequality constraint. In this new algorithm, the pointer « is defined
as in Definition 27; but 3 now points to the most significant index in [«, n) starting from
which the vectors are ground and equal.

Definition 32 Given X and Y, 3 is set either to the index in la,n) such that:
(Vipg<i<n. X;=Y;) N =(Xp_1 =Ys9)

or (if this is not the case) to n.

As in the lexicographic ordering case, the constraint is disentailed if g = a.

Theorem 19 Given [ = «, X #+ Y is disentailed.

Proof: If § = « then the vectors are ground and equal, hence cannot be made different.
QED. .
Now we give the necessary condition for GAC on X # Y.

Theorem 20 Given 3> a, GAC(X #Y ) iff: AC(Xo #Y,) when = o+ 1.

Proof: (=) Assume X # Y is GAC but X, # Y, is not AC when 3 = a+1. Then there
is a value in D(X,) or D(Y,) with which we cannot achieve X, # Y, and the vectors can
be made different at only position . This contradicts that the disequality constraint is
GAC.

(<) If = a+ 1 then there is only one index, «, where the vectors can take different
values and hence differ. So AC(X, # Y, ) must be maintained for GAC on the disequality
constraint. Otherwise, if 5 > a+1 then the assignment X, <Y, or X, >Y, can always be
extended to a consistent assignment as in either case the vectors already take a different
value at a. Also, X, = Y, can be extended to a consistent assignment no matter what
the domains of the variables between o and 3 are. Even if X; =Y, foralla <i < g —1,
at 3 — 1 we have =(X3_; = Yj_4) since [ points to the most significant index. QED.

We can now easily modify LexLess based on the new definition of # and Theorem 20
so as to obtain a filtering algorithm LexDiff which either proves that X #+ Y is disentailed
or establishes GAC on X # Y.

Two vectors of integers & = (g, ...,2,_1) and § = (yo, ..., Y1) are equivalent & =
ift ¥ <i.p ¥ and ¥ <;p ©. Therefore, we can decompose a vector equality constraint
X=Y by insisting that each of the vectors must be lexicographically less than or equal
to the other:

X<V NY <p X
In this way, both of the constraints in the conjunction are posted (see Chapter 5.5.2). As
the following theorem shows, such a decomposition hinders constraint propagation.
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Theorem 21 G’AC()? = 17) is strictly stronger than G’AC()? <lex 17) and GAC(? <iex
X).

Proof: GAC()Z' = 17') is as strong as its decomposition. To show strictness, consider

= ({0,1,2}) and Y = ({O 2}) where 1 in D(Xj) cannot be extended to a consistent
as&gnment and therefore X = Y is not GAC. The constraints X <lex Y and Y <lex X
are both GAC. The vectors are thus left unchanged. QED.

We cannot therefore make use of lexicographic ordering constraint for enforcing GAC
on the vector equality constraint. On the other hand, another way of decomposing this
constraint eliminates the need of designing a new filtering algorithm. Two vectors & =
(o, .. Tp_1) and ¥ = (yo,...,Yn_1) are equivalent ¥ = y iff Ti = Yi for all 0 <1 < n.
We can therefore decompose a vector equality constraint X=Y by insisting that:

Vio<i<n. X;=Y,

As the following theorem shows, GAC on the vector equality constraint does the same
pruning as AC on this decomposition.

Theorem 22 GAC(X =Y ) is equivalent to AC(X; =Y;) for all 0 <i < n.

Proof: GAC()? = 17) is as strong as its decomposition. To show the reverse, suppose
that each of the constraints posted is AC but X = Y is not GAC. Then there is an
inconsistent value in the domain of a variable. In any assignment ¥ and ¥ to X and Y
with the variable assigned this inconsistent value, there is some index « in [0, n) such that
for all 0 <7 < o we have z; = y; and z, # y,. But this contradicts that AC(X, = Y,).
QED.

5.4.4 Vectors of Different Length

In Definition 13, we defined strict lexicographic ordering between two vectors of equal
length, and in Theorem 15 we stated the necessary conditions for GAC on strict lexico-
graphic ordering constraint posted on a pair of vectors of equal length. It is, however,
straightforward to generalise the definition and the theorem for two vectors of any, not
necessarily equal, length.

Definition 33 Strict lexicographic ordering ¥ <, §y between two vectors of integers & =
(20,1, s Tm_1) and § = (Yo, Y1, - -+, Yn_1) with m,n > 0 and k = min{m,n} holds iff
either of the following conditions hold:

I.k=m<n A <$07x17"‘7xk—1>§<y07y17"'7yk—1>

2. <Z’0,l’1, s 71:1671) <lex <y07 Y1, - - 7yk71>

In other words, we chop off to the length of the shortest vector and then compare. Either
Z is shorter than ¢ and the first m elements of the vectors are lexicographically ordered, or
Z is longer than or equal to ¥ and the first n elements are strict lexicographically ordered.
An example is (0,1,2,1,5) <jep (0,1,2,3,4) <o (0,1,2,3,4,5,5,5) <1 (0,1,2,4,3).

Based on this general definition, GAC on (Xg, X1,..., X;n 1) <jex (Yo, Y1,..., Y1) i8
either GAC on lexicographic ordering constraint or GAC on strict lexicographic ordering
constraint.
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Theorem 23 GAC((Xo, X1, ..y Xm-1) <tex (Y0, Y1,..., Yno1)) iff:
1. m<n—>GAC’((X0,X1,...,Xm_1> < <K),Yi7...,ym_1>)
2. m>n— GAC((X(],Xl, R ,Xn_1> <lex <YE],Y1, R ,Yn_1>)

We can now easily generalise the filtering algorithm LexLess based on this theorem.
If m < n then we just consider the first m variables of Y and maintain GAC on
(Xo, X1,y Xine1) <iex (Yo, Y1,...,Ym_1). If m > n then we just consider the first
n variables of X and run LexLess on (X0, X1,..., Xpn1) and (Yy,Y1,..., Y, q).

5.5 Alternative Approaches

There are at least two other ways of posting lexicographic ordering constraints: by posting
arithmetic inequality constraints, or by decomposing them into smaller constraints. In
this section, we study these alternative approaches in detail and argue why our filtering
algorithms can be preferable to them.

5.5.1 Arithmetic Constraint

To ensure that X <lex }7, we can post the following arithmetic inequality constraint
between the vectors X and Y whose variables range over {0,...,d — 1}:

AP X+ d s X 4+ X, <A Y+ d Y 4+ A,

This is equivalent to converting two vectors into numbers and posting an ordering on the
numbers. In order to enforce strict lexicographic ordering X <., Y, we post the strict
inequality constraint:

A Xg4+d s Xg 4+ A X <A Yo +d Y+ +d Y,

Maintaining BC on such arithmetic constraints does the same pruning as GAC on the
original lexicographic ordering constraints.

Theorem 24 G’AC()? <lex ?) and GAC’()? <lex }7) are equivalent to BC on the corre-
sponding arithmetic constraints.

Proof: We just consider GAC()Z' <lex )7) as the proof for GAC()Z <lex }7) is entirely
analogous. As X <ip Y and the corresponding arithmetic constraint are logically equiv-
alent, BC(X: <lex 37) and BC on the arithmetic constraint are equivalent. By Theorem 9,
BC()? <lew 17) is equivalent to GAC()Z' <lex }7) QED.

Maintaining BC on such arithmetic constraints can naively be achieved in O(ndc)
where n is the length of the vectors, d is the domain size, and c is the time required to
check that a particular (upper or lower) bound of a variable is BC. At best, ¢ is a constant
time operation. However, when n and d get large, d"~! will be much more than the word
size of the computer and computing BC will be significantly more expensive. Hence, this
method is only feasible when the vectors and domain sizes are small.
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5.5.2 Decomposition

Arbitrary arithmetic constraints can be combined by traditional logical connectives (A, V, —
, <, and =) to build complex logical constraint expressions. We can therefore compose
simple arithmetic constraints between the variables of X and Y by using logical connec-
tives so as to obtain the lexicographic ordering constraint between X and Y. We refer to
such a logical constraint as a decomposition of the lexicographic ordering constraint.

There are at least two ways of decomposing a lexicographic ordering constraint X <pew
Y. The first decomposition, which we call A decomposition, is a conjunction of n — 1
constraints:

Xo <Yy, A
Xo=Yo—=X;<Y; A
Xo=Yo AN X1=Y1 =Xy <Yy A

Xo=Yo N Xi=Y1 A ... N X, 2=Y, =X, 1 <Y,

That is, we enforce that the most significant bits of the vectors are ordered and if the
most significant bits are equal then the rest of the vectors are lexicographically ordered. In
order to decompose the strict lexicographic ordering constraint X <jex }7, we only need to
change the last conjunctionto Xo =Ygy A X;=Y1 A ... AN X, o=Y, o= X, 1 <Y, 1.

The second decomposition, which we call V decomposition, is a disjunction of n — 1
constraints:

Xo<Yy V
Xo=Yy A X1 <Y; V
Xo=Yo A X\1=Y1 A Xo<Ys V

XOZYE) A XIZX/I ANEEA Xn—QZYn—2 A Xn—lSYn—l

That is, we enforce that either the most significant bits of the vectors are strictly ordered
or the most significant bits are equal and the rest of the vectors are lexicographically
ordered. For strict lexicographic ordering, it suffices to change the last disjunction to
Xo=Yo AN Xi=Y1 AN ... N X, 2=Y, o AN X,_1 <Y, 1.

The declarative meaning and the operational semantics of the logical constraints that
we here consider are:

e (7 A (5 Both constraint expressions C and Cy are true. Hence, both C; and Cy
are imposed.

e (1 V(5 At least one of the constraint expressions C; and Cj is true. Hence, if one
of C or Cy becomes false, the other constraint is imposed.

e ('} — (5: The constraint expression C' implies the constraint expression Cy. Hence,
if C'; becomes true then Cs is imposed. If Cy becomes false then the negation of
(' is imposed.

Assuming that AC is enforced on a binary constraint whenever it is imposed, the two
decompositions are inferior to maintaining GAC on X <., Y and they are themselves
incomparable with respect to the inconsistent values being removed.
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Theorem 25 GAC(X <., Y) and GAC(X <00 Y) are strictly stronger than the corre-
sponding N\ and N decompositions. Moreover, the two decompositions are incomparable.

Proof: We only consider GAC()Z' <lex }7) but the proof works also for GAC(X' <lew }7)
Since X <., Y is GAC, every value has a support. The vectors Z and ¢ supporting a
value are lexicographically ordered (Z' <, ). By Definition 14, either ¥ = ¢ or there
is an index k in [0,n) such that z; < y; and for all 0 < ¢ < k we have z; = y;. In
either case, all the constraints posted in either of the decompositions are satisfied. That
is, every binary constraint imposed in the decompositions is AC. Hence, GAC(X <lex 37)
is as strong as any of its decomposition.

Consider X = ({0,1},{1}) and Y = ({0, 1}, {0}) where X <o, Y is not GAC. The A
decomposition imposes both of Xy < Yy and Xy = Yy — X7 < Y. We have AC(X, < Yp).
Since X7 < Y] is false, Xy # Y is enforced. We have AC(Xy # Y;) so no pruning is
possible. The V decomposition, however, imposes Xy < Yy because Xg =Y, A X; <Y;
is false. This removes 1 from D(X,) and 0 from D(Yp).

Now consider X = ({0,1,2},{0,1}) and ¥ = ({0,1},{0,1}) where X <;, Y is not
GAC. The A decomposition removes 2 from D(X,) by AC(X, < Yj). The vV decomposi-
tion, however, leaves the vectors unchanged since neither Xy < Yy nor Xg =Yy A X; <Y1
is false yet.

Due to the fact that the A decomposition does a pruning that is not done by the V
decomposition and vice versa, the two decompositions are incomparable. QED.

The two decompositions together behave similarly to the filtering algorithm of the lex-
1cographlc orderlng constraint: they either prove that X <4, Y is disentailed or establish
GAC(X <lex Y). However, this requires posting and propagating too many constraints.
Considering that posting a single global constraint requires propagating only one con-
straint, we expect our approach to be the most efficient way of solving the lexicographic
ordering constraint. Indeed, our experimental results in Section 5.9.1 confirm this expec-
tation.

Theorem 26 The N\ and V decomposztwn ofX <lex Y together either prove that X <lex
Y is disentailed, or establish GAC’(X <lex Y).

Proof: Consider the A decomposition. If o = [ then either min(X,) > maxz(Y,), or
there exists an index k in (a,n) such that min(Xy) > maz(Y;) and for all a < i <
k we have min(X;) = maxz(Y;). In the first case, the constraint X, = Yy A X; =
Yi AN oo AN X1 =Y, 1 — X, <Y, is false. In the second case, the constraint
Xo=YoANXi=Y1 AN ... N Xjy_1 =Y 1 — X <Yiis false because for all « <1 < k
we get X; = Yduetotheconstralnth YoANXi =Y A ...ANX =Y 1 - X; <Y,
In any case, X <lex Y is disentailed. This is correct by Theorem 8. If, however, a < 3
then the constraint Xo =Yy A Xi=Y1 A ... AN X1 =Y,_1 — X, <Y, makes sure
that AC(X, < Y,). Now consider the V decomposition. If § = « then all the disjuncts
of the decomposition are false, so X <lex Y is disentailed. This is correct by Theorem
8. If § = a+ 1 then each of the disjuncts but Xg =Yy A Xi=Y1 A ... AN X1 =
Yoo1 N X, <Y, is false. This makes sure that AC(X, <Y,). Given § > «, we have:

e f=a+1—- AC(X,<Y,)
e f>a+1— AC(X, <Y,)

By Theorem 9, we have GAC(X <lex }7) QED.
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Theorem 27 The A\ and V decomposztzon ofX <lew Y together either prove that X <lex
Y is disentailed, or establish GAC(X <lex Y).

Proof: We only need to consider the cases f =n and §<n A VG <i<n.min(X;) =
max(Y;), as for the remaining cases the proof of Theorem 26 proves also this theorem.

Assume 3 = n. Consider the A decomposition. We either have o +1 = § = n or
a+1 < f =n. In the first case, the constraint Xo =Yy, A X;=Y1 A ... A X, », =
Y, o — X,,_1 < Y,_1, which is the last constraint of the conjunction, makes sure that
AC(X, <Y,). In the second case, the constraint Xo =Yy A X3 =Y A ... A Xo 1 =

Y, 1 — X, <Y, makes sure that AC(X, <Y,).
Now assume 5 < n AVfS <i < n.min(X;) = max(Y;). Consider the A decomposition.

If « = 3 the constraint Xo = Yy A X1 =Y1 A ... /\ X2 =Y, s — X,1 <
Y, 1 is false because for all @« < i < n —1 we get X; = Y, due to the constraint
Xo=Yy AN Xi=%" AN ... N Xs1=Y_ 1> X, <Y, HenceX<lexY1s
disentailed. This is correct by Theorem 8. If, however, a < 3 then the constraint
Xo=Yo N Xi=Y1 A ... AN Xy1 =Y, 1 — X, <Y, makes sure that AC(X, <Y,).

Now consider the Vv decomposmon If 5 = « then all the disjuncts of the decomposition
are false, so X <lex Y is disentailed. This is correct by Theorem 8. If § = a4+ 1 then
each of the disjuncts but Xo =Yy A Xi=Y1 A ... A Xo1 =Y, 1 A X, <Y, is
false. This makes sure that AC(X, < Y,).

Given 3 > «, whether 3 =n or § < n, we have:

e f=a+1— AC(X, <Y,)
e f>a+1— AC(X, <Y,)

By Theorem 15, we have GAC()Z' <lew }7) QED.

5.6 Multiple Vectors

We often have multiple lexicographic ordering constraints. For example, we post lexi-
cographic ordering constraints on the rows or columns of a matrix of decision variables
because we want to break row or column symmetry. We can treat such a problem as a
single global ordering constraint over the whole matrix. Alternatively, we can decompose
it into lexicographic ordering constraints between adjacent or all pairs of vectors. In this
section, we demonstrate that such decompositions hinder constraint propagation.

The following theorems hold for n vectors of m constrained variables.

Theorem 28 GAC()Z,» <lex X}) for all0 < 1 < j < n—1 s strictly stronger than
GAC(X; <o Xi1) for all 0 <i <n—1.

Proof: GAC()_Q <lex )ZJ) forall 0 <i < j <n—1is as strong as GAC()ZZ» <lex )ZM)
for all 0 < i < n — 1, because the former implies the latter. To show strictness, consider
the following 3 vectors:

Xo = <{071}7 {1}7 {071}>
X, = <{071}7 {0’1}’ {071}>
Xy = <{0> 1}7 {O}’ {07 1}>
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We have GAC()Z'Z- <lex Xi+1) for all 0 < i < 2. For the vectors X, and )(72, we have
B =a+1but X, <iex X2 is not AC. Therefore, GAC(Xy <je; X32) does not hold.
QED.

Theorem 29 G’AC(X}- <lex XZ) for all 0 < i < j < n—1 is strictly stronger than
GAC()Z,» <lew Xi+1) forall0 <i<n-—1.

Proof: The example in Theorem 28 shows strictness. QED.

Theorem 30 GAC(Vij 0 < i < j < n-—1. X <ie X]) s strictly stronger than
GAC(X; <jex X;) for all 0 <i<j<n—1.

Proof: GAC(Vij 0<i<j<n-—1. X, <iew X}) is as strong as GAC()?Z- <lew )?]) for
all 0 <17 < j <n—1, because the former implies the latter. To show strictness, consider
the following 3 vectors:

Xo = <{071}7 {071}7 {1}7 {0’1}>
X, = <{071}a {071}7 {0}7 {1}>
Xy = <{07 1}’ {07 1}7 {O}v {O}>

We have GAC()Z} <lex XZ) for all 0 < i < j < 2. The assignment Xy < 1 is supported
by Xo = <{1}7_»{0}7 {1}_3 {07 1}>’ X1 = <{1}’ {1}’ {0}’ {1}>7 and X, = <{1b {1}7 {q}’ {O}>
In this case, X; <jp Xo is false. Therefore, GAC(Vij 0 <i < j <2. X; <jp X;) does
not hold. QED.

The example in Theorem 30 corrects a mistake that appears in [FHKT02]: GAC(Vij 0 <
1< j<n-—1. X, <ien XZ) is strictly stronger than GAC()Z]- <lex X}) for all
0<i<j<n-—1even for 0/1 variables.

Theorem 31 GACMij 0 < i < j <n-—1. )21 <lex )2]) 15 strictly stronger than
GAC(X} <lew )_(i,) forall0<i<j<mn-—1.

Proof: The example in Theorem 30 shows strictness. QED.

5.7 Lexicographic Ordering with Variable Sharing

LexLeq has been designed based on Theorem 9 which assumed that the variables in the
vectors are all distinct, i.e. a variable in a vector is not repeated in any of the vectors.
In this section we consider the case when there is at least one variable in a vector that
occurs more than once in any of the vectors.

When do we have vectors with shared variables? As an example, consider the row and
column symmetries of an n X m matrix. A way to break all such symmetry is to add one
constraint for each symmetry [CGLR96]. Consider a 2 x 2 matrix X of variables:

Xo Xi
X2 X3

which we represent as a vector (Xo,..., X3). The complete set of symmetry breaking
constraints is composed by imposing X < X', where X’ is a matrix obtained by permuting
the rows and/or columns of X:
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<X07 X17 X27 X3> Slex <X27 X?n XO) X1>

<X07X17X27X3> Slex <X17X07X37X2>
(Xo, X1, X2, X3) <jer (X3, Xo, X1, Xo)

In each of the constraints above, there are 4 variables shared between the vectors con-
strained to be lexicographically ordered.

Why is LexLeq weak when there are shared variables? The fact that X, =Y, is a
consistent assignment when 3 > « 4+ 1 may not be valid anymore in this new context.
Consider the vectors:

(o, {0}, {1}

({01}, {01}, {0})
la 13

and the constraint X <lex Y. We have B > a+ 1 and AC(X, < Y,). Assuming
that the variables are not shared, the assignment X, = Y, < 0 is supported by ¥ =
(0,0,1) <jere ¥ = (0,1,0). Now assume that Yy and Y] are shared. By X, =Y, < 0, we
get X — (0,0,1) and Y — (0,0,0), which violates X <e Y . So AC(X, <Y,) must be
enforced.

=<y

5.7.1 Remedy

Assume o+ 1 < § < n and AC(X, <Y,). If there is a variable in the range [, ) of any
of the vectors which is shared by only some variables in [3,n), then the support of the
assignment X, = Y, remains valid. This may not be the case if a variable in the range
[, 3) is shared by some variables in the same range. The assignment X, = Y, might not
be supported anymore as shown above.

So what can we do? We start by slightly changing the definition of a: for all 0 <17 < «
we have either X; =Y, or X; =Y (shared), and at o we have =(X, =Y,) and X, # Y,
(not shared). After setting the values of o and (3, given that § > a + 1 we first establish
AC(X, <Y,). Assume we still have =(X, =Y, ). We verify that X, =Y, is a consistent
assignment by propagating the support gained from every variable to those shared by the
variable. Let us illustrate this on an example. Consider the vectors:

(0,1}, {1}, {0,1}, {0,1}, {0,1}, {1})
<{$71}, {01}, {0}, {1}, {01} {TO?

where Y], X3, and X, are shared (indicated by a %), as well as X5 and Y} (indicated by a
%). We have =5, a =0, AC(X, <Y,) and =(X, = Y,). We maintain two vectors sk
and sy of length § — a — 1 where we will place the support we are looking for by taking
into account the shared variables.

=<y

st = <—’ - - —>
= )
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Since X, and Y, are not shared by any other variables, we look for a support for the
assignment X, = Y, without having to know what value is assigned to these variables.

We start at o+ 1 where the only support for X, =Y, is X1 = Y11 < 1. We place
this support on st and sy taking into account the shared variables.

* * *

st o= (1, , 1, 1)
sy = (1, o 5 )
* *

We move to a + 2. The only support is X,12 = Y, 40 < 0. Considering the shared
variables we get:

%
s¢ = (1, 0, 1, 1)
sy = (1, 0, ., 0)
* *
At a + 3, the support is Xy13 = Y13 < 1.
%

—_
= *

s¢ = (1, 0, 1,
sp = (1, 0, 1, 0
* *

Since we have now st >, sy, the assignment X, = Y, lacks support. We thus enforce
AC(X, <Y,) on the original vectors.

5.7.2 An Alternative Filtering Algorithm

A filtering algorithm for X <, Y in the presence of shared variables is given in Algorithm
11. This algorithm is similar to the original algorithm LexLeq except for the case i = «
and ¢ + 1 < B. Note that at a we have X, # Y, (not shared).

In addition to the original steps of LexLeq in lines 2.1 and 2.2, we add lines a-k to
the case when i = a A i+ 1 < . If maz(X,) < max(Y,) after executing line 2.1 then
every value a in D(X,) has a support in D(Y,) which is greater than a. Similarly, if
min(X,) < min(Y,) then every value a in Y, has a support in D(X,) which is less than
a. Variable sharing is irrelevant when maz(X,) < max(Y,) and min(X,) < min(Y,),
and therefore the algorithm returns in line a.

If, however, max(X,) = mazx(Y,) then maz(X,) is supported by only maz(Y,) in
D(Y,), therefore we need to make sure that the assignment X, = Y, «— maz(X,) is
consistent. Similarly, if min(X,) = min(Y,) then min(Y,) is supported by only min(X,)
in D(X,), therefore we need to verify that X, =Y, < min(X,) is consistent. We start
by checking in line b whether there is at least one variable in [, min{n, 3}) being shared
by another variable within the same interval. If there is not then we are done. Otherwise,
we start seeking support for the assignment X, = Y, in the subvectors )_(’aﬂamm{nﬁ},l
and ?aﬂ_,mm{nﬂ}_l (lines c-k).

We distinguish between two cases. First, if X, and Y, are not shared by any other
variables in [a + 1, min{n, 5}) then we do not need to know the value assigned to these
variables while seeking support for the assignment X, = Y, (lines c-e). Second, if any of
X, and Y, is shared in [a+ 1, min{n, 5}) then we need to know whether we seek support
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Algorithm 11: LexLeq(2)
Data : (Xo, Xy,..., X-1), (Yo, Y1,...,Y, 1), Integer i

Result : GAC(X <, Y)

2 ifi=a A i+1<then

2.1 AC(X; <Y));
2.2 if X; =Y, then UpdateAlpha(i+ 1);
a if max(X;) < mazx(Y;) A min(X;) < min(Y;) then return;
b if there are shared variables in [i, min{n,5}) then
c if X; andY; are not shared in [i + 1, min{n, 3}) then
d if =SeekSupport(—1) then

end

else

if maz(X;) = max(Y;) then
g if —SeekSupport (maz(X;)) then
h ‘ NC(X; < max(X;));

end

end
i if min(Y;) = min(X;) then
i if —SeekSupport (min(Y;)) then
k ‘ NC(Y; > min(Y;));

end
end
end
end

end

for X, =Y, < max(X,) (lines f-h) or for X, =Y, < min(X,) (lines i-k). In the first
case, we pass —1 to SeekSupport. If no support is found for X, =Y, (line d) then we
enforce AC(X, < Y,) in line e. In the second case, we pass maz(X,) to SeekSupport.
If no support is found for X, =Y, < max(X,) (line g) then we decrease max(X,) by
maintaining node consistency on X, < maz(X,) via the call NC (line h). Similarly, after
passing min(X,) to SeekSupport, if no support is found for X, =Y, «— min(X,) (line
j) then we increase min(Y,) (line k).

We call SeekSupport for constructing a pair of vectors Sz and qu to check whether
the assignment X, =Y, is supported. The input value is —1 if the value assigned to X,
and Y, is irrelevant. Otherwise, value is either maxz(X,) or min(X,).

These vectors are of length Limit — 1 — o, where Limit is § when 3 < n, but is n
When (8 = oo. To be able to propagate the values assigned to shared varlables Sz and
Sy are vectors of variables, and are the copies of the original vectors Xa+1—> Limit—1 and
YQH_) Limit—1- S0, whenever we assign a value to one of the variables in Sz and Sy, the
same value will be assigned to the shared variables. Lines 1-3 construct the vectors.

We assign values to Sx; and Sy; starting from a + 1 as follows. At i, if Sz; is not
yet ground and X; is shared by any of X, and Y, (lines 6-7), then we assign Sz; either
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Procedure Boolean SeekSupport (value)

1 Limit .= (3,
2 iquimit >n the_I} Limit := n; . .
3 (STati—Limit—1, SYas1—rLimit—1) = copyterm((Xat1-Limit—1, Yat1—Limit—1));
4 :=a+1;
5 while ¢ < Limit do
6 if value # —1 N —Bound(Sz;) then
7 lez:Xa V Xi:Ya then
8 ‘ Sz; « value;

end

end

9 if value # —1 N —-Bound(Sy;) then
10 ifY;=X, vV Y,=Y, then
11 ‘ Sy; — value;

end

end
12 if -Bound(Sz;) then Sz; — min(X;);
13 if “Bound(Sy;) then Sy; «— maz(Y;);
14 if Sx; < Sy; then return true;
15 if Sz; > Sy; then return false;
16 if Sz; = Sy; then i := i+ 1;
end

17  return(Limit = n);

max(X,) or min(X,) in line 8 depending on the input value. On the other hand, if Sz;
is not yet ground and X; is not shared by any of X, and Y, (line 12), then we assign
min(X;) to Sxz;. This is the best support we can get from X;. In lines 9-11 and 13, we
repeat a similar procedure for Sy; except that we assign maz(Y;) if Sy; is not yet ground
and Y; is not shared by any of X, and Y, (line 13).

Finally, we either return true if Sx; < Sy; (line 14), or return false if Sxz; > Sy; (line
15), or continue if Sz; = Sy; (line 16). At the end of the vectors (line 17), we return true
if 3> n but false otherwise.

Procedure SeekSupport runs in time O(n) in the worst case. Checking whether there
are any shared variables in [a, min{n,3}) can also be done in time O(n) by scanning
a data structure in linear time which records which variables are shared. Hence, the
worst-case complexity of LexLeq remains O(nb).

5.8 Related Work

The ECLiPSe constraint solver [WNS97| provides a global constraint, called lexico_le,
for imposing lexicographic ordering constraint on two vectors. It is not documented in
[ECLO03] what level of consistency is enforced with this constraint. With some experimen-
tation, we believe that lexico_le is stronger than each of the decompositions discussed in
Section 5.5.2. For instance, X = ({0,1},{1}) A Y = ({0,1},{0}) A lexicole(X,Y)
gives X = ({0},{1}) and Y = ({1}, {0}) but the A decomposition leaves the vectors un-

—

changed. Likewise, X = ({0,1,2},{0,1}) A Y = ({0,1},{0,1}) A lexicole(X,Y) gives
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X = ({0,1},{0,1}) and Y = ({0,1},{0.1}) but the V decomposition leaves the vectors
unchanged. On the other hand, lexico_le(X , 37) does not maintain GAC on X <lew Y.
For instance X = ({0,1},{0,1},{1}) A Y = ({0,1},{0},{0}) A lexicole(X,Y) leaves
the vectors unchanged, even though X <lex Y is not GAC.

An alternative way of propagating a global constraint is to pose a set of constraints
as opposed to designing a special-purpose filtering algorithm. This approach is referred
to as constraint encoding and amounts to simulating the behaviour of an algorithm by
enforcing an appropriate level of consistency on the posted constraints. The success of
such an approach was demonstrated in [GIMT01] by showing that arc-consistency on
the CSP representation of the stable marriage problem gives reduced domains which are
equivalent to the GS-lists produced by the Extended Gale-Shapley algorithm.

Following this line of research, an encoding of the lexicographic ordering constraint by
Gent et al. is described in [GPS02]. Firstly, they assume that the vectors X and Y are
indexed from 1 to n, and introduce a new vector « of 0/1 variables indexed from 0 to n.
The intended meaning of « is that:

o ifa; =1then X; =Y, forall 1 <j <vq;
o if Q1 = 0 but a; =1 then Xi+1 < Y;_;,_l.

Secondly, they pose the following constraints:

ap =1 (5.1)

Vio<i<n-—1. a;=0— a1 =0 (5.2)
Vil<i<n. a=1—X,=Y,; (5.3)
Vio<i<n-—1. a;=1AN a1 =0— X;11 <Yy (5.4)
Vio<i<n-—1. a=1— X1 <Y (5.5)

If strict lexicographic ordering between the vectors is wanted then it suffices to add o, = 0.
Warwick Harvey suggests another encoding [Har02]. To ensure X <;., Y, he poses:

1=(Xg<Yo+ (X; <Vi+ (ot (Xnq<Ypq+1).))

A constraint of the form (X; < Y; 4+ B) is reified into a 0/1 variable and it is interpreted
as X; < (Y; + B). Strict ordering is achieved by posting:

L= (X1 <Yi+ (Xo < Yot (o + (Xp <Y +0).))

which disallows X,, =Y, in case the vectors are ground and equal until the last index.
Both of the encodings were proposed in knowledge of our algorithm LexLeq and they
simulate the behaviour of LexLeq. Whenever a = 3, the posted constraints fail. If
8 >a+1then X, <Y, but if 3 = a+ 1 then X, < Y, is enforced. Assuming that
arc-consistency is established on X, <Y, and X, <Y, , we get GAC on X <lex Y. The
advantage of such an approach is that we can avoid special-purpose filtering algorithms
and instead rely on the existing and more general filtering algorithms. On the other hand,
as our experimental results in Section 5.9.2 show, the introduction of extra variables and
constraints may result in a less efficient way of propagating the constraint. Hence, a
specialised algorithm might be the most efficient way of posting and solving a constraint.
Subsequent to [FHK'02], an alternative filtering algorithm for the lexicographic or-
dering constraint, which is derived from a finite automaton operating on a signature of
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X <i. Y, is presented by Carlsson and Beldiceanu in [CB02b]. The algorithm main-
tains generalised arc-consistency or detects (dis)entailment, and runs in linear time for
posting plus amortised constant time per propagation event. Both our algorithm and the
algorithm of Carlsson and Beldiceanu record the position of the vectors above which the
vectors are ground and equal as « and ¢, respectively. There is, however, no counterpart
of 8 in the latter algorithm. In a following report, Carlsson and Beldiceanu introduce a
new global constraint, called lex_chain, for imposing lexicographic ordering constraints
on a chain of vectors [CBOQa] The ﬁlterlng algorithm is derived from a finite automaton
operating on a signature of l <lex X <lex W where X, is a vector in the chain, and l
and w; are the feasible lower and upper bounds of X,. Every time the constraint is propa-
gated, feasible upper and lower bounds are computed for each vector in the chain and then
the vectors are pruned with respect to the corresponding bounds. Given m vectors, the
algorithm maintains generalised arc-consistency or detects (dis)entailment, and runs in
time O(nmd) where d is the cost of necessary domain operations. As Theorem 30 shows,
such an algorithm can yield more pruning compared to propagating lexicographic order-
ing constraints between adjacent or every pair of vectors in the chain. Unfortunately, no
experimental results are provided in [CB02a] to show the benefits of lex_chain. We have
therefore conducted some experiments to judge how much more propagation in practice
is achieved with this new global constraint. Our results indicate no gain in the amount
of constraint propagation. For a detailed discussion, see Chapter 6.9.

5.9 Experimental Results

We implemented our global constraints <;., and <, in C4++ using ILOG Solver 5.3
[ILO02]. The global constraints encapsulate the corresponding filtering algorithm that
either maintains GAC on (strict) lexicographic ordering constraint or establishes failure
at each node of the search tree.

We performed a wide range of experiments to compare our global constraints with (1)
the alternative ways of posing lexicographic ordering constraints which are presented in
Section 5.5; (2) the constraint encodings of lexicographic ordering constraints which are
presented in Section 5.8. The experiments are done using some of the problems discussed
in Chapter 3, in which we either look for one solution or the optimal solution. Each of the
problems can be modelled by matrices of decision variables where the rows and /or columns
are (partially) symmetric. We can therefore pose lexicographic ordering constraints on
the corresponding rows and/or columns to break much of this symmetry.

The results of the experiments are shown in tables where a “-” means no result is
obtained in 1 hour (3600 secs). Whilst the number of choice points gives the number of
alternatives explored in the search tree, the number of fails gives the number of incorrect
decisions at choice points. The best result of each entry in a table is typeset in bold. If
posing lexicographic ordering on the rows is done via a technique called T'ech then we write
Tech R. Similarly, posing lexicographic ordering on the columns using Tech is specified
as Tech C, and on the rows and columns as T'ech RC. In theory posing lexicographic
ordering constraints between every pair of rows (similarly for columns) leads to more
pruning than posing between adjacent rows (see Section 5.6). We could not see any
evidence of this in practise, therefore lexicographic ordering constraints are enforced just
between the adjacent rows.

The experiments are conducted using ILOG Solver 5.3 on a 1Ghz pentium III processor
with 256 Mb RAM under Windows XP.
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Instance | Host Boats Total Host Total Guest | %Capacity

# Spare Capacity Size

1 2-12, 14, 16 102 92 90
2 3-14, 16 100 90 .90
3 3-12, 14, 15, 16 101 91 .90
4 3-12, 14, 16, 25 101 92 91
5 3-12, 14, 16, 23 99 90 91
6 3-12, 15, 16, 25 100 91 91
7 1, 3-12, 14, 16 100 92 92
8 3-12, 16, 25, 26 100 92 .92
9 3-12, 14, 16, 30 98 90 .92

Table 5.1: Instance specification for the progressive party problem.

5.9.1 Comparison with Alternative Approaches

We designed some experiments to test two goals. First, does our filtering algorithm(s) do
more inference in practice than the A and V decompositions? Similarly, is the algorithm
more efficient in practice than the decompositions? Second, how does our algorithm
compare to combining the decompositions, and BC on the arithmetic constraint? We
propagate the arithmetic constraint via IloScalProd which maintains BC on the scalar
product of two vectors.

We tested our global constraints on three problem domains: the progressive party
problem, the template design problem, and the balanced incomplete block design problem.

Progressive Party Problem This was introduced in Chapter 3.2.5. In Figure 3.10,
one way of modelling the problem is given. The time periods as well as the guests with
equal crew size are indistinguishable. Hence, this model of the problem has partial row
symmetry between the indistinguishable guests of H, and column symmetry.

Due to the problem constraints, no pair of rows/columns can be equal. Given a
set of indistinguishable guests {gi, git1,...,9;}, we break the partial row symmetry by
enforcing that the rows corresponding to such guests ﬁi,ﬁiﬂ, e ,RZ- are strict anti-
lexicographically ordered: ]% >lex ﬁiﬂ e e RZ As for the column symmetry, we
enforce that the columns 670, 671, e ,ﬁp_l corresponding to the p time periods are strict
anti-lexicographically ordered: C_"O >lew 61 e Sler C_"p_l. We enforce the lexicographic
ordering constraints either by using our filtering algorithm LexLess or the various alter-
native approaches.

We consider several instances of the progressive party problem, including the one
mentioned in Chapter 3.2.5. We randomly select 13 host boats in such a way that the
total spare capacity of the host boats is sufficient to accommodate all the guests. Table
5.1 shows the data. The last column of Table 5.1 gives the percentage of the total capacity
used, which is a measure of constrainedness [Wal99].

As in [SBHWO6], we give priority to the largest crews, so the guest boats are ordered
in descending order of their size. Also, when assigning a host to a guest, we try a value
first which is most likely to succeed. We therefore order the host boats in descending
order of their spare capacity. In terms of variable ordering, we use smallest-domain first
principle and choose next the variable that has the smallest domain size.
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Inst. LexLess RC A RC VvV RC

# Fails Choice  Time Fails Choice  Time | Fails Choice Time
points  (secs.) points  (secs.) points  (secs.)

1 446 538 0.8 - - - - - -

2 445 557 0.9 445 557 1.1 - - -

3 2,380 2,489 2.1 3,651 3,766 2.9 - - -

4 459 569 0.9 - - - - - -

5 443 554 1.0 443 554 1.1 - - -

6 8,481 8,598 5.7 604 721 1.4 - - -

7 782 892 1.2 - - - - - -

8 33,849 33,951 15.5 773 885 1.3 - - -

o* 211,075 211,171 112.2 | 213,472 213,568 149.0 - - -

Table 5.2: Progressive party problem: LexLeq vs A and V decompositions.

Instance LexLess RC AV RC
# Fails Choice  Time Time
points  (secs.) | (secs.)
1 446 538 0.8 1.1
2 445 557 0.9 1.2
3 2,380 2,489 2.1 3.0
4 459 569 0.9 1.1
) 443 554 1.0 1.2
6 8,481 8,598 5.7 8.0
7 782 892 1.2 1.5
8 33,849 33,951 15.5 21.0
9* 211,075 211,171 112.2 155.0

Table 5.3: Progressive party problem: LexLeq vs A V decomposition.

The results of the experiments are shown in Tables 5.2 and 5.3. Note that all the
problem instances are solved for 6 time periods. One exception is the last instance,
indicated by a “*”’, as none of the approaches could solve this instance within an hour
time limit for 6 time periods. We therefore report results for 5 time periods for this
instance of the problem.

According to the results in Table 5.2, LexLess is superior to the V decomposition:
none of the instances could be solved within an hour by the V decomposition. However,
it is difficult to judge which one of LexLess and the A decomposition is superior to the
other. LexLess solves instances 1, 4 and 7 very quickly, but the A decomposition fails
to return an answer in one hour. Also, instances 3 and 9 are solved with less failures by
LexLess. On the other hand, A decomposition is superior to LexLess for instances 6 and
8. No difference in the size of the search tree is observed for instances 2 and 5. Note
that, even though GAC on X <o Y is strictly stronger than the A decomposition of
X <iew 37, maintaining the latter at every choice point may lead to a smaller search tree
than maintaining the former due the dynamic nature of the variable ordering.

In Table 5.3, we compare LexLess with combining the decompositions. Even though
the same search tree is explored by the two, LexLess is more efficient especially on rather
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Slots per | Variations Order Quantities (/1000)
Template
42 30 60, 60, 70, 70, 70, 70 .70, 70, 70, 80, 80,

80, 80, 90, 90, 90, 90, 90, 90, 100, 100,
100, 100, 150, 230, 230, 230, 230, 280, 280

Table 5.4: The data for the herbs problem in [PS98].

difficult instances 8 and 9. Note that posing the arithmetic constraint is not feasible for
this problem, as the largest coefficient necessary is 132, which is larger than 23!, the
maximum integer size allowed in Solver 5.3.

In summary, for the progressive party problem, posing the arithmetic constraint is
not feasible for the instances that we considered. With the dynamic labelling heuristic
that chooses next the variable with smallest domain size, LexLess is clearly superior to V
decomposition. We, however, observe that the A decomposition could give either smaller
or larger search trees than LexLess. By combining the decompositions, we achieve the
same pruning as LexLess but this may result in longer run-times.

Template Design Problem This was introduced in Chapter 3.2.2. In Figure 3.4,
one way of modelling the problem is given. In this model the templates, as well as the
variations with equal demands are indistinguishable. Hence, this model of the problem
has symmetry between the variables of Run, and partial row symmetry between the
indistinguishable variations of T'. Note that there is also partial column symmetry between
the templates of T" with equal pressings, but this will not be considered here.

Given a set of indistinguishable variations {v;, v;11,...,v;}, we break the partlal row
symmetry by enforcing that the rows Correspondlng to such variations RZ, RZ+1, ceey Rj
are lexicographically ordered: R <lex Rz-‘,—l v Zlex R We enforce the lexicographic
ordering constraints between the indistinguishable variations of T by either using our
filtering algorithm LexLeq or the various alternative approaches.

We consider an instance of the template design problem, which is the herbs problem
[PS98], where herb cartoons for a variety of herbs are to be printed on templates. The spec-
ification of the problem is in Table 5.4. We extend the basic model given in Chapter 3.2.2
by taking into account the additional constraints proposed in [PS98]. These constraints
are (1) the symmetry breaking constraints which distinguish between the templates:

Vio<i<t—1. Run; <j; Run;i,
and between the variations with equal demands when ¢ = 2:
Vi0<j<v—1.dj=du A To;<Tojs1 — Tig> Tijer
(2) the “pseudo-symmetry” breaking constraints:

Vio<j<wv—1.dj <dj1 — Z Run; x T ; < Z Run; T j 41
1€T emplates 1€T emplates
(3) the implied constraints which provide an upper bound on the cost function:

V7 € Variations . Z Run; x T; j — d; < Surplus

i1€T emplates
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t | Goal LexLeq R AR vV R
Fails Choice Time | Fails Choice Time | Fails Choice Time
points  (secs.) points  (secs.) points  (secs.)
2| find 22 49 0.1 22 49 0.2 22 49 0.2
prove | 49 49 0.1 49 49 0.2 49 49 0.2

3| find 5 52 0.1 | 18,285 18,341 7.3 18,786 18,842 9.0
prove || 52 52 0.1 | 18,341 18,341 7.3 18,842 18,842 9.0

4 | find 6 70 0.1 - - - - - _
prove | 70 70 0.1 - - - - - -

5| find 4 77 0.1 - - - - - _
prove | 77 77 0.1 - - - - - -

Table 5.5: Herbs problem with 10% over- and under-production limit: LexLeq vs A and
V decompositions.

VEO<k<n-—1. Z( Z Runi*ﬂd—dj)SSurplus

0<j<k \i€Templates

(4) the implied constraints on the number of pressings when ¢ = 2:

Rungy < Z Run; /2

1€T emplates

Run, > Z Run; /2

i€T emplates

and when t = 3:
Rung < Z Run;/3

€T emplates

Run, < Z Run;/2

€T emplates

Rung > Z Run;/3

1€T emplates

where we have t = |Templates|, v = |Variations|, and Surplus = Run;*s*—

i1€7T emplates
ZjEVariations dj :

As for labelling heuristic, we adopt the static variable ordering proposed in [PS98|:
we first label the variations of T', and then the variables of Run.

As in [PS98], we first specify that the over-production of any variation can be at most
10%. With this constraint, there is no solution with 2 templates, and this is trivially
proven by all the approaches and LexLeq in 36 fails 0.1 seconds. Removing this restriction
makes the problem very difficult. A solution with cost 89 is found in 109,683 fails around
23 seconds by LexLeq, the A decomposition and the arithmetic constraint, but all of them
fail to prove optimality within an hour. Changing the labelling heuristic by assigning first
the Run variables and then the variations of T  helps to find and prove a solution for 2
templates with cost 87, but does not help to find a solution for 3 templates within an
hour even with the restricted over-production of 10%.
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t | Goal LexLeq R V A R | Arithmetic Constraint R
Fails Choice Time | Time Time
points  (secs.) | (secs.) (secs.)
2 | find 22 49 0.1 0.2 0.2
prove || 49 49 0.1 0.2 0.2
3| find 5 52 0.1 0.2 0.2
prove 52 52 0.1 0.2 0.2
4 | find 6 70 0.1 0.2 0.2
prove 70 70 0.1 0.2 0.2
5| find 4 7 0.1 0.2 0.2
prove 7 7 0.1 0.2 0.2

Table 5.6: Herbs problem with 10% over- and under-production limit: LexLeq vs A V
decomposition and the arithmetic constraint.

An alternative way of solving the problem is to allow 10% over- and under-production.
We therefore relax the constraint that for all variations the minimum amount produced
meets its demand. According to [PS98|, this meets the problem owner’s specification.
The results of tackling the problem in this way for ¢ = 2, 3,4,5 templates are shown in
Tables 5.5 and 5.6.

We observe in Table 5.5 that as the number of templates increase, the search effort
and time required to find a solution and prove the optimality dramatically increase for
the A and V decompositions. On the other hand, LexLeq finds and proves solutions very
quickly with much less effort. In particular, the 4 and 5 template problems can only be
solved by LexLeq. In Table 5.6, we compare LexLeq with combining the decompositions,
as well as with maintaining BC on the arithmetic constraint. In this case, the search tree
generated is all the same, with some minor difference in solving times.

In summary, with the static labelling heuristic that assigns first the variables of Run
and then T', LexLeq is clearly superior to both of the decompositions for the herbs problem
with %10 allowed over- and under-production. On the other hand, the fact that the rows
of the model are not too long and that the domain size is not too large makes it feasible
to pose either the combination of the decompositions or the arithmetic constraint, both
of which are highly competitive with our algorithm.

Balanced Incomplete Block Design Problem This was introduced in Chapter 3.2.1.
In Figure 3.1, one way of modelling the problem is given. Since the elements as well as
the subsets containing the elements are indistinguishable, the matrix X modelling the
problem has row and column symmetry.

Due to the constraints on the rows, no pair of rows can be equal unless r = A. To

break the row symmetry, we enforce that the rows RO,Rl, e Rv 1 corresponding to
the v elements are strict anti-lexicographically ordered: RO >lex R1 . >iew Ry—1. As
for the column symmetry, we enforce that the columns C’O, Cl, .. C’b 1 correspondlng

to the b subsets of V are anti-lexicographically ordered: Co >lew C’1 c Dlew Cb 1. We
pose the lexicographic ordering constraints either by using LexLess and LexLeq, or the
corresponding alternative approaches.

In our experiments, we select some large instances from [CD96]. Note that these
instances require matrices with very long columns, therefore posting the arithmetic con-
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Figure 5.2: BIBD: LexLeq/LexLess vs A, V, A V decompositions in terms of run-times.

straint is not feasible. As for the labelling heuristic, we adopt a static variable ordering,
by instantiating the matrix X along its rows from top to bottom and exploring the domain
of each variable in ascending order.

The results of the experiments along with the instances we have used are shown in
Figures 5.1 and 5.2, where we contrast our algorithms with the alternative approaches in
terms of failures and run-times respectively using a logarithmic scale. As seen in Figure
5.1, our algorithms and the A decomposition do exactly the same inference when solving
every instance. An exception to this is the instances (15,21,7,5,2) and (16,32,12,6,4),
for which the algorithms fail slightly less than the A decomposition. The V decomposition,
however, can solve only the first 3 instances within an hour limit, with many more failures.

In Figure 5.2, we observe a substantial gain in efficiency by using our algorithms in
preference to all the other approaches considered. Even though the A decomposition and
our algorithms explore the same search tree, the efficiency of the algorithms dramatically
reduce the run-times. By combining the decompositions, we decrease the run-times com-
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Figure 5.3: BIBD: LexLeq/LexLess vs constraint encodings in terms of run-times.

pared to the A decomposition. However, our algorithms remain the most efficient way of
propagating the lexicographic ordering constraints.

In summary, for the BIBD, posing the arithmetic constraint is not feasible for the
instances that we considered. By using the static labelling heuristic that instantiates the
matrix along its rows from top to bottom, the filtering algorithms do much more pruning
than the V decomposition, but explore the same search tree as the A decomposition.
On the other hand, our algorithms are much more efficient than all the decompositions
including the combination of the decompositions.

5.9.2 Comparison with Constraint Encodings

We have shown in Section 5.8 that the filtering algorithm of the (strict) lexicographic or-
dering constraint can be simulated by posting a set of constraints. The filtering algorithm
or the constraint encodings either maintain GAC or establish failure if the constraint
cannot be satisfied. Therefore, the same search tree is generated by using either of them
at each node of the search tree. Since the encodings introduce extra variables and con-
straints, we want to know which way of propagating <., is the most efficient. How do
our filtering algorithms compare to their corresponding encodings in terms of run-times,
the number of variables used, the number of constraints posted, and the total memory
used? For this purpose, we ran some experiments on the BIBD problem.

In our experiments, we use the same model, labelling heuristic, lexicographic ordering
constraints, and the instances of BIBD described in Section 5.9.1. We pose the lexico-
graphic ordering constraints either by using our filtering algorithms LexLess and LexLeq,
or the corresponding constraint encodings of Gent et al. [GPS02] and Harvey [Har(2].
Figures 5.3 to 5.6 show the results.

We observe in Figure 5.3 that the instances are solved quicker by the algorithmic ap-
proach (note the logarithmic scale), though the difference is not as much as the difference
between the algorithms and the A decomposition in Figure 5.2. The constraint encodings
are therefore competitive with the algorithms in terms of run-times. On the other hand,
the introduction of extra variables results in dramatic difference in the total number of
variables used (see Figure 5.4), constraints posted (see Figure 5.5), and the memory used
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Figure 5.5: BIBD: LexLeq/LexLess vs constraint encodings in terms of constraints.

(see Figure 5.6) to solve the instances. This shows that propagating the lexicographic
ordering constraint by a filtering algorithm is more (space) efficient than by posing a set
of constraints.

5.10 Implementation: Incremental or Non-Incremental
Algorithm?

We implemented our global constraints in C++ using ILOG Solver 5.3 [ILO02]. The
implementation raised a number of questions, such as:

e at which propagation events to wake up the constraints;

e when to propagate the constraints.
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Figure 5.6: BIBD: LexLeq/LexLess vs constraint encodings in terms of memory usage.

In this section, we answer these questions by focusing on the implementation of <;.,.
In Solver, three propagation events are available for an integer variable:

e whenValue: The variable is assigned a value.

e whenRange: Either the minimum or the maximum element in the domain of the
variable is modified.

e whenDomain: The domain of the variable is modified.

When X <., Y is GAC, every value a in D(X,) is supported by max(Y,), and also by
(min(Xag1), - - ., min(Xomingn,gy-1)) and (maz(Yo11), . .., maz(Yoin(n,g-1)) if @ = maz(Yy,).
In a similar way, every value a in D(Y,,) is supported by min(X,), and also by (min(X,11),
oo min(Xoingngy-1)) and (max(Yaq1), ..., max(YVmingngy-1)) if a = min(X,). Any
modification to the bounds of the variables in the range [, min{n, 3}) should wake up
the constraint. Therefore, we attach whenRange propagation event to all the variables
in [, min{n, $}) using the initial values of the pointers. This is in fact not satisfactory
for two reasons. First, we want to wake up the constraint only when min(X;) or maz(Y;)
of some i in [a, min{n, 3}) changes. Thanks to the domain-delta facility? of Solver, we
can discard the events triggered by modifications to max(X;) or min(Y;). Second, as
variables are assigned the pointers o and (8 move inwards. The constraint therefore can
be woken up by events triggered outside the current [«, min{n,3}). We can, however,
easily discard the events triggered by the variables outside the range of interest.
When do we propagate the constraint? In Solver, there are two ways:

1. respond to each propagation event individually, i.e. propagate the constraint after
every event;

2. wait until all propagation events attached to the constraint accumulate and then
propagate all at once.

2The domain-delta is a special set where the modifications of the domain of a variable are stored. This
domain-delta can be accessed during the propagation of the constraints posted on the variable.
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The first method is often used with a highly incremental filtering algorithm, in which most
of the data structures can be restored easily and efficiently at each propagation step. In
this case, the global constraint calls a special algorithm for its very first propagation to
initialise the data structures, but calls another algorithm in future propagations which
builds the data structures based on their previous state. The second method is often
used when the filtering algorithm is costly, such as when maintaining the data structures
incrementally is more costly than computing them from scratch.

In the case of our global constraint <., the best choice at first sight seemed to be
using method 1 for a number of good reasons. First, the filtering algorithm of <., is
incremental by construction. Second, we have only pointers (and flags) in terms of data
structure and they can be maintained incrementally in an easy and efficient way. Third, we
have Initialise which initialises the pointers and performs an initial propagation of the
constraint, and LexLeq(z) which propagates the constraint in future propagation events
and keeps the pointers up to date if necessary. With this motivation, we implemented our
global constraint using the first method of propagation.

On the other hand, we do not know how multiple events are scheduled in Solver and we
do not have any control over the event scheduling system. When LexLeq(7) is triggered,
the pointers might be pointing to the wrong indices if several other propagation events
occurred by the time X; or Y; was modified. In particular, a might be too far left and
might be too far right. This is not a big problem since Solver guarantees that constraint
propagation triggered by every propagation event will eventually (before Solver makes
another labelling decision) take place. Hence, a and  will eventually be set to their
correct values. This, however, means that there may be many unnecessary propagations
which may result in increased run-times. For instance, consider the vectors:

({01}, {01}, {01}, {0,1})
{({0,1}, 10,1}, {0.1}, {0}
la 1

=iy

constrained as X <lex Y. We have a = 0 and [ = oo. Assume that due to the other
constraints on the variables of X, the following modifications occurred simultaneously:

({0,13, {81}, {81}, {K1})
<{?,1}, {0,1}, {0,1}, {0})

=iy

16

These modifications all affect the minimums of some variables below «, and hence we
have three propagation events FE;, F,, and FEj5 triggering LexLeq(1), LexLeq(2), and
LexLeq(3), respectively. Let us analyse what happens if the events are scheduled in the
order Ey, Fy and then E3. With the call LexLeq(1), 3 is not updated because we have
1 # B —1 and min(X;) < max(Y;). Moreover, no pruning takes place because we have
a < 1 < . For similar reasons, LexLeq(2) returns without any prunings nor update of
(. Finally, the call LexLeq(3) updates 3 to 1 and then ensures AC(X, < Y,).

While propagating the constraint, we have to deal with events that have no impact. If
we instead have a non-incremental algorithm and use the second method of propagation,
we would wait until all the events accumulate and respond only once by doing essentially
what LexLeq(3) did. With the hope that waiting for all events to accumulate could
result in faster running times, we slightly changed the filtering algorithm to obtain a non-
incremental algorithm and used method 2 for implementing the propagation mechanism.
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Figure 5.7: BIBD: Incremental vs non-incremental algorithm in terms of run-times.

In order to compare the two algorithms, we ran some experiments on the BIBD prob-
lem by using the same model, labelling heuristic, and the lexicographic ordering con-
straints described in Section 5.9.1. We pose the lexicographic ordering constraints by
using either the incremental or the non-incremental implementations. Surprisingly, the
former proved to be faster than latter. This hints that even if we have many propaga-
tion events, the efficiency of the original algorithm can overcome the cost of delaying
propagation events and maintaining a propagation queue. Figure 5.7 shows the results.

In the rest of this section, we first explain how we implemented the incremental al-
gorithm and then show how we can easily transform it into a non-incremental algorithm
and implement it using the second method of propagation.

5.10.1 Incremental Algorithm

We first implement post which is called by Solver when the constraint is first posted.
This procedure initialises the data structures (e.g. the pointers), defines on which events
the constraint propagates, and then propagates the constraint. Since the data structures
are maintained incrementally, they are defined in Solver as reversible objects. That is,
their values will be restored automatically by Solver when it backtracks. Instead of
implementing the propagation algorithm using propagate, we post different demons on
the variables of X and Y to be able to propagate selectively.

Procedure post
1 :=0;

9 if a = [ then fail,

10 foreach i € [a, min{n,3}) do

10.1| X;.whenRange(EventDemonForX(i));
10.2 | Y, whenRange(EventDemonForY (i));

end
11 LexLeq(a);
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Initialise in Algorithm 1 is in fact what post deploys except that after initialing
the pointers and before calling the filtering algorithm, we attach an event demon to a
whenRange event for each variable of the vectors in the range [, min{n, 5}).

EventDemonForX (i) is triggered whenever min(X;) or maz(X;) in the initial range
[, min{n, }) is modified. The demon then propagates the constraint. LexLeq(i) in
Algorithm 2 is in fact what EventDemonForX (i) deploys; however, before propagation,
events that are not of interest are filtered.

Procedure EventDemonForX (7)
1 if X;.getMinDelta()# 0 then
1.1 if a <i < then
1.1.1 ‘ LexLeq(i);
end
end

In Solver, (V) (reads as domain-delta) is a special set where the modifications of
D(V) are stored. The member function getMinDelta() returns min(X;) — min(6(X;)).
To know whether the propagation event that triggered the demon is due to a change to
min(X;), it suffices to test the value of X;.getMinDelta(). If the test returns 0 then
min(X;) has not been modified.

EventDemonForY () is similar to EventDemonForX (i) except that we now discard the
events triggered by modifications to min(Y;), using the member function getMaxDelta().

Procedure EventDemonForY (7)
1 if X;.getMaxDelta()# 0 then
1.1 if « <i < ( then
1.1.1 LexLeq(i);
end
end

We attach EventDemonForX or EventDemonForY to a whenRange event for each
variable in [, min{n, 5}) using the initial values of the pointers. As the variables are
assigned, § moves monotonically left. Some index ¢ which was initially less significant
than § could in the future be more significant. Hence, if a propagation event is triggered
at this index then it can be discarded.

Ideally, no propagation events at indices more significant than o can pop up because
all the variables above « are already ground. Unfortunately, due to the propagation of
the constraint or the presence of other constraints, we may have multiple modifications
triggering multiple events simultaneously. This may result in events which are invoked
at more significant indices than the current value of a and which are still waiting in the
event queue. As an example, consider:

({0,1}, {01}, {0,1}, {0,1})
(%1}, {1y, {1}, {12}

=iy

16

constrained as X <lex Y. We have a = 0 and B = oco. Assume that ) . X; = 4, that is
X is constrained to have four 1s. The propagation of the sum constraint removes all the
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zeros in X:

(1}, {81}, {81} {H.1})
= {1 {1y {1} {L2p
Ta 18

Now we have 4 events invoking EventDemonForX. If EventDemonForX(0) is handled first
then « is updated to 3. But we still have EventDemonForX (1) and EventDemonForX(2)
in the propagation queue and they are invoked at more significant indices than «.

~i
|

5.10.2 Non-incremental Algorithm

In this version of the algorithm, instead of maintaining the values of o and 3 incrementally,
we recompute their values every time the constraint is propagated. Due to this nature,
the pointers need not be defined reversible in Solver. We again post different demons on
the variables of X and Y to be able to propagate selectively. However, the propagation
algorithm is implemented using propagate, because every demon now delays its response
and one propagation takes place after all the events are accumulated.

In post, we only need to initialise a to index 0 and attach an event demon to a
whenRange event for every variable in the vectors.

Procedure post

1 «a:=0;

2 foreachi e [0,n) do

2.1 X;.whenRange(EventDemonForX (i) );
2.2 Y;.whenRange(EventDemonForY (i) );

end

We now use Solver’s push to delay our response to each propagation event of interest.

Procedure EventDemonForX (3)

1 if X;.getMinDelta()# 0 then
1.1 if 1 < 3 then

1.1.1 ‘ push();

end
end

Procedure EventDemonForY ()

1 if V,.getMaxDelta()# 0 then
1.1 if i < 3 then

1.1.1 ‘ push();

end
end

Note that as the variables are assigned, a and 3 move inwards. Even if we recompute [ at
every propagation step, we can discard the events invoked at less significant indices than
the previous value of 3. Since all the variables before « are ground and we recompute
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« at every propagation step, no propagation events at more significant indices than the
previous value of a can pop up.

Solver automatically aggregates all such calls to push into a single invocation of the
propagate procedure which propagates the constraint. Note that propagate is also
automatically called once the constraint is posted.

Procedure propagate

1 whilea<n AN X,=Y,doa:=a+1;
2 if o =n then return;

3 elsei:=q;

4 f3.=-1,

5 whilei#n A min(X;) <maz(Y;) do

5.1 if min(X;) = max(Y;) then
5.1.1 ‘ if 5= —1 then 3 :=1;
else
5.2.1 ‘ 6= —1;
end
5.3 1:=1+1;
end
6 if : =n then §:= o0;
7 elseif §=—1then 3 :=71;
8 if a = [ then fail,
9 else Prune;

In propagate, we first initialise a. We know that o moves monotonically right. Hence,
line 1 traverses the vectors starting at the previous value of . When looking for (3, we
have two choices: (1) as 3 > «, we can start at «; (2) as f moves monotonically left, we
can start at the previous value of § and traverse the vectors towards «. Using the second
choice, we must always travel from the previous 3 to the current a to be sure to find the
most significant index for 3. However, using the first choice, we need not always travel
all the way from the current « to the previous 3: we may stop at an index i < (3 because
we have min(X;) > max(Y;). If > « then we call Prune.

Procedure Prune

1 if a4+ 1=/ then

1.1 ‘ AC(X; < Yy);
end

2 ifa+1<then

2.1 AC(X; <Y));

2.2 if X; =Y, then UpdateAlpha;
end

propagate can be seen as a combination of Algorithms 1 and 2 as we first recom-
pute a and (3, and then prune the inconsistent values. The exception is that we are no
longer interested in the index at which an event was triggered. This also requires a small
modification to UpdateAlpha. Note that we no longer need a procedure to update (.
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Procedure UpdateAlpha
a:=a+1;

if & = n then return;

if =(X; =Y;) then Prune;
else UpdateAlpha;

S W N =

5.11 Summary

In this chapter, we have proposed two new global constraints for lexicographic orderings
which are useful for breaking row and column symmetries of a matrix of decision variables.

There are at least two ways of decomposing a lexicographic ordering constraint. Both
of the decompositions are inferior to maintaining GAC on the constraint. Combining
the decompositions is in fact equivalent to maintaining GAC; however, this carries a
penalty in the cost of constraint propagation. Alternatively, by using the domain size
of the variables in the vectors, one can pose arithmetic inequality constraints to ensure
lexicographic orderings. This approach is feasible only if the vectors are not too long
and the domain size is not too large. We have therefore developed an efficient filtering
algorithm which either proves that X <lex Y is disentailed, or ensures GAC on X <lex Y.
The algorithm runs in time O(nb) where b is the cost of adjusting the bounds of a variable,
but runs amortised in time O(b). Since adjusting the bounds is a constant time operation,
b is always a constant. The complexity of the algorithm is optimal as there are O(n)
variables to consider.

The filtering algorithm exploits two pointers which save us from repeatedly travers-
ing the vectors. In the absence of such pointers, the worst-case complexity would be
quadratic, as opposed to linear, because we would then have to traverse the whole vectors
every time we propagate the constraint. These pointers are useful also for extending the
algorithm to obtain new filtering algorithms. By slightly changing the definitions of the
pointers, we can easily obtain similar algorithms for X <z Y and X + Y. Moreover,
the pointer approach makes it possible to detect entailment in a dual manner to detecting
disentailment. Furthermore, the algorithm can easily be generalised for vectors of any
length, as well as for vectors whose variables are repeated and shared.

We have studied the propagation of vector equality and disequality constraints using
lexicographic ordering constraints, and demonstrated that decomposing a chain of lexi-
cographic ordering constraints between adjacent or all pairs of vectors hinders constraint
propagation. We have also compared with related work.

Even though the filtering algorithm can in general do more pruning than propagating
the lexicographic ordering constraint via its decompositions, in practice we may observe no
major difference. Similarly, in some cases, posting the corresponding arithmetic constraint
can solve the lexicographic ordering constraint as efficiently as the algorithm. In Table 5.7,
we summarise the experiments conducted on three problem domains. An entry is marked
as — (resp. +) if the corresponding method of propagation is inferior (resp. superior) to
the filtering algorithm. If we cannot decide which of the two is superior to the other then
we mark the entry as —+ . If the method behaves similarly to the filtering algorithm then
the mark is ~.

As the table shows, in most of the cases, the filtering algorithm is preferable to its
decompositions or the corresponding arithmetic constraint except for some cases. When
solving the progressive party problem, the A decomposition gives smaller search trees
for some instances of the problem. This is due to the dynamic nature of the labelling
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Approach | Progressive Party Problem | Template Design Problem | BIBD
\/ — — —

A —+ — —+
AV — ~ —
Arithmetic — ~ —

Table 5.7: Summary of the experiments in Chapter 5.

heuristic chosen. Hence, we conclude that a decomposition method may be superior to a
filtering algorithm with a dynamic labelling heuristic. In BIBDs, the labelling heuristic
used is static; however, the A decomposition and the algorithm give the same search tree
for almost all instances. On the other hand, the algorithmic approach solves the instances
much quicker. Finally, propagating the lexicographic ordering constraints by combining
the decompositions or the arithmetic constraint is as efficient as the filtering algorithm
in the template design problem whose instances do not require long vectors with large
domains.

We have also learnt some general lessons regarding the design and implementation of
global constraints. First, if a data structure is easy to restore using its previous value, then
it is more efficient to maintain it incrementally than computing it from scratch every time
we need it. Second, if a filtering algorithm is incremental (i.e. its data structures can be
maintained incrementally) and this comes with a low cost, then propagating the constraint
is more efficient by responding to each propagation event individually than by responding
only once after all events accumulate. Even if we have to deal with many propagation
events, the efficiency of the filtering algorithm can overcome the cost of delaying events
and maintaining a propagation queue. Therefore, when designing a new global constraint,
we need to seek ways of maintaining the data structures incrementally in an easy way so
that we can propagate our constraint very efficiently.



Chapter 6

Lexicographic Ordering with Sum
Constraints

6.1 Introduction

Lexicographic ordering constraints are useful for breaking row and column symmetries.
In this chapter, we take into account some additional constraints posted on the vectors
constrained to be lexicographically ordered. In particular, we introduce two new global
constraints LexLegAndSum and LexLessAndSum on 0/1 variables. Each of the constraints is
an ordering constraint and combines together a lexicographic ordering constraint with two
sum constraints. Given two vectors X = (Xo, X1,...,Xp_1) and Y = (Yo, Y1,..., Y, 1),
LexLqundSum()?,?,Sx,Sy) ensures that X <. Y, and that >.;Xi = Sz and that
Y. Y. = Sy; LexLessAndSum(X,?, Sz, Sy) ensures that X <2 Y, > X, = Sz, and
>, Y; = Sy. Lexicographic ordering and sum constraints on 0/1 variables frequently
occur together in problems involving demand, capacity or partitioning that are modelled
with symmetric matrices of decision variables. To post and propagate such combinations
of constraints efficiently and effectively, we design global constraints for lexicographic
ordering with sums, each of which encapsulates its own filtering algorithm.

Combining a lexicographic ordering constraint with two sum constraints is useful in
two situations. First, it is of benefit when there is a very large space to explore, such as
when the problem is not satisfiable. Second, it is useful when we lack a good labelling
heuristic. Even if the labelling heuristic we have is not the best to solve the problem,
earlier detection of dead-ends or inconsistent values can greatly decrease the search effort.
One of the major disadvantages of posting ordering constraints to break variable symmetry
is the possibility that the labelling heuristic and the symmetry breaking constraints clash.
In this case, many solutions may be rejected as they do not agree with the ordering of
the variables imposed by the symmetry breaking constraints, resulting in larger search
trees and longer run-times compared to no symmetry breaking. A combined constraint
gives additional pruning, and this can help compensate for the labelling heuristic trying
to push the search in a different direction to the symmetry breaking constraints.

This chapter is organised as follows. We motivate in Section 6.2 the need of our
new global constraints. In Section 6.3, we present a filtering algorithm for the constraint
LexLqundSum(X',}?, Sz, Sy) assuming that the sums Sz and Sy are ground. Then in
Section 6.4, we discuss the complexity of the algorithm, and prove that the algorithm is
correct and complete. In Section 6.5, we show how we can easily modify the algorithm
to obtain a filtering algorithm for LexLessAndSum()? ,57, Sz, Sy), to detect entailment,
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and to deal with sums that are not ground but bounded. We demonstrate in Section 6.6
that decomposing a chain of our global constraints into constraints between adjacent or all
pairs of vectors hinders constraint propagation. We discuss the related work in Section 6.7
and present our computational results in Section 6.8. Combining lexicographic ordering
constraint with other constraints is discussed in Section 6.9. Finally, before summarising
in Section 6.11, we give in Section 6.10 the details of the implementation.

6.2 Lexicographic Ordering with Sum Constraints

Lexicographic ordering and sum constraints on 0/1 variables frequently occur together in
problems involving demand, capacity or partitioning that are modelled with symmetric
matrices of decision variables.

Demand Constraints As an example for a problem involving demand, consider the
steel mill slab design problem introduced in Chapter 3.2.2. Every order is to be packed
onto exactly one slab. One way of modelling this problem is given in Figure 3.3. In this
model, a 2-d 0/1 matrix O of decision variables is used to determine which orders are
packed onto which slabs. Sum constraints on the columns of O ensure that every order is
packed onto one slab:

Vi € Orders. Z 0;;=1

j€ESlabs

This matrix has partial column symmetry because orders of the same size and colour are
indistinguishable. We break this symmetry by posting lexicographic ordering constraints.
Given a set of indistinguishable orders {o;,0i11,...,0;}, we enforce that the columns
corresponding to such orders O:, 6¢+1, ceey O_; are lexicographically ordered:

Oi Sle:c Oi—i—l cee Slex Oj

The indistinguishable columns are thus constrained by both lexicographic ordering and
sum constraints.

A similar problem is the rack configuration problem introduced in Chapter 3.2.3. Every
card is to be plugged into exactly one rack. In the second model of the problem shown
in Figure 3.6, we manipulate the cards rather than the number of cards of a given type
plugged into a rack. Hence, a 2-d 0/1 matrix C' of decision variables is used to determine
which cards are plugged into which racks. Sum constraints on the columns of C' ensure
that every card is plugged into one rack:

Vi € Cards . Z Ci; =1

j€Racks

Since the cards of the same type are indistinguishable, this model suffers from partial
column symmetry. Given a set of mdlstlngulshable cards {¢;, ¢i+1, . .., ¢;}, we enforce that
the columns corresponding to such cards C’z, Cerl; . C are lexicographically ordered:

Ci Slem Cz'Jrl cee Sle:p C'j

We again have both lexicographic ordering and sum constraints posted on the symmetric
columns.
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In fact, any assignment problem can be reformulated in terms of a 2-d matrix of
variables with sum constraints. Suppose we have a set )V of variables each taking a value
from a set W of values. We can reformulate this problem by introducing a 2-d matrix A
of V x W, where each element takes a value between 0 and 1. A variable V; is assigned
w; iff the corresponding entry in the matrix is assigned 1. Since every variable is to be
assigned only one value, we insist that:

VieV. Y Ay=1

JEW

Such a reformulation is desirable when we want to deploy ILP techniques for optimisation
problems (see for instance the matrix model of the warehouse location problem in Chapter
3.2.3) or when we want to transform value symmetry into variable symmetry (see Chapter
4.4.3).

If the variables of the original formulation are symmetric then the 2-d matrix has
column symmetry. To break this symmetry, we post lexicographic ordering constraints on
the columns. Consequently, we have columns constrained by both lexicographic ordering
and sum constraints.

Partitioning/Capacity Constraints As an example for a problem involving parti-
tioning or capacity, consider the ternary Steiner problem introduced in Chapter 3.2.1.
The problem is to partition n elements into b = n(n — 1)/6 subsets of size 3. In Figure
3.2, we have shown one way of modelling this problem, where a 2-d matrix X of decision
variables is used to represent which element goes into which subsets. Sum constraints on
the columns of X ensure that every subset is of size 3:

VieB. Y Xi;=3
JEN

This model has column symmetry because the subsets are indistinguishable. Due to the
problem constraints, no pair of subsets can be equal. We can therefore break subset
symmetry by posting strict lexicographic ordering constraints on the columns:

XO <lex Xl v <lex bel

Now we have both strict lexicographic ordering and sum constraints posted on the columns.

As another example, consider the social golfers problem introduced in Chapter 3.2.4.
The golfers must be partitioned into g groups in every week and every group must contain
s golfers. Figure 3.8 shows a modification of the classical set variable based model given
in Figure 3.7. In this model, a 3-d 0/1 matrix T of decision variables is used to decide
which golfer plays in which group of which week. Since every week is a 2-d matrix, sum
constraints are posted on the columns (i.e. the group dimension) of every week to ensure
that every group is of size s:

Vi € Weeks . Vi € Groups . Z Tijk=S5

keGol fers

This model suffers from too many symmetries including the symmetry between the groups
of golfers. The groups are indistinguishable and the contents of a group from one week
to the next are independent of each other. Due to the problem constraints, the groups
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within a week must be disjoint. Hence, we can break this symmetry by insisting that the
groups within each week are strict lexicographically ordered. That is, we enforce strict
lexicographic ordering constraints on the columns of every week:

\V/j € Weeks . TO,j <lex Tl,j o <lex Tgfl’j
Now, we have both strict lexicographic ordering and sum constraints posted on the
columns of every week.

Demand and Partitioning/Capacity Constraints Some problems have both de-
mand and partitioning requirements, like the BIBD problem introduced in Chapter 3.2.1.
In this problem, we need to partition the elements of a set ) into b subsets in such a way
that every element appears in r subsets and every subset contains k elements. In Figure
3.1 we give a model of this problem, where a 2-d matrix X is used to determine which
element goes into which subset. The sum constraints along the rows ensure that every
element appears in r subsets:

Viev. > Xy=r

1€B
while the sum constraints along columns impose that every subset contains k elements:

VieB. Y Xi;j=k
jev
Both the subsets and the elements of V are indistinguishable. Therefore, X has both row
and column symmetry. We break this symmetry by insisting that the rows and columns
are lexicographically ordered. Due to the problem constraints, no pair of rows can be
equal unless » = A, so we can impose strict lexicographic ordering on the rows:

XO Sleac Xl cee Sle:v Xb—l

<X0,07 S 7Xb—1,0> <lex <X0717 cee ,Xb—1,1> cee <lex <Xo,v—1, ce 7Xb—1,v—1>

Now we have both (strict) lexicographic ordering and sum constraints posted on the rows
and columns.

As we have seen from the examples, a wide range of CSPs can be modelled using
0/1 matrices with both lexicographic ordering and sum constraints on the rows and/or
columns. Given two vectors of 0/1 variables X and Y, LexLqundSum()Z ,17', Sz, Sy)
ensures that X <lex 17, and that ), X; = Sz and that ), Y; = Sy. Since the vectors Z and
7 assigned to X and Y need to be lexicographically ordered, LexLegAndSum(X, Y, Sz, Sy)
is an ordering constraint.

Theorem 32 LexLqundSum(X,?, Sz, Sy) is an ordering constraint.

Proof: The set of solutions S’ satisfying LexLqundSum()Z' Y, Sz, Sy) is a subset of the
set of solutions S satisfying X <per Y. As any subset of S is a totally ordered set, &’ is a
totally ordered set. QED.

Posting LexLqundSum(X’ Y, Sz, Sy) is semantically equivalent to posting X <12 Y,
> X;=Sz,and ), Y; = Sy. Operationally, a filtering algorithm which removes from the
vectors those values that cannot be a part of any solution to LexLqundSum()? , }7, Sz, Sy)
can lead to more pruning than the total pruning obtained by the filtering algorithms of
the lexicographic ordering constraint and the sum constraint.
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Theorem 33 GAC(LexLeqAndSum(X,Y, Sz, Sy)) is strictly stronger than GAC(X <o
Y), GAC(Y ., X; = Sz), and GAC(>_,Y; = Sy).

Proof: GAC(LexLeqAndSum(X, Y, Sz, Sy)) is as strong as GAC(X <jeq 37), GAC(> ., X,
Sxz) and GAC(Y_,Y; = Sy), because the former implies the latter. To show strictness,

consider:
= ({0,1}, {0,1}, {o})
= ({0,1}, {0} {0,1})

with Sz = Sy = 1. We have GAC(X <, V), GAC(>., X; = 1), and GAC(Y.,Y; =
1). The assignment Y5 « 1 forces Y to be (0,0,1) which is lexicographically less than
min{z| Yz, =1 A &€ X} = (0,1,0). Hence, GAC(LexLeqAndSum(X,Y, Sz, Sy))
does not hold. QED.

A similar result holds also for the strict lexicographic ordering with sum constraints.

~i

Theorem 34 GAC(LexLessAndSum(X,Y,Sx, Sy)) is strictly stronger than GAC(X <jeq
Y), GAC ., Xi = Sx), and GAC(_,Y; = Sy).

Proof: The example in Theorem 33 shows strictness. QED.

6.3 A Filtering Algorithm for Lexicographic Order-
ing with Sums

In this section, we present a filtering algorithm for the lexicographic ordering constraint
together with two sum constraints for 0/1 variables. This algorithm either detects the dis-
entailment of LexLqundSum()Z , )7, Sz, Sy) or prunes inconsistent values so as to achieve
GAC on LexLegAndSum(X,Y, Sz, Sy).

Assume Sz and Sy are ground GAC on LexLqundSum(X Y Sz, Sy) requlres us to
maintain GAC on X <lex Y in the presence of Sx 1s and n — Sz 0s placed on X as well
as Sy 1s and n — Sy 0s placed on Y. Therefore, we need to decide:

1. with which variables of X , the value 1 can be extended with Sz — 1 more 1s from
the remaining variables of X to obtain a vector Z, and with Sy 1s from the variables
of Y to obtain a vector ¥, such that & <., ¥;

2. with which variables of X , the value 0 can be extended with n — Sz — 1 more Os
(or equivalently with Sz 1s) from the remaining variables of X to obtain a vector
Z, and with Sy 1s from the variables of Y to obtain a vector g, such that ¥ <., ;

3. with which variables of 17, the value 0 can be extended with n — Sy — 1 more Os
(or equivalently with Sy 1s) from the remaining variables of Y to obtain a vector ¥,
and with Sx 1s from the variables of X to obtain a vector &, such that ¥ <., ¥,

4. with which variables of Y, the value 1 can be extended with Sy — 1 more 1s from
the remaining variables of Y to obtain a vector 7, and with Sz 1s from the variables
of X to obtain a vector 7, such that ¥ <;., ¥.
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1 0
X = (Xo, X1y, Xn_9, Xn_1) min{Z | S, 2= Sz AT € X} .. maz{Z |, = Sz AT € X}
V=Y. Yoo Yar) — 1 min{§ |Siy=SyAje ¥} . mar{j | Siyi=SyrjeY}
0 1

Figure 6.1: Prunings of the filtering algorithm of LexLegAndSum.

The algorithm performs these decisions step by step, and in each step prunes the incon-
sistent values which cannot be extended in the way desired.

The prunings of the algorithm are depicted in Figure 6.1. Steps 1 and 2 remove 1s
and Os respectively from X to tighten the upper bound of {Z | S,z =St A Te X}
until:

max{Z | in:Sx A fe)?} <iex maz{y | Zyi:Sy RS 57}

The support for the upper bound is also the support for all the other values in {Z | Y. x; =
Sz A Z € X}. Similarly, steps 3 and 4 remove 0s and 1s respectively from Y to tighten
the lower bound of min{y| > .y, =Sy A y €Y} until:

min{@ | Y wi=Sr A € X} <o min{f| Y _yi=Sy A jeY}

The support for the lower bound is also the support for all the other valuesin {¢/ | >, v; =
Sy N ye 37}

Before giving the details of the algorithm in Section 6.3.3, we first sketch its main
features in Section 6.3.1 on a running example and then in Section 6.3.2 provide the
theoretical background from which the algorithm is derived.

6.3.1 A Worked Example

In each step, we maintain a pair of lexicographically minimal and maximal ground vectors
ST = (Sxg,...,5Tu—1) and sy = (sYo,...,SYn—1), and a flag o where for all 0 < i < «
we have sz; = sy; and sz, # sy,. That is, a is the most significant index where st
and sy differ. Additionally, we may need to know whether st,,1—,—1 and sj,,,_,,_, are
lexicographically ordered. Therefore, we introduce a boolean flag v whose value is true
iff sTar1—n—1 <iex 3@a+1ﬂn71~

Consider the vectors:

= ({0, 1}, {0,1}, {0}, {0}, {0,1}, {0,1}, {0}, {O})
= (0,1}, {0,1}, {0,1}, {1}, {0,1}, {0,1}, {0}, {0,1})

and the constraint LexLqundSum()Z' Y, 3, 2). Our algorithm starts with step 1 in which

we have:
0, 0, 0, 1, 1, 0, 0)
0, 0, 1, 0, 0, 0, 0)

=Ly

st =
o (1

sy =

Y Y Y Y
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where st =min{Z| Y ,xz;=Sr—1 N T € X}, s = maz{y | YuUi=Sy Nye Y},
and st <j.. siy. We check where we can place one more 1 in s to make the sum Sz = 3
as required without disturbing st <., sy. We have a = 0 and v = true. We can safely
place 1 to the right of « as this does not affect st <;., 7. Since 7 is true, placing 1 at «
also does not affect the order of the vectors. Therefore, all the 1s in X can be extended
with Sz — 1 more 1s from the remaining variables of X to obtain a vector Z, and with Sy
1s from the variables of Y to obtain a vector Yy, such that ¥ <., ¥.
In step 2 we have:

s& = (1, 1, 0, 0, 1, 1, 0, 0)
s§ = (1, 0, 0, 1, 0, 0, 0, 0)
al

where s = min{z | Y .x;=S5r+1 A T € X}, si is as before, and st >0, 5. Note
that ), sz; = Sx + 1 means that there are n — Sz — 1 0s in s&. We check where we can
place one more 0 in st to make the sum Sx = 3 as required and to obtain st <j, s7.
We have a = 1 and v = true. Placing 0 to the left of & makes s% less than sy. Since 7 is
true, placing 0 at « also makes st less than sj. Therefore, any 0 on the left side of o can
be extended with n — Sz — 1 more Os (or equivalently with Sz 1s) from the remaining
variables of X to obtain a vector Z, and with Sy 1s from the variables of Y to obtain a
vector 7/, such that ¥ <;., 3. This is not true, however, for the other Os in the vector.
Placing 0 to the right of a orders the vectors lexicographically the wrong way. Hence, we
remove 0 from the domains of the variables of X to the right of a. The vector X is now
({0,1},{0,1}, {0}, {0}, {1}, {1}, {0}, {0}).

In step 3 we have:

st = (0, 1, 0
sy = (1, 1, 0,
al

(@)
~—

= o
o =
o =
o o
=

where st = min{z| > ,z,=Sx N T € X}, s = max{Y | Yuui=Sy+1 AN gye Y}
and st <, s7. Note that ). sy; = Sy + 1 means that there are n — Sy — 1 Os in sy. We
check where we can place one more 0 in sy to make the sum Sy = 2 as required without
disturbing st <;, sy. We have a = 0 and v = true. We can safely place 0 to the right
of «v as this does not affect st <., si. Since 7 is true, placing 0 at « also does not affect
the order of the vectors. Therefore, all the Os in Y can be extended with n — Sy — 1 more
Os (or equivalently with Sy 1s) from the remaining variables of Y to obtain a vector 7,
and with Sz 1s from the variables of X to obtain a vector Z, such that ¥ <., 7.
Finally, in step 4 we have:

where st is as before, sj = ma:zc{l7 | Yui=Sy—1 AN ye 37}, and st > s7. We check
where we can place one more 1 in sy to make the sum Sy = 2 as required and to obtain
St <jez SY. We have a = 1 and v = true. Placing 1 to the left of a makes st less than
sy. Since 7y is true, we can also safely place 1 at . Therefore, any 1 on the left side of
a can be extended with Sy — 1 more 1s from the remaining variables of Y to obtain a
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vector ¢/, and with Sz 1s from the variables of X to obtain a vector Z, such that ¥ <;., v.
This is not true, however, for the other 1s in the vector. Placing 1 to the right of o makes
St > SY. Hence, we remove 1 from the domains of the variables of Y to the right of a:

({0,1}, {01}, {0}, {0}, {1}, {1}, {0}, {0})
({0,1}, {0, 1}, {0}, {1}, {0}, {0}, {0}, {0})

The constraint LexLqundSum()z, Y,3, 2) is now GAC.

~iL <y

6.3.2 Theoretical Background

—

Two theoretical results, which show when LexLeqAndSum(X, }7, Sz, Sy) is disentailed and
what conditions ensure GAC on LexLqundSum()Z' ,}7, Sz, Sy), form the foundations of
the filtering algorithm.

A constraint is said to be disentailed when the constraint is false. We have shown in
Theorem 8 that X <., Y is disentailed when 0 = a. By the definitions of these pointers,
3 = a iff floor(X) >y, ceiling(Y). The lexicographic ordering constraint together
with two sum constraints is disentailed in a condition Slmllar to that of <j., Wlth the
difference that we now need to compare the smallest 7 € X and the largest v € Y where

Yoxi=Szand ) .y, = Sy.

Theorem 35 Given GAC(Y , X; = Sx) and GAC(Y_.Y; = Sy), LexLeqAndSum (X
Sz, Sy) is disentailed iff min{z | Y ,x; = Sx AN T € X} >0 maz{y | YU =
Sy A jeY}.

Proof: (=) Since LeXLqundSum()? Y, Sz, Sy) is disentailed, any combination of as-
signments, 1nclud1ng X — mm{x | > T = Sz A 7eX}and Y — maz{y| Z Y =
Sy A €Y}, does not satlsfy X <iex Y. Hence, min{7 | Yuri=8r N T e X} >
maz{ij| S,yi=Sy A jeY} B

(<) Any £ € {£ | Y ,x; = Sr A T € X} is lexicographically greater than any
vyely| dY,ui=S5y N y¢€ Y}. Hence, LexLeqAndSum(X,Y, Sz, Sy) is disentailed.
QED.

We now state the necessary conditions for LexLqundSum()Z' , }7, Sz, Sy) to be GAC.

Theorem 36 Given GAC(Y., X; = Sz) and GAC(Y.,Y; = Sy), GAC(LexLeqAndSum (X ,
Y, Sz, Sy)) iff for all 0 < j < n and for all k € D(X;):

min{Z | in:Sx N xj=k A :Eeff} <iex maz{y | Zyiz;Sy N i E 17} (6.1)

and for all k € D(Y;):

min{Z | Z:ci:Sx AT e X} <o maz{y]| Zyi:Sy Ny=k Nye Y} (6.2)

Proof: (=) As the constraint is GAC, all values have support. In particular, X; < k has
asupport 3 € {Z| S, ai=SerAz;=kAZeXyandyi € {7| S,y =Sy AjeY}
where 21 <jep vi. Any 23 € {7 | Y .xi=Sr N z; =k N X € )Z'} <ier T1 and
ved{yl YD, ui=SyANye Y} >1e0 Ui support X; < k. In particular, min{z | > ;=
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St A xzj=k A ZeX}and maz{y]| YLuUi=Sy N ye Y} support X, «— k. Hence,
min{z| Y x;=Sxr Nxj=k N T€ X} <jew maz{y| YLUi=5Sy N ye Y},

A dual argument holds for the variables of Y. As the constraint is GAC, Y; < k hasa
support 21 € {Z| >, z; = Sz A fGX}andy}G{gﬂ Yuvi=Sy ANyj=k A yje?},
where 27 <jep yi. Any 25 € {Z| Y ,z; =S5z N T € )?} <tz Trand g3 € {y| D,y =
Sy Ny, =k N ye Y} >iex 41, in particular min{z | S.x; =8z A & e X} and
maz{y | D, ui=Sy Ny=k N y€ }7} support Y; «— k. Hence, min{Z | > z; =
St A fe)z}ﬁlexma:v{gﬂ YUi=Sy Nyi=k A gje}?}

(<) 6.1 and 6.2 ensure that for all 0 < j < n, all the values in D(X;) and D(Y;) are
supported, respectively. Hence, the constraint is GAC. QED.

On one hand, we can decide which values in the vectors are consistent by checking
naively whether they satisfy 6.1 or 6.2. On the other hand, this would computationally be
very expensive. Even though the variables have domain size 2, exploring every variable,
constructing the necessary vectors and then comparing them lexicographically would take
O(n?) time. We can, however, exploit our assumption that the domains of the vectors are
{0,1} and decide for instance at which positions of X, 1 is consistent without having to
explore all the variables of X individually.

The following 8 theorems hold for a pair of vectors X and Y of 0/1 variables, where
we show at which positions of X and Y we have (in-)consistent values. We will frequently
need to call upon the following assumptions in what follows:

st = min{Z | in:Sx—l/\fE)?}/\s@:max{gﬂ Zyi:Sy/\gjef}(6.3)
st = min{Z | insz+IAf€)z}As_@:max{ﬁ| Zyi:Sy/\y]E?}(GA)
st = min{Z | Zmi:S:U A TeX}Ash=maz{7]| Zyl-:Sy—i-l A GeY}(6.5)

st = min{¥ | in:Sx A TeX}Asy=maz{y| Zyi:Sy—l A 7€YY} (6.6)

We start with 1s in X.

Theorem 37 Under assumption 6.3 and GAC(Y , X; = Sx) and GAC(_,Y; = Sy), if
there is some index o in [0,n) such that for all 0 < i < « we have sx; = sy; and $x, < SYq
then:

1. for all 0 < j < o where D(X;) = {0,1}, 1 € D(X;) is inconsistent;
2. if 1 € D(X,) then 1 is consistent iff sSTat1—n-1 <iex SVai1—n_1;

3. for all « < j < n where D(X;) ={0,1}, 1 € D(X;) is consistent.

Proof: Forall 0 < j < n where D(X;) = {0,1} and sz; = 0, we can get min{Z | >, x; =

St N xj=1NZT€ X} by replacing sx; = 0 with sz; = 1. Note that replacing sz; = 0
with sx] = 1 for the largest such j would also give min{Z | > .2; = Sz A z; =
1 A 6X}fora110<]<nwhereD( ;) ={0,1} and sz; = 1. If j < a then
min{z| Y e, =8Sr Nz;=1AN7T¢€ X} > §Y. In this case, 1 € D(Xj) is inconsistent
by Theorem 36. We have min{Z | > ,z; =Sz AN o, =1 N T € )?} <iex SU provided
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that sTat1—n-1 <iex SYay1-n_1- In this case, 1 € D(X,) is consistent by Theorem 36.
Otherwise, we have min{Z | S, ;=52 A 2o =1 A T € X} >10p 57, and 1 € D(X,) is
inconsistent by Theorem 36. Finally, if j > o then min{Z | Y .z, =Sz AN z; =1 AN T €
X} <iew S¥, 50 1 € D(X;) is consistent by Theorem 36. QED.

Theorem 38 Under assumption 6.8 and GAC(Y_, X; = Sz) and GAC(Y_,Y; = Sy),
LexLegAndSum(X, Y, Sz, Sy) is disentailed if ST >jep SY.

Proof: Forall 0 < j<mn where D(X;) = {0,1} and sz; = 0, we can get min{Z | > x; =
StNz;=1NT¢€ X} by replacing sz; = 0 with sz; = 1. Note that replacing sx; = 0 with

= 1 for the largest such j would also give min{z | > . a;=Szx ANz;=1ANT € X} for
a110<j < n where D(X;) = {0,1} and sz; = 1. Fora110<j < n where D(Xj;) = {0, 1},

we have min{2d | > o, =Sx AN z; =1 N Z € X} >ler ST >1er SU. This means that

min{Z| Y ,x;=95t N ZT¢€ X} >ies 7. By Theorem 35, the constraint is disentailed.
QED.
Dual theorems hold for Os in X.

Theorem 39 Under assumption 6.4 and GAC(Y , X; = Sx) and GAC(_,Y; = Sy), if
there is some indez av in [0,n) such that for all 0 < i < « we have sz; = sy; and STy > SYq
then:

1. for all 0 < j < a where D(X;) ={0,1}, 0 € D(X}) is consistent;
2. if 0 € D(X,) then 0 is consistent iff sTat1—n—1 <iezx SVYas1—n_1:

3. for all « < j < n where D(X;) = {0,1}, 0 € D(X,) is inconsistent.

Proof: Forall 0 < j < n where D(X;) = {0,1} and sz; = 1, we can get min{Z | >, x; =

St N x;=0ANT€ X} by replacing sx; = 1 with sx; = 0. Note that replacing sz; = 1
with sx] = 0 for the smallest such j would also give min{Z | > ,z; = Sz A z; =
0 A ZeXtforall0<j <nwhereD( ;) = {0,1} and sz; = 0. If j < « then
mz’n{x | Y,xi=8Sr Nz, =0 AN T € X} <iex 59. In this case, 0 € D(X;) is consistent
by Theorem 36. We have min{Z | Y . x; =Sz A 2, =0 AN T € )?} <lez SU provided
that sTay1-n-1 <iex Ygqs1—n_1- In this case, 0 € D(X,) is consistent by Theorem 36.
Otherwise, we have min{Z | Y .z, =S5z Nz, =0 A T € X} >pe0 57, and 0 € D(X,) is
inconsistent by Theorem 36. Finally, if j > o then min{Z | Y . z; =Sz AN 2x; =0 A T €
X} >pen 57,800 € D(X;) is inconsistent by Theorem 36. QED.

Theorem 40 Under assumption 6.4 and GAC(Y_, X; = Sx) and GAC(Y_,Y; = Sy), if
ST <iex SY then for all 0 < j < n where D(X;) = {0,1}, 0 € D(X;) is consistent.

Proof: Forall 0 < J< n where D(X;) = {0,1} and sz; = 1, we can get min{z | Y  x; =
St ANx;=0AT¢€ X} by replacing sx; = 1 with sz; = 0. Note that replacing sz; = 1 with
sx; = 0 for the smallest such j would also give min{Z | Y .x;=SrxrANz; =0AZ € X} for
allO < j < n where D(X;) = {0,1} and sz; = 0. For all 0 < j < n where D(X,) = {0, 1},
we have min{Z | Y ,z; =Sz AN z; =0 AN T € X} <iex ST <jex Y, 50 0 € D(Xj) is
consistent by Theorem 36. QED.

Very similar but also dual theorems hold for the (in-)consistent values in Y.
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Theorem 41 Under assumption 6.5 and GAC(Y , X; = Sx) and GAC(Y_,Y; = Sy), if
there is some indez o in [0,n) such that for all 0 < i < « we have sz; = sy; and $Ty < SYq
then:

1. for all 0 < j < o where D(Y;) = {0,1}, 0 € D(Y;) is inconsistent;
2. if 0 € D(Y,) then 0 is consistent iff sTat1—n—1 <iex Yat1n_1;
3. for all « < j < n where D(Y;) = {0,1}, 0 € D(Y;) is consistent.

Proof: Forall 0 < Jj<n where D(Y;) = {0, 1} and sy; = 1, we can get maz{y | >,y =
SyNy; =0A7y € Y} by replacing sy; = 1 with sy; = 0. Note that replacing sy; = 1 with
sy; = 0 for the largest such j would also give maz{y | > v, =Sy ANy;=0Aye€ Y} for
all 0 < j <n where D(Y;) = {0,1} and sy; = 0. If j < a then $& >, maz{y| >, v =
Sy Nyy=0 AN 7€ Y}. In this case, 0 € D(Y;) is inconsistent by Theorem 36. We
have st <jep maz{y | >, ui=5y N ya =0 A ¥ € 37} provided that sZa1—n-1 <jes
SYps1—n_1- In this case, 0 € D(Y,) is consistent by Theorem 36. Otherwise, we have
ST >iex maz{y | D yi=5y N Ya =0 N §y € 57}, and 0 € D(Y,) is inconsistent by
Theorem 36. Finally, if j > a then st <o, maz{y| > ,vi=Sy N y;=0 A y€ )7'}, SO
0 € D(Y;) is consistent by Theorem 36.

Theorem 42 Under assumption 6.5 and GAC(Y , X; = Sx) and GAC(_,Y; = Sy),
LexLqundSum()?,?, Sz, Sy) is disentailed if St >ep SY.

Proof: Forall 0 < Jj<n where D(Y;) = {0,1} and sy; = 1, we can get maz{y | >, v =
SyNy; =0Ay € Y} by replacing sy; = 1 with sy; = 0. Note that replacing sy; = 1 with

sy; = 0 for the largest such j would also give maz{y | > v, =Sy ANy;=0Aye€ Y} for
all 0 < j < n where D(Y;) ={0,1} and sy; = 0. ForallO<g<nwhereD( 7)) =1{0,1},

we have ST >y SY >iee maz{y | > ,y; =Sy Ny =0 A §y € Y}. This means that

ST >ep maz{y | >,y =95y Ny € 17} By Theorem 35, the constraint is disentailed.
QED.

Theorem 43 Under assumption 6.6 and GAC(Y , X; = Sx) and GAC(_,Y; = Sy), if
there is some index av in [0,n) such that for all 0 < i < « we have sx; = sy; and $xy > SYq
then:

1. for all 0 < j < a where D(Y;) = {0,1}, 1 € D(Y;) is consistent;
2. if 1 € D(Y,) then 1 is consistent iff sTat1—n—1 <iex Yat1n_17
3. for all a < j <n where D(Y;) ={0,1}, 1 € D(Y}) is inconsistent.

Proof: Forall 0 < j < n where D(Y;) = {0,1} and sy; = 0, we can get maz{y | >, v =
Sy Ny =1 N 7gye€ Y} by replacing sy; = 0 with sy; = 1. Note that replacing sy; = 0
with sy; = 1 for the smallest such j would also give maz{y | > ,vi = Sy A y; =
1 A §eY}foral 0<j < n where D(Y; )—{Ol}andsy] = 1. If j < « then
ST <pez maz{y | > .yi=5y Ny=1ANye€ Y}. In this case, 1 € D(Y;) is consistent
by Theorem 36. We have st <j, maz{y | > ,yvi =5y N ya=1 N §y € }7} provided
that sTaq1-n-1 <iex Yar1—n_1- In this case, 1 € D(Y,) is consistent by Theorem 36.
Otherwise, we have st >, maz{y| >, =Sy N ya=1 N G € Y}, and 1 € D(Y,) is
inconsistent by Theorem 36. Finally, if j > « then s& >, max{y| > ,vi= Sy A y; =
1 AjJeY}sole D(Y;) is inconsistent by Theorem 36. QED.
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Procedure GAC(X, Sz)
1 min =), min(X;);
2 mazx =), maxr(X;);
3  setMin(Sz,min);

4 setMax(Sx,mazx);
5
5.
5.

foreach i € [0,n) do
1 setMin (X, min(Sz) — max + max(X;));
2 setMax (X;, maz(Sx) — min + min(X;));

end

Theorem 44 Under assumption 6.6 and GAC(Y>_, X; = Sx) and GAC(Y_,Y; = Sy), if
St <iey 8Y then for all 0 < j < n where D(Y;) = {0,1}, 1 € D(Y;) is consistent.

Proof: Forall 0 < j < n where D(Y;) = {0,1} and sy; = 0, we can get maz{y | >, v =
SyANy;=1AN7y¢€ }7} by replacing sy; = 0 with sy; = 1. Note that replacing sy; = 0 with
sy; = 1 for the smallest such j would also give max{y | > ,vi=SyANy,=1Aye€ 57} for
all 0 < j < n where D(Y;) = {0,1} and sy; = 1. For all 0 < j < n where D(Y;) = {0, 1},
we have §& <jep 8 <iex maz{y | Sy =Sy Ay, =1 A F€ Y} s01¢e DY) is
consistent by Theorem 36. QED.

6.3.3 Algorithm Details

Based on the theoretical results given in the previous section, we have designed an
efficient linear time algorithm, LexLeqAndSum, which either detects the disentailment
of LexLqundSum()Z' .Y, Sz, Sy) or prunes inconsistent values so as to achieve GAC on
LeXLqundSum(X, Y, Sz, Sy).

The algorithm is not incremental and therefore no data structure has to be initialised
nor maintained incrementally. Every time the algorithm is called, all the data structures
are recomputed and the generalised arc-consistent state is established. Therefore, when
the constraint is first posted, LexLeqAndSum (and no initialisation algorithm) is called.

When LexLqundSum()? ,?,Sx,Sy) is GAC, the values in X and Y are supported
by max{y | > ,vi =Sy N ¢y € Y} and min{Z | Yuri =St N T € X}, respec-
tively. Any modification to the variables affecting min{z | Y .x; = Sz A 7 € X} or
maz{y | > ,ui=95y N §y¢€ Y} triggers the filtering algorithm. We cannot, however,
decide what modifications can alter these vectors, because this all depends on the sums
and on the current partial assignments of the vectors. For instance, removing 0 from the
domain of some X; changes min{z | > .z, = Sz N &€ X} if 2; = 0 in the current
min{Z | >,z =Sx N T € X}. Hence, the algorithm is called by the event handler
every time any variable in the vectors is modified.

In Algorithm 23, we show the steps of LexLeqAndSum. The algorithm first establishes
GAC on the sum constraints in lines 1 and 2 via the call GAC, which is based on Proposition
1 in [RR0O0]. Note that for 0/1 variables, BC is equivalent to GAC.

Proposition 1 ([RR00]) Given X and an integer variable Sz, and the constraint Yo Xi=
Sx between these variables, BC(Y, X; = Sx) iff the following four conditions hold:

1. min(Sx) >, min(X;)
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Algorithm 23: LexLegAndSum

Data : (X, Xi,...,X,—1) with D(X;) C {0,1}, Integer Sz,
(Yo, Y1,..., Y1) with D(Y;) € {0,1}, Integer Sy

Result : GAC(X <., Y AY, X, = Sz A S Y; = Sy)

GAC(X, S2);

GAC(Y, Sy); .

sti=min{Z| > ,z;=Sx N TeX};

5y = min{7| S,y =Sy A Fe T

if st >, sy then fail;

6 if 3ie€{0,....n—1}.|D(X;)| > 1 then

6.1 sti=min{Z| Y ,z;,=Sx—1 N TeX}

6.2 PruneLeft (sz, s7, X) :

6.3 GAC(X, Sx);

6.4 if i€ {0,...,n—1}.|D(X;)| > 1 then

A s WODN =

6.4.1 sti=min{Z| Y ,x;=Sx+1 A fe XY
6.4.2 Prune_{iight(s&, st, )Z');
6.4.3 GAC(X, Sx);
end
end

7 if 3 e{0,....,n—1}.|D(Y;)| > 1 then

7.1 st o=min{Z| Y,z =5Sr A fe X}
7.2 sy =maz{y| > ,ui=5Sy+1 N y€ }7},
7.3 PruneLeft (si, 57, Y):

7.4 GAC(Y, Sy):

7.5 if 31 €{0,...,n—1}.|D(Y;)| > 1 then

7.5.1 sy=maz{y| Y ,yi=5SY—1 AN ye }7},
7.5.2 PruneRight (s, 5, Y);
7.5.3 GAC(Y', Sy);
end
end

2. max(Sz) < Y. max(X;)
3. Vi € [0,n). min(X;) > min(Sz) — Z#i max(X;)
4. Vi€ [0,n). maz(X;) < max(Sz) — >, min(X;)

Lines 3-5.2 of GAC(X ,Sx) implement the conditions 1-4 of Proposition 1 by calling
SetMin and SetMax to tighten the lower and upper bounds, respectively. If no failure is

encountered inside GAC, we check in line 5 of LexLeqAndSum whether min{Z |

DT =

Sz A Te X} > maz{7 | YLuUi=Sy N ye Y}. If so, disentailment is detected and
LexLegAndSum terminates with failure. Otherwise (min{Z| > ,z; =Sz N T € X} <jep

maz{y| Y, yi=5y N y€ Y'}), we continue with 4 pruning steps.

In step 1 (lines 4, 6-6.3), we assume X is not ground and we are concerned with

support for 1s in X. We first construct s as the minimum X with > Xi =S -1
(line 6.1), and sy as the maximum Y with ) ,Y; = Sy (line 4). We then determine



CHAPTER 6. LEXICOGRAPHIC ORDERING WITH SUM CONSTRAINTS 141

Procedure PruneLeft (sz, s7), V)

1 a:=0;

2 while sz, = sy, doa:=a+1;

3  v:= false;

4  if ston-1 <iex SY,_,_1 then v = true;
5 1:=0;

6 whilei < ado
6.1 if |D(V;)| > 1 then

6.1.1 if V' = X then setMax(V;,0);
6.1.2 else if V =Y then setMin(V, 1);
end
6.2 1 =141
end

7 if -y A |D(V,)| > 1 then

71 | if V = X then setMax(V,,0);

7.2 else if V =Y then setMin(V,, 1D;
end

where we can place one more 1 on st and have st <., sy (via the call Pruneleft in
line 6.2). Since min{Z | > ,z;=S5r N T € )Z} <iez S¥, we already have st <j, s in
PruneLeft. Therefore, in lines 1 and 2 of PruneLeft, we first find the most significant
index a where sz, < sy,. Placing 1 in st to the left of o makes st >, sy. This is
true also for o provided that the subvectors after a are not lexicographically ordered.
Anywhere after o has support since st <j., sy remains valid. After deciding whether
STat1-n-1 Ziex SYgtr1—n_1 (lines 3-4), we prune all 1s in X to the left of a (lines 5-6.2)
and at « if sTa41-n-1 >iex SYqy1—n_y (lines 7-7.2). We then return back to LexLeqAndSum,
maintain GAC() . X; = Sz) (via the call GAC in line 6.3), and continue with step 2.

In step 2 (lines 4, 6.4-6.4.3), we assume X is not ground and we are concerned with
support for Os in X. We first construct s as the minimum X with Y Xi=Sr+1
(line 6.4.1), and 7 as the maximum Y with >, Y; = Sy (line 4). We then determine
where we can place one more 0 in s and have st <j, sy (via the call PruneRight in
line 6.4.2). If st <., sy then placing another 0 on any location of si makes st < s7,
so we do no pruning. If, however, we have si >, sy then placing 0 on st to the right
of o (the most significant index where sz, > sy,) does not change that s > sj. This
is true also for a provided that the subvectors after o are not lexicographically ordered.
Anywhere before o has support as in this case we have st <., sy. We therefore first
decide in PruneRight whether st <., sy (lines 1-2). If so, PruneRight returns. After
deciding whether Sta11-n-1 <iez SYat1-n_1 (lines 3-4), we prune all Os in X to the right
of o (lines 5-6.2) and at & if sTat1-n-1 >iew Yat1—n_1 (lines 7-7.2). We then return back
to LexLegAndSum, and maintain GAC()_, z; = Sz) (via the call GAC in line 6.4.3).

Step 3 (lines 7-7.4) is very similar to step 1, except we assume Y is not ground and
identify support for the Os in Y. We first construct sz as the minimum X with > Xi=Sx
(line 7.1), and 7 as the maximum Y with > Y =Sy +1 (line 7.2). We then determine
where we can place one more 0 in s and have st <., sy, in a way similar to that of step
1. Instead of pruning 1s, we now prune from Y those Os which lack support. Due to this
similarity, we can perform the prunings of the first and the third steps of the algorithm
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Procedure PruneRight (si, s7, V)

1 whilea<n A sz, =sy, doa:=a+1;
2 ifa=n V sz, < sy, then return;

3 ~v:= false;

4  if ston-1 <iex SY,_,_1 then v = true;
5 i:=n-—1;

6 whilei > «a do
6.1 if |D(V;)| > 1 then

6.1.1 if V= )g' then setMin(V;, 1);
6.1.1 else if V =Y then setMax(V,0);
end
6.2 1i=1—1;
end

7 if -y A |D(V,)| > 1 then
7.1 if V = X then setMin(V,, 1);
7.2 else if V =Y then setMax(V,,0);

end

with the same procedure, PruneLeft. The input to the procedure is the vectors st and
sy and either of X and Y. PruneLeft prunes either 1s from X (via the call setMax) or
Os from Y (via the call setMin) between the beginning of the vector and index a.

Step 4 (lines 7.1, 7.5-7.5.3) is very similar to step 2, except we assume Y is not ground
and identify support for the 1s in Y. We first construct st as the minimum X with
S X; = Sz (line 7.1), and s3 as the maximum Y with 2. Y; = Sy — 1 (line 7.5.1). We
then determine where we can place one more 1 in sj and have st <;., s¥, in a way similar
to that of step 2. Instead of pruning 0Os, we now prune from Y those 1s which lack support.
Due to this similarity, we can perform the prunings of the second and the fourth steps of
the algorithm with the same procedure, PruneRight. The input to the procedure is the
vectors st and s3 and either of X and Y. PruneRight prunes either 0s from X (via the
call setMin) or 1s from Y (via the call setMax) between the end of the vector and index
a.

In PruneLeft and PruneRight, we consider only the variables the domains of which are
not singleton. Also, we skip a step of the algorithm if the variables of the corresponding
vector have all singleton domains. The reason is as follows. At the beginning of the
algorithm, we check whether min{z | > 2, = Sz N & € X} >ie0 maz{if | DY =
Sy A § e Y} If yes then we fail: otherwise we have min{z | Yuri =8t N T €
X} <o maz{y | YuUi=8Sy N ye Y'}. This means that there is at least one value in
the domain of each variable which is consistent. The algorithm therefore seeks support
for a variable only if its domain is not a singleton.

The normal execution flow of the algorithm is steps 1 and 2, and then steps 3 and 4.
There are a number of reasons for this choice. First, in step 2, we can re-use the vector
sy constructed in step 1. Similarly, in step 4 we can work on s% constructed in step 3.
Second, from step 1 to step 2, we increase the number of 1s in st by two and do not
change si. In step 1, all 1s in X before X, and perhaps the 1 at D(X,,) are pruned. In
step 2, « is either unchanged (i.e., 1 in D(X,) is pruned in step 1) or it moves only to the
right. Therefore, in step 2 we can reuse the previous value of a as the lower bound while
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looking for its new value. A similar argument holds between steps 3 and 4. As step 3
prunes all Os before Y, the new value of « in step 4 is at least its previous value. Third,
from step 2 to step 3, we decrease the number of 1s in s and increase in sy by one. So «
may move to the left and thus we must recompute « in step 3. A similar argument holds
from step 4 to step 1, therefore it does not matter which of steps 1-2 and steps 3-4 we
perform first.

None of the prunings require any recursive calls back to the algorithm. We tighten only
min{y| Y..yi=S5y N §y€ Y} and maz{7 | Yuri=8r N T € X} without touching
maz{y | >, yi=SyANye Y} and min{z | Yuri=Sr AT € X} which provide support
for the values in the vectors (recall Figure 6.1). The exception is when a domain wipe-out
occurs. As we have min{z | > .x; =Sz N7 € X} <jew maz {7 | YuUi=SyNye Y},
there is at least one value in the domain of each variable which is supported. This means
that the prunings of the algorithm cannot cause any domain wipe-out.

6.4 Theoretical Properties
The filtering algorithm LexLegAndSum runs in linear time in the length of the vectors.
Theorem 45 LexLeqAndSum runs in time O(n).

Proof: GAC computes ). min(X;) and >, maz(X;) in time O(n). The computation of
> j2imaz(X;) is constant time as it is equal to ), max(X;) —maz(X;), and 3 ; maz(X;)
is already computed. Similarly, >, min(X;) is equal to » ., min(X;) — min(X;) and
therefore computed in constant time. As each of 3., maz(X;) and >_ ., min(X;) are
computed for all 0 < i < n, GAC on ), X; = Sz can be achieved in O(n). Each of
Pruneleft and PruneRight runs in O(n) as in the worst case the whole vectors need
to traversed. Checking whether a vector is ground can be done in constant time by
comparing » . min(X;) and . maxz(X;) that are recomputed at every call to GAC. Hence,
the algorithm runs in O(n). QED.
The algorithm LexLegAndSum is correct and complete.

Theorem 46 LexLegAndSum either establishes failure if LeXLqundSum()z, Y, Sz, Sy) is
disentailed, or prunes all inconsistent values from X andY to ensure GAC(LexLeqAndSum
(X,Y,Sz,Sy)).

Proof: LexLegAndSum calls PrunelLeft and PruneRight. We first give the pre- and
post-conditions of these procedures, and show that they establish their post-conditions
given the necessary pre-conditions.

PrunelLeft (sﬁ’,s@,)?) must be invoked only when ) . X, = Sz is GAC, X is not
ground, st ismin{z | Y . x; = Sr—1ANZ € X}, styis maz{jf | YuUi=SyNnye Y}, and
st < sy. Similarly, PrunelLeft (s, s7), Y) must be invoked only when ) . Y; = Sy is GAC,
Y is not ground, sz is min{Z | 3., x; = St AZ € X}, sy is max{if | Yuvi=Sy+1 Ay e
)7}, and st < sy. After execution of PruneLeft (sz, s?g,)?) and PruneLeft (sz, s?g,?),
all the inconsistent 1s and 0s from X and Y must be removed, respectively. Assuming
that the pre-condition is satisfied, in lines 1 and 2 of Pruneleft, st and sy are traversed
until the most significant index a where sz, < sy, is found. In lines 3 and 4, it is
determined whether stoi1—n—1 <iew SYat1—n_1- Lines 5 to 6.2 examine every variable
more significant than «. If the variable is not yet ground, 1 is removed from its domain
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in the case of PruneLeft (sz, s?y,)?) but instead 0 in the case of PruneLeft (s, s7, Y).
A similar pruning happens at « (lines 7-7.2) provided that Stai1—n—1 >ter SUatin_1-
Consequently, all the inconsistent 1s and 0s from X and Y are removed respectively by
Theorems 37 and 41. Hence, PruneLeft establishes its post-condition.

PruneRight(sﬁ:,s‘g’/,X') must be invoked only when ) . X; = Sz is GAC, X is not
ground, s ismin{z | Y  x; = Sz+1ANT € X}, and 57 is maz {7 | DLUi=SyNye Y}
Similarly, PruneRight (sZ, s7, Y) must be invoked only when ). Y; = Sy is GAC, Y is
not ground, st is min{Z | > .x; = Sz A T € X}, and 7 is maz{y | YU =
Sy—1 N7ye )7} After execution of PruneRight (s, s, X) and PruneRight (s%, s7, }7),
all the inconsistent 0s and 1s from X and ¥ must be removed, respectively. Assuming
that the pre-condition is satisfied, line 1 of PruneRight traverses st and sy until either
it reaches the end of the vectors (because the vectors are equal), or it finds an index «
where sz, < Sy, O STy > SYq. If ST <jep s7, all the Os in X are consistent in the case
of PruneRight (sz, 57, X) by Theorem 40. Similarly, all the 1s in Y are consistent in the
case of PruneRight (sZ, s7, Y) by Theorem 44. Hence, the algorithm returns in line 2.
If, however, st >, sy then it is determined in lines 3 and 4 whether sto 11 n1 <iex
5Uaq1—n—1- Lines 5 to 6.2 examine every variable less significant than «. If the variable is
not yet ground, 0 is removed from its domain in the case of PruneRight (sZ, sy, X) but
instead 1 in the case of PruneRight (sZ, s7, Y). A similar pruning happens at « (lines
7-7.2) provided that sZq41—n—1 >iez SYqs1—n_1- Consequently, all the inconsistent Os and
1s from X and Y are removed respectively by Theorems 39 and 43. Hence, PruneRight
establishes its post-condition.

We now analyse LexLeqAndSum. In lines 1 and 2, procedure GAC establishes GAC on
the sum constraints based on Proposition 1. If min{Z | > .x; = Sz N T € X} >lex
maz{j | S,y = Sy A ¢ € Y} then LexLeqAndSum(X,Y, Sz, Sy) is disentailed by
Theorem 35 and thus LexLegAndSum terminates with failure (line 5). Otherwise, we have
min{Z | Y, x; =8t A &€ X} <o maz{y| S,ui=Sy A §€ Y'}. This means
that there is at least one value in the domain of each variable which is consistent. The
algorithm therefore continues with 4 pruning steps and seeks support for a variable only
if its domain is not a singleton.

Step 1 (lines 4, 6-6.3) PruneLeft (s, 57, X) is called in line 6.2 satisfying its pre-
condition: ). X; = Sz is GAC (line 1), X is not ground (line 6), s is min{7 | YT =
Sr—1 A &e X} (line6.1), and s is maz{7| Y,y =Sy A 7€ Y} (line 4). Moreover,
min{Z | Y ,x;=5Sx N T € X} >1en maz{7 | YuUi=Sy Nye Y} implies s& < 53 by
Theorems 35 and 38. PruneLeft (s, s7, X) removes all inconsistent 1s from X. Finally,
GAC(Y_, X; = Sz) is restored in line 6.3.

Step 2 (lines 4, 6.4-6.4.3) PruneRight(s?c,s@,X) is called in line 6.4.2 satisfying
its precondition: » . X; = Sz is GAC (line 6.3), X is not ground (line 6.4), s
min{z | Y,z = Sx+1 AN T € X} (line 6.4.1), and sy is max{7 | YV =
Sy A § € Y} (line 4). PruneRight (s%,s#, X) removes all inconsistent Os from X.
Finally, GAC(}_, X; = Sx) is restored in line 6.4.3.

— o

S

Step 3 (lines 7-7.4) Pruneleft(sz, $3,Y) is called in line 7.3 satisfying its precon-
dition: > .Y; = Sy is GAC (line 2), Y is not ground (line 7), st is min{Z | >, x; =
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Sz A & e X} (line 7.1), and s§ is maz{7 | Yuui=Sy+1 AN g€ Y} (line 7.2).
Moreover, min{@ | >, x; =Sz N ¥ € X} >1ep max{7 | YuUi=95y N ye Y} implies
st < sy by Theorems 35 and 42. PruneLeft (s, sy, Y) removes all inconsistent 0s from
Y. Finally, GAC(}_,Y; = Sy) is restored in line 7.4.

Step 4 (lines 7.1, 7.5-7.5.3) PruneRight (s%,s7,Y) is called in line 7.5.2 satisfy-
ing its precondition: ) .Y; = Sy is GAC (line 7.4), Y is not ground (line 7.5), s& is
min{Z| >,z =Sxr N T¢€ X} (line 7.1), and s3 is maz{7 | Yuyi=Sy—1 AN g€
Y} (line 7.5.1). PruneRight (s, s7,Y) removes all inconsistent 1s from Y. Finally,
GAC(}_,Y; = Sy) is restored in line 7.5.3.

LexLegAndSum is a correct and complete filtering algorithm, as it either establishes
failure if LexLqundSum()Z' , 37', Sz, Sy) is disentailed, or prunes all inconsistent values from
X and Y to ensure GAC(LexLeqAndSum(X,Y, Sz, Sy)). QED.

6.5 Extensions

In this section, we extend the filtering algorithm LexLeqAndSum to cover some interest-
ing cases. We first show in Section 6.5.1 how we can obtain a filtering algorithm for
LexLessAndSum. Then, in Section 6.5.2, we explain how we catch entailment. Finally, in
Section 6.5.3, we discuss how we deal with sums that are not ground but bounded.

6.5.1 Strict Lexicographic Ordering with Sum Constraints

LexLegAndSum can easily be modified to obtain a filtering algorithm, LexLessAndSum,
which either detects the disentailment of LexLessAndSum()Z' , }7, Sz, Sy) or prunes incon-
sistent values so as to achieve GAC on LexLessAndSum()Z , 17, Sz, Sy). To do so, we need
to disallow equality between the vectors.

Before showing the modifications to LexLeqAndSum, we study the theoretical back-
ground of LexLessAndSum(X , 37, Sz, Sy). We start with the disentailment condition which
is very similar to that of LexLeqAndSum except that equality between min{z | >, z; =
Sz A Ze X} and maz{y | Yui=8Sy Nye Y} now disentails the constraint.

—

Theorem 47 Given GAC(Y , X; = Sz ) and GAC(Y_,Y; = Sy), LexLessAndSum(X, Y,
Sz, Sy) is disentailed iff min{z | > ., x; = Sx N ¥ € X} >1ee maz{y | YYo=
Sy N yeYhl.

Proof: (=) Since LexLessAndSum(X,Y, Sz, Sy) is disentailed, any combination of as-
signments, including X « min{Z | dYuri=8r N T € X} and Y — maz{7 | YU =
Sy N € 57}, does not satisfy X <1 Y. Hence, min{Z | > ,z; =Sz N &€ )Z'} >len
maz{y | Y ,yi=95y N y€ }7} )

(<) Any Z e {7]| > ,z; =Sz N ¥ € X} is lexicographically greater than or equal to
anyy € {y| D, yi=Sy Nye Y}. Hence, LexLessAndSum(X,Y, Sz, Sy) is disentailed.
QED.

The necessary conditions to ensure GAC on LexLessAndSum()? , 37, Sz, Sy) are very
similar to those of LexLqundSum()Z' , 37, Sz, Sy) except that the vectors supporting the
values must now be strict lexicographically ordered.
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Theorem 48 Given GAC(Y., X; = Sz) and GAC(Y.,Y; = Sy), GAC(LexLessAndSum (X,
Y, Sz, Sy)) iff for all 0 < j < n and for all k € D(X;):

min{x xi:Sx/\x-:k/\feX' <lex max{y yi:Sy/\gjef' 6.7
J

and for all k € D(Y;):

min{Z | in:Sx A T e X} <pew max{i | Zyi:Sy Ny=k Nye Y} (6.8)

Proof: (=) As the constraint is GAC, all values have support. In particular, X; < k has
asupport 43 € {Z| S, ai=SerAz;j=kAZeXyandyi e {7| S,y =Sy AijeY}
where 27 <jep 1. Any 23 € {| Y .xi =Sz N z; =k N X € )?} <iex T1 and
wed{yl Y, yi=SyANye 57} >1ex Y1 support X; « k. In particular, min{Z | ) . x; =
St A xzj=k A Ze X} and maz{7 | Yuui=Sy N ye Y’} support X, — k. Hence,
min{Z| Y, x;=Sr Nzj=k N T€ X} <teo maz{y | Yuui=Sy N ye Y},

A dual argument holds for the variables of Y. As the constraint is GAC, Y, « khasa
support 5 € {Z| S,z =Sr AZe Xyandyi € {§] Sui=Sy Ayj=kAgeY}
where @7 <jep yi. Any 25 € {Z| >, 2, =Sx N T € )?} <tz Trand vy €{y | D .y =
Sy Ny, =k N ye }7} >lex U1, in particular min{a | >z, = Sz A ¥ € X} and
max{y | D, ui=5y Ny=k N §¢€ Y} support Y; «— k. Hence, min{Z | YT =
St A &€ X} <jep max{if| Yuui=Sy Ny =k A jeY}.

(<) 6.7 and 6.8 ensure that for all 0 < j < n, all the values in D(X;) and D(Y;) are
supported, respectively. Hence, the constraint is GAC. QED.

By exploiting the similarity between Theorems 36 and 48, we can easily decide at
which positions of X and ¥ we have (in-)consistent values. In Theorems 37 to 44, we
construct a pair of vectors st and sy and decide where we can place one more 0/1 in
st/sy and have st <j., sy. In Theorems 38 and 42, by placing one more 1 and 0 on
st and sy respectively, we obtain st >, sy. This proves LexLqundSum()? , }7, Sz, Sy)
is false, which in fact also establishes that LexLessAndSum()Z' Y, Sz, Sy) is disentailed.
Similarly, in Theorems 40 and 44, by placing one more 0 and 1 on st and sj respectively,
we obtain s <, sy. Since the ground vectors supporting 0 and 1 anywhere in X and Y
are strict lexicographically ordered, 0 and 1 are consistent at every position of X and Y.

In Theorems 37, 39, 41, and 43, by placing one more 0/1 in s&/sy, we obtain either
of st > sy, st = sy, and st < sy. In the first case, the support vectors are ordered
lexicographically the wrong way so the value is inconsistent. In the third case, the support
vectors are strict lexicographically ordered so the value is consistent. Since we do not
want equality between X and 37, we now declare that the value is inconsistent if we
obtain st = sj). Hence, we modify the second condition of Theorems 37, 39, 41, and 43
by stating that:

if v € D(V,) then v is consistent iff sTq11—n—1 <iex VUat1n_1

where v € {0,1} and V € {X, Y}

In summary, Theorems 38, 40, 42, and 44 are valid also for LexLessAndSum()? Y, Sz, Sy).
Theorems 37, 39, 41, and 43 need only a small modification so that we ensure disequality
between X and Y. Puttlng this together with Theorem 47, we need only two modifica-
tions to the algorithm. First, we change the definition of v in PrunelLeft and PruneRight.
The flag 7 is true iff sTa11-n—1 <iew Yag1—n_1-
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Procedure PruneLeft (sz, s7), V)

3 ~v:= false;
4 if sty n1 <iex SUy_p_q then v := true;

Procedure PruneRight (st, s, V)

3 v:= false;
4  if ston-1 <iex SYy_p_1 then v := true;

Algorithm 28: LexLegAndSum
Data : (X, Xi,...,X,—1) with D(X;) C {0,1}, Integer Sz,
(Yo, Y1, ..., Y,_1) with D(Y;) C {0, 1}, Integer Sy;

Result : GAC(X <., Y AY, X; = Sz A S Y; = Sy)

3 sto=min{Z| Y,z =8z A Te X}

sy=min{y| > ,yi=Sy N yeY}
5 if st >, sy then fail;

Second, we fail under the new disentailment condition. Algorithm 28 shows how we
modify Algorithm 23.

6.5.2 Entailment

The importance of detecting entailment was discussed in Chapter 5.4.2. We thus introduce
a Boolean flag called entailed which indicates whether LexLeqAndSum(X,Y, Sz, Sy) is
entailed. More formally:

Definition 34 Given )Z', 57, and integers Sx and Sy, the flag entailed s set to true iff
LexLeqAndSum(X,Y, Sz, Sy) is true.

We have shown in Theorem 17 that X <lex Y is true when v = «. By the definitions
of these pointers, v = « iff ceiling()?) <lex floor()?). The lexicographic ordering
constraint together with two sum constraints is entailed in a condition similar to that of
<lex _\zvith the difference that we now need to compare the largest T € X and the smallest

y €Y where Y . x; = Sz and ) .y, = Sy.

Theorem 49 Given GAC(Y., X; = Sz) and GAC(Y.,Y; = Sy), LexLeqAndSum(X, Y,
Sx, Sy) is entailed iff maz{Z| > ,x;=S5x N T € X} <jew min{7 | YuUi=95y N ye
Y}

Proof: (=) Since LexLqundSum()Z Y, Sz, Sy) is entailed, any combination of assign-
ments, including X «— maz{Z | Y .z, =S5z AN 7€ X} and Y «— min{y | > ,u =
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Algorithm 29: Initialise
Data : (X, Xi,...,X,—1) with D(X;) C {0,1}, Integer Sz,
(Yo, Y1, ..., Y1) with D(Y;) C {0, 1}, Integer Sy
Result : entailed is initialised, GAC()Z' <iex Y N Y Xi=Sx N Y,=Sy)
1 entailed := false;
2  LexLeqAndSum;

Sy N ¢ € 37}, satisfies X <j, Y. Hence, max{Z | Y ,x; = Sr N T € )Z} <lex
min{7| Siu =Sy A €V}

(<) Any € {&| Y,2; =Sz A Ze X} is lexicographically less than or equal to
any y € {y| Y, =Sy AN y¢€ Y}. Hence, LexLeqAndSum(X,Y, Sz, Sy) is entailed.
QED.

When LexLegAndSum is called, LexLqundSum()? Y, Sz, Sy) might have already been
entailed due to the previous modifications or might be entailed due to the latest mod-
ifications occurred. Alternatively, LexLqundSum(X ,Y,Sm, Sy) could be entailed after
a pruning step of the algorithm. As depicted in Figure 6.1, LexLeqAndSum modifies
maz{Z | Y .x; =St N T € X} and min{7 | YU =Sy N ye Y}. Even if we
have maz{Z | > ,z;, = Sz N o € X} > min{7 | YuYi=Sy AN ye€ Y} when the
algorithm is called, subsequent prunings might lead to max{Z | ) ,x; = Sz N ¥ € X} <
min{y | Y,4: = Sy A § € Y}. For instance, assume that X and Y are constrained
as LexLqundSum()? , 577 2,2) and that LexLeqAndSum is called with the following state of

the vectors:
({0,1}, {o0.1}, {o}, {0}, {o}, {0.1})
({1, {o}, {o,1}, {o,1}, {0}, {0})

We have min{z | >,z = Sz A 7 € X} =(0,1,0,0,0,1) <jep maz{i | YoV =
Sy AjeY}=(1,0,1,0,0,0) and maz{Z| Y,z =Sz AFe X} =(1,1,0,0,0,0) >,
min{y | > .yi =Sy AN ¢y € Y} = (1,0,0,1,0,0), so LexLeqAndSum(X,Y, Sz, Sy)
is neither disentailed nor entailed. The algorithm therefore proceeds with four pruning
steps. In step 1, we have st = (0,0,0,0,0,1), sy = (1,0,1,0,0,0), and « = 0. No
pruning is possible as STat1-n—1 <iex Yat1-n_1- 10 step 2, we have st = (1,1,0,0,0, 1),
sy = (1,0,1,0,0,0), and o« = 1. This means that 0 in D(X;) is consistent as we have
STat1-n-1 Ziew SYat1—n_1, but 0 in D(X5) is inconsistent. The removal of 0 from D(X5)
gives max{z | Y  x;=Sx AN T € X} =(1,0,0,0,0,1) <pep min{7]| YuUi=95y N ye
17} =(1,0,0,1,0,0). Now LexLqundSum()Z, Y,2, 2) is entailed.

In Algorithm 30, we modify the filtering algorithm given in Algorithm 23 to detect
entailment. We add line 0, where we return if LexLqundSum()Z' , 17', Sz, Sy) has already
been entailed. Moreover, just before proceeding with the pruning steps in line 6, we
check whether the latest modifications that triggered the algorithm resulted in entailment.
Furthermore, after every pruning step and before proceeding ahead, we check entailment
by comparing the current maz{Z | > ,x; = Sz N T € X} and min{7 | YooY =
Sy N ye 17} Whenever entailment is detected, we set entailed to true and return from
the algorithm.

Finally, we need to initialise the flag entailed when LexLeqAndSum is first called.
To distinguish between the first and the future calls to the algorithm, we introduce
Initialise which is called when LeXLqundSum()Z, 37, Sz, Sy) is first posted. Initialise

=<y
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Algorithm 30: LexLegAndSum
Data : (X, Xi,...,X,—1) with D(X;) C {0,1}, Integer Sz,
(Yo, Y1,..., Y1) with D(Y;) € {0,1}, Integer Sy
Result : GAC(X <., Y AY, X, = Sz A S Y; = Sy)
0 if entailed then return;

= if max{Z| Y ,z;,=Sx N Z€ X} <jew min{7 | YuUi=Sy Nye Y} then
‘ entailed = true; return;

end
6 if 3ie€{0,....n—1}.|D(X;)| > 1 then

= if maz{x| > ,x; =85z N 7€ X} <jew min{7f | YuUi=Sy Nye Y} then
‘ entailed = true; return;

end

6.4 if 3i € {0,...,n—1}.|D(X;)| > 1 then

e‘nd
end

= if max{Z| Y ,z;, =5z N T € X} <peo min{7f | YuUi=Sy N Y€ Y} then
‘ entatled := true; return;

end
7 if3ef0,...,n—1}.|D(Y;)| > 1 then

= if maz{Z| > ,xi=8x N T € X} <pew min{7j | Yuui=Sy Nye Y} then
‘ entailed := true; return;
end
7.5 if 3i € {0,...,n—1}.|D(Y;)| > 1 then
e‘nd
end
= if max{Z| Y ,z;,=Sv N Z€ X} <jew min{7 | YuUi=Sy N ye Y} then
‘ entailed := true; return;

end

initialises entailed to false and then calls LexLegAndSum.

Detecting entailment requires constructing a pair of additional vectors of length n and
then checking whether they are lexicographically ordered. In the worst case, the vectors
need to be examined from the beginning to the end. Hence, the runtime of the algorithm
remains O(n).

6.5.3 Bounded Sums

So far we have assumed that the sums on the vectors (i.e. Sz and Sy) are ground,
and designed LexLeqAndSum based on this assumption. An exception is GAC(X,Sx),
which maintains GAC on ) . X; = Sz given X and an integer variable Sx. How
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do we cope with sums that are not ground but bounded in the filtering algorithm of
LexLqundSum()?, Y, Sz, Sy)?

Assume we have lx < Sz < uzr and ly < Sy < uy. We now need to find support
first for the values in the domains of the vectors, second for the values in the range of
lz..ux, and third for the values in the range of ly..uy. In the first part, since we seek
support by minimising X and maximising Y we can run our algorithm LexLeqAndSum
with >, X; = lz and ), Y; = uy. This will provide the best support for the values in the
vectors. In the second part, we tighten the upper bound of Sz until:

max{Z | in:uaf; A T e X} <pep maz{7 | Zyi:uy AGeY}

The support for the upper bound of Sx is also the support for all the other values in the
domain of Sx. In the third part, we tighten the lower bound of Sy until:

min{Z | in:lx A T e X} <o min{if| Zyi:ly A GeY}

The support for the lower bound of Sy is also the support for all the other values in the
domain of Sy.

The prunings of the second and third part do not require any calls back to the first
part because we tighten only uz and ly without touching lz and uy. The exception is
when there is a domain wipe-out. We reach the second and the third part given that the
first part does not fail and we have min{z | > .x; =1z N T € X} <jew maz{7 | Y oY=
uy N y € }7} Hence, no domain wipe-out can occur.

Consider tightening the upper bound of Sz. We first construct st as maz{Z | >, x; =
ur N I € )Z'}, and sy as max{y | Y ,yi=uy N y € 37} If s <j., U then ux is
supported. If, however, st >, sy then we need to compute the largest ux with which
we have st <;., s§y. We can do this by first recording the most significant index « where
STo > SYo. This is where sx, = 1 and sy, = 0. Second, we replace the 1s at sz, and
below sx, by Os if the corresponding variables in X contain 0 in their domains. Finally,
if we still have st >, sy after the replacements, we replace one more 1 above sx, by
a 0. This will definitely give us st <;., sy. Note that in order to keep s maximal,
we start replacing 1s by Os below «. Let us illustrate this on an example. Consider
LeXLqundSum()?, Y, Sz, Sy) where:

X = {0,1}, {0}, {0,1}, {0,1}, {0}, {1}, {1}, {0,1})
v = ({1}, {0}, {1}, {0}, {o}, {o}, {o}, {0})
x <6 and Sy = 2. The corresponding maximal vectors are:
= (1, o, 1, 1, 0, 1, 1, 1>
= (1, 0, 1, 0, 0, 0, 0, 0)
al
We have st >, sy and a = 3. We need to decrease the number of 1s in st while keeping

sz as the maximum vector in a way that we obtain st <., syy. To have st <;., sy, 1 at
524 needs to replaced with 0:

Tl
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To keep st maximal, we need to replace all the 1s beneath o by 0 if the domain of
the corresponding variable contains 0. So we start at o + 1, move towards the end
of the vectors, and replace sz; = 1 with sx; = 0 if D(X;) = {0,1}. We might have
STo—n—1 >lex SUqn_q after all the replacements. During the traversal, we record whether

STa+1—n—1 Sleac SyaJrl—»n—l:

e}
=}

st = (1, 0, 1,
sy = (1, 0

O <
~ ~—

We now know that s¥a1—n—1 >iex SYas1-n_1- L0 Obtain st <., sy, we eliminate another
1 above a. To keep st maximal, we replace 1 at sx,_; by 0:

(@)
[a)
o

st = (1, 0, X,
sy = (1, 0, 1

O <
~— ~—

Now we have st <j., 7. Since we decreased the number of 1s in st by 3, the new upper
bound of Sx is 6 — 3 = 3.

Replacing a 1 above o by a 0 makes si < sy. If D(X,) does not contain 0 or
eliminating the 1s beneath o gave sTa41-n—1 >iex SYar1—n_1, then it suffices to replace
only one more 1 above a by 0 to obtain s < s7. The location of such a replacement is
the least significant index above o where 0 is in the domain of the corresponding variable.
If, however, we obtain $Ta—n—1 <iex SYs_n_q after the replacements then we have the
maximum number of 1s placed in sz and st <;., S¥.

The new upper bound is guaranteed to be at least [x because running LexLeqAndSum
with Y. X; = lz and ), Y; = uy in the first part ensures max{z | > ,x; =lz N T €
X} <pew maz{ij| S,y =uy A §€Y} (recall Figure 6.1).

In Procedure TightenSx, we show how we compute the new upper bound newuz
of Sz, given the existing upper bound uz, st = max{Z | Y ,2; = ur N T € )Z'},
sy=max{y| Y, yi=uy N y€ }7}, and s >, s. Lines 1 and 2 record the position «
where sz, = 1 and sy, = 0. At line 3, we start counting the number of times we replace
a 1 with a 0. If |D(X,)| > 1 then 1 at sz, can be replaced by 0, so we first increment the
counter (line 5.1) and then assign —1 to vy so that we check later whether the subvectors
beneath « are lexicographically ordered (line 5.2). In lines 6-7.3, we examine the values
of st between o + 1 and n — 1. If we can replace a 1 with a 0 then we increment the
counter (lines 7.1-7.1.2). We check in lines 7.2-7.2.2 whether the subvectors between o+ 1
and the current location are lexicographically ordered. The flag v here saves us from
traversing the subvectors. If D(X,) does not contain 0 or eliminating the 1s beneath «
gaVe STat1—n—1 Slex SYatr1—n_1, then it suffices to replace only one more 1 above a by 0 to
obtain st < sy. Line 8 increments the counter by 1 in a such a case. Finally, since count
is the number of 1s eliminated, the new upper bound of Sx is computed as ux — count in
line 9.

In a similar way, we can tighten the lower bound of Sy (see Procedure TightenSy).
We first construct st as min{z | > ,x; =lv N T € X}, and 53 as min{j/ | DY =
ly N ye }7} If st <j. sy then ly is supported. Otherwise « is the most significant
index where sx, > sy,. This is where sz, = 1 and sy, = 0. We now need to increase
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Procedure Integer TightenSx(sz, sy, ux, newux)
a:=0;

while sz, = sy, do o := a + 1;
count := 0;

Y= =2

if |D(X,)| > 1 then

1 count := count + 1;

2 v = -1

end

6 1:=a+1;

7  while i <n do

o s 0N =

7.1.1 sx; = 0;
7.1.2 count := count + 1;
end
7.2 if v = —1 then
7.2.1 if sx; > sy; then v :=1;
7.2.2 if sz; < sy; then v := 0;
end
7.3 1=1+1;
end

8 ify=1V |D(X,)| =1 then count := count + 1;
9  newur := uxr — count;

the number of 1s in sy while keeping s as the minimum vector so that st <;., si. To
have st <., s¥, 0 at sy, needs to be replaced by 1 if D(Y,) contains 1. To keep sy
minimal, we need to replace all the Os beneath « by 1 if the domain of the corresponding
variable contains 1. So we start at a+ 1, move towards the end of the vectors, and replace
sy; = 0 with sy; = 1 if D(Y;) = {0,1}. We might have sTon_1 >iex SU,_n_q after all
the replacements. During the traversal, we record whether sZoi1—n—1 <iex SUati—n_1-
Replacing a 0 above a by a 1 makes s& < s3. If D(Y,) does not contain 1 or eliminating
the Os beneath o gave sTa41—n—1 >iex SUat1—n_1, then it suffices to replace only one more
0 above a by 1 to obtain s < sy. If, however, we obtain sto—n—1 <iex SY,_n_1 after the
replacements then we have the minimum number of 1s placed in sy and st <., sy.

The new lower bound is guaranteed to be at most uy because running LexLeqAndSum
with . X; = [z and ), Y; = uy in the first part ensures min{z | >, z;, =1lz N T €
X} <pew min{7| S, yi =uy A §€Y} (recall Figure 6.1).

Dealing with bounded sums does not change the complexity of the filtering algorithm.
The first part deploys LexLegAndSum which runs in time O(n). In the second and third
parts, we construct a pair of vectors of length n and in the worst case we traverse the
whole vectors to decide the new bounds of the sums. Using 7, we do not need to scan the
subvectors between o + 1 and the current location of the traversal. The runtime of the
filtering algorithm therefore remains O(n).
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Procedure Integer TightenSy(sz, sy, ly, newly)
a:=0;

while sz, = sy, do o := a + 1;
count := 0;

Y= =2

if |D(Y,)| > 1 then

1 count := count + 1;

2 v = -1

end

6 1:=a+1;

7 while: <n do

o s 0N =

7.1 if sy, =0 A |D(Y;)| > 1 then
7.1.1 sy; = 1;
7.1.2 count := count + 1;
end
7.2 if v = —1 then
7.2.1 if sx; > sy; then v :=1;
7.2.2 if sz; < sy; then v := 0;
end
7.3 1=1+1;
end

8 ify=1V |D(Y,)| =1 then count := count + 1;
9 newly := ly + count;

6.6 Multiple Vectors

We often have multiple rows of a matrix that are lexicographically ordered and are con-
strained by sum constraints (see the examples in Section 6.2). We can treat such a problem
as a single global constraint over the whole matrix. Alternatively, we can decompose it
into lexicographic ordering with sum constraints on all pairs of rows, or (further still)
onto ordering constraints just on neighbouring pairs of rows. The following results show
that such decompositions hinder constraint propagation. However, we identify a special
case which occurs in a number of applications where it does not. This case is when the
sums are just 1, which occurs in many assignment problems.
The following theorems hold for n vectors of m constrained variables.

Theorem 50 G’AC(LexLqundSum()?i,)zj,SZ-,Sj)) for all0 < i < j <mn-—1is strictly
stronger than GAC(LexLeqAndSum(X;, X;.1,S;, Siy1)) for all0 <i<mn —1.

Proof: GAC(LexLqundSum()?i,)?j,Si,Sj)) for all 0 < i < 7 < n—11is as strong as
GAC(LexLeqAndSum(X;, Xz’—i—l; Si, Sit1)) for all 0 < i < n — 1, because the former implies
the latter. To show strictness, consider the following 3 vectors:

Xo = <{071}7 {1}7 {071}7 {071}>
X, = <{071}7 {071} {071} {071}>
Xy = <{07 1}7 {O} {07 1} {07 1}>

with Sp = S; = 55 = 2. We have GAC(LexLqundSum()?i,Xi+1, Si, Sivq)) forall 0 < i <
2. The assignment X < 1 forces Xy to be (1,1,0,0), which is lexicographically greater
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than maz{Z | Y, 2; = 2A T € Xo} = (1,0,1,0). Therefore, GAC(LexLeqAndSum(X, X,,
So, S2)) does not hold. QED.

Theorem 51 GAC(LexLessAndSum(Xi,Xj,Si, S;)) for all0 < i < j<n-—1is strictly
stronger than GAC(LexLessAndSum(X;, X; 1, S;, Sit1)) for all 0 <i <n — 1.

Proof: GAC(LexLessAndSum(Xi,Xj,Si,Sj)) forall 0 <7 < j < n—1Iis as strong as
GAC(LexLessAndSum(X;, X;41,5;,S;+1)) for all 0 < i < n—1, because the former implies
the latter. To show strictness, consider the following 3 vectors:

Xo = <{071}7 {071}7 {1}7 {071}7 {071}>
Xl = <{071}7 {071}7 {071}7 {071}7 {071}7>
X2 - <{1}7 {0}7 {0}7 {071}7 {071}>

with S = S; = Sy = 2. We have GAC(LexLessAndSum(X}-,Xi+1,Si,SZ-H)) for all
0 < i < 2. The assignment Xyo < 1 forces X, to be (1,0,1,0,0), which is lexico-
graphically greater than max{Z | > , 2, =2 N & € X,} = (1,0,0,1,0). Therefore,
GAC(LexLessAndSum(X,, X5, Sy, S2)) does not hold. QED.

Theorem 52 GAC(Wij 0 < i < j <n-—1. LexLqundSum(X},X},Si,Sj)) is strictly
stronger than G’AC(LexLqundSum()?i, Xj, Si,S8;)) for all0 <i<j<mn-—1

Proof: GAC(Yij 0 < i < j < n — 1. LexLeqAndSun(X;, X;,5;,S;)) is as strong as
GAC(LexLqundSum(X},X},S,-,Sj)) for all 0 < i < j < n —1. To show strictness,
consider the following 3 vectors:

Xo = ({0,1}, {0,1}, {1}, {0,1}, {0,1}, {0,1})
X = <{0>1}> {0’1}’ {0}7 {1}’ {0’1}7 {071}>
X, = <{07 1}7 {07 1}7 {0}7 {0}7 {O? 1}7 {07 1}>

with Sy = 2, S; = 3, and S, = 3. We have GAC(LexLegAndSun(X;, X, S;, S;)) for
all 0 < i < j < 2. The assignment Xy, « 1 forces X, to be (1,0,1,0,0,0), which
is supported by Xi only with the assignment (1,1,0,1,0,0). The latter assignment is,
however, lexicographically greater than maz{Z | Y ,z; =3 A T € X,} = (1,1,0,0,1,0).
Therefore, GAC(Vij 0 <i < j <2. LexLqundSum()zi, Xj, Si,Sj)) does not hold. QED.

Theorem 53 GAC(Wij 0 < i< j<n-—1. LexLessAndSum()?,-,X},Si,Sj)) is strictly
stronger than GAC(LexLessAndSum(X;, X;,S;,5;)) for all0 <i < j<n—1.

Proof: GAC(Vij 0 <i < j <n-—1. LexLessAndSum(Xi,Xj,Si,Sj)) is as strong
as GAC(LexLessAndSum()?i,)?j,SZ-,S]-)) for all 0 < i < j < mn — 1, because the for-
mer implies the latter. To show strictness, consider 7 vectors )?0 to )?6 with )?Z =
({0,1},{0,1},{0,1},{0,1}) and S; = 2 for all ¢ € [0,6]. For all 0 < i < j < 6, we have
GAC(LexLessAndSum()?i, X j,9i,5;)) but there is no globally consistent solution as there
are only (3): 6 possible distinct vectors. QED.

Theorem 54 GAC(Vij 0 <i < j <n—1.LexLessAndSum(X;, X,,1,1)) is equivalent to
GAO(LeXLessAndSum()?i,Xj, 1,1)) forall0 <i<j<mn-—1.
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—

Figure 6.2: GAC(LexLessAndSum(Xl-,)?j, L1) foral 0 <i<j<n-—1

Proof: (<) The domains of the variables when we have GAC(LexLessAndSum(X;, X;,1,1))
forall 0 <i < j <n-—1onann x m matrix is shown in Figure 6.2. If m > n then no
solution is allowed. If m = n then only one solution, namely the top-right to bottom-left
diagonal matrix, is allowed. If m < n then each 1 in every row is supported by the other
1s along its top-right to bottom-left diagonal, as well as the other Os along its row. This
also gives support for each 0 in every row. QED.

6.7 Related Work

A number of other constraints have been combined together to give new global constraints.
For example, Régin and Rueher have introduced a global constraint which combines to-
gether sum and difference constraints [RR00]. More specifically, they have proposed an
efficient filtering algorithm for constraint optimisation problems where a vector X of vari-
ables are subject to the difference constraints of the form X; — X; < c and the objective
function is defined by a sum ). X; = Y. Such constraints and the objective function
occur together in deterministic scheduling problems where mean flow time or tardiness is
the optimality criteria. The filtering algorithm can yield significant gains in the amount
of pruning compared to propagating the difference constraints after each reduction of the
bound of Y. Unfortunately, no experimental results are given, so it is difficult to judge
how useful the global constraint is in practice. As a second example, following [FHK*02],
Carlsson and Beldiceanu have combined together a chain of lexicographic ordering con-
straints [CB02a] so that we post a single constraint on n vectors as opposed to n — 1 of
them. Even though in theory more constraint propagation can occur with this new global
constraint, in practice there may be no gain. For a detailed discussion, see Section 6.9.
More generally, Bessiere and Régin have defined a schema for enforcing GAC on an
arbitrary conjunction of constraints [BR98]. This form of local consistency is called con-
Junctive consistency and the schema is derived by extending GAC-schema [BR97] which
is a general framework for AC algorithms for constraints of arbitrary arity. The proposed
filtering algorithm to achieve conjunctive consistency is based on the instantiation of
GAC-schema for constraints given as a predicate. Since the semantics of the predicate is
not known in such a general setting, finding a support for a value a of a variable V' is done
by searching for a solution for the problem derived when V'« a by means of a search al-
gorithm. Hence, the worst case complexity of the algorithm is bounded by the complexity
of the search procedure used to seek supports. However, we here exploit the semantics of
the global constraint, and therefore enforce GAC more efficiently. To be precise, by taking
into account that the vectors should satisfy X <Y A Y. Xi=Sx A DY, = Syand
considering that the domains of the vectors are {0, 1}, we decide at which positions of X
and Y the values 0 and 1 are inconsistent without having to explore all the variables of
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X and Y individually and to seek support for every variable.

6.8 Experimental Results

We implemented our global constraints LexLeqAndSum and LexLessAndSum in C++ using
ILOG Solver 5.3 [ILO02]. The global constraints encapsulate the corresponding filtering
algorithm that either maintains GAC on (strict) lexicographic ordering with two sum
constraints or establishes failure at each node of the search tree.

We performed a wide range of experiments to test whether our algorithm(s) reduces
search significantly and is useful in practice. In the experiments, we have a matrix of
0/1 variables where the rows and/or columns are subject to sum constraints and also
symmetric. To break the symmetry, we can pose lexicographic ordering constraints on
the corresponding rows and/or columns. Due to the presence of the sum constraints,
we can alternatively post lexicographic ordering with sum constraints. In the next two
paragraphs, we show results comparing our new global constraints with the associated
lexicographic ordering constraints developed in Chapter 5 when searching for a solution.
Note that whenever we post lexicographic ordering with sum constraints, we no longer
post sum constraints.

We tested our global constraints on two problem domains: the ternary Steiner problem,
which originates from the computation of hypergraphs in combinatorial mathematics, and
the balanced incomplete block design problem, which is a standard combinatorial problem
from design theory with applications in cryptography and experimental design.

The results of the experiments are shown in tables where a “-” means no result is
obtained in 1 hour (3600 secs). Whilst the number of choice points gives the number of
alternatives explored in the search tree, the number of fails gives the number of incorrect
decisions at choice points. The best result of each entry in a table is typeset in bold. If
posing lexicographic ordering on the rows is done via a technique called T'ech then we write
Tech R. Similarly, posing lexicographic ordering on the columns using T'ech is specified
as Tech C, and on the rows and columns as T'ech RC. In theory posing lexicographic
ordering constraints between every pair of rows (similarly for columns) leads to more
pruning than posing between adjacent rows (see Chapter 5.6 and Section 6.6). We could
not see any evidence of this in practice, therefore lexicographic ordering constraints are
enforced just between the adjacent rows.

We used ILOG Solver 5.3 on a 1GHz pentium III processor with 256 Mb RAM under
Windows XP.

Ternary Steiner Problem This was introduced in Chapter 3.2.1. In Figure 3.2, one
way of modelling the problem is given. Since the subsets are indistinguishable, we can
freely permute the subsets of X to obtain symmetric (partial) assignments. Moreover,
permuting the elements of the set {1,...,n} does not affect the cardinality of the subsets,
nor the number of elements in common between any two subsets. Hence, the matrix has
row and column symmetry.

To break the row symmetry, we enforce that the rows RO, Rl, e ﬁn_l corresponding
to the n elements are anti-lexicographically ordered: Ro e R1 . Zlea én,l. Due to
the intersection constraint between any two subsets, no pair of columns can be equal. We
therefore break the column symmetry by insisting that the columns corresponding to the
b = n(n — 1)/6 subsets of V are strict anti-lexicographically ordered: C’O >lex C’l c Slex
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n || No symmetry breaking LexLess C LexLessAndSum C
LexLeq R LexLeq R
Fails Choice Time Fails Choice  Time Fails Choice  Time
points  (secs.) points  (secs.) points  (secs.)

6 | 6,195 6,194 0.3 14 13 0 11 10 0
7 6 20 0 2 16 0 1 15 0
8 - - - 741 740 0.1 390 389 0.1
9 | 4,521 4,545 0.4 336 360 0.1 250 274 0.1
10 - - - 723,210 723,209 128.8 | 433,388 433,387 105.3

Table 6.1: Ternary Steiner problem: LexLess vs LexLessAndSum with column-wise la-
belling.

Cy_1. Since the columns are also subject to sum constraints, we pose the lexicographic
ordering constraints on the columns using either LexLessAndSum or LexLess.

We tried many different labelling heuristics, and obtained the best results by instan-
tiating the matrix along its columns from left to right, and exploring the domain of each
variable in decreasing order (i.e. 1 first and then 0). This labelling heuristic together with
the anti-lexicographic ordering constraints on the rows and columns works very well for
solving tSps. Table 6.1 shows the results on some tSp instances. Note that tSp has been
proven to have solutions iff n modulo 6 is equal to 1 or 3 [LR80]. Therefore, only n =7
and n = 9 have solutions in the table.

We observe in Table 6.1 that the symmetry breaking ordering constraints significantly
reduce the size of the search tree giving significantly shorter run-times compared to no
symmetry breaking. The difference between the lexicographic ordering constraints and
lexicographic ordering with sum constraints are not striking for the satisfiable instances
(n = 7 and n = 9). The difference becomes apparent with the unsatisfiable instances
when we have a larger search space to explore. For n = 8 and n = 10, LexLessAndSum
reduces the size of the search tree by almost a half compared to LexLess.

If we change the labelling heuristic slightly, the problem becomes much more difficult
to solve. We then observe a dramatic increase in the size of the search tree if symmetries
are not eliminated. Tables 6.2 and 6.3 show the search tree and the run-times obtained
when labelling along the columns and rows, and along the rows of the matrix, respectively.
Reasoning with lexicographic ordering constraints in the presence of sum constraints now
become very useful, and the instances are solved much more quicker than the lexicographic
ordering constraints alone, with notable differences in the size of the search tree. Note
for instance that n = 10 in Table 6.3 could be proved to have no solution only with
LexLessAndSum, given the time limit 1 hour.

In summary, with a good labelling heuristic for solving tSps, propagating the lexico-
graphic ordering constraints on the columns via LexLessAndSum is beneficial over LexLess
only when we have a large space to explore. Otherwise the benefits are very modest. On
the other hand, LexLessAndSum significantly reduces the size of the search tree compared
to LexLess when our labelling heuristic is very poor for solving the problem. Also, the
additional constraint propagation helps to solve the problem quicker as the instances get
larger.

Balanced Incomplete Block Design Problem This was introduced in Chapter 3.2.1.
In Figure 3.1, one way of modelling the problem is given. Since the elements as well as
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n No symmetry breaking LexLess C LexLessAndSum C
LexLeq R LexLeq R
Fails Choice Time Fails Choice Time Fails Choice  Time
points  (secs.) points  (secs.) points  (secs.)

6 12,248 12,247 0.5 22 21 0 11 10 0
7 115 129 0.3 21 35 0 14 28 0
8 - - - 1,259 1,258 0.2 410 409 0.1
9 | 4,289,520 4,289,546 697.6 2,106 2,132 0.4 619 645 0.2
10 - - - 4,153,162 4,153,161 940.5 | 643,152 643,151 217.2

Table 6.2: Ternary Steiner problem: LexLess vs LexLessAndSum with column-and-row-

wise labelling.

n No symmetry breaking LexLess C LexLessAndSum C
LexLeq R LexLeq R
Fails Choice  Time | Fails Choice Time Fails Choice Time

points  (secs.) points  (secs.) points (secs.)

6 26,352 26,351 1.2 47 46 0 27 26 0

7 || 585,469 585,485  40.4 146 162 0 52 68 0

8 - - - 6,826 6,825 0.7 1,962 1,961 0.4

9 - - - 89,760 89,789  14.1 8,971 9,000 2.0

10 : 3 - - - - 3,701,480 3,701,479 1323.7

Table 6.3: Ternary Steiner problem: LexLess vs LexLessAndSum with row-wise labelling.

the subsets containing the elements are indistinguishable, the matrix X modelling the
problem has row and column symmetry.

Due to the constraints on the rows, no pair of rows can be equal unless r = A. To
break the row symmetry, we enforce that the rows Ro, Rl, e RU 1 correspondlng to the
v elements are strict anti-lexicographically ordered Ro >len R1 . Slex Rv 1. As for the
column symmetry, we enforce that the columns C’O, C’l, .. C’b 1 corresponding to the b
subsets of V are anti-lexicographically ordered: C’O >lew 671 e len @b_l. Even though
this model is similar to that of tSp, there are two main differences: 1) the matrix of
BIBD has sum constraints on its rows, but the matrix of tSp does not; 2) the scalar
product constraint is posted on the rows of the matrix of BIBD, but on the columns of
the matrix of tSp. Moreover, the scalar product is to be at most 1 in tSp but exactly A in
BIBD. Since both the rows and columns are also constrained by sum constraints, we pose
the lexicographic ordering constraints using either LexLeqAndSum and LexLessAndSum, or
LexLeq and LexLess.

Instantiating the matrix along its rows from top to bottom and exploring the domain
of each variable in increasing order works extremely well with anti-lexicographic ordering
constraints on the rows and columns'. All the instances of [MT01] are solved within a
few seconds. Bigger instances such as (15,21,7,5,2) and (22,22,7,7,2) are solved in less
than a minute. With this labelling heuristic, we observe no difference between our global

constraints and the associated lexicographic ordering constraints. Examples can be found
in Table 6.4.

IThis was also pointed out by Jean-Francois Puget in [Pug02a].
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v,b,r kA No symmetry breaking LexLessR LexLessAndSum R
LexLeqC LexLegAndSum C
Fails Choice Time | Fails Choice Time | Fails Choice Time
points  (secs.) points  (secs.) points  (secs.)
6,20,10,3,4 8,944 8,980 0.7 43 49 0 43 49 0
7,21,9,3,3 7,438 7,483 0.7 42 52 0 42 52 0
6,30,15,3,6 || 1,893,458 1,893,512 192.3 | 68 74 0.1 68 74 0.1
7,28,12,3,4 || 229,241 229,301 26.1 64 75 0.1 64 75 0.1
9,24,8,3,2 6,841 6,922 1.1 48 68 0.1 48 68 0.1
6,40,20,3,8 - - - 108 114 0.1 108 114 0.1
7,35,15,3,5 || 7,814,878 7,814,953 1444.4 | 88 100 0.1 88 100 0.1
7,42,18.3,6 : ; : 115 127 0.2 | 115 127 0.2

Table 6.4: BIBD: LexLess/LexLeq vs LexLessAndSum/LexLeqAndSum with row-wise la-
belling from top to bottom of the matrix.

If there are no lexicographic ordering constraints posted on the matrix, which row to
instantiate next is irrelevant. The same search tree is generated whether the rows are
instantiated from top to bottom, or bottom to up, or in any order of choice. However,
if the matrix is constrained by some lexicographic ordering constraints, then the order of
the rows being instantiated affects the size of the search tree: many solutions are now
considered as dead-end as they do not match the ordering imposed by the lexicographic
ordering constraints. Instead of exploring the rows from top to bottom, if we explore
them from bottom to top then the problem becomes very difficult to solve in the presence
of anti-lexicographic ordering constraints. Even small instances become hard to solve
within an hour. We can make the problem a bit more difficult to solve by choosing one
row from the top and then one row from the bottom, and so on. In this way, we conflict
the symmetry breaking constraints and the labelling heuristic. Comparing Table 6.4 and
Table 6.5 shows how the search tree is affected with this conflict, though the size of the
search tree remains the same if no ordering constraints are imposed.

Table 6.5 contains some interesting results. First, imposing anti-lexicographic con-
straints significantly reduces the size of the search tree and time to solve the problem
compared to no symmetry breaking. Moreover, the additional inference performed by
our algorithm gives much smaller search trees in much shorter run-times. See entries 1,
3, and 6. Second, lexicographic ordering constraints and the labelling heuristic clash,
resulting in larger search trees. However, the extra inference of our algorithm is able to
compensate for this. This suggests that even if the ordering imposed by symmetry break-
ing constraints conflicts with the labelling heuristic, more inference incorporated into the
symmetry breaking constraints can significantly reduce the size of the search tree. See
entries 2, 4, and 7. Third, increased inference scales up better, and recovers from mis-
takes much quicker. See entry 5. Finally, the problem can sometimes only be solved by
imposing our new global constraint. See entry 8.

In summary, if the labelling heuristic we use for solving BIBDs does not conflict
with the lexicographic ordering constraints, LexLeqAndSum and LexLessAndSum reduce
neither the size of the search tree nor the time to solve the problem compared to LexLeq
and LexLess. If, however, the labelling heuristic pushes search in a different direction
to the ordering constraints, then the additional inference of our global constraints can
compensate for this conflict. By this way, we can still reduce the size of the search tree
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v, b, k, A No symmetry LexLess R LexLessAndSum R
breaking LexLeq C LexLegAndSum C
Fails Choice Time Fails Choice Time Fails Choice Time
points (secs.) points (secs.) points (secs.)
1| 6,20,10,3,4 8,944 8,980 0.7 916 937 0.3 327 345 0.1
2 | 7,21,9,3,3 7,438 7,483 0.7 20,182 20,203 5.4 5,289 5,309 2.1
3 1| 6,30,15,3,6 || 1,893,458 1,893,512 192.3 10,618 10,649 3.7 1,493 1,520 1.0
4 | 7,28,12,34 229,241 229,301 26.1 801,290 801,318 330.7 52,927 52,954 27.0
5 | 9,24,8,3,2 6,841 6,922 1.1 2,338,067 2,338,107 1115.9 617,707 617,741 524.3
6 | 6,40,20,3,8 - - - 117,126 117,167 675 4,734 4,770 4.4
71 7,35,15,3,5 || 7,814,878 7,814,953 14444 - . - 382,173 382,207 311.2
8 | 7,42,18,3,6 - - - - - - 2,176,006 2,176,047 2,603.7

Table 6.5: BIBD: LexLess/LexLeq vs LexLessAndSum/LexLeqAndSum with row-wise la-
belling alternating between top and bottom of the matrix.

and time to solve the problem compared to no symmetry breaking with significant gains
over LexLeq and LexLess.

6.9 Lexicographic Ordering with Other Constraints

In Section 6.2, we have shown that lexicographic ordering and sum constraints on 0/1
variables frequently occur together in problems involving demand, partitioning or capacity
that are modelled using matrices with row and/or column symmetry. In Theorem 33, we
proved that global reasoning on the conjunction of a lexicographic ordering constraint
and two sum constraints help detect more inconsistent values than reasoning on each of
them individually. This motivated us to design the filtering algorithms LexLeqAndSum and
LexLessAndSum for propagating the (strict) lexicographic ordering with sum constraints.
In Section 6.8, we have tested how beneficial our new global constraints are in practise
on tSp and BIBD. In the experiments we compared LexLeqAndSum and LexLessAndSum
with LexLeq and LexLess respectively to observe how much more constraint propagation
we achieve. Our results show that the global constraints are useful (1) when there is a very
large space to explore, such as when our problem is not satisfiable; (2) when our labelling
heuristic is very poor for solving the problem; (3) when our labelling heuristic conflicts
with the symmetry breaking constraints. Similar but unreported results are obtained
when solving rack configuration problem, steel mill slab design problem, and social golfers
problem. Even though any of the situations above is likely to encounter when modelling
and solving a CSP, it is disappointing not to have any noteworthy advantage with our
new global constraints when the problem is satisfiable or when the labelling heuristic is
neither poor nor clashes with the symmetry breaking constraints. This raises the question
of whether combining lexicographic ordering with any other constraint is worthwhile?
Katsirelos and Bacchus have proposed a simple heuristic for combining constraints
together [KB01]. The heuristic suggests grouping constraints together if they share many
variables in common. Following this, LexLqundSum(X , }7, Sz, Sy) is a useful combination
of constraints since the variables of X <lex Y are a super set of the variables of ), X; =
Sz and ) ,Y; = Sy. However, this heuristic takes into account only the number of
shared variables. How each of the constraints are propagated is ignored. As discussed
in Chapter 5.2, LexLeq prunes only at position a. If the vectors are already ordered
at this position then the rest of the future assignments are all irrelevant. Otherwise, «
can move to the right but on the average it moves one position for each assignment. At
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v, b7 r, ka A No Symmetry <lex R Slex C >lex R zlem C
breaking lex_chain lex_chain
<X0, . ,Xm_1> <qu Xi+1> <X(], Ce 7Xm_1> <X17 Xl‘+1>
Backtracks Backtracks Backtracks Backtracks Bactracks
6,20,10,3.4 5,201 84 84 706 706
7,21,9,3,3 1,488 130 130 72 72
6,30,15,3,6 540,039 217 217 9216 9216
7,28,12,3,4 23,160 216 216 183 183
9,24,8,3,2 - 1,472 1,472 79 79
6,40,20,3,8 - 449 449 51,576 51,576
7,35,15,3.5 9,429,447 326 326 395 395
7,42,18.3,6 5,975,823 460 460 756 756

Table 6.6: BIBD: lex_chain((Xy,...

, Xim—1)) vs lex_chain((X;, X;1)) for all 0 < i <

m — 1 with row-wise labelling.

each node of the search tree, the lexicographic ordering constraint interacts with each
of the sum constraints at one variable on the average. This interaction is of little value
because the constraints are already communicating with each other via the domain of
that variable. Consequently, we have limited benefits of LexLqundSum()Z' ,)7, Sz, Sy)
over LexLeq. This argument holds also for combining lexicographic ordering constraints
with other constraints. Hence, it may not be worthwhile at all to reason more globally
than the lexicographic ordering constraint itself.

Following [FHK™02], Carlsson and Beldiceanu have introduced a new global constraint,
called lex_chain, which combines together a chain of lexicographic ordering constraints
[CB02a]. When we have a matrix say with row symmetry, we can now post a single
lexicographic ordering constraint on all the n vectors corresponding to the rows as opposed
to posting n — 1 of them. As discussed in Chapter 5.6, more constraint propagation is
expected by this new global constraint. Our experiments on BIBDs , however, indicate
no gain over posting lexicographic ordering constraints between the adjacent vectors.
In Table 6.6, we report the results of solving BIBDs using SICStus Prolog constraint
solver 3.10.1 [SIC03]. We either post lexicographic ordering or anti-lexicographic ordering
constraints on the rows and columns, and instantiate the matrix from top to bottom
exploring the domains in ascending order. The lexicographic ordering constraints are
posted using lex_chain of Carlsson and Beldiceanu, which is available in SICStus Prolog
3.10.1. This constraint is either posted once for all the symmetric rows/columns, or
between each adjacent symmetric rows/columns. In all the cases, we observe no benefits
of combining a chain of lexicographic ordering constraints. By posting the constraints
between the adjacent rows/columns, we obtain the same search trees and very similar
run-times as posting only one constraint on the rows/columns. In fact, the interaction
between the constraints is again very restricted. Each of them is concerned only with a
pair of variables and it interacts with its neighbour either at this position or at a position
above its a where the variable is already ground.

Consequently, we expect very limited gain by combining lexicographic ordering with
other constraints. Our observations also indicate that combining constraints is useful
when the combination is likely to prune a significant number of shared variables.
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6.10 Implementation

We implemented our global constraints in C++ using ILOG Solver 5.3 [ILO02]. Imple-
menting a global constraint involves deciding at which propagation events to wake up the
constraint and when to propagate the constraint. In this section, we explain the decisions
we have made when implementing LexLqundSum()? Y, Sz, Sy).

As discussed in Chapter 5.10, three propagation events are available in Solver for an
integer variable: whenValue, whenRange, and whenDomain. For 0/1 variables, these
three events overlap. That is, if we remove a value from a variable’s domain {0, 1} then
not only the domain of the variable is modified, but also the minimum or maximum in the
domain is changed, moreover the variable is assigned a value. Therefore, we can attach
any of the propagation events above to the variables of the vectors.

When LexLqundSum()? Y, Sz, Sy) is GAC, the values in X and Y are supported
by max{y | > ,vi =Sy N ¢y € Y} and min{Z | Yuri =St AN T € X}, respec-
tively. Any modification to the variables affecting min{z | > ,z;, = Sz AN 2 € X} or
max{y| >, yi=SyNye Y} must trigger the filtering algorithm. It is, however, difficult
to know in advance which variable’s of X (resp. Y) alter min{Z | Yuri=8r NT€ X}
(resp. maz{j | S .ui = Sy A § € Y}), because this all depends on Sz (resp. Sy)
and on the current partial assignments of the variables of X (resp. }7) As an example,
consider X = ({0,1},{0,1},{0,1},{0,1},{0,1},{0,1},{0,1}) with Sz = 4. Removing
0 from X3, X4, X5 or Xg does not change that min{z | > ,z;, = Sv A ¥ € X} =
(0,0,0,1,1,1,1). Now assume that we reach a state during search where we have X =
({1}, {1},{1},{0,1},{0,1},{0,1},{0,1}). The current min{z | >, z;, =Sx N & € X}
is (1,1,1,0,0,0,1). Removing 0 from Xg does not change this, but removing 0 from any
of X3, X4, and X5 now assigns a vector to X which is lexicographically greater than
(1,1,1,0,0,0,1). Therefore, we attach a propagation event to all the variables of the
vectors.

When do we propagate our constraint? As discussed in Chapter 5.10, two ways of
propagating a constraint are available in Solver: (1) respond to each propagation event
individually; (2) wait until all propagation events accumulate. The first method of prop-
agation suits perfectly to an algorithm in which the data structures can be maintained
incrementally, and this can be done easily and efficiently at every propagation event.
LexLegAndSum constructs 7 vectors (in lines 3, 4, 6.1, 6.4.1, 7.1, 7.2, and 7.5.1) during
one execution. Every time LexLeqAndSum is called, all the data structures are recom-
puted from scratch as opposed to restored using their previous value. This means that
responding to each event would be very costly. Due to the non-incremental nature of
the algorithm, we use the second method of propagation in which the data structures are
recomputed after all the events accumulate.

We start by implementing post which is called by Solver the first time the constraint
is posted. The role of this procedure is to initialise the data structures, define on which
events to propagate the constraint, and then to propagate the constraint. The propagation
algorithm is implemented using propagate. Since we want to accumulate all the events
and respond only once, we post a demon on the variables of the vectors so that the
propagation does not take place right after a variable is modified. Note that we do not
need to distinguish between the demons attached to the variables of X and Y.

Since there are no data structures to be maintained incrementally, we only need to
attach an event demon to a whenRange event for every variable in the vectors. If we
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are concerned with entailment then we initialise entailed to false.

Procedure post

1 entailed := false;

2 foreach i € [0,n) do

2.1 X;.whenRange(EventDemon);
2.2 Y;.whenRange(EventDemon);

end

We now use Solver’s push to delay our response to each propagation event.

Procedure EventDemon
1 push();

Solver automatically aggregates all such calls to push into a single invocation of the
propagate procedure which propagates the constraint. Note that propagate is also
automatically called once the constraint is posted.

Procedure propagate calls the filtering algorithm.

Procedure propagate
1 LexLeqAndSum;

6.11 Summary

In this chapter, we have introduced two new global constraints LexLqundSum()Z' , }7, Sz, Sy)
and LexLessAndSum()? Y, Sz, Sy) for 0/1 variables. Each of the constraints is an order-
ing constraint and combines together a lexicographic ordering constraint with two sum
constraints.

Lexicographic ordering and sum constraints on 0/1 variables frequently occur together
in problems involving demand, capacity or partitioning that are modelled using matrices
with row and/or column symmetry. Given two vectors of variables X and )7, posting
LexLqundSum()Z', Y, Sz, Sy) is semantically equivalent to posting X <1, Y, > X = S,
and ). Y; = Sy. Operationally, a filtering algorithm which removes from the vectors
those values that cannot be a part of any solution to LexLqundSum()Z' , }7, Sz, Sy) can
lead to more pruning than the total pruning obtained by the filtering algorithms of the
lexicographic ordering constraint and the sum constraint. We have therefore developed
an efficient filtering algorithm which either proves that LexLqundSum(X Y, Sz, Sy) is
disentailed, or ensures GAC on LexLqundSum()? Y, Sz, Sy). The algorithm runs in time
O(n). The complexity of the algorithm is optimal as there are O(n) variables to consider.

The filtering algorithm assumes that the sums are ground and exploits the restriction
of 0/1 variables. By this way, the algorithm decides at which locations of the vectors the
values are inconsistent without having to explore each variable and its domain individually.
This gives us a linear time complexity as opposed to quadratic when each variable is
naively examined in turn. An alternative way of propagating our new global constraint is
to use the algorithm of Bessiere and Régin for enforcing GAC on an arbitrary conjunction
of constraints. By taking advantage of the semantics of the constraint, we here enforce
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GAC more efficiently using our filtering algorithm. The algorithm can easily be modified
to obtain a filtering algorithm for LexLessAndSum()? ,?,Sx, Sy). Moreover, the non-
incremental nature of the algorithm helps detect entailment in a simple and dual manner
to detecting disentailment. Furthermore, we can deal with sums that are not ground but
bounded by making use of our algorithm.

We have shown that decomposing a chain of these new ordering constraints between
adjacent or all pairs of vectors hinders constraint propagation. We have also compared
with related work.

Our experiments on tSps and BIBDs show that combining a lexicographic ordering
constraint with two sum constraints is useful in a number of ways. First, it is of benefit
when there is a very large space to explore, such as when our problem is not satisfiable.
Second, it is useful when we lack a good labelling heuristic. Third, it can compensate for
the labelling heuristic trying to push the search in a different direction to the symmetry
breaking constraints. This is a very important finding considering one of the major
disadvantages of breaking symmetry by ordering constraints: a solution satisfying the
ordering constraints might be found later in the search process than the solutions not
satisfying the ordering constraints. Unfortunately, this combination of the constraints is
not useful when the problem is satisfiable or when the labelling heuristic is neither poor
nor clashes with the symmetry breaking constraints.

Since the lexicographic ordering constraint is concerned only with the variables at po-
sition «, we observe that there is often only a limited interaction between a lexicographic
ordering constraint and sum constraints, or between a chain of lexicographic ordering con-
straints, which can result in limited propagation. We therefore expect a similar behaviour
when we combine lexicographic ordering with other constraints. Our observations suggest
that combining constraints is useful when the combination is likely to prune a significant
number of shared variables.



Chapter 7

Multiset Ordering Constraint

7.1 Introduction

Given two vectors X = (X0, X1,...,X,_1) and Y = (Yo, Y1,..., Y, 1), we write a multiset
ordering constraint as X <,, Y and a strict multiset ordering constraint as X <,, Y. The
multiset ordering constraint X <,, Y ensures that the vectors 7 and i assigned to X and
Y respectively, when viewed as multisets, are multiset ordered according to Definition
20. That is, either {Z} = {v}}, or maz{{Z} < mazx{{y}}, or maz{z} = max{y}
and {7} — {max{Z}} < Ly} — {maz{y}}}. The strict multiset ordering constraint
disallows {z}} = {7}

Multiset ordering constraints are useful for breaking row and column symmetries. We
can either insist that the rows and columns are both multiset ordered, or enforce multiset
ordering in one dimension and lexicographic ordering in the other. How can we post and
propagate these constraints effectively and efficiently? In this chapter, we design global
constraints for multiset orderings, each of which encapsulates its own filtering algorithm.

This chapter is organised as follows. In Section 7.2, we present a filtering algorithm for
the multiset ordering constraint X <,, Y. Then in Section 7.3, we discuss the complexity
of the algorithm, and prove that the algorithm is correct and complete. An alternative
filtering algorithm is introduced in Section 7.4. In Section 7.5, we extend our algorithm to
obtain a filtering algorithm for X <,, Y and to detect entailment, and then we study mul-
tiset equality and disequality constraints. Alternative approaches to propagating the mul-
tiset ordering constraint are discussed in Section 7.6. We demonstrate in Section 7.7 that
decomposing a chain of multiset ordering constraints into multiset ordering constraints
between adjacent or all pairs of vectors hinders constraint propagation. Computational
results are presented in Section 7.8. Finally, before summarising in Section 7.10, we give
in Section 7.9 the details of the implementation.

7.2 A Filtering Algorithm for Multiset Ordering Con-
straint

In this section, we present a ﬁltermg algorithm for the multiset ordering constraint which
either detects that X <,, Y is disentailed or prunes inconsistent values so as to achieve
GAC on X <, Y. After sketching the main features of the algorithm on a running
example in Section 7.2.1, we first present the theoretical results that the algorithm exploits
in Section 7.2.2 and then give the details of the algorithm in Section 7.2.3.

165
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7.2.1 A Worked Example

The key idea behind the algorithm is to build and work on a pair of occurrence vectors (see

— —

Chapter 2.6) associated with floor(X) and ceiling(Y’). The algorithm goes through
every variable of X and Y checking for support for values in the domains. It suffices to
have occ(floor()?xwmm(xi))) <jew 0Cc(ceiling(Y)) to ensure that all values of D(X;)
are consistent. Similarly, we only need occ(floor(X)) <iep occ(ceiling(?yj‘_mm(yj))) to
hold for the values of D(Y;) to be consistent. We can avoid the repeated construction and

—

traversal of these vectors by building, once and for all, the vectors occ(floor(X)) and

occ(ceiling(Y')), and defining some pointers and flags on them. For instance, assume we
have occ(floor(X)) <, occ(ceiling(Y)). The vector occ(floor(Xx,—maz(x;))) can be

obtained from occ(£loor(X)) by decreasing the number of occurrences of min(X;) by 1,
and increasing the number of occurrences of maz(X;) by 1. The pointers and flags tell
us whether this disturbs the lexicographic ordering, and if so they help us to find quickly
the largest max(X;) which does not.

Consider the multiset ordering constraint X <,, Y where:

({5}, {45} {3,4,5}, {24}, {1}, {1})
{45}, {4} {1,2,3,4}, {23}, {1}, {0})

We have floor(X) = (5,4,3,2,1,1) and ceiling(Y) = (5,4,4,3,1,0). We construct

— —

our occurrence vectors o0& = occ(floor(X)) and oy = occ(ceiling(Y)), indexed from

maz({ceiling(X)} U fceiling(Y)}) = 5 to min({floor(X)} U {£loor(Y)}) = 0:

=<y

5 4 3 2 1 0
ox = (1, 1, 1, 1, 2, 0)
oy = (1, 2, 1, 0, 1, 1)

Recall that oz; and oy, denote the number of occurrences of the value i in {floor(X)} and
{{ceiling(Y)}, respectively. For example, oy, = 2 as 4 occurs twice in {ceiling(Y)}.
Next, we define our pointers and flags on ot and oy. The pointer a points to the most
significant index above which the values are pairwise equal and at a we have oz, < oy,.
This means that we will fail to find support if any of the X; is assigned a new value greater
than «, but we will always find support for values less than a. If o = oy then we set a =
—o00. Otherwise, we fail immediately because no value for any variable can have support.
We define 3 as the most significant index below « such that oxg > oyg. This means that
we might fail to find support if any of the Y; is assigned a new value less than or equal to
0, but we will always find support for values larger than (. If such an index does not exist
then we set 3 = —oo. Finally, the flag v is true iff § =a —1 or 0Zatr1-5-1 = 0Ysyi1_5-1
and o is true iff the subvectors below [ are ordered lexicographically the wrong way. In
our example, o =4, =2, v = true, and o = true:

5 4 2 1 0

oxr = (1, 1, 1, 1, 2, 0)

oy = (1, 2, 1, 0, 1, 1)
al v B71 o

We now go through each X; and find the largest value in its domain which is sup-
ported. If X; has a singleton domain then we skip it because we have ox <., 07,
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meaning that its only value has support. Consider X;. As min(X;) = «, changing
0% to occ(floor(X X, —maz(xy))) increases the number of occurrences of an index above
a by 1. This upsets o0& <o, 0y. We therefore prune all values in D(X;) larger than
its minimum value. Now consider X5. We have maxz(X3) > a and min(Xs3) < a. As
with X, any value of X, larger than o upsets the lexicographic ordering, but any value
less than « guarantees the lexicographic ordering. The question is whether o has any
support? Changing 6% to occ(floor(Xy, q)) decreases the number of occurrences of
min(Xs3) = 3 by 1, and increases the number of occurrences of a by 1. Now we have
0T, = 0y, but decreasing an entry in o between o and [ guarantees lexicographic or-
dering. We therefore prune from D(X3) only the values greater than «. Now consider
X3. We have maz(X3) = o and min(X3) < a. Any value less than « has support but
does « have any support? Changing 02 to occ(floor(Xy,. o)) decreases the number of
occurrences of min(X3) = # by 1, and increases the number of occurrences of « by 1.
Now we have ox, = oy, and oxg = oyg. Since 7y and o are true, the occurrence vectors
are lexicographically ordered the wrong way. We therefore prune o from D(X3). We skip
Xy and X5.

Similarly, we go through each Y; and find the smallest value in its domain which is
supported. If Y, has a singleton domain then we skip it because we have ox <., 07,
meaning that its only value has support. Consider Yy. As max(Yy) > «, changing oy to
occ(ceiling(?ym_mm(yo))) decreases the number of occurrences of an index above a by 1.
This upsets 0t <j, 0. We therefore prune all values in D(Yp) less than its maximum
value. Now consider Y;. We have maz(Y2) = o and min(Y2) < . Any value larger than
[ guarantees lexicographic ordering. The question is whether the values less than or equal
to (# have any support? Changing oj to occ(ceiling(?ﬁ%mm(yﬂ)) decreases the number
of occurrences of a by 1, giving us oz, = o0y,. If min(Y2) = 3 then we have oxz = oyp.
This disturbs 0% <., 0y because v and ¢ are both true. If min(Y3) < [ then again we
disturb ot <., oy because 7 is true and the vectors are not lexicographically ordered as
of B. So, we prune from D(Y,) the values less than or equal to 3. Now consider Y3. As
maz(Y3) < a, changing oy to occ(ceiling(ﬁ/g&mm(yg))) does not change that o <., 0y.
Hence, min(Y3) is supported. We skip Y and Ys.

We have now the following generalised arc-consistent vectors:

({51, {4} {34}, {2}, {1}, {1}
({5}, {4}, {3.4}, {23}, {1}, {0})

7.2.2 Theoretical Background

~i ey
|

The filtering algorithm of the multiset ordering constraint exploits four theoretical results.
The first reduces GAC to consistency on the upper bounds of X and on the lower bounds
of Y. The second and the third show in turn when X < Y is disentailed and what
conditions ensure GAC on X <,, Y. And the fourth establishes that two ground vectors
are multiset ordered iff the associated occurrence vectors are lexicographically ordered.

Theorem 55 GAC(X <,, Y ) iff for all 0 < i < n, max(X;) and min(Y;) are consistent.

Proof: GAC implies that every value is consistent. To show the reverse, suppose for all
0 < i < n, mazx(X;) and min(Y;) are supported, but the constraint is not GAC. Then
there is an inconsistent value. If this value is in some D(X;) then any value greater than
this value, in particular maz(X;), is inconsistent. Similarly, if the inconsistent value is in
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some D(Y;) then any value less than this value, in particular min(Y;), is inconsistent. In
any case, the bounds are not consistent. QED.

A constraints is said to be disentailed when the constraints is false. The next two
theorems show when X <m Y is disentailed and what conditions ensure GAC on X <m Y.

Theorem 56 X <,, Y is disentailed iff {£1oor(X)} >, {ceiling(Y)}.

Proof: (=) Since X <,, Y is disentailed, any combination of assignments, including X —
floor(X) and Y « ceiling(Y), does not satisfy X <,, Y. Hence, {floor(X)}} >,

{{ceiling(Y)}.
(<) Any ¥ € X is greater than any ¢ € Y under the multiset ordering. Hence,
X <, Y is disentailed. QED.

Theorem 57 GAC(X <., Y) iff for all i in [0,n):

#1008 (Kx.masxy)} <o {eeiling(V)) (7.1)
f£100r(X)} <o fceiling(Vyiominiv)} (7.2)

Proof: (=) As the constraint is GAC, all values have support. In particular, X; «
maz(X;) has a support @7 € {Z | z; = maz(X;) A & € X} and i € Y where
(a1} <m i} Any @ € {&| x; = max(X;) A T € X} less than or equal to 27, and
any s € Y greater than or equal to i, under multiset ordering, support X; <« maz(X;).
In particular, min{Z | z; = max(X;) A @ € X} and maz{§ | § € Y} support
X; — maz(X;). We get min{Z | x; = max(X;) A &€ X} if all the other variables in
X take their minimums, and we get maz{f| ¥ € Y} if all the variables in Y take their
maximums. Hence, {{floor()_()XiHmax(Xi))}} <m {ceiling(Y)}.

A dual argument holds for the variables of Y. As the constraint is GAC, Y; «— min(Y;)
has a support 1 € X and g3 € {77| y; = min(V;) A g€ Y} where {#1} <., {u1}}. Any
45 € X less than or equal to #1, and any 55 € {7 | y; = min(Y;) A § € Y} greater than or
equal to 71, in particular min{Z | € X} and maz{jj| v = min(¥;) A § € Y} support
Y; — min(Y;). We get min{# | # e X} if all the variables in X take their minimums,
and we get maz{ | 1 = min(Y;) A § € Y} if all the other variables in Y take their
maximums. Hence, {£loor(X)} <,, {{ceiling(}?nhmm(yi))}}.

(<) 7.1 ensures that for all 0 < i < n, maz(X;) is supported, and 7.2 ensures that for
all 0 <7 < n, min(Y;) is supported. By theorem 55, the constraint is GAC. QED.

In Theorems 56 and 57, we need to check whether two ground vectors are multiset
ordered. The following theorem shows that we can do this by lexicographically comparing
the occurrence vectors associated with these vectors.

Theorem 58 {z} <,, {v} iff occ(Z) <jer 0cc(y).

Proof: (=) Suppose {#} = {#}}. Then the occurrence vectors associated with & and
y are the same. Suppose {Z} <., {7}. If max{Z} < max{y}} then the leftmost index
of 0 = occ(Z) and oy = occ(y) is mazr{{y}}, and we have 0Zpeagzy = 0 and 0Ymazgzy > 0.
This gives 0% <jep 04. If max{Z} = max{{y}} = a then we eliminate one occurrence of a
from each multiset and compare the resulting multisets.

(<) Suppose occ(Z) = oce(y). Then {7} and {7} contain the same elements with
equal occurrences. Suppose occ(Z) <ie, occ(y). Then a value a occurs more in {7} than
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in {7}, and the occurrence of any value b > a is the same in both multisets. By deleting
all the occurrences of a from {Z}} and the same number of occurrences of a from {7},
as well as any b > a from both multisets, we get maz{Z} < maz{y}. QED.

Theorems 56 and 57 together with Theorem 58 yield to the following two propositions:

Proposition 2 X <,, Y is disentailed iff occ(£1oor(X)) >y occ(ceiling(Y)).
Proposition 3 GAC(X <., Y) iff for all i in [0,n):

occ(floor()?xﬁmax(xi))) <jea occ(ceiling(Y)) (7.3)

occ(floor(X)) <ip occ(ceiling(Yy,—min(yvy)))

A naive way of enforcing GAC on X <, Y is going through every variable in the
vectors, constructing the appropriate occurrence vectors, and checking if their bounds
satisfy 7.3 or 7.4. If yes then the bound is consistent. Otherwise, we try the nearest
bound until we obtain a consistent bound. We can, however, do better than this by
building only the vectors occ(£loor(X)) and occ(ceiling(Y)), and then defining some
pointers and Boolean flags on them. This saves us from the repeated construction and
traversal of the appropriate occurrence vectors. Another advantage is that we can find
consistent bounds without having to explore the values in the domains.

We start by defining our pointers and flags. We write o0& for occ(f 1oor()€' )), and oy

for occ(ceiling(Y)). We assume o and ¢j are indexed from u to [, and 0 <jep 07

— —

Definition 35 Given ot = occ(floor(X)) and oy = occ(ceiling(Y)) indexed as w..l
where o <., 0¥, the pointer «v is set either to the index in [u,l] such that:

0Tq < 0Yq N
Viu>1i>a.or; = oy
or (if this is not the case) to —oc.

Informally, « points to the most significant index in [u, [] such that ox, < oy, and all the
variables above it are pairwise equal. If, however, o0& = oj then a points to —oo.

— —

Definition 36 Given ot = occ(floor(X)) and oy = occ(ceiling(Y)) indexed as w..l
where o0& <., 0y, the pointer (3 is set either to the index in (o, ] such that:

org > 0yg N
Via>i>p0.ox; <oy
or (if a < or for all « > i > 1 we have ox; < oy;) to —o0.

Informally, 3 points to the most significant index in («, ] such that ofg_; >e. 0y5_;. If,
however, o0& = 0y, or = I, or 0% -1 <iex 0Y,_1_;, then [ points to —oo. Note that
we have ) . ox; = ) . oy; = n, as 0% and of are both associated with vectors of length n.
Hence, a cannot be [, and we always have 041 >ex 0Y,_1_; When a # —o0.

Definition 37 Given o = occ(floor(X)) and 6 = occ(ceiling(Y)) indezed as ..l
where 0 <o 0¥, the flag 7y is true iff:

f#—00 N(f=a—-1V Yia>i>[f.or;=oy)
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Informally, 7 is true if 3 # —oo, and either 8 = a — 1 or 0Za—1-511 = 0Yy_1_p541- 1f,
however, 3 = —oo, or f < a —1 and 041511 <tex OYo_1-5+1, then 7y is false.

Definition 38 Given o0& = occ(floor(X)) and o = occ(ceiling(Y)) indexed as u..l
where 0 <jop 0y, the flag o is true iff:

B>1 N 0Tg 11 >iea OYpg_1-

Informally, o is true if 3 > [ and the subvectors below [ are lexicographically ordered the
wrong way. If, however, § < [, or the subvectors below [ are lexicographically ordered,
then o is false.

Using «, f, 7, and o, we can find the tight upper bound for each D(X;), as well as
the tight lower bound for each D(Y;) without having to traverse the occurrence vectors.
In the next three theorems, we are concerned with X;. When looking for a support for
a value v € D(X;), we obtain occ(floor(Xy,.,)) by increasing oz, by 1, and decreasing
0T min(x;) Dy 1. Since 0k <jp 0, min(X;) is consistent. We therefore seek support for
values greater than min(X;).

Theorem 59 Given o& = occ(floor(X)) and o) = occ(ceiling(Y)) indexed as u..l
where o0& <iep 0y, if max(X;) > a and min(X;) < a then for all v € D(X;):

1. if v > « then v is inconsistent;
2. if v < « then v is consistent,;

3. if v = « then v is inconsistent iff:

(0xg +1=0ys, N min(X;)=0 AN v A oxg>oys+1) V
(0xg +1=0ys, N min(X;) =08 AN v AN ozg=o0ys+1 AN o) V
(0xo +1 =0y, N min(X;) < A 7)

Proof: If min(X;) < o then a # —oo and 0% <., 0y. Let v be a value in D(X;) greater
than «. Increasing oz, by 1 gives ot >, oy. By Proposition 3, v is inconsistent. Now
let v be less than «a. Increasing ox, by 1 does not change ot <., 0. By Proposition 3, v
is consistent. Is a a tight upper bound? If any of the conditions in item 3 is true then we
obtain o >, 0j by increasing oz, by 1 and decreasing ox,,in(x,) by 1. By Proposition 3, a
is inconsistent and therefore the largest value which is less than « is the tight upper bound.
We now need to show that the conditions of item 3 are exhaustive. If «is inconsistent then,
by Proposition 3, we obtain 0% >, oy after increasing ox, by 1 and decreasing 0z,n(x,)
by 1. This can happen only if ox, + 1 = oy, because otherwise we still have ox, < oy,.
Now, it is important where we decrease an occurrence. If it is above § (but below «a as
min(X;) < «) then we still have o& <., oy because for all « > ¢ > maz{l — 1, 3}, we
have ox; < oy;. If it is on or below § (when (§ # —o0) and vy is false, then we still have
0% <jep 0y because v is false when 8 < a —1 and 0% q—1-841 <iex 0Ta—1-p+1. Therefore,
it is necessary to have oz,11+1 = 0y, A min(X;) < [ A 7 for a to be inconsistent. Two
cases arise here. In the first, we have oxoy1 +1 =0y, A min(X;) =5 A 7. Decreasing
oxg by 1 can give o0& >, 0y in two ways: either we still have oxg > oyg, or we now have
oxrg = oys but the vectors below 3 are ordered lexicographically the wrong way. Note
that decreasing oxg by 1 cannot give oxg < oys. Therefore, the first case results in two
conditions for « to be inconsistent: ozq411+1 =0y, A min(X;) =8 Ay A oxg > oysg+1
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Or 0To41+1 =0y, A min(X;) =0 ANy A oxg=o0ys+1 A o. Now consider the second
case, where we have oxq41 + 1 = oya A min(X;) < f A 7. Decreasing 0%, (x,) by 1
gives 0% >, 0. Hence, if « is inconsistent then we have either of the three conditions.
QED.

— —

Theorem 60 Given 0t = occ(floor(X)) and o = occ(ceiling(Y)) indexed as w..l
where o0& <ie, 0y, if max(X;) < « then max(X;) is the tight upper bound.

Proof: If maxz(X;) < o then we have o # —o0 and 0% <jep 0y. Increasing omaz(x,) by
1 does not change this. By Proposition 3, max(X;) is consistent. QED.

Theorem 61 Given o& = occ(floor(X)) and o = occ(ceiling(Y)) indexed as u..l
where o0& <iep 0, if min(X;) > « then min(X;) is the tight upper bound.

Proof: Any v > min(X;) in D(X;) is greater than «. Increasing ox,, by 1 gives 0 >., 0J.
By Proposition 3, any v > min(X;) in D(X;) is inconsistent. QED.

In the next four theorems, we are concerned with Y;. When looking for a support for
a value v € D(Y;), we obtain occ(ceiling(?nhv)) by increasing oy, by 1, and decreasing
OYmaz(v;) Dy 1. Since o0& <iep 0y, max(Y;) is consistent. We therefore seek support for
values less than maz(Y;).
Theorem 62 Given o& = occ(floor(X)) and o) = occ(ceiling(Y)) indexed as u..l
where 0% <o, 0y, if maz(Y;) = a and min(Y;) < B then for all v € D(Y;)

1. if v > B then v is consistent,
2. if v < [ then v is inconsistent iff ox, +1 =0y, N 7
3. if v =0 then v s inconsistent iff:

(0xo+1=0ys N v N oxg>o0ys+1) V
(0xg+1=0ys N v N oxg=o0ys+1 A o)

Proof: If max(Y;) = a and min(Y;) < ( then a # —o0, § # —o0, and 0 <jep Y.
Let v be a value in D(Y;) greater than 3. Increasing oy, by 1 and decreasing oy, by 1
does not change 0 <., oy. This is because for all « > i > 3, we have ox; < oy;. Even
if now 0%q—y41 = 0Yy_yi1, at v we have ox, < oy,. By Proposition 3, v is consistent.
Now let v be less than 3. If the condition in item 2 is true then we obtain 0% >, of by
decreasing oy, by 1 and increasing oy, by 1. By Proposition 3, v is inconsistent. We now
need to show that this condition is exhaustive. If v is inconsistent then by Proposition
3, we obtain o0& >, oy after decreasing oy, by 1 and increasing oy, by 1. This is in
fact the same as obtaining ox >, oy after increasing ox, by 1 and decreasing ox, by
1. We have already captured this case in the last condition of item 3 in Theorem 59.
Hence, it is necessary to have ox, + 1 = oy, A 7 for v to be inconsistent. What about (8
then? If any of the conditions in item 3 is true then we obtain o0& >, oy by decreasing
0y, by 1 and increasing oys by 1. By Proposition 3, 3 is inconsistent. In this case, the
values less than (3 are also inconsistent. Therefore, the smallest value which is greater
than g is the tight lower bound. We now need to show that the conditions of item 3
are exhaustive. If 3 is inconsistent then by Proposition 3, we obtain ot >, oy after
decreasing oy, by 1 and increasing oyg by 1. This is the same as obtaining 0% >, 0y
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Algorithm 36: Initialise
Data : <X0aX1a"'7Xn—1>a <}/E)aYia"'7Yn—1>

Result : occ(floor(X)) and occ(ceiling(Y)) are initialised, GAC(X <,, Y)

[ = mm({{floor(X)}}_)U {floor(Y)}); ~
U= maa:({{ceiliilg(X)}} U {ceiling(Y)});
ot 1= occ(floor(X)Z;

oy = occ(ceiling(Y));

MsetLeq;

A WO =

after increasing oz, by 1 and decreasing ozg by 1. We have captured this case in the first
two conditions of item 3 in Theorem 59. Hence, if 3 is inconsistent then we have either
0Tay1+1=0ya N v AN oxg>oys+1lorore +1=0y, ANy A oxg=o0ys+1 A o.
QED.

Theorem 63 Given o& = occ(floor(X)) and o = occ(ceiling(Y)) indexed as u..l
where 0t <je, 0y, if maz(Y;) = a and min(Y;) > B then min(Y;) is the tight lower bound.

Proof: If max(Y;) = a then a@ # —oo0 and 0% <y, 0y. Increasing oymin(y;) by 1
and decreasing oy, by 1 does not change ot <., oy. This is because for all « > T >
maz{l — 1, 3}, we have ox; < oy;. Even if Now 0o —min(vi)+1 = 0 a—min(vi)+1, at min(Y;)
we have 0T pin(yv;) < 0Ymin(y;)- By Proposition 3, min(Y;) is consistent. QED.

Theorem 64 Given o& = occ(floor(X)) and o = occ(ceiling(Y)) indexed as u..l
where 0 <jep 0y, if max(Y;) < « then min(Y;) is the tight lower bound.

Proof: If maz(Y;) < o then we have a # —oo0 and 0% <je, 0. Decreasing oymaa(v;) by
1 does not change this. By Proposition 3, min(Y;) is consistent. QED.

Theorem 65 Given oi = occ(floor(X)) and oy = occ(ceiling(Y)) indezed as u..l
where 0 <jep 0y, if max(Y;) > a then max(Y;) is the tight lower bound.

Proof: Decreasing oYmqz(v;) by 1 gives 0 >, 0. By Proposition 3, any v < max(Y;)
in D(Y;) is inconsistent. QED

7.2.3 Algorithm Details

Based on Theorems 59-65, we have designed an efficient linear time algorithm, MsetLeq,
which either detects the disentailment of X <, Y or prunes inconsistent values so as to
achieve GAC on X <m Y.

The algorithm uses two pointers a and 3, and two flags v and o, all defined on the
occurrence vectors ox and oy to avoid traversing these vectors each time we look for
support. The pointers and flags are recomputed every time the algorithm is called, as
maintaining them incrementally in an easy way is not obvious. Fortunately, incremental
maintenance of the occurrence vectors is trivial. When the minimum value in some D(Xj;)
changes, we update of by incrementing the entry corresponding to new min(X;) by 1, and
decrementing the entry corresponding to old min(X;) by 1. Similarly, when the maximum
value in some D(Y;) changes, we update o by incrementing the entry corresponding to
new maz(Y;) by 1, and decrementing the entry corresponding to old maz(Y;) by 1.
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When the constraint is first posted, we need to initialise the occurrence vectors, and
call the filtering algorithm MsetLeq to establish the generalised arc-consistent state with
the initial values of the occurrence vectors. In Algorithm 36, we show the steps of this
initialisation. In lines 1 and 2, we compute indices for our occurrence vectors. The index-
ing is from left to right with the most significant index being u and the least significant
index being  such that « > . The values in f1loor(X) and ceiling(}_}) are not enough to
index our occurrence vectors because we will later use them to check support for maz(X;)
and min(Y;) for all 0 < i < n. Hence, u is the maximum among the maximums, and
[ is the minimum among the minimums of the variables in X and Y. In lines 3 and 4,
we construct the occurrence vectors as follows. We create a pair of vectors ox and oy of
length u — [ + 1, where each oz; and oy; are initially set to 0. Then, for each value v in
{£1oor(X)}, we increment oz, by 1. Similarly, for each value v in {ceiling(Y)}, we
increment oy, by 1. Finally, we call the filtering algorithm MsetLeq in line 5.

When X <,, Y is GAC, every value in D(X;) is supported by (min(Xy), ..., min(X,_1),
min(Xit1), ... ,mm(Xn,l)}, and (maz(Yy),...,max(Y,—1)). Similarly, every value in
D(Y;) is supported by (min(Xy), ..., min(X,_1)) and (maz(Yp), ..., mar(Yi_1), maz(Yis1)

.,max(Y,_1)). So, MsetLeq is also called by the event handler whenever min(X;) or
max(Y;) of some i in [0,n) changes.

In Algorithm 37, we show the steps of MsetLeq. Since o and oy are maintained
incrementally, the algorithm first sets the pointers and flags in line A1 using the current
state of these vectors.

In line 2 of SetPointersAndFlags, we traverse ot and of, starting at index w, until
either we reach the end of the vectors (because the vectors are equal), or we find an index i
where oz; # oy;. In the first case, we set a to —oo (line 4). In the second case, we set « to
i only if ox; < oy; (line 5). This is the most significant index where the vectors are strictly
ordered. If, however, ox; > oy;, then disentailment is detected and SetPointersAndFlags
terminates with failure (line 3). This also triggers the filtering algorithm to fail.

In lines 6-13, we seek a value for 3. If a <[ then we set 3 to —oo in line 6. Otherwise,
we traverse the vectors in lines 9-11, starting at index av—1, until either we reach the end of
the vectors (because 0%o—1-; <iex 0Yq_;1_,;), or we find an index j where ozx; > oy;. We set
B to —oo in the first case (line 12), but instead to j in the second case (line 13). During this
traversal, we record in an intermediate Boolean flag temp whether the subvectors between
o and 3 are equal. More precisely, temp is true iff 0Fo—1-maz(1,641} = Ya—1—maz{l,f+1}-
Using «, 3, and temp, we can now decide the value of 7. In line 14, we initialise v to
false. We set 7 to true in line 15 only if § # —oo, and either § = a — 1 (there are no
subvectors between « and 3) or temp is true (the subvectors between o and (3 are equal).

Finally, after initialising o to false in line 14, we check in line 16 whether there are
any subvectors below 3. If there are then in line 18 we traverse ot and oy, starting at
index  — 1, until either we reach the end of the vectors (because the subvectors below
B are equal), or we find an index k where ox) # oyg. In the first case, o remains false.
In the second case, we set ¢ to true only if oxy > oyg (line 19). This is the most
significant index where the subvectors below 3 are ordered lexicographically the wrong
way. Otherwise (o) < oyx), o remains false.

In lines B1-11 and C1-9, we check support for max(X;) and min(Y;) for all i in
[0,n) as follows. We obtain occ(floor()?xwmw(xi))) by increasing o qz(x,) by 1, and
decreasing oTyin(x,) by 1. If now we have ot >, of then we find the tight upper bound
for X;. Likewise, we obtain occ(celllng(Yy(_mm( ))) by increasing oymin(yv;) by 1, and
decreasing oYmaz(v;) by 1. If now we have 0% >, oy then we find the tight lower bound for
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Algorithm 37: MsetLeq

Data

: <X07X17 s 7Xn71>7 <}/E)7}/17 s 7Yn71>

Result : GAC(X <, V)
Al SetPointersAndFlags;
Bl foreach i € [0,n) do

B2
B3
B4
B5
B6
B7
B8

B9

B10
B11

end

if min(X;) # max(X;) then
if min(X;) > « then setMax (X;, min(X;));
if maz(X;) > a A min(X;) < a then

setMax (X;, a);
if ox, +1 =0y, N min(X;)=p A ~ then
if oxs = oyg + 1 then
‘ if o then setMax(X;,a — 1);
else
‘ setMax (X;,a — 1);
end
end
if ox, +1 =0y, N min(X;) < A ~ then
‘ setMax(X;,a —1);
end

end
end

C1 foreach i € [0,n) do

C2
C3
C4
C5
Cé
c7
Cs8

Cc9

end

if min(Y;) # max(Y;) then
if max(Y;) > a then setMin(Y;, maz(Y;));
if max(Y;) =a A min(Y;) < [ then

I

if ox, +1 =0y, N 7 then
setMin(Y;, 3);
if org = oyg + 1 then
‘ if 0 then setMin(Y,, 5+ 1);
else
‘ setMin(Y;, B+ 1);
end
end

end
end

Y;. For each variable, we only check for support if its domain is not a singleton (lines B2
and C2). The reason is as follows. In SetPointersAndFlags, we check whether we have
0% >jep 0y. If so then we fail; otherwise we have 0% <., 0y. This means that min(X;)
and max(Y;) for all 0 < i < n are consistent. We therefore seek support for a variable
only if its domain is not a singleton.

There are two cases where we prune the domain of some X;: (1) when min(X;) > «
(line B3); (2) when maz(X;) > « and min(X;) < « (line B4). Otherwise, we have
max(X;) < a and increasing 0%mqq(x,) by 1 does not disturb the lexicographic ordering.
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Procedure SetPointersAndFlags

1 1=
2 whilei>[1 A oxr;=o0y;doi:=1—1;
3 ifi>1 A ox; > oy; then fail;
4 elseif i=1—1then a:= —o0;
5 else a:=1;
6 if a <I[then (:= —oc;
7 elseif a > [ then
8 Ji=a—1, temp = true;
9 while j > 1 A ozx; < oy; do
10 if ox; < oy; then temp := false;
11 ji=7—-1
end
12 if j =1—1then (3 := —o0;
13 else 3 := j;

end
14 v := false, 0 := false;
15 if #—-0c0 A (B=a—1 V temp) then 7 := true;
16 if > [ then
17 k:=p0-1,
18 while k > 1 A oxp =oy, do k =k — 1;
19 if k>1 N oxyp > oy, then o := true;
end

In the first case, since any v > min(X;) is greater than «, increasing ox, by 1 gives
0% >e; 0y. We therefore prune any value greater than min(X;) (via the call SetMax). In
the second case, increasing ox, by 1 gives ot >, oy if v > a. Any value greater than
« therefore lacks support and is pruned (line B5). Now maz(X;) is «, but does it have
any support? Increasing ox, and decreasing oZ,n(x,) by 1 can disturb the lexicographic
ordering only when oz, + 1 = oy, and min(X;) < 8, and v is true. In lines B6-B9, we
consider the subcase min(X;) = (3, whereas in lines B10-B11 we consider the subcase
min(X;) < (. In the first subcase, we have 0%, .31 = 0¥, ;. If decreasing oxs by 1
does not change the fact that the vectors are ordered lexicographically the wrong way as of
3, then we prune « (line B9). If, however, decreasing oxg by 1 gives us oxs = oy (line B7)
then we prune « only if the subvectors below 3 are ordered lexicographically the wrong
way (line B8). Now, consider the second subcase. We again have oi, 31 = 0¥, .5 ;-
Since the vectors are ordered lexicographically the wrong way as of 3, this property
persists by decreasing min(X;) by 1. We therefore prune o (B11).

There are two cases where we prune the domain of some Y;: (1) when maz(Y;) > «
(line C3); (2) when maz(Y;) = a and min(Y;) < 3 (line C4). Otherwise, we have either
max(Y;) = o and min(Y;) > B, or max(Y;) < o, and in any case increasing oymin(y;) by
1, and decreasing oymqx(y;) do not disturb the lexicographic ordering.

In the first case, decreasing oymaz(v;) by 1 gives o >, 0y. We therefore prune any
value less than max(Y;) (via the call SetMin). In the second case, decreasing oy, and
increasing oYmin(y;) by 1 can disturb the lexicographic ordering only when oz, +1 = oy,
and v is true (C5). In this case, we have o0&, g1 = 0y, .5 ;. Increasing an occurrence
of oy below 3 does not change that ot >;., 0y. Any value less than g3 lacks support and is
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therefore pruned (line C6). Now min(Y;) is 3, but does it have any support? If increasing
oys by 1 does not change the fact that the vectors are ordered lexicographically the wrong
way as of 3, then we prune  (line C9). If, however, increasing oy by 1 gives us oxz = oyg
(line C7) then we prune 3 only if the subvectors below [ are ordered lexicographically
the wrong way (line C8).

When we prune a value, we do not need to check recursively that previous support
remains. The algorithm tightens max(X;) and min(Y;) without touching min(X;) and
max(Y;), for all 0 < ¢ < n, which provide support for the values in the vectors. The
exception is if a domain wipe out occurs. As the constraint is not disentailed, we have
0t <jep 0y. This means min(X;) and mazx(Y;) for all 0 < ¢ < n are supported. Hence,
the prunings of the algorithm cannot cause any domain wipe-out.

The algorithm works also when the vectors are of different length as we build and
reason about the occurrence vectors as opposed to the original vectors. Also, we do not
assume that the original vectors are of the same length when we set the pointer (.

The algorithm corrects a mistake that appears in [FHK'03]. We have noticed that in
[FHK™03] we do not always prune the values greater than o when we have maxz(X;) > «
and min(X;) < a. As shown next, this algorithm is correct and complete.

7.3 Theoretical Properties

Initialise runs in time O(n + d) and MsetLeq runs in time O(nb + d), where b is the
cost of adjusting the bounds of a variable, and d is the length of the occurrence vectors.

Theorem 66 Initialise runs in time O(n+d), where d is the length of the occurrence
vectors.

Proof: Initialise first constructs ot and oy of length d where each entry is zero, and
then increments oy (x,) and 0Ymaz(y;) by 1 for all 0 < ¢ < n. Hence, the complexity of
initialisation is O(n + d). QED.

Theorem 67 MsetLeq runs in time O(nb+d), where b is the cost of adjusting the bounds
of a variable, and d is the length of the occurrence vectors.

Proof: MsetLeq does not construct ot and of, but rather uses their most up-to-date
states. MsetLeq first sets the pointers and flags which are defined on oz and oy. In
the worst case both vectors are traversed once from the beginning until the end, which
gives an O(d) complexity. Next, the algorithm goes through every variable in the original
vectors X and Y to check for support. Deciding the tight bound for each variable is a
constant time operation, but the cost of adjusting the bound is b. Since we have O(n)
variables, the complexity of the algorithm is O(nb + d). QED.

If d < n then the algorithm runs in time O(nb). Since a multiset is a set with possible
repetitions, we expect that the number of distinct values in a multiset is often less than
the cardinality of the multiset, giving us a linear time filtering algorithm.

Both Initialise and MsetLeq are correct and complete.

Theorem 68 Initialise initialises ox and oj correctly. Then it either establishes fail-
ure if X <,, Y 1s disentailed, or prunes all inconsistent values from X and 'Y to ensure

GAC(X <, Y).
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Proof: Initialise first computes the most and the least significant indices of the
occurrence vectors as u and [ (lines 1 and 2). An occurrence vector occ(Z) associated
with 7 is indexed in decreasing order of significance from maz{Z} to min{Z}}. Our
occurrence vectors are associated with floor(X) and ceiling(Y) but they are also used
for checking support for maz(X;) and min(Y;) for all 0 < i < n. We therefore need to
make sure that there are corresponding entries. Also, to be able to compare two occurrence
vectors, they need to start and end with the occurrence of the same value. Therefore, u
is maz({ceiling(X)} U {{ceiling(Y)}) and [ is min({floor(X)} U {f1loor(Y)}).

Using these indices, a pair of vectors ot and o of length v — [+ 1 are constructed and
each entry in these vectors are set to 0. Then, 0Zyin(x,) and 0Ymas(y;) are incremented
by 1 for all 0 < ¢ < n. Now, for all u > v > [, ox, is the number of occurrences of v
in {floor(X)}. Similarly, for all u > v > I, oy, is the number of occurrences of v in
{ceiling(Y)}}. This gives us o = occ(floor(X)) and of = occ(ceiling(Y)) (lines 3
and 4). Finally, in line 5, Initialise calls the filtering algorithm MsetLeq which either
establishes failure if X < Y is disentailed, or prunes all inconsistent values from X and
Y to ensure GAC(X <,, Y). QED.

Theorem 69 MsetLeq ezther establzshes failure zfX <m Y s disentailed, or prunes all
inconsistent values from X and Y to ensure GAC(X <, Y ).

Proof: MsetLeq calls SetPointersAndFlags. We first show that this procedure either
sets a, (3, v, and o as per their definitions, or establishes failure as X <im Y is disentailed.

Line 2 of SetPointersAndFlags traverses ot and oy, starting at index u, until either
it reaches the end of the vectors (because ot = 0f), or it finds an index ¢ where ox; # oy;.
In the first case, « is set to —oo (line 4) as per Definition 35. In the second case, « is set
to ¢ only if oz; < oy; (line 5). This is correct by Definition 35 and means that 0 <;e, 0.
If, however, ox; > oy; then we have ot >, oy. By Proposition 2, X <,n Y is disentailed
and thus SetPointersAndFlags terminates with failure (line 3). This also triggers the
filtering algorithm to fail.

If & <[ then 3 is set to —oo (line 6) as per Definition 36. Otherwise, the vectors
are traversed in lines 9-11, starting at index a — 1, until either the end of the vectors
are reached (because 0%a—1-; <jez 0Yy_1_;), OF an index j where oz; > oy; is found.
In the first case, ( is set to —oo (line 12), and in the second case, (3 is set j (line
13) as per Definition 36. During this traversal, the Boolean flag temp is set to true iff
0Fo—1—maz{l,f+1} = OYa—1—mazfr,g+1}- 10 lines 14 and 15, v is set to true iff § # —oo, and
either 3 = a — 1 or temp is true (because 0&q 1541 = 0y, 1 _.5,1)- This is correct by
Definition 37.

In line 14, o is initialised to false. If § < [ then o remains false (line 16) as per
Definition 38. Otherwise, the vectors are traversed in line 18, starting at index § — 1,
until either the end of the vectors are reached (because 01, = 03 _;_,;), or an index
k where oxy # oy is found. In the first case, o remains false as per Definition 38. In
the second case, o is set to true only if oxy > oy (line 19). This is correct by Definition
38 and means that 0Zg_1_; >ex of/ﬂ_lﬁl . If, however, ox; < oy, then o remains false
as per Definition 38.

We now analyse the rest of MsetLeq, where the tight upper bound for X; and the tight
lower bound for Y;, for all 0 < 7 < n, are sought. If X <,, Y is not disentailed then we
have 0% <., 0y by Proposition 2. This means that min(X;) and max(Y;) forall 0 <i <n
are consistent by Proposition 3. The algorithm therefore seeks the tight upper bound for
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X; only if maz(X;) > min(X;) (lines B2-11), and similarly the tight lower bound for Y;
only if min(Y;) < maz(Y;) (lines C2-9).

For each D(X;): (1) If min(X;) > « then all values greater than min(X;) are pruned,
giving min(X;) as the tight upper bound (line B3). This is correct by Theorem 61. (2)
If max(X;) > a A min(X;) < « then:

e all values greater than « are pruned (line B5);

e « is pruned if oz, + 1 = oy, A min(X;) =5 AN v A oxg > oyg + 1 (line B9),
or ore +1 = oy, N min(X;) =05 AN v N oxg =oys+1 A o (line B8), or
0To + 1 =0y, N min(X;) < A ~ (line B11).

All the values less than o remain in the domain. By Theorem 59, all the inconsistent
values are removed. (3) If, however, maz(X;) < a then maxz(X;) is the tight upper bound
by Theorem 60, and thus no pruning is necessary.

For each D(Y;): (1) If max(Y;) > « then all values less than maz(Y;) are pruned,
giving max(Y;) as the tight lower bound (line C3). This is correct by Theorem 65. (2) If
maz(Y;) = a A min(Y;) < [ then:

e all values less than (§ are pruned if ox, + 1 = oy, A 7 (line C6);

e (3 is pruned if oz, +1 = oyo A v A oxg > oys + 1 (line C9) or oz, +1 =
Yo N v N oxg=oyz+1 A o (line C8).

All the values greater than 3 remain in the domain. By Theorem 62, all the inconsistent
values are removed. (3) If, however, maz(Y;) = a A min(Y;) > § or maz(Y;) < « then
min(Y;) is the tight lower bound by Theorems 63 and 64, and thus no pruning is needed.

MsetLeq is a correct and complete filtering algorithm, as it either establishes failure
it X <, Y is disentailed, or prunes all inconsistent values from X and Y to ensure
GAC(X <, Y). QED.

7.4 Multiset Ordering with Large Domains

MsetLeq is a linear time algorithm in the length of the vectors given that u—{ < n, where
u is the maximum among the maximums, and [ is the minimum among the minimums
of the variables in X and Y. If we instead have n < u — [ then the complexity of the
algorithm is O(u — (), dominated by the cost of the construction of the occurrence vectors
and the initialisation of the pointers and flags. This can happen, for instance, when the
vectors being multiset ordered are variables in the occurrence representation of a multiset
[KWO02]. Is there then an alternative way of propagating the multiset ordering constraint
whose complexity is independent of the domains?

7.4.1 Remedy

In case u — [ is a large number, it could be costly to construct the occurrence vectors. We
can instead sort £loor(X) and ceiling(Y), and compute a, 3, 7, o, and the number of
occurrences of o and 3 in {floor(X)} and {ceiling(Y)} as if we had the occurrence
vectors by scanning these sorted vectors. This information is all we need to find support

for the bounds of the variables. Let us illustrate this on an example. Consider the multiset
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ordering constraint X <,, Y where st = sort(floor(X)) and s3 = sort(ceiling(Y)) are

as follows:
st = (5, 4, 3, 2, 2, 2, 2 1)
sy = (5, 4, 4, 4, 3, 1, 1, 1>

We traverse st and sg until we find an index 7 such that sz; < sy;, and for all 0 <t < i
we have sx; = sy;. In our example, ¢ is 2:

L
;302,002,022 1)
4, 4, 3, 1, 1, 1)

This means that the number occurrences of any value greater than sy; are equal in
{£1oor(X)} and in {ceiling(Y)}, but there are more occurrence of sy; in {ceiling(Y)}
than in {floor(X)}. That is, oxs = oys and ozy < oys. By Definition 35, a points to
4. We now move only along s3 until we find an index j such that sy; # sy;_1, so that we
reason about the number of occurrences of the smaller values. In our example, j is 4:

st = (5, 4
S_@ = <57 47

)

st = (5, 4, 3, 2
S_:& = <57 4’ 47 47 37

We here initialise v to true, and start traversing st and sy simultaneously. We have
sx; = sy; = 3. This adds 1 to ox3 and oys, keeping v = true. We move one index ahead
in both vectors by incrementing ¢ to 3 and j to 5:

st = (5, 4,
sy = (5, 4

We now have sz; > sy;, which suggests that sz; occurs at least once in {floor(X)}
but does not occur in {ceiling(Y)}. That is, oxy > 0 and oy, = 0. By Definition
36, 3 points to 2. This does not change that v is true. We now move only along st
by incrementing ¢ until we find sx; # sx;_1, so that we reason about the number of
occurrences of the smaller values:

L

st = (5, 4, 3, 2, 2, 2, 2, 1)

sy = (b, 4, 4, 4, 3, 1, 1, 1)
TJ

With the new value of i, we have sx; = sy; = 1. This increases both ox; and oy; by
one. Reaching the end of only s% hints the following: either 1 occurs more than once in
{{ceiling(Y)}, or it occurs once but there are values in {ceiling(Y)} less than 1 and
they do not occur in {{floor()?)}}. By Definition 38, v is false.

Finally, we need to know the number of occurrences of o and 3 in {floor(X)} and
{{ceiling(Y)}. Since we already know what o and 8 are, another scan of s& and sj
gives us the needed information: for all 0 < i < n, we increment ox, (resp. oxg) by 1 if
sx; = a (resp. sx; = 3), and also oy, (resp. oyg) by 1 if sy; = « (resp. sy; = ).
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Algorithm 39: Initialise
Data : (Xo, Xy,...,X,1), (Yo, Y1,....,Y,

1)
Result : sort(floor(X)) and sort(ceiling(Y)) are initialised, GAC(X <,, Y)

st := sort(floor(X));
sy = sort(celllng(?));

A W N =

MsetLeq;

7.4.2 An Alternative Filtering Algorithm

As witnessed in the previous section, it suffices to sort floor(X) and ceiling(Y), and
scan the sorted vectors to compute «, 3, v, 0, 0z, 0Ya, 0xg, and oysz. We can then
directly reuse lines B1-11 and C1-9 of MsetLeq to obtain a new filtering algorithm. As
a result, we need to change only Initialise and SetPointersAndFlags.

In Algorlthm 39, we show how we modify Algorithm 36. Instead of constructing a pair
of occurrence vectors associated with £loor(X) and ceiling(Y), we now sort floor(X)
and ceiling(Y).

Similar to the original algorithm, we recompute the pointers and flags every time we
call the filtering algorithm. Maintaining the sorted vectors incrementally is trivial. When
the minimum value in some D(X;) changes, we update st by inserting the new min(X;)
into, and removing the old min(X;) from s&. Similarly, when the maximum value in some
D(Y;) changes, we update sy by inserting the new maz(Y;) into, and removing the old
max(Y;) from s7. Since these vectors need to remain sorted after the update, in the worst
case we need to scan the whole vectors. The cost of incrementality thus increases from
O(1) to O(n) compared to the original filtering algorithm.

Given the most up-to-date s and s7, how do we set our pointers and flags? In line 2
of our new SetPointersAndFlags, we traverse st and s, starting at index 0, until either
we reach the end of the vectors (because the vectors are equal), or we find an index i
where sx; # sy;. In the first case, we first set o and § to —oo, and v and o to false,
and then return (line 4). In the second case, if sz; > sy; then disentailment is detected
and SetPointersAndFlags terminates with failure (line 3). The reason of the return and
failure is due to the following theoretical result.

Theorem 70 occ(Z) <iep 0cc(Y) iff sort(T) <iep sort(y).

Proof: (=) If occ(¥) <ier 0ce(y) then a value a occurs more in {¢}} than in {Z}}, and
the occurrence of any value b > a is the same in both multisets. By deleting all the
occurrences of a from {Z} and the same number of occurrences of a from {7}, as well as
any b > a from both multisets, we get maz{z} < mazx{y}}. Since the leftmost values in
sort(Z) and sort(y) are mar{Z}} and maz{y}} respectively, we have sort(Z) <je, sort(y).
If oce(Z) = oce(y) then we have {Z}} = {y}}. By sorting the elements in & and ¥, we
obtain the same vectors. Hence, sort(*) = sort(y).

(<) Suppose o = occ(Z), oy = occ(y), st = sort(Z), sy = sort(y), and we have
st = sy. Then {7} and {y} contain the same elements with equal occurrences. Hence,
0T = 0f). Suppose ST <jep Sy. If sxg < syp then the leftmost index of ox and oy is sy,
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Procedure SetPointersAndFlags

1 :=0;
2 whilei<n A sxr;=sy;doi:=i+1;
3 ifi<n A sx;> sy; then fail;
4 elseif i =n then o := —o0, f:= —00, v := false, 0 := false, return;
5 else a:= sy;
6 v :=true;
7 Ji=141;
8 whilej<n A sy; =sy;_1doj:=j+1;
9 if j =n then 3 := su;;
10 else if j < n then
11 whilei <n N j <ndo
12 if sx; > sy; then [ := sx;, exit;
13 if sx; < sy; then v := false, j := 7+ 1;
14 if sx; =sy; theni:=i+4+1, j:=j+1;
end
15 if j =n then 3 := sx;;
end
16 k:=1+1;

17 while k <n A szp=sr,_1do k:=k+1;
18 if k =n then o := false;
19 else if k£ < n then

20 while k <n A j<ndo
21 if sxp > sy; then o := true, exit;
22 if sz, < sy; then o := false, exit;
23 if sxp =sy; thenk:=k+1,5:=j+1;
end
24 if £ =n then o := false, exit;
25 if 7 = n then o := true;
end

26 i:=0, 01, =0, 0y, =0, 023 =0, oyg = 0;
27 foreach i € [0,n) do

28 if sx; = a then ox, := ox, + 1;
29 if sx; = 8 then oxg := oxs + 1;
30 if sy; = o then oy, = oy, + 1;

31 if sy; = 3 then oy := oys + 1;

end

and we have oxgy, = 0 and oy, > 0. This gives ot <., 0y. If sxy = syy = a then we
eliminate one occurrence of a from {Z}} and {7}, and compare the resulting multisets.
QED.

Hence, whenever we have st >, s, we proceed as if we had occ(floor()Z)) >len
oce(floor(Y)). But then what do we do if we have st <, $y? In line 5, we have
sx; < sy; and sx; = sy, for all 0 < t < i. This means that the number occurrences of
any value greater than sy; are equal in {floor(X)} and in {ceiling(Y)}, but there
are more occurrence of sy; in {ceiling(Y)} than in {floor(X)}. Therefore, we here

set « to sy;.
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After initialising v to true in line 6, we start seeking a value for 5. For the sake of
simplicity, we here assume our original vectors are of same length. Hence, 3 cannot be
—00 as « is not —oo. In line 8, we traverse sy, starting at index ¢ + 1, until either we
reach the end of the vector (because all the remaining values in {ceiling(Y)} are sy;),
or we find an index j such that sy; # sy;_;. In the first case, we set 3 to sz; (line 9)
because sz; occurs at least once in {floor(X)} but does not occur in {ceiling(Y)}.
Since no value between a and § occur more in {ceiling(Y)} than in {floor(X)}, v
remains true. In the second case, sy; gives us the next largest value in fceiling(Y)}.
In lines 11-14, we traverse st starting from ¢, and sy starting from j. If sx; > sy; then we
set 3 to sz; (line 12) because sz; occurs more in {£loor(X)} than in {ceiling(Y)}.
Having found the value of 3, we here exit the while loop. If sx; < sy; then sy; occurs
more in {ceiling(Y)} than in {floor(X)}. Since we are still looking for a value for §,
we set 7y to false (line 13). We then move to the next index in sj to find the next largest
value in {ceiling(Y)}}. If sz; = sy, then we move to the next index both in & and sj
to find the next largest values in {floor(X)} and {{ceiling(Y)} (line 14). As j is at
least one index ahead of 7, j can reach to n before ¢ does during this traversal. In such a
case, we set 3 to sx; (line 15) due to the same reasoning as in line 12.

The process of finding the value of o (lines 16-25) is very similar to that of 3. In line
17, we traverse sz, starting at index ¢ + 1, until either we reach the end of the vector
(because all the remaining values in {£loor(X)} are ), or we find an index k such that
st # str—1. In the first case, we set o to false (line 18) because either sy; occurs at
least once in {ceiling(Y)} but does not occur in {floor(X)} (due to line 12), or there
are no values less than 8 both in {floor(X)} and in {{ceiling(Y)} (due to line 15).
In the second case, sz gives us the next largest value in {£loor(X)}. In lines 20-23, we
traverse st starting from k, and sy starting from j. The reasoning now is very similar to
that of the traversal for (. Instead of setting a value for 3, we set ¢ to true, and instead
of setting v to false, we set o to false, for the same reasons. If k reaches n before j,
then we set o to false (line 24) due to the same reason as in line 22. If k and j reach n
together, then again we set o to false, because we have the same number of occurrences
of any value less than 3 in {f1oor(X)}} and in {ceiling(Y)}. If, however, j reaches n
before k, then we set o to true (line 25) due to the same reason as in line 21.

Finally, we go through each of sz; and sy; in lines 26-31, and find how many times «
and 3 occur in {floor(X)} and in f{ceiling(Y)}, by counting how many times o and
[ occur in st and in s7, respectively.

The complexity of this new algorithm is independent of domain size and is O(n log(n)),
as the cost of sorting dominates.

7.5 Extensions

In this section, we tackle three important questions. First, how can we enforce strict
multiset ordering? Second, how can we catch entailment? And third, can we propagate
multiset disequality and equality constraints using (strict) multiset ordering constraints
without any loss in the amount of constraint propagation? The answers are given in
Sections 7.5.1, 7.5.2, and 7.5.3, respectively.
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7.5.1 Strict Multiset Ordering Constraint

We can easily get a filtering algorithm for strict multiset ordering constraint by slightly
modifying MsetLeq. This new algorithm, called MsetLess, either detects the disentailment
of X <, Y or prunes inconsistent values to perform GAC on_ X <m Y

Before showing how we modify MsetLeq, we first study X <m Y from a theoretical
point of view. In the following three theorems, we show that X <., Y is disentailed or is
GAC under the conditions similar to those of X <, Y except that equality between the
multiset view of the vectors is now not allowed.

Theorem 71 X <, Y is disentailed iff {£1oor(X)} >,, {ceiling(Y)}.

Proof: (=) Since X <, Y is disentailed, any combination of assignments, including X «
floor(X) and Y «— ceiling(Y), does not satisfy X <, Y. Hence, {floor(X)} >,
{{ceiling(Y)}.

(<) Any & € X is greater than or equal to any 7 € Y under multiset ordering. Hence,
X <,, Y is disentailed. QED.

Theorem 72 GAC(X <,, Y ) iff for all 0 < i < n, max(X;) and min(Y;) are consistent.
Proof: Similar to the proof of Theorem 55. QED.
Theorem 73 GAC(X <, Y ) iff for all i in [0,n):

{fL00r (Xx,cus(xy)} <m {ceiling(V)} (7.5)
{fl00r(X)} <y {coiling(Vyminey)}

Proof: (=) As the constraint is GAC, all values have support. In particular, X; «
maz(X;) has a support 7 € {Z | z; = maz(X;) A ¥ € X} and 47 € Y where
{2} <m {1} Any 25 € {Z| 2; = max(X;) A &€ X} less than or equal to 27, and
any s € Y greater than or equal to i, under multiset ordering, support X; <« maz(X;).
In particular, min{Z | z; = max(X;) A ¥ € X} and maz{§ | § € Y} support
X; — maz(X;). We get min{Z | x; = max(X;) A &€ X} if all the other variables in
X take their minimums, and we get maz{7 | 7 € Y} if all the variables in ¥ take their
maximums. Hence, {£1007(Xx, maz(x,))} <m {ceiling(Y)}.

A dual argument holds for the variables of Y. As the constraint is GAC, Y; «— min(Y;)
has a support 7} € X and g7 € {7 ] y; = min(Y;) A § €Y} where flz1f <m fu1}- Any
@5 € X less than or equal to 77, and any | v €{y | yi =min(Y;) Ny € Y} greater than or
equal to 47, in particular min{Z | &€ X} and maz{yj| y; = mm(Y) A i € Y} support
Y; — min(Y;). We get min{Z | # e X} if all the variables in X take their minimums,
and we get maz{y | y; = min(Y;) N y € 37} if all the other variables in Y take their
maximums. Hence, {£loor(X)} < {{ceiling(ﬁfi(_mm(m)}}.

(<) 7.5 ensures that for all 0 < i < n, maz(X;) is supported, and 7.6 ensures that for
all 0 <7 < n, min(Y;) is supported. By theorem 72, the constraint is GAC. QED.

Theorems 71 and 73 together with Theorem 58 yield to the following two propositions:

Proposition 4 X <,, Y is disentailed iff occ(floor(X)) >pq occ(ceiling(Y)).
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Proposition 5 GAC(X <,, Y) iff for all i in [0,n):

—

0cc(£100r (X x,maz(xy)) <iew 0cc(ceiling(Y))
occ(£floor(X)) <je occ(ceiling(}_}nhmmm)))

We can exploit the similarity between Proposition 3 and 5, and find the tight consis-
tent bounds by making use of the occurrence vectors o = occ(floor(X)) and oy =
occ(ceiling(Y)), the pointers, and the flags. In Theorems 59 to 65, we have 6& <oy 7).
We decide whether a value v in some domain D is consistent or not by first increasing
ox,/oy, by 1, and then decreasing min(D)/max(D) by 1. The value is consistent for
X <,, Y iff the change gives ot <i; 0y. In Theorems 61 and 65, changing the occur-
rences gives or >, oy. This means that v is inconsistent not only for X <m Y but
also for X <,, Y. In Theorems 60, 63, and 64, however, we initially have ox <., oy and
changing the occurrences does not disturb the strict lexicographic ordering. This suggests
v is consistent also for X <m Y.

In Theorems 59 and 62, we initially have o <., 07, and after the change we obtain
either of ot >, 0y, ot = oy, and o& <;, 0. In the first case v is inconsistent, whereas
in the third case v is consistent, for both constraints. In the second case, however, v is
consistent for X <,, Y but not for X <,, Y. This case arises if we get 0%y —.p = 0y, 5 by
the change to the occurrence vectors, and we have either 8 > [ and 0Z5_1.; = 0y3_;_;, or
B = 1. We therefore need to record whether there are any subvectors below [, and if this
is the case we need to know whether they are equal. This can easily be done by extending
the definition of ¢ which already tells us whether we have 3 > [ and 0&g_1_; >iex 0Yg_1-1-

Definition 39 Given o0& = occ(floor(X)) and o = occ(ceiling(Y)) indexed as u..l
where ox <., 0y, the flag o is true iff:

(B>1 N 0Bp_11 Ziew 0Yg_1y) V B=1

Theorems 59 and 62 now declare a value inconsistent if we get 0%, .5 = 0y,_,3 when the
occurrence vectors change, and we have either 3 > [ and 0Zg 1.1 = 0yz_4_;, or § =1L

How do we now modify MsetLeq to obtain the filtering algorithm MsetLess? Theorems
60, 61, 63, 64, and 65 are valid also for X <, Y. Moreover, Theorems 59 and 62 can easily
be adapted for X <, Y by changing the definition of . Hence, the pruning part of the
algorithm need not to be modified, provided that o is set correctly. Also, by Proposition
4, we need to fail under the new disentailment condition. These suggest we only need to
revise SetPointersAndFlags, so that we fail whenever we have ot >, oy, and set o to
true also when we have 3 =1, or # > [ and 0Zg_1_; = 0&g_1_;. This corrects a mistake
in [FHK"03] which claims that failing whenever we have 0t >, 0§ and setting 3 to [ — 1
as opposed to —oo are enough to achieve strict multiset ordering.

7.5.2 Entailment

The importance of detecting entailment was discussed in Chapter 5.4.2. We thus introduce
another Boolean flag, called entailed, which indicates whether X <,, Y is entailed. More
formally:

Definition 40 Given X and 57, the flag entailed is set to true z'ﬁ)? <. Y is true.
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Procedure SetPointersAndFlags

1= u;

while i > 1 A ox; =0y, doi:=1i—1;
if 1 >1 A ox; > oy; then fail;

else if 1 = [ — 1 then fail;

else a :=1;

s W =

14 o := false;

16 if > [ then
17 k:=p8-—1,

18 while k > 1 A oxp =0y, do k =k — 1;
19 if k>1 N oxyp > oy, then o := true;
20 else if k =1 — 1 then o := true;

end

21 elseif § =1 then o := true;

We have seen in Theorems 17 and 49 that both lexicographic ordering constraint and
lexicographic ordering with sum constraints are entailed whenever the largest value that
X can take is less than or equal to the smallest value that Y can take under the ordering
in concern. This is valid also for the multiset ordering constraint.

Theorem 74 X <, Y is entailed iff {ceiling(X)} <, {floor(Y)}.

Proof: (=) Since X <,, Y is entailed, any combination of assignments, including
X — ceiling(X) and Y «— floor(Y), satisfies X <,, V. Hence, {{ceiling(X)} <,
{£1o0r(Y)}.

(<) Any ¥ € X is less than or equal to any v € Y under multiset ordering. Hence,
X <,, Y is entailed. QED.

By Theorems 58 and 74, we can detect entailment by lexicographically comparing the
occurrence vectors associated with ceiling(X) and floor(Y).

Proposition 6 X <,, Y is entailed iff occ(ceiling(X)) <ip occ(floor(Y)).

When MsetLeq is executed, we have three possible scenarios in terms of entailment:
(1) X <, Y has already been entailed in the past due to the previous modifications to the
variables; (2) X <,, Y was not entailed before, but after the recent modifications which
invoked the algorithm, X <,, Y is now entailed; (3) X <,, Y has not been entailed, but
after the prunings of the algorithm, X <,, Y is now entailed. In all cases, we can safely
return from the algorithm. We need to, however, record entailment in our flag entailed
in the second and the third cases, before returning.

To deal with entailment, we need to modify both Initialise and MsetLeq. In Algo-
rithm 42, we show how we revise Algorithm 36. We add line 0 to initialise the flag entailed
to false. We replace line 5 of Algorithm 36 with lines 5-7. Before calling MsetLeq , we
now initialise our new occurrence vectors occ(celllng(X )) and occ(floor(Y)) in a sim-
ilar way to that of occ(floor(X)) and occ(ceiling(Y)): we create a pair of vectors €%
and €y of length u — [ + 1 where each ex; and ey; are first set to 0. Then, for each value
v in {{ceiling(X)}, we increment ex, by 1. Similarly, for each v in {floor(Y)}, we
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Algorithm 42: Initialise
Data <X0,X1,...,Xn_1>, <YE),Y1, Y_ >

Result : occ(floor(X)), oce(ceiling(Y)), oc
entailed are initialised, GAC(X
0 entailed := false;

; ECelllng( X)), occ(floor(Y)), and
< Y)

5 et:= occ(celllng(f))
€3 := occ(floor(Y));
7  Msetleq;

increment ey, by 1. These vectors are then used in MsetLeq to detect entailment. It is
possible to maintain €% and €j incrementally. When the maximum value in some D(X;)
changes, we update et by incrementing the entry corresponding to new maz(X;) by 1, and
decrementing the entry corresponding to old max(X;) by 1. Likewise, when the minimum
value in some D(Y;) changes, we update € by incrementing the entry corresponding to
new min(Y;) by 1, and decrementing the entry corresponding to old min(Y;) by 1.

In Algorithm 43, we show how we modify the filtering algorithm given in Algorithm
37 to deal with the three possible scenarios described above. We add line AO where
we return if the constraint has already been entailed in the past. Moreover, just before
setting our pointers and flags, we check whether the recent modifications that triggered
the algorithm resulted in entailment. If this is the case, we first set entailed to true and
then return from the algorithm. Furthermore, we check entailment after the algorithm
goes through its variables. Lines B1-B11 visit the variables of X and prune inconsistent
values from the upper bounds, affecting ez. Even if we have €& >, €y when the algorithm
is called, we might get et <;., €y just before the algorithm proceeds to the variables of
Y. In such case, we return from the algorithm after setting entailed to true. As an
example, assume we have X <,, Y, and MsetLeq is called with X = ({1,2},{1,2,4}) and
V' = ({2,3},{2,3}). As 4 in D(X;) lacks support, it is pruned. Now we have et = €.
Alternatively, the constraint might be entailed after the algorithm visits the variables of Y
and prunes inconsistent values from the lower bounds, affecting €7. In this case, we return
from the algorithm by setting entailed to true. As an example, assume we also have 0 in
D(Y}1) in the previous example. The constraint is entailed only after the variables of Y
are visited and 0 is removed.

Finally, before/after the algorithm modifies max(X;) or min(Y;) of some i in [0,n),
we keep our occurrence vectors €t and €j up-to-date by decrementing/incrementing the
necessary entries.

7.5.3 Multiset Disequality and Equality

Given two vectors X = (Xo, X1,...,X,_1) and Y = (Yo,Y1,...,Y, 1), we write a multiset
disequality constraint as X #m 17', which ensures that the vectors ¥ and 3 assigned to
X and Y respectively, when viewed as multisets, are different. Two multisets of integers
x = {{zo,...,zn1} and y = {vo,. .., yn—1}} are different x #y iff x <,,, y or y <, X
We can therefore decompose a multiset disequality constraint X Fm Y by insisting that
one of the vectors must be less than the other under multiset ordering:
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Algorithm 43: MsetLeq
Data : <X0,X1,...,Xn,1>, <}/E)7}/17--'7Yn71>
Result : GAC(X <, V)

A0 if entailed then return;

= if ex <., €y then entailed := true, return;

Al SetPointersAndFlags;
Bl foreach i € [0,n) do

B2 if min(X;) # max(X;) then
B3 if min(X;) > «a then
= CTmaz(X;) i= €Tmaz(x,) — 1, setMax (X;, min(X;));
= €Lmaz(X;) ‘= €Tmaz(X;) +1;

end
B4 if maz(X;) > a A min(X;) < a then
B5= CTmaz(X;) = €Tmax(Xx;) — 1, setMax (X, a);
= €Lmax(X;) ‘= €Tmaz(X;) +1;

end

end
end

= if ex <., €y then entailed := true, return;
C1 foreachi e [0,n) do

C2 if min(Y;) # maz(Y;) then
C3 if maz(Y;) > o then
= EYmin(V;) ‘= €Ymin(v;) — 1, setMin(Y;, max(Y;)), eYmin(vy) = €Ymin(v;) +1;

end
ca if maz(Y;) =a AN min(Y;) < then
c5 if ox, +1 =0y, A 7 then
C6= EYmin(Y;) ‘= €Ymin(v;) — 1, setMin(Y;, £);
= EYmin(Y;) = €Ymin(vi) T 1

end
end
end
end

= if ex <., €y then entailed := true, return;

Most solvers will delay such a disjunction until one of the disjuncts becomes false (see
Chapter 5.5.2). At this point, we can enforce GAC on the other disjunct. As the following
theorem shows, we lose in the amount of constraint propagation with such a decomposi-
tion.

Theorem 75 G’AC()? Fm }7) is strictly stronger than X <,, ¥ V Y <,, X, assuming
that GAC' is enforced on the delayed disjunctive constraint.

Proof: GAC(X “m }7) is as strong as its decomposition. To show strictness, consider
X = ({0,1,2}) and Y = ({1}) where 1 in D(X) cannot be extended to a consistent
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assignment and therefore X “m Y is not GAC. Since neither of X <m Y and Y <m X is
false yet, the decomposition does not post any constraint, leaving the vectors unchanged.
QED.

Given two vectors X = (X0, X1,...,Xn_1) and Y = (Yo,Y1,...,Y, 1), we write a
multiset equality constraint as X =, 57, which ensures that the vectors ¥ and ¥ assigned
to X and Y respectively, when viewed as multisets, are equivalent. Two multisets of
integers x = {xo,..., 2,1} and y = {vo, ..., yn_1}} are equivalent x =y iff x <,, y and
v <, X. We can therefore decompose a multiset equality constraint X=,Y by insisting
that each of the vectors must be less than or equal to the other under multiset ordering:

X<, Y ANY <, X

In this way, both of the constraints in the conjunction are posted (see Chapter 5.5.2). We
again lose in the amount of constraint propagation with such a decomposition.

Theorem 76 GAC(X =,, Y ) is strictly stronger than GAC(X <,, Y ) and GAC(Y <,
X).

Proof: GAC()Z' =m }7) is as strong as its decomposition. To show strictness, consider

= ({0,1,2}) and Y = ({O 2}) where 1 in D(Xj) cannot be extended to a consistent
assignment and therefore X =,, Y is not GAC. The constraints X <,, ¥ and ¥ <,, X
are both GAC. The vectors are thus left unchanged. QED.

7.6 Alternative Approaches

There are at least two alternative ways of posting multiset ordering constraints. We can
either post arithmetic inequality constraints, or decompose them into other constraints.
In this section, we explore each of these approaches and argue that it can be preferable
to propagate multiset ordering constraints using our filtering algorithms.

7.6.1 Arithmetic Constraint

We can achieve multiset ordering between two vectors by assigning a weight to each
value, summing the weights along each vector, and then insisting the sums to be non-
decreasing. Since the ordering is determined according to the maximum value in the
vectors, the weight should increase with the value. A suitable weighting scheme was
proposed in [KS02], where each value v gets assigned the weight n¥, where n is the length
of the vectors. X <,, Y on vectors of length n can then be enforced via the following
arithmetic inequality constraint:

nXo 4 pfer < pYo 4 4 p¥e

Therefore, a vector containing one element with value v and n — 1 0Os is greater than a
vector whose n elements are only v — 1. This is in fact similar to the transformation
of a leximin fuzzy CSP into an equivalent MAX CSP [SFV95]. Strict multiset ordering

constraint X <,, Y is enforced by disallowing equality:

nxo 4 4 pft <o 4t
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BC on such arithmetic constraints does the same pruning as GAC on the original multiset
ordering constraints. However, such arithmetic constraints are feasible only for small n
and u, where u is the maximum value in the domains of the variables. As n and u get
large, n*¢ or n¥* will be a very large number and therefore it might be impossible to
implement the multiset ordering constraint. Also, some constraint solvers like ECLiPSe
constraint solver 5.3 will simply delay such constraints until all the variable are assigned
a value. Consequently, it can be preferable to post and propagate the multiset ordering
constraints using our global constraints.

Theorem 77 GAC(X <., Y) and GAC(X <,, Y ) are equivalent to BC on the corre-
sponding arithmetic constraints.

Proof: We just consider GAC(X <,, Y) as the proof for GAC(X <,, Y) is entirely
analogous. As X <m Y and the corresponding arithmetic constraint are logically equiva-
lent, BC(X <m Y) and BC on the arithmetic constraint are equivalent. By Theorem 55,
BC(X <,, Y) is equivalent to GAC(X <,, Y). QED.

7.6.2 Decomposition

Global ordering constraints can often be built out of the logical connectives (A, V, —, <,
and —) and existing (global) constraints. We can thus compose other constraints between
X and Y so as to obtain the multiset ordering constraint between X and Y. We refer to
such a logical constraint as a decomposition of the multiset ordering constraint.

The multiset view of two vectors of integers ¥ and i are multiset ordered {7} <,,, {7}
iff occ(¥) <jer occ(y) by Theorem 58. One way of decomposing the multiset ordering
constraint X <, Y is thus insisting that the occurrence vectors associated with the
vectors assigned to X and Y are lexicographically ordered. Such occurrence vectors can
be constructed via an extended global cardinality constraint (gec). Given a vector of
variables X and a vector of values cf, the constraint gcc()? ,CZO_X) ensures that OX;
is the number of variables in X assigned to d;. To ensure multiset ordering, we can
enforce lexicographic ordering constraint on a pair of occurrence vectors constructed via
gcc where d is the vector of values that the variables can be assigned to, arranged in
descending order, without any repetition:

gee(X,d,0X) A gee(Y,d,0Y) N OX <o OY

In order to decompose the strict multiset ordering constraint X <nm }7, we need to enforce
strict lexicographic ordering constraint on the occurrence vectors:

gcc()z, d_: O_X) A gcc(?, CZ; O_Y) A OX <lex )%

We call this way of decomposing a multiset ordering constraint as gcc decomposition.
The gce constraint is available in, for instance, ILOG Solver 5.3 [ILO02], SICS-
tus Prolog constraint solver 3.10.1 [SIC03], and FaCiLe constraint solver 1.0 [FaCO01].
These constraint solvers propagate the gcc constraint using the algorithm proposed in
[Rég96]. Among the various filtering algorithms of gce, which maintain either GAC
[Rég96][QvBLT03] or BC [QVBL+03] [KTOSa] [KT03b], only the algorithms in [KT03a] and
[KT03b] prune values from OX and OY. Even though the algorithm integrated in ILOG
Solver 5.3 may also prune the occurrence vectors, this may not always be the case. For in-
stance, when we have gee(({1}, {1, 2}, {1, 2}, {2}, {3,4}, {3,4}), (4,3,2,1), ({1}, {1}, {1, 2},
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{1,2,3}), OX remains unchanged but 1 in D(OXs) is not consistent. This shows that
there is currently very limited support in the constraint toolkits to propagate the multiset
ordering constraint using the gcc decomposition. Also, as the following theorems demon-
strate, gcc decomposition of a multiset ordering constraint hinders constraint propagation.

Theorem 78 GAC(X <., Y) is strictly stronger than GAC(gce(X, d, 0X)), GAC(gee(Y
d,0Y)), and GAC(OX <., OY ), where d is the vector of values that the variables can

take, arranged in descending order, without any repetition.

Proof: Since X <, Y is GAC, every value has a support & and § where occ(Z) <jep
occ(y), in which case all the three constraints posted in the decomposition are satisfied.
Hence, every constraint imposed is GAC, and GAC()Z <m 17) is as strong as its decompo-
sition. To show strictness, consider X = ({0,3},{2}) and ¥ = ({2,3}, {1}). The multiset
ordering constralnt X <,, Y is not GAC as 3 in D(Xp) has no support. By enforcing
GAC(gee(X, (3,2,1,0),0X)) and GAC(gee(Y, (3,2,1,0),0Y)) we obtain the following

occurrence vectors:

O;X = <{O71}> {1}7 {O}’ {071}>
= <{O71}> {071}7 {1}a {O}>

Since we have GAC(O_X <lew O_Y), X and Y remain unchanged. QED.

Theorem 79 G’AC(X <m Y) is strictly stronger than GAC(gee(X.d,0X)), GAC(gee(Y,
d, OY)), and GAC(OX <lex OY), where d is the vector of values that the variables can
take, arranged in descending order, without any repetition.

Proof: The example in Theorem 78 shows the strictness. QED.

In Theorem 70, we have established that occ(¥) <je, oce(y) iff sort(¥) <je. sort(y).
Putting Theorems 58 and 70 together, the multiset view of two vectors of integers & and ¢
are multiset ordered {7} <,, {7} iff sort(z ) <lew sort( y). This suggests another way of
decomposing a multiset ordering constraint X <,, Y: we insist that the sorted versions of
the vectors assigned to X and Y are lexicographically ordered. For this purpose, we can
use the constraint sorted which is available in, for instance, ECLiPSe constraint solver 5.6
[ECLO03], SICStus Prolog constraint solver 3.10.1 [SIC03], and FaCiLe constraint solver 1.0
[FaC01]. Given a vector of variables X, sorted()z , S_X) ensures that SX is of length n and
is a sorted permutation of X. To ensure multiset ordering, we can enforce lexicographic
ordering constraint on a pair of vectors which are constrained to be the sorted versions of
the original vectors in descending order:

sorted(X,5X) A sorted(Y,SY) A SX < SY

Strict multiset ordering constraint X <,, Y is then achieved by enforcing strict lexico-
graphic ordering constraint on the sorted vectors:

sorted(X,SX) A sorted(Y,SY) A SX <jp SY

We call this way of decomposing a multiset ordering constraint as sort decomposition.
The sorted constraint has previously been studied and some BC filtering algorithms

have been proposed [BC97][BC00][MT00]. Unfortunately, we lose in the amount of con-

straint propagation also by the sort decomposition of a multiset ordering constraint.
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Theorem 80 GAC(X <,, Y) is strictly stronger than GAC(sorted(X ,5X )), GAC(sorted
(V,SV)), and GAC(SX <1n SYV).

Proof: Since X <,, Y is GAC, every value has a support & and ¢ where sort(Z) <,
sort(y), in which case all the three constraints posted in the decomposition are satisfied.
Hence, every constraint imposed is GAC, and GAC()Z' <m }7) is as strong as its decompo-
sition. To show strictness, consider X = ({0,3},{2}) and Y = ({2,3}, {1}). The multiset
ordering constraint X <,, Y is not GAC as 3 in D(X,) has no support. By enforcing
GAC(sorted(X,SX)) and GAC(sorted(Y, SY)) we obtain the following vectors:

S:é( = <{273}a {072}>
SY = (2,3}, {1}

Since we have GAC(SB( <lex S_Y), X and Y remain unchanged. QED.

Theorem 81 GAC(X <, Y) is strictly stronger than GAC(sorted(X,5X )), GAC(sorted
(Y,SY)), and GAC(SX <jex SY ).

Proof: The example in Theorem 80 shows strictness. QED.

How do the two decompositions compare? Assuming that GAC is enforced on ev-
ery n-ary constraint of a decomposition, the sort decomposition is superior to the gcc
decomposition.

Theorem 82 The sort decomposition of X <m Y s strictly stronger than the gcc de-
composition ofX <. Y.

Proof: Assume that a value is pruned from X due to the gcc decomposition. Then, there
is an index « such that =(0OX, = OY,) and for all i > a we have OX; = OY;. Moreover,
we have min(0OX; ) mam(OY) and maz(0OX;) > max(OY;). The reason is that, only in
this case, GAC(OX <lex OY) will not only prune values from OX, but also from X. In
any other case, we will either get no pruning at OX,, or the pruning at OX, will reduce
the number of occurrences of o in X without deleting any of o from X. Now consider
the vectors SX and SY. We name the index of SX and S_Y, where « first appears in the
domains of SX and SS/, as 1. Since the number of occurrences of any value greater than
« is already determined and is the same in both X and }7, the subvectors of SX and SY
above 7 are ground and equal. For all ¢ < j < i+ min(0OX,), we have SX; = SY; — a.
Since maz(0X;) > max(0Y;), at position k = i + min(OX;) we will have a in D(SX},)
but not in D(SY}) whose values are less than «. To have SX < SY, ain D(SXk)
is eliminated. This propagates to the pruning of a from the remaining variables of SS(,
as well as from domains of the uninstantiated variables of X. Hence, any value removed
from X due to the gcc decomposition is removed from X also by the sort decomposition.
The proof can easily be reverted for values being removed from Y.

To show that the sort decomposition dominates the gcc decomposition, COHSlde X =
({1,2}) and Y = <{O, ,2}) where 0 in D(Y(')) is inconsistent and therefore X <,, Y is
not GAC. We have SX = ({1,2}) and SY = ({0,1,2}) by GAC(sorted(X,SX)) and
GAC(sorted(Y, SY)), and OX = ({0,1},{0,1},{0}) and OY = ({0,1},{0,1},{0, 1}) by
GAC(gee(X, (2,1,0),0X)) and GAC(gee(Y, (2,1,0),0Y)). To achieve GAC(SX <jen
SY), 0 in D(SY,) is pruned. This leads to the pruning of 0 also from D(Yy) so as to
establish GAC(sorted(Y,SY)). On the other hand, we have GAC(OX <;, OY), i

which case no value is pruned from any variable. QED.
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Theorem 83 The sort decomposition ofX <m Y is strictly stronger than the gcc de-
composition ofX <mY.

Proof: The example in Theorem 82 shows strictness. QED.

Even though the sort decomposition of X <,, Y is stronger than the gcc decompo-
sition of X <,, Y GAC on X <,, Y can lead to _more pruning than any of the two
decompositions. A similar argument holds also for X <, Y. Hence, it can be preferable
to post and propagate multiset ordering constraints via our global constraints.

7.7 Multiple Vectors

We often have multiple multiset ordering constraints. For example, we post multiset
ordering constraints on the rows or columns of a matrix of decision variables because
we want to break row or column symmetry. We can treat such a problem as a single
global ordering constraint over the whole matrix. Alternatively, we can decompose it into
multiset ordering constraints between adjacent or all pairs of vectors. In this section, we
demonstrate that such decompositions hinder constraint propagation.

The following theorems hold for n vectors of m constrained variables.

Theorem 84 G’AC()?Z- <m )Z'j) for all 0 < i < j < n—1 s strictly stronger than
GAC()Zi <m Xi+1) forall0 <i<mn-—1.

Proof: GAC()_(} <m XJ) for all 0 <i < j <mn—1is as strong as GAC()_Q <m )Zi+1) for
all 0 <17 < n —1, because the former implies the latter. To show strictness, consider the

following 3 vectors:
Xo = <{073}7 {2}>
X; = ({0,1,2,3}, {0,1,2,3})
X, = ({23} {1})
We have GAC(X <m X1+1> for all 0 <4 < 2. The assignment Xy < 3 forces XO to

be (3,2), and we have ceiling(X5) = (3,1). Since {3,2} >, {{3,1}, GAC(X, <, X,)
does not hold. QED.

Theorem 85 GAC(X; < )ZJ) for all 0 < i < j < n — 1 is strictly stronger than
GAO(X} <m )Z'H_l) forall0 <i<mn-—1.

Proof: The example in Theorem 84 shows strictness. QED.

Theorem 86 GACKVij 0 < i < j < n—1. X <m X]) is strictly stronger than
GAC(X; < X;) forall0<i<j<n-—1.

Proof: GAC(Vij0<i<j<mn-—1. X <, XJ) is as strong as GAC(X} <, )Z']) for all
0 <1< j <n-—1, because the former implies the latter. To show strictness, consider the
following 3 vectors:

Xy = <{0’3}’ {1}>
X, = ({0,2}, {0,1,2,3})
X, = ({0,1}, {0,1,2,3})

We have GAC(X} < )?) forall 0 <14 < j < 2. The assignment X < 3 is supported by
Xo < (3,1), X7 « (2,3), and Xy « (1,3). In this case, X, <, Xy is false. Therefore,
GAC(Vij 0<i<j<2. X; <., X, ;) does not hold. QED.
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Theorem 87 GAC(Wij 0 < i < j < n—1. X, <m )Z']) is strictly stronger than
GAC(X; <m Xj) for all0 <i<j<n-—1.

Proof: GAC(Vij 0<i<j<n-—1. X; <um )Z'j) is as strong as GAC()Z} <m XZ) for all
0 <i<j<n-—1, because the former implies the latter. To show strictness, consider the

following 3 vectors:
XO = <{Oa3}a {1}>

X) = <{1a3}’ {07173}>
X, = ({0,2}, {0,1,2,3})

We have GAC()@ <m )?j) for all 0 <14 < j < 2. The assignment X, < 3 is supported by
Xo — (3,1), X, « (3,3), and X, « (2,3). In this case, X; <,, X» is false. Therefore,
GAC(Vij 0 <i<j<2. X; <, X,) does not hold. QED.

7.8 Experimental Results

We implemented our global constraints <,, and <, in C++ using ILOG Solver 5.3
[ILO02]. The global constraints encapsulate the corresponding filtering algorithm that
either maintains GAC on (strict) multiset ordering constraint or establishes failure at
each node of the search tree.

We performed a wide range of experiments to compare our global constraints with the
alternative ways of posing multiset ordering constraints which are presented in Section
7.6. Due the absence of the sorted constraint in Solver 5.3, the multiset ordering con-
straint is decomposed via the gce decomposition using the IloDistribute constraint. This
constraint is the gee constraint, and even though its filtering algorithm [Rég96] maintains
GAC, it does not always prune the occurrence vectors.

In the experiments, we have a matrix of decision variables where the rows and/or
columns are (partially) symmetric. To break the symmetry, we pose multiset ordering
constraints on the symmetric rows or columns, and test two goals when looking for one
solution or the optimal solution. First, does our filtering algorithm(s) do more inference
in practice than its decomposition? Similarly, is the algorithm more efficient in practice
than its decomposition? Second, is it feasible to post the arithmetic constraint? How
does our algorithm compare to BC on the arithmetic constraint?

We tested our global constraints on three problem domains: the sport scheduling
problem, the rack configuration problem, and the progressive party problem.

The results of the experiments are shown in tables where a “-” means no result is
obtained in 1 hour (3600 secs). Whilst the number of choice points gives the number of
alternatives explored in the search tree, the number of fails gives the number of incorrect
decisions at choice points. The best result of each entry in a table is typeset in bold. If
posing multiset ordering on the rows is done via a technique called Tech then we write
Tech R. Similarly, posing multiset ordering on the columns using T'ech is specified as T'ech
C. In theory posing multiset ordering constraints between every pair of rows (similarly
for columns) leads to more pruning than posing between adjacent rows (see Section 7.7).
To see whether this is true in practise, multiset ordering constraints are enforced between
the adjacent and all pairs of rows.

The experiments are conducted using ILOG Solver 5.3 on a 1Ghz pentium III processor

with 256Mb RAM under Windows XP.
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n Model Fails | Choice points | Time (secs.)
5 | Adjacent Pairs MsetLess C 1 10 | 0.8
Arithmetic Constraint C 1 10 1 0.9
gce C 2 1111.2
All Pairs MsetLess C 1 10 { 0.8
7 || Adjacent Pairs MsetLess C 69 87 10.8
Arithmetic Constraint C 69 87 1 1.3
gce C 74 92 | 1.3
All Pairs MsetLess C 69 87| 1.5
9 || Adjacent Pairs MsetLess C 760,973 761,003 | 121.3
Arithmetic Constraint C 760,973 761,003 | 2500.0
gce C 2,616,148 2,616,176 | 656.4
All Pairs MsetLess C 757,644 757,674 | 158.3

Table 7.1: Sport scheduling problem: MsetLess vs gcc decomposition and the arithmetic
constraint with column-wise labelling. For one column, we first label the first slots; for
the other, we first label the second slots.

Sport Scheduling Problem This was introduced in Chapter 3.2.4. In Figure 3.9,
one way of modelling the problem is presented. The (extended) weeks over which the
tournament is held, as well the periods are indistinguishable. The rows and the columns
of T'and G are therefore symmetric. Note that we treat T as a 2-d matrix where the rows
represent the periods and columns represent the (extended) weeks, and each entry of the
matrix is a pair of variables.

Consider the rows of T" which represent the periods. The global cardinality constraints
posted on the rows ensure that each of 1...n occur exactly twice in every row. This means
that in any solution to the problem, the rows are equal, when viewed as multisets. Now
consider the columns of 7" which denote the (extended) weeks. The all-different constraints
posted on the columns state that each column is a permutation of 1...n. This suggests
that in any solution to the problem, also the columns are equal when viewed as multisets.
Therefore, we cannot utilise multiset ordering constraints to break row and/or column
symmetry of this model of the problem.

Scheduling a tournament between n teams means arranging n(n — 1)/2 games. The
model described in Figure 3.9 assumes n is an even number. If n is an odd number
instead then we can still schedule n(n — 1)/2 games provided that the games are played
over n weeks and each week is divided into (n — 1)/2 periods. The problem now requires
that each team plays at most once a week, and every team plays exactly twice in the
same period over the tournament. This version of the problem can be modelled using the
original model in Figure 3.9, as the all-different constraints on the rows and the cardinality
constraints on the columns enforce the new problem constraints.

We can now post multiset ordering constraints on the columns of 7" to break column
symmetry. Since the games are all different, no pair of columns can be equal, when
viewed as multisets. Hence, we insist that the columns corresponding to the n weeks
CO,Cl,... Cn 1 are strict multiset ordered: CO <m 01 . < Cn 1. We enforce the
multiset ordering constraints by either using our filtering algorithm MsetLess, or the gcc
decomposition, or the arithmetic constraint.

As the multiset ordering constraints are posted on the columns, we instantiate T
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n Model Fails | Choice points | Time (secs.)
5 | Adjacent Pairs MsetLess C 12 19 | 0.8
Arithmetic Constraint C 12 19 1.1
gce C 15 22109
All Pairs MsetLess C 12 19 ] 0.8
7 || Adjacent Pairs MsetLess C 249 265 | 0.8
Arithmetic Constraint C 249 265 | 1.8
gce C ? 707
All Pairs MsetLess C 230 246 | 1.1
9 || Adjacent Pairs MsetLess C 525,755 525,789 | 71.0
Arithmetic Constraint C || 525,755 525,789 | 1,427.4
gce C ? 707
All Pairs MsetLess C 476,834 476,868 | 80.0

Table 7.2: Sport scheduling problem: MsetLess vs gcc decomposition and the arithmetic
constraint with column-wise labelling. For one column, we label top-down; for the other,
we label bottom-up. The first row is filled after the first two columns are instantiated. A
“?” means the solution obtained does not satisfy the multiset ordering constraints.

column-by-column in two different ways: (1) We explore all the columns top-down. For
one column, we first label the first slots; for the other, we first label the second slots.
(2) For one column, we label top-down; for the other, we label bottom-up. The first row
is filled after the first two columns are instantiated. The results of the experiments are
shown in Tables 7.1 and 7.2.

In Table 7.1, we observe that MsetLess is superior to the gcc decomposition. As the
problem gets more difficult, MsetLess does more pruning and solves the problem quicker.
In Table 7.2, we are unable to compare MsetLess and the gcc decomposition except for
the first instance, because the latter gives solutions which do not satisfy the multiset
ordering constraints. We here witness that if the filtering algorithm of the gcc constraint
does not always prune the occurrence vectors, then the gecc decomposition of the multiset
ordering constraint is not correct.

Both tables indicate a substantial gain in efficiency by using MsetLess in preference to
the arithmetic constraint. Even though the same search tree is created by the two, con-
structing and propagating the arithmetic constraints are much more costly than running
MsetLess to solve the multiset ordering constraints. We have shown that in theory en-
forcing multiset ordering constraints between all pair of columns can increase the amount
of pruning. We see some evidence of this in the tables; however, the gain in the amount
of constraint propagation results in longer run-times.

In summary, for the sport scheduling problem, posting and propagating the multiset
ordering constraints using MsetLess is clearly profitable over decomposing the constraints
or posting the arithmetic constraints, with static labelling heuristics that instantiate the
matrix column-wise. The amount of constraint propagation can be increased by enforcing
the multiset constraints between every pair of columns, but this carries a penalty in the
cost of constraint propagation.

Rack Configuration Problem This was introduced in Chapter 3.2.3. One way of
modelling the problem is given in Figure 3.5. The 2-d matrix C' has partial row symmetry,
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Rack Model | Power | Connectors | Price
1 150 8 150
2 200 16 200
Card Type | Power

1 20

2 40

3 50

4 75

Table 7.3: Rack model and card type specifications in the rack configuration problem
[ILO02].

Instance Demand
# Typel Type?2 Typed Type4d
1 10 4 2 2
2 10 4 2 4
3 10 6 2 2
4 10 4 4 2
5 10 6 4 2
6 10 4 2 4

Table 7.4: Demand specification for the cards in the rack configuration problem.

because the racks of the same rack model are indistinguishable and therefore their card
assignments can be interchanged.

To break the row symmetry, we post multiset ordering constraints on the rows condi-
tionally. Given two racks ¢ and 7 where ¢ < j, we enforce that the rows corresponding to
such racks are multiset ordered if the racks are assigned the same rack model. That is:

RZ‘ = Rj — <C()7i, ce Cnfl,i> Sm <CO,j7 e ,Cn717j>

where n is the number of card types. We impose the multiset ordering constraints by
either using our filtering algorithm MsetLeq or the arithmetic constraint. Unfortunately,
we are unable to compare MsetLeq against the gcc decomposition in this problem, as
Solver 5.3 does not allow us to post an IloDistribute constraint conditionally.

We consider several instances of the rack configuration problem, which are described in
Tables 7.3 and 7.4. In the experiments, we use the rack model and card type specifications
given in [ILO02], but we vary the demand of the card types randomly. As in [ILO02], we
search for the optimal solution by exploring the racks in turn. For each j € Racks, we
first instantiate R; and then label the jth row in C in increasing order of ¢ € Ctypes to
determine how many cards from each card type are plugged into the rack j.

The results of the experiments are shown in Table 7.5. MsetLeq is clearly much
more efficient than the arithmetic constraint on every instance considered. Enforcing the
multiset ordering constraints between every pair of symmetric rows as opposed to the
adjacent ones does not give any worthwhile reductions in the size of the search tree. Any
gain is compensated by the increased run-times.

In summary, MsetLeq is evidently superior to the arithmetic constraint for the rack
configuration problem. Due to the restrictions in the implementation of the IloDis-
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Adjacent Pairs All Pairs
Inst. MsetLeq R Arithmetic Constraint R MsetLeq R

# Fails  Choice Time Time Fails ~ Choice Time

points  (secs.) (secs.) points  (secs.)
1 3,052 3,063 0.2 2.8 3,052 3,063 0.2
2 15,650 15,657 0.6 15.6 15,554 15,601 0.8
3 3,990 3,999 0.2 2.6 3,990 3,999 0.3
4 8,864 8,872 04 7.1 8,864 8,872 0.5
5 40,851 40,858 1.5 41.3 40,549 40,556 2.0
6 42,013 42,026 1.6 35.2 41,790 41,803 2.0

Table 7.5: Rack configuration problem: MsetLeq vs the arithmetic constraint.

tribute constraint, we cannot judge how much more propagation MsetLeq achieves over
the gce decomposition. With the static labelling heuristic that first instantiates the model
of a rack and then generates the number of cards plugged into the rack, imposing the
multiset ordering constraints between every pair of symmetric rows gives additional but
modest pruning, with a penalty in the cost of propagation.

Progressive Party Problem This was introduced in Chapter 3.2.5. In Figure 3.10,
one way of modelling the problem is given. The time periods as well as the guests with
equal crew size are indistinguishable. Hence, this model of the problem has partial row
symmetry between the indistinguishable guests of H, and column symmetry.

Due to the problem constraints, no pair of rows/columns can be equal, but they can be
equal when viewed as multisets. We address only the row or column symmetry, and insist
that the symmetric rows or columns are multiset ordered. Given a set of indistinguishable
guests {¢;, gi+1,.-.,9;}, we break the partial row symmetry by enforcing that the rows
corresponding to such guests EZ, ]%H, .. R are multiset ordered: R <im RZ+1 < ﬁj.
To break the column symmetry, we enforce that the columns C’O, Cl, e Cp 1 correspond-
ing to the p time periods are multiset ordered: Co <m Ch... < Cp 1. We impose the
multiset ordering constraints by either using our filtering algorithm MsetLeq, or the gcc
decomposition, or the arithmetic constraint.

We consider several instances of the progressive party problem, including the one
mentioned in Chapter 3.2.5. We randomly select 13 host boats in such a way that the
total spare capacity of the host boats is sufficient to accommodate all the guests. Note
that posing the arithmetic constraint on the columns of H is not feasible for this problem.
The largest value a variable can get is 29'3, which is larger than 23!, the maximum integer
size allowed in Solver 5.3. Table 7.6 shows the data. The last column of Table 7.6 gives
the percentage of the total capacity used, which is a measure of constrainedness [Wal99].

As in [SBHWO6], we give priority to the largest crews, so the guest boats are ordered
in descending order of their size. Also, when assigning a host to a guest, we try a value
first which is most likely to succeed. We therefore order the host boats in descending
order of their spare capacity. When we post multiset ordering constraints only on the
columns to break column symmetry, we instantiate H column-wise. Similarly, when we
post multiset ordering constraints only on the rows to break row symmetry, we instantiate
H row-wise.

The results of the experiments are shown in Tables 7.7 and 7.8. Note that all the
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Instance | Host Boats Total Host Total Guest | %Capacity

# Spare Capacity Size

1 2-12, 14, 16 102 92 90
2 3-14, 16 100 90 .90
3 3-12, 14, 15, 16 101 91 .90
4 3-12, 14, 16, 25 101 92 91
5 3-12, 14, 16, 23 99 90 91
6 3-12, 15, 16, 25 100 91 91
7 1, 3-12, 14, 16 100 92 92
8 3-12, 16, 25, 26 100 92 .92
9 3-12, 14, 16, 30 98 90 .92

Table 7.6: Instance specification for the progressive party problem.

Instance MsetLeq C gcc C
# Fails Choice  Time | Fails Choice Time
points  (secs.) points  (secs.)
1 7,038 7,168 3.1 8,387 8,517 3.0
2 127 253 0.5 130 257 0.5
3 40,166 40,297  20.2 | 43,808 43,939 223
4 - - - ? ? ?
5 241,945 242,075 95.0 ? ? ?
6 40,166 40,297  20.5 | 43,808 43,939 22.2
7 - - - ? ? ?
8 - - - ? ? ?
9 241,945 242,075 95.0 ? ? ?

Table 7.7: Progressive party problem: MsetLeq vs gcc decomposition with column-wise
labelling. A “?” means the solution obtained does not satisfy the multiset ordering
constraints.

problem instances are solved for 5 time periods. Even though in theory posing multiset
ordering constraints between every pair of symmetric rows (similarly for columns) leads to
more pruning than posing between the adjacent ones, we could not see any evidence of this
in this problem. We therefore report the results of posting multiset ordering constraints
just between the adjacent rows.

We notice in Table 7.7 that the gcc decomposition gives incorrect results for half of the
instances, when we post the multiset ordering constraints on the columns and instantiate
the matrix column-wise. We once again witness that if the filtering algorithm of the gcc
constraint does not always prune the occurrence vectors, then the gcec decomposition of the
multiset ordering constraint is not correct. Also, some instances are very difficult to solve
within an hour limit with this labelling heuristic. According to the results of the rest of the
instances, MsetLeq is superior to the gcc decomposition, as MsetLeq does more inference,
reducing the size of the search tree. However, the fact that the gcc decomposition fails to
give correct results for some instances raises doubt on the accuracy of the results of the
remaining instances. Since an incorrect solution is due to success at a node of the search
tree where a failure should be established, several failures could have been missed during
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MsetLeq R Arithmetic gcc R
Instance Constraint R

# Fails Choice  Time Time Fails Choice  Time
points  (secs.) (secs.) points  (secs.)

1 10,839 10,963 8.3 16.0 20,367 20,491  11.6

2 56,209 56,327 46.8 123.7 57,949 58,067 48.6

3 27,461 27,575 17.1 39.1 42741 42,855  20.5

4 420,774 420,888 280.5 621.7 586,902 587,016 298.1

5 - _ i, ; i, i} i,

6 5,052 5,170 3.8 7.3 8,002 8,123 4.3

7 86,432 86,547 65.5 135.2 128,080 128,195  75.7

] - - i i i _ i}

9 _ - i i} i} i} i

Table 7.8: Progressive party problem: MsetLeq vs gcc decomposition and the arithmetic
constraint with row-wise labelling.

search even if the solution found satisfies the multiset ordering constraints.

In Table 7.8, we contrast MsetLeq with both the gcc decomposition and the arithmetic
constraint, when we post the multiset ordering constraints on the rows and instantiate the
matrix row-wise. This time the gcc decomposition gives correct results, and the instances
that could not be solved previously are now solved in relatively shorter times. The results
show that MsetLeq maintains a significant advantage over the gcc decomposition. The
solutions to the instances that can be solved within an hour limit are found quicker with
much less failures. As the multiset ordering constraints are posted on the symmetric rows
and the rows are of length 5, it is now feasible to post the arithmetic constraint. On the
other hand, MsetLeq remains to be the most efficient way of propagating the multiset
ordering constraints.

In summary, for the progressive party problem, it is feasible to post the arithmetic
constraint only on the rows of the matrix for the instances that we considered. However, it
is much more costly to post and propagate the arithmetic constraint than using MsetLeq
to solve the multiset ordering constraints. The gcc decomposition is inferior to MsetLeq
when the multiset ordering constraints are posted along the rows (resp. columns) and the
matrix is instantiated row-wise (resp. column-wise).

7.9 Implementation

We implemented our global constraints in C++ using ILOG Solver 5.3 [ILO02]. As the
constraint system is an event based system, it is crucial to decide at which propagation
events to wake up the constraints and when to propagate the constraints, so as to inte-
grate them into the constraint system. In this section, we go through the details of the
implementation of <,,,, but a similar procedure has been adapted also for <,,.

As discussed in Chapter 5.10, three propagation events are available in Solver for an
integer variable: whenValue, whenRange, and whenDomain. When X <, Yis
GAC, every value in D(Xj;) is supported by (min(Xy),...,min(X;_1), min(X;1),. ..,
min(X,_1)) and (maz(Yy), ..., max(Y,_1)); every value in D(Y;) is supported by (min(Xy),
coo,min(X,—1)) and (max(Yy),...,mazx(Y;_1),mazx(Yis1),...,max(Y,_1)). Any modifi-
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cation to the variables affecting the bounds should wake up the constraint. So, we attach
whenRange propagation event to all the variables of the vectors. This is in fact not
exactly what we would like to do, because we need to wake up the constraint only when
min(X;) or maz(Y;) of some i in [0,n) changes. On the other hand, any event trig-
gered by modifications to max(X;) or min(Y;) can easily be discarded by watching the
domain-deltal.

An important issue is when to propagate the constraint. As discussed in Chapter
5.10, two ways of propagating a constraint are available in Solver: (1) respond to each
propagation event individually; (2) wait until all propagation events accumulate. The first
method of propagation is preferable over the second with a highly incremental algorithm in
which the data structures can be restored easily and efficiently at every propagation event.
In the case of our global constraint <,,, the filtering algorithm has both incremental and
non-incremental nature. It is incremental in terms of keeping the occurrence vectors ot
and oy up-to-date. These vectors are created when the constraint is first posted, and each
time min(X;) or maz(Y;) of some i in [0,n) changes, the necessary entries in the vectors
are revised in constant time. The algorithm is non-incremental in terms of computing the
pointers and flags. Every time the algorithm is called, «, 3, 7, and ¢ are recomputed.
This computation requires, in the worst case, a complete scan of the occurrence vectors.
Even though computing the pointers and flags at every propagation step does not seem
to be too costly, responding to each event individually means visiting all the 2n variables
after every event. To avoid this, we prefer the second method of propagation, in which
the pointers and flags are recomputed and the variables of X and Y are examined once
after all the events accumulate.

Having decided at which propagation events to wake up the constraint and when
to propagate the constraint, we first implement post which is called by Solver when
the constraint is first posted. This procedure initialises the data structures (e.g. the
occurrence vectors), defines on which events the constraint propagates, and then prop-
agates the constraint. Since the occurrence vectors are maintained incrementally, they
are defined in Solver as reversible objects. To be able to propagate selectively, we post
different event demons on the variables of X and Y. However, the propagation algorithm
is implemented using propagate, because every demon now delays its response, and one
propagation takes place after all the events are gathered.

Initialise in Algorithm 36 is in fact what post deploys except that after initialising
the occurrence vectors, we attach an event demon to a whenRange event for each variable
of the vectors.

Procedure post
1 1:=min({£loor(X)} U {£loor(Y)});

—

4 0y := occ(ceiling(Y));
5 foreachic [0,n) do

5.1 X;.whenRange(EventDemonForX (i) );
5.2 Y;.whenRange(EventDemonForY (i) );

end

!'The domain-delta is a special set in Solver where the modifications of the domain of a variable
are stored. This domain-delta can be accessed during the propagation of the constraints posted on the
variable.
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EventDemonForX (i) is triggered whenever min(X;) or maxz(X;) of some i in [0,n) is
modified. In line 1, events that are not of interest are filtered. In Solver, (V') (reads as
domain-delta) is a special set where the modifications of D(V') are stored. The member
function getMinDelta() returns min(X;) — min(§(X;)). To know whether the propaga-
tion event that triggered the demon is due to a change to min(X;), it suffices to test the
value of X;.getMinDelta(). If the test returns 0 then min(X;) has not been modified.
In line 1.5, the demon calls Solver’s push so that the response to each propagation event
of interest is delayed. Beforehand, o% is updated. In line 1.1, the previous minimum of
D(X;) is extracted as dec using Solver’s member function getOldMin() which returns
min(6(X;)). The new minimum of D(X;) is recorded as inc in line 1.2. Then, in lines
1.3 and 1.4, oxge. is decremented by 1 and oz;,. is incremented by 1, respectively. This is
because while the modification to min(X;) reduced the number of occurrences of dec in
{£1oor(X)} by 1, it increased the number of occurrences of inc in {floor(X)} by 1.

Procedure EventDemonForX (7)
1 if X;.getMinDelta()# 0 then

1.1 dec := X;.getOldMin();
1.2 inc ;= X;.getMin();
1.3 0L goe *= OTgee — 1;
1.4 O0Line = OTine + 1;
1.5 push();
end

EventDemonForY(:) is similar to EventDemonForX (i) except that now the events
triggered by modifications to min(Y;) are discarded, using the member function get-
MaxDelta(). Also, before pushing the event to the queue, oy is updated by incrementing
and decrementing the entries corresponding to the old and new maximum of D(Y;) by
1, respectively. The previous maximum of D(Y;) is obtained by using Solver’s member
function getOldMax() which returns maz(6(Y;)).

Procedure EventDemonForY (i)

1 if Y;.getMaxDelta()# 0 then
1.1 dec :=Y;.getOldMax();
1.2 inc = Y;.getMax();

1.3 OYdec *= OYdec — 1;

1.4 OYinc = OYinc T+ L;

1.5 push();

end

Solver automatically aggregates all such calls to push into a single invocation of the
propagate procedure which propagates the constraint. Note that propagate is also
automatically called once the constraint is posted.

Procedure propagate calls the filtering algorithm.

Procedure propagate
1  Msetleq;




CHAPTER 7. MULTISET ORDERING CONSTRAINT 202

7.10 Summary

In this chapter, we have presented some global constraints for multiset orderings which
are useful for breaking row and column symmetries of a matrix of decision variables.

There are at least two ways of decomposing a multiset ordering constraint. Both of
the decompositions are inferior to maintaining GAC on the constraint. Alternatively, by
assigning a weight to each value in the domain of the variables, one can pose arithmetic
inequality constraints to ensure multiset orderings. However, this approach is not feasible
when the vectors and domain sizes are large, which is often the case. We have therefore
developed an efficient ﬁlterlng algorithm which either proves that X <, Yis disentailed,
or ensures GAC on X <,, Y. The algorithm runs in time O(nb + d), where b is the cost
of adjusting the bounds of a variable, and d = u — [ + 1, u is maz({ceiling(X)} U
{{ceiling(Y)}) and [ is min({£1oor(X)} U {floor(Y)}). If d < n then the algorithm
is O(n *x b). We expect this as the number of distinct values in a multiset is typically less
than its cardinality to permit repetition. Since adjusting the bounds is a constant time
operation, b is always a constant. The complexity of the algorithm is optimal as there are
O(n) variables to consider.

The filtering algorithm exploits two theoretical results. The first reduces the problem
to testing support for upper bounds of X and lower bounds of Y on suitable ground
vectors. The second reduces these tests to lexicographically ordering suitable occurrence
vectors. The pointers and flags defined on the occurrence vectors give us a linear time
complexity as opposed to quadratic when each variable is naively examined in turn. The
algorithm can easily be modified for X <, Y by changing the definition of one of the
flags. Moreover, the ease of maintaining the occurrence vectors incrementally helps detect
entailment in a simple and dual manner to detecting disentailment.

Another variant of the algorithm is when d > n. This algorithm exploits a theoretical
result which reduces the tests for identifying support to lexicographically ordering suitable
sorted vectors. The complexity is then independent of domain size and is O(n log(n)), as
the cost of sorting dominates.

We have studied the propagation of multiset equality and disequality constraints using
multiset ordering constraints, and demonstrated that decomposing a chain of multiset or-
dering constraints between adjacent or all pairs of vectors hinders constraint propagation.

Our experiments on the sport scheduling problem, the rack configuration problem,
and the progressive party problem confirm our theoretical studies. The results of the
experiments can be summarised as follows. First, even if it is feasible to post the arithmetic
constraint, it is much more efficient to propagate the multiset ordering constraints using
our filtering algorithm. Second, decomposing the multiset constraints carries penalty
either in the amount or the cost of constraint propagation. Also, the gcc decomposition
can give incorrect results if the filtering algorithm of the gce constraint does not always
prune the occurrence vectors. Finally, enforcing multiset ordering constraints between all
pair of rows (resp. for columns) can increase the amount of pruning, but this usually
comes with a cost, resulting in longer run-times.



Chapter 8

Symmetry Breaking with Ordering
Constraints

8.1 Introduction

In Chapter 4, we have proposed some ordering constraints for breaking row and column
symmetries. In particular, we have shown that we can consistently enforce lexicographic
ordering or multiset ordering constraints on the symmetric rows and columns. These
constraints can also be combined to obtain new symmetry breaking constraints. In this
chapter, we perform a wide range of experiments to evaluate our hypothesis: (1) the
ordering constraints are often not redundant and bring additional pruning; (2) the ordering
constraints are effective in breaking row and column symmetries as they significantly
reduce the size of the search tree and the time to solve the problem; (3) the ordering
constraints that are incomparable in theory are incomparable also in practice.

The experiments are performed using some of the problems discussed in Chapter 3. In
each experiment, we have a matrix of decision variables where the rows and/or columns are
(partially) symmetric. To break the symmetry, we post ordering constraints on the rows
and/or columns, and search for one solution or the optimal solution. Symmetry breaking
is important even if we are interested in only one solution as we may explore many failed
and symmetrically equivalent states during search. Finding an optimal solution requires
searching the entire search space, and thus can be seen as looking for all solutions. If
the matrix model has previously been studied, we use the suggested labelling heuristic(s).
Otherwise, we use the labelling heuristic tuned by our initial experimentation which we
did as follows. We tried many static orderings as well as the smallest-domain first principle
for multi-valued domains. Surprisingly, this dynamic heuristic did not work well for any
of the problems considered. Hence, we picked the best static heuristic for each problem.

The results of the experiments are shown in tables and column charts, where a “-” and
a missing column mean no result is obtained in 1 hour (3600 secs). Whilst the number of
choice points is the number of alternatives explored in the search tree, the number of fails
is the number of incorrect decisions at choice points. The best result of each entry in a
table is typeset in bold. For ease of presentation, we write < R for posting the ordering
constraint < on the rows, = C for posting < on the columns, and < RC for posting < on
the rows and columns. The ordering constraints are enforced just between the adjacent
rows and/or columns as we have found it not worthwhile to post them between all pairs.

The experiments are conducted using ILOG Solver 5.3 on a 1Ghz pentium III processor
with 256 Mb RAM under Windows XP.

203
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8.2 Social Golfers Problem

This was introduced in Chapter 3.2.4. Figure 3.8 shows a modification of the set variable
based model given in Figure 3.7. In this model, a 3-d 0/1 matrix T' of Groups x Weeks x
Golfers is used to decide which golfer plays in which group of which week.

The matrix T has symmetry along each of the three dimensions: the groups are
indistinguishable, and so are the weeks and the golfers. As the contents of a group from
one week to the other weeks are independent of each other, one way of reducing symmetry
in this model is to:

e set the golfers of the first week;

e partition the golfers of the last group of the first week into the last s groups in the
other weeks.

As an example, assume we wish to schedule Golfers = {1,2,...,12} to play in 4 groups
of size 3 for 3 weeks. We set the first week by placing the first set of 3 players to the last
group, the next set of 3 players to the group before last, and so on. This does not conflict
with the problem constraints as the golfers can be scheduled arbitrarily in the first week.
The first 3 players, which play together in the last group of the first week, cannot meet
each other again and therefore need to be in different groups in the following weeks. We
partition these golfers into the last 3 groups in the other weeks. Again, this partitioning
is consistent with the problem constraints, as each of these golfers can be placed in an
arbitrary group provided that they are all in different groups. Consequently, we get:

T; ; — Groups —
I {12,11,10} {9,8,7} {6,5,4} {3,2,1}
Weeks {v.2,7} {7,2,3}y {7,7,2} {7,7,1}
! {r,2,7} {7,2.3}y {7,7,2} {7,7,1}

where a “?” is used to designate a variable, and the golfers playing in each group of each
week are grouped together in a set, for ease of presentation. We refer to such constraints
as basic symmetry breaking constraints.

Even though the basic symmetry breaking constraints help reduce some of the sym-
metry, it is possible to break more symmetry by also enforcing ordering constraints on
each of the three dimensions of 7. Due to the problem constraints, no pair of groups,
weeks, and golfers can have identical assignments. To break the symmetry between the
weeks, we insist that the 2-d slices flattened onto vectors Wo, Wl, e Ww 1 which repre-
sent the given w weeks are strict lexicographically ordered: Wo <lew W1 . <lew Ww 1.
As for the symmetry between the golfers, we enforce that the 2-d slices ﬁattened onto
vectors Go, Gl, e Gg*s 1 which represent the given g * s golfers are strict lexicographi-
cally ordered: GO <lex G1 . <lex Gg*s 1. Considering that the contents of a group from
one week to the next are independent of each other and the groups within a week must
be disjoint, we tackle the symmetry between the groups by imposing strict lexicographic
ordering constraints on the columns (i.e. the group dimension) of each week:

—

\V/] € Weeks . TO,j <lex Tl,j A Tg—l,j

as opposed to flattening the 2-d slices describing the groups onto vectors and constraining
these vectors to be strict lexicographically ordered. We refer to the model in which the
strict lexicographic ordering constraints are imposed together with the basic symmetry
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Instance # | w,g,s || Instance # | w,g,s
1 2,5,4 11 4,9,4
2 2,6,4 12 5,4,3
3 2,7,4 13 5,5,4
4 2,8,5 14 5,7,4
5 3,5,4 15 5,8,3
6 3,6,4 16 6,4,3
7 3,7,4 17 6,5,3
8 4,5,4 18 6,6,3
9 4,6,5 19 7,5,3
10 4,7,4 20 7,5,5

Table 8.1: The instances used in the social golfers problem.

breaking constraints as Model 1, and to the model in which no ordering constraints but
only the basic symmetry breaking constraints imposed as Model 2. Note that the basic
symmetry breaking constraints and the lexicographic ordering constraints do not conflict.
An alternative way of breaking symmetry using strict lexicographic ordering con-
straints is to impose strict anti-lexicographic ordering constraints on the slices represent-
ing the weeks and on the slices representing the golfers, as well as on the columns of every
slice corresponding to a week. In this case, we modify the basic symmetry breaking con-
straints so that they agree with the strict anti-lexicographic ordering constraints. First,
we set the first week starting from the first group. Second, we partition the golfers of the
first group of the first week into the first s groups in the other weeks. In the example of
scheduling Gol fers = {1,2,...,12} to play in 4 groups of size 3 for 3 weeks, we get:

T; — Groups —
I {1,2,3} {4,5,6} {7,8,9} {10,11,12}
Weeks {1,7,7} {2,7,7} {3,7,7} {7,7,7}
LoAL Yy {2,770 {3,7,7} {,72,7}
by posting the modified basic symmetry breaking constraints that are consistent with the
strict anti-lexicographic ordering constraints. We refer to the model in which the strict
anti-lexicographic ordering constraints are imposed together with the modified basic sym-
metry breaking constraints as Model 3, and to the model in which no ordering constraints
but only the modified basic symmetry breaking constraints imposed as Model 4.

Can we utilise multiset ordering constraints to break symmetry in this model of the
problem? Consider the dimension of 1" which describes the weeks. Each slice represents
a week and is a 2-d 0/1 matrix of Groups x Gol fers. Sum constraints are posted on the
columns (i.e. the group dimension) of every week to ensure that every group is of size s:

Vi € Weeks . Vi € Groups . Z Tijk=s5

kegGolfers

In any solution to the problem, the columns within each week are thus equal when viewed
as multisets. A consequence of this is that each slice corresponding to a week is constrained
to have g+ s 1s. In any solution to the problem, the 2-d slices flattened onto vectors which
represent the weeks are thus also equal when viewed as multisets. Now consider the
dimension of T" which represent the golfers. Each slice corresponds to a golfer and is a 2-d
0/1 matrix of Groups x Weeks. Sum constraints on the rows (i.e. the week dimension)
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Figure 8.1: Social golfers problem by filling 7" week-by-week, setting each golfer in turn.

of every such slice ensure that each golfer plays once a week:

Vk € Golfers. Vi € Weeks . Z Tiir=1

jE€Groups

Since there are w rows in each slice, every slice is constrained to have w 1s. This means
that in any solution to the problem, the 2-d slices flattened onto vectors which represent
the golfers are also equal when viewed as multisets. Therefore, we cannot make use of
multiset ordering constraints to break symmetry in this model of the problem.

In our experiments, we consider several instances of the social golfers problem (see
Table 8.1) taken from [FFH"02], [Pug02c|, and [CSP], and compare Model 1, Model 2,
Model 3, and Model 4. We search for a solution by exploring the 2-d slices representing
the weeks in turn. For each week, we label the matrix along its rows (i.e. golfer-by-golfer)
from top to bottom, exploring the domain of each variable in ascending order.

The results of the experiments are shown in Figure 8.1 and summarised in Figure 8.2
where we partition the instances according to the model(s) that solves them with the
least search effort. Among the 20 instances we have considered, 50% are best solved by
Model 3 with significant gains, both in the size of search trees and run-times, over the
other models. Model 1, on the other hand, is superior to all the remaining models on only
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Social Golfers
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Figure 8.2: Summary of the results in Figure 8.1. The instances are grouped by the
model(s) solving them with the least search effort.

10% of the instances. We observe that 15% are best solved by Model 3 and Model 1 with
similarities in the amount of pruning and solving times. Model 3 is therefore the leading
model for the instances that we have considered.

Posting ordering constraints is not useful for solving some instances of this problem.
Model 4 solves 10% of the instances with remarkable gains in the amount of search ef-
fort required over the other models. Also, for 15% of the instances, we observe modest
differences between Model 1 and Model 4, which are superior to all the remaining models.

In summary, with the static labelling heuristic that fills 7" a week at a time assign-
ing each golfer in turn, imposing ordering constraints gives significantly smaller search
trees and shorter run-times when solving 75% of the considered instances of the social
golfers problem. Due to the problem constraints, we cannot utilise multiset ordering
constraints to break the symmetry. We therefore impose only strict lexicographic (resp.
anti-lexicographic) ordering constraints on the slices of T representing the weeks and on
the slices describing the golfers, as well as on the columns of each slice representing a week.
The best results are obtained by imposing strict anti-lexicographic ordering constraints.

8.3 Balanced Incomplete Block Design Problem

This was introduced in Chapter 3.2.1. One way of modelling the problem, as shown
in Figure 3.1, is to employ a 2-d 0/1 matrix X of B x V to determine the elements
of each subset. Since the elements as well as the subsets containing the elements are
indistinguishable, the matrix X has row and column symmetry.

As each row is constrained to have r 1s and each column k 1s, a simple way to reduce
symmetry is to set the first row and column. For instance, consider the BIBD instance
(7,7,3,3,1). We can set the first row by instantiating its first 3 variables by 1 and its
remaining variables by 0. As the first variable of the first column is now 1, we can as well
set the first column by assigning 1 to its first 3 variables and 0 to its remaining variables.

Setting the first row and column help reduce some of the row and column symmetries.
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Instance # v,b, 1k, A Instance # v,b, 1k, A
1 6,80,40, 3,16 11 15,70,14, 3,2
2 7,84,36,3,12 12 12,88,22,3,4
3 7,91,39,3,13 13 9,120, 40, 3,10
4 9,72,24,3,6 14 19,57,9,3,1
5 13,52,12,3,2 15 10, 120, 36, 3, 8
6 9,84,28,3,7 16 11,110,330, 3,6
7 9,96,32,3,8 17 16, 80, 15, 3,2
8 10,90, 27, 3,6 18 13,104,24, 3,4
9 9,108, 36,3,9 19 15,21,7,5,2
10 13,78,18,3,3 20 22,22,7,7,2
21 16,32,12,6,4

Table 8.2: The instances used in the BIBD problem.

However, we can still freely permute any two rows and/or columns that start with the same
value. We can therefore impose ordering constraints on the rows and columns to break
more symmetry. Due to the constraints on the rows, no pair of rows can be equal unless r =
A. To break the row symmetry, we enforce that the rows R}, ﬁl, e ]3% 1 corresponding
to the v elements are strict anti-lexicographically ordered Ro >lex R1 C Sler ﬁv 1. As
for the column symmetry, we enforce that the columns C’O, C’l, . C’g, 1 corresponding to
the b subsets of V are anti-lexicographically ordered: C’O >en 61 c Dlex C’b 1. We refer
to the model in which we have >;.,R >,.,C as well as the first row and column are set
as Model 1, and to the model in which no ordering constraints are imposed but only the
first row and column are set as Model 2. Note that setting the first row and column in
descending order does not conflict with the anti-lexicographic ordering constraints.

Each row of X is constrained to have r 1s. Therefore, in any solution to the problem,
the rows, when viewed as multisets, are equal. Similarly, the columns, when viewed as
multisets, are equal in any solution to the problem due to the constraints restricting
each column to contain k 1s. Consequently, we cannot make use of multiset ordering
constraints to break the row and column symmetries in this model of the problem.

In our experiments, we select some large instances (see Table 8.2) from [CD96]. We
adopt a static variable and value ordering and search for a solution by instantiating the
matrix X along its rows from top to bottom and exploring the domain of each variable in
ascending order. As our experiments have revealed that >;.,R >;.,.C is always superior
t0 <jexR <je:C with this labelling heuristic, we compare only Model 1 and Model 2.

The results of the experiments are shown in Figure 8.3. Instantiating the matrix
along its rows from top to bottom works extremely well with anti-lexicographic ordering
constraints on the rows and columns!. Many instances are solved by Model 1 within a
few seconds. On the other hand, Model 2 can solve only 4 instances within an hour time
limit. In Figure 8.3, we observe a substantial gain in the amount of pruning and efficiency
by solving the problem using Model 1 in preference to Model 2 with two exceptions.
The instances (7,84,36,3,12) and (7,91, 39, 3,13) are solved backtrack-free by Model 2
relatively quicker than Model 1. Due to the logarithmic scale in the graphs, we do not
report any result of fails for these instances for Model 2.

In summary, with the static labelling heuristic that instantiates X along its rows from
top to bottom, imposing strict anti-lexicographic ordering constraints on the rows and
anti-lexicographic ordering constraints on the columns significantly reduces the search

!This was also pointed out by Jean-Frangois Puget in [Pug02a].
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Figure 8.3: BIBD with row-wise labelling of X.

effort required to solve 90.5% of the considered instances of the BIBD problem. Many
instances are solved within a few seconds, which cannot otherwise be solved within an
hour limit. Due to the problem constraints, we cannot make use of multiset ordering
constraints to break the row and column symmetries of X. Our initial experiments have
shown that <;..R <;..C is inferior to >;.,R >;..C for the instances we have considered.

8.4 Progressive Party Problem

This was introduced in Chapter 3.2.5. In Figure 3.10, one way of modelling the problem
is given. In this model, a 2-d matrix H of Periods x Guests, taking values from Hosts,
is used to represent the assignment of hosts to guests in time periods. The time periods
as well as the guests with equal crew size are indistinguishable. Hence, this model of the
problem has partial row symmetry between the indistinguishable guests of H, and column
symmetry.
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Problem
Model 5,13,29 6,13,29
Fails | Choice | Time | Fails | Choice | Time
points | (secs.) points | (secs.)
No symmetry breaking || 180,738 | 180,860 | 75.9 - - |-
<1ezRC 2,720 2,842 | 2.7 - - -
<»RC - - - - - -
<mR >,,C 9,207 9,329 | 8.0 - - -
<mR <1 C 10,853 | 10,977 | 8.6 - - -
<R >..C 2289 | 2,405 | 2.6 3 -
<R <nC 2,016 | 2,137 | 2.0 _ A
<teeR = C : 5E : S

Table 8.3: Progressive party problem with row-wise labelling of H.

In any solution to the problem, the rows and/or columns are not necessarily equal
when viewed as multisets. To break the row and column symmetries, we can therefore
utilise both lexicographic ordering and multiset ordering constraints, as well as combine
lexicographic ordering constraints in one dimension of the matrix with multiset ordering
constraints in the other. Due to the problem constraints, no pair of rows/columns can
have equal assignments, but they can be equal when viewed as multisets. This gives us
the models <lexR07 émRC, <R sz, <nR <le:1:ca <R >lexC, <iezR ng, and <., R
>n,C. As the matrix H has partial row symmetry, the ordering constraints on the rows
are posted on only the symmetric rows. The ordering constraints on the columns are,
however, posted on all the columns.

In our experiments, we compare the models described above in contrast to the initial
model of the problem in which no symmetry breaking ordering constraints are imposed.
We consider the original instance of the progressive party problem, which was mentioned
in Chapter 3.2.5, with 5 and 6 time periods, referred to as (5,13,29) and (6, 13,29). As
in [SBHW96|, we give priority to the largest crews, so the guest boats are ordered in
descending order of their size. Also, when assigning a host to a guest, we try a value first
which is most likely to succeed. We therefore order the host boats in descending order
of their spare capacity. We adopt two static variable orderings, and instantiate H either
along its rows from top to bottom, or along its columns from left to right.

The results of the experiments are shown in Tables 8.3 and 8.4. With row-wise la-
belling of H, we cannot solve (6, 13,29) with or without the symmetry breaking ordering
constraints. As for (5,13,29), whilst many of the models we have considered give signifi-
cantly smaller search trees and shorter run-times, <,,RC and <;.,R >,,C cannot return
an answer within an hour time limit. The smallest search tree and also the shortest solv-
ing time is obtained by <;.,R <,,C, in which case the reduction in the search effort is
noteworthy compared to the model in which no ordering constrains are imposed. This
supports our conjecture that lexicographic ordering constraints in one dimension of a
matrix combined with multiset ordering constraints in the other can break more symme-
try than lexicographic ordering or multiset ordering constraints on both dimensions. In
our experiments, we have also tested the dual models >,.,RC, >,,RC, >,,R <,,C, >,,R
>1:C, >mR <1e2C, >R >,,C, and >, R <,,,C with row-wise labelling of H. However,
none of these models return an answer within an hour time limit.
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Problem

Model 5,13,29 6,13,29

Fails | Choice | Time Fails | Choice | Time

points | (secs.) points | (secs.)

No symmetry breaking || 20,546 | 20,676 | 9.0 20,722 | 20,871 | 12.3
<1ezRC 20,546 | 20,676 | 9.0 20,722 | 20,871 | 124
<mRC - - - - - -
<»R >,,C - - - - -
SmR <l€£13C - - - - - -
SmR >l€$C - - - - - -
<1eaR <C 7,038 | 7,168 | 3.4 7,053 | 7,202 | 4.6
<ieeR = C : e : e

Table 8.4: Progressive party problem with column-wise labelling of H.

With column-wise labelling of H, we are able to solve (6, 13,29). Surprisingly, <;..RC
does the same inference as the model with no ordering constraints, giving the same search
tree and solving time for both instances. The only model which reduces the search ef-
fort is <R <,,C, with significant decreases in the number of the fails as well as the
solving times. We once again witness the superiority of combining lexicographic ordering
constraints in one dimension with multiset ordering constraints in the other over lexico-
graphic ordering or multiset ordering constraints on both dimensions. With this labelling
heuristic, we have also experimented with the dual models >,.,RC, >,,RC, >, R <,,C,
>mR >1.C, >, R <1:C, >R >,,C, and >, R <,,,C. For both instances, we have ob-
tained an answer in one hour only by >, R <,,C. This model solves (5,13,29) with 341
fails and in 2 seconds, which is the best result we have for this instance. However, >,..R
<nC solves (6, 13,29) with 17,803 fails and in 8.2 seconds, and thus <;,R <,,,C remain
the most effective model for (6, 13, 29).

In summary, enforcing ordering constraints on the rows and columns of H leads to
noteworthy reductions in the effort required to solve the (5,13,29) instance with row-
wise labelling of H, and to solve the two considered instances of the progressive party
problem with column-wise labelling of H. As the problem constraints do not imply
multiset equality between the symmetric rows and columns, there are many alternative
ways of posting the ordering constraints. The best results are obtained by <;.,R <,,C
and >R <,,C. This shows a clear advantage of combining lexicographic ordering and
multiset ordering constraints.

8.5 Rack Configuration Problem

This was introduced in Chapter 3.2.3. One way of modelling the problem is given in
Figure 3.5. In this model, a 1-d matrix R of Racks, taking values from RackM odels, is
used to represent the assignment of rack models to racks. The number of cards — of a
particular card type — plugged into a particular rack is determined by a 2-d matrix C' of
Ctypes x Racks. There are two kinds of symmetry in this model. First, the variables of
R are symmetric as the racks are indistinguishable. Second, C' has partial row symmetry,
because the racks of the same rack model are indistinguishable and therefore their card
assignments can be interchanged.
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Rack Model | Power | Connectors | Price
1 150 8 150
2 200 16 200

Table 8.5: Rack model specification in the rack configuration problem [ILO02].

Card Type | Power
1 20
2 30
3 40
4 50
5 60
Instance Demand
+# Typel Type?2 Type3d Typed Typebd
1 6 8 6 2 4
2 8 5 6 4 3
3 8 7 6 6 5
4 10 8 6 2 2
5 10 8 6 4 2
6 10 9 9 8 )

Table 8.6: Card type and demand specifications in the rack configuration problem.

By insisting that the variables representing the given m racks are ordered Ry < R; <
R,,—1, we break the symmetry between the racks. This, however, leaves the symmetry
between the racks of the same rack model. In any solution to the problem, the rows of
C that correspond to the racks of the same rack model are not necessarily equal when
viewed as multisets. To break the partial row symmetry, we can therefore utilise both
lexicographic ordering and multiset ordering constraints. This gives us the models <;.,R
and <,,R, in which the rack variables are ordered and the ordering constraints on the
rows are posted conditionally. Given n = |Ctypes| and m = |Racks|, we insist in <;.,R
that two adjacent rows of C' are lexicographically ordered if the corresponding racks are
assigned the same rack model:

Viel0,m—1).Rj=Rjs1 — (Coj,-..,Cno1j) <tex (Cojt1s---, Cntjs1)

whereas in <,,R we enforce multiset ordering constraint on the adjacent rows if the
corresponding racks are assigned the same rack model:

Viel0,m—1).R;=Rjy1 — (Coj,-..,Cno1j) <m (Cojs1s---, Cnt 1)

In our experiments, we compare <;.,R and <,,R against the model in which only
the symmetry between the racks is tackled. We consider several instances of the rack
configuration problem, which are described in Tables 8.5 and 8.6. Whilst we respect the
rack model specification given in [ILO02], we increase the number of card types to 5, each
characterised by the power it requires, and vary the demand of the card types randomly.
As in [ILO02], we search for the optimal solution by exploring the racks in turn. For each
J € Racks, we first instantiate [?; and then label the jth row in C' in increasing order of
1 € Ctypes to determine how many cards from each card type are plugged into the rack j.
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Inst. | Model Fails Choice | Time
# points | (secs.)
1 No symmetry breaking || 13,617, 898 | 13,617,911 | 366.5
<iezR 1,938,252 | 1,938,265 | 70.3
<nR 4,689,464 4,689,376 | 182.0
2 No symmetry breaking 25,115,179 | 25,115,190 | 685.0
<iezR 3,373,548 | 3,373,555 | 114.6
<nR 7,845,034 7,845,045 | 302.0
3 No symmetry breaking 14,956,347 | 14,956,346 | 458.4
<iezR 1,004,284 | 1,004,283 | 38.0
<mR 4,367,915 4,367,914 | 196.4
4 No symmetry breaking 10,675,887 | 10,675, 900 | 294.3
<iezR 1,529,197 | 1,529,210 | 55.0
<mR 2,664,774 2,664,787 | 115.5
5 No symmetry breaking 95,553,241 95,553,250 | 2458.2
<lezR 10,377,867 | 10,377,876 | 363.0
<nR 28,212,479 | 28,212,486 | 1102.7
6 No symmetry breaking 1,377,881 1,377,880 | 47.0
<iezR 115,309 115,308 | 5.2
<nR 692,058 692,057 | 31.8

Table 8.7: Rack configuration problem with exploring each rack in turn by first instanti-
ating its model and then determining its cards.

The results of the experiments are shown in Table 8.7. Clearly, symmetry breaking
with ordering constraints is beneficial for all the instances we have considered. The
instances are solved with substantial gains, both in the size of the search trees and run-
times, by imposing the ordering constraints. Even though both <;.,R and <,,R greatly
reduce the search effort required to solve the instances, <;.,R is superior to <,,R with
notable differences in the amount of pruning and solving times. We have also experimented
with the dual models >;..R and >,,R using the same labelling heuristic. However, this
has not led to any promising improvement over the results presented in Table 8.7.

In summary, with the static labelling heuristic that explores each rack in turn by first
instantiating its model and then determining its cards, imposing ordering constraints gives
significantly smaller search trees and shorter run-times when solving all the considered
instances of the rack configuration problem. As the problem constraints do not imply
multiset equality between the symmetric rows, we can tackle the partial row symmetry
by imposing either multiset (resp. anti-multiset) ordering or lexicographic (resp. anti-
lexicographic) ordering constraints on the rows. The best results are obtained by <;.,R.

8.6 Generating Hamming Codes

This was introduced in Chapter 3.2.7. One way of modelling the problem, as shown in
Figure 3.12, is to employ a 2-d 0/1 matrix X of B x Codes to determine the b-bit codes.
Since the codes as well as the positions in the codes are indistinguishable, the matrix X
has both row and column symmetry.

In any solution to the problem, the rows and/or columns are not necessarily equal
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Problem

Model 10,15,9 10,10,5

Fails | Choice | Time Fails | Choice | Time

points | (secs.) points | (secs.)

No symmetry breaking - - |- 114,072 | 114,120 | 10.0
<eaR <12 C 297,421 | 297,420 | 30.0 2,939 | 2,985 | 0.4
<nRC - - - - - -
<mR >,,C - - - - -
<R <,..C 78,412 | 78,411 | 7.2 114,072 | 114,120 | 10.0
<mR >.C 169,665 | 169,664 | 13.6 548,026 | 548,057 | 53.0
<lea:R Smc - - - - - -
<ierR =nC : 5 : 5

Table 8.8: Generating Hamming codes with row-wise labelling of X.

when viewed as multisets. To break the row and column symmetries, we can therefore
utilise both lexicographic ordering and multiset ordering constraints, as well as combine
lexicographic ordering constraints in one dimension of the matrix with multiset ordering
constraints in the other. Due to the constraints on the rows, no pair of rows can have
equal assignments, but they can be equal when viewed as multisets. This gives us the
models <je;R <3, C, <,,RC, <,,R 2,0, <R <16, C, <R 246,05 <jeeR <0, C, and <R
>nC. As X is a 0/1 matrix, we enforce multiset ordering constraints on the rows and/or
columns by insisting that the sums of the rows and/or columns are ordered.

In our experiments, we consider two instances of the problem, (10, 15,9) and (10, 10, 5),
and compare the models described above in contrast to the initial model of the problem in
which no symmetry breaking ordering constraints are imposed. We search for a solution
by instantiating the matrix X along its row from top to bottom, exploring the domain of
each variable in ascending order.

The results of the experiments are shown in Table 8.8. Whilst many of the models
fail to return an answer for (10, 15,9) in an hour, <;.;R <;e.C, <,,R <;e.C, and <,,R
>16.C dramatically reduce the size of the search tree, proving unsatisfiability in less than
a minute. The smallest search tree and also the shortest solving time is obtained by <,,R
<402 C which is much more effective and efficient than <;.,R <;.,C and <,,R >,..C. We
once again witness the superiority of combining lexicographic ordering constraints in one
dimension of a matrix with multiset ordering constraints in the other over lexicographic
ordering or multiset ordering constraints on both dimensions. As for (10, 10, 5), we get an
answer in an hour only with <;.,R <;..C, <,,R <;,..C, and <,,R >,.,C as in the case of
solving the previous instance. The difference is that we can now solve the problem even in
the absence of the ordering constraints. Surprisingly, <,,R <;.,C does the same inference
as the model with no ordering constraints, giving the same search tree and solving time.
Moreover, <,,R >,.,C increases the size of the search tree, making it more difficult to
solve the problem. On the other hand, <;.,R <., C significantly reduces the search effort.
Hence, <;..R <., C is the most effective model for this instance of the problem.

We have also experimented with the dual models >;..,R >,..C, >,,RC, >,,R <,,C,
>mR 216.C, >R <. C, >R >,,C, and >R <,,,C using the same labelling heuristic.
Each model creates the same search tree as its dual model for (10,15,9) which has no
solution. For (10, 10,5), which has a solution, <;.;R <., C remain the best model.
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size | Model Fails | Choice points | Time (secs.)
5 No symmetry breaking 95 129 | 25.4
<R 32 66 | 25.1
<xR 201 225 | 25.0
10 || No symmetry breaking 262 319 | 25.8
<pexR 41 98 | 25.0
<nR 525 566 | 25.3
15 || No symmetry breaking 479 560 | 26.6
<iezR 68 149 | 25.2
<nR 1,583 1,640 | 27.1
20 || No symmetry breaking 769 879 | 28.0
<iezR 100 210 | 25.5
<.R . |-
25 || No symmetry breaking || 1,083 1,218 | 29.0
<iexR 108 243 | 28.4
<R : |-

Table 8.9: Word design problem with row-wise labelling of M.

In summary, with the static labelling heuristic that instantiates X along its rows from
top to bottom, imposing ordering constraints on the rows and columns of X substantially
reduces the search effort required to solve the two considered instances of the problem of
generating Hamming codes. As the problem constraints do not imply multiset equality
between the symmetric rows and columns, there are many alternative ways of posting the
ordering constraints. Whilst <;.,R <,,,C is the most effective model for one instance, it
is <jexR <z C for the other. This confirms the theoretical result on the incomparability
of lexicographic ordering constraints on both dimensions of a matrix with lexicographic
ordering constraints in one dimension and multiset ordering constraints in the other.

8.7 Word Design Problem

This was introduced in Chapter 3.2.6. One way of modelling the problem is given in
Figure 3.11. In this model, a 2-d matrix M of £ x Words, taking values from {0, 1, 2, 3},
is used to represent the symbols at each position of each word. This matrix has row
symmetry as the order of the words in the set are insignificant.

As seen in Figure 3.11, the words are not necessarily equal when viewed as multisets.
Even though no pair of words can be identical, they can be equal when viewed as multisets.
We can thus post either strict lexicographic ordering constraints or multiset ordering
constraints on the rows to break the row symmetry. In our experiments, we compare <;.,R
and <,,R against the initial model without any symmetry breaking ordering constraints
by increasing the size of the set of words. As for the labelling heuristic, we label M
row-wise from top to bottom, exploring the domain of each variable in ascending order.

The results of our first experiments are shown in Table 8.9. We observe that <;.,R
decreases the size of the search tree in each case. The gain in run-times are apparent for
generating larger sets of words which are not shown in Table 8.9. Surprisingly, <,,R is
not an effective model, as it always leads to larger search trees. This suggests that the
multiset ordering constraints on the rows conflict with the labelling heuristic.



CHAPTER 8. SYMMETRY BREAKING WITH ORDERING CONSTRAINTS 216

[

T
T
[

T T
I T T
T T
T 1

Figure 8.4: Row-snake labelling.

size || Model Fails | Choice points | Time (secs.)
5 No symmetry breaking 33 65 | 25.1
<ezR 5 35| 25.0
<nR 45 73 | 25.8
10 || No symmetry breaking 188 252 |1 25.6
<ezR 22 71| 25.0
<nR 338 384 | 26.0
15 || No symmetry breaking 367 457 | 29.0
<lexR - - -
<nR 594 656 | 28.8
20 || No symmetry breaking 530 642 | 27.5
<lexR - B
<R 257,760 257,838 | 713.0
25 || No symmetry breaking 739 875 | 28.2
<le:vR - -
<mR - - |-

Table 8.10: Word design problem with row-snake labelling of M.

The reason for <,,R to give more failures compared to the other models is that by
instantiating the matrix row-wise with or without the lexicographic ordering constraints

on the rows, we get solutions where the rows that are equal when viewed as multisets are
0000 1 1 1

o o

not necessarily consecutive. For instance, for size = 5 we get

o

— = O
— o W
= o W

1
0 0 3 3
0 1 11,
0 1 00
001 1 2 2 3 3
With the multiset ordering constraints, however, whenever the second row is set to

(0,0,0,0,3,3,3,3), the rest of the rows can be neither (0,0,1,1,0,0,1,1), nor (0,0,1,1,1,1,0,0),
0 0 11
. . 0 3 3 .
nor (0,0,1,1,2,2,3,3). For instance, for size =5, <,,R finds | o 3 3| which
0 3.0 0
0 2 2 3 2 3 3 3

shows that many instantiations that contain 0, 1,2 but not 3 are rejected for the third row,
even if they satisfy the problem constraints. Hence, the number of failures are increased.

This has suggested seeking a labelling heuristic which forces the rows that are equal
when viewed as multisets to be consecutive. One heuristic is to label the rows in alternat-
ing directions. We call this “row-snake labelling” and depict it in Figure 8.4. Row-snake
labelling forces two multisets to be consecutive, and is a better labelling heuristic than the
previous one. The model without any ordering constraints now explores smaller search
trees. On the other hand, the lexicographic ordering constraints on the rows now con-
flict with the row-snake labelling. The last three instances cannot be solved by <;..R in
an hour. As expected, the results of <,,R improve. For instance, <,,R is now able to
solve size = 20 within the time limit. However, the number of failures remain increased
compared to the model with no ordering constraints. See Table 8.10.

—_
—_

oo oo

0
3
3
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Figure 8.5: Multi-directional row labelling.

size || Model Fails | Choice points | Time (secs.)
) No symmetry breaking 0 40 | 25.0
<z R 0 38 | 25.0
<nR 0 40 | 25.0
10 || No symmetry breaking 0 64 | 24.8
<iezR 2 64 | 24.7
<R 0 64 | 24.8
15 || No symmetry breaking 87 179 | 25.3
<iexR 4,029 4,100 | 60.4
<mR 367 451 | 25.5
20 || No symmetry breaking | 228 350 | 26.0
<lemR - -
<nR 1,656 1,755 | 28.0
25 || No symmetry breaking | 364 508 | 26.6
<leacR - N
<nR 2,790 2,899 | 30.0

Table 8.11: Word design problem with multi-directional row labelling of M.

As labelling the matrix along its rows in alternating directions seem to be a good
heuristic for the word design problem, we have devised another heuristic which explores
the rows in 6 possible directions. This multi-directional row labelling forces 6 multisets
to be consecutive and is depicted in Figure 8.5. This heuristic works notably well for
the model without any ordering constraints. The search trees are now even smaller. In
particular, we obtain solutions for size = 5 and size = 10 backtrack-free. Also, the
results of <,,R improve further. For instance, <,,R is now able to solve size = 25 in less
than a minute. Unfortunately, with the multi-directional row labelling, neither <;.,R nor
<R are beneficial for solving the problem effectively. Imposing lexicographic ordering
or multiset ordering constraints on the rows enlarges the search tree. See Table 8.11.

We have also experimented with the dual models >;.,R and >,, R using the same
strategies described above. However, this has not led to any significant improvements
over the results presented in Tables 8.9, 8.10, and 8.11.

In summary, an effective way of generating large sets of words is to label M along its
rows in multiple directions. As the problem constraints do not imply multiset equality
between the rows, we can break the row symmetry by posting either lexicographic ordering
or multiset ordering constraints on the rows. However, either of them clashes with the
labelling heuristic, and therefore we do not obtain smaller search trees by symmetry
breaking with ordering constraints in the word design problem.
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8.8 Summary

In this chapter, we have experimented with the ordering constraints proposed in Chapter
4 to judge whether they can often be utilised for and are effective in breaking row and
column symmetries, and whether the ordering constraints which are incomparable in the-
ory are incomparable also in practice. The experiments were performed using 6 problems,
each originating from a different application domain. The results support our three-fold
hypothesis:

1. We can utilise (anti-)lexicographic ordering constraints to break symmetry in all the
problems we have considered. Only in two problems is multiset ordering already
implied by the problem constraints. Hence, (anti-)multiset ordering constraints are
useful for breaking symmetry in the majority of the problems. This supports our
hypothesis that the ordering constraints are often not redundant and bring
additional pruning.

2. Symmetry breaking with ordering constraints has proven very beneficial for solving
the first 5 problems we have considered. In the presence of the ordering constraints,
the problems are solved much quicker as the search trees explored are significantly
smaller. In particular, some instances of the social golfers problem, many instances
of the balanced incomplete block design problem, and the first instance of the prob-
lem of generating Hamming codes can be solved within an hour time limit only
if some ordering constraints are imposed. This supports our hypothesis that the
ordering constraints are effective in breaking row and column symme-
tries as they significantly reduce the size of the search tree and the time
to solve the problem. On the other hand, symmetry breaking with ordering
constraints has negative effects on solving the word design problem effectively. The
search trees get larger, making it more difficult to solve the problem, in the presence
of the ordering constraints. This is because the labelling heuristic which is powerful
for generating large sets of words conflict with the ordering constraints.

3. Even though lexicographic ordering constraints can be utilised for a wider range of
problems, the most effective symmetry breaking constraints are sometimes obtained
by combining lexicographic ordering constraints in one dimension of a matrix with
multiset ordering constraints in the other. In our experiments, we see evidences of
this in the progressive party problem and in the problem of generating Hamming
codes. Our theoretical results on the incomparability of lexicographic ordering con-
straints, multiset ordering constraints, and their combinations are confirmed by the
results obtained from the progressive party problem, the rack configuration problem,
the problem of generating Hamming codes, and the word design problem. Whilst
<iezR dominates <,,R in the rack configuration problem, <,,R is superior to <;..R
in the word design problem using the multi-directional row labelling which is useful
for generating large sets of words effectively. Whilst <., R <,,,C is the most effective
model for one instance of the problem of generating Hamming codes, <;.,R <;,.C
is the best for another instance. This supports our hypothesis that the order-
ing constraints that are incomparable in theory are incomparable also in
practice.

We learn from our experiments with the social golfers problem and the balanced in-
complete block design problem that imposing anti-lexicographic ordering constraints, as
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opposed to the lexicographic ordering constraints, could give much more effective models
and therefore should seriously be considered when symmetry breaking with lexicographic
ordering constraints. Another lesson we learn from our experiments with generating Ham-
ming codes is that multiset ordering constraints in one dimension of a matrix combined
with lexicographic ordering constraints in the other can be the best way of symmetry
breaking even if we have only 0/1 variables.



Chapter 9

Conclusions and Future Work

In this dissertation, we have shown that row and column symmetry is a common type of
symmetry in constraint programming. We have argued that symmetry breaking methods
like SES, SBDS, and SBDD have difficulty in dealing with the super-exponential number
of symmetries in a problem with row and column symmetry. We have therefore proposed
some ordering constraints which can effectively break such symmetries. To use these
constraints in practice, we have developed some optimal linear time propagators. We have
demonstrated the effectiveness of the ordering constraints on a wide range of problems.

This final chapter brings the dissertation to a conclusion and is organised as follows. In
Section 9.1, we present the contributions of this dissertation by relating our achievements
to our goals and by discussing the results in the context of the thesis defended:

Row and column symmetry is a common type of symmetry in constraint pro-
gramming. Ordering constraints can effectively break this symmetry. Efficient
global constraints can be designed for propagating such ordering constraints.

The general lessons learnt are discussed in Section 9.2. We point out the limitations of
our work in Section 9.3 and present our plans for future work in Section 9.4. Finally, we
conclude in Section 9.5.

9.1 Contributions

We have observed in Chapter 3 that one common pattern in constraint programs is a ma-
trix model. A wide range of problems originating from diverse application areas including
combinatorics, design, configuration, scheduling, timetabling, bioinformatics, code gen-
eration can be effectively represented and efficiently solved using a matrix model. In
Chapter 3, we have also identified that there are at least two patterns that arise com-
monly within matrix models: row and column symmetry, and value symmetry. Of the 12
matrix models we have studied, each has at least one matrix with (partial) row and/or
(partial) column symmetry, and 4 of them have (partial) value symmetry.

Symmetry in constraint programs can significantly slow down the search process, as it
generates symmetrically equivalent states in the search space. Some symmetry breaking
methods have been devised in the past years, such as SES [BW99][BW02], SBDS [GS00],
and SBDD [FMO1][FSSO01], all of which can directly be used to break all row and column
symmetries of a matrix. However, they may not be a good way of dealing with row
and column symmetry for the following reasons. An n x m matrix with row and column
symmetry has n!m! symmetries, which increase super-exponentially. SES and SBDS treat

220
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each symmetry individually, which is impractical when the number of symmetries is large.
Similarly, the dominance checks of SBDD can be very expensive in the presence of many
symmetries.

Row and column symmetry is an important class of symmetries, as it is very common
and existing methods have difficulty in dealing with the super-exponential number of
symmetries in a problem with row and column symmetry. We have shown that value
symmetry in a matrix can easily be transformed to, for instance, row symmetry. The
main objective of the work presented in this dissertation is therefore to break row and
column symmetries of a matrix effectively. To achieve our objective, the approach adopted
in this research is to attempt to impose ordering constraints on the rows and columns of
a matrix. Consequently, our goals were:

1. to investigate the types of ordering constraints that can be posted on a matrix to
break row and column symmetries;

2. to devise global constraints to post and propagate the ordering constraints effectively
and efficiently;

3. to show the effectiveness of the ordering constraints in breaking row and column
symmetries.

In Chapter 4, we have considered which ordering constraints can be utilised to break
the row and column symmetries of a matrix effectively. We have shown that we can insist
that the rows and columns are lexicographically ordered. Alternatively, we can view each
row and column as a multiset and impose that the rows and columns are multiset ordered.
By constraining the rows (resp. columns) to be multiset ordered, we do not distinguish
the columns (resp. rows). We can therefore combine multiset ordering constraints in
one dimension with lexicographic ordering constraints in the other. Lexicographic order-
ing and multiset ordering are incomparable. As a result, we have shown that imposing
lexicographic ordering constraints on the rows and columns, imposing multiset ordering
constraints on the rows and columns, and imposing one ordering in one dimension and
the other ordering in the other are all incomparable. We have theoretically studied the
effectiveness of the ordering constraints in breaking row and column symmetries. We
have shown that in theory the ordering constraints may not eliminate all symmetries and
argued that it is difficult to assess theoretically whether we can significantly reduce the
search effort by imposing ordering constraints. We have extended our results to cope with
symmetries in any number of dimensions, with partial symmetries, and with symmetric
values. Finally, we have identified special and useful cases where all row and column
symmetries can be broken by posting only a linear number of constraints. As a result,
our first goal has been achieved.

Our next concern was to devise global constraints to post and propagate the ordering
constraints effectively and efficiently. As we can enforce the rows (resp. columns) to be in
lexicographic or multiset order by imposing the ordering between the adjacent or all pairs
of row (resp. column) vectors, we have focused on propagating the ordering constraint
posted on a pair of vectors.

In Chapter 5, we have considered propagating the lexicographic ordering constraint
enforced on a pair of vectors. We have shown that there are at least two ways of decom-
posing this constraint, both of which are inferior to maintaining GAC on the constraint.
Combining the decompositions is equivalent to maintaining GAC; however, this carries
a penalty in the cost of constraint propagation. Alternatively, by using the domain size
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of the variables in the vectors, we can pose arithmetic inequality constraints to ensure
lexicographic ordering. This approach is feasible only if the vectors and the domain sizes
are not too large. We have therefore developed an optimal linear time algorithm which
maintains GAC on the lexicographic ordering constraint. We have extended the algo-
rithm for the strict lexicographic ordering constraint, entailment, vectors of any length,
and vectors whose variables are repeated and shared. We have studied the propagation of
vector equality and disequality constraints using lexicographic ordering constraints, and
demonstrated that decomposing a chain of lexicographic ordering constraints between ad-
jacent or all pairs of vectors hinders constraint propagation. Finally, we have provided
experimental evidence of the effectiveness and the efficiency of the algorithm.

We have identified in Chapter 6 that another common pattern in constraint programs
is the lexicographic ordering constraint on a pair of vectors of 0/1 variables together with
a sum constraint on each vector. This pattern frequently occurs in problems involving
demand, capacity or partitioning that are modelled using 0/1 matrices with row and/or
column symmetry. We have argued that propagating the lexicographic ordering constraint
by taking into account the sum constraints can lead to more pruning than the total pruning
obtained by propagating the lexicographic ordering constraint and the sum constraints
independently. This increases the effectiveness of the propagation of the lexicographic
ordering constraint. We have therefore introduced a new global constraint on 0/1 variables
that combines together the lexicographic ordering constraint with two sum constraints.
An alternative way of propagating this combination of constraints is using the algorithm
by Bessiere and Régin for enforcing GAC on an arbitrary conjunction of constraints
[BRI8]. By exploiting the semantics of the constraints in this new global constraint, we
have proposed an optimal linear time algorithm which maintains GAC. We have extended
the algorithm for combining the strict lexicographic ordering constraint with sums, for
entailment, and sums that are not ground but bounded. We have shown that decomposing
a chain of these ordering constraints between adjacent or all pairs of vectors hinders
constraint propagation. Finally, we have demonstrated experimentally that the algorithm
is most useful when there is a very large space to explore, such as when the problem is
unsatisfiable, or when the labelling heuristics are poor or conflict with the lexicographic
ordering constraints.

In Chapter 7, we have considered propagating the multiset ordering constraint enforced
on a pair of vectors. We have shown that there are at least two ways of decomposing this
constraint, both of which are inferior to maintaining GAC on the constraint. Alternatively,
by assigning a weight to each value in the domain of the variables, one can pose arithmetic
inequality constraints to ensure multiset ordering. However, this approach is not feasible
when the vectors and domain sizes are large, which is often the case. We have therefore
developed an efficient linear time algorithm which maintains GAC on the multiset ordering
constraint. The algorithm works also when the vectors are of different length. We have
extended the algorithm for the strict multiset ordering constraint and entailment. We have
proposed an alternative filtering algorithm whose complexity is O(n log(n)) where n is
the length of the vectors and which is useful when the domains are large. We have studied
the propagation of multiset equality and disequality constraints using multiset ordering
constraints, and demonstrated that decomposing a chain of multiset ordering constraints
between adjacent or all pairs of vectors hinders constraint propagation. Finally, we have
provided experimental evidence of the effectiveness and the efficiency of the algorithm.

As a result of the work carried out in Chapters 5, 6, and 7, our second goal has been
achieved.



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 223

In Chapter 8, we have performed a wide range of experiments to show the effectiveness
of the ordering constraints in breaking row and column symmetries. We have observed
that the ordering constraints are often not redundant and bring additional pruning. More-
over, our theoretical results on the incomparability of lexicographic ordering constraints,
multiset ordering constraints, and their combinations are confirmed by our experimental
results. Furthermore, for the majority of the problems considered, the ordering constraints
are very effective in breaking row and column symmetries, significantly reducing the size
of the search tree and the time to solve the problem. Consequently, our third goal has
been achieved.

This has all provided convincing evidence in support of our thesis:

Row and column symmetry is a common type of symmetry in constraint pro-
gramming. Ordering constraints can effectively break this symmetry. Efficient
global constraints can be designed for propagating such ordering constraints.

9.2 Lessons Learnt

In achieving our goals, we have learnt some general lessons about symmetry breaking
with ordering constraints, propagating constraints, and combining constraints. In the
following, we discuss our experiences which can provide insights for future research.

9.2.1 Symmetry Breaking with Ordering Constraints

When breaking symmetry using ordering constraints, we may have the choice of imposing
alternative orderings each with a different property. For instance, we can utilise both lexi-
cographic ordering and multiset ordering constraints to break row and column symmetry.
Lexicographic ordering is a total ordering, but multiset ordering is only a preordering.
An immediate question is which type of ordering constraints are preferable. Also, does
posting more constraints mean obtaining smaller search trees and shorter run-times?

Total vs Non-total Ordering Constraints

Whilst imposing a total ordering like lexicographic ordering on the rows of a matrix
with row symmetry breaks all symmetries, imposing a non-total ordering like multiset
ordering may leave some symmetries. This may encourage us to consider only total or-
derings when symmetry breaking with ordering constraints. On the other hand, enforcing
multiset ordering constraints may give smaller search trees and shorter run-times than
enforcing lexicographic ordering constraints when the labelling heuristic conflicts with the
lexicographic ordering constraints, or pushes the search towards solutions satisfying the
lexicographic ordering constraints. Hence, symmetry breaking by imposing an ordering
which is not necessarily total can sometimes be more effective in practise than by imposing
a total ordering.

The most effective constraints for breaking row and column symmetry are sometimes
obtained by combining lexicographic ordering constraints in one dimension of a matrix
with multiset ordering constraints in the other. Such a combination can be useful even
if we have 0/1 variables, in which case multiset ordering reduces to sum ordering. This
suggests that we should consider benefiting from the complementary strengths of different
orderings when symmetry breaking with ordering constraints.
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The Number of Ordering Constraints

The more restricted ordering we impose the more symmetries we can break. For instance,
in an equivalence class of assignments to a matrix, the set of assignments where the rows
and columns are multiset ordered is a subset of the set of assignments where the rows
are multiset ordered. On the other hand, enforcing the rows and columns to be multiset
ordered may give larger search trees and longer run-times than enforcing only the rows
to be multiset ordered when the labelling heuristic pushes the search towards solutions
where only the rows are multiset ordered. Consequently, symmetry breaking by imposing
fewer ordering constraints can sometimes be more effective in practice than by imposing
more ordering constraints.

9.2.2 Propagating Constraints

A global constraint can be propagated by either using a specialised algorithm or decom-
posing it into simpler constraints. Which method is preferable depends on a number of
factors. If decomposing is not a good idea, then we need to worry about developing an
efficient algorithm. By learning from the successful algorithms of related constraints, we
can partially automate this process. However, we still need to know the semantics of the
constraint. Also, implementation issues have considerable impacts on the efficiency of the
algorithm.

Algorithm vs Decomposition

One way of propagating a global constraint is to decompose it into simpler constraints.
The total pruning obtained by the propagation of each simpler constraint is likely to
be weaker than maintaining GAC on the original constraint, as the global view of the
constraint is lost in the decomposition. In such a case, an algorithm which maintains
GAC is a more effective way of propagating the constraint. However, posting different
decompositions of a constraint simultaneously can give GAC. For instance, there are at
least two ways of decomposing the lexicographic ordering constraint. We have shown that
these decompositions are incomparable and that an algorithm which maintains GAC does
more pruning than each of the decompositions. On the other hand, we have also proven
that the two decompositions together maintain GAC, behaving similarly to the algorithm.
Therefore, possible decompositions of a constraint need to be analysed before attempting
to develop a specialised algorithm.

We have shown that one way of decomposing the multiset ordering constraint posted
on a pair of vectors is to insist that the occurrence vectors associated with the original
vectors are lexicographically ordered. Such occurrence vectors can be constructed via
an extended global cardinality constraint which prunes values also from the occurrence
vectors. The global cardinality constraint is available in many CP toolkits, but the asso-
ciated algorithms do not (always) prune values from the occurrence vectors. As we have
witnessed, this decomposition may not be correct using the cardinality constraints cur-
rently available. Hence, when decomposing a constraint, it is important to know which
algorithms the CP system uses to propagate the simpler constraints. Decomposing a
constraint can lead to incorrect results if the filtering algorithm of a constraint in the
decomposition does not behave in the way wanted.
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GAC Algorithms for Ordering Constraints

The GAC algorithms of the ordering constraints we have considered have a lot in common,
and this can be exploited when designing a GAC algorithm for another ordering constraint.
Assume that we want to design an algorlthm to maintain GAC on a constraint which
combmes an ordering constraint X =< Y with a constraint C] on X and a constraint Cy
on Y. For instance, < is <., and Cy and Cy are true for the lexicographic ordering
constraint; but < is <j.,, C1is >, X; = Sz, and Cy is ), Y; = Sy for the lexicographic
ordering with sum constraints.

First, when looking for a support for a value v of a variable V', we consider the “best”
support by minimising X and maximising Y when V « v. That i is, for X; < v, we check
whether min{Z| C, A z;=v A T€ X} 2Zmaz{f| Cy A §€Y}; and for Y; — v,
we check whether min{Z | C; A Z € X} <maz{f| Co A yi=v A e Y} If
the test is true then v is supported. If X (resp. Y) gets even smaller (resp. larger) by
X; < w (resp. Y; < w), then the support of v also supports w due to the transitivity
property of the ordering relations. This avoids seeking support for every value in the
domains. For instance, the algorithms of the lexicographic ordering and the multiset
ordering constraints consider the values in the domain of X; starting from the largest
element. Whenever a value v has a support, any value w < v is also supported, because
we have min{Z | z;=w A € X} <o min{Z| z;=v A &€ X} and min{i| z; =
w A TeXy<p,min{Z| z;=v A T X}

Second, the prunings of the algorithms tighten maz{Z | C; A Z € X} so that we
achieve (1) maz{Z | C1 A T € X} < maz{§f| C, A § € Y}; and similarly the
prunings tighten min{77| Cy A § € Y} so that we achieve (2) min{Z | C; A Te X} <
min{§| Cy A §€Y}. As ordering relations are transitive, the conditions (1) and (2)
are sufficient for GAC. Third, the prunings do not require any calls back to the filtering
algorithm as they do touch neither min{Z| C; A Z € X} nor maz{y| Cy A JeY}
which provide support for the values in the vectors. Finally, by transitivity, the constraint
is false iff min{Z | C. A T € X} = maz{f | Cy A § € Y}, and is true iff
maz{z| Cy A e X} 2min{j| Cy A JeY}.

This could help automate the process of designing a GAC algorithm for an ordering
constraint. However, we still need to know the semantics of the constraint to look for
supports quickly without having to reconstruct the minimal and the maximal vectors
repeatedly.

Implementing Propagation Algorithms

Implementing a propagation algorithm raises a number of issues which can have significant
effects on the efficiency of the algorithm: how do we compute the data structures, and
when do we propagate the constraint?

We have observed that if a data structure is easy to restore using its previous value,
then it is more efficient to maintain it incrementally than computing it from scratch every
time we need it. For instance, the algorithm of the multiset ordering constraint X<,Y
uses a pair of occurrence vectors ox and o to propagate the constraint. Whilst ox; gives
the number of occurrences of ma:c{{floor( )} —i in {{floor( X)B, oy; gives the number
of occurrences of mazf{ceiling(Y)}} —i in {ceiling(Y)}. One option is to reconstruct
these vectors at every propagation step. This requires a complete scan of floor()z )
and ceiling(Y), and thus the cost is O(n). Another option is to keep the occurrence
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vectors up-to-date as values are pruned from the domains. We do this as follows. When
the minimum value in some D(X;) changes, we update ot by incrementing the entry
corresponding to new min(X;) by 1, and decrementing the entry corresponding to old
man(X;) by 1. Similarly, when the maximum value in some D(Y;) changes, we update
oy by incrementing the entry corresponding to new max(Y;) by 1, and decrementing the
entry corresponding to old max(Y;) by 1. As an update is a constant time operation, this
approach reduces the complexity of propagation by a factor of O(n).

If a filtering algorithm is incremental and this comes with a low cost, then propagating
the constraint is more efficient by responding to each propagation event individually than
by responding only once after all events accumulate. For instance, consider the algorithm
of the lexicographic ordering constraint X <lex Y which is incremental. Due to the other
constraints on X and 17', the algorithm can be triggered by several propagation events.
This could be problematic for two reasons. First, we need to propagate the constraint
several times. Second, while handling one event, we are not aware of the impact of the
other events on the domains, and thus the algorithm may not prune all the values that need
to be pruned. This means that there may be many unnecessary propagations which may
result in increased run-times. This has motivated us to design another algorithm where
we collect all the events and respond only once with one invocation of the algorithm. Our
experiments have shown that the initial algorithm is faster than the new algorithm. Even
if we have to deal with many propagation events, the efficiency of the original algorithm
can overcome the cost of delaying events and maintaining a propagation queue.

9.2.3 Combining Constraints

A strategy for developing global constraints that will be useful in a wide range of problems
is to identify constraints that often occur together, and develop efficient constraint prop-
agation algorithms for their combination. What are the benefits of combining constraints
together? Is it always a good idea to combine constraints?

Why Combine?

We have argued in Section 9.2.2 that one way of propagating a global constraint is to
decompose it into simpler constraints. The total pruning obtained by the propagation
of each simpler constraint is likely to be weaker than maintaining GAC on the original
constraint, as the global view of the constraint is lost in the decomposition. We can
see decomposing a constraint ¢ into simpler constraints cy, ..., ¢, as combining cy, ..., ¢,
together to get a new constraint c. Hence, an advantage of combining constraints is to
get additional pruning during propagation.

One of the most common criticisms of using ordering constraints to break symmetry
is the possibility that the labelling heuristic and the symmetry breaking constraints con-
flict, resulting in larger search trees and longer run-times. A constraint which combines
together symmetry breaking and problem constraints can give additional pruning, and
this can help compensate for the labelling heuristic trying to push the search in a differ-
ent direction to the symmetry breaking constraints. For instance, a model of the BIBD
problem is a matrix with row and column symmetry. We have shown that we can get
worse results by posting lexicographic ordering constraints on the rows and columns than
no symmetry breaking when solving BIBDs with a labelling heuristic which conflicts with
the lexicographic ordering constraints. As the rows and the columns of the matrix are also
constrained by sum constraints, an alternative strategy is to replace each lexicographic
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ordering constraint with the constraint which combines the lexicographic ordering with
sum constraints. We have shown that this gives much smaller search trees and shorter
run-times than no symmetry breaking even though the labelling heuristic conflicts with
the symmetry breaking constraints. Combining constraints is thus a step towards tackling
a major drawback of using symmetry breaking constraints.

Why Not Combine?

Our experiments with the lexicographic ordering with sum constraints have shown that
this combination of constraints is only useful when the symmetry breaking conflicts with
the labelling heuristic, the labelling heuristic is poor, or there is a very large search space
to explore. This has led us to investigate the reasons of this.

Katsirelos and Bacchus have proposed a simple heuristic for combining constraints
together [KB01]. The heuristic suggests grouping constraints together if they share many
variables in common. This heuristic would suggest that combining the lexicographical
ordering and sum constraints would be very useful as they intersect on many variables.
However, this ignores how the constraints are propagated. Since the lexicographic ordering
constraint is concerned only with the variables at a certain position, we have observed
that there is often only a limited interaction between the lexicographic ordering constraint
and sum constraints. This explains why combining the lexicographical ordering and sum
constraints is only of value on problems where there is a lot of search and even a small
amount of extra inference may save exploring large failed subtrees.

A similar argument will hold for combining the lexicographic ordering constraint with
other constraints. For example, Carlsson and Beldiceanu have introduced a new global
constraint, called lex_chain, which combines together a chain of lexicographic ordering
constraints [CB02a]. When we have a matrix say with row symmetry, we can now post a
single lexicographic ordering constraint on all the m vectors corresponding to the rows as
opposed to posting m —1 of them. In theory, such a constraint can give more propagation.
However, our experiments on BIBDs have indicated no gain over posting lexicographic or-
dering constraints between the adjacent vectors. The interaction between the constraints
is again very restricted. Each of them is concerned only with a pair of variables and
it interacts with its neighbour either at this position or at a position above where the
variable is already ground.

This argument suggests a new heuristic for combining constraints: the combination
should be likely to prune a significant number of shared variables.

9.3 Limitations

In this section, we consider the limitations of our research from three points of view:
the scope of the research, the use of ordering constraints for breaking row and column
symmetry, and the value of algorithms for the ordering constraints.

9.3.1 Scope of the Dissertation

In this work, we have focused on one type of row and column symmetry. We have
defined that a 2-dimensional matrix has row (resp. column) symmetry iff its rows (resp.
columns) represent indistinguishable objects and are therefore symmetric. The entire work
presented in this dissertation is thus applicable to this type of row and column symmetry.
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There are other kinds of row and column symmetry, and posting ordering constraints on
the rows and columns may not be the right way of breaking these symmetries.

As an example, consider that we want to generate a Gray code. A Gray code® repre-
sents each number in the sequence of integers 0...2" — 1 as a binary string of length n
in an order such that adjacent integers have Gray code representations that differ in only
one bit position. For instance, the following is a 3 bit Gray code sequence:

_— == =0 O OO
_ O O === OO
R, OO Ok EF=O

A model of this problem is an n x 2" 0/1 matrix where the rows represent the integers and
the columns represent the positions of bits in the integers. As the order of the positions
are not important, all the columns are symmetric. Whilst the rows can be symmetric,
swapping some rows may violate the problem constraints. For instance, swapping the first
two integers in the example above gives us:

— === O O OO
_— O O = == OO
_ -0 OO = O

in which the second and the third integers have Gray code representations that differ
in two bit positions. However, swapping the first and the third integers of the original
sequence does not violate the problem constraints:

=== O O OO
— OO, Pk OO
__0 OO O =

We cannot, however, know at the modelling level which rows can be symmetric or not,
as this is determined only during search as the variables are assigned. Consequently, we
cannot add unconditional ordering constraints to the model in order to break the symme-
try between the rows. This type of symmetry is very similar to conditional symmetries

defined in [GMS03].

'http://mathworld.wolfram.com/GrayCode.html
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9.3.2 Breaking Row and Column Symmetry with Ordering Con-
straints

Even though we have shown that ordering constraints can effectively break row and col-
umn symmetry, we have not tackled some issues raised by the use of ordering constraints
for breaking symmetry. We discuss the limitations from a theoretical and a practical
perspective.

Theoretical Limitations

We have not found any polynomial set of constraints to break all row and column sym-
metries. Despite the attempts of several researchers [FHO3][FP02a|[FJMO03], this remains
an open question in the literature. Consequently, we do not necessarily break all symme-
tries. Lexicographic ordering is a total ordering and thus imposing lexicographic ordering
constraints in one dimension of a matrix breaks all the symmetries of that dimension.
However, enforcing both the rows and columns to be lexicographically ordered may leave
some row and column symmetry. As multiset ordering is a preordering, imposing mul-
tiset ordering constraints in one or both dimensions may not break all the symmetries.
The situation is not different when we enforce multiset ordering in one dimension and
lexicographic ordering in the other dimension.

Given ordering constraints which are not implied by the problem constraints, the
effectiveness of the constraints in breaking row and column symmetries depend on the
labelling heuristic used to explore the search space. It is hard therefore to judge whether
we can significantly reduce the size of the search space and time to solve the problem unless
we carry out an experimental study. Often, alternative ways of searching for solutions
need to be tried in order to find the best way of solving the problem with the ordering
constraints.

Practical Limitations

We have tested the effectiveness of the ordering constraints in breaking row and column
symmetries on a wide range of problems. For each problem, we have carried out an
initial experimentation to find a good labelling heuristic for solving the problem. We
have tried many static orderings such as labelling the matrix along its rows or columns.
For the problems where the domains contain more values than 0/1, we have also tried the
popular dynamic heuristic which selects next the variable that has the smallest domain.
Surprisingly, this dynamic heuristic did not work well for any of the problems considered.
Hence, we picked the best static heuristic for each problem to test the effectiveness of the
ordering constraints. However, there are many other static and dynamic heuristics that
we can try for each problem, and they may have dramatic effects on the effectiveness of
the ordering constraints. We have not addressed this issue in this dissertation.

The labelling heuristic we use and the ordering constraints may conflict, resulting in
larger search trees and longer run-times. If the heuristic we use is not necessarily a good
one then switching to another heuristic may overcome the problem. However, if we have
a very good heuristic which seems to solve large instances of the problem very efficiently
but which conflicts with the ordering constraints, then using ordering constraints may
not be an effective way of tackling row and column symmetry. We see evidence of this in
solving the word design problem in Chapter 8.
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9.3.3 Algorithms for Ordering Constraints

We have argued in Section 9.2.3 that we can see decomposing a constraint ¢ into simpler
constraints ci,...,c, as combining cy,...,c, together to get a new constraint ¢, and
that an algorithm which maintains GAC on c¢ is likely to be the most effective way of
propagating c. We have provided both theoretical and empirical evidence of this with the
algorithms of the lexicographic ordering constraint, the lexicographic ordering with sum
constraints, and the multiset ordering constraint. However, using such an algorithm can
sometimes be unfavourable.

Good Decompositions

We have shown that the lexicographic ordering constraint can be decomposed into a con-
junction of constraints. This decomposition does the same pruning as the GAC algorithm
when solving BIBDs using a static labelling heuristic. Therefore, the algorithm does not
bring any gain over the decomposition in terms of the amount of pruning. We should,
however, note that the algorithm is much more efficient than the decomposition.

We have compared the decomposition and the algorithm also using the progressive
party problem. This time we have used a dynamic labelling heuristic. Our results have
shown that for two instances the decomposition and the algorithm create the same search
tree and spend the same time. For other two instances, however, we obtain much smaller
search trees and shorter run-times using the decomposition. For the remaining five in-
stances, the algorithm is superior to the decomposition.

Poor Combinations

According to our current experiments, the filtering algorithm of the combination of the
lexicographic ordering constraint and two sum constraints is not useful when the prob-
lem is satisfiable, or when the labelling heuristics are neither poor nor conflict with the
lexicographic ordering constraints.

9.4 Future Work

In the future, we plan to identify more useful patterns in constraint programs, investigate
a number of interesting directions in breaking row and column symmetry with ordering
constraints, improve the propagation of our ordering constraints, test whether the ordering
constraints are useful also in other application areas, and finally formalise our heuristic
on combining constraints.

9.4.1 Identification of Common Constraint Patterns

To help tackle the difficulty of effective modelling, we need to identify more recurring pat-
terns in constraint programs and devise special-purpose methods to support these patterns
[Wal03]. Possible interesting patterns are other classes of row and column symmetries.
As argued in Section 9.3, the columns of the matrix modelling the Gray code generation
are symmetric, but two rows can be swapped provided that this does not violate the
problem constraints. Whether two rows are symmetric or not can be determined only
during search as the variables get assigned. To the best of our knowledge, this class of row
and column symmetries has not been tackled. Another type of row and column symmetry
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is observed in the matrix model of the magic squares problem (prob019 in CSPLib). Two
columns can be swapped iff the same columns of the matrix obtained by rotating the
original matrix 90° clockwise are also swapped. Even though the symmetries can be
broken using generic symmetry breaking methods, we are not aware of any particular
study on this class of symmetries.

9.4.2 Breaking Row and Column Symmetry with Ordering Con-
straints

There are many interesting and potentially useful directions to explore in breaking row
and column symmetry with ordering constraints. These include, but are not limited to,
the investigation of more ordering constraints, comparison of our approach with other
methods, assessment of the effectiveness of the ordering constraints in a more elaborate
way, looking into ways of detecting row and column symmetry, and finally development
of heuristics to choose between the ordering constraints.

More Ordering Constraints

An immediate question following the ordering constraints we have explored in Chapter 4
is whether there are other interesting orderings of vectors that we can impose to break row
and column symmetry. To benefit from the complimentary strengths of different orderings,
we should consider seeking ways of merging dlfferent ordering constraints. For instance,
we can enforce X <, Y in such a way that X <lew Y is imposed whenever X = Y is
entailed. Another approach is to investigate whether we can post additional constraints
together with our ordering constraints to break more symmetries. For instance, Frisch
et al. have shown in [FJMO3] that we can add the allperm constraint (which enforces
that the first row is lexicographically less than or equal to all permutations of all other
rows) together with the lexicographic ordering constraints on the rows and columns.
Experimental results show that more symmetries can be broken effectively by adding the
allperm constraint.

Comparison with Other Methods

Meseguer and Torras in [MTO01] propose a variable ordering heuristic which selects first the
variables involved in the largest number of symmetries local to the current state of search.
This heuristic has been applied to solving large instances of the BIBD problem modelled
using a matrix with row and column symmetry. The results indicate that there is a much
higher likelihood of finding solutions early when this heuristic is used. An important
question that we would like to answer is how our approach to breaking row and column
symmetry compares in practice to the heuristic by Meseguer and Torras. For instance,
when solving an optimisation problem, is it better to use the ordering constraints or the
heuristic method? An alternative research direction is to investigate how such an heuristic
method can successfully be combined with the ordering constraints, and in what ways a
combined method would be preferable to using the heuristic or the ordering constraints
alone.
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Effectiveness of the Ordering Constraints

We have tested the effectiveness of the ordering constraints in breaking the row and column
symmetries of a problem by (1) adding them to our model statically; (2) using a static
labelling heuristic which seems to be a good way of solving the problem according to our
initial experimentations. Interesting directions of research are to (1) investigate how the
ordering constraints can be enforced dynamically during search, and to study the gains in
effective symmetry breaking by taking such a dynamic approach in preference to the static
approach taken so far; (2) to employ the ordering constraints for breaking the row and
column symmetries of problems that are best solved by using dynamic labelling heuristics,
and analyse how the search space changes in the presence of the ordering constraints.

Detecting Row and Column Symmetry

A modelling tool which can automatically detect row and column symmetry in a matrix
and which can assist modellers by providing useful information such as which ordering
constraints can be utilised, whether all symmetries can be broken using a linear number
of constraints, etc would make the contributions of this dissertation reachable to a wider
audience. Even though detecting symmetries has been shown to be graph isomorphism
complete in the general case [Cra92], row and column symmetry could be detected using
an automated modelling tool that has high-level constructs such as a relation between
two indistinguishable sets [BFMO03].

Heuristics

Our investigation in Chapter 4 has resulted in many ordering constraints that we can
utilise to break row and column symmetries. Often, alternative ways of searching for
solutions need to be tried in order to find the best way of solving the problem with the
ordering constraints. This gives us many choices to consider when we want to break
row and column symmetry. We therefore need to develop heuristics for deciding which
ordering constraints are likely work well with a given labelling heuristic, as well as which
labelling heuristics to use in accordance with the given ordering constraints.

9.4.3 Propagation of Ordering Constraints

We can improve the propagation of the ordering constraints by taking into account shared
variables and multiple vectors.

Shared Variables

We have already shown how we can extend the algorithm of the lexicographic ordering
constraint for vectors whose variables are repeated and shared. We can envisage how such
an enhancement can be done also to the algorithm of the multiset ordering constraint.
As the algorithm works on the occurrence vectors, and shared variables contribute to the
occurrences of the same value, support for a value v of a variable V' can be found by
increasing/decreasing the occurrence of v according to how many times V' occurs in the
same vector. If a variable V' is shared by the two vectors in the constraint, then we can
eliminate one occurrence of V' from each vector and consider the resulting vectors. We may
consider shared and repeated variables also in the filtering algorithm of the lexicographic
ordering with sum constraints.
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Multiple Vectors

We have argued that combining the lexicographic ordering constraint with other con-
straints may not always be beneficial because lexicographic ordering is concerned only
with the variables at a certain position and this gives a very limited interaction with
the other constraints. Our experiments on BIBDs have shown that combining a chain of
lexicographic ordering constraints does not bring any benefits. Hence, we do not expect
significant gains by combining a chain of lexicographic ordering and sum constraints.

Unlike lexicographic ordering, multiset ordering is concerned with all the variables in
the vectors. Each variable is examined during propagation. We therefore expect promising
results by combining a chain of multiset ordering constraints, and want to devise an
algorithm for this combination of the constraints. We should, however, note that even
though all variables are examined, whether their domains are pruned depends on how the
minimum and the maximum elements in the domains compare to two values (i.e. a and [3)
computed during propagation. It may well be the case in practice that only few domains
are pruned, resulting in limited interaction with the other multiset ordering constraints.
It is therefore not obvious to predict how valuable such a combination of constraints
would be. In case of discouraging results, we should investigate whether combining a
chain of ordering constraints are useful in general, considering the transitivity property
of orderings.

9.4.4 Use of Ordering Constraints

So far we have used our ordering constraints only for symmetry breaking. One possible
application for lexicographic ordering is to multi-criteria optimisation problems where the
objective function consists of features which are ranked. In the lexicographic minimisation
problem, objective vectors are compared lexicographically [EG00]. Another application
for multiset ordering is to fuzzy CSPs. A fuzzy constraint associates a degree of sat-
isfaction to an assignment tuple for the variables it constrains. To combine degrees of
satisfaction, we can collect a vector of degrees of satisfaction, sort these values in ascending
order, and compare them lexicographically [Far94]. This leximin combination operator
induces an ordering identical to the multiset ordering except that the lower elements of
the satisfaction scale are the more significant. It is simple to modify the multiset ordering
constraint to consider the values in a reverse order.

To solve lexicographic minimisation and leximin fuzzy CSPs, we can use branch and
bound, adding the related ordering constraint when we find a solution to ensure that
future solutions are smaller/greater in the ordering.

9.4.5 Combining Constraints

Based on our experiences on combining a lexicographic ordering constraint with other
constraints, we have suggested a new heuristic for combining constraints: the combination
should like to prune a significant number of shared variables. We have a support for the
usefulness of this heuristic in [BR98] where a sum constraint on a vector of variables
and an all-different constraint on the same variables are combined together using the
conjunctive consistency framework. Each variable interacts with every other variable in
both constraints, so the combination is expected to increase the amount of constraint
propagation. Indeed, the experimental results in [BR98| show that the extra pruning
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obtained by combining these constraints significantly reduces search effort. We should
therefore formalise our heuristic and test it on diverse problems.

9.5 Conclusions

We have put forwards significant evidence to support our thesis:

Row and column symmetry is a common type of symmetry in constraint pro-
gramming. Ordering constraints can effectively break this symmetry. Efficient
global constraints can be designed for propagating such ordering constraints.

We have discussed the general lessons we have learnt about symmetry breaking with
ordering constraints, propagating constraints, and combining constraints. We have iden-
tified the major limitations of our research. In particular, we have criticised the scope of
the dissertation, the use of ordering constraints for breaking row and column symmetry,
and the value of algorithms for the ordering constraints. We have then described some
directions for future work. More specifically, we have pointed out that we want to identify
more useful patterns in constraint programs, investigate a number of interesting topics in
breaking row and column symmetry with ordering constraints, improve the propagation
of our ordering constraints, and test whether the ordering constraints are useful also in
other application areas.

Breaking row and column symmetry is now a very active area of research [GS01][GPS02]
[GHKO02] [Pug02a] [FP02a][CB02b|[CB02a][GHKLO03] [FJMO03][Pug03b][Pug03c|[Peal3]
[FHO3][LLO03]. This dissertation describes some of the first work for efficiently and effec-
tively dealing with row and column symmetries.
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