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Abstract

Neural prosthetic systems aim to assist patients suffering from sensory, motor and

other disabilities by translating neural brain activity into control signals for assistive

devices, such as computers and robotics prostheses, or by restoring muscle contraction

through functional electrical stimulation (FES). In a neuro-motor prosthetic device, the

prediction of intended muscle activity is required for effective FES. It has been already

known that upper-limb electromyogram (EMG) signals in primates, can be accurately

predicted during repetitive tasks, by decoding the spiking-activity (SA) of single cells

and multi-unit activity (MUA) in the motor cortical areas. Recent work now suggests

that EMG signals can also be decoded by local field potential (LFP) recordings from

the same areas. In such decoding schemes, the number of input variables is usually

very large and no systematic way of performing effective variable selection has yet

been suggested. In this work, we demonstrated for the first time that muscle activity

decoding from SA and LFP signals in the primary motor cortex (M1) and the ventral

premotor cortex (PMv) areas is feasible during naturalistic free behaviour, and we

compared the decoding performance of spike-, LFP- and hybrid decoders. We also

tested the relative information in a number of LFP frequency bands, and found that

mid-high and high-frequency bands (70 − 244 Hz) conveyed the most EMG-related

information. Finally, we compared the decoding performance of a group of sparse

regression algorithms, and we showed that a method based on the variational bayes

(VB) outperformed the conventional Wiener cascade filter for LFP-decoders in the

case of limited amount of training data. For longer training datasets, the results from

all methods were comparable.
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Chapter 1

Introduction

In this introductory chapter, we provide a brief background on brain-machine interfaces

(BMIs) for motor rehabilitation, and the different type of source signals used to decode

muscle activity and kinematic parameters. We then indicate the major contributions

of our study and, at the end of the chapter, we provide an outline of the rest of this

thesis.

1.1 BMIs for motor rehabilitation

Electrical activity of neurons in the primary motor cortex (M1) has been found to

correlate with both kinematic (e.g. position and velocity) (A. P. Georgopoulos, J.

F. Kalaska, R. Caminiti, J. T. Massey, 1982), and kinetic (e.g. force) (Evarts, 1968)

aspects of movement. These findings along with the clinical need for movement restora-

tion after amputation or injury to the spinal cord have led to the development of BMIs

which by recording activity from the M1 allow the users to move computer cursors

(Serruya et al., 2002; Carmena et al., 2003; Hochberg et al., 2006) or robotic limbs

(Velliste et al., 2008). In laboratory experiments, muscle contraction of temporarily

paralysed animals has been achieved through functional electrical stimulation (FES)

(Moritz et al., 2008; Ethier et al., 2012), and was found to be effective in allowing

subjects to regain control of basic hand movements. Worldwide, thousands of people

suffering from spinal cord injury (SCI), brainstem strokes or other disorders, would

potentially benefit from a neuro-motor prosthesis (NMP) (Hochberg et al., 2006).

The operation of a NMP can be divided into four major components; signal acquisi-

tion, signal/information processing, neural decoding and control signal generation for

artificial limb movement. The greatest challenge the NMP community will probably

1



Chapter 1. Introduction 2

have to face in the future is the ability to implement a clinically viable and compact

prosthetic device, where signal acquisition and processing are being performed within

a restrictive power budget (Linderman et al., 2008). However, the standards for decod-

ing performance should retain a high priority, even within any physical (i.e. size) and

power restrictions.

1.1.1 Source signals for BMIs

Most chronic BMI studies so far (Carmena et al., 2003; Hochberg et al., 2006; Pohlmeyer

et al., 2007; Hochberg et al., 2012; Gilja et al., 2012; Ethier et al., 2012; Collinger et al.,

2013), have used multielectrode arrays to record single spiking-activity (SA) or multi-

unit activity (MUA), in order to decode movement-related information. Motion-related

SA has been found to be present in the M1 even after three years of SCI (Hochberg

et al., 2006). For effective FES, an accurate mechanism for prediction of electrical

activity of muscles (i.e. electromyogram (EMG) signals) is needed, and many methods

spanning from linear (Carmena et al., 2003), Wiener cascade filters (Pohlmeyer et al.,

2007) and Kalman filters (Wu et al., 2006, 2009; Nazarpour et al., 2012) have been

proposed in the literature.

Recently, it has been proposed that local field potential (LFP) signals recorded from

motor cortical areas can be used to decode reach target location (Mehring et al., 2003;

Flint et al., 2012b), movement direction (Rickert et al., 2005; Stark and Abeles, 2007),

grasp type (Stark and Abeles, 2007; Spinks et al., 2008), kinematic parameters such as

hand position and velocity (Zhuang et al., 2010; Bansal et al., 2011, 2012), and upper

limb muscle activity (Flint et al., 2012a). Furthermore, LFP signals from the parietal

reach region (PRR) (Scherberger et al., 2005; Hwang and Andersen, 2013), and the

posterior parietal cortex (PPC) of primates (Asher et al., 2007), have been used to

decode reach target location and movement direction.

Notably, it has been shown that the decoding performance of LFP signals is independent

of the presence of SA recorded on the same electrodes (Flint et al., 2012b). The

advantages of using LFPs instead of SA signals as source signals for BMIs are numerous;

firstly, SA signals exhibit a large bandwidth, this being a result of the fast nature of

action potentials. A commonly used sampling rate for SA is 30 kHz, which leads to

high power requirements and thus increased heat and size of a potential prosthesis

(Flint et al., 2012b). For LFP signals, however, the bandwidth is significantly lower

(sampling rate at 1 kHz instead of 30 kHz for spike signals), which translates into lower

power requirements for the NMP. Secondly, single-unit activity is difficult to record
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for a long time after the implantation, this being due to various factors such as neuro-

degeneration and mechanical movements of the subject, and usually lasts only for a

few months (Simeral et al., 2011).

Other signals which have been used for decoding kinematics of arm and muscle activity

include electrocorticography (ECoG) signals (Schalk et al., 2007; Sanchez et al., 2008;

Pistohl et al., 2008; Chao et al., 2010), and epidural field potentials (EFPs) (Slutzky

et al., 2011; Shimoda et al., 2012). The latter method, by preserving the integrity of

the dura, offers the advantage of lower risk of brain infection or subdural hemorrhage

(Flint et al., 2012b).

1.2 Contribution of the study

1.2.1 EMG decoding during naturalistic free behaviour

Previous work on muscle activity decoding was mainly focused on predicting EMG

signals during stereotypic and repetitive behaviour with limited variability across trials

(Pohlmeyer et al., 2007; Nazarpour et al., 2012; Flint et al., 2012a; Shin et al., 2012).

The first contribution of our study consists in decoding EMG activity in primates

during naturalistic free behaviour. Some studies which have addressed this issue in the

past (Bansal et al., 2011, 2012), were limited to decoding kinematic parameters, such

as hand position and velocity. To the best of our knowledge, this is the first study to

perform muscle activity decoding in primates during natural behaviour.

1.2.2 Dimensionality reduction for EMG decoding from LFP signals

For decoding EMG activity from LFP recordings, the LFP signals are usually de-

composed into several frequency bands, the power in each band is computed, and

subsequently used as an input to the decoder (Flint et al., 2012a). This yields a rel-

atively large amount of input features, the exact number of which also depends on

the filter length used for decoding. An effective way of performing feature selection is

thus needed, in order to avoid overfitting situations, especially in the case of limited

amount of training data. The second contribution of our study consists in systemati-

cally comparing a group of sparse regression algorithms, in terms of their performance

in decoding EMG signals from spikes, LFPs, or a combination of these two types of

signals (hybrid decoders).
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1.3 Thesis outline

In this section, we present the basic structure of this thesis. The rest of this paper is

organised as follows:

In Chapter 2, the basic background of this study is provided, and related work on

the field is briefly presented. We mainly focus on muscle activity decoding from LFP

signals, and methods used in the literature for feature selection in high-dimensional

regression.

In Chapter 3, the methods used in this study are presented. We first describe the

experimental and surgical procedures, and then explain in detail the implementation

of the different types of decoders used in our study.

In Chapter 4, the results from our study are presented and discussed. Special focus

is given on decoding from M1 and ventral premotor cortex (PMv) signals, the rel-

ative EMG-related information in different LFP frequency bands, and the decoding

performance of the various sparse regression algorithms examined in this work.

Finally, Chapter 5 summarises the key findings of our study, and some reflections on

future research directions in the field are presented.

Appendices A, B and C, contain supplementary figures and results.



Chapter 2

Background and related work

In the first section of this chapter, we provide a brief review of previous work on

the relationship between LFPs recorded in motor cortical and other brain areas, and

movement-related information. In the second section, we present the methods proposed

in the literature, for feature selection in decoding paradigms with cortical signals.

2.1 Decoding of movement-related information from LFP

signals in primates

The cortical LFP has been thought as a summation signal of local excitatory and

inhibitory synaptic potentials around the tip of the recording electrode. Spikes recorded

from microelectrodes usually originate from large pyramidal cells, whereas LFP signals

recorded on the same electrodes reflect the local synaptic activity. Therefore, LFPs are

often thought to represent inputs and local processing activity in cells, whereas SA is

thought to represent the output of cells’ activity (Mitzdorf, 1987; Buzsáki, 2004).

Sanes and Donoghue (1993) were the first to study the correlation between movement

and oscillatory activity in LFPs recorded from M1 in behaving monkeys, although

they concluded that these oscillations were more strongly correlated with movement

preparation, rather than execution. Murthy and Fetz (1996) later found correlations

between LFP signals recorded in M1 and EMG signals recorded from forearm muscles.

Mehring et al. (2003) were the first to decode movement target and trajectories from

LFPs in the motor cortex of monkeys, and they also showed that the decoding perfor-

mance of a single LFP channel was comparable to that of the spike train of a single

cell. Scherberger et al. (2005) were able to decode the animals’ behavioural state (plan-

5
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ning a reach or saccade), as well as direction of planned movement from single trial

information, by recording LFP signals from PRR. Rickert et al. (2005) decomposed

the LFP signals recorded in M1 of monkeys in 3 different bands, and subsequently

performed movement direction decoding separately for each band. The best prediction

was achieved by using the low-frequency (0-4 Hz) LFP band. Slightly different re-

sults were found by Heldman et al. (2006), who compared the correlation between arm

position and the spectral amplitude of various LFP frequency bands during a three-

dimensional (3-D) center-out reaching task, and found that the strongest correlation

was between the arm position and the high-frequency (60-200 Hz) band.

Asher et al. (2007) also found correlation between LFPs recored in PPC and target

direction, as well as object type during a prehension task. Stark and Abeles (2007)

performed reach direction and grasp type decoding from LFPs from M1 and the dorsal

premotor cortex (PMd), whereas Spinks et al. (2008) decoded grasp type from LFP

signals in M1 and PMv.

Zhuang et al. (2010) used a Kalman filter to decode 3-D reach and grasp kinematic

parameters from LFPs during free reach to grasp behaviour by using a range of LFP

frequency bands, and found that the highest performance was achieved by using the

high-frequency (200-400 Hz) band. The same group (Bansal et al., 2011, 2012), com-

pared 3-D kinematics decoding during free behaviour from SA, MUA and different

LFP frequency bands from M1 and PMv, and found that decoding was best when us-

ing spikes. For small numbers of input channels (1-3), however, it was shown that the

high-frequency LFP band outperformed spikes. Decoding performance was increased

when a hybrid-decoder was used, that is a decoder which combined both SA and LFP

signals, hence suggesting that there was additional information in the LFP signals

which was not included in the spike trains.

More recently, a Wiener cascade filter (Westwick et al., 2006; Pohlmeyer et al., 2007)

was used to decode target location and trajectories (Flint et al., 2012b), as well as

upper-limb EMG activity (Flint et al., 2012a) from LFP recordings in M1 and PMd.

For EMG prediction, the high-frequency band (200-300 Hz) achieved the best decoding

performance among the different LFP frequency bands examined in the study. Finally,

Hwang and Andersen (2013) decoded reach target from SA and LFPs from PRR and

found that single LFP channels were more informative than single spike channels, but

when multiple channels were used spikes outperformed LFPs.
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2.2 Feature selection for decoding movement-related in-

formation from cortical signals

In decoding paradigms of movement-related information (e.g. kinematics, muscle ac-

tivity, grasp type etc.) from cortical signals (i.e. SA and LFP signals), the number

of input variables is usually very large. This can turn out to be deleterious in some

cases, especially when the amount of available training data is limited. In this section,

we review the methods proposed in the literature for performing variable selection in

order to optimise decoding performance.

Pohlmeyer et al. (2007) used 66 SA signals recorded simultaneously from M1 of monkeys

to predict upper-limb muscle activity during reaching, by using a Wiener cascade filter.

For selecting the optimal neural signals, a neuron dropping method was used (Westwick

et al., 2006). Briefly, the unique contribution of each channel to the prediction of each

output was calculated, by taking into account the information available from all the

remaining channels. The unit which yielded the lowest contribution was then dropped

from the pool of signals, and this process was repeated with the remaining signals. At

the end of this iterative process, the input signals were chosen based on their ranks of

contribution.

Ting et al. (2010) used a variational Bayesian least squares (VBLS) algorithm to predict

the EMG activity of 11 muscles from 71 SA signals from M1. They compared their

results to a variety of regression algorithms, including the least absolute shrinkage

and selection operator (LASSO), ridge regression, stepwise regression and partial least

squares (PLS), and showed that the VBLS algorithm outperformed all other methods.

Bansal et al. (2011) compared kinematics prediction from SA and LFP signals from M1

and PMv during a 3-D reaching and grasping task. For both spikes and LFPs, they

used a greedy-selection procedure to identify the subset which achieved the optimal

decoding performance. Briefly, the algorithm first selected the best channel or unit

which individually yielded the highest decoding accuracy. At each subsequent step, the

neural signal that contributed the most independent information was added to the pool

of selected signals. The number of of selected inputs was restricted to a maximum of

50 signals.

A simpler approach was adopted by Flint et al. (2012a), where upper-limb muscle ac-

tivity was decoded from LFP signals in M1 of primates. The total number of features in

this study totalled up to 576, as six spectral features were extracted from each of the 96

simultaneously recorded LFP channels. The 150 features which were individually most
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strongly correlated with the EMG signals were selected for decoding. The correlation

between neural signals and EMGs was determined by the mean absolute value of the

Pearson-r correlation coefficient over all muscles, and separately for each datafile.

Finally, Shin et al. (2012) decoded upper-limb muscle activity from ECoG signals in

M1 of primates. For feature selection and decoding, the variational bayesian sparse

regression (VBSR) algorithm (Sato, 2001) was used. Briefly, the algorithm estimates

the linear weight and automatic relevance detection (ARD) parameters, which represent

the relative contribution of each input to the outputs. Based on the ARD values, the

method selects the relevant input variables, while at the same time sets the linear

weights for the irrelevant features to zero.

2.3 Summary

LFP signals from motor cortical areas have been used to decode various movement-

related parameters in primates, including upper-limb muscle activity. Nevertheless, no

study so far has shown that it is possible to decode EMG activity during naturalistic

free behaviour. This was the first objective of our study and, in that sense, this work

can be thought as an extension to the work of Flint et al. (2012a). Additionally, a wide

variety of tools have been used in the literature to perform feature selection for decoding

paradigms from SA and LFP signals, but no systematic comparison of these methods

has yet been performed for EMG decoding from LFPs. In the second part of our study,

we systematically compared the various feature selection and regression algorithms

proposed in the literature, in terms of their achieved EMG decoding accuracy.

In the following chapter, we present the surgical and experimental methods for data

collection, as well as the pre-processing procedures applied to both LFP and EMG sig-

nals. Subsequently, we provide the theoretical background of the various dimensionality

reduction and regression algorithms examined in this work.



Chapter 3

Methods

In this chapter, the methods used for data collection and analyses are presented. First,

the surgical procedures and experimental setup are briefly described. Then, the data

recording and pre-processing procedures of both EMG and cortical (spike, LFP) signals

are detailed. Subsequently, the background of the different algorithms used for decoding

EMG activity from cortical signals is given. Finally, a noise reduction method, as well

as the discarding process for the EMG signals is presented, and a summary of the data

used in this study is provided.

3.1 Surgical procedures

All procedures were carried in accordance with the UK Animals (Scientic Procedures)

Act 1986 and approved by the local ethics committee of Newcastle University. One fe-

male monkey (Macaca mullata), implanted with chronic moveable tungsten microwire

electrodes in M1 and PMv, as well as one floating microelectrode array (FMA)1 im-

planted in M1, was used in this study. The microwire implants consisted of 12 Teflon-

unsulated 50-µm-diameter tungsten wires running inside polyamide guide tubes. The

FMA consisted of a 44-channel electrode array housed in 44-hole ceramic substrate with

400-µm hole separation. Full details of surgical procedures can be found in Jackson

and Fetz (2007).

1http://www.microprobes.com/index.php/products/multi-channel-arrays/

fma-floating-microelectrode-arrays

9

http://www.microprobes.com/index.php/products/multi-channel-arrays/fma-floating-microelectrode-arrays
http://www.microprobes.com/index.php/products/multi-channel-arrays/fma-floating-microelectrode-arrays
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(a) (b)

Figure 3.1: Schematic of recorded limb muscle locations. Both lateral (a) and medial

(b) views are shown. Adapted from Flint et al. (2012a).

3.2 Behavioural training

The subject was trained to perform a torque tracking task. At the end of each record-

ing session, an excerpt of free behaviour was additionally recorded. During the free

behaviour sessions, the subject sat in a primate chair and reached freely for small

pieces of food (nuts, raisins) located in a Klüver board with its left hand. The monkey

was trained to hold its right hand still for the duration of task. In the current study,

only data from the free behaviour sessions were used for analyses.

3.3 Recording procedures

3.3.1 Cortical signals

Cortical signals were acquired by a digitizing pre-amplifier (sampling frequency 48.8

kHz; frequency response 3 dB for 0.35 Hz and 7.5 kHz, 6 dB for 0.2 Hz and 8.5 kHz).

LFP signals were then extracted by digitally low-pass filtering the signal at 300 Hz, then

downsampling to 488 Hz. Neuronal SA was extracted by digitally band-pass filtering

the raw signal (1 kHz to 8 kHz), then thresholding. Single-unit spikes were classified in

a semi-supervised fashion using the TDT2 online principal component-based feature-

extraction and clustering software. Spike waveforms were sampled at 24.4 kHz.
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Figure 3.2: Raw data. The SA of 5 single-units is shown, along with two LFP channels

and the EMG signals from ECR and FCU muscles.

3.3.2 EMG signals

EMG activity from the following 9 upper-limb muscles was recorded intramuscularly,

simultaneously to cortical signals (Fig. 3.1): extensor carpi radialis (ECR), flexor carpi

ulnaris (FCU), biceps (Bi), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR),

triceps (Tri), first dorsal interosseous (1DI), flexor digitorum superficialis (FDS), flexor

digitorum profundus (FDP). EMGs were band-pass filtered from 10 Hz to 5 kHz (with

a 50 Hz notch filter), and subsequently sampled at 12.2 kHz. EMG wires were routed

subcutaneously to a connector that was mounted on the scalp in a head case that

housed the cortical electrodes.

Fig. 3.2 shows a sample of the raw data containing the SA from 5 units in M1, two

LFP channels and two EMG signals. The duration of the shown excerpt is 5.5 sec.

2http://www.tdt.com/software/for_neuro.htm

http://www.tdt.com/software/for_neuro.htm
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3.4 Data pre-processing

3.4.1 Cortical signals

The neural firing rates were determined by inverting the spike count of action potentials

that fell within successive 51.2 ms bins (Pohlmeyer et al., 2007).

Following Flint et al. (2012a), six spectral features were extracted from each LFP signal:

the local motor potential (LMP), which is a sliding window average of the raw LFP,

and the power in five frequency bands: LF (0-4 Hz), MF1 (7-20 Hz), MF2 (70-115

Hz), HF1 (130-200 Hz) and HF2 (200-300 Hz). The power in each band was computed

by applying a Hanning window and the fast fourier transform (FFT). For each time

window, the log power was normalised by subtracting the log of the mean power in

each band over the entire datafile. All features were computed in 256-point windows,

with 231-point overlap, which provided one sample every 51.2 ms.

3.4.2 EMG signals

The EMG signals were digitally processed as follows, in order to extract their temporal

envelopes: high-pass filtered at 50 Hz (4th-order Butterworth filter), full-wave rectified,

low-pass filtered at 5 Hz (4th-order Butterworth filter) and, finally, downsampled at

19.5 Hz. All digital filtering was performed both forward and backward in time to avoid

introducing phase delays in the output signal (Flint et al., 2012a).

3.5 Decoding

In this section, the different methods used for muscle activity decoding are presented

and explained in detail. Firstly, the Wiener cascade filter (Westwick et al., 2006) is

presented, which is one of the most commonly used decoding techniques in the literature

(Flint et al., 2012a; Pohlmeyer et al., 2007; Ethier et al., 2012), and served as the

baseline for comparison in our study. Secondly, a decoding technique based on ridge

regression is described and, subsequently, a brief description of a technique based on

LASSO and elastic net is given. Finally, the VBSR algorithm is presented and briefly

described.

In our analyses, we tested muscle activity prediction in two different training scenarios,

that is decoding with a) limited, and b) large amount of training data (Nazarpour et al.,

2012). In the first case, the datafiles used were 5 minutes long, of which 3 minutes were
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used for training, and the remaining 2 minutes were used for validation. In the latter

case, the datafiles were 15 minutes long, of which 9 minutes were used for training and

6 minutes for validation. The reason for using such a large proportion of the available

data for validation (i.e. 40%) was that, as recordings came from feely-behaving animals,

we needed to ensure that the validation samples would be long enough to include non-

silent epochs.

3.5.1 Wiener cascade model

A Wiener cascade model is a nonlinear model consisting of a dynamic linear subsys-

tem followed by a static nonlinearity. In this framework, each EMG signal is treated

as a multiple-input-single-output (MISO) subsystem, in which each neural input is

convolved with its finite impulse response function (Westwick et al., 2006):

z (t) =

N∑
k=1

M−1∑
τ=0

hk (τ)xk (t− τ) , (3.1)

where z (t) denotes the EMG activity at time t, hk (τ) accounts for the contribution of

the input k at time instance τ , xk (t− τ) is the activation of the input k at time t− τ ,

and we also assume a finite number of samples, i.e. t = 1, . . . , T . The linear system

described by Eq. 3.1 can be written in matrix form as follows:

~z = X~h+ ~w, (3.2)

where ~z and ~w are T element vectors containing z(t) and w(t), respectively, while ~h is

a N ×M element vector:

~h = [h1 (0)h1 (1) , . . . , h1 (M − 1)h2 (0)h2 (1) , . . . , hN (M − 1)]T , (3.3)

and X is a block matrix

X = [X1,X2, . . . ,XN] , (3.4)

where the Xk are T ×M matrices

Xk =


xk(1) 0 . . . 0

xk(2) xk(1) . . . 0
...

...
. . .

...

xk(T ) xk(T − 1) . . . xk(T −M + 1)

 . (3.5)

Eq. 3.2 can be solved analytically by using the normal equation:

~̂h =
(
XTX

)−1
XT~z, (3.6)
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but the inversion of the matrix XTX can become computationally extremely expensive

for large number of inputs.

An efficient solution to the MISO system identification problem can be achieved by con-

sidering the equivalent input-output relationship based on auto- and cross-correlation

matrices (Perreault et al., 1999):
~φx1z

· · ·
~φxNz

 =


Φx1x1 . . . Φx1xN

...
. . .

...

ΦxNx1 . . . ΦxNxN



~h1
...

~hN

 , (3.7)

where ~hk is a T element vector, ~φxkz is an M element vector containing the cross-

correlation φxkz (τ) and Φxkxl is an M×M Toeplitz matrix with elements Φxkxl (i, j) =

φxkxl (i− j). In matrix form, Eq. 3.7 can be written as:

~ΦXz = ΦXX
~h. (3.8)

Hence, the solution of Eq. 3.8 is given through inversion of the the matrix ΦXX :

~̂h = Φ−1XX
~ΦXz. (3.9)

In our implementation, the inputs xk consisted in either neural firing rates, spectral

features of LFP signals, or a combination of these two types of signals, depending on

the nature of the decoder used in each case. After the linear filters were estimated using

Eq. 3.7 and 3.9, the nonlinearity was introduced by fitting a third-order polynomial

between the output of the linear system prediction and the recorded EMG signal of the

training data.

3.5.2 Wiener-150 cascade model

The above described Wiener cascade model makes use of all the system inputs to predict

the output EMG signals. However, for LFP-based decoders for which the number of

input features is large (i.e. 336 features in our case), the number of fitting parameters

can become extremely large (i.e. 3360 parameters when using decoders of N = 10

bins), which is likely to result in overfitting the training data.

One way of reducing the number of fitting parameters is by choosing the 150 features

which are individually most strongly correlated with the EMG signals (Flint et al.,

2012a). For this method, which will be hereafter referred to as the Wiener-150 cascade

model, the correlation is determined by the mean of the absolute value of the Pearson

correlation coefficient, r, over all muscles for each datafile.
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3.5.3 Ridge regression cascade model

Now, let us consider the usual linear regression model: given p predictors x1, . . . ,xp,

the response y is predicted by:

y = Xβ̂ + ε, (3.10)

where y ∈ Rn,X ∈ Rn×p, β ∈ Rp, ε ∈ Rn and n denotes the number of observa-

tions. The ordinary least squares (OLS) solution minimises the residual sum of squares

(y −Xβ)T (y −Xβ) and is given by:

β̂OLS =
(
XTX

)−1
XTy. (3.11)

One disadvantage of the OLS method is that the estimates often have low bias but

high variance. Ridge regression (Tikhonov, 1943), is a technique which minimises the

residual sum of squares subject to a bound on the L2-norm of the coefficients, which is

(y −Xβ)T (y −Xβ) + λβTβ. The ridge regression solution is given by:

β̂ridge =
(
XTX + λIn

)−1
XTy. (3.12)

For λ→ 0, β̂ridge → β̂OLS , while for λ→∞, β̂ridge → 0.

The main disadvantage of the ridge regression technique is that the parameter λ needs

to be set manually. The optimal selection for this parameter can be found through cross-

validation (CV) (Bishop, 2006), although the computational cost of the algorithm in

this case increases dramatically. In our implementation, the λ parameter was alternated

from 1 to 1000, with a constant stepsize of 10. The value that yielded the best decoding

performance, as determined by the variance accounted for (VAF) measure (see Section

3.7), was selected and used for each datafile.

As with previous models, a third-order polynomial was used to fit the output of the

linear prediction to the recorded EMG signals of the training data.

3.5.4 LASSO and elastic net cascade model

3.5.4.1 LASSO

The LASSO (Tibshirani, 2011), is a non-linear penalised least squares technique im-

posing an L1-penalty on the regression coefficients, i.e. the LASSO solution satisfies:

β̂LASSO = arg min (y −Xβ)T (y −Xβ) + λ ‖β‖1 , (3.13)

where ‖β‖1 =
p∑
i=1

βi is the L1-norm. The LASSO method solves the regression problem

through an iterative algorithm, which is guaranteed to converge in a finite number of

steps.
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The main advantage of the LASSO technique is that some coefficients are shrinked to

zero, producing hence sparse interpretable models. Similarly to ridge regression, the

regularisation parameter needs to be set manually, and the optimal selection for this

parameter can be found via CV. In our implementation, 100 different values of λ were

tested and a 5-fold CV procedure was used to select the optimal value of the parameter.

3.5.4.2 Elastic net

The elastic net (Zou and Hastie, 2005), is a regularisation technique which combines

the LASSO and ridge regression penalties, which is the L1- and L2-norms, respectively.

The elastic net solution thus satisfies:

β̂elastic = arg min (y −Xβ)T (y −Xβ) + λ2 ‖β‖2 + λ1 ‖β‖1 . (3.14)

The elastic penalty can take the form J (β) = α ‖β‖2 +(1− α) ‖β‖1, where α = λ2
λ2+λ1

.

For α→ 0, β̂elastic → β̂LASSO, while for α→ 1, β̂elastic → β̂ridge.

One advantage of the elastic net technique over LASSO is that it encourages a grouping

effect of the variables; correlated predictors are in or out of the model together. The

main disadvantage of the method is that the optimal selection of the tuning parameters

λ1 and α requires to cross-validate over a two-dimensional surface. In our implemen-

tation, 100 different values for λ1 and 10 different values for α (from 0.1 to 1, with 0.1

stepsize), were tested.

As for the rest of the models described above, a third-order polynomial was used to fit

the output of both LASSO and elastic net predictions to the recorded EMG signals.

3.5.5 VBSR cascade model

The VBSR (Sato, 2001), is an algorithm for online model selection which defines the

free energy for a trial probability distribution and approximates the joint posterior

probability distribution over model parameters and hidden variables. The maximisa-

tion of the free energy gives the true posterior distribution over the parameters and

hidden variables. The integration over model parameters is done with an expectation-

maximisation (EM) algorithm.

Let us consider a set of models {Mm|m = 1, . . . ,N}, whereMm denotes a model with

fixed structure. Let P (x|θm,Mm) denote the probability distribution of a modelMm

with parameter θm, where x represents a random variable andX {T} = {x (t) |t = 1, . . . , T}
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is a set of observed data. The posterior probability over the parameter is given by Bayes

rule:

P (x|θm,Mm) =
P (X {T} |θm,Mm)P (θM |Mm)

P (X {T} |Mm)
. (3.15)

The data likelihood is defined by

P (X {T} |θm,Mm) =
T∏
t=1

P (x {T} |θm,Mm) , (3.16)

where Mm denotes the evidence for a model, defined by

P (X {T} |Mm) =

∫
dµ (θm)P (X {T} |θm,Mm)P (θM |Mm) , (3.17)

and the posterior probability distribution over model structure is given by

P (Mm|X {T}) =
P (X {T} |Mm)P (Mm)∑

m′
P (X {T} |Mm′)P (Mm′)

. (3.18)

The evidence for a data set X {T} is defined by:

P (X {T}) =

∫
dµP (X {T} |θ)P0 (θ) , (3.19)

where P0 (θ) denotes a prior distribution for the model parameters. In order to perform

the integration, the variational bayes (VB) method uses a trial probability distribution

Q (θ,Z {T}), which approximates the posterior distribution over the model parameter

θ, where Z {T} denotes a set of hidden variables Z {T} = {z (t) |t = 1, . . . , T} and

z = (z1, . . . , zM )T :

P (θ,Z {T} |X {T}) =
P (X {T} ,Z {T} |θ)P0 (θ)

P (X {T})
, (3.20)

where the probability distribution for a complete dataset is given by

P (X {T} ,Z {T} |θ) =
T∏
t=1

P (x {T} , z {T} |θ) . (3.21)

According to the Kullback-Leibler (KL) divergence between the trial and the true

posterior distribution:

KL (Q||P ) =

∫
dµ (θ) dµ (Z {T})Q (θ,Z {T})× log

(
Q (θ,Z {T})

P (θ,Z {T} |X {T})

)
= logP (X {T})− F (X {T} , Q) ,

(3.22)

where the free energy is defined by

F (X {T} , Q) =

∫
dµ (θ) dµ (Z {T})Q (θ,Z {T})×log

(
P (X {T} ,Z {T} |θ)P0 (θ)

Q (θ,Z {T})

)
.

(3.23)
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The true posterior distribution is obtained by maximising the free energy with respect

to the trial distribution Q (θ,Z {T}), and this maximum of the free energy is equal to

the log evidence:

logP (X {T}) = max
Q

F (X {T} , Q) ≥ F (X {T} , Q) . (3.24)

For the purposes of implementation, the VBSR toolbox3 for MATLAB R© was used.

Similarly to previously described algorithms, a third-order polynomial was used to fit

the output of the prediction and the recorded EMG signals of the training data.

3.6 Filter size

The filter size (or kernel size), i.e. the number of bins used for decoding, for all the

above described methods was set to N = 10 bins, unless where stated otherwise. This

translates to a time course of 51.2× 10 = 512 ms.

3.7 Performance assessment

As a measure of performance of the EMG prediction from cortical signals, two dif-

ferent measures were used: the variance accounted for (VAF), and the coefficient of

determination (R2). These are defined as follows:

V AF = 1−

M∑
j=1

(pj − p̂j)2

M∑
j=1

(pj − p̄)2
, (3.25)

and

R2 =

(
M∑
j=1

(pj − p̄)
(
p̂j − ¯̂p

))2

M∑
j=1

(pj − p̄)2
M∑
j=1

(
p̂j − ¯̂p

)2 , (3.26)

where M is the number of samples of a dataset, pj and p̂j are the actual and predicted

values of the EMG signal for the jth sample, and p̄ and ¯̂p denote the mean values

of the actual and predicted signals within the dataset, respectively. Although these

two measures are similar, their major difference is that VAF reaches unity only with

an exact match between the observed and predicted signal, compared to R2 which

3http://www.cns.atr.jp/cbi/sparse_estimation/sato/VBSR.html

http://www.cns.atr.jp/cbi/sparse_estimation/sato/VBSR.html
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Datafile Length SA EMG channels

filename (min) units ECR FCU Bic ECU FCR Tri 1DI FDS FDP

Block-57 15.2508 45 + + + + + + + + +

Block-72 5.7839 56 + + - + - - - + +

Block-241 16.0098 56 + + - + + + + + +

Block-257 16.0657 56 + + - + + - + + +

Block-259 15.4820 34 + + - + - + + + +

Block-265 36.2769 56 + + - + + + + + +

Table 3.1: Summary of data used for analyses. All datafiles also included 56-channel

LFP recordings.

reaches unity when the two signals are connected through a perfect linear correlation.

Another difference is that for poor fits VAF can take negative values, whereas R2 is a

non-negative measure (Oby et al., 2013).

3.8 EMG de-noising and discarding process

3.8.1 Hard threshold noise reduction

In our recordings, there was noise interference in certain EMG channels. A hard thresh-

old method was used to reduce the noise. Some other options were also considered,

such as frequency-domain filtering, or independent component analysis (ICA) decom-

position and reconstruction, but both were proven unsuccessful. The hard threshold

θthr was chosen manually for each EMG channel and each datafile. The non-linear

function used was defined by:

z(t) =

z(t), if ‖z(t)‖ < θthr

0, otherwise
, (3.27)

where z(t) denotes EMG activity at time t.

3.8.2 Discarding process

EMG channels for which prediction accuracy from SA signals with the Wiener-150

cascade model yielded a VAF value smaller than 0.3 were treated as noisy, and were

discarded from subsequent analyses. A summary of the data used for analyses is given

in Table 3.1.
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Results

In this chapter, the results from our analyses are presented. Firstly, the Wiener-150

cascade model is tested, and the effect of tuning various model parameters on the pre-

diction accuracy is explored. The analysis is then repeated by using M1 and PMv

signals separately, and the prediction accuracy of the two different decoders is com-

pared. The relative information about muscle activity in different LFP bands is also

investigated.

Subsequently, the different decoding methods described in Chapter 3 are tested, and

compared to each other in terms of prediction accuracy. The comparison of the decoding

algorithms is done separately for the scenarios of large and limited amounts of training

data (see Section 3.5).

4.1 Wiener-150 cascade model

Initially, we studied the accuracy of EMG prediction from LFP signals with the Wiener-

150 cascade model (Flint et al., 2012a). A sample prediction of the EMG signals for

datafile ‘Block-57’ is shown in Fig. 4.1. The overall mean prediction accuracy for the

whole datafile was VAF = 0.51± 0.11 (mean ± s.d.).

The mean accuracy prediction for all datafiles is shown in Fig. 4.2(a). Two different

cases were examined; training with large amount of data (9 minutes), and training with

limited amount of data (3 minutes). Additionally, three types of decoders were used;

spike-, LFP- and hybrid decoders.

For long training datafiles, the results were comparable for all three types of decoders

(overall mean VAF = 0.58 ± 0.11 for spikes; 0.58 ± 0.11 for LFPs; 0.60 ± 0.10 for

20
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Figure 4.1: Example EMG predictions with Wiener-150 cascade model for datafile

‘Block-57’.

hybrid decoders; P > 0.3 in all cases, paired t-tests). For short training datafiles, the

spike-decoder performed significantly better than the other two (overall mean VAF =

0.45± 0.21 for spikes; 0.24± 0.28 for LFPs; 0.13± 0.60 for hybrid decoders, P < 0.05

in both cases, paired t-tests). Decoding performance for individual muscles is shown in

Appendix A (Fig. A.2; results for long training datasets are only shown).

In order to evaluate whether our model yielded better predictions than chance, we ran-

domised the rows of the coefficient matrix and measured the prediction accuracy. This

procedure was repeated 100 times and the case which yielded the highest performance

was selected and compared to the performance of the model. The results are shown in

Fig. 4.2(b). For purposes of demonstration, the R2 measure is shown, as the VAF took

very large negative values for chance prediction. The Wiener-150 cascade model pre-

dicted better than chance for all three types of decoders (overall mean R2 = 0.60±0.10

vs. 0.30±0.10, P < 10−20 for spikes; 0.59±0.11 vs. 0.15±0.06, P < 10−35 for LFPs;

0.62± 0.10 vs. 0.22± 0.08, P < 10−30 for hybrid decoders, paired t-tests).

We also tested the decoding performance of the algorithm, for EMG low-pass cutoff

frequency of 10 Hz (see Section 3.4.2). The results are shown in Appendix A (Fig.

A.1). As expected, the EMG prediction accuracy was slightly inferior compared to the

case of 5 Hz, as in the former case the EMG signals contained more information.
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Figure 4.2: EMG decoding performance with Wiener-150 cascade model. (a) EMG

prediction accuracy for different types of decoders, and for short and long training

datafiles. (b) Comparison of Wiener-150 cascade model performance to chance pre-

diction. Black lines, medians; black circles, means; solid boxes, interquartile ranges;

whiskers, overall ranges of nonoutlier data; data averaged across muscles and datafiles.

4.1.1 Kernel size and optimal bin for decoding

Next, we computed the EMG prediction accuracy for various sizes of kernels (Fig.

4.3(a)). For both spike- and LFP-decoders, the decoding performance reached a plateau

for N = 5 bins. However, for the rest of analyses we selected N = 10 bins, in order to

be consistent with previous studies (Flint et al., 2012a).

We also sought to identify the optimal lag for decoding EMG activity, when a single

time bin was used for decoding (Fig. 4.3(b)). The optimal lags for decoding with

spikes were 25.6 ms (the centre of the 0- to 51.2- ms bin) and 76.8 ms (the centre of the

51.2- to 102.4 ms bin), as differences between these two time lags were not significant

(P = 0.87; paired t-test). For LFPs, the optimal time lag was 128 ms (i.e. the center of

the 0- to 256- ms FFT window). For single-bin decoding, and when using the optimal

lag for each type of decoder, LFP-decoders performed significantly better than spikes

(overall mean VAF = 0.49± 0.11 for spikes vs. 0.58± 0.11 for LFPs; P < 10−3, paired

t-test).
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(a) (b)

Figure 4.3: Kernel size and optimal lag for decoding with Wiener-150 cascade model.

(a) Decoding performance versus kernel size (number of bins) for decoding with spikes

and LFPs. (b) Decoding performance using single time lags. Note reversed time axis;

positive lags represent neural signals occurring before EMG activity. Thick lines, means;

shaded areas, standard deviations; data averaged across muscles and datafiles.

4.1.2 M1 versus PMv decoding

In the following step, we compared the EMG prediction accuracy from M1 and PMv

signals (Fig. 4.4). For M1, only recordings from the 12 microwire channels were used

(see Section 3.1). Additionally, electrodes which did not record spikes where removed

from the LFP-decoders, which eventually gave a number of 8.33± 1.5 and 5.83± 0.98

electrodes for M1 and PMv, respectively. The analysis was repeated without the last

step (i.e. removing the additional LFP channels), and the results are shown in Appendix

A (Fig. A.3). Results for individual muscles are also shown in Fig. A.4.

In general, M1-decoders yielded better performance than PMv-decoders (Fig. 4.4(b);

overall mean VAF = 0.45 ± 0.10 vs. 0.28 ± 0.11, P < 10−5 for spikes; 0.53 ± 0.10 vs

0.44 ± 0.09, P < 10−3 for LFPs; 0.60 ± 0.09 vs. 0.47 ± 0.09, P < 10−5 for hybrid

decoders, paired t-tests).

For M1 signals, the hybrid decoder performed best (Fig. 4.4(a); P < 10−5 for spikes;

P < 0.05 for LFPs), while the LFP- performed better than spike-decoder (P < 10−2).

For PMv, the hybrid decoder did not outperform the LFP-decoder (P = 0.15), but

both performed better than the spike-decoder (P < 10−6 and P < 10−8, respectively).
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Figure 4.4: M1 vs. PMv decoding with Wiener-150 cascade model. (a) Performance

comparison for different types of decoders in M1 and PMv, separately. (b) Performance

comparison for same type of decoders between M1 and PMv. Same number of spike

and LFP channels was used. Results for long training datafiles are only shown. Data

averaged across muscles and datafiles. Box symbols the same as in Fig. 4.2.

4.1.3 Remarks

We have shown that EMG prediction from SA and LFP signals in the M1 and PMv is

feasible during naturalistic free behaviour by using a Wiener-150 cascade model (Fig.

4.1, 4.2). The accuracy of prediction improves with an increase in the availability of

training data (Fig. 4.2(a)). For long enough training datafiles, there were no significant

differences observed between the performance of spike-, LFP- and hybrid decoders,

which suggests that LFPs can provide a highly informative source signal for BMIs.

Similarly to the findings of Flint et al. (2012a), the optimal lag for decoding with spikes

was 25.6 ms (or 76.8 ms). For LFP-decoders, however, the same study showed that the

optimal time lag was 2 ms, whereas we found that the optimal lag was 128 ms. One

possible explanation for this disagreement might lie in the nature of the behavioural

task, as in the above mentioned study the subjects exhibited repetitive reaching tasks,

whereas in our study the animals behaved freely in their environment.

We then examined whether there were differences in prediction accuracy when we used

signals only from M1 or PMv. We found that M1 signals yielded significantly better

predictions for all three types of decoders (Fig. 4.4(a)). This is not in accordance with
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the findings of Bansal et al. (2012), where it was shown that decoding performance

from signals from M1 was comparable to the one from PMv. This disagreement might

be due to differences in the behavioural tasks, as well as the nature of the prediction

itself (kinematic parameters instead of muscle activity). Moreover, in our study, the

number of electrodes used from each region was relatively small and, also, the number

of electrodes from M1 was larger than the one from PMv (8.33± 1.5 electrodes for M1

vs. 5.83± 0.98 for PMv), making it thus difficult to draw any conclusions. We plan to

verify our observations in the near future, by analysing data from additional animals.

Notably, we found that when we used only signals from PMv to make predictions, LFP

signals outperformed SA signals (Fig. 4.4(b)), and this trend was systematic across

muscles (Fig. A.4). To the best of our knowledge, this finding has not been reported

elsewhere in the literature, although this is likely to be due to the small number of

channels used for decoding in this case. It has been shown in other studies (Bansal

et al., 2012; Flint et al., 2012a,b), that for small number of inputs, LFP- decoding

can outperform SA- decoding. In simple terms, this can be explained by the fact

that when we record the SA of a small number of cells, the chances that these cells

contain information relevant to the decoded signal (e.g. kinematic parameters or EMG

activity), are small. On the contrary, if we think of LFP signals as the superposition of

the SA of many individual units, it is likely that even a small number of LFP signals

contain some information about the decoded signal (Bansal et al., 2012).

4.2 Wiener cascade model

At this stage, we tested the decoding performance of a Wiener cascade model, which

is similar as the model described in the previous section, except that all LFP features

were used for decoding, i.e. the selection step of the 150 mostly correlated features

to the EMG signals was omitted in this case (see Section 3.5.1). The results for long

and short training datasets are shown in Fig. 4.5. For purposes of demonstration, the

R2 measure is shown, as VAF took large negative values for decoding with LFP- and

hybrid decoders, in the case of short training datafiles.

For long training datafiles, spikes yielded slightly better prediction than both LFP- and

hybrid decoders (overall mean VAF = 0.58± 0.11 vs. 0.50± 0.11 P < 10−2 for LFPs;

0.52 ± 0.11 P < 0.05 for hybrid decoders; paired-t tests). LFP- and hybrid decoders

did not yield significantly different results (P = 0.31).

For short training datafiles, LFP- and hybrid decoders failed dramatically to predict

EMG activity, most likely due to overfitting the training data, as the number of fitted
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Figure 4.5: Decoding performance of Wiener cascade model, for long and short training

datafiles. Box symbols the same as in Fig. 4.2.

model parameters was large (336 features×10 bins = 3360 parameters), and the amount

of available training data was limited (≈ 4000 samples). On the other hand, spike

decoders were robust, as the number of fitted model parameters was significantly smaller

(56 spike channels ×10 bins = 560 parameters). Spikes outperformed both LFP- and

hybrid decoders (overall mean VAF = 0.45±0.20 vs. −8.53±14.98 P < 10−3 for LFPs;

−22.36± 59.99 P < 10−3 for hybrid decoders; paired-t tests). There was no significant

difference between LFP- and hybrid decoders (P = 0.14).

4.2.1 Relative information in LFP frequency bands

The relative muscle activity information in different LFP frequency bands was inves-

tigated at this stage. For this reason, we built decoders based on separate frequency

bands, or the LMP (see Section 3.4.1), and compared the performance between these

decoders. The results are shown in Fig. 4.6 and Table 4.1 (results for individual muscles

are given in B.1).

In general, high (130-244 Hz) and mid-high (70-115 Hz) frequency bands performed

best and the performance of these decoders was comparable to the performance of the

decoder using features from all frequency bands (Table 4.1).

For limited amount of training data, a decoder trained on all features failed to gener-

alise to test datasets, although decoders trained on single frequency bands performed
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Decoder source signal VAF

LMP + all frequency bands 0.50± 0.11 (∗∗∗LMP, LF, MF1), (†MF2, HF1, HF2)

LMP 0.37± 0.15 (∗∗∗MF1), (†LF)

LF (0-4 Hz) 0.34± 0.10 (∗∗∗MF1)

MF1 (7-20 Hz) 0.23± 0.08

MF2 (70-115 Hz) 0.47± 0.16 (∗∗LMP), (∗∗∗LF, MF1)

HF1 (130-200) 0.54 ± 0.12 (∗∗∗LMP, LF, MF1), (∗MF2) (†HF2)

HF2 (200-244) 0.53± 0.12 (∗∗∗LMP, LF, MF1), (∗MF2)

Table 4.1: Single-frequency band decoding performance with Wiener cascade model.

Results are shown only for long training datasets. Values are means ± S.D.; ∗P < 0.05;

∗∗P < 10−2; ∗∗∗P < 10−3; †not significant (P > 0.05).

relatively well (Fig. 4.6). This further supports our assumption that a decoder trained

on all LFP features suffers from overfitting, unless the amount of available training

data is very large.

4.2.2 Remarks

In this section, we have shown that a Wiener cascade model without feature selection

can be robust in predicting muscle activity, only when a large amount of training data

is available (Fig. 4.2(a)). In any other case, a feature selection process is needed to

avoid overfitting the training data.

We also tested the relative muscle activity information in different frequency bands,

and found that the most informative were the high-frequency bands HF2 (200-244

Hz) and H1 (130-200 Hz), followed by the mid-high band MF2 (70-115 Hz), the LMP

and the low-frequency band LF (0-4 Hz). The least informative signal was the mid-low

band MF1 (7-20 Hz), yet with decoding performance well above chance. This trend was

almost consistent across muscles (Fig. B.1). These findings are consistent with previous

studies which showed that the high frequency bands were the most robust LFP signals

for reconstructing kinematic parameters (Bansal et al., 2012; Zhuang et al., 2010), or

EMG activity (Flint et al., 2012a). One major difference was that EMG reconstruction

from the LMP signal was of inferior quality in our study, compared to Flint et al.

(2012a).

Previous studies (Logothetis, 2002; Ray et al., 2008) have suggested that high-frequency

(> 200 Hz) LFP activity might reflect MUA, which is SA of a collection of individual

units. It has been also speculated that these signals might also contain other fast
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Figure 4.6: Single-frequency band decoding performance with Wiener cascade model.

Results are shown for long and short training datafiles. For short training datafiles, the

performance of the ‘All features’ decoder was VAF = −3.6638 ± 3.0424 (not shown).

Data averaged across muscles and datafiles. Box symbols the same as in Fig. 4.2.

synaptic components (Bansal et al., 2012). Nevertheless, our results showed that the

HF1 band (130-200 Hz) allowed for equally accurate predictions as the HF2 band (200-

244 Hz), whereas predictions based on the MF2 band (70-115 Hz) were slightly worse.

These two latter bands (HF1 and MF2), are less likely to contain MUA activity, hence

it is reasonable to speculate that they indeed convey information about movement,

which is independent of SA.

4.3 Dimensionality reduction for EMG prediction from

cortical signals

In the previous section, we showed that muscle activity prediction from LFP signals is

feasible during naturalistic free behaviour. Nevertheless, the poor performance of the

model for limited amounts of training data (Fig. 4.5), shows clearly that an effective

algorithm of performing dimensionality reduction in the input of the system to be

identified is essential, in order to avoid overfitting the training data. The feature

selection method proposed by Flint et al. (2012a) which is based on the correlations

between LFP signals and EMG activity, seems to overcome this issue (Fig. 4.2), however

the selection of exactly 150 features seems somewhat arbitrary. In this section, we

test the different dimensionality reduction and variable selection methods presented
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Training Regression VAF VAF VAF

data length method (spikes) (LFPs) (hybrid)

Wiener 0.58± 0.11 0.50± 0.11 0.52± 0.11

Wiener-150 0.58± 0.11 0.58± 0.11 0.60± 0.10

9 mins LASSO/elastic net 0.59 ± 0.11 0.58± 0.11 0.61± 0.10

Ridge regression 0.56± 0.11 0.43± 0.15 0.49± 0.16

VBSR 0.58± 0.11 0.61 ± 0.11 0.63 ± 0.10

Wiener 0.45± 0.20 −8.53± 14.98 −22.36± 59.99

Wiener-150 0.45± 0.21 0.24± 0.28 0.13± 0.60

3 mins LASSO/elastic net 0.42± 0.50 0.35± 0.18 0.30± 0.25

Ridge regression 0.51 ± 0.14 0.24± 0.31 0.43± 0.18

VBSR 0.34± 0.74 0.53 ± 0.17 0.56 ± 0.14

Table 4.2: Decoding performance of regression methods. Values are means ± S.D. Data

averaged across muscles and datasets.

in Chapter 3, and compare their decoding performance, yet for two different training

scenarios, which is for large and limited amounts of training data.

4.3.1 Decoding performance of dimensionality reduction and variable

selection methods

The decoding performance of the various dimensionality reduction and variable selec-

tion techniques examined in this study is presented in Table 4.2 and Fig. 4.7.

The LASSO and elastic net algorithms yielded almost identical results (Fig. C.1), and

hence, they will be hereafter treated as one algorithm and referred to as LASSO/Elastic

net.

When the models were trained on 9 minutes of data, the results between the different

methods were comparable, and none of the algorithms outperformed the Wiener-150

cascade model, for any type of decoder (Fig. 4.7(a)).

On the other hand, when the models were trained on 3 minutes of data, the VBSR

algorithm outperformed all the other methods for LFP- and hybrid decoders, whereas

for spike decoders there were not significant differences observed between the different

algorithms (Fig. 4.7(b)). For LFP- and hybrid decoders, the VBSR algorithm yielded

significantly better predictions than the Wiener-150 cascade model (P < 10−7 and

P < 10−4, respectively, paired t-tests).



Chapter 4. Results 30

Spikes LFPs Hybrid
0

0.2

0.4

0.6

0.8

1

V
A

F

 

 

Wiener

Wiener150

LASSO

Ridge Resgression

VBSR

(a)

Spikes LFPs Hybrid

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

V
A

F

 

 

(b)

Figure 4.7: Decoding performance of regression methods for 9 mins (a) and 3 mins (b)

of training data. Data averaged across muscles and datasets. Box symbols the same as

in Fig. 4.2.

In Fig. 4.8 we plot the performance of LFP-decoders produced by the VBSR and

Wiener-150 cascade models, versus the length of the data used for training. For pur-

poses of demonstration, the R2 measured is shown, as the VAF took large negative

values for decoding with the Wiener-150 cascade model, when the training datafiles

were shorter than 3 minutes. It can be observed, that we were able to achieve rel-

atively accurate predictions with the VBSR cascade model, even when we used only
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Figure 4.8: Wiener-150 and VBSR cascade models decoding performance versus train-

ing datafile length. Thick lines, means; shaded areas, standard deviations; data aver-

aged across muscles and datafiles

1.5 minutes of training data (overall mean R2 = 0.50 ± 0.22). For training datafiles

of length of 4.5 minutes and longer, the differences in performance between the two

algorithms were not significant.

In order to visualise the prediction improvement with the VBSR algorithm over the

Wiener-150 cascade model, we plot in Fig. 4.9 a prediction sample with each of these

two algorithms, for the same time course of activity of the FCR muscle. This example

clearly demonstrates that the VBSR algorithm produces more robust and less noisy

predictions than the Wiener-150 cascade model.

For LFP-decoders, the average number of features selected by each method, as well

Method Number of non-zero parameters Execution time (s)

Wiener-150 1500± 0 3

LASSO/elastic net 1787± 733 3224

Ridge regression 3360± 0 3122

VBSR 1060± 152 622

Table 4.3: Number of selected parameters and computational time required for training

regression models. For numbers of parameters, values are means ± S.D. Data averaged

across muscles and datasets. For training times, each algorithm was tested once on the

datafile ‘Block-72’.



Chapter 4. Results 32

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

V
o
lt
a
g
e
 (

m
V

)

Wiener−150, VAF = 0.65

 

 

Actual EMG

Predicted EMG

(a)

14 16 18 20 22 24 26 28 30 32
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (s)

V
o
lt
a
g
e
 (

m
V

)

VBSR, VAF = 0.81

 

 

(b)

Figure 4.9: EMG prediction example for FCR muscle of datafile ‘Block-241’. (a)

Wiener-150 cascade model. (b) VBSR cascade model.

as the time required for fitting the models on 3 minutes of training data, are given in

Table 4.3. For decoding, N = 10 bins were used, which yielded a total number of 3600

parameters. All analyses were performed on a 2.8 GHz Intel R© Core i7 machine with

4 GB of memory, by using the MATLAB R© environment. The most computationally

expensive methods were LASSO/elastic net and ridge regression, due to the CV proce-

dures required for parameter selection. Is it worth stressing that, although the VBSR

algorithm requires more computational time than the Wiener cascade model during

the training stage, it would be more suitable for real-time implementations, since by

reducing the parameter space from 3600 to 1060 parameters on average, it requires less

computational power during execution.
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Figure 4.10: Variable selection with VBSR. Colour bars represent weight values as-

signed to input variables. Results shown for short (3 mins) training datasets. Data

averaged across datafiles. Horizontal axis, time bins (length 51.2 ms); vertical axis,

frequency bands, as in Section 3.4.1.

4.3.2 Variable selection with VBSR

In the previous section, it was shown that the VBSR algorithm yielded the best de-

coding performance with LFP signals. At this stage, we wish to evaluate the variable

selection performed by the algorithm. In order to do so, we plotted the average weights

assigned by the algorithm to the the input variables, and the results are shown in Fig.

4.10. In these plots, the horizontal axes represent the N = 10 time bins used for decod-

ing, whereas the vertical axes represent the 5 LFP frequency bands. It can be easily

observed that relatively larger weights were assigned to the high and mid-high LFP

frequency components (i.e. MF2, H1 and H2 frequency bands). This is consistent with

our findings in Section 4.2.1, where it was shown that these specific bands conveyed

relatively more information about muscle activity, compared to the low and mid-low

frequency bands (Table 4.1). Additionally, time bins 4-6, which correspond to time

lags between 128 and 230 ms were favoured, which is also consistent with our findings

in Section 4.1.1 (Fig. 4.3(b)).
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Figure 4.11: Source signal comparison for muscle activity prediction. For each type of

decoder, the algorithm that yielded the best individual prediction was chosen. Data

averaged across muscles and datafiles. Box symbols the same as in Fig. 4.2.

4.3.3 Source signal comparison

In the previous section, we showed that EMG prediction accuracy depended on the

decoding algorithm, especially when the amount of available training data was limited.

As a last step, we wished to compare the decoding performance of the three types of

source signals (i.e. spikes, LFPs and hybrid signals), by using in each case the decoding

algorithm which individually yielded the best performance in our comparison. The

results, again for two different scenarios of training data availability, are shown in Fig.

4.11. The overall mean performance of the hybrid decoders was slightly higher than

for spike- and LFP-decoders, however these differences were not significant (P > 0.05

for all comparisons; paired t-tests).

4.3.4 Remarks

In this section, we compared the EMG decoding performance of various regression tech-

niques and found that for decoding with LFP signals, a variational Bayesian method

outperformed the Wiener-150 cascade model when the amount of available training

data was limited (Fig. 4.7(b), 4.9 and Table 4.2), however at the expense of addi-

tional computational cost during the training stage (Table 4.3). The VBSR method

effectively reduced the parameter space from 3360 to an average of 1060 parameters,

which prevented the produced models from overfitting the training data. The method
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was successful in selecting the LFP components which were most informative of the

EMG signals, both in frequency and time (Fig. 4.6, 4.3(b) and 4.10). For long train-

ing datafiles, the results were comparable between all methods. This was also the

case for spike-decoders, since the number of parameters for this type of decoders was

significantly smaller than for LFP- and hybrid decoders.

Finally, we compared the EMG prediction accuracy for different types of source signals,

and found no significant differences between these decoders. Nevertheless, we found

that by combining SA and LFP signals (i.e. hybrid decoders), the predictions were

likely to be more robust, as suggested by the reduced standard deviation of the decoding

accuracy shown in Fig. 4.11.
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Conclusions

In this final chapter, we summarise the most important findings of our study, and also

reflect on future research directions.

5.1 Muscle activity decoding during free behaviour

We have shown that muscle activity in freely-behaving primates, as measured by EMG

signals, can be decoded from cortical signals in M1 and PMv areas of the brain. The

prediction accuracy of our decoders suggests that it would be feasible to effectively

drive a FES system in a real-time environment. For comparison, Ethier et al. (2012)

applied FES to monkeys whose forearms were previously paralysed by a peripheral nerve

block, and demonstrated that the monkeys regained the ability to perform grasping

tasks. In their study, the overall mean prediction accuracy across muscles and sessions

was R2 = 0.58 ± 0.12, while the overall mean decoding performance of our models

was R2 = 0.59 ± 0.07 for spike-, 0.58 ± 0.09 for LFP- and 0.61 ± 0.07 for hybrid

decoders. To the best of our knowledge, this is the first study to clearly demonstrate

that muscle activity prediction is feasible during naturalistic free behaviour. Some

previous studies (Bansal et al., 2011, 2012; Zhuang et al., 2010), showed that it was

possible to predict movement parameters during free behaviour, but they were limited

to decoding kinematic parameters, such as hand position and velocity. Whether these

predictions could be effective in reanimating paralysed upper limb muscles in primates

yet remains to be tested, however, a basic behavioural task might be needed in that

case, in order to assess the performance of EMG decoding and the FES system.

Our analyses were limited to data coming from a single animal, although data from

a second animal were being collected at the Institute of Neuroscience, University of

36
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Newcastle, at the time this manuscript was written. The methods presented in this

work will be further tested when the data from the second animal become available.

An aspect which was not considered in this work was whether muscle activity decoding

can be generalised to different tasks. We plan to address this issue in the future, by

training decoders on datafiles coming from free behaviour sessions, and testing their

prediction accuracy during specific-task sessions. We believe that shedding light on

this issue might be of significant importance to future real-life BMI applications.

5.2 Feature selection for muscle activity decoding from

LFP signals and implications for BMIs

It has been already known that LFP signals recorded from M1 and PMv can be used

to decode EMG activity of muscles from both the proximal and distal arm (Flint et al.,

2012a). LFP signals could provide an alternative, or complementary, source signal for

BMIs with numerous advantages compared to SA signals, such as greater longevity

and lower sampling rate requirements, which translates into lower power consumption

(Flint et al., 2012a; Linderman et al., 2008). Consistently with previous studies (Flint

et al., 2012a; Bansal et al., 2011, 2012; Zhuang et al., 2010), we found that high and

mid-high frequency bands (70-244 Hz) were the most movement-related informative

signals. A future challenge will be to achieve equal decoding performance by only using

low-frequency components of the LFP signals (Bansal et al., 2011), which will lead to

even lower power requirements.

A caveat of the Wiener cascade model is that when the amount of training data is

limited, it substantially suffers from overfitting. We found that a Variational Bayesian

method outperformed the Wiener cascade model in this scenario, as the algorithm was

successful in selecting a variant number of features which were most informative of

the EMG signals. The ARD property of the VBSR method makes it particularly at-

tractive, especially in future applications where the number of simultaneously recorded

electrodes and, consequently, the number of input signals to the decoder are expected

to increase dramatically. At the same time, the requirement for training data remains

a challenge for clinical implementations of neural prosthetic systems with paralysed pa-

tients (Nazarpour et al., 2012). This, or any similar in nature algorithm, can be proven

particularly useful in clinical applications, by training decoders at the early stages after

implantation.

As a final note, we would like to stress that EMG prediction might be improved by

reducing the dimensionality not only of the input, but also of the output of the system.
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The Wiener cascade model treats the EMG decoding problem as a MISO system, rather

than a single multiple-input-multiple-output (MIMO) system. Consequently, the corre-

lations in the output of the system, i.e. the EMG signals, which are often very strong,

are not exploited. We suspect that more accurate EMG predictions might emerge by

projecting the output onto a lower-dimensional manifold, then make predictions on this

subspace, and eventually backproject the data onto the original space. A possible way

to approach this issue could be by making use of the muscle synergies hypothesis, which

briefly suggests that the central nervous system (CNS) produces movement by com-

bining a small number of predefined modules, called muscle synergies (D’Avella et al.,

2003; Brochier et al., 2004; Miller, 2004; Alessandro et al., 2013). Additionally, there

has been preliminary evidence that muscle synergies can form a predictive framework

for EMG activity (Ajiboye and Weir, 2009). Further improvement in decoding perfor-

mance might be also achieved by considering a set of hidden states in the model, which

account for muscular fatigue, the subject’s level of attention, or any other unobserved

factors in the subject’s environment (Lawhern et al., 2010; Wu et al., 2009).

5.3 Conclusion

In conclusion, we have shown that muscle activity in freely-behaving primates can be

predicted from spikes and LFP signals from the motor cortices. The quality of EMG

reconstruction, however, depends strongly on the selection of an appropriate decoding

algorithm. Moving from laboratory setups to clinically viable solutions, requires over-

coming a series of engineering challenges, which the research community is now ready

to address.



Appendix A

Wiener-150 cascade model

A.1 EMG low-pass filter cutoff frequency

The mean overall decoding performance with the Wiener-150 cascade model is shown

here, for two different cutoff frequencies of the digital filter used for the envelope ex-

traction of EMG signals. In both cases, a 4th-order Butterworth filter was used (see

Section 3.4.2), with cutoff frequencies at 5 Hz and 10 Hz, respectively.
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Figure A.1: Decoding performance with Wiener-150 cascade model for EMG low-pass

cutoff frequencies of 5 and 10 Hz. Data averaged across muscles and datafiles. Box

symbols the same as in Fig. 4.2.
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A.2 Decoding performance for individual muscles

The decoding performance of the Wiener-150 cascade model for individual muscles and

all three types of decoders is presented here. Mean results across muscles are shown in

Fig. 4.2(a).
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Figure A.2: Wiener-150 cascade model decoding performance for individual muscles.

Results for long training datafiles are only shown. Data averaged across datafiles. For

muscle ‘Bic’, only one recording was available. Box symbols the same as in Fig. 4.2.

A.3 M1 vs. PMv decoding

Here, we repeat the analysis described in Section 4.1.2, but without removing the

additional LFP channels. In general, M1-decoders outperformed PMv-decoders (overall

mean VAF = 0.48 ± 0.09 vs. 0.28 ± 0.11, P < 10−13 for spikes; 0.48 ± 0.10 vs.

0.46 ± 0.09, P < 10−4 for LFPs; 0.61 ± 0.08 vs. 0.47 ± 0.09, P < 10−13 for hybrid

decoders).

For M1 signals, the hybrid decoder performed slightly better than spikes (P < 0.05),

whereas it did not perform significantly better than LFPs (P = 0.22). The differences

between spike- and LFP-decoders were not significant (P = 0.30). For PMv signals,

both LFP- and hybrid decoders outperformed spikes (P < 10−6 and P < 10−7, respec-

tively). The differences between the LFP- and hybrid decoders were not significant

(P = 0.47).

Decoding performance for individual muscles are shown in Fig. A.4. The data shown
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Figure A.3: M1 vs. PMv decoding with Wiener-150 cascade model. (a) Performance

comparison for different types of decoders in M1 and PMv, separately. (b) Performance

comparison for same type of decoders between M1 and PMv. Results for long training

datafiles are only shown. Data averaged across muscles and datafiles. Box symbols the

same as in Fig. 4.2.

are averaged across datafiles, except for muscle ‘Bic’, for which only one recording

session was available.
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Figure A.4: M1 vs. PMv decoding with Wiener-150 cascade model for individual

muscles. Data averaged across datafiles. For muscle ‘Bic’ data from only one recording

session were available. Box symbols the same as in Fig. 4.2.



Appendix B

Wiener cascade model

B.1 Relative information in LFP frequency bands for in-

dividual muscles

In this section, the decoding performance of Wiener cascade decoders trained on single

frequency bands (or the LMP), is shown for individual muscles. The mean results over

muscles are presented in Fig. 4.6 and Table 4.1.

Additionally, example EMG predictions from different frequency bands for a 10-sec

segment of activity of the FDP muscle, are shown in Fig. B.2.
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Figure B.1: Single-frequency band decoding performance with Wiener cascade model

for individual muscles. For muscle ‘Bic’, only one recording was available. Box symbols

the same as in Fig. 4.2.
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Figure B.2: Example EMG predictions with single-frequency bands for muscle ‘FDP’

and datafile ‘Block-57’.



Appendix C

LASSO/elastic net

C.1 Comparison of LASSO and elastic net

In this section, we present a comparison of the decoding performance of LASSO and

elastic net, for spike- and LFP-decoders, and show that they produce very similar

predictions. The two algorithms yielded very similar results in both cases (P = 0.99

for spikes; P = 0.62 for LFPs; paired t-tests).
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Figure C.1: Comparison of decoding performance between LASSO and elastic net.

Data averaged across muscles and datafiles. Box symbols the same as in Fig. 4.2.

46



Appendix C. LASSO/elastic net 47

C.2 Variable selection with LASSO/elastic net

In this section, we evaluate the variable selection performed by LASSO/elastic net.

For large training datasets (Fig. C.2(a)), larger values were assigned to the high and

mid-high LFP frequency components, which conveyed more information about muscle

activity than the low and mid-low frequency bands (Table 4.1 and Fig. 4.6). On the

other hand, for short training datasets, this selectivity was less obvious (Fig. C.2(b)),

which might explain the poor performance of the algorithm in that case.
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Figure C.2: Variable selection with LASSO/elastic net. Colour bars represent weight

values assigned to input variables. Results shown for 9 mins (a) and 3 mins (b) of

training data. Data averaged across datafiles. Horizontal axis, time bins (length 51.2

ms); vertical axis, frequency bands, as in Section 3.4.1.
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