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ABSTRACT

This dissertation discusses three problems from different areas of medical re-

search and their machine learning solutions. Each solution is a distinct type of de-

cision support system. They show three common properties: personalized health

care decision support, reduction of the use of medical resources, and improvement of

outcomes.

The first decision support system assists individual hospital selection. This

system can help a user make the best decision in terms of the combination of mortality,

complication, and travel distance. Both machine learning and optimization techniques

are utilized in this type of decision support system. Machine learning methods, such as

Support Vector Machines, learn a decision function. Next, the function is transformed

into an objective function and then optimization methods are used to find the values

of decision variables to reach the desired outcome with the most confidence.

The second decision support system assists diagnostic decisions in a sequential

decision-making setting by finding the most promising tests and suggesting a diagno-

sis. The system can speed up the diagnostic process, reduce overuse of medical tests,

save costs, and improve the accuracy of diagnosis. In this study, the system finds the

test most likely to confirm a diagnosis based on the pre-test probability computed

from the patient’s information including symptoms and the results of previous tests.

If the patient’s disease post-test probability is higher than the treatment threshold, a

diagnostic decision will be made, and vice versa. Otherwise, the patient needs more

tests to help make a decision. The system will then recommend the next optimal test

and repeat the same process.

The third decision support system recommends the best lifestyle changes for

an individual to lower the risk of cardiovascular disease (CVD). As in the hospital



2

recommendation system, machine learning and optimization are combined to cap-

ture the relationship between lifestyle and CVD, and then generate recommendations

based on individual factors including preference and physical condition. The results

demonstrate several recommendation strategies: a whole plan of lifestyle changes, a

package of n lifestyle changes, and the compensatory plan (the plan that compensates

for unwanted lifestyle changes or real-world limitations).
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are utilized in this type of decision support system. Machine learning methods, such as

Support Vector Machines, learn a decision function. Next, the function is transformed
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recommendation system, machine learning and optimization are combined to cap-

ture the relationship between lifestyle and CVD, and then generate recommendations

based on individual factors including preference and physical condition. The results

demonstrate several recommendation strategies: a whole plan of lifestyle changes, a

package of n lifestyle changes, and the compensatory plan (the plan that compensates

for unwanted lifestyle changes or real-world limitations).
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CHAPTER I

INTRODUCTION

Tens of thousands of Americans die each year due to errors in the health care

system, and tens of thousands suffer from nonfatal injuries due to the same cause [62].

Health IT Framework [93] proposes several strategies, such as IT adoption, collabo-

ration, and informed consumer choice of clinicians and institutions. Electronic health

record (EHR) adoption is one of the most important steps because it facilitates the

development of new tools for error prevention, cost reduction, and health promotion.

More and more decision support systems (DSSs) have been designed to help

clinicians. These DSSs store and use knowledge when a query comes in. The knowl-

edge of these DSS tools usually comes from the direct input from human experts,

for example, rules. The proposed DSSs gather knowledge automatically, and use

optimization methods to return appropriate answers to queries.

This dissertation explores the use of electronic health record (EHR) with new

data mining techniques and discusses solutions for three distinct types of health care

problems. They are DSSs constructed by machine learning (ML) methods. They show

the potential of machine learning to facilitate personalized health care, to reduce the

use of health resources, and to improve outcomes.

The first project is individualized hospital referral [22]. Appropriate hospital

selection can reduce the risk of suffering (e.g., death, complications). A hospital-

referral decision based on the integration of individual and institutional variables

not only estimates individual risk in an institution but also addresses the trade-off

problem when deciding the most appropriate hospital, e.g., trade-off among several

desired targets, such as survival, complication, travel distance, length of stay, cost,

and other factors that relate to hospital referral decision. For example, the system

shows a patient’s survival and complication probabilities of each hospital and their
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travel distances for a user who wants to find the best local hospital. The system will

be discussed in Chapter III.

The second project is the cost-effective diagnosis problem [20]. In order to

achieve the goal of cost-effective diagnosis, a good balance of diagnostic accuracy,

testing cost, and the duration of diagnosis is very important. For this problem, a new

method is proposed to optimize the diagnosis based on individual pre-test probability

of disease and each test’s contribution and cost. Diagnosis can be made when a

patient’s probability of the disease of interest crosses the treatment/non-treatment

threshold. Testing cost and the number of tests can be significantly reduced while

the diagnostic performance remains high, and sometimes improves. The system will

be discussed in Chapter IV.

The third project is individualized lifestyle recommendations. One may lower

the risk of CVD through appropriate selection of nutrition and lifestyle. For example,

Lichtenstein et al. [66] provided recommendations of diet and lifestyle for the whole

population. Compared to population recommendations, individualized recommen-

dations have several advantages. First, the recommendation is given based on the

current status of an individual. For example, the recommendation for an athlete, a

vegetarian, and a meat or a fish lover should vary because they may have different

needs of nutrition. Second, the recommendation can be constructed based on one’s

preference. For someone who doesn’t have time for exercise, the recommendation

may add certain nutrition or other lifestyle to compensate for exercise. Third, the

system can measure personal risk reduction. The resulting system has the potential

to provide a flexible and a customized lifestyle recommendation. The system will be

discussed in Chapter V.

In general, this dissertation shows that machine learning can solve many health

care problems at the individual level and, thus, provide flexible recommendations.

This dissertation discusses the relevant literature in Chapter II. The methods and
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results for each problem are discussed in Chapters III to V. A conclusion and future

work are discussed in Chapter VI.
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CHAPTER II

LITERATURE REVIEW

This chapter discusses expert systems (Section 2.1), relevant machine learning

(ML) topics (Section 2.2), and the use of ML in expert system design (Section 2.3).

Finally, we discuss current decision support systems in health care (Section 2.4).

2.1 Expert Systems

An expert system is defined as “a computer program that represents and reasons

with knowledge of some specialist subject with a view to solving problems or giving

advice” [58]. It usually consists of a knowledge source and a mechanism for problem

solving that returns a response based on the information provided by the query. The

knowledge source of most expert systems (e.g., knowledge-based systems (KBS), fuzzy

expert systems) is based on direct input from domain experts and evidence from the

literature. As an early example, MYCIN [87] provides diagnostic and therapeutic

recommendations. The knowledge in MYCIN is stored in the form of rules, which

were elicited from infectious disease experts. The process of transforming human

knowledge to machine-usable form is called knowledge acquisition and is considered

a bottleneck [41] because it is time- and labor-intensive. In addition, maintaining the

knowledge base is very labor-intensive [100, 25].

Other systems use techniques such as case-based reasoning and machine-learning

methods for inference, and are thus based exclusively on data. They can avoid the

knowledge acquisition problem, e.g., case-based reasoning (CBR) as described in [99].

In CBR, the knowledge consists of previous cases, including the problem, the solution,

and the outcome, stored in a central location, called the case library. To obtain the

solution for a new case, one simply identifies the case that is most similar to the

problem in the case library, and the proposed solution can be adapted from the
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retrieved case.

Similar to case-based systems, ML-based expert systems can avoid the bottle-

neck of knowledge acquisition because knowledge is directly obtained from data. In

addition, ML-based expert systems are able to give recommendations that are gen-

erated by non-linear forms of knowledge, and are easily updated by simply adding

new cases. This dissertation shows an application of an ML-based expert system that

uses a non-linear form of knowledge and optimization techniques to guide selection

of hospitals, diagnostic testing sequences, and lifestyles.

2.2 Machine Learning

Machine learning is an area of artificial intelligence that uses algorithms to, for

example, improve performance over time, or find patterns in data [37]. This disserta-

tion applies new algorithms to discover useful information for three different health

care problems. Generally, machine learning methods can be classified as supervised

and unsupervised methods [36]. Supervised methods are trained with labeled data;

that is, cases that have known outcomes. Decision functions, which result from the

training process, can transfer variable values into predicted scores or labels. We

examine prediction performance by comparing with true labels, which is a process

called validation. In order to implement this idea, one needs to divide a dataset into

two subsets, one for training and the other one for testing (or comparing). A better

validation method with low variance, low bias, and easy computation properties is

called n-fold cross-validation [37], which uses n− 1 partitions of the data for training

and one fold for testing and repeats the process for n times. Unsupervised methods

learn from unlabeled data, and group data based on similarity. The machine learning

methods discussed in this dissertation focus on the first type.

The decision functions of supervised learning methods constitute the knowledge

that is mined from data. With an appropriate design, we can apply these functions to
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many problems, for example, prediction, word recognition, movie recommendation,

etc. This dissertation discusses and explores new usage of decision functions in med-

ical decision making and introduces several topics of machine learning that relate to

the three DSSs in this section.

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) [97] are well-known for solving high-dimensional

prediction problems and providing good generalization. The training process of SVMs

can be expressed as the quadratic optimization problem.

minimize
W,ε

〈W ·W 〉+ C(
l∑

i=1

εi)

subject to
yi(〈W · xi〉+ b) ≥ 1− εi, i = 1, . . . , l,

εi ≥ 0, i = 1, . . . , l.

(2.1)

where W is weight vector, εi is the error of training case i, y is the class label, x is

the data for training, and b is the bias term for the decision function.

The objective function enables the training process to generate a predictive

model with minimized training error ε and maximized margin r, where r = |f(x)|
‖W‖ and

f(x) is a decision function. Maximizing r is mathematically equivalent to minimizing

‖W‖.

In the ideal situation, the label y (1 or -1) times the decision function 〈W · xi〉+b

of a training case should always be greater than one. However, for most data, this is

infeasible. Therefore, the error term ε is introduced to tolerate the above infeasibility.

Optimizing both error and margin enables the predictive model to avoid the

over-fitting problem so that the model can generalize well to unseen data. The pa-

rameter C can balance training error and margin.

To solve the optimization problem, the formulation is transformed to dual form
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(Equation 2.2). α is a Lagrange multiplier, and K(xi, xj) is a kernel function. The

kernel function is very important in solving problems with high dimensions. For

example, consider a problem in which the input space has three dimensions x1, x2, and

x3. We transfer them into a high-dimensional feature space x1, x2, x3, x
2
1, x1x2, x2x3,

x1x3, x
2
2, x

2
3. . . to produce a non-linear model. When the number of input features is

large, the computation will be very slow. The computation of space transformation

can be ignored by using the kernel function so that the computation of non-linear

decision functions in SVM is very efficient.

maximize
α

l∑
i=1

αi −
1

2

l∑
i,j=1

yiyjαiαjK(xi, xj)

subject to

∑l
i=1 yiαi = 0

0 ≤ αi ≤ C, i = 1, . . . , l.

(2.2)

SVMs have been successfully used in several areas such as face detection and authen-

tication, object detection and recognition, handwritten character recognition, speaker

recognition and speech recognition, information and image retrieval, and data con-

densation [17].

2.2.2 Predicting Probabilities (Calibration)

Although SVMs can classify well, the output scores are not probabilities. Scores

can not be interpreted as the chances of membership in the class. For example, a

score can predict the degree of survival of a patient, but the score cannot show the

probability of survival among all patients. The range of SVM output scores is [−a, b],

where a and b depend on the specific problem. In addition, to rank predicted scores

from different SVM classifiers is inappropriate.

A forecaster is well-calibrated if the predicted probability is close to the empiri-

cal class membership probability [28, 105]. The quality of calibration can be analyzed
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by a reliability diagram [28]. In this diagram, the prediction space is separated into

10 bins. Cases with values between 0 and 0.1 are located in the first bin, cases with

the values 0.1 to 0.2 are located in the second bin, etc. Then we calculate and plot

the point of the proportion of positive cases against the average predicted probability

for each bin. If the forecaster is well calibrated, all points should be close to diagonal

line.

The output scores of an SVM tend to be away from the extreme ends. The

predicted points would form a sigmoid shape on the reliability diagram and a good

calibration method can adjust the sigmoid shape to a near-diagonal line on the dia-

gram [77]. Platt [82] used a sigmoid function to calibrate SVM scores. The raw SVM

scores are transfered into posterior probabilities by

P (y = +1|d) =
1

1 + exp(Ad(x) +B)
. (2.3)

The parameters A and B are trained from the negative log likelihood of the data,

which is a cross-entropy error function (2.4). Platt suggests using an independent

calibration set to train this function instead of the dataset that has been trained with

the SVM classifiers. If we use the same dataset, most raw SVM scores are either 1 or

-1, and bias will be introduced. The objective function is

minimize
A,B

∑
i

tilog(pi) + (1− ti)log(1− pi) (2.4)

where pi = 1
1+exp(Ad(xi)+B)

and

ti =


N++1
N++2

, if yi = +1

1
N−+2

, if yi = −1 .

where N+ is the frequency of the data point with yi = +1 and N− is the frequency
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of the data point with yi = −1.

Validation is difficult in recommendation systems [58] (e.g., hospital-referral

and lifestyle decision support systems). This is because we cannot know the gold

standard after recommendations. Patients in a dataset never received the system’s

recommendations. The dataset provides only patients’ original actions, and we would

like to know whether or not performing the recommended actions from the system

can improve outcomes, e.g., if switching from the originally-chosen hospital to the

recommended hospital can improve the chance of survival. We compare predictive

probabilities (by Equation 2.3) of both hospitals.

The calibration method also enables comparison across classifiers that are trained

with different sets of variables. In Chapter IV, we need to compare tests with the

same known information one at a time. Each classifier is trained with a test and

the known information. Ranking scores from classifiers trained with different subsets

are inappropriate because the scale of each classifier varies. The calibration method

enables the comparison because the range of the scale is standardized.

2.2.3 Learning with Costs of Misclassification and At-
tributes

Most supervised learning methods focus on minimizing misclassification errors.

In certain situations, the misclassification error is not the only concern. For example,

the cost of misclassification may be very small and the cost of introducing an attribute

to improve the classification very high. Several criteria for machine learning can be

expressed as costs [95], such as misclassification, attributes, instances, etc. Among

them, the costs of interest are costs of diagnostic tests and misclassification.

In diagnoses, we want to minimize the costs of medical tests and maximize the

diagnostic power (or minimize the misclassification cost). This is the important goal

of triage because we want to sort patients accurately based on risks. Finally, we can

reduce time and medical resources and diagnose correctly.



10

The misclassification cost of different classes usually varies in real life. For

example, the misclassification cost of diagnosing a patient with a serious disease as

healthy is far more than diagnosing a healthy patient as ill. A cost-sensitive classifier

[35] was originally formulated to treat misclassification of different classes unequally

and uses different costs to construct the model. When learning, a cost-sensitive

classifier pays more attention to the class with a higher cost in order to reduce the

chance of misclassifying this class. Studies such as [94, 69, 18, 68, 107] not only

considered different misclassification costs but also test cost for the medical diagnostic

problems. They explicitly minimize both type of costs in specialized classifiers, such

as decision trees. Minimizing both costs results in trade-off choices.

A very similar research area considering cost, misclassification, and attributes is

active learning. These learning approaches (e.g., [85, 106, 72, 60]) automatically ac-

quire feature values, instances, and/or class labels to reduce the cost of data collection

and obtain maximum information.

This dissertation proposes a novel machine learning approach to maximize di-

agnosistic accuracy by selecting an appropriate individual sequence of tests. In other

words, one can be diagnosed with a minimum number of tests (and minimum cost)

when following the individual testing order. This approach significantly reduces the

cost of tests (and number of tests) without sacrificing (while sometimes improving)

diagnostic performance. This approach is an instance-based (the model specifically

constructed for an individual) learning algorithm that selects a testing sequence based

on an individual’s pre-test (prior) probability and given treatment (or non-treatment)

thresholds.
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2.2.4 Feature Selection

The purpose of feature selection is to reduce the number of predictive features

used in the model while improving or without degrading performance. A large num-

ber of features causes several problems. The first problem is the cost of computation.

When the number of features is high, the computation time and space will rise dra-

matically. The problem becomes intractable for some simple induction algorithms.

Another problem is the generalization of predictive performance. Complexity in-

creases with the number of features, and high complexity may result in over-fitting

because too many features may be redundant or misleading. In addition, a large

number of features requires a lot of storage space and may increase the cost of data

collection.

An example of feature selection is in the area of gene selection. We want to know

what genes relate to different health states. Gene expressions are variables whose size

may range from 6000 to 60000, for both healthy and diseased patients [47]. Feature

selection can reduce the number of variables to a few thousand.

John et al. [59] classified feature selection techniques as either filter or wrapper

models. The filter model is a preprocessing step to induction methods. Feature

ranking is an example of filtering. In feature ranking, we use a function independent

of the induction method to rank features based on scores. For example, features can

be ranked by the Pearson correlation coefficients, R(i) = cov(Xi,Y )√
var(Xi)var(Y )

, where X is

the variable set, Y is the class label, and i indicates the variable of interest. We can

also build several single-variable classifiers, and rank classifiers (features) based on

error rates.

In wrappers, the induction method is used in the feature selection procedure.

Examples of wrappers are forward selection and backward elimination [59]. Both are

greedy search methods in the space of possible feature subsets. In forward selection,

we start with an empty set for the model and add the most promising feature to the
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model in each iteration. In backward elimination, we start with a model full of all

features, and eliminate the least promising feature in each iteration. Other examples

of wrappers include using heuristic search methods, such as genetic algorithms, to

find the most promising feature subset [96].

Another group of feature selection techniques use embedded methods [47]. Sim-

ilar to wrappers, the prediction model is involved; however, we do not need to retrain

with every subset of features, as the learning objective is changed to explicitly in-

clude a cost for including features. An example is sensitivity analysis. We use the

magnitude of change of the cost function caused by removing a feature (setting the

weight to zero) to rank features.

Direct objective optimization is in the family of embedded methods. The opti-

mization of the model construction directly includes feature selection. For example,

the model construction of [14, 81] includes optimization of a loss function and a reg-

ularizer. The regularizer is l1 norm, which can force a subset of weight to zero. The

objective function is

CF =
1

m

m∑
i=1

L(yi, fi) + λ
n∑
j=1

|wj|p , (2.5)

where L is the loss function, wj represents the weight of a feature, and p = 1 in the

regularizer.

In this objective function, we want to have the minimum CF . Although intro-

ducing a nonzero weight can decrease the loss function, the penalty of the regularizer

will increase CF . Therefore, we only keep the weights whose reduction of the mean

loss outweighs the penalty of regularizer. Because of the efficiency of obtaining feature

subsets, direct objective optimization was applied to online feature selection (OFS)

[81]. In this scenario, we assume that features come at different time points. Without

examining every subset of features when a new feature comes in, the OFS model
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directly returns the best subset model seen so far.

Many researchers [1, 102] have used unequal feature weights to conduct feature

selection for lazy learning algorithms. Lazy learning methods, such as k-nearest

neighbor, use distance functions to decide the predicted label for a query case. When

feature weights are equal, irrelevant features can destroy predictions. Hence, assigning

weights to features based on relevance to the class labels is an alternative form of

feature selection.

These feature selection methods select one set of features for all data points,

which is a global strategy. Local variants create multiple sets of features for different

data points. This local strategy examines local regions of the case space because

the relevance of features may vary across different clusters of cases [2]. The most

extremely local strategy uses one set of features for each instance. For example,

Domingos [34] uses a clustering-like approach to select sets of locally relevant features.

The feature-weighted methods also use different weighted sets for different instances

or classes. For example, Howe and Cardie [52] use class distribution weighting to

compute a different weight vector for each class, and Park et al. [79] use Artificial

Neural Networks (ANNs) to compute the feature weights for an instance.

These local feature-selection techniques can select relevant features for an in-

stance, in which the order of including features is not a concern. For the sequential

diagnosis problem, we assume that a query is a new patient, such that each medical

test can be seen as a feature whose value is initially unknown. Feature-selection tech-

niques may identify at the outset all important features that one needs to characterize

a patient. In the sequential diagnosis scenario, one needs to select tests sequentially

and dynamically because one needs to determine whether more evidence is needed or

a diagnosis can be made, especially when the test or the cost of outcome is very ex-

pensive. In addition, various feature subsets may result in different optimal selection

of a feature, i.e., the optimum selection of a feature may be influenced by features at
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hand [48]. Thus, recursively including one test at a time may be better than including

all relevant tests simultaneously.

In this dissertation, we propose a new feature-selection technique called Locally

Temporal Feature Selection (LTFS). LTFS is a local feature-selection technique for

one instance (query patient) that recursively determines the most relevant feature

based on the current subset of features and their values. In other words, the next test

is determined based on the known information at hand, e.g., symptoms and previous

test results. Once the treatment threshold (the probability threshold that determines

whether a patient has a disease) is reached, the LTFS algorithm stops. The criteria

used to select a test include the relevance of a feature and the associated cost; these

criteria are implemented in speed-based and cost-based objective functions, which

will be discussed in Section 4.1.3.

2.2.5 Lazy Learning

Lazy learning – also called instance-based, case-based, or memory-based learn-

ing – builds a prediction model specifically for the query case. For example, a k-NN

classifier finds the k closest training cases to decide the label for the query case. Lazy

learning algorithms show three types of properties [3]. First, the classifiers defer pro-

cessing of the output until a query case appears. Second, their responses combine the

training with the query information. Third, they discard the constructed answer and

any intermediate results.

Eager learning algorithms, such as SVMs and decision trees, have different prop-

erties from lazy learning. Eager learning algorithms compile the data in advance and

use it to construct a predictive model. They use this global model to give responses

to all queries. Thus, the compilation process is called training, which is unnecessary

in lazy learning methods. Instead of training, lazy learning algorithms need to store

all the training cases.
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We can also apply the idea of lazy learning to decision tree algorithms. For

example, the case-specific decision tree assigns training cases with the same feature

value as the query case recursively during the training process [43]. There is also

lazy version of cost-sensitive decision tree. For instance, [68] assigns the attribute

costs of the known attributes of the query to be zero because known attributes are

patient-specific information. As a result, tests with the known values are very likely

to appear at the top of the trees.

An alternative form of lazy learning is locally-weighted learning [6]. Instances

are weighted based on the distance to a query point. The lazy learning property can

be demonstrated in two forms, weighting the data directly and weighting the error

criterion. Weighting the data directly can be seen as voting with unequal weights,

which is

ŷ(q) =

∑
i yiK(d(xi, q))∑
iK(d(xi, q))

, (2.6)

where ŷ(q) is the predicted label of the query point q, i ∈ all training data points.

xi is the ith training vector with the label yi. K is the weighting function based on

the distance function d. The labels of closer points can be weighed more highly than

distant points. This is very similar to k-NN, but we do not need to decide the number

of k.

Instead of weighting instances, the second format of locally-weighted learning

weighs the error function based on instances. The general format is

P =
∑
i

[L(f(xi, w), yi)K(d(xi, q))], (2.7)

where L is the loss function for the predicting function f(xi, w), and w is the param-

eter vector for the predicting function. The objective of training is to minimize P .



16

After training, the closer points will have less training error and vice versa.

Chapter IV discusses the second format, lazy SVM. The advantage of lazy SVM

is accuracy improvement because the predictive model is more patient-specfic as more

test results become known. Chapter V discusses more detail about k-NN classifiers

as they are used as prediction models in the lifestyle recommendation project.

2.3 Combination of Expert Systems and Ma-
chine Learning

The ways to use machine learning in expert systems are very limited [8, 58].

Most methods that can provide help are rule induction approaches. These approaches

are limited to deriving rules, evaluating rules, and optimizing the performance of rules

[58] for expert systems.

However, with an appropriate design, one can directly turn machine learning

algorithms into expert systems. Machine learning approaches are renowned for knowl-

edge discovery. They can model real world problems using decision functions that

exist in the form of mathematical equations, rules, or decision trees. These methods

can predict well and provide useful information. For example, SEAS [101] can provide

prediction for business actions whose classifiers are trained with low cost information.

Using a mathematical form of knowledge has the advantages of stability, observ-

ability, and controllability [56, 73]. However, capturing a complex real-world model

using a mathematical equation is difficult. When the real-world problems can be

modeled by mathematical equations, we can use several optimization approaches to

decide actions. For example, Liau et al. [65] devised an expert system for a crude oil

distillation unit to help control the parameters to maximize the oil production rate.

In another example, Song et al. [90] used an expert system to find the optimal control

settings to maximize the boiler’s performance.

Generally, the types of solutions that can be structured by expert systems can
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be divided into selection and construction [23]. For selection, several action sets

have been pre-determined, and the solution is the most promising action set. On

the other hand, construction needs to construct a set of actions from scratch. In

order to avoid infeasible solutions, constraints can regulate the solution construction.

In the hospital-selection problem, each hospital has a unique set of characteristics

(pre-determined action set). Deciding the most promising action set is equivalent to

selecting the best hospital, so it is a selection problem. The problem in the healthy

life-style project is construction. There are no pre-determined lifestyles options, so

we have to generate and evaluate possible options of lifestyle (e.g. the combination

of cholesterol, total fat, weight, and exercise in different amount) and determine the

one that maximally reduce one’s cardiovascular disease risk.

2.4 Decision Support Systems in Health Care

The idea of decision support has been widely accepted in health care, starting

from a simple database query to complex treatment recommendation. The devel-

opment of clinical decision support systems (CDSSs) have drawn much attention.

The scientific literature provides the major source of knowledge accompanied by local

and practiced-based evidence [88]. The knowledge of CDSSs exists in the form of

guidelines. There are four areas in the process of developing a guideline-based de-

cision support system [27]. The first area is guideline modeling and representation.

This area focuses on the representation of a guideline, e.g., the form of expression,

knowledge type, maintenance, local adaptation, etc. The second area is guideline

acquisition, which is a process that facilitates the knowledge acquisition process di-

rectly from a domain expert. The third area is guideline verification and testing.

This process aims to ensure the machine-interpretable guideline is unambiguous and

syntactically as well as semantically correct. In addition, we need to test guidelines

using existing patient data. The final process is guideline execution, which focuses
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on the execution time and ensures the guideline engine can run in multiple clinical

domains and in various modes. Examples of the guideline-based decision support

systems are Arden Syntax [24], GuideLine Interchange Format [78], and PROforma

[42].

An alternative approach to guideline-based approach is machine learning, e.g.,

artificial neural networks or support vector machines. Lisboa et al. [70] provides a sys-

tematic review of these approaches that provides decision support in cancer. Instead

of the required process from guideline modeling to execution, these approaches gain

knowledge automatically from clinical data and then use the knowledge to provide

decision support.

CDSSs provide several functions to assist medical decisions. Medication-related

CDSS [63] can provides basic and advanced decision support. Basic decision support

includes drug-allergy checking, basic dosing guidance, formulary decision support,

duplicate therapy checking, and drug-drug interaction checking. Advanced decision

supports includes dosing support for renal insufficiency and geriatric patients, guid-

ance for medication-related laboratory testing, drug-pregnancy checking, and drug-

disease contraindication checking. Thus, CDSSs can help to reduce medication error

rate, prescribing behaviors, corollary orders, etc. [61]

CDSSs seem very helpful in supporting medical decisions, but it is difficult

to get health providers to actually use them, so Bates et al. [9] summarizes ten

rules for sucessful implementation of CDSSs. These rules are: 1. speed of providing

recommendation; 2. anticipate needs and deliver in real time; 3. fit into the user’s

workflow; 4. little things can make a big difference (usabilty matters); 5. recognize

that physicians will strongly resist stopping (suggestions) (need to provide alternative

options to avoid resistance); 6. changing direction is easier than stopping; 7. simple

interventions work best (fit a guideline on a single screen); 8. ask for additional

information only when you really need it; 9. monitor impact, get feedback and
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respond; 10. manage and maintain your knowledge-based systems.

Decision support systems are also used in other domains of health care. For

example, Bravata et al. [15] summarizes surveillance systems for early detetion of

bioterrorism-related diseases. Integration of Geographic Information Systems (GIS)

and health care allows describing and understanding the changing spatial organization

of health care, examining the relationship between health outcomes and access, and

exploring how the delivery of health care can be improved [71].
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CHAPTER III

HOSPITAL-REFERRAL EXPERT SYSTEM

Hospital referral criteria usually come from research studies and personal experi-

ence. Many researchers have examined the relationship between outcomes of hospitals

and various institutional characteristics. In particular, a large number of studies have

related the volume of hospital surgical procedures to decreased in-hospital mortality

[49, 51, 44, 11].

Likewise, teaching hospitals have been shown in several studies to have lower

in-hospital mortality [64, 7]. Chen et al. [19] concluded that hospitals participating

in the JCAHO survey process reported superior quality and outcomes. Elixhauser

et al. [38] and others have reported that staffing affects quality. Among these insti-

tutional characteristics, the volume of patients or procedures is the most consistent

predictor of in-hospital mortality and is broadly used as a hospital selection criteria.

Although the volume-outcome relationship holds for a number of complex surgeries,

the magnitude of association varies across procedures [11, 49]. Both “practice makes

perfect” and “selective referral” appear to play a role in the volume-outcome relation-

ship [54]. Usually, large institutions have favorable characteristics, such as technical

sophistication and more staffing, and they are usually preferred for referral.

Although surgical volume is a strong predictor of outcomes, the usage of this

indicator is sometimes criticized. Nallamothu et al [76]. explained three reasons

that the quality of high-volume hospitals looks better than low-volume ones. First,

low-volume hospitals may be less inclined to turn down high-risk cases. Second,

large-volume hospitals attract more cases through health provider referral or self-

referral. Third, patients with opportunity and desire to be referred may be healthier

because of several factors. These reasons can help to explain variations in the volume-

outcome relationship. Many low-volume centers have very good performance, while
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some high-volume hospitals have poor performance because volume is an imperfect

proxy measure of quality [33, 54, 11, 49].

While many of these studies examine only one or two predictive variables, for

practical usage, a good hospital referral decision should consider numerous factors,

specifically including geography. Some medical situations are time-critical, and trans-

portation time plays a very important role in outcomes. For patients living in rural

and underserved areas, distance is often the most important concern when select-

ing a hospital. Even for non-emergency conditions, proximity is highly desirable.

Therefore, several studies [12, 32, 33, 76] have shown that patients often prefer local

higher-risk hospitals over traveling to lower-risk hospitals. Geographic factors may

influence the effect of institutional predictors. Ward et al. [98] indicated that the

volume threshold suggested by The Leapfrog Group [46] does not perform well in a

largely rural state. Other factors, such as a patient’s physical condition, should also

be considered. Glance et al. [45] stated that the risk reductions of high- and low-risk

patients in different volume hospitals vary. If we considered the distance to an institu-

tion, the hospital-referral recommendation for a healthier patient and a sicker patient

can be dramatically different. A good hospital referral recommendation considers

not only institutional but also patient factors, including the travel distance a patient

can tolerate, and the patient’s risk factors. Not surprisingly, it is challenging to give

hospital-selection advice that considers these multiple complex and interdependent

issues.

Some practical problems may arise if we consider only institutional factors.

For example, should an acute myocardial infarction (AMI) patient go to a mid-size

teaching hospital with JCAHO accreditation 20 miles away or a large-volume non-

teaching hospital 40 miles away? The Leapfrog Group [46] suggested that a good

hospital would have a procedure volume greater than 450 for coronary artery bypass

graft (CABG) surgery. Should an 70-year-old AMI patient with congestive heart
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failure and diabetes who needs an emergency CABG choose a hospital with CABG

procedure volume of 300, thirty miles away or another hospital with CABG procedure

size of 450, forty miles away? How about a younger and healthier patient who is not in

an emergency situation but needs surgery? Obviously, the answers would be different

for different people. It is hard to tell which hospital is better when we consider only

institutional characteristics. The hospital referral problem is even more complex if we

add other practical concerns, such as insurance coverage and estimated charge during

a hospital stay.

The purpose of this project is to apply Prediction and Optimization-Based De-

cision Support System (PODSS) to minimize these trade-off problems by customized

hospital-selection decision support. The system can find the best match between a

patient and a hospital based on characteristics of both and the patient’s preference

or consideration (e.g., the distance that doesn’t incur a risk).

3.1 Method

There are a series of stages in the Prediction and Optimization-Based Decision

Support System (PODSS) algorithm. As illustrated in Figure 3.1, the algorithm relies

on classifiers to capture knowledge. This step is the same as training a prediction

model. In this project, the model is a Support Vector Machine (SVM). Independent

and dependent variables are required to train the model. The output score of the

prediction model, which we convert to a probability (described in Section 2.2.2), can

be interpreted as the confidence level of the desired class prediction. The purpose of

optimization is to maximize the confidence level of the desired class label (e.g., the

class value is either survival or decease and the desired value is survival) by selecting

the best hospital.
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3.1.1 Prediction and Optimization-Based Decision Sup-
port System (PODSS)

Figure 3.1: The PODSS process to capture and apply knowledge

This expert system is constructed by the PODSS algorithm, (illustrated in Fig-

ure 3.1 ). This algorithm consists of three major parts: the prediction model, the

optimizer, and the validation map. As most prediction problems, a classifier is trained

with labeled data. The binary labels are assumed to be desired and undesired out-

comes, e.g., survival or not. The predicted scores can be seen as confidence. When

we change the values of a subset of variables, the confidence will be different. Thus,

we can use an optimizer to optimize the confidence of the desired label and decide

what actions should take.

In many situations, we prefer probabilities over scores. A calibration method can

transfer scores into probabilities. The calibration method can also provide indirect

validation; therefore, it is called the validation map. Through this map, we can

observe whether or not the change of actionable variables can influence the outcome.

Independent variables that can change and move a point are called controllable

(changeable) variables, and variables that can not change are called uncontrollable
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Figure 3.2: Separating hyperplane with maximum margin created by a support vector
machine. + and - represent the class of each data point. We assume + is the desired
result (survival). The decision function, d(x) =

∑n
i=1 yiαiK(x, xi) + b, can decide

the location of a point as the prediction result. We can improve the probability of a
point being positive by improving the decision value, d(x), of this point , for example,
moving the point A- to A+ or A*.

(unchangeable) valuables. For example, consider a model using age, sex, and life style

to predict health. We can only change lifestyle to improve health. To be meaningful,

the selected controllable variables should have causal relationship with outcomes. The

recommendation is made based on these controllable variables.

In the point-movement scenario (Figure 3.2), a recommendation problem be-

comes an optimization problem, and the decision function turns into the objective

function. In the optimization formulation, the controllable variables are the decision

variables. When maximizing the decision function, a point can be moved toward

the desired outcome maximally and the confidence of the desired outcome is max-

imum. Decision variables are the recommended action(s). The decision function is

the knowledge source, and the optimization method is the mechanism for problem

solving, which returns a customized recommendation based on the query’s individual
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information.

The optimization should provide a feasible recommendation. If the way to gen-

erate answers is selection, we simply provide feasible choices of solutions, and the

optimizer will select the best one. In the selection problem, we can use exhaustive

search or heuristic search (depending on the size of the solution space) to find the

solution. When the way to obtain the answer is construction, the optimizer needs

to construct an answer. In this case, mathematical programming can construct the

answer. Without any constraint, the optimum recommendation may be infeasible in

the real world. In order to solve this problem, the optimum answer should be sub-

jected to certain constraints provided by human knowledge. Thus, expert knowledge

can be incorporated into the optimization process.

Constraints can come from users or designers. A user may provide personal

preference as a constraint through communication with the system. For example, after

a user gives the maximum travel distance, all returned hospitals are constrained to

be shorter than or equal to this maximum distance. A designer can prevent infeasible

solutions through constraints. For example, if one uses PODSS to recommend drugs,

the constraints of preventing drug interactions are necessary.

3.1.2 Dataset and Variables Design

The 2004 State Inpatient Dataset (SID) for Iowa from the Agency for Healthcare

Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP) [50]

was used in our study. There are almost 360,000 discharge records in the SID. For this

project we chose to build a hospital referral algorithm for patients with a principal

diagnosis of acute myocardial infarction (AMI) with ICD-9-CM codes of 410.01 to

410.91.

We selected AMI for several reasons. First, it is relatively common and easy

to identify in the datasets. Second, the outcomes of interest, including mortality,
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are also relatively common which facilitated model building. Third, AMI in-hospital

mortality is being introduced by the Centers for Medicare and Medicaid Services as a

required publicly-reported performance indicator for all hospitals, thus the algorithm

described here could find application in the near future. While we use AMI for this

first demonstration, the algorithm can be easily modified to work with nearly any

disease of interest where referral is an issue.

The SID can be linked to hospital descriptive data from the American Hospi-

tal Association (AHA) [4] by a hospital identification number. There are 116 non-

federal acute-care hospitals in Iowa. The SID contains zip codes for each patient

and hospital, which permit the Euclidean distance between a patient and any hospi-

tal to be computed. The location (longitudinal and latitudinal) data was retrieved

from http://www.brainyzip.com/. The distance estimation from MapQuest or Google

Maps could be used to compute road distance estimation. Road distance estimation

more accurately represents travel distance and is longer than Euclidean distance [57].

We choose the Euclidean distance estimation in our study because it was readily

available for each patient/hospital pairing, whereby road distance estimation is not,

and the difference between the two methods is relatively consistent in Midwestern

states.

Four datasets were designed in this study. The labels of the first three datasets

are patients’ in-hospital survival status, and the labels of the fourth dataset are

hospital-acquired complication status. The complication labels are identified using

ICD-9-CM codes of complication defined by Elixhauser and colleagues [39]. The first

dataset includes all AMI patients whether surgery is performed or not. The second

dataset is designed for AMI patients who do not have any surgery. In this dataset,

patients with any surgical Diagnosis Related Groups (DRG) were excluded. The third

dataset includes only AMI patients who have coronary artery bypass graft (CABG)

surgeries (ICD-9 36.10 to 36.19). The last dataset contains the same patients as the



27

third one but with a different label type. The data show only 12 hospitals in Iowa

perform CABG surgeries. Thus, hospital selection is limited to these 12 hospitals in

the third and fourth dataset. The size and percentage of the desired outcome label

in each dataset are shown in Table 3.2.

Our approach depends on the problem having two distinct types of independent

variables. The first type is uncontrollable (unchangeable) variables. The values of

these variables are given and cannot be changed. For example, patient variables

such as demographic data, medical test results, diagnostic results, admission type,

surgery status, comorbidity scores [30] (indicates severity), and payment type are

uncontrollable variables in this study. The second type is controllable (changeable)

variables, whose values can be changed. The recommendation can be made based

on these variables. In our application, each set of values of these variables describes

a hospital. These hospital descriptive variables are owner type, hospital location,

JCAHO accreditation, total number of surgical operations, AMI patient discharge

volume, and the volume of CABG surgeries. Table 3.1 summarizes the variables

used for classifier training. Variables 1 to 6 relate to the patient’s characteristics and

are uncontrollable; variables 7 to 13 relate to the hospital’s characteristics and are

controllable.

In the knowledge application stage, each type of variable plays a different role

in the optimization process. The first set is constant and is provided by a user when

querying. The solution variables comprise the second set. The optimal solution is

the hospital with the most favorable descriptive variables that results in the highest

optimum value (desired outcome with the highest probability). In a nonlinear model,

the optimal solution may depend on the given uncontrollable variables due to variable

interaction.

Dependent variables, such as survival status and complication status, are usually

used to find the predictors of hospital quality. This study shows two types of expert
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Table 3.1: Variables description

Data type

1 patient age numeric

2 patient sex male, female

3 patient race white, other

4 patient admission type emergency, urgent, elective

5 patient comorbidity severity numeric

6 patient payment type Medicare, Blue Cross, Commercial, other

7 hospital ownership type government owned or not

8 hospital bed size numeric

9 hospital metropolitan sta-
tus

numeric, from 0 to 6 based on population size

10 hospital JCAHO status JCAHO accreditation or not

11 hospital surgery volume numeric, total surgical operations

12 hospital discharge volume numeric

13 hospital CABG volume numeric
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system based on the number of desired targets. The first is called a single-objective

optimization experiment, in which we use a classifier to find the relationship between

independent variables and patients’ survival status. Datasets 1, 2 and 3 are used in

this study. The second is called a multiple-objective optimization study. In addition

to the survival status classifier, we add a second classifier for the complication status.

The hospital-acquired complication is a very important concern to surgical patients,

and the third and fourth datasets are used in this study.

3.1.3 Model Design

There are two steps in the system construction. The first step is knowledge

capturing. This step is the same as training a predictive model. Then we use an

optimization method to apply the knowledge, i.e., providing a recommendation.

Two applications can be represented using single- and multi-objective optimiza-

tion formulations. The first problem selects the hospital with the highest survival

probability. The formulation is Equation 3.1. The second problem selects the hos-

pital with the highest survival and freedom from complication (FFC) probabilities.

The formulation is Equation 3.2.

maximize
x2j

d(x1 ∪ x2j)

subject to
dist(j, x) ≤ DL

x2j ∈ X2

(3.1)

Here, x1 represents the characteristics of the query patient, and DL is the

maximum traveling distance. x2j is the set of descriptive variables for hospital j.

dist(j, x) is the Euclidean distance between the patient and the hospital j.

In the first optimization problem, the objective function is the decision function

subject to the maximum traveling distance. In other words, the recommended hospital
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must be in the range of the maximum distance. Due to the limitation of our database,

this research only considers hospitals in Iowa. Hence, no boarder health care systems

of other states is considered. For an emergency case, the distance limit parameter,

DL, is very small. We can simply use exhaustive search to solve this problem because

the solution space is only 116 hospitals.

For the second problem, we also take complication into account. The desired

targets are the highest survival probability, the highest FFC probability, and the

lowest distance. In the problem formulation (Equation 3.2), the distance constraint

has become a part of the objective function. This is a trade-off decision among the

three targets. To allow a customized recommendation, the patient is the one that

decides the balance of these targets. Thus, the best strategy to solve Equation 3.2 is

to show the solution space instead of a single optimal hospital. The user can decide

the best hospital according to the three-dimensional information, d1(x), d2(x), and

d3(x). The optimization formulation can be expressed as

maximize
x2j

D(x) = (d1(x), d2(x),−d3(x))

subject to x2j ∈ X2

, (3.2)

where x = x1 ∪ x2j.

Section 3.1.4 summarizes knowledge capturing and application.

3.1.4 The PODSS Algorithm

Building the recommendation system starts with knowledge capturing, which is

summarized as Figure 3.3. We need to train parameters A and B for the validation

map in ten-fold cross-validation (training steps 1 and 2) and a classifier with the

whole dataset (step 3).

The recommendation method (Figure 3.4) begins when a query user enters the

patient variables x1 and the maximum distance DL. The recommendation system
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Knowledge capturing

Input

Training data D, Di = x1i ∪ x2j, where x1i is the uncontrollable variable set
for the patient i, i = 1, . . . , n. x2j is variable set of the hospital chosen by the
patient

Outputs

1 h(d(x)): the sigmoid function

2 d(x): the decision function

Training steps

1 Perform ten-fold cross-validation using the SVM classifier with D

2 Train Equation (2.4) with predicted values from the testing data and
true classes to obtain h(d(x))

3 Re-train with whole dataset D, obtaining d(x)

4 Return h(d(x)) and d(x)

Figure 3.3: Training process in the PODSS algorithm
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Captured knowledge application: Single-objective optimization

Inputs

1 Hospital characteristic data X2

2 Query patient variables x1

3 Maximum distance DL

4 Trained sigmoid function, h(d(x)), and the decision function, d(x)

Outputs

The hospital ĵ with the highest survival probability, Pr, for the query patient.

Recommending steps

1 Find the hospital ĵ for the query patient by equation 3.1.

2 Survival probability for query patient in this recommended hospital ĵ,
Pr = h(d(x1 + x2ĵ))

3 Return hospital ĵ, x2ĵ, and Pr

Figure 3.4: Knowledge application process for single-objective optimization.

that considers only one objective can find the best hospital using Equation 3.1 (Rec-

ommending step 1). Next, the score of the query patient with the hospital is converted

to a survival probability (step 2).

We do not find the best hospital for the multi-objective recommendation. In-

stead, we show all hospitals within the distance limit to a query user. The steps

are summarized in Figure 3.5. First, scores of survival and FFC of feasible hospitals
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Captured knowledge application: Multi-objective optimization

Inputs

1 Hospital characteristic data X2

2 Query patient variables x1

3 Trained sigmoid function, hk(d), and decision function, dk(x), of survival
(k = 1) and freedom from complication (k = 2)

Outputs

1 SurvProbj: survival probabilities for all hospitals

2 FFCProbj: FFC probabilities for all hospitals

3 dist(x, j): the distances between each hospital to the query patient

Recommending steps

1 Compute d1(x1 +x2j), d2(x1 +x2j), and the distance, dist(j, x1), between
the query patient and the hospital j. j = 1, ...m

2 Compute the survival probability, SurvProbj, by h1(d) and the FFC
probability, FFCProbj, by h2(d) for hospital j. j = 1, ...m.

3 Return SurvProbj, FFCProbj, and dist(x1, j), j = 1, ...m.

Figure 3.5: Knowledge application process for the multi-objective optimization.

are computed in the recommendation step 1. Then, these scores are transferred into

probabilities in step 2. Finally, the query user can find the best hospital based on

distances, survival probabilities, and FFC probabilities.
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3.2 Results

Table 3.2 shows class distributions of the four datasets. The desired class (posi-

tive) is the majority in all datasets. Directly modeling these sets results in highly ac-

curate but useless classifiers simply predicting all (or nearly all) points to be positive.

We used over-sampling of the minority class [67] to balance each dataset according

to the proportion of positive to negative classes. For example, the survival (positive

class) probability is 95% in the CABG survival experiment, so we used the ratio 1/19

to balance positive and negative classes.

We compare the mean square error of the probabilities generated by calibrated

SVM with those created using logistic regression in Table 3.3. This table shows that

the mean square errors of the calibrated SVM are significantly lower than logistic

regression in all experiments.

In the following sections, we present the results using single- and multi- op-

timization. In actual application of the single-optimization, the maximum tolerated

distance should be decided by a user, and the returned optimal solution is customized.

We varied this parameter in order to present results. In the application of multi-

optimization, a user does not need to give a parameter. Instead, the user needs to

choose the optimal solution in the solution space considering three desired targets.

Similar to the single-optimization, we varied the distance target and discuss the user’s

decision considering the other two desired targets.

3.2.1 Single-Objective Optimization

In this problem, we want to find the hospital with the highest probability of

survival during a hospital stay. SVM outputs are not probabilities, so we need to

transfer scores into probabilities by a calibration function. Figure 3.6 shows validation

maps, which are generated by the calibration functions (Equation 2.3) from three

datasets.
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Table 3.2: Description of four datasets.

desired outcome % data size

all AMI 93.0% 6599

non-surgery 93.4% 5846

CABG 95.0% 466

CABG-FFC 81.8% 466

Note: Desired outcome for the first three databases is
survival and the last database is freedom from com-
plications (FFC).

Table 3.3: Mean square error of predicted probability of
survival for SVM and logistic regression

Regression Calib. SVM P-value

all AMI 0.2137 0.0626 < 0.0001

non-surgery 0.2136 0.0593 < 0.0001

CABG 0.4461 0.0462 < 0.0001

CABG-FFC 0.2616 0.1481 < 0.0001
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(a) All AMI patients experiment
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(b) non-surgery AMI patients experiment
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(c) CABG AMI patients experiment
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Figure 3.6: The validation map of all AMI patients and CABG-AMI patients.
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Table 3.4 summarizes the results of recommendation for all patients. The orig-

inal choice is the hospital originally chosen by patients. For the recommendation

parts, we assume each patient uniformly gives 30, 50 100, and 200 mile distance

limit parameters to the system. After entering the patient’s variables (uncontrollable

variables), the system will return the hospital recommendation (controllable variable

set), the distance to this hospital, and the estimated score and probability of survival.

There are average distance, average probability, and average score for each dataset.

Average distance is the average distance between patients and their chosen hospitals.

Average score is the average SVM score, and average probability is the average of

probabilities transformed from scores. The average probability is very close to the

true survival probability in Table 3.2. This indicates the predictive probability is

closed to the truth.

Patients’ expected survival probability can be improved after recommendation.

For example, for all AMI patients (dataset 1), the predicted survival probability can

be improved from 92.8% to 94.2% when the given distance limit is 50 miles. The

average distance only increases from 20 to 28 miles. The CABG experiment (dataset

3) shows an interesting result. The improvement of average scores is the largest, but

the average survival probability is not. The map for CABG in Figure 3.6 can explain

the difficulty of improving survival probability for this dataset. For a surgery patient,

not only survival but also FFC is very important. In multi-objective experiments, we

combine these two targets for the hospital recommendation problem.

3.2.2 Multi-Objective Optimization

The best choice is the closest hospital with the highest survival and FFC prob-

abilities. However, this is not the case for all people. Most people have to decide the

trade-off among the three desired targets, and only the patient and his/her health
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Table 3.4: Average predicted survival probabilities, average pre-
dicted scores, and distance comparison between originally chosen
hospitals and recommended hospitals

Original Maximum distance (miles)

dataset Choice 30 50 100 200

Avg dist 20 17 28 58 104

1 Avg prob 92.8% 93.6% 94.2% 94.9% 95.2%

Avg scr 0.575 0.714 0.830 0.973 1.047

Avg dist 19 17 27 58 104

2 Avg prob 93.6% 94.3% 94.8% 95.4% 95.7%

Avg scr 0.545 0.660 0.764 0.900 0.968

Avg dist 29 26 32 52 85

3 Avg prob 95% 95.4% 95.7% 96.6% 97.2%

Avg scr 0.3897 0.534 0.674 1.206 1.507

provider can decide the balance of these targets. In order to provide assistance ef-

ficiently, the system provides a list of hospitals with estimated information instead

of recommending the single best choice. The result is presented by discussing a case

study. In order to present results easily, we also use the distance limits 30, 50, 100,

and 200 miles. Figure 3.7 shows each hospital in a location (x, y)=(FFC, survival)

in each distance limit.

The patient P299 is an emergency case who is 70 years old. The original chosen

hospital (hospital 1) is located at (0.803, 0.915) in Figure 3.7a, and the distance to

this hospital is 7 miles. Although hospital 1 has a large discharge and CABG surgery

volume in a highly metropolitan area, both values of x and y are below average. The

age and emergency admission can partially explain the low x and y. After entering

30 miles as the distance limit, the system shows three hospitals. Hospital 3 is a good
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(a) The hospital of original choice (b) Hospitals within 30 and 50 miles
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(c) Hospitals within 100 miles (d) Hospitals within 200 miles
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Figure 3.7: The visualization of hospitals: The solution space (hospital) can be
demonstrated in location (x, y)=(freedom from complication probability, survival
probability).
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choice not only because of higher x and y but also the traveling distance is 8 miles.

Thirty (30) and fifty (50) mile limits result in the same search results, but

100 miles will result in 5 choices. There is a trade-off between survival and FFC in

deciding between hospital 3 and 5. The emergency admission case of P299 may not

choose the hospital 5 because of the distance of 75 miles. Hospital 5 shows a very

interesting fact. It is located in rural area, and the volume is less than both hospitals

1 and 3. However, the 2004 SID data shows that this hospital did not have in-hospital

death case for AMI patients who have the CABG surgery. Besides, the average age

of patients (72.7 yrs) in this hospital is higher than hospitals 1 (67.2 yrs) and 3 (65.6

yrs). The average comorbidity score of patients (0.83) in this hospital is higher than

hospitals 1 (0.47) and 3 (0.61). The frequency of emergency admissions (11/13) is

also relatively higher than hospitals 1 (32/57) and 3 (50/64). These results show that

although hospital 5 is a relatively smaller hospital in a rural area, sicker patients do

well.

A searching range of 200 miles shows all hospitals that can perform CABG

surgery in Iowa. Both x and y are the highest for hospital 12 which has the largest

bed size and the largest total number of surgeries in Iowa. However, it is 110 miles

away. The system can present complex information in a very efficient way, i.e., compile

a patient’s and institutional factors into a few numbers (personal survival, FFC prob-

abilities, and travel distance). A user (can be patients, their family, health providers,

or other people) can decide the best fit accordingly. For example, for patients in

emergency, travel distance is the most important consideration. If two hospitals are

close, we still can choose the best hospital between them. For some patients, they

may want the best care using the helicopter emergency medical service transport, and

they can certainly have more choices. The user can decide the best fit of hospital

based on personal balance of importance among survival, complication, and distance.
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CHAPTER IV

OPTIMAL DECISION PATH FINDER AND TRIAGE DIAGNOSIS
PROBLEM

This chapter discusses another expert system that helps make cost-effective

test selection based on an individual’s information. To achieve this goal, Optimal

Decision Path Finder (ODPF) algorithm is devised to construct the expert system

that minimize necessary tests (and test costs) to cross treatment (or no-treatment)

threshold.

Diagnostic decision making is based on experience and hypothetico-deductive

reasoning [40]. In the face of diagnostic uncertainty, a health provider can either

gather more evidence (test) or treat a patient [91, 80]. According to Bayesian theory,

the clinician adjusts the likelihood of the disease in question with each new diagnostic

test. The desired level of certainty depends largely on the consequences of inaccurate

diagnosis; one generally needs to perform diagnostic tests until one has attained a

treatment (or no treatment) threshold probability, i.e., the threshold of sufficient

evidence [91, 40].

Each test result can revise the probability of disease in relation to the treatment

(or no-treatment) threshold, but informativeness of the same test result may vary

based on the pre-test (prior) probability, which in turn varies as a function of patient

characteristics and other test results. In addition, test parameters, such as sensitivity

and specificity may vary across different patient populations [75, 86, 55, 103].

For a given individual or patient subgroup, it would be highly desirable to

identify the test sequence among all candidate sequences that optimizes the confidence

of decision making while minimizing cost. In advance of knowing the possible test

results for a given individual, one would like to identify the test whose result is most

likely to approach the treatment (or no-treatment) threshold.
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This project proposes a machine learning (ML)-based expert system approach,

called Optimal Decision Path Finder (ODPF), to dynamically determine the test

that is most likely to be informative in terms of diagnostic accuracy while minimizing

the time and money spent on diagnostic testing. Two types of tests are considered,

immediate and delayed tests. The first type of test such as blood pressure is routine

and inexpensive, and the results can be known immediately. The second type of test is

more costly, and the test results are not immediately available. This research focuses

on the second type of test. This algorithm takes pre-test probability, interaction of

variables, and the cost of each test into account and uses a greedy search to choose

the test and generate an individualized test sequence.

4.1 Method

4.1.1 Model Design

Figure 4.1 shows a visual representation of the ODPF algorithm. Examining the

confidence level of the diagnosis and selecting the next test are repeated in each step.

Initially (step 1), we only have patients’ symptoms and/or some immediately available

test results. A lazy classifier is trained with these data and predicts whether or not a

given patient has the disease of interest. The system then examines the prediction in

relation to the treatment and no-treatment thresholds. If the prediction is sufficiently

confident (see Figure 4.2), the system makes a diagnosis, and the process terminates.

Otherwise, the system looks for a test that can facilitate the next prediction (in Step

2). Selection of the treatment and no-treatment thresholds can be determined by

analysis of relative costs and benefits or by the health provider’s intuitive estimation

[91].

After the result of the selected test has been obtained, we train a new classifier

with symptoms data and values of the selected test (test(i)) from the training cases.
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Figure 4.1: Summary of ODPF application

Then we examine the confidence of the prediction and, if necessary, select another

new test. These two processes are repeated until a confident diagnosis occurs or until

all options for testing have been exhausted, at which point a diagnosis is made.

We detail lazy learning, Locally Temporal Feature Selection(LTFS), inheritance

strategies, missing values, multi-class prediction, unbalanced data, and description of

datasets in the following sections.

4.1.2 Lazy Support Vector Machines (SVMs)

Support vector machines (SVMs) [97] are a popular predictive model that can

avoid overfitting problems. Equation 4.1 shows the primal optimization model for

training an SVM classifier. W is a weight vector, εi is the error of training case i, C

is a given constant that controls the balance between error and model sparsity, y is

the class label, x is the vector of predictive features, and b is the bias term for the

decision function.
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Figure 4.2: Confident diagnosis (prediction). f(x) = 0.5 represents a separation
surface, which can distinguish presence from absence of the disease. A prediction with
f(x) > 0.5 indicates a positive diagnosis (disease is present). There are two confidence
thresholds [1− θ, θ] for a decision of treatment or no-treatment. A diagnosis can be
made only when the prediction of a patient’s disease status crosses the threshold (area
A or C). For example, if a patient’s disease probability is located within area A, the
patient should have treatment (or expected to have the disease of interest). If located
within area C, the patient does not need to receive treatment. Otherwise, the patient
needs more testing to support the diagnosis (area B or D).

minimize
W,ε

〈W ·W 〉+ C(
l∑

i=1

εi)

subject to
yi(〈W · xi〉+ b) ≥ 1− εi, i = 1, . . . , l

εi ≥ 0, i = 1, . . . , l

(4.1)

A typical implementation of SVMs solves the dual of this problem and induces non-

linearity in the separating surface using a kernel function. See [97] for details.

minimize
W,ε

〈W ·W 〉+ (
l∑

i=1

Ciεi)

subject to
yi(〈W · xi〉+ b) ≥ 1− εi, i = 1, . . . , l

εi ≥ 0, i = 1, . . . , l

(4.2)

In this project, we use lazy SVMs, which learn a decision function specifically for

the query case, as the base learners. Equation 4.2 shows the modified optimization



45

formulation when training a lazy SVM. The only difference between Equations 4.2

and 4.1 is C. In Equation 4.2, the value of C is different for each training case i.

When Ci is large for the training case i, case i gets more attention when optimizing,

reducing the chance of error for case i. In both equations, (〈W · xi〉+b) is the decision

function d(x) that classifies whether or not a patient has the disease of interest. In

d(x), W represents the degree of importance of variables and b represents the bias

term.

The value of Ci is determined by the similarity to the query, which is solely

based on the results of the medical tests. An extreme example is when all test values

of a training case are exactly the same as the query, this training case will have a

very large Ci. On the other hand, when a case has no test value matching the query,

the case will have a small Ci.

We use a simple algorithm to update instance weight (Ci) as illustrated in

Figure 4.3, which shows a query and three training cases. γ (≥ 1) is the multiplier

for updating instance weights. The initial weight for all training cases is 1 because

we do not have any prior knowledge of these training cases. In step 1, the query does

not pass the confidence threshold and we select Test A. After the test result has been

determined, only training case 3 has the same value as the query. Thus, its instance

weight (C3) is multiplied by a factor of γ (in this example, we use γ = 2). In step

2, the values of training cases 2 and 3 have the same value as the query, and their

instance weights (C2 and C3) are multiplied by 2. In step 3, only C2 and C3 are

multiplied again by 2.

After the selected test result has been obtained in each step, we can update the

instance weights for all training cases. More similar cases have higher weight, making

the training case population more specific to the query after more tests results are

known. In our experiments, the multiplier γ is decided empirically based on predictive

performance and costs.
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Figure 4.3: Instance weight update example

4.1.3 Speed-Based and Cost-Based Evaluation Func-
tions

As discussed in 2.2.4, most feature selection methods focus on global features

and do not take the order of including features into account. For sequential diagnosis

problems, Locally Temporal Feature Selection (LTFS) is devised to specifically select

features (medical tests) for a query based on features at hand (known information,

e.g., symptoms and results of selected tests). We use LTFS to guess the next test

to speed up diagnosis, so that only tests whose order needs to be determined are

considered as features in LTFS (e.g. delayed tests). The degree of importance of

a feature may change with different known patient information, demographic data,

history, physical findings, and previously selected tests results.

One important property of LTFS is the sequence of features (tests). The symp-

toms and demographic data of each patient varies, so the timing of the same test for

two patients may differ. For example, when the predicted probability of disease is

very close to either 0 or 1 but has not crossed either threshold, most tests can help

to cross the treatment (or no-treatment) threshold easily. However, if the prediction

is close to 0.5, a very strong predictor may be necessary. The test chosen next in

these two cases can be very different. As a result, each case will have an unique test

sequence because the known information of each patient varies.
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There are two selection strategies used with LTFS: speed-based and cost-based.

The test selection strategy is represented by the evaluation function f . The selected

feature can provide the most information for the query. For speed-based strate-

gies, information means the speed of the next prediction moving toward a predicted

probability of either 0 or 1. For cost-based strategies, information means the most

cost-efficient choice, considering not only speed but also the cost of a test.

We consider four evaluation functions in each category of selection strategy.

For the speed-based category, these evaluation functions are probability contribu-

tion, minimum uncertainty, expected uncertainty, and instance weight-expected un-

certainty. Each function has a corresponding cost-based evaluation function.

We begin by describing the speed-based approaches. When determining a test,

we have to consider which test is most likely to lead to diagnostic certainty (with a

post-test probability approaching either 0 or 1). We cannot know the actual value of

a test that has yet to be performed, but we can compute the predicted probability of

diseases associated with all possible values of that test. We can then find the most

promising test that can approach either end the fastest.

The probability contribution (PC) function finds the test that produces the

greatest changes in predicted probability of disease. For all possible values of test i,

f is the maximum difference of probabilities. This function is defined as follows:

fPC(v ∪ ui) = max(h(d(v ∪ uki ))− h(d(v ∪ uk′i ))),∀k, k′ ∈ {1, . . . , |ui|}, k 6= k′,

where |ui| is the number of possible values for the feature ui, v is the known infor-

mation of the query including symptoms, demographic data, and previously selected

test results. uki is the value k of test i (unknown information), k is the index of

values of the test ui. Once the result of the selected test is known, it becomes known

information. d is the predictive function that returns SVM scores, and h transform

SVM scores into probabilities.

The idea of minimum uncertainty (MU) is to find the test that would push the
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prediction closest to either 0 or 1. We define uncertainty as simply the minimum

difference between the predicted probability and zero or one. This function is defined

as

fMU(v ∪ ui) = min (0.5− |h(d(v ∪ uki ))− 0.5|),∀k, k′ ∈ {1, . . . , |ui|}.

Compared to minimum uncertainty, the expected uncertainty (EU) is a more

stable strategy. The uncertainty of each value of a test is weighted by its frequency

in the training set. We find the test with minimum f . The expected uncertainty is

defined as

fEU(v ∪ ui) =
∑
k

(0.5− |h(d(v ∪ uki ))− 0.5|)× freqki∑
k freq

k
i

,

where freqki is the frequency of training data with the value uki .

For the Instance Weight-expected uncertainty (IWEU), we use instance weights

to replace frequency. The uncertainty of value uki is weighted by the instance weights

based on previous tests. Similar to expected uncertainty, we find the test with the

minimum f . The formulation can be expressed as

fIWEU(v ∪ ui) =
∑
k

(0.5− |h(d(v ∪ uki ))− 0.5|)× Ck
i∑

k C
k
i

.

The last three functions find the test with the smallest uncertainty based on

a single (minimum uncertainty) or average (expected uncertainty and IW-expected

uncertainty) test result(s). Locations of predictions provide information to guess

which test is most likely to move the probability of disease upward or downward.

The first function (fMU) finds the test with some value that has the global minimum

uncertainty, and the last two functions use expected uncertainty to select a test.

In the cost-based strategy, cost is defined as test cost while effectiveness is the

degree of movement toward either end (as in the speed-based strategy). We use the

ratio effectiveness
cost

instead of only effectiveness.

Each speed-based evaluation function has a corresponding cost-based function.

The cost-based version of probability contribution becomes probability contribution

per dollar. We want to select the test with maximum f . The cost-based objective
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function is

fcostPC(v ∪ ui) =
max(h(d(v ∪ uki ))− h(d(v ∪ uk′i )))

costi
,∀k, k′ ∈ {1, . . . , |ui|}, k 6= k′,

where costi is the cost of using test i.

All cost-based functions in the uncertainty family become uncertainty reduction

per dollar. For uncertainty reduction, we need to compute the reduction of uncer-

tainty from known information v. The uncertainty of known information is defined

as UC(v) = (0.5− |h(d(v))− 0.5|). Cost-based minimum uncertainty reduction is

fcostMU(v ∪ ui) =
UC(v)− (0.5− |h(d(v ∪ uki ))− 0.5|)

costi
,∀k, k′ ∈ {1, . . . , |ui|}

We select the test with maximum f because we want to select the test with max-

imum uncertainty reduction per dollar. Cost-based expected uncertainty reduction

is

fcostEU(v ∪ ui) =
UC(v)− (

∑
k (0.5− |h(d(v ∪ uki ))− 0.5|)× freqki )/

∑
k freq

k
i

costi
,

and we want to find a test with the maximum f .

Similarly, cost-based IW expected uncertain reduction is

fcostIWEU(v ∪ ui) =
UC(v)− (

∑
k (0.5− |h(d(v ∪ uki ))− 0.5|)× Ck

i )/
∑

k C
k
i

costi
.

4.1.4 The ODPF Algorithm

Algorithm 1 summarizes the whole process. The input dataset D consists of

patients’ known information V , such as symptoms and known results of tests, and

delayed tests (or unknown information) U . Initially, this study assigns all immediate

tests to V based on the definition of Turney [94]. When the result of Uj is known,

this test becomes known information. θ is a confidence threshold in the range of 0 to

0.5. Thus, 1 − θ represents a treatment threshold and θ represents a non-treatment

threshold. The limitations of the [θ, 1− θ] threshold structure, along with a remedy,

are discussed in Section 4.1.7.

The query with known information v activates the recommendation process. We

want the algorithm to recommend a test at each step i after obtaining the previous
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Algorithm 1 ODPF

Input :

1 Data D, D = V ∪ Uj, j ∈ {tests}, k ∈ data points

2 Threshold θ and weight update γ

3 Query v

Output :

1 Test sequence SEQ before θ is met

2 Prediction

1: C = 1
2: UT = {tests}
3: SEQ = ∅
4: for j = 1 . . . |tests| do
5: [̂i, h, d] = ChooseClassifier(D, v, C, UT )
6: UT = UT/̂i and U = U/Uî
7: v = v ∪ uî and V = V ∪ Uî
8: IWk = IWk ∗ γ, ∀k : ukî = uî
9: SEQ = SEQ&î

10: if h(d(v)) < θ or 1− h(d(v)) < θ then
11: return [h(d(v)), SEQ]
12: end if
13: end for
14: return [h(d(v)), SEQ]

ChooseClassifier(D, v, C, UT ) :
15: î = 1
16: for i = 1 . . . |UT | do
17: d = TrainPredictor(V ∪ Ui, C)
18: h = TrainCalibrationFunction(V ∪ Ui)
19: if f(v ∪ ui) > f(v ∪ uî) then
20: î = i, h∗ = h, d∗ = d
21: end if
22: end for
23: return î, h∗, d∗
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test result uî−1, and decide when to stop. At termination, the output is the diagnostic

decision and the sequence of previously recommended tests.

In step 1, we set the instance weight (C) of each case to be the same. Step 2

initializes the pool of unused tests (UT ) to the set of all tests, and Step 3 initializes

the test sequence (SEQ).

Steps 4 to 13 are the repeating processes for confident diagnosis and test se-

lection. Step 5 computes the best test î, the corresponding calibration function h

(Equation 2.3), and the decision function d (Equation 4.2). Step 6 removes î from

UT and removes Uî from U . After the test value of î is revealed, Step 7 adds its value

uî to v because the test result uî has become known information for the query case.

Also, the column of training features Uî will be added to V . We do not add or remove

data from the dataset D, but, in each iteration, we move a certain feature from U

to V . Step 8 updates instance weights. When the result of the selected test for a

training case k matches the query case, the instance weight of k is updated. Step 9

appends test î to SEQ.

Steps 10 to 12 decide whether the prediction is confident enough. If the answer

is positive, the algorithm will return the diagnosis and the test sequence. Otherwise,

the process repeats until all tests have been run.

For the test searching subroutine, Step 15 assigns the first test as the selected

one. Then, Steps 16 to 22 update the selection. In each iteration, a trial dataset,

which consists of training features (V , corresponding to the known information of the

query) and an unused test feature (Ui), is used to train a decision function d (Step

17) and a calibration function h (Step 18).

Steps 19 to 21 use a function f to decide the best test. When test i is better

than test î, we record d∗ and h∗ of the new î. Step 23 returns î, d∗, and h∗ of the

best test.
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4.1.5 Speed-Up Strategy: Inheritance

The ODPF algorithm uses a large number of classifiers to select the best test (or

sequence of tests). Training these classifiers is computationally expensive. To reduce

this problem, we allow a query to be able to inherit classifiers trained from a previous

query. A new query case can always share the first group of classifiers to identify the

first test because C is 1 for all cases. After selecting the first test, if the test result of

the query is the same as a previous query, the query can inherit classifiers from that

previous query.

Figure 4.4 illustrates the rule of inheritance. Unlike decision tree algorithms,

a node represents a group of classifiers that determine the next test; one can also

make a decision at this node. Instead of explicit rules, the choice of test is driven by

classifiers. Query 1 has to train all classifiers for identifying tests. Test 5 is the first

selected test. After performing this test, we obtain the value 1 for test 5. Next, test

6 is suggested by the second group of classifiers.

Figure 4.4: The rules of inheritance

Query 2 can inherit the first group of classifiers. Test 5 was again selected but
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the value is -1. Query 2 is ineligible to inherit any more because lazy classifiers are

trained specifically for a query. Thus, a query (e.g., query 2) can inherit a classifier

set only when all previous tests and their values are exactly the same as a previous

query (e.g., query 1). Therefore, we have to train a new group of classifiers (Classifier

set 3) for query 2 in order to identify the next test. For query 3, not only is test 5

the first selected test but also the value is the same as query 1. Thus, query 3 can

inherit both groups of classifiers from query 1.

4.1.6 Missing Values

Missing values are common in medical datasets, especially those recording di-

agnostic tests, since a health provider will not run tests considered to be unnecessary.

Therefore, ODPF must adjust for missing values in both training and validation.

First, for training, we impute a missing value using the class-conditional mean of the

feature. Second, the C update depends on the proportion of the matching value in

the training set. For example, consider a test with three possible values, 1, 2, and 3,

whose proportions are 30%, 30%, and 40% in the training set. If the new test value of

the query is 3, for example, each training instance with a missing value of this feature

can be updated, but the instance-weight multiplier becomes 1 + (γ − 1)× 40%.

When we apply ODPF in an actual clinical setting, all test values of a query (a

new patient) are supposed to be missing, and we do not have any problem for the query

with missing values. However, when validating ODPF, we need to slightly modify the

query case with some missing values in order to validate reasonably. When some test

values of a query are missing, we limit the selection of tests to those without missing

values. When a diagnosis is highly uncertain, all available tests (without missing

values) may not allow one to cross a probability threshold. In this case, the diagnosis

must be made after receiving values of these available tests.
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4.1.7 Unbalanced Data Adjustment

In some situations (e.g., a rare disease), the separation surface of the trained

SVM will not correspond to a probability of 0.5. Therefore, unequal thresholds, such

as [θ1, θ2], may be better than equal thresholds [θ, 1− θ].

The definition of uncertainty also needs to change in an unbalanced dataset.

When a dataset is balanced, uncertainty is determined using either 0 or 1 as a refer-

ence. In an unbalanced dataset, uncertainty is decided using given thresholds instead

of 0 or 1 as a reference. In an unbalanced dataset, we are still looking for a test

with the smallest uncertainty in minimum uncertainty and (IW-)expected uncertainty

functions.

In the previous definition, the smallest uncertainty is 0. In the new definition,

when a test with some set of values crosses the threshold, its uncertainty is less than

0. In this case, one can still identify the test with the lowest value of uncertainty, and

we still can use all speed-based and cost-based test selection functions as described

in Section 4.1.3.

4.1.8 Multi-Class Strategies

Many diagnosis problems involve a choice among several candidate conditions

instead of a single disease. We show that the ODPF algorithm can be adjusted

for multi-class decision problems. Similar to binary problems, we wish to find a

test that can approach one possible outcome (class) most quickly. The difference

is that we are comparing several possible outcomes instead of two, but we can still

use the test-selection functions described in Section 4.1.3. For example, in a binary

problem, we are finding the test with the smallest uncertainty from either end (two

possible outcomes). In a multi-class problem, we are finding the test with the smallest

uncertainty from one of the outcomes.

There are several algorithms for solving multi-class problems [53] using SVMs.
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We use the adapted one-against-all method as the base classifiers. Assuming n pos-

sible classes (candidate conditions), we need to train n− 1 classifiers with n− 1 sets

of labels. Each set of labels indicates whether or not a record belongs to a specific

class. Each class corresponds to a set of labels except for one class. 1 If the decision

function of only one class is greater than zero, this class is the predicted class. If the

decision function of all classes are less than zero, the majority class is the predicted

class. When there is more than one class with decision function greater than zero,

the predicted class is the class with the highest predicted probability.

4.1.9 Dataset and Variables Design

This project has applied ODPF to several datasets of two types: diagnosis and

prediction of future risk. Each Dataset is described as follows.

4.1.9.1 Datasets for Diagnosis

We apply the ODPF algorithm to heart disease and thyroid datasets. Both

datasets are obtained from the UCI machine learning repository [5]. The description

of all datasets (Tables 4.1 to 4.4) is taken from [94]. In these tables, tests can be

categorized as delayed or non-delayed. Non-delayed can be obtained immediately

and less costly. For example, a patient is asked about age, sex, and chest pain type

(Table 4.1), which cost a nominal charge $1. In this project, we are more interested

in delayed tests, and all non-delayed tests are known information used to determine

the selection of delayed tests.

Heart Disease dataset [29]: This analysis sample included 303 consecutive

patients (mean age 54 years, 68% male) who were referred for coronary angiography

at the Cleveland Clinic between May 1981 and September, 1984. No patient had a

history of prior myocardial infarction or known valvular disease or cardiomyopathy.

1In this project, we choose the majority class.
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All patients received a history and physical examination, resting electrocardiogram,

and laboratory studies, as part of their routine evaluation. Study patients also under-

went exercise stress testing, myocardial perfusion imaging, and cardiac fluoroscopy as

part of a research protocol. The dataset included 4 clinical variables (age, sex, chest

pain type, and systolic blood pressure), 2 laboratory variables (serum cholesterol and

fasting glucose), and resting electrocardiographic variables (ST segment depression

> 0.05 mV or T-wave inversions, probable or definite left ventricular hypertrophy

based on Estes’ criteria). The diagnosis of coronary artery disease was defined by

the presence of > 50% narrowing of one or more coronary arteries on angiography.

All coronary angiograms were interpreted by a cardiologist who was blinded to non-

invasive test results.

The heart disease dataset came from Cleveland Clinic Foundation and was pro-

vided by the principal investigator Robert Detrano of the V.A. Medical Center, Long

Beach and Cleveland Clinic Foundation. In this experiment, the dataset was down-

loaded from the Statlog project, in which 6 data points were discarded because of

missing class value and 27 data points were retained in case of dispute [74], at the

UCI machine learning repository. Originally, there were four different types of dis-

ease in this dataset. In this project, the classification task is simply to distinguish

the presence of disease (all four types) from its absence. The dataset does not have

missing values. Variables and costs are described in Table 4.1.

Thyroid Disease dataset [83]: This analysis sample consists of 3,772 cases

that were referred to the Garvan Institute of St. Vincent’s Hospital, Sydney, Aus-

tralia for diagnostic evaluation starting in late 1984. The dataset includes 11 clin-

ical attributes, which were abstracted from data provided by the referring health

provider (age, sex, pregnancy, goiter, tumor, hypopituitarism, use of thyroid or an-

tithyroid medication, history of thyroid surgery, complaint of malaise, psychological
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Table 4.1: Description for heart disease dataset

Test Description Group Cost Delayed

1 age age in years $1.00 no

2 sex patient’s gender $1.00 no

3 cp chest pain type $1.00 no

4 trestbps resting blood pressure $1.00 no

5 chol serum cholesterol A $7.27 if first test in group A;
$5.17 otherwise

yes

6 fbs fasting blood sugar A $5.20 if first test in group A;
$3.10 otherwise

yes

7 restecg resting electrocardio-
graph

$15.50 yes

8 thalach maximum heart rate
achieved

B $102.90 if first test in group
B; $1.00 otherwise

yes

9 exang exercise induced
angina

C $87.30 if first test in group C;
$1.00 otherwise

yes

10 oldpeak ST depression induced
by exercise relative to
rest

C $87.30 if first test in group C;
$1.00 otherwise

yes

11 slope slope of peak exercise
ST segment

C $87.30 if first test in group C;
$1.00 otherwise

yes

12 ca number of major ves-
sels coloured by fluo-
roscopy

$100.90 yes

13 thal 3 = normal; 6 = fixed
defect; 7 = reversible
defect

B $102.90 if first test in group
B; $1.00 otherwise

yes

14 num diagnosis of heart dis-
ease

diagnostic class -
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symptoms), and up to six test results (including TSH, T3, TT4, T4U, free thyrox-

ine index, and TBG) requested by the referring health provider. Final diagnosis of

hyperthyroidism, hypothyroidism, or euthyroid status was based on interpretation of

all available clinical and laboratory data by a qualified endocrinologist (or in some

cases, an expert system designed to diagnose thyroid disease). We follow Turney’s

paper [94] using four tests (TSH, T3, TT4, and T4U) because costs are provided for

only those tests. The resulting dataset does not include missing values. Variables

and costs are described in Table 4.2.

4.1.9.2 Datasets for prediction of future risk

We have also performed an analysis of two additional datasets in order to show

the potential applicability of the ODPF method in predicting the future risk of dis-

ease or adverse events with fewer tests by determining an optimum patient-specific

sequence. Both datasets are also obtained from the UCI machine learning repository

[5]. These datasets are briefly described below:

Pima Indians diabetes dataset [89]: The dataset was collected by the Na-

tional Institute of Diabetes and Digestive and Kidney Diseases. All subjects were

females at least 21 years old of Pima Indian heritage. The dataset includes 6 clinical

variables (age, diabetes pedigree function, body mass index, triceps skin fold thick-

ness, diastolic blood pressure, and number of pregnancies) and two tests (glucose

tolerance test and serum insulin test) to classify the risk of diabetes. Variables and

costs are described in Table 4.3.

Hepatitis dataset [31]:. The dataset includes 14 clinical attributes (age, sex,

patient on steroids, antiviral therapy, fatigue, malaise, anorexia, hepatomegaly, pal-

pable firmness of liver, palpable spleen, presence of spider veins, ascites, presence of

varices, and liver histology), laboratory tests (bilirubin, alkaline phosphotase, aspar-

tate aminotransferase, albumin, and protime), and the prognostic outcome of disease
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Table 4.2: Description for thyroid dataset

Test Description Group Cost Delayed

1 age age in years $1.00 no

2 sex gender $1.00 no

3 on thyroxine patient on thyroxine $1.00 no

4 query thyroxine maybe on thyroxine $1.00 no

5 on antithyroid on antithyroid medica-
tion

$1.00 no

6 sick patient reports malaise $1.00 no

7 pregnant patient pregnant $1.00 no

8 thyroid surgery history of thyroid
surgery

$1.00 no

9 I131 treatment patient on I131 treat-
ment

$1.00 no

10 query hypothy-
roid

maybe hypothyroid $1.00 no

11 query hyperthy-
roid

maybe hyperthyroid $1.00 no

12 lithium patient on lithium $1.00 no

13 goitre patient has goitre $1.00 no

14 tumour patient has tumour $1.00 no

15 hypopituitary patient hypopituitary $1.00 no

16 psych psychological symp-
toms

$1.00 no

17 TSH TSH value, if measured A $22.78 if first test in group A;
$20.68 otherwise

yes

18 T3 T3 value, if measured A $11.41 if first test in group A;
$9.31 otherwise

yes

19 TT4 TT4 value, if measured A $14.51 if first test in group A;
$12.41 otherwise

yes

20 T4U T4U value, if measured A $11.41 if first test in group A;
$9.31 otherwise

yes

21 FTI FTI–calculated from
TT4 and T4U

not used -

22 class diagnostic class diagnostic class -
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Table 4.3: Description for diabetes dataset

Test Description Group Cost Delayed

1 times pregnant number of times preg-
nant

$1.00 no

2 glucose tol glucose tolerance test A $17.61 if first test in group A;
$15.51 otherwise

yes

3 diastolic bp diastolic blood pres-
sure

$1.00 no

4 triceps triceps skin fold thick-
ness

$1.00 no

5 insulin serum insulin test A $22.78 if first test in group A,
$20.68 otherwise

yes

6 mass index body mass index $1.00 no

7 pedigree diabetes pedigree func-
tion

$1.00 no

8 age age in years $1.00 no

9 class diagnostic class diagnostic class -

(live or die). Variables and costs are described in Table 4.4.

4.2 Results

In this section, we show results for the heart disease, thyroid, diabetes, and

hepatitis datasets. All results are generated using RBF-SVM and averaged over five

10-fold cross-validation (CV) runs. We use the 10-fold CV to replace leave-one-out

[92] in order to benefit from inheritance as described in Section 4.1.5. In other words,

each data point is a query which can share classifiers with another query in the same

testing fold. The probability transformation function (Equation 2.3) is trained in

3-fold CV runs.

We used over-sampling of the minority class [67] to balance each dataset ac-

cording to the proportion of positive to negative cases. For example, for a dataset

with 95% positive cases, we used the ratio 1/19 to balance the positive and negative

classes.
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Table 4.4: Description for hepatitis dataset

Test Description Group Cost Delayed

1 class prognosis of hepatitis prognostic class: live or die -

2 age age in years $1.00 no

3 sex gender $1.00 no

4 steroid patient on steroids $1.00 no

5 antiviral patient on antiviral $1.00 no

6 fatigue patient reports fatigue $1.00 no

7 malaise patient reports malaise $1.00 no

8 anorexia patient anorexic $1.00 no

9 liver big liver big on physical
exam

$1.00 no

10 liver firm liver firm on physical
exam

$1.00 no

11 spleen palpable spleen palpable on
physical

$1.00 no

12 spiders spider veins visible $1.00 no

13 ascites ascites visible $1.00 no

14 varices varices visible $1.00 no

15 bilirubin bilirubin–blood test A $7.27 if first test in group A;
$5.17 otherwise

yes

16 alk phosphate alkaline phosphotase A $7.27 if first test in group A;
$5.17 otherwise

yes

17 sgot aspartate aminotrans-
ferase

A $7.27 if first test in group A;
$5.17 otherwise

yes

18 albumin albumin–blood test A $7.27 if first test in group A;
$5.17 otherwise

yes

19 protime protime–blood test A $8.30 if first test in group A;
$6.20 otherwise

yes

20 histology was histology per-
formed?

$1.00 no
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In our cost analyses, we apply a group discount when other tests belonging to

the same group have already been requested. For example, blood-related tests have

a group price because they share the cost of phlebotomy.

We use γ = 1.4 for constructing lazy SVM classifiers. The parameter was

determined by predictive performance. For instance, the total accuracies of γ =

1, 1.4, 1.8 in probability contribution and minimum uncertainty functions are [0.837,

0.8407, 0.8185] and [0.8556, 0.8593, 0.8333], respectively. SVM classifiers turn into

lazy SVM classifiers when γ is greater than 1. With an appropriate γ, the predictive

performance of lazy learning can be improved.

We discuss our results in detail using the heart disease dataset. We demonstrate

the multi-class result on the thyroid dataset with the minimum uncertainty function

and report aggregated results of diabetes and hepatitis using all LTFS functions.

4.2.1 Heart Disease Dataset

Figure 4.5 summarizes the process to evaluate the model. We train and predict

for each query patient (A). If a prediction does not cross either treatment or non-

treatment threshold, more testing is needed (from B to C). We can utilize several

different test selection functions in C, e.g., minimum uncertainty. One test will be

appended to the sequence each time once goes through the A,B,C,A cycle. If the

prediction crosses either threshold, a diagnosis is made (D) and validated.

Tables 4.5 and 4.6 summarize the diagnosis accuracy and cost saving of four

evaluation functions. The notation ite1 to ite9 represents the number of delayed tests

obtained by patients. Ite1 represents only 1 test performed, while ite4 represents 4

tests performed. Ite0 is the situation where a diagnosis (prediction) is made without

obtaining any delayed tests. The sequence of tests of patients may vary, so we can

not show actual test sequences (e.g., [test5, test3, test1, . . . ]) of all patients in these

aggregated results. Results in these two tables are predictive results at different
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stopping points in the test sequence.

Figure 4.5: Evaluation Process

The stopping point for patients varies because the number of tests needed to

diagnose is based on the individual patient. Some patients need few tests while

others need many to support a diagnostic decision. Thus, patients may stop with

any number of tests, and we summarized the aggregated results in ten strata (ite0

to ite9). When a testing stopped, we add one to the Total row, and compare the

prediction (or diagnosis) with its class label (which shows whether the diagnosis was

correct or not) at this stopping point. If the prediction is correct, one will be added

to the Correct row. The percentage of correct predictions is shown in the % row.

Total accuracy is the expected accuracy of all strata. “Average test” is the average

number of tests used, and cost saving is the average cost saving of unused tests for

all patients.

These two tables also show the accuracy of diagnosis in each iteration. Some

patients do not need to receive any testing (ite0), but other patients need to receive all

tests (ite9). The groups in ite0 to ite9 correspond to patients with increasing difficulty

of diagnosis. In other words, when a case stops early (ite0 to ite8), its predictive

probability is far away from the separation surface and satisfies the stopping criterion.

On the other hand, the patients in ite9 remain close to the separation surface. Thus,

the accuracies for early diagnosis patients tend to be high (ite0 to ite8).
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Table 4.5: Speed-based ODPF on heart disease data

Functions Statistics ite0 ite1 ite2 ite3 ite4 ite5 ite6 ite7 ite8 ite9

Correct 238 146 77 109 127 71 45 50 44 219

ProbContr Total 265 180 83 120 152 82 50 62 51 305

% 0.898 0.811 0.928 0.908 0.836 0.866 0.9 0.806 0.863 0.718

Total accuracy=0.834; average test= 4.16+; cost saving= 53.13+%

Correct 238 374 146 129 36 34 16 17 13 147

minUC Total 265 416 157 153 47 38 26 23 13 212

% 0.898 0.899 0.930 0.843 0.766 0.895 0.615 0.739 1 0.693

Total accuracy=0.852+; average test= 2.89+; cost saving= 49.59+%

Correct 238 186 218 97 77 55 37 26 20 179

expUC Total 265 220 232 111 97 62 50 32 23 258

% 0.898 0.845 0.940 0.874 0.794 0.887 0.740 0.813 0.870 0.694

Total accuracy=0.8393; average test= 3.51+; cost saving= 51.52+%

Correct 238 188 210 100 79 53 37 30 19 178

IWexpUC Total 265 220 223 114 100 62 51 37 21 257

% 0.898 0.855 0.942 0.877 0.790 0.855 0.725 0.811 0.905 0.693

Total accuracy=0.839; average test= 3.53+; cost saving= 51.23+%

Note: The treatment and non-treatment threshold are [0.85, 0.15]. The accuracy of
the baseline trained with 9 tests is 0.8407. + or - indicates that ODPF is significantly
better or worse than baseline, respectively (α = 5%).
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For patients who remain in the ite9 group, one still needs to make a diagnosis

for these patients once all available tests have been exhausted. As these patients are

difficult to diagnose, the diagnostic accuracy for the ite9 group is low. Interestingly,

the threshold plays the role of a filter by placing patients in the appropriate stratum.

Both tables use + and - to indicate whether a number is significantly better or

worse than the baseline, in which all tests were performed (α = 5%). The accuracy

of the baseline is 0.8407. Although total accuracies of most functions are lower than

baseline, the differences except for the cost-based minimum uncertainty (minUC)

function are not significant. However, the accuracy of minUC function (0.852) is

significantly better than the baseline. Average number of tests and cost saving of

all functions are significantly better than the baseline. The number of tests required

ranged from 2.89 to 4.73 while most cost savings are more than 50%. In general,

speed-based strategies diagnose with fewer tests than cost-based strategies, and cost-

based strategies save more cost than speed-based strategies. This result may vary

based on datasets.

Figure 4.6 compares accuracies of three thresholds that use the minimum un-

certainty strategy. The x-axis represents the stopping points. Standard refers to

the baseline classifier which is trained with all tests. A larger threshold has greater

accuracy in all strata. However, total accuracies for thresholds 0.75, 0.85, and 0.95

are 0.813, 0.852, and 0.847 respectively. In other words, a higher threshold does not

always result in higher total accuracy. This is due to the effect of early diagnosis.

Figure 4.7 summarizes the frequency of testing across the three thresholds.

Many patients can be diagnosed early (i.e., before exhausting all tests). As expected,

the barrier of a higher threshold results in fewer patients being diagnosed early. There-

fore, more patients remained until ite9 when the threshold is higher. Total accuracy is

an expected accuracy which results from the combination of accuracy and frequency

in each stratum. The accuracies of early diagnostic strata (ite0 to ite8) are generally
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Table 4.6: Cost-based ODPF on heart disease data

Functions Statistics ite0 ite1 ite2 ite3 ite4 ite5 ite6 ite7 ite8 ite9

Correct 238 89 70 104 152 68 67 64 44 226

ProbContr Total 264 111 79 113 181 77 74 80 55 316

% 0.902 0.802 0.886 0.920 0.840 0.883 0.905 0.800 0.800 0.715

Total accuracy=0.831; average test= 4.45+; cost saving= 53.38+%

Correct 238 35 82 71 203 73 53 83 21 258

minUC Total 265 43 93 77 223 90 62 118 24 355

% 0.898 0.814 0.882 0.922 0.910 0.811 0.855 0.703 0.875 0.727

Total accuracy=0.827−; average test= 4.7311+; cost saving= 54.09+%

Correct 238 59 84 88 218 70 79 40 32 214

expUC Total 265 66 101 106 230 88 105 49 40 300

% 0.898 0.894 0.832 0.830 0.948 0.795 0.752 0.816 0.800 0.713

Total accuracy=0.831; average test= 4.40+; cost saving= 54.97+%

Correct 238 57 81 92 214 68 78 42 35 216

IWexpUC Total 265 67 93 110 227 86 106 49 43 304

% 0.898 0.851 0.871 0.836 0.943 0.791 0.736 0.857 0.814 0.711

Total accuracy=0.830; average test= 4.43+; cost saving= 54.64+%

Note: The treatment and non-treatment threshold are [0.85, 0.15]. The accuracy
of the baseline that trained with 9 tests is 0.8407. + or - indicates that ODPF is
significantly better or worse than baseline, respectively (α = 5%).
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Figure 4.6: Accuracies of various thresholds

high, but the accuracy for ite9 is low. A very high threshold such as 0.95 forces many

patients to stay until ite9 and greatly reduces the total accuracy. Although accuracies

of most strata of an overly high threshold, such as 0.95, are higher, overall reduction

(ite9) in the number of patients who are assigned a diagnosis outweighs this improve-

ment (ite0 to ite8). Therefore, careful selection of an appropriate threshold helps to

improve total accuracy. The fluctuation of accuracies in Figure 4.6 also results from

early diagnosis, which results in small sample size from strata ite4 to ite8.

The relationship between effectiveness and costs is shown in Figure 4.8. We

compare random, minimum uncertainty, and cost-based expected uncertainty. Ran-

dom is the baseline strategy in which testing sequences are randomly created. This

baseline allows the examination of the amount of contribution due to feature-selection

strategies (i.e., minimum uncertainty and cost-based expected uncertainty). Random

still benefits from the confident prediction structure because the threshold still deter-

mines the stopping point. Therefore, a lot of tests can still be saved. For example,

when the threshold is 0.85, the system uses 3.68 tests with a total accuracy of 0.827.
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In Figure 4.8, we demonstrate that cost saving and probability threshold are

negatively related. As expected, both strategies have more cost savings and higher

total accuracies than random. For example, total accuracies for most points with

same cost savings are higher in minUC than in random. Similarly, cost savings for

most points with same total accuracies are more in minUC than in random.

In general, cost saving and total accuracy are a trade-off. Surprisingly, the

minUC strategy provides more cost-savings, especially when the threshold is higher.

For example, when the cost saving is 50%, the accuracy for minUC is 85.1% while

the accuracy for costExpUC is 83.4%. The cost savings of the speed-based strategies

comes from using a small number of tests that are usually expensive but strong

predictors2. However, the cost savings of the cost-based strategies results from careful

selection of tests. The selection prefers inexpensive tests with acceptable diagnostic

power or powerful tests with reasonable cost. This result suggests that using expensive

tests at the outset may be preferable in some situations. When the sequences are

optimized, patients may be diagnosed more quickly and accurately, and more cost

can be saved.

Confident prediction not only improves accuracy but also sensitivity and speci-

ficity. Figures 4.9 and 4.10 show sensitivity and specificity of each stratum for the

minUC strategy. Both figures show that sensitivity and specificity for higher thresh-

olds are better. Similar to accuracy, early diagnosis results in fluctuation of the

curve. Standard represents sensitivity or specificity of the classifier trained with all

tests. Similar to accuracy, confident prediction boosts both sensitivity and specificity

for patients who are diagnosed early.

2In most cases, the selection starts from expensive and powerful tests. In some cases, an inex-
pensive test is preferred in the beginning depending on the known information before taking any
tests.
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Table 4.7: Confusion matrix of the baseline for thyroid data

Predicted Class

Hypothyroid Hyperthyroid Normal Matched rate

Hypothyroid 250 200 15 0.538

True Hyperthyroid 54 681 220 0.713

Class Normal 85 108 17247 0.989

Predicted matched rate 0.643 0.689 0.987

Total accuracy: 0.964; Cost: 53.81 (0% saving); Average number of tests: 4

Table 4.8: Confusion matrix of ODPF (minimum uncertainty) for thyroid data

Predicted Class

Hypothyroid Hyperthyroid Normal Matched rate

Hypothyroid 352 99 14 0.7570+

True Hyperthyroid 78 818 59 0.8565+

Class Normal 136 108 17196 0.9860+

Predicted matched rate 0.622 0.798+ 0.996+

Total accuracy: 0.974+; Cost: 23.37 (56.6%+ saving); Average number of tests: 1.07+

Note: The treatment and non-treatment thresholds for both hyperthyroid and hy-
pothyroid are [0.85, 0.02]. + indicates significantly better than baseline (α = 5%).

4.2.2 Thyroid Dataset

The thyroid dataset is highly unbalanced and has three classes, normal (92.47%),

hyperthyroid (5.06%), and hypothyroid (2.47%). Tables 4.7 and 4.8 show confusion

matrices of thyroid dataset from baseline (the classifier trained with all features) and

ODPF using the function of minimum uncertainty.

For both tables, the third to fifth columns show predicted class frequencies

of hypothyroid, hyperthyroid, and normal. The last column, matched rate, is the
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proportion of correct prediction among all predictions in the same true class. For

example, in Table 4.7, the matched rate of hypothyroid is 250
465

= 0.538. Similarly,

the third to fifth rows show true class frequencies. The predicted-matched rate is

the proportion of correctness of a predicted class among all true classes in the same

prediction. For example, the predicted-matched rate of hypothyroid is 250
389

= 0.643.

Total accuracy is the percentage of correct classification.

Comparing these two tables, most predicted performance indices are better than

the baseline. The average number of tests and total cost of baseline (Table 4.7) are

4 and 53.81. In this dataset, we force the algorithm to give at least one test to all

patients to improve prediction. In average, ODPF uses 1.07 tests and the total cost

is 23.37 (cost saving 56.6%), both of which are significantly better than the baseline.

4.2.3 Application of The ODPF Method in Predicting
Future Risk of Disease and Adverse Events

To determine whether ODPF can be extended to applications of diagnostic

tests for prognosis and risk stratification, we performed an analysis of diabetes and

hepatitis datasets.

Tables 4.9 and 4.10 show the aggregated results of all strata for the diabetes

and hepatitis datasets. We use [0.75, 0.1] and [0.75, 0.08] as thresholds for diabetes

and hepatitis datasets, respectively. They are determined based on reasonable com-

bined results, e.g. reasonable performance, such as sensitivity or specificity, and cost

reduction.

The first column of all tables shows all functions including speed-based methods

and cost-based methods, and the following columns are accuracy, sensitivity, speci-

ficity, area under the ROC curve (AUC), cost, and average number of tests.

Standard is the baseline classifier that was trained with all features. Only the

hepatitis dataset has missing values. In other words, health providers in the hepatitis

dataset used various tests while they used all tests for all patients in other datasets.
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Table 4.9: Diabetes summary

Functions Accuracy Sensitivity Specificity AUC Cost (save%) Avg tests

Standard 0.735 0.721 0.743 0.828 38.29 (0) 2

ProbContr 0.735 0.728+ 0.739− 0.827− 27.80(27.4)+ 1.474+

minUC 0.735 0.727+ 0.739− 0.827− 27.81(27.4)+ 1.474+

expUC 0.735 0.724 0.741− 0.827 30.04(21.5)+ 1.578+

expIWUC 0.735 0.722 0.742− 0.827− 29.97(21.7)+ 1.576+

ProbContr Cost 0.735 0.728+ 0.738− 0.827− 27.82(27.3)+ 1.475+

minUC Cost 0.735 0.728+ 0.738− 0.827− 27.76(27.5)+ 1.472+

expUC Cost 0.734− 0.722 0.741− 0.827 29.98(21.7)+ 1.576+

expIWUC Cost 0.734− 0.722 0.741− 0.828 30.00(21.7)+ 1.577+

Note: The treatment and non-treatment threshold are [0.75, 0.1]. + or - indicates
that ODPF is significantly better or worse than baseline, respectively (α = 5%).

Missing values are imputed using the class-conditional mean of a feature. Average

tests and costs are computed based on tests and costs actually used and spent. Thus,

the average number of tests in the baseline of Hepatitis is not an integer (4.213, see

Table 4.10). We do not know the order of tests used in this database. When taking

group discount into account, there may be more than one set of costs for a patient,

and we take the minimum one for the baseline.

Although only two tests are involved in diagnosing diabetes, not both of them

all required. All functions can reduce test cost from 21.5% to 27.5% while using an

average number of tests ranging from 1.472 to 1.578. Most accuracies are close to

baseline while cost and average tests are all significantly better than the baseline.

AUC can be improved because of the feature selection, but AUC can also de-

grade significantly due to early diagnosis. AUC is computed from predicted prob-

abilities and corresponding labels of patients in all strata. However, treatment (or

non-treatment) thresholds may stop us from improving probabilities. For example,

consistent test results usually can further improve predicted probability, but ODPF
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stops further testing when the current probability is confident enough. Therefore, the

limitation of improving predicted probability can degrade AUC especially when the

threshold is not high.

The Hepatitis dataset includes many missing values. Although both baseline

and ODPF are trained and tested with the same dataset, the uses of the dataset are

not exactly equal. There are two reasons.

First, missing values influence the test selection method. In order to train an

SVM classifier, we impute missing data. The dataset for the baseline is fully imputed

in the training and testing data. In ODPF, we still can impute missing values for

training data and update C based on the rule as described in Section 4.1.6. However,

for the query case, we do not impute missing values for the query. Instead, we avoid

selecting tests with missing values. In other words, the selection of a test with strong

potential to pass the threshold can be prohibited because the test feature value is

missing in the query case.

Second, missing values influence the reporting of performance. A test with a

missing value for a query case will be moved to the end of the test sequence, and it

is marked as N/A because we do not use it. Such a query case will be either early

diagnosis or in need of more tests than those available. Most cases are in the first

situation, and a few of them are in the second. The performance indices of the second

situation are reported based on the last test without a missing value. These query

cases are forced to attain a diagnosis as a result of exhausting the tests with recorded

values. In other words, their diagnoses are not ready but have to be made. The above

two reasons may degrade the performance of all functions slightly.

Table 4.10 shows that specificity, number of tests, and cost saving of all functions

of the Hepatitis dataset are significantly better than the baseline. In this experiment,

both expIWUC and cost-based expIWUC have the highest diagnostic performance

and the largest cost reduction among all functions.
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Table 4.10: Hepatitis summary

Functions Accuracy Sensitivity Specificity AUC Cost (save%) Avg tests

standard 0.819 0.744 0.839 0.863 24.78(0) 4.213

ProbContr 0.817 0.675− 0.854+ 0.857 16.37(33.9)+ 2.688+

minUC 0.817 0.675− 0.854+ 0.856 15.96(35.6)+ 2.622+

expUC 0.819 0.700− 0.850+ 0.859 15.94(35.7)+ 2.635+

expIWUC 0.830+ 0.744 0.852+ 0.859 14.05(43.3)+ 2.394+

ProbContr Cost 0.817 0.675− 0.854+ 0.857 16.35(34.0)+ 2.689+

minUC Cost 0.817 0.675− 0.854+ 0.855 15.90(35.9)+ 2.628+

expUC Cost 0.819 0.700− 0.850+ 0.858 15.98(35.5)+ 2.645+

expIWUC Cost 0.830+ 0.744 0.852+ 0.859 14.06(43.3)+ 2.395+

Note: The treatment and non-treatment threshold are [0.75, 0.08]. + or - indicates
that ODPF is significantly better or worse than baseline, respectively (α = 5%).

Previous results suggest that either sensitivity or specificity can be higher in

ODPF. The either-or relationship can be adjusted by tuning γ (see Algorithm 1) or

the class balance of positive to negative classes based on diseases.

4.3 Population-Based Method

This section discusses a machine-learning approach to find the best testing se-

quence based on population. In the end of this section, we compare this approach

with previous individualized method.

A diagnostic guideline for a disease of interest describes the best testing sequence

for a population. This section describes a potential way to determine such a sequence

automatically. We use optimization to find promising test sequences. This project

aims to find the test sequence that can diagnose most patients with high accuracy no

matter how many tests they need. The number of tests required for diagnosis varies

based on patients (influenced by, e.g., pre-test probabilities). When patients receive

tests following this sequence, the diagnostic accuracies are high. This project also
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proposes another objective: finding the testing sequence that can diagnose patients

with the best balance of accuracy and cost.

4.3.1 Methods

This experiment uses heuristic search methods to evaluate and find the best

sequence [21] for the above problem. As with the interactive method, using all tests

is not required as long as the sequence can yield more benefits, i.e., save more money

and diagnose more accurately. To obtain this sequence, we need to consider not only

the order but also the number of tests in this sequence. Therefore, the number of

possible sequences is
∑m

n=1C
m
n × n!, where m is the number of all tests, and n is

the number of tests in a sequence. For example, if we use nine tests, the number

of possible sequences is close to a million. Since finding the optimal test sequence is

computationally prohibitive, we find a good locally-optimal sequence using a heuristic

search.

Figure 4.11: Accuracy gain and test selection for global test sequence

A good sequence should have high accuracies for most tests. A health provider
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may make a diagnosis after a test, and a good sequence can enhance the diagnostic

performance. Figure 4.11 illustrates this idea. Sequence S1 is better than S2 because

most accuracies on S1 are better than S2. To compare sequences with a different

number of tests, we use mean accuracy gain (MAG) to evaluate sequences. This

accuracy-based evaluation function is defined as

MAG = mean(accuracyi − accuracybase),∀i,

where accuracyi is the accuracy at test i and accuracybase is the accuracy of the

classifier based on only patient-specific information.

The other evaluation function is cost-sensitive. The cost term is added to the

above method. The cost-based function (cMAG) is

cMAG = mean(accuracyi−accuracybase

costi
),∀i,

where costi is the cost of test i.

The next section will show the results of using both evaluation functions in

random search, greedy search, simulated annealing, and genetic algorithm (see [16]

for each method). Random search is used as a baseline to the other approaches.

Greedy search may stop in a locally-optimal solution, but simulated annealing and

genetic algorithms can avoid it.

The neighborhood function for greedy search and simulated annealing is an

approach combining the 2-exchange neighbor and random key [10] approaches. In

the beginning, all tests are assigned a random number ranging 0 to 1. After sorting

these numbers, we can initiate a test sequence. If the assigned number is less than

0.5, the corresponding test is removed from the sequence (inactive). Active status for

each test may change when creating new neighbors.

When creating a new neighbor (new sequence), we randomly choose a test whose

assigned number will add a positive or a negative random number. The active status

of this test may change depending on whether or not the new value is higher than

0.5 (becomes either active or inactive). For example, the assigned numbers for tests
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1 to 9 are 0.98, 0.45, 0.7, 0.33, 0.68, 0.23, 0.15, 0.57, and 0.11. Only tests 1, 3, 5,

and 8 are active because their values are 0.98, 0.7, 0.68, and 0.57, respectively. When

test 2 is chosen and then a random number 0.1 is added, its active status will change.

Therefore, the new active tests are 1, 2, 3, 5, and 8.

A newly active test will be added to the end of the current sequence, and a newly

inactive test will disappear from the current sequence. In the previous example, the

sequence with order [1,3,5,8] will be [1,3,5,8,2] when test 2 becomes active. If test 5

instead of test 2 is chosen and de-activated, the new sequence is [1,3,8].

Sometimes, the active status of a chosen test does not change. In order to

ensure the creation of a different local solution, we also exchange the order of two

active tests in this sequence.

For the neighborhood function of the genetic algorithm, we use another adapted

random key approach. Similar to the above method, we assign random numbers

between 1 and 10 to all tests in the beginning. After performing cross-over and

mutation on these random numbers, we sort these numbers and decide the active

status of tests based on the threshold 5. Finally, we can obtain a sequence with

active tests. For example, the assigned random numbers from test 1 to test 9 are 1.2,

4.5, 6.7, 3.6, 7.7, 9.3, 2.5, 7.4, and 3.3. After sorting these numbers, we have a new

test sequence [t6(9.3) t5(7.7) t8(7.4) t3(6.7) t2(4.5) t4(3.6) t9(3.3) t7(2.5) t1(1.2)].

Finally, the sequence of active tests is [t6, t5, t8, t3].

4.3.2 Results

In this study, we presented a potential method of finding the optimal sequence

for a population by using several heuristic search methods. The sequence found by

random search is the baseline. The dataset has been described in Table 4.1. Table 4.11

lists the results produced by accuracy- and cost-based evaluation functions. The delay

tests are shown as T5 to T13. The row “Tests” shows the found sequence, and the row
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Table 4.11: Random Search

Accu- Tests T9 T8 T13 T10 T5

based Accuracy 0.7296 0.7415 0.8000 0.8059 0.8074

(MAG) MAG=0.0036; cMAG=0.6321

Cost- Tests T8 T7 T10 T6 T9 T11

based Accuracy 0.7615 0.7615 0.7726 0.7748 0.7911 0.7911

(cMAG) MAG=0.0021; cMAG=0.2919

“Accuracy” shows the accuracy of the partial sequence. For example, in the accuracy-

based evaluation function, the accuracy of the whole sequence [T9,T8,T13,T10,T5] is

0.8074, and the accuracy of the partial sequence [T9,T8,T13] is 0.8. Later, we simply

call them the accuracy at T5 or T13. Each accuracy is a predicted accuracy for all

patients from five 3-fold cross-validation runs. When tests are given based on this

sequence, and a patient is diagnosed, the accuracy of the diagnosis can be found from

this table. For example, when a patient is diagnosed after receiving test T9, T8, and

T13, the expected accuracy is 0.8.

Next, we use hill climbing (greedy search) to find the optimal sequence. Table

4.12 shows the found sequence and the accuracy at each test. Hill climbing can

find larger MAG and cMAG values. The accuracy-based method uses MAG as the

evaluation function while cost-based method uses cMAG. It is interesting to note that

when we use cMAG to guide the search, the value of its MAG improves, too. Using

cMAG finds the most cost-effective sequence, so effectiveness (MAG) improves.

Greedy search finds a local optimum, so the solution is usually not good enough.

Using a genetic algorithm (GA) or a simulated annealing (SA) avoids this problem.

Tables 4.13 and 4.14 show the results of the two methods. Both MAG and cMAG

improve, and accuracies are greater than 0.8 after receiving the second test (e.g., in

Table 4.13, T10 in accuracy-based method or T8 in cost-based method). In addition,
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Table 4.12: Greedy Search

Accu- Tests T13 T10 T5 T11 T7 T8 T9

based Accuracy 0.7756 0.7874 0.7911 0.7926 0.7948 0.7993 0.8119

(MAG) MAG=0.0199; cMAG=0.6273

Cost- Tests T12 T11 T6 T9 T10

based Accuracy 0.7844 0.8126 0.8119 0.7978 0.8126

(cMAG) MAG=0.0306; cMAG=0.7174

Table 4.13: Genetic Algorithm

Accu- Tests T12 T10 T6 T8 T9 T11 T13 T5 T7

based Accuracy 0.7807 0.8015 0.8015 0.8074 0.82 0.8252 0.8326 0.8267 0.8326

(MAG) MAG=0.0409; cMAG=0.9899; cost saving=0%

Cost- Tests T12 T8 T10 T6 T9 T11 T13

based Accuracy 0.78 0.8126 0.8222 0.817 0.823 0.8304 0.8333

(cMAG) MAG=0.0436; cMAG=1.2585; cost saving=6.5%

we continue to have high accuracies after the second test. Compared to the results of

greedy search, we can have high accuracies very fast and continuously. Cost saving

comes from unnecessary tests, e.g., T5 and T7 are not considered in the cost-based

method in Table 4.13 because MAG or cMAG reduces when introducing these tests.

Compared with individualized methods discussed previously, there are several

different points to be made. First, the target population of decision support is differ-

ent, individual vs. population. The prior approach constructs the optimum sequence

for each individual based on the pre-test probability and the information at hand.

The latter approach can only construct the testing sequence based on population.

Second, the way of support is different (interactive vs. non-interactive). For

the prior method, we need to continuously provide a patient’s information, so the
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Table 4.14: Simulated Annealing

Accu- Tests T12 T10 T7 T9 T13 T6 T11

based Accuracy 0.7763 0.8089 0.8104 0.8119 0.8356 0.8341 0.8348

(MAG) MAG=0.0427; cMAG=0.8228; cost saving=1.9%

Cost- Tests T8 T12 T10 T9 T11 T13

based Accuracy 0.7726 0.8156 0.817 0.8207 0.8252 0.8319

(cMAG) MAG=0.0405; cMAG=1.3233; cost saving=8.1%

system can interactively recommend the most promising test for the next time. In

addition, the system recommends when a diagnosis can be made when the evidence

is sufficient. On the other hand, a health provider needs to decide when the evidence

is sufficient when following the test sequence constructed by the second approach.

Third, the methods of accuracy and cost-saving estimation are different. The

first approach can recommend when to diagnose, and we can certainly examine the

accuracy, cost and test saving of the recommendation by comparing with the data.

On the other hand, accuracies in the second approach are from the whole population.

In addition, cost and test savings come from eliminating unnecessary tests.

Fourth, the way to use is different. The first approach relies on interacting

with the system, and a health provider needs to continuously communicate with a

computer (or the system continuously needs the input of electronic medical records

and then return recommendations). This is because a testing sequence is generated

dynamically. On the other hand, the second approach can help make a diagnostic

protocol, which can be used without a computer.
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CHAPTER V

LIFESTYLE RECOMMENDATION

Lifestyle recommendation1 traditionally focuses on the whole population. For

example, the 2006 AHA Scientific Statement [66] suggests aims for healthy body

weight, desired lipid profile, normal blood pressure, physical activity, etc. It also sug-

gests specific thresholds for diet and lifestyle such as limitation of saturated fat intake

< 7% of energy, cholesterol intake < 300 mg, total fat intake between 25% to 35%

of energy. These recommendations are good for the population, but they may not

be the best for each individual. Intuitively, lifestyle recommendations should vary

based on an individual’s health and preferences, e.g., an athlete, a vegetarian, and a

smoker should set different suggestions. Ideally, everyone should receive the recom-

mendations of lifestyle changes that they would most benefit from, but this individ-

ualization problem is very complex because too many factors influence an individual

simultaneously.

There are several advantages of individualized lifestyle recommendation. First,

the recommendation of lifestyle changes can be constructed based on an individual’s

need. For example, an athlete has different needs of caloric and nutrition requirements

from most non-athletes. If fact, each person has unique needs of nutrition and lifestyle

[26] and individualized lifestyle recommendations have the potential to provide the

maximum benefit for each individual. Second, when constructing an individualized

plan, personal preferences can be taken into account. One may prefer activities to

promote health while another may prefer nutrition changes. In addition, it can be

difficult to fit a non-individualized plan for a healthy lifestyle into one’s working and

daily life without the individual’s participation [104] in deciding the plan. Thus, it

may be easier to comply with an individualized plan of lifestyle.

1In this chapter we use the term “lifestyle” to represent “nutrition and lifestyle.”
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This project proposes a machine learning algorithm to construct an expert sys-

tem that can recommend an individualized plan of lifestyle changes for a query. Fol-

lowing this plan, the query patient is predicted to have the minimal 10-year risk of

cardiovascular disease (CVD). The plan includes many lifestyle behaviors including

exercise, smoking, and many kinds of nutrients. When constructing the plan, the al-

gorithm takes personal preference and many individual factors, such as demographic

data, medication in use, HDL, LDL, smoking history, etc., into account.

5.1 Method

We use a revised version of the PODSS algorithm (see Figure 3.1) to construct

this expert system. In contrast to the hospital-referral project, the system uses k-NN

(described in 5.1.2) instead of SVM as the predictive model. Unlike the hospital-

referral project, lifestyle variables can be changed individually (in the hospital-referral

project, the set of hospital-characteristics variables changes when switching hospitals).

In addition, this PODSS has a built-in validation approach (described in 5.1.5) instead

of using a validation map.

Section 5.1.1 describes the data used in this project, Section 5.1.2 discusses

the k-nearest neighbor algorithm, Section 5.1.3 addresses our missing data handling

approach, and Section 5.1.5 describes the validation method. The description of the

optimization formulation of the healthiest plan is discussed in Section 5.1.4.

5.1.1 Data Preparation

Knowledge for this system is extracted from the data of the Atherosclerosis Risk

in Communities (ARIC) study [84]. This study contains the Cohort Component and

the Community Surveillance Component of four communities. The Cohort Compo-

nent began in 1987 and subjects are examined every three years. ARIC recruited

around 4000 individuals aged 45-64 from each of four communities. The total sample
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size is 15,792. The baseline period is 1987-89, and the follow-up periods are 1990-92,

1993-95, and 1996-98. The Community Surveillance Component is the investigation

of the community-wide occurrence of hospitalized myocardial infarction and coro-

nary heart disease deaths in men and women aged 35-84 years. Patients without any

CVD event before the baseline (1987-89) are selected in this research. Their 10-year

CVD outcomes (including both CHD and stroke) are defined using the Community

Surveillance Component.

All variables are from usual care, which can be obtained by asking a patient

or doing a simple exam. We discretized all variables based on equal population in

order to simplify the problem (i.e., similar population size in each discrete value).

They include patients’ characteristics and lifestyle. Similar to PODSS, a patients’

characteristics describe the patient but one cannot change them. On the other hand,

lifestyle variables are changable and one can change them to improve health. Table

5.1 summarizes both types of variables. The description of each variable is followed

by several numbers. They are cutpoints for discretization. For example, there are

five discrete values for body mass index, less than 23.347, between 23.347 and 25.746,

between 25.746 and 28.058, between 28.058 and 31.378, more than 31.378.

Most of these variables (Table 5.1) are taken directly from the ARIC dataset

except for total sport hours of lifestyle. The ARIC survey asked participants for their

four most common activities and hours per week. Total sport hours is the sum of

all listed activity time. The outcome of this model is binary, whether a patient has

any CVD event (CHD event and stroke) in ten years. CHD is defined as any of

the following diagnoses: probable MI, definite MI, suspect MI, missing pain (ECG

and/or enzyme diagnosis), definite fatal CHD, definite MI, and possible fatal CHD.

Stroke is defined as definite TIB (definite brain infarction, Thrombotic), probable

TIB, possible stroke of undetermined type, undocumented fatal cases with stroke

codes, out-of-hospital deaths with stroke codes.
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Table 5.1: Variables from ARIC data used for lifestyle recommendation

# Types Variables, values

1 NUM Body mass index, [23.347, 25.746, 28.058,
31.378]

2 NUM alcohol intake (g) per day, [0, 9.4286]

3 CHAR smoking status, [0,1]

4 NUM total activity hours per week, [3, 5, 7, 10]

Lifestyle 5 NUM carbohydrate (g), [128.79, 166.19, 203.57,
258.52]

6 NUM dietary cholesterol (mg), [147.5, 200.23,
256.84, 337.56]

7 NUM dietary fiber (g), [10.52, 14.12, 17.82, 22.93]

8 NUM protein (%kcal), [14.524, 16.683, 18.668,
21.079]

9 NUM saturated fatty acid (%kcal), [9.545, 11.254,
12.676, 14.373]

10 NUM total fat (%kcal), [27.321, 31.409, 34.711,
38.418]

11 NUM cigarette years of smoking, [0, 280, 660]

12 CHAR cholesterol lowering medication use, [0, 1]

13 CHAR diabetes, [0, 1]

14 CHAR education level, [(1) Grade school or 0 years
education (2) High school, but no degree (3)
High school graduate (4) Vocational school
(5) College (6) Graduate school or Profes-
sional school]

15 CHAR sex, [0, 1]

16 NUM HDL cholesterol in mg/dl, [37.557, 45, 52.965,
64.521]

17 CHAR hypertension, [0, 1]

18 NUM LDL cholesterol in mg/dl, [105, 126, 145, 168]
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Table 5.1: continued

19 CHAR menopausal status, [(1) Primary Amenor-
rhea (2) Premenopause (3) Perimenopause (4)
Post, Natural (5) Post, Surgical (6) Unknown
Ovarian Status]

20 CHAR race, [B: black, N: non-black]

21 NUM total cholesterol in mmol/L, [4.6548, 5.2237,
5.7409, 6.3874]

22 NUM total triglycerides in mmol/L, [0.82417,
1.0838, 1.4112, 1.9419]

Characteristics 23 NUM age, [48, 52, 56, 60]

24 CHAR high blood pressure medication in past 2
weeks, [Yes, No, Unknown]

25 NUM 2nd and 3rd systolic blood pressure average,
[106, 115, 123, 135]

26 NUM 2nd and 3rd diastolic blood pressure blood
pressure average, [65, 70, 76, 82]

27 NUM standing height to nearest CM, [160, 165, 171,
177]

28 NUM waist girth to nearest CM, [85, 93, 99, 107]

29 NUM hip girth to nearest CM, [97, 101, 105, 111]

30 NUM heart rate, [58, 63, 68, 75]

31 NUM white blood count, [4.6, 5.4, 6.3, 7.4]

32 NUM apolipoprotein AI (MG-DL), [107, 122, 137,
157]

33 NUM apolipoprotein B (MG-DL), [69, 83, 97, 116]

34 NUM APOLP(A) DATA (UG-ML), [19, 43, 86, 175]

35 NUM creatinine (MG-DL), [0.9, 1, 1.1, 1.2]
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5.1.2 k-Nearest Neighbor

As opposed to SVM, k-Nearest Neighbor (k-NN) doesn’t compile a universal

predictive model in advance. It postpones induction until classification. In other

words, it stores the whole training data and predicts by utilizing the distance-weighted

classes of the query’s k nearest neighbors [102]. The model is described as

p(cj|q) =

∑
X∈Kq

1(xc = cj) ·K(d(x, q))∑
X∈Kq

K(d(x, q))
, (5.1)

where cj ∈ classes J . xc is the class membership of query q. 1() is 1 iff the argument

is true. Note that there are J possible classes and 1() defines the specific class to

which a query q belongs. K is the distance weighted function, and Kq is the set of q’s

k nearest neighbors among the training data. The distance function between q and

x is defined as

d(x, q) = (
∑
f∈F

w(f) · δ(xf , qf )r)
1
r , (5.2)

where F is the feature set. In this project, we define r = 2 (i.e., Euclidean distance).

δ() is defined in Equation 5.3. w(f) is the feature weighting function which is defined

in Equation 5.4.

δ(xf , qf ) =


|xf − qf |, f is numeric

0, f is categorical and xf = qf

1, f is categorical and xf 6= qf

(5.3)

In Equation 5.4, mutual information (MI, w(f)) between values of a feature and the

class is defined to be the weight of the feature f . v is a value of a feature and Vf is
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the value set of f . The function of assigning MI to each variable is similar to feature

selection. However, weights in feature selection are binary but weights in k-NN are

continuous.

w(f) =
∑
v∈Vf

∑
cj∈J

p(cj, xf = v) · log p(cj, xf = v)

p(cj) · p(xf = v)
(5.4)

5.1.3 Handling Missing Values

Missing values are very common in medical data. They may result from an

unwillingness to answer questions, the non-inclusion of unnecessary tests, or other

reasons. The common approach is to impute missing values (e.g., compute the aver-

age). In this project, we impute distance measures instead of missing values. We use

expected distance to impute the distance between a query and a training case.

There are two possible scenarios: either a query or a training case has a value

missing, or both are missing values. For the first scenario, the value of either a

query or a training case is known, and we compute the expected distance measure

of matching this known value. For example, a feature has three categorical values

[r,g,b] whose probabilities are [0.4,0.25,0.35], respectively. When the known value of

either a query or a training case is b, and the other is missing, the expected distance

is 0.4× (1) + 0.25× (1) + 0.35× (0) = 0.6. On the other hand, if the three values are

[-1,0,1] and the known value is 1, the expected distance is 0.4× (|1− (−1)|) + 0.25×

(|1− 0|) + 0.35× (|1− 1|) = 1.05.

For the second scenario, both values are missing, The probability for values r

to r, r to g, r to b, g to r, g to g, g to b, b to r, b to g, and b to b are 0.16, 0.1, 0.14,

0.1, 0.0625, 0.0875, 0.14, 0.0875, and 0.1225, respectively. The expected distance for

a categorical variable is 0.16× (0) + 0.1× (1) + 0.14× (1) + 0.1× (1) + 0.0625× (0) +

0.0875× (1) + 0.14× (1) + 0.0875× (1) + 0.1225× (0) = 0.655. The expected distance

for a numeric variable is 0.16× (| − 1− (−1)|) + 0.1× (| − 1− 0|) + 0.14× (| − 1−
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1|) + 0.1× (|0− (−1)|) + 0.0625× (|0− 0|) + 0.0875× (|0− 1|) + 0.14× (|1− (−1)|) +

0.0875× (|1− 0) + 0.1225× (|1− 1) = 0.935.

5.1.4 Optimization: The Healthiest Plan

We aim at finding the best lifestyle plan for each individual. There are two

scenarios. The first one finds the single lifestyle component with a new value that

can minimize one’s CVD risk. The formulation is described as follows.

minimize p(x1 ∪ x2ij)

subject to
i = 1, ..., |x2|

j = 1, ..., |Si|,

(5.5)

where x2ij represents one lifestyle component i with the value j. S represents the

set of possible values for i. The objective is to find the best value j of the single

lifestyle choice i for a patient with characteristic vector x1. p is the decision function

as described in (5.1). We can simply use exhaustive search to try all possible values

of each lifestyle variable since all variables have been discretized.

The second scenario finds the combination of several lifestyle components that

minimize one’s CVD risk. The formulation is described as follows:

minimize p(x1 ∪ x2)

subject to x2i ∈ S, i= 1, ..., |x2|,
(5.6)

where x2 represents one’s lifestyle vector, and the returned x2 is the best lifestyle

vector for an individual. In order to return x2 immediately, we use forward selection

[59] to solve the problem. We start with an empty lifestyle vector, and then include

a lifestyle component in each iteration given x1 and the previously included lifestyle

components. Finally, we can construct the entire x2 vector.
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5.1.5 Validation Method

Validation is difficult because patients never received any recommendation from

the system. We can certainly validate a recommendation system by a clinical trial,

but it is out of the scope of machine learning. This dissertation discusses a possible

validation approach using machine learning.

Figure 5.1 illustrates this validation method. Assume Q is a query patient with

individual characteristics P and originally-chosen lifestyle L0. Q
′ is the same query

patient with characteristics P but receives the recommended lifestyle L∗. In other

words, Q represents the real patient-lifestyle pair that we observe in the dataset, and

Q′ represents the non-existent patient-ideal lifestyle pair.

We then estimate the risk of both Q and Q′ by a holdout dataset (cases inde-

pendent of the data used for recommendation). Finally, one can compare whether

Q′ shows lower risk than Q. Unlike prediction, validation cannot be done through

comparing between predicted and true labels. In this problem, we compare predicted

CVD risks between original and recommended lifestyles for the same subject P .

Figure 5.1: The validation method

In order to implement this idea, we stratify and assign 50% of data for training

and yielding recommendation and 50% for validation (holdout data). We obtain the

best L∗ for the query P by using k-NN and optimization with the first dataset, and
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then estimate risks of both Q and Q’ by using k-NN with the second dataset. After

producing lifestyle recomemndations and risk estimations for all query patients, we

can compare whether patients in group Q′ show lower risk than group Q. Thus, we

can estimate if CVD risk can be reduced when following lifestyle recommendations.

5.2 Results

Table 5.2 shows the comparison between original and recommended lifestyle.

The “Original” column shows the average CVD risk of patients with their original

lifestyles, and “Recommend” shows the average CVD risk of patients with recom-

mended lifestyle changes. Each subject receives two type of recommendations, single

lifestyle changes (“Predict-Single” column) and multiple lifestyle changes (“Predict-

Multiple” column). In the first situation, the system gives only one lifestyle change

recommendation to each user. In this situation, we select the best lifestyle change

(the change with the maximum CVD-risk reduction) for each user. On the other

hand, each user receives multiple lifestyle changes recommendation (more than one

for most cases) in the second situation. The number of lifestyle changes recommen-

dation varies based on patients. In general, query patients with many bad behaviors

(e.g., smoking) need more changes than the ones with fewer bad behaviors.

The row “p-value-improvement” examines whether each recommendation is bet-

ter than “Predicted-Ori”. p values in both cases are very small. There are two reasons

for the small p-value. First, the data size is big (13006 data points). Second, most

data points show consistent improvement.

The table suggests that lifestyle recommendation can successfully reduce risk,

but the reduction of predictive probabilities is very small. There is one important

reason. Many variables are the possible cause of change of the other variables. In-

dependent variables are divided into patient characteristics and lifestyle, and we can

only change lifestyle to reduce CVD risk. In the real world, patient characteristics
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Table 5.2: Comparison between true and predictive outcomes

Original Recommend

Pedict-Ori Predict-Single Predict-Multiple

Avg prob 0.0803 0.0798 0.079

p-value-improvement – <<0.0005 <<0.0005

would change with lifestyle. For example, when a patient is recommended to reduce

cholesterol intake, the CVD-risk reduction is computed only based on reduction of

cholesterol intake. However, true CVD-risk reduction should also take changes of

patient characteristics such as HDL and LDL levels into account. When computing

predictive CVD-risk reduction, this model considers the change of cholesterol intake

without possible changes of HDL and LDL levels. Therefore, this model under-

estimates the true CVD-risk reduction. General speaking, the recommendation of

lifestyle changes for a query is generated by observing the lifestyle of similar subjects

with low-CVD risks. Thus, the recommendation of lifestyle is still the best for the

query. In other words, although actual risk reduction estimation is a limitation of

this model, we still can use the relative risk reduction to identify a healthy lifestyle.

Table 5.3 shows the proportions of current smoking status, obesity, over-intake

of cholesterol, over-intake of saturated fat, over-intake of total fat, and less activity

for hypertension patients, diabetes patients, and smokers. 31.9% of subjects have

hypertension, 8.2% have diabetes, and 43.6% are smokers. Obesity is determined by

whether a subject’s BMI is greater than 30 [13]. Too much cholesterol, saturated

fat, and total fat are determined by cutpoints 300 mg, 7% energy, and 35% energy

as suggested by [66]. There is no sugested cutpoint to decide less activity. In this

project, the cutpoint is 5 hours, which is the median activity value.

Table 5.4 summarizes three most frequent single lifestyle recommendations for

smokers. All smokers receive only one lifestyle change recommendation. In other
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words, this lifestyle change is the most important. Although the single lifestyle rec-

ommendation is not practical, we use it to examine how the system reasons. As

expected, the majority (54.4%) of smokers should quit smoking first, 37.2% should

control their cholesterol, and 4.8% should control their weight first. Compared with

Table 5.3, we can see the first group of subjects are less obese (11.8%), and take less

cholesterol (5.5%), saturated fat (93.4%), and total fat (28.1%), so quit smoking is

certainly the first recommendation. The second group of subjects are slightly more

obese (20.8%), takes more cholesterol (77.2%), saturated fat (98.9%), and total fat

(56.3%), especially cholesterol intake. That’s the reason they are recommended to

control cholesterol first. The third group of subjects are very obese (94.2%), but

they have less cholesterol (8.4%), saturated fat (94.8%), and total fat (35.7%) intake.

Thus, they are recommended to control weight.

Through the comparison, we can see that the recommendation is given based

on one’s characteristics. A related question is why some people are recommended

to control cholesterol or weight before quitting smoking. This is because CVD risk

reduction of cholesterol or weight control for the second or third groups of subjects

are higher than quitting smoking. Thus, the recommendation is also given based on

the best match that results in the maximum CVD reduction.

To be realistic, the system needs to provide more than one lifestyle change

recommendation. Every subject can receive a whole plan of lifestyle change recom-

mendations. However, one may prefer to start from a couple most effective lifestyle

changes instead of recommending all lifestyle changes at once. Thus, we use a sim-

ple optimization method to find the most effective combination (from two to five)

of lifestyle changes (called a package of n). Tables 5.5 to 5.8 shows the packages of

two to five lifestyle changes recommendations. Quitting smoking is always included

in each of these packages.

For example, in the package of three lifestyle changes (Table 5.6), the three
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most frequent recommendations are [cholesterol control, total fat control, quit smok-

ing] (35.5%), [weight control, cholesterol control, quit smoking] (23.9%), and [weight

control, total fat control, quit smoking] (9.5%).

Tables 5.9 to 5.13 show results of single to a package of five lifestyle changes

for subjects with diabetes. Similarly, Tables 5.14 to 5.18 show results of single to a

package of five lifestyle changes for subjects with hypertension.

Most smokers with diabetes or hypertension are recommended to quit smoking

(e.g., 100% in the third large group in Table 5.10). For the first and the second large

groups, other recommendations resulting in higher CVD risk reduction than smoking

cessation. Thus, there are a few smokers in the first and the second large groups

in Table 5.10. Clinically, quitting smoking is a very important recommendation be-

cause smoking influences not only CVD but also many other problems. However, in

this project, we only consider the influence on CVD. If the purpose of recommen-

dation aims to reduce the risk of combination of many diseases, we expect that the

recommendation of smoking cessation will be much more frequent.

Clinically, weight control is usually recommended for diabetes and hyperten-

sion patients, and the systems correctly identify it for obese patients. In the single

recommendation for both diseases (Tables 5.9 and 5.14), weight control is the recom-

mendation for either the largest or the second largest groups. In addition, lowering

cholesterol has the most benefit for reducing CVD risks, and the system did show

that lowering cholesterol is one of the most frequent recommendations.

It is very interesting to note that although physical activity appears in the

five-lifesyle-in-a-package recommendation for each category (Tables 5.8, 5.13, 5.18),

in general, physical activity is not a frequent recommendation. The reason may be

due to the limitation of the dataset. Many responses (36.5%) for activity hours are

missing. If not missing, the minimum value is 1 hour per week. In other words, no

response has 0 activity hour. According to AHA guideline [66], 61% of US adults
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Table 5.3: Distribution of smoking, cholesterol intake, obese, saturated fat, total fat,
and activity in hypertension patients, diabetes patients, and smokers

Hypertension
(31.9%)

Diabetes
(8.2%)

Smokers
(43.6%)

smoking 22.6% 22.4% 100%

obese 39.6% 51.9% 19.4%

too much cholesterol 28.5% 33.3% 32.2%

too much saturated fat 94.8% 95% 95.8%

too much total fat 36.3% 43.5% 41.5%

less activity 28.1% 28.2% 25.2%

do not engage in any regular physical activity. In our dataset, we expect that there

should be many missing responses whose true values are 0. Thus, the data limit the

system’s learning, and result in under-estimating the benefit of activity. Specifically,

it learns the benefit from little activity to more activity but not from no activity to

some activity. As a result, the under-estimation causes limited recommendation in

activity.

Finally, we use a case study to shows another flexible application of this system

in Table 5.19. The column “Original” shows subject P48’s original lifestyle. There are

three recommendations. “The whole plan” shows P48 should have 9 lifestyle changes.

A small threshold (1e-12) was set to determine whether a lifestyle change should be

included. In other words, because of small estimated CVD-risk reduction, the system

doesn’t consider carbohydrate in the whole plan. This may indicate carbohydrate

intake is adequate for P48, and there is no need to change.

P48 may only want a couple lifestyle changes instead of the whole plan. The best

package of three is controlling weight, total fat, and quit smoking. If P48 follows these

recommendations, his CVD risk reduction would be 0.00125, i.e., 72.8% of the total
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Table 5.4: Single lifestyle recommendation for smokers

Quit smoking
(54.4%)

Cholesterol con-
trol (37.2%)

Weight control
(4.8%)

Smoking 1 1 1

Obese 0.118 0.208 0.942

Over choles-
terol

0.055 0.772 0.084

Over saturated
fat

0.934 0.989 0.948

Over total fat 0.281 0.563 0.357

Less activity 0.259 0.237 0.240

Table 5.5: A package of two lifestyle recommendations for smokers

Cholesterol con-
trol and quit
smoking (44.3%)

Weight control
and quit smoking
(18.6%)

Total fat control
and quit smoking
(17.3%)

Smoking 1 1 1

Obese 0.082 0.474 0.068

Over choles-
terol

0.504 0.020 0.031

Over saturated
fat

0.976 0.880 1

Over total fat 0.330 0.129 0.790

Less activity 0.238 0.254 0.280
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Table 5.6: A package of three lifestyle recommendations for smokers

CHOL and TOT
fat control and
quit smoking
(35.5%)

Weight and
CHOL control
and quit smoking
(23.9%)

Weight and to-
tal fat control
and quit smoking
(9.5%)

Smoking 1 1 1

Obese 0.052 0.442 0.485

Over choles-
terol

0.550 0.384 0

Over saturated
fat

1 0.956 1

Over total fat 0.716 0.143 0.528

Less activity 0.246 0.235 0.282

Table 5.7: A package of four lifestyle recommendations for smokers

CHOL, SAT fat,
and TOT fat and
quit smoking
(29.9%)

Weight, CHOL,
and TOT fat and
quit smoking
(28.1%)

Weight, SAT fat,
and TOT fat and
quit smoking
(6.9%)

Smoking 1 1 1

Obese 0.002 0.408 0.389

Over choles-
terol

0.487 0.455 0

Over saturated
fat

1 1 1

Over total fat 0.710 0.492 0.597

Less activity 0.245 0.241 0.312
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Table 5.8: A package of five lifestyle recommendations for smokers

Weight, CHOL,
SAT fat, and
TOT fat control
and quit smoking
(43.1%)

CHOL, SAT fat,
and TOT fat con-
trol, quit smok-
ing, and activity
(9.1%)

CHOL, SAT fat,
and TOT fat
control, fiber
and quit smoking
(5.2%)

Smoking 1 1 1

Obese 0.296 0 0

Over choles-
terol

0.455 0.469 0.317

Over saturated
fat

1 1 1

Over total fat 0.598 0.623 0.611

Less activity 0.248 0.342 0.174

Table 5.9: Single lifestyle recommendation for diabetes

Weight control
(42.8%)

Cholesterol con-
trol (39.7%)

Total fat control
(9.8%)

Smoking 0.294 0.428 0.340

Obese 0.787 0.405 0.115

Over choles-
terol

0.105 0.709 0.048

Over saturated
fat

0.914 0.991 1

Over total fat 0.321 0.5 0.865

Less activity 0.323 0.249 0.269
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Table 5.10: A package of two lifestyle recommendations for diabetes

Weight and
CHOL control
(37.9%)

Weight and
TOT Fat control
(15.5%)

Weight control
and quit smoking
(14.7%)

Smoking 0.173 0.132 1

Obese 0.740 0.703 0.583

Over choles-
terol

0.526 0.030 0.013

Over saturated
fat

0.963 1 0.833

Over total fat 0.333 0.733 0.077

Less activity 0.300 0.315 0.263

Table 5.11: A package of three lifestyle recommendations for diabetes

Weight, CHOL,
and TOT fat con-
trol (38.2%)

Weight and
CHOL control
and quit smoking
(18.5%)

CHOL and TOT
fat control and
quit smoking
(9.4%)

Smoking 0.049 1 1

Obese 0.677 0.569 0.05

Over choles-
terol

0.502 0.320 0.5

Over saturated
fat

1 0.924 1

Over total fat 0.643 0.036 0.66

Less activity 0.308 0.269 0.26
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Table 5.12: A package of four lifestyle recommendations for diabetes

Weight, CHOL,
SAT fat, and
TOT fat control
(31.2%)

Weight, CHOL,
and TOT fat
control and quit
smoking (27.4%)

Weight, SAT fat,
and TOT fat
control and quit
smoking (7.1%)

Smoking 0 1 1

Obese 0.605 0.598 0.613

Over choles-
terol

0.485 0.395 0

Over saturated
fat

1 1 1

Over total fat 0.705 0.385 0.587

Less activity 0.316 0.282 0.24

Table 5.13: A package of five lifestyle recommendations for diabetes

Weight, CHOL,
SAT fat, and
TOT fat control
and quit smoking
(46.2%)

Weight, CHOL,
SAT, fat, and
TOT fat con-
trol and activity
(13.5%)

Weight, CHOL,
SAT fat, and
TOT fat control
and fiber (5.0%)

Smoking 1 0 0

Obese 0.578 0.573 0.491

Over choles-
terol

0.424 0.455 0.340

Over saturated
fat

1 1 1

Over total fat 0.567 0.552 0.736

Less activity 0.275 0.462 0.132
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Table 5.14: Single lifestyle recommendation for hypertension

Cholesterol con-
trol (44.1%)

Weight control
(33.2%)

Quit smoking
(13.4%)

Smoking 0.389 0.188 1

Obese 0.306 0.716 0.080

Over choles-
terol

0.587 0.066 0.025

Over saturated
fat

0.984 0.921 0.866

Over total fat 0.434 0.241 0.156

Less activity 0.263 0.305 0.248

Table 5.15: A package of two lifestyle recommendations for hypertension

CHOL and
weight control
(31.6%)

CHOL and to-
tal fat control
(17.4%)

weight control
and quit smoking
(15.2%)

Smoking 0.149 0.196 1

Obese 0.653 0.160 0.494

Over choles-
terol

0.428 0.522 0.003

Over saturated
fat

0.976 0.999 0.843

Over total fat 0.243 0.820 0.046

Less activity 0.281 0.253 0.294
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Table 5.16: A package of three lifestyle recommendations for hypertension

Weight, CHOL,
and TOT fat con-
trol (29.4%)

Weight and
CHOL control
and quit smoking
(20.8%)

CHOL and TOT
fat control and
quit smoking
(10.0%)

Smoking 0.044 1 1

Obese 0.581 0.490 0.022

Over choles-
terol

0.439 0.317 0.452

Over saturated
fat

0.998 0.951 1

Over total fat 0.586 0.064 0.597

Less activity 0.283 0.288 0.234

Table 5.17: A package of four lifestyle recommendations for hypertension

Weight, CHOL,
SAT fat, and
TOT fat control
(25.5%)

Weight, CHOL,
and TOT fat
control and quit
smoking (24.7%)

CHOL, SAT fat,
and TOT fat
control and quit
smoking (9.1%)

Smoking 0 1 1

Obese 0.493 0.521 0

Over choles-
terol

0.416 0.382 0.443

Over saturated
fat

1 0.999 1

Over total fat 0.629 0.361 0.642

Less activity 0.261 0.288 0.244
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Table 5.18: A package of five lifestyle recommendations for hypertension

Weight, CHOL,
SAT fat, and
TOT fat and
quit smoking
(36.7%)

Weight, CHOL,
SAT fat, and
TOT fat and
activity (12.5%)

Weight, CHOL,
SAT fat, and
TOT fat and
fiber (5.5%)

Smoking 1 0 0

Obese 0.485 0.460 0.460

Over choles-
terol

0.410 0.404 0.274

Over saturated
fat

1 1 1

Over total fat 0.528 0.524 0.602

Less activity 0.272 0.366 0.106

possible reduction. If P48 doesn’t want to quit smoking, he needs to add cholesterol

control, saturated fat control, total fat control, and more fiber to compensate for

not quit smoking. Thus, P48 needs to consider if he wants to take the simple three

changes including quit smoking or five changes without quit smoking.

Originally, we include monounsaturated (MUFA) and polyunsaturated (PUFA)

fats in the system, but they are removed due to two reasons. First, usually they are

not the recommendation targets. The only recommendation about unsaturated fat is

the consumption of all kind of fat (total fat) should be below 35% of energy threshold.

Second, it is recommended to replace saturated fat with MUFA and PUFA, but the

recommendation from the previous version of system usually considers MUFA as bad

fat. Thus, many recommendations involved controlling MUFA, but such recommen-

dations conflict with current understanding about MUFA.

As a result, we conducted a simple investigation about MUFA. Table 5.20 shows

correlation coefficients of CVD and various nutrition elements in five levels of total
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Table 5.19: A case study of P48

Original The whole
plan

A package
of three

Compensation

BMI > 31.38 < 23.3 < 23.3 < 23.3

alcohol
(g)/day

0 > 9.4

smoking yes no no

sport
hours/wk

< 3 > 10

Lifestyles carbohydrate
(g)

< 128.8

cholesterol
(mg)

147.5 to
200.2

< 147.5 < 147.5

fiber (g) < 10.5 > 22.93 > 22.93

protein
(%kcal)

> 21.1 < 14.5

saturated fat
(%kcal)

> 14.4 < 9.5 < 9.5

total fat
(%kcal)

> 38.4 < 27.3 < 27.3 < 27.3

CVD risk re-
duction

0.00172 0.00125
(72.8% of
total possible
reduction)

0.00128 (74.4%
of total possible
reduction)
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Table 5.20: Correlation coefficients of CVD and nutrition intake

Carbohydrate Cholesterol Fiber MUFA PUFA Protein SAT fat TOT fat

1 st 0.023 0.044 -0.009 0.025 -0.039 -0.027 -0.008 –

2 nd 0.033 0.048 -0.012 0.047 -0.038 -0.028 -0.012 –

3 rd 0.013 0.083 0.002 0.019 -0.032 0.006 -0.007 –

4 th 0.006 0.037 -0.017 0.012 -0.053 0.003 0.015 –

5 th 0.011 0.064 -0.006 0.027 -0.013 -0.012 0.038 –

Total 0.010 0.067 -0.013 0.048 -0.009 -0.005 0.038 0.042

fat (based on four cutpoints 27.3%, 31.4%, 34.7%, and 38.4%) and in the whole popu-

lation. Each column represents one nutrition element. As expected, fiber and PUFA

show negative correlation with CVD, and cholesterol shows positive correlation. Sur-

prisingly, MUFA positively relate with CVD. In addition, saturated fat is positively

related to CVD, but it is negatively related with CVD when the consumption of total

fat is not much (first three levels of total fat). Saturated fat positively relates with

CVD in the whole population. This surprising finding will be investigated further in

future work.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

This central idea of this dissertation is aimed at facilitating personal health care,

reducing costs of health care, and improving outcomes. This dissertation proposes

new machine-learning algorithms for three disjointed health care problems: hospital

referral, cost-effective diagnosis, and lifestyle recommendation. These problems have

been well studied by single-fits-all methods1. This dissertation uses novel single-fits-

single approaches to examine these problems.

Each individual is defferent. In order to have the best outcome, everyone should

receive individualized care, i.e., a care solution specific to each individual given the

unique properties. Furthermore, an individualized health care solution should be the

best for a specific patient and not required to be so for the whole population. In

addition, preference and real-world limitations of each individual vary. A human

expert such as a health care provider can certainly provide individualized care based

on experience and such an event can be recorded as data. This dissertation shows that

machine learning can extract medical knowledge from data and then optimization

methods obtain the individualized optimal solution for decision support based on

one’s properties and preference.

In the hospital referral and lifestyle recommendation projects, individualized

recommendation is generated based on the input of personal characteristics and pref-

erences. The systems can then return the best individual solution (hospital selection

or the plan of lifestyle changes) that fits one’s preference and personal considerations.

In the cost-effective diagnosis project, the recommendation of a test is provided based

on individual information (including symptoms and previous test results). The rec-

ommended test has the highest potential to cross (or get close to) the treatment

1The best solution for the population, e.g., choose a large volume hospital.
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(or non-nontreatment) threshold. In other words, we optimize diagnosis in terms of

the number of tests and the amount of cost without sacrificing accuracy (sometimes

improving accuracy).

There are several advantages of machine learning-based decision support sys-

tems. First, the knowledge of the systems is automatically extracted from data.

Thus, we do not need to spend a lot of time and labor in constructing and maintain-

ing the knowledge base. When constructing or maintaining the knowledge source, we

simply train the model with data. In these projects, humans set parameters (e.g.,

deciding the treatment threshold) and communicate with the system (e.g., providing

personal preferences or considering the trade-off between travel distance and survival

probability).

Second, the recommendation is the best solution for an individual. Knowledge

is extracted by predictive models and recommendations are generated by optimization

techniques. Optimization techniques can find the best solution (e.g., the most efficient

way to allocate medical staff) with a given function of patterns. For many problems,

the function is not easy to formulate. Fortunately, one can use a predictive model

(e.g. SVM) to capture patterns of the real world as a decision function. Thus,

the integration of a predictive model and an optimization method can automatically

generate the best solution observed so far.

Third, the extracted knowledge fits the real world better. In the real world,

outcomes, such as 10-year CVD, are influenced by several factors and their interaction.

A non-linear predictive model can flexibly capture the relationship between variables

and outcomes, and hence, usually predict better. Similarly, the recommendation

may be better when using the non-linear form of knowledge, compared to standard

recommendation based on correlation with outcome (risk).

Fourth, one can apply different predictive models for all three systems. For

example, the hospital-referral and lifestyle recommendation projects use the same
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PODSS framework. However, the predictive models in the former one are SVMs

and in the latter are k-NNs. There is no globally best predictive model, as different

models are more appropriate for different datasets. When applying these algorithms,

one is allowed to choose the best predictive model that fits data the best, allows

visualization of knowledge, or some other reasons. For example, our reasons for using

k-NN in the lifestyle recommendation is simple implementation.

There are several limitations of the data in these projects. For the hospital-

referral project, the area of data is limited to Iowa. Thus, hospitals in border states

are not considered. The results of this application are limited to the specific type of

disease, area, and time period. The best hospital for CABG surgery is not necessarily

the best hospital for complex cancer surgeries. If the data for training are outdated,

such as ten years old, the recommendation may not reflect current practices. We

must update knowledge by training the system with new data because the outcomes

for a hospital are likely to change over time. For example, a hospital may adopt new

technologies, promote quality improvement, or experience surgeon turnover.

For the cost-effective diagnosis project, limitations of this study are described

below. First, all patients in the heart disease dataset received three non-invasive

cardiac tests and complete clinical and ECG data were collected for these patients.

As not all patients in clinical practice would be expected to receive a comprehensive

battery of non-invasive tests, the projected reduction in number of diagnostic tests

ordered (and the associated costs) attributable to use of the ODPF algorithm may

be optimistic. In fact, this limitation applies to most datasets in our analysis (except

for the hepatitis dataset). Second, we did not evaluate the recommended sequences

of diagnostic tests selected by the ODPF algorithm to determine whether these test

sequences would be clinically acceptable to practicing health providers. To address

this issue, one may set appropriate constraints (identified by clinician experts) to

create viable test sequences in clinical practice. Third, the source dataset includes
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patients who were referred to a single center for diagnostic evaluation, and it is unclear

how the ODPF algorithm would perform in an unselected, contemporaneous samples

of patients with suspected CAD or thyroid disease.

For the lifestyle project, the dataset is the description of a specific population.

First, the recommended lifestyle is thus the best lifestyle observed from that popu-

lation. Some known healthy behavior may not be recommended when most people

don’t have the behavior. For example, when most people consume saturated fat more

than 7% energy (this cutpoint is suggested by American Heart Association), the sys-

tem may not recognize the benefit of satisfying this criterion. In addition, due to bias,

the recommended lifestyle may not be the best for patients not in that population.

For example, one population smokes a lot and the other population rarely smokes. If

the model is constructed by training with the second population and then recommend

for the first population, the recommendation would under-estimate the influence of

smoking. Second, for some patients, 10 years is not long enough to track their CVD

events.

We describe future work as follows. For the hospital referral project, we would

select hospitals from the nation instead of a single state. We can also broaden disease

options. In addition, we can use real-road distance instead of Euclidean distance

between two zip codes. In this project, survival, complication, and travel distance are

three targets. To be realistic, incorporating more targets is necessary, e.g., insurance

coverage, health providers, cost, etc. The system can provide decision support for

reimbursement policy making if the cost of treatment is considered because one can

find out the most cost-effective institution for a specific type of patients.

For cost-effective diagnosis, most datasets in this study have binary outcomes.

Clinical practice, however, is often more complex. For example, a patient who presents

with chest pain may have one of several possible diseases (e.g, myocardial infarction,

pulmonary embolism, chest wall pain, etc.). Our future work aims to apply ODPF
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in more complex clinical settings, especially in the emergency department in which

the speed of diagnosis is of critical importance. Sometimes, a health provider may

order several tests simultaneously instead of one test at a time. In this case, we may

want to find the most promising group of tests instead of one most promising test. In

future work, we will also evaluate different search methods to find the most promising

group of diagnostic tests.

For the lifestyle recommendation project, we can find the best lifestyle for pa-

tients belonging to a specific group, e.g., the patient who is taking cholesterol lowering

drugs, the patient with diabetes, etc. We can also change the desired target to make

other healthy recommendations, for example, recommending lifestyle to lower LDL

level or to lose weight most efficiently. Another direction is to compute when a patient

can start cholesterol lowering drug in order to maximally lower the risk of CVD. We

can apply PODSS to comparative effectiveness research, finding the best match be-

tween a patient and a treatment option (or the combination of several). In addition,

PODSS also has the potential to find or rate nursing interventions that can result in

good nursing outcomes.
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