
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Coarse Preferences: Representation,

Elicitation, and Decision Making

Pavlos Andreadis



Thesis submitted in fulfilment of

the requirements for the degree of

Doctor of Philosophy in Informatics

to the

University of Edinburgh — 2018

ii



Declaration

I declare that this thesis has been composed solely by myself and that it has not been

submitted, either in whole or in part, in any previous application for a degree. Except

where otherwise acknowledged, the work presented is entirely my own.

Pavlos Andreadis

November 2018

iii



iv



Abstract

In this thesis we present a theory for learning and inference of user preferences with a

novel hierarchical representation that captures preferential indifference. Such models

of ’Coarse Preferences’ represent the space of solutions with a uni-dimensional, dis-

crete latent space of ’categories’. This results in a partitioning of the space of solutions

into preferential equivalence classes. This hierarchical model significantly reduces the

computational burden of learning and inference, with improvements both in computa-

tion time and convergence behaviour with respect to number of samples. We argue that

this Coarse Preferences model facilitates the efficient solution of previously computa-

tionally prohibitive recommendation procedures. The new problem of ’coordination

through set recommendation’ is one such procedure where we formulate an optimisa-

tion problem by leveraging the factored nature of our representation. Furthermore, we

show how an on-line learning algorithm can be used for the efficient solution of this

problem. Other benefits of our proposed model include increased quality of recom-

mendations in Recommender Systems applications, in domains where users’ behaviour

is consistent with such a hierarchical preference structure. We evaluate the usefulness

of our proposed model and algorithms through experiments with two recommendation

domains - a clothing retailer’s online interface, and a popular movie database. Our ex-

perimental results demonstrate computational gains over state of the art methods that

use an additive decomposition of preferences in on-line active learning for recommen-

dation.
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Chapter 1

Introduction

Preference Elicitation is the process of selecting and presenting user(s) with queries

such that their responses can be used to update our belief over a model of the user(s)’s

preferences (Fishburn, 1999). Essentially, it is the application of Active Learning

(Rubens et al., 2015) in the domain of human preferences, and can therefore be used in

a Recommender System (Jannach et al., 2010). The space of queries to consider when

selecting which to present to the user is at least as large as the number of solutions

available for recommendation, and can often be a continuous space, especially when

solutions are generated according to certain criteria rather than being selected from an

available set.

Typically, preference models do not explicitly capture a user’s indifference among

certain alternatives and, until learning has converged, do not provide information

about such a relation between those solutions. Explicitly learning such indifference

relations would allow a Recommender System to treat corresponding alternatives as

interchangeable (other criteria withstanding) and potentially significantly reduce the

effective space of available queries.

1



2 1.1 Online and Multi-user Recommendation

Though some work is present in the literature that groups solutions together before

making a recommendation, it either assumes that users are capable of indicating

these groups directly, or does not consider the constraints on-line learning applies.

Specifically, that the grouping needs to be the same for all users if we are to maximise

computational gains, that the utility users have for each group should not be constrained

to be the same, and that the groups should not be defined over predetermined sets of

items but a more general model.

The theory of Coarse Preferences, as developed in this thesis, addresses the representa-

tion of user preferences with utility functions defined over a space of disjoint categories

of solutions, even when this is shared by all users. This restricts the space of queries,

during preference elicitation, and items for recommendation to those produced from

the space of categories, leading to significant computational gains, especially when

considering scaling our algorithms to large or continuous item spaces, as well as an

increase in recommendation quality in the tested applications.

1.1 Online and Multi-user Recommendation

In 1992 Goldberg et al. presented the first recommender system (Resnick and Varian,

1997). Two years later Resnick et al. (1994) would write about "a deceptively simple

idea", that "people who agreed in their subjective evaluation... are likely to agree again

in the future". Fifteen years later, Netflix announced the winners of their million dollar

competition (Bell et al., 2009), marking what is considered broadly to be the moment

that pushed Recommender Systems research into the academic and societal mainstream

(Jannach et al., 2010; Ricci et al., 2010). The winning BellKor team (Bell et al., 2007)

deployed a variation on Collaborative Filtering, a technique based on the similarities

between users’ ratings, which up to this day remains the go-to approach.
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Generally, recommender systems aim to learn representations of what their users prefer,

and then use these to inform their decision of what, if any, items they will present their

user with. The intention behind such a recommendation is often to provide the user with

something they will like. This is the case with the online clothings retailer scenario we

will be examining across chapters (and solve in Chapter 4). The relevant application

recommends one item of clothing at a time to its user, who then either accepts or rejects

this recommendation. Users expect the system to adapt its recommendations during a

single visit, calling therefore for learning their preferences online, i.e. by incorporating

evidence effectively.

Recommendations can also be the interaction of choice in more complex decision

problems, involving multiple criteria of optimality and users. One such scenario is our

running example of coordination through set recommendation over a popular movie

data set (which we solve in Chapter 5). Here, each of a number of users is presented

with a personalised set of movie recommendations, from which they select one

according to their preferences. However, whether they get to watch that movie or not

depends on the selections of all the users, since movies are only shown if a predefined

quota of users is met. Such interactions happen repeatedly, though not necessarily

with the same exact users, calling for online learning procedures, if any improvement

is to be made across sessions. Recommender systems have mostly shied away from

such multi-user coordination scenarios, which are typically handled by Graph Theory

as a matching problem (e.g. in Gusfield and Irving (1989); Mourad Baïou (2002);

Dickerson et al. (2012)), where the system would match users to movies, not allowing

for empowering the user with choice, or for the system to learn from that choice.

Both of our examined scenarios feature the need for an online learning procedure,

and it is for this reason that we will not focus on collaborative filtering approaches,

which typically require a large offline computation in order to update the learned

preference model. We will instead look into the area of Decision Theory, and



4 1.1 Online and Multi-user Recommendation

specifically preference elicitation, which has a long history of addressing the learning

of preferences, in an online, typically active, manner. Such models explicitly represent

our belief over a user’s preferences over some representation of items, which, as

argued in Viappiani and Boutilier (2009b) is vital in determining the most appropriate

recommendations, especially in set recommendation, the recommendation of sets of

items.

With online learning we refer to learning procedures that update their model incremen-

tally, by incorporating evidence as it is encountered, rather than by running a learning

procedure of the entirety of evidence encountered so far, as is the case with offline learn-

ing. Active learning refers to learning procedures where the system has some control

over which possible interactions to make available to users, and selects among these

using some optimisation criterion or heuristic that relates to the quality of information

inferred from the interaction.

Despite these advantages, preference elicitation has not seen widespread use in recom-

mender systems, likely because of the computational costs associated with it (Boutilier,

2002), in terms of both computational time, and quick convergence to accurate repre-

sentations. The latter is significantly aggravated in online active learning scenarios,

where we present queries strategically, aiming to maximise the information we get

from the user’s response, and even more so when most modern recommender systems

feature large, dynamic catalogues of available items or, even worse, need to recom-

mend services that are composed ’on the fly’. Thus, a big benefit of these approaches

is effectively lost.

If we had access to user preference models that are not only accurate, but actually allow

us to reduce the effective cardinality of the space of items for recommendation, then

this should allow preference elicitation to see much more mainstream use, especially

given all the other benefits this approach has to offer. The hierarchical model presented

in this work tackles these computational issues, enabling active online learning, and
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the optimisation of complex multi-user problems. Furthermore, our learning procedure

achieves significantly better accuracy of predictions for both of our examined scenarios.

1.2 The Cold-Start Problem

Two related issues that recommender systems designers need to consider are the cold-

start item and user problems. Both problems refer to the absence of information on

the interaction of users with items; either pre-existing users with new items (item cold-

start) or new users with pre-existing items (user cold-start). Models that are solely

based on the similarity between users’ behaviour, will not have any information on

which to base their recommendations in such scenarios.

’In practice these problems cover important cases: new users should not be scared

away by getting bad or no recommendations in the beginning, and new items should

not have to wait until they are found and taken up by users by chance.’ (Marinho et al.,

2012).

Since preference elicitation learns personalised preference models, the item cold-start

problem is easily handled, as long as the model is defined over a vector description

of items. However, the user cold-start problem typically requires representing users as

members of one of a set of user types, in order to handle new arrivals Chajewska et al.

(1998).

As we will see in Chapters 3, 4, and 5, our procedures naturally generalise across users,

without forfeiting the advantage of individual user profiles.
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1.3 Hierarchical Factored Optimisation

In Chapters 2 and 5 of this thesis, we will see that there are important coordina-

tion/multiagent resource allocation problems that can be posed as problems of rec-

ommendation. Such problems involve making optimal decisions while considering

multiple objective functions, derived from different users as well as from system spec-

ifications. Most work in recommender systems applications focusses on user satisfac-

tion, typically modelled as the user’s evaluation of their recommendation (though other

metrics related to user satisfaction have also been used (Ricci et al., 2010)).

If optimising for user satisfaction is a criterion we do not wish to compromise over, then

it is not clear how to best formulate a multi-criteria problem that would also consider

system level criteria. Typical approaches to solving such multi-criteria problems is

either the construction of a multi-objective function for optimisation, which would

represent a tradeoff between users’ and system’s preferences, or the re-definition of

most objectives as constraints, with some bound over their value, and the subsequent

optimisation over one of, or a combination of, the criteria (Keeney and Raiffa, 1993;

Mardani et al., 2015).

These two approaches represent two distinct types of problems: In the first case, we

assume that we can give an explicit weighting of different criteria, typically linear. An

example would be maximising a weighted sum of users’ social welfare, typically the

sum of their individual rewards, and expected profit.

In the second case, we are conceding that certain criteria will only be satisfied, while

only a single criterion (or function of criteria) will be optimised for. This could

mean, for example, minimising the number of resources used by the system, while

guaranteeing a minimum expected evaluation for each user.
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None of these approaches maps directly to the problem of considering a system

criterion while not having to tradeoff in user satisfaction. This would require a

hierarchical process, by which maximising user evaluations outputs a space of optimal

recommendations.

If the hypothesis space for our user models allows for identifying spaces of optimal

solutions, then we could introduce additional criteria without negatively impacting user

satisfaction, and therefore important considerations such as user retention (Keiningham

et al., 2007).

1.4 Motivation

This work studies the potential benefits of explicitly modelling users’ preferential

indifference between solutions, in decision problems whose prime component is one

or more users’ preference functions, and with a focus on problems of recommendation

and, more specifically, the online (active) learning of preferences for recommendation.

The latter focus is mirrored in the examples and applications reviewed throughout the

thesis.

This choice of motivation stems not only from an interest in improving the state of

the art in the contemporary relevant field of Recommender Systems, but also from the

desire to expand the scope of the field into more computationally complex problems,

especially those involving decisions across many, strongly co-dependent, users.

The intuition driving this research is that the explicit modelling of indifference will

allow for a principled way of ignoring solutions and that, if the set, or in some cases the

more general ’space’ of solutions, ignored in this way is large enough, then a significant
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amount of computational time can be saved during inference, and methods for learning

such models of preferences will converge faster to good representations.

A complementary view of our model is that of spaces of equivalent, interchangeable

solutions, and Chapter 6 gives a brief analysis of how this can increase the robustness

of applications where re-computation of optimal solutions is not an option.

1.5 Relation to Categorical Thinking

The concept of indifference in decision problems relates to the well-studied in Cogni-

tive Science phenomenon of Categorisation. Specifically, as groups of items or solu-

tions are treated as equivalent for one or more problems addressed by the user, he can

be said to be indifferent between alternative solutions in that group or category.

It is important to make clear here, that the thesis does not attempt to propose a model

of how users might form these categories, or even that the categories learnt through

our procedures are the ones held in an individual user’s mind. However, since users

are known to map alternatives to categories, we find this to be a good indication of the

possibility of learning a good enough mapping.

Though it is possible that some of the work presented in Chapter 3 can be utilised in

solidifying this claim, we do not attempt to do so in this work. Instead, the thesis aims

at providing tools that work, and that can be used in rationalising decisions made with

them, under the understanding that their models reflect user behaviour and wants, to

the best of the decision maker’s knowledge.
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1.6 Coarse Preferences

We present a model of user preferences which gives rankings of outcomes by utilising

a latent space of categories, each one representing a subspace of the original outcome

space, such that they collectively partition this space, while having no overlapping

elements. The resulting mapping from the space of outcomes, or solutions, to that of

categories summarises the original space, allowing us to define a preference function

of potentially much smaller complexity.

The gains in complexity, as well as the overall usefulness of the model, depends on to

what extent such a coarse representation can be learned, on its domain’s cardinality,

and on how accurately it can represent user behaviour. Chapters 4 and 5 demonstrate

that these conditions can be met, by providing both typical and novel recommendation

scenarios, with data drawn from real user interactions on online platforms.

What makes the model presented in this work of particular interest, is that even though

it is defined by drastically fewer parameters than a preference model with variable-

based decomposition, it manages significantly better performance in terms of accuracy

for both scenarios examined. In Chapter 4 we take advantage of this to maximise both

the utility of recommendations to the user and the profit achieved by the system. In

Chapter 5 the increased accuracy translates to better performance in terms of social

welfare.

Inference with coarse preferences, as we term preference functions defined by the

proposed approach, is significantly faster when compared to previous models for

representing preferences; such as those based on additive independence and generalised

additive independence.

An interesting aspect of our approach, is that it naturally lends itself to factored
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optimisation problems. Where other representations would lead to peaks of optimal

solutions, our model results in entire subspaces of optimal solutions, between which

the user, by definition, is indifferent.

Though the benefits described above are significant in the single user case (see Chapter

4), it is in multi-criteria, multi-user problems that most of their potential lies (see

Chapter 5). By providing a coarse mapping that is consistent with all users over which

a decision needs to be made, we can scale the benefits up. The computational benefits,

in particular, are such that they enable otherwise prohibitively slow procedures to be

run online. Learning for the problem of coordination through set recommendation for

example, would not be practically feasible without our proposed model.

The main contributions of this thesis are:

• A decision theoretic model with explicit representation of preferential indiffer-

ence, which allows for the significant speedup of inference;

• An algorithmic approach for learning such preference models which achieves

significantly better performance when compared to the relevant state of the

art preference elicitation procedure, in single and multi-user recommendation

problems, in terms of computational time and accuracy of predictions;

• Two sets of experiments demonstrating the validity of our claims and providing

insight into how our model behaves under different circumstances.

In addition to these contributions, our thesis provides details on how to incorporate

our model into multi-user recommendation problems, especially when there is interde-

pendency between their solutions. We also introduce the new problem of coordination
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through set recommendation, which exemplifies how reduced computational time can

enable novel applications. Furthermore, we provide a new recommender system data

set extracted from the online retailer Mallzee (Andreadis, 2016).

1.7 Thesis Overview

Chapter 2 provides the necessary background for framing the contributions in the

following chapters. It outlines the area of recommender systems, with an emphasis

on preference elicitation, as it relates to problems of online learning of preferences.

The chapter develops preference elicitation from the point of view of Decision Theory,

and emphasises preference representations that take the form of utility functions, and

how they can be used for addressing decision problems over single or multiple users.

Chapter 3 proposes our model of coarse preferences and examines its use for inference.

We prove its compatibility with the von Neumann and Morgenstern (1953) Expected

Utility Theorem, and examine the problem of inference for single and multiple users,

and user types. The latter two require specialised treatment in order to maintain certain

desirable properties. Among those, computational time reduction at scale, and quicker

convergence to good solutions.

Chapter 4 develops an online learning procedure for coarse preferences, involving an

important one time offline procedure, and applies it to a preference elicitation problem

in a recommender system defined over a real-world online retailer’s data set. The

offline procedure learns the latent space of categories, over which the online procedure

elicits users’ preferences. A common latent space is learnt for all users, including new

arrivals.
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The procedure outperforms the state of the art in online utility based preference elic-

itation procedures, both computationally and in terms of quality of recommendation,

leading to more satisfied users and greater financial profit.

Chapter 5 presents the computationally demanding problem of coordination through

set recommendation, and shows how online learning is enabled in the setting by our

approach. The chapter gives special consideration to how the factorisation of the

optimisation problem allows for scaling up the benefits described in the previous

chapter.

Chapter 6 concludes, summarising positive outcomes, as well as listing any concerns,

such as the offline computation and non-personalised nature of our learnt coarse

mappings. Directions for future work are provided, with emphasis on tackling these

concerns, and ideas on how to best utilise coarse preferences.



Chapter 2

Background

Recommender systems are automated procedures and techniques for suggesting items

to users. This chapter presents the traditional approaches to recommender systems,

along with some more recent work, and outlines basic concepts and procedures. Since

we are interested in the online, potentially active, learning of users’ preferences, we

will focus on approaches that allow for this, and only give a brief outlining of other

recommender system approaches. At the end of the chapter’s introduction we present

two case studies which exemplify this focus, acting as examples for both single and

multi-user recommendation in online settings.

2.1 Introduction

Largely because of the expansion of the Internet, people are often presented with

amounts and type of information that are hard to handle efficiently and in time.

Recommender systems have been developed in order to address these issues. Mahmood

and Ricci (2009) define a Recommender System (RS) as an intelligent application

13
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which assists users in their information-seeking tasks, by suggesting those items that

best suit their needs and preferences. Ricci et al. (2010) redefine recommender systems

as software tools and techniques providing suggestions for items, to be of use to a user.

The above definitions make use of the term item, which is commonly used in the

literature to refer to what the system recommends to the user. Most recommender

systems tend to focus on a specific type of item (e.g. books, news, or medical

procedures) and feature a design, user interface, and techniques customized for that

application. In this thesis we will use the terms possible outcome, candidate solution

and item interchangeably, except where noted, to refer to the available options the user

has to select from, regardless of what has been recommended.

An RS is in many ways an automated salesman; it probes the user for information,

compares them to previous customers, establishes their preferences, shows and sug-

gests items and, as its motivation should be, tries to sell them something. What item(s)

it attempts to promote will depend on its expectations over the user’s behaviour, and

its owners goals and motivations. These are often more complex or altruistic than what

a price tag might indicate. Of course, recommender systems are not limited in use

to online shops and have applications in areas such as e-learning (Zaíane, 2002) and

healthcare (Duan et al., 2011), among others.

Traditional recommender systems tend to ignore the system’s goals and act as a

predictor of whether, and sometimes how much, a user would prefer an item. As

mentioned above, the two main motivations for someone to make use of a RS are

information overload and the possible lack of competence or experience in the area

of application (Ricci et al., 2010). Herlocker et al. (2004b) define eleven popular

tasks that a RS can assist in implementing. These include finding some/all good

items, just browsing, self-expression, helping/influencing others and finding a credible

recommender. This diversity of use for a RS means that setting one up can be

arbitrarily complex. The approaches described below are all built around providing
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good recommendations given known information, with issues such as the exploration

of alternatives by the user and further enrichment/updating of her profile only implicitly

addressed.

Jannach et al. (2010) divide recommender systems into three main categories: Collab-

orative, Content-based, and Knowledge-based, further classifying real-world applica-

tions as hybridizations based on the original classification by Burke (2007). Before

presenting the different approaches, we outline two running examples which the thesis

directly addresses across chapters. As the different recommendation approaches are

described, we will consider how each can potentially tackle these problems. Consis-

tent with the focus of this thesis, these examples require the online, computationally

efficient learning of user preferences.

2.1.1 Case Studies

The thesis is concerned with the online learning of user preferences, in the form of a

utility function, and the inference of optimal decisions given such a model, especially

with dynamic or compositional available item spaces for recommendation. With

dynamic, we refer to item spaces that are not constant in time, such that any preference

model that is explicitly defined over a set of items (e.g. standard collaborative filtering)

would have to be periodically reinstantiated. A good example would be an internet shop

where products are added and removed by independent agents with little or no central

control by the system. For example Amazon Linden et al. (2003). With compositional,

we refer to item spaces that are not known during offline computations, and are rather

constructed by the interactions of the system and users within a given, potentially

dynamic, context. A good example would be a ridesharing application, where the space

of available recommendations could be defined by attributes such as departure time,

risk of delay, and distance travelled (Agatz et al., 2011, 2012; Andreadis et al., 2016)
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Though such items can be described by a set of attributes, with bounds over the domain

of each attribute, the specific items available only become known as the interaction of

the user(s) with the system takes place. The thesis is more specifically concerned with

making learning and inference procedures over such problems more computationally

efficient. With that in mind, we present two representative learning and inference

scenarios, which will guide our analysis of the literature and later chapters. Our

case studies, one of which involves single-user active learning and the other one the

coordination of multiple users, both require adaptation to users’ preferences after every

interaction and, therefore, an online solution that will compute in time. This differs

from the typical Recommender System application where a rating is predicted from

models computed offline.

Case study 1: Clothing recommender system

Our first case study concerns the sequential recommendation of items of clothing,

with binary user feedback. The system maintains a dynamic library of items, each

characterised by assignments to a set of parameters such as type of clothing, primary

colour, and intended gender. Interacting with the user consists of presenting him/her

with an item, which the user proceeds to like or dislike. In the case of a ’like’, the item

is stored in a list for future user reference. We will assume that items in this list have a

predetermined chance of leading to a sale of the item. This pattern repeats itself until

the user decides to terminate the session. Our aim, as a system, is to present the user

with items such that they, in anticipation of their responses, allow for quickly learning

what items the user prefers, thus improving our future recommendation, in the sense

that either the user will like them, or profits from sales are maximised. The scenario

is an example of the sequential rating of presented items, which can be represented as

explicit global value queries and which are addressed in Section 2.5.11.

This scenario is an instantiation of the typical preference elicitation problem, in which
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the system sequentially selects a query to present to the user, with the aim of learning

an accurate model of his/her preferences. This problem is examined in detail in Chapter

4 where we make use of the Mallzee dataset (Andreadis, 2016) which was procured for

the purposes of this study.

Case study 2: Movie viewing recommender system

Our second case study examines a novel application of recommender systems for the

coordination of user choices. Here, users join an online service that allows them to

watch a movie together with other users. Each user has preferences over what movie

they would like to watch and is incentivised to join a ’movie viewing’ either for the

social aspect or because it is the only way to access some limited feature, such as

live commentary and discussion with the movie director. The available movies and

type of service can vary dynamically, and further parameters such as time of showing

might be taken into account. Upon joining a session on the application, users are each

presented with a personalised list of movie showings, from which they each get to select

their preferred option. Constraints over system resources mean that movie showings

will only occur if a minimum number of users selects the corresponding option. The

system’s task is to optimally construct the personalised recommendation sets for all

users in the session, given limited knowledge of the users’ preferences. The criterion

we will focus on is that of maximising expected utilitarian social welfare, i.e. the

expected sum of users’ individual utilities from joining a viewing. As each user selects

a viewing from the set of recommendations, they are indicating a preference for that

viewing above the others in the list. We will treat this interaction as the user responding

to an explicit global set recommendation, as defined in Section 2.5.11. Updating

our beliefs over user preferences online is important, since users can sequentially

join a number of sessions before the system has had a chance to make any offline

computations. However, because of the complexity of actively selecting the lists to
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present the users with, we will not consider the active learning of users’ preferences in

this scenario.

This scenario is an example of a system that goes beyond the standard single-user RS

that are typically encountered in the literature, and that considers interdependencies

between user responses to their individual recommendations, specifically as concerns

the outcome for each individual user and the system. Our primary concern as regards

this type of problem is how to develop efficient RS approaches for it. However,

to contextualise our contributions, we provide an overview of multi-agent resource

allocation in Section 2.7. We further look into this problem in Chapter 5 where we

make use of the MovieLens 20M Dataset (Harper and Konstan, 2015).

Running example

At this point we will start with a running example of someone using the Mallzee

app (Mallzee.com) to browse for clothes. We select the Mallzee scenario for this

purpose because the item descriptors have a clear real-world meaning, unlike the tag

percentages of the MovieLens scenario.

Consider the user Jon logging in to the Mallzee app and sequentially being presented

with individual items of clothing, on which he is to decide whether to swipe left for

reject or right for accept. We will assume that Jon makes his decision by rating each

presented item on a continuous scale of 0 to 1, and then comparing this number with

an internalised threshold of, for example, 0.6. If the rating is equal to or above that

threshold, the item is accepted. Otherwise, it is rejected.

As the first item is presented to Jon, he is asked to swipe on a black, unisex scarf of

brand AB, for the retail price of 26 pounds, which includes no discount, and that is out

of stock. All items presented to Jon will have a similar 8 parameter description by which

Mallzee.com
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he must make a decision on the item. As we go through this chapter, and specifically

in Section 2.5, we will provide examples of how Jon might make this decision given

different preference models. We then meet Jon one last time in Chapter 3.

2.2 Collaborative Recommendation

Collaborative Recommender Systems (CRS) are built around the idea of exploiting

an existing user community in order to provide recommendations. Past behaviour

of similar users (or over similar items) is used to make a prediction of the user’s

interests. The technology behind CRS has matured significantly in recent years due

to its widespread industrial use and, largely, because of the 2006 announcement of

the Netflix contest (Bell et al., 2007, 2009). Techniques in the area are often called

Collaborative Filtering (CF) since they involve filtering for the best items given

implicit collaboration between users. Beyond the stationarity of users’ preferences,

these approaches further assume that similarity between user preferences is preserved.

CRS are by far the most well studied techniques in the field, largely because of their

successful online application and the availability of real-world benchmarks with a

simple data structure, namely a ratings matrix. Techniques in the field have been

employed by Netflix (Bell et al., 2007), Amazon.com (Linden et al., 2003) and Google

Hofmann (2004), among others. Two general approaches to CF can be distinguished:

nearest neighbour recommendation and matrix factorization.

2.2.1 Nearest neighbour recommendation

Nearest Neighbour Recommendation (NNR) can be categorised into user-based, and

item-based, the latter being one of the earliest methods developed (Maltz and Ehrlich,

1995; Schafer et al., 2007). For the user-based case, consider a set of users I = {i}∀i ∈
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1, ...,n, a list of items S = {s}∀s ∈ 1, ...,m and a n×m matrix of user-item interactions

M with numeric values m j,i ∈ L⊆ℜ (generally a ratings matrix). We identify a list of

users Ii that had similar preferences to the active user i in the past. These similar users

are often referred to as peer users or nearest neighbours. The active user is the user

whose preferences we are currently investigating. For every item s ∈ S that the user

has not yet rated, a prediction is computed from the ratings for s assigned by the peer

users.

A similarity metric is used for determining the set of peer users, with the Pearson’s

correlation coefficient being a common choice:

sim(i, i′) =
∑s∈S(mi,s−mi)(mi′,s−mi′)√

∑s∈S(mi,s−mi)2
√

∑s∈S(mi′,s−mi′)2
,∀i, i′ ∈ I, (2.1)

where mi is the average rating given by user i. Eq. 2.1 gives values in [−1,1]

where the extrema indicate strong negative and strong positive correlation, respectively.

The Pearson correlation coefficient explicitly takes users’ different rating scales into

account by subtracting the average from each user’s ratings. The literature makes

use of other similarity metrics such as adjusted cosine similarity, Spearman’s rank

correlation coefficient and the mean squared difference measure. An empirical study by

Herlocker et al. (1999), however, shows that for user-based RS the Pearson coefficient

outperforms other user comparison measures. Regardless, Pearson’s measure does not

take into account that similar preferences in some items might be more indicative

of user similarity. In particular, agreement on controversial items should be a better

predictor. Inverse user frequency (Breese et al., 1998), and variance weighting

(Herlocker et al., 1999) are two approaches towards addressing this problem. Another

factor not taken into account in Eq. 2.1 is the number of co-ratings between users.

Herlocker et al. (1999) address this problem by introducing significance weighting.

Having computed the similarities between users one needs to define i’s neighbourhood
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Ii and the extent to which each user in the set is going to be taken into consideration

when determining their rating prediction. Approaches include using a threshold value

h to filter out distant users and/or limiting the size of Ii and then using a formula that

takes user similarity into account:

pred(i,s) = mi +
∑i′∈I sim(i, i′)(mi,s−mb)

∑i′∈I sim(i, i′)
(2.2)

Herlocker et al. (1999), Anand and Mobasher (2005) and Herlocker et al. (2004a)

discuss the prediction trade-offs with user coverage and noise, in selecting a threshold

value and neighbourhood size respectively.

We can now theoretically compute all item rating predictions for user i and recommend

those with the highest value. However, real-world applications will maintain large

rating databases with high sparsity, since every user will only get to rate a limited

number of items. Moreover, it is unclear how to recommend items to users with no

ratings, or how to recommend items that have not been rated. These problems are

commonly referred to in the literature as cold-start user and item, or new user and

item, problems, respectively.

Real-time predictions using the user-based approach are in most practical applications

impossible, due to the large size and dynamic nature of the user set I. An alternative

approach to CF is using item-based NNR where similarities between items become

the basis for predicting user preferences. The standard similarity metric in item-

based recommendation approaches, in contrast to the user-based case, is the cosine

similarity measure (Jannach et al., 2010), which measures the similarity between the

rating vectors m of two users based on the angle between them:

sim(mi,mi′) =
mi ·mi′

|υa| |υb|
(2.3)

Eq. 2.3 gets values in [0,1], with 1 indicating strong similarity.
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Item-based CF has been used by Amazon.com Linden et al. (2003) in their product

recommendations. User-based CF does not scale well for large number of items and

user, something which item-based applications circumvent by pre-computing the item

similarity matrix offline. The prediction is made efficient in real-time since we only

need access items that have been rated by the user. Though offline pre-computation is

theoretically possible for the user-based case, the low number of overlapping ratings

between users means that additional ratings may quickly influence the similarity value

between users Sarwar et al. (2001). Both cases however, do not handle the new item

cold-start problem.

2.2.2 Matrix factorization

Matrix Factorization (MF) constitutes an alternative approach to neighbourhood-based

recommenders by transforming both item and user data to the same latent factor

space. Essentially, this approach tries to explain ratings as the result of factors inferred

from user feedback. The identified factors might or might not correspond to specific

item or user properties (Koren et al., 2009). One approach to MF, Singular Value

Decomposition (SVM) (Golub and Kahan, 1965), was proposed for use in information

retrieval by Deerwester et al. (1990) and later used in recommender systems (Sarwar

et al., 2000b; Goldberg et al., 2004; Canny, 2002):

2.2.3 Data sparsity and the cold-start problem

Users typically provide ratings for only a few items causing rating matrices in real

world applications to be very sparse. The literature includes various proposal for deal-

ing with this, of which Matrix Factorisation is one. Pazzani (1999) presents a hybrid

RS which exploits demographic user information when constructing a neighbourhood.
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Huang et al. (2004) describe a graph-based method where recommendations are se-

lected based on the paths between users and items. Breese et al. (1998) propose default

voting when comparing two users, where ratings existing only for one user are com-

pared with a default value. More recently, Wang et al. (2006) proposed the combination

of user and item-based NN approaches, while also exploiting information over similar

item ratings made by similar users.

The cold-start problem can be viewed as a special case of the sparsity problem (Huang

et al., 2004), and is a shorthand for the questions: How to recommend items to users

that have not yet rated any items, and how to recommend items that have not yet been

rated or bought. Hybrid approaches have been developed to deal with these problems

that make use of external information (Adomavicius and Tuzhilin, 2005). The new-

user problem can be handled by requiring new users to rate a set of items with an

Active-Learning approach Rashid et al. (2002), Goldberg et al. (2004).

2.2.4 Active learning collaborative filtering

Considering how to utilise CF for Case Study 1, we could devise a Decision Tree over

a user’s rating to specific items. By running an offline CF calculation for each possible

path down the tree, we can instantly pull up the correct recommendation in response

to a user’s rating actions. Even though the number of model instances that would need

to be stored increases exponentially as we go down the tree, it would be enough to

only store the recommendation policy for the user. However, this policy would not be

able to consider the interactions of the system with other users, and would therefore

largely relinquish the primary benefit of collaborative recommendation. Building a

decision tree over all users’ interactions with the system would lead to combinatorially

explosive memory requirements. It should therefore be obvious why such an approach

would be even less appealing for Case Study 2. Lastly, there is no straightforward way
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of adapting this approach to new items, since the strategy would have been computed

offline, given a predetermined set of items.

A number of approaches have been developed for actively presenting users with items

to rate, i.e. making an explicit informed decision of which item to present to the

user for rating, so that collaborative filtering can provide better results. However,

these approaches either define a probabilistic model over a predetermined set of items,

making it incompatible with our assumption of a dynamic or compositional item space,

or do not allow for an online update. Elahi et al. (2016) present a categorisation of

active CF approaches in their survey of the area. In their conclusions, they point to the

lack of research into active online CF learning problems (which they term sequential,

as opposed to batch, active learning problems), emphasising that they would allow for

the quick adaptation of recommendations to the user.

Boutilier et al. (2012) provide a general framework for performing sequential active

learning for CF, while considering the expected value of information (see Section

2.5.11) of a recommendation. Unfortunately, though they provide techniques for reduc-

ing the time needed for updating the preference model, the model update computations

are still offline. The preference model is also such that it is specified over a predeter-

mined set of items, and it is not clear how to adapt this to a dynamic or compositional

item portfolio.

2.2.5 Other approaches

Other approaches to collaborative filtering include association rule mining (Sarwar

et al., 2000a; Lin, 2002), a technique used to identify rule-like relationship patterns in

data, and slope one predictors (Lemire and Maclachlan, 2005), where a simple linear

ratings relationship is estimated between item pairs. Association rule mining usually
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requires a predetermined set of items, though Lin (2002) extend this to rules over

dynamic sets of items. However, this approach does not lend itself to problems with

compositional item-spaces. The method proposed in Lemire and Maclachlan (2005)

does allow for updating the model online, even as new items are added to it, however

this also does not account for compositional item spaces.

Chee et al. (2001) and Xue et al. (2005) propose the use of a k-means clustering

algorithm for partitioning users into homogeneous groups. These procedures do not

handle the new item and new user problems well, and do not allow for compositional

item spaces. Chee et al. (2001) specifically propose a decision tree for partitioning

users according to their ratings of a set of items. Jin et al. (2006) give a comprehensive

survey of different probabilistic approaches and mixture models. However, these

models are learnt offline by use of the Expectation-Maximisation algorithm.

2.3 Content-based Recommendation

Content-based recommenders construct a model of user preferences by analysing their

set of previously rated items. This structured representation of user interests is then

used when deciding upon the next recommendation. The process can be summarized

as a comparison of user and item attributes, with similarity based metrics being the

most common approach.

The set of items, or products, available for recommendation is often referred to as

product catalogues. Items in the catalogue can be represented by a set of attributes, or

features. When a user’s preferences are described using the same set of features, the

recommendation process is one of comparing item and user attributes. User profiles

can be constructed by explicitly asking for their preferences, or requiring that they rate

a set of items.
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The act of recommendation involves judging the similarity between previously posi-

tively rated items and catalogue items. Similarity could be binary, in where items are

checked for sharing specific properties that have been favoured in the past, or a simi-

larity, or overlap, of involved keywords could be computed. In the latter case, the Dice

coefficient could be used as a similarity metric:

2×|keywords(pi)∩ keywords(p j)|
keywords(pi)+ |keywords(p j)|

. (2.4)

This, and other measures, can be found in detail in Baeza-Yates and Ribeiro-Neto

(1999), Maimon and Rokach (2005) and Zanker et al. (2006).

2.3.1 Vector space model and TF-IDF

Content-based recommenders were originally developed for recommending text-based

items such as webpages or e-mails. Information about items, or documents, is therefore

rarely in the form of an attribute vector, but needs to be extracted from the text itself.

One could list all words present in all documents and define a binary variable indicating

its presence or absence from each item. Such an approach, however, would assign the

same importance to each word in a document. Furthermore, longer documents will tend

to have a larger overlap, which would end in them being recommended more often.

The Term Frequency - Inverse Document Frequency (TF -IDF) (Salton et al., 1975)

approach is an established technique in the field for dealing with these issues above.

Documents are encoded into multidimensional Euclidean space vectors. Dimensions

correspond to the keywords, or terms or tokens, in the documents. Coordinates in

each dimension are calculated as the product of term frequency and inverse document

frequency.
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TF represents the frequency of term appearance in a document and takes the docu-

ment length into account, so as to minimize its effect on the recommendation. Several

schemes have been proposed for normalization (e.g. in Chakrabarti (2002), Adomavi-

cius and Tuzhilin (2005), Pazzani and Billsus (2007)). Various improvements have

been proposed for the original vector space model. Perhaps the most straightforward

approach entails the removal of all propositions, articles and other stop-words. Stem-

ming, or conflation, is another technique where common-root words are replaced by

a single variant. A similar approach can be applied for synonyms. Such approaches,

though useful, risk stripping words of their discerning qualities and, therefore, match-

ing irrelevant documents (Chakrabarti, 2002). Size cut-offs is another approach, where

only a pre-specified number of most informative words is used (Pazzani and Billsus,

1997). Lastly, one could define phrases as terms, with the intuition that they will be

more descriptive than single words (Chakrabarti, 2002), and is a basic approach for

trying to capture context.

2.3.2 Similarity-based retrieval

Whereas collaborative filtering searches for items that similar users have liked in the

past, content-based approaches recommend items that are similar to those the user has

liked in the past. Similarity-based retrieval refers to techniques employing the vector

space model. The most common approaches are relevance feedback model, and nearest

neighbours.

The similarity of user and item attribute vectors can estimated by use of cosine

similarity measure (Eq. 2.3). The prediction for an unobserved item can then be made

by vote of the k most similar items (Allan et al., 1998). Approaches, besides limiting

the size k of the neighbourhood, include a minimum similarity threshold, weighting

items according to their similarity, and binary transformation of ratings. Billsus et al.
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(2000) implements a k nearest neighbour approach (kNN) where the system maintains

separate user profiles for short- and long-term interests. kNN-based methods are simple

to implement, adapt quickly to recent changes and require only a small number of

ratings to function. However, experiments show that pure kNN approaches often suffer

from low predictive accuracy (Jannach et al., 2010).

Rocchio’s relevance feedback method was developed for the information retrieval sys-

tem SMART (Salton, 1971). Besides querying the system, SMART users could also

provide feedback on the relevance of retrieved items through rating. The method em-

ploys a loop where the initial query qi is repeatedly refined to qi+1 by weighted addition

of the vectors of relevant documents and subtraction of non-relevant documents. In or-

der to accomplish this, rated document are first separated into two groups D+ and D−,

representing relevant and non-relevant documents, respectively. The proposed formula

was

qi+1 = α qi +β

( 1
|D+| ∑

d+∈D+

d+
)
− γ

( 1
|D−| ∑

d−∈D−
d−
)
, (2.5)

where α , β and γ are parameters chosen by the system designer. Though intuitive,

this model is not theoretically sound, as pointed out by Pazzani and Billsus (2007).

Experimental results however show that the feedback mechanism improves results

(Koenemann and Belkin, 1996). Salton and Buckley (1997), and Buckley et al. (1994)

provide experimental evaluations for different parameter variations.

2.3.3 Classification approaches

An alternative to the vector space model of the previous paragraph, is to view the

recommendation task as a classification problem. This formulations allows for use
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of various supervised learning procedures. Supervised learning refers to machine

learning tasks relying on labelled training data (Mehryar et al., 2012).

Probabilistic classification methods were the most prominent developed in early

text classification applications. Based on naive Bayes, these assumed conditional

independence with respect to term occurrences. Pazzani and Billsus (1997) give a

straightforward application of naive Bayes for binary classification. Though the core

assumption of conditional independence does not hold in practice, naive Bayes has

been shown to lead to good results (McCallum and Nigam, 1998). An advantage of the

approach is that it is easily updated and learning complexity is linear in the number of

examples. (Pazzani and Billsus, 1997). The multinomial and Bernoulli models have

been proposed for modelling documents in text classification (Pazzani and Billsus,

2007; Manning et al., 2008). The latter treats the document as a binary vector over

terms whereas the former takes the number of occurrences into account.

Another machine learning approach is to compute a linear classifier w · x = b, where x

is a vector representation of a document, and w and b are the parameters to be learned.

Many text classifiers fall into this category, including the naive Bayes and Rocchio

methods (Manning et al., 2008) (but not the kNN method). Support vector machines

(Joachims, 1998) and the Widrow-Hoff algorithm (Widrow and Stearns, 1985) are other

examples. The correct method to use varies with the application, and a comparative

evaluation can be found in Yang and Liu (1999).

Decision trees (Quinlan, 1993) and rule induction (Cohen, 1995) are two approaches

to generating an explicit decision model. Decision trees compute an easily explained

representation but work best with a small number of features. Pazzani and Billsus

(1997) show that this approach leads to poor results. Rule induction, on the other hand,

have been applied with some success on e-mail classifiers. Koprinska et al. (2007)

provide a recent survey of e-mail classification techniques, where random forests

perform particularly well.
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2.3.4 Summary

Most content-based recommendation approaches lie in the field of information re-

trieval. User feedback is translated to a profile which is then compared with available

documents when deciding on a recommendation. Unlike collaborative filtering, these

techniques do not make use of a user community but rather examine the content of

previously encountered items. Though avoiding the new item problem, new users need

to pass through a process of, implicit or explicit, elicitation; an often time consum-

ing procedure. The literature is not clear on the distinction between content-based and

knowledge-based recommenders. The difference most emphasized is that of automatic

feature extraction (content-based) versus externally provided information (knowledge-

based).

2.4 Knowledge-based Recommendation

Knowledge-Based (KB) recommender systems are developed to handle situations

where there is little, or no, access to historical data, and user preferences and require-

ments are defined explicitly. Formulating requirements in this manner is not typical of

collaborative and content-based approaches. Due to their non-reliance on past transac-

tions, in the form of ratings, KB systems do not exhibit the other approaches’ ramp-up

problems. Recommendations are calculated independently for each user, either from

data in the form of similarities between user requirements and item specifications or

recommendation rules. Where the approaches discussed previously in this chapter fo-

cus on information filtering, KB systems take a more interactive approach. This has

resulted in their characterization as conversational systems (Burke, 2000). However,



CHAPTER 2. Background 31

the knowledge acquisition phase in KB recommenders represents an effective bottle-

neck. This involves eliciting preferences from users and/or converting domain expert

knowledge into a formal representation.

Knowledge-based RS can be roughly divided into constraint-based (Felfernig and

Burke, 2008) and case-based (Burke, 2000) systems. Though both approaches rely

on the user specifying his requirements through some interaction with the system, they

differ in the way they compute the recommendations. Case-based recommenders make

use of similarity measures where constraint-based systems enforce a set of, more or

less strict, rules, as predefined in recommender knowledge bases.

Constraint-based recommendation is generally represented as a constraint satisfaction

problem (Felfernig and Burke, 2008; Zanker et al., 2010) that can be solved by a

constraint solver or in the form of a conjunctive query (Jannach, 2006), executed and

solved by a database engine. A Constraint Satisfaction Problem (CSP) (Jannach et al.,

2010; Tsang, 1993) can be described by a tuple (V,D,C) where V is a set of variables, D

is a set of finite domains for these variables, and C is a set of constraints that describes

the combinations of values the variables can simultaneously take. A solution to a CSP

corresponds to a value assignment to each variable in V such that all constraints are

satisfied. Defining the user’s needs and preferences in the above constraints requires

an elicitation process of varied complexity, depending on the method used for the

application. Approaches to this include, user maintained profiles, session specific fill-

out forms and conversational recommendation dialogues.

A case-based recommendation approach retrieves items using similarity measures

that describe to which extent item properties match the user’s requirements. We can

similarly define a case-based recommendation problem by a tuple (V,D,R) where V

is a set of variables, D is a set of finite domains for these variables, and R is a set of

preferred assignments to the variables in V .
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Earlier versions of case-based recommenders followed a query-based approach, in

which users specified their requirements until a target item had been identified (Burke,

2002). The main drawback of such approaches is the amount of interaction needed,

which motivated the development of browsing-based approaches, mostly based on

the methodology of critiquing. Critiquing (Burke, 2000; Burke et al., 1997) is the

process by which users specify their change requests in the form of goals that have

not been satisfied by the current item under consideration (either an initial item or

the latest recommendation). Critiques can be specified in the level of attributes or

abstract dimensions. Approaches exist that combine query-based and browsing-based

item retrieval (Burke, 2002).

Variations to critiquing include Compound critiquing, where critiques can be related

to more than one property and Dynamic critiquing (Reilly et al., 2007) where generic

descriptions of differences, or patterns, between recommended and candidate items

are used for deriving the critiques. Dynamic critiques are calculated with use of

associated rule mining (Agrawal and Srikant, 1994). Reilly et al. (2007) present an

alteration of the recommendation procedure, where a compatibility score is computed

representing the percentage of compound critiques that have already been selected and

are consistent with the candidate item. This is then used to estimate the quality of a

potential recommendation.

The approaches mentioned above show a deterioration of performance when many

similar items exist in a small outcome space area.McCarthy et al. (2005) proposed to

diversify critiquing by taking a support value into account. With this approach, items

with low support of and overlap with already presented critiques are preferred.

Utility-based recommendation can be seen as a specific type of knowledge-based

recommendation (Jannach et al., 2010). It is often applied in combination with

constraint (Felfernig et al., 2006) or case-based recommendation (Reilly et al., 2007).
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The next section gives a detailed analysis of preference elicitation and decision making

with utility functions, which encompasses also the task of recommendation.

2.5 Eliciting User Preferences

Preference Elicitation (PE) refers to the interaction of a system with one or more users,

in order to learn a model of their preferences over some space of solutions or outcomes;

essentially a ranking function defined over this space. Though there is work on

learning other types of ranking functions, we emphasise the learning of utility functions

since this allows us to compare different users’ utilities without further assumptions,

and compute expected evaluations of items. Before presenting the state-of-the-art in

computational Preference Elicitation, we will provide the necessary decision theoretic

background. This involves a presentation of important concepts regarding preferences,

their representation, most relevantly through a utility function, and elicitation strategies

aimed at the latter. Since Coarse Preferences can be understood as introducing

an alternative decompositional model for preference functions, we will give special

emphasis to such models.

2.5.1 Preferences

In order for us to present the basic notions of preferences and utility functions we first

need to define a formulation of the decision problem (von Neumann and Morgenstern,

1953; Keeney and Raiffa, 1993; Braziunas, 2006). Assume a decision maker, or user,

i, that needs to select an alternative, or action, a ∈A, where A is the set of alternatives.

The action’s resulting outcome o ∈ O, out of the set of outcomes O, depends on the

world state θ ∈ Θ, where Θ is the set of all possible world states. A consequence

function c : A×Θ→ O maps each action and world state to a resulting outcome. The
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user aims at selecting an action a∗ leading to the best outcomes. If the world state θ

is known, then an alternative maps directly to an outcome. In this case the problem

translates directly to the selection of an optimal outcome o∗.

The user i maintains a preference function over O that provides a ranking, complete or

partial, over the elements in O. This preference function might be modelled as a value,

or utility function u : O→ R denoting the desirability of each outcome. The outcome

space might itself be multidimensional and it is, in fact, this case that we will be more

interested in.

Let us first consider preferences under a known world state θ , or preferences under

certainty, as referred to in the literature (Keeney and Raiffa, 1993). Preferences over

outcomes completely determine the optimal outcome(s), in the sense that a rational

decision maker would choose one of the most preferred outcomes.

Assume a set O of outcomes. A weak preference o1 � o2 of outcome o1 over o2

is a binary relation indicating that the user weakly prefers outcome o1 to o2, or, in

other words, o1 is at least as good as o2. The week preference relation is typically

expected to satisfy the following properties (von Neumann and Morgenstern, 1953), if

the preference is to be considered rational:

Comparability:∀o1,o2 ∈ O, o1 � o2∨o2 � o1 (2.6)

Transitivity:∀o1,o2,o3 ∈ O, o1 � o2∧o2 � o3⇒ o1 � o3 (2.7)

Based on the above, we can also define the binary relations of indifference ∼ and strict

preference �. o1 � o2 indicates that o1 is strictly preferred to o2, and o1 ∼ o2 that the
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user is indifferent between o1 and o2. Formally:

o1 ∼ o2⇔ o1 � o2∧o2 � o1 (2.8)

o1 � o2⇔ o2 � o1 (2.9)

Fishburn (1970) lists the following properties for a binary relation R on set O:

reflexive: i f oRo,∀o ∈ O, (2.10)

irreflexive: i f ¬oRo,∀o ∈ O, (2.11)

symmetric: i f o1Ro2⇒ o2Ro1, ∀o1,o2 ∈ O, (2.12)

asymmetric: i f o1Ro2⇒¬o2Ro1, ∀o1,o2 ∈ O, (2.13)

antisymmetric: i f o1Ro2∧o2Ro1⇒ o1 = o2, ∀o1,o2 ∈ O, (2.14)

transitive: i f o1Ro2∧o2Ro3⇒ o1Ro3,∀o1,o2,o3 ∈ O, (2.15)

negatively transtitive: i f ¬o1Ro2∧¬o2Ro3⇒¬o1Ro3, ∀o1,o2,o3 ∈ O, (2.16)

connected or complete: i f o1Ro2∨o2Ro1(possibly both), ∀o1,o2 ∈ O, (2.17)

weakly connected: i f o1 , o2⇒ o1Ro2∨o2Ro1, ∀o1,o2 ∈ O. (2.18)

An asymmetric binary relation is irreflexive. An irreflexive and transitive binary

relation is asymmetric. Also, a relation R is negatively transitive if and only if

∀o1,o2,o3 ∈ O:

o1Ro2⇒ o1Ro3∨o3Ro2. (2.19)
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Weak preference is an asymmetric and negatively transitive relation, a total preorder

or weak order, over the set of outcomes O. Strict preference is asymmetric and tran-

sitive, a strict order or weakly connected weak order, while indifference is reflexive,

asymmetric and transitive, an equivalence relation (Fishburn, 1968).

Weak preferences can be represented compactly by a numerical function. An ordinal

value function u : O→ R represents, or agrees, with the ordering � if and only if

∀o1,o2 ∈ O:

u(o1)≥ u(o2)⇔ o1 � o2 (2.20)

A representation theorem gives necessary and sufficient conditions under which some

qualitative relations can be represented by a numerical ranking, or scale. In the case of

weak preferences, an agreeing ordinal value function can always be constructed if the

outcome set O is finite or countably large. If O is uncountably large, then an agreeing

ordinal value function exists if and only if O has a countable, order dense subset with

respect to �. Ω⊆ O is order dense with respect to � if ∀o1,o3 ∈ O such that o1 � o3,

there exists o2 ∈ O such that o1 � o2 � o3 (Fishburn, 1999).

2.5.2 Preferences under uncertainty and utility functions

Ordinal value functions are unique up to strictly increasing transformations. They con-

tain only preference ranking information, and any linear combination of scale values

is without meaning. In order to make such comparisons, a necessity for preferences

under uncertainty, the expected utility representation theorem (von Neumann and Mor-

genstern, 1953) is needed.

We begin giving the necessary definition for the von Neumann and Morgenstern (1953)
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expected utility representation theorem with the concept of a lottery: A simple lottery,

with outcome oi realized with probability pi, is denoted:

l = 〈p1,o1; p2,o2; ...; pn,on〉. (2.21)

Outcomes with zero probability are typically omitted from the representation while

the often encountered case of two possible outcomes is abbreviated 〈p,o1;1− p,o2〉 ≡

〈o1, p,o2〉. A compound lottery is a lottery with outcomes that are themselves simple

lotteries: l′ = 〈p1, l′1; ...; pk, l′k〉. It can be reduced to an equivalent simple lottery

with the assumption that the user’s preferences do not change between the two

representations.

A rational decision maker is assumed to have a complete and transitive preference

ranking � over the set of simple lotteries L. We can use a utility function u : L→ R

to represent the users preferences over simple lotteries as long as the continuity axiom

holds:

Continuity: for p,q ∈ (0,1) and ∀l1, l2, l3 ∈ L, (2.22)

l1 � l2 � l3⇒ 〈l1, p, l3〉 � l2 � 〈l1,q, l3〉. (2.23)

The independence axiom that follows is necessary for the existence of a linear utility

function:

Independence: for p,q ∈ (0,1) and ∀l1, l2, l3 ∈ L, (2.24)

l1 � l2⇒ 〈l1, p, l3〉 � 〈l2, p, l3〉. (2.25)

The von Neumann and Morgenstern (1953) expected utility representation theorem

states that,
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Theorem 2.5.1 (Expected utility representation theorem). If and only if the weak pref-

erence relation on simple lotteries is complete, transitive, and satisfies the continuity

and independence axioms, then there is an expected or linear utility function u : L→ R

which represents �.

The utility function has the following properties:

u(l1)≥ u(l2)⇔ l1 � l2, (2.26)

u(〈l1, p, l2〉) = p u(l1)+(1− p) u(l2), ∀l1, l2 ∈ L and p ∈ [0,1]. (2.27)

Preference relations over lotteries can be extended to outcomes by noting lo = 〈1,x〉≡ o

and u(o) = u(lo). Due to the linearity of u(·), it can be shown through induction that:

u(l) = u(〈p1,o1; p2,o2; ...; pn,on〉) =
n

∑
i=1

pi u(oi). (2.28)

Eq. 2.28 allows for representing preferences over lotteries with a utility function over

a finite set of outcomes.

2.5.3 Multiattribute preferences

Outcomes are seldom monolithic objects in practice. They exhibit internal structure

that can usually be represented to a sufficient degree by a set of attributes. For each

outcome o, each variable, or attribute, x j ∈V = {x1, ...,xm} is assigned a value from its

domain X j, such that we have for the set of all outcomes O ⊆ X = ×m
j=1X j, where X

is the outcome space. O is best seen as the set of assignments to attributes that make

sense or exist in the union of world states, and are not to be confused with the set of
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feasible outcomes. The latter would be the set of outcomes that is accessible through

the user’s actions given the world state.

Given a variable set A ⊆ V , we define XA = × j∈AX j to be the partial outcome space

restricted to attributes in A, and OA ⊆ XA as the set of partial outcomes available from

that space. The vector oA will similarly denote a partial outcome with assignments to

the space XA. When A =V , oA is the complete outcome o (Braziunas, 2006).

If oA and oB are assignments to disjoint sets XA and XB, respectively (XA ∩XB = /0),

we denote their combination by oAoB. If XA ∪XB = V , we call oAoB a completion of

assignment oA. We will use Comp(oA) to denote the set of completions of oA. For any

outcome oi, xoi

j ∈ X j denotes the assignment to variable x j by oi.

2.5.4 Preferential independence

The complete outcome space X represents an exponential number of possible assign-

ments. Assessing the user’s preferences directly over this space is usually infeasi-

ble. However, given sufficient preference structure, a function can be represented suc-

cinctly. When preferences over an attribute set A are independent of another set B, we

say that A is preferentially independent of B. More specifically (Keeney and Raiffa,

1993):

Definition 2.5.1. Preferential Independence A set of variables A is preferentially

independent of its complement B = V − A iff, ∀o1
A,o

2
A ∈ XA and ∀o1

B,o
2
B ∈ XB, we

have

o1
Ao1

B � o2
Ao1

B ⇐⇒ o1
Ao2

B � o2
Ao2

B. (2.29)

In other words, preferences over assignments to A, with all other variable assignments
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fixed, are the same regardless of their specific assignment. If Eq. 2.29 holds,

then we say that o1
A is preferred to o2

A ceteris paribus. Preferential independence is

not a symmetric relation. Conditional preference independence is similarly defined

(Fishburn, 1999):

Definition 2.5.2 (Conditional Preferential Independence). Assume nonempty variable

sets A,B and C that partition V . A is conditionally preferentially independent (CPI) of

B given an assignment oC to C iff, ∀o1
A,o

2
A ∈ XA and ∀o1

B,o
2
B ∈ XB, we have

o1
Ao1

BoC � o2
Ao1

BoC ⇐⇒ o1
Ao2

BoC � o2
Ao2

BoC. (2.30)

In other words, A is preferentially independent of B given the specific assignment oC to

C. If this independence holds for all possible assignments to C, then A is conditionally

preferentially independent of B given the set of variables C.

Ceteris paribus statements do not generally define a single preference ordering as we

will see in section 2.5.8. The above definitions of preferential independence will be

useful in our below definitions of Additive and General Additive Independence.

2.5.5 Utility independence

Preferential independence can be extended to preferences over lotteries, leading to the

notion of utility independence (Keeney and Raiffa, 1993):

Definition 2.5.3. Utility Independence Let A1,A2 be disjoint sets of variables such

that V = A1∪A2. A1 is utility independent of A2 if, for any assignments o1
A2
,o2

A2
∈ XA2 ,

and for any pair of lotteries lA1
1 , lA1

2 over XA1 , we have that:

lA1
1 o1

A2
� lA1

2 o1
A2
⇐⇒ lA1

1 o2
A2
� lA1

2 o2
A2
. (2.31)
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A generalization of preferential independence, utility independence is also not sym-

metric. The following theorem gives the form of a utility independent decomposition:

Theorem 2.5.2. Utility Independent Decomposition A set A1 is utility independent

of A2 =V −A1 for u, if and only if it has the form:

u(V ) = f (A2)+g(A2)y(A1). (2.32)

It is obvious from the above, that the final form of the decomposed function will depend

on the specific utility independences assumed.

2.5.6 Additive independence

An additively independent decomposition allows for a utility function over disjoint

sets of variables; including, of course, the case where each set is a singleton. We give

the definition and decomposition theorem below as adapted from Koller and Friedman

(2009):

Definition 2.5.4. Additive Independence Let A1, ...,Ak be disjoint sets of variables

such that V = ∪iAi. A1, ...,Ak are additively independent (AI) for an underlying utility

function u if, for any two probability distributions Pr1 and Pr2 over X= Dom(V ) that

have the same marginals on each of the sets of variables Ai, u has the same expected

value under Pr1 and Pr2.

Additive independence is strictly stronger than utility independence: Given two addi-

tive independent subsets A1∪A2 =V , we have that A1 is utility independent of A2 and

vice versa. Additive independence is equivalent to decomposing a utility function u

into the sum of subutilities ui over Ai:
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Theorem 2.5.3. Additive Independent Utility Functions Let A1, ...,Ak be disjoint

sets of variables such that V = ∪iAi. A1, ...,Ak are AI for an underlying utility function

u if and only if u can be written as:

u(V ) =
k

∑
i=1

ui(Ai). (2.33)

Jon considers the item in front of him carefully. He particularly likes the colour black,

and assigns that a partial utility of 0.3. He likes scarves and values that assignment to

the parameter type of clothing at 0.24. The intended gender never has an impact on

Jon, who assigns that attribute a partial utility of 0. He is content with prices being

listed in pounds, partial utility of 0.02, but finds the price a bit steep, −0.15, the brand

indifferent, −0.04, the lack of a discount troublesome, −0.11, and the fact that it is out

of stock prohibitive, −0.25. Jon therefore values this item at 0.01, which is below his

threshold of 0.6, and therefore rejects the item.

2.5.7 Generalised additive independence

We are now ready to give the definition for GAI-decomposition (Boutilier et al., 2001):

Definition 2.5.5. General Additive Independence A Let A1, ...,Ak be sets of not

necessarily disjoint variables such that V = ∪iAi. A1, ...,Ak are generalized additive

independent (GAI) for an underlying utility function u if, for any two probability

distributions Pr1 and Pr2 over X = Dom(V ) that have the same marginals on each

of the sets of variables Ai, u has the same expected value under Pr1 and Pr2.

In other words, the expected value of u is not affected by correlations between the Ai.
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It depends only on the marginal distributions over each set Ai. The definition above is

equivalent to the following (Bacchus and Grove, 1995; Gonzales and Perny, 2004):

Theorem 2.5.4. General Additive Independent Utility Functions Let A1, ...,Ak be

sets of not necessarily disjoint variables such that V = ∪iAi. A1, ...,Ak are GAI for an

underlying utility function u if and only if u can be written as:

u(V ) =
k

∑
i=1

ui(Ai). (2.34)

The degree of a GAI-decomposition is the maximum arity of sub-utilities and its

cardinality is the number k of sub-utilities.

Jon always considers the colour along with the type of clothing. He really likes black

scarves and assigns to that a utility of 0.75. He is never interested in the intended

gender, to which he assigns a partial utility of 0. Though the currency is in pounds,

the lack of a discount is particularly troublesome, given that the price is too steep, and

he assigns to the combination of those 3 parameters a partial utility of −0.40. Jon

would never consider waiting for a scarf of brand AB to restock and therefore assigns

the assignment to this variable subset a partial utility of −0.30. Jon therefore attributes

a utility of 0.05 to this item, which he promptly swipes left on.

2.5.8 Conditional preference networks

Conditional ceteris paribus1 preference statements capture conditional preferences; the

preference over an attribute assignment or combination of assignments is dependent

upon those of one or more other attributes. Doyle et al. (1991) introduced the logic of

relative desire to treat preferences under a ceteris paribus assumption. His work bears

1all other things being equal (Latin)
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resemblance to von Wright (1963)’s logic of preferences, supporting more complicated

inferences, however. Perhaps the first and most important attempt at a compact

representation of ceteris paribus statements, exploiting preferential independence, lies

in the work of Boutilier et al. (1997) (see also Boutilier et al. (2004a)) and their

Conditional Preference Networks (CP-nets):

Definition 2.5.6 (Conditional Preference Networks). A CP-net over variables V =

{x1, ...,xm} is a directed graph G over x1, ...,xm whose nodes are annotated with

conditional preference tables CPT (xi) for each xi ∈ V . Each conditional preference

table CPT (xi) associates a total order �i
oU

with each instantiation oU of xi’s parents

Pa(xi) =U .

A

B

C

a� ā

ā b̄� b

a b� b̄

b̄ c̄� c

b c� c̄

ābc̄

ābc

āb̄c
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abc

āb̄c̄

ab̄c̄

abc̄

Figure 2.1: A simple CP-net (left) and the induced preference graph (right) as

adapted from Boutilier et al. (2004a).

Each CP-net can be translated to a corresponding preference graph by use of the CPTs

that accompany each node. Preference graphs dictate the dominance relations among

outcomes. A CP-net’s CPTs impose a set of preference constraints and a preference
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ranking that does not violate these is said to satisfy the network. A CP-net is satisfiable

if there is some preference ranking that satisfies it. Every acyclic CP-net is satisfiable,

and CP-nets can be satisfied by more than one preference ranking.

Fig. 2.1 shows, on the left, a simple binary variable CP-net. In this example,

preferences over assignments to B are dependent on the value of A, and preferences

over assignments to C are dependent on the value of B. Moreover, when determining

preferences over outcomes, the value of A is more important, has higher priority, than

that of B, with the latter being more important than the value of C. The preference

graph on the right half of Fig. 2.1 shows the dominance relations among outcomes; the

head of an arc dominates its tail.

CP-nets can be used to perform comparisons between full outcomes, partial outcome

optimization, and outcome ordering. Partial outcome optimization is the task of

determining the optimal completion to a partial assignment. The latter two can be

accomplished in polynomial time, however, dominance testing is PSPACE-complete,

with polynomial time algorithms existing for the special case of tree and polytree

structured networks. Chevaleyre et al. (2011)’s work consists a detailed theoretical

analysis of the problem of learning a CP-Net. Though no general method of learning

(beyond brute-force search) is given, they provide learnability results for the cases of

passive and active learning.

UCP-networks Boutilier et al. (2001) are a directed graphical representation of utility

functions that combines CP-nets and GAI. The utility function is decomposed by the

network into a number of additive factors. As in CP-nets, a node is conditionally

dependent on the set of tails whose arcs end in it.

Definition 2.5.7. UCP-Networks Let u(x1, ...,xm) be a utility function with induced

preference relation�. A UCP-network for u is a Directed Acyclic Graph (DAG) G over
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x1, ...,xm and a quantification (i.e. a set of factors fi(xi,U i) where U i are the parents of

xi) s.t:

u(x1, ...,xm) = ∑i fi(xi,U i)

The DAG G is a valid CP-network for �; i.e., � satisfies conditional preference

independence CPI(xi,U i,Zi) for each xi, where Zi =V − (U i∪{xi}).

Jon values black clothes for 0.5 partial utility. Conditioned on the item being black, Jon

is happy that the item is a scarf, for an additional 0.25 utility. He does not consider the

item’s intended gender. He adds 0.02 for the price being in pounds, but the price tag is

too great for it to be in pounds, −0.32, and conditioned on this, the lack of a discount

adds insult to injury for another−0.10. Jon is indifferent towards the brand AB,−0.04,

and conditioned on the brand, he finds that the item is out of stock unacceptable,−0.36.

Jon assigns a utility of 0.05 to the scarf, which is below his threshold of 0.6, and swipes

left on the item, rejecting it.

CP-nets have been extended to deal with hard (Boutilier et al., 2004b) and soft con-

straints (Prestwich et al., 2005). TCP-nets (Brafman and Domshlak, 2002) are a gen-

eralization of CP-nets, introducing conditional importance relations among variables.

Lastly, Wilson (2004) proposes a logic of conditional preferences that generalizes CP-

nets, allowing for stronger conditional preference statements.

2.5.9 Issues with variable-based decompositional models

AI, GAI, and CP-nets are examples of models of preferential indifference defined over

the set of variables describing the item space. If we assume utility queries, then the

time used for performing active learning with such models will be linear in the space

of items considered, provided assignments to the variable space uniquely identify each

item. If we were to consider pair-wise comparison or list queries, then the time required
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will increase exponentially with the number of items considered. Though this is the

accepted norm, it is a consequence of these models not having an explicit representation

of the preferential indifference of users for different combinations of assignments to the

variables.

Explicitly representing the preferential indifference relation (see Eq. 2.8) would allow

for a principled way of ’ignoring’ some of the items in our available set of items,

since these will be redundant when making a decision over the item space, effectively

defining categories of items. Active learning is just one such decision problem.

This reduction in the number of actions, or items, that need to be considered indicates

a hierarchical decision making model; we first establish which items the user is

indifferent between, then proceed to select one of these. Though there is no criterion

differentiating the items in this subset when only a single user’s preferences are

considered, we will see in later chapters how this can enable the use of further criteria.

Another concern relating to the absense of an explicit representation of preferential

indifference in variable-based decompositional models, is that even if there are subsets

of the item space that are equally preferred by a user, it is improbable that this will be

represented in our current belief of the user’s preference model. Specifically, we cannot

generally expect for items which the user equally prefers to have the same expected

utility before our belief over their model has converged to the true model. Preferential

indifference therefore represents an issue of both computational time and accuracy.

2.5.10 Decision making criteria

Complete knowledge of a decision maker’s utility function makes recommending an

optimal outcome, more or less, trivial. It will usually be the case, though, that

preference elicitation will not be exhaustive, and decisions will be made with only
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partial knowledge of the user’s preferences. A common approach is to maintain a space

of possible utility functions, and use this to make a decision. Below we present some

approaches in the literature for handling uncertainty over the user’s utility function.

Strict uncertainty

Situations characterized by strict uncertainty present us with a viable set of utility

function U , but not with a probability distribution indicating the likelihood of each of

them being the true utility function u. This prevents us from using an expectation over

u in order to make or recommend a decision a.

Criteria for selecting optimal outcomes under strict uncertainty optimise some worst

or best case, or a compromise between worst and best cases. Examples of such criteria

are the Maximin return (Wald, 1950) with examples of use in Boutilier et al. (2003a)

and Salo and Hämäläinen (2004); Hurwicz’s optimism-pessimism index (French, 1986)

which generalizes maximin, maximax and the central values criterion (Salo and

Hämäläinen, 2001); and Minimax regret (Savage, 1951) with example applications in

the works of Boutilier et al. (2001), Boutilier et al. (2003a), Boutilier et al. (2003b),

Wang and Boutilier (2003), Boutilier et al. (2004c), Boutilier et al. (2005), Patrascu

et al. (2005). Minimax regret, in particular, fails to satisfy the axiom of independence

of irrelevant alternatives, or binary independence axiom, that states that the ranking

between two alternatives must be independent of other alternatives. However, it has

been shown that human decision makers rarely adhere to this principle (Tversky and

Kahneman, 1981).
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Expected utility

Uncertainty over a decision maker’s utility function can be modelled with a distribution

over utility functions. Decisions are then made based on the expectation over each

action’s or outcome’s utility. Boutilier (2003) refers to this expectation as Expected

Expected Utility (EEU), indicating the fact that decisions are made over expectations

of lotteries’ expected outcomes. He points out in this work, that decisions under EEU

are sensitive to the precise representation of the utility function: EEU is sensitive to

positive affine transformations, while it is not always the case that different utility

functions can be meaningfully compared and combined.

The expected utility of a decision or action a, EU(a,u), is equivalent to the utility of

the lottery induced by the action as is given by Eq. 2.28. The expected utility of an

action a, given a density b over the set of utility functions U ∈ R|O|. is:

EU(a,b) =
∫

EU(a,u)b(u)du. (2.35)

The optimal decision in such a belief state b is then argmaxa EU(a,b). Unfortunately,

this decision rule is not invariant to utility transformations, and the question arises of

which utility function to use.

Boutilier (2003) shows how one can assure commensurability of candidate utility

functions, by assuming the existence of a known best and worst outcome o> and o⊥,

respectively, and demanding o> � o⊥. Utility functions adhering to this restriction

are called extremum equivalent and those defined over the same o>,o⊥ are essentially

put on the same scale. These outcomes must not vary and their utilities must remain

constant (values u(o>) = 1 and u(o⊥) = 0 is a common option). Issues arise when

these outcomes are selected from a reachable, local, subset of a larger, global, outcome

space, and additional assumptions are needed when the latter is the case.
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2.5.11 Preference elicitation

Preference Elicitation (PE) can be seen as the interviewing of the user by the system

(even when that is done implicitly). When modelling an elicitation procedure, we

need to decide over the questions, or queries, asked. What type of queries are we

going to use, and which specific query should we ask in each circumstance. A good

overview can be found in Braziunas and Boutilier (2009). This paragraph presents

some commonly used query types, and follows with a range of decision criteria for

selecting specific queries.

Query types

Queries are the means by which a system elicits information from the decision maker

or user. A query is usually represented by the set of all possible responses Q, and the

user presented with it is tasked with providing a response q ∈ Q.

The queries below are stated as explicit questions to a user. Of course, queries can be

implicit, in that the user’s behaviour when faced with options Q in the environment

can be translated to the selection of a response q. These can range from clicking

on a button or link, to spending an increased amount of time in an area or page.

Alternatively, users might be asked to critique a presented behaviour. Related fields

include inverse reinforcement learning (Ng and Russell, 2000; Chajewska et al., 2001),

and revealed preferences in Economics (Mas-Colell et al., 1995). Mathematically,

there is no distinction in the handling of explicit and implicit queries, as long as we

can assume that our queries are consistently either one or the other. If the user is

conciously aware of being asked a question (i.e. explicit queries) in some cases but

not others, then we might want to consider using different response models for each
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case and/or utility functions. The experiments in this thesis present queries to users in

a consistent manner.

Another distinction between query applications is that of local and global queries.

Global queries present the user with a choice between complete outcomes, regardless

of any structure they might follow. In contrast, local queries involve comparisons

between partial outcomes, as described in section 2.5.3. Though the queries that

follow are presented over complete outcomes, the generalization is straightforward.

An issue arising is the comparison between partial outcomes over different partial

outcome spaces. This is something that needs to be addressed in any elicitation of

decomposed utility functions. A relevant issue, one of interest in the area of Bounded

Rationality (Simon, 1972; Tversky and Kahneman, 1981; Kahneman and Tversky,

1984; Gigerenzer and Selten, 2003), is the ease with which people can compare

outcomes with more than a few variables. See for example Green and Srinivasan

(1978), and Miller (1956).

Query types prevalent in the PE literature include gamble comparisons, where the

user is asked to select between an outcome and a lottery, and pairwise comparisons,

where the selection is between two outcomes. Other query types encountered in the

literature include membership and equivalence queries (Boutilier et al., 2010; Koriche

and Zanuttini, 2010; Lahaie and Parkes, 2004), and value queries (Zinkevich et al.,

2003; Shawe-Taylor and Singer, 2004).

Standard Gamble Comparison (SGC) queries present the user with a choice between a

certain outcome o and a lottery λ = 〈o>, l,o⊥〉, that results in the best possible outcome

o> with a probability of l, and the worst outcome o⊥, otherwise (Keeney and Raiffa,

1993). We denote a standard gamble query as Qo l = {o,〈o>, l,o⊥〉}. If we assume

normalization u(o⊥) = 0 and u(o>) = 1 then u(λ ) = l. The query is usually posed as

whether the user prefers the certain outcome to the gamble. Resolving indifference is
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not straightforward, but responses yes and no are usually translated to o� λ and o≺ λ ,

respectively.

A more general query, where the lottery outcomes are not necessarily extremes, is

simply called a gamble query. Farquhar (1984) described gamble queries for every

combination of outcomes and lotteries. One variation is the probability equivalence

query (or direct utility query) where the user is asked to provide the probability l

(equivalent to a utility value with the above assumptions) at which she would be

indifferent between the two options (see e.g. Keeney and Raiffa (1993), and Gonzales

and Perny (2004)). As noted however in Braziunas (2006), comparing an outcome and

a lottery might be psychologically easier than directly assigning a utility. Lastly, one

can ask for bounds over a utility value, as in Boutilier et al. (2003b) and Regan and

Boutilier (2009).

For recent applications of SGC queries see Chajewska and Koller (2000); Boutilier

et al. (2001); Boutilier (2002); Wang and Boutilier (2003); Boutilier et al. (2003b,

2005); Braziunas and Boutilier (2005), among others.

A pairwise comparison query (or order query) presents the user with a pair of outcomes

and asks of her to indicate their preference relation. It can be denoted as Qo1 o2 = {o1 �

o2,o1 ≺ o2,o1 ∼ o2}, with one response for each possible relation type.

Pairwise comparison queries are known to require low cognitive load of users

(Conitzer, 2007); something which is expected to reduce noise in the elicitation pro-

cess. If the two outcomes differ greatly in utility, the user can answer with ease, other-

wise, confusion comes into play.

The Bradley-Terry model of confusion (Bradley and Terry, 1952) can be used to model

such noise for strict preferences while extensions exist for the indifference preference.

Unfortunately, pairwise comparison queries are not as informative as value queries,
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which directly reveal information on a solution, though they are central in conjoint

analysis and multiattribute utility theory (e.g. in Braziunas (2006)). For a recent

application see for example Guo and Sanner (2010).

When indifference is not an option, then pairwise comparison queries can be seen as

a special case of choice queries (Viappiani and Boutilier, 2010), where the user is

asked to select one item o∗ from a presented set O. This can then be modelled as the

user having responded with o∗ � o to each of the queries Qo∗ o = {o∗ � o,o∗ ≺ o} ∀o∈

O−{o∗}. Choice queries can be presented to the user by making a set recommendation

from which the user can select one alternative.

Value queries, involve asking the user to rate a presented item given a rating scale

or range. Most online rating systems, including those considered in Collaborative

Filtering, can be modelled in this way.

Query selection criteria

Having selected what query types are applicable, the question arises of how to select

individual queries to present the user with. Below we outline three general approaches,

and point to some recent applications.

The Minimax regret criterion can be used to consecutively bound the distance from

the optimum as elicitation proceeds. Methods employing this criterion have been

applied in auctions (Wang and Boutilier, 2003), combinatorial auctions (Boutilier

et al., 2004b), constrained configuration problems (Boutilier et al., 2003b, 2005), and

autonomic computing (Boutilier et al., 2003a; Patrascu et al., 2005).

When the minimax regret decision criterion is employed, there is no access to prob-

abilistic information over the utility function. Queries aim at reducing the space of
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possible utility functions and, in so doing, minimize the minimax regret of decisions.

Queries can continue, e.g., until possible regret reaches an acceptable level, or elicita-

tion becomes too expensive. Their selection involves anticipating the decision maker’s

response to each query, and is done according to some criterion such as the query with

the best worst-case response, or with the maximum average or expected improvement

(Wang and Boutilier, 2003).

Boutilier et al. (2003b) address the problem of selecting the best out of a set of

configurations as encoded by hard constraints. Preferences are modelled through a GAI

utility function, where sub-utilities are imprecisely specified by bounds. Boutilier et al.

(2005) compare different GAI elicitation strategies, using bound queries; questions

over the relative place of the true value compared to that in the query. Boutilier et al.

(2006) expand on the the two papers above, while Patrascu et al. (2005) examine

the elicitation of monotonically non-decreasing utility functions over single-variable

domains.

Wang and Boutilier (2003) introduce and provide empirical results for different my-

opic elicitation strategies, considering an AI function decomposition. Braziunas and

Boutilier (2007) review key semantic issues and propose a variety of query classes ans

strategies, while Viappiani and Boutilier (2009a,b) address the problem of optimal rec-

ommendation sets, introducing the criterion of set-wise minimax regret. Lastly, Braz-

iunas and Boutilier (2010) test the effectiveness of regret-based elicitation, as well as

acceptance and comprehension, in an empirical user study, showing promising results.

The literature presents many examples of decisions that directly aim at reducing the

uncertainty over the utility function. The set U of possible utility functions is often

represented as a convex polytope over the function parameters. Queries bisect this

polytope by addition of a linear constraint, and are selected through use of various

heuristics. Iyengar et al. (2001) considers the resulting polytopes’ volume, while

Ghosh and Kalagnanam (2003), and Toubia et al. (2004) also consider their shape. The
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following approaches aim to minimize the number of queries, but fail to account for the

tradeoff between decision quality and elicitation costs. Iyengar et al. (2001) present the

Q-Eval algorithm, a process of pairwise comparison queries for the addition of linear

constraints on the weight space. Queries are selected so as to be the closest to bisecting

the space of weights. The centreof the space is defined as the prime analytic center;

the point maximizing the sum of log distances to the hyperplanes defining the region.

Ghosh and Kalagnanam (2003) employ a similar algorithm where the center of the

weight region is determined by a sampling procedure employing Markovian random-

walk. They then ask the query whose corresponding hyperplane is orthogonal to the

longest line segment contained in the weight region. Holloway and White (2003) model

sequential elicitation of additive utility functions as a Partially Observable Markov

Decision Process, with uncertainty over functions represented by linear constraints

on the weights. Abbas (2004) presents an elicitation algorithm for single-variable

utility functions with probabilistic uncertainty. Queries are selected myopically, so

as to minimize the entropy of the distribution over the function. Toubia et al. (2003),

and Toubia et al. (2004)’s are the first works considering adaptive elicitation through

conjoint analysis. Conjoint analysis is a set of techniques for measuring consumer

trade-offs among multi-attribute preferences and was first introduced by Green and

Rao (1971).

Use of the probabilistic uncertainty over a utility function, allows for balancing

possible gain of information from asking a query, with any related costs or decision

rewards. Each response to a query leads to a different belief state over the user’s utility

function. Allowing for sequences of queries transforms the problem of elicitation into

a sequential decision process. Of course, using this procedure makes for significantly

more difficult computations. We start by defining the (myopic) expected value of

information before proceeding to describe the sequential equivalent.

Myopic EVOI Assume a set of queries Q = {qi : i = {1, ...,n}}, and a set of possible
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responses for each query qi ∈ Q, Ri = {ri
j : j = {1, ...,m}}. The Expected Value Of

Information (EVOI) is commonly used to determine which query to make (Chajewska

et al., 2000) and is a measure of the utility of asking a query given a user’s utility

function u. The user’s responses are often allowed to be noisy, and her responses

modelled by a probabilistic response model:

Pr(ri
j |qi,b) =

∫
u∈U

Pr(ri
j |qi,u)b(u)du, (2.36)

where b is a density over the set of possible utility functions U . Queries, qi, are often

assigned a cost ci, which is aimed to model computational expenses, cognitive burden

on the user, etc. A Bayesian formulation of the elicitation process takes these costs into

account, comparing them with any gain in utility. Denote EU(o,b) as the expected

utility of outcome o given the distribution b over u. The maximum expected utility of

belief state b is then MEU(b) = maxo∈O EU(o,b). A response r to a query q updates

our belief b according to the Baye’s rule:

br(u) = b(u|r) = Pr(r|u)b(u)
Pr(r|b)

(2.37)

Calculating the value of a query requires weighting according to the probability of each

response. The Expected Posterior Utility (EPU) of a query qi is:

EPU(qi,b) = ∑
r∈Ri

Pr(r|qi,b)MEU(br), (2.38)

with which we can compute the EVOI of a query qi from:

EVOI(qi,b) = EPU(qi,b)−MEU(b). (2.39)

A myopically, or greedy, optimal strategy always selects the query which maximises
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Eq. 2.39 minus any query costs. A sequentially optimal strategy would take any future

queries into account and plan accordingly. Chajewska et al. (2000) is arguably the first

paper to consider adaptive Bayesian elicitation. Example applications of Myopic EVOI

can be found in Chajewska and Koller (2000) and Braziunas and Boutilier (2005). The

latter (see also Braziunas and Boutilier (2006) for a summary) uses a GAI structure to

ease EVOI computations. Users answer local queries, that equate to gamble queries,

updating the belief over local utilities. A few global queries are asked in the end,

and the results are fed to an algorithmic procedure that takes advantage of the GAI

structure. Viappiani and Boutilier (2010) consider the EVOI of choice queries, where

the user has to select an item out of a recommended set. Different user response models

were considered, and optimality was shown for noiseless and constant-noise models.

One way of extending myopic EVOI is to perform a multistage lookahead, though such

an approach might be of limited benefit, due to the requirement of online computation.

Boutilier (2002) proposes instead to model PE as a Partially Observable Markov

Decision Process (POMDP), in order to take the value of possible future queries into

account when deciding on the current query. The state space of this POMDP is the set

of utility functions U , while actions are either queries or single-item recommendations.

There is no transition of states, since u is static, and a belief over U is updated according

to the user’s responses to the queries. The reward function for recommendations

is equal to their expected utility, while a cost is assumed for queries. Solving the

preference elicitation POMDP is computationally hard; the state space is continuous

and multi-dimensional and is approximated by a uniform or truncated Gaussian mixture

model. The POMDP is solved by asynchronous value iteration. Doshi and Roy (2008)

explain how preference elicitation POMDPs are often permutable; they are symmetric

with regard to the transition, reward, and observation functions. Given this assumption,

they propose an algorithm that allows for an exponentially reduced number of belief

points for approximation, for the same solution quality. Even though a PE POMDP
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can be expected to only be approximately permutable, their experiments show that

computations are significantly sped up.

Eliciting additive independent utility models

Considering our two case studies, Guo and Sanner (2010) represents the current state-

of-the-art in the online elicitation of additive independent utility functions when using

pairwise comparison queries, and without making use of user descriptors. Their

work makes use of the TrueSkill algorithm (Herbrich et al., 2007). Essentially an

instantiation of the Belief Propagation algorithm (Murphy, 2012) combined with EVOI

computations, the procedure accomplishes significant speed-ups compared to previous

work. It is also easy to adapt for use with value queries. Figure 2.2 shows the factor

graph over which the TrueSkill algorithm runs in order to compute an update to the

user model after he/she responds to a pair-wise comparison query. By instead running

a Belief Propagation algorithm over the graph in Figure 2.3 we can compute the update

to our model given a value query.

In both cases, we are factoring our belief over the user’s preferences into a set of

Conditional Gaussians (CG); one for each parameter describing the items. Conditioned

on a discrete assignment to the related parameter, each CG represents our belief

over the users’ partial utility from the specific assignment to that parameter as a

Gaussian. The sum of each such Gaussian then represents our expectations over the

user’s evaluation of that item. Figure 2.2 is constructed by the combination of the

representations for two compared items, and the factor comparing the user’s evaluation

over them. Figure 2.3 is comprised of the factors representing the evaluated item and

the factor for that evaluation.
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Figure 2.2: Factor graph for updating an additive model of user preferences for

pairwise comparison queries. Known quantities are shaded grey.

2.5.12 Gaussian Processes for preference elicitation

Gaussian Processes (Rasmussen, 2006) have also recently been used for preference

elicitation. State of the art approaches either assume a predefined constant set of

items (Abbasnejad et al., 2013; Vanchinathan et al., 2014), or incorporate user vector

descriptions in their model (Guo et al., 2010), which we do not have access to in either

of our data sets. A notable exception is the work by Houlsby et al. (2012). Nguyen et al.

(2014) present an interesting variation that incorporates contextual information, such

as the time of day. Similarly, Bohnert et al. (2009) make use of spatial information in
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Figure 2.3: Factor graph for updating an additive model of user preferences for

value queries. Known quantities are shaded grey.

order to inform their recommendations. Gaussian Processes are kernel-based methods

and are updated offline.

2.6 Preferential Indifference and Categorisation

Categorizing individual items into groups is well documented in the literature (see

e.g. Wilson and Keil (1999), and Rosch and Lloyd (1978)). Categorization refers to

the process by which individual entities are treated as equivalent, and is one of the

most fundamental and pervasive cognitive activities (Wilson and Keil, 1999). Though

there is a lot of of work on similarity-based categorization, this approach has been

criticised as unobjective (Goodman, 1972; Medin, 1989).2 An alternative approach is

theory-based categorization where concepts, defined by features and properties, act as

mental representations of categories (Komatsu, 1992). Coarse thinking (Mullainathan,

2002, 2008) models decision makers that predict outcomes by using the probability

distribution of the most likely category, rather than employing a Bayesian model.

2See Decock and Douven (2011) however for a recent counter-position.
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The notion of concept (Angluin, 1988; Haussler, 1989) is relevant to our approach

towards coarse preferences. Concepts are essentially subsets of the outcome space

that satisfy some specified formulas. The problem of concept learning involves the

identification of a concept given a sequence of labelled samples or an interactive

querying procedure. Recently, Boutilier et al. (2009a) presented an online feature

elicitation procedure, where uncertainty over concepts was reduced enough to make

an optimal decision. They assumed a known utility function over concepts, which

they refer to as subjective features, and outcomes described by catalogue features. The

system constructs a mixed integer program from the answers to a series of membership

queries, with use of the minimax regret criterion. Boutilier et al. (2010) 3 expand on

this by introducing uncertainty over the utility function. Though we are interested in

eliciting utility functions over a coarser representation of the outcome domain, which a

set of concepts could be, we do not assume that the user is able to label these subspaces.

Our approach to coarse preferences is related to Bjorndahl et al. (2013)’s Language-

based games. A generalization of psychological games (Geanakoplos et al., 1989),

their approach can capture dependent preferences (Kőszegi and Rabin, 2006) as well as

coarse beliefs (Mullainathan, 2002) or categorical thinking. Bjorndahl et al. (2013)’s

central concept relies on utility being defined, not on outcomes, but on situations; a

collection of statements about, or descriptions of, the game. The set of all admissible

descriptions comprises the underlying language of the game, on which the utility of a

user is completely dependent.

Another problem that relates to coarse preferences is that of preferences over value

ranges. Öztürk et al. (2011) model preferences over n-point intervals; intervals that

allow for n− 2 intermediate points between the two edges. Interval’s are allowed

to partially overlap, their relative position defining the strength of any preference

relation, with a complete disjunction providing the strongest relation. Farfel and

3See also Boutilier et al. (2009b) for a preliminary version.



62 2.7 Multi-Agent Resource Allocation

Conitzer (2011) describe the problem of eliciting truthful preferences over every users’

single most preferred value range, when the there is shared knowledge of consequent

aggregation. Users are modelled with peaked preferences, where points closer to

the respective interval are preferred. Strugeon (2014) builds on a problem of group

decision making, to describe how indifference over value ranges can ease the elicitation

process. Unfortunately, the elicitation is trivial, assuming that users can explicitly

give their complete preference structure to the system, the focus of the paper being

on aggregation through self-reported ranges.

Lastly, Crès (2001) presents an analysis on the benefits of coarse preferences in

individual preference aggregation for majority voting. Coarseness, here is defined as a

partition of the single-dimensional outcome space into a preset number of categories.

Users are indifferent between outcomes in the same category.

2.7 Multi-Agent Resource Allocation

Chapter 5 addresses our second case study of a movie viewing recommender system,

solving a multi-agent coordination problem through recommending sets of items.

Though the problem assumes non-strategic agents (in fact, the problem description is

such that an agent would behave in the same manner regardless of whether or not they

were strategic), we acknowledge that the deployment of such multi-agent recommender

systems could benefit from tools in the Mechanism Design literature (Nisan and

Ronen, 2001), particularly in the context of Multi-Agent Resource Allocation. We

will therefore provide a brief overview of this area here, and reference this material

when describing the mechanism in Chapter 5.

Multi-Agent Resource Allocation (MARA) is "the process of distributing a number of
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items amongst a number of agents" (Chevaleyre et al., 2006). Considering Recom-

mender Systems, these resources would be the items we present as recommendations,

while the agents would be addressed as users. Resources can be numerically contin-

uous (e.g. gallons of water) or discrete (e.g. a movie, or house), and can either be

divisble (e.g. one could get half a house) or not (e.g. we do not allow for watching

half of a movie). A resource can also be shareable or not, depending on whether mul-

tiple agents can be allocated the same resource (e.g. multiple users could join a movie

viewing, but multiple users would be unlikely to share a purchased item of clothing).

Finally, resources/items can either be static or not, depending on whether its properties

do not change during the interaction with the agents. For example, a piece of clothing

might stop being discounted, a food item might perish, or a movie that has been rec-

ommended too many times might lose its appeal to certain demographics (though the

latter might be best handled as part of the preference function).

2.7.1 Preference models and Social welfare

Though applications in MARA do make use of the preference models presented in

Section 2.5 (Chevaleyre et al., 2008; Cafaro et al., 2013; Bouveret et al., 2016), the

characteristics of certain allocated items (also referred to as tasks or resources) in many

applications have led to the development of other preference models. For example, k-

additive utility functions (Chevaleyre et al., 2004) provide evaluations for bundles of

allocated items and are a generalisation of many models addressed in this chapter, while

weighted propositional formulas represent preferences using logical operations (Lang,

2004). A comprehensive review can be found in Chevaleyre et al. (2006).

Ultimately, the goal of MARA is to produce an allocation of users to resources. Often,

the aim is to compute an optimal allocation, according to some prespecified metric.

The term social welfare is typically used to address a metric of optimality that captures
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the quality of the allocation across the set of agents/users. The most common such

metric, often used synonymously with social welfare (Wooldridge, 2009), is utilitarian

social welfare, i.e. the sum of individual agent’s utilities (Chevaleyre et al., 2006).

Variations of this include the Nash product (Darmann and Schauer, 2015), which is

the product of individual agent’s utilities, and rank dictators (Weiss, 2013) which is

a family of functions that equates social welfare with the utility assigned to a specific

agent. Examples of this are egalitarian social welfare, which is equal to the utility of

the worst off agent, and elitist social welfare, which is equal to the utility of the best

off agent. Utilitarian social welfare, rank dictators, and the Nash product are examples

of collective utility functions, i.e. mappings from a vector of individual utilities to a

collective utility (Chevaleyre et al., 2006).

Game-theoretic concepts, such as Pareto-optimality (Pardalos et al., 2008) are also

viable. An allocation is Pareto optimal if it is not Pareto-dominated by any other

allocation, i.e. if there is no other allocation that would make at least one player better

off without hurting any other player. Another relevant criterion is envy-freeness, where

every user is at least as happy with their item, as they would be with any of the items

allocated to another user. Since envy-freeness and Pareto-optimality are not always

achievable simultaneously, it is common to attempt to minimise some criterion of envy,

such as the number of envious agents, or the average distance to the most envied agent

(Lipton et al., 2004).

2.8 Conclusion

Though we have focussed on the prediction of user ratings, recommender systems

provide enough incentive for additional metrics (Ricci et al., 2010). The cold-start

problem, the bad performance of the system with new users and items, calls for

evaluating the accuracy of predictions in such cases, perhaps as a trade-off with
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normal performance. The confidence in a recommendation, e.g. the probability of

a recommendation being correct, can be a useful thing to show to a user, increasing

his trust in the system, i.e. the probability of accepting the recommendation. Lastly,

the novelty and serendipity, or surprise factor, of a recommendation can be important in

retaining users, while the diversity of recommendations might increase their usefulness.

Recommendation is typically described as the end goal of preference elicitation

systems. This chapter presented the fundamentals of Decision Theory and Preference

Elicitation, giving emphasis to the utility models commonly used in the literature for

representing user preferences. However, updating even an additive model based on

feedback can take significant computational time, which increases with the size of the

vector description of items. Moreover, update procedures need to be repeated for each

query-response combination when considering EVOI computations. This time can be

prohibitive in real-time interactions with a user, even in the myopic EVOI case, as we

will see in the next chapter. An explicit way of modelling the preferential indifference

between alternatives would allow for ’ignoring’ parts of the solutions space when

considering queries and recommendations. Moreover, if this model represents such

indifference in the form of ’categories’ of solutions, we will be able to significantly

reduce the time of a model update, which would no longer increase with solution space

dimensionality. Following up on this observation, and motivated by research into how

human’s think categorically, the next chapter builds a theory of coarse preferences,

focussed around a model of preferential independence that partitions the space of

alternatives into equivalence classes, based on the user’s preferences. We further

provide motivation for utilising the model when its assumptions are compatible with

user behaviour. Chapters 4, and 5 then provide experimental evidence for the context-

dependent validity of these assumptions.
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Chapter 3

A Decision Theoretic Model of Coarse

Preferences

In Chapter 2 we examined the problem of making recommendations, especially as it

concerns their online adaptation to user behaviour. We detailed how current models

for the online learning of preferences are computationally intensive, and explained that

might be a reason for their general lack of use in the Recommender Systems industry.

In this chapter we build on that insight in order to propose utility models defined over

a discrete uni-variate latent space, in the hope that the reduced dimensionality will

speed up both the computation time and the rate of convergence of learning procedures

for preference models. We demonstrate how inference with these models can be

significantly faster than with current approaches, and propose a decision theoretic

model for their instantiation which we term coarse preferences. We examine how to

compromise a set of coarse preferences models, such that decisions can be made over

sets of users, or when the specific model for a user is unknown, e.g. during learning.

Finally, we propose a generative model of coarse preferences, examining inference

with a space of latent spaces.

67
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3.1 Introduction

Preference Elicitation (PE), the active online learning of preferences, has a long

history in decision support (Chen and Pu, 2004). However, as discussed in Chapter

2, overbearing computational costs have prohibited PE from seeing mainstream use in

recommender systems. The primary objective of this thesis is to propose a model of

preferences that will retain the qualities of personalisation, online learning, and explicit

rational user behaviour, while reducing the complexity of inference and learning. Not

only is it expected that this will make PE more attractive for modern recommender

systems, but it should enable otherwise computationally prohibitive operations to take

place. Coordination through set recommendation, first introduced in Chapter 2, and

further analysed later on in Chapter 5, is one such problem.

In developing such a model, we will examine how mapping our space of solutions

to a uni-variate latent space of categories can speed up inference. We then address an

important problem of such a representation: they are personalised and do not generalise

across users. This flaw would result in significant cold-start user and item problems.

Further, it would render any benefits from inference void, whenever there is uncertainty

over the latent space of categories. We amend this problem by showing how to combine

individual mappings into a single latent space, valid across all users.

The last core section of the chapter examines how to use a generative model for

representing the uncertainty over a user’s latent space and preferences.

3.2 Categorisation in Inference with Utility Functions

This section considers the problem of inferring an optimal decision given a utility

function representing a user’s preferences. Except where noted, we consider the utility
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function to be known, i.e. there is no uncertainty over what the user’s preferences

are. Though one would not be wrong in calling this search-based optimisation, the

inclusion of uncertainty in this analysis would only affect the computational time of a

lookup which, provided all densities are of the same type of distribution, can be safely

assumed constant.

We refer to alternatives as outcomes, to emphasise that we are omitting the analysis

of the action-outcome relation. This latter dependency, where present, will constrain

the space of possible outcomes in a way that would not make it practical to simply

maintain an explicit ranking over all outcomes, which one would then traverse when

maximising for user utility.

We first consider the case where the utility function is a mapping from a discrete set

of outcomes before addressing the more common case of a vector representation. In

each case, we will address the effects of grouping outcomes or partial descriptions of

outcomes into categories, and how it can expedite inference. The next section will then

describe a formal theory for representing utility functions over such categories while

Section 3.4 will address how to combine different such representations for inference

with multiple users or user types.

3.2.1 Inference with non-decomposed utility functions

As a trivial example, we first consider non-decomposed utility functions ui : O→ R,

for some user i ∈ I, where O is simply a finite set of outcomes O = {o1,o2, ...,on}, and

the utility function for any user is defined by a lookup table where all utility values for

each outcome are enumerated.

With no access to distributions, or more constrained bounds, over utility values,

determining an optimal allocation will require a lookup for each outcome in O, and the
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application of some ranking or maximisation procedure. A classification of outcomes

into different categories according to their assigned utility we be represented through

a table with rows defining preferential equivalence classes and columns defining

inclusion (binary) or, alternatively, a list of included outcomes. Fig. 3.1 illustrates

these two alternative representations.

o1 o2 o3 . . . on

c1 0 1 0 . . . 0

c2 0 0 0 . . . 1
...

...
...

...
. . .

...

cm 1 0 1 . . . 0

(a) Tabular representation.

c1 {o2, ...}

c2 {...,on}
...

...

cm {o1,o3, ...}

(b) List representation.

Figure 3.1: An example of representations of preferential equivalence classes

over outcomes, as defined by the corresponding categories. Each outcome is

mapped to one category.

Deciding on an optimal outcome is equivalent to looking up one outcome for each

equivalence class, for the case of one user. Assuming the user’s preferences are

such that we can split outcomes into |Ci| groups, we will need |Ci| lookups and one

maximisation step. All other things being equal, optimising over the space of categories

will obviously be preferable when |Ci|< |O|.

3.2.2 Inference with additive independent utility functions

Next, we assume that outcomes can be described by vectors of m variables x = [x1,x2,

...,xm], where X = ×m
j=1X j,. Further, we assume that the utility function of each

user i ∈ I can be written as ui(o) = ui(x) = ∑
m
j=1 ui, j(x j), i.e. through an Additive

Independent (AI) Decomposition (Koller and Friedman, 2009) where the total utility
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is the sum of individual utilities accrued for individual properties of the outcome. We

will write ui, j : X j → R for the subutility function that maps each assignment x j to a

real value.

Assuming discrete and finite variable domains, these utility functions can be repre-

sented with m look up tables of size |X j|, ∀ j = {1, ...,m} and for any user i ∈ I. The

analysis now depends on whether O is equal to ×m
j=1X j, or not. If the former is the

case, we can decide independently on an assignment x j, ∀ j = {1, ...,m} because ui is a

sum of independent sub-utilities with no constraints over the individual space of assign-

ments for each property. Choosing an assignment for one variable does not constraint

our choice over the rest. We will therefore need to perform |X j| lookups, for each

variable j, in a manner similar to Sec. 3.2.1. This leaves us with a total of ∑
m
j=1 |X j|

lookups and m maximisation steps.

In the general case, where O⊆×m
j=1X j, we can no longer independently optimise over

each variable assignment, since not all combinations of assignments will belong to

O. The simplest approach to finding argmaxo∈O ui(o) , under these circumstances, is

to evaluate ui(o) ∀o ∈ O for any i ∈ I, similarly to 3.2.1, but with each utility value

lookup replaced with m lookups and the summation of their values. This translates to

|O| ·m≤∏
m
j=1 |X j| ·m lookups in total, and one maximisation over the entire set of all

enumerated possible solutions.

Assume that, for a specific user, we could group assignments to each variable x j

into disjoint groups of equal partial utility values ci, j ∈ Ci, j. Deciding on an optimal

allocation for this user will entail looking up the subutilities of assignments to m

variables, for each available category, with an upper bound of

m ·
m

∏
j=1
|Ci, j| (3.1)

lookups.
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3.2.3 Inference with generalised additive independent utility func-

tions

Generalising the previous section’s model in order to allow subutilities to be de-

fined over more than one outcome variable, we can define utility functions ui(o) =

∑
ki
l=1 ui,l(xi,l), where xi,l are assignments to a set of variables Xi,l ⊆ {x1, ...,xm}, such

that ∪ki
l=1Xi,l = {x1, ...,xm}. This type of decomposition implies that utility functions

exhibit Generalized Additive Independence (GAI) (Boutilier et al., 2001). In this case,

variable sets that jointly affect overall utility are not necessarily disjoint. Therefore,

unlike the AI case, we can not generally optimise independently over sets of 1 or more

variables, even if O = ×m
j=1X j holds. Consequently, ∀ users i ∈ I, we will have to

evaluate ui(o) ∀o ∈ O. This leads to |O| · ki ≤ ∏
m
j=1 |X j| · ki value lookups, and one

maximisation step over the resulting value sums. If the user’s preferences are such that

we can group assignments to each set of variables Xi,l into groups of assignments |Ci,l|,

then deciding on an optimal allocation for this user will entail looking up the subutil-

ities of assignments to ki sets of variables, for each of, at maximum, ∏
ki
l=1 |Ci,l| cases,

with an upper bound of

ki ·
ki

∏
l=1
|Ci,l| (3.2)

lookups.

3.2.4 Summary on inference

Table 3.1 summarizes results regarding the number of lookups needed to compute an

optimal allocation, with and without explicitly representing categories of outcomes,

and for different utility function decompositions. This number of lookups is an

indication of how computationally involved inference will be. The rightmost columns
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give the upper bounds on the number of outcomes and categories, given the variable

domains. These become equalities when each possibility is present in the available

outcome or category space, respectively. We note that computational gains can be

significant, depending on how the user groups outcomes into categories.

Utility function
Non-

coarse
Coarse |O| ≤ |C| ≤

Non-decomposed |O| |C| - -

AI-decomposed |O| ·m |C| ·m ∏
m
j=1 |X j| ∏

m
j=1 |Ci, j|

GAI-decomposed |O| · ki |C| · ki ∏
m
j=1 |X j| ∏

ki
l=1 |Ci,l|

Table 3.1: Summary of number of utility value lookups; with and without

explicitly representing groups of outcomes, or partial outcomes, in preferences,

and for different utility function decompositions.

In grouping outcomes into categories of equal utility, and demonstrating the compu-

tational speed-up of inference when this is explicitly represented, we have made an

argument for modelling user preferences over a latent space of categories. However,

we have no guarantees that such a representation would be compatible with the prin-

ciples of rational behaviour, as presented in von Neumann and Morgenstern (1953).

The next section derives a decision theoretic model for the representation of utility

functions over such a latent space of categories.

3.3 Coarse Preferences

Assume two outcomes o,o′ ∈ O and an arbitrary user. Recall from Section 2.5.1, that

a weak preference o � o′ of outcome o over o′ is a binary relation indicating that the

user weakly prefers outcome o to o′, or, in other words, o is at least as good as o′, for
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that user. The weak preference relation is typically expected to satisfy the properties of

comparability and transitivity, if it is to be considered rational (von Neumann and

Morgenstern, 1953). The binary relations of indifference and strict preference are

defined in terms of the weak preference relation as:

o∼ o′⇔ o� o′∧o′ � o (3.3)

o� o′⇔ o′ � o. (3.4)

We are now ready to give the definition of coarse preferences:

Definition 3.3.1 (Coarse preferences). We say that a Decision Maker (DM) exhibits

coarse preferences φ over outcomes o ∈ O (or is a φ -coarse DM) if given a many-to-

one mapping φ : O→C from a space of outcomes to a space of situations or categories,

with φ(o) = c,φ(o′) = c′, we have:

o� o′⇔ φ(o)� φ(o′)⇔ c� c′ (3.5)

Intuitively, a user identifies in each outcome a corresponding category, according to

a mapping φ , and maintains a preference ranking over these categories rather than

directly over the space of outcomes. An alternative view of these categories is that of

preferential equivalence classes over the space of outcomes; every category defines a

subset of the space of outcomes, all members of which share the same utility value.

Key to our model of coarse preferences is the idea that a user’s preferences are coarser

than what the item vector space might imply. Specifically, it is often the case that

his/her evaluation over an item is not as fine-grained as the combination of variable

domains describing it but, rather, that they perceive alternatives in terms of the category

they belong to. Essentially, a user identifies in each item a corresponding category,

according to a mapping φ , and maintains a preference ranking over these categories
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Figure 3.2: Representation of a user’s coarse mapping for the camera example.

(a) depicts the user’s utility over different combinations of camera price and

optical zoom factor. (b) depicts the equivalent utility function over the space

of categories as defined by the partitioning represented by the decision tree in

(c).
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rather than directly over the space of items. For example, consider the user aiming

to buy a new camera with their preferences being represented by the utility function

in Figure 3.2a. We can partition the combined space of the variables "price" and
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"resolution" according to the decision tree in Figure 3.2c and represent the user’s utility

function in the space of categories in Figure 3.2b.

We revisit Jon’s situation from Chapter 2. Jon had been presented with a black, unisex

scarf of brand AB, for the retail price of 26 pounds, which included no discount, and

that was out of stock. He is asked to evaluate the item’s utility before comparing it to

his threshold of 0.6, in order to decide whether to accept or reject the item.

Jon takes a look at whether the item is in stock and, since that isn’t the case, he checks

the item’s brand to see whether he would consider waiting for it, but does not find AB

to his liking. He then checks the price of the item in case it might be a bargain, but

finds it expensive. He never checks for any other details on the item and assigns it a

utility of 0.10. He proceeds to swipe left on the item, rejecting it.

Corollary 3.3.2. Indifference and strict preference: If a DM exhibits coarse prefer-

ences then it follows from Def. 3.3.1 and Eq. 3.3 and 3.4 that:

o∼ o′⇔ φ(o)∼ φ(o′)⇔ c∼ c′ (3.6)

o� o′⇔ φ(o)� φ(o′)⇔ c� c′ (3.7)

Below, we detail the proof of the existence of a coarse utility function, over categories,

representing the same preferences as a given utility function over outcomes. We can

therefore, given a utility function u : O→ R defining a coarseness φ : O→C, write

uφ
c : C→ R. (3.8)

Definition 3.3.1 allows for a variety of coarse domain representations. In order to make

use of such an approach for preference elicitation, however, we will need to make

additional assumptions. We describe the problem of coarse preference elicitation in
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Chapter 4. First, however, we describe the theoretical problem of representing coarse

preferences with a utility function.

This section details the proof of existence of a coarse utility function uφ
c : C→ R, over

categories c∈C, representing the same preferences as a given utility function u : O→R

over outcomes o ∈ O.

We will constructively prove that, if a coarse user’s preferences over outcomes can be

represented by a utility function u, there exists a coarse utility function uφ
c that can

represent preferences over the space of categories. Equivalently, for a specific user or

user type, assuming the existence of a utility function over the space of outcomes and

a coarse mapping necessitates the existence of a coarse utility function. To start off,

we denote lotteries over categories as lc = 〈pc
1,c

1; pc
2,c

2; ...; pc
z,c

z〉, where category c j

is realised with probability pc
j.

Proposition 3.3.3 (Equivalence of simple lotteries over outcomes and categories).

Assume a set of outcomes O and categories C, and a many-to-one mapping φ : O→C.

Every lottery over outcomes l = 〈p1,o1; ...; pn,on〉 with oi ∈ O, ∀i = {1, ...,n} defines

a lottery over categories lc = 〈pc
1,c

1; ...; pc
z,c

z〉 with c j ∈C, ∀ j = {1, ...,z}, such that

pc
j = ∑oi∈Oc j

pi, where Oc j ⊆O : ∀o∈Oc j ,φ(o) = c j. We write φ : L→ Lc, where L, Lc

are the sets of simple lotteries over outcomes and categories, respectively.

Corollary 3.3.4. Given Prop. 3.3.3, and since Oc j are disjoint sets with union O, we

have

n

∑
i=1

pi =
z

∑
j=1

pc
j (3.9)
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We will now use the above to prove that there indeed exists a coarse utility function uφ
c ,

that represents the same preference ordering as u, given the mapping φ : O→C:

Proposition 3.3.5 (Utility functions representing coarse preferences). Assume a coarse

DM, φ : O→C, with a utility function u : L→R representing�, and with sets of simple

lotteries over outcomes and categories L, Lc, respectively. There exists a utility function

uφ
c : Lc→ R representing �, such that u(l) = uφ

c
(
φ(l)

)
.

Proof: Define a function uφ
c : C → R with uφ

c
(
φ(o)

)
= u(o), and denote uφ

c (lc) =

∑
z
j=1 pc

j uφ
c (c j), where lc = 〈pc

1,c
1; ...; pc

z,c
z〉 with c j ∈C, ∀ j = {1, ...,z}. Also assume

the lottery l = 〈p1,o1; ...; pn,on〉 with oi ∈ O, ∀i = {1, ...,n} with lc = φ(l). We know

from the Eq. 2.28 that u(l) = ∑
n
i=1 pi u(oi), but from Cor. 3.3.4 and since we defined

uφ
c (φ(o)) = u(o), we have:

n

∑
i=1

pi u(oi) =
z

∑
j=1

∑
oi∈Oc j

pi uφ
c (c

j) =
z

∑
j=1

pc
j uφ

c (c
j)⇔ u(l) = uφ

c (lc). (3.10)

From the expected utility definition, given lotteries l and l′ we have l � l′ ⇔ u(l) ≥

u(l′), but because u(l) = uφ
c (lc), and denoting lc = φ(l) and l′c = φ(l′), we finally get:

u(l)≥ u(l′)⇔ l � l′⇔ lc � l′c⇔ uφ
c (lc)≥ uφ

c (l
′
c). (3.11)

�

An important side-effect of proving the equivalence of u and uφ
c is that preference

elicitation (which we will investigate in the context of coarse preferences in Chapter 4)

can be done with queries over the original outcome space, that therefore elicit u, even as

we assume that uφ
c was used in answering the query. Related to this is that the expected
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utility of a recommendation requires estimating the expectation over u. Essentially u is

a less structured representation of uφ
c , which we eventually wish to elicit along with φ .

3.3.1 Form of Outcome-Space Utility Function given Coarsenesss

So far we have assumed the existence of of a utility function over the original space of

outcomes O, without defining it further. The assumtion of coarse preferences restricts

the form of this utility function u. We need u(o) = uc
(
φ(o)

)
, or:

u(o) = ∑
c∈C

Iφ(o)=c ·uc(c), (3.12)

where exactly one indicator function I is active for any x. We can read the above as an

additive decomposition of the utility function, and rewrite it as:

u(o) = ∑
c∈C

bc ·uc(c), (3.13)

where bc = Iφ(o)=c ∈ {0,1},∀c ∈C and the constraint ∑c∈C bc = 1, and since uc(c),c ∈

C is a constant:

u(o) = ∑
c∈C

v(bc), (3.14)

with v(bc) = bc ·uc(c).

3.3.2 Partial categories

Coarse preferences assume a many-to-one mapping from a space of outcomes to a

space of categories. Though there are no constraints other than the user’s preferences,

it would be useful for us to make use of any structure present in the respective outcome



80 3.3 Coarse Preferences

space utility function. In particular, we are interested in maintaining the decomposition

of outcomes into assignments to a set of variables, even when working in the space of

categories. Failing to do so would mean that we would have to map each individual

outcome separately to a category, thereby relinquishing any benefits resulting from the

original decomposition.

In order to achieve this goal, we will examine mapping assignments to subsets of

variables Xt ⊆ {x1, ...,xm}, to partial categories. Intuitively, this reflects the fact that

the user is able to independently evaluate assignments to these subsets, which is also

the assumption behind the original outcome space decomposition, as we saw in Section

3.2.2.

For this purpose, let us assume that categories can be represented by a vector of partial

categories, such that the mapping φ can be analysed to a set of functions φt , with

t = {1, ...,h}. φt are many-to-one mappings from a space Xt of potential assignments

to a set of variables Xt ⊆ {x1, ...,xm}, to a space of partial categories Ct :

φt : Xt →Ct , (3.15)

with corresponding coarse subutility functions

uc,t : Ct → R, (3.16)

such that

uφ
c (o) =

h

∑
t=1

uc,t(Xt). (3.17)

We term Xt ,∀t ∈ {1, ...,h} Partial Situation Variable Sets (PSVS) and require that

their union fully covers (though is not necessarily a partition of) the set of variables
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{x1, ...,xm}:

∪h
t=1Xt = {x1, ...,xm}. (3.18)

The variable subsets over which original subutility functions are defined do not need

to be the same over which coarse subutility functions are defined. However, the

equivalence of u and uφ
c forces some constraints. Essentially, a user can not have

an outcome space utility function that is decomposed in such a way, that utilities

cannot be computed for partial situations. All variable subsets over which u’s subutility

functions are defined, must be equal to the union of one or more PSVS. These need not

necessarily be disjoint. Formally:

Proposition 3.3.6. If given a preference ordering �, there exists any preferentially

independent variable set A, such that @τ ⊆ {1, ...,h} : A = ∪t∈τXt , then the situation

decomposition φt , with t = {1, ...,h}, is not compatible with that ordering.

3.4 Coarse Mappings for Multiple Users and User

Types

We will examine decisions affecting a user of unknown type, drawn from a known set

of coarse user types, with some known prior. A key issue is that, even as coarseness

produces a preferential discretisation of the outcome space, this discretisation is,

generally, unique to each user type. Examining the problem of recommendation, we

can see how this becomes problematic: it prohibits us from making decisions over any

specific situation space Cτ , of a particular user type τ .

The above becomes obvious if we consider evaluation of two outcomes o,o′ such that

both belong to the same preferential equivalence class c1
1 (i.e. φ(o) = φ(o′) = c1

1) for
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user 1, but belong to different situations c2
1,c

2
2 for user 2 (i.e. φ2(o) = c2

1,φ2(o′) = c2
2).

We should not expect from a general evaluation of recommendations to be indifferent

between outcomes in c1
1. We could, of course, optimise over the original outcome

space. However, this would undermine our goal of computational cost reduction. The

question arises: Is there a way of maintaining some of the benefits from the outcome

space partitioning, while still making consistent decisions given a set of viable user

types? The above example points towards such an approach, where categories are split

into sub-categories such that, for each user, all outcomes mapping to each sub-category

belong to the same category, for that user.

3.4.1 Considering decisions given a set of coarse user types

Let us now assume that users belong to one of a known set of types T , with each τ ∈ T

defined by a coarse representation, φτ : O→ Cτ . Each such mapping, represents a

partitioning of the space of outcomes O into a set of preferential equivalence classes

Cτ = {Oτ
c ,∀c ∈ Cτ} : Oτ

c ⊆ O with ∀o ∈ Oτ
c ,φ(o) = c. We can define the point-wise

intersection of all user types’ equivalence class partitionings as:

CT = {∩∀τOτ
c , ∀Oτ

c ∈ Cτ∀τ}. (3.19)

For example, consider a problem where users need to coordinate to pick a ride from

Edinburgh to Glasgow, departing either from Bristo Sq. or Prince’s St., at any full hour

between 8am to 6pm, and where each user has preferences over different categories of

potential rides, as defined over this space. Specifically, consider the users Andrea and

Bob in Figure 3.3 (a) and (b). These users will belong to the user type Andrea & Bob

(as well as the user types Andrea and Bob, respectively).

It is not necessary for a user to exhibit the exact same coarseness as a type in order
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Figure 3.3: Andrea (a) is indifferent towards the departure location for the car

ride, but splits possible rides into 3 different categories based on the time of

departure. Bob (b), on the other hand, singles out any ride departing from

Bristo Sq. before 10am, and any ride past 5pm, while being indifferent between

any other option. If we were to pick a ride for a user that we know behaves

either as Andrea or Bob, even if we do not know like whom precisely, then

we could make such decisions over the space of categories produced by their

intersection (c), without loss of information.

(a)

(b)

(c)
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to belong to it. In fact, it is enough that any decisions made with the use of a type’s

coarse representation are consistent with decisions one would have made if he had

direct access to the user’s coarse representation. To verify this, consider that if a user

is indifferent between outcomes in a set, then they will also be indifferent between

outcomes in a subset of that set.

Consider now a problem where we have to make a decision over a set of users belonging

to different coarse user types. We can infer a coarse representation for the set of coarse

user types as below:

Theorem 3.4.1 (Coarse Representation for Sets of User Types). Assume a set of user

types T , representing coarse preferences φτ : O→ Cτ , with some ranking � over Cτ ,

∀τ ∈ T , given a space of potential outcomes O. The point-wise intersection of the

user types’ preferential equivalence class partitionings, results in the maximally coarse

representation of the outcome space, φT : O→ CT , such that each user of type τ ∈ T

is indifferent among outcomes in each non-empty preferential equivalence class in the

resulting partition.

Proof: Proving that each user of a specific type is indifferent among outcomes in

any of the resulting preferential equivalence classes is trivial. Each such equivalence

class is a subspace of each user equivalence class from which it was constructed. The

preferential indifference among all outcomes of that class still holds for any of its non-

empty subspaces. Proving that the above construction is maximal, requires proving

that adding any outcome to any resulting equivalence class would make it lose the

above property. Assume that it did not. Then, for each user, it would have belonged to

the respective equivalence class which constructed the resulting equivalence class. It

would therefore have been included in it. Consequently, it is not a new addition to it. �

Continuing the above example in Figure 3.3, consider another user Carlton, who would

also be of the user type Carlton. We can make decisions for the users Andrea, Bob, and
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Carlton, as well as for any user for which we could have made decisions for with the

models of these 3 users, using the point-wise intersection of the partitionings for the

user types Andrea & Bob and Carlton. This is the user type (Andrea & Bob) & Carlton

in Figure 3.4

We will refer to the set of user types T defining φT : O→CT as the seed group of the

partitioning CT . If the provided rankings over situations allow indifference, and we are

provided with rankings of the type � rather than �, then we can obtain the maximally

coarse representation by, for each user type, re-mapping any outcomes belonging to

preferential equivalence classes between which that user is indifferent, to the same

situation. The above theorem will then apply.

One overlooked problem in our analysis, so far, is that the computation of point-

wise intersections can be costly. Moreover, these will, generally, vary with the seed

group. One naturally wonders whether this computation can be transferred offline.

An interesting observation is that the point-wise intersection of the resulting group

outcome space partitioning with any of those of the respective group members will

result in that group partitioning itself. In fact this can be true, even for users who do

not belong to the seed group. Crucially, the resulting situation space can be used to

make decisions over any set of users for which this is true. This leads to a very natural

definition of user typing in the context of coarseness:

Definition 3.4.1 (coarse preference User Types). Assume a partitioning A =

{A1, ...,Ak} of the space of outcomes O, and the coarse preferences partitioning of the

outcome space Ci, for some user i ∈ I. We will say that user i is of coarse preference

User Type A, iff the pairwise point intersection of Ci with A results in A.

We can relax the definition above by allowing approximate user types with bounded

loss of accuracy in terms of utility values:

Definition 3.4.2 (ε-close coarse preference User Types). Assume a partitioning A =
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Figure 3.4: Users of the type Andrea & Bob (a) partition the space of potential

rides into those past 5pm, those between 1pm and 4pm, those leaving from

Bristo Sq. before 10am, and the rest. Carlton, and those of the same type

(b), split their options into those departing before 2pm, those departing past

3pm from Bristo Sq., and those departing past 3pm from Prince’s St.. If we

were to pick a ride for a user that we know behaves either as one of the type

Andrea & Bob, or Carlton, then we could make such decisions over the space

of categories produced by their intersection (c), without loss of information.

(a)

(b)

(c)
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{A1, ...,Ak} of the space of outcomes O, and the coarse preferences partitioning of the

outcome space Ci, for some user i ∈ I, with φi : O→Ci and uc
i : Ci→ R. We will say

that user i is of ε-close coarse preference User Type A, if there exists a partitioning

of the outcome space Cε
i , for a mapping φ ε

i : O→ Cε
i , such that the pair-wise point

intersection of Cε
i with A results in A. Where ∀cε ∈Cε

i , cε is the result of the union of

equivalence classes defined by some c∈Ci such that ∀o,o′ ∈O : φi(o) = c1,φi(o′) = c2,

for some c1,c2 ∈Ci, with uc
i (c1)−uc

i (c2)≤ ε , we have φ ε
i (o) = φ ε

i (o
′) = sε .

3.5 A Generative Model of Coarse Preferences

Though not a primary concern of this thesis, we consider it important to, at this point,

develop a generative model of coarse preferences. This will help substantiate the

implications behind the model as we move forward, as well as provide grounds for

future extensions, as it pre-empties certain concerns on our procedures in later chapters.

In Chapter 4 we will develop a methodology for the elicitation of coarse preferences.

With the experiments of Chapters 4 and 5 we will successfully apply that procedure

to a typical online recommender system, and on a multi-user coordination through

set recomendation scenario. In both cases, we will demonstrate significant gains in

recommendation quality and computational time. However, this procedure hinges

on the existence of a substantial dataset in order to learn the coarse mapping, the

basis for the procedure. Where this is not available, and where new users might

vary significantly from those already encountered, this procedure will not suffice, even

with periodic retraining, since the mapping learned will not apply to new users. The

model proposed in this section could potentially allow for learning personalised coarse

mappings online.

The preference model represents a probabilistic regression tree, with a prediction
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available at any depth. The overall structure of the graphical model maps to that of

a binary tree, with variables indicating the feature over which the tree splits at the

respective node. The domain of these variables is that of all possible splits. Using this

convention, we can accurately represent trees over any domain composed of binary

variables, and any discrete domain by transforming it to the latter. Continuous domains

can be represented this way approximately, by discretising the domain of each variable.

Regression trees are an effective way of partitioning an item space according to a target

regression variable, in this case the utility, and will be used for the discriminatory

coarse model in later chapters.

Consistency between the predictions at each depth of the tree is maintained by

summing a predicted difference after each transition to a deeper node. This can be

understood as an increase in the accuracy of our evaluation as we go down the tree.

Users’ coarseness is expressed by this difference going to 0. We impose this correlation

to mimick the behaviour of a regression tree during learning, which maintains an

empirical average over the samples mapping to the respective subspace at each node.

The tree structure and split features are learnt as representative of the whole population

of users and underlying problem, whereas the evaluations at each node, and, therefore,

differences between evaluations depend on either the user or the user’s type. This

way, we achieve the representation of the user-set coarse mapping, which is discussed

in detail in Section 4.4.2, while still allowing for a personalised representation in the

form, not only of the utility values, but also the personalised partition. The latter will

be a subtree of the whole model, as defined by differences of 0 utility as we go further

down the tree.
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3.5.1 Regression tree learning

Regression trees are a type of decision tree (Breiman et al., 1984; Loh, 2011), where

the target variable, the rating in our case, is a continuous or ordinal variable. Algorithm

1 gives the general pseudocode for generating a discriminatory tree model given a set

of item-rating pairs. The subsets S1 and S2 must be separable by an orthogonal line

to the axis of the split variable x. For regression trees, the standard metric used for

measuring the impurity at each node is the variance of samples in Snode.

Data: a set of item-rating pairs S

Result: a decision tree model mapping the space X, defined by a set of

variables X, to the space of ratings R

1. Start at the root node with Snode = S.

2. For each x ∈ X, find a split of Snode into two subsets S1 and S2, such that it

minimises the sum of the node impurities in the two child nodes and choose the

split that minimise this criterion over all X and splits.

3. If a stopping criterion is reached, exit. Otherwise, apply step 2 to each child

node, node 1 and node 2 in turn, with respective item-rating pairs S1 and S2 .

Algorithm 1: Pseudocode for tree construction by exhaustive search.

3.5.2 Generative model

Consider a space of items/solutions X and a population of users I, with each user i ∈ I

belonging to a user type τ ∈ T , forming a sub-population Iτ ⊂ I: ∪τ∈T Iτ = I and

Iτ ∩ Iτ ′ = /0, ∀τ,τ ′ ∈ T with τ , τ ′. Further assume that ∀i ∈ Iτ , ∀τ ∈ T , that user

is characterised by a utility function ui = uτ : X→ R, with ui(x) ≥ ui(x′)⇔ x � x′,

∀x,x′ ∈ X, indicating his/her preference over different solutions. We assume that the
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Cs−
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ds δs

ds1 ds2δs1 δs2

Cs1 Cs2

Ns

Ns−

Ns1 Ns2

Figure 3.5: A directed graphical network for the generative model of a regres-

sion tree.

form of ui is such that the user is φ -coarse (φ : X→ R), with coarse utility function

uc
i : Ci→ R.

If we constraint partitionings of the space X to those that can be produced by using

hyper-lines that are drawn parallel to the axes of variables defining X, then the space of

utility functions U , with ui ∈U,∀i ∈ I, is that of all possible regression trees over the

space X . Below, we present a generative model for such a Regression Tree when the

possible splits, referred to here as "features", at each node are finite.

In Figure 3.5, we give a first approach to the directed graphical network representing

the generative model of coarse preferences. We take advantage of the fact that going

down the tree is expected to increase the accuracy of a prediction in order to force a

correlation between the evaluations of parent-children nodes.

In all occasions, subscripts to variables indicate the sequence of left-right branches
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followed so far. We use s to indicate a generic trajectory, s− to indicate the same

trajectory up to the second last split, and s1 and s2 to refer to the extension of s with

either a left, 1, or right, 2, split. All variables C are conditional Categorical variables

indicating which feature we last split on dependent on which features we split on

previously. These act as selectors for the variables they condition, which are either

conditional Gaussian or conditional Dirichlet. We should note that a more accurate

model would condition these variables over all past branchings in s, but we expect that

conditioning on the previous split, along with the structure of the tree, will provide

accurate enough results when fit to users’ behaviour.

All variables δ and N are conditional Gaussian with Ns being the valuation of the

regression tree at branching s, and Ns = Ns−+ δs for a given Cs−. δ then indicates

the difference of the evaluation as we refine the space of solutions. What values the

evaluations of N and δ take will depend on the specifications of the problem at hand.

Variables ds are conditional Dirichlet, representing a Dirichlet distribution for each

assignment to its parent Cs−, and act as the probability vector for Cs. The Dirichlet

distribution is the conjugate prior for the Categorical.

In Figure 3.6 we further refine the model by considering the relation between the

change to the prediction of the evaluation as we go down the tree, and the probability

that a solution would be found in the subspace defined by each branch. For the

evaluation at each child node to be consistent, the parent node’s evaluation must

equal the weighted sum of expectations at each child node, where each weight is the

conditional probability of a point in the subspace defined at the parent node belonging

to the subspace defined by the corresponding child node. We define Ps as the vector

of probabilities [p1
s , p2

s ] of branching to either side of the sub-tree. If we simplify our

problem by further considering that items are distributed uniformly in the space X , then

there is no need to maintain a distribution over Ps, though its value will still depend on

the split feature Cs (for binary variable domains and points distributed uniformly in X ,
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Cs−
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ds δs−

ds1 ds2δs
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Ns1 Ns2

Figure 3.6: Directed graphical network for the generative model which takes

into account the probability of going down each split of the regression tree.

we have p1
s = p2

s = 1/2 ). Figure 3.7 presents the factor graph corresponding to the

second model.

In every case, the model presented here can be viewed as our belief over the representa-

tion of a single user’s or a user type’s preferences. If considering a set of possible user

types to which a specific user might belong, then the model could be viewed as that

of a component to a mixture model. In either case, inferring an optimal decision for

the user can be done as an expectation over the model or by identifying the maximum

likelihood category of each solution and taking the expectation over that category’s

evaluation.
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Figure 3.7: Factor graph for the generative model which takes into account the

probability of going down each split of the regression tree.
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3.6 Conclusions

This chapter presented a decision theoretic model of coarse preferences, representing

users which make decisions by recognising the situation or category represented by

each alternative. By being consistent with the (von Neumann and Morgenstern, 1953)

Expected Utility Representation Theorem 2.5.1, we allow for the function defined over

the space of categories to be a utility function, consistent with the user’s ranking over

alternatives. This will guarantee that the model learnt in Chapter 4 represents rational

users and that measures such as social welfare, the sum of individual users’ utility, are

meaningful, provisioned on the normalisation of values across users.

Having explained the intuition behind the interest in formalising a model derived from

categorical thinking, Section 3.2.4 detailed the computational benefits that can be

achieved, given different assumptions of user behaviour and known utility functions,

by representing users’ preferences through a coarse utiltiy function. These benefits

extend to groups of users and user typing.

The intuition, definitions, and analysis presented in this chapter serves as the basis on

which the procedures in the following two chapters are developed. The next chapter

details a methodology for performing preference elicitation over users drawn from a

population with coarse preferences. It explains how one can learn the coarse mapping

offline, by using the readily available technique of regression tree learning, and an

approach for eliciting an individual user’s preferences over the resulting space. The

experiments in this chapter show both computational and qualititative benefits when

compared to a state of the art preference elicitation procedure over an online retailer’s

dataset. Chapter 5 presents the multi-attribute, multi-agent problem of coordination

through set recommendation, where the benefits of modelling users as coarse decision

makers in decision problems involving groups of users are made evident.



Chapter 4

Efficient Preference Elicitation with

Coarse Preferences

Chapter 3 presented a model of coarse preferences, and studied inference with coarse

utility functions. We showed that, provided our model assumptions hold, we can

achieve significant computational benefits under single user inference. We then

proceeded to show how these benefits can be retained under decision problems with

multiple users and user types. In doing so, we introduced the concept of a user-set

coarse mapping, a coarse representation for a set of users or user types, as a sufficient

and optimal way of representing all users’ coarseness with a single latent space of

categories.

In this chapter, we will propose a methodology for the online, active, learning of coarse

preferences. A crucial part of achieving this is developing a procedure for learning

the user’s coarse mapping from an offline data set. We first propose Regression Tree

Learning over each user’s part of the corpus, but discover that this quickly converges to

trivial solutions, exhibiting the worst of both cold-start problems. We then demonstrate

that running Regression Tree Learning over our whole corpus can provide us directly

95
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with the user-set coarse mapping, giving an efficient way of combatting both cold-start

problems. The resulting procedure is applied to preference elicitation over a real-world

online retailer’s data set, significantly outperforming the state of the art, both in terms

of runtime, and in terms of quality of recommendations. Furthermore, the hierarchical

structure of our model allows us to optimise our recommendations for a secondary

criterion (revenue), without reducing the quality of recommendations.

4.1 Introduction

The computational benefits stemming from performing inference with a coarse pref-

erences model, by definition extend to the decisions of which query to present during

active learning. Generalising across members of a preferential equivalence class will

provide benefits in terms of computation time for query selection and the number of

queries for converging to a good solution; the latter provided our assumptions over user

behaviour hold. Further, as we will see in this chapter, mapping the solution space into

a univariate latent space also significantly reduces the computation time for making

an update over the preference model; in turn further accelerating query selection as a

result of reduced time for query evaluation. Lastly, since decisions are optimised at the

level of coarse classes, optimal queries and recommendations are defined as subsets

of the original item space. This allows for a secondary round of optimisation prior to

the final presentation of a query or recommendation, without loss of expected value of

information or recommendation quality.

For any of the above benefits to materialise, a system first requires access to the user’s

latent space of categories. We will demonstrate that learning such a partition for each

user independently is not robust, and presents a significant cold-start, item and user,

problem. We will then propose a procedure for learning a partition of the solution space
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from a corpus of user interactions offline, and prove that this partitioning represents the

user-set coarse mapping.

The methods detailed below are relevant to any online learning of a coarse utility

function, regardless of the querying policy, if any, such as active learning or bandit

algorithms. However, we choose to study a typical preference elicitation scenario

with a one-step look-ahead Expected Value Of Information (EVOI) computation in

order to illustrate the increased computational benefits from coarse preferences during

query selection. To ground our approach, we revisit the Mallzee clothing recommender

system scenario, first introduced in Section 2.1.1.

4.2 Problem Description

As we saw in Chapter 2, the Mallzee scenario involves sequentially presenting a

user with different items of clothing in an attempt to quickly gauge his or her

preferred items from whether they accept or reject the recommendation, such that

future recommendations have a greater chance of being accepted. We model this as

a problem of preference elicitation with value queries. However, we assume noisy

responses to compromise for the fact that user responses are constrained to fall on a

predefined set of values.

The system represents items in a multivariate vector space X . Variables in this space

could, e.g., refer to the type of clothing, its brand, price, or colour. At each time-

step t the user is presented with an item xt ∈ Qt ⊆ X , where Qt is a set of available

items for recommendation at time t. Each recommendation xt elicits a response rt ∈ R,

where R is the space of possible responses. The user evaluates an item x ∈ X according

to a utility function u : X → R with u ∈ U drawn from the space of possible utility

functions U . Values u(x), ∀x ∈ X , define how much the user prefers each item. In
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other words, u(x)> u(x′)⇔ x� x′, ∀x,x′ ∈ X (von Neumann and Morgenstern, 1953).

We assume that the user’s responses are truthful but noisy evaluations of the presented

items, drawn from a normal distribution Pr = P(rt |xt ,u) = N(rt ;u(xt),σ) with mean

equal to the utility of the queried item. The actual procedure by which users choose

their response when constrained to a set of options is more convoluted, and this point

could be handled more formally in future work.

We consider two alternative optimality criteria for the system: maximising the user’s

utility over a recommended item, and maximising the revenue of the system from

that recommendation. We are particularly interested in the tradeoff between these

two criteria, since they represent a conflict of interest between user and system. We

define revenue as a constant percentage α of a recommended item’s value multiplied

by its rating by the user: v(x,r) = α · r · p(x), where p(x) is the price of item x. The

assumption is that accepted recommendations have a constant chance of translating

into sales, and that the system receives a set commission on each sale. Maximising the

user’s utility is equivalent to maximising the user’s rating of the recommended item,

which is the focus of the majority of recommender system applications. Additional

criteria are also often considered, such as serendipity and diversity (Andreadis et al.,

2016). While we could incorporate these criteria into the user’s utility function, this

goes beyond the scope of this thesis.

When our aim is to maximise the user’s utility, the optimal decision w.r.t. u is

x∗ = argmaxx∈X u(x), giving utility u(x∗). When optimising for revenue, the optimal

decision w.r.t. u is x∗= argmaxx∈X
∫

v(x,r)Prdr, with expected revenue
∫

v(x∗,r)Prdr.

The next section assumes the former, so as to simplify presentation.
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4.2.1 Preference elicitation

Given a finite and manageable, set of available items, we could assign one parameter

for the utility of each item. 1 When this is not the case, then more structured

representations of the space U are used, such as those making use of additive (Koller

and Friedman, 2009) or generalised additive independence (Gonzales and Perny, 2004)

of variables. The system does not, in general, have complete knowledge of u, but

maintains a density bt over the space U , indicating its current belief over the user’s

utility function at time step t, with b0 representing its prior knowledge. If we denote

the expected utility of an outcome x given density bt over U as EU(x,bt) then the

optimal decision is x∗ = argmaxx∈X EU(x,bt). We denote by MEU(bt) the value of

being in state bt , assuming one is forced to make a decision: MEU(bt) = EU(x∗,bt).

At each time step t the system can present the user with an item xt ∈ Qt , eliciting a

response rt ∈ R. The user’s response can be used to update our belief over their utility

function, in accordance with Bayes’ rule. The (myopic) expected value of information

(EVOI) of a query can be defined by considering the difference between MEU(bt) and

the expectation (w.r.t. rt) of MEU(bt+1). A myopically optimal elicitation strategy

involves asking queries with maximal EVOI at each time step Braziunas (2006).

By definition of the EVOI, presenting the user with the query that maximises the

EVOI guarantees, in expectation, that a recommendation immediately after the user’s

response would provide them with the maximum possible utility.

1We use manageable to refer to both memory-related performance and to the dynamics of the item
population. Since this approach does not allow for generalising across items the set of items needs to be
small and constant.
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4.3 Coarse Preferences

As we saw in Chapter 3, given a utility function u : X → R defining a coarse mapping

φ : X →C, we can write the utility function

uc : C→ R, (4.1)

with uc(φ(x))= u(x), ∀x ∈ X .

4.3.1 Eliciting coarse preferences

If correct, the mapping φ from the space of items to that of categories allows us to

select queries from the space of categories without loss of information. This reduces

the cardinality of the query space from |X | to |C| and should speed up the convergence

of the learning algorithm significantly when compared to approaches defined over the

original outcome space. A further result is that, as we select for optimal queries over

the space C, we are allowed a subset of X as optimal queries, in terms of expected

value of information. The system can then freely select what to present from this set,

according to external criteria.

We do not assume any correlation between the utility a user assigns to different

categories (though a model of neighbouring categories could be an interesting future

extension). this allows us to encode our belief over the user’s utility for a category c

with a uni-variate density p
(

uc(c)
)

. Since we are working on a discrete domain C, we

can represent our belief over the utility function as
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Figure 4.1: Overall methodology for the elicitation of coarse preferences. The

offline procedure involves learning the coarse mapping φ from a corpus of data.

The online preference elicitation procedure follows the normal procedure of

query selection and belief updating to the user’s response, but does so over

the space of categories, as defined by φ .

bt(uc) =
|C|

∏
c=1

p
(

uc(c)
)
. (4.2)

Given a response rt to a query qt = xt at time step t, we can compute the new belief bt+1

according to Bayes’ Rule. We write the posterior in closed form after each response as

follows:

bt+1(uc|rt) =
P(rt ;qt |uc) ·bt(uc)∫

P(rt ;qt |uc) ·bt(uc) duc . (4.3)
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To allow for Eq. 4.2 to be a closed form expression, we can assume that p is a Gaussian

density with uc(c)∼N
(

uc(c); µ(c),σ2(c)
)

.

So far, we have discussed how to elicit coarse preferences given a coarse mapping

φ . We next develop an offline methodology for learning this mapping from a corpus

of user interactions in the form of a set of ratings of products from past users of the

system.

4.4 Learning the Coarse Mapping

In order to utilise the procedure detailed in the previous section, we need to first identify

the coarse categories across our population of users. Though every user i will have their

own mapping φi : X →Ci, the mapping φ resulting from their intersection can be used

to make decisions for every individual user with no loss of utility since, as follows from

Definition 3.3.1, a user i will exhibit both coarse preferences φ and φi.

We assume access to a history of user interactions in the form of user-outcome-rating

triples, and that this history is representative of future users. We need to partition the

solution space such that all outcomes in each class can be mapped to the same utility

with little or no loss in accuracy.

4.4.1 Learning single-user coarse mappings

Assuming user preferences are represented by a utility function, then learning a user’s

coarse mapping equates to producing a partitioning of the solution space into classes,

such that membership to a class singularly predicts the value of a hidden regression

variable, the utility. Assuming that there is some correlation between the proximity of
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points in this space and their membership in the same class, this can be understood as a

clustering problem. However, this fails to capture the dependency of class membership

on the utility. Specifically, if we were given knowledge of the utility of different

solutions, then the proximity of solutions becomes a non factor in determining class

membership. That is, conditioned on the utility value of each item, each item’s class

membership is independent of their relative position in the solution space.

Despite the above, one could concede to use utility as another variable describing each

item. However, it is unclear how one would weight this dimension against those of the

item descriptors.

The above indicates that our partitioning problem is one of supervised learning, where

the utility of each item, for each user, is the target regression variable, and the vector

descriptions of items, in the original solution space, are the samples. A partitioning

procedure which takes a target regression variable into account is Regression Tree

Learning (RTL) (Breiman et al., 1984).

The RTL algorithm receives a set of outcome-rating pairs as input, and outputs a

decision tree with a continuous target variable; in this case, the utility. This regression

tree defines a partitioning of the original outcome space by use of axis-parallel linear

constraints, with each partition corresponding to a leaf node in the tree.

We can produce the space of categories by assigning a class label to each leaf node in

the resulting regression tree, such that each preferential equivalence class is determined

by following a sequence of tree-splits. However, applying RTL over an individual

user’s samples will only provide a guess over that user’s coarse mapping, since there

is an infinite number of trees that can represent any finite number of samples equally

well, as determined by the split metric (Breiman et al., 1984). The problem with this

becomes apparent if we consider predictions for items that are outside of the user’s

experiences, and therefore not in our samples; predictions will change dramatically
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based on where the user defines a boundary. Not only will this lead to a significant

item cold start problem, but the model would remain an inaccurate representation of

newly experienced items, until retraining occurs. Another problem with this approach,

is that we have no way of learning mappings for new users, until a significant amount of

behavioural data has been gathered. This leads to a significant user cold-start problem.

4.4.2 Learning the user-set coarse mapping

As we saw in 3.4.1, we can use the pairwise intersection of all users’ coarse mappings

for inference over any user, user type, or group of users. This user-set coarse mapping

would solve our cold start problems by defining a valid latent space for all users and

items, to the extent that these are represented by some users and items from the entire

corpus of data. However, the intersection of mappings from a large number of users

will quickly converge to a trivial mapping of 1 sample per class, especially since the

users’ mappings, as learnt from RTL, can vary significantly from their true mappings.

We would prefer a procedure that is more robust to noise and outliers, producing coarse

mappings with more overlay between users and better ability to generalise to new items.

One way of solving this problem would be to learn the user-set coarse mapping directly

from all users’ interaction data. This would allow us to utilise all of our samples

together, achieving generalisation across users which, provided they are representative

of future users, will effectively the user cold start problem. Moreover, by learning the

mapping over all items in our data set, we effectively tackle the item cold start problem,

to the extent that those items are representative of future items in our catalogue.

However, aiming to learn the user-set coarse mapping means we are no longer

partitioning the space of solutions according to a user’s evaluations. We could try

to define a new target variable over the evaluations of all users. However, it is not clear
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what the sample space for the RTL algorithm is. One natural consideration would be

to use the original solution space, defining a function over the evaluation of all users

for each item rated. For example, the utility mean of each item estimated across all

users. However, the sparsity of our data set will not allow for this. Even so, it is not

clear what metric would be able to represent the fact that, for each user, all items in a

subspace of items are rated the same way, as the user-set coarse mapping defines.

Luckily, it can be shown that, if we run the RTL algorithm over all the corpus defined

over the original space of solutions, with user evaluations as the target variable, and

discarding any information on the user giving each rating, then the partitioning implied

by the resulting tree can be an effective definition of the user-set coarse mapping (i.e.

the coarse mapping that is consistent with all users). To understand why this is the

case, we need to examine how the RTL algorithm works.

4.4.3 Regression tree learning for the user-set coarse mapping

A Regression Tree, essentially a Decision Tree where the target variable is a regression

variable, sequentially splits a provided set of samples, in our case vector descriptions of

clothing items, into subsets, such that membership in a specific subset is increasingly

a better predictor of the target variable, in our case a rating (Breiman et al., 1984).

Regression Tree Learning (RTL) is an algorithmic procedure for learning such a tree.

RTL chooses how to split at every node, according to a one-step look-ahead metric

estimation. Since we have a target regression variable, we will use variance reduction,

with the procedure aiming at the reduction of the sum of variance of the utility across

subsets after each split Breiman et al. (1984).

Consider a set of users I, the space of user-set coarse categories C, and a belief over

each user’s i ∈ I utility function bi. The probability that the expectation over the
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sum (and average) of the utilities of randomly, independently, sampled users for two

randomly sampled items mapping to different categories c1,c2 ∈C, conditioned on that

mapping are equal is zero. This holds for continuous utiliy values and, in the limit of

users, for discrete utility values. This follows from the fact that the probability of two

samples drawn from continuous distributions being equal is 0, and the application of

the Central Limit Theorem (Billingsley, 2008) for the discrete case.

The implication is that we can distinguish coarse categories by comparing the expected

value of the utility of their members across users. What remains to be shown is that

RTL will identify splits that separate samples in this manner.
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Figure 4.2: Example of how the expected utility of sampled points in two

neighbouring classes changes, as we shift the split-point between the two.

Consider an arbitrary node down the regression tree, as it is still being constructed

during RTL, and a variable x j with values in X j, such that there exists a point in X j that

would split the subspace into two sets of preferential equivalence classes, according to
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Figure 4.3: Example of how the variance of the expected utility of sampled

points in two neighbouring classes changes, as we shift the split-point between

the two.

the user-set coarse mapping. Will RTL be able to correctly identify this split point?

Figure 4.2 illustrates this decision problem. The x-axis represents the space of possible

splits, whereas the y-axis indicates the expected utility of a sample drawn from a

random user, and at a uniformly random point within the space on the left of the split

point; and is therefore the expected value of a sample drawn from the category that

would have been defined by that split. As long as the split point is chosen to be on

the right of the actual border between the two equivalence classes, the expectation of

the utility of a sample remains the same. Beyond that point, it linearly increases until

it reaches the area-weighted average of the expected utilities of the two categories. In

order to prove that RTL will identify this split point, we need to show that this is also

a minimum for the expected sum of variance of samples in the two categories. It is

important to note that the graphs in Figures 4.2 and 4.3 plot the mean and variance,
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respectively, of the expected utility. This is equivalent to assuming all items in a class

have been evaluated to have a utility equal to the mean utility across items in the class.

Figure 4.3 plots the change in variance of the expectations of samples drawn from a

set of categories defined to be on the left of a split-point as defined by the x-axis, and

in relation to the true split point. As this is the variance of the expected utility, rather

than the expectation of the variance, it remains at 0 until the split-point surpasses the

true split point. After this, it increases up to a value, before decreasing asymptotically

towards 0, when the size of the right category is significantly larger than that of the

left. Since the other category expresses a similar behaviour, the sum of variances of the

expected utility will indeed minimise at the true split-point.

Unfortunately, this result does not guarantee that adding points from a neighbouring

category will not decrease overall variance, but it is an indication that, as long as user’s

evaluations don’t deviate significantly from the average evaluation within the category,

RTL will find a good representation for the user-set coarse mapping.

If users were to rate similar items, then we could instead run RTL over the mean

evaluation of each item across users. Provided enough samples, this would guarantee

the behaviour we require. However, such a data set is not always available, as is the

case with our experiments in the next section. Identifying a metric that will guarantee

that RTL convergences to the true classes remains an open question.

4.5 Experiments

We now describe our experimental procedure for evaluating our proposed model of

coarse preferences, including a comparison against a state-of-the-art utility-based

model by Guo and Sanner (2010).
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4.5.1 Data set

We evaluate on a real-world data set generated from the interactions of users on

Mallzee, a smart-phone clothing retail application. Users are identified solely by their

id. Interactions are represented as binary responses (swiping left or right) to product

recommendations. For each recommended item, we are provided with assignments

to a set of 8 parameters (each variable’s domain cardinality is given in parentheses),

specifically: current price, discount from original price, currency (4), type of clothing

(22), intended gender (5), whether it is in stock (2), brand (139), and colour (16). Out

of these, current price and discount from original price are continuous, while all others

are categorical variables. The data set consists of 200 users in total, each one rating a

different set of 500 products, for a total of 100’000 data-points. We split the data into a

training and test set, each comprising of the responses of 100 users (Andreadis, 2016).

4.5.2 Procedure

We set an uninformative prior for each method, with an expectation of 0.5 utility spread

equally across variables. The experiments are executed in two phases. First we learn

the coarse mapping φ from our history of user interactions as stored in the training

set. Then we run a series of 100 experiments with the test set acting as the query

and recommendation space. We run one preference elicitation experiment instance for

each of the users in the test set, for each algorithm and optimality criterion: expected

user utility and system profit. For all methods, and at each time step t, we uniformly

select 20 from the available queries for evaluation to comprise Qt , and motivated by

computational reasons. Such a constraint does reduce the informativeness of queries

but represents real-world constraints, in terms of computational cost and availability of

items, though the specific number has been selected arbitrarily. We compute the EVOI

(see Section 2.5.11) for each query and select the maximising one to present to the user
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for evaluation. After receiving the user’s response (as stored in the data set) we update

our belief over the user’s preferences. We evaluate the quality of our current belief

state by hypothesizing an optimal recommendation from our available set of items,

and noting the user’s response from the data set. Under the user utility criterion, and

when there are multiple items with the same expected evaluation, we select the one that

would generate the most profit.

We compare our coarse preference elicitation procedure to the state of the

art of AI-decomposed utility function elicitation procedure, as adapted from

Guo and Sanner (2010) . To account for ratings instead of pairwise comparisons the

benchmark is changed to make use of value queries. The query selection procedure

makes use of the same Bayesian updating scheme as in the original work, and as pre-

sented in this chapter. In order to do so, we have to discretise the continuous product

descriptors: current price and discount from original price. In this step, the belief takes

the form:

bt =
D

∏
d=1

|xd |

∏
i=1

N
(

ud(di); µ(di),σ
2(di)

)
, (4.4)

where D is the dimensionality of the item representations, |xd| is the size of the

corresponding discrete assignment space, and di is an assignment to variable d.

In order to learn the coarse mapping from the space of item descriptors to that of

categories, we first transform all categorical variables into sets of binary variables. In

order to determine the hyperparameters for the regression tree algorithm we randomly

select a history of user interactions and run the offline clustering procedure for

different values for the maximum tree height and minimum number of nodes per

leaf-node hyperparameters, in increments of 1 and 50 respectively. The Regression

Tree algorithm outputs an expected utility value at each leaf node. We round each

prediction to its nearest integer value in order to get an understanding of how well

the Decision Tree predicts the training data. We then chose the configuration which
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resulted in maximum precision when considering the products to which the users

responded positively. During the experiments we then run a regression tree procedure

as explained in Section 4.4, using these learned hyperparameters. To put these results

into context, we perform least-squares linear regression on the same training set but

without discretising the continuous variables, and round it as described above. We

expect that this will give indication of how well the benchmark will perform.

Each leaf-node in this tree represents a category. In order to be able to generalise to

the test data, we wanted to keep the cardinality of the latent category space relatively

small compared to the available product space, focusing more on achieving higher

precision, rather than recall, when considering the products to which users’ responded

positively. This is because making a good recommendation relies on our ability to

identify a preferred item, rather than locating as many good items as possible.

To evaluate our performance for the criterion of user utility we plot the average

normalised loss in user utility. This measures, at each time step, the normalised

distance of the value assigned by the user to their recommended product, from the

maximum evaluation that could have been achieved, given the available products for

recommendation. We also examine our performance in terms of system profit. For

this purpose, we plot the normalised loss in profit, computed considering the value of

the most expensive item available as the best possible profit achievable. This metric is

agnostic to whether the user had swiped right or not on that item in the data set.

4.5.3 Results

Optimising for the regression tree hyperparameters resulted in setting a maximum

height of 10, and a minimum number of 500 training samples per node. This in turn

resulted in a space owith cardinality |C| between 23 to 45 categories across experiment
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runs, with a mean of 33.2 and a standard deviation of 5.35 categories. Considering the

products to which the user responded positively, we achieve an average precision of

0.97 and average recall of 0.70 on the training data. The least-squares linear regression

procedure results in an average precision of 0.81 and average recall of 0.21. Figure 4.4

shows part of a learned decision tree, with two examples of categories. The first

one shows users grouping all products not displayed in British pounds into a single

category. The second one refers to all non female-specific shirts, with a defined colour,

and that are displayed in British pounds. These descriptions are easy to understand and

put into context, and can act as an additional tool for system designers.

Figure 4.4: Part of a decision tree learned from the history of user interactions.

Two leaf nodes are shown, each one identifying a category in the space C. This

example tree had a height of 10.

Figure 4.5 plots the normalised loss of utility for the coarse preferences algorithm

and the sum of conditional Gaussians benchmark, as adapted from Guo and Sanner

(2010). ‘Time-step’ refers to the number of queries presented so far. The shaded

areas cover ±2 standard deviations, showing 95.45% confidence intervals. The lines
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Figure 4.5: Average normalised loss of utility across 100 experiment instances

from the user’s response to our recommendation, averaged across 100 experi-

ment runs.

labelled ‘AI benchmark’ present the results for the benchmark as run with each

optimality criterion. Correspondingly, lines labelled "coarse preferences" present

the results for our algorithm. The performance of our procedure is indicative of its

ability to better trade-off between generality and accuracy for this data set. Querying

any point in an equivalence class informs us of the user’s preference for all its

members. To the extent that this mapping is accurate, we achieve a significant

reduction in the dimensionality of the solution space, by going from a space of 8

parameters with 500 samples (the space is combinatorially large but constrained by

the number of available samples) to a space of 1 variable with a maximum size of

|C|. This in turn translates to faster convergence to an accurate representation of

the user’s preferences. As expected, procedures optimising for user utility achieve
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better performance in this metric. However, even when optimising for user utility, the

AI benchmark quickly converges to a suboptimal representation of user preferences.

Crucially, when optimising for system profit, the users experience no improvement in

their recommendations as time progresses. This results from the additive independent

assumption being a bad fit to the specific problem combined with restrictions in its

ability to query the user. These restrictions stem from the fact that not all of the

solution space is available for querying with or, since we are using the same space,

recommending to the user. In fact only 500 points out of a combinatorially large set

are available. This problem is enhanced by further restricting the space to a randomly

selected set of 20 available items. The coarse preferences approach is much more

effective at generalising from a small number of samples and therefore does not suffer

from this effect.

Figure 4.6 displays the gradual improvement in the effective monetary value of

recommendations, in terms of average normalised loss. The gains in profits in

comparison to the benchmark are significant, which we attribute to both our model

being a better fit to the problem and our ability to select from a space of, from the

user’s perspective, equivalent solutions. One might expect that this graph would give

a complementary image to that of Figure 4.5. However, both coarse preferences

approaches significantly outperformed the AI benchmark. Moreover, running our

procedure for optimal user utility outperformed the same procedure over system profit.

We believe this to be the result of an overoptimistic prior over the utility of each

category, leading the algorithm to take risks for profit that don’t always pay off.

Focusing on the benchmark, we note that the improvement for the first two time-

steps when run for user utility does not translate to increased profits. Further, when

optimising for profit the inability to accurately represent users’ preferences translates

to poor improvement in profit.

Figure 4.7 presents the time taken during a single step of preference elicitation,
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Figure 4.6: Average normalised loss of profit across 100 experiment instances

from the user’s response to our recommendation, averaged across 100 experi-

ment runs.

averaged across all runs, experiments, and time steps. Error bars represent±2 standard

deviations. The presented values include time taken for query evaluation and selection,

as well as the belief update after the user’s response. Regardless of the optimality

criterion, our approach requires about half as much time as the benchmark, which can

be a significant advantage in online applications.
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Figure 4.7: Average computational time in seconds for each preference elicita-

tion model and optimality criterion.

4.6 Discussion

The main incentive for adopting our approach is that it allows for using a different

decomposition of utility functions, conditioned on different assumptions from those

of variable-based decomposition models. As such, it expands the set of problems

that can be sufficiently modelled by such approaches. Preference elicitation with

coarse preferences is much faster online while their structure allows for optimising for

secondary criteria, such as profit or environmental impact, without having to sacrifice

user utility.

However, these benefits are hard to justify if user behaviour does not conform to the

assumption of coarseness, that is that there are significant subspaces of the solution



CHAPTER 4. Efficient Preference Elicitation with Coarse Preferences 117

space in which users are indifferent between different solutions. Before deploying

any utility function decomposition the system designer needs to verify whether its

underlying assumptions approximate real user behaviour.

Lastly, in its current iteration our model is dependent on having access to a history of

user interactions, with the assumption that those will be representative of future user

behaviour. This could potentially be circumvented by learning the coarseness online.

There exist a number of approaches for handling the exploration-exploitation trade-off,

e.g. bandit algorithms (Busa-Fekete and Hüllermeier, 2014) and partially observable

Markov decision processes (Boutilier, 2002). The issue of computing these policies is

orthogonal to that of exploiting the structure of the utility function representation.

4.7 Conclusion

We proposed a new approach to utility function decomposition termed coarse pref-

erences which models user behaviour that is consistent with them evaluating alter-

natives based on which category each one falls into. Our approach is orthogonal to

that of variable-based decompositions such as additive independence in that it can be

used in combination with them while also being based on different assumptions. We

demonstrate that there exist real-world problems where the coarseness assumption is

a better fit than additive independence to user behaviour. This allows for a significant

increase in recommendation quality while also taking advantage of reduced computa-

tional time; a benefit that scales with the number of variables. The magnitude of the

effect our procedure had suggests that it is worthy of consideration in recommender

system applications, particularly those that involve users rating sequentially presented

items. Furthermore, our model is the first, to our knowledge, approach that allows for
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optimising for secondary criteria, such as profit, while guaranteeing to optimise for the

user’s utility. In fact, we do better at both criteria against a state-of-the-art benchmark.

Having developed a coarse preferences online learning procedure, and provided evi-

dence for its applicability to typical recommender systems, the next chapter will ex-

amine how this methodology enables otherwise computationally prohibitive inference

and online learning computations to take place. For this, we will revisit the MovieLens

coordination through set recommendation scenario, first described in Section 2.1.1.



Chapter 5

Coordination through Set

Recommendation: a Case Study for

Coarse Preferences

The previous two chapters introduced a theory of coarse preferences, proposed a

preference elicitation methodology, and applied it to a real-world recommendation

problem. Though the experiments of Chapter 4 showed significant benefits in terms

of computational time and recommendation quality, the decision scenario was not such

that the full potential of the methodology could be explored. This potential manifests in

problems of increased computational complexity, such as the one that is analysed in this

chapter. We examine the problem of iteratively recommending a set of items to each in

a set of users, where the outcome experienced by each is contingent on the choices of

all other users, but where these choices are made without any knowledge or expectation

over other users’ choices, and without the ability to communicate with each other. The

procedure for coordinating their choices is computationally expensive, and a number

of techniques are introduced for managing this issue. Crucially, we demonstrate how

119



120 5.1 Introduction

the reduced complexity of the coarse preferences model allows for exploring a larger

set of options, while also generalising user feedback for more efficient learning of

user preferences. We demonstrate benefits at scale, in terms of item description length

during learning, and in terms of solution domain size during inference. This results in

a significant increase in recommendation quality, providing evidence for the enabling

of otherwise intractable computational procedures.

5.1 Introduction

In Andreadis et al. (2016), we first examined the problem of Coordination through

Set Recommendation. In this, users are each to be recommended a personalised

set of alternatives, from which each is expected to select an item, in accordance

with their models of preference and selection behaviour. This was motivated as a

sharing economy application, which is a domain of multi-agent resource allocation

and coalition formation. In these applications, users act as producers and consumers of

resources, aiming to find peers to share the resources with, while a platform supports

them during peer discovery and resource sharing (Andreadis et al., 2016).

A crucial aspect of these systems, is that the outcome for the system and each

individual user is dependent on the choices of all users. In the case of coordination

through set recommendation, users do not have a chance to coordinate their actions

and do not think strategically, selecting only according to their evaluations of items

in their recommended set. The problem we focused on was that of selecting the

sets of recommended alternatives to present to the users, with limited knowledge of

their collective behaviour, such that, after their selections, one or more functions are

optimised.

Where does our interest in this application arise from? Typically, such problems are
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solved by the system allocating solutions to users; approaching it as a problem of

matching between users, or between users and resources (Gusfield and Irving, 1989;

Mourad Baïou, 2002; Dickerson et al., 2012); users have no control over how the

allocation is performed. Some, more flexible, approaches sequentially present users

with solutions they can choose to reject or accept (Gale and Shapley, 1962; Aziz et al.,

2015), while others assume a known preference profile for the users (Chung, 2000).

All of these approaches however treat the problem as one of a centrally-controlled

allocation of solutions to users, where the possibility of the users preferring not to

be allocated at all, as opposed to accepting a substandard allocation, is not taken into

consideration.

The freedom of the user to abandon the platform, and our uncertainty over their

preferences, are good motivation for approaching sharing economy applications as

recommendation problems. By providing users with a choice, we both learn more of

their preferences and improve our chances of them identifying an acceptable solution.

Inferring the correct sets of recommendations however, especially given a large number

of alternatives and users, is computationally hard (Andreadis et al., 2016).

In Andreadis et al. (2016), a methodology was presented for the coordination of

user collectives, in the absence of communication among agents. The proposed

approach outperformed that of directly allocating to users the solution with the highest

expected system utility, demonstrating that we can allow users to have a choice in their

alternatives, at no loss to the system. The method also allowed for the adaptive trade-off

between system-level utility and fairness of final allocation. This chapter expands on

that paper by also addressing the problem of learning users’ preferences online, which

largely motivated the original work. As discussed in Chapter 3, though utility models

allow for this, the computational cost associated with the online model update can be

prohibitive. In this chapter, we will demonstrate how coarse preferences can be utilised

in computationally complex sequential recommendation problems, achieving benefits
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at scale during the online preference model update and the optimisation for selecting

which recommendations to make. For this purpose, we will make use of the MovieLens

20M Dataset (Harper and Konstan, 2015), and propose a movie streaming service

scenario, where users join rooms in order to watch a movie together. Users might

be motivated by the social interaction or the provision of some limited service, such

as live director commentary and discussion. Modelling restrictions over the provision

of such services, such as the cost of inviting the movie director, will mean that the

optimisation is constrained, in this case, by a minimum number of participants.

The remainder of this chapter is organised as follows. In Section 5.2, we provide a

formal description of the allocation problem that characterises sharing applications, and

introduce models of user selection, which we then expand on to consider the sequential

nature of our problem and online learning. Section 5.2.2 focusses on the problem of

learning the users’ preference functions as they interact with the system. Section 5.3

presents a detailed description and formulation of the mixed integer linear programs

used in our optimisation framework, as adapted to the case study. The experimental

evaluation and obtained results are described in Section 5.4. Section 5.5 concludes,

summarising our results and indicating possible future directions.

5.2 Problem Description

We first formalise the resource allocation problem, and then introduce set recommen-

dation and the corresponding learning procedure.

Consider a set of items J = {1, . . . , |J|}. 1 We assume a vector space X such that each

item j ∈ J maps to a vector representation x j ∈ X. Let I = {1, . . . , |I|} be the set of

1In the original work, a task j ∈ J was associated with one and only one user who owned the task, for
example the owner of the resource that will be shared, or whoever initiated the sharing task (Andreadis
et al., 2016).
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users 2 In (Andreadis et al., 2016) items were restricted to a subset of users though we

will not consider such constraints in this work.

Let a = {a1,1, . . . ,a1,|J|, . . . ,a|I|,1, . . .a|I|,|J|} ∈ A define which user is allocaetd to an

item, i.e., a is an allocation of users to items, where A is the set of allocations. In

particular, if i is allocated to item j then ai, j = 1, otherwise ai, j = 0.

The preferences of each user i ∈ I over possible allocations are represented by a utility

function υi : A→Rwhich provides a complete ranking over potential allocations a∈A.

We will assume that υi, ∀i ∈ I, is consistent with users that maintain a utility function

ui : X→ R over successfully allocated items, and that experience a utility of 0 from not

successfully being allocated to an item. We further consider a system-level criterion,

social welfare maximisation, Vs : A→ R, specifically Vs(a) = ∑I υi(a), which will be

what the system will aim to maximise. In Andreadis et al. (2016), where the problem

of coordination through set recommendation was first proposed, we considered further

criteria related to fairness. Such an analysis goes beyond the focus of this chapter.

5.2.1 Set recommendation

Viewed as an allocation problem, it would be enough to find argmaxa∈AVs(a) =

∑I υi(a). However, we are interested in providing users with sets of recommended

items, therefore enabling choice and learning from user interactions with the recom-

mended set. Further, we will consider the sequential nature of such interactions, not

necessarily with the same exact users, but in the form of on-line sessions. Specifically,

assume that sessions occur at distinct time-steps t > 0, and that at each such session,

2Users who do not own a task, in (Andreadis et al., 2016).
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the available set of items is Jt ⊆ J and that the participating users are It ∈ I. For sim-

plicity of representation, we will still write the space of allocations as A, though we

will demand ai, j = 0, ∀i < It , and ai, j = 0, ∀ j < Jt .

The aim of the application is, for each session, to present users with sets of recommen-

dations such that their combined behaviour in expectation maximises Vs. We write Rt
i

to refer to the recommended set of items to user i in session t; though we will omit the

session index whenever it is not required by the context. All recommendation sets are

drawn from the set of users J, such that Rt
i ∈ XH , where H = |Rt

i|, ∀t > 0, i ∈ It . Each

user i then independently selects an item rt
i in Rt

i, according to their utility function

ui and the user response model. Each user i ∈ It selects an allocation from the set Rt
i

of recommended solutions independently and without direct coordination with other

users, according to a user response model. Viappiani and Boutilier (2010) consider

three user response models:

• noiseless response model: each user i acts deterministically and selects the

solution rt
i
∗ = argmaxrt

i∈Rt
i
u(rt

i).

• constant noise response model: each user selects solution rt
i
∗= argmaxrt

i∈Rt
i
u(rt

i)

with probability α and any other solution rt
i ∈ Rt

i −{rt
i
∗} with probability β =

(1−α)/(H−1).

• logit response model: each user selects an allocation from the set Rt
i proportion-

ally to its utility value: ui(rt
i)/∑rt

i
′∈Rt

i
ui(rt

i
′), ∀i ∈ It .

We examine the differences in optimisation behaviour for different assumed user

response models in Andreadis et al. (2016).

At each session, post-selection, user choices are compared and the selected items are
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allocated to their respective users only if certain criteria are met. For the scenario we are

considering, users are successfully allocated an item they have selected if the number

of users that have selected that item in this session is above a threshold of minimum

participation. It is important to note that it is users that actually make the final selection,

and then constraints are checked. Whether that selection is the sponsored one is not

relevant to the final allocation; it is simply used for producing the recommendation set.

5.2.2 Learning from user interactions

After having been presented with a recommendation set Rt
i, user i selects item rt

i ∈ Rt
i

in accordance with their preferences and selection behaviour. By considering the

presentation of this recommendation set as a choice query (Viappiani and Boutilier,

2010), where a user is asked to indicate their preferred option in a set of options, we

can interpret their selection as evidence that rt
i � rt

i
′, ∀rt

i
′ ∈ Rt

i.

Consider that the system only has partial knowledge of user i’s preferences at time t

(before the beginning of a session t + 1 and after session t), as represented by their

utility function ui. Further, consider that this knowledge is represented by a belief

function over the space of utility functions U , in the form of a probability density

function bt(ui). After a user’s selection, we can write the Bayes update rule as:

bt+1(ui|rt
i) =

bt(ui) ·P(rt
i ;Rt

i|ui)∫
bt(ui) ·P(rt

i ;Rt
i|ui) dui

, (5.1)

where we assume access to a prior distribution b0(ui), and a user response model

P(rt
i ;Rt

i|ui). The belief models used in our experiments for the baseline and our model



126 5.3 Optimisation Problem Formulation

were described in Sections 4.3.1, and 5.4. We have assumed a constant noise response

model, which we can more explicitly write as:

P(rt
i ;Rt

i|ui) =

α, if ui(rt
i)> ui(rt

i), ∀rt
i
′ , rt

i ∈ Rt
i

β = (1−α)/(H−1), otherwise.
(5.2)

Though this formula does not account for ties between the utility of different items,

this will not be of consideration in our experiments, since the taxation scheme we use

does not allow for ties.

5.3 Optimisation Problem Formulation

The optimisation problem described in the previous section can be approached as a

resource allocation problem, in which users are implicitly assumed to be compliant

with any solution proposed to them, and are therefore not afforded any alternatives.

The results of such an approach are constrained to that of a matching between users and

items/resources. Consequently, there is no consideration of the inherent uncertainty in

user behaviour, or the fact that users could simply refuse to participate in systems that

do not satisfy their needs (i.e. are individually rational). A system that realistically

addresses human diversity and the uncertainty in human behaviour requires an explicit

representation of user preferences and their responses to different decision scenarios.

Furthermore, the decision scenario needs to be formulated so that it allows for the

recommendation of solutions to users, while accounting for their possible deviations

from expected behaviour.
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In order to help the system in the process of coordinating users’ selections, we intro-

duce a taxation mechanism, so as to influence user selection behaviour by artificially

modifying the utility they have for the recommended solutions, i.e. by modifying their

preferences. Effectively, taxation allows the system to impose a penalty on allocations

users are better off not selecting. Generally, the tax imposed is different for each user

and for each allocation, and must guarantee that users still have multiple options (e.g.

the system cannot impose an infinite tax). The taxation mechanism is developed in

Section 5.2. The taxation scheme affects users’ evaluations of items in the recommen-

dation set, and, therefore, their selection behaviour. The aim is to have some control

over what items are selected by users, without prohibiting deviation from the optimal

solution for the system (which would be the same as a direct allocation).

A problem here is that taxation changes the value of a solution, since it is part of the

users’, and therefore also the system’s, utility function. We are not trying to guarantee

a specific solution. Quite the contrary, we are trying to allow the users freedom in their

choice, acknowledging that our knowledge of their preferences is incomplete. Since the

tax is part of the utility function, it acts as an additional parameter to the recommended

item specifications.

In order to handle this problem of computing an optimal set recommendation, we

construct the recommendation set by executing two consecutive Mixed Integer Linear

Programs (MILPs) Klotz and Newman (2013). The first of these identifies the

allocation that maximises Social Welfare, given certain constraints. This allocation

will be referred to as the sponsored allocation, while assignments to users specified

by it will be referred to as sponsored solutions. The second MILP generates the rest

H− 1 recommendations for all users, taxed, where appropriate, so as to promote the

sponsored allocation. The presented methodology is both an adaptation of and an

extension to the work in (Andreadis et al., 2016). Specifically, available items are
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not conditioned on the participating users, which simplifies the system. The non-

consideration of criteria beyond that of Social Welfare also simplifies the problem,

allowing us to merge the first two MILP as presented in that work. Lastly, this chapter

abandons the sequential computation of non-sponsored solutions for a more effective

batch computation, after having discovered that the previous sequential approach over-

taxes all but the first two solutions computed.

When computing the recommendation sets, we will only consider constraints related

to user behaviour, such as the probability of a user selecting a sponsored solution, and

on the minimum number of users that are required for a viewing to occur. Note that in

practise users may have other requirements that the system should satisfy. For example,

they may have constraints regarding the characteristics of users they are willing to share

an item with. Such constraints were presented in the original work, but will not be

considered in the MovieLens scenario.

The assumption is that users are boundedly rational (Simon, 1972; Tversky and Kah-

neman, 1981; Kahneman and Tversky, 1984; Gigerenzer and Selten, 2003), but they

do not have access to any information on other users’ preferences or recommendation

sets, and do not retain knowledge of previous interactions with the system, and can

therefore not select items strategically (Chevaleyre et al., 2006). Instead, items are

selected based on only their own preferences and the restrictions on their rationality

imposed by the response model. Therefore, and since users can only receive the pro-

vided items through our system, envy-freenes (Chevaleyre et al., 2006) is not a useful

consideration for our problem. The original work in Andreadis et al. (2016) does use

envy-freeness as a metric of ’fairness’ however, and future work could consider users

with access to some information on other users’ behaviour, such as some measure of

popularity of the items presented, or that adapt their selections based on the observed

outcomes from previous interactions with recommendation sets. If we represent the

lack of information over the probability of a selected item actually being allocated as
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the user believing that each selection has the same probability p of actually being al-

located post selection, then the users’ optimal choice is to select truthfully, according

to their utility function. However, this selection will be noisy (as represented by the

response model) representing boundedly rational users.

It is worth noting that our allocation mechanism is individually rational (Chevaleyre

et al., 2006), in the sense that a user can only benefit from deciding to participate

and select an item from the recommended set. Either the user will be rewarded with

that item, which we have assumed have a non-negative utility, or the user will not be

allocated, which is the equivalent of not participating in the negotiation.

Although we have designed our problem in a way that typical mechanism design

criteria are not relevant, we do recognise that the problem is a special case of multi-

agent resource allocation. However, it is unique in that the allocation mechanism is a

desirable constraint, around which the optimisation procedure has been built.

The next subsections present the details of the Mixed Integer Linear Programs (MILPs)

that compose the framework described above.

5.3.1 Maximising social welfare

The MILP presented in this section is used in the first step of our framework and aims

to compute the maximum system utility achievable without violating any requirements.

The resulting allocation will be the sponsored allocation, defining the sponsored

solution for each user. We refer to this system as MILP f irst .

The input parameters to the model are:

• An arbitrary very large positive number (enough to out-scale other values in the
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program) M - a typical tool used in Mixed Integer Linear Programming Klotz

and Newman (2013);

• An artificial lower bound on the number of users that have to be recommended

the same movie in an allocation, for that allocation to be accepted by the program

m - for the purposes of our experiments, we set this to be m = c+ c ∗ (1−Pc)

rounded up. This was estimated, by Matlab simulations, to have around 50%

users allocated to an item, when recommendation sets were uniformly randomly

generated;

• The expected utility of each user for each movie, written with slight abuse of

notation as: ui(x j), ∀i ∈ It and j ∈ Jt .

The variables for MILP f irst are:

• An indicator for whether item j is allocated to user i: a(i, j) ∈ {0,1},∀i ∈

It and j ∈ Jt ;

• An artificial variable for whether an item j is being allocated: k( j)∈ {0,1},∀ j ∈

Jt .

The objective function is the maximisation of utilitarian Social Welfare (Chevaleyre

et al., 2006), i.e. the sum of all individual user’s (expected) utilities:

max
a(i, j),∀i∈Itand j∈Jt

∑
i∈It

∑
j∈Jt

ui(x j) ·a(i, j) (5.3)

We require two additional sets of constraints, beyond the variable space definitions.

The first one is a constraint on the minimum number of users that need to be allocated
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a movie for it to be allocated at all, along with the necessary constraints for setting k( j)

correctly:

∑
i∈It

a(i, j)−m · k( j)≥ 0,∀ j ∈ Jt (5.4)

M · k( j)−∑
i∈It

a(i, j)≥ 0,∀ j ∈ Jt (5.5)

The second set of constraints forces exactly one item to be allocated to each user:

∑
j∈Jt

a(i, j) = 1,∀i ∈ It (5.6)

5.3.2 Maximising user coordination

The last step of our framework aims to compute the remaining H − 1 solutions (one

has already been identified by MILP f irst). We will do this by constructing and solving

the MILP we will refer to as MILPallOthers. MILPallOthers outputs all recommendation

sets Rt
i , ∀i ∈ It , with the exception of the first element in each set which has been

computed by MILP f irst . It guarantees that each user is never recommended the same

movie twice, and estimates the taxation for each user - movie pair outputted. The

taxation is computed so as to guarantee that each user prefers their sponsored solution,

under the assumption that the expectation over user’s utility for each item is their true

evaluation. The program outputs the minimum taxation that achieves this, as an infinite

tax would still accomplish the same goal, but be equivalent to an allocation of the

sponsored solution. A small error ε is allowed in this estimation. As previously stated,

it is assumed that user’s behave according to the constant response model, with a given

probability for selecting their most preferred item α .

The input parameters to that model are m, M, and ui(x j) ∀i ∈ It and j ∈ Jt , as in the

previous subsection, as well as:
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• The sponsored allocation as outputted from MILP f irst : a∗; and

• The expected utility of each user for their sponsored solution x∗: ui(x∗i ) ∀i ∈ It .

The variables for MILPallOthers are:

• An indicator for whether item i is allocated to user j through allocation h (out of

H−1 allocations): a(i, j,h) ∈ {0,1}, ∀i ∈ It , j ∈ Jt and h ∈ {1, ...,H−1};

• An artificial variable for whether an item j is being allocated through allocation

h: k( j,h) ∈ {0,1}, ∀ j ∈ Jt and h ∈ {1, ...,H−1};

• The taxation imposed to the allocation of item j to user i in allocation h:

tax(i, j,h) ∈ R+, ∀i ∈ It , j ∈ Jt and h ∈ {1, ...,H−1}.

The objective function is the maximisation of the sum of Social Welfare across all

allocations, minus the total imposed tax:

max
a(i, j,h), tax(i, j,h),i∈It , j∈Jt ,h∈{1,...,H−1}

∑
i∈It

∑
j∈Jt

H−1

∑
h=1

ui(x j) ·a(i, j,h)− ∑
i∈It , j∈Jt ,h∈{1,...,H−1}

tax(i, j,h). (5.7)

We require five additional sets of constraints, beyond the variable space definitions.

The first one is a constraint on the minimum number of users that need to be allocated

a movie for it to be allocated at all, along with the necessary constraints for setting k( j)

correctly:

∑
i∈It

a(i, j,h)−m · k( j,h)≥ 0,∀ j ∈ Jt and h ∈ {1, ...,H−1} (5.8)

M · k( j,h)−∑
i∈It

a(i, j,h)≥ 0,∀ j ∈ Jt and h ∈ {1, ...,H−1} (5.9)
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The second set of constraints forces exactly one item to be allocated to each user for

each allocation:

∑
j∈Jt

a(i, j,h) = 1,∀i ∈ It and h ∈ {1, ...,H−1} (5.10)

The third set of constraints forces all solutions for each user to be different across

allocations:

∑
j∈Jt

|a(i, j,h)−a∗(i, j)| ≥ 1,∀i ∈ It and h ∈ {1, ...,H−1} (5.11)

∑
j∈Jt

|a(i, j,h)−a(i, j,h′)| ≥ 1,∀i ∈ It , and h,h′ ∈ {1, ...,H−1},with h , h′. (5.12)

The fourth set of constraints forces taxes to take the minimum acceptable value:

∑
j∈Jt

(
ui(x j) ·a(i, j,h)−tax(i, j,h)

)
≤ ui(x∗i )−ε,∀i∈ It , and h∈ {1, ...,H−1} (5.13)

Finally the fifth set of constraints guarantees that only allocation - item combinations

that have been assigned to a user are taxed:

M · x(i, j,h)− tax(i, j,h)≥ 0,∀i ∈ It , j ∈ Jt and h ∈ {1, ...,H−1}. (5.14)

Initial solution heuristic

Preliminary experiments indicated that MILPallOthers would occasionally (approxi-

mately 1/1000 experiments) fail to produce a solution within a reasonable time-frame

(30 minutes). In order to avoid this during our experiments, as well as to allow for a so-

lution to always be found, even when the optimisation procedure reaches a time-out, we

developed a simple heuristic for feeding an initial viable solution to the MILPallOthers

optimisation procedure:
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For each allocation pick an item j ∈ Jt and assign j to users until it has been assigned

m times; Select a new item and repeat until all users have been allocated an item;

Compute taxation according to Eq. 5.13, and 5.14.

Generalisation for multiple assignments of the same item

When using a coarse model of preferences, we can replace the item space I with

the space of categories C, and postpone the selection of specific items to after the

optimisation procedure. In fact, this would allow us to make no decision about which

or how many items to consider during optimisation. Each category could be assigned

any number of times to each user and within an allocation. Interestingly, this would

also allow for other criteria to be used, besides user or system utility, when choosing

representatives for each time a category was recommended.

Unfortunately, the sparsity of the data set used in our experiments does not allow for

this, since not all users have rated an item from each category. In fact, the generalisation

presented below would require a number of items in each category such that each

recommended item can be drawn from the same class. This would not necessarily

be a problem during real world deployment since we would not be constrained by a

data set. Generally, if we have at least n items belonging to each class, then we can add

a constraint on the maximum number of times each category can be allocated.

To achieve this generalisation in MILP f irst and MILPallOthers, we need to treat items

as not having a specific utility per user assigned, but rather add variables allowing the

allocation of a category to each of these items. The objective function would then have

to be adjusted to consider the utility per user of categories assigned to each item.
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5.4 Experimental Evaluation

The aim of these experiments is not to justify the use of our optimisation procedure, a

topic which was successfully handled in Andreadis et al. (2016), but rather to compare

learning and optimisation performance between the use of coarse preferences, and

additive independence. Three experiments are run, with the goal of providing evidence

for the following statements (corresponding experiment in parentheses):

1. The proposed optimisation procedure does not scale in terms of the number

of available items |Jt |, when users’ preferences are modelled with additive

independence (experiment 3);

2. The computational time for the optimisation procedure is less when coarse

preferences are used, then when additive independence is used, given the same

number of available items |Jt | (experiment 1);

3. The computational time taken for the on-line update of users’ preference models

after their interaction with the recommended set is significantly less when coarse

preferences are used, then when additive independence is used (experiments

1&2);

4. Using a coarse preferences model results in better system performance, in terms

of Social Welfare, than using a model of additive independence (experiment 1);

even if the latter procedure is given access to more available items (experiment

2).

Two complementary statements are true by definition but will be explained in this

section in terms of how they appear in practise, namely:

• The proposed optimisation procedure scales in terms of the number of available

items, |Jt |, when users’ preferences are modelled with coarse preferences;



136 5.4 Experimental Evaluation

• Learning from user interaction with the recommended sets scales in terms of the

length of vector representations of items x j ∈ X, when users’ preferences are

modelled with coarse preferences.

Since only the expectation over a user’s evaluation of items is used in the optimisation

procedure, the latter will scale in terms of the length of vector representations of items

x j ∈ X, regardless of preference model.

5.4.1 General set-up

Each experiment instance will consist of a sequence of 20 sessions, in each of which,

t, we will uniformly randomly select a set of users It and a set of items Jt , out of

sets I and J, respectively. The latter have been extracted from the MovieLens 20M

Dataset (Harper and Konstan, 2015), which contains a sparse matrix of user ratings of

different movies. Each set of experiments will be composed of a number of experiment

instances, and will be characterised by a specific full ground truth matrix, which was

generated from the MovieLens dataset by the following procedure:

• Begin with an empty set of users Users, and the full sparse matrix of ratings

Matrix0;

• For user = 1...50

– While no new user has been added to Users:

1. Identify user with maximum number of rated items in I;

2. Reject user with probability p = 0.05 else add this user to Users and

remove him from I

– Generate full ratings matrix Matrixuser for all users in Users
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• Output Matrix50 and Users

It follows that each experiment set will have access to 50 users, prior to the random

selection of users for each instance. Each experiment will in turn be composed by a

given number of sets of experiments, each with a different ground truth matrix, for

different users and movies.

Movies in the MovieLens 20M Dataset are rated on a discrete scale of 0.5 to 5 stars,

with a step of 0.5 stars. Each movie has a vector description of length 1128, with

each parameter taking continuous values in [0,1]. These values have been learnt as

part of the research described in Harper and Konstan (2015), by considering how users

tagged movies, and is an attempt to summarise those tags in a more comprehensive

form. In order for the benchmark to function over this dataset, we have discretised the

assignments to each of these parameters by splitting the space [0,1] into 4 intervals of

length 0.25.

All ground truth matrices were based on the MovieLens 20M Dataset, which has

138493 users each rating some of 27278 movies, for a total of 20000263 ratings, with

465564 tag applications. For each experiment, any data points that did not end up in

the ground truth, were used as the training data. Each user has rated at least 20 items.

We learn our prior for both models over the training data set. For the benchmark,

this meant running Linear Regression Murphy (2012) separately over each user’s data

points, and redistributing the bias, 1, into each parameter by adding a constant 1/1128

into each partial utility (each assignment’s evaluation for each parameter). For the

coarse preferences case, we executed the procedure outlined in Section 4.4.2, in order

to generate the space of categories, and then used the Regression Tree prediction, and

the variance of data points belonging to each node, as the mean and variance for the

respective coarse prior. We did not test for using the Tree to partition every user’s
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individual data and then get the expectation over that user’s points; mostly because we

did not expect all user - class pairs to be populated in the data set.

At the beginning of each session t, the optimisation procedure receives as input a set of

available movies, which may be any subset of Jt , and the expectation over each user’s

i ∈ It utility evaluation of each of those movies, as computed from the current belief

over each user’s utility function bt−1(ui). The optimisation procedure is executed, and

each user i is recommended a set of movies Rt
i of size H, from which they select a

movie rt
i according to their utility function ui and their a constant user response model

with probability α . Since we have no knowledge of users’ true utility functions, we

simulate this by assuming that their ratings as given in the ground truth matrix are

accurate representations of their preferences.

After each user’s selection, we sequentially execute one update procedure for each

implied pairwise comparison (see Section 5.2.2), by passing the current belief as a

prior to a TrueSkill Herbrich et al. (2007) optimisation procedure along with the vector

descriptions of the compared movies, and an indication of which movie was selected.

The resulting potentials are then used in updating our belief to bt
i, by replacing them

in the corresponding parameter-assignment pairs. In the coarse preferences case, the

vector description of a movie consists solely of the index of the category to which it

maps.

In order to accommodate for the taxation of solutions, we extended the model in Guo

and Sanner (2010) by adding a taxation factor for each taxed item. Consistent with

the original model, taxation factors are chosen as Gaussians with mean equal to the

taxation and a ’small’ standard deviation of 0.1, since we cannot use a variance of 0. In

real-world applications we will also have to learn the utility associated by each user to

the particular incentive used for taxing, so this variance will not have to be arbitrarily

set.
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All 3 experiments described below follow this motif; the differences lying in the size

of the recommended sets H and the sets of users It and movies Jt , the number of ex-

periment sets and instances, which algorithms we run, whether we use the initialisa-

tion heuristic in Section 5.3.2, and which movies are forwarded to the optimisation

procedure from the available set Jt . We assume a constant user response model with

probability α = 0.7, and set the utility error to ε = 0.05.

We compare the two procedures based on:

• The normalised loss of Social Welfare, computed as the percentage of loss of

Social Welfare from the maximum Social Welfare possible;

• The computational time taken to run the optimisation procedure, including the

time to set it up (in msecs); and

• The computational time taken to update each respective preference model after

user selection (in msecs).

When evaluating the Social Welfare at the end of each session, we subtract from every

user’s utility any respective taxation applied to their selected movie. We assume that

the maximum social welfare achievable is 5×|It |.

All mixed integer linear programs were solved using the CPLEX (IBM, 2017) opti-

miser. Experiments were run in Java, on a laptop PC with an Intel Core i5-6300U CPU

2.40GHz, having 2 cores.
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Figure 5.1: Experiment 1: Average computational time (in msecs) for setting

up and executing the proposed optimisation procedure using additive indepen-

dence and coarse preferences user models.

5.4.2 Experiment 1 - basic performance

The first experiment sets an even stage for the two learning procedures. We compute

set recommendations with a size H = 3, for sets of |It | = 20 users and providing the

optimisation procedure with sets of |Jt |= 10 items.

We run 10 experiment sets of 100 instances each. These experiments did not make use

of the initialisation heuristic from Section 5.3.2.

Figures 5.3, 5.1, and 5.2 show the results of the optimisation in terms of the average

normalised loss of Social Welfare, the average computational time taken to set up band

perform the optimisation, and the computational time taken to perform the updates
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Figure 5.2: Experiment 1: Average computational time (in msecs) for updating all

users’ preference models using additive independence and coarse preferences

user models.

of users’ utility functions after their selections, respectively. All error bars are of ±2

standard deviations around the mean, indicating that the value is within that interval

with 95.45% confidence.

We notice that the procedure utilising the coarse preferences model converges rapidly

to a significantly better solution than the model utilising the additive independence

model. Our model initially achieves an improvement in the allocated item to each

user of an expected Âij of a star rating. This is computed after items that don’t meet

the criterion of minimum number of allocated users have been filtered out (users that

are allocated to such items are treated as receiving 0 utility). This is a noticeable

improvement in recommendation, especially since queries are not selected to increase

informativeness.
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Figure 5.3: Experiment 1: Average Normalised Loss of Social Welfare using

additive independence and coarse preferences user models.

However, our model’s performance stops improving starting from the 5th time-step,

and in fact slightly decreases. It is not immediately clear why this would occur. Pro-

vided that items are uniformly randomly present in queries, the model’s accuracy

should improve until convergence. Either the performance of our optimisation pro-

cedure does not monotonically increase with model accuracy, or there is bias in favour

of the representation of certain items in our queries. We investigate this further with

the second set of experiments.

The benchmark’s performance is similar to our results in the previous chapter and are

indicative of how user behaviour is not well represented by a linear function. However,

there is some improvement, and given the small available set of items that constraints

our experiments, the linear model could eventually learn the identity function; provided

that each item in the ground truth has at least one assignment to a parameter that is
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different from every other item’s respective assignment. This is of course not possible

for real world deployment.

We ran an unpaired two-sample t-test (Dell et al., 2002) for all data points’ normalised

losses at the 4th time-step. Specifically, a left-tailed test for the benchmark having a

larger normalised loss than our model. The null hypothesis of this not being the case

was rejected at 5% significance. This is evidence that even though there is a large

variance on the performance, this is more indicative of differences across experiments,

with both models being affected. We can be confident that our model is outperforming

the benchmark at the 4th time-step.

The computational time taken to update the coarse model is significantly less than that

of the benchmark, as expected. however, most of the computational time is devoted to

setting up and running the optimisation procedure. Though the difference is much less

pronounced, coarse preferences still achieves better results on this metric as well.

Even though the optimisation time is significantly larger than the update time, there are

case where gains in the latter can be of importance:

• Expanding the procedure in this chapter with some form of active learning would

mean that the total gains in update time (as occurs during query evaluation)

would increase linearly with the number of query - response pairs examined.

• Certain applications might decentralise user model updates, only communicating

the expectation over each item or category to the system. The impact of reducing

computations could be of greater importance when performed on a mobile

platform.

The results from this experiment provide some evidence for statements 1 and 2 above,

indicating better performance with significant gains in computational time. It is
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worth noting that the computational time for learning in the coarse preferences case

is representative of all scenarios utilising these procedures, since movie viewings are

always represented by a single parameter: the coarse class.
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Figure 5.4: Experiment 2: Average computational time (in msecs) for setting

up and executing the proposed optimisation procedure using additive indepen-

dence and coarse preferences user models.

5.4.3 Experiment 2 - increased benchmark item set

In the second set of experiments, we increase the difficulty of the optimisation problem

by requiring recommendation sets of H = 5 movies for each of |It | = 21 users. The

optimisation procedure is given access to a set of movies Jt which varies for each

experiment instance, in the additive independence case, or for each session, for the

coarse preferences case. Specifically, in the case of additive independence we always

feed all of the items in the ground truth to the optimisation procedure. In the coarse
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Figure 5.5: Experiment 2: Average computational time (in msecs) for updating all

users’ preference models using additive independence and coarse preferences

user models.

preferences case, however, we provide the procedure with one representative from each

coarse class that is present in the ground truth for this instance. If these are not enough

to guarantee that a solution will be found, we provide an additional representative from

the items that have still to be added, and so on until enough items are forwarded to the

optimiser. The number of movies that are required in order to guarantee a solution are

defined as the ones necessary for the initial solution heuristic presented in Section 5.3.2

(in our case 15). Lastly, the second stage of the optimisation procedure (see Section

5.3.2) has been given an upper time limit of 30 seconds. Though this was done to speed

up the experiments, it is well justified by the assumed application.

Figures 5.6, 5.4, and 5.5 show the results of the optimisation in terms of the average

normalised loss of Social Welfare, the average computational time taken to set up band
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Figure 5.6: Experiment 2: Average Normalised Loss of Social Welfare using

additive independence and coarse preferences user models.

perform the optimisation, and the computational time taken to perform the updates of

users’ utility functions after their selections, respectively. All error bars are of ±2

standard deviations. We expect that the increased number of pairwise comparison

query - response pairs per time-step will speed up convergence for both models.

Validating our expectations stated at the end of the previous section, the learning time

of coarse preferences remains very small. However, the gap in optimisation time has

decreased, meaning that both models attempt to make full use of the 30 sec time

limit. The remaining difference is then best attributed to the set up of the optimisation

procedure, which we expect scales up linearly for the benchmark in terms of the

number of items considered. This latter point will be tested for in the third set of

experiments.
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We note here, that for the coarse case, the optimisation time taken is invariant to

the size of the available set of items, since we can represent the entire data set by

selecting one representative from each class. The system designers can still elect to

add multiple representatives from each class however, especially if they are considering

some additional criterion or constraint, such as recommending each movie a set number

of times. Use of the modification proposed in Section 5.3.2 would make even this

consideration redundant, since the number of items from each class would be selected

by the optimisation procedure.

Figure 5.6 illustrates the problem we first identified in Section 5.4.2, though now

at a significant detriment to performance. The coarse preferences model quickly

converges to a better result than the AI benchmark, but subsequently de-converges until

its performance matches that of the benchmark. On the other hand, the benchmark

matches our expectations from the previous section, since the increased number of

pairwise comparisons per time-step increases its convergence rate. As in experiment 1,

we ran an unpaired two-sample t-test (Dell et al., 2002) for all data points’ normalised

losses at the 4th time-step. Specifically, a left-tailed test for the benchmark having a

larger normalised loss than our model. The null hypothesis of this not being the case

was rejected at 5% significance.

Considering the fundamental differences between the first and second experiments,

what has changed is the number of updates per time-step, the optimisation problem’s

complexity, and the pre-optimisation selection procedure for the coarse model. The

latter is not a part of the model but, rather, a concession to our small ground truth

matrix. When analysing the results from the first set of experiments we hypothesised

that one of the following must be the case: Either the performance of our optimisation

procedure does not monotonically increase with model accuracy, or there is bias in

favour of the representation of certain items in our queries.
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After examining our implementation of the item pre-selection procedure, we discov-

ered that the representatives of each category were not uniformly randomly selected

from the set of items mapping to the category, but was favouring earlier item indices.

We elected to present these experimental results despite that, since they provide some

insight into why the de-convergence occurred in the earlier experiments as well. Pro-

vided that correcting the item pre-selection procedure will improve our results, so that

they more closely resemble those of Section 5.4.2, we can with some confidence at-

tribute this phenomenon to bias in favour of the representation of certain items in our

queries. Such bias will easily appear in our experiments, since the small number of rep-

resentative items for each category means that there is high likelihood that a number

of categories will be disproportionately represented in the recommendation sets by a

subset of these items. This would be a positive result, since such a phenomenon would

be improbable in a setting with a dynamic set of items, and practically impossible with

a compositional item space.

At this point, it is important to clarify how this phenomenon of imbalance in representa-

tion between the items mapped to a category can adversely affect system performance,

in terms of average normalised loss of social welfare. Though the items that are over-

represented will have their ground truth more accurately predicted, the loss of accuracy

on the other items in the category can negatively impact taxation by:

• overtaxing solutions that compete with a sponsored solution that is not a priori

preferable by some user;

• by not taxing non-sponsored solutions whose utility has been underestimated.
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5.4.4 Experiment 2b - Adjusting query randomisation

The experiments in the previous section revealed a concern relating to the drop in

performance for the coarse preferences model due to the non-uniform sampling of

items by the recommendation procedure. We will investigate this concern by correcting

a flaw in the item pre-selection procedure, and observing whether this brings the

performance of our model given the setup in the second set of experiments back to

that of the first set of experiments.

Figure 5.7 presents the performance of our model with corrected pre-selection in

comparison to the results of the AI benchmark from Section 5.4.3. Besides this

correction, no other change was applied, though constraints in available experiment

time have restricted the number of experiment instances per experiment to 10, which

accounts for the noisier curve.

We observe, with some added uncertainty, that the performance of our model has

increased significantly, approaching the results from Section 5.4.2. From this we infer

that our model is sensitive to bad sampling from item spaces with small cardinality,

which cannot be entirely corrected for without balancing model exploitation with some

form of active learning. Fortunately, the problems we are concerned with in this thesis

do not have the characteristic of discrete, small, constant item spaces, and this is not a

behaviour we expect to see during real world deployment. Again, we ran an unpaired

two-sample t-test (Dell et al., 2002) for all data points’ normalised losses at the 4th

time-step. Specifically, a left-tailed test for the benchmark having a larger normalised

loss than our model. The null hypothesis of this not being the case was rejected at 5%

significance.
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Figure 5.7: Experiment 2b: Average Normalised Loss of Social Welfare using

additive independence and coarse preferences user models, after correcting

the pre-selection procedure.

5.4.5 Experiment 3 - benchmark optimisation scaling

The purpose of this experiment is to demonstrate that the proposed optimisation

procedure does not scale in terms of number of potential items for recommendation,

when the additive independence model of preferences is used. For that reason, we only

run this set of experiments with the benchmark learning procedure. We run 5 sets of

15 experiments, with each experiment giving the optimisation procedure access to all

of Jt , whose size is incremented by 1 after each experiment, in the range {15, ...,29}.

Each session involves 21 users who are each recommended a set of 5 movies.

We plot the time it takes the system to perform an optimisation procedure in Figure 5.8,

along with a linear fit. The latter has a gradient of 0.241 · 103msecs and an intercept of
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27.623 · 103msecs. The linear increase in expected time, coupled with a relatively small

2x standard deviations area, indicates that running this optimisation procedure over a

large set of available options, such as the MovieLens dataset, would be practically

infeasible.

Figure 5.8: Experiment 3: Average computational time (in msecs) for setting

up and executing the proposed optimisation procedure using an additive

independence model of user preferences, for different sizes of the set of

available movies. The blue line is the linear fit to the data.

5.5 Conclusion

This chapter concludes this thesis’ contributions to the areas of decision theory and

preference elicitation. Having presented the use of coarse preferences in inference

(Chapter 3) and learning (Chapter 4), this chapter brought those results together to
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demonstrate the potential of the approach in complex, time-critical, on-line optimisa-

tion problems. In order to do so, we introduced the problem of coordination through set

recommendation and an approximate solution procedure. We showed that represent-

ing items with their coarse classes enables significant computational and performance

gains, when compared to an additive representation. Furthermore, updating coarse

user preference models was significantly faster than updating a model using additive

independence.

The results in this chapter indicate how coarse preferences can be used for enabling

otherwise computationally prohibitive operations involving users preferences; specifi-

cally as relates to the learning of, and the optimisation with, user preference models.



Chapter 6

Conclusions, Discussion, and Future

Work

The advent of on-line services provides ample opportunity for the learning of users’

preferences, as they interact with the system at hand. Though typical recommender

systems applications would make use of such interaction data offline, in order to better

learn how to accommodate for these users in the future, there have been approaches

developed for updating user models as they interact, online. However, there is little

work in making such procedures manageable in time-critical, computationally complex

problems, such as those that emerge from attempting to coordinate the decisions of

multiple users logged into a service.

As demonstrated in our case study of coordination through set recommendation in

Chapter 5, optimising for the recommendations to be made to a set of users, such that

meaningful choice is permitted, is computationally costly, and does not scale with the

number of considered options. Moreover, the time to update our belief of a user’s

preferences can be significantly reduced, if the proper model is used.

153
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In this thesis, we proposed such a model, titled ’Coarse Preferences’, which represents

users as distinguishing between options in terms of the category in which they fall.

Having proven compatibility with the von Neumann and Morgenstern (1953) Expected

Utility Theorem, we proceeded to show how to make decisions over sets of users

characterised by such models; something necessitated by how each user’s preferences

are defined over a different latent space. Given this, we developed a procedure for

learning such models, with emphasis on how to learn a latent space of categories

that is viable for all the user population. Armed with this, we demonstrated that our

model performs significantly faster than the state of the art model based on additive

independence, and that it can in fact be a better match for users’ behaviour, in domains

such as the MovieLens 20M Dataset (Chapter 5), and the Mallzee dataset (Chapter 4),

as provided for this study.

For the cost of some offline computation at setup, our approach allows for significant

speedups of online learning and inference. Conclusively, it is our expectation that our

methods will enable otherwise computationally prohibitive recommender systems to

be designed. The increased outputs demonstrated in terms of user utility and system

revenue, indicates that our methods can also improve system performance, even in the

cases where computational time is of little concern.

Still, since our offline learning procedure is based on regression tree learning, our

model can be said to be discriminatory instead of generative; at least as concerns

the latent space of categories. We provided some versions of a generative model of

coarse preferences in Chapter 3, and will consider extending that work in the near

future. Even so, we are interested in considering other approaches towards generating

a discriminative model of the coarse latent space, including the invention, or validation

of, a regression tree metric that would guarantee discovering the coarse choices, in

the limit of samples used. This metric would likely be the sum of sample variances

across nodes, conditioned on the user or user type, but more work needs to done
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to produce efficient algorithms that would work with this metric. Beyond that, we

have already begun experiments using Deep Learning (Goodfellow et al., 2016) for

producing the coarse partitioning offline. Producing a partitioning for all users even

as the target utility variable is conditioned on specific users, has created interesting

problems; particularly when considering error representation and backpropagation.

Regardless of such potential advancements however, our prime interest rests in discov-

ering what other computationally complex recommendations or other procedures can

be enabled by use of the technology presented in this work. In terms of applications, we

expect that coordination through set recommendation can be put to use in the on-line

service or other industries.

6.1 The Effect of Coarseness on the Robustness of So-

lutions

Chapters 4 and 5 demonstrated how the coarse preferences model allows for factorised

decision making. In Chapter 4 we were able to identify a user’s most preferred category

and then select the most expensive item in that category for recommendation. In

Chapter 5 we were able to reduce the effective cardinality of the solution space, and

therefore reduce computational time, by only considering a limited number of items

from each category.

Another significant benefit of this factorised representation was not addressed in

the experiments: the interchangeability of solutions adds robustness to systems that

cannot afford to recompute a solution when items allocated in that solution become

unavailable. With the coarse preferences model, we can easily replace an item made

unavailable during execution with some other of the same category and expect no
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change in system performance. This increased robustness in terms of allocations is

worth considering for future study.

6.2 Expanding on the Decision-Theoretic Aspect of the

Study

As coarse preferences significantly reduces the dimensionality of the item space, to 1,

and can significantly reduce its cardinality to a small set of categories, it would be worth

investigating methods to take advantage of that in computationally complex preference

elicitation tasks. For example, if we were to extend the work of Chapter 5 to consider

the expected value of information from recommendations, we could develop efficient

procedures for preference elicitation in multi-user set recommendation, similarly to

what was done for set recommendation in Viappiani and Boutilier (2010). If the

problem was simplified to ignore probabilistic aspects, then theoretical guarantees

could be given on the number of queries needed to elicit the true utility function for all

users.

From the point-of-view of multi-agent resource allocation research (Chevaleyre et al.,

2006), coarse preferences can be a good model for time-critical resource allocation

problems. The problem specification in Chapter 5 was such that the issues of envy-

freeness and incentive-compatibility (truthfulness) were not relevant. However, the

same chapter also discusses how allowing users access to, or assuming they have access

to, more information about the preferences of other users would change that. It could

be worth investigating whether coarse preferences can be effectively used in producing

recommendation procedures that would guarantee some properties typicall addressed

in the Mechanism Design literature (Nisan and Ronen, 2001). Are there benefits

in using coarse preferences when considering how to design the recommendation
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procedure such that, for example, users are truthful in their selections, i.e. they actually

select, or tend to select, their most preferred item? Another interesting extension would

be to produce algorithms that explicitly handle further recommendations to unallocated

users, considering, for example, what happens to users that were not allocated after the

first round of item selections.



158 6.2 Expanding on the Decision-Theoretic Aspect of the Study



Bibliography

Abbas, A. (2004). Entropy methods for adaptive utility elicitation. 34.

Abbasnejad, M.E., Bonilla, E.V. and Sanner, S. (2013). Decision-theoretic sparsifica-
tion for gaussian process preference learning. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, 515–530, Springer, Prague,
Czech Republic.

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. 17.

Agatz, N., Erera, A., Savelsbergh, M. and Wang, X. (2011). Dynamic ride-sharing: A
simulation study in metro atlanta. Transportation Research Part B: Methodological,
45, 1450–1464.

Agatz, N., Erera, A., Savelsbergh, M. and Wang, X. (2012). Optimization for dynamic
ride-sharing: A review. European Journal of Operational Research, 223, 295–303.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules.
In Proceedings of the 20th International Conference on Very Large Data Bases,
Morgan Kaufmann.

Allan, J., Carbonell, J., Doddington, G., Yamron, J. and Yang, Y. (1998). Topic detec-
tion and tracking pilot study final report. In Proceedings of the DARPA Broadcast
News Transcription and Understanding Workshop.

Anand, S.S. and Mobasher, B. (2005). Intelligent techniques for web personalization.
In Proceedings of the 2003 International Conference on Intelligent Techniques for
Web Personalization, Springer.

Andreadis, P. (2016). Mallzee Dataset. https://datahub.ckan.io/
dataset/mallzee-dataset.

Andreadis, P., Ceppi, S., Rovatsos, M. and Ramamoorthy, S. (2016). Diversity-
aware recommendation for human collectives. In European Conference on Artificial
Intelligence Workshop on Diversity-aware Artificial Intelligence (DIVERSITY @
ECAI 2016), 23–32, the Hague, Netherlands.

159

https://datahub.ckan.io/dataset/mallzee-dataset
https://datahub.ckan.io/dataset/mallzee-dataset


160 BIBLIOGRAPHY

Angluin, A. (1988). Queries and concept learning. Machine Learning, 2, 319–342.

Aziz, H., Brill, M., Fischer, F.A., Harrenstein, P., Lang, J. and Seedig, H.G. (2015).
Possible and necessary winners of partial tournaments. J. Artif. Intell. Res. (JAIR),
54, 493–534.

Bacchus, F. and Grove, A. (1995). Graphical models for preference and utility. In
Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, 3–
10, Morgan Kaufmann Publishers Inc.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-
Wesley.

Bell, R., Bennett, J., Koren, Y. and Volinsky, C. (2009). The million dollar program-
ming prize. Spectrum, IEEE, 46, 28–33.

Bell, R.M., Koren, Y. and Volinsky, C. (2007). The bellkor solution to the netflix prize.

Billingsley, P. (2008). Probability and measure. John Wiley & Sons.

Billsus, D., Pazzani, M.J. and Chen, J. (2000). A learning agent for wireless news
access. In Proceedings of the 5th International Conference on Intelligent User
Interfaces, ACM.

Bjorndahl, A., Halpern, J.Y. and Pass, R. (2013). Language-based games. In Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, 2967–
2971, AAAI Press.

Bohnert, F., Schmidt, D.F. and Zukerman, I. (2009). Spatial processes for recommender
systems. In Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI-09).

Boutilier, C. (2002). A POMDP formulation of preference elicitation problems. In
Proceedings of the 18th National Conference on Artificial Intelligence, 239–246,
AAAI.

Boutilier, C. (2003). On the foundations of expected expected utility. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence, 285–290, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Boutilier, C., Brafman, R.I., Geib, C. and Poole, D. (1997). A constraint-based
approach to preference elicitation and decision making.

Boutilier, C., Bacchus, F. and Brafman, R.I. (2001). UCP-Networks: A directed graph-
ical representation of conditional utilities. In Proceedings of the 17th Conference on
Uncertainty in Artificial Intelligence, UAI’01, 55–64, Seattle, WA.



BIBLIOGRAPHY 161

Boutilier, C., Das, R., Kephart, J.O., Tesauro, G. and Walsh, W.E. (2003a). Cooperative
negotiation in autonomic systems using incremental utility elicitation. In Proceed-
ings of the 19th Conference on Uncertainty in Artificial Intelligence, 89–97, Morgan
Kaufmann Publishers Inc.

Boutilier, C., Patrascu, R., Poupart, P. and Schuurmans, D. (2003b). Constraint-based
optimization with the minimax decision criterion. In Principles and Practice of
Constraint Programming, 168–182, Springer.

Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H. and Poole, D. (2004a). CP-nets:
A tool for representing and reasoning with conditional Ceteris Paribus preference
statements. 21.

Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H. and Poole, D. (2004b).
Preference-based constrained optimization with CP-nets. 20.

Boutilier, C., Sandholm, T. and Shields, R. (2004c). Eliciting bid taker non-price pref-
erences in (combinatorial) auctions. In Proceedings of the 19th National Conference
on Artificial Intelligence.

Boutilier, C., Patrascu, R., Poupart, P. and Schuurmans, D. (2005). Regret-based utility
elicitation in constraint-based decision problems. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence.

Boutilier, C., Patrascu, R., Poupart, P. and Schuurmans, D. (2006). Constrained-based
optimization and utility elicitation using the minimax decision criterion. 170.

Boutilier, C., Regan, K. and Viappiani, P. (2009a). Online feature elicitation in
interactive optimization. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML-09, 73–80, Montreal, Quebec, Canada.

Boutilier, C., Regan, K. and Viappiani, P. (2009b). Preference elicitation with subjec-
tive features. In Proceedings of the 3rd ACM Conference on Recommender Systems,
23–25, New York, New York, USA.

Boutilier, C., Regan, K. and Viappiani, P. (2010). Simultaneous elicitation of prefer-
ence features and utility. In Proceedings of the 24th National Conference on Artificial
Intelligence, AAAI-10, 1160–1197.

Boutilier, C., Zemel, R.S. and Marlin, B.M. (2012). Active collaborative filtering.
CoRR, abs/1212.2442.

Bouveret, S., Chevaleyre, Y. and Maudet, N. (2016). Fair allocation of indivisible
goods.

Bradley, R.A. and Terry, M.E. (1952). Rank analysis of incomplete block designs: The
method of paired comparisons. Biometrika, 39, 324–345.



162 BIBLIOGRAPHY

Brafman, R. and Domshlak, C. (2002). Introducing variable importance tradeoffs into
CP-nets. In Proceedings of the 18th National Conference on Artificial Intelligence.

Braziunas, D. (2006). Computational approaches to preference elicitation. Tech. rep.,
University of Toronto.

Braziunas, D. and Boutilier, C. (2005). Local utility elicitation in gai models. In
Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence.

Braziunas, D. and Boutilier, C. (2006). Preference elicitation and generalized additive
utility. In Proceedings of the National Conference on Artificial Intelligence, vol. 21.

Braziunas, D. and Boutilier, C. (2007). Minimax regret based elicitation of generalized
additive utilities.

Braziunas, D. and Boutilier, C. (2009). Elicitation of factored utilities. AI Magazine,
29, 79.

Braziunas, D. and Boutilier, C. (2010). Assessing regret-based preference elicitation
with the utpref recommendation system. In Proceedings of the 11th ACM Conference
on Electronic Commerce, ACM.

Breese, J.S., Heckerman, D. and Kadie, C.M. (1998). An empirical analysis of predic-
tive algorithms for collaborative filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufmann.

Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A. (1984). Classification and
regression trees. CRC press.

Buckley, C., Salton, G. and Allan, J. (1994). The effect of adding relevance informa-
tion in a relevance feedback environment. In Proceedings of the 17th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, Springer.

Burke, R. (2000). Knowledge-based recommender systems. 69.

Burke, R. (2002). Interactive critiquing for catalog navigation in e-commerce. 18.

Burke, R. (2007). Hybrid web recommender systems. In The Adaptive Web, 377–408,
Springer.

Burke, R., Hammond, K. and Young, B. (1997). The findme approach to assisted
browsing. 4.

Busa-Fekete, R. and Hüllermeier, E. (2014). A survey of preference-based online learn-
ing with bandit algorithms. In International Conference on Algorithmic Learning
Theory, 18–39, Springer.



BIBLIOGRAPHY 163

Cafaro, M., Mirto, M. and Aloisio, G. (2013). Preference–based matchmaking of grid
resources with cp–nets. Journal of grid computing, 11, 211–237.

Canny, J. (2002). Collaborative filtering with privacy via factor analysis. In Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, ACM.

Chajewska, U. and Koller, D. (2000). Utilities as random variables: Density estimation
and structure discovery. In Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufmann Publishers Inc.

Chajewska, U., Getoor, L., Norman, J. and Shahar, Y. (1998). Utility elicitation as
a classification problem. In Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, 79–88, Morgan Kaufmann Publishers Inc.

Chajewska, U., Koller, D. and Parr, R. (2000). Making rational decisions using adaptive
utility elicitation. In Proceedings of the 17th National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
363–369, AAAI Press.

Chajewska, U., Koller, D. and Ormoneit, D. (2001). Learning an agent’s utility function
by observing behaviour. In Proceedings of the 18th International Conference on
Machine Learning, Morgan Kaufmann Publishers Inc.

Chakrabarti, S. (2002). Discovering Knowledge from Hypertext Data. Science and
Technology Books.

Chee, S.H.S., Han, J. and Wang, K. (2001). Rectree; an efficient collaborative filtering
method. In Proceedings of the 3rd International Conference on Data Warehousing
and Knowledge Discovery.

Chen, L. and Pu, P. (2004). Survey of preference elicitation methods. Tech. rep.

Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N. et al. (2004). Multiagent re-
source allocation with k-additive utility functions. In Proceedings of the DIMACS-
LAMSADE workshop on computer science and decision theory, vol. 3, 83–100,
ILLC.

Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget,
J., Phelps, S., Rodriguez-Aguilar, J.A. and Sousa, P. (2006). Issues in multiagent
resource allocation.

Chevaleyre, Y., Endriss, U., Lang, J. and Maudet, N. (2008). Preference handling in
combinatorial domains: From ai to social choice. AI magazine, 29, 37.

Chevaleyre, Y., Koriche, F., Lang, J., Mengin, J. and Zanuttini, B. (2011). Learning
ordinal preferences on multiattribute domains: The case of CP-nets.



164 BIBLIOGRAPHY

Chung, K.S. (2000). On the existence of stable roommate matchings. Games and
Economic Behavior, 33, 206 – 230.

Cohen, W.W. (1995). Fast effective rule induction. In Proceedings of the 12th Interna-
tional Conference on Machine Learning, Morgan Kaufmann.

Conitzer, V. (2007). Eliciting single-peaked preferences using comparison queries. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, 65, ACM.

Crès, H. (2001). Aggregation of coarse preferences. Social Choice and Welfare, 18,
507–525.

Darmann, A. and Schauer, J. (2015). Maximizing nash product social welfare in
allocating indivisible goods. European Journal of Operational Research, 247, 548–
559.

Decock, L. and Douven, I. (2011). Similarity after Goodman. Review of Philosophy
and Psychology, 2, 61–75.

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K. and Harshman, R. (1990).
Indexing by latent semantic analysis. 41.

Dell, R.B., Holleran, S. and Ramakrishnan, R. (2002). Sample size determination.
ILAR journal, 43, 207–213.

Dickerson, J.P., Procaccia, A.D. and Sandholm, T. (2012). Optimizing kidney ex-
change with transplant chains: theory and reality. In International Conference on
Autonomous Agents and Multiagent Systems, AAMAS, 711–718.

Doshi, F. and Roy, N. (2008). The permutable POMDP: Fast solutions to POMDPs for
preference elicitation. In Proceedings of the 7th International Joint Conference Au-
tonomous Agents and Multiagent Systems, vol. 1, 493–500, International Foundation
for Autonomous Agents and Multiagent Systems.

Doyle, J., Shoham, Y. and Wellman, M. (1991). A logic of relative desire (preliminary
report). In Proceedings of the 6th International Symposium on Methodologies for
Intelligent Systems, Lecture Notes in Computer Science, Springer-Verlag.

Duan, L., Street, W.N. and Xu, E. (2011). Healthcare information systems: Data min-
ing methods in the creation of a clinical recommender system. Entrprise Information
Systems, 5, 169–181.

Elahi, M., Ricci, F. and Rubens, N. (2016). A survey of active learning in collaborative
filtering recommender systems. Computer Science Review, 20, 29 – 50.

Farfel, J. and Conitzer, V. (2011). Aggregating value ranges: Preference elicitation and
truthfulness. Autonomous Agents and Multi-Agent Systems, 22, 127–150.



BIBLIOGRAPHY 165

Farquhar, P.H. (1984). State of the art - utility assesment methods. Management
Science, 30, 1283–1300.

Felfernig, A. and Burke, R. (2008). Constraint-based recommender systems: Tech-
nologies and research issues. In Proceedings of the 10th International Conference
on Electronic Commerce, ACM.

Felfernig, A., Friedrich, G., Jannach, D. and Zanker, M. (2006). An integrated
environment for the development of knowledge-based recommender applications.
International Journal of Electronic Commerce, 11, 11–34.

Fishburn, P.C. (1968). Utility theory. 14.

Fishburn, P.C. (1970). Utility theory for Decision Making. Wiley, New York.

Fishburn, P.C. (1999). Preference structures and their numerical representations. Theo-
retical Computer Science, 217, 359–383.

French, S. (1986). Decision Theory. Halsted Press, New York.

Gale, D. and Shapley, L.S. (1962). College admissions and the stability of marriage.
The American Mathematical Monthly, 69, 9–15.

Geanakoplos, J., Pearce, D. and Stacchetti, E. (1989). Psychological games and
sequential rationality. Games and Economic Behavior, 1, 60–79.

Ghosh, C. and Kalagnanam, J. (2003). Polyhedral sampling for multiattribute prefer-
ence elicitation. In Proceedings of 5th ACM Conference on Electronic Commerce.

Gigerenzer, G. and Selten, R. (2003). Bounded Rationality: The Adaptive Toolbox. The
MIT Press.

Goldberg, K., Nichols, D., Oki, B.M. and Terry, D. (1992). Using collaborative filtering
to weave an information tapestry. 35.

Goldberg, K., Roeder, T., Gupta, D. and Perkins, C. (2004). Eigentaste: A constant
time collaborative filtering algorithm. 4.

Golub, G. and Kahan, W. (1965). Calculating the singular values and pseudo-inverse
of a matrix. 2.

Gonzales, C. and Perny, P. (2004). GAI networks for utility elicitation. 224–234.

Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y. (2016). Deep learning, vol. 1.
MIT press Cambridge.

Goodman, N. (1972). Seven strictures on similarity. Goodman, N (Ed.), Problems and
Projects, 35–41.



166 BIBLIOGRAPHY

Green, P.E. and Rao, V.R. (1971). Conjoint measurement for quantyfying judgemental
data. 8.

Green, P.E. and Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues
and outlook. 5.

Guo, S. and Sanner, S. (2010). Real-time multiattribute bayesian preference elicitation
with pairwise comparison queries. In International Conference on Artificial Intelli-
gence and Statistics, 289–296, AISTATS.

Guo, S., Sanner, S. and Bonilla, E.V. (2010). Gaussian process preference elicitation.
In Advances in Neural Information Processing Systems, vol. 23, 262–270, Morgan
Kaufmann Publishers Inc.

Gusfield, D. and Irving, R.W. (1989). The Stable Marriage Problem: Structure and
Algorithms. MIT Press, Cambridge, MA, USA.

Harper, F.M. and Konstan, J.A. (2015). The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5, 19:1–19:19.

Haussler, D. (1989). Learning conjuctive concepts in structural domains. Machine
Learning, 4, 7–40.

Herbrich, R., Minka, T. and Graepel, T. (2007). Trueskill: a bayesian skill rating
system. In Advances in neural information processing systems, 569–576.

Herlocker, J.L., Kostan, J.A., Borchers, A. and Riedl, J. (1999). An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd Annual
International ACM SIGIR Conference, ACM Press.

Herlocker, J.L., Kostan, J.A. and Riedl, J.T. (2004a). An empirical analysis of design
choices in neighborhood-based collaborative filtering algorithms. 5.

Herlocker, J.L., Kostan, J.A., Terveen, L.G. and Riedl, J.T. (2004b). Evaluating
collaborative filtering recommender systems. 22.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. 22.

Holloway, H.A. and White, C.C.I. (2003). Question selection for multiattribute
decision-aiding. 148.

Houlsby, N., Huszar, F., Ghahramani, Z. and Hernández-lobato, J.M. (2012). Collab-
orative Gaussian processes for preference learning. In Advances in Neural Informa-
tion Processing Systems, 2096–2104, NIPS.

Huang, Z., Chen, H. and Zeng, D. (2004). Applying associative retrieval techniques to
alleviate the sparsity problem in collaborative filtering. 22.

IBM (2017). CPLEX optimizer.



BIBLIOGRAPHY 167

Iyengar, V.S., Lee, J. and Campbell, M. (2001). Q-eval: Evaluating multiple attribute
items using queries. In Proceedings of the 3rd ACM Conference on Electronic
Commerce, Tampa, FL.

Jannach, D. (2006). Finding preferred query relaxations in conent-based recom-
menders. In Proceedings of IEEE Intelligent Systems Conference, IEEE Press, West-
minster, UK.

Jannach, D., Zanker, M., Felfernig, A. and Friedrich, G. (2010). Recommender
Systems: An Introduction. Cambridge University Press, New York, NY, USA, 1st
edn.

Jin, R., i, L. and Zhai, C. (2006). A study of mixture models for collaborative filtering.
9.

Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning, Springer-Verlag, Chemnitz, Germany.

Kahneman, D. and Tversky, A. (1984). Choices, values, and frames. American psy-
chologist, 39, 341.

Keeney, R.L. and Raiffa, H. (1993). Decisions with Multiple Objectives: Preferences
and Value Trade-Offs. Cambridge University Press.

Keiningham, T.L., Cooil, B., Aksoy, L., Andreassen, T.W. and Weiner, J. (2007). The
value of different customer satisfaction and loyalty metrics in predicting customer
retention, recommendation, and share-of-wallet. Managing service quality: An
international Journal, 17, 361–384.

Klotz, E. and Newman, A.M. (2013). Practical guidelines for solving difficult mixed
integer linear programs. Surveys in Operations Research and Management Science,
18, 18 – 32.

Koenemann, J. and Belkin, N.J. (1996). A case for interaction: A study of interactive
information retrieval behavior and effectiveness. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 205–212, ACM, Vancouver,
BC.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. MIT Press.

Komatsu, L.K. (1992). Recent views of conceptual structure. Psychological Bulletin,
112, 500–526.

Koprinska, I., Poon, J., Clark, J. and Chan, J. (2007). Learning to classify e-mail. 177.



168 BIBLIOGRAPHY

Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42, 30–37.

Koriche, F. and Zanuttini, B. (2010). Lerning conditional preference networks. 174.
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