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Abstract
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Usability aspects of programming languages are often overlooked, yet have a substantial
effect on programmer productivity. These issues are even more acute in the field of Inductive
Synthesis, where programs are automatically generated from sample expected input and output
data, and the programmer needs to be able to comprehend, and confirm or reject the suggested
programs.

A promising method of Inductive Synthesis, CombInduce, which is particularly suitable
for synthesizing recursive programs, is a candidate for improvements in usability as the
target language Combilog is not user-friendly. The method requires the target language to
be strictly compositional, hence devoid of variables, yet have the expressiveness of definite
clause programs. This sets up a challenging problem for establishing a user-friendly but equally
expressive target language.

Alternatives to Combilog, such as Quine's Predicate-functor Logic and Schönfinkel and
Curry's Combinatory Logic also do not offer a practical notation: finding a more usable
representation is imperative. This thesis presents two distinct approaches towards more
convenient representations which still maintain compositionality.

The first is Visual Combilog (VC), a system for visualizing Combilog programs. In this
approach Combilog remains as the target language for synthesis, but programs can be read and
modified by interacting with the equivalent diagrams instead. VC is implemented as a split-view
editor that maintains the equivalent Combilog and VC representations on-the-fly, automatically
transforming them as necessary.

The second approach is Combilog with Name Projection (CNP), a textual iteration of
Combilog that replaces numeric argument positions with argument names. The result is
a language where argument names make the notation more readable, yet compositionality
is preserved by avoiding variables. Compositionality is demonstrated by implementing
CombInduce with CNP as the target language, revealing that programs with the same level of
recursive complexity can be synthesized in CNP equally well, and establishing the underlying
method of synthesis can also work with CNP.

Our evaluations of the user-friendliness of both representations are supported by a range
of methods from Information Visualization, Cognitive Modelling, and Human-Computer
Interaction. The increased usability of both representations are confirmed by empirical user
studies: an often neglected aspect of language design.
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1. Introduction

“. . .
I like to think
(right now, please!)
of a cybernetic forest
filled with pines and electronics
where deer stroll peacefully
past computers
as if they were flowers
with spinning blossoms.
. . .
Richard Brautigan ”

Composing programs for computers to execute is still a mostly mun-
dane task. It is so despite continual efforts to improve programming
languages and building associated sophisticated abstractions. In any pro-
gram of non-trivial length, it is likely that a significant number of lines are
of a repetitive nature. We trust algorithms to drive vehicles and operate
the safety systems of nuclear reactors; surely we can trust them to write
other algorithms, at least partially? Automatic programming has been
around almost since people started writing programs, albeit early usages
were often the most routine. Generating code for database schemas or
targetting multiple platforms are some examples. There are methods
of automatic programming capable of producing more creative results,
incorporating a level of intellect in a generated program. This thesis
addresses making such certain techniques more accessible by improving
their usability.

One of the methods of automatic programming is deductive synthesis,
which takes a specification of the program to be written, and outputs
a program that is guaranteed to follow the given specification. As effi-
cient as this method is, there are some fundamental shortcomings. The
specification language has to be as expressive as the target language, and
often the specification itself is as long as the program it produces [57].
Deductive synthesis guarantees the generated program will follow the
specification, but logical errors within it are still a concern. Ease of use
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issues are related, in turn, to the usability of the specification language,
as the user is required to devise what is often a demanding specification.

Another method is inductive synthesis, which takes input/output ex-
amples (called observables) of how the program should work. As a result
it induces a program that does produce the given outputs for the given
inputs. A shortcoming of this method is that the fallacy of specification
still applies. It is guaranteed that the generated program will entail the
given observables, but the appropriateness of the generated program is
dependent on the specificity of the given observables. Inductive synthesis
is inherently more applicable where the observables are easy to obtain,
such as in test-driven programming, where practice dictates program ob-
servables are documented before any attempt at writing the program it-
self. Engaging in inductive synthesis techniques at this stage may usefully
reduce the amount of hand-written code.

The usability concerns regarding inductive synthesis are different to
those in deductive synthesis. In deductive synthesis the specification lan-
guage’s ease of use matters, because the user is expected to write the
specification by hand. With inductive synthesis, in contrast, the observ-
ables (which stand as a form of specification) are trivially easy to devise,
but effort is required to confirm the generated program as an appropriate
one. For example, let us assume the task is to synthesize a function f(x, y)
with two observables, f(1, 1) = 1 and f(2, 2) = 4. The implementation
f(x, y) = x ∗ y does satisfy the observables, but so does f(x, y) = xy.
Ultimately it is up to the user to evaluate the appropriateness of the
suggested program. On the other side of the coin, deductive synthesis
guarantees the generated program to be correct, as long as the given
specification is correct, so the user is more involved with the specification
language. In inductive synthesis, providing a complete set of observables
for a program is rarely feasible, and therefore the aim is to use as few
observables as possible. In consequence, the usability of the target lan-
guage is more of a concern in inductive synthesis, in order that the user
can more easily read, comprehend, and if the need arises, modify the
generated program to its final appropriate form. This thesis is primarily
concerned with improving the usability of a particular target language,
combilog, which was devised for a particular method of inductive syn-
thesis, namely meta-interpretative synthesis, and specifically for inducing
definite clause programs.

Meta-interpretative synthesis essentially involves invoking the meta-
interpreter of an object language in the reverse direction. Instead of giv-
ing a program in the object language and obtaining its consequences, the
consequences are given and the program is obtained. This is made possi-
ble by writing the meta-interpreter as a bi-directional provability relation,
which is a technique that has been developed since the 1990’s, including
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the works of Sato [102], Hamfelt and Nilsson [45, 48, 49], Christiansen
[22, 23], Basin et al [11], and Muggleton [74].

Hamfelt and Nilsson’s work in CombInduce is distinct in the way
they incorporate list recursion operators as language constructs. The
object language for CombInduce, namely combilog, was devised to
be strictly compositional, and together with the recursion operators it
presents a unique approach to synthesize recursive programs. When the
meta-interpreter for combilog invoked in the reverse direction and pro-
vided with input/output examples, it also implicitly hypothesizes the
program may be a recursive one, in which case it decomposes observables
into new observables corresponding to the components of said recursion
operators. As a result, CombInduce can synthesize programs up to two
levels of list recursion, for example naive reverse, which iterates through a
list backwards and keeps appending each element to the end of a running
list. The appending operation is the first level of recursion, and iterating
through the list is the second. This efficient technique for synthesis of
recursive programs is possible due to the compositionality of the object
language. The lack of a context reduces the complexity, allowing the
reversible meta-interpreter to decompose observables into observables of
sub-programs without surrendering to a combinatorial explosion.

In the following section, let us describe the principle of composition-
ality, to enable the subsequent exposition of the core concerns of this
thesis.

1.1 Compositionality
Compositional programming languages allow new programs to be defined
in terms of subprograms using composition operators. Compositional-
ity exists in almost every high level programming language to some de-
gree. For example, in the C programming language, it is possible to write
sub-programs and invoke these sub-programs within other programs, ef-
fectively defining new programs in terms of sub-programs. The form of
compositionality that concerns us is a stronger one, where the language
allows only compositional expressions. These are the languages where the
meaning of a compound expression is defined by solely the meanings of
component expressions, and the composition operator.

To achieve this, it is useful to note the fundamental rules for compo-
sitionality in a programming language. The principle of compositionality
is described as follows: “The meaning of a compound expression is a
function of the meanings of its parts.” [119] It should be stated that the
concept of compositionality assumed here is different from the concept
of or-compositionality [27], which refers to composing logic programs by
taking the set-union of their denotations.
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The definition of compositionality can be elaborated to a more specific
from. For a language to comply with our definition of compositionality,
the meaning of every compound expression in the language:

1. Should be defined by only its components and the composition op-
erator.

2. Should not depend on the context it appears, the state or the vari-
ables that may exist in the context or globally.

3. Should not depend on other expressions that may appear before or
after it, unless that expression is explicitly one of the name-called
components of the expression.

This definition can be formalized as follows.

Definition 1.1.1. The relational denotation of any operation
operator(ϕ1, . . . , ϕm) with operands ϕ1, . . . , ϕm is defined composition-
ally as a relation-valued function Foperator of relational denotations of the
operands: �operator(ϕ1, . . . , ϕm)� = Foperator(�ϕ1� , . . . , �ϕm�)

This strict definition also covers the notion of referential trans-
parency. An expression is referentially transparent if it evaluates to the
same value regardless of context. Similar concepts have been described
earlier, but the term was coined in the form we use now, by Quine in [95].
This property makes it possible to replace any expression with its value
without changing the meaning of the host expression or program, and
this is related to the principle of extensionality in logic. As an example,
let us look at the C code below:
int k = 5;
int f(int x) { return x + k++; }
...
{

int a = f(3); // first call
int b = f(3); // second call

}

In the example above, although there are two calls to f(3), they do not
produce the same value. While the first one assigns 8 to a, the second
one assigns 9 to b. It is not possible to replace the first call of f(3) with
its value, because value of the second call depends on the presence of the
first call because of the mutable variable k. Mutability and free variables
break referential transparency, and by extension also compositionality.
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In contrast to the example above, let us consider the following simple
combilog program and its semantics. The binary equal predicate is
defined as a composition of two other binary predicates lessThanOrEq
and greaterThanOrEq:

equal ← and(lessThanOrEq, greaterThanOrEq)

The denotation of the equal predicate is defined as a result of the and
operator, where the operands are two other predicates. combilog defines
the semantics of the and operator as follows:

�and(P, Q)� = �P � ∩ �Q�
This definition is in line with the earlier abstract definition of composi-
tionality 1.1.1. The simplicity is greatly due to the lack of free variables.
As a result, the denotation of the equal predicate is calculated through a
function (intersection) of the components of the and operator:

�equal� = �and(lessThanOrEq, greaterThanOrEq)�
= �lessThanOrEq� ∩ �greaterThanOrEq�

In contrast to the earlier imperative programming example, in the
combilog program each predicate symbol can be replaced by its ex-
tension without changing the meaning of the program. This is due to the
lack of free variables, and due to every operator in the language following
the principle of compositionality. Naturally this feature is not unique to
combilog: SKI and BCKW calculi, as well as Predicate-Functor Logic,
follow the same principle, but combilog is uniquely suitable for the in-
tended method of synthesis due to compositional recursion operators and
proven equivalence to definite clauses.

The combilog example above demonstrates the compositionality prin-
ciple without explicitly dealing with bindings of arguments (also com-
monly referred to as domains) of predicates. For this purpose, combilog
provides compositional mechanics for argument binding without variables
through a make operator, which is a generalized version of the argu-
ment modification operators found in Quine’s Predicate-Functor Logic
[98]. This operator will be discussed through examples in the follow-
ing section. The compositionality principle inflicts a strict restriction on
the object language to be used for synthesis. In particular, the lack of
variables incapacitates any potential language from employing a common
cognitive tool. In the next section we look into how combilog handles
argument binding without employing variables.
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1.2 Compositional relational argument binding problem
In combilog, a program consists of a set of predicate definitions, map-
ping predicate names p to compositional expressions ϕ, such as:

pi ← ϕi

combilog expressions are formed using some pre-defined elementary
predicates and composition operators. Any compound expression can
also be used as a component in another composition. The elementary
predicates in combilog are true for the universal predicate, id for the
identity, constc for constants, and cons for constructing data structures,
primarily lists. Any elementary predicate is a valid combilog expression,
as well as any compound expression written following the syntactic rules
of composition.

Composition is established with logic operators and and or. Let us
first look at an example of a simple predicate definition:

isFather ← and(isMale, hasChildren)

Since the expression above consists of components that are only unary
predicates, it is not necessary to deal with their arguments. For reference,
the equivalent definite clause is written as:

isFather(X) ← isMale(X) ∧ hasChildren(X)

Logic operators take components with equal number of arguments, and
bind them in the order they appear. For components that have more than
one argument, and in cases where the arguments are not intended to be
bound in the order they appear in the components, a generalized projector
operator called make is used to modify the arguments of a component.

In order to demonstrate how generalized projection works using the
make operator, let us assume we have two component predicates available:
a unary predicate isFemale, and a parentOf predicate, which has two
arguments, the parent’s name followed by the child’s name. In order to
compose a predicate called daughterOf that has two arguments, first, the
daughter’s name, then the parent’s name, in combilog we would write:

daughterOf ← and
(
make([2, 1], parentOf ), make([1, 2], isFemale)

)

which is equivalent to the following definite clause:

daughterOf (X, Y ) ← parentOf (Y, X) ∧ isFemale(X)

In the combilog code above, there are 2 components of the predi-
cate daughterOf , and they are both projected using make. The first
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make inverts the order of arguments in parentOf , because in daughterOf ,
we want the child to come first. The second make merely expands
isFemale by adding one unbound argument. Because the second index in
make([1, 2], isFemale) is higher than the arity of isFemale, make operator
produces a predicate expression where the second argument is unbound.
This is necessary, because the logic operator and expects both compo-
nents to be of the same arity. This restriction is inherent in a direct
variable-free variant of logic programming. In an example case such as
and(p1, r3), where the arities if p and r are 1 and 3, respectively, which one
of r’s arguments value will the sole argument of p be bound to? There is
not an obvious way to match the arguments of two component predicates
if they are not of the same arity.

In order to further expose the issue at hand, we will look at the defi-
nition of the member predicate. It is a binary predicate which succeeds
when the term in the first argument exists as an element in the list term
in the second argument. First, let us look at the combilog definition for
member , and dissect it step by step in order to comprehend its semantics
through the corresponding definition in Prolog.

member ←or(make([1, 3], cons),
make([1, 3], and(make([4, 2, 3], cons),

make([1, 2, 3], member))))

The cons predicate is one of the elementary predicates in combilog,
and it is defined as cons(X, Y, [X|Y ]), where [X|Y ] is a list construction
with X as the head and Y as the tail. Because of the nested uses of
the make operator, the argument bindings in the member predicate are
difficult to follow. Let us dissect this definition into multiple definitions
by writing each operation as a separate clause with a unique name:

member ←or(p, q)
p ←make([1, 3], cons)
q ←make([1, 3], r)
r ←and(s, t)
s ←make([4, 2, 3], cons)
t ←make([1, 2, 3], member)

The member predicate definition is the disjunction of p and q, placing
the restriction that they should have the same number of arguments,
which is a result of the or operator’s semantics in combilog. p has
two arguments, where the first is bound to the value of first argument in
cons, and the second is bound to the value of the third argument in cons.
The second argument of cons is left unbound, due to the index list [1, 3]
omitting (cropping) the second argument. Similarly, the definition of s
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omits the first argument of cons, while introducing an unbound argument
as the first argument of the head, with the use of the index 4, which is
higher than the number of arguments in cons. Let us transform this
modified combilog program above into a Prolog program.

member(X, L) ←p(X, L).
member(X, L) ←q(X, L).

p(X, L) ←cons(X, _, L).
q(X, L) ←r(X, _, L).

r(X, Y, L) ←s(X, Y, L), t(X, Y, L).
s(_, Y, L) ←cons(_, Y, L).
t(X, L, _) ←member(X, L).

The or operator is split into two separate clauses while preserving the
order of the components. Other than the or operator, every operator
in the combilog code corresponds to a single clause in the Prolog
program above. The argument bindings can be relatively easily observed
in the Prolog program with the use of variables. In the definitions
of predicates member and r , the variables in the head and each of the
components are identical. This is a direct result of the restriction placed
by the and and or operators in combilog. The unbound arguments are
written using the anonymous variable ‘_’. Let us transform this further
into a simpler Prolog program, eliminating the intermediate clauses but
leaving the cons predicate in place.

member(X, L) ←cons(X, _, L).
member(X, L) ←cons(_, Y, L), member(X, L).

which can be read as X is a member of L if it is the head of L, or if
it is a member of L’s tail. Compared to the combilog definition given
above, this is much easier to comprehend, but uses variables, and it does
not follow the compositionality principle. On the other hand, combilog
notation is compositional, but much more difficult to read and modify.

The logic operators in combilog are relatively simple to read, but it is
difficult to comprehend the argument bindings. Information that should
be immediately accessible requires heavy mental tracing and continuous
recollection. Seemingly simple questions such as “is the first argument
of the first cons bound to the value of any other argument?” are not
straightforward to answer. The introduction of unbound arguments only
to bring components of a logic operator to the same arity becomes a
commonplace pattern, often resulting in unnecessarily repetitive code.

This issue does not arise in functional programming because the value
of a function call is only a single argument. This makes it possible to place
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the function call as an operand without modifications. But bidirection-
ality of relational arguments make it cumbersome to write compositional
relational expressions, since any argument of a relation may be used as
input or output, or both, according to what is permitted by the particular
semantics.

There are some variable-free relational notations in the literature, such
as Combinatory Logic [29, 30, 103], Predicate-Functor Logic [96, 98], and
Relational Calculus [113]. Although these approaches can be mostly con-
sidered compositional, they are not practical enough for useful program-
ming. Let us here observe this in the example of Quine’s Predicate-
Functor Logic (PFL).

We will describe a predicate named gtePass, which has three argu-
ments, and behaves as follows: when the numeric value of the first ar-
gument is greater than or equal to the numeric value of the second ar-
gument, then the value of the third argument is identical to that of the
first; otherwise, the value of the third argument is nil([]). The defini-
tion of the gtePass predicate depends on other predicates, namely greater
than, greater than or equal to, identity, and is equal to nil:

gt(X, Y ) ← X > Y.

gte(X, Y ) ← X ≥ Y.

id(X, Y ) ← X = Y.

isNil(X) ← X = [].

Let us first define gtePass as a pair of definite clauses defining a pred-
icate, using variables X, Y , and Z:

gtePass(X, Y, Z) ← gte(X, Y ) ∧ id(X, Z).
gtePass(X, Y, Z) ← gt(Y, X) ∧ isNil(Z).

The behaviour of the gtePass predicate can be demonstrated by the
following examples:

gtePass(3, 5, []).
gtePass(4, 5, []).
gtePass(5, 5, 5).
gtePass(6, 5, 6).
gtePass(7, 5, 7).
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In combilog, the definition of gtePass is as follows:

gtePass ← or(and(make([2, 1, 3], gt),
make([2, 3, 1], isNil)),

and(make([1, 3, 2], id),
make([1, 2, 3], gte)))

As observed earlier with other examples, use of the make operator
renders combilog programs difficult to comprehend, and modify.

Let us observe the unsuitability of Quine’s Predicate-Functor Logic by
attempting to write the gtePass predicate in terms of these. Consider
the predicate-functors padding, expansion, rotation (or major inversion),
and minor inversion. Padding (exp) adds an unbound argument to the
beginning of an argument list. Cropping (crop) erases the first argument.
Rotation (rot) moves the last argument to the beginning. Minor inver-
sion (inv) switches the positions of the first two arguments. Here let us
formulate these predicate-functors in set-builder notation:

�exp p� = {〈X0, X1, . . . Xn〉 | 〈X1, . . . , Xn〉 ∈ �p�}�crop p� = {〈X2, . . . Xn〉 | 〈X1, . . . , Xn〉 ∈ �p�}�rot p� = {〈Xn, X1, . . . Xn−1〉 | 〈X1, . . . , Xn〉 ∈ �p�}�inv p� = {〈X2, X1, . . . Xn〉 | 〈X1, X2, . . . , Xn〉 ∈ �p�}
Let us now write the gtePass predicate using the predicate-functors above:

gtePass ← or(and(rot rot exp inv gt,
rot exp isNil),

and(inv exp id,

rot rot exp gte))

As is immediately evident by trying to interpret the representation above,
comprehending the predicate definition involves a significant cognitive
load to simulate the mechanics of argument manipulation. This is by no
means a shortcoming of PFL, since it is not intended to be a practical
notation. Quine’s motivation was to establish a variable-free notation for
First-order logic, which he did accomplish with PFL.

As demonstrated with combilog and PFL through example, exist-
ing compositional representations of relational programs are not prac-
tical. This makes the particular method of synthesis, namely, meta-
interpretative inductive synthesis by decomposition, inaccessible due to
usability issues of the object language. This brings us to our research
question:
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Research question: Can we make this particular method of synthe-
sis more accessible by improving the usability of the target language?
Specifically, we aim to find out if it is possible to improve the representa-
tion of the variable-free compositional relational language combilog in
terms of comprehensibility and modifiability. Since combilog is model-
theoretically equivalent to definite clauses, the question can also be stated
as: Are there more usable forms of expressing definite clause programs,
which follow the principle of compositionality at the expression level?

1.3 Method

“There are many senses in which a program can be ‘good’,
of course. In the first place, it’s especially good to have a
program that works correctly. Secondly it is often good to
have a program that won’t be hard to change, when the time
for adaptation arises. Both of these goals are achieved when
the program is easily readable and understandable to a person
who knows the appropriate language.
Donald Knuth, Turing Award lecture (1974) [58]”

It is evident that the programming language community has been aware
of the importance of human aspects in programming language design.
Yet, the cognitive aspects of the programming language notation has
mostly been an after-thought. There are many usability studies on var-
ious programming languages, but they are often performed after a lan-
guage is already established. A historical survey on the design process
of programming languages reveals a lack of employing empirical data for
language design [66], therefore most claims about language usability fea-
tures are not reassuring. While some empirical evidence can be found,
those involving user studies are rare [59]. Recent research confirms that
human factors have very little effect on programming language design
[111]. Let us give an overview of the methods available for incorporating
human factors within programming language design.

Some methodological tools for evaluating and improving development
environments and programming languages are based on those established
for graphical user interfaces [123]. One of these is Cognitive Walkthroughs
[94], which determines sequences of actions for accomplishing specific
tasks, and refines the user experience by going through each sequence with
questions directed towards improving the interface. Another is Heuristic

21



Evaluations [77], which is an evaluation of a user experience against an
established set of principles (heuristics) by an expert evaluator.

Abstract mental models of programmer behaviour is a necessary input
for most methods. There were some attempts to build such cognitive
models from a series of usability experiments [107]. Some other attempts
involve cognitive simulation, building models using established cognitive
modelling methods such as Cognitive Architectures [2, 53].

There are also more specific techniques for assessing the usability of
programming languages and tools. Some of these focus on low level as-
pects, such as eye tracking with specialized equipment. A recent example
uses eye tracking to extract developers’ focus points in program code in
order to combine it with user interaction information from the IDE [56].
With this novel method, building a complete aggregated model of pro-
gram interaction was accomplished. Some studies use even lower level
observations such as Functional Magnetic Resonance Imaging (fMRI), to
measure activations in brain regions, during tasks such as program com-
prehension and locating syntax errors [108].

The main aim of this thesis is to establish more usable representations
for the Compositional relational argument binding problem described ear-
lier. We intend to establish a method that does not ignore human factors,
as described in [66] and [111]. Accordingly our representational claims
are based on empirical evidence gathered critically from usability studies
confirming the alleged improvements. Designing usability tests often re-
quires specific intentions, such as target groups or features. In the case
of combilog, specializing to a narrow audience or domain is not nec-
essary since the problem of notation readability is a fundamental issue,
surpassing specific cases. In a broad sense, combilog would appeal to
the people involved in purely declarative logic programming, for academic
or industrial purposes.

To identify fundamental issues regarding the notation of combilog,
we shall refer to Cognitive Dimensions. These can be considered as a
set of heuristics for evaluating formal notation design, defined as a set of
definitions for various aspects of notation usability, introduced by Green
in 1989 [42] and improved further in multiple publications by Green and
other contributors [43, 44]. Although they do not provide an exact and
objective evaluation framework, they are suitable for labelling usability
phenomena from a subjective perspective. Therefore we will use cognitive
dimensions as a means of identifying the issues with combilog notation
but not for assessing the success of any improvements made. For the
latter purpose, we will employ usability tests that are targeted for the
specific issues identified by our analysis through cognitive dimensions.
These methods constitute the main component of this work, which in-
volves identifying and addressing the usability issues with compositional
relational argument binding in the example of combilog, and ultimately
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confirming our solutions. In order to demonstrate the feasibility of these
solutions, we put forward concrete implementations in each case.

As an initial step, we will give an analysis of combilog through cog-
nitive dimensions and identify the core aspects that make the notation
difficult to comprehend and modify. Then, we will present two separate
instances of improvement over combilog.

Our first approach is an augmentation of the combilog notation via
coloured diagrams to aid comprehension. This diagram system which we
refer to as visual combilog is devised with the help of Bertin’s Visual
Variables, a formalization of visual dimensions available and their pow-
ers corresponding to specific uses [13]. An early iteration of our work
on visual combilog is presented in previous publications [83, 82]. In
particular, our implementation of a split-view editor is shown, as are the
results of a usability test comparing visual combilog to read com-
bilog programs as opposed to plain combilog. Here we give a more
detailed account on the development of the visual system, as well as a
graph formalization of visual combilog.

Our second approach is an alteration of the combilog notation while
keeping it text-based. This new notation, which we call Combilog with
Name Projection (cnp), replaces the indices used in the combilog no-
tation with names (or labels). Using names directly enhances usability,
as well as indirectly allowing us to redistribute the cognitive load on the
operators of the language. A formal treatment of names for argument
positions is not straightforward as it requires a new concept of relational
extensions that includes argument names. We present the formal seman-
tics of cnp; describe how it can be transformed to combilog; and provide
a meta-interpreter implementation in Prolog. We also give the results
of a user study measuring the effect of using cnp versus a similar first-
order notation that uses variables. As a demonstration of how cnp can
be used instead of combilog, we implement decompositional synthesis
which uses cnp as the target language.

In summary, the methods of this thesis have been gathered from various
fields. We use heuristic evaluations, visual design principles, and usability
testing from human-computer interaction as a foundation for improving
usability, while using programming language theory from computer sci-
ence to prove the reliability of our improvements.

1.4 Related work
In combilog, the variable-free form is a result of compositionality. Since
the meaning of combilog expressions cannot depend on anything other
than their specified arguments: free variables, or variables that cross the
boundaries of a single operation are not permitted. For this reason, here
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we give an account of earlier forms of variable-free algebra and their repre-
sentation. For a comprehensive historical account of quantified variables,
λ-calculus, and Combinatory Logic, the reader is referred to the earlier
work by Cardone and Hindley [17].

Variables are an essential concept in mathematics, but their formaliza-
tion as we understand them today is a relatively recent accomplishment.
Giuseppe Peano, in 1889, described a system of substitution, where sym-
bols are replaced by other symbols via a well-defined set of axioms [86].
Gottlob Frege was the first to define quantified variables, by associat-
ing a symbol with a domain of discourse, the objects it can stand for
[39, 40]. In 1885, Charles Sanders Peirce independently formalized uni-
versal quantification and existential quantification [89], which later led to
his development of existential graphs [90].

The place of variables in mathematics has been a topic of ongoing con-
versation. Schönfinkel, Curry, Quine, De Bruijn, and Tarski and Givant
proposed various efforts to establish formalizations of mathematical con-
cepts without depending on variables. In the following sections, we give
an account of these attempts.

1.4.1 Combinatory Logic
We can find the earliest attempt at variable-free notations in Schönfinkel’s
work in [103]. Schönfinkel considered variables not to be fundamental to
the nature of mathematics, and formalized a set of combinators that
enable writing combinator expressions that do not depend on variables.
He showed that using the combinators he defined, S, K, and I, the same
expressibility as predicate logic is established.

Independently from Schönfinkel’s work, Curry also established a system
consisting of combinators he named B, C, K, and W in [29]. He devised
a method for transforming expressions with variables into the variable-
free form he defined, and proved the completeness of the BCKW system.
Curry’s BCKW and Schönfinkel’s SKI systems of combinatory logic are
equally expressive and can be transformed into each other.

Predicate-Functor Logic is a method defined by Quine in [96, 97, 98],
and refined in [99], also describing a way of manipulating first-order pred-
icates with variables without directly dealing with variables themselves
as a part of the notation. He defines operations including rotation, in-
version, cropping and padding: each denoting a specific way to modify
the argument list of a given predicate, yielding a new derived predicate.
By repeatedly applying these operations, desired bindings for arguments
of predicates can be established. The soundness and completeness of the
Predicate-Functor Logic was proven later by Bacon [6].
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All three of these methods are intended for eliminating variables for
theoretical intentions, not human-centric ones. Hence, the use of any
of these notations for actual programming purposes with Compositional
Relational Programming would be troublesome at the very least.

1.4.2 Relational calculi
In [113] Tarski derived a Relational Calculus building on the earlier work
of De Morgan [34], Peirce [90] and Schröder. His work in [113] comprises
axioms of strictly binary relations, and defines operations including but
not limited to relative multiplication (corresponding to conjunction over
a common domain) and relative addition (corresponding to disjunction
over a common domain), which we refer to as forms of relational composi-
tion. He makes the distinction between individual variables and relational
variables, and restricts the definitions of the theory to relational variables
only, which would qualify as a variable-free form in a first-order configu-
ration. When he employs individual variables, he uses infix notation as in
xRy as opposed to R(X, Y ) or R : X ×Y which could be considered more
common notations today. Later, Tarski and Givant show that formulae
in set theory can be translated to Relational Calculus without using in-
dividual variables. [115]

Codd developed Relational Algebra [25, 26], during his work at IBM,
primarily for establishing a theoretical framework for data retrieval queries
on relational databases, which formed a basis for commercial relational
query languages such as the Structural Query Language (SQL) [18, 118]
and later the Language Integrated Query (LINQ) [70]. He proposed using
names instead of indices for relation domains, aiming for a user-friendly
notation. He observed that the number of domains (columns) in a com-
mercial database table often reaches up to 30, and concluded that de-
manding users remember the position of each domain is not practical.
This is perhaps the work with the greatest similarity to our development
of cnp, since we also invoke names for domains of predicates. Although
the usability improvements are similar, Relational Algebra is not suit-
able for programming purposes in general, particularly due to decreased
expressiveness such as the lack of fixpoint operators [1].

1.4.3 De Bruijn indices
De Bruijn indices is an alternative notation to λ-calculus, introduced in
[33]. It employs indices instead of variable names, referring to the λ-bound
variables in the context. De Bruijn indices are syntactically destitute of
variable names, which grant them significant advantages. Two formulas
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using De Bruijn indices are equivalent if and only if they are syntactically
identical. This is in contrast to λ-calculus, where two formulas such
as λx.x and λy.y need to be checked for alpha-equivalence to answer if
they are equivalent with respect to alpha-conversion. Another issue that
arises while using variables is variable capture after substitution, which
is not a concern with De Bruijn indices. On the other hand, because De
Bruijn indices refer to specific arguments in the context, they exhibit high
coupling with the context and hence do not follow the compositionality
principle. combilog’s make operator uses a similar method with indices,
but in that case the index list refers to the immediate arguments of a given
source predicate expression. This contrasts with De Bruijn indices, which
by definition refer to the outside context, for any index greater than 1.

A notable application of De Bruijn indices is by McBride and McK-
inna in [68] which uses a combination of indices and names, providing a
more practical way for dealing with free variables using names, and using
indices for bound variables, avoiding alpha conversion. It stands as an
example of impracticality of De Bruijn indices for human manipulation,
and their appropriateness for computation.

1.4.4 Nominal logic
In [19] and [20], Cheney presents αProlog, a programming language spe-
cializing in dealing with programs which manipulate and reason about
name binding, such as interpreters, compilers, and theorem provers. The
language is based on nominal logic developed earlier in [41] and [92] by
Gabbay and Pitts that utilizes name abstraction, swapping and freshness
as constructs for writing logical clauses.

Our work differs from Cheney’s in that we focus on more general logic
programs with usability in mind, while his focused on name-manipulating
logic programs. Our solution also does not require an addition for capture-
avoiding substitution as the names defined in cnp have no scope in con-
trast to variables. The freshness and swapping constraints in the language
lead to use of a constraint solver for αProlog, while cnp expressions are bi-
jectively transformed into combilog ones and into definite clauses which
can be directly executed by SLD Resolution.

1.4.5 Compositional Logic Programming
McPhee, in his doctoral thesis Compositional Logic Programming [69],
takes the fair computation rule as a basis for compositionality, and fo-
cuses on a few novel implementations of SLD Resolution using tabling
and prioritization. The main concern is identifying a search algorithm
that is fair and terminates more often than others. The main difference
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between [69] and us, is that McPhee focuses on operational aspects of
compositionality, such as the fair computation rule, while we focus on
human-centric, syntactic usability. The Prioritized SLD Resolution pre-
sented can be used for future implementations of the languages that we
devise here, since we share the common compositionality requirements.
In [69], it is argued that a compositional relational declarative language
can never compete with imperative languages in efficiency. We do not
make any efficiency claims regarding our implementations, but we base
the importance we give to purely declarative languages on the idea that
the execution models of these languages may employ automatic planning
more efficiently for implicit parallelization.

In [104, 105], Seres et al. present an embedding of algebraic logic pro-
gramming in Haskell using its lazy evaluation principle. In particular,
they investigate the program transformation and algebra of functional-
logical expressions produced in this manner. The laziness property of
Haskell aids in eliminating branches of computation in the implementa-
tion. The computation mechanism is a form of narrowing rather than res-
olution. Perhaps the most important result of [105] is the demonstration
of how examples of program transformation from functional programming
can be applied to logic programming. Although we argue that a compo-
sitional relational paradigm inherently allows algebraic uses, we do not
delve into the subject in this work.

Compared to Cheney’s, McPhee’s and Seres’s work, one of our con-
tributions, cnp, differs in that we define names as a part of the exten-
sion of a predicate, which provides a more practical notation for deal-
ing with variable-free expressions. None of the listed work submits to a
variable-free form. We present a notation for relation composition via
name-inferring logic operators without consulting to variables. The most
significant contrast is that we approach the problem of representation
with an human-centric toolbox. All the earlier work mentioned has con-
tributed significantly to the field of logic programming, but none of it
deals with the problem of representation practicality.

1.5 Contributions
As remarked earlier, our main contribution is making compositional re-
lational programming, in the example of combilog, more accessible by
altering its representation. To achieve this, a strict contextual definition
of compositionality and declarativity is fundamental, since any alterations
that would destroy the principle of compositionality would not constitute
an appropriate solution for combilog. Both representations we design
adhere to the principle of compositionality defined in section 1.1, and
remain transformable to combilog, and by extension to definite clause
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programs. This also maintains the execution model of combilog pro-
grams, i.e. SLD Resolution.

Our contributions in this work are predicated upon usability. We would
like to establish user-friendly representations for combilog programs,
that make working with compositional relational programs easier.

We first develop a graphical system that augments the textual rep-
resentation of combilog with corresponding diagrams that provide a
rich visual realisation. We present the results of a usability study mea-
suring interpretation time and the comprehensibility of this visual lan-
guage called visual combilog. We observe that it brings significant
improvements to readability over plain combilog. We also describe our
prototype implementation of the visual combilog, which uses a split-
view to allow editing of combilog code or the corresponding diagram
interchangeably.

As a second attempt to improve the usability of combilog programs,
we present a new textual syntax which redistributes the cognitive load
on the operators of the language, particularly lifting some of the load
on the make operator by moving the argument introduction function to
logic operators. We accomplish this by devising a concept we name α-
extensions, which are relations consisting of tuples that use names for
accessing their elements instead of numeric positions. These name-aware
tuples are identical to the well-known concept of records. Embedding
argument names as a part of the predicate extensions allows us to de-
fine name-aware operators which work in cooperation with this new in-
formation, without depending upon variables. This new notation with
argument names and altered operators is named Combilog with Name
Projection, or cnp. Like we did with visual combilog, we present the
results of a usability test comparing cnp to more conventional representa-
tions with variables found in logic programming languages such as Prolog
or Mercury, observing that cnp is similarly practical for short definitions.
We prove the model-theoretic equivalence between cnp and combilog,
and present an implementation of the cnp language as a meta-interpreter
written in Prolog. Finally we present an example of Inductive Logic
Programming that uses cnp as a target language, in the same essen-
tial decompositional synthesis method that is applicable to combilog,
demonstrating the feasibility of using cnp instead of combilog.

Surprisingly, the design of programming languages has mostly been
based on technical requirements, rather than human-centric usability
[111]. Even with mainstream programming languages that have frequent
release cycles, e.g. Java, C++ and C#, it is hard to find evidence that
human-centric empirical studies on language usability are used in the de-
sign process. Post-partum, after-the-fact studies such as [24] exist, but
their results are rarely integrated into the language design. In this work
we take a different approach, and treat the notation of a programming
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language as a user interface. As a tool we use Green’s Cognitive Di-
mensions [42] to discuss shortcomings of the plain combilog notation,
and we base our improvements of visual combilog and cnp on these
observations. By pairing an analysis stage using Cognitive Dimensions
with confirmatory usability tests, we establish a methodology which is
potentially applicable for improving the usability of other programming
languages.

1.6 Overview
In Chapter 1, we define the concepts of compositionality and declarativ-
ity for compositional relational logic programming. We also identify the
problem of argument binding, and briefly visit earlier work investigating
this issue. We conclude, by describing the contribution this thesis makes
to the field.

Chapter 2 revisits the fundamental concepts of Logic Programming to
act as a glossary relevant for later chapters in the thesis. It follows with
a definition of combilog, which is the language we take as the point of
departure. We include combilog’s syntax and semantics, discuss their
relation to definite clause programs, and prove their equivalence through
a fixpoint correspondence.

Chapter 3 discusses combilog’s textual representation in terms of
Cognitive Dimensions, and establishes design goals for visual combilog
and cnp.

Chapter 4 presents the design of visual combilog, the results of the
usability study, and describes the split-view prototype editor.

Chapter 5 introduces cnp syntax, and explain its constructs in relation
to combilog. It includes the proof of fixpoint equivalence between cnp
and combilog.

Chapter 6 gives the results of the usability test evaluating the effec-
tiveness of cnp syntax.

Chapter 7 presents an application of cnp for program synthesis, which
is the original motivation behind the invention of combilog.

Chapter 8 summarizes our contribution, discusses the results and present
an overview of possible future research paths that have emerged.

Appendix B gives an implementation of a combilog interpreter. Ap-
pendices C and D present an implementation of the cnp language, and
a decompositional synthesizer that uses cnp as the target language, re-
spectively.
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2. Background

This chapter comprises a brief introduction to concepts of Logic Program-
ming in the first section. This introductory summary is limited to the
concepts regarded as fundamental for understanding the material in this
work, and follows the definitions in [62]. Readers who are familiar with
first-order logic, definite clause programs and their semantics can skip to
the next section. For a thorough reading on the subject the reader is
referred to Lloyd [62].

The second section defines the combilog language and its semantics,
and does not present any novel contributions. But it is included for a
better understanding of the rest of this thesis, as the main contributions
are related to improving the usability of combilog.

2.1 Logic Programming
Logic Programming refers to a family of programming languages and the
practices based on various forms of formal logic. A logic program consists
of clauses written in a suitable logical form, comprising a theory [62].

First-order logic is the formal logic system characterised by quantified
variables ranging over individuals (terms), as opposed to second-order or
higher-order logic systems in which variables may range over predicates
or functions as well. In the context of this work, the relevant forms of
logic programs are those based on first-order logic.

2.1.1 First-order logic
The elements of first-order logic consist of variables, variable quantifiers,
constants, functions, predicate, and logical connectives. These concepts
constitute a first-order language. Conventionally variables are denoted as
upper-case letters such as X, Y, Z, . . ., and constants as lower-case letters
such as a, b, c, . . .. Quantifiers are the universal quantifier ∀ and the
existential quantifier ∃, and they are always associated with a variable
such as ∀X p(X). Predicate and function symbols are usually denoted
with lower-case letters p, q, r, . . . and f, g, h, . . . respectively.

The logical connectives of a first-order language include conjunction ∧,
disjunction ∨, negation ¬, implication → and bidirectional implication
(logical equivalence) ↔.
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Next, we shall give the basic definitions regarding the well-formed for-
mulas of a first-order language, Let us start with terms.

Definition 2.1.1. Terms of a first-order language consist of the con-
stants, variables, and functions, where a function term is the application
of a function symbol to zero or more terms.

It follows that, if there is at least one function symbol in a first order
language, the set of terms is infinite due to the recursive definition of a
function term. When a number of terms are constructed as a sequence,
these structures such as 〈t1, . . . , tn〉 are called tuples.

Definition 2.1.2. Ground terms of a language are those that do not
contain variable terms. This includes constants and function terms con-
structed using only ground terms.

Terms can be used to construct instantiations of predicates or func-
tions. Let us give a definition of a first-order predicate:

Definition 2.1.3. A predicate is a structure that maps tuples to a boolean
value true or false.

Definition 2.1.4. The number of arguments of the predicate, or equally,
the number of terms in each tuple of the predicate determine the arity of
a predicate.

Since we have defined terms, predicates, and logical connectives from
earlier, we can define a well-formed formula in a first-order language:

Definition 2.1.5. A first-order formula is well-formed if it follows one
of the following definitions:

1. Given that p is an n-ary predicate symbol, and t1, . . . , tn are terms,
p(t1, . . . , tn) is a well-formed formula (also more specifically an atomic
formula, or an atom, or a positive literal).

2. Given that E is a well-formed formula, ¬E is a well-formed formula.
If E is an atom, ¬E is also called a literal.

3. Given that E and F are well-formed formulas, E∨F , E∧F , E → F ,
E ↔ F are well-formed formulas.

4. Given that X is a variable and E is a well-formed formula, ∀X E
and ∃X E are well-formed formulas.

Let us observe this statement in first-order logic:

∀X ∀Y isFather(X, Y ) ← isParent(X, Y ) ∧ isMale(X)
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This statement can be translated to plain English as ‘Whenever X is
the parent of Y and X is a male, X is the father of Y’. It is a well-
formed first-order formula, since it follows the rules of constructing well-
formed formulas. The variables in this formula are X and Y , predicate
symbols are isFather , isParent and isMale, and atoms are isFather(X, Y ),
isParent(X, Y ) and isMale(X). Since every variable is quantified, it is
considered a closed formula, and since every variable is quantified in the
most general scope, it is considered to be in the prenex normal form.
All quantifiers in this formula are universal quantifiers, which qualifies it
to be in the Skolem normal form which is a special form of the prenex
normal form where all the quantifiers are universal.

Definition 2.1.6. A clause is a disjunction of literals in Skolem normal
form, exemplified as follows, where L1, . . . , Ln are literals and X1, . . . , Xm

are the distinct variables appearing in the literals:

∀X1 . . . ∀Xi (L1 ∨ . . . ∨ Ln)

it is often written omitting the quantifiers as well, as:

L1 ∨ . . . ∨ Ln

As defined earlier, literals are either positive (A) or negative (¬B)
atoms. A clause can also be written in the implicative form, where the
disjunction of positive atoms A1 ∨ . . . ∨ An are placed at the consequent
side of an implication, and using the logical equivalence

¬(¬B1 ∨ . . . ∨ ¬Bm) ⇐⇒ B1 ∧ . . . ∧ Bm

the conjunction of atoms B1 ∧ . . . ∧ Bm are placed at the antecedent side:

A1 ∨ . . . ∨ An ← B1 ∧ . . . ∧ Bm

or replacing the disjunction and conjunction connectives with commas,
as they are constantly the same sign on both sides of the implication:

A1, . . . , An ← B1, . . . , Bm

Next, we describe a special category of clauses, definite clauses, and
follow with their semantics.

2.1.2 Definite clause programs
Definite clauses have certain properties which make them useful for prac-
tical applications. Let us first define a definite clause:
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Definition 2.1.7. A definite clause C is a clause that has exactly one
positive literal, which is written as:

in implicative form: A1 ← B1, . . . , Bm

in disjunctive form: A1 ∨ ¬B1 ∨ . . . ¬Bm

The atom in the consequent A1 is called the head of the definite clause,
and the conjunction of atoms in the antecedent ¬B1, . . . , ¬Bm is called
the body. A definite clause with an empty body is called a unit clause, or
a fact.

Definition 2.1.8. A definite program P is a set of definite clauses.

In a definite program, there may be multiple definite clauses with their
heads containing the same predicate symbol p. The collection of these
definite clauses is called the definition of p.

Definition 2.1.9. A clause with an empty consequent is called a definite
goal, written as:

in implicative form: ← B1, . . . , Bm

in disjunctive form: ¬B1 ∨ . . . ∨ ¬Bm

2.1.3 Model-theoretic semantics
In the earlier sections, the grammar of first-order languages, and defi-
nite clause programs were defined. In order to discuss model-theoretic
semantics of definite programs, further concepts need to be introduced.

Initially the concept of predicate extension, interpretations and models
will be introduced. Then, Herbrand variants of these concepts will be dis-
cussed, which restrict the domain of discourse to the Herbrand Universe.
Upon these concepts, we will build a fixpoint theorem which constructs
a model of the program, that is, the model-theoretic meaning of the pro-
gram. This is established via interpretations as partial models, using an
immediate consequence operator.

Definition 2.1.10. The extension of a predicate is the set of tuples which
the predicate maps to true. The extension of a predicate p that has n
arguments is denoted as �p�, and defined as follows:�p� = {〈t1, . . . , tn〉 | p(t1, . . . , tn)}

In order to assign a meaning to a program, or a clause, it is imperative
to begin from the smallest elements. For this reason, the concept of an
interpretation is used, which assigns meanings to parts of a formula.

33



For any definite program P , the domain of discourse (D) is the non-
empty set which all the variables in the program may range. If D is empty
for a particular program, a constant c is assumed to be included in D.

The concept of an interpretation from [62]:

Definition 2.1.11. An interpretation is a set of assignments for con-
stants, function and predicate symbols in a program. Particularly:

(a) Every constant in P is assigned to an element from D.
(b) Every n-ary function symbol in P is assigned to a mapping from

elements in Dn to an element in D, where Dn is the n-fold Cartesian
product of D.

(c) Every n-ary predicate symbol in the program is assigned to a map-
ping from Dn to boolean values true or false

Interpretations can be used to assign truth values to clauses by looking
up the truth value of a predicate for particular arguments, and calculating
the truth value of the whole clause via the logical connectives. This would
involve first finding the distinct set of variables in a clause, assigning
them to elements in D, looking up the truth values of every atom from
an interpretation I, and calculating the final truth value of a clause via
the negations and disjunction connectives, according to the following:

• p ∧ r is true only when both p and r are true.
• p ∨ r is true if at least one of p and r is true.
• ¬p is true when p is false.
• p ← r is true if ‘p is true whenever r is true’.
• p ↔ r is true when both p and r are true or both of them are false.

If we can assign true to a clause in this way, that clause is satisfiable with
regard to I. Similarly, if we can assign true for every instance of a clause,
that clause is valid with regard to I.

Definition 2.1.12. An interpretation I is a model for a clause C if C
is true with regard to I. Consequently, I is a model of a program if it is a
model for every clause in the program. If there is a model for a program
P, P is consistent.

For a program P and its every interpretation I, if I being a model of P
implies that it is a model for a clause C, then C is a logical consequence
of P .

Further definitions will involve Herbrand concepts. These are counter-
parts to interpretations and models defined earlier, but with the domain
of discourse being limited to a so-called Herbrand universe.

Definition 2.1.13. The Herbrand universe H of a program P consists
of ground terms appearing in the program, and all terms that can be built
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from these ground terms and the function symbols in the program without
using variables. If there are no ground terms in a program, an arbitrary
constant c is added to make the Herbrand universe non-empty.

Definition 2.1.14. The Herbrand base B of a program P is the set of
ground atoms formed by instantiating every n-ary predicate symbol p ap-
pearing in P, with terms from the Herbrand universe. This is formulated
as follows, where Hn refers to the n-fold Cartesian product of H:

BP = {p(t1, . . . , tn) | 〈t1, . . . , tn〉 ∈ Hn, and p is a predicate in P}

Definition 2.1.15. A Herbrand interpretation of a program P is an
interpretation where the domain of discourse is restricted to H (D = H).
Consequently, a Herbrand interpretation is a subset of the Herbrand base
for the same program.

Definition 2.1.16. A Herbrand model of a program P is a Herbrand
interpretation of P which is a model for P.

With the help from Herbrand concepts, we can now define a model-
theoretic meaning for a predicate:

Definition 2.1.17. The least Herbrand model of p in a program P is the
set of ground atomic instances of p from the Herbrand base B, which are
logical consequences of the program P:

M|=(P)(p) = {p(t1, . . . , tn) ∈ BP | P |= p(t1, . . . , tn)}

Definition 2.1.18. The least Herbrand model for a program M(P) is
the union of least Herbrand models for every predicate p in P. This is
also called the model-theoretic meaning of the program [3, 62, 120].

In the next section, we look at the construction of a least Herbrand
model for a program through fixpoint semantics.

2.1.4 Fixpoint semantics
For definite clause programs, the least Herbrand model of a program can
be obtained by the least fixpoint of a monotonic logical consequence oper-
ator associated with the program, as proven by van Emden and Kowalski
[120]. Here we first define this operator, and other relevant concepts
towards establishing the fixpoint semantics of a definite clause program
P .
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Definition 2.1.19. The set of ground clauses of a program P is written
as ΓP , and is constructed by substituting ground terms from the Herbrand
universe for every variable in the clause.

The immediate consequence operator for a program P maps Herbrand
interpretations to Herbrand interpretations, where the returned Herbrand
interpretation includes the ground atoms that are immediately implied by
the ground clauses of the program and the given Herbrand interpretation.

Definition 2.1.20. An immediate consequence operator for a program P
is written as TP , and it is defined as follows:

TP(I) = {A0 | A0 ← A1, . . . , An ∈ ΓP ∧ {A1, . . . , An} ⊆ I}

Then the least fixpoint of a program P is defined as the least I such
that I = TP(I) [114].

The next step is defining an ordinal power function ↑ for T .

Definition 2.1.21. The power function TP ↑ i is defined as follows,
where ω is the first infinite ordinal:

TP ↑ 0 = ∅
TP ↑ (i + 1) = TP(TP ↑ i)

TP ↑ ω =
∞⋃

i=0
TP ↑ i

The model-theoretic meaning of a program M|=(P) coincides with the
unique least fixpoint [120]:

M|=(P) = TP ↑ ω (2.1)

Next, we move on to the proof-theoretic semantic of definite programs
with the concepts of unification and resolution.

2.1.5 Proof-theoretic semantics
The proof-theoretic meaning of definite clauses is determined by the SLD
Resolution (SL Resolution for Definite Clauses) algorithm [120]. This is
a specialization of the earlier SL Resolution (Selective Linear Resolution)
[61] and the original Resolution algorithm [101].

The Resolution algorithm, together with a first-order unification algo-
rithm provides the operational semantics for definite clause programs.

Let us begin by describing the unification algorithm.
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Unification
Unification is a procedure for establishing equality between objects of
a program, or the lack of it. It dates back to Herbrand [62] but was
practically adopted for the first time by Robinson in [101]. Briefly, if the
two objects are strictly identical, they are said to unify. If they are not
strictly identical but can be made identical with certain modifications,
they are said to unify with substitutions. If there are not any set of
modifications that can make a pair of objects identical, they are said to
not unify. Let us observe a few examples of unification, where constants
are displayed in lower-case, and variables in upper:

a and a �→ unify.

a and b �→ do not unify.

X and a �→ unify with substitutions σ = {X = a}.

p(X, a) and p(c, Y ) �→ unify with substitutions σ = {X = c, Y = a}.

A unification algorithm takes a pair of objects as input, and outputs a
most general unifier through a set of substitutions, if a unification is
possible. A unifying substitution σ for a set of objects is the most general
unifier if, for any unifying substitution ω for the same set of objects, there
is a substitution δ so that the composition of ω and δ gives σ: σ = ωδ [62].
This establishes a method to curb the search space for the Resolution
algorithm by allowing higher-level syntactic eliminations as opposed to
testing for ground instances as in earlier works such as the Davis-Putnam
algorithm [32]. Variations of the unification algorithm exist, including
more efficient ones such as [67, 85], parallelly executable ones [10], or
ones with different purposes such as the variable-free unification in [5],
but this basic definition is sufficient for our purposes in this work.

SLD Resolution
The SLD Resolution is a search algorithm which takes a set of definite
clauses, together with a definite goal, and answers if that goal logically
follows from the given set of definite clauses [120].

The set of definite clauses are assumed to be in the conjunctive normal
form (CNF), that is, a conjunction of disjunctive clauses. A definite
program is considered to be in this form, since every clause is a disjunction
of literals, and the program is taken as a conjunction of its clauses.

The elementary component of the algorithm is the resolution of a single
definite clause and a definite goal, given by the resolution inference rule.

Definition 2.1.22. Resolving a definite goal G with a definite clause
C results with a new definite goal G′ by unifying a literal from G with a
complementary literal from C. This is provided by the resolution inference

37



rule. Given a definite clause and a definite goal:

G = {¬B0, . . . , ¬Bm}
C = {A0, ¬A1, . . . , ¬An}

application of the resolution inference rule requires a literal in G, namely
Bk, and a literal in C, namely Aj to be complementary, and to unify with
substitutions θ. If they unify, the resulting resolvent goal clause is given
as:

resolvent(G, C) = subs
(
θ, (G − Bk) ∪ (C − Aj)

)

Intuitively, assuming the C and G are standardized apart (they share no
common variables) to begin with, the resolvent goal clause is the union
of the two, except the literals used to modify them. The resolvent also
reflects the substitutions required by the unification, if any.

Since every literal in the goal clause is negated, they can only resolve
with the head literal of a definite clause, since it is the only positive
literal in a definite clause. When the unifying literals are removed, the
only remaining literals are negative, which renders the resulting clause
another goal clause.

The Resolution algorithm can only be used to derive false from an un-
satisfiable set of formulas, hence refuting the set of formulas, but it cannot
be used to derive every consequence. Therefore, it is only refutation-
complete. When coupled with a complete search algorithm, the resolu-
tion inference rule gives a theorem proving algorithm which is also only
refutation-complete. But it is possible to exploit refutation-completeness
for logical inference. Given a conjunction of clauses KB (knowledge base)
and an original goal G, if the negation of the original goal ¬G does not
follow from KB, we can conclude that G in fact does follow (KB � G),
according to the law of excluded middle. This is an instance of proof by
contradiction.

The resolution algorithm is initiated with a set of clauses C1, . . . , Cn

corresponding to the program, and a goal ¬G. A clause Ci is selected to
resolve with ¬G, and their resolvent G1 is assumed as the new goal. A
new clause Ck is selected to resolve with G1, and this is repeated until
an empty clause ∅ is reached, which is a clause with no literals. If an
empty clause is reached as a resolvent, it implies that the initial goal
¬G was inconsistent with the program, and hence G must follow. The
search for empty clause may not terminate, in which case it implies that
an inconsistency cannot be found. If it terminates, it will be through
a linear sequence of resolvents, ending with the empty clause ∅, which
signifies the contradiction.

¬G, G1, . . . , Gn−1, ∅
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If a goal G can be shown to follow from a program P using the SLD
Resolution method, it is written as:

P � G

In the next section, we will define the proof-theoretic meaning of a pro-
gram based on SLD Resolution.

Proof-theoretic meaning
In the previous section, the SLD Resolution method was described, and
a proof-theoretic consequence (�) was established. Based on this we can
devise a proof-theoretic meaning of a program.

Definition 2.1.23. The proof-theoretic meaning of a predicate p in a
definite program P is the set of goals which can be shown to follow from
the program using SLD Resolution:

M�(P)(p) = {p(t1, . . . , tn) ∈ BP | P � p(t1, . . . , tn)}

Similarly to model-theoretic meaning from definition 2.1.18, the proof-
theoretic meaning of a program M�(P) is defined as the union of proof-
theoretic meanings of all its predicates.

The significant result proven by van Emden and Kowalski [120] is that,
due to soundness and refutation-completeness of SLD Resolution, the
model-theoretic meaning of a program M|=(P) and the proof-theoretic
meaning of a program M�(P) coincide:

M|=(P) = M�(P) (2.2)

In this section, we have given a fundamental glossary of Logic Pro-
gramming. Starting from First-order logic, we described definite clause
programs and their model-theoretic meaning via a fixpoint theorem.

As for the proof-theoretic meaning of definite clause programs, we de-
scribed a first-order Unification and the SLD Resolution algorithms, and
separately established the proof-theoretic meaning of definite clause pro-
grams by SLD Resolution, which coincides with the model-theoretic coun-
terpart.

In the next section, we will describe combilog, a variable-free, com-
positional relational programming language. The canonical form of com-
bilog predicate definitions is an aggregation of definite clauses, and as a
result combilog programs are a variable-free form of definite programs.
Moreover, the semantics of combilog programs is established in a simi-
lar way to definite clauses.
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2.2 Combilog
combilog is developed as a variable-free language that is semantically
equivalent to definite clauses, particularly intended for program synthesis
[52, 79]. The variable-free representation was necessary to avoid explicitly
dealing with variables in the synthesis algorithm. Instead, combilog
uses a set of higher-order composition predicates for argument binding.
Its combinatory form relates to Quine’s Predicate Functor Logic presented
in [98] and [99], which also has a variable-free form, and uses higher-order
combinators such as inv, ref , rotl, or exp to compose predicates without
consulting to variables.

combilog is also strictly compositional, meaning the semantics of
any expression is defined with regard to only its components, indepen-
dent from the context, which is partially thanks to the lack of variables.
The compositionality gives combilog and the method of synthesis Com-
bInduce an edge by making it especially suitable for synthesizing recur-
sive programs. Inductive Synthesis is the task of obtaining programs
suggested by expected input/output examples [73]. Because combilog
operators construct programs in terms of other programs only, the in-
put/output examples given for synthesis can be de-constructed to search
for component programs by using the reverse semantics of its operators
[46, 48, 49].

An application of combilog is given in [11], where it is shown and
demonstrated that combilog is capable of being the target language for
inductive synthesis, by composing the atpos predicate in combilog with
only one example. In [50], inductive synthesis of a combilog program
with two levels of recursion is shown. The duality between the recursion
operators of combilog, namely the fold-left and fold-right are discussed
in [46].

In the following sections we will present the structure of combilog
programs and their semantics.

2.2.1 Compositional Relational Programming
A combilog program consists of a set of predicate definitions. A predi-
cate definition is in the form of a name assignment to a predicate expres-
sion. The left side (p) of the assignment is a predicate identifier, while
the right side (ϕp) is a predicate expression:

p ← ϕp

The predicate expression consists of a hierarchy of predicate compositions.
combilog defines higher-level operators to combine existing predicate
definitions and expressions into new ones. The operators combilog pro-
vides are strictly referentially-transparent. The logic-relational meaning
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of an expression is only determined by its components and the semantics
of the operator. The context a predicate expression appears in has no
effect on the meaning. This makes combilog a strictly compositional
programming language.

Every predicate expression has a list of arguments associated with it.
The number of arguments in a predicate expression (or in a predicate
definition) determines its arity. In order to compose predicate expres-
sions, elementary predicates provide a basic set of primitive predicate
definitions. Logic operators are the combinator operators which provide
conjunction and disjunction. A generalized projection operator is used to
modify the argument lists of predicate expressions. Both logic operators
and the projection take predicate expressions as arguments and give a
predicate expression as result. There are no explicit data type declara-
tions, all arguments are implicitly of the single data type term.

We will begin by elementary predicates, and move on to combinator
operators.

2.2.2 Elementary predicates
combilog defines a set of elementary predicates in order to deal with
fundamental concepts such as identity, constants, and lists. These are
separate from user-defined predicates in that they are provided as a part
of the language, as language constructs, or as a core library.

The elementary predicates are:

true is the logical truth predicate with no arguments.

‘constc’ is a unary predicate which is used for introducing constants
into the language. It has a parametric definition to give the constant
desired. For example, const[] is a predicate expression that is satisfied
only for the empty list symbol [].

id is the identity predicate, which has two arguments. It is only satis-
fied when both of its arguments take the same value.

cons is the list construction predicate, and has three arguments. It is
satisfied only when the third argument is a term constructed with the list
construction functor (|) applied with the values of the first and second
arguments h and t, written as [h|t]. As well as lists, this predicate can be
used for other data structures based on lists.

Here we give denotations of elementary predicates of combilog. In
the formulas below H refers to the Herbrand Universe. The extension of
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a predicate p is usually written as �p�. We will also show the arity of a
predicate as a superscript, as in �p�n for a predicate p with arity n.

�true�0 = {〈〉}�constc�1 = {〈c〉} where c is the parameter�id�2 = {〈t, t〉 ∈ H2 | t ∈ H}�cons�3 = {〈t′, t′′, [t′|t′′]〉 ∈ H3 | t′, t′′ ∈ H}

Next, we shall describe the generalized projection operator make.

2.2.3 Projection operator make
combilog is a variable-free language, and uses a generalized projection
operator as a way of manipulating the arguments of predicate expres-
sions. This operator named make has two parameters: a list of indices
[μ1, . . . , μm] as its first parameter, and a source predicate expression p for
its second parameter:

make([μ1, . . . , μm] , p)

The index list determines the arguments in predicate expression pro-
duced as a result of make. When an index μi is in the range of argument
positions of p, meaning if p has n arguments and 1 ≤ μi ≤ n, then that
index refers to the corresponding argument of p. This results in ith ar-
gument of the produced expression being bound to the value of the μi

th

argument of p. If an index is larger than the arity of p, meaning μi > n,
then the ith argument of the produced expression is unbound.

The denotation of the make operator is as follows, where Hm refers
to the mth-degree Cartesian product of H, the Herbrand universe of the
program.

�make([μ1, . . . , μm] , p)�m = {〈tμ1 , . . . , tμm〉 ∈ Hm | ∃〈t1, . . . , tn〉 ∈ �p�n}

This definition of make enables three essential operations it can be used
for. When m = n, it is either an identity operation, as in 〈μ1, . . . , μm〉 =
〈1, . . . , m〉, or it is a reordering of arguments. When m < n it is a
cropping, and when m > n, it is expansion. Naturally, the cropping and
expansion may also reorder the arguments they pick from p, but they are
distinct in the ways that cropping eliminates some arguments of p and
expansion introduces some unbound ones.
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Let us give some example uses of the make operator.
Defining the 1-ary universal relation uni1, which has one argument

which is satisfied by any value in the Herbrand universe of a program:

uni ← make([1] , true)

Since the elementary predicate true has no arguments, this constitutes
an expansion, and the only argument of uni is unbound.

Let us define a head predicate that has two arguments, the head of
a list and the list itself. In Prolog, it could be defined as follows, in
relation to the elementary predicate cons (cons(X, T, [X|T ]).):

head(L, X) ← cons(X, T, L)

while in combilog it takes the following form:

head ← make([3, 1] , cons)

which constitutes a cropping, binding the third argument of cons to the
first argument of head, and the first argument if cons to the second ar-
gument of head. The second argument of cons is left unbound. The
denotation of this instance of the make operation can be calculated as
follows:

�head� = �make[3, 1](cons)�
= {〈t3, t1〉 | ∃t2〈t1, t2, t3〉 ∈ �cons�}
= {〈t3, t1〉 | ∃t2(〈t1, t2, t3〉 ∈ {〈x, y, [x|y]〉 | x, y ∈ H})}
= {〈[x|y], x〉 | x, y ∈ H}

It is important to note that the use of repeated indices μi = μk (i �= k),
such as:

make([1, 1], cons)

is not rejected by the semantics, but is not a practised use.

2.2.4 Logic operators
combilog defines two logic operators. These are and for conjunction and
or for disjunction. Their set-theoretic denotations using set intersection
and set union are as follows:

�and(ϕ, ψ)�n = �ϕ�n ∩ �ψ�n

�or(ϕ, ψ)�n = �ϕ�n ∪ �ψ�n
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Which can also be written as follows, in a logical meta-language, with
the use of higher-order operators and and or :

and(P, Q)(X1, . . . , Xn) ← P (X1, . . . , Xn) ∧ Q(X1, . . . , Xn)
or(P, Q)(X1, . . . , Xn) ← P (X1, . . . , Xn) ∨ Q(X1, . . . , Xn)

The logic operators only accept operands of the same arity. For this
reason, they are mostly used together with the make operator, which can
reorder, crop, or introduce arguments of the component predicates. By
using make, the arguments intended to be bound to the same values are
aligned in corresponding positions.

2.2.5 Sample predicate append
Let us give the implementation of the append predicate in combilog
as an example. It has three arguments, L1 , L2 , and L, all lists. The
predicate is satisfied when the argument L contains the items of L1 and
L2 joined together in the given order. Let us first look at the Prolog
implementation of the append predicate:

append([], L, L). (2.3)
append([X|T ], L2, [X|Lmid]) ← append(T, L2, Lmid).

where the first line gives the base case, which determines that if the L1
is empty, L2 and L are identical. The second line scripts the recursive
case. To compare this code better with combilog, let us remove the
syntactic sugar. This is done by using the list constructor notation such
as L = [X|T ] with the cons predicate as cons(X, T, L). The variable
bindings within the head, such as L in append([], L, L) are also replaced
with the id predicate, as in id(L, L). Similarly, the constant [] in the head
is replaced by the parametric const predicate with the parameter [], which
has only the constant [] itself in its extension. Both these changes are only
syntactical, and do not change the semantics, due to the denotations of
the elementary predicates used.

append(L1, L2, L) ←const[](L1), id(L2, L).
append(L1, L2, L) ←cons(X, T, L1),

append(T, L2, Lmid),
cons(X, Lmid, L).

In order to translate the clauses above to a combilog predicate def-
inition, the atoms with variables are replaced by expressions which use
the make operator. For example, the first clause, which we refer to as
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the base case, there are three variables L1, L2, and L. Since all three
variables also exist in the head, we write make operations that produce
ternary predicate expressions for both const [] and id. For const [], since
its first variable is bound to the value of the first variable in the head,
the first index is 1. Since we need a ternary make operator, and since the
second and third variables of the head are not bound to the value of an
argument in const [], we place dummy indices (2, 3) higher than the arity
of const []. The resulting make expression becomes make([1, 2, 3], const []).
Similarly, the id atom is translated to the expression make([3, 1, 2], id),
where the first index 3 is higher than the arity of id since the first argu-
ment in the head (L1) is not bound to the value of an argument in id. The
conjunction of const [] and id is written as an and operation that covers
the first clause: and(make([1, 2, 3], const []), make([3, 1, 2], id)). The same
principles are applied to the second clause, referred to as the recursive
case, while composing the combilog code below. The difference is that
only 3 of the variables are bound to variables in the head, so a separate
make operation is needed to crop only the first three of the total six ar-
guments. This is not necessary for the first operand of or , since there are
only three arguments, all bound to the head (append), in the same order,
and there are no arguments that need to be cropped.

append ←or(and(make([1, 2, 3], const []), (2.4)
make([3, 1, 2], id)),

make([1, 2, 3],
and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons))))

If we inspect the projection in the last line, make([4, 5, 3, 1, 6, 2], cons), we
observe that it produces a predicate expression with six arguments, where
the 3rd argument is bound to a list (through the 3rd argument in cons),
the 4th argument bound to its head (through the 1st argument in cons),
and the 6thth argument bound to its tail (through the 2nd argument in
cons). All other arguments are unbound. If we consider the second and
expression (line 4..6), only the first three arguments are projected, due
to the containing make([1, 2, 3], . . .) operation. The values of other argu-
ments of and (4th, 5th, and 6th) are only accessible within this expression,
but not to the containing context, the or operator.

The combilog predicate definition above is translated from the Pro-
log one given earlier, through trivial transformation steps. The both
definitions are semantically equivalent, as it will be proven later in Sec-
tion 2.2.8.
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2.2.6 Recursion operators
List recursion operators have been defined for combilog in the earlier
work [47]. The main operators are foldr and foldl, and they function simi-
larly to their counterparts in functional programming, but here they must
be implemented in a compositional relational context, since combilog
context cannot contain variables. Both operators take two predicate ar-
guments, P for recursive case, and Q for the base case. This is in line
with the ordinary way of writing recursive predicates in definite clause
programs, as seen in the Prolog append implementation in Definition
2.3 from the previous section.

Before giving their set-theoretic denotations, let us look at the defini-
tions if foldr and foldl in meta-logic language, with a description following:

foldr(P, Q)(Y, [], Z) ← Q(Y, Z)
foldr(P, Q)(Y, [X|T ] , W ) ← foldr(P, Q)(Y, T, Z) ∧ P (X, Z, W )

foldl(P, Q)(Y, [], Z) ← Q(Y, Z)
foldl(P, Q)(Y, [X|T ] , W ) ← P (X, Y, Z) ∧ foldl(P, Q)(Z, T, W )

Since the empty list constant ([]) always exists in the base case, it is kept
as a constant, embedded in the definition, and the base case is given as
a single predicate parameter Q. Similarly, list packing/unpacking literals
are embedded in the definitions of the folds, reducing the recursive case
to a single ternary predicate parameter P . The non-predicate parameters
are as follows. The first argument (Y ) carries the initial element, the
second argument carries the list to be iterated through, and the third (Z
or W ) argument is the result of folding.

The append predicate from Definition 2.4 from the previous section
written using the foldr operator, in fold-extended combilog is as follows:

append ← make[2, 1, 3](foldr(cons, id))

where the make operator encompassing the foldr is used to flip the po-
sitions of the first two arguments, since the definition of the foldr , the
second argument is the recursion parameter, while in append it is the
first one. This final definition that uses the foldr operator is semantically
equivalent to the combilog code for the append predicate earlier, and
also to the Prolog implementation of append as well. Yet as seen above,
it is devoid of variables.

These operators provide a declarative form of single recursion schemes,
and contribute to expressiveness of combilog programs significantly. Fi-
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nally, let us look at their set-theoretic denotations:

�foldr(ϕ, ψ)�3 =
∞⋃

i=0
�foldri(ϕ, ψ)�3

where�foldr0(ϕ, ψ)�3 = {〈y, [], z〉 ∈ H3 | 〈y, z〉 ∈ �ψ�2}�
foldr i+1(ϕ, ψ)

�3 = {〈y, [t1|t2], w〉 ∈ H3 | ∃z ∈ H s.t.
〈y, t2, z〉 ∈ �foldr i(ϕ, ψ)�3 ∧ 〈t1, z, w〉 ∈ �ϕ�3

and similarly for foldl:

�foldl(ϕ, ψ)�3 =
∞⋃

i=0
�foldri(ϕ, ψ)�3

where�foldl0(ϕ, ψ)�3 = {〈y, [], z〉 ∈ H3 | 〈y, z〉 ∈ �ψ�2}�
foldl i+1(ϕ, ψ)

�3 = {〈y, [t1|t2], w〉 ∈ H3 | ∃z ∈ Hs.t.
〈t1, y, z〉 ∈ �ϕ�3 ∧ 〈z, t2, w〉 ∈ �foldl i(ϕ, ψ)�3

The recursion operators conclude the denotational semantics. In the
following sections, we will observe the equivalence between combilog
and Prolog programs, and finally describe the execution model of com-
bilog programs.

2.2.7 Transformation from definite clauses
In this section, following and partially quoting from [52], we describe the
transformation comb(P), which produces a combilog program from a
given ordinary logic program P .

Consider an ordinary logic program P , containing one or more definite
clauses for every predicate p defined in the program. The transformations
would produce a combilog form of the definition of predicate p as:

p ← ϕp

where ϕp is a ground predicate term composed solely of the operators
and, or and make.

Definition 2.2.1. Let P be an ordinary logic program. Let comb(P) be
the combilog program resulting from the transformation stages: varterm,
which eliminates non-variable terms, and combintro, which introduces
combinators, with
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comb(P) = combintro(varterm(P))

Elimination of Non-variable Terms (varterm)
The varterm stage involves normalizing the arguments of a definite
clause so that it does not include any constants, list terms, or multi-
ple occurrences of a variable. It is the first step towards combilog’s
variable-free form.

The transformation steps are given as a set of rules in the form

Head ← Body
⇓

Head ′ ← Body′

each transforming one aspect of the clause in the head or in the body.
Here we recite the steps of varterm, quoting from [52]:

The list constructs such as l(H, T ) in the head are replaced with cons
atoms in the body:

p(t1, . . . , ti−1, l(H, T ), ti+1, . . . , tn) ← Body
⇓ (2.5)

p(t1, . . . , ti−1, X, ti+1, . . . , tn) ← cons(H, T, X), Body

The list constructs such as l(H, T ) in the body are also replaced with
cons atoms:

Head ← . . . , q(t1, . . . , ti−1, l(H, T ), ti+1, . . . , tn), . . .

⇓ (2.6)
Head ← . . . , q(t1, . . . , ti−1, X, ti+1, . . . , tn), cons(H, T, X), . . .

Every constant C in the head is replaced with a constC atom in the
body.

p(t1, . . . , ti−1, C, ti+1, . . . , tn) ← Body
⇓ (2.7)

p(t1, . . . , ti−1, X, ti+1, . . . , tn) ← constC(X), Body

Every constant C in the body is also replaced with a constC atom in
the body:

Head ← . . . , q(t1, . . . , ti−1, C, ti+1, . . . , tn), . . .

⇓ (2.8)
Head ← . . . , q(t1, . . . , ti−1, X, ti+1, . . . , tn), constC(X), . . .
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Multiple occurrences of a variable in the head are replaced with distinct
variables, and an id atom in the body that binds the distinct variables:

p(t1, . . . , ti−1, X, ti+1, . . . , ti+(j−1), X, ti+(j+1), . . . , tn) ← Body
⇓ (2.9)

p(t1, . . . , ti−1, X, ti+1, . . . , ti+(j−1), Y, ti+(j+1), . . . , tn) ← id(X, Y ), Body

Multiple occurances of a variable in the body are also replaced with
distinct variables, and an id atom that binds these distinct variables:

Head ← . . . , q(t1, . . . , ti−1, X, ti+1, . . . , ti+(j−1), X, ti+(j+1), . . . , tn), . . .

⇓ (2.10)
Head ← . . . , q(t1, . . . , ti−1, X, ti+1, . . . , ti+(j−1), Y, ti+(j+1), . . . , tn),

id(X, Y ), . . .

The definitions of auxiliary predicates introduced in varterm, such
as id are given as elementary predicates in Section 2.2.2. This finalizes
the steps of transformation stage varterm. The final form containing all
defining clauses of a predicate p can be written as follows:

p(Xσi1 , . . . , Xσin) ←
γ∨

i=1

βi∧
j=1

qij(Xij1, . . . , Xijarity(qij)) (2.11)

where γ is the number of defining clauses for p and βi is the number
of atoms in the body of the ith clause. The variables Xσi1 , . . . , Xσin are
distinct.

In order to show that the varterm transformation stage preserves mean-
ing, we quote the theorem of equality from [52]:

Theorem 2.2.1. For every predicate p in P

M(varterm(P))(p) = M(P)(p)

Proof: Consider the transformations 2.5 to 2.10. By unfolding the right
hand side of 2.5 to 2.10 with the unit clauses for predefined predicates, the
clauses of the left hand side are regained. By the theorem of Tamaki and
Sato [112], see also [91], every transformation sequence constructed by
unfolding is totally correct with respect to the least Herbrand semantics.
�

Introduction of Combinator Terms
The transformation stage combintro defines steps to introduce com-
bilog’s generalized projection operator make, and also replaces ordinary
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logic operators with their combilog counterparts. This stage starts from
the form that the varterm stage ends with, and by the end the variable
terms in the clause are made redundant by the make operator, rendering
it variable-free.

We shall first define a few fundamental concepts necessary for writing
clauses in combilog form. The n-ary logic operators, which recursively
convert n-ary operand lists to their equivalent binary counterparts is given
below.

Definition 2.2.2. Let
∏

and
∑

denote, respectively, aggregation of the
logic operators ‘and’ and ‘or’ in combilog:

1∏
i=1

ei = e1

n∏
i=1

ei = and(
n−1∏
i=1

ei, en)

1∑
i=1

ei = e1

n∑
i=1

ei = or(
n−1∑
i=1

ei, en)

The next definitions are the index functions πijk and σik. These are
used for producing the index lists which are the first operands of the make
operator, according to the variable bindings existing in the clause and the
rules defining these functions. πijk in particular involves the make for the
jth atom of the ith clause, while σik involves the make for the ith clause
itself.

Definition 2.2.3. Index function πijk. Consider the i’th clause: If the
variable with index jk where k ∈ {1, . . . , #Varsi} is found in some posi-
tion n in the atom qij(Xij1, . . . , Xijarity(qij)) then πijk =def n; otherwise
πijk =def m, where m is an integer greater than arity(qij), and it is dif-
ferent from other indices that are not found in the atom.

Definition 2.2.4. Index function σik. Consider the i clauses for p, and
k ∈ {1, . . . , arity(p)}, then σik =def k.

Note that the σik function produces the same instance of the make op-
erator for each defining clause of a predicate p. This is the case because
definite clauses for the same predicate always have the same number of
variables in the head, and index modifications such as reordering or trun-
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cating are not necessary as it was with the πijk function.

We shall now give the steps in rewriting stage combintro, starting
from the last form in varterm and finishing with the canonical combilog
form.

The last form left by the varterm steps is:

p(Xσi1 , . . . , Xσin) ←
γ∨

i=1

βi∧
j=1

qij(Xij1, . . . , Xijarity(qij))

The first step introduces make operators around every literal qij , which
projects every literal in the body of ith clause to same arity, and produces
predicate expressions to which logic operator and can be applied.

p(Xσi1 , . . . , Xσin) ←
γ∨

i=1

βi∧
j=1

qij(Xij1, . . . , Xijarity(qij))

⇓ step 1, inner makes
p(Xσi1 , . . . , Xσin) ←

γ∨
i=1

βi∧
j=1

make([πij1, . . . , πij#Varsi ], qij)(Xπij1 , . . . , Xπij#Varsi
)

the second step replaces the aggregate conjunction operator
∧

with the
corresponding aggregated form of the and operator, namely

∏
.

⇓ step 2, and operators
p(Xσi1 , . . . , Xσin) ←

γ∨
i=1

βi∏
j=1

make([πij1, . . . , πij#Varsi ], qij)(Xπij1 , . . . , Xπij#Varsi
)

the third step produces make operators around every ith defining body
for predicate p, practically in the identity form make([1, . . . , n], p), where
n = arity(p).

⇓ step 3, outer makes
p(Xσi1 , . . . , Xσin) ←

γ∨
i=1

make([σi1, . . . , σin],

βi∏
j=1

make([πij1, . . . , πij#Varsi ], qij))(Xσi1 , . . . , Xσin)
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in the final step, the aggregate disjunction operator
∨

is replaced with
the corresponding aggregate operator

∑
for or , revealing the canonical

form of combilog clauses.

⇓ step 4, or operator
p(Xσi1 , . . . , Xσin) ←

γ∑
i=1

make([σi1, . . . , σin],

βi∏
j=1

make([πij1, . . . , πij#Varsi ], qij))(Xσi1 , . . . , Xσin)

The resulting combilog clause defining the predicate p conforms thus
with a canonical “or-make-and-make” form. In the transformation steps
above the variables are used for expressing how the indices in the make
operators establish argument binding between the component predicates
and the head. The standard variable-free combilog form is as follows:

Definition 2.2.5. A canonical combinator expression which constitutes
a distinguished combinatory clause normal form, has the following struc-
ture:

p ←
γ∑

i=1
make([σi1, . . . , σin],

βi∏
j=1

make([πij1, . . . , πij#i ], qij))

In this section we gave the transformation from ordinary logic pro-
grams to combilog programs, which consisted mainly of eliminating the
non-variable terms such as constants or list constructs, replacing bound
variables with make operators, and replacing the logic operators with their
counterparts in combilog. In the next section we observe the semantic
equivalence between these two sorts of programs.

2.2.8 Correspondence with definite clause programs
In their work on semantics of programming with predicate logic [120], van
Emden and Kowalski show that the unique least fixpoint of a program
coincides with the model-theoretic meaning of a program. Restating from
Section 2.1, Equation 2.1, and Equation 2.2, which refers to the coinci-
dence of the model-theoretic meaning and the proof-theoretic meaning:

M|=(P) = TP ↑ ω

M|=(P) = M�(P)
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It follows that by showing the least fixpoints of two programs to be
equal, we can prove that their model-theoretic meanings are equal. In this
section we shall give the theorem of coincidence between model-theoretic
semantics of combilog and ordinary definite clause programs. We will
begin by some fundamental definitions necessary to state our theorem.

The definition of a fixpoint of a logic program depends on an imme-
diate consequence operator, which maps a Herbrand interpretation I to
I ′, which monotonously expands with the immediately entailed ground
instances, yielding a fixpoint when applied repeatedly until it maps I
to itself. Here let us restate the immediate consequence operator from
Definition 2.1.20 and the power function from Definition 2.1.21:

For an ordinary logic program P, the immediate consequence operator
Tord

P : I → I maps a Herbrand interpretation I into I ′:

Tord
P (I) = {A0 | A0 ← A1, . . . , An ∈ Γ(P) ∧ {A1, . . . , An} ⊆ I}

where Γ(P) is the set of ground instances of the clauses in P.
The power function Tord

P ↑ : N → 2B is given as:

Tord
P ↑ 0 = ∅

Tord
P ↑ (i + 1) = Tord

P (Tord
P ↑ i)

Tord
P ↑ ω =

∞⋃
i=0

Tord
P ↑ i

where the final definition Tord
P ↑ ω is the result of infinitely applying the

operator, hence arriving at the least fixpoint for the program P.
Intuitively, the power function starts with the empty set for i = 0.

Immediately at i = 1, it includes ground instances of facts in the pro-
gram. At i = 2, it expands to include the ground instances that directly
follow from the facts at i = 1, and every step i + 1, produces new ground
instances following from i, until there are no new consequences.

Before we move on to fixpoint definitions for combilog programs, it
is necessary to define some fundamental concepts of program denotation
in first-order logic:

Definition 2.2.6. Let an extension of an n-ary predicate p be any n-ary
relation over H assigned to p, that is, a subset of the n-ary tuples forming
the product Hn. The extension of a predicate p, denoted as �p�:�p� = {〈t1, . . . , tn〉 ∈ Hn

P | p(t1, . . . , tn) ∈ M|=(P)(p)}

where the model-theoretic meaning of a predicate p in program P is given
as M|=(P)(p), restated from the earlier Definition 2.1.17:

M|=(P)(p) = {p(t1, . . . , tn) ∈ BP | P |= p(t1, . . . , tn)}
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which enables us to define extension maps as a mapping from predicate
symbols to extensions:

Definition 2.2.7. An extension map E of a program Pcomb maps program
predicates pi(n), with arity n, into corresponding extensions ei, (where
ei ⊆ Hn

P)

E =
m⋃

i=1
{pi(n) �→ ei}

Let E be an extension map and p a program predicate. Then

E(p) = e ⇐⇒ (p �→ e) ∈ E

and as necessary concept, the lookup for the extension of a predicate
symbol with regard to an extension map:

Definition 2.2.8. For a program predicate p the extension is obtained by
a lookup in the extension map:

�p�E = E(p)

After defining predicate extensions, extension maps, and the extension
lookup operation, we can move on to denotations of combilog programs.
In this section, we introduce the semantics of combilog programs via
the least fixpoint of a novel immediate consequence operator Tcomb

Pcomb
ded-

icated to combinator logic programs [52].

Definition 2.2.9. The immediate consequence operator for a combilog
program Pcomb is defined below, which maps extension maps into extension
maps:

Tcomb
Pcomb

(E) =
m⋃
i

{pi �→ �ϕi�E}

and hence

Tcomb
Pcomb

(E)(p) = �ϕ�E

The operator Tcomb
Pcomb

is a counterpart to the operator Tord
P for ordinary

logic programs P stated earlier, but does not call for the generation of
the ground instances of the program clauses.

The extension of a predicate term ϕ with regard to an extension map
is calculated according to the following definition:
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Definition 2.2.10. The extension of a compound predicate term ϕ with
regard to an extension map E, namely �ϕ�E is obtained according to the
compositional denotations of the operators and by looking up the exten-
sions of the operands from the extension map E, as follows:

�and(ϕ, ψ)�E = �ϕ�E ∩ �ψ�E�∏
i

ϕ

�
E

=
⋂
i

�ϕ�E

�or(ϕ, ψ)�E = �ϕ�E ∪ �ψ�E�∑
i

ϕ

�
E

=
⋃
i

�ϕ�E

�make[μ1, . . . , μm](φ)�E = {〈tμ1 , . . . , tμm〉 ∈ Hm |∃〈t1, . . . , tn〉 ∈ �φ�E}

or if we define more explicitly for make:

�make[μ1, . . . , μm](φ)�E = {〈t′
1, . . . , t′

m〉 ∈ Hm |
∃〈t1, . . . , tn〉 ∈ �φ�E such that for 1 ≤ i ≤ m if μi ≤ n then t′

i = tμi}

Analogously to that of Tord
P , the power function of Tcomb

Pcomb
is defined

similarly:

Definition 2.2.11. The powers Tcomb
Pcomb

↑ : N → E for the combilog op-
erator are constructed as iterated mappings of extension maps into exten-
sion maps defined as follows, where Pcomb refers to a combilog program
with m predicate definitions.

Tcomb
Pcomb

↑ 0 =
m⋃

j=1
{pj �→ ∅}

Tcomb
Pcomb

↑ (i + 1) = Tcomb
Pcomb

(Tcomb
Pcomb

↑ i)

Tcomb
Pcomb

↑ ω =
m⋃

j=1
{pj �→

∞⋃
i=0

(
(Tcomb

Pcomb
↑ i)(pj)

)
}

Note that in the last equation above, the intention is to look up the
extension mapped to a pj for every iteration, and then to take their union.
This is slightly more involved than the counterpart for definite clauses,
where taking the union of every step is sufficient.

Definition 2.2.12. Extension maps ei can be defined in terms of Her-
brand interpretations I and vice versa by:

p(t1, . . . , tn) ∈ I ⇐⇒ 〈t1, . . . , tn〉 ∈ E(p).
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These mutual definitions give rise to two functions ext and int, being each
others inverse such that

ext(I) = E

int(E) = I

The connection between the immediate consequence operator Tord and
the immediate extension operator Tcomb is manifested by Theorem 2.2.2
[51].

Theorem 2.2.2. The least fixpoint of an ordinary logic program P is
equal to the least fixpoint of the corresponding combilog program comb(P).

Tcomb
comb(P) ↑ ω = ext

(
Tord

P ↑ ω
)

Proof of Theorem 2.2.2: Since both power functions Tord
P ↑ i and Tcomb

comb(P) ↑
i are defined inductively, we shall prove their equality by induction. First
we show that they are equal at i = 0, and also that assuming they are
equal at any step i, they will be equal at the following step i + 1.

Induction Base:

Tcomb
comb(P) ↑ 0 = ext

(
Tord

P ↑ 0
)

Proof of induction base: Beginning with the base case of the power func-
tion from Definition 2.2.11:

Tcomb
comb(P) ↑ 0 =

m⋃
j=1

{pj �→ ∅}

by Definitions in 2.2.12:

= ext(int(
m⋃

j=1
{pj �→ ∅}))

= ext(∅)
by Definition 2.1.21:

= ext
(
Tord

P ↑ 0
)

Note that,

int(
m⋃

j=1
{pj �→ ∅}) = ∅
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since if E =
⋃m

j=1{pj �→ ∅}, for each j (1 ≤ j ≤ m), the lookup from the
extension map, E(pj) = ∅. Which entails, through Definition 2.2.12, the
union of individual extensions to be empty, hence I = ∅.

Induction Hypothesis:

Tcomb
comb(P) ↑ i = ext

(
Tord

P ↑ i
)

Induction Step:

Tcomb
comb(P) ↑ (i + 1) = ext

(
Tord

P ↑ (i + 1)
)

Proof of induction: Let us show the equality in two directions, ⇒ and ⇐,
separately.
For ⇒ assume a tuple 〈t1, . . . , tn〉, such that

〈t1, . . . , tn〉 ∈ Tcomb
comb(P) ↑ (i + 1)(pj)

then either (i) or (ii):
(i) The tuple belongs directly to the preceding step:

〈t1, . . . , tn〉 ∈ Tcomb
comb(P) ↑ i (pj)

by the induction hypothesis,

pj(t1, . . . , tn) ∈ Tord
P ↑ i

and by monotonicity,

pj(t1, . . . , tn) ∈ Tord
P ↑ (i + 1)

(ii) The tuple is an immediate consequence of a predicate body in the
preceding step. Assuming

(pj �→ �ϕ�) ∈ Tcomb
comb(P) ↑ i

and

〈t1, . . . , tn〉 ∈ Tcomb
Pcomb

(Tcomb
Pcomb

↑ i)(pj)

then the tuple must be in the extension of predicate body calculated
with regard to the extension map in the preceding step:

〈t1, . . . , tn〉 ∈ �ϕ�Tcomb
Pcomb

↑i

then by Lemma 2.2.1:

pj(t1, . . . , tn) ∈ Tord
P ↑ (i + 1)
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For ⇐ assume a tuple 〈t1, . . . , tn〉, such that

pj(t1, . . . , tn) ∈ Tord
P ↑ (i + 1)

then either (i) or (ii):
(i) The tuple belongs directly to the preceding step:

pj(t1, . . . , tn) ∈ Tord
P ↑ i

and by the induction hypothesis,

〈t1, . . . , tn〉 ∈ Tcomb
comb(P) ↑ i (pj)

and by monotonicity:

〈t1, . . . , tn〉 ∈ Tcomb
comb(P) ↑ (i + 1)(pj)

(ii) There is the following ground clause in Γ(P):

pj(t1, . . . , tn) ←
qι1(t11 , . . . , t1arity(qι1 )), . . . , qιβι

(tβι1 , . . . , tβιarity(qιβι
)) ∈ Γ(P)

and for 1 ≤ κ ≤ βι,

qικ(tκ1 , . . . , tκarity(qικ )) ∈ Tord
P ↑ i

or equivalently,

〈tκ1 , . . . , tκarity(qικ )〉 ∈ �qικ�ext(Tord
P ↑i)

then by Lemma 2.2.1,

〈t1, . . . , tn〉 ∈ Tcomb
comb(P) ↑ (i + 1)(pj).
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Lemma 2.2.1. Assume a tuple t such that

〈t1, . . . , tn〉 /∈ Tcomb
comb(P) ↑ i(pj)

and thus by the induction hypothesis,

pj(t1, . . . , tn) /∈ Tord
P ↑ i

then the following holds:

〈t1, . . . , tn〉 ∈ Tcomb
comb(P) ↑ (i + 1)(pj) ⇐⇒ pj(t1, . . . , tn) ∈ Tord

P ↑ (i + 1)

Proof of Lemma 2.2.1. Consider the following aggregate form of an ordi-
nary predicate definition:

pj(Xσι1
, . . . , Xσιn

) ←
γ∨

ι=1

βι∧
κ=1

qικ(Xικ1
, . . . , Xικarity(qικ )

)

corresponding to the canonical form of a Combilog predicate definition:

pj ←
γ∑

ι=1
make[σι1 , . . . , σιn ](

βι∏
κ=1

make[πικ1
, . . . , πικ#Varsι

](qικ))

A tuple 〈tσι1
, . . . , tσιn

〉 is found in the calculation of a predicate body with
regard to the extension map in the preceding step,

〈tσι1
, . . . , tσιn

〉 ∈�
γ∑

ι=1
make[σι1 , . . . , σιn ](

βι∏
κ=1

make[πικ1
, . . . , πικ#Varsι

](qικ))
�

Tcomb
comb(P)↑i

if and only if it is the result of, κth conjunction of the ιth disjunction, for
a fixed ι where 1 ≤ κ ≤ βι:

〈tπικ1
, . . . , tπικ#Varsι

〉 ∈
�

make[πικ1
, . . . , πικ#Varsι

](qικ))
	

Tcomb
comb(P)↑i

which, considering the first rewriting rule from the previous section:

p(Xσι1
, . . . , Xσιn

) ←
γ∨

ι=1

βι∧
κ=1

qικ(Xικ1
, . . . , Xικarity(qικ ))

⇓ step 1, inner makes
p(Xσι1

, . . . , Xσιn
) ←

γ∨
ι=1

βι∧
κ=1

make[πικ1
, . . . , πικ#Varsι

](qικ)(Xπικ1
, . . . , Xπικ#Varsι

)
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holds if and only if, the unmodified (pre-make) tuple 〈tικ1
, . . . , tικarity(qικ )

〉
(for 1 ≤ κ ≤ βι) is in the extension of the literal qικ with regard to the
extension map in the preceding step:

〈tικ1
, . . . , tικarity(qικ )

〉 ∈ �qικ�Tcomb
comb(P)↑i

equivalently, by the induction hypothesis, if and only if

qικ(tικ1
, . . . , tικarity(qικ )

) ∈ Tord
P ↑ i

which considering the conjunctive clause

pj(tσι1
, . . . , tσιn

) ←
βι∧

κ=1
qικ(tικ1

, . . . , tικarity(qικ )
) ∈ Γ(P)

holds if and only if the modified (post-make) tuple, as a ground atom of
pj , exists in the interpretation in the succeeding step:

pj(tσι1
, . . . , tσιn

) ∈ Tord
P ↑ (i + 1)

With that, the model-theoretic equivalence of least fixpoints of a cor-
responding combilog and definite clause program is established. This
equivalence is not literal, due to the difference in structure between an
ordinary interpretation and an extension map, but their isomorphism is
trivially observable through Definition 2.2.12.

In the next section, we will observe the execution of combilog pro-
grams through a meta-interpreter and conclude the semantics of com-
bilog.

2.2.9 Execution of combilog programs
combilog predicate expressions are executed through SLD Resolution
through a meta-interpreter written in Prolog, in line with the semantics
of the language that is equivalent to definite clauses.

The meta-interpreter consists of a predicate named comb, where the
first argument is a term in the object language, that is, a combilog
predicate expression given as a complex term, and the second argument
is a list containing the object language arguments. The predicate comb
stands for the application of given predicate expression to the given ar-
guments. Warren’s earlier work outlines this approach for implementing
higher-order constructs in Logic Programming through an apply predicate
[121]. In our implementation, this corresponds to the comb predicate, in
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order to differentiate it from the cnp interpreter which is of concern in
later Chapters 5 and 7.

For example, the elementary predicates id and cons are implemented
as follows:

comb(id, [X, X]).
comb(cons, [X, T, [X|T ]]).

The operators of the language correspond to separate clauses of the
comb predicate. For example, the and operator employs the higher-order
arguments P and Q as operand predicate expressions within the complex
term in the first argument:

comb(and(P, Q), Args) ← comb(P, Args) ∧ comb(Q, Args).

Similarly, the foldr operator employs higher-order arguments, P for
recursive case, and Q for the base case, implemented as two clauses:

comb(foldr(P, Q), [Y, [], Z]) ← comb(Q, [Y, Z]).
comb(foldr(P, Q), [Y, [X|T ], W ]) ← comb(foldr(P, Q), [Y, T, Z]) ∧

comb(P, [X, Z, W ]).

The meta-interpreter is given as a Prolog program in Appendix B.

2.3 Program synthesis using a reversible
meta-interpreter

For an object language L, the provability relation of L can be con-
structed as a demonstration predicate demo(PL, G) where PL is a meta-
representation of a program P in L and G is the meta-representation of a
goal G. This demo predicate stands as a meta-interpreter, which succeeds
only if with some substitutions θ the goal follows from the given program,
PL � Gθ. This approach to meta-logic programming was first described
by Kowalski [60].

The meta-interpreter can be implemented as a reversible predicate, in
which case can work in the reverse direction. Instead of taking a program
P and goal G to produce substitutions θ to satisfy P � Gθ, it can be used
to input a goal G to find a program P that satisfies P � G.

Exploitation of a reversible meta-interpreter was described by Numao
and Shimura [80] as a part of a system for explanation-based learning.
The figure from this work which explains the use of a meta-interpreter in
reverse direction is given in Figure 2.1. Similar approaches were developed
by Sato [102], Christiansen [21, 22, 23], and Hamfelt and Nilsson [45, 46],
and recently by Muggleton [74].
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Figure 2.1. Reversible Interpreter figure from Numao and Shimura [80]

Hamfelt and Nilsson’s approach CombInduce is distinct from the oth-
ers in that they assume a strictly compositional language void of free
variables with a dual of generic list recursion operators foldl and foldr .
These grounds prove to enrich the capabilities for synthesis. Since the re-
cursion operators are also compositional, the given examples of program
data can be decomposed according to the semantics of the operators, ob-
taining reduced examples for operand predicates which can be plugged-in
as operands of the fold operators [50].

2.4 Summary
In this chapter, we first looked into essential concepts in Logic Program-
ming, including model-theoretic and proof-theoretic semantics. Second,
we described the structure of combilog programs, including the ele-
mentary predicates, logic and generalized projection operators, and the
recursion operators.

We followed with the transformation from definite clauses to com-
bilog clauses in the canonical form, and finally gave the fix-point cor-
respondence of definite programs and the combilog programs. Finally
we briefly described the concept of program synthesis using reversible
meta-interpreters.

This chapter did not contain any novel contributions, but it stands as
a theoretical background for Logic Programming and combilog, and as
a reference for later chapters.

In the following chapter, we will analyse the combilog syntax from a
usability point of view.
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3. An analysis of combilog notation

In the Introduction, shortcomings of the combilog syntax were briefly
addressed, particularly those related to argument binding. In this chap-
ter, a number of usability factors affected by these shortcomings are inves-
tigated with help from a cognitive load evaluation framework. Finally the
notational issues will be summarized. In the later chapters two separate
approaches to address these issues will be presented.

To discuss these usability factors with any rigor, we require commonly
understood definitions, or a common vocabulary. Green’s Cognitive Di-
mensions of Notations is an appropriate established framework. Intro-
duced in [42] by Green, and later developed by Green and his colleagues
in [44], and [43], Cognitive Dimensions of Notations are an ever growing
list of definitions for usability factors for notations. Initially developed
for a shallow assessment of notation quality, they are now used in many
other usability settings, such as user interfaces, diagrams, and textual
programming languages. They do not by themselves provide an absolute
way to decide if a notational artifact is better than another or describe
how to design better programming languages; but they facilitate these
processes by providing a common and established understanding via dis-
crete factors.

Now, we present some of Green’s cognitive dimensions that are relevant
to our combilogcontext, and discuss shortcomings of combilog syntax
in terms of these. Cognitive dimensions framework is often over-applied
to make a final assessment of language usability, but they are not designed
to serve this purpose [31]. They are intended as a discussion tool only.
Even though a complete sweep of every cognitive dimension ever identified
would give the impression of a complete formal treatment, it would be an
abuse of the framework. Instead, we only employ them as a vocabulary as
we identify the difficulties of the notation. For final assessment we consult
to within-subjects usability tests for both representations we propose,
in later chapters. For a complete list of cognitive dimensions, refer to
[42, 43, 44], and [14] for recent additions.

In the following section, we will look at the following cognitive dimen-
sions originally described in Green’s [42]. The list of dimensions we will
discuss in combilog are:

• Hidden/explicit dependencies
• Viscosity/fluidity
• Premature commitment
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• Role-expressiveness
• Hard mental operations

As an extension, we will discuss the following two dimensions that were
introduced later [44], which we find relevant to issues in combilog’s
notation:

• Closeness of mapping
• Progressive evaluation

In the next section we will discuss these dimensions in relation to com-
bilog notation.

3.1 Cognitive Dimensions of combilog notation
First, let us look at the append predicate in combilog from earlier, given
below:

append ←or(and(make([1, 2, 3], const []),
make([3, 1, 2], id)),

make([1, 2, 3],
and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons))))

This example is not arbitrary. It is the actual implementation of a
fundamental library predicate a programmer would use frequently, anal-
ogous to the list concatenation available in virtually every programming
language. It employs the fundamental concept of recursion. Moreover,
it contains instances of all three functions of the make operator of com-
bilog: reordering, cropping, and expansion.

Using this predicate definition, let us now consider the relevant cogni-
tive dimensions and the usability of the combilog in each dimension.

3.1.1 Hidden dependencies
When a notation does not readily convey the information that is nec-
essary to build a mental model of a concept, it may be said to contain
hidden dependencies. In [42], Green gives the example of spreadsheets,
where each cell’s formula contains references to other cells, but only the
computed value of a cell is visible. The computational dependencies be-
tween different cells is hidden, and it often requires looking into a cell’s
formula to figure out which cells it depends on. An even worse instance
of hidden dependency emerges when the user has to figure out if there are
any cells depending on the particular cell they are about to edit. Green
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cites [16], which finds that even experienced users of spreadsheets browse
around in cells, looking for dependencies on a particular cell.

This example resonates with the use of make operator in combilog, in
particular with expansions which introduce new unbound arguments. In
the predicate definition, we can readily see all the dependencies as source
predicates appearing as a part of the expression body. But the same does
not apply when their arguments are modified. Let us look at a line from
the example above:

make([3, 1, 2], id)

It is clear that this expression depends on a predicate named id, yet
figuring out the intention with the arguments is not straightforward. The
first argument index, 3, is introducing an unbound argument, yet inferring
this information requires the user to know that the id predicate has only
2 arguments; hence a reference to a non-existing third argument results in
an unbound one. Besides unbound arguments, referring to arguments via
their indices does not convey full information about the bound arguments
either. Here, the second argument of the new expression is bound to
the value of 1st argument in id, but no hint is given about what this
1st argument may actually be in its own context, or over what range of
values it may be bound to. While reading or modifying an expression of
this sort, a programmer often needs to browse into the definition of id to
inspect its arguments, which is a symptom of a hidden dependency.

3.1.2 Viscosity
Viscosity of a notation is proportional to how much resistance it shows
to change. Some notations may require more points of intervention than
others, for a similar even seemingly small conceptual change to the codes’s
model. Program code is often destined to change radically over time,
even in the course of the first development phase. For this reason, a more
fluid notation is significantly more accommodating over the lifetime of a
codebase.

There are two separate concerns connected to viscosity in combilog.
The first regards sub-expressions. Complete compositionality in com-
bilog ensures referential transparency, which in turn guarantees a con-
sistent meaning for expressions, regardless of the code context in which
they appear. As an example, let us consider the same line of code again:

make([3, 1, 2], id)
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The line above produces an intermediate predicate body (or expression)
that takes three arguments, where the first argument is unbound, and the
second and third arguments are bound to the same value through the id
predicate. The meaning of the expression does not change as a result
of the host context. This means a programmer may duplicate, move, or
define-and-reuse this partial code freely in a different context with fewer
modification. This a positive viscosity outcome for combilog.

On the other hand, argument binding in combilog reveals a different
difficulty. Let us look at this logic operator and its sub-expressions from
the append predicate defined earlier:

and(make([3, 4, 5, 1, 2, 6], cons),
make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons))

The code uses the cons predicate, which defines three arguments in the
following order: head of a list, tail of a list, and the whole list. Hence,
the first make expression produces six arguments in the sequence: [a
list, unbound, unbound, head of the list, tail of the list, unbound]. The
problem arises when the definition of a source predicate changes. Let
us suppose the argument order of the cons predicate changes due to the
refactoring of a library. The arguments of the new cons predicate are
ordered as: the whole list, head of a list, and tail of a list. This would
require both lines above which use the cons predicate to be rewritten,
since they refer to specific indices in the source predicate. We discuss
this issue under viscosity, but it could also be interpreted an issue related
to the error proneness dimension that we do not observe separately, as it
may result in errors being introduced to code after a change.

These circumstance may occur often during program development, and
the consequences shown significantly increase the viscosity of combilog.

3.1.3 Premature commitment
During the course of typing a program, premature commitment occurs
when the rules of the notation require the programmer to make some
decisions earlier than their natural cognitive plan for the task would oth-
erwise dictate. In [42], Green quotes an anecdote about the development
of speech-recognition software for writing Pascal programs, intended to be
used by people who have difficulty typing. The problem was that the pro-
gram used context-awareness to improve word recognition, and required
that words entered always followed correct Pascal grammar. Consequen-
tially, the programmer had to construct the complete statement, and
also the complete sub-procedure in their mind beforehand in order to use
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speech-recognition. Predictably, at least with hindsight, the software was
not actually usable.

In combilog, a similar issue arises when working with the generalized
projection operator make. Let us look at this earlier example:

make([3, 1, 2], id)

At one point in the composition of the predicate, the programmer
needs to write an expression that will generate an intermediate-predicate
with three arguments where the last two are bound to the same value.
Naturally, the first concept that enters one’s mind is equality, followed
by the id predicate which is the implementation of equality. In the usual
left-to-right typing environment, the programmer is requested to first
decide the specific reordering, cropping or expansion plan and then the
correspnding index list for the make operator, before actually typing the
name of the id predicate.

This effect is magnified with nested applications of the make operator.
Before sub-expressions are composed, their argument order and count
have to be decided. Let us refer back to the second part of the append
example presented earlier:

make([1, 2, 3],
and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons)))

In the code above, the first instance of the make operator takes the first
three arguments of the following expression, and crops out the rest. At
this point, the programmer would have to decide how many intermediate
arguments the sub-expression has, and which of those will be relevant to
the outer context.

In this case, for example, the arity of the predicate expression produced
by the and operator is six, even though only the first three of these
arguments are projected by the containing make([1, 2, 3], . . .) operation.
The reason for allocating the extra three arguments is establishing some
argument bindings that are irrelevant to the outer context. For example,
in the context of the and operator, the second argument of the first cons
component is aligned with the first argument of the append component.
Due to the lack of variables, allocating these arguments is necessary, and
this necessity requires the user to plan ahead how many of these auxiliary
arguments to use. Index list of the make operators are affected as a
result, since their lengths and indices will be affected by the number of
arguments. For example, if there were 7 arguments in total, the index
list of the make operator that projects the cons (line 2) would have been
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[3, 4, 5, 1, 2, 6, 6] instead. This often requires the programmer to devise a
mental plan for the entire expression before typing, hence prematurely
committing to that plan.

3.1.4 Role-expressiveness
Role-expressiveness is one of the dimensions introduced in Green’s original
work [42]. It questions if the components of the notation convey their
role in the semantics efficiently. A common example is the flowcharts
often used to describe algorithms. Some semantic components of a flow-
chart, such as conditionals are representative of their function. On the
other hand, some components such as loops are not. In order for the
reader of a flowchart to find a loop, he/she has to study a fragment of
the flowchart and look for patterns that form a loop. As a result, while
flowcharts are role-expressive for a small range of essential operations,
they are not role-expressive for higher-level patterns, such as loops or
forks in the algorithm.

In combilog, most operators can be considered role-expressive. The
logic operators and the recursion operators have particular purposes, and
they are consistently used for these purposes. One issue we can note is
with the make operator. This operator can be used for multiple functions,
including adding arguments (expanding), removing arguments (cropping),
or reordering them. But the notation does not make it obvious which of
these operations are at play at a given make operation. The user has to
study the indices, and the context, in order to find out which role(s) a
particular make operator performs.

3.1.5 Hard mental operations
This dimension covers those aspects of a notation that requires the reader
to perform difficult mental operations to gather the information that is
not conveyed directly by the notation, but is fundamental to understand-
ing the meaning. The second part of the append predicate is a good
candidate to demonstrate this dimension:

make([1, 2, 3],
and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons)))

Let us consider the task of figuring out the binding of the first argu-
ment of the first cons predicate. The make operator that appears before
projects the cons predicate, so that the first argument becomes the fourth
in the newly produced predicate expression. After the logic operator, the
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argument orders are kept consistent, but the outer make crops out the
arguments after the third. Hence, the first argument of the first cons
predicate is encapsulated, and will not be bound by an operator in the
outer context. The fact that tracing even a single argument causes this
much cognitive load is obviously not a desirable property of a notation.

Another aspect of combilog that enhances this effect is the fixed-arity
nature of logic operators. This requires every operand to have the equal
number of arguments, therefore expanding every component predicate to
the same arity. This can be observed in the example above, where each
component predicate is expanded to arity 6. This is a common issue in
relation composition without access to variables, as it becomes difficult to
express the argument mapping between relations in composition. Tarski’s
Relational Calculus is another example of this issue [113], which restrains
the relation composition S ◦ R to only binary relations. In this case, the
second domain of R and the first domain of S are bound to the same
value, resulting in binding of arguments akin to function composition.
For relations of higher arity, it is not straightforward how to establish
the argument mapping. Codd’s Relational Algebra [25] offers a relief with
unordered domains which can be referred by a domain name, where the
relation domains are mapped using their names.

As demonstrated, the argument binding method in combilog needs
a solution, as tracing arguments through make indices creates a high
cognitive load.

3.1.6 Closeness of mapping
A program is intended to reflect an abstract model of a problem solution.
This abstract model is often a mental one, and sometimes a technical,
low-level algorithm. In either case the similarity between the notation
and the abstract model is important for the usability of a programming
language. Green names this measure of similarity closeness of mapping
[44].

In combilog, argument binding requires handling indices. These are
artificial references to the arguments of source predicates, which often
may readily have an intuitive name. Indices convey almost no mean-
ing regarding the arguments they stand for, and introduce a decoupling
between the abstract model and the actual code.
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3.1.7 Progressive evaluation
During development, programmers often feel the need to test an incom-
plete section of code, to verify whether their cognitive model of the code
is in alignment with the actual code. This concept is called progressive
evaluation by Green [44]. It is most useful for novice programmers, since
progressive evaluation helps finding errors in code earlier rather than lat-
ter, and is also useful for assessing the progress of the task at hand, and
maintaining a direction. Debugging also often benefits from partial eval-
uation of code segments.

combilog’s syntax brings both ease and difficulty to progressive eval-
uation. A positive feature of the language is that, since it is completely
compositional, parts of it can be evaluated in isolation without regard to
a context. However, an issue arises if the user would like to evaluate a
logical operator where one of the operands has a syntax error. Let us
consider this somewhat modified example from earlier:

and(make([3, , , 1, 2, ], cons),
make([ , 2, , , 1, 3], append),
make([ , , 3, 1, , 2], cons))

In this case, since the projection indices for the make operators are
incomplete, the logical operator and is also incomplete and cannot be
evaluated. It is possible to imagine a notation that allows the construction
of valid expressions from incomplete sub-expressions.

In combilog, the combination of using indices for projection, and the
requirement of the logic operators to have operands of the same arity
hinders progressive evaluation.

3.2 Summary
In this chapter we identified the shortcomings of the combilog notation
in terms of six cognitive dimensions. The root causes of these shortcom-
ings are summarized in three issues:

I1. The make operator uses indices to represent argument binding. In-
dices are unintuitive and prone to break code undergoing change.

I2. The structure of the make operator is impractical, since it forces
the user to type the projection of arguments of a predicate before
the predicate itself. This also limits the use of IDE features such as
predictive typing.

I3. The restriction of the logic operators that makes them deal with
only operands of the same arity makes the notation difficult to un-
derstand and modify. It results in repetitive code to expand com-

70



ponent predicates expressions to the same arity.

In the remaining chapters, we present two solutions to address these
problems. The first solution uses a visual representation side-by-side with
combilog code, and is presented in Chapter 4.

The second solution introduces a new syntax to replace the make op-
erator, and alters the behaviour of the logic operators. This notation is
presented in Chapter 5.
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4. visual combilog

In this chapter we develop a visual representation to augment the experi-
ence of dealing with textual combilog programs. This technique of vi-
sualizing predicate compositions and the accompanying methodology for
interacting with these visualizations, which we call visual combilog,
has been iteratively published in earlier work [82, 83].

In the following sections, we first review visual programming meth-
ods primarily developed for declarative programming, including Bertin’s
work on visual variables. We then present our visual representation of
combilog predicate compositions and illustrate using different predi-
cate definitions. As a proof-of-concept, we implement a split-view editor
of visual combilog that displays the textual combilog code in one
view, and the corresponding visual combilog diagram in another inter-
active view. To determine whether in fact the visual combilog helps
with the comprehension of combilog programs, we present the results
of a user study.

4.1 Visual programming
The appropriate application of visualization to the declarative program-
ming paradigm has been established to increase the human-friendliness
of programs. [15] gives a survey of visual programming methods, and
one of the conclusions is that using text and its visualisation side-by-side
achieves the optimal effect. In our work on visual combilog we follow
this route and combine the conciseness of the textual representation of
combilog with the intuitiveness of a visual one.

Visualization of logic formulas or programs is not a recent develop-
ment. In fact, it pre-dates computer graphics. Peirce established one
of the earliest formalizations of predicate logic in his work on existential
graphs [87, 88, 90], which are the basis of many forms of predicate logic
to this day. Even though there is still a debate about the appropriateness
of visualizations to represent formal notations, especially over concerns
regarding soundness, in her book [106], Shin discusses this in length with
examples and concludes that diagrams are capable of expressing scientific
proofs, let alone logic formulae. Shin claims they also provide a medium
where our visual reasoning skills can assist. Moreover, she provides proofs
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of soundness and consistency for her visual systems based on Venn dia-
grams.

There has been earlier attempts at visualizing logic programming lan-
guages. One of these is Lograph, a visual interactive diagram system
analogous to Prolog programs [9, 28]. It visualizes predicate definitions
on a 2-dimensional canvas using icons to represent body literals and logic
operators, and represents variable bindings with lines (edges) connect-
ing these icons. Another is CUBE, a higher-order logic programming
language that uses a 3-dimensional system [75], implemented in [76]. Vi-
sualizations methods have been applied also to Answer Set Programming,
where an integrated visual editor is used to compose body graphs [36, 37].
The most relevant work is [124], where the object of visualization is also
combilog. In this work, a model of the diagrammatic representation
for combilog is given in terms of object-oriented data structures. The
model can generate combilog code from data structures, but the vi-
sualization is only at a preliminary stage with no implementation of a
graphical user interface.

Our approach differs in a number of aspects from these earlier systems.
Our point of departure is combilog, which fundamentally separates our
work from most of those mentioned earlier. In contrast to the work based
on combilog in [124], we provide a full visualization system and an
implementation of the system that can transform combilog programs
to visual combilog and vice versa, with an accompanying interactive
graphical user interface. In contrast to all previous work, we build our
design of visual combilog on human-centric principles, and assess the
effectiveness of our visual system with a usability trial.

4.2 Visual variables
Encoding information in a graphical manner requires making decisions
on how to associate graphical concepts with the source data. In his work
“Semiology of Graphics” [13], Bertin describes elements of visual represen-
tation as position (horizontal and vertical), size, colour, value (density),
texture, orientation and shape. These elements were later expanded and
came to be called visual variables [55] [64]. Bertin was interested in the
efficacy of visualizations in representing abstract knowledge, and estab-
lished the varying accuracy of each visual variable in representing different
types of information. He counted these types (levels) as selective, asso-
ciative, quantitative, ordinal, and measure (length).

For example, let us imagine a group of objects on a 2-dimensional
canvas. These objects shall be of the same colour, but different shapes,
such as squares, discs, stars or line segments. If we wanted to focus on
the objects that have the same shape at a glance, it would be easy. This
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is because the shape is an accurate visual variable for selective purposes.
On the other hand, if we would like to order these objects, their shapes
would be useless. For more analysis and applications, MacKinlay’s work
in [65] is a good example of how to apply Bertin’s conceptions to visualize
relational information.

In the following section, we will revisit the issues we identified in Chap-
ter 3 and build a notation that makes use of Bertin’s visual variables to
aid the comprehensibility of combilog’s textual notation.

4.3 Representation of visual combilog
In this section, we will build the representation of visual combilog
diagrams step by step, after the analysis we performed via cognitive di-
mensions in Chapter 3. Let us first recall the results of this analysis as
three numbered issues, which we will continually refer back to in this
section:

I1. The use of indices as a part of the make operator is unintuitive.
I2. The syntactic structure of the make operator is not practical.
I3. The use of logic operators is not flexible.
We will address these three issues through visual representation. Let

us begin by listing the three kinds of objects that constitute combilog
programs.

1. Predicate expression. These include elementary predicates, program
predicates, and expressions constructed as a result of a composition
operation (through make, and and or .)

2. make operations. These operations perform the generalized pro-
jection over a predicate expression and produce another predicate
expression.

3. and and or operations. These composition operators are defined
over two or more predicate expressions and produce another predi-
cate expression.

4. foldr and foldl recursion operators.
Let us define the elements of visual representation one by one, covering

each of these combilog constructs.
A predicate expression contains a number of arguments with a specific

order. Therefore, the visualization of a predicate expression needs to
address this. Our design uses the size variable for this purpose (see section
4.2). Each argument of a predicate is displayed with a solid disc of the
same colour with successively decreasing size. The choice of the same
colour is useful because the colour variable is highly selective: our eyes
can focus on a specific colour easily, using a visual search for colour, as
shown in [116, 122]. The decreasing size of each argument is determined
according to the following rules. The first argument has an area u, and
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the last argument has an area u/2. All arguments in between have areas
calculated via linear interpolation between u and u/2. In order to visually
associate arguments of a predicate expression, the corresponding discs
are connected with a line. This line is employed for visual selectivity,
redundant to the colour, and do not represent binding between arguments.
A predicate expression with 3 arguments, with orange colour assignment
is displayed in Figure 4.1. This diagram only shows a predicate with three
arguments, and no bindings between them.

Figure 4.1. Visual representation for a predicate expression with 3 arguments.

In the next step, we will display a combilog predicate definition that
consist only of an assignment, that is,

r ← p

While we describe the example diagrams, we will refer to the predicate
or predicate expression being defined as the target predicate, and pred-
icate expression(s) in the body as the component predicates. In the ex-
ample above, the target predicate is r, and the single component is p.
Assuming p has three arguments, the target predicate r also has three
arguments. Since r is also a predicate expression itself, we can represent
it also with three discs of decreasing size. In a diagram with multiple
predicates, every predicate is assigned a different colour, and the black
is reserved for the resulting target predicate. It is always planted at the
center of the diagram, and serves as a base for the entire diagram. The
representation of the combilog predicate definition r ← p is given in
Figure 4.2. Note that every disc of p occludes the corresponding disc in
r. This is because assignment r ← p binds the arguments in the same
order with each other. As a logic formula, this could have be written
as ∀X.∀Y.∀Z. r(X, Y, Z) ← p(X, Y, Z). This is the method for visualiz-
ing arguments that are bound together. The discs that represent bound
arguments are drawn as occluding (or touching) each other. When two
circles do not touch, it means the corresponding combilog code does not
bind those arguments; unless, of course, there is a separate id predicate
involved.

The make operator is the fundamental way to manipulate argument
binding in combilog. In our visual representation, we do not employ
a separate visual element for make, but instead we alter the positions of
the discs representing each argument, making one disc visually occlude
the other. The black discs are always displayed in the background as
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Figure 4.2. Visual representation for r ← p where p is a predicate expression
that has 3 arguments.

they belong to the target predicate expression. As a straightforward ex-
ample, let us look at the visual representation of make([1, 2, 3], p), given
in Figure 4.3. Since p has 3 arguments, and the index list of the make
operator includes exactly the index of every argument in increasing order,
the operation has the same semantic effect as the identity, and produces
extensionally the same result as r ← p. Consequentially, the visual rep-
resentation is also identical to Figure 4.2.

Figure 4.3. Visual representation for make([1, 2, 3], p) where p is a predicate
expression that has three arguments.

As a more functional application of the make operator, let us again as-
sume a source predicate p with three arguments. The expression
make([3, 4, 1], p) produces a new predicate expression with three argu-
ments, but now the argument bindings are different. The index list im-
plies that the first argument of the target predicate expression is bound
to the value of third argument in p (reordering), second argument of the
target predicate expression is not bound to the value of any argument of
p (expansion, since 4 > arity of p), and the third argument of the tar-
get predicate expression is bound to the value of the first argument in p
(reordering). Consequentially, the second argument of p is not bound to
the value of any arguments in the target predicate expression (cropping).
The expression is displayed in Figure 4.4. Note that the location of the
target predicate expression (painted in black) does not change as it forms
the base of the diagram.

This method is capable of representing the semantic effect of the make
operator solely by intentionally positioning the discs representing the ar-
guments. All three functions of the make operator (reordering, cropping,
expansion) are covered, and it significantly helps the comprehension of
argument bindings as it is visually evident, and relieves some of the dif-
ficulty related to issues I1 and I2.
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Figure 4.4. Visual representation for make([3, 4, 1], p) where p is a predicate
expression that has three arguments.

Logic operators are displayed with a similar representation, similar to
the identity make. Since there are two separate logic operators, it is
imperative to have a distinct visual representation for each. For this
purpose, we employ the texture variable, as it is highly selective. When a
logic operator is visualized, the base is painted solid black if it is an and
operator, and dashed black if it is an or operator. These are shown in
Figures 4.5 and 4.6.

Figure 4.5. Visual representation for and(s, p) where s and p are predicate
expressions with three arguments.

Figure 4.6. Visual representation for or(s, p) where s and p are predicate
expressions with three arguments.

In Figures 4.5 and 4.6, the operands of the logic operators are predicate
expressions with equal arity, and they are used with no modifications to
their argument order. This is not always the case. The canonical form
of combilog programs, for example, specifies predicate definitions in a
form that has nested applications of the logic operators and the make
operator.

Let us visualize the expression and(make([4, 2, 3], s), make([1, 2, 4], p)),
where the source predicate expressions s and p both have three argu-
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ments. The first make has three indices ([4, 2, 3]): the first (4) produces
an unbound argument, the following two indices produce arguments that
are bound to values of those in s in the given positions. The second
make has three indices as well ([1, 2, 4]): the first two indices produce
arguments that are bound to the values of arguments in p in the given
positions, the last (third) index produces an argument which is bound to
the value of no arguments from p. This expression is visualized in Figure
4.7. As a result, the three arguments of the resulting predicate expression
are bound as follows: first argument is bound to the the value of the first
argument in p, the second argument is bound to the value of the second
arguments in both s and p, and the third argument is bound only to the
value of the third argument in s.

The example in Figure 4.7 reflects two important results of combin-
ing logic operators and the make operator in a single diagram. Firstly,
when the visual representation is used to compose predicate expressions
with a logic operator, the repetitive code which usually arises due to ex-
panding the operands to the same arity is eliminated. By simply leaving
some of the argument discs of the base untouched, an unbound argu-
ment is implied by the diagram. Secondly, by combining two levels of
operations together, the resulting diagram yields a simpler hierarchical
structure than its textual counterpart. This improves the readability of
logic operators: addressing issue I3.

In those cases where a logic operator is the source for a make operator
that performs only expanding or cropping, the make operator can be
incorporated into the diagram with no loss of readability. An example of
this can be seen in the next section, in the visualization of the append
predicate.

Figure 4.7. Visual representation for and(make([4, 2, 3], s), make([1, 2, 4], p))
where s and p are predicate expressions with three arguments.

The recursion operators foldr and foldl in combilog can also be visu-
alized in terms of logic operators and cons, according to their meta-logic
definitions, but this could imply the operators defining the fold can be
modified by the user as well. Therefore we commit to a special visu-
alization of folds. When folds are visualized as a component, they’re
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visualized as an ordinary ternary predicate. When a fold itself is visual-
ized, two joint diagrams are used, one binary corresponding to the base
case Q displayed on the upper part of the visualization, and one ternary
corresponding to the recursive case P displayed on the lower part. For
example, the visualization of foldr(cons, id) corresponds to two separate
diagrams, where the upper one is a visualization of Q ← id, and the lower
one is a visualization of P ← cons.

The representation described here is aimed at local visualizations of
combilog code. When entire programs are considered, there are further
questions to be answered. One of these is the layout problem that arises
when multiple predicates, or nested expressions are involved. Another
is a colouring problem; since in every diagram predicates are assigned
to unique colours, with a large number of predicates involved it is not
obvious how to assign colours while keeping visual complexity low.

We have described construction of visual combilog diagrams for
predicate definition, the make operator, the logic operators, and finally
for the combination of logic operators with instances of the make opera-
tor. We also showed how the fold operators can be reduced to a simpler
visualization. Let us exemplify this representation in the next section.

4.4 Example visual combilog definitons
In this section we will present visual combilog diagrams corresponding
to combilog predicate definitions append and atpos.

4.4.1 append predicate
The append predicate was described in Chapter 2 as an example predicate
definition. Here we revisit this predicate in visual combilog. The
combilog code for append is repeated here in Figure 4.8 for convenience,
and the corresponding visual combilog diagrams are given in Figures
4.9, 4.10, and 4.11.

Note that a single combilog predicate definition can only be repre-
sented by three visual combilog diagrams. The visualization of the
second and operator in fact represents the containing make([1, 2, 3], ...)
operator as well. These kinds of simplifications are more suitable for
instances of make which perform only expansion or cropping, as combin-
ing multiple levels of reordering would render comprehension of diagrams
themselves difficult. An instance of this arises in the atpos example which
follows in the next section.

The smaller blue discs inside the black discs in Figure 4.10 serve the
purpose of relating the colour of this diagram’s target predicate to the
host context in which it appears (Figure 4.9).
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append ←or(and(make([1, 2, 3], const []),
make([3, 1, 2], id)),

make([1, 2, 3],
and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons))))

Figure 4.8. combilog code for the append predicate

Figure 4.9. Visual representation for the top-level or logic operator of the
append predicate given in Figure 4.8

Figure 4.10. Visual representation for the first and operator (base case) of the
append predicate given in Figure 4.8.

Figure 4.11. Visual representation for the second and operator (recursive case)
of the append predicate given in Figure 4.8
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4.4.2 atpos predicate
Our second example is the atpos predicate, which describes the relation
between a list, its positions and elements at those positions. The predicate
definition assumes the existence of a library predicate called length with
two arguments: the first argument is a list, and the second argument is
the number of items in that list.

The atpos predicate can be displayed in a single diagram given in Fig-
ure 4.13, but since the topmost make operator is a reordering operation,
comprehending the overall structure of the atpos predicate is more diffi-
cult than the append predicate. However, it still offers some help with
figuring out the individual argument bindings. For example the second
argument of the atpos predicate is bound to the value of the second ar-
gument of the length predicate. While this is difficult to Figure out from
the combilog code in Figure 4.12, it is straightforward to see from the
visual combilog diagram in Figure 4.13.

atpos ← make([3, 6, 4], and(make([1, 2, 3, 4, 5, 6], append),
make([4, 3, 5, 1, 2, 6], cons),
make([1, 3, 4, 5, 6, 2], length)))

atpos(L, I, E) ← append(L1 , L2 , L), cons(E, _, L2 ), length(L1 , I).

Figure 4.12. combilog code, and the corresponding Prolog code for the
atpos predicate

Figure 4.13. Visual representation for the atpos predicate given in Figure 4.12

In this section, we presented examples of visual combilog visual-
izing combilog code. We pointed out a graph drawing problem in the
atpos example, and how it can be eliminated to some degree by visualiz-
ing multiple make operators together with a logic operator to minimize
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crossing edges. The solutions to this problem are left as future work. A
formal description of this problem as well as a literature review is given
in [12].

4.5 Graph formalization of visual combilog
A visual combilog diagram is formalized as an undirected simple
graph. The diagram graph G(N, E, E◦) is constructed as a union of
subgraphs G0, . . . , Gn and the addition of binding edges E◦. Subgraph
G0(N0, E0) corresponds to the target predicate, and subgraphs
G1(N1, E1), . . . , Gk(Nk, Ek) correspond to component predicates 1, . . . , k
respectively. Let us define the subgraphs and binding edges separately,
and then the diagram graph in its entirety. With these definitions we will
present accompanying visual graph representations that are topograph-
ically similar to visual combilog diagrams given earlier, but lacking
the visual cues such as thickness of lines and size of discs. Moreover, the
argument binding that is represented by touching discs here is shown by
binding edges labeled with the ◦ symbol.

Every diagram corresponds to a composition either in the form of a
single make operator, where the single component predicate is q and the
target predicate is the predicate denoted by application of make:

make([μ1, . . . , μn], q)

or it is in the form of a logic operator with multiple (k) make operators
as operands:

{and/or}(make([μ1,1, . . . , μ1,n], q1),
· · · ,

make([μk,1, . . . , μk,n], qk))

The two forms are treated uniformly, where an index list for a make
is given as Mi = [μi,1, . . . , μi,n], and the component predicate as qi. The
arity of a component predicate qi is denoted as #qi .

Definition 4.5.1. A subgraph Gi(Ni, Ei) with a set of nodes Ni and a
set of edges Ei corresponding to a component qi with assigned colour ci

consists of the following:
• For every argument j of the predicate qi (1 ≤ j ≤ #qi), a node

(ci, j) ∈ Ni

• For every pair of sequential arguments jn, jn+1 of qi, an edge
(ci, jn, jn+1) ∈ Ei.

82



1 2 3

Figure 4.14. Visual graph representation of a ternary predicate with colour
assignment blue.

Example: for a component qi with two arguments and the colour assign-
ment blue, the corresponding subgraph Gi(Ni, Ei) is given as:

Ni = {(blue, 1), (blue, 2), (blue, 3)}
Ei = {(blue, 1, 2), (blue, 2, 3)}

This definition of a subgraph is exemplified as a visual graph in Figure
4.14.

Definition 4.5.2. The set of binding edges E◦ is constructed as follows.
Each of the index lists Mi have the same number (n) of indices given as
μi,1, . . . , μi,n. The number of component predicates is given as k, and the
colour assigned to a component predicate qi is given as ci.

• For every argument position j where 1 ≤ j ≤ n, the set of indices
of corresponding to various μi,j where 1 ≤ i ≤ k and μi,j ≤ #qi is
taken as ◦j. For each pair of indices μi1,j1 , μi2,j2 ∈ ◦j, the set of
binding edges contains an edge (black, (ci1 , μi1,j1), (ci2 , μi2,j2)).

• The set of target predicate argument positions is indexed by j where
1 ≤ j ≤ n. If the composition is immediately under a cropping make
operator, only the argument positions j referred in the index list of
this make operator are taken. For each j, the set of binding edges
contains an edge (black, (black, j), (ci, μi,j)) where μi,j ∈ ◦j.

Definition 4.5.3. The diagram graph G(N, E, E◦) corresponding to a
composition given by make indices M1, . . . , Mk and component predicates
q1, . . . , qk is defined as follows:

• Every component predicate qi is assigned to a distinct colour ci.
• For every component predicate qi a subgraph Gi(Ni, Ei) is constructed.
• For the n-ary target predicate, a subgraph G0 is constructed with the

colour assignment black.
• The set of nodes N is the union of all nodes in the subgraphs, N =

N0 ∪ N1 ∪ . . . ∪ Nk.
• The set of edges E is the union of all edges in the subgraphs, E =

E0 ∪ N1 ∪ . . . ∪ Ek.
• The set of edges E◦ is constructed according to the Definition 4.5.2.
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Figure 4.15. Graph formalization example for the atpos predicate. Component
predicates are assigned to the following colours: append(green), length(orange),
cons(blue)

The visual graph constructed for the atpos predicate given earlier is
shown in Figure 4.15. The edges labeled with ◦ represent argument bind-
ing.

4.6 A split-view editor for visual combilog
In the previous section, we devised a visual system which can represent
combilog program. In this section, we present our split-view editor
that can simultaneously edit combilog programs and the corresponding
visual combilog diagrams. A screenshot of the editor is given in Figure
4.16.

The editor can parse combilog code and automatically generate a
visual combilog program. The reverse is also true, so when the user
manipulates the diagram (e.g. adding arguments, predicate expressions,
logic operators and modifying argument bindings by moving discs around)
the corresponding combilog code immediately reflects the change.

The diagrams generated by the editor are slightly different from those
described earlier. In the editor, the discs representing the arguments
of the base are drawn significantly bigger than those corresponding to
the operand predicate expressions. This is done intentionally to reduce
graphical occlusions, providing a workaround for the graph drawing prob-
lem. For a usability comparison this would have major implications but
the editor is intended as a proof-of-concept for showing the feasibility
of real-time transformation between combilog and visual combilog
programs. A second difference is that the target predicate is coloured
in orange rather than black. The colour black is reserved for highlight-
ing the selected predicate. The arguments of a component predicate are
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Figure 4.16. A screenshot of the split-view editor

not ordered by size, they are instead ordered by directed edges, as in
1 → 2 → 3 for a ternary predicate.

The editor enables some actions to be performed through the diagram
without touching the code. These actions are as follows:
Browsing: When the diagram being displayed contains a logic operator
as a component, the user can click on it and the editor will switch to dis-
playing the selected logic operator instead. This is shown in Figure 4.17
through screenshots. Similarly, the user can right-click on the diagram
and the editor will browse to the outer composition (if there is any).
Adding components: Component predicates or logic operators can be
added through the diagram. When the editor is displaying a logic op-
erator, if the user double-clicks on the diagram an add predicate pop-up
appears. Using this input, the user can add a component predicate, or
anotler logic operator as a component by typing the name of the logic
operator (as in and). Optionally an arity may be specified as well (as in
and/3). This action is demonstrated in Figure 4.18.
Selecting: When the user places the mouse over an element of the di-
agram, such as a predicate, a logic operator, or an argument, the corre-
sponding section of the code is highlighted.

As a proof-of-concept of the visual combilog diagram system, the
split-view editor demonstrates the feasibility of developing a fully graphi-
cal system representing combilog code. The implementation highlighted
the difficulties of a full implementation, primarily the graph drawing prob-
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(a) VC editor displaying definition of p, where and is hovered by the user.
Upon clicking the diagram focuses on the and operator.

(b) VC editor displaying the and operator.

Figure 4.17. Two screenshots demonstrating browsing into a logic operator.

Figure 4.18. Screenshot demonstrating adding a predicate through the dia-
gram.
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lem. Another issue is the lack of an established common data format for
diagrams, as there is with text e.g. ascii and unicode. This makes it
impossible to benefit from tools and operating system capabilities that
are available to text, such as difference tools and cut-and-pasting. These
issues will be discussed further under section 4.9.

In the next section, we present a user study of the visual combilog
notation.

4.7 User study of visual combilog
In this section we present a usability study with the intention of find-
ing out if visual combilog diagrams do in fact help the readability of
combilog programs.

For the experiment we reached out to participants and asked them to
take a test on paper. The test included a brief introduction to combilog
and visual combilog, and afterwards participants were presented with
3 predicate definitions of increasing complexity accompanied by 12 ques-
tions related to the argument bindings established by the definitions.

In order to measure the usability of combilog independently from
visual combilog, two sets of questions were devised: T and V. In part
T, only combilog code was presented for each predicate definition. In
part V, both the combilog code and visual combilog diagram(s) were
included. Since visual combilog is intended to be used alongside with
combilog, we do not attempt to measure it on its own.

To provide the test with controls, we divided participants randomly
into two groups, A and B. Group A answered part T first, then part V;
group B answered part V first and then part T. This control is intended
to factor out the effect of learning the notation as a participant reaches
the second part of the test.

In the following sections we give a description of the predicate defini-
tions and the test questions, and present the results.

4.7.1 Questions
The test is based on three predicate definitions of increasing difficulty.
Variants of these three questions were produced for the parts T and V,
but both variants followed the same structure shown in the following tem-
plates:

1. p ← make([. . .], q)
2. p ← or(make([. . .], q), make([. . .], r))
3. p ← make([. . .], and(make([. . .], q), make([. . .], r), s))
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The first definition has only one instance of the make operator. The
second has two instances of make inside a logic operator. The third has
two instances of make inside a logic operator which itself is inside another
make operator.

Moreover, the index lists of the make operators (shown in the templates
with placeholders ‘[. . .]’) were devised with increasing difficulty as well.
The index list in the first definition only reflects the cropping behaviour
of the make operator. The second reflects both reordering and cropping.
The third reflects all of the three behaviours: reordering, cropping and
expansion.

The 12 questions were designed to reveal the following:
(a) Can the participant tell if particular arguments are bound to the

same value?
(b) Can the participant identify the argument(s) that are bound to the

same value?
(c) Can the participant identify the components that have at least one

argument bound to the same value?
(d) Can the participant work out the arity of the predicate resulting

from the composition?

The questions in the study did not differ between parts T and V. This
was not found necessary since the predicate definitions were different, and
it would have introduced the possibility of bias.

4.8 Results
A total of 20 participants were recruited to take the test. They consisted
mainly of graduate students from a declarative programming course and
a few colleagues (with no conflicts of interest). Out of the participants,
18 were male, 2 were female, and 4 participants were using corrective
glasses.

The study was carried out in a room with an accurate time displayed
using a projector. The participants were asked to write down the time
at multiple points during the test. This was the main method of mea-
suring the duration. The session was supervised but there was no verbal
guidance regarding the contents of the test.

Task time. Participants completed part T (text only) in 9m29s on
average. On the other hand, they completed part V (visuals and text) in
5m6s. This is a 46% decrease in task time with significance level P < 0.01.

Moreover, group A which took part T first finished the whole test in
17m23s on average, in contrast to group B which took the part V first and
finished the whole test in 11m47s, revealing a major advantage in learning
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speed (P < 0.01) when the participants were introduced to combilog in
conjunction with the visualizations.

Difficulty. Out of the 12 questions in part T, participants answered 8.1
questions correctly on average. For part V, the score was 10.1, translating
to 25% more correct answers or equivalently 69% fewer mistakes when
using the visualizations (P < 0.01).

If we look at differing difficulties of each predicate definition, the ques-
tions regarding first and second definitions had 90% correct answers, while
those regarding the third definition had 75% correct answers on aver-
age. This confirms our preliminary experiments using the make operator,
where we observed that nested applications of the operator render the
comprehension of expressions significantly more difficult.

Opinion. At the end of the test, participants were asked two opinion-
based questions and allowed to pick answers from a 5-point Likert scale.
The questions were “1. Accompanied with visuals, the code was easier to
understand.” and “2. Accompanied with the visuals, the code was quicker
to understand.”. For both questions the median response was “Strongly
agree”.

4.9 Summary and conclusions
In this chapter we presented visual combilog, a visual representation
for combilog programs specifically designed to address the issues of
usability in combilog notation reported in Chapter 3.

We put these ideas into practice with the implementation of a split-
view editor. This is an application of visual combilog where it is serves
as an aid for reading and manipulating combilog programs. Finally, we
devised a usability test and presented the results, which show significant
improvements, including a 46% reduction in task time and 69% fewer
mistakes.

These results of the usability test also show that there is significant
room for improvement in combilog notation in terms of usability. Actual
real-world combilog programs, or those produced by inductive synthesis
could be significantly longer and more complex, but we believe we have
successfully isolated the issues regarding the usability of the combilog
notation.

Some expressions, especially for cases of n-ary logic operators (n > 2),
a layout problem arises. If it was not for the simplifications possible in
Figure 4.11, the arguments of the base would have to be laid out in a
different way, for example to radically reduce visual complexity. This
problem is more apparent in the atpos example in Figure 4.13. To this
end, we suggest the use of automatic layout algorithms as employed in [8]
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and [12], but we leave such algorithms for visual combilog as future
work.

Finally, the visualization we present provides a suitable tool to read
combilog programs. However, the effect was only particular to local-
ized views of the program. Every operator of the expression tree can be
visualized, but when we merge the visualizations to span the entirety of a
predicate definition, we are prevented by the principle of compositional-
ity. When arguments that cannot be bound together are displayed on the
same diagram, this may convey the wrong implication to the user. Alter-
native ways of marking the incompatible arguments would be required.
An alternative approach could be lifting the arguments, a transformation
process similar to lambda lifting [54], but this kind of refactoring may re-
sult in significant automatic changes to the code structure. The effect of
such changes require further usability analysis to find out to what degree
the users may tolerate them.

For future work, alternative uses of these visualizations could be con-
sidered, such as for debugging, or tracing the data flow. Since visual
combilog enables navigating through localized views of the program, it
could be useful for debugging.

From the experiments, we concluded that the perceptional benefits of
a diagrammatic notation are significant. But some practical issues persist
surrounding day-to-day use. These issues make complete adaptation of
a diagrammatic notation impractical, despite all human-centric benefits
observed in isolation.

1. Diagrams are not as fluid as text on current operating systems.
There is no operating system independent support for copy-and-
pasting. With text it is possible to copy and paste the code into
another application, performing some modifications on the text and
then feeding it back into the original environment. There are no
methods available for pipelining such diagrams. Vector graphics
tools are not yet established enough to be adapted for such uses,
and even if they did they would not be enough to transfer the semi-
otic information reflecting the relation between the visual elements.

2. Patterns of functionality such as Find and Replace for text manipu-
lation are not readily-available for diagrams. Similar features would
have to be implemented on a case-by-case basis and would only be
available on the specific development environment on which they
are implemented.

3. Tools surrounding text-based programming are not established for
visual programming. While tools such as code validation; difference
comparison; merging and version control are readily available and
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configurable for almost every text-based language; their counter-
parts in visual programming would have to be implemented from
first principles for a diagrammatic system.

Therefore we conclude that it is best to combine visual and textual
notations in a way that makes use of the advantages of both. In the next
chapter we present our work on the textual notation of combilog in
order to achieve some human-centric improvements in the textual domain
as well.
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5. Combilog with Name Projection: cnp

In Chapter 3, we identified some usability issues regarding combilog.
In this chapter, we introduce combilog with Name Projection (cnp), a
variant of combilog intended to improve usability. To this end, we will
first present a set of modifications to combilog syntax, which results in
the proposed cnp syntax. Secondly, we give a description of the syntax
and informal semantics of cnp programs in Section 5.2, which is included
in our recent work in [84] as well. Thirdly, we present the denotational
semantics of cnp programs in Section 5.3. This includes a description of
α-extensions, a specific form of relational extension we use, which permits
compositionality to be maintained as argument names are introduced to
the notation.

Finally, we present rewriting rules between combilog and cnp, and
demonstrate that they can be used to transform cnp programs to com-
bilog programs, and by extension to definite clause programs. We sup-
port these transformations by proving that the least fixpoint of a cnp
program obtained by these transformations is isomorphic to the least fix-
point of the corresponding combilog program.

5.1 Usability improvements over combilog
In this section, we describe a list of changes to combilog syntax. These
modifications are based on the preceding Cognitive Dimensions of Nota-
tions analysis and informal experiments using combilog syntax.

The changes mainly involve the make operator, but they also encom-
pass the specific behaviour of the logic operators, since they need to
comply with the new sort of expressions produced by make projections.

For reference, we shall start with the implementation of the append
predicate in combilog, without consulting to the recursion operators.
Quoting from Chapter 2, Section 2.2.5:

append ←or(and(make([1, 2, 3], const []),
make([3, 1, 2], id)),

make([1, 2, 3],
and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons))))

92



For convenience, let us also repeat the equivalent definition in Prolog:

append(L1, L2, L) ←const[](L1), id(L2, L).
append(L1, L2, L) ←cons(X, T, L1),

append(T, L2, Lmid),
cons(X, Lmid, L).

In the following sections we list the changes to the combilog notation
step by step, arriving at the final notation for cnp.

5.1.1 Names for arguments
The use of names as arguments, instead of indices, may help greatly to
eliminate hidden dependencies. Let us first look at the part of the append
predicate we visited earlier:

make([3, 4, 5, 1, 2, 6], cons)

The first argument of the make operator refers to arguments of the
cons predicate by index. Let us assume that cons has names for its argu-
ments, with respect to their original positions:

cons : {a, b, ab}

then in the make projection, we could refer to these arguments by name
instead of indices 1, 2, and 3:

make([ab, 4, 5, a, b, 6], cons)

Now, the reader can immediately tell that the first argument of the
new expression is bound to the same values as the ab argument of the
cons predicate, without browsing into the definition of cons, eliminating a
hidden dependency. The indices 4, 5, and 6 refer to unbound arguments,
and since they do not have a name assigned in cons, they remain as
indices for the time being. In the final notation, we omit these indices
altogether.

This approach requires every argument in a predicate expression, and
arguments of its sub-expressions, to be assigned names. This is easy to
achieve for elementary predicates, by introducing argument names into
their definitions. But as the original combilog operator make reordered
arguments to align them, we need a means to align the names, since the
logic operators need an indication of which arguments to bind. For this,
we use the �→ symbol for renaming, as in a �→ b to express renaming
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argument a to b. It is crucial to rename the arguments that were in the
same position, to the same name, in order to preserve the semantics of the
predicate expression. If a projection preserves the name, as in a �→ a, we
write it as only a, without the renaming symbol. In the example below,
we look at a code fragment, the recursive case of the append predicate,
which we shall refer to as appendrec:

make([xs, ys, list],
and(make([ab �→ xs, 4, 5, a �→ headxs, b �→ tailxs, 6], cons),

make([4, ys, 5, 6, xs �→ tailxs, list �→ inlist], append),
make([4, 5, ab �→ list, a �→ headxs, 6, b �→ inlist], cons)))

Internally, it contains a logic operator and argument mappings between
a cons predicate, a recursive call to the whole of the append predicate,
and another cons predicate. To the outside context, it only exposes the
arguments named xs, ys, and list, since the outer make operator only
projects those arguments. Figure 5.1 displays a table with all the argu-
ment bindings in the example above.

Operationally, when this definition is used to append a list xs with
another list ys to produce the resultant list list, the first cons unpacks xs
into its headxs and tailxs; the recursive call to append joins tailxs and ys
to produce an intermediate list inlist; and the second cons constructs list
from headxs and inlist.

Context Arguments
cons ab a b
append ys xs list
cons ab a b
and xs ys list headxs tailxs inlist
(final) xs ys list

Figure 5.1. Argument map for the recursive case of the append predicate. The
table shows arguments that are bound to the same values, in the same column.

It is important to note that even though we have introduced identifiers
for arguments, they are functionally different from variables. With vari-
ables, identical identifiers appearing in two or more discrete positions in
the same scope would show a symbolic binding between the arguments.
With identifiers in a projective configuration, this is not the case. This
becomes more evident in a nested application of name such as the example
below (which is not a part of the append predicate):
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and(make([b �→ a, 4], cons),
make([ab �→ a, b �→ b], cons))

For the and operator, the operand predicate expressions’s arguments have
only the names obtained after they’re renamed, not their original argu-
ment names. For example, the second make expression has the argument
names a and b only. In this expression, if b was a variable, b of the first
cons would be bound to the value of b in the second cons; but instead it
is bound to the value of ab in the second cons, through the renaming of
both to a. Therefore, argument names have no scope in the sense bound
variables do.

5.1.2 Unordered arguments
Our notation so far still includes a number of indices for unbound ar-
guments, in order to form components of the same arity for the logic
operators. The existence of names eliminates the need for arguments
with fixed locations. Fixed locations for arguments are used to denote
which arguments should be bound to the same values, as evident in Figure
5.1. But with argument names as a part of the expression, it is possible
to use this meta-information to deduce the bindings. Eliminating the re-
quirement for arguments in a specific order will further reduce both the
premature commitment and viscosity.

Moving from arguments indexed by positions to arguments indexed by
names, requires changing the behaviours of the logic operators. Instead of
binding the arguments with the same location, they will now bind argu-
ments with the same name. As a result, the arguments of a logic operator
expression comprise all the arguments from its components, producing an
auto-expanding effect which removes the manual expansion required by
combilog’s logic operators. This further reduces the hard mental op-
erations encountered by a programmer modifying expression arguments.
We shall call these auto-expanding operators ande and ore, replacing and
and or , respectively.

The auto-expanding logic operators also partially allow progressive
evaluation which speeds up prototyping, as the programmer does not
need to plan argument locations. Some degree of planning is still re-
quired to bind arguments by renaming, but even with an incomplete or
invalid mapping, auto-expanding logic operators would lead to evaluable
code that allows the progressive detection of errors.
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Let us now remove the unbound indices, and convert to an unordered
list for projected arguments:

make({xs, ys, list},
ande(make({ab �→ xs, a �→ headx, b �→ tailx}, cons),

make({ys, xs �→ tailx, list �→ inlist}, append),
make({ab �→ list, a �→ headx, b �→ inlist}, cons))

The use of unordered arguments reduces viscosity by allowing argu-
ment lists of source predicates to be modified or extended while keeping
the dependent code intact. Let us imagine a library change where the
signature of cons changes from cons : {a, b, ab} to a quaternary variant
cons : {head, tail, tailLength, list}. Both in combilog and Prolog, all
the dependent code that uses the cons predicate would have to be refac-
tored, while the cnp code that uses unordered arguments would continue
to work as expected without requiring any modification. This is due to
elimination of tight coupling to source predicates, specifically to arity of
a source predicate and the order of its arguments.

Let us imagine a follow-up scenario, where the newly added tailLength
argument of cons is removed, reverting its signature to
cons : [head, tail, list] again. In this case, all the dependent combilog
and Prolog code that uses the quaternary variant would have to be
altered again to reflect the change in argument number and locations.
Dependent cnp code would not require any modifications and continue
to work, as long as no new code making use of the tailLength argument
had been introduced. We will refer to this feature of the cnp language
as change resilience.

5.1.3 Use of the make operator
So far, we have used the original make operator from combilog, but
modified the way it projects arguments. There are two further aspects
of this generalized projection operator that can be improved to reduce
premature commitment. In the original form, the argument names come
before the source predicate. To better reflect the thought process of a
programmer, we can put the predicate identifier before the argument
projection list. Instead of writing

make({ab �→ xs, a �→ headx, b �→ tailx}, cons)

we can write

make(cons, {ab �→ xs, a �→ headx, b �→ tailx})
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This form is better, but it still requires the programmer to determine
the existence of a projection, by typing ‘make(’ before the predicate iden-
tifier. To avoid this, we can omit an explicit call to the make operator by
making it implicit. Whenever a list of projections appear in brackets after
a predicate identifier or an expression, as in cons {...}, we can interpret
it as an instance of the generalized projection operator make.

After removing the explicit make operator, the recursive append ex-
ample appendrec can be written as:

ande(cons {ab �→ xs, a �→ headx , b �→ tailx},

append {ys, xs �→ tailx , list �→ inlist},

cons {ab �→ list, a �→ headx , b �→ inlist}) {xs, ys, list}

The make operator has three essential behaviours regarding how it mod-
ifies arguments: reordering, cropping and expansion. The new implicit
projection operation does not need to be able to perform expansion, since
that behaviour is taken over by the auto-expanding logic operators. More-
over, because the predicate arguments are unordered in cnp, reordering
of arguments is not possible. This results in a new operator that special-
izes in cropping and renaming. We shall call this new operator proj, short
for projection, and use the prefix notation for formal treatments such as
mathematical proofs and definitions. In code, we shall use the implicit
use demonstrated in the example above.

This final form is the updated syntax we propose as a variant of com-
bilog, which we name Combilog with Name Projection (cnp). A table
displaying how constructs compare in each language can be found in Fig-
ure 5.2. In the table, combilog elementary predicates are given with
their arities, as in id/2 . The new const predicate has two arguments,
A and C. C is the constant, as it also exists in the combilog original,
and A determines the name of the single argument of the predicate. For
example, const(five, 5) produces a predicate where the single argument is
named five, and bound to the value 5.

With all the changes in place, we shall now give the implementation of
the whole append predicate in cnp.

append = ore(ande(const(nil, []) {nil �→ xs},

id {a �→ ys, b �→ list}),
ande(cons {ab �→ xs, a �→ headx , b �→ tailx},

append {ys, xs �→ tailx , list �→ inlist},

cons {ab, a �→ headx , b �→ inlist}) {xs, ys, list}

When the definition of append is observed, the new syntax is not nec-
essarily more compact, but the intention here is improving usability in
terms of readability and modifiability, not necessarily terseness. In the
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practical notation, in order to decrease premature commitment, we have
chosen to write the projection items that project a name as it is, as in
a �→ a as a single a, as a form of syntactic sugar. This is only acceptable
for the practical notation. For formal purposes, we always use the proj
operator explicitly, and every projection item is written in the form a �→ a
or a �→ b. We shall refer to this as the strict notation. Considering this,
the definition of append above would be written in the strict notation as:

append = ore(ande(proj(const(nil, []), {nil �→ xs}),
proj(id, {a �→ ys, b �→ list})),

proj(ande(proj(cons, {ab �→ xs, a �→ headx , b �→ tailx}),
proj(append, {ys �→ ys, xs �→ tailx , list �→ inlist}),
proj(cons, {ab �→ list, a �→ headx , b �→ inlist})),

{xs �→ xs, ys �→ ys, list �→ list}))

Let us give another example, which contains definitions of isParent,
isFather , and isGrandchild predicates. Assuming the parentage and isMale
predicates exist already, with the given signatures:

parentage : {parent, child}
isMale : {name}

Then the predicates would be defined as:

isParent ← proj(parentage, {parent �→ parent})
isFather ← ande(proj(parentage, {parent �→ name}),

proj(isMale, {name �→ name}))
isGrandchild ← proj(ande(proj(parentage, {parent �→ gparent,

child �→ parent}),
proj(parentage, {parent �→ parent,

child �→ child})),
{child �→ name})

In the following sections, we will develop the semantics of cnp, and
formulate the steps to transform from combilog predicates to cnp pred-
icates.

5.2 cnp semantics
In this section, we briefly describe the structure and syntax of cnp pro-
grams, before we move onto the denotational semantics in the next sec-
tion.
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Use combilog cnp
Elementary
predicates

const(C)/1
id/2
cons/3

const(A, C) : {A}
id : {a, b}
cons : {a, b, ab}

Logic operators and
or

ande
ore

Recursion operators foldr
foldl

foldr
foldl

Modifying arguments
· Reordering make −
· Renaming − proj
· Cropping make proj
· Expansion make ande, ore

Figure 5.2. A side-by-side comparison of combilog versus cnp language con-
structs. Predicate or operator signatures are shown as p/m in combilog where
m is the arity, and as p : {a1, . . . , am} in cnp where {a1, . . . , am} is the set of
argument names of p.

The overall structure of cnp programs is identical to combilog. A
cnp program consists of one or more predicate definitions. Each predicate
definition is composed of a predicate identifier (p) and a body (ϕp) which
is a predicate expression. An equals sign (=) is used to assign the body
to an identifier, as shown:

p = ϕp

This notation contrasts with the use of the implication sign (←) in definite
clause programs and combilog. The intention here is to reflect exten-
sional equivalence. The extension of the predicate symbol p is equivalent
to the extension of the body ϕp.

A predicate expression is constructed by the following rules:
• A predicate identifier is a predicate expression. This includes the

identifiers for elementary predicates which are defined as a part of
the cnp language, and the program predicates that are defined as
a part of the program.

• A projection of a predicate expression is a predicate expression.
• A logical composition of two or more predicate expressions using

logic operators and and or is a predicate expression.

Elementary predicates are part of the cnp language and provide prim-
itive functionality. They are identical to the elementary predicates of
combilog, except the arguments have names. Program predicates are
those defined as a part of the program. Projections are expressed through
the proj operator, in the form of proj(E, P ) where E is a source predicate
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expression and P is a set of projection items that can perform selection
or renaming. Basic logic operators are and for conjunction and or for
disjunction. Operators construct predicate expressions syntactically as a
tree, and semantically as a graph since multiple leaves of the expression
tree can refer to the same predicate, or even to the predicate that has the
expression as a part of its body (recursion).

Every predicate expression has a set of names representing its argu-
ments. In an ordinary logic predicate p(X, Y ), we would refer to the
arguments by their position, as in 1st argument or 2nd argument, which
are bound to the values of variables X and Y , respectively. cnp replaces
these numeric positions with nominal positions. A nominal predicate sig-
nature is written as p : {a1, a2, . . .}, where a1, a2, . . . are the names of
arguments of p. This is in contrast to an ordinary predicate signature
such as p/2, which only expresses that p has 2 arguments. Hence, we
refer to the arguments of a cnp predicate expression by their name, as in
‘argument a of E ’, where E is a predicate expression. This method of re-
ferring to arguments by names is akin to the domain-unordered relations
described by Codd in [25].

At this point we should clarify that cnp is variable-free, just as com-
bilog, which means it needs a method for binding arguments of predicate
expressions. This is established through the projection and logic operators
by binding arguments that have the same name. We will give examples
as we progress through the definitions.

Let us now define the elementary predicates of cnp, given by their
nominal signatures:

true : {}
const(A, C) : {A}

id : {a, b}
cons : {a, b, ab}

The predicate true has no arguments and is always true.
The predicate const(A, C) has two meta-variables, where C is a ground

term, and has one argument named A. It provides a way to introduce
constants into a program through the definition of a unary predicate
expression which is true only for the single value C, such as:

isNil = const(nil, [])

The id predicate represents the identity, taking two arguments: a and
b. It is true if and only if the given two values for arguments a and b are
identical.

The cons provides a standard way to work with lists and other data
structures. It has three arguments: a, b, and ab. It is true when the

100



value for the ab argument is the list construction of those given for the
arguments a and b. It is akin to the conventional cons) function found
in LISP. The list construction is semantically denoted with the list con-
struction function (·), but a programmer working with the cnp language
only has access to this function through the cons predicate, as cnp does
not have constructs for dealing with function terms directly.

The projection operator takes a source predicate expression, and a
set of projection items, and produces a new predicate expression where
arguments are bound to values of arguments from the source. Every
projection item relates to an argument from the source, either in the
form of a selection or a renaming. Projection items are mappings in the
form of a �→ b where a is an argument name from the source, and b is the
corresponding new argument name in the resulting predicate expression.
Hence, projection items where a = b perform selection, and those where
a �= b perform renaming.

A projection operation is written as follows, where 〈ai, bi〉 are the pro-
jection items and E is the source expression:

proj(E, {a1 �→ b1, . . . , an �→ bn})

In this form, the proj operator can perform the cropping and renaming but
not the expansion behaviour of the make operator found in combilog.
This expansion behaviour is subsumed by the logic operators in cnp, as
explained later.

For the proj operator, we formally use the strict notation, meaning
we write explicitly ai �→ bi for every projection item i, even if ai = bi.
For every semantic and formal treatment this is necessary in order to
keep the projection set semantically equivalent to a function. But as a
form of syntactic sugar, we define an auxiliary practical notation for proj,
in which we omit one of the names if ai = bi, and omit the projection
operator name. For example, a projection operation written as follows in
the strict notation,

proj(E, {a �→ c, b �→ b})

would be written as follows in the practical notation:

E {a �→ c, b}

The practical notation is reserved for practical uses only, such as plain
text representations. For this reason, we use the practical notation for the
user study in the next chapter, Chapter 6. But throughout this chapter,
only the strict notation is used.

The logic operators provided by cnp are the and operator for con-
junction, and the or operator for disjunction. The logic operators both
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take a list of predicate expressions as operands, and produce a new pred-
icate expression. Both operators are multiary (n-ary, where n ≥ 2). In
the remaining sections, as we define denotational semantics for multiple
logic operators, we only deal with binary variants, but devising multiary
variants in terms of nested applications of the binary ones is trivial.

Logic operators accept operands that are predicate expressions with
different signatures. This contrasts with combilog, where logic oper-
ators only accept operands with equal number of arguments. In com-
bilog, due to the variable-free form, this is necessary for establishing a
binding between the operand expression arguments. Instead in cnp, argu-
ment names act as a clue for deducing a binding scheme. The argument
names of the composed predicate expressions encompass the argument
names of each component (auto-expanding). For every operand expres-
sion, each argument is bound to the value of the corresponding argument
in the composed predicate expression. This establishes indirect bindings
between operand expressions, when they have arguments sharing the same
name. When argument names of the operands are not appropriate for the
intended binding scheme, projection can be applied to one or more of the
operands. This is the main method of binding arguments in cnp, and sig-
nificantly it is done without using variables. The denotational semantics
of projection and logic operators is given in section 5.3.

Multiary logic operators of cnp are written as ande and ore:

ande(E1, ..., En)
ore(E1, ..., En)

The e suffix in the operator names implies auto-expanding behaviour.
In virtually every logic composition of combilog, arguments of the
operands must be reordered, cropped or expanded through the use of
the make operator. As shown in the Chapter 3, this significantly hin-
ders the usability of the language. Through the improvements suggested
in Section 5.1, cnp eliminates most involved cases by eliminating the
necessity to introduce argument names for operands manually.

Due to the new expressiveness gained from argument names, auto-
expanding logic operators form only a single class of many possible name-
aware logic operator classes. Variant logic operators can be derived which
apply alternative argument binding schemes.

cnp provides name-aware counterparts to the list recursion operators
found on combilog. These operators, namely foldr and foldl, are fix-
point combinators that eliminate the need for explicit recursion for single
recursion and data structures constructed using cons. In order to keep
these operators simple, and to avoid further introducing meta-variables
to the operators, the argument names of the operator and the operands
are predetermined, and are as follows:
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foldr(P, Q) : {a0 , as, b}
foldl(P, Q) : {a0 , as, b}

where
P : {a, b, ab}
Q : {a, b}

Intuitively, the argument a0 is the initial term, as is the input list,
and b is the resulting term from the folding operation. The higher-order
arguments P and Q are predicate expressions, where Q is the base case,
and P is the recursive case. foldr passes the value of a0 to Q’s a to get the
first running value. In contrast, foldl passes the second to last running
value to Q’s a to obtain the result of folding. In the most common case,
the base case is the identity predicate (Q = id), which does not modify
the passed value. The recursive case P takes an a and b and produces
an ab. The functionality is narrated here in one direction, but both fold
operators and their operand expressions are multi-directional. Both fold
operators in cnp are identical to their combilog counterparts except
the introduction of argument names. We also include the variant foldr2 ,
which omits the argument a0 and initializes the running value through a
unary base case Q : {b}.

We have given an overview of cnp programs, predicate definitions,
predicate expressions and the operators of cnp. In the next section, we
give a description of the abstract syntax tree of cnp programs.

5.2.1 CNP Syntax
The abstract syntax of cnp programs is given in Figure 5.3. A program
consists of one or more (denoted with the symbol +) predicate definitions
in the form of PredicateId = Expression. An Expression which is the
body of a predicate, often referred to as a predicate expression can be
either one of the operators of the language (proj, ore, ande, foldr , foldl),
a predicate identifier, or an elementary predicate. The logic operators
are treated in their binary versions here and in most other parts of this
document, under the assumption that their multiary variants, as well as
nullary and unary ones can be defined straightforwardly.

The elementary predicate const is parametric, where N is the argument
name and C is the constant. The parameterization is for abstraction
purposes only. When used in a program, the parameters N and C always
have to be ground, as cnp is variable-free. Similarly, in a projection item
in the form of A �→ B, A and B are ground argument names in a valid
cnp expression.
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Program → PredicateDefinition+
PredicateDefinition → PredicateId = Expression

Expression → proj(Expression, {ProjectionItem+})
Expression → ore(Expression, Expression)
Expression → ande(Expression, Expression)
Expression → foldr(Expression, Expression)
Expression → foldl(Expression, Expression)
Expression → PredicateId
Expression → true
Expression → const(A, C )
Expression → id
Expression → cons

ProjectionItem → (A �→ B)

Figure 5.3. Productions for cnp grammar, where + signifies one or more, A,
B, and N stand for argument names, and C a constant term.

We have explained the general features and the syntax of cnp. In the
next section we will describe the denotational semantics of the language.

5.3 Denotational semantics
In this section we give the denotations of the cnp language constructs,
including elementary predicates; the projection operator; basic logic op-
erators and finally the extended logic operators. These denotations differ
from ordinary relational denotations, since cnp predicate expressions con-
tain argument names. Ordinarily, a relational extension would be defined
as a set of tuples, each consisting of a sequence of terms. The terms are
identified by their positions, as in 〈t1, . . . , tn〉. This strict definition of
a relational extension is not sufficient for expressing the denotations in
cnp, as it is necessary to establish a flow of argument names between
operators. For this reason, we define a new kind of relational extension
we will call an α-extension.

Similarly to an ordinary relational extension, an α-extension consists
of a set of α-tuples, akin to a record found in Pascal and many other
languages. An α-tuple slightly differs from an ordinary tuple in the way
that the elements of an α-tuple are located by a name: a first-order
term that consists of an alphanumeric character sequence. Such names
are purely data, or constants, and do not possess a lexical scope. The
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operators of cnp are defined over α-extensions, and they provide the
only way to modify and bind arguments of predicate expressions through
the names embedded in the α-extension. Hence, the argument names are
not variables and variable binding is not applicable to cnp expressions.

In the following sections, after formally defining α-extensions, we will
describe the transformations between α-extensions and ordinary rela-
tional extensions, and show that these transformations form an isomor-
phism, thus establishing that α-extensions are isomorphic to ordinary
relational extensions with respect to name maps that associate argument
names to numeric argument positions. Finally, we will revisit some funda-
mental concepts of Logic Programming such as Herbrand interpretations
and a fixpoint definition of cnp programs.

We shall make a general note about the notation. Making use of argu-
ment names in the equations necessitates an explicit separation between
them and bound variables of a formula. When we use lower case identi-
fiers, such as as or b, these represent argument names. These should be
considered as constants. The identifiers that start upper case, such as A
or Xs stand for the bound variables in a formula.

5.3.1 Semantics of α-extensions
Predicate expressions in cnp carry explicit names for arguments at ev-
ery step of composition. The concept of argument names is analogous
to labels in a record data type, or relational field names similar to the
one in Codd’s relational model in [25, 26]1, specifically to the concept
of domain-unordered relations from [25] where the domains of a relation
are referred to by names instead of positions. For writing denotations
it is thus necessary to use a specific definition of a relational extension
that is both compatible with the names in cnp’s predicate expressions
and also bijectively convertible to the relational extensions in first-order
logic. We will call these name-bearing extensions α-extensions, short for
name-associative extensions, denoted as �E� where E is a cnp predicate
expression. The argument names associated with a predicate expression
are determined by a name map (α), which will be defined in the next
section. When it is useful to be explicit about the name map, we write
it as a subscript to the expression, as in Eα.

In the equations in following sections, we refer to the Herbrand Uni-
verse of ‘the’ program (H). This refers to the Herbrand universe of a
corresponding definite clause program as presented in Chapter 2. A cnp
program is transformable to a combilog program, which in turn is trans-
formable to a definite clause program, which would contain the same
terms, and hence has the same Herbrand Universe.
1Not to be confused with the concept of Alpha expressions defined in [26]
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Conversions to and from α-extensions
In order to establish a formal definition of an α-extension, we need a tool
for converting an ordinary tuple to an α-tuple. Consider the common
form of an ordinary tuple with n elements:

t = 〈t1, . . . , tn〉

The tuple t has the form of a sequence, which is equivalent to a function
whose domain (K) is a continuous subset of natural numbers starting at
1, namely:

t : K → H

where H is the Herbrand universe of the program. With terms t1, . . . , tn ∈
H, ti as a function can be written as:

t(i) =

⎧⎪⎪⎨
⎪⎪⎩

t1, if i = 1
. . . , . . .
tn, if i = n

Based on this understanding of a tuple as a function from a set K of
indices to a set H of terms, we can define an α-tuple as a function from
a set A of alphabetic names to a set H of terms:

tα : A → H

The conversion between the two forms of tuples can be established by
a bijective function α, whose domain is the domain of the α-tuple, that
is, A, and whose range is the domain of t, that is, K:

α : A → K

Since A is a set of unique names, and K is a continuous subset of
natural numbers starting at 1, a bijective name map α can always be
defined, given as many names as there are indices in K.

Definition 5.3.1. A name map α is a bijective function from a set of
names A to a continuous subset K of natural numbers starting at 1. A
name map is compatible with a tuple t if the range of the name map is
identical to the domain of the tuple, and it is compatible for an α-tuple tα

if the domain of the name map is identical to the domain of the α-tuple.

A compatible name map α for a tuple t : K → H is a tool for converting
it to an α-tuple, through function composition:

tα = t ◦ α
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�parentageα� =
{{

parent �→ ‘John’, child �→ ‘Mark’
}
,

{
parent �→ ‘Mary’, child �→ ‘Mark’

}
,{

parent �→ ‘Nigel’, child �→ ‘Stefan’
}
,

{
parent �→ ‘Theodore’, child �→ ‘Stefan’

}}

where
α = {parent �→ 1, child �→ 2}

Figure 5.4. α-extension of the parentageα predicate with two arguments: parent
and child.

The reverse is also true, as the inverse of a name map is a tool for
converting an α-tuple to an ordinary tuple:

tα ◦ α−1 = t ◦ α ◦ α−1

= t ◦ idK

= t

This bijectivity is the basis for the isomorphism between ordinary ex-
tensions and α-extensions. An α-extension that is calculated by compos-
ing every tuple in an ordinary extension with a compatible name map is
isomorphic to that ordinary extension.

Definition 5.3.2. We define an α-tuple, shown as tα, to be a set of
name-value pairs where the names are unique. This qualifies an α-tuple
as a functional relation.

An example is given below, relating the name of a parent and the name
of a child:

tα = {parent �→ ‘John’, child �→ ‘Mark’}

This definition of an α-tuple gives rise to the consequent definition
of an α-extension, which is exemplified in Figure 5.4 for the parentage
predicate.

The difference in the α-extension is that every α-tuple includes argu-
ment names. Also, the order in which argument name-value pairs appear
is not important since α-tuple is defined as a set. The denotational differ-
ence between an ordinary extension is only the exchange of numeric ar-
gument positions with name positions. Yet, the implications are substan-
tial for cnp, equipping it with a pipeline for name-aware cnp operators,
allowing them to omit variables completely, while using a name-based
notation.

107



We have presented the concept of α-extensions, which will be of use
as we introduce the operators of cnp. We have also provided bijective
transformation between α-extensions and ordinary relational extensions.
In the following section, we will define constructs of cnp, starting with
the elementary predicates.

5.3.2 Elementary predicates
We define four elementary predicates which are name-aware variants of
their combilog counterparts.

• The true predicate has no arguments, and is always true.

• The const(A, C ) predicate is true if its single argument named A
has a value identical to C, where A and C are meta-variables in the
formula above. In any valid cnp code, A would be an argument
name, and C would be a constant term. Any predicate expression
written in this way has a single α-tuple in its extension, which maps
the given argument name A to the given constant term C.

• The binary identity predicate id is true if the a and b arguments
have the identical value.

• The list construction predicate cons is true if the value of the ab
argument is the result of applying the list construction function · to
values of the arguments a and b.

The denotations of elementary predicates in cnp, given as α-extensions
can be observed in Figure 5.5. Note that the definition of the elementary
predicate true has ∅ for a name map, since it has no arguments. We have
now defined the elementary predicates available in the language, therefore
we can move on to defining the operators.

5.3.3 Projection operator
The projection operator is the primary tool for manipulating arguments
of a predicate expression. It can eliminate or rename arguments from an
expression, and establish argument bindings between a source expression
Sα and the new predicate expression constructed by using proj.

The proj operator is written as proj(Sα, Ps)αc , where Sα is the source
predicate expression, with an associated name map α, and Ps is a non-
empty set of projection items. The resulting name map of the proj op-
eration is αc. Each projection item is in the form A �→ B, where A is
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�true∅� = {{}}�const(A, C)α1� = {{A �→ C}}�idα2� = {{a �→ C, b �→ C} | C ∈ H}�consα3� = {{a �→ X, b �→ Xs, ab �→ XXs} |
〈X, Xs, XXs〉 ∈ H3 ∧ X · Xs = XXs}

where
H = Herbrand universe of the program

H3 = Tertiary cartesian product of H

α1 = {A �→ 1}
α2 = {a �→ 1, b �→ 2}
α3 = {a �→ 1, b �→ 2, ab �→ 3}

Figure 5.5. Denotations of cnp elementary predicates

an argument name and B is the new name for the argument. A rule of
validity for the projection items is that any argument name from α can
appear only once among the projection items as the first element A. The
same rule of uniqueness applies also to any new name B, since it can only
appear once as the second element of a projection item. This qualifies the
projection items Ps as a bijective function Ps : As → Bs. The domain
of Ps is a non-empty subset of the names in the source expression Sα, or
more specifically the domain of the name map α. With these restrictions
in mind, we can write the denotation of the operator:

�
proj (Sα, Ps)αc

�
=

{
tα ◦ Ps−1 | tα ∈ �Sα� }

where αc = α ◦ Ps−1

The resulting name map associated with application of proj is αc, defined
as the composition of the name map α and Ps−1, which is undefined for
argument names that do not appear in Ps as a new name. This guarantees
that the arguments which are not explicitly projected are omitted in the
new α-tuple. Since composition of two bijective functions is a bijection,
it follows that αc is also a bijection, and is also a valid name map.

As an example of how the proj operator produces a predicate expression
from another source predicate expression, we can look at the α-extensions
of the source and the result. Let us enumerate the α-extension of the
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parentage predicate from earlier:

�parentageα� =
{{

parent �→ ‘John’, child �→ ‘Mark’
}
,

{
parent �→ ‘Mary’, child �→ ‘Mark’

}
,{

parent �→ ‘Nigel’, child �→ ‘Stefan’
}
,

{
parent �→ ‘Theodore’, child �→ ‘Stefan’

}}

where

α = {parent �→ 1, child �→ 2}

In order to define a new predicate parentage2 using a projection of
parentage by selecting the parent argument unmodified and renaming
the child argument to child-name, then the instance of the proj operator
should be written as:

parentage2 αc
= proj(parentage, {parent �→ parent, child �→ child-name})αc

since the projection in the example is

Ps = {parent �→ parent, child �→ child-name}

its inverse is defined as:

Ps−1 = {parent �→ parent, child-name �→ child}

and the name map of the proj operation is calculated as:

αc(A) = α ◦ Ps−1(A)

or equivalently

αc(B) = α(Ps−1(B))

so that

αc(parent) = α(Ps−1(parent))
= α(parent)
= 1

αc(child-name) = α(Ps−1(child-name))
= α(child)
= 2
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and therefore

αc = {parent �→ 1, child-name �→ 2}

and the resulting predicate parentage2αc have the following α-extension:�
parentage2 αc

�
=

{{
parent �→ ‘John’, child-name �→ ‘Mark’

}
,

{
parent �→ ‘Mary’, child-name �→ ‘Mark’

}
,{

parent �→ ‘Nigel’, child-name �→ ‘Stefan’
}
,

{
parent �→ ‘Theodore’, child-name �→ ‘Stefan’

}}

5.3.4 Logic operators
cnp defines two logic operators: ore for disjunction, and ande for con-
junction. The operators take two operands that are predicate expres-
sions, and return another predicate expression. Both perform with the
auto-expanding behaviour, and as a result, argument names in the result-
ing expression will be the union of argument names found in both of the
operands. Here we will define binary versions of these operators, but it
is trivial to devise the multiary versions in terms of the binary ones. The
denotations of the binary auto-expanding logic operators are as follows:

�ande(Rα1 , Sα2)αc� = {tαc ∈ Hαc | (tαc ⊇ tα1 ∧ tαc ⊇ tα2) ∧
tα1 ∈ �Rα1� ∧ tα2 ∈ �Sα2�}�ore(Rα1 , Sα2)αc� = {tαc ∈ Hαc | (tαc ⊇ tα1 ∨ tαc ⊇ tα2) ∧
tα1 ∈ �Rα1� ∧ tα2 ∈ �Sα2�}

where α1 = {a1 �→ 1, . . . , aJ �→ J}
D2 = Dom(α2) − Dom(α1) = {b1, . . . , bK}
αc = {a1 �→ 1, . . . , aJ �→ J, b1 �→ J + 1, . . . , bK �→ J + K}

HJ+K = (J + K)th Cartesian product of Herbrand Universe
Hαc = {U ◦ αc | U ∈ HJ+K}

The name map α1 contains J names, and the name map α2 contains K
names that are different to those in α1, obtained through the set difference
of domains of name maps, that is, Dom(α2) − Dom(α1). As a result, the
name map for the logic operation, that is, αc, has J +K names. HJ+K is
a set of tuples each consisting of J + K terms, each term being a member
of the Herbrand Universe. By composing each member of HJ+K with αc

we obtain a set Hαc of α-tuples, where each α-tuple maps a name from
the domain of αc to a member of the Herbrand Universe.
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For an example, let us first quote the parentage predicate from earlier:

�parentageα� =
{{

parent �→ ‘John’, child �→ ‘Mark’
}
,

{
parent �→ ‘Mary’, child �→ ‘Mark’

}
,{

parent �→ ‘Nigel’, child �→ ‘Stefan’
}
,

{
parent �→ ‘Theodore’, child �→ ‘Stefan’

}}

where
α = {parent �→ 1, child �→ 2}

We shall also define a second predicate teaching which has two arguments,
child and teacher :

�teachingα� =
{{

teacher �→ ‘Dolores Umbridge’, child �→ ‘David’
}
,

{
teacher �→ ‘John Keating’, child �→ ‘Stefan’

}}

where
α = {teacher �→ 1, child �→ 2}

and take the conjunction of the parentage predicate from earlier, and the
new teaching predicate, using the ande operator:

school-recordsαc = ande(parentageα1 , teachingα2)
where

α1 = {parent �→ 1, child �→ 2}
α2 = {teacher �→ 1, child �→ 2}

Let us calculate the denotation of this operation:�
ande(parentageα1 , teachingα2)αc

�
= {tαc ∈ Hαc | (tαc ⊇ tα1 ∧ tαc ⊇ tα2) ∧

tα1 ∈
�
parentingα1

�
∧

tα2 ∈
�
teachingα2

�
}

where α1 = {parent �→ 1, child �→ 2} (J = 2)
D2 = {teacher} (K = 1)
αc = {parent �→ 1, child �→ 2, teacher �→ 3}

HJ+K = H × H × H

Hαc = {U ◦ αc | U ∈ HJ+K}

112



which results in the α-extension:

�school-recordsαc� ={{
parent �→ ‘Nigel’, child �→ ‘Stefan’, teacher �→ ‘John Keating’

}
,

{
parent �→ ‘Theodore’, child �→ ‘Stefan’, ‘teacher’ �→ ‘John Keating’

}}

where
α = {parent �→ 1, child �→ 2, teacher �→ 3}

5.3.5 Recursion operators
The recursion operators are foldr and foldl, which are defined as a part of
the cnp language. These are the counterparts to the recursion operators
in combilog, and operate the same way, except the addition of argument
names.

The name maps for the resulting fold expressions are pre-determined,
as well as the component predicates P and Q. As a result, any component
predicate used with the folds has to comply with these pre-determined
name maps. This is due to a design compromise for avoiding introduction
of another higher-order argument (on top of P and Q) for indicating the
roles of the arguments. Currently, argument a0 refers to the initial value,
argument as refers to the list, and b refers to the result of the folding.
The associated name maps are as follows:

αfoldr = {a0 �→ 1, as �→ 2, b �→ 3}
αP = {a �→ 1, b �→ 2, ab �→ 3}
αQ = {a �→ 1, b �→ 2}

The definitions of recursion operators do not precisely line up with their
counterparts in other languages such as Prolog or Haskell. This is a
result of the intentions behind the invention of combilog, particularly
the synthesis. The fold operators are designed to replicate the character-
istic recursive predicate definitions iterating over lists in definite clause
programs, which consist of a predicate for the recursive case (P ) and a
predicate for the base case (Q). This accommodates simpler predicate
invention for the component predicates during program synthesis.

In their denotations below, the aggregate definitions foldr and foldl
refer to the auxiliary definitions foldr0/foldr i+1 and foldl i/foldl i+1, re-
spectively, where i ≥ 0.
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�foldr(P, Q)� =
∞⋃

i=0
�foldri(P, Q)�

�foldr0(P, Q)� =
{
{a0 �→ Y, as �→ [], b �→ Z} ∈ Hαf

|
{a �→ Y, b �→ Z} ∈ �Q� }�

foldr i+1(P, Q)
�

=
{
{a0 �→ Y, as �→ (X · Xs), b �→ W} ∈ Hαf

|(
∃Z ∈ H s.t.

{a0 �→ Y, as �→ Xs, b �→ Z} ∈ �foldr i(P, Q)� ∧
{a �→ X, b �→ Z, ab �→ W} ∈ �P � )}

�foldl(P, Q)� =
∞⋃

i=0
�foldli(P, Q)�

�foldl0(P, Q)� =
{
{a0 �→ Y, as �→ [], b �→ Z} ∈ Hαf

|
{a �→ Y, b �→ Z} ∈ �Q� }�

foldl i+1(P, Q)
�

=
{
{a0 �→ Y, as �→ (X · Xs), b �→ W} ∈ Hαf

|(
∃Z ∈ H s.t.

{a �→ X, b �→ Y, ab �→ Z} ∈ �P � ∧
{a0 �→ Z, as �→ Xs, b �→ W} ∈ �foldl i(P, Q)� )}

where
H = Herbrand universe of the program

H3 = tertiary cartesian product of H

Hαf
=

{
{a0 �→ A0, as �→ As, b �→ B} | 〈A0, As, B〉 ∈ H3}

There is a variant of the foldr operator, namely foldr2 found in com-
bilog, which is also used here in Chapter 7 for program synthesis. This
variant avoids the foldr argument a0 , and obtains the initial value through
a unary base case Q (as opposed to the binary one in foldr) with a sin-
gle argument named b. Avoiding a redundant set-theoretic definition for
foldr2 , we can define it in terms of operators foldr , ande, and the elemen-
tary predicate id:

foldr2 (P, Q) = proj(foldr(P, ande(Q, id)), {as �→ as, b �→ b})
where
αfoldr2 = {as �→ 1, b �→ 2}

αP = {a �→ 1, b �→ 2, ab �→ 3}
αQ = {b �→ 1}
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With constructs of cnp defined, in the next section we move on to
describing the construction of a fixpoint semantics of a cnp program.

5.4 Fixpoint semantics
The meaning of a logic program is defined model-theoretically, as visited
in Chapter 2. Here we extend the related concepts to cnp, in order to
construct the meaning of cnp programs. Equivalence of a least fixpoint
of a definite clause program and its model-theoretical meaning is an es-
tablished result [120]. Through the earlier work presented in Chapter 2,
the least fixpoint of a combilog program is shown to coincide with that
of a corresponding definite clause program. Here we extend this result
by proving that the least fixpoint of a cnp program coincides with the
fixpoint of a corresponding combilog program, modulo introduction/re-
moval of argument names. This result by extension connects the fixpoint
semantics of cnp programs with definite clause programs.

Towards this result, we first define extension maps, the structure em-
ployed in combilog as a counterpart to interpretations in First-order
Logic. Using extension maps as a domain, we will construct an immedi-
ate consequence operator, and through it establish the fixpoint semantics
as the least fixpoint of a power function that iterates the immediate con-
sequence operator. Differently to combilog, in cnp, extension maps
relate predicate symbols to their α-extensions. For a program Pcnp with
m predicate definitions, the structure of an extension map E is as follows:

E =
m⋃

i=1
{pi �→ eiα}

where pi stands for the ith predicate symbol, and eiα the α-extension
related with that predicate.

Analogous to the combilog extension maps, the lookup of the exten-
sion of a predicate p in an extension map E is given as:

�p�E = E(p)

The immediate consequence operator is a function that computes the
direct logical consequence of a given extension map:

T cnp
Pcnp

(E) =
m⋃
i

{pi �→ �ϕi�E} (5.1)

where pi refers to the ith predicate symbol, ϕi to the ith predicate body,
and �ϕ�E denotes the α-extension of the body ϕ with regard to the given
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extension map E . The extension of a compound expression is calculated
using the denotations of the composition operators where the extensions
of the components are looked up in the given extension map.

The immediate consequence operator yields only one step of implica-
tion. Therefore we define a power function that iterates the immediate
consequence operator. In the base step, the initial extension map asso-
ciates every predicate symbol in a program with the empty set. Then in
each subsequent step, the new extension map grows by incorporating the
newly discovered consequences.

The power function ↑ of the immediate consequence operator T cnp
Pcnp

is
given as:

T cnp
Pcnp

↑ 0 =
m⋃

j=1
{pj �→ ∅}

T cnp
Pcnp

↑ (i + 1) = T cnp
Pcnp

(T cnp
Pcnp

↑ i)

T cnp
Pcnp

↑ ω =
m⋃

j=1
{pj �→

∞⋃
i=0

(
(T cnp

Pcnp
↑ i)(pj)

)
}

Note that in the last equation, extensions for each predicate symbol in
the program have to be looked up in each step separately, before their
union is calculated. It follows that the fixpoint semantics of a cnp pro-
gram Pcnp is given as:

T cnp
Pcnp

↑ ω

In Chapter 2, we presented a similar treatment of fixpoint semantics of
combilog programs. The difference is that the extension maps in cnp
map predicate symbols to α-extensions, while the combilog extension
maps map them to ordinary extensions as relations. For this reason, the
fixpoint semantics of cnp programs has to be defined separately.

In the next section we look into the isomorphic equivalence of fixpoint
semantics of a combilog program and the corresponding cnp program.

5.4.1 Equivalence to Combilog programs
As described in the earlier section, the meaning of a cnp program is deter-
mined as the least fixpoint of the iterations of the immediate consequence
operator through the power function ↑, which relies on the denotational
semantics defined in the Section 5.3. In this section, we present the
transformation steps that obtain a cnp program from a given combilog
program, and we show that the meaning of a combilog program and
the meaning of a corresponding cnp program obtained through the given
transformation steps are isomorphic, modulo introduction or removal of
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argument names, in the sense described under α-extensions in Section
5.3.1,

The recursion operators foldr and foldl and elementary predicates are
excluded from this proof as their denotations are readily near-identical to
their counterparts in combilog.

In both languages, a program consists of predicate-identifier/body as-
signments. In combilog, a predicate body conforms to a canonical form
characterized by an outer disjunction, followed by make operations for
each operand:

or(make([. . .], P1), . . . , make([. . .], Pγ))

where every Pi is a conjunction with βi operands, each containing a make
operator and a predicate identifier qj :

P1 = and(make([. . .], q1,1), . . . , make([. . .], q1,βi))
. . . . . .

Pγ = and(make([. . .], qγ,1), . . . , make([. . .], qγ,βi))

The canonical form of a combilog predicate body is given below. In
the formula, the

∏
symbol is used as the multiary aggregation of the and

operator, and the
∑

symbol is used as the multiary aggregation of the
or operator. The number of operands to the or operator is γ, and the
number of operands to the ith and operator is βi. The arity of each and
operation is relevant to the formula, and is denoted by #i. Similarly, the
arity of the single or operator is n. Operands of each and operator are
denoted with a predicate identifier qi,j , referring to the ith and operations
jth operand. These operands will sometimes be referred to as components.
The canonical form is denoted as follows:

pn ←
γ∑

i=1
make

⎛
⎝[σi,1, . . . , σi,n],

βi∏
j=1

make ([πi,j,1, . . . , πi,j,#i ], qi,j)

⎞
⎠

The integer indices denoted by σi,k and πi,j,k are index lists for the
make operator. The construction of the canonical form was discussed in
Chapter 2 related to Definition 2.2.5.

The canonical form in combilog is based on the standard structure of
definite clauses, but it is not necessarily followed in cnp programs. cnp
predicate definitions have a more relaxed structure, which can contain
only a predicate identifier, a conjunction, a disjunction, or a combina-
tion of these that is not necessarily arranged in the combilog canonical
form. Due to compositionality, any cnp predicate body can easily be
transformed to a form equivalent to the canonical form. For example,
in order to introduce a conjunction instead of a single predicate identi-
fier p, the ande operator can be used with the second operand as true,
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constructing ande(p, true), preserving the original meaning of p. Or, if
the cnp syntax tree is deeper than the depth allowed for by the com-
bilog canonical form, parts of the expression can be assigned to different
predicate identifiers, by applying a simplification transformation such as
Tseitin transformations [117]. Thus, we base this section on the canonical
form found in combilog, assuming any cnp definition can be trivially
transformed to the same form.

Before we follow on to the transformation steps, it is necessary to
set some restrictions on the form of combilog expressions. These re-
strictions have been conventional but not explicitly stated in the earlier
combilog publications.

Restrictions
Let us define the two restrictions that apply to the transformation steps.

Restriction 1 The index list of a make operator should not contain any
duplicate indices. Uses such as make([1, 2, 1]) are not considered valid,
because the index 1 appears twice. The alternative is to use the elemen-
tary id predicate.

Restriction 2 The restriction is regarding the use of indices that are
higher than the arity of the source, such as make([1, 2, 3], q2), in a way
that introduces an unbound argument in the same position in every com-
ponent of a logic operator. Since the arity of q is 2, the third index 3
introduces an unbound argument. For example, in a conjunction, when
every component introduces an unbound argument on the same index, it
results in a newly introduced argument in the head, that is also unbound:

s ← and(make([1, 2, 3], q2), make([1, 2, 3], r1))

The third argument of s is not bound to values of arguments in either q
or r. This is not a useful operation, and omitting it allows us to simplify
the transformation steps. An alternative for establishing the same result
is to project a single argument of the id predicate.

After having clarified the restrictions, we can move onto presenting the
transformation steps.

Transformation steps
The following steps nominal define the transformation steps departing
from a combilog expression in the canonical form given above, to the
corresponding cnp expression, so that:

Ecnp = nominal(Ecomb)
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Step 1. The component predicates qi,j are made α-extensional by
introducing name maps θi,j , which cover the arities of qi,j , by mapping
uniquely chosen names ci,j,1, . . . , ci,j,oi,j to argument indices 1, . . . , oi,j ,
where oi,j is the arity of the component qi,j :

θi,j = {ci,j,1 �→ 1, . . . , ci,j,oi,j �→ oi,j}

The new name-aware components qi,jθi,j
are extensionally isomorphic to

combilog components qi,j , since they only introduce names to argu-
ments. The and operators are also assigned name maps that assign names
to their argument positions, in the same way, each denoted with ηi:

ηi = {bi,1 �→ 1, . . . , bi,#i �→ #i}

The names bi,k can be arbitrarily assigned for the purposes of transforma-
tion, but practically they would be automatically calculated by the ande
operation (to be introduced in Step 3) as a union of all argument names
in all inner proj operations. Similarly, a name map α with uniquely cho-
sen names a1, . . . , an is assigned to the whole expression Ecomb, where n
is the number of arguments in Ecomb, and α is:

α = {a1 �→ 1, . . . , an �→ n}

As a result, the component predicates are replaced with their name-aware
cnp counterparts:

qi,j ⇒ qi,jθi,j

Note that due to the extensional isomorphism between ordinary exten-
sions and α-extensions, discussed under Section 5.3.1 and since the name
maps assigned are compatible and valid, the following extensional isomor-
phisms (∼=) are known between every combilog component qi,j and the
corresponding cnp component qi,jθi,j

:

�qi,j� ∼=
�

qi,jθi,j

	
Step 2. The make operators are replaced with proj operators. The in-

dex lists are replaced with projection sets by using inverses of name maps
θi,j and α, denoted respectively as θ−1

i,j , and α−1. The indices that are
higher than the arity of the source component (πi,j,k > oi,j and σi,k > #i)
are omitted. The only use of such indices is introducing unbound argu-
ments for aligning argument indices with other components (expanding).
This is not a necessity in cnp. We shall refer to the projections of each
component qi,j as inner projection i, j, and to the projection of each con-
junction as outer projection i, j. The cardinality of projection sets are
denoted as fi,j (inner projection i, j), and gi (outer projection i), where
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fi,j ≤ #i and gi ≤ n. The projection sets {vi,j,1, . . . , vi,j,fi,j } (of inner
projection i, j) and {ui,1, . . . , ui,gi} (of outer projection i) are defined as
follows, in relation to the respective index lists {πi,j,1, . . . , πi,j,#i} and
{σi,1, . . . , σi,n} of the make operators. For every projection of a compo-
nent qi,j :

{vi,j,1, . . . , vi,j,fi,j } = {θ−1
i,j (πi,j,x) �→ η−1

i (x) | 1 ≤ x ≤ #i ∧ πi,j,x ≤ oi,j}
and for every projection of a conjunction indexed i:

{ui,1, . . . , ui,gi} = {η−1
i (σ1,x) �→ α−1(x) | 1 ≤ x ≤ n ∧ σ1,x ≤ #i}

For example, an index list such as the one in make([3, 1, 2], q3
1,1) is re-

placed with a projection set {c1,1,3 �→ b1,1, c1,1,1 �→ b1,2, c1,1,2 �→ b1,3},
mapping names from θ1,1 to names from η1. If the component predicate
is binary (q2

1,1), since the indices higher than the arity will be dropped, the
resulting projection set would be {c1,1,1 �→ b1,2, c1,1,2 �→ b1,3}. Note that
any projection set obtained this way is bijective, due to the Restriction
1 and the uniqueness of the argument names. After this step, any make
expression is replaced by a proj operation, where name maps δi,j and εi

are name maps associated with the respective inner and outer projections,
calculated as a result of the projected names.

make([πi,j,1, . . . , πi,j,#i ], q
oi,j

i,j )#i ⇒ proj(qi,jθi,j
, {vi,j,1, . . . , vi,j,fi,j })δi,j

make([σi,1, . . . , σi,n], and(. . .)#i)n ⇒ proj(qiθi
, {ui,1, . . . , ui,gi})εi

Step 3. The logic operator and is replaced with ande, or similarly
or with ore. The operands of ande are proj operations, since the make
operations have been replaced in the previous step. The name maps
associated with the logic operations have been already assigned by Step
1 as ηi for each conjunction i, and α for the disjunction.

When these translation steps are applied, the cnp expression that con-
forms to the canonical form is obtained, where the symbols



and

�
are

the multiary aggregations of the auto-expanding logic operators ande and
ore:

pα ←
γ�

i=1
proj

⎛
⎝

βi
j=1

proj
(
qi,jθi,j

, {vi,j,1, . . . , vi,j,fi,j }
)

, {ui,1, . . . , ui,gi}

⎞
⎠

In the following section we present the theorem of extensional isomor-
phism between combilog and cnp programs.

Theorem of extensional isomorphism
Theorem 5.4.1: A combilog program P and a cnp program PN ob-
tained through the transformation steps nominal are model-theoretically
isomorphic (∼=), and equivalent modulo introduction/removal of argument
names.
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Proof: The model-theoretical equivalence is established through the least
fixpoint of the power function of the immediate consequence operator.
Inductively constructed, the induction base corresponds to the equality
of the base cases of the power functions, which are equal by definition:

T comb
P ↑ 0 =

m⋃
j=1

{pj �→ ∅}

T cnp
Pcnp

↑ 0 =
m⋃

j=1
{pj �→ ∅}

The induction step is stated as:
(
T comb

P ↑ i ∼= T cnp
Pcnp

↑ i
)

⇒
(
T comb

P ↑ (i + 1) ∼= T cnp
Pcnp

↑ (i + 1)
)

which can be proven through establishing that given equivalent extension
maps (E for a combilog extension map, and Eα for a cnp extension
map), the corresponding immediate consequence operators will yield the
equivalent deductions in each step:

(E ∼= Eα) ⇒
(
T comb

P (E) ∼= T cnp
Pcnp

(Eα)
)

The implication follows through definitions of immediate consequence op-
erators of combilog found in Chapter 2 and the cnp counterpart from
the Formula (5.1), given that the transformation steps nominal preserve
the model of any predicate body in the canonical normal form. Even if
the models of individual operators are not preserved identically, preserva-
tion of the model of any predicate body in the canonical normal form is
sufficient, assuming every predicate body is in this form. The canonical
form in combilog contains nested operators, in the order or , make, and,
make, and the component q. The form is two nested applications of what
we shall refer to as half-canonical form, consisting of either or , make, q,
or and, make, q. In Lemma 5.4.1.a, we show that any combilog expres-
sion in the half-canonical form, with two components, when transformed
to a cnp expression using the transformation steps nominal, preserves its
model modulo introduction or removal of argument names. The lemma
generalizes to the multiary form, where the logic operator has more than
two arguments. It follows due to compositionality, if the half-canonical
form preserves its model, its nested applications also preserve their model.
Therefore, any predicate body in the canonical form, when transformed
using the transformation steps nominal, preserves its model.

Lemma 5.4.1.a: A combilog half-canonical-form expression Ecomb,
and the corresponding cnp expression Ecnp, obtained by

Ecnp = nominal(Ecomb)
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are given as using the and and ande as example operators:

Ecomb = and(make([π1,1, . . . , π1,n], qm1
1 )n, make([π2,1, . . . , π2,n], qm2

2 )n)n

Ecnp = ande(proj(q1θ1 , {v1,1, . . . , v1,k})δ1 , proj(q2θ2 , {v2,1, . . . , v2,l})δ2)α

where the arities and name maps are:

m1 : arity of q1

m2 : arity of q2

n : arity of Ecomb, and also of both make s
θ1 : name map of q1θ1

θ2 : name map of q2θ2

δ1 : name map of proj(q1θ1 , {v1,1, . . . , v1,k})δ1

δ2 : name map of proj(q2θ2 , {v2,1, . . . , v2,l})δ2

α : name map of Ecnp

A cnp expression in the half-canonical-form obtained by the transfor-
mation steps nominal is extensionally isomorphic modulo introduction of
argument names (∼=) to the corresponding combilog expression:

t ∈ �Ecomb� iff tα ∈ �Ecnp�
Proof of lemma 5.4.1.a: We shall construct a proof by step-by-step un-
folding every operator in Ecomb and obtaining the extension of the whole
expression, performing the same process for Ecnp as well. Since the cnp
expression is transformed from the combilog one through the trans-
formation steps nominal, the extensions of the original components are
the same. By calculating the extensions of both expressions, at the end,
we shall show that the resulting extensions only differ in that one is the
ordinary extension, and the other is the α-extension for the same relation.

Assume the tuples r and s in the extensions of qm1
1 , and qm2

2 :

〈r1, . . . , rm1〉 ∈ �qm1
1 �

〈s1, . . . , sm2〉 ∈ �qm2
2 �

due to the denotation of the make operator, the extensions of the make s
are calculated as:

�make([π1,1, . . . , π1,n], qm1
1 )n� = {〈rπ1,1 , . . . , rπ1,n〉 ∈ Hn | 〈r1, . . . , rm1〉 ∈ �q1�}�make([π2,1, . . . , π2,n], qm2
2 )n� = {〈sπ2,1 , . . . , sπ2,n〉 ∈ Hn | 〈s1, . . . , sm2〉 ∈ �q2�}

through which we obtain the tuples:

〈rπ1,1 , . . . , rπ1,n〉 ∈ �make([π1,1, . . . , π1,n], qm1
1 )n�

〈sπ2,1 , . . . , sπ2,n〉 ∈ �make([π2,1, . . . , π2,n], qm2
2 )n�
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and through the and operator we obtain:

�and(make([π1,1, . . . , π1,n], qm1
1 )n, make([π2,1, . . . , π2,n], qm2

2 )n)n�
= �make([π1,1, . . . , π1,n], qm1

1 )n� ∩ �make([π2,1, . . . , π2,n], qm2
2 )n�

that if the two tuples r′ and s′ are equal, then there is a tuple t:

〈rπ1,1 , . . . , rπ1,n〉 = 〈sπ2,1 , . . . , sπ2,n〉 ⇒ t ∈ �Ecomb�
where

〈t1, . . . , tn〉 = 〈rπ1,1 , . . . , rπ1,n〉 = 〈sπ2,1 , . . . , sπ2,n〉

which, in relation to the original tuples r and s of the components, can
be written as a function:

t(i) =

⎧⎪⎪⎨
⎪⎪⎩

rπ1,i if π1,i ≤ m1 ∧ π2,i ≤ m2 ∧ rπ1,i = sπ2,i

rπ1,i if π1,i ≤ m1 ∧ π2,i > m2

sπ2,i if π2,i ≤ m2 ∧ π1,i > m1

(5.2)

where a case such as π2,i > m2 ∧ π1,i > m1 is not possible due to Restric-
tion 2.

Next, let us consider the α-tuples of cnp component predicates intro-
duced by Step 1 of the nominal:

rθ1 ∈
�
q1θ1

�
sθ2 ∈

�
q2θ2

�
rθ1 = {c1 �→ r1, . . . , cm1 �→ rm1}
sθ2 = {e1 �→ s1, . . . , em2 �→ sm2}

and let us remember the proj operator:�
proj (Sα, Ps)αc

�
=

{
τα ◦ Ps−1 | τα ∈ �Sα� }

where αc = α ◦ Ps−1

the two proj operations written by the Step 2 of nominal:

proj(q1θ1 , {θ−1
1 (π1,i) �→ α−1(i) | π1,i ≤ m1})δ1

proj(q2θ2 , {θ−1
2 (π2,i) �→ α−1(i) | π2,i ≤ m2})δ2

Note that since θ1, θ2, and α are valid name maps, hence bijective, we
can invert the name maps:

θ−1
1 = {1 �→ c1, . . . , m1 �→ cm1}

θ−1
2 = {1 �→ e2, . . . , m2 �→ em2}

α−1 = {1 �→ a1, . . . , n �→ an}
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which would help to simplify the projection sets as follows:

proj(q1θ1 , {cπ1,i �→ ai | π1,i ≤ m1})δ1

proj(q2θ2 , {eπ2,i �→ ai | π2,i ≤ m2})δ2

using which, we can calculate the sets of names B and D in the name
maps δ1 and δ2:

B = {ai | π1,i ≤ m1}
D = {ai | π2,i ≤ m2}

and the name maps δ1 and δ2 would be:

δ1 = {b1 �→ 1, . . . , bk �→ k}
δ2 = {d1 �→ 1, . . . , dl �→ l}

Note that B ⊆ A and D ⊆ A, where A is the domain of the name map
α. Using these proj operations, we can calculate the following α-tuples
belonging to the extensions of these operations:

rδ1 ∈
�
proj(q1θ1 , {cπ1,i �→ ai | π1,i ≤ m1})δ1

�
sδ2 ∈

�
proj(q2θ2 , {eπ2,i �→ ai | π2,i ≤ m2})δ2

�
rδ1 = {ai �→ rπ1,i | π1,i ≤ m1}
sδ2 = {ai �→ rπ2,i | π2,i ≤ m2}

after which we can move on to the ande operator. Let us remember the
operator:

�ande(Rα1 , Sα2)αc� = {tαc ∈ Hαc | (tαc ⊇ tα1 ∧ tαc ⊇ tα2) ∧
tα1 ∈ �Rα1� ∧ tα2 ∈ �Sα2�}
tα1 ∈ �Rα1� ∧ tα2 ∈ �Sα2�}

where α1 = {a1 �→ 1, . . . , aJ �→ J}
D2 = Dom(α2) − Dom(α1) = {b1, . . . , bK}
αc = {a1 �→ 1, . . . , aJ �→ J, b1 �→ J + 1, . . . , bK �→ J + K}

HJ+K = (J + K)th Cartesian product of Herbrand Universe
Hαc = {U ◦ αc | U ∈ HJ+K}
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which would instantiate to the following, where Rδ1 and Sδ2 are the first
and the second proj operators, respectively.�ande(Rδ1 , Sδ2)α� = {tα ∈ Hα | (tα ⊇ tα1 ∧ tα ⊇ tα2) ∧

tα1 ∈ �Rδ1� ∧ tα2 ∈ �Sδ2�}
tα1 ∈ �Rα1� ∧ tα2 ∈ �Sα2�}

where δ1 = {b1 �→ 1, . . . , bk �→ k}
D2 = {d1, . . . , dl} − {b1, . . . , bk}

α = {a1 �→ 1, an �→ n}
Hn = nth Cartesian product of the Herbrand Universe
Hα = {U ◦ α | U ∈ Hn}

through which we can say, if there is a tuple tα ∈ Hα such that tα ⊇ rδ1

and tα ⊇ sδ2 , it would map all the names in the domain of α to terms
in rδ1 and sδ2 , which we can write as tα = {a1 �→ t1, . . . , an �→ tn}. The
tuple belongs to the extension of the ande operation:

tα ∈
�
ande(proj(q1θ1 , {v1,1, . . . , v2,k})δ1 , proj(q2θ2 , {v2,1, . . . , v2,l})δ2)α

�
where tα is defined as follows, where 1 ≤ i ≤ n:

tα(ai) =

⎧⎪⎪⎨
⎪⎪⎩

rδ1(ai) if ai ∈ B ∧ ai ∈ D ∧ rδ1(ai) = sδ2(ai)
rδ1(ai) if ai ∈ B ∧ ai /∈ D

sδ2(ai) if ai ∈ D ∧ ai /∈ B

(5.3)

which is the conditional definition of the α-tuple tα ∈ Ecnp. We shall
explain how this is isomorphic to the original ordinary tuple t. Through
the definitions of name sets B and D above, we know that:

ai ∈ B ⇐⇒ π1,i ≤ m1

ai ∈ D ⇐⇒ π2,i ≤ m2

and, through the definition of rδ1 and sδ2 , we know that

π1,i ≤ m1 ⇒ rδ1(ai) = rπ1,i

π2,i ≤ m2 ⇒ sδ2(ai) = sπ2,i

therefore, we can replace the conditions ai ∈ B with π1,i ≤ m1, and under
the new condition π1,i ≤ m1, we can replace rδ1(ai) with rπ1,i . Similarly,
we can replace the condition ai ∈ D with π2,i ≤ m2, and under the new
condition π2,i ≤ m2, we can replace sδ2(ai) with sπ2,i , resulting with the
definition:

tα(ai) =

⎧⎪⎪⎨
⎪⎪⎩

rπ1,i if π1,i ≤ m1 ∧ π2,i ≤ m2 ∧ rπ1,i = sπ2,i

rπ1,i if π1,i ≤ m1 ∧ π2,i > m2

sπ2,i if π2,i ≤ m2 ∧ π1,i > m1
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which is the name-aware instance of the original combilog tuple estab-
lished earlier:

t(i) =

⎧⎪⎪⎨
⎪⎪⎩

rπ1,i if π1,i ≤ m1 ∧ π2,i ≤ m2 ∧ rπ1,i = sπ2,i

rπ1,i if π1,i ≤ m1 ∧ π2,i > m2

sπ2,i if π2,i ≤ m2 ∧ π1,i > m1

The isomorphism between tα and t can be observed here, with the
only difference being in their domains, one mapping names ai to terms in
tuples r and s, while the other maps the indices i to the same terms, and
we know, through the Step 1 of nominal, that the names in ai correspond
bijectively to indices i. This result would also be true for an expression
in the half-canonical form using the or and ore operators, albeit the
isomorphic tuple definitions would be different than the and/ande case
presented here.

A point that needs to be clarified is regarding expansion. When one of
the make s in the combilog half-canonical-form introduce an unbound
argument, expanding the component predicate, the corresponding proj
operator omits projecting that argument. But due to the Restriction 2,
each argument in the Ecomb has to be bound to the value of an argument
in at least one component predicate. This makes sure that, for any index
i, if π1,i > m1, then necessarily π2,i ≤ m2, and similarly, if π2,i > m2, then
necessarily π1,i ≤ m1. As a result, at least one of the projection sets will
contain a projection from an argument name in the component predicates
to ai. This makes sure that even though some indices in the make index
lists are dropped by the proj operators, the final Ecnp half-canonical-
expression will contain as many arguments as the original Ecomb.

5.5 Execution of cnp programs
cnp programs are executed the same way as combilog programs, through
a meta-interpreter written in Prolog, which is implemented in line with
the semantics of cnp presented earlier.

The meta-interpreter mainly consists of the cnp predicate, which has
two arguments: the first argument is a complex term that is the predicate
expression in the object language (cnp), and the second term is a list that
contains the object language arguments. The cnp predicate represents the
application of the predicate expression to the given arguments, and only
succeeds when the given cnp predicate expression succeeds for the given
arguments. As with the combilog meta-interpreter discussed earlier
in Chapter 2, this implementation is in line with the earlier work on
implementing higher-order constructs in logic programming [121]. The
cnp meta-interpreter is given in Appendix C.
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As an example, let us observe the implementation of the elementary
predicates, given below. Note that the lower-case argument names (a, b,
and ab) are simple constant terms (atoms), that represent the argument
names embedded in the α-extensions, while the upper-case X and Y are
Prolog variables.

cnp(true, []).
cnp(const(A, C), [A : C]).
cnp(id, [a : X, b : X]).
cnp(cons, [a : X, b : Y, ab : [X|Y ]]).

The implementation also contains a minimal set of library predicates:

cnp(isNil, [nil : []]).
cnp(gt, [a : X, b : Y ]) ← X > Y.

cnp(gte, [a : X, b : Y ]) ← X ≥ Y.

The operators in cnp are represented separate clauses of the cnp pred-
icate. As an example, let us observe the implementation of the foldr
operator:

cnp(foldr(P, Q), [a0 : A0 , as : [], b : B]) ← cnp(Q, [a : A0 , b : B]).
cnp(foldr(P, Q), [a0 : A0 , as : [A|As], b : B]) ←

cnp(foldr(P, Q), [a0 : A0 , as : As, b : Bmid]) ∧
cnp(P, [a : A, b : Bmid, ab : B]).

The logic operators ande and ore are defined up to 5 operands. The list
recursion operators foldr and foldl are defined, as demonstrated above,
as well as some variants of the foldr operator, that are foldr2 and natrec.
One variant of the foldl operator is also included, that is the filter oper-
ator. A dynamic defPredicate predicate is auxiliary, and maps predicate
identifiers to bodies, for facilitating predicate lookup.

5.6 Summary
In this chapter, we revisited the issues identified in Chapter 3, and sug-
gested improvements which can be summarized as using unordered names
instead of argument positions, and moving some functionality (expanding)
to the logic operators. In this manner, we established a new language,
Combilog with Named Projection (cnp).

We defined the structure of cnp programs and presented the denota-
tional semantics of language constructs, introducing a new sort of rela-
tional extension, α-extensions, which is a result of using names for argu-
ment positions in a tuple. We showed that the conversion of an ordinary
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relational extension to an α-extension is straightforward and bijective,
using a compatible name map.

The auto-expanding logic operators ore and ande were possible due to
the α-extensions. These enabled us to use arguments’ names as a hint for
establishing bindings without requiring a strict alignment of arguments
as it is done in combilog, which has been leading to boilerplate code, as
noted in Chapter 3. Moreover, the operators ore and ande pave the way
for a wider range of name-aware operators. One of these may be oro and
ando, which semantically perform the same operations but project only
the unbound (outer) arguments from both operands. Similarly, the pair
ori and andi would project only the bound (inner) arguments. This ap-
proach may be extended to a schema matching technique, where natural
linguistic reasoning on argument names and even ontologies are explored.

In Section 5.4.1, we described the transformation of combilog expres-
sions to cnp expressions through a canonical normal form. Exploiting
the nested structure of the canonical normal form, we moved onto us-
ing a half-canonical-form in order to be able to write a shorter proof for
equivalence of combilog and cnp program meanings. Using the trans-
formation steps and the denotations of cnp operators, we showed that
for every behaviour of the operators, the cnp program will result in an
equivalent meaning, modulo the introduction of argument names.

Finally we described the execution of cnp programs through a meta-
interpreter written in Prolog.

This chapter concludes the semantics of the cnp language. In the next
chapter, we will discuss and evaluate the usability of the cnp notation,
and in the following chapter, we will present an application of cnp for
program synthesis, as a demonstration of the persisting compositionality
principle.
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6. Usability of cnp syntax

In the earlier chapters, we have identified the issues regarding the us-
ability of combilog’s original syntax, and addressed these issues while
developing a new notation we called cnp. In this chapter, we design an
empirical approach to evaluate if cnp objectively compares to Prolog
in basic usability factors, namely comprehensibility and modifiability.

Our choice of reference language is Prolog because it represents argu-
ment binding via variables, which seems to be a common practice in the
larger family of declarative languages. Ultimately we would like to find
out if a variable-free representation can be close to one with variables in
terms of usability. Moreover, the semantics of Prolog programs are in
line with definite clause programs, much like combilog and cnp. Also,
Prolog is one of the most established languages in the family of Logic
Programming languages, followed by Mercury [110].

There are many factors that determine the absolute usability of a pro-
gramming language. The list starts with concerns such as availability
of libraries, community, documentation, learning curve, range of prob-
lems that the language is suitable for, and more factors on the general
day-to-day utilization of a programming language. Then follows the core
concepts of usability regarding the textual representation of the language.
This is our main concern in this study. We intend to look at the notation
of cnp, particularly how it compares to Prolog in two different ways.
First, we aim to measure comprehensibility. This amounts to checking
whether predicate definitions in cnp are easier or harder to read and un-
derstand than their counterparts in Prolog. Second, modifiability, in
which we measure whether cnp predicate definitions are easier to modify.

It is important to delineate the extent of the study. Usability of pro-
gramming languages can depend on a wide range of factors, but here we
shall focus on comprehensibility and modifiability only. This short list
could have been extended to composition of new predicates which is an
important programming technique, and would have made for a more thor-
ough analysis of cnp, but the design and execution of such a study would
prove cumbersome. It would have required teaching the whole language
from scratch including its semantics to the level where participants can
solve problems in the entirely new language.

In the next sections, we will present a design for a user study. Then,
we will describe the participants, and present the results. Finally, we will
discuss the results as conclusions of the study.
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6.1 Overview of the study
There are two factors we would like the study to measure: the duration
that it takes to complete tasks in cnp versus Prolog, and the rate of
mistakes programmers commit while completing these tasks. Together
they provide a basic measurement of usability of programming language
notation.

The study was conducted a test that included open-ended questions
regarding pieces of code in each notation. The test began with an in-
troduction (a manual) to the notation, followed with an example of a
question in that notation, and then presented the actual questions. Each
question included a relevant piece of code. The expected answers were
fixed within reasonable tolerance such as typographic errors. The content
of the test is delivered via an on-line forms service which collected the
answers in a private database.

In order to achieve more power with fewer participants, a within-
subjects method is adopted, as opposed to a between-subjects study. To
every participant, we have presented two tests, one for each notation,
so the results are less affected by variations between participants indi-
vidual abilities. This method may lead to a distortion in the results in
the form of a learning effect. When a participant reaches the second
test (whichever notation it is), the common concepts between the two
notations are learned already in the first. Hence, the second notation
unavoidably has an advantage simply because it is taken later in the pro-
cess. Counter-balancing has to be implemented to smooth out this effect.
The participants are split into two experiment groups that take the tests
in a different order, so the benefit of the learning effect is shared equally
for the two notations.

Figure 6.1 displays a time plan of how the two experiment groups
have taken the tests. To counter familiarity effects that may come into
action, we have named the Prolog notation as Notation X, and the cnp
notation as Notation Y.

Order Group A Group B
1 Introduction to study
2 Pre-test questions
3 Introduction to Notation X Introduction to Notation Y
4 Questions in Notation X Questions in Notation Y
5 Introduction to Notation Y Introduction to Notation X
6 Questions in Notation Y Questions in Notation X
7 Post-test questions

Figure 6.1. Time plan of the study for groups A & B
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In the following sections, we will present the different parts of the test
in the order they appear.

6.2 Introduction to study
In the first part of the process, we have provided participants with brief
introduction to what the study intends to achieve without revealing any
information about which notation is the one under development. The
first snippet of information on the study was as follows:

"This is a brief study looking into two different notations for relational
argument binding. We will present two different notations, and analyse
small chunks of code in both in order to find out how they compare in ease
of reading and editing. The duration of this test is around 25 minutes
and is designed to be uninterrupted. If you expect interruptions (such as
phone calls), we kindly ask you to take it at a later convenience."

After the basic instructions on how to do the test, the participant was
presented with the pre-test questions.

6.2.1 Pre-test questions
A few questions were positioned before the actual test began in order to
collect demographic information about the participants and also to filter
unsuitable participants.

The first questions were about the age of the participant. Then, we
posed two questions:

• Do you have experience writing Prolog programs?

• Do you have any reading disorders that affects your ability to read
formulas?

Answering yes to one of these questions disqualified participants from
partaking. This was not made obvious to the participant initially, as it
may have introduced an incentive to answer no.

Then, we have posed two other questions in order to collect demo-
graphic information:

• Do you have experience writing programs in other languages? If
yes, please specify:
(open answer)
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• Would you consider yourself primarily a programmer or a researcher?
(multiple choice: Programmer / Researcher / Neither)

The answers to pre-test questions were collected together with the test
answers and stored in the database.

6.3 Usability questions
The main test consists of 6 questions, of which 3 were targeted to read-
ing and interpreting the code in a given notation, and the other 3 were
targeted to reading and also modifying code in a given notation towards
a specific purpose. We shall now discuss both two groups of questions in
detail.

6.3.1 Questions measuring comprehension
In the earlier chapters, we have identified that the main problem with
combilog syntax was keeping track of argument indices generated by the
make operator. We have observed that when accompanied with multiple
levels of composition operations, such as

make(some logic operator(make(. . .)))

this effect is enhanced, and as a result renders the use of combilog’s
original notation difficult. The purpose of the questions in this first sec-
tion is to observe this effect. As a result, we intend to find out whether
the improvements we have made on combilog syntax while building cnp
have made it relatively usable compared to Prolog.

There are fundamentally two types of operations available in both no-
tations. The first type is related to argument binding. This contains
all the argument modification operations such as argument renaming,
reordering, introducing, or removing. A second group of operations is
making use of logic operators (and, or or) for composing a predicate def-
inition using given predicates as components. When a predicate is given
as an existing predicate without its implementation, we refer to it as a
given predicate. If the program fragment deals with the definition of a
predicate, that is, the predicate body, we refer to it as a defined predicate
The three questions in this section combine a number of operations from
these two groups, in the context of a predicate definition.

1. The first question exclusively involves a predicate definition that
has only one operation which is argument mapping while logic op-
erations are involved.
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2. The second question involves argument mapping in the context of
a logic operator that defines a new predicate. This question makes
use of both groups of operations.

3. The third question involves two instances of argument mapping,
and a logic operation in the definition of a predicate. One argument
mapping occurs between the two component predicates, and another
occurs between the user-defined predicate and the components.

The predicate definitions to be used for these questions need to have
come from actual programs instead of abstract mock-ups. We have cho-
sen a common example of logic programming to begin with, and picked
out parts of it that corresponded to levels of complexity that we have
described. The code is a fragment from a program that defines family
relations.

In Figure 6.2 we show the program fragment in Prolog which we
based our questions on. The significance of this fragment is that while it
includes predicate definitions in all three levels of complexity we require,
it is a commonly understood and relatively short bit of code. In the code
fragment, the first two predicates parentage and isMale are given as
existing predicates. The following three predicate definitions isParent,
isFather and isGrandchild are the three predicate definitions we will
use for the questions.

The same program fragment, written in combilog and cnp is given
in Figures 6.3 and 6.4, respectively. The combilog code is given here
for continuity, it was not used as a part of the study.

Eliminating irrelevant artifacts in syntax
One of the questions in the design of this study is whether to use real
examples directly or not. Use of actual bits of code reflecting real prob-
lems results in an immediate judgment on participants’ side, based on
the inherent meaning of the problem, not necessarily the code displayed.
Participants’ existing domain knowledge may influence their performance
in program comprehension tasks. For example, in a program representing
family relations, during reading the definition of an isFather predicate,
the user immediately makes a judgment about the meaning of the pred-
icate from the context, rather than the specifics of the definition. Then
the user may proceed to answer the question using judgment instead of
interpreting the syntax. This would have reduced the power of the study
by reducing the observed effect.

Moreover, we would rather not use the same problem for both cnp
and Prolog. If the same problem is used, the learning effect carried
over to the second section, whichever it is, clouds the measurement of
results further, even though the study is counter-balanced.

133



parentage(Parent, Child) :- ...
isMale(Name) :- ...
isParent(Parent) :- parentage(Parent, _).
isFather(Name) :- parentage(Name, _), isMale(Name).
isGrandchild(Name) :- parentage(GParent, Parent),

parentage(Parent, Name).
Figure 6.2. Base program fragment written in Prolog

parentage/2
isMale/1
isParent = make([1], parentage)
isFather = and(make([1], parentage), isMale)
isGrandchild = make([3], and(make([1,2,3], parentage),

make([3,1,2], parentage)))
Figure 6.3. Base program fragment written in combilog

parentage :: {parent, child}
isMale :: {name}
isParent :: {parent} = parentage{parent}
isFather :: {name} = and(parentage{parent->name},

isMale{name})
isGrandchild :: {name} = and(parentage{parent->gparent,

child->parent},
parentage{parent, child})

{child->name}
Figure 6.4. Base program fragment written in cnp

For these reasons, we have chosen to use obfuscated forms of the code
for different notations. The underlying semantics will be exactly the
same, but the actual code presented in the test will be different for each
notation.

As an example, let us look at the isParent predicate definition in plain
Prolog:

isParent(Parent) :- parentage(Parent, _).

Instead of this plain form, we have used an alpha-renamed, obfuscated
form of the code, stripped from its inherent meaning coming from the
choice of variable and predicate names:

r(A) :- p(A, _).

Similarly, the plain cnp code for the same predicate, given here:
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isParent :: {name} = parentage{parent->name}

is replaced with the renamed, obfuscated form, that is:

p :: {b} = g{a->b}

Transforming the program fragments in this way allowed us to conserve
the complexity of the examples, while avoiding introducing a distortion
in results. It also provided a way of generating different versions of the
problem with the same complexity for different sections of the test.

Another issue is the existence of slightly different implementations of
the same syntax constructs that we do not intend to measure. One of
these is the choice of prefix or infix operator placement preferences, as
in “and(a, b)” versus “a and b” (or “a, b”). For both notations, we
transformed the codes so that prefix operators are used consistently.

Choice of the predicate definition assignment operator also fits in this
category. For this, we consistently use the equality symbol “=”. In Pro-
log, multiple predicate definitions are used to show the or logical oper-
ator, but our examples do not use this logic operator, and they do not
include multiple definitions for any predicate, which makes it possible to
use the “=” equality sign instead of the “:-” implication sign. By this
way we obtain uniformity among the notations in use of these symbols.

In most questions, there are some predicate definitions that are given,
and the only relevant information about their implementation is the num-
ber of arguments, and names to be able to refer to these arguments. For
example, in the base program fragment given in Figures 6.2, 6.3, and
6.4, the definitions for the parentage and isMale predicates are omitted.
In order to convey their argument count and argument names, we have
written these as universal relations. In the Prolog version, these are
written as parentage(Parent, Child) in order to be able to refer to the
arguments of the predicate by the name of a variable. In the combilog
and cnp examples, these are simply given as signatures without a body.
Semantically, writing these Prolog predicates as universal predicates
would be incorrect, but it is a trade-off decision that had to be taken
for simplifying the questions. In the cnp fragments, these signatures are
written as k :: {x , y} for a predicate k has two arguments, x and y.
For consistency, these signatures are written in every predicate definition
for the cnp fragments, including those who have a body.

The transformations that we have presented are necessary to isolate
the effect of two argument mapping notations. The notations after these
transformations are admittedly different than the originals, but we claim
they provide a better measurement of our main goal that is improving
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usability of argument bindings. Hence, from now on, we should refer
to the modified version of the Prolog syntax as Notation X, and the
modified version of the cnp syntax as Notation Y.

The final alpha-renamed (obfuscated), transformed forms of the pro-
gram fragments in both notations are given in Figure 6.5 and Figure 6.6,
respectively.

p(A, B).
q(C).
r(A) = p(A, _).
s(D) = and(p(D, _), q(D)).
t(D) = and(p(_, A), p(A, D)).

Figure 6.5. Final transformed program fragment written in notation X

k :: {x, y}
m :: {z}
n :: {x} = k{x}
q :: {z} = and(k{x->z}, m{z})
r :: {z} = and(k{x->w, y->x}, k{x, y}) {y->z}

Figure 6.6. Final transformed program fragment written in notation Y

Comprehension tasks
We have presented the base code used in the first three questions of the
study. Now we can discuss the actual questions posed to the participants,
in the presence of this base code. The questions are formed around argu-
ment binding, which is the main problem we intend to solve in the context
of this work. Hence, the questions are formed around these fundamental
tasks.

• How many argument does a predicate have?
• What are the arguments of a defined predicate?
• What are the arguments of a given predicate?
• Is a given argument of the defined predicate bound to the value of

an argument in one of the component predicates? If so, which one?
• Is a given argument of one of the component predicates bound to

the value of an argument of the defined predicate? If so, which one?
• Is a given argument of one of the component predicates bound to

the value of an argument of another component predicate? If so,
which one?

For every question, only the relevant lines of the program fragments
were presented to the participant. Next, we will look at Questions 1, 2,
and 3, individually.
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Question 1: Argument binding
The first comprehension question includes a simple task: mapping argu-
ments of an existing predicate onto arguments of an existing predicate.
For this task, we choose the two predicates parentage and isParent
from the program fragment, given below:

parentage(Parent, Child).
isParent(Parent) :- parentage(Parent, _).

Similarly, in cnp, the same program fragment is written as:

parentage :: {parent, child}
isParent :: {parent} = parentage{parent}

which corresponds to the cnp code written in the strict notation:

parentage : {parent, child}
isParent ← proj(parentage, {parent �→ parent})

After transforming both program fragments into the notations X and
Y, using the rules defined in Section 6.3.1, the actual Question 1 is pre-
sented in Figure 6.7.

Question in notation X Question in notation Y
Consider this code in X:
p(A, B).
r(C) = p(C, _).

Consider this code in Y:
k :: {x, y}
n :: {x} = k {x}

a. How many arguments does p
have?

b. How many arguments does r
have?

c. What are the arguments of p?
d. What are the arguments of r?

a. How many arguments does k
have?

b. How many arguments does n
have?

c. What are the arguments of k?
d. What are the arguments of n?

Answers:
a. 2
b. 1
c. A and B
d. C

Answers:
a. 2
b. 1
c. x and y
d. x

Figure 6.7. Question 1
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Question 2: Argument binding with a logic operation
The second question involves two given predicates parentage and isMale,
and the predicate definition isFather. Composition of the isFather
predicate includes an argument mapping between the exposed argument
Name and arguments of components, and also an unbound argument. Let
us look at the original Prolog subprogram for this question.

parentage(Parent, Child).
isMale(Name).
isFather(Name) :- parentage(Name, _), isMale(Name).

Let us also see the untransformed cnp program fragment consisting of
the lines involved in this question:

parentage :: {parent, child}
isMale :: {name}
isFather :: {name} = and(parentage{parent->name},

isMale{name})

which corresponds to the following cnp code in the strict notation:

parentage : {parent, child}
isMale : {name}

isFather ← ande(proj(parentage, {parent �→ name}),
proj(isMale, {name �→ name}))

The code fragments after the transformations in Section 6.3.1 are given
in Figure 6.8, along with the questions and the correct answers in both
notations.

6.8.

Question 3: Two levels of argument binding with a logic
operation
The last question of the comprehension section includes two levels of ar-
gument binding: first, a binding between the arguments of components
in a conjunction, and second, a binding between an argument of a com-
ponent and arguments of the predicate to be defined. The component
predicates are parentage and isGrandchild. The Prolog program in-
cluding these two predicates is given below:

parentage(Parent, Child).
isGrandchild(Name) :- parentage(GParent, Parent),

parentage(Parent, Name).
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Similarly, the cnp program is:

parentage :: {parent, child}
isGrandchild :: {name} =

and(parentage{parent, child},
parentage{parent->gparent,

child->parent}) {child->name}

which corresponds to the following cnp program in the strict notation:

parentage : {parent, child}
isGrandchild ← proj(ande(proj(parentage, {parent �→ gparent,

child �→ parent}),
proj(parentage, {parent �→ parent,

child �→ child})),
{child �→ name})

When both programs are transformed using rules we listed in section
6.3.1, we arrive at two program fragments in notation X and Y, which
are presented below in the context of the actual question in the test in
Figure 6.9.

6.3.2 Questions measuring modifiability
The second part of our survey focuses on use cases where a programmer
needs to modify the notation in order to change the meaning of a program,
or a part of a program. Among all the possible actions one can perform
to modify a part of a program, those involved in this study are the ones
relevant to composing arguments. The following 3 questions of the study
aim to measure task time and difficulty of three common actions that
heavily involve alterations to argument bindings.

In the questions in this part, we presented participants with an ini-
tial program fragment to begin with, and asked them to perform some
specific modifications on this code for some given purpose. Similar to
the earlier sections, the implementation of some parts of the programs
are omitted, and these are given solely as signatures, as flightRoute(A,
B). in Prolog which is semantically would be a universal predicate (a
predicate that’s true for all given values), but here provided only as a
means to convey the signature of a component predicate.

Now we will look at all three questions that involve modifications to
argument bindings, and after that we will look at the actual questions
used in the study.
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Question 4: Extracting out a predicate definition
In the fourth question, a fragment including a predicate definition is pro-
vided. The predicate definition is intentionally long. The participant is
asked to extract out parts of this definition as separate predicate defini-
tions, and instead place calls by name to these new predicates in the body
of the original predicate definition, effectively performing refactoring.

This task involves refactoring an expression, which in turn requires
maintaining consistency of the argument mappings between the host ex-
pression and the one that is extracted out as a separate predicate.

The code fragment used in this question is a part of a path finding
program. In Prolog:

flightRoute(A, B).
trainRoute(A, B).
outRouteOpt(D) :- flightRoute(D, _),

trainRoute(D, _).
inRouteOpt(E) :- flightRoute(_, E),

trainRoute(_, E).
outInRouteOpt(D, E) :- outRouteOpt(D),

inRouteOpt(E).

The program above contains two given predicates, flightRoute and
trainRoute, determining the flight and train routes available from a city
A to a city B. The user-defined predicate outRouteOpt(D) determines
that departing from city D, there are both flight and train options exist.
Similarly, the user-defined predicate inRouteOpt determines that towards
the city E, there are both flights and trains coming in. Consequently, the
user-defined predicate composes a preliminary list of pairs of cities D and
E where a passenger can depart from D with both a flight or a train, and
can travel towards E with both flight or train, for the purpose of having
a contingency plan. (Since it is not a complete program, it does not
necessarily determine that a possible route exists between the two cities.)
The same code in cnp can be written as:

flightRoute :: {x, y}
trainRoute :: {x, y}
outRouteOpt :: {a} = and(flightRoute {x->a},

trainRoute {x->a})
inRouteOpt :: {b} = and(flightRoute {y->b},

trainRoute {y->b})
outInRouteBoth :: {a, b} = and(outRouteOpt,

inRouteOpt)
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The program fragment presented in the question is a modification of
the code above. The definitions of outRouteOpt and inRouteOpt are
inlined, resulting in the longer definition of outInRouteOpt. In Prolog:

flightRoute(A, B).
trainRoute(A, B).
outInRouteOpt(D, E) :- flightRoute(D, _), trainRoute(D, _),

flightRoute(_, E), trainRoute(_, E).

and in cnp:

flightRoute :: {x, y}
trainRoute :: {x, y}
outInRouteBoth :: {a, b} =

and(and(flightRoute {x->a}, trainRoute {x->a}),
and(flightRoute {y->b}, trainRoute {y->b}))

which corresponds to the following cnp code in the strict form:

flightRoute : {x, y}
trainRoute : {x, y}

outInRouteBoth ← ande(ande(proj(flightRoute, {x �→ a}),
proj(trainRoute, {x �→ a})),

ande(proj(flightRoute, {y �→ b}),
proj(trainRoute, {y �→ b})))

These two bits of code given above are the initial program fragment
used in Question 4, before obfuscations. The questions for both notations
after transformations given in Section 6.3.1 is given in Figure 6.10.

The code in notation X (Figure 6.10) question contains a predicate
definition for predicate s that uses given predicates p and r. The two
operands of the logic operator and are separate expressions consisting
of logic operations and argument mappings. The answer in the figure
contains the simplest form that the two new predicate definitions s1 and
s2 can be written with no alpha renaming.

The code in notation Y (Figure 6.10) question also follows the same
structure, asking the participant to refactor parts of p out. After ex-
tracting parts of p as separate predicate definitions, the correct answer in
notation Y declares auxiliary predicates p1 and p2, while calling both in
the new definition of p. This is also the simplest form of code that accom-
plishes this task with minimum changes, with no alpha renaming. The
variations with different argument names are also accepted as correct, as
long as they are semantically equivalent.
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Question 5: Inlining a predicate definition
This question contains the second task towards measuring modifiability
of the notations. It involves replacing a call to a user-defined predicate,
with its body in its definition, essentially performing the opposite task in
question 4. The participant is given an initial fragment that includes a
predicate definition containing a predicate call to another existing pred-
icate. Then the participant is asked to replace the predicate call with
its definition. This process involves rewriting the definition of a predicate
while keeping the argument names in check so that an unintended binding
or name capturing is avoided.

The base code in this question involves graphs, which are a common
data structure in logic programming problems. Let us present the code
first and discuss it subsequently. The code in question is written in Pro-
log as follows, where edge is a binary predicate that succeeds if there is
an edge connecting two given vertices:

edge(X, Y).
degreeTwo(Z).
trapCycleExists(V) :- edge(V, V2), edge(V2, V).
deadEndAhead(V) :- trapCycleExists(V), degreeTwo(V).

which translates to the cnp code:

edge :: {x, y}
degreeTwo :: {z}
trapCycleExists :: {v} = and(edge {x->v, y->z},

edge {x->z, y->v}) {v}
deadEndAhead :: {v} = and(trapCycleExists {v->z},

degreeTwo)

and which, in turn, corresponds to the cnp code given below in the strict
notation:

edge : {x, y}
degreeTwo : {z}

trapCycleExists ← proj(ande(proj(edge, {x �→ v, y �→ z})
proj(edge, {x �→ z, y �→ v})), {v �→ v}

deadEndAhead ← ande(proj(trapCycleExists, {v �→ z}), degreeTwo)

In Prolog the code above, the existing predicate edge determines if
there is a directed path from a vertex X to a vertex Y in a graph. The
second existing predicate degreeTwo determines if a given vertex Z is
of degree 2, meaning has two edges connected to it. A cycle is a set
of vertices beginning and ending at the same vertex. A trap cycle is a

145



cycle of length 2, practically forming a dead end for search purposes.
The predicate trapCycleExists determines if a trap cycle exists at a
given vertex V. The predicate deadEndAhead makes use of the predicate
trapCycleExists and determines if the only cycle available at a vertex
V is a trap cycle (since one of the 2 edges available must be the current
location of the traverser).

In this program fragment, the participant is asked to replace the call
to the predicate trapCycleExists with its definition.

The questions for both notations after obfuscations given in Section
6.3.1 are given in Figure 6.11.

For the code in notation X, the predicate s includes a call to predicate
r, and the task is replacing this call with the definition of r. The task
unavoidably requires alpha renaming, since simply replacing r(B) with
and(p(A, B), p(B, A)) would result in variable B in s name-capturing
the encapsulated variable B in r. In order to avoid capture, the variable
B in the definition of r needs to be given a fresh name (such as C). As a
second step, the instances of variable A in r needs to be substituted with
B. This solution is reflected in the given answer in the figure.

The given task for notation Y is identical to the one in X, which is
modifying the definition of predicate p, replacing the call to predicate
n with its definition. The participant can perform alpha renaming to
rename arguments of n in order to compose an instance of it appropriate
for the context it appears in the definition of p. A quicker solution is
simply replacing the call to n with its definition, without modifying its
arguments. Since the syntax of cnp (hence the syntax of notation Y)
is purely compositional, and argument mappings are performed through
projection, name-capturing is not an issue. This feature of the notation
is not listed anywhere in the study, in order to avoid coaching towards
this behavior. It is left to the participants to notice and use this feature,
or perform alpha-renaming. Both solutions are accepted as correct as an
answer.

Question 6: Debugging: correcting argument mismatch
The last question in this section is designed to measure participants suc-
cess in noticing and correcting an argument binding which is faulty. Only
for this question, the transformation steps listed in Section 6.3.1 does not
include obfuscation of the predicate and argument names, since it would
be impossible to hint at the error of argument mapping without giving
the context. Because of this, it is necessary to use different program frag-
ments for each notation. For both notations, the questions and answers
are given in Figure 6.12.

For notation X, this code is a part of a program for deciding the color
of a stone to be laid in a pavement. The rule that the program follows is
that, the stones should be laid in alternating colors of white and black.
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The code above includes two given predicates, white and order. The
predicate white determines if the given Stone is white. The predicate
order connects different stones in a linked list. The user-defined predicate
black determines if a given Stone should be black, depending on the stone
that comes before it, according to the alternating colors rule.

In the question, the user is presented with this code, and the purpose
of the code. It is also explained that there is something wrong with the
code, and the participant is asked to fix the incorrect part. The error
is an argument mismatch, within the arguments of the call to the order
predicate. Instead of order(Stone, PreviousStone), the corrected ver-
sion should write order(PreviousStone, Stone). The definition of the
order predicate with the correct argument order is the hint.

For the notation Y, we have used a different code with the same level
of complexity, and the same sort of existing argument error. The code
fragment in the question is a partial program defining paternity relations
between individuals. The existing predicate isMale determines if the
given person is male. The second existing predicate parentOf determines
if a given parent is actually the parent of a given child. The user-
defined predicate fatherOf is intended to determine if a given father
is actually the father of the given child. But the code, as suggested,
includes an argument mapping mistake. The argument father of the
fatherOf predicate is bound to the value of the child argument of the
parentOf predicate, instead of the father argument. The participant is
presented with the code, explained that there is something wrong with
the code and asked to write the correct version, which should involve
modifying the renaming of the arguments in order to correctly bind the
parent argument of parentOf to the value of the father argument.

The Notation Y code in the question corresponds to the following cnp
code in the strict form:

isMale : {person}
parentOf : {parent, child}
fatherOf ← ande(proj(parentOf , {parent �→ parent, child �→ father}),

proj(isMale, {person �→ father}))
which, in order to be made correct, needs to be modified so that the first
proj operator should instead be:

proj(parentOf , {parent �→ father , child �→ child})

6.4 Post-test questions
When participants completed the test parts for both notations, they were
presented with a few questions regarding their impressions of both no-
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tations. The options available as an answer were: (a) Notation X, (b)
Notation Y, and (c) No noticable difference. For group A, the options
were listed in this order. For group B, the options for notation Y came
first since they had taken the test for notation Y first.

These questions were posed after the study:
1. Which notation did you find easier to read?
2. Which notation did you find easier to modify?
3. Which notation would you choose, if you had to use one for a

project?

We also included a field where we asked the participants to leave com-
ments, notes and suggestions, if any.

6.5 Method
The study was executed on-line, by reaching to participants through
e-mail. After an initial check, participants were placed in one of the
two groups, Group A or Group B, randomly (introduced earlier in the
overview of the study, section 6.1).

We reached out to participants who are either working programmers,
or researchers using programming languages as a part of their research
(as a programmer). We have placed equal number of programmers and
researchers in both groups (A and B), and confirmed our initial assessment
of their category in the pre-test questions.

There were a total of 20 participants, where 2 were female. The mean
age of participants was 30.2 (Median 30, STD=4.18), while the ages
ranged from 22 to 39.

The test described earlier was delivered through a form in Google
Forms, a cloud-based, on-line data collection platform. The forms were
accessible on-line through a link provided to each participant via e-mail.
There were two forms created for counter-balancing groups A and B,
differing only in the order the two notations appeared. Consequently,
the data for the two forms were collected in two separate Google Sheets
spreadsheets, which are also accessible on-line. This is the default form
of data collection via Google Forms.

Timing points were included in the form, 3 for each notation. After
the introduction to a notation is completed, the first time-stamp (t1) was
taken just before the first question started. At the end of the 3rd question,
the second time-stamp (t2) was taken. The third time-stamp was taken at
the end of the 6th question. Because the first 3 questions are measuring
notation comprehensibility and the last 3 notation modifiability, these
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time stamps are sufficient to measure the two durations separately. The
results were then downloaded and processed in Microsoft Excel.

One of the tests from Group A was regarded as invalid, as it showed
that the participant spent a disproportionate amount of time working
on the first 3 and the second 3 questions in notation X, respectively 2
minutes and 30 minutes. Upon post-study enquiry, it was revealed that
the participant had taken a break, yet had not measured the duration.
The result of this test is not included in the final results of the study.

6.6 Results
In this section, we will first look at some information obtained from the
study, then we give our interpretation of those results which suggests that
the usability of the two notations differ in some aspects but is generally
comparable. In the test, two variables were measured: task time, and
correctness.

6.6.1 Task time
We have taken two measurements for each notation, comprehension and
modification. In the following sections we will report these separately
first, then discuss combinations of these such as total task time and
weighted total task time.

The total and weighted time is a measure that needs to be interpreted
with caution. Simply adding up comprehension and modification dura-
tions gives us a total test time for each notation, but comparing these
values between notations is not straightforward. There are two issues re-
garding this comparison. First, the questions we used for the comprehen-
sion (Q1, Q2, Q3) and modification (Q4, Q5, Q6) may have contrasting
difficulties, and naturally different task times. Therefore it would be de-
ceptive to simply compare total task times of the two notations. Second,
we have no concrete information on relative contributions of these sort of
tasks in the total usability of programming notations.

Comprehension time
Comprehension times are the duration participants took for the first 3
questions in each test. In the Figure 6.13, the comprehension measure-
ment for each participant can be observed as tXc for notation X, and tYc

for notation Y.
Both populations followed normal distribution. Let us look at the mean

values of comprehension task times for both notations:

MXc = 276sec MYc = 345sec
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The mean values show that the comprehension task in notation Y
(based on cnp) is 25% slower than notation X (based on Prolog), with
a significance level P < 0.05.

Modification time
Modification times are the duration participants took while answering the
last 3 questions of the test. Figure 6.13 displays the modifications times
for the two notations as tXm and tYm .

Both populations followed normal distribution. Let us look at the mean
values of modification task times for both notations:

MXm = 468sec MYm = 366sec

The mean durations show that in notation Y (based on cnp), modifi-
cation tasks that we have tested took 22% less time to complete, with a
significance level P < 0.05.

Total task time
As discussed earlier, the total task times for completing the whole test is
a little more difficult to interpret. The comprehension questions and the
modification questions were not necessarily equal in difficulty and task
time. For this reason, we will report two kinds of total task time.

Observed total task time: The total task time participants took
to complete all the 6 questions in the test. The mean values for both
notations for observed total task times are:

MXt = 744sec MYt = 711sec

The mean values suggest that notation Y may be slightly faster, but a
Student’s t-test did not confirm that the two populations were different
with any significance. A Two-sample Kolmogorov-Smirnov test confirmed
the null hypothesis that the two sets of total times were from the same
distribution (P = 0.99). The observed total task times can be found in
Figure 6.14 as tXt and tYt .

Equally-weighted total task time: In order to normalize the re-
sults, we looked at mean times for comprehension task (Mc), modification
task (Mm), and the mean of both values (Mcm) to calculate normalizing
constants nc and nm. Finally, we calculated the means of equally-weighted
total task times for each notation (MXw and MYw). The mean task times
for each part (regardless of notation) were:

Mc = 311sec Mm = 417sec Mcm = 364sec

Calculated normalization constants:

nc = Mcm

Mc
= 1.171 nm = Mcm

Mm
= 0.872
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The equally-weighted total task times for both notations were ob-
tained by individually multiplying the comprehension and modification
task times, and taking their total. These values can be found in the
Figure 6.14 as tXw and tYw .

The mean values for equally-weighted total task times were found as:

MXw = 732sec MYw = 723sec

Similar to observed total task times, equally-weighted total task times
suggested little difference. The Student’s t-test did not reject the null
hypothesis that the two notations made no difference in equally-weighted
total task times. A two-sample Kolmogorov-Smirnov test confirmed that
the two sets of durations are from the same distribution (P = 0.99).

in seconds
Group Participant tXc tXm tYc tYm

Group A

A1 180 960 240 600
A2 180 360 180 420
A3 420 360 240 120
A4 300 780 240 420
A5 180 360 240 240
A6 540 480 660 360
A7 600 600 600 480
A8 300 1080 360 360
A9 120 540 240 360
A10 360 480 240 360

Group B

B1 240 240 540 240
B2 120 360 180 300
B3 360 420 300 240
B4 300 240 360 240
B5 300 540 420 600
B6 180 420 120 240
B7 120 240 480 600
B8 120 120 180 180
B9 420 420 660 540
B10 180 360 420 420

tXc : comprehension task time in X
tXm : modification task time in X
tYc : comprehension task time in Y
tYm : modification task time in Y

Figure 6.13. Task completion times reported separately for comprehension and
modification tasks, showing that the notation X is better in comprehensibility,
while notation Y is better for modifiability.
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in seconds
Group Participant tXt tXw tYt tYw

Group A

A1 1140 1048 840 805
A2 540 525 600 577
A3 780 806 360 386
A4 1080 1032 660 648
A5 540 525 480 491
A6 1020 1051 1020 1087
A7 1200 1226 1080 1122
A8 1380 1294 720 736
A9 660 612 600 595
A10 840 840 600 595

Group B

B1 480 491 780 842
B2 480 455 480 473
B3 780 788 540 561
B4 540 561 600 631
B5 840 822 1020 1015
B6 600 577 360 350
B7 360 350 1080 1086
B8 240 245 360 368
B9 840 858 1200 1244
B10 540 525 840 858

tXt : observed total task time in X
tXw : equally-weighted total task time in X
tYt : observed total task time in Y
tYw : equally-weighted total task time in Y

Figure 6.14. Observed versus Equally-weighted total task times for notations
X and Y, displaying statistically insignificant difference between the two.

6.6.2 Correctness
As a part of the study, we have looked at how correctly participants solved
each question. In order to decide which answers to accept as correct, we
followed the same principles, regardless of notation.

In comprehension questions, we accepted only exact answers, as the
answers were mostly very short. Some typographic errors in capitaliza-
tion were tolerated. In longer answers, some differences in articulation
were also tolerated. For example, as an answer to the question “Which
argument(s) of q are bound to which argument(s) of k?”, answers such as
“z to x”, “q.z is bound to k.x”, and “q.z is bound to k.x renamed to k.z”
were all accepted as long as they were only differing in articulation and
did not reflect a misunderstanding of the concepts.
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In modification questions, some participants omitted context of the
code in the answer, and only wrote the part they had modified. These
answers were accepted, as long as the omitted part was not relevant to
the required modifications. In some modifications, it was necessary for
the participants to come up with new names for variables. We placed
no importance on the choice of variable name, as long as the bindings
established were correct.

Following the principles above, every answer was marked as either cor-
rect or wrong. Empty or indecipherable answers were regarded as false.

Comprehension questions
In the first 3 questions, we have failed to measure any significant difference
in correctness between the two notations. Out of 12 sub-questions, the
mean number of correct answers were 11.2 for Notation X and 11.3 for
Notation Y. When calculated over three points for three questions (Every
sub-question having 0.25 points), the mean number of correct answers
were 2.79 for Notation X and 2.81 for Notation Y.

Modification questions
In the last 3 questions, we have measured significant difference in correct-
ness between the two notations. Out of 3 questions, the mean number
of correct answers were 1.7 for Notation X and 2.4 for Notation Y. This
difference reveals a 42% increase in correct answers in Notation Y, with
a significance level P < 0.01.

When analysed in detail, the highest contrast appeared in Question 5.
In Notation X, only 3 people answered the question correctly, as opposed
to 17 incorrect answers. In contrast, in Notation Y, there were 17 correct
answers as opposed to 3 incorrect. Every participant who failed to answer
Question 5 in Notation Y also failed to answer it on Notation X. Also,
every participant who succeeded to answer it in Notation X correctly
answered the same question in Notation Y as well. A McNemar’s test
also confirmed the significance of this difference with a level P < 0.01.

The modification task in Question 5 involved an alpha-renaming step
during refactoring. In Notation X, this proved to be the problem for most
participants who answered the question incorrectly.

Entire test
Looking at the entire test for correctness requires counting questions
equally-weighted, as we did in the subsection 6.6.1. We gave each of
the first 3 Questions 1 point, regardless of how many sub-questions they
contained.

In total, out of 6 questions, mean number of correct questions were
4.4 for Notation X, and 5.2 for Notation Y. The difference reveals a 16%
increase in correctness, with a significance level P < 0.01.
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We also looked at success rate between the groups, in order to find
out if there was an enhanced learning effect caused by the first notation
that helped the grasping of the second notation. While participants in
the group A scored a mean of 9.9 points out of 12, group B scored 9, 2,
but the differences we not statistically significant.

6.6.3 Post-test questions
Participants answered to the post-text questions about their preferences
after they have experienced both notations. Here are the number of par-
ticipants and their choice of answers to each of these questions:

1. Which notation did you find easier to read?
Notation X: 12
Notation Y: 8
No noticable difference: 0

2. Which notation did you find easier to modify?
Notation X: 8
Notation Y: 11
No noticable difference: 1

3. Which notation would you choose, if you had to use one for a
project?
Notation X: 8
Notation Y: 10
No preference: 2

6.7 Conclusions
We have found that task times presented interesting results. While the
results showed that notation Y (based on cnp) was 25% slower in com-
prehension tasks compared to notation X (based on Prolog), it was also
found to be 22% faster in modification tasks. There are no discernible dif-
ference between the two notations in total task time, looking at both the
observed total task time and the equally-weighted total task time. This
shows that for the kinds of tasks we measured, cnp is not significantly
better or worse than Prolog in terms of time requirements.

Measuring correctness, we found no evidence of difference between the
two notations in comprehension tasks. In modification tasks, however,
cnp showed significant promise with 42% improvement in correct answers.
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In post-test questions, participants’ opinion of the two notations seemed
to be more correlated with the time they took in each one, rather than
their success in providing correct answers. For example, in comprehension
questions we failed to find any difference in correctness, but found that
Notation X took significantly less time to interpret. Participants found
Notation X easier to read compared to Notation Y, with a rate of 12 to
8. Similarly, we found that in modification tasks, Notation Y takes less
time than Notation X. Participants found Notation Y easier to modify
with a rate of 8 to 11.

In summation, considering the usability of programming languages de-
pending on so many factors, we can only claim that overall cnp is not
worse than Prolog, and marginally better in some aspects. Consider-
ing cnp carries important features of combilog such as compositionality
and declarativity, and also considering the obvious difference in practical-
ity of cnp notation compared to the original combilog, we can conclude
that cnp could be considered a successful improvement on combilog.
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7. Inductive Logic Programming with cnp

For a demonstration of the usability contributions in this thesis, it is
natural to look back at the original motivation behind the development of
combilog. Inductive Logic Programming (ILP) is the primary intended
use for combilog, and the reason behind the fundamental properties
of the language, particularly the compositionality, the variable-freeness,
and the list recursion operators. It is a method for program synthesis
from example input/output data, which manifest as ground instances
in the context of Logic Programming. Compositionality of combilog
allows a simple but efficient technique for ILP, which will be referred to
as decompositional synthesis.

The meta-interpreter is a meta-logic program representing the prov-
ability relation of an object-level logic program (TO) (in combilog or
cnp) and an underlying logic theorem (T ) as a predicate (demo). For a
given TO, the meta-interpreter demo(TO, T ) only succeeds if the underly-
ing theorem logically follows. Since the meta-interpreter is bidirectional,
it also functions in the reverse direction to compute an object-level logic
program TO for a given T .

As demonstrated in MetaInduce [45], the meta-interpreter in the
reverse direction can be exploited to synthesize an object-level logic pro-
gram that logically entails a given set of example program input/output.
Through the operators of the language, the given examples are decom-
posed recursively into operand predicates, until eventually elementary
predicates are reached.

The simplicity of the method is thanks to the compositionality and
variable-freeness of the language combilog. Since these features are
preserved in cnp, the same technique is also applicable here. This will be
demonstrated by implementing a decompositional synthesizer that uses
cnp as the target language. Since ILP is the motivating use for com-
bilog, it is also a substantiating application for cnp. Moreover, thanks
to the better usability of cnp, synthesized programs are easier to compre-
hend, modify, and combine with hand-written fragments to devise more
complicated programs than permitted by the synthesizer alone.

In the following sections we will demonstrate how two cnp programs
are devised with this hybrid approach. The process of composing these
programs is achieved in part via synthesis and in part via manual pro-
gramming. This hybrid approach to ILP is not a new idea. User inter-
vention has been considered in many applications when the strength of
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the synthesis technique is not sufficient for the synthesis problem to be
solved in one step [38, 57]. In the context of decompositional synthesis, it
can be considered novel as the improved usability of cnp permits better
interaction with the code.

Throughout the development of the sample programs, the usability
improvements of cnp will be observed in the following two categories:
Confirmation: The synthesized program fragments need to be con-
firmed by the programmer as an acceptable implementation of the desired
functionality. For this purpose, improved readability of the program rep-
resentation is fundamental.
Intervention: Some programs are too complex to be synthesized in one
step. As the number of arguments in the examples increases, or as the
depth of the target predicate expression grows, the synthesis takes pro-
portionally longer time due to combinatorial complexity, to the point of
becoming infeasible as a programming methodology. For such cases the
programmer needs to take a more active role by splitting the synthesis
into fragments and combining the results into a coherent program. These
interventions may involve manually composing program fragments. Mod-
ifiability of the program representation is crucial for the hybrid program
development method described.

In the following sections, after a brief description of the concept of
ILP and some relevant approaches to program synthesis, we will present
the cnp synthesizer and decompositional synthesis. Finally, two sample
programs will be devised with the described hybrid approach, through
a user narrative. One program performs list reversal, and the other an
insertion sort. The implementation of the cnp synthesizer described in
the later section is given in the appendix.

7.1 Inductive Logic Programming
Inductive Logic Programming is a set of machine learning techniques that
synthesize logic programs using ground examples of program input/out-
put [73]. Using given positive and negative examples, a synthesizer can
derive a logic program that is satisfied for the given positive examples,
and is not satisfied for the given negative examples.

Formally, a logic program synthesis procedure infers a program H such
that, given a background knowledge B, for positive examples E+, B∧H |=
E+, and for negative examples E−, B ∧ H �|= E− [73]. For synthesizing
a program H, the complexity of H and the relative necessary minimal
sizes of B, E+ and E− hint at the strength of the synthesis technique at
disposal.

Within the range of methodologies for logic program synthesis, there
are a few general approaches. Here we shall briefly visit these approaches
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and contrast them with the one employed in this chapter, before going
onto the details.

An early group of methods in ILP depend on a search strategy narrowed
by the dual of generalizations and specifications. Methods such as anti-
unification, least general generalization [93], inverse resolution [72], and
predicate invention [71] have been employed in various implementations
of ILP [73, 78]. These approaches to synthesis have proven difficult for
programs with recursive data types, primarily because of the termination
issue [50].

A solution to synthesizing logic programs with recursion is found in
MetaInduce [45]. This approach lists predetermined recursion schemes
with predicate variables as parameters, and these parameters are replaced
with predicate constants during synthesis. This approach is significantly
different from the generate-and-test approaches found in most earlier work
on ILP. Authors categorize recursive programs according to how many
levels of nested recursion operators they contain, where fold-2 means 2
nested fold operations (including naiveReverse), and fold-1 means only
one (for example, append). They show that they can generate fold-2
programs with the presented approach. Later they refine this work and
present CombInduce, which uses combilog as the target language.
combilog was devised to be variable-free and compositional, simplifying
the synthesis and permitting meta-level constraints to produce procedu-
rally acceptable programs [48, 49]. Moreover, combilog defines recur-
sion operators which under the compositionality principle allow a precise
decomposition of problems through decomposing given examples. Com-
bInduce performs a top-down search guided by constraints, eventually
reducing the synthesis problem into trivial instances corresponding to the
elementary predicates of the language. This method requires only a few
positive ground examples, and can synthesize up to two nested fold oper-
ators [50]. A comparison of various methods for logic program synthesis
including CombInduce can be found in earlier work [11]. This gen-
eral technique of using a meta-language and constraints to ensure desired
properties of the synthesized program is found in multiple instances since
the 1990’s [22, 102], with more recent works as well producing successful
results [74].

As a related methodology, Deductive synthesis is a method that pri-
marily uses specifications to synthesize programs. An application of this
method that focuses on recursive program schemes also defers to the
problem reduction technique [57]. One of the presented examples is the
insertion sort algorithm, which we will address in this chapter. The prob-
lem with their solution, as readily admitted by the authors, is that the
specification required to synthesize insertion sort is as long as the syn-
thesized program itself. The synthesis task for some of the examples
takes up to 15 seconds, which may be considered infeasible for interactive
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applications. This result can be attributed to the nature of deductive
synthesis which requires extensive specifications, but the upside is that
these specifications are conceptually closer to software requirements than
the actual code. In contrast, our approach relies only on input/output
examples, not on specifications. The input/output examples are closer to
software test cases, and hints at possible applications under test-driven
development.

A recent and interesting approach [81] is combining the constructive
type theory with input/output examples, and a search on refinement trees,
which is fundamentally similar to the method we refer to as decomposi-
tional synthesis. The method in fact proves quite successful, and authors
present the synthesis statistics for a suite of algorithms, almost all fin-
ishing under a second. A shortcoming of this method is the number of
required examples. For synthesizing a fold program the method requires
9 examples. In contrast, our approach requires only 1 or few examples
for most cases, including the case we will present here, and still finishes
under a second for all synthesis tasks, as will be demonstrated in the
following synthesis section. Because the theorem provers based on the
constructive type theory primarily focus on correctness, procedural as-
pects of synthesized programs such as complexity and termination have
to be taken care of separately. In this particular example, syntactical re-
strictions on recursive expressions and data types are employed to ensure
termination.

Another recent approach is using deep learning to reduce the search
space. Balog et al. [7] use deep neural networks to predict possibilities
of component functions and predicates being a part of a target program.
Mapping each output node to a single component, after training, the
probabilities are determined, and used to guide the search. The method
is interesting and has a great potential to be very efficient since custom
hardware (GPUs) can be used. Despite its advantages, the method is
limited since the range of components it can predict is limited by the size
of the neural network. Also, it is not a complete method of synthesis as
it needs to be combined with a search algorithm.

A survey of the established methods for logic synthesis, namely de-
ductive synthesis, constructive synthesis, and inductive synthesis can be
found in [11, 35].

In the following section we present the cnp synthesis approach, includ-
ing the decomposition constraints. Later in Section 7.3 we narrate two
synthesis tasks focusing on a user’s actions.
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7.2 Synthesis of cnp programs
The cnp synthesizer is a Prolog program. The implementation is in
line with the earlier implementation CombInduce [48, 49, 50], which
performs a top-down search while decomposing the synthesis problem.
Most of the synthesis constraints [48] are applied here as well, primarily
the valence constraints for language operators, which we will discuss in
the following section. The strengths of CombInduce are preserved in
the new synthesizer through the semantic isomorphism between cnp and
combilog established in Chapter 5, and due to preserving principle of
compositionality.

The decompositional synthesis algorithm performs an iteratively deep-
ening tree search. The search tree corresponds to a predicate expression,
while inner nodes correspond to operators and external nodes correspond
to predicate identifiers (elementary or user-defined). The depth of the
search tree is initially 1, it is iteratively increased up to a fixed depth,
until a predicate expression that satisfied all the observables is found.

Every step of the search attempts to find a matching predicate ex-
pression for a set of ground examples. When depth = 1, it attempts to
match with an elementary predicate or a user-defined predicate. When
depth = n where n > 1, it attempts to match with any operator that can
produce a predicate expression with the target constraints. When an op-
erator is found, the predicate arguments of the operator are synthesized
through a search with depth = n − 1. The search is exhaustive for the
given depth.

An example of the decompositional algorithm is visualized in Figure
7.1 for the sum predicate. Attempted operator assignments for depth = 2
are shown as hypotheses, where separate searches are initiated for their
predicate arguments (P and Q). The examples for the predicate argu-
ments are obtained through the semantics of the operator, which is foldr2
in the successful search path.

The benefit of compositionality of the language semantics manifests
itself at this step, as it provides a direct mapping between the extension
of the operator and the extension(s) of its predicate arguments. The
use of well-modedness constraints further reduces the search space by
eliminating procedurally invalid non-terminating programs [48].

As the synthesis of cnp programs is mostly identical to that of com-
bilog programs from earlier work [11, 48, 49], it shall not be described in
detail here, but the methodology is explained through an example. The
Prolog source code of our cnp synthesizer is provided in Appendix D,
as well as the cnp meta-interpreter in Appendix C.

In the following sections, first we describe the decomposition con-
straints that dictate how the search tree expands, then explain the de-
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compositional synthesis through an example where we discuss the inter-
mediate steps that happen within the synthesizer.

7.2.1 Decomposition constraints
In decompositional synthesis, construction of the search tree is guided
by a set of constraints. These constraints are adapted from the original
CombInduce [48] to work with cnp which employs argument names.
Some alterations were unavoidable due to the the different distribution
of functionality among the operators of the languages.

Before discussing specific constraints, we shall introduce the concepts
of mode and valence. A mode for a predicate p with n arguments is
defined as a function from argument positions {1, . . . , n} to {in, out}
(or {+, −}), defining how arguments of a predicate should be used [4].
If a predicate guarantees the output arguments to be ground when the
input arguments are ground, it is said to be well-moded. CombInduce
restricts the synthesized programs to be only well-moded programs, and
extends the concept of mode with types for variables, defining a valence,
and uses valences during search to reduce search space [46, 48, 49]. As a
result, CombInduce defines well-modedness constraints for elementary
predicates as well as the operators. Here for cnp we use the concept of
valence synonymously to a mode, omitting the type constraints. Also,
because the arguments do not have positions but only names, a valence
in cnp is defined as a function from argument names {a1, . . . , an} to
{in, out}.

The elementary predicates of cnp are associated with acceptable va-
lences. Moreover, for every operator of the language, there are acceptable
combinations of valences that map the valence of the operator expression
to the valences of its operands. As a result, any predicate expression
constructed following these constraints is well-moded.

In the following sections we cover these constraints, and move on to
explaining decompositional synthesis.

Elementary predicates
The synthesis of elementary predicates is restricted to only a fixed range
of valences consisting of a mode for each named argument. The synthe-
sizer program contains entries for every acceptable valence for each of
the elementary predicates. The valences for the elementary predicates of
cnp are identical to those in combilog, except for the introduction of
argument names.

As an example, one of the acceptable valences for the cons predicate
is {a : in, b : in, ab : out}, packing input values of arguments a and b into
a single output value bound to argument ab. But a valence such as
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Predicate Valence
isNil nil : out

nil : in
id a : in, b : in

a : out, b : in
a : in, b : out

cons a : in, b : in, ab : out
a : in, b : out, ab : in
a : in, b : in, ab : in
a : out, b : in, ab : in
a : out, b : out, ab : in

Figure 7.2. Valences for the elementary predicates.

{a : in, b : out, ab : out} is not acceptable, as it would be a call that binds
an infinite set of values to arguments b and ab.

The elementary predicate true is omitted from the synthesis as it is
always true for any observable. The elementary predicate const for intro-
ducing constants is included with only one instance for the constant [] as
the predicate isNil = const(nil, []). A table of valences for the elementary
predicates can be found in Figure 7.2.

Projection operator
The well-modedness constraints for the projection operator in cnp corre-
spond to a subset of those applying to the make operator in combilog
and CombInduce [48]. While the make operator in combilog can
introduce unbound arguments, the proj operator in cnp cannot. This
results in less complicated constraints for the proj operator compared to
the make operator.

The single well-modedness constraint for the proj operator concerns
the valence of the proj operation and the valence of its source expression.
Every input argument of the source expression must be projected by the
proj operator, as leaving them unbound would break well-modedness.

Logic operators
There are separate constraints applying to the two auto-expanding logic
operators ore and ande.

For the synthesis of the disjunction operator ore, the valences of the
operand predicates are required to be identical to the valence of the re-
sulting predicate expression.

The conjunction operator ande requires a set of constraints including
those of both the and and make operators in combilog . This is due to
the ande operator taking over some of the behaviour of the make operator
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ande(P,Q) valence P valence Q valence
a : in a : in a : in
a : out a : out a : out
a : out a : out a : in
a : in, b : out a : in b : out
a : in, b : out a : in, b : out b : in
a : in, b : out a : in, b : out b : out
a : in, b : out a : in, b : out a : in
a : in, b : out a : in, b : out a : in, b : in
a : in, b : out b : out a : in, b : in
a : in, b : out b : out a : in, b : out
. . . . . . . . .

Figure 7.3. Some example valence combinations for the ande operator.

in combilog, and it can leave some arguments of its operators unbound
between operands.

For a binary logic operation ande(Pθ1 , Qθ2)α. The valence w of the
ande operation, and the valences u and v respectively for components P
and Q are defined as follows, by a set of rules.

w : Dom(α) → {in, out}
u : Dom(θ1) → {in, out}
v : Dom(θ2) → {in, out}

The composition ande(Pθ1 , Qθ2)α is well-moded, if for any argument name
a ∈ Dom(α):

• if v(a) = in, then either u(a) = out or w(a) = in.
• if u(a) = in, then w(a) = in.
• if w(a) = out, then either u(a) = out or v(a) = out.

Some examples of these rules are displayed in the table in Figure 7.3.
For a discussion of these constraints the reader is referred to [4, 49].

Recursion operators
The well-modedness constraints for the recursion operators in the cnp
synthesizer are identical to those found in CombInduce, except the in-
troduction of names. A table of acceptable valence combinations for the
foldr operator is given in Figure 7.4. The valence constraints related to
variant foldr2 is also identical to the CombInduce one with the excep-
tion of argument names, therefore it is omitted here.

In the next section we present the decompositional synthesis through
the discussion of an example synthesis task.
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foldr(P,Q) valence P valence Q valence
a0 : in, as : in, b : out a : in, b : in, ab : out a : in, b : out
a0 : in, as : in, b : out a : in, b : in, ab : out a : out, b : out
a0 : out, as : in, b : out a : in, b : in, ab : out a : in, b : out
a0 : out, as : in, b : out a : in, b : in, ab : out a : out, b : out
a0 : in, as : in, b : out a : out, b : in, ab : out a : out, b : out
a0 : out, as : in, b : out a : out, b : in, ab : out a : out, b : out

Figure 7.4. The table of acceptable valence combinations for the foldr recursion
operator and its operands for the recursive case (P valence) and the base case
(Q valence).

7.2.2 Decompositional synthesis
The cnp synthesizer is essentially a reverse implementation of the cnp
meta-interpreter with operational improvements such as breadth-first
search, depth limit, and pruning of not well-formed sub trees using the
decompositional constraints presented earlier. When presented with an
operator expression such as op(P, Q), where operands P and Q are pred-
icate expressions, the meta-interpreter evaluates P and Q first, then per-
forms the operation over their values, and returns the resulting value as
the result of the operator expression.

The synthesizer instead starts with a valence and a set of ground ex-
amples, and constructs a predicate expression Ecnp that is true for the
given ground examples. The predicate expression Ecnp can be an elemen-
tary predicate, as long as it is true for the given ground examples, and it
has a matching valence. It can also be an operation such as ande(P, Q),
where P and Q are component predicate expressions. In this case, syn-
thesis sub-tasks are constructed for P and Q, where new valences are
inferred through valence mappings established between the operator and
its operands, and new ground examples are also constructed according to
the original ground examples given for the ande operation. These synthe-
sis sub-tasks may succeed, in which case a successful predicate expression
is found; or they may not succeed, in which case the synthesizer moves
to the next operation, until it exhausts every operation possible within
the constraints. In this way, the synthesizer is analogous to a reverse
meta-interpreter in the sense that instead of evaluating operands and
combining their results, it first partitions the examples into operands and
synthesizes each operand using the corresponding partition.

As an example of decomposition, let us consider a synthesis correspond-
ing to the append predicate. The user states that this predicate should
have three arguments: the first list (xs), the second list (ys), and the list
that consists of the first and second lists appended together (zs). It is also
required that when the xs and ys arguments are ground, the predicate
should be able to bind the argument zs to a ground value. This synthesis
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task is expressed by the following statement:

Synthesize a predicate R such that;
it has the valence: {xs : in, ys : in, zs : out},
and it is true for the example(s): {{xs : [1, 2], ys : [3, 4], zs : [1, 2, 3, 4]}}

which translates to the following goal in the incremental synthesizer:

← synInc(R,
{xs : in, ys : in, zs : out},
{{xs : [1, 2], ys : [3, 4], zs : [1, 2, 3, 4]}}).

The incremental synthesizer initiates the synthesizer predicate syn with
an increasing depth parameter. The synthesizer initiated at depth = 1
attempts to match the given constraints with the elementary predicates,
which all fail for the given example, even though there are elementary
predicates with the given valence. Then, at depth = 2 it attempts to find
a combination of operators and elementary predicates, which also fails.
At depth = 3, the synthesizer attempts the following assignment for R,
which is:

R = proj(S, {X → xs, Y → ys, Z → zs})

In the above expression, variables S, X, Y , and Z are not bound. They
are due to be bound by the following sub-task for synthesizing S. When
S is bound to a predicate expression, the source argument names X, Y ,
and Z will also be bound to the argument names of that predicate expres-
sion. For this purpose, the synthesizer devises a sub-task to synthesize
S, with the same examples, same valence, but undetermined argument
names (X, Y , and Z) and a decreased depth parameter, since one level
of depth is allocated for the proj operator. This sub-task devised and
executed by the synthesizer is as follows:

← syn(S, 2, {X : in, Y : in, Z : out}, {{X : [1, 2], Y : [3, 4], Z : [1, 2, 3, 4]}}).

This synthesis call tries different operators to match S, which fails until
eventually it attempts to match it with the foldr operator, whose accept-
able valences match with the ones the synthesizer is searching for. This
results in the following substitution for S:

S = foldr(P, Q)

The argument names for the foldr operator are fixed by definition,
which are as, a0 , and b. The synthesizer attempts various combinations
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of these argument names with X, Y , and Z, and eventually attempts
assignment σ = {X = as, Y = a0, Z = b}. At this point, when the un-
determined argument names are substituted for, and the assignment to
S is placed in its context, the overall in-progress predicate expression for
the initial goal is as follows:

R = proj(foldr(P, Q), as → xs, a0 → ys, b → zs).

At this stage, the operands of the foldr operator P and Q are unbound,
and the synthesizer goes on to devise sub-tasks to synthesize these com-
ponents. This involves inventing new examples for the operands, that
are obtained through the semantics of the foldr operator, evaluated in
inverse by the synthesizer. The single example for the synthesis of S was
{X : [1, 2], Y : [3, 4], Z : [1, 2, 3, 4]}, which after the substitutions for un-
determined argument names becomes:

{as : [1, 2], a0 : [3, 4], b : [1, 2, 3, 4]}

The synthesizer decomposes this example through the semantics of the
foldr operator, and obtains the following one example for Q and two ex-
amples in conjunction for P . The single example for the base case Q is:

{a : [3, 4], b : B0}

while the two examples for P are:

{a : 2, b : B0 , ab : B1},
{a : 1, b : B1 , ab : [1, 2, 3, 4]}

The synthesizer then devises sub-tasks corresponding to Q and P using
these examples, and executes them in conjunction:

← syn(Q, 1, {a : in, b : out}, {{a : [3, 4], B0}}) ∧
syn(P, 1, {a : in, b : in, ab : out}, {{a : 2, b : B0 , ab : B1}}) ∧
syn(P, 1, {a : in, b : in, ab : out}, {{a : 1, b : B1 , ab : [1, 2, 3, 4]}}).

Due to the depth constraint being equal to 1, the synthesizer only
attempts to match Q and P with elementary predicates or user-defined
predicates and not with an operator. Using any composition operator
would result in an expression depth larger than 1. The goal succeeds
with substitutions σ = {Q = id, P = cons, B0 = [3, 4], B1 = [2, 3, 4]},
with matching valences and satisfied examples for Q and P . As a result,
the substitutions for Q and P are applied, and the earlier hypothesis for
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S becomes:

S = foldr(cons, id)

When S is placed in its context, the final predicate expression for the
initial goal becomes:

R = proj(foldr(cons, id), {as → xs, a0 → ys, b → zs})

which is the correct cnp implementation for the append predicate. Even
though the synthesizer only guarantees that it terminates for one mode
({a : in, b : in, ab : out}), the resulting predicate is still a multi-directional
predicate which can be called, for example, to find out every possible lists
xs and ys for a given appended list zs.

In the following section the synthesis of some sample programs will
be analysed from a usability perspective, omitting most of the details
presented in this section.

7.3 Sample synthesis scenarios
In this section we present two sample programs developed by a hybrid ap-
proach with some of the code being synthesized and some being manually
written.

The first example is the list reversal operation, which is a fold-2 ex-
pression, containing 2 levels of nested fold operators. The intention with
this example is to show that the strength of the cnp synthesizer is at
the same level as CombInduce[49]. The second example is the inser-
tion sort algorithm. This example involves more steps than the first and
demonstrates the feasibility of the hybrid synthesis in a more realistic
example. In both examples, the development is narrated focusing on the
user’s plans and actions.

7.3.1 Synthesis of list reversal
In this section we will look at the task of synthesizing a predicate that
reverses a list. The initial attempt by the user is through the use of a
single example, which is reversing the list [1, 2, 3] and obtaining the list
[3, 2, 1]. This is represented by the example {as : [1, 2, 3], bs : [3, 2, 1]},
and the valence {as : in, bs : out}, that is, when the argument as is bound
to a value, the predicate call should guarantee that the argument bs will
be bound to a value.

In the following presentation of our examples, we consider the synthe-
sizer as a front-end tool executed in the Prolog interpreter. We only
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show the goals typed in by the user, the synthesis results calculated by
the synthesizer, with no discussion in between as we did in the earlier
section. As a result it is more intuitive to typeset the examples verbatim,
since they are code.

In order to initiate the synthesis; the cnp synthesizer, the cnp meta-
interpreter, and the cnp library modules are consulted into the Prolog
environment, and the synthesizer is called by the following goal:

?- synInc(P, [as:in, bs:out], [[as:[1,2,3], bs:[3,2,1]]]).

The synInc predicate is the entry point for the synthesizer, which
performs depth-limited calls to the actual synthesizer predicate syn. This
goal fails, as the synthesizer tries expression trees up to a maximum depth
of 6. It cannot find a predicate expression that satisfies the given example,
and exits. At this point, the user needs to intervene as the synthesizer is
not strong enough to synthesize this predicate in one step.

A naive implementation of the list reversal involves iterating through
a given list, and appending each element to the end of a list starting
with the empty list. Even though the append predicate expression is
rather compact in cnp, it can only append lists to lists, but not elements
to lists. The user hypothesizes that the synthesis may succeed if it is
provided with a library predicate that can pack an element in a singleton
list. As a result the user tries to synthesize this predicate as a first step.

This predicate is exemplified by the named ground instance {a : 1, aList :
[1]}, and the synthesis is performed via the goal:

?- synInc(P, [a:in, aList:out], [[a:1, aList:[1]]]).

which results in the synthesis of the following predicate expression as it
is bound to the variable P :

P = proj(ande(cons, proj(isNil, [nil->b])), [a->a, ab->aList])

The user confirms that this is the desired definition, and manually
adds it to the cnp library with the name asList. This is undertaken via
the defPredicate predicate, which assigns predicate names to predicate
bodies, and is utilized by the meta-interpreter as well as the synthesizer.
In order to make this predicate available to the synthesizer, for every
valence of the predicate that is known to terminate, a separate instance
of the valencePredicate predicate is stated:

defPredicate(asList,
proj(ande(cons, proj(isNil, [nil->b])), [a->a, ab->aList])).
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valencePredicate(asList, [a:in, aList:out]).

With this entry made to the cnp library, the user tries the earlier goal
again:

?- synInc(P, [as:in, bs:out], [[as:[1,2,3], bs:[3,2,1]]]).

This succeeds and returns with the predicate expression:

P = proj(foldr2(
proj(foldr(cons, proj(asList, [a->a, aList->b])),

[a0->a, as->b, b->ab]),
proj(isNil, [nil->b])), [as->as, b->bs])

The predicate expression consists of a projection of a foldr2 operation,
with a projection of the isNil predicate for the base case, and a fold
operation for the recursive case. This foldr expression is similar to the
implementation of append, which is foldr(cons, id), but instead of id, uses
a projection of the asList predicate as the base case, which lets it append
a single element to a list, interpreting the single element as a singleton
list, through the use of the asList predicate. The outer operation foldr2
iterates through the given list, and at every step it appends the new
element to the end of a list, effectively obtaining a reversed list. Due to the
improved usability of cnp, the user can comprehend this code fragment
relatively easily, and confirm it as the acceptable implementation for the
intended purpose, adding it to the library:

defPredicate(reverse,
proj(foldr2(

proj(foldr(cons, proj(asList, [a->a, aList->b])),
[a0->a, as->b, b->ab]),

proj(isNil, [nil->b])), [as->as, b->bs])).

After being added to the library, the reverse predicate is now available
through the cnp meta-interpreter. A goal that uses the predicate, as in,

?- cnp(reverse, [as:[a,b,c,d], bs:Bs]).

succeeds with the following answer:

Bs = [d,c,b,a].

The predicate can also be used in the reverse direction, by giving a
reversed list:
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?- cnp(reverse, [as:As, bs:[d,c,b,a]]).

which succeeds with the following answer:

As = [a,b,c,d].

As a result, the user has successfully synthesized a fold-2 predicate (a
predicate that has two nested fold operators [45]) without writing any
cnp code, but by intervening with the synthesis process through dividing
the problem and confirming the results. The improved usability of cnp
is essential for these interventions.

7.3.2 Synthesis of insertion sort
The next example is the hybrid synthesis of an insertion sort algorithm
in cnp. In its entirety, the algorithm is too complex to be synthesized
in a single pass of the synthesizer. This requires a meta-algorithm to be
devised by the user, and its fragments to be synthesized or hand-written,
depending on how complex the fragment needs to be. The resulting pro-
gram is a hybrid between a hand-written program and a synthesized one.

The meta-algorithm of insertion sort devised by the user is assumed to
be as follows:

1. Write a predicate insertOrd that can insert a given integer into an
ordered list in the correct position, in such a way that after insertion
the list preserves the same order.

a) First, split the list into two lists, one that holds the integers
that are less in value than the one being inserted, and one with
integers with values greater than or equal to it.

b) Second, concatenate the two lists and the new integer in such
a way that the new integer goes in between the lists, thereby
creating a new list that preserves the order.

2. Using the insertOrd predicate, write a predicate iSort that takes
a list of integers, and inserts every integer in that list into a new list
using the insertOrd predicate, starting from an empty list.

First, let us look at the hybrid synthesis steps for writing the insertOrd
predicate.

In order to extract the elements that satisfy a specific predicate from a
list, cnp offers an operator filter(P), which is not included in synthesis
but provided as an operator in the meta-interpreter. This operator takes
a source predicate expression P, gives a predicate expression that has two
arguments, a list (as) that contains all the elements, and a second list (bs)
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that contains only the elements that satisfy the given predicate P. P has
three arguments: a, param, and b. When a given value for a is accepted,
the argument b is assigned to that value, otherwise it is assigned to nil.
The param argument can be used to pass a supporting value.

For synthesizing the filter operation, the user first needs to synthesize
its predicate arguments that can filter the integers less than or greater
than or equal to a given integer.

The synthesized predicate should assign the argument b to the value
of a if the value of a is less than the value of the threshold argument.
This is exemplified by three cases, one where a is less than threshold,
one where a is equal to threshold, and one where a is greater than
threshold. For the latter cases, the argument b should be nil. These
ground examples lead to the following synthesis goal:

?- synInc(P, [a:in, threshold:in, b:out],
[[a:4,threshold:5,b:4],
[a:4,threshold:4,b:[]],
[a:4,threshold:3,b:[]]]).

which results in the suggested expression:

P = ore(ande(proj(gte, [a->a, b->threshold]),
proj(isNil, [nil->b])),

ande(id,
proj(gt, [a->threshold, b->b])))

In the first case of the ore operator, the synthesizer came up with an
ande expression which composes a projection of the elementary predicate
gte that is satisfied when argument a is greater than or equal to the
argument threshold, and a projection of the isNil predicate which is
satisfied when the argument b is the term ([]), effectively assigning the
value of b to nil if a is greater than or equal to threshold.

The second case of the ore operator, uses a projection of the elementary
predicate gt with its arguments inverted as a less than predicate that is
satisfied when argument a is less than argument b, in conjunction with the
id predicate (satisfied when a and b are identical), effectively assigning
the argument b to the value of a if the value of a is less than the value
of threshold.

As this is the correct implementation for the desired behaviour, the
user confirms this implementation and adds it to the library with the
name ltPass:

defPredicate(ltPass, ore(ande(proj(gte, [a->a, b->threshold]),
proj(isNil, [nil->b])),
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ande(id,
proj(gt, [a->threshold, b->b])))).

which can be tested via the following goals:

?- cnp(ltPass, [a:5, threshold:6, b:B]).
B = 5

?- cnp(ltPass, [a:6, threshold:6, b:B]).
B = []

?- cnp(ltPass, [a:7, threshold:6, b:B]).
B = []

The new predicate ltPass can be used to hand-write a predicate ex-
pression that filters only the elements lower than a given threshold:

defPredicate(filterLt,
filter(proj(ltPass, [a, threshold->param, b]))).

which can also be tested as follows:

?- cnp(filterLt, [as:[1,2,3,4,5], param:3, bs:Bs]).

Bs = [1, 2]

The user repeats the same procedure for synthesizing a gtePass predi-
cate. It is subsequently used to write a filterGte predicate that extracts
the elements greater than or equal to a given param value from a list.
These actions result in the following predicate definitions:

defPredicate(gtePass,
ore(ande(proj(gt, [b->a, a->threshold]),

proj(isNil, [nil->b])),
ande(id,

proj(gte, [b->threshold, a->b])))).

defPredicate(filterGte,
filter(proj(gtePass, [a, threshold->param, b]))).

In order to append the lists extracted by the filterLt and filterGte
predicates, the user also provides a synthesized append predicate, whose
synthesis was described earlier:
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defPredicate(append,
proj(foldr(cons, id), [as->xs, a0->ys, b->zs])).

The predicates defined so far are sufficient for composing the planned
insertOrd predicate, which inserts a given element into an ordered list
in the correct order, returning a new ordered list that contains the new
element. Due to the synthesizer not being strong enough for the task,
because of the relatively high number of arguments involved, the user
writes the following definition for insertOrd by hand:

defPredicate(insertOrd,
proj(ande(proj(filterLt, [as, param->elem, bs->listLt]),

proj(filterGte, [as, param->elem, bs->listGte]),
proj(cons, [a->elem, b->listGte, ab->newListGte]),
proj(append, [xs->listLt, ys->newListGte, zs->bs])),

[as, elem, bs])).

The definition above uses the filterLt and filterGte predicates to
split a given list into two (listLt and listGte) by a given threshold
in the elem argument. It prepends the elem itself to the listGte and
obtains newListGte using the elementary predicate cons. Finally it ap-
pends the listLt and newListGte lists to obtain the list in the bs argu-
ment, containing the list after the insertion of elem. This hand-written
predicate works as follows, when called through the cnp meta-interpreter:

?- cnp(insertOrd, [as:[2,4,6], elem:5, bs:Bs]).

Bs = [2, 4, 5, 6] .

For this hand-written predicate the user also adds the valencePredicate
instance that makes it available to the synthesizer:

valencePredicate(insertOrd, [as:in, elem:in, bs:out]).

At this point, the user has completed the first step of writing the
insertion sort algorithm. The second step is solely a synthesis task. The
goal below attempts to synthesize a predicate with two arguments list
and sorted, with a single named ground example {list : [5, 1, 2], sorted :
[1, 2, 5]}, given as follows:

?- synInc(P, [list:in, sorted:out],
[[list:[5,1,2], sorted:[1,2,5]]]).
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Predicate Method
ltPass Synthesized
gtePass Synthesized
filterLt Hand-written
filterGte Hand-written
append Synthesized
insertOrd Hand-written
iSort Synthesized

Figure 7.5. The list of predicates involved in the insertion sort algorithm

which results in the following synthesized predicate expression:

P = proj(foldr2(proj(insertOrd, [elem->a, as->b, bs->ab]),
proj(isNil, [nil->b])),

[as->list, b->sorted])

The synthesized predicate expression conforms with the recursive na-
ture of the second step in the user’s plan, using the specific fold variant
foldr2 operator. It iterates through the list given in the list argument,
passing every element to the insertOrd predicate, inserting them onto a
list which stays ordered due to the behavior of the insertOrd predicate.
Consequently, the user confirms this expression as the correct implemen-
tation and adds it to the library, giving it the name iSort:

defPredicate(iSort,
proj(foldr2(proj(insertOrd, [elem->a, as->b, bs->ab]),

proj(isNil, [nil->b])),
[as->list, b->sorted])).

The new predicate can be tested through the cnp meta-interpreter:

?- cnp(iSort, [list:[50,10,10,20,30], sorted:S]).

S = [10, 10, 20, 30, 50]

With the synthesis of the final iSort predicate, the insertion sort meta-
algorithm initially planned by the user is implemented through a hybrid
method involving both synthesized and hand-written fragments. The list
of predicates in the Figure 7.5 reveals the pattern this mixed method
entails. The equivalent Prolog code can be found in Appendix E.
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7.4 Conclusion
In this chapter, meta-interpretative inductive synthesis is presented as an
example application of combilog. This technique was the original moti-
vation behind combilog, since establishing a variable-free language that
is semantically equivalent to definite clause programs significantly ampli-
fies the strength and simplicity of the technique. As cnp is a usability
improvement over combilog, performing the same kind of synthesis di-
rectly in cnp shows that cnp is equally capable for this type of work.

Moreover, the improved usability of cnp allows a method presented
here as hybrid synthesis, where some parts of the program are synthesized
and some parts are hand-written by the user. To wit, let us observe the
following code fragments, which are the synthesized predicate expressions
for the ltPass predicate in the insertion sort example presented earlier,
given in combilog and cnp to compare. In combilog:

P = or(and(make([1,2,3],gte),
make([2,3,1],isNil)),

and(make([1,3,2],id),
make([2,1,3],gt))).

and the same code fragment synthesized in cnp:

P = ore(ande(proj(gte, [a->a, b->threshold]),
proj(isNil, [nil->b])),

ande(id,
proj(gt, [a->threshold, b->b])))

The cnp code is easier to verify as the correct implementation. Ar-
gument names help to establish a mental connection between arguments,
reducing the need to memorize predicate signatures and the number of
arguments being dealt with. In order to read the combilog code, the
user needs to memorize which arguments are mapped to which index,
and memorize the arities of each predicate. The increased usability of
cnp enables users to confirm the synthesized predicate with greater ease.
Thus, it contributes fundamentally to hybrid synthesis.

The increased usability makes it easier to write fragments by hand as
well. If we consider the definition of the insertOrd predicate, the differ-
ence in difficulty between writing the combilog fragment and the cnp
fragment can be observed. If hand-written in combilog, the insertOrd
predicate definition is as follows:

make([1,2,3], and(make([2,1,4,3,5,6], filterLt),
make([2,1,4,5,3,6], filterGte),
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make([1,4,5,6,2,3], cons),
make([4,5,3,1,6,2], append))).

While composing this expression by hand, the user needs to plan the
indices ahead, and go back-and-forth between the indices and the predi-
cate names. This applies also for expanding the components of the and
operator, since the number of arguments needs forward planning. The
outer make operator used for cropping needs to be written last.

In contrast, the equivalent hand-written cnp code from the insertion
example analyzed earlier, is as follows:

proj(ande(proj(filterLt, [as, param->elem, bs->listLt]),
proj(filterGte, [as, param->elem, bs->listGte]),
proj(cons, [a->elem, b->listGte, ab->newListGte]),
proj(append, [xs->listLt, ys->newListGte, zs->bs])),

[as, elem, bs])

As well as eliminating the argument indices, the cnp code reduces
the number of times the user needs to travel back-and-forth within the
expression. The argument names are not as fluid as indices, which allows
the choice of an arbitrary name for a bound argument through the proj
operator. The auto-expanding ande operator reduces repetitive code as
the user need not deal with the unbound arguments. As a result, the cnp
predicate expression is much easier to write and modify.

These usability concerns are revisited here as a brief reminder of the
usability analysis of combilog found in Chapter 3 and the usability
study of cnp found in Chapter 6. The improvements contribute to pro-
gram synthesis by making it available for practical use. Although the
framework for decompositional synthesis invented with combilog is the-
oretically useful as a programming tool, uptake has been limited due
to low usability. The cnp language addresses many of these problems
and increases the potential for adoption. cnp facilitates a user-oriented
decompositional synthesis approach referred to here as hybrid synthesis,
where improved readability leads to simpler validation of synthesized code
and improved modifiability leads to the straightforward composition of
hand-written code. As noted earlier, hybrid synthesis, or interactive syn-
thesis is not a new idea, but the novel concept here is facilitating hybrid
decompositional synthesis.
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8. Conclusion

In the earlier chapters, we identified the problem of usability in com-
bilog, and addressed it in two distinct ways. Issues were identified
in Chapter 3 through a usability evaluation of the combilog notation,
which led the way to the solutions presented throughout the thesis. One
of these was based on visualizing combilog code through visual com-
bilog, and one was the creation of a more usable textual iteration of
combilog, that is, cnp.

Both of these solutions are intended to equip combilog for the original
purpose behind its invention. Namely, establishing a compositional logic
programming language that is equivalent to definite clauses, which can
be used as a meta-language for inductive program synthesis. Here let
us revisit and emphasize how each of these can be utilized in relation to
program synthesis.

In Chapter 4 a system was designed that can be used to visualize any
combilog program as is, and can be used to modify a combilog pro-
gram by modifying the visualization. This approach assumes the user
would like to keep combilog as the target language of synthesis, yet
would like to deal with reading and editing synthesized programs more
easily. visual combilog supports this objective with a user-friendly
visual notation, and an accompanying parser/generator that establishes
the link between combilog and visual combilog. As a proof of con-
cept, a prototype was implemented with mirrored-editing feature which
allows a programmer to edit combilog code on one side, through mod-
ifying a Visual Combilog diagram on the other. The editor continuously
updates the mirrored representations on-the-fly, and the user is able to
use whichever notation they prefer for the task at hand.

The results of the user study in Chapter 4, show that when combilog
code is accompanied with the visual notation, it is 46% faster to interpret
and users make 69% fewer mistakes while doing so. As a demonstra-
tion of this effect, Figures 8.1 and 8.2 display the combilog code and
the corresponding visual combilog diagram for the append predicate.
Let us assume the code in Figure 8.1 is synthesized by the combilog
synthesizer. Using our visual combilog editor, this code can be visu-
alized, and interpreted through visualization to confirm it as the correct
implementation or not. Moreover, by interacting only with the diagram,
the user can modify the combilog code (as the changes on the dia-
gram are continuously reflected on the textual code) and commit to the
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append <- or(and(make([1,2,3], isNil),
make([3,1,2], id)),

make([1,2,3], and(make([3,4,5,1,2,6], cons),
make([4,2,5,6,1,3], append),
make([4,5,3,1,6,2], cons))))

Figure 8.1. combilog code for the append predicate

Figure 8.2. visual combilog diagram for the append predicate in three par-
titions. Top-left graphs shows the top level composition of the predicate as a
disjunction, with one base case and one recursive case, which are separately
given at the bottom-left and on the right, respectively.

new version when the correct implementation is arrived at. The usabil-
ity improvements brought by visual combilog have a direct effect on
usability of combilog as a target language for program synthesis.

Although visual combilog significantly improves usability, there are
still some obstacles to its adoption. Diagrams are not regarded first-class
currency in current systems, which restricts their use to specific appli-
cations, limiting the potential for tool support. Moreover, the design
of visual combilog was subject to some constraints inherent to com-
bilog, such as the fixed argument order. The visual notation could not
depart too far from the concepts of combilog, so as not to break the on-
the-fly compatibility between the two. For example, if a minor change in
the diagram resulted in a significant one in its combilog dual, it would
alienate the user by invalidating the mental map they constructed. Such
limitations prompted exploration of alternative approaches: one of which
was a more usable iteration of the textual combilog notation.

Chapter 5 presents cnp. This new textual representation was designed
to address the issues identified in Chapter 3. Chapter 5 then gives the
formal semantics of cnp, and a proof of the isomorphism between the
semantics of combilog and cnp. Most importantly, the two essential
features: the variable-freeness and compositionality of combilog were
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preserved in cnp. This isomorphism suggests that cnp should be able to
replace combilog in virtually all its uses, including program synthesis.
To investigate any usability improvements in cnp, in Chapter 6 a user
study compared the usability of cnp to a common notation for logic
programming that uses variables (Prolog). The results showed that
while cnp was on average 25% slower than the Prolog in comprehension
tasks, it was also 22% faster in modification tasks. When both tasks were
measured together, there was no statistically significant difference among
the two. The results also showed that cnp has a significant advantage in
the outcome of modification tasks: a 42% improvement in correct answers
and 52% fewer mistakes were recorded. This reveals that cnp can be just
as usable as Prolog for the tasks in the study, which were designed
around interpreting and altering relational argument binding.

After confirming the usability improvements in cnp, we exemplified
its use as a target language for inductive program synthesis using the
same technique as combilog. This application, presented in Chapter 7,
reaffirms that cnp can replace combilog for its original motivating ap-
plication. The strength of the synthesizer was the same as for combilog,
namely that it could synthesize programs up to two levels of nested fold
operators with as few as only one input/output example. The improved
usability of cnp is demonstrated through some synthesis examples that
require a hybrid approach, where some fragments of a program are syn-
thesized and some are hand-written. This hybrid approach is bolstered
by the introduction of cnp, as comprehending and modifying combilog
is more difficult. A hybrid synthesis approach in combilog would poten-
tially involve translation to another language that is more usable, which
may lead to reverse translation issues in order to be able to feed the edited
fragments back into the synthesizer as library predicates. On the other
hand, cnp fragments can be synthesized, read, edited, and fed back into
the synthesizer as library predicates as they are. Chapter 7 presented a
demonstration of synthesizing an insertion sort algorithm by this hybrid
approach. A fragment of this algorithm can be seen in Figure 8.4, where
the gtePass predicate is synthesized in both combilog and cnp. The
function of this predicate is passing through only the values greater than
or equal to a given threshold value.

To summarize, we analysed the usability issues of combilog, and pre-
sented two distinct solutions. We measured the improvements brought
by each of these using empirical methods. Both approaches were imple-
mented as usable sofware tools. Finally we demonstrated how the second
approach (cnp) can, in fact, replace combilog in its original use case.
Of course, the usability of a programming language cannot be entirely de-
termined by a limited number of specific tasks. The community, available
libraries, usability of the compiler/interpreter, and distinctive uses for the
language are all contributing factors. We should admit that our studies
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gtePass = or(and(make([2,1,3],gt),
make([2,3,1],isNil))),

and(make([1,3,2],id),
make([1,2,3],gte))).

Figure 8.3. Synthesized gtePass predicate example in combilog

gtePass = ore(ande(gt {b->a, a->threshold},
isNil {nil->b}),

ande(id,
gte {b->threshold, a->b})).

Figure 8.4. Synthesized gtePass predicate example in cnp, with the proj
operator used implicitly

focus on a small number of simple examples, while real-world cases are
likely to be much more complex. Regardless, when cnp is compared to
its departure point of combilog, it is safe to claim that cnp makes the
uses of combilog more accessible, and is a considerable candidate for
the practical use of Compositional Relational Programming.

8.1 Future work
Some directions of work were identified as interesting in the course of this
study but not pursued. Here is a list of some of those ideas, to make
them available for further discussion and future research.

In Chapter 4 we presented a split-view editor for a side-by-side use
of combilog and visual combilog. An integrated interpreter and
synthesizer in the editor would be the next step. Such an integrated tool
would make further usability studies feasible, particularly those that eval-
uate visual combilog for program synthesis. The visual combilog
notation is based on combilog, but an iteration of it can be designed for
cnp. visual cnp would be significantly different to visual combilog
due to the lack of argument order, introduction of argument names, and
the auto-expanding logic operators. It could potentially improve usability
of cnp programs further.

The cnp language is implemented as a meta-interpreter written in
Prolog. This implementation can be wrapped by a stand-alone inter-
preter that accepts the plain cnp programs without the meta-predicates
and constructs imposed by the host environment. As well as an inter-
preter, a user-facing tool orchestrating the hybrid synthesis would be
needed for the next step of user studies to measure the usability of cnp
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for actual synthesis tasks. As an extension of such a tool, the synthesis
could be improved yet further by letting the user type in a suggestive par-
tial expression tree such as fold(. . . plus, . . .) without regard to argument
mappings, or the specific variant of the fold operator. The missing parts
would be filled in by the synthesizer. Similar approaches were suggested
in earlier work [38] and cnp could be considered a viable medium for such
interactive synthesis.

In Chapter 5 we defined two extended logic operators ande/ore, and
suggested some variants that may also make use of the argument names.
Automatic schema matching is an already established method in the con-
text of databases and data integration [100]. A thorough analysis of au-
tomatic schema matching methods in the context of Logic Programming
could reveal a more suitable set of extended operators for cnp, further
improving usability of the language. Empirical methods could be utilized
for inventing new operators as well. A recent study has applied data
mining techniques to open source code repositories in order to identify
potential operators for combilog with promising results [63]. A similar
approach could be explored to identify new operators for cnp.

The operators foldr/foldl and their variants are the only recursion oper-
ators available in cnp. Exploring further operators for the language, and
also separately for the synthesizer is advisable. The earlier work on com-
bilog refers to recursion schemes such as divide and conquer [47, 109],
and argue for identifying further higher-order operators. The feasibility
of such operators for efficient synthesis needs to be explored separately.
For example, the filter operator is used in hand-written fragments of the
hybrid synthesis examples in Chapter 7. This operator is inherently in-
efficient to synthesize, as it does not have a one-to-one mapping between
elements in the input list and those in the output list. Decomposing syn-
thesis examples for such an operator is combinatorially expensive. On
the other hand, the synthesis complexity of a map operator is identical
to that of the folds, and it is straightforward to handle as a specific case.

Most functional languages benefit from having a static type system.
It helps with identifying type-related misunderstandings at compile-time,
and also accommodates working with algebraic forms of programs. cnp
currently does not have a strong type system other than the separation
of concepts inherited from First-Order Logic. The cnp synthesizer hints
at fragments of a type system in the form of predicate valences and well-
modedness constraints. It would be a worthwhile effort to explore the
possibility of a strong type system for cnp , in particular as a way to
formalize some aspects of the synthesizer. Moreover, a static type system
could potentially improve the synthesis performance by including explicit
types in the input/output examples.
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In terms of usability, we have only performed quantitative studies. By
design, these studies are likely to be too focused on specific tasks. Per-
forming exploratory qualitative studies of programmer experience, partic-
ularly while dealing with other synthesis tasks could expose novel ques-
tions. Such results could be used to construct mental models for identi-
fying more specific areas for further quantitative usability studies.
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EVALUATION OF A VISUAL SYSTEM FOR RELATIONAL PROGRAMMING 
We need your help to understand if a particular type of visual assistance improves understanding of certain programming 
expressions. This questionnaire is composed of 4 parts. 

PART 1 

INTRODUCING CONSTRUCTS OF CODE 

Our programming examples deal with relations and composing new relations using a set of operators.  A relation represents a 
connection between a number of arguments, and the number of values is called the ‘arity’ of that relation. For example, a 
relation R with three arguments is an arity-3 relation: ( , , ) 

The first operator we deal with is the make operator, which can manipulate the arguments of a given relation to produce a new 
one. It takes an index list and a relation for arguments and produces a new relation where arguments are ordered with the given 
index list. For example:  ([ , , ], ). 
Assuming the relationA is an arity-3 relation, the statement above inverses the argument order of the relationA. To help 
understanding what the make operator does, another way of writing the statement above could be as follows: ( , , )  ( , , ) 

But with the use of make operator, we avoid explicitly displaying arguments but rely on an index list (such as [2, 1, 0]). This index 
list can also be used to introduce new arguments by placing the underscore sign ‘_’. Such an example follows:  ([_, , _], ). 
The example above creates a newRelation where the argument-0 and argument-2 (first and last arguments) are unbound, and 
the argument-1 is bound to argument-1 of the relationA. The make operator can also be used in a nested fashion. An example 
that does the same thing as above example can be written as follows:  [_, , _], ([ ], ) . 
In the example above, the outer make operator refers to the middle argument of relationA as argument-0 since the inner make 
produces a temporary relation with only one argument, which has only one argument, hence argument-0. There are also logical 
operators and and or that you can combine with make. These operators take other expressions as input to combine them for a 
logical expression. Every argument in the new relation is bound to the arguments at the same index in every relation in that 
context. For example:  ( , ). 
In the example above, if we assume the relationA and relationB are arity-3, the newRelation also has to be arity-3, since logic 
operators only combine relations of the same arity to produce a new relation of that same arity. Argument-0 of relationA is 
bound to argument-0 of newRelation and argument-0 of relationB. Same goes for argument-1 and argument-2. Another 
example that is one step more complex. relationA is arity-2 and relationB is arity-3:  [ ], , ([ , ], ) . 
The statement above creates a newRelation that is arity-1. And this single argument of newRelation, argument-0, is bound to 
argument-1 of relationA and argument-0 of relationB, since the inner make reverses the places of argument-1 and argument-0 
of relationB. 
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EXERCISES WITH ONLY CODE 

In the next section, we will show you some code and ask a few questions about its consequences. Please do not forget to write 
down the time. 

Start time:  . . / . . /. . (hh/mm/ss) 

1.  ([ , ], ). 
 
Assuming relationA is arity-3, please answer these questions: a. How many arguments does newRelation have?  

Answer:  b. Argument-0 of newRelation is bound to which argument of relationA? 
Answer: c. Is any argument of newRelation bound to argument-2 of relationA? 
Answer: 
 

2.  ( ([ , ], ), ([ , ], )). 
 
Assuming relationA  is arity-3 and relationB  is arity-4: 
a. How many arguments does newRelation have? 

Answer: 
b. Argument-0 of newRelation is bound to which argument of relationA? 

Answer: 
c. Argument-0 of newRelation is bound to which argument of relationB? 

Answer: 
 

3.  [_, , ], ( ([ , ], ), ([ , ], ), ) . 
 
Assuming relationA is arity-3, relationB is arity-4 and relationC is arity-2: 
a. How many arguments does newRelation have? 

Answer: 
b. Argument-0 of newRelation is bound to which argument of RelationA? 

Answer: 
c. Argument-0 of newRelation is bound to which argument of RelationC? 

Answer: 
d. Argument-2 of newRelation is bound to arguments of what other relations? 

Answer: 
e. Argument-1 of relationA is bound to which argument of relationB? 

Answer: 

 
Finish time:  . ./. . /. . (hh/mm/ss) 
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PART 2 

Warning: DO NOT go back to previous section to correct your answers. 

In this part, we display a line of code and we also provide visuals corresponding to every line of code.  

Relations are displayed by circles connected to each other with lines. A new relation that is being created will always be 
displayed in black in the middle, its arguments ordered from left to right. Solid circles (on the left, below) are used for and 
operator while dashed circles (on the right, below) represent or. 

 

Other relations used in the expression will be displayed in different colours, largest circle of the same colour being argument-0 
and the smallest circle being the last argument. 

 

In the example above, the red relation can be written as ( , , ) and blue relation as ( , ). Lastly, the circles that are 
touching are bound together. An example of this can be drawn as below: 

  ([ , ], ) 

In the example above, newRelation is created by inversing the arguments of relationA. Argument-0 of newRelation is bound to 
argument-1 of relationA and argument-1 of newRelation is bound to argument-0 of relationA. The next example is an or 
operation: 

  ( ([_, , _], ), ([_, , _], )) 

In this example, the newRelation will be an arity-3 relation. Argument-1 of newRelation is bound to argument-1 of relationA. 
Argument-2 of newRelation is bound to argument-0 of relationB. 

In the next section, a line of code will be displayed alongside its visualization. Please answer the questions, and write down the 
time when you start and finish. 
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EXERCISES WITH VISUALS 

Start time:  . . / . . /. . (hh/mm/ss) 

1.  ([ , ], ). 
 
 
Assuming relationA is arity-3, please answer these questions: d. How many arguments does newRelation have?  

Answer:  
 e. Argument-0 of newRelation is bound to which argument of relationA? 
Answer: 
 f. Is any argument of newRelation bound to argument-0 of relationA? 
Answer: 
 

2.  ( ([ , ], ), ([ , ], )). 
 
Assuming relationA  is arity-3 and relationB  is arity-4: 
d. How many arguments does newRelation have? 

Answer: 
 

e. Argument-0 of newRelation is bound to which argument of 
relationA? 
Answer: 
 

f. Argument-0 of newRelation is bound to which argument of 
relationB? 
Answer: 
 

3.          [ , , ], ( ([ , , _], ), ([ , , ], ), ([ , , _], )) . 
 
 
Assuming relationA is arity-3, relationB is arity-4 and relationC 
is arity-2: 
 
f. How many arguments does newRelation have? 

Answer: 
g. Argument-0 of newRelation is bound to which argument of 

RelationA? 
Answer: 

h. Argument-0 of newRelation is bound to which argument of 
RelationC? 
Answer: 

i. Argument-2 of newRelation is bound to arguments of what other relations? 
Answer: 

j. Argument-1 of relationA is bound to which argument of relationB? 
Answer: 

Finish time:  . ./. . /. . (hh/mm/ss) 
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QUESTIONNAIRE 

Please answer these questions: 

“When accompanied with visuals, the code was easier to understand.” 

Strongly agree  Agree  Neutral  Disagree  Strongly Disagree 

“When accompanied with visuals, I could interpret the code faster.” 

Strongly agree  Agree  Neutral  Disagree  Strongly Disagree 

 

 

Are you familiar with any relational programming language? (such as Prolog): 

 

Do you have a vision problem? Please specify: 

 

Do you have a condition that makes it harder for you to read text? Please specify: 

 

Do you have any issues perceiving colours? Please specify: 

 

Your age: 

 

Your gender (optional):  

 

Please write down an e-mail address if you would like to be notified of the results: 

 

 

 

 

Thank you for your time, your contribution is appreciated greatly. 
Regards, 
Görkem Pacaci 
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Appendix B.
combilog interpreter

1 % Runs on: SWI−Prolog (MacOs 10.12, 64 bits, Version 7.3.20)
2 % Runs on: SICStus Prolog 4.2.0 (MacOs 10.12, x86_64−darwin−10.6.0)
3

4 :- use_module(library(lists)).
5 :- multifile defPredicate/2.
6

7 % elementary predicates
8 comb(true, []).
9 comb(isNil, [[]]).

10 comb(const(C), [C]).
11 comb(id, [X,X]).
12 comb(cons, [X,Y,[X|Y]]).
13

14 % natural number predicates given besides the
15 % elementary predicates of the language
16 comb(gt, [X, Y]) :- number(X), number(Y), X>Y.
17 comb(gte, [X, Y]) :- number(X), number(Y), X>=Y.
18 comb(asList, [X, [X]]).
19

20 comb(and(P, Q), Args) :- comb(P, Args),
21 comb(Q, Args).
22 comb(and(P, Q, R), Args) :- comb(P, Args),
23 comb(Q, Args),
24 comb(R, Args).
25 comb(and(P, Q, R, S), Args) :- comb(P, Args),
26 comb(Q, Args),
27 comb(R, Args),
28 comb(S, Args).
29

30 comb(or(P, Q), Args) :- comb(P, Args); comb(Q, Args).
31 comb(or(P, Q, R), Args) :- comb(P, Args);
32 comb(Q, Args);
33 comb(R, Args).
34 comb(or(P, Q, R, S), Args) :- comb(P, Args);
35 comb(Q, Args);
36 comb(R, Args);
37 comb(S, Args).
38
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39 comb(make(I, P), Atarget) :- arity(P, PArity),
40 makebind(I, Asource, PArity, Atarget),
41 comb(P, Asource).
42

43 comb(foldr(_, Q), [Y, [], Z]) :- comb(Q, [Y, Z]).
44 comb(foldr(P, Q), [Y, [X|T], W]) :- comb(foldr(P, Q), [Y, T, Z]),
45 comb(P, [X, Z, W]).
46

47 % the binary variant of foldr
48 comb(foldr2(P, Q), Args) :-
49 comb(make([2,3], foldr(P, and(make([1,2],Q),id))), Args).
50

51 comb(foldr(_), [[X|[]], X]).
52 comb(foldr(P), [[X|Xr], Y]) :-
53 comb(foldr(P), [Xr,Z]),
54 comb(P, [X,Z,Y]).
55

56 comb(natrec(_, Q), [Y, [], Z]) :- comb(Q, [Y, Z]).
57 comb(natrec(P, Q), [Y, [[]|T], W]) :- comb(natrec(P,Q), [Y,T,V]),
58 comb(P, [Y,V,W]).
59 comb(natrec(P, Q), [Y, [[]|T], W]) :- comb(natrec(P,Q), [Y,T,V]),
60 comb(P, [Y,V,W]).
61

62 comb(foldl(_, Q), [Y, [], Z]) :- comb(Q, [Y, Z]).
63 comb(foldl(P, Q), [Y, [X|T], W]) :- comb(P, [X, Y, Z]),
64 comb(foldl(P, Q), [Z, T, W]).
65

66 % the defPredicate provides a library predicate , where predicate
67 % names are mapped to their bodies as predicate expressions .
68 % if the interpreter is called with a first term that is atomic,
69 % this clause does the library lookup for a predicate body,
70 % and if it finds one, executes it .
71 comb(Pred, Args) :-
72 atomic(Pred),
73 defPredicate(Pred, Body),
74 comb(Body, Args).
75

76 % helper predicate for ’make’
77 % makebind(Indices, SourceArgs, AritySource , TargetArgs)
78 makebind([], S, ArityS, []) :- length(S, ArityS).
79 makebind([I|Ir], S, ArityS, [T|Tr]) :- I=<ArityS,
80 nth1(I, S, T),
81 makebind(Ir, S, ArityS, Tr).
82 makebind([I|Ir], S, ArityS, [_|Tr]) :- I>ArityS,
83 makebind(Ir, S, ArityS, Tr).
84

85 % arity calculation is needed for the n−ary implementation of ’make’.
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86 arity(true, 0).
87 arity(isNil, 1).
88 arity(const(_), 1).
89 arity(id, 2).
90 arity(gt, 2).
91 arity(gte, 2).
92 arity(cons, 3).
93 arity(and(P, Q), N) :- arity(P, N), arity(Q, N).
94 arity(and(P, Q, R), N) :- arity(P, N), arity(Q, N), arity(R, N).
95 arity(and(P, Q, R, S), N) :- arity(P, N), arity(Q, N),
96 arity(R, N), arity(S, N).
97 arity(or(P, Q), N) :- arity(P, N), arity(Q, N).
98 arity(or(P, Q, R), N) :- arity(P, N), arity(Q, N), arity(R, N).
99 arity(or(P, Q, R, S), N) :- arity(P, N), arity(Q, N),

100 arity(R, N), arity(S, N).
101 arity(make(I,_), N) :- length(I, N).
102 arity(foldr(_,_), 3).
103 arity(foldl(_,_), 3).
104 arity(foldr2(_, _), 2).
105 arity(natrec(_,_),3).
106 arity(foldr(_), 2).
107 arity(Pred, N) :-
108 atomic(Pred),
109 defPredicate(Pred, Body),
110 arity(Body, N).
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Appendix C.
cnp interpreter

1 % Runs on: SWI−Prolog (MacOs 10.12, 64 bits, Version 7.3.20)
2 % Runs on: SICStus Prolog 4.2.0 (MacOs 10.12, x86_64−darwin−10.6.0)
3

4 :- use_module(library(sets)).
5 ?- use_module(library(lists)).
6 :- op(500, xfx, [->,:,/]).
7 :- multifile defPredicate/2.
8

9 % CNP elementary predicates
10 cnp(true, []).
11 cnp(const(N, C), [N:C]).
12 cnp(id, [a:X, b:X]).
13 cnp(cons, [a:X, b:Y, ab:[X|Y]]).
14

15 % these are not elementary predicates of the language,
16 % and can be defined using the elementary predicates above
17 % but for ease of use they are included here as a minimal library .
18 cnp(isNil, [nil:[]]).
19 cnp(gt, [a:X, b:Y]) :- number(X), number(Y), X>Y.
20 cnp(gte, [a:X, b:Y]) :- number(X), number(Y), X>=Y.
21

22 cnp(debug(Mess), [obj:Obj]) :-
23 write(Mess), write(":"), writeln(Obj).
24

25 cnp(ande(A, B), Args) :-
26 names(A, NamesA), names(B, NamesB),
27 names(ande(A, B), NamesAB),
28 subtract(NamesAB, NamesB, NamesOnlyA),
29 subtract(NamesAB, NamesOnlyA, NamesBOrd),
30 splitArgs(Args, NamesA, NamesBOrd, ArgsA, ArgsBOrd),
31 reorderArgs(ArgsBOrd, NamesB, ArgsB),
32 cnp(A, ArgsA),
33 cnp(B, ArgsB).
34 cnp(ande(A,B,C), Args) :-
35 cnp(ande(ande(A,B),C), Args).
36 cnp(ande(A,B,C,D), Args) :-
37 cnp(ande(ande(A,B), ande(C,D)), Args).
38 cnp(ande(A,B,C,D,E), Args) :-
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39 cnp(ande(ande(A,B), ande(C,D), E), Args).
40

41 cnp(ore(P, Q), Args) :-
42 names(P, NamesP),
43 names(Q, NamesQ),
44 names(ore(P, Q), NamesPQ),
45 subtract(NamesPQ, NamesQ, NamesOnlyP),
46 subtract(NamesPQ, NamesOnlyP, NamesQOrd),
47 splitArgs(Args, NamesP, NamesQOrd, ArgsP, ArgsQOrd),
48 reorderArgs(ArgsQOrd, NamesQ, ArgsQ),
49 (cnp(P, ArgsP); (cnp(Q, ArgsQ))).
50 cnp(ore(P,Q,R), Args) :- cnp(ore(ore(P,Q),R), Args).
51 cnp(ore(P,Q,R,S), Args) :- cnp(ore(ore(P,Q),ore(R,S)), Args).
52 cnp(ore(P,Q,R,S,T), Args) :- cnp(ore(ore(P,Q),ore(R,S),T), Args).
53

54 cnp(Q/Projs, Args) :-
55 cnp(proj(Q, Projs), Args).
56 cnp(proj(Q, Projs), Args) :-
57 names(Q, NamesQ),
58 namesInProj(Projs, SourceNames, _),
59 renameArgs(ArgsToProject, Projs, Args),
60 expand(ArgsToProject, SourceNames, NamesQ, ArgsQ),
61 cnp(Q, ArgsQ).
62

63 % foldr/ foldl :
64 % − The arg. names for the base case are [a, b]
65 % − The arg. names for the recursive case are [a, b, ab]
66 % − The resulting predicates argument names are [a0, as, b]
67 cnp(foldr(_, Q), [a0:A0, as:[], b:B]) :-
68 cnp(Q, [a:A0, b:B]).
69 cnp(foldr(P, Q), [a0:A0, as:[A|As], b:B]) :-
70 cnp(foldr(P, Q), [a0:A0, as:As, b:Bmid]),
71 cnp(P, [a:A, b:Bmid, ab:B]).
72

73 cnp(foldl(_, Q), [a0:A0, as:[], b:B]) :-
74 cnp(Q, [a:A0, b:B]).
75 cnp(foldl(P, Q), [a0:A0, as:[A|As], b:B]) :-
76 cnp(P, [a:A, b:A0, ab:Bmid]),
77 cnp(foldl(P, Q), [a0:Bmid, as:As, b:B]).
78

79 % Constraints for using foldr2 :
80 % − The argument name for Q is only [b]
81 % − The argument names for P are [a, b, ab]
82 % − The resulting arguments are [as, b]
83 cnp(foldr2(_, Q), [as:[], b:B]) :-
84 cnp(Q, [b:B]).
85 cnp(foldr2(P, Q), [as:[A|As], b:B]) :-
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86 cnp(foldr2(P, Q), [as:As, b:Bmid]),
87 cnp(P, [a:A, b:Bmid, ab:B]).
88

89 % Constraints for using natrec :
90 % − The argument names for Q are: a, b
91 % − The argument names for P are: a, b, ab
92 % − The resulting arguments are: a0, as, b.
93 cnp(natrec(_, Q), [a0:A0, as:[], b:B]) :-
94 cnp(Q, [a:A0, b:B]).
95 cnp(natrec(P, Q), [a0:A0, as:[[]|As], b:B]) :-
96 cnp(natrec(P,Q), [a0:A0, as:As, b:Bmid]),
97 cnp(P, [a:A0, b:Bmid, ab:B]).
98 % variant with binary recursive case and unary base case
99 cnp(natrec(_, Q), [a0:_, as:[], b:B]) :-

100 cnp(Q, [b:B]).
101 cnp(natrec(P, Q), [a0:A0, as:[[]|As], b:B]) :-
102 cnp(natrec(P,Q), [a0:A0, as:As, b:Bmid]),
103 cnp(P, [b:Bmid, ab:B]).
104

105 % filter :
106 % − The arg. names for the recursive case are [a, param, b]
107 % − The resulting predicates arg . names are [as, param, bs]
108 cnp(filter(_), [as:[], param:_, bs:[]]).
109 cnp(filter(P), [as:[A|As], param:Param, bs:Bs]) :-
110 cnp(P, [a:A, param:Param, b:[]]),
111 cnp(filter(P), [as:As, param:Param, bs:Bs]).
112 cnp(filter(P), [as:[A|As], param:Param, bs:[B|Bs]]) :-
113 cnp(P, [a:A, param:Param, b:B]),
114 dif(B, []),
115 cnp(filter(P), [as:As, param:Param, bs:Bs]).
116

117 % user predicates are defined with defPredicate (name, Body).
118 cnp(Pred, Args) :-
119 atomic(Pred), defPredicate(Pred, Body), cnp(Body, Args).
120

121 % cnp with unordered arguments.
122 % it ’s more efficient to implement this
123 % only as a user−facing separate predicate , as below.
124 cunp(E, UArgs) :- cnp(E, Args), permutation(Args, UArgs).
125

126 % projNames(Projs, SourceNames, NewNames)
127 namesInProj([], [], []).
128 namesInProj([A->B|Projs], [A|ARest], [B|BRest]) :-
129 namesInProj(Projs, ARest, BRest).
130 namesInProj([A|Projs], SourceNames, NewNames) :-
131 atomic(A),
132 namesInProj([A->A|Projs], SourceNames, NewNames).
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133

134 renameArgs([], [], []).
135 renameArgs([A:V|SourceRest], Projs, [B:V|NewArgsRest]) :-
136 select(A->B, Projs, ProjsRest),
137 renameArgs(SourceRest, ProjsRest, NewArgsRest).
138 renameArgs(SourceArgs, [A|ProjRest], NewArgs) :-
139 atomic(A),
140 renameArgs(SourceArgs, [A->A|ProjRest], NewArgs).
141

142 %reorderArgs(Args, NamesOrd, ArgsOrd)
143 reorderArgs([], [], []).
144 reorderArgs(Args, [N|NamesOrd], [N:V|ArgsOrd]) :-
145 select(N:V, Args, ArgsRest),
146 reorderArgs(ArgsRest, NamesOrd, ArgsOrd).
147

148 % calculating the Names for a cnp expression E.
149 % names(E, Names).
150 names(true, []).
151 names(isNil, [nil]).
152 names(const(N, _), [N]).
153 names(id, [a, b]).
154 names(cons, [a, b, ab]).
155 % names for numeric operators
156 names(gt, [a, b]).
157 names(gte, [a, b]).
158 names(debug(_), [obj]).
159

160 names(Q/Projs, Names) :-
161 names(proj(Q,Projs), Names).
162 names(proj(_, []), []).
163 names(proj(_, [_->B|Projs]), [B|Names]) :-
164 names(proj(_, Projs), Names).
165 names(proj(_, [A|Projs]), [A|Names]) :-
166 atomic(A),
167 names(proj(_, Projs), Names).
168

169 names(ande(A,B), Names) :-
170 unionNames(A, B, Names).
171 names(ande(A,B,C), Names) :-
172 unionNames(ande(A,B), C, Names).
173 names(ande(A,B,C,D), Names) :-
174 unionNames(ande(A,B), ande(C,D), Names).
175 names(ande(A,B,C,D,E), Names) :-
176 unionNames(ande(A,B,C), ande(D,E), Names).
177

178 names(ore(A,B), Names) :-
179 unionNames(A, B, Names).
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180 names(ore(A,B,C), Names) :-
181 unionNames(ore(A,B), C, Names).
182 names(ore(A,B,C,D), Names) :-
183 unionNames(ore(A,B), ore(C,D), Names).
184 names(ore(A,B,C,D,E), Names) :-
185 unionNames(ore(A,B,C), ore(D,E), Names).
186

187 names(foldr(_,_), [a0, as, b]).
188 names(natrec(_,_), [a0, as, b]).
189 names(foldr2(_,_), [as, b]).
190 names(foldl(_,_), [a0, as, b]).
191 names(filter(_), [as, param, bs]).
192

193 names(Pred, Names) :-
194 atomic(Pred),
195 defPredicate(Pred, Body),
196 names(Body, Names).
197

198 argNames([], []).
199 argNames([N|Nrest], [N:_|Arest]) :-
200 argNames(Nrest, Arest).
201

202 % unifySeqArgs(ArgsA, ArgsB, Args).
203 unifySeqArgs([], [], []).
204 unifySeqArgs([], [N:V|ArgsB], [N:V|Args]) :-
205 unifySeqArgs([], ArgsB, Args).
206 unifySeqArgs([N:V|ArgsA], [], [N:V|Args]) :-
207 unifySeqArgs(ArgsA, [], Args).
208 unifySeqArgs([N:V|ArgsA], [N:V|ArgsB], [N:V|Args]) :-
209 unifySeqArgs(ArgsA, ArgsB, Args).
210 unifySeqArgs([N:V|ArgsA], [Nb:Vb|ArgsB], [N:V|Args]) :- N\=Nb,
211 unifySeqArgs(ArgsA, [Nb:Vb|ArgsB], Args).
212

213 % splitArgs (Args, NamesA, NamesB, ArgsA, ArgsB).
214 % requires namesa and namesb in the same order
215 % as they are in args .
216 splitArgs([], [], [], [], []).
217 splitArgs([N:V|Args], [], [N|NamesB], [], [N:V|ArgsB]) :-
218 splitArgs(Args, [], NamesB, [], ArgsB).
219 splitArgs([N:V|Args], [N|NamesA], [], [N:V|ArgsA], []) :-
220 splitArgs(Args, NamesA, [], ArgsA, []).
221 splitArgs([N:V|Args], [N|NamesA], [N|NamesB], [N:V|ArgsA],
222 [N:V|ArgsB]) :-
223 splitArgs(Args, NamesA, NamesB, ArgsA, ArgsB).
224 splitArgs([N:V|Args], [N|NamesA], [Nb|NamesB], [N:V|ArgsA],
225 ArgsB) :-
226 N\=Nb,
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227 splitArgs(Args, NamesA, [Nb|NamesB], ArgsA, ArgsB).
228 splitArgs([N:V|Args], [Na|NamesA], [N|NamesB], ArgsA,
229 [N:V|ArgsB]) :-
230 N\=Na,
231 splitArgs(Args, [Na|NamesA], NamesB, ArgsA, ArgsB).
232

233 unionNames(A, B, Names) :-
234 names(A, NamesA),
235 names(B, NamesB),
236 subtract(NamesB, NamesA, NamesBOnly),
237 append(NamesA, NamesBOnly, Names).
238

239 % expands the given Args to a new ExpandedArgs
240 % that contains an unbound arg for every new name.
241 % expand(Args, ArgNames, Names, ExpandedArgs)
242 expand(Args, ArgNames, [], []) :-
243 argNames(ArgNames, Args).
244 expand(Args, ArgNames, [N|Names], [N:V|EArgs]) :-
245 member(N:V, Args),
246 expand(Args, ArgNames, Names, EArgs).
247 expand(Args, ArgNames, [N|Names], [N:_|EArgs]) :-
248 \+member(N:_, Args),
249 expand(Args, ArgNames, Names, EArgs).
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Appendix D.
cnp synthesizer

1 % Runs on: SWI−Prolog (MacOs 10.12, 64 bits, Version 7.3.20)
2 % Runs on: SICStus Prolog 4.2.0 (MacOs 10.12, x86_64−darwin−10.6.0)
3

4 :- use_module(library(lists)).
5 :- use_module(library(aggregate)).
6 :- use_module(library(clpfd)).
7 :- multifile valencePredicate/2.
8

9 % Entry point
10 synInc(Prog, ValenceProg, Examples) :-
11 range(1, 6, Depth),
12 write(’Attempting depth=’), writeln(Depth),
13 syn(Prog, [], Depth, ValenceProg, Examples).
14

15 % Syn for a given depth
16 syn(Pred, _, Depth, ValencePred, Examples) :-
17 Depth>=1,
18 valencePredicate(Pred, ValencePred),
19 testExamplesPos(Pred, Examples).
20

21 syn(ore(P,Q), [], Depth, ValenceOr, Examples) :-
22 Depth>=2,
23 SubDepth is Depth-1,
24 ValenceP=ValenceOr, ValenceQ=ValenceOr,
25 append(ExamplesP, ExamplesQ, Examples),
26 ExamplesP\=[], ExamplesQ\=[],
27 syn(P, ore, SubDepth, ValenceP, ExamplesP),
28 syn(Q, ore, SubDepth, ValenceQ, ExamplesQ).
29

30 syn(ande(P, Q), _, Depth, ValenceAnd, Examples) :-
31 Depth>=2,
32 SubDepth is Depth-1,
33 valenceAnde(ValenceAnd, ValenceP, ValenceQ),
34 argNames(NamesP, ValenceP),
35 argNames(NamesQ, ValenceQ),
36 splitExamples(Examples, NamesP, NamesQ, ExamplesP, ExamplesQ),
37 syn(P, ande, SubDepth, ValenceP, ExamplesP),
38 syn(Q, ande, SubDepth, ValenceQ, ExamplesQ),
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39 P\=Q.
40

41 syn(proj(Q,Projs), ParentOp, Depth, ValenceProj, Examples) :-
42 ParentOp\=proj,
43 Depth>=2,
44 SubDepth is Depth-1,
45 valenceProj(ValenceProj, Projs, 0, ValenceQ),
46 argNamesDifferent(ValenceQ),
47 unprojExsToVal(Examples, Projs, ValenceProj, ValenceQ, ExUnproj),
48 syn(Q, proj, SubDepth, ValenceQ, ExUnproj).
49

50 syn(natrec(P,Q), ParentOp, Depth, ValenceNatrec, Examples) :-
51 Depth>=2,
52 SubDepth is Depth-1,
53 dif(ParentOp, ore),
54 valenceNatrec(ValenceNatrec, ValenceP, ValenceQ),
55 syn_natrec(P, ValenceP, Q, ValenceQ, SubDepth, Examples).
56

57 syn(foldr2(P,Q), ParentOp, Depth, ValenceFoldr2, Examples) :-
58 Depth>=2,
59 SubDepth is Depth-1,
60 dif(ParentOp, ore),
61 valenceFoldr2(ValenceFoldr2, ValenceP, ValenceQ),
62 syn_foldr2(P, ValenceP, Q, ValenceQ, SubDepth, Examples).
63

64 syn(foldr(P,Q), ParentOp, Depth, ValenceFoldr, Examples) :-
65 Depth>=2,
66 SubDepth is Depth-1,
67 dif(ParentOp, ore), dif(ParentOp, foldr),
68 valenceFoldr(ValenceFoldr, ValenceP, ValenceQ),
69 syn_foldr(P, ValenceP, Q, ValenceQ, SubDepth, Examples).
70

71 syn_natrec(_, _, _, _, _, []).
72 syn_natrec(P, ValP, Q, ValQ, SubDepth,
73 [[a0:A0, as:[], b:B]|ExRest]) :-
74 syn(Q, natrec, SubDepth, ValQ, [[a:A0, b:B]]),
75 syn_natrec(P, ValP, Q, ValQ, SubDepth, ExRest).
76 syn_natrec(P, ValP, Q, ValQ, SubDepth,
77 [[a0:A0, as:[[]|As], b:B]|ExRest]) :-
78 syn_natrec(P, ValP, Q, ValQ, SubDepth,
79 [[a0:A0, as:As, b:Bmid]|ExRest]),
80 syn(P, natrec, SubDepth, ValP, [[a:A0, b:Bmid, ab:B]]).
81 % variant with binary recursive case
82 syn_natrec(P, ValP, Q, ValQ, SubDepth,
83 [[a0:A0, as:[[]|As], b:B]|ExRest]) :-
84 syn_natrec(P, ValP, Q, ValQ, SubDepth,
85 [[a0:A0, as:As, b:Bmid]|ExRest]),
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86 syn(P, natrec, SubDepth, ValP, [[b:Bmid, ab:B]]).
87

88 syn_foldr2(_, _, _, _, _, []).
89 syn_foldr2(P, ValP, Q, ValQ, SubDepth, [[as:[], b:B]|ExRest]) :-
90 syn(Q, foldr2, SubDepth, ValQ, [[b:B]]),
91 syn_foldr2(P, ValP, Q, ValQ, SubDepth, ExRest).
92 syn_foldr2(P, ValP, Q, ValQ, SubDepth,
93 [[as:[A|As], b:B]|ExRest]) :-
94 syn_foldr2(P, ValP, Q, ValQ, SubDepth,
95 [[as:As, b:Bmid]|ExRest]),
96 syn(P, foldr2, SubDepth, ValP, [[a:A, b:Bmid, ab:B]]).
97

98 syn_foldr(_, _, _, _, _, []).
99 syn_foldr(P, ValP, Q, ValQ, SubDepth,

100 [[a0:A0, as:[], b:B]|ExRest]) :-
101 syn(Q, foldr, SubDepth, ValQ, [[a:A0, b:B]]),
102 syn_foldr(P, ValP, Q, ValQ, SubDepth, ExRest).
103 syn_foldr(P, ValP, Q, ValQ, SubDepth,
104 [[a0:A0, as:[A|As], b:B]|ExRest]) :-
105 syn_foldr(P, ValP, Q, ValQ, SubDepth,
106 [[a0:A0, as:As, b:Bmid]|ExRest]),
107 syn(P, foldr, SubDepth, ValP, [[a:A, b:Bmid, ab:B]]).
108

109 % tests elementary predicates for given examples.
110 testExamplesPos(_, []).
111 testExamplesPos(P, [E|Er]) :-
112 once(cnp(P, E)),
113 testExamplesPos(P, Er).
114

115 rangeList(Lo, Up, []) :- Lo>Up.
116 rangeList(Lo, Up, [Lo|Ns]) :-
117 Lo=<Up,
118 Lo1 is Lo+1,
119 rangeList(Lo1, Up, Ns).
120

121 range(Lo, Up, N) :- rangeList(Lo, Up, Ns), member(N, Ns).
122

123 %splitExamples(Examples, NamesP, NamesQ, ExamplesP, ExamplesQ).
124 splitExamples([], _, _, [], []).
125 splitExamples([E|Examples], NamesP, NamesQ, [Ep|ExamplesP],
126 [Eq|ExamplesQ]) :-
127 splitArgs(E, NamesP, NamesQ, Ep, Eq),
128 splitExamples(Examples, NamesP, NamesQ, ExamplesP, ExamplesQ).
129

130 % map unprojToValence to a list of examples.
131 unprojExsToVal([], _, _, _, []).
132 unprojExsToVal([E|Examples], Projs, ValenceProj, ValenceUnproj,
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133 [Eun|ExamplesUnproj]) :-
134 unprojToValence(E, Projs, ValenceProj, ValenceUnproj, Eun),
135 unprojExsToVal(Examples, Projs, ValenceProj, ValenceUnproj,
136 ExamplesUnproj).
137

138 % reverse−apply projections to a valence .
139 unprojToValence([], [], [], [], []).
140 unprojToValence(ArgsProj, Projs, ValenceProj,
141 [Norig:IO|ValenceOrig], [Norig:V|ArgsOrig]) :-
142 select(Norig->Nproj, Projs, ProjsRest),
143 select(Nproj:V, ArgsProj, ArgsProjRest),
144 select(Nproj:IO, ValenceProj, ValenceProjRest),
145 unprojToValence(ArgsProjRest, ProjsRest, ValenceProjRest,
146 ValenceOrig, ArgsOrig).
147 unprojToValence(ArgsProj, Projs, ValenceProj, [_:out|ValenceOrig],
148 [_:_|ArgsOrig]) :-
149 unprojToValence(ArgsProj, Projs, ValenceProj, ValenceOrig,
150 ArgsOrig).
151

152 % valences for elementary predicates .
153 valencePredicate(isNil, [nil:out]).
154 valencePredicate(isNil, [nil:in]).
155 valencePredicate(id, [a:in, b:in]).
156 valencePredicate(id, [a:out, b:in]).
157 valencePredicate(id, [a:in, b:out]).
158 valencePredicate(cons, [a:in, b:in, ab:out]).
159 valencePredicate(cons, [a:in, b:out, ab:in]).
160 valencePredicate(cons, [a:in, b:in, ab:in]).
161 valencePredicate(cons, [a:out, b:in, ab:in]).
162 valencePredicate(cons, [a:out, b:out, ab:in]).
163

164 % valences for numeric comparison mini−library
165 valencePredicate(gt, [a:in, b:in]).
166 valencePredicate(gte, [a:in, b:in]).
167

168 % valence combinations for the foldr operator .
169 %valenceFoldr(ValenceFoldr , ValenceP, ValenceQ)
170 valenceFoldr([a0:in, as:in, b:out],
171 [a:in, b:in, ab:out],
172 [a:in, b:out]).
173 valenceFoldr([a0:in, as:in, b:out],
174 [a:in, b:in, ab:out],
175 [a:out, b:out]).
176 valenceFoldr([a0:out, as:in, b:out],
177 [a:in, b:in, ab:out],
178 [a:in, b:out]).
179 valenceFoldr([a0:out, as:in, b:out],
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180 [a:in, b:in, ab:out],
181 [a:out, b:out]).
182 valenceFoldr([a0:in, as:in, b:out],
183 [a:out, b:in, ab:out],
184 [a:out, b:out]).
185 valenceFoldr([a0:out, as:in, b:out],
186 [a:out, b:in, ab:out],
187 [a:out, b:out]).
188

189 % valence combinations for the natrec operator .
190 % valenceNatrec(NatrecValence, PValence, QValence)
191 valenceNatrec([a0:in, as:in, b:out],
192 [a:in, b:in, ab:out],
193 [a:in, b:out]).
194 % valence for the second variant with binary recursive case
195 % and unary base case.
196 valenceNatrec([a0:in, as:in, b:out], [b:in, ab:out], [b:out]).
197

198 % valence combinations for the foldr2 operator
199 % valenceFoldr2(Foldr2Valence, PValence, QValence)
200 valenceFoldr2([as:in, b:out], [a:in, b:in, ab:out], [b:in] ).
201 valenceFoldr2([as:in, b:out], [a:in, b:in, ab:out], [b:out]).
202 valenceFoldr2([as:in, b:out], [a:out, b:in, ab:out], [b:in] ).
203 valenceFoldr2([as:in, b:out], [a:out, b:in, ab:out], [b:out]).
204

205 % valence combinations for the ande operator are generated
206 % by the following predicate .
207 % % valenceAnde(ValenceAnde, ValenceP, ValenceQ).
208 valenceAnde([], [], []).
209 % only p
210 valenceAnde([N:IO|ValenceAnde], [N:IO|ValenceP], ValenceQ) :-
211 valenceAnde(ValenceAnde, ValenceP, ValenceQ).
212 % p and q
213 valenceAnde([N:IO|ValAnde], [N:IOp|ValP], [N:IOq|ValQ]) :-
214 valenceCompArg(IO, IOp, IOq),
215 valenceAnde(ValAnde, ValP, ValQ).
216 % only q
217 valenceAnde([N:IO|ValenceAnde], ValenceP, [N:IO|ValenceQ]) :-
218 valenceAnde(ValenceAnde, ValenceP, ValenceQ).
219

220 % supporting predicate for valenceAnde
221 valenceCompArg(in, in, in).
222 valenceCompArg(out, in, out).
223 valenceCompArg(out, out, in).
224 valenceCompArg(out, out, out).
225

226 % valence combinations for the proj operator are generated
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227 % by the following predicate
228 valenceProj(ProjVals, Projs, UnboundMax, SourceVals) :-
229 ((valenceHasOuts(ProjVals), AllowedModes=[in, out]);
230 (\+valenceHasOuts(ProjVals), AllowedModes=[in])),
231 valenceProj_(ProjVals, Projs, UnboundMax, AllowedModes,
232 SourceVals).
233

234 valenceProj_([], [], _, _, []).
235 valenceProj_(ProjVals, Projs, N, AllowedModes,
236 [_:out|SourceVals]) :-
237 N >= 1,
238 Nm is N-1,
239 member(out, AllowedModes),
240 valenceProj_(ProjVals, Projs, Nm, AllowedModes, SourceVals).
241 valenceProj_([B:IO|ProjVals], [A->B|Projs], UnboundMax,
242 AllowedModes, SourceVals) :-
243 valenceProj_(ProjVals, Projs, UnboundMax, AllowedModes,
244 SourceValsRest),
245 select(A:IO, SourceVals, SourceValsRest).
246

247 % supporting predicate for valenceProj
248 valenceHasOuts([_:out|_]).
249 valenceHasOuts([_:in|Vals]) :-
250 valenceHasOuts(Vals).
251

252 % true if all argument names in a given atu are unique.
253 argNamesDifferent([]).
254 argNamesDifferent([A:_|Arest]) :-
255 nameIsDiffToAllArgNames(A, Arest),
256 argNamesDifferent(Arest).
257

258 % true if given name is different from the names in the
259 % second argument.
260 nameIsDiffToAllArgNames(_, []).
261 nameIsDiffToAllArgNames(A, [B:_|Arest]) :-
262 dif(A, B),
263 nameIsDiffToAllArgNames(A, Arest).
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Appendix E.
Insertion sort code in Prolog

1 % Runs on: SWI−Prolog (MacOs 10.12, 64 bits, Version 7.3.20)
2 % Runs on: SICStus Prolog 4.2.0 (MacOs 10.12, x86_64−darwin−10.6.0)
3

4 gte(A, B) :- A>=B.
5 gt(A, B) :- A>B.
6 isNil([]).
7 id(A, A).
8 cons(A, B, [A|B]).
9

10 ltPass(A, Threshold, B) :-
11 gte(A, Threshold),
12 isNil(B).
13 ltPass(A, Threshold, B) :-
14 gt(Threshold, A),
15 id(A, B).
16

17 gtePass(A, Threshold, B) :-
18 gt(Threshold, A),
19 isNil(B).
20 gtePass(A, Threshold, B) :-
21 gte(A, Threshold),
22 id(A, B).
23

24 filterLt([], _, []).
25 filterLt([A|At], Param, Bs) :-
26 ltPass(A, Param, []),
27 filterLt(At, Param, Bs).
28 filterLt([A|At], Param, Bs) :-
29 ltPass(A, Param, B), B\=[],
30 filterLt(At, Param, Bt), Bs=[B|Bt].
31

32 filterGte([], _, []).
33 filterGte([A|At], Param, Bs) :-
34 gtePass(A, Param, []),
35 filterGte(At, Param, Bs).
36 filterGte([A|At], Param, Bs) :-
37 gtePass(A, Param, B), B\=[],
38 filterGte(At, Param, Bt), Bs=[B|Bt].
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39

40 append(Xs, Ys, Zs) :-
41 isNil(Xs),
42 id(Ys, Zs).
43 append(Xs, Ys, Zs) :-
44 cons(X, Xt, Xs),
45 append(Xt, Ys, XYs),
46 cons(X, XYs, Zs).
47

48 insertOrd(As, Elem, Bs) :-
49 filterLt(As, Elem, ListLt),
50 filterGte(As, Elem, ListGte),
51 cons(Elem, ListGte, NewListGte),
52 append(ListLt, NewListGte, Bs).
53

54 iSort([], []).
55 iSort([E|Lt], Sorted) :-
56 iSort(Lt, SortedT),
57 insertOrd(SortedT, E, Sorted).
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