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Abstract 
The topic of colour image segmentation has been and still is a hot issue in areas such as 

computer vision and image processing because of its wide range of practical applications. 

The urge has led to the development of numerous colour image segmentation algorithms to 

extract salient objects from colour images. However, because of the diverse imaging 

conditions in varying application domains, accuracy and robustness of several state-of-the-art 

colour image segmentation algorithms still leave room for further improvement. This 

dissertation reports on the development of a new image segmentation algorithm based on 

perceptual colour difference saliency along with binary morphological operations. The 

algorithm consists of four essential processing stages which are colour image transformation, 

luminance image enhancement, salient pixel computation and image artefact filtering. The 

input RGB colour image is first transformed into the CIE L*a*b colour image to achieve 

perceptual saliency and obtain the best possible calibration of the transformation model. The 

luminance channel of the transformed colour image is then enhanced using an adaptive 

gamma correction function to alleviate the adverse effects of illumination variation, low 

contrast and improve the image quality significantly. The salient objects in the input colour 

image are then determined by calculating saliency at each pixel in order to preserve spatial 

information. The computed saliency map is then filtered using the morphological operations 

to eliminate undesired factors that are likely present in the colour image.         

 A series of experiments was performed to evaluate the effectiveness of the new 

perceptual colour difference saliency algorithm for colour image segmentation. This was 

accomplished by testing the algorithm on a large set of a hundred and ninety images acquired 

from four distinct publicly available benchmarks corporal. The accuracy of the developed 

colour image segmentation algorithm was quantified using four widely used statistical 

evaluation metrics in terms of precision, F-measure, error and Dice. Promising results were 

obtained despite the fact that the experimental images were selected from four different 

corporal and in varying imaging conditions. The results have indeed demonstrated that the 

performance of the newly developed colour image segmentation algorithm is consistent with 

an improved performance compared to a number of other saliency  and non- saliency state-of-

the-art image segmentation algorithms. 
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CHAPTER ONE 
 

INTRODUCTION 
The automatic image segmentation which is also known as automatic image detection is an 

important step in image processing to extract useful information from images without human 

assistance. It is the process of partitioning an image into homogenous and disjoint sets 

sharing similar properties into regions. The goal of image segmentation is to simplify an 

image for meaningful analysis and interpretation. For several decades, researchers have 

devoted enormous time to develop diverse segmentation algorithms to segment greyscale 

images - that is images with intensity values ranging from 0 to 255 inclusive because for 

many years digital cameras were not widely available to capture colour images. However, in 

reality colour is an important cue of the natural world and it has been acknowledged that the 

human eye has the capacity to discern thousands of colour shades, but only two shades of 

grey. Therefore, in addition to the intensity of an image, colour is an intrinsic property of an 

image that are generally believed to convey more useful information than greyscale images to 

enhance the image analysis process.   

The human perception of colour is a combination of tristimuli red (R), green (G) and 

blue (B) referred to as primary colours. The RGB colour model is one of the most widely 

used in colour image acquisition, storage and display. Moreover, as time goes on, other 

colour models have been generated based on the RGB colour model by performing either 

linear or nonlinear colour transformations. The purpose of a colour model is to facilitate the 

specifications of colour in a standardized way. Therefore, a colour model is an abstract 

mathematical representation that describes the way colours are being represented as tuples by 

numbers. Colour image segmentation partitions image pixels that possess distinct colour 

features in an input image into homogeneous regions in such a way that each cluster defines a 

class of image pixels with similar colour properties. 

For several decades, researchers proposed that one of the easiest approaches to 

process colour images is to extend existing greyscale image segmentation algorithms to 

segment colour images. Subsequently, colour image segmentation approaches are as a result 

of extending several existing well developed image segmentation algorithms for greyscale 

images to colour images based on different colour models. The algorithms are applied to each 

component of the colour models and results are merged to obtain a final segmentation result.  
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However, processing colour images are more complex than greyscale images. This is because 

for colour images with RGB colour representation, the colour of a pixel is a mixture of three 

primitive colours which are red, green and blue instead of the single intensity value of a pixel 

in a greyscale image. The computational complexity caused by a processing colour images, 

complex background, varying views and illuminations are amongst the factors that make 

colour image segmentation more difficult. Nonetheless, as improvement in computers with 

more processing power and speed continue to increase, it has become a lot easier to deal with 

the great amount of size and information in colour images. As a result of this, there has been 

a shift in current image processing research from processing greyscale images to colour 

images in recent years to segment colour images as the demand continues to increase.  

Colour image segmentation has attracted a lot of attention of researchers and has 

become an active research field in diverse application domains, but not limited to: 

1. Face detection and recognition (Chaves-González et al., 2010, Uçar 2014). 

2. Fingerprint recognition system (Baek 2016, Wang et al., 2016). 

3. Fire detection in video sequences (Celik et al., 2007;  Celik and Demirel 

2009). 

4. Geographical imaging (Campos et al., 2010; Kamruzzaman et al., 2016). 

5. Irrigation management (Paraskevopoulos and Singels 2014; García-Mateos et 

al., 2015). 

6. Lung cancer classification (Taher et al., 2013; Adetiba and Olugbara, 2015a; 

Adetiba and Olugbara, 2015b). 

7. Product image based recommendation assistant technology (Olugbara, et al. 

2010; Olugbara and Ndlovu, 2014; Oyewole et al., 2015). 

8. Magnetic resonance imaging (MRI) (De and Bhattacharyya 2016; Kather et 

al., 2017). 

9. Object classification and recognition (Bu et al., 2016). 

10. Pest monitoring and detection (Bodhe and Mukherji 2013; Omrani et al., 

2014). 

11. Real time robotic vision system (Zhang et al., 2013; Tsai and Liu 2015). 

12. Shopping assistant system for mobile users (Olugbara et al., 2010; Gershon et 

al., 2015). 

13. Skin lesion segmentation (Damilola et al., 2013; Pennisi et al., 2016; Zortea et 

al., 2017). 
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14. Sport technology (Hung et al., 2011; Zhang et al., 2015). 

15. Video surveillance (Lu et al., 2014; Foggia et al., 2015). 

16. Parking assistance system (Al-Kharusi and Al-Bahadly 2014; Bonde et al., 

2014). 

17. Video assistant referee (D’Orazio et al., 2009). 

It can be observed that the application of colour image segmentation cuts across 

several disciplines like medicine, security, agriculture, sport technology and many more. In 

recent years, the application of colour image segmentation in medical applications has 

attracted significant interest in image processing research to assist in early detection, 

prognosis, operation plans and therapeutics. Consequently, medical image segmentation has 

emerged a challenging and promising area of image processing research to aid in the 

development of computer aided detection and diagnosis systems to assist medical 

practitioners in the accurate clinical diagnosis and analysis. In sport technology, video sport 

analysis has attracted wide applications to monitor sport activities during gaming events such 

as the players’ motion detection and tracking, goal analysis, verification of referee decisions 

during a game. Even in real time robotic vision system for sport activities, for example, the 

Robocop games held in a field are officially defined as “a square with green carpets and 

white walls in which two teams of four or five completely black robots are trying to kick a red 

ball towards two goal posts coloured in blue and yellow, respectively” (Noda et al. 1998). 

In this scenario, colour vision is the essential tool for object recognition based on 

colour diversity. As increasing social security demand continues to increase over the years, 

the use of biometric features such as iris, voice, palm, signature and fingerprint, signature 

recognition systems has been employed for security reasons. In addition, video surveillance, 

face detection and recognition are being deployed in strategic locations to intelligently 

monitor human activities have attracted keen interest of researchers in colour image 

processing field in the last decades therefore it has become an important task. In agriculture, 

colour image segmentation applications have been extended to the agricultural sector to assist 

in the development of automated systems for agricultural purposes such as fruit grading and 

picking, crop yield estimation and production analysis, crop disease detection, irrigation 

management systems and harvesting robots.  
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1.1 Research problem statement 
Image segmentation is an important problem in image processing and computer vision. The 

problem of image segmentation, which is the identification of different homogeneous regions 

in an image is a subject research activity in the last few decades. Consequently, many 

segmentation algorithms have been well developed for greyscale images. However, the 

problem of segmenting colour images has received less attention of scientists in image 

processing and computer vision fields. Until recently, colour image segmentation has become 

attractive in recent years because colour images are said to convey more useful information 

than greyscale images. However, the computational expensiveness of direct colour image 

segmentation is a major impediment in practical applications. It has become thrilling 

therefore to extend greyscale image segmentation algorithms such as thresholding and 

clustering to colour image segmentation. 

Clustering algorithms are multidimensional extensions of thresholding algorithms that 

are amenable to colour image segmentation. However, the application and performance of 

clustering algorithms to the segmentation of colour images are highly affected by 

initialization of cluster centroids (Muthukannan and Merlin Moses 2010; Khattab et al., 2014; 

Rajaby et al., 2016). Furthermore, the performance of colour image segmentation critically 

depends on the choice of colour model as there is no one single colour model that is better 

than the others and most suitable for all images (Cheng et al. 2001; Hachouf and Mezhoud 

2005; Kong et al., 2014; Rajaby, Ahadi and Aghaeinia 2016). Moreover, the effectiveness of 

clustering algorithms and choice of colour model is dependent on the choice of distance 

metric to measure the difference between colours, the choice of distance metric has 

significant influence on the final segmentation result (Wang et al., 2016).  

1.2 Research question 
Colour image segmentation has been for many years and is still a challenging task in image 

processing and computer vision tasks that contains two critical issues. This study seeks to 

provide appropriate answers to the following research questions based on the identified 

research problems discussed in the previous section of this dissertation. In summary, the 

aforementioned difficulties faced in the segmenting colour images the researcher wishes to 

address the following research question: 

What segmentation algorithm can be developed to improve the performance of colour 

image segmentation? 
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1.3 Research Aim and Objectives 
The aim of this research is to investigate the effectiveness of perceptual colour difference 

saliency segmentation algorithm to improve the performance of colour image segmentation. 

To achieve this particular aim, the following research objectives were set: 

1. To comprehensively review relevant publications based on image segmentation 

algorithms. 

2. To develop an image segmentation algorithm based on perceptual colour difference 

saliency segmentation. 

3. To experimentally compare the performance of the developed image segmentation 

algorithm with existing state of the art segmentation algorithms using well known 

statistical evaluation metrics. 

 

1.4 Research Methodology 
The methodological steps taken towards the realization of the set aim and objectives of this 

study consist of three consecutive stages. The first stage addressed the first objective of this 

study by carrying out a comprehensive literature review with specific focus on the 

development of numerous image segmentation algorithms presented in the chapter two of this 

study. The second stage addresses the research objective two of this study. The methodology 

of the colour difference saliency segmentation algorithm consists of five stages: image 

dataset acquisition, colour image transformation, luminance image enhancement, salient pixel 

computation and image artefacts filtering.  

At the initial phase of the second stage, the experimental images were selected from 

four publicly available benchmark image data sets, followed by resizing the default image 

size to a fixed dimension of 300 by 225 pixel resolution to ensure computational efficiency. 

Thereafter, the transformation of colour image was performed on the resized experimental 

images from the Adobe RGB colour image to CIE L*a*b colour image. At the luminance 

enhancement stage, the luminance channel of the transformed CIE L*a*b colour image was 

adaptively enhanced using an adaptive gamma correction to improve the image quality. Then, 

the salient pixels were computed using the mean value of the background colour feature 

estimated on an ellipsoidal patch drawn around the image borders and the mean value of the 

salient object colour feature. The computed mean values of the background and object pixels 

are therefore aggregated to create a greyscale saliency map which was converted to a binary 
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segmented image using a simple thresholding decision technique. At the final stage of the 

proposed approach, the resulting binary images are subjected to an image artefact filtering 

process to eliminate image artefacts that are present in the final segmented binary image. 

The last stage addressed the third set objective of this study. The effectiveness of the 

perceptual colour difference saliency segmentation algorithm investigated in this study was 

demonstrated by experimentations. A series of experiments was conducted to evaluate the 

performance of the newly developed image segmentation algorithm against eight state-of-the-

art saliency and non-saliency image segmentation algorithms using four statistical evaluation 

metrics 

 

1.5 Research Contributions 
The basic research question of what segmentation algorithm can be developed to improve the 

performance of colour image segmentation was targeted towards the development of a new 

image segmentation algorithm in this study. In order to back up the proposition that the 

investigated perceptual colour difference segmentation algorithm will improve the 

performance of colour image segmentation and in due course answer to the research question 

formulated in this study. The main contributions of the new perceptual colour difference 

saliency segmentation algorithm reported in this study have: 

(a) Demonstrated that the newly proposed segmentation algorithm can effectively 

segment salient object in an image through the aggregation of a colour feature of 

background pixels and colour feature of object pixels. 

(b) Demonstrated an improved way of using a simple thresholding decision technique 

that does not follow the conventional thresholding methods for bimodal 

thresholding of salient objects in an image. 

(c) Shown a detailed performance evaluation against state-of-the saliency and non-

saliency segmentation algorithms to demonstrate the effectiveness of the proposed 

image segmentation algorithm. 

(d) Created as a means to evaluate the proposed segmentation algorithm both 

qualitatively and quantitatively on varying experimental images acquired from 

four publicly available benchmark data sets using four standard statistical 

evaluation metrics in terms of Precision, F-measure, Error and Dice.  
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1.6 Dissertation Synopsis 
This dissertation is comprehensively organized into five major chapters. Chapter one 

introduces the basic background study of the research and discusses the need for colour 

image segmentation. In addition, the identified research problems which led to the research 

question, research aim and objectives and research contribution of the study are clearly 

described in this chapter. 

Chapter two presents a comprehensive review of relevant publications based on image 

segmentation algorithms. Chapter three presents the major contribution of this study. In this 

chapter, step by step methodology carried out to achieve the set research aim and objectives 

proposed in this study are well described. Chapter four provides the qualitative and 

quantitative performance assessment of the proposed segmentation algorithm results and its 

comparison with other state of the art image segmentation algorithms already proposed in the 

literature. Chapter five concludes this dissertation with considerations of future work and 

conclusion. 
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CHAPTER TWO 
 

LITERATURE REVIEW 
This chapter presents a comprehensive review of related studies that influenced work done in 

this current study. For clarity of presentation, the chapter is divided into six major sections. 

The first section discusses the three major classifications of image segmentation methods. In 

the next two sections, emphasis was placed on pixel based image segmentation methods that 

include image thresholding and clustering algorithms and various improved variants 

published in the literature which is the major focus of segmentation algorithms incorporated 

into this research study. In the fourth and fifth sections, colour image segmentation methods, 

review of several existing colour models that have been applied to colour image segmentation 

and its extension to salient object segmentation are discussed. Finally, image segmentation 

performance assessment which includes benchmark data sets and image segmentation 

evaluation methods are presented. 

 

2.1 Image Segmentation  
Image segmentation plays a critical pre-processing role in practical applications such as 

image, video and computer vision applications (Peng, Zhang and Zhang 2011; Khattab et al. 

2015). The final output obtained from an image segmentation process can be extended and 

applied to high-level methods which include feature extraction, semantic interpretation, 

image recognition and classification, image compression, content-based retrieval, medical 

imaging, traffic control systems, object location in satellite images, machine vision (Wang 

and Bu 2010; Alihodzic and Tuba 2014; Olugbara, Adetiba and Oyewole 2015). Image 

segmentation has been and still is an active area of image processing research for decades 

(Wang et al. 2015; Wang et al. 2016c). Over the past few decades, a number of inspiring 

image segmentation algorithms have been proposed to address the problem of image 

segmentation (McCann et al., 2014). The proposed image segmentation algorithms have been 

applied and proven to be successful in various application areas. However, the development 

of a unified approach to image segmentation which can be applied to all classes of images is 

still a challenging task and an open problem in image processing (Peng and Li 2013). 

According to Haralick and Shapiro (1985), one of the desirable characteristics good image 

segmentation must have with reference to grey scale images is “Regions of image 
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segmentation must be uniform and homogeneous with respect to some characteristics such 

intensity, colour, texture”. 

As earlier stated, in the early years, a large number of the several existing image 

segmentation algorithms were developed for greyscale images. A comprehensive survey of 

existing image segmentation algorithms for greyscale images can be found in (Pal and Pal 

1993; Skarbek et al. 1994; Cheng et al. 2001). Image segmentation methods can be 

appositely classified into region based, edge based and pixel based approaches on the basis of 

three essential properties of connectivity, discontinuity and similarity (Ikonomakis, 

Plataniotis and Venetsanopoulos 2000; Cheng et al. 2001; Chamorro-Martinez, Sanchez and 

Prados-Suarez 2003; Zhang, Fritts and Goldman 2008). Connectivity denotes that pixels 

belonging to the same region are grouped together. The discontinuity property entails that 

each region stands out to possess clear edges while similarity implies that pixels in an image 

belonging to the same region possess similar features. Image segmentation algorithms can be 

appositely classified as region-based, edge-based and pixel-based approaches based on these 

essential properties (Ikonomakis et al., 2000; Cheng et al., 2001). 

 

2.1.1 Region based Image Segmentation Methods 
Region based methods rely on the assumption that adjacent pixels in the same region share 

similar features such as intensity, colour or texture (Wang et al. 2015). They group image 

pixels into clusters and maintain connectivity among the pixels in the same cluster based on 

predefined criteria. Region growing is one of the popularly used image segmentation 

algorithm in this category (Okuboyejo et al., 2013; Rouhi et al., 2015; Wu et al., 2016). The 

algorithm compares a pixel intensity of its neighbouring pixels until a predefined region 

criterion is met, then the pixel is said to belong to the same class as one or more of its 

neighbours. The procedure is repeated until no image pixel can be added to the region 

(Despotović et al., 2015; Wang et al. 2016c). In addition to region growing, several region-

based image segmentation methods have been proposed in the literature, including split and 

merge (Lughofer and Sayed-Mouchaweh 2015; Lei et al., 2016), watershed transformations 

(Bhattacharjee and Saini 2015; Zheng and Hryciw 2016), graph cuts and random walks (Tian 

et al. 2013; Taubenböck et al. 2014; Li et al. 2016a; Dong et al., 2016; Lee at al., 2017). The 

efficiency of region based algorithms greatly depends on the application area and the input 

image has to be simple. However, they tend to over segment. Moreover, for difficult image 

scenes, they often fail to produce satisfactory segmentation results for images with 
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overlapping greyscales and suffer high mathematical and computational complexity (Li et al. 

2016; Rajaby, Ahadi and Aghaeinia 2016). 

 

2.1.2 Edge based Image Segmentation methods 
Edge based methods are one of the widely used methods that have been applied to address the 

difficulties faced in addressing image segmentation (Wang et al. 2011). They aim at detecting 

discontinuities in image pixel intensity values, colour or texture. They locate image pixels 

that correspond to the edges of the objects seen in the image (Wang and Oliensis 2010; El-

Sayed 2012). Examples include the Sobel edge operator (Martínez et al. 2015; Gonzalez et 

al. 2016), Laplacian of Gaussian operator (Anand, Tripathy and Kumar 2015; Chen, Yao and 

Chen 2016) and Canny edge operator (Wang et al. 2011; Seo, Hernández and Jo 2015; Ingle 

and Talmale 2016). Edge-based algorithms are usually suitable for simple and noise-free 

images (Wang et al. 2015). However, they have performance problems when images possess 

extra edges or when edges are not clearly defined (Wang et al. 2016c). Moreover, they are 

usually time-consuming and converting edges to regional boundaries is not a trivial task 

(Wang et al. 2015). These aforementioned limitations have a negative impact on 

segmentation results.  Since region based image segmentation methods have several 

drawbacks, it was not considered as a potential choice for segmentation in this study. 

 

2.1.3 Pixel based Image Segmentation methods 
Pixel based image segmentation methods are the most basic, well-understood class of image 

segmentation methods and one of the most efficient ways of solving image segmentation 

problems because of their simplicity, low computational cost, and easy implementation 

(Dhanachandra,  Manglem and Chanu 2015; Mansoor et al., 2015). The commonly used pixel 

based methods include image thresholding and clustering algorithms (Le et al. 2013; Son and 

Tuan 2016). In these algorithms, similar image pixel intensities are grouped as belonging to a 

homogeneous cluster that corresponds to an object or a part of an object (Zhang, Fritts and 

Goldman 2008; Sevara et al. 2016). They are effective for both bi-level and multilevel image 

segmentation and do not require prior information about the input image. Pixel-based image 

segmentation algorithms have been reported not to consider spatial information during the 

segmentation process. This attribute makes image segmentation algorithms in this category 

susceptible to image noise. Moreover, image clustering algorithms are highly dependent on 

the initialization of initial cluster centres. 
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Pixel based image segmentation methods are further categorized into two main classes of 

algorithms (Le et al. 2013): 

1. Histogram thresholding algorithms: an image histogram is computed from all the 

pixel intensities present in an input image. Thereafter, image pixels are classified into 

clusters formed by using peaks and valleys in the image histogram. 

2. Clustering based algorithms: image pixels are grouped into clusters, by means of 

hard or soft clustering algorithms using characteristics such as intensity, colour, 

textures. 

In order to propose a useful image segmentation algorithm that fit into this current study, 

it is important to note that our choice of image segmentation method was among the 

pixel-based image segmentation methods because of their long rich history, simplicity, 

robustness, computational efficiency. Hence, the next few sections of this dissertation will 

examine several existing pixel based image segmentation methods and their 

improvements proposed in the literature. 

 

2.2 Histogram thresholding algorithms 
Image thresholding algorithms are simple and popular image segmentation methods (Jumb, 

Sohani and Shrivas 2014; Wang et al. 2015). The motivation behind the extensive use of 

image thresholding algorithms is due to its simplicity, robustness, fast execution speed, 

computational efficiency, real-time applicability and accuracy (Nakib, Oulhadj and Siarry 

2007; Olugbara, Adetiba and Oyewole 2015; Wang et al. 2016c). However, they do not take 

into account spatial characteristics of an image (Despotović et al., 2015). As a result of this, 

they are sensitive to noise and intensity homogeneities. Generally, image thresholding is 

carried out based on the information available in the global greyscale image histogram 

(Alihodzic and Tuba 2014; Kurban et al., 2014). The process of thresholding an input image 

involves three stages; recognizing image histogram modes, finding the valleys between the 

identified modes and applying thresholds based on the valleys to the input image (Yang, 

Zhang and Wang 2014; Wang et al. 2016c). 

Image thresholding algorithms aim at subdividing an input image into thresholds of 

two or more values using image pixel intensity values with a predefined threshold value T 

(Zuva et al. 2011). Image thresholding algorithms can be implemented either locally or 

globally (Feng et al. 2005). In local thresholding, an input image is divided into several sub 

regions and several threshold values are selected for each of the sub regions. However, the 
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size of the local image thresholding usually influences the segmentation performance (Lu et 

al., 2013). On the other hand, for global image thresholding, a single threshold value is set for 

overall grey level information in the entire input image (Akay 2013). Sahoo, Soltani and 

Wong (1988), Lievers and Pilkey (2004) and Sezgin (2004) carried out a thorough survey of 

several existing image thresholding algorithms proposed in the literature. The outcome of 

their survey revealed that global image thresholding algorithms (Glasbey 1993) are one of the 

most popularly used to determine threshold values in the greyscale image histogram. The 

reason being that, the background and the object of interest areas in an image can be 

interpreted by taking its histogram with probabilities for each greyscale (Bhandari et al. 

2014). Consequently, this work will only be focused on global thresholding which is directly 

relevant to the work reported in this study. 

Global image thresholding algorithms can be classified as bi-level or multilevel 

thresholding (Hammouche, Diaf and Siarry 2010; Cuevas et al., 2012; Bouaziz, Draa and 

Chikhi 2015). Bi-level thresholding algorithms classify image pixels into two clusters so that 

the first cluster contains pixel values above a threshold while the second cluster includes 

pixel values below the threshold (Kumar et al. 2013; Alihodzic and Tuba 2014; Jiang et al. 

2015). This is based on the assumption that greyscale image histograms are bimodal. 

However, image histograms of real world images are usually multimodal, which limits the 

practical applications of bi-level image thresholding algorithms (Sathya and Kayalvizhi 2011; 

Liu et al., 2015). Therefore, multilevel image thresholding algorithms generalize bi-level 

thresholding by segmenting an image into multiple clusters such that image pixels belonging 

to the same cluster have values within a specific range defined by several thresholds 

(Hammouche, Diaf and Siarry 2010; Liu et al., 2015; Chen et al., 2016). Furthermore, global 

thresholding algorithms can further be classified into parametric and non-parametric 

approaches (Delon et al. 2007; Abo-Eleneen 2011; Hussein, Sahran and Abdullah 2016). In 

parametric approaches, the grey level of each cluster has a probability density function 

generally assumed to obey a Gaussian distribution. Parametric approaches attempt to find an 

estimate of the parameters of distribution to best fit the histogram of the greyscale image. On 

the other hand, non-parametric approaches determine optimal thresholds that separate the 

grey level regions of an image by optimizing objective functions based on discriminating 

criteria (Dirami et al. 2013; Mala and Sridevi 2015; Tsai and Liu 2015; Hussein, Sahran and 

Abdullah 2016). Examples include Otsu’s method that maximizes the between-class intensity 

variance in the grey level image (Otsu 1979), Kapur’s method that maximizes entropy of 

foreground and background objects (Kapur, Sahoo and Wong 1985), cross entropy between 
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the images and its threshold version (Li and Lee 1993) and total misclassification error rate 

(Kittler and Illingworth 1986) usually optimized to determine the optimal threshold values.  

 

2.2.1 Otsu thresholding algorithm 
Sezgin (2004) studied several existing global thresholding techniques and he concluded that 

the Otsu method (Otsu 1975) is one of the most popularly used image thresholding methods 

for threshold selection in general images with regard to uniformity and shape measures 

(Arora et al. 2008; Horng 2011). The Otsu thresholding algorithm is a non-parametric and 

unsupervised approach for automatic threshold selection, based on the maximization of 

between class variance. The method has been applied to diverse application areas like pattern 

recognition (Bindu and Prasad 2012), document binarization (Zhang and Wu 2011; 

Moghaddam and Cheriet 2012) and computer vision (Xu et al. 2011). In some cases, the Otsu 

thresholding algorithm is used as a preprocessing technique to segment input images for 

further processing such as feature analysis and quantification (Liao, Chen and Chung 2001; 

Cai et al. 2014).  

In the Otsu method, the threshold level of an input image is automatically determined 

by examining the statistics of the grey level image histogram that maximizes the between-

class variance or minimizes the weighted within-class variance in a greyscale image (Wang 

and Bu 2010; Mizushima and Lu 2013). The method has been reported to give remarkable 

results for bi-level thresholding problems. However, in the case of remote sensing images or 

real life images, it does not guarantee satisfactory results (Huang, Lin and Hu 2011). To 

address these drawbacks, researchers have extended bi-level image thresholding algorithms 

to perform multilevel image thresholding (Rajinikanth and Couceiro 2015). 

2.2.2 Multilevel Thresholding algorithms 
Multilevel image segmentation has in recent years attracted the attention of researchers 

because of its practical applications. Several multilevel image segmentation algorithms have 

been proposed in the literature as an alternative to reduce the computational cost and speed 

up the maximization process of the conventional Otsu algorithm (Otsu 1979). Liao, Chen and 

Chung (2001), proposed a Fast Otsu’s method, named the “recursive Otsu method” to 

improve the computational efficiency of the optimal threshold values of an input image for 

one-dimensional multilevel Otsu’s thresholding. The proposed algorithm utilizes a look-up 

table acceleration approach to maximize a modified between-class variance instead of the 



 
 

14 
 

original Otsu’s method. The proposed approach efficiently reduces the computational 

complexity which occurs during the exhaustive search process. Performance evaluation was 

carried out using the proposed algorithm with a recursive form of the between-class variance. 

The authors compared the experimental results obtained to that of the conventional Otsu’s 

method. They reported that the experimental results of the proposed algorithm showed that 

the processing time required is less than 107 seconds, while that of the conventional Otsu’s 

method with the recursive form takes approximately or more than six minutes. They also 

added that the proposed algorithm greatly improves the computational speed, twenty-two (22) 

times faster than the original Otsu’s method, when the number of clusters is relatively small. 

However, the algorithm suffers from the problem of long processing time complexity and 

poor performance when the number of threshold increases (M > 5) (Huang and Wang 2009; 

Huang,  Lin and Hu 2011).  

Dong et al.(2008) presented an efficient iterative algorithm to find optimal thresholds 

that minimize a weighted sum-of-squared-error objective function. The proposed algorithm is 

an iterative improvement in minimizing the objective function. They applied the conventional 

Otsu’s algorithm and the proposed iterative algorithm to several images of different natures. 

The authors observed that the two algorithms were equivalent and also produced identical 

thresholds. However, the proposed algorithm requires less computational time when 

compared to that of the Otsu’s algorithm and that the proposed algorithm was more than 200 

times faster than the Otsu’s algorithm in the case of two thresholds.  

Huang and Wang (2009) extended the fast Otsu’s algorithm proposed by Liao, Chen 

and Chung (2001). They combined the fast Otsu’s algorithm with a two-stage process, the 

Two-Stage Multilevel threshold Otsu method (TSMO). The proposed algorithm determines 

the multi-level thresholding in a two-stage approach. A simple and straightforward approach 

was proposed to further reduce the number of iterations required for computing the zeroth 

and first-order moments of a class. In this method, the histogram of an image consisting of L 

(=256) grey levels was partitioned into MZ groups that contained NZ (=256/MZ) i.e. TSMO-

16, TSMO-32 and TSMO-64 grey levels and estimates a set of thresholds for these sets in the 

first stage. The proposed TSMO method, then searches for each threshold within the set that 

contains each threshold in the second stage to minimize the computational complexity of the 

original Otsu’s method by speeding up the search process of sets (or bin group). To evaluate 

the efficiency and accuracy of the proposed TSMO method, the results obtained were 

compared with those of the conventional and the recursive Otsu’s methods qualitatively and 
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quantitatively. To quantitatively measure the accuracy of the proposed method, the 

misclassification and the relative error rate were utilized to compute the error in the final 

segmented images, likewise, to carry out the qualitative comparison, the authors visually 

compared the segmented results of the TSMO method versus the conventional and recursive 

Otsu methods using four grey-level test images. The proposed method outperformed the 

conventional Otsu’s method, considerably reduces the number of iterations required in the 

exhaustive search process; for computing the between-class variance in an input image 

because the grey level in the histogram is decreased from 256 to 32 sets and also has the 

advantage of having a small variance in runtime for different test images. However, TSMO 

cannot always guarantee a satisfactory performance for many complex images and may yield 

a locally optimal solution (Olugbara, Adetiba and Oyewole 2015; Tsai and Liu 2015).  

Huang, Lin and Hu (2011) proposed a modified two-stage multilevel Otsu (TSMO) 

based on a two stage Otsu’s optimization approach for multilevel thresholding with automatic 

determination by valley estimation for image segmentation. The proposed method starts by 

computing the histogram of input grey levels statistically. Afterwards, the method of valley 

estimation is used to determine the number of clusters to ensure proper segmentation of the 

input image. The proposed improved TSMO method produced the same set of thresholds 

similar to the conventional Otsu’s method, but minimizes the high computational complexity 

especially when the number of clusters is relatively high. To evaluate the accuracy of the 

proposed method, the results of the proposed method were compared with that of the Otsu’s 

method and TSMO method using real-world images, experimental results showed that the 

computational speed of the proposed method is about 19000 times faster than the 

conventional Otsu method when the number of clusters is 7. These image segmentation 

algorithms considerably reduce the number of iterations required in the exhaustive search in 

multilevel thresholding, but they are still computationally expensive (Tsai and Liu 2015; 

Chen et al. 2016).   

Generally, the proposed multilevel image algorithms in literature considerably reduce 

the number of iterations required in the exhaustive search for optimal thresholds. However, 

they have been reported to be computationally intensive and time-consuming due to the 

exhaustive search and increase in the number of desired thresholds. The reason for this is that 

they evaluate all possible solutions and because of this, their efficiency becomes very low 

(Zahara, Fan and Tsai 2005; Liu et al. 2015). 
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2.2.3 Nature Inspired Optimization Algorithms 
The conventional multilevel thresholding image segmentation algorithms exhaustively search 

for the optimal thresholds to optimize objective functions, which as reported in literature, are 

computationally expensive. Meta-heuristic algorithms for finding optimal thresholds have 

gained the attention of researchers in this field to address multilevel thresholding problems 

since the computational time for finding multiple thresholds grow exponentially with the 

number of desired thresholds (Oliva et al. 2014). 

The metaheuristic algorithms are popular and well-known global optimization 

schemes. According to Blum and Roli (2001) and Martí,  Glover and Kochenberger (2003), 

meta-heuristics are a set of algorithmic concepts developed, which are used to define 

heuristic methods that can be applied to solve complex optimization problems (Alihodzic and 

Tuba 2014). Meta-heuristic algorithms in recent years have been proposed for multilevel 

image segmentation for finding optimal thresholds to address the computational time 

complexity of the conventional exhaustive search methods in the literature (Horng 2010; Liu 

et al. 2015). Compared to other methods designed specifically for particular types of 

optimization tasks, they are general-purpose algorithms and require no particular knowledge 

about the problem structure (Mesejo et al. 2016). These algorithms are a step away from local 

optima by exploring the search space often via randomization. They converge rapidly by 

exploiting regions and selecting the best solution by performing a fine tradeoff between 

exploration and exploitation (Hussein,  Sahran and Abdullah 2016).  

Several existing works were conducted using swarm algorithms, including the ant 

colony optimization (ACO) (Dorigo and Stützle 2003; Ye et al. 2005), Genetic Algorithms 

(GA) (Goldberg 1989; Tang et al. 2011), Bacterial Foraging Optimization (BFO) (Maitra and 

Chatterjee 2008; Sathya and Kayalvizhi 2011), Particle Swarm Optimization (PSO) (Eberhart 

and Kennedy 1995; Sathya and Kayalvizhi 2010; Akay 2013), Differential Evolution (DE) 

(Storn and Price 1997), Simulated Annealing (SA) (Kirkpatrick and Vecchi 1983), Darwinian 

Particle Swarm Optimization (DPSO) (Tillett et al. 2005). The Firefly Algorithm (FA) is one 

of the latest swarm intelligence algorithms (Horng and Liou 2011). These aforementioned 

metaheuristics algorithms for multilevel image segmentation use different objective functions 

such as the maximum entropy, Kapur’s entropy, and the Otsu’s method (Akay 2013).  

Several existing metaheuristics algorithms for multilevel image segmentation have 

been applied to improve the exhaustive search problems. These proposed metaheuristic 
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algorithms have been able to find good solutions for difficult optimization problems and have 

shown promising performance in improving the efficiency of multilevel image segmentation 

algorithms., however, as the numbers of thresholds continue to increase, there is no guarantee 

that optimal solutions can be reached. There is no guarantee for them to be able to find the 

balance between the global search and local search; they may be trapped in local optimum 

points which often lead to inaccurate results and a slow convergence rate. In addition, the 

computational complexity of these proposed metaheuristic algorithms makes it difficult to 

apply in real-life situations (Zhang et al. 2014; Li et al. 2015; Olugbara,  Adetiba and 

Oyewole 2015; Son and Tuan 2016). Table 2.1 presents some of the examples of proposed 

nature-inspired metaheuristic algorithms for multilevel image segmentation. 

Table 2.1 Nature inspired metaheuristic algorithm for multilevel image segmentation 
(Prakasam and Savarimuthu 2016). 
Authors Algorithm Approach 
Hammouche,  Diaf and Siarry 
(2008); Oghaz et al. (2015); 
Sun et al. (2016)  

Genetic Algorithm 
(GA) 

Imitates the process of natural 
selection 

Gao et al. (2010); Lee,  Leou 
and Hsiao (2012); Liu et al. 
(2015) 

Particle Swarm 
Optimization (PSO) 

Based on social behaviour of bird 
flocking and fish schooling 

Mohan and Baskaran (2012); 
Taherdangkoo et al. (2013); 
Castillo et al.(2015) 

Ant Colony 
Optimization 

Based on the foraging behaviour of 
ants choosing a path leading from its 
nest to a food source 

Li et al. (2015); Zhu and 
Kwong (2010); Cuevas et al. 
(2012) 

Artificial Bee Colony Inspired by the intelligent behaviour 
of honeybees 

Fister,  Yang and Brest (2013); 
Rajinikanth and Couceiro 
(2015); Chen et al. (2016) 

Firefly Algorithm Inspired by the flashing light patterns 
of tropic fireflies 

Yang (2010); Alihodzic and 
Tuba (2014); (Ye et al. (2015) 

Bat Algorithm Inspired by the echolocation 
behaviour of micro bats. 

Sathya and Kayalvizhi (2011); 
Maitra and Chatterjee (2008); 
Yang et al. (2016) 

Bacterial colony 
optimization 

Simulates some typical behaviours of 
E.coli bacteria using their whole life 
cycle. 

Horng (2010); Jiang et al. 
(2014); Durgadevi, Hemalatha 
and Kaliappan (2014) 

Honey bee mating 
optimization 

algorithm (HBMO) 

Inspired by the process of mating in 
real honey bees. 
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2.3 Cluster Analysis 
Cluster analysis, as an unsupervised technique for finding and classifying a given dataset into 

clusters, is predominant in many disciplines that involve analysis of multivariate data (Jain 

2010). Clustering has a long and rich history in literature, even to date. A search via Google 

Scholar (2016) found 3, 020, 000 results using the words “data clustering” alone. These large 

statistics of literatures indicate the great significance of clustering in data analysis. 

Consciously or unconsciously, individuals tend to perform clustering on a regular basis. For 

example, clustering is performed when similar items are arranged in a group, such that the 

data items in the same group are similar to one another. In view of this, clustering is a process 

of assigning a set of unlabelled objects into subsets called clusters such that objects found in a 

particular cluster are more similar to each other than objects from different clusters (Tsai and 

Lin 2011). Clustering is a crucial task in science that has been applied to interdisciplinary 

fields which includes taxonomists, social scientists, psychologists, biologists, statistician, 

mathematicians, engineers, medical researchers, as well as computer scientists to data 

mining, computer vision, bioinformatics, crime analysis, pattern recognition, data 

compression, machine learning, document retrieval, industrial automation, image analysis, 

object recognition and statistical data analysis (Peng et al., 2016; Liang et al., 2016; 

Rujirapipat et al., 2017; Oh et al., 2017).  

Clustering based image segmentation algorithms are multidimensional extensions of 

image thresholding algorithms (Zhang 2006). Image clustering is an unsupervised 

classification algorithm that groups similar image pixels into subgroups i.e. clusters (Tzortzis 

and Likas 2014; Lei et al. 2016; Tripathy and Mittal 2016). The division of image pixels into 

clusters is based on the principle of minimizing intra-cluster similarity and maximizing inter-

class differences (Chebbout and Merouani 2012; Wolf and Kirschner 2013). Therefore, 

clustering algorithms require using a measure of similarity. Several similarity measures have 

been proposed in the literature which includes Euclidean distance, Manhattan distance, 

Minkowski distance and Mahalanobis distance (De Amorim and Mirkin 2012; Zhao, Li and 

Zhao 2015; Ferreira, de Carvalho and Simões 2016; Wang et al. 2016a). The Euclidean 

distance is one of the most commonly used similarity measures in the conventional clustering 

algorithms (Ferreira and De Carvalho 2014).  

Image clustering is carried out either in a supervised or unsupervised way, using two 

main clustering algorithms: hierarchical clustering and partitional clustering algorithms (Bai 

et al. 2012; Alam, Dobbie and Rehman 2015). In hierarchical clustering algorithms just as the 
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name implies, a hierarchy of clusters is identified which result in a hierarchical tree (Leung, 

Zhang and Xu 2000; Khanmohammadi et al., 2017). Clusters are created in either a top down 

approach (divisive) or a bottom up approach (agglomerative) (Wolf and Kirschner 2013; 

Ozturk, Hancer and Karaboga 2015). In the bottom up approach, each data point is 

considered a cluster and they are iteratively merged according to some criterion, whereas top 

down approach considers the whole dataset a cluster and iteratively split them into multiple 

clusters according to some evaluation criterion.  Hierarchical clustering algorithms possess 

the following advantages: the number of desired clusters needs not to be specified in advance 

and they are not dependent on initial cluster centres. However, hierarchical clustering 

algorithms are static such that when image pixels are assigned to a cluster; it cannot be 

moved to a different cluster (Lei et al. 2016) and hierarchical clustering algorithms require 

high computational time (Ozturk,  Hancer and Karaboga 2015). 

Contrarily, partitional clustering algorithms divide image pixels into disjoint clusters, 

whereby the image pixels in a cluster are similar while significantly different from the other 

pixels in the other clusters (Osamor et al. 2012; Alam, Dobbie and Rehman 2015; Ferreira, de 

Carvalho and Simões 2016). They optimize a locally or globally defined criterion function to 

determine a pre-specified number of clusters, in most cases based on the squared error 

criterion. Partitional clustering algorithms are dynamic; image pixels assigned to a cluster can 

be moved from one cluster to another. In partitional clustering algorithms, the disadvantages 

of the hierarchical clustering algorithms are advantages of the partitional clustering 

algorithms (Jain, Duin and Mao 2000; Omran 2004). Partitional clustering algorithms are 

either hard clustering or soft clustering algorithms. In hard clustering algorithms, clusters are 

disjoint and non-overlapping in nature that is image pixels can only belong to a single cluster. 

In soft clustering algorithms, image pixels can belong to more than one cluster with a certain 

fuzzy membership degree (Osamor et al. 2012; Ferreira, de Carvalho and Simões 2016). The 

most well-known and widely used partitional clustering algorithms are K-means clustering 

algorithms (hard clustering) and Fuzzy C-means (soft clustering) (Zhang and Wang 2000; 

Isa, Salamah and Ngah 2009; Stetco, Zeng and Keane 2015). Partitional clustering algorithms 

are preferred in various research fields due to their capability to cluster large data sets, just 

like in the case of signal and image processing, data mining and pattern recognition (Das, 

Abraham and Konar 2008; Jain 2010).  
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2.3.1 K-means clustering algorithm 
The K-means clustering algorithm is the main and one of the most widely used partitional 

clustering algorithms. The algorithm was proposed over 50 years ago and has a rich, diverse 

history as it was independently discovered in different scientific fields by Steinhaus (1956), 

Ball and Hall (1965) and MacQueen (1967), Lloyd (1982). A few years ago, the K-means 

algorithm was nominated to be one of the ten most influential data mining algorithms (Kumar 

and Wu 2009). Its popularity can be attributed to its simplicity, flexibility, efficiency, 

scalability in handling big data sets and easy to adapt to different application domains 

(Deelers and Auwatanamongkol 2007; Siddiqui and Mat Isa 2012; Lei et al. 2016; Serapião 

et al. 2016). The algorithm is a numerical, unsupervised, non-deterministic and iterative 

clustering algorithm for solving clustering problems, based on a simple iterative scheme, to 

find a local minimal solution (Lloyd 1982).  

The K-means clustering algorithm partitions the input data into k classes by iteratively 

computing the mean intensity value for each cluster and segmenting the image by distributing 

each image pixel into clusters with the closest centroid (Despotović et al., 2015). A cluster is 

demarcated by its cluster centre, or centroid. A centroid is the point whose coordinates is 

obtained by means of computing the average of each of the co-ordinates of the point of 

samples assigned to clusters (Ghosh and Dubey 2013). The K-Means algorithm begins by 

initializing the cluster centres; K centroids, then, the algorithm recurrently distributes image 

pixels to its corresponding closest centroid based on a similarity measure. Finally, the 

positions of centroids are recomputed until convergence (Ozturk, Hancer and Karaboga 

2015). The criterion is based on minimizing the total mean-squared distance from each point 

in N to that point’s closest centre in K (Güngör and Ünler 2007). 

Let I be an input image with a resolution of yx× , assuming the input image is to be 

clustered into k number of clusters. Let p(x, y) be image pixels to be clustered with kC   

representing the cluster centres. The K-Means algorithm is executed using the following steps 

below (Dhanachandra,  Manglem and Chanu 2015): 

Step 1 Initialization: select K initial cluster centroids randomly from a given n point. K = the 

number of desired clusters. 

Step 2 Compute: for each pixel of an image, calculate the Euclidean distance d, between the 

centroids and for each pixel of the input image. 
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Step 3 Partition: assign image pixels in the input image to the closest cluster centroid. 

Step 4 Re-compute: when image pixels have been assigned, calculate the mean of the pixel 

values for each cluster and update the cluster centres 

Step 5 Repeat the step 3 and 4 until centroid values no longer change (until a convergence 

criterion is met). 

The K-Means algorithm has been applied extensively to solve numerous clustering 

problems due to its easy implementation. However, the algorithm is not faultless; it suffers 

from a number of limitations. According to De Amorim (2012), the K-means algorithm is a 

greedy algorithm firstly because the quality of the final clustering results is highly dependent 

on its initial centroids, as it may converge to suboptimal solutions, if not properly chosen. 

Secondly, the algorithm lacks a universally agreed definition for the term “cluster”, whose 

number has to be known beforehand, which can be restrictive in practice, since the number of 

clusters in a dataset is generally unknown, especially in real-world applications which 

involve high dimensional and/or distributed data (Naldi and Campello 2015). Moreover, the 

algorithm’s dependency on the selection of the number of cluster centroids before 

implementation usually is a time-consuming process (Isa, Salamah and Ngah 2009; Lei et al. 

2016). Since the initialization of the K-means affects the results of the final clustering, there 

have been a wide range of different techniques proposed for selecting the initial cluster centre 

which includes the Forgy method (Forgy, 1965) and the random partition method (Jancey, 

1966).  

Forgy method assigns each point to one of the K clusters uniformly at random. The 

centres are then given by the centroids of these initial clusters. It has been alluded that this 

method has no theoretical basis, as such random clusters possess no internal homogeneity 

(Anderberg, 1973). On the other hand, the random initialization of cluster centroids selects 

centres randomly from the data points and data points are distributed into the randomly 

selected cluster centres. This method causes convergence to the nearest or trapped into local 

minima due to its hill climbing approach (Güngör and Ünler 2007; Serapião et al. 2016). 

Consequently, trapped cluster centroids could represent the image pixels incorrectly, resulting 

in uneven results from different initializations of cluster centres (Bai et al. 2012; 

Dhanachandra, Manglem and Chanu 2015). Moreover, the image pixels isolated far away 

from the cluster centres may cause a shift in the position of the centres from their optimum 

location leading to a poor representation of data (Isa, Salamah and Ngah 2009).  
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2.3.2 Fuzzy C-means Algorithm 
Fuzzy clustering algorithms were introduced to address the intrinsic difficulties faced in hard-

clustering algorithms. Examples of proposed soft clustering algorithms include the Fuzzy C-

Means (FCM), Gustafon-Kessel, Gaussian mixture decomposition and fuzzy C-varieties. The 

most popularly used fuzzy clustering algorithm is the Fuzzy C-means (FCM) algorithm 

(Siddiqui and Mat Isa 2012; Nilima, Dhanesh and Anjali 2013). 

Fuzzy set theory was first proposed by Zadeh (1965), whilst Ruspini (1969) proposed 

an objective function-based fuzzy clustering by using fuzzy c-partitions, the root concepts of 

fuzzy partition. He established the basis of extending Hard C-means (HCM) clustering 

algorithms to fuzzy concepts. Dunn (1973), proposed an extension of the hard mean 

clustering algorithms to preliminary concepts of fuzzy partition. Later, in 1981, Bezdek 

(James 1981) added the fuzzy factor and proposed the Fuzzy C-means (FCM) algorithm. The 

fuzzy clustering, based on the objective function, is popularly known as the Fuzzy c-means 

clustering (FCM) algorithm (James 1981). The FCM clustering algorithm has been widely 

studied in literature for its application to image segmentation (Suganya and Shanthi 2012; Liu 

et al. 2016b). This concept introduces the fuzzy concepts that image pixels can belong to 

more than one cluster concurrently with a certain fuzzy membership degree (Yu et al. 2010; 

Tan,  Isa and Lim 2013; Olugbara, Adetiba and Oyewole 2015). It has been reported to be 

useful in applications where uncertainty and limited spatial resolutions are present. For 

example, in satellite images (Despotović et al. 2010). 

The classical Fuzzy C-means (FCM) algorithm was originally developed and 

proposed by Dunn (1973). Subsequently, the algorithm was further improved by James 

(1981) with an objective function. The FCM algorithm is the most conventional and 

popularly used among fuzzy clustering approaches (Rajaby, Ahadi and Aghaeinia 2016). This 

is due to the introduction of fuzziness for the belongings of each image pixel (CAI, Chen and 

Zhang 2007). It considers every pixel intensity values in an image to have an affiliation 

relationship with each cluster centre (Liu et al. 2016b). The algorithm is an unsupervised and 

effective algorithm which does not require prior knowledge and retains more information 

from the original image (Cai, Chen and Zhang 2007; Zhao, Jiao and Liu 2013). The FCM 

algorithm can be minimized by the following objective function (Esme and Karlik 2016): 
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where N represents the number of image pixels to be partitioned into C clusters, m
iju  is the 

fuzzy membership function of the image pixel  to the xj belonging to the jth cluster, m is the 

weighting exponent that controls the fuzziness of the resulting partition manually provided by 

the user. ij cx −  is the similarity measure that is the Euclidean distance between jx and the 

ith cluster centre ic .  

In accordance with the concept of fuzzy logic, each image pixel can only have a 

membership value between 0 and 1, they can belong to more than one cluster with a certain 

fuzzy membership degree (Wang and Bu 2010; Zhao et al., 2011; Feng et al., 2013). The 

FCM algorithm aims to minimize a fuzzy version of the least-square error criterion, the 

algorithm is influenced by the existence of the uncertainty of the data set (Ji et al. 2012). As a 

result of this, the FCM algorithm improves partitioning performance compared to hard 

clustering algorithms (Ozturk, Hancer and Karaboga 2015). However, FCM suffers a lower 

convergence speed to local minima (Fan, Zhen and Xie 2003). Like several standard 

unsupervised clustering algorithms, the conventional FCM algorithm does not consider any 

spatial information in the image (Chuang et al. 2006; Jiang et al. 2016).  

As a result of this, the FCM algorithm is highly sensitive to image noise, outliers and 

other imaging artefacts (Liao, Lin and Li 2008; Ji et al. 2012; Zhao, Jiao and Liu 2013). 

Furthermore, the FCM algorithm is highly dependent on the initialization of the cluster 

centres (Tan, Lim and Isa 2013). Thus, image segmentation results produced by the FCM 

clustering algorithm depend on the initialization strategy, which could generate poor final 

cluster centroids that could incorrectly represent the clusters (Kim, Lee and Lee 2004; 

Siddiqui and Mat Isa 2012; Tan, Isa and Lim 2013). Moreover, the FCM algorithm computes 

the membership degree to a point proportional to its proximity to the cluster representatives, 

consequently, computational time of the FCM algorithm is highly dependent on the image 

size (Stetco, Zeng and Keane 2015). 

 

2.4 Improvements of clustering algorithms 
In this section, several improved variants of K-means and Fuzzy c-means clustering 

algorithms proposed by researchers to improve the performance of these image clustering 

algorithms published in the literature are reported. The section discusses some of the most 
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important and commonly used initialization techniques for the K-means clustering and Fuzzy 

C-means clustering algorithms. 

 

2.4.1 Improved Variants of K-means algorithm 
Different strategies have been proposed in the literature to address the problem of 

determining initial cluster centroids in the K-means algorithm. Zhang, Hsu and Dayal (1999) 

proposed the K-Harmonic means algorithm (KHM). The proposed algorithm was based on 

soft membership that uses the harmonic averages of the distances from each data point to the 

clusters as components of its performance function. The proposed algorithm was reported to 

have improved the quality of the segmentation results compared to that of the K-means 

algorithm. However, it does not solve the convergence problem to local optima. Mashor 

(2000) presented a modified version of the K-Means clustering algorithm, called, the 

“Moving K-Means” (MKM) clustering algorithm to address the listed shortcomings of the K-

Means algorithm. The author proposed a fitness concept to ensure that each cluster has a 

significant number of members and final fitness values before the new position of the cluster 

is calculated. He reported that the main objective of the proposed MKM algorithm was to 

preserve the fitness value among all the similar clusters: the lower variance cluster or the 

cluster with lower fitness value is moved towards the active region. The proposed MKM 

algorithm was proven to minimize the issue of dead centres and centre redundancy problems 

as well as reducing the initialization problem often encountered by the effect of a trapped 

centre of local minima and may converge to an optimum location. However, the MKM 

algorithm suffered major limitations; it does not reduce the intra-cluster variance and images 

are sensitive to noise (Isa,  Salamah and Ngah 2009; Siddiqui and Isa 2011).  

Yuan et al. (2004), in an attempt to address the problem of K-means, proposed a 

modified version of K-means titled the standard K-means algorithm. The proposed algorithm 

alternated between assigning data points to the nearest centroid and moving each centroid to 

the mean of its assigned data points; the centroids obtained by the algorithm were consistent 

with the distribution of data. Hence, the algorithm was reported to have produced clusters 

with better accuracy, compared to the conventional K-means algorithm. However, the 

proposed algorithm did not improve the computational efficiency of the K-means algorithm 

in terms of computational complexity.  
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In 2006, Fahim et al., (2006) proposed an enhanced variant of the K-Means algorithm 

to improve the distribution of data points to suitable clusters. In their approach, the authors 

introduced two distance functions. The first distance function uses a similar approach to that 

of the conventional K-Means algorithm, based on Euclidean distance value, while the second 

distance function finds the nearest centre for each data point by computing the distances from 

the centre of the current centroid and the distance from the newly assigned centroid in the 

previous iterations. If the result of the distances is smaller compared to the previous one, the 

pixel remains in the cluster, otherwise it is moved to the next cluster. The distances between 

image pixels and all the centroids are computed per iteration. The authors reported that the 

proposed algorithm reduced the number of iterations required compared to that of the 

conventional K-means algorithm. They observed that the algorithm proposed in their study 

improves the computational speed of the K-means algorithm by the magnitude in the total 

number of distance calculations and the overall time of computation. However, the algorithm 

suffers shortcomings; initial cluster centroids are selected randomly just like the conventional 

K-means algorithm, which makes the algorithm sensitive to the initialization of cluster 

centroids. This is an indication that there is no guarantee for the accuracy of the final 

clustering results (Nazeer and Sebastian 2009).  

The K-Means++ careful seeding algorithm was introduced by Arthur and Vassilvitskii 

(2007) with the aim to propose a more robust selection of initial cluster centres to improve 

the K-means clustering results. In their method, the initial cluster centroid is selected 

randomly, after that, the next selected cluster centroid is proportional to the distance of the 

previously selected centroid in a probabilistic manner. The remaining object points are 

assigned into clusters based on the nearest distance to the initial cluster centroids. The major 

contribution of the proposed algorithm is the addition of “weight” to obtain efficient initial 

cluster clusters in step 1 of the conventional K-means algorithm. Previous authors reported 

that the proposed approach improves the convergence speed and does not increase the 

computational cost. Moreover, it yields an improvement in terms of performance and 

accuracy compared to the conventional K-Means with a lower potential. Despite all of these, 

the algorithm is not deterministic for multiple runs due to the randomization of initial 

centroids.  

Nazeer and Sebastian (2009) proposed an iterative process to improve the selection of 

initial cluster centroids in the K-Means algorithm. The proposed algorithm combined two 

systematic approaches. At first, they selected k initial centroids based on relative distances 
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between data points. Next, they computed the clusters based on relative distance of each point 

from the initial cluster centroids. Subsequently, the resulting clusters are modified using a 

meta-heuristic approach to improve its efficiency based on Euclidean distance to find the 

distance between the centroids and data point. The authors reported that the proposed 

algorithm produced good clusters with reduced computational time. However, the value of k, 

which is the desired number of clusters, has to be speculated randomly before 

implementation. Also, the distance of each of the data points from all data points has to be 

calculated, in the case of a large set of data points; this may lead to a tremendous 

computational time complexity (Mahmud, Rahman and Akhtar 2012). 

Isa, Salamah and Ngah (2009) presented three modified variants of moving the K-

Means clustering algorithm called the fuzzy moving K-Means (FMKM), adaptive moving K-

Means (AMKM) and adaptive fuzzy moving K-Means (AFMKM) algorithms to address the 

problem of initialization and sensitivity to noise. They introduced an integration of fuzzy 

concepts in the conventional K-means clustering algorithm called the fuzzy K-Means (FKM). 

The newly introduced FKM concept uses a fuzzy membership function to assign the pixel 

intensity values into clusters instead of Euclidean distance used in the conventional K-means 

algorithm. The first method, FMKM uses the concept of fuzzy logic that allows image pixel 

intensity values to be assigned simultaneously to more than one class of different degree of 

membership. Meanwhile, AMKM algorithm minimizes the problem of noise sensitivity by 

updating the moving member condition. Lastly, the proposed AFMKM algorithm combined 

the concepts of the FMKM and AMKM algorithms, sharing both of their characteristics. For 

performance evaluation, both qualitative and quantitative analyses were carried out. The 

authors reported that for the quantitative results, the introduced fuzzy concept in the FKM 

and FMKM algorithms outperformed the conventional K-Means and MKM algorithms and 

also require less computational time. 

Sulaiman and Isa (2010) proposed another variant of the K-Means called the Adaptive 

Fuzzy-K-means clustering algorithm (AFKM). The proposed algorithm incorporates the 

fundamental theories of the conventional K-Means, MKM and Fuzzy C-means clustering 

algorithms. At the initial stage, all initial cluster centres were initialized to a certain value. 

Furthermore, to ensure a better clustering process, the authors introduced the fuzzy concept to 

allow each data point to be assigned to more than one class simultaneously by degrees of 

membership which determines the new position of the centre. To test the capability and 

suitability of the proposed algorithm, two conventional clustering algorithms were used as 
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their bases of comparison; MKM and Fuzzy C-means, since Fuzzy C-means and the proposed 

algorithm employ a similar fundamental concept for the clustering process and MKM has 

been proven to produce better segmentation performance when compared to the conventional 

KM clustering algorithm. The comparison was carried out both qualitatively and 

quantitatively. The authors reported that the proposed AFKM algorithm outperformed the 

clustering algorithms as the segmented images produced sharper and crispier with less noisy 

pixel segmentation results, while FCM and MKM results produced images corrupted with 

noise. However, the required computational time for the segmentation process is slightly 

higher than the conventional MKM clustering algorithm.  

Siddiqui and Isa (2011) proposed an improved version of the moving K-Means 

algorithm (MKM) called enhanced moving K-means algorithm (EMKM). In the proposed 

EMKM algorithm, the authors enhanced the moving concept of the conventional moving K-

Means and propose two variants of EMKM, EMKM-1 and EMKM-2. Before the 

implementation process, the initialization of cluster centre values, are randomly assigned, 

image pixels are then distributed to the nearest cluster, based on the minimum Euclidean 

distance. It was reported that the proposed variants of EMKM, EMKM-1 and EMKM-2 

significantly maintain the segmentation variance difference between the clusters by assigning 

cluster members with values outside the range being assigned to the nearest clusters to ensure 

fitness value between clusters, by reducing the summation value of the Euclidean distance. 

The authors compared the efficiency of the proposed EMKM algorithms to the conventional 

algorithms, K-means and moving K-means algorithms. They reported that the proposed 

algorithm outperformed the other conventional clustering algorithms used in their study. 

However, initial cluster centres values were randomly assigned, which does not guarantee the 

final results.  

Purohit and Joshi (2013), proposed another study to improve the K-Means algorithm. 

In the proposed algorithm, initial cluster centres were selected by calculating the Euclidean 

distance between each data point. Once this is done, the selected points are deleted from the 

set to form a new set. They carried out iterations on the new sets by finding data points that 

are closest to each other; the initial cluster centres are generated by reducing the mean square 

error of the final cluster. The proposed algorithm only produced satisfactory results for dense 

data sets rather than sparse data sets. Moreover, the proposed algorithm requires an iterative 

process to distribute image pixels into befitting clusters; this procedure however may lead to 

high computational complexity (Dhanachandra, Manglem and Chanu 2015). 
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Dhanachandra, Manglem and Chanu (2015) proposed another variant of the K-Means 

clustering algorithm, based on the subtractive clustering algorithm, to generate the initial 

cluster centres. The authors applied the partial stretching enhancement to improve the quality 

of the input image. The proposed subtractive cluster is used to generate the initial cluster 

centres and performed segmentation using the K-means clustering algorithm. Finally, a 

median filter is applied to the segmented image to remove unwanted regions from the 

segmented image. However, the algorithm is highly dependent on the input image size as its 

computational complexity grows exponentially.  

Olugbara et al., (2015) developed a fusion of both thresholding and clustering based 

image segmentation algorithms named the pixel intensity clustering algorithm (PICA). The 

proposed algorithm uniquely performs a non-iterative cluster centroid initialization, based on 

a linear partitioning scheme. This approach is known as Forgy strategy, a step away from the 

randomization strategy common to several improved variants of the K-means clustering 

algorithm.. In their method, they adopted the Otsu’s between cluster variance criterion to 

distribute pixel intensities into clusters and perform clustering to obtain the final 

segmentation output. For performance evaluation, the proposed image segmentation 

algorithm was quantitatively and qualitatively compare and outperform four state of the art 

image segmentation algorithms used in their study. The authors reported that the proposed 

algorithm offers intrinsic advantages such as simplicity, reproducibility, survivability and 

repeatability that have engendered better greyscale image segmentation than similar 

algorithms in the literature. However, the selected initial cluster centroids may not be 

optimal, because the proposed initialization strategy does not consider the effects of all pixel 

intensity values in the image. This is likely to affect the quality of the segmentation results.  

The foregoing review of several improved variants of the conventional K-means 

algorithm to address the problem of determining initial cluster centroids shows that there is 

no general solution to solve image clustering problem.  

 

2.4.2 Improved Variants of the Fuzzy C-means Algorithm 
To address the aforementioned problems identified by the FCM algorithm, researchers have 

developed several improved variants published in the literature. The researchers incorporated 

local spatial information into the original FCM algorithm to improve the segmentation 

performance, such as the possibilistic C-means (PCM) (Krishnapuram and Keller 1993) and 
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robust fuzzy C-means (RFCM) (Pham 2001). In 2002, Ahmed et al. (2002) modified the 

objective function of the conventional FCM algorithm. They introduced a neighbourhood 

averaging term in the objective function of FCM (FCM_S) which allows the labelling of 

image pixels to be influenced by the labels in its neighbourhood, into the objective function 

and also a parameter to control the effect of the neighbour term. The approach proposed to 

compensate for the intensity inhomogeneity in order to increase the robustness of FCM in 

such a way that image pixels are assigned to the clusters in homogeneous regions. Although 

the proposed modified FCM algorithm improved the results of the conventional FCM 

algorithm on noisy images, the proposed algorithm lacks adequate robustness to noise and 

outliers. In addition, FCM_S requires heavy computation time to compute the neighbourhood 

term in each iteration step (Chen and Zhang 2004). 

 Liew and Yan (2003) proposed an adaptive spatial constrained FCM algorithm. In 

their method, spatial pixel connectivity was implemented by a dissimilarity index that 

considers the local influence of neighbouring pixel values in an adaptive form, in place of the 

usual distance metric to enforce the connectivity constraint, only in the homogeneous areas. 

Kang,  Kim and Li (2005) went further to propose a spatial homogeneity-based FCM 

(SHFCM) algorithm. The algorithm utilizes the statistical information about every pixel value 

in a local neighbourhood. Wang et al. (2008) incorporated both the local spatial context and 

non-local information into the dissimilarity measure into the standard FCM algorithm called 

LNLFCM. Although, these proposed modifications of the FCM algorithm can largely reduce 

the impact of image noise, they all have high computational complexity, due to the repeated 

calculation of the neighbourhood term in every iteration process (Ji et al., 2011).  

Subsequently, in order to reduce the computational complexity of FCM_S, Szilagyi et 

al. (2003) proposed an enhanced FCM (EnFCM) algorithm based on the grey-level 

histogram. First, a linear-weighted sum image is formed from both the original image and its 

local neighbourhood average grey image, by weightily averaging each image pixel and its 

neighbourhoods. Thereafter, a clustering process is performed on the summed image, based 

on the grey level histogram instead of pixel intensity values in the image. Moreover, the 

quality of the segmented image is comparable to that of FCM_S. Hence, the computational 

time required for the segmentation process of the EnFCM algorithm is reduced. However, the 

weighted coefficient values, which may affect the segmentation results, are provided by the 

users.  
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 Chen and Zhang (2004) proposed two improvements of FCM_S proposed by Ahmed 

et al. (2002) to reduce computational time, FCM_S1, based on mean-filtered image. 

However, FCM-S1 was observed to be unsuitable for images corrupted by impulse noises. To 

address this, the same authors proposed another improved variant of FCM_S1, named 

FCM_S2. The newly proposed variant utilized the median-filtered images in place of the 

proposed mean filtered image to enhance the robustness of FCM_S1 to noises. The two 

proposed algorithms, the extra mean-filtered image and median-filtered are computed in 

advance before cluster processing in replacement of the neighbourhood term of FCM_S. 

Thus, the computational times are considerably reduced. Chuang et al. (2006) proposed 

averaging the fuzzy membership function values, reassigning the values according to a 

tradeoff between the original and average membership values. The proposed algorithm 

produced accurate clustering results as long as the tradeoff is well-adjusted. However, the 

algorithm is enormously time consuming (Szilágyi, Szilágyi and Benyó 2007). 

 Cai,  Chen and Zhang (2007) proposed another variant of FCM named the fast 

generalized FCM algorithm (FGFCM). The algorithm introduces a new local similarity 

measure, which combines both the spatial information and the local grey-level information to 

form a non-linearly weighted sum image. The algorithm utilizes the SUSAN filter (Smith and 

Brady (1997), for noise reduction and image reconstruction of the main geometrical 

configurations, but not at the preservation of the fine structure. The clustering process was 

carried out based on the grey level histogram of the summed image. Thus, the computation 

time required for the segmentation process was reduced, similar to the EnFCM algorithm. 

However, EnFCM and FGFCM algorithms cannot be directly applied to original images as 

they both lack enough robustness to noise and intensity inhomogeneity.  

Wang et al., 2008, in their study, incorporated both the local spatial context and non-

local information into the dissimilarity measure, and proposed the LNLFCM algorithm. The 

proposed algorithm largely reduces the impact of noises. However, the computational time 

required is very high due to the repeated calculation of the neighbourhood term during the 

iteration process (Ji et al. 2012). To address this drawback, Ji et al. (2012), proposed the 

weighted image patch-based FCM (WIPFCM) algorithm. The proposed algorithm utilized 

image pixels in place of the image patch to be clustered. The authors proposed a weighting 

scheme to adaptively determine the anisotropic weight of each image pixel in the patch. The 

authors reported that the WIPFCM algorithm produced good segmentation results and was 

robust to image noise. However, the initial cluster numbers must be provided before 
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implementation is carried out. In addition, the proposed algorithm requires a laborious 

process for the selection of the desired number of clusters (Tan, Isa and Lim 2013).  

Tan, Lim and Isa (2013), presented an improved initialization strategy for the FCM 

algorithm, based on the Hierarchical Approach (HA) initialization strategy. The proposed HA 

module allows users to carry out initialization automatically and adaptively determine both 

cluster centres and numbers based on the global information in the histogram of the input 

images. Compared to the random initialization strategy, they reported that the proposed HA 

module computationally reduced the time required and produced good consistent clustering 

results.  Quite a large number of modified FCM algorithms have been proposed. The authors 

incorporated spatial information, which led to generating more homogeneous clusters. 

However, the computational procedures resulted in high computational cost (Rajaby, Ahadi 

and Aghaeinia 2016). The table below presents the categories of pixel-based image 

segmentation methods, identifying benefits and limitations respectively. 
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Table 2.2 Summary of pixel based image segmentation algorithms. 

Method Proposed Algorithm Benefit Limitation 

Image histogram Bi-level thresholding 
algorithms 

work well for bimodal 
images i.e. images with 
two classes, foreground 
and background 

Histograms of real 
world greyscale images 
are usually multimodal, 
which limits the 
practical applications of 
bi-level image 
thresholding. 

 Multi-level 
thresholding 
algorithms  

Generalize bi-level 
thresholding algorithms. 
 
They have practical 
applications using real 
world greyscale images. 

Computationally 
expensive. 
 
Time consuming due to 
exhaustive search and 
as the number of 
thresholds is increased. 

 Nature-inspired 
optimization 
algorithms 

Efficient for multilevel 
image segmentation 
algorithms. 
 
Solve complex 
optimization problems. 

They are often trapped 
in local optimum 
points. 
 
They are random and 
stochastic, output are 
not always consistent, 
which affects its 
efficiency. 
 
Computational 
complexity makes it 
difficult to apply in 
real-life situations. 
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Image clustering Soft Clustering - 
Fuzzy C-means 
(FCM) algorithm 

Retains more 
information from the 
original image works 
well in clustering noise-
free images 

Sensitive to 
initialization of cluster 
centres which could 
lead to generating poor 
final cluster centroids. 
 
Suffers lower 
convergence speed to 
local minima. 
 
It suffers lack of spatial 
information that makes 
it highly sensitive to 
image noise and 
generates disconnected 
regions. 
 
Random initialization 
of cluster centroids 
often leads to the dead 
centre syndrome, a 
situation that one or 
more clusters has no 
members. 
 
Computation time of 
FCM algorithm is 
dependent on the image 
size. 

 
 
 
 
 

Hard Clustering- K-
Means (KM) 
algorithm 

Simplicity, scalability in 
handling big data sets. 
 
Easy implementation 

Strongly depend on 
random selection of 
initial cluster centres. 
 
Initialization of cluster 
centroids by 
randomization strategy 
makes the algorithm not 
repeatable as it yields 
results for multiple 
runs. 
 
K-means’ dependency 
on selection of initial 
cluster centres before 
implementation is 
usually time 
consuming. 
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2.5 Colour Image Segmentation Methods 
Not until recently has colour image segmentation attracted more and more attention mainly 

due to reasons mentioned in the chapter one of this dissertation. There has been a remarkable 

growth in the number of image segmentation algorithms for segmentation of colour images in 

the last decade. Mostly, colour segmentation methods are as a result of dimensional 

extensions of existing image segmentation algorithms originally proposed for greyscale 

images. Colour image segmentation is performed by partitioning the image pixels of an 

image into separate regions grouped as connected pixels sharing homogeneous colour 

properties (Losson, Botte-Lecocq and Macaire 2008). Pixel based image segmentation 

algorithms are naturally suited for segmenting colour images because of their generalization 

potential, such as the ability to process complex multidimensional image data. They take real 

advantage of the characteristics of image pixels in trichromatic red, green and blue colour 

channels.  

The application of pixel based image segmentation algorithms to colour image 

segmentation is based on the fundamental assumption that homogeneous regions give rise to 

unique clusters when projected onto a colour model and each cluster in an image defines a 

class of pixels that share similar colour properties (Khattab et al., 2014). Diverse pixel based 

image segmentation algorithms have been extensively used for colour image segmentation in 

different colour models, but they differ primarily on the basis of the colour histogram 

dimensions such as 3-D, 2-D and 1-D (Lezoray and Charrier 2009). The entire colour 

channels are processed concurrently for clustering algorithms that analyse a 3-D histogram of 

a colour image. These algorithms belong to the vectorial approach (Shih and Liu 2016). The 

Random initialization 
of cluster centroids 
causes convergence to 
the nearest or trapped 
into local minima. 
 
Random initialization 
of cluster centroids 
often leads to the dead 
centre syndrome, a 
situation that one or 
more clusters have no 
members. 
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watershed clustering of colour images in the RGB colour model falls into this approach 

(Géraud et al., 2001). However, clustering a 3-D histogram is computationally expensive and 

memory demanding because of the huge volume of data to be processed (Xue et al., 2003). 

The projection of the 3-D histogram onto a lower dimensional space, using the bi-marginal 

and marginal histogram approaches, is a holistic strategy to overcome computational 

complexity and memory requirement. The bi-marginal histogram approach, such as the 

morphological clustering, involves the analysis of a 2-D histogram that combines two Colour 

channels such as RG, RB and GB (Lezoray and Charrier 2009). 

  The use of the bi-marginal histogram approach for colour image segmentation has 

been reported in the literature (Rajaby et al., 2016; Lezoray and Charrier 2009) and the 

volume of data encountered is partially surmounted and computational complexity is to an 

extent reduced. However, a further reduction in data volume and lower computational 

complexity can be achieved using the marginal histogram approach that analyses a 1-D 

histogram. For this reason most approaches consider 1D histograms computed for one or more 

colour channels in a colour model. Therefore, marginal histogram algorithms are often used 

for colour image segmentation to process each colour channel separately that is the marginal 

correlation between colour channels is ignored and each colour component is considered as a 

greyscale image. Several colour image segmentation algorithms based on the marginal 

histogram have reported good segmentation results (Sural et al., 2002; Makrogiannis et al., 

2005, Christ et al., 2011; Jumb et al., 2014; Randhawa and Mahajan 2014). However, 

processing each of the colour channels separately results in the loss of relevant chromatic 

information offered by chrominance channels of a colour model (Veganzones et al. 2015).  

 

2.5.2 Colour Based Saliency Segmentation Methods 
Asides the dimensional extensions of several existing image segmentation algorithms 

originally proposed for greyscale images to colour images. Research has revealed that 

humans have an inimitable ability to locate important objects in an image, identify it, 

comprehend the context, match the identified image with another one. The human vision 

system is an intelligent processing system that is capable of detecting and separating the most 

visually distinctive parts of an image while ignoring others. This perceptual quality that 

renders of an object in an image to pop out from its surroundings and immediately attract 

human attention in terms of their shape, symmetry, colour, brightness. 
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 Saliency segmentation method is a task of locating the most informative region in an 

image, based on the human vision system whereby the salient and non-salient part of the 

image become foreground and background regions respectively. The task receives an image 

as an input, transform it into a 2-D intensity map called a saliency map. A saliency map is an 

image with high intensity indicating the high saliency regions that attract human attention 

most. The process of detecting salient objects is a challenging task because the notion that 

saliency is purely subjective, which is a rapidly growing research area in image processing 

that has received a great deal of attention in cognitive science, computer vision and related 

fields. Consequently, computational models for generating saliency maps from images is thus 

a great interest to the computer vision community because it facilitates image segmentation 

and feature segmentation tasks including the segmentation of foreign fibre in cotton (Yang et 

al., 2013), content based image retrieval (Pirnog et al., 2009), segmentation of skin lesion 

(Ahn et al., 2015), among many others.  Motivated by the various applications of salient 

object segmentation, several saliency segmentation computational models have been 

proposed. 

Generally speaking, saliency segmentation methods can be classified into two 

categories which includes top-down and bottom-up (Gao et al., 2014; Zhang et al., 2015). 

The top-down method is a slow, high level task-specific search that requires prior information 

concerning the input image to detect the position of the salient object (Riche et al., 2013; 

Banerjee et al. 2016). They require pre-specified information to analyse and process saliency 

information. However, these methods are memory based and hence require more memory 

capacity to carry out computations. Most studies on top-down saliency segmentation are still 

at descriptive and qualitative levels that is few completely implemented computational 

models are available. Therefore, it is still a difficult and deeply researched problem yet to be 

solved (Hou and Zhang 2007; Gu et al. 2015).  

Contrarily, bottom-up saliency methods are purely data driven, unsupervised and task 

independent that predict the human visual system given a prior knowledge of the visual 

content, based on intrinsic low level features, such as colour contrast, intensity and texture 

information to identify the salient objects. The method is reportedly task independent, fast 

and requires a simple pre-attentive process. Consequently, several existing saliency 

segmentation methods are based on the bottom up approach to compute the salient object in 

an image. When proposing a saliency segmentation method, features such as colour, 

intensity, texture are the basic elements to detect a salient object in an image. Afterwards, a 
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computational model can be applied to compute the degree of saliency in each of the pixels. 

A normalization process is performed to ensure the saliency value falls between the range of 

0 and 255 (Wang et al., 2013).  

It has been alluded by previous authors that a good saliency segmentation model must 

satisfy three important criteria of good segmentation, high resolution and computational 

efficiency (Borji et al., 2014). Good segmentation means that the probability of missing real 

salient objects and falsely marking background regions as salient objects should be low. High 

resolution means that the saliency map should possess a high resolution to accurately locate 

salient objects and retain original image information. Computational efficiency means that 

saliency segmentation methods rapidly detect salient objects. In this study, we focus on 

relevant literature targeting the bottom up saliency segmentation methods which is directly 

relevant to the work reported in this study. When we look at an image, some objects attract 

the observer’s attention due to the fact that their colours are distinct to their surrounding 

areas.  

Since human vision is very sensitive to colour, colour plays an important role in 

detecting saliency. As a result of this, several existing saliency segmentation methods that 

have been proposed in the literature are based on image colour features. According to the 

spatial scope of saliency computation, bottom-up methods can further be divided into two 

groups: global contrast-based models and local contrast-based models (Cheng et al., 2015; 

Kim et al., 2016). The global contrast bottom-up methods detect salient object by computing 

the colour contrast of the region of interest over the entire image. On the other hand, local 

contrast bottom-up methods measure saliency by computing the colour contrast of the region 

of interest in a centre-surround local region (Fan and Qi 2016; Qu et al., 2017).   

One of the first biological inspiring models for simulating visual attention was 

proposed by Itti, Koch and Niebur (1998) based on Koch and Ullman’s biological plausible 

architecture (Koch and Ullman 1987). Their study of the theory of visual receptive fields, 

which states that typical visual neurons are most sensitive in centre-surround regions. They 

proposed the first bottom up saliency segmentation method which use a difference-of-

Gaussian (DoG) approach to compute local colour contrast based on low level visual features 

like colour, intensity and texture. The model takes in an input image, which is decomposed 

into three channels based on the low level visual features to yield a set of feature maps 

through calculating the multi-scale centre-surround differences for each of the features. The 
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feature maps for each of the channels are then normalized and linearly combined to create the 

final saliency map.  

The proposed Itti and Koch’s saliency model is considered as a milestone in saliency 

segmentation and has served as a classical benchmark model for evaluation purposes. 

However, the method has been criticized as being computationally expensive. It also 

generates saliency maps that have low resolution or poorly defined borders and it has many 

parameters that require to be hand-selected (Zhang et al., 2008). Since Itti et al., (1998) 

introduced the first computational model of visual saliency, scientists in the image processing 

and computer vision research field have devoted considerable time and effort to develop 

improved computational models of visual attention which at least exhibits the characteristics 

of a human vision and improve the performance of Itti, Koch and Niebur (1998) in the 

literature.  Harel et al., 2003 follow Itti’s modeling concept, but instead suggest a graph-

based visual saliency (GBVS) saliency segmentation model.  

The proposed model examines the dissimilarity of centre-surround feature histograms, 

formed saliency maps based on Itti’s feature maps and performed normalization using graph-

based statistics in a way which highlights comspicuity and admit combination with other 

maps. The authors reported that the proposed approach greatly improved over that of Itti’s. 

However, while the resolution of an image is high, the computation speed of the proposed 

method becomes slow. Ma and Zhang (2003) proposed a local colour-contrast saliency 

segmentation method independent of the biological model. The proposed method computes 

image saliency value with a local contrast operator by considering the CIE L*u*v colour 

features using the different salient unit to describe the salient object by using fuzzy growing 

to extract salient objects from the saliency map. The proposed approach emphasizes regions 

whose local contrast is high, so the salient object edge area is often excessively highlighted, 

while the inner region region of the object is not highlighted consistently. Moreover, the 

proposed approach is relatively time consuming (Chen et al., 2016). 

Zhai and Shah (2006) defined pixel-level saliency by contrast to all other pixels and 

proposed a method to detect salient objects by comparing each pixel to all others in the image 

based on luminance information only, thereby ignoring distinctive information in the 

chrominance channels believed to convey important information in colour images. Although 

the proposed method is simple and computationally fast. However, the proposed method 

suffers difficulty in detecting image borders in sample images used for experimentation. 
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Shortly, Hou and Zhang (2007) extract the salient object of an image based on the assumption 

that salient object segmentation models assume that the central part of an image is more 

likely to contain the foreground information while the borders of an image are more likely to 

contain the background information. They proposed a method whose principle is based on the 

spectral domain and information theory named spectral residual approach.  

The approach is based on the inverse discrete Fourier Transform (DFT) of the 

difference between the raw and smoothed amplitude components in the spectral domain to 

calculate the visual saliency of an image. The colour channels in the input image are 

processed independently, the image is Fourier transformed and the magnitude components 

are attenuated.  Then, the inverse Fourier transform is calculated using the manipulated 

magnitude components in combination with the original phase angles. With Inverse Fourier 

Transform, the spectral residual is converted to spatial domain, where it is used to construct a 

saliency map. Although the method was computationally efficient in the frequency domain of 

an image and can only indicate the probable position of the salient object, but cannot find the 

exact position and contour of the salient object.  

Guo, Ma and Zhang (2008) argued that the spectral residual of the amplitude 

spectrum is not essential to obtain the saliency map as proposed earlier by Hou and Zhang 

(2007). They applied the quaternion DFT to realize the spectral residual for quaternion 

images, which reduced the required number of focus of attention shifts to find manually 

specified objects in test images. Therefore, they proposed the use of quaternions as a holistic 

colour image representation for spectral saliency calculation. As an alternative to treating 

colour channels separately, they were able to Fourier transform the image as a whole, and 

consider the contrast for images from the global perspective. The authors reported that the 

resulting saliency maps better preserve the high level structure of an image than the ones 

reported in Hou and Zhang (2007) and Itti, Koch and Niebur (1998). However, these 

approaches suffer some shortcomings in saliency segmentation. One of them is that these 

proposed models cannot detect smooth-texture salient objects in the complex-textured 

background since the complex-texture areas are less homogeneous. Moreover, they have to 

resize the images into a smaller size to allow the salient object to be less homogeneous, as a 

result of this, these methods generate blurred saliency maps and tend to detect object 

boundaries rather than its entire area (Achanta et al., 2009; Perazzi, et al., 2012). 
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The importance of selecting an appropriate colour model for saliency segmentation 

has been emphasized in the literature. It has been reported in the literature that the choice of a 

colour model can significantly affect the final result of a saliency segmentation algorithm 

(Guo, Ma and Zhang, 2008; Hou, Harel and Koch, 2012; Schauerte and Stiefelhagen, 2012). 

Achanta et al., 2009 suggested that the method proposed by Zhai and Shah (2006) did not 

perform optimally because they failed to exploit all the spatial frequency content present in 

the original image. They introduced a global contrast based frequency-tuned saliency 

segmentation algorithm that exploits low and high frequency contents using colour and 

intensity features.  

Multiple DoGs of several narrow passbands are combined to obtain a filter and 

thereby computed saliency of a pixel as the difference between the averaged image and the 

filtered image. The experimental result shows that the proposed method produces saliency 

maps with uniformly highlighted and well-defined boundary saliency maps and tolerant to 

noise. However, the method only considers first order average colour, which can be 

insufficient to analyse complex variations common in natural images and does not account 

for any spatial relationship present in the image. Moreover, in the presence of large salient 

objects or complex backgrounds, the method may fail to correctly highlight the salient objects 

and retention of high frequencies may cause poor results as noise which makes it not flexible 

enough to solve complex variation of colours in natural images (Anchanta and Süsstrunk 

2010).  

Anchanta and Süsstrunk (2010) addressed this limitation by varying the bandwidth of 

the centre surround filtering. They computed the mean value as background, where such 

averaging operation is implemented in whole image or local region. However, such single 

value based background map is not robust because in natural scenes, background regions are 

usually complex. Therefore, background regions will be falsely marked as the salient object.  

Goferman et al., (2012) proposed a context-aware saliency segmentation method which can 

highlight salient objects along with their context to generate the saliency map based on low-

level clues, global considerations, visual organization rules and high-level features to build 

saliency segmentation model. Moreover, a context aware ability is achieved by calculating 

the geometric distances between every pixel to focus point. However, the method usually 

produces higher saliency values nears edges and cannot uniformly highlight the whole salient 

objects and suffered high computational complexity (Chen et al., 2014). 
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Perazzi et al., (2012) proposed a contrast-based saliency estimation method 

combining global contrast and spatial relations to detect salient objects. The proposed 

approach decomposed an input image into compact and perceptually homogeneous elements, 

and then considered the uniqueness and spatial distribution of these elements in the CIE 

L*a*b colour model to detect the salient objects in an image. Although the method yields 

satisfactory result in most of the test images used during the experiment. However, in some 

cases, the method cannot differentiate the salient object or region with sufficiently complete 

contours and detailed local texture from a complex background that is they falsely mark 

background as salient objects in some cases. Moreover, substantially more parameters are 

needed to produce satisfactory results as the method sometimes falsely identifies the 

background as the salient object.  

Following similar trend, Yang et al. (2013) proposed a saliency based colour image 

segmentation in foreign fibre segmentation based on brightness and colour features fusion. 

The authors computed the mean value of the colour feature was computed over the entire 

image to generate the saliency map for each of the RGB colour features. The resultant 

saliency map was fused from three saliency maps derived from the red, green and blue 

channels of the RGB colour model. Chen et al., 2014 proposed a multiple background map 

based saliency segmentation approach. Their method first generates multiple background 

maps through local averaging operation. Once the background maps are generated, the salient 

objects are estimated by measuring the differences between the original images and their 

corresponding background maps based on the Euclidean distance metric in CIEL*a*b colour 

model to compute candidate saliency maps. To further improve the performance of the 

proposed approach, they incorporated spatial distribution as a high-level factor to suppress 

background information and simultaneously highlight salient objects. The authors reported 

that experimental results reveal that the proposed approach performs well in general. 

However, it fails when background estimations are not valid. 

 Cheng et al., (2015) proposed a global contrast Gaussian mixture model based 

abstract representation method to measure saliency. They introduced two colour histogram 

based saliency segmentation methods. They proposed global contrast based approaches that 

include a histogram-based (HC) contrast and region-based (RC) methods, by using a 

quantized and smoothed colour histogram to improve the salient object segmentation 

accuracy that simultaneously evaluates the global contrast differences and spatial coherence 

to capture perceptually homogeneous elements. They incorporated colour information and the 
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spatial information in the HC method to generate the full resolution saliency map. The HC 

saliency maps assign pixel-wise saliency values based on colour separation from all other 

image pixels to produce full resolution saliency maps. Although the proposed HC method 

accelerates the speed of computing global saliency. However, the method does not perform 

well in textured scenes. On the other hand, the RC method computes the saliency value of a 

region using a global contrast score, measured by the region’s contrast and spatial distances 

to other regions in the image. Although the RC method produced saliency maps better than 

the HC maps by incorporating spatial relations. However, it is neither full resolution nor 

efficient because it considers only the colour feature at local level, thus resulting in a fuzzy 

salient map with incomplete contours of the object and local texture information. The authors 

added the proposed approach might produce sub-optimal results for with multiple objects, 

especially if the objects occlude each other. 

Summarily, local contrast based methods perform well and produce higher saliency 

around the edges and textured areas that exhibit high contrast, where humans tend to focus on 

in an image. However, these methods produce an unsatisfactory outcome in highlighting the 

whole salient object or object in an image. On the other hand, global contrast methods can 

detect the complete object as they mainly consider a few specific colours that distinguish the 

foreground and the background of an image without considering the spatial relationships. 

However, global methods have a performance bottleneck in distinguishing similar colour 

features in the foreground and background regions in an image and local high contrast can be 

ignored. Moreover, they suffer from the involved combinatorial complexity. Hence, they are 

applicable only to low resolution images or colour models of reduced dimensionality (Peng et 

al., 2013; Qi et al., 2017). The human vision system follows a centre-surround approach in 

the early visual cortex and highly sensitive to the local high contrast. Thus, proposing the use 

of either global or local colour contrast measures might not be very reasonable. Hence, there 

is a need to develop a saliency segmentation method to generate saliency maps with full 

resolution in linear computation time. 

 

2.5.3 Image Segmentation Based on Different Colour Models 
 The number of colour models developed for colour image segmentation task is far wider than 

one could imagine at a first gland. Several dozens of colour models literally exist, usually in a 

straight relation to their specific use. Thus, there are colour models that give optimal 
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performance in fabric industry, paper industry, television, computers, agriculture, biometric, 

medical, product images and even for foods. As earlier stated in chapter one of this 

dissertation that the selection of the best colour model is also one of the difficulties faced in 

the colour image segmentation research field. In this section, a review of existing studies has 

shown that selecting the optimal choice of colour model in colour image segmentation remains 

a challenging problem in image processing and computer vision. To date, there is no colour 

model that is better than the others and more suitable for all classes of images 

(Busin,Vandenbroucke and Macaire 2008; Jurio et al. 2010; Khattab et al. 2014).  

  Over the years, researchers have attempted to identify the best colour model for a 

specific task in diverse application areas. Kwok, Ha and Fang (2009) in an attempt to study 

the effect of different colour models on the performance of colour image segmentation 

presented a study to determine a suitable choice of colour model for aerial images, based on 

the YIQ, YUV, I1I2I3, HSI and HSV colour models. They proposed a segmentation procedure 

based on maximizing the information contents. The information content that is measured from 

a colour model is obtained from the entropy calculated from the probability distribution. To 

verify the performance of the proposed image segmentation method, two copies of the aerial 

image over planted fields are used in the experiment. The authors reported that experimental 

results revealed that the highest information contents were obtained from the ‘R’ and ‘Y’ 

colour channels in the RGB and YIQ colour model respectively. Research work was about 

crop segmentation to achieve real-time processing in real farm fields. Ruiz-Ruiz, Gómez-Gil 

and Navas-Gracia (2009) presented a comparative study between RGB and HSV colour 

models to achieve real-time processing in real farm fields. The authors analysed the 

environmentally adaptive segmentation algorithm (EASA) for crop recognition. They applied 

a modified EASA to work on different colour models and further proposed plant segmentation 

algorithms to distinguish between crops and weeds. The authors reported that the best 

accuracy was derived using the HSV colour model.  

  Skin colour segmentation is one of the popularly used techniques in face detectors to 

detect faces in images or videos. However, there is not a common opinion about which colour 

model is the best option to perform this task, Chaves-González et al. (2010) presented a study 

to realize which colour model is the best option to build an efficient face detector which can 

be embedded in a functional face recognition system based on ten different colour models. 

The authors developed a K-means classifier with some improvements to carry out the 

experiment with images used in face recognition systems from the AR database and their 

corresponding ground truth image as a basis of comparison. The classification results given by 
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each of the colour models are compared with the ground truth images and they reported that 

the HSV colour produced the highest segmentation rate for human skin recognition. They 

added that the RGB colour model did not perform well because it is not robust to changes in 

illumination. However, the chrominance channel X of the XYZ colour model performed better 

when compared to the RGB colour model. But, it is generally unsatisfactory for colour 

oriented applications in the case of skin colour segmentation. Yang, Liu and Zhang (2010) 

proposed colour space normalization techniques (CSN) to determine the suitable colour model 

for enhancing the discriminating power of colour spaces for face recognition, based on six 

colour models. The performance of different colour models was assessed using a large scale 

face recognition grand challenge database. The authors reported that the assessment results 

reveal that colour models like I1I2I3, YUV, YIQ and LSLM colour models produced optimal 

results for face recognition. However, the RGB and XYZ colour models are relatively weak 

for face recognition. 

   Biometric identification verifies user identity by comparing an encoded value with a 

stored value of the concerned biometric characteristics. Thepade and Bhondave (2015) 

investigated the effectiveness of colour models on iris and palm print images. The authors 

considered six colour models in their study, which are RGB, Kekre’s LUV, YCbCr, YUV, 

YIQ and YCgCb and proposed a technique by combining finger geometry and palm print 

modalities to enhance identification accuracy. The proposed system based on multimodal 

identification, was carried out using feature extraction and query execution on selected sample 

images. The authors noted that amongst the six colour models used in the study, the YCgCb 

colour model produced the best recognition result. Still on identifying unique features based 

on biometric, Rungruangbaiyok, Duangsoithong and Chetpattananondh (2015) proposed an 

Ensemble Threshold Segmentation (ETS) technique to segment hand images for hand 

segmentation based systems. The proposed method was designed to analyse the threshold 

value to segment hand image based on skin colour and compare ensemble threshold 

segmentation (ETS) with RGB, HSV, YCbCr, YIQ, YUV colour models. The experiment was 

carried in two basic steps, finding the threshold step to find the optimized threshold range and 

the segmentation step based on the optimized threshold range from the first step to segment 

the hand image. The authors reported that experimental results show that the proposed 

technique obtained best accuracy, using the HSV colour model. 

 In the medical field, researchers have also made attempts to test effectiveness of 

colour models using medical images. Harrabi and Ben Braiek (2014) performed colour image 

segmentation of breast cancer cell images to separate cells from the background using a 
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modified Fuzzy C-Means technique. The clustering algorithm was applied on each of the 

channels of the four colour models used to carry out the experiment. The proposed clustering 

algorithm was applied to the twelve (12) channels of RGB, HIS, YIQ and XYZ. The selection 

of the optimal colour model was based on the segmentation sensitivity criterion, the best 

components were found in the R, H, Y, X channels of the RGB, HSI, YIQ and XYZ colour 

models respectively using a large variety of medicinal and synthetic colour images.  

 The experimental results showed that R channel in the RGB colour model and H 

channel in the HSI produced satisfactory results. However, due to the high correlation among 

the components of the RGB colour model, there were missing features in some of the breast 

cancer cell images. Khan et al. (2015), carried out colour image segmentation of acne lesion 

using Fuzzy C-means clustering algorithm based on RGB, normalized RGB, YIQ and I1I2I3 

colour models. In the proposed approach, fifty colour images of acne patients were 

transformed into the various samples of colour models used, the images are then decomposed 

into the specified number of homogeneous regions based on the similarity of colour using 

fuzzy C-means cluster algorithm. The best results were obtained from the Q channel of the 

YIQ colour model and the I3 channel of the I1I2I3 colour model as they show robustness 

against non-uniform illumination. It was observed that the normalized RGB colour model 

produced a better result compared to the RGB colour model which gave a poor performance 

in segmentation. 

Luszczkiewicz-Piatek (2014), conducted a study on the proper choice of colour model 

for colour image retrieval based on eight different colour models using Gaussian Mixture 

Model (GMM) as a colour distribution descriptor. Test colour images were selected from a 

corpus which consists of 1000 colour images categorized into 10 thematically consistent 

categories. The CIE L*a*b and I1I2I3 colour model were found to be the best for image 

retrieval, which is as a result of the decorrelation of the RGB components. Khattab et al. 

(2014) presented a comparative study in different colour models using the automatic Grabcut 

technique. The authors proposed the method that utilized the (Orchard and Bouman 1991), a 

Colour quantization clustering technique to eliminate user interaction for initialization during 

segmentation process, an improvement of the original grabcut, a semiautomatic image 

segmentation technique. The proposed automatic Grabcut technique was experimentally 

tested using a corpus of different images. They reported that the RGB colour model gave the 

best results for most of the selected images. In addition, the YUV and XYZ colour models 

also gave better results. John et al. (2016) carried out a comparative study to test the 

effectiveness of ten different colour models on single image scale-up problem. The authors 
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conducted the experiment by transforming the scale-down image using the super resolution 

algorithm. The super resolution algorithm was applied to the sampled images based on the 

ten different colour models. The authors reported that the comparison of different colour 

models was carried out by visual perception and PSNR metrics. The experiment results  show 

that the YCbCr and CMYK colour models gave better results for single image scale-up 

applications. A review of several colour image segmentation based on different colour 

models in diverse application domains has clearly shown that there is no colour model that is 

better than the others and more suitable for all classes of images. The table below presents the 

summarized review of the colour image segmentation study. 

Table 2.3 Summary of Colour Image Segmentation Methods Based on Different Colour 

Models. 

Authors 

 

Test Image 

type  

Colour model Segmentation  

Algorithm  

Evaluation 

Metrics  

Results 

Kwok,  Ha and 

Fang (2009) 

Aerial 

images 

YIQ,YUV,I1I2I3,  

HSI, HSV 

Entropy based 

segmentation 

algorithm 

Highest 

entropy 

found in R 

and Y 

channels of 

the RGB and 

YIQ colour 

models 

The HSV 

colour model 

gave the best 

result. 

Ruiz-Ruiz,  

Gómez-Gil and 

Navas-Gracia 

(2009) 

Farmland 

crop images 

(sunflower) 

RGB, HSV K-Means 

clustering 

algorithm 

Bayesian 

classifier 

False positive 

rate 

False negative 

rate 

 

The HSV 

colour model 

gave the best 

result. 

Chaves-González 

et al.(2010) 

Face images RGB, CMY, 

YUV, YIQ, 

YPbPr, YCbCr, 

YCgCr, YDbDr, 

HSV, CIE-XYZ 

K-Means 

classifier 

Right 

segmentation 

rate 

False 

positive rate 

False 

HSV, YCgCr 

and YDbDr 

colour models 

gave the best 

results. 
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negative rate 

Yang,  Liu and 

Zhang (2010) 

Face images RGB, XYZ, 

HSV, L*a*b, 

I1I2I3, YUV, 

YIQ, LSLM 

Feature 

extraction 

method 

Verification 

rate 

Recognition 

rate 

I1I2I3, YUV, 

YIQ, LSLM 

colour models 

gave the best 

results. 

Jurio et al.(2010) 

 

 

 

 

 

Natural 

images 

RGB, CMY, 

HSV, YUV 

Ignorance-

based 

clustering 

algorithm 

Entropy-based 

fuzzy 

clustering 

algorithm 

Similarity 

(SIM) metric 

The CMY 

colour model 

gave the best 

result for both 

clustering 

algorithms 

Reddy and Reddy 

(2014) 

 

Natural 

images 

RGB, YUV, 

XYZ, L*a*b, 

HSV, YCC, 

CMYK 

Dynamic 

Histogram 

based Rough 

Fuzzy C-

means 

(DHRFCM) 

Davis-

Bouldin 

index 

Rand index 

Silhouette 

index 

Jaccard 

index 

HSV and 

CMYK colour 

models gave 

the best 

results. 

Harrabi and Ben 

Braiek (2014) 

 

 

Breast cell 

images 

RGB, HSI, YIQ, 

XYZ 

Modified 

Fuzzy C-

Means 

algorithm 

Sensitivity  

rate 

“R”  channel 

of RGB and H 

channel of HSI 

colour model 

gave 

satisfactory 

results  

Luszczkiewicz-

Piatek (2014) 

 

 

Product 

images  

RGB, I1I2I3, 

YUV, CIE 

XYZ, CIE 

L*a*b, HSx, 

Gaussian 

Mixture 

Model 

(GMM) 

Kull back-

leiber based 

similarity 

measure 

I1I2I3 and CIE-

L*a*b gave 

the best 

results. 
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 LSLM, TSL Expectation-

Maximization 

(EM) 

algorithm 

Earth movers 

distance 

similarity 

measure 

Precision 

and recall 

Khattab et al. 

(2014) 

 

 

 

Natural 

images  

RGB, HSV, 

CMY, XYZ, 

YUV 

Automatic 

Grabcut 

Error rate 

Overlap rate 

RGB, YUV, 

XYZ colour 

models 

obtained the 

best 

segmentation 

results 

Khan et al. (2015) 

 

 

 

Acne lesion 

skin images 

RGB, 

normalized 

RGB, YIQ, 

I1I2I3  

Fuzzy C-

means 

clustering 

algorithm 

Sensitivity 

Specificity 

Accuracy 

Q channel of 

YIQ colour 

model and I3 

channel of 

I1I2I3 colour 

models 

obtained the 

best results 

Thepade and 

Bhondave (2015) 

 

 

 

 

 

Iris and palm 

print images 

 

RGB, L*u*v, 

YCbCr, YUV, 

YIQ, YCgCb 

Feature 

extraction 

method  

Block 

Truncation 

Coding (BTC) 

Mean Square 

Error (MSE) 

Genuine 

acceptance 

rate (GAR) 

 

The YCgCr 

colour model 

gave the best 

performance 

result 

compared to 

the other ones 

Rungruangbaiyok,  

Duangsoithong 

and 

Chetpattananondh 

(2015)  

Hand images 

for hand 

segmentation 

RGB, HSV, 

YCbCr, YIQ, 

YUV 

Ensemble 

threshold 

segmentation 

Accuracy 

rate 

HSV and RGB 

colour models 

gave the best 

results for 

hand 
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segmentation 

John et al. (2016) 

 

 

 

Natural 

images 

YCbCr, YCoCg, 

HSV, YUV, 

XYZ, YCC, 

CMYK, YIQ, 

L*a*b. YPbPr 

Scale-

operation 

based on 

training and 

reconstruction 

PSNR YCbCr and 

CMYK colour 

models gave 

almost equal 

and effective 

results. 

 

2.6 Image Segmentation Performance Evaluation 
One of the inevitable challenges in the development of image segmentation methods is a 

comprehensive measure of their accuracies (Vojodi, Fakhari and Moghadam 2013). The 

evaluation of the quality of image segmentation algorithms is an indispensable subject in 

image processing and computer vision (Feng et al. 2016). The performance assessment of 

image segmentation methods in image processing depends on several factors, which includes 

the nature of images used for performance assessment, the algorithm parameters used during 

the evaluation and the evaluation method.  

2.6 1 Benchmark Data sets 
Benchmark data sets are valuable resources, as image segmentation algorithm developers 

often rely on benchmark data sets for quantitative and qualitative evaluation of performance 

of a newly proposed method (Khan et al., 2015; Setti et al., 2017). Therefore, numerous 

benchmark data sets have been developed for benchmarking and validation of image 

segmentation algorithms in the literature for diverse application domains. Examples include 

the Berkeley benchmark segmentation dataset (Martin et al., 2001), cell image analysis 

(Ruusuvuori et al., 2008), semantic automation, image annotations using complex scenes 

(Escalante et al., 2010), event recognition in surveillance videos (Oh et al., 2011), traffic 

signs benchmark dataset (Stallkamp et al., 2011), motion segmentation (Mahmood et al., 

2017) and skin lesion analysis toward melanoma segmentation (Gutman et al., 2016). The 

performance assessments of image segmentation algorithms do not only rely on the quality of 

the proposed image segmentation algorithm for validation, but also on its robustness to cope 
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with unknown distortions to test the robustness of the proposed algorithm. Hence,  the 

availability of ground truth images to compare with the segmented output aside, benchmark 

data sets are required to contain images with distortions, varying illumination conditions, 

noise and other artefacts, which in some cases will include the presence of artefacts to 

occlude the problem region, thereby distorting the required information to be extracted from 

an image, usually common with medical images. 

Medical image processing evaluation benchmark data sets are one of the fastest 

growing benchmark dataset as they are fast becoming evaluation standards for newly 

proposed image segmentation algorithms (Maier et al., 2017). They are significant to support 

researchers in the development of algorithms to assist in clinical diagnosis, treatments and 

even in some case surgery (Gutman et al., 2016; Wang et al., 2016).  In the medical image 

processing research field, the number of challenging data sets has continued to increase over 

the past years with diverse proposed challenges, including segmentation of tumours in MRI 

brain data (Menze et al., 2015), lung vessel segmentation in computed tomography scans 

(Rudyanto et al., 2014), prostate segmentation of MRI (Litjens et al., 2014) and melanoma 

skin lesion segmentation (Gutman et al., 2016). They consist of sample test images, 

associated ground truth created by experts following a clearly defined set of rules and 

evaluation metrics. Most importantly, they are usually open access for interested contestants 

and for benchmarking newly proposed image segmentation algorithms.  

 

2.6.2 Image segmentation Evaluation Methods 
Several algorithms for evaluating image segmentation algorithms have been reported in the 

literature which can be classified into qualitative (subjective) and quantitative (objective) 

methods (Seghir and Hachouf 2011; Feng et al. 2016). Qualitative evaluation is one of the 

most commonly used methods for assessing the quality of image segmentation algorithms 

(Zhang, Fritts and Goldman 2008). In this method, the human observer visually compares the 

image segmentation results to estimate the image quality. Subjective evaluation methods are 

useful for validating segmentation results, however, these methods are highly subjective 

because interpretations of evaluation results can vary significantly from one judge to another 

(Sun et al. 2016). Moreover, subjective evaluation of image quality is time consuming, 

difficult to exploit and it does not provide the capability to generalize results due to the vision 

discrepancy of humans. This is because it inherently limits the depth of evaluation to a 
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relatively small number of segmentation comparisons over a predetermined set of images 

(Zhang, Fritts and Goldman 2008; Johnson and Xie 2011; Liu et al. 2016). This has led to the 

development of quantitative image quality assessment metrics to compute and measure image 

segmentation quality (Zhang et al. 2011). 

Quantitative evaluation methods refer to the objective assessment of image quality 

using well-known analytic approaches to compute visible errors between distorted images as 

it would be perceived by an average human (Johnson and Xie 2011). Quantitative evaluation 

methods can be classified into system-level and direct evaluation methods. System-level 

evaluation methods are popularly used in systems/application domains to examine the impact 

of several image segmentation methods on the overall system to determine whether or not a 

specific image segmentation algorithm is better than the other for a specific application 

domain. Meanwhile, the direct level evaluation methods are further classified into analytical 

and empirical methods. The analytical evaluation methods focus on analysing the properties 

of a proposed image segmentation algorithm, such as its processing strategy, complexity, and 

efficiency (Polak, Zhang and Pi 2009). Finally, the empirical methods are divided into 

supervised and unsupervised methods, based on whether or not prior information is available 

(Vojodi, Fakhari and Moghadam 2013).  

Supervised evaluation methods, also called relative evaluation or empirical 

discrepancy methods, require prior knowledge, such as an original image or a ground truth 

image, to measure the error in the segmentation results (Johnson and Xie 2011). Thus, image 

segmentation algorithm performance is measured according to dissimilarities between the 

segmentation output and the ground truth image. Based on the availability of reference 

images, supervised objective image segmentation methods can further be classified into full-

reference (FR), reduced-reference (RR) and no-reference approaches (NR) (Wang et al., 

2016a; Zhang et al., 2016). Full-reference approaches require a complete input reference 

image with which the distorted/segmented image can be compared (Wu, Lin and Shi 2014; 

Lin et al. 2015). However, the disadvantage of full-reference approaches is that the reference 

images are not usually accessible in most practical applications (Yu et al. 2016). As a 

solution, no-reference approaches were proposed to predict the quality of distorted or the 

segmented images without any prior knowledge of original reference images (Wang et al. 

2016a), however, several existing no-reference approaches may only be effective for specific 

types of images or specific types of distortions (Yu et al. 2016). As an alternative to the 

above mentioned approaches, reduced-reference approaches were proposed. The approaches 
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require partial information concerning the reference or the original image (Soundararajan and 

Bovik 2013).  

 The unsupervised evaluation methods, also called the stand alone algorithm or 

empirical goodness methods, quantitatively compute image segmentation quality based on 

some parameters relevant to the visual properties extracted from the original and the 

segmented image, without any prior knowledge to compute the errors in segmentation results 

(Vojodi, Fakhari and Moghadam 2013). In this method, no human intervention or a manually 

segmented image or pre-processed reference images are needed, however, experimental 

results have shown that the proposed unsupervised evaluation methods are far from being 

perfect (Zhang,  Fritts and Goldman 2008).  

The hierarchy of image segmentation evaluation methods is presented in the figure 

below.  

 

Figure 2.1: Image segmentation evaluation methods (Zhang, Fritts and Goldman 2008; 
Zuva et al. 2011) 
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2.7 Chapter summary 
As a conclusion of this chapter, the chapter comprehensively review relevant publications 

based on an image segmentation algorithm. This serves as a foundation for the current study 

reported in this dissertation. This chapter, which contains six sections where each of the 

sections reported gives detailed description of relevant topics directly related to the current 

study, making special emphasis on different strategies and methods proposed in the literature 

by identifying their strengths and pitfalls. As described in the introductory part of this chapter 

that image segmentation remains a significant, but complex problem that has led to the 

development of countless image segmentation algorithms to address the problem. From the 

review, it can be observed that there is no single solution to the problem of image 

segmentation despite the persistent efforts of researchers in this field. This serves as a 

motivation for the current study to develop an image segmentation algorithm to improve the 

performance of colour image segmentation. The next chapter explains the methodology that 

was followed to reach the set research aim and objectives of this study. 
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CHAPTER THREE 

 

METHODOLOGY OF THE STUDY 
 

This chapter presents the methodological steps followed in this study in order to accomplish 

the research aim and objective 2 of this study as outlined in Chapter 1. Firstly, the image data 

set acquisition process is discussed. This is followed by the basic steps taken towards the 

development of the proposed image segmentation algorithm which is based on four 

sequential steps: colour image transformation, luminance image enhancement, salient pixel 

computation and image artefact filtering. The subsequent sections will then elaborate on each 

stage of the proposed segmentation algorithm. 

 

3.1 Image Datasets Acquisition  
The researcher mentioned in the previous chapter two of this study that the development of a 

unified image segmentation algorithm that can be applied to all classes of images is still a 

challenging task and remains an open problem in image processing research field. Since there 

exist several image data sets that offer diverse classes of experimental images. It becomes 

interesting that different image segmentation algorithms are likely to perform differently 

across diverse image data sets. Essentially, a good method should be able to perform 

optimally over diverse data sets so as to draw both qualitative and quantitative conclusions. 

Therefore, in this study, the researcher chooses to explore four publicly available 

segmentation benchmark data sets; two melanoma skin lesion image data sets and two real 

life natural image data sets. Moreover, the selection of diverse image data sets will inject 

diversity so as to avoid the tendency of the segmentation results being biased. Four image 

data sets explored in this study include the International Symposium on Biomedical Imaging 

(ISBI) 2016 challenge dataset, Pedro Hispano Hospital (PH2) data set, Microsoft Research 

Asia dataset (MSRA) and the Extended Complex Scene Saliency Dataset (ECSSD). These 

image data sets are selected based on the following accompanying attributes: 

1. They are public and easily accessible, 

2. They provide diverse image types and quality levels, but challenging images for 

various computer vision applications, 

3. They contain a substantial number of images, 
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4. They are prospective benchmark image data sets 

Moreover, most of the images available in these image data sets fit into the class of 

binary image segmentation for foreground and background separation. The four different 

types of image data sets explored in this study are discussed in detail below. 

 

3.1.2 ISBI 2016 Challenge Dataset 
The first dataset explored in this study is ISBI 2016 challenge dataset. The dataset is a subset 

of the large international skin imaging collaboration archive for the 2016 International 

Symposium on Biomedical Imaging (ISBI) challenge titled “Skin lesion analysis toward 

melanoma detection” (Gutman et al., 2016). It contains melanoma images acquired from a 

variety of different devices at numerous leading international clinical centres. The dataset 

contains 900 melanoma skin lesion images. The skin image sizes vary from 1022 by 767 to 

2848 by 4288 and ground truth images provided by expert dermatologists are made available 

in the dataset. The ISBI dataset, particularly inspired the researcher because it contains 

numerous challenging melanoma skin lesion images. A melanoma skin lesion image is 

considered to be “challenging” if one or more of the undesirable factors are met such as low 

contrast between the lesion and the healthy skin, presence of thick and thin hairs, air bubbles. 

For the purpose of experimentation performed in this study, ten images are randomly selected 

from each of the seven categories of low contrast, thin air, thick air, irregular border, fuzzy 

border, air bubble and variegated colouring (https://isic-archive.com/-90). Figure 3.1 presents 

the melanoma skin lesion images selected in each of the categories listed above for 

experimentation. 
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Figure 3.1 Melanoma skin lesion images selected from the ISBI 2016 challenge dataset 

3.1.3 Pedro Hispano Hospital Dataset 
The second dataset explored in this study is the Pedro Hispano Hospital dataset popularly 

referred to as PH2 dataset. The data set was jointly collected by the Universidade do Porto, 

Tếcnico Lisboa and the dermatology service of Hospital Pedro Hispano in Matosinhos, 

Portugal (Mendonça et al., 2013). The dataset is composed of 200 melanoma skin lesion 

images in 8-bit RGB colour with 768 by 560 pixel resolution using a magnification of 20×  

under unchanged conditions. In addition, manually annotated lesions from expert 

dermatologists were also provided in the dataset to serve as ground truth for performance 

evaluation of different computer aided diagnosis systems. For the purpose of 

experimentation, a total number of fifty melanoma skin lesion images were randomly 

selected from the PH2 dataset. Figure 3.2 presents the melanoma skin lesion images selected 

for experimentation 
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Figure 3.2 Melanoma skin lesion images selected from the PH2 dataset 
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3.1.4 Microsoft Research Asia Dataset 
The third dataset explored in this study is the Microsoft Research Asia (MSRA) dataset. The 

MSRA salient object dataset is one of the most widely used publicly available benchmark 

salient object segmentation dataset. The data set features a large variation in natural images 

of about 10,000. The images provided in this data set are diverse with one or multiple salient 

objects in an image in different colour and shapes. The human labelled ground truth images 

for an accurate evaluation are also provided in the dataset. In this study, a total number of 

forty natural images were selected for validation purpose. Figure 3.3 presents the natural 

images selected from the MSRA dataset for experimentation. 
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Fig 3.3 Natural images selected from the MSRA dataset. 

 

3.1.5 Extended Complex Scene Saliency Dataset 
The Extended Complex Scene Saliency Dataset (ECSSD) consists of a collection of natural 

images from one of the most widely used benchmark image segmentation dataset, the 

Berkeley segmentation benchmark data set for both greyscale and colour image segmentation 

(Arbelaez et al., 2007). The dataset contains of diversified patterned natural images of diverse 

scene categories with complex foreground and background patterns that are semantically 

meaningful. This attribute makes the data set one of the top choices of dataset suitable to 

evaluate the robustness of different salient and non-salient object detection algorithms. The 

images in this data set cover a wide range of natural scene categories such as animals, 

portraits, landscapes even human. In this study, thirty sample images were randomly selected 

in varying categories are shown in Figure 3.4 below. 



 
 

61 
 

     

     

     

     

     

     
Fig 3.4 Natural images selected from ECSSD.  
 

3.2.1 Colour Image Transformation 
The input to the perceptual colour difference saliency (PCDS) segmentation algorithm is 

RGB colour image of 3××NM  dimensions, where M and N are the number of rows and 

columns respectively. The red (R), green (G) and blue (B) channels of the input image have 

values in the range [0, 1] and the image is transformed into the CIE L*a*b* colour image in 
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order to achieve perceptual saliency. The process of transforming an Adobe RGB colour 

image to the CIE L*a*b colour image is usually performed in two steps (Dowlati et al., 2013, 

Hosseinpour et al., 2013). The first step converts the Adobe RGB image to the CIE XYZ 

image according to the following equation (Dowlati et al., 2013, Hosseinpour et al., 2013): 
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   (3.1) 

Where r, g and b are defined in terms of the constant gamma value which in this study is 

4.2=cγ  for non-hair occluded and natural images and 4.2/1=cγ  for hair occluded skin 

lesion images. This can reduce the effects of hair or hair stubble on the segmentation results 

by reducing its lightness as most hairs contain the similar luminance value as the skin lesion 

region. The parameters =1α 0.055 and =2α 1.055 in equation (3.2) are added to correct the 

RGB values obtained from the digital cameras in order to obtain the best possible calibration 

of the transformation model (Valous et al., 2009; Dowlati et al., 2013, Hosseinpour et al., 

2013): 

   
























 +
=








 +
=








 +
=

c

c

c

Bb

Gg

Rr

γ

γ

γ

α
α

α
α

α
α

2

1

2

1

2

1

      (3.2)  

The second transformation step converts the CIE XYZ image to the CIE L*a*b image 

following the ITU-R BT.709 recommendation (equation 3.3). The illuminant D65 is used in 

this study, where 95047.0=nX , 00000.1=nY  and 08255.1=nZ  are the CIE XYZ tristimulus 

values of standard light source (Dowlati et al., 2013; Filko et al., 2016). The transformed 

image serves as input to the image enhancement processing stage. 
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Where the auxiliary function )(sf is defined as follows: 
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3.2.2 Luminance Image enhancement 
The transformation of colour image alone does not alleviate the adverse effect of 

illumination, low contrast or enhance the image quality significantly. The reason is that an 

absolute separation between the luminance and chrominance channels is not achievable for 

the RGB colour model because of the high correlation between its channels (Shi 2010; 

Rahman et al., 2016). It is therefore desirable to enhance the luminance channel of the image 

which does not change the original colour of a pixel (Rahman et al., 2016). The adaptive 

gamma correction function has been recommended for this purpose because a fixed gamma 

correction function is not always desirable for all image types (Rahman et al., 2016). The 

following adaptive gamma correction function is applied in this study to enhance the 

luminance channel of the input image: 

   
)1)(1)(5.0(1 aa

a

in

in
out LH

L
L γγ

γ

µµ −−−+
=    (3.5) 

The images inL  and outL  are input luminance and output luminance respectively. The 

parameter aγ  is the adaptive gamma correction value that controls the slope of the 

transformation function. The Heaviside function H(x) returns a value of 1 if its argument is 

greater than 0, otherwise it returns a value of 0. Rahman et al. (2016) gave logarithm and 

exponential adaptive gamma correction functions to enhance low contrast image and high 

contrast image respectively. The functions gave impressive segmentation results for a number 
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of images, but for some high contrast images, for instance an image with a mean value of 

0.7097, standard deviation of 0.1513 and gamma value of 1.0720, the image enhancement 

needs further improvement as shown in Figure 3.5c. The segmentation result has improved as 

shown in Figure 3.5d with an increased in the gamma value from 1.0720 to 2.9212 using the 

following product of logarithm and exponential functions as the gamma correction function: 

  )2/)1exp(()(log2 σµσγ −−−=a      (3.6) 

where σ  and µ  are the global standard deviation and global mean of the luminance image 

respectively. The enhanced image serves as input to the saliency computation processing 

stage.           

              
                 (a)                                (b)                             (c)                               (d)       
Figure 3.5: Enhancement of luminance channel using the adaptive gamma correction. (a) 
Original image, (b) ground truth, (c) enhanced saliency segmentation using exponential 
gamma function, (d) enhanced saliency segmentation using the product of logarithmic and 
exponential gamma functions. 
 

3.2.3 Salient Pixel Computation 
The saliency of a pixel in an input image can be computed in terms of the difference of the 

image colour feature with the mean value of this colour feature. The mean value of colour 

feature was computed globally over the entire image (Yang et al., 2013). However, this 

method has difficulty in distinguishing similar colour features in the foreground region of the 

object region in an image (Qi et al., 2017). To correct this problem, we compute the mean 

value of the background colour features and the mean value of object colour features to 

compute the saliency map. The mean value of the background colour feature is estimated by 

the mean of the pixel values on an ellipsoidal patch drawn close to the image borders and 

mean value of the object colour features is estimated by the mean of the pixel values within a 

rectangular patch drawn over the image centre. This design principle follows the assumption 

that images are acquired in such a way that the object is approximately positioned in the 

central portion of the images (Cavalcanti and Scharcanski 2013; Flores and Scharcanski 
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2016; Zortea et al., 2017) and that background pixels are located at the image borders (Yang 

et al., 2013; Pennisi et al., 2016).  

The mean value ),,( bbbabl mmm  and the standard deviation value ),,( bbbabl σσσ  of 

the background colour feature are computed from the values of image pixels on an ellipsoidal 

patch traced by an efficient midpoint ellipse algorithm (Van 1984; Agatho et al., 1998). 

Moreover, the mean value ),,( oboaol mmm  of the object colour feature is computed from the 

values of image pixels within a rectangular patch whenever the inequality 

bibimyxp ησ−<),(  or bibimyxp ησ+>),( is satisfied. Where bali ,,=  are the image 

channels, ),( yxp  is image colour features at a given image pixel, ,,...,2,1,,...,2,1 NyMx ==  

NM ×  is the image dimension and 00.1=η  standard deviation is used in this study. Figure 

3.5 shows the diagrammatic illustration of patches that are used for the computation of mean 

values of image colour features.  

The ellipse in yellow font represents the set of pixels that are used for the computation 

of the mean value of background colour feature and the solid rectangle in red font represents 

the set of pixels that are used for the computation of the mean value of the object colour 

feature.  The difference can be noticed between Figures 3.5b and 3.5d from the rectangular 

shapes as the segmentation algorithm computes mean value of object colour features for 

those pixels within the rectangular patch that differ from the background pixels. This decision 

follows the assumption that both object and background, possess different colour 

distributions (Zortea et al., 2011). In Figure 2b not all pixels in the rectangular patch are 

object pixels, but in Figure 2d all pixels in the rectangular patch are object pixels, hence the 

principal reason for the observed difference in the rectangular shapes. 

           

               a.                 b.                  c.           d. 

Fig. 3.5 Selection of background and object pixels. (a) input image, (b) ellipsoidal patch 
in yellow font contains background pixels and portion of object pixels in red font are 
covered by the rectangular patch, (c) input image, (d) ellipsoidal patch in yellow font 
contains background pixels and portion of object pixels in red font are fully covered by 
the rectangular patch. 
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The difference of background colour ( pB∆ ) feature with the mean value of this colour 

feature and difference of object colour ( pO∆ ) feature with the mean value of this colour 

feature is computed for each pixel to preserve spatial information. These two measures are 

aggregated to create a greyscale saliency map )},({ yxsS =  whose entry ),( yxs  is 

determined as follows: 
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=    (3.7) 

To realize a saliency map that provides high resolution and good detection, according 

to the requirements of a good saliency detection (Borji et al., 2014), the greyscale saliency 

map is converted to a binary saliency map )},({ yxbB =  such that ),( yxb  tends to the 

maximum greyscale value of 255 for a salient pixel and minimum greyscale value of 0 for a 

background pixel according to the following simple decision.  
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The parameters ),( yxBp∆  and ),( yxOp∆  are computed using the accurate 

CIEDE2000 colour difference formula. Given two colour values )( 1,1,11 baLp  (mean of colour 

feature) and ),( 2,222 baLp  (colour feature of a pixel) in the CIE L*a*b* colour model and for 

a given set of parametric weighting factors HCL KKK ,, , the CIEDE2000 Colour difference, 

),( 212000 ppE∆  between these colour values is defined as (Pant and Farup 2010; Sharma 

et al., 2005) 

 







 ∆







 ∆
+







 ∆
+







 ∆
+







 ∆
=∆ HH

P

CC

P
T

HH

P

CC

P

LL

p

SK
H

SK
CR

SK
H

SK
C

SK
L

ppE

222

212000 ),(
 (3.9) 

Where the differential colour vector components of the standard colour difference formula 

are given as follows:  
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where 









−
−<−+−

>−−−
=∆

elsehh
hhifhh
hhifhh

h

pp

pppp

pppp

p

,12

1212

1212

180,360
180,360

     

 (3.11) 

The rotation function TR  appearing in the standard colour difference formula is 

mathematically expressed as follows: 
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The parametric weighting functions appearing in the standard colour difference formula are 

expressed as follows: 
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The symbols used in the rotation function and parametric weighting functions are defined in 

terms of the hue angle for a pair of colour samples as follows: 
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where 
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Given that ox][  in equations (3.10) and (3.16) means that expression ‘x’ in radian is to 

be converted to degree and rx][  in equations (3.12) and (3.13) indicates that ‘x’ in degree is 

to be converted to radian. The other symbols of the colour difference formulae are defined as 

follows. 
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3.2.4 Image Artefact Filtering 
The input to the artefact filtering routine is the binary output image of the saliency 

computation function. The prime objective of the artefact filtering stage is to fill holes, 

remove any extra element that might be remaining of hair or other artefacts and select a 

single connected region that is more likely to be the actual object. There are two possible 

stages in which artefacts can be removed, which are pre-processing (before segmentation) or 

post-processing (after segmentation). This study uses the post-processing stage to filter 

artefacts that are not catered for during the segmentation process. This achieves computation 

efficiency by not processing all the three image channels following the requirements of good 

saliency detection (Borji et al., 2014).  

The artefacts filtering process applies the morphological operations on the binary 

input image to remove undesired elements. Morphological operations are important in the 

digital image processing, because they can rigorously quantify many aspects of the 

geometrical structure of the image in a way that agrees with the human intuition and 

perception (Wang et al., 2011; Premaladha and Ravichandran 2016). The relationship 

between each part of the image can be identified when processing images with morphological 

theory (Wang et al., 2011; Zortea et al., 2017). Accordingly, the structural character of the 

image in the morphological approach is analysed in terms of some predetermined geometric 

shape known as q structuring element (Zortea et al., 2017). The morphological 

transformation aims at removing the outlier pixels that can be introduced in the image 

acquisition phase while maintaining the properties of the lesion region. 

The median filter algorithm with structuring element of size 11 x11 is first executed 

on the binary image to eliminate hairs and smooths the image against noise. The filter of size 

of 11 x11 was used because of its ability to reduce bubble intensity and prevent fuzzy edges 

(Kasmi et al., 2016; Premaladha et al., 2016). The filter considers each pixel in the image in 

turn and looks at its nearby neighbours to decide whether or not it is a representative of its 

surroundings. It is widely used in digital image processing because under certain conditions, 

it preserves edge information while removing over segmentation. The median is evaluated by 

first sorting all the pixel values from the surrounding neighbourhood in numerical order and 

then replacing the pixel being considered with the middle pixel value (Li et al., 2009). Then 

the disk structure element is created to preserve the circular nature of the lesion when 

performing the morphological opening operations. The radius of the structuring element is 

specified as 11 pixels, so that the large gaps can be filled. The opening operation is 
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morphological erosion followed by morphological dilation. The opening operation smooths 

object contours, breaks thin connections, removes thin protrusions and eliminates those 

objects that are smaller than the structuring element. The resulting binary image is then 

closed using the morphological closing operation which is dilation followed by erosion. The 

same disk structure element that was created in the previous step is used for both operations. 

The closing operation smooths object contours, joins narrow breaks, fills long thin gulfs and 

holes that are smaller than the structuring element. The “clear border” operation is finally 

used to remove vignette and disconnected objects touching the image border.  

 

3.3 Algorithmic Implementation of the PCDS Algorithm 
The algorithmic implementation of the proposed PCDS segmentation algorithm is succinctly 

outlined based on the mathematical descriptions (equations 3.1-3.20). The asymptotic time 

complexity of the PCDS algorithm is O( 3××NM ) for an input colour image of dimensions 

3××NM . The PCDS algorithm is succinctly described as follows. 

Input: 3××NM  RGB colour image. 

Output: NM × greyscale saliency map, NM ×  silhouette saliency map. 

It is assumed that the standard colour difference formula described by equations (3.9) to 

(3.20) has been implemented to be invoked in the computation of a saliency map in step 12 of 

this algorithm. 

(1)  for all x=0, 1, …, M-1 do  

(2)    for all y=0, 1, …, N-1 do 

(3)       transform the Adobe RGB image to the CIE XYZ image using equations (3.1) and     
(3.2). 

(4)       transform the CIE XYZ image to the CIE Lab image using equations (3.3) and 
(3.4). 

(5)    end for  

(6)  end for 

(7)  enhance the luminance channel of the CIE Lab image using equations (3.5) and (3.6). 

(8)  compute mean of representative background pixels on an ellipsoidal patch. 

(9)  compute mean of representative object pixels within a rectangular patch. 

(10)  for all x=0, 1, …, M-1 do  
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(11)     for all y=0, 1, …, N-1 do  

(12)           compute the greyscale saliency map using equation (3.7).  

(13)           compute the binary saliency map using equation (3.8). 

(14)     end for  

(15)  end for  

(16)  perform morphological analysis on the binary saliency map to filter artefacts. 

(17)  stop 

 

3.4 Chapter Summary 
This chapter has presented the methodological steps taken to achieve the second objective of 

this research study. The chapter discusses in detail the implementation processes of the 

proposed perceptual colour difference saliency segmentation algorithm. At the first stage, the 

chapter provided vivid information about the image data set acquisition process. As a 

reminder, four publicly available image data sets have been selected to validate the 

effectiveness of the proposed PCDS segmentation algorithm. The first two data sets explored 

in this study contain melanoma skin lesion images in varying conditions while the other 

image data sets consist of natural images. This was followed by the four procedural steps 

towards achieving the main contribution of this study. The next chapter provides the 

evaluation experiments, results and interpretations. 
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CHAPTER FOUR 

EVALUATION EXPERIMENTS, RESULTS AND INTERPRETATIONS 
This chapter presents the evaluation experiments, the results of the experiments and their 

corresponding interpretations to accomplish the third objective of this study. The chapter 

begins with an analysis of performance evaluation. This is followed by the qualitative 

analysis of saliency and non-saliency results of the four image data sets explored in this 

study. The next section presents the quantitative analysis of the binary segmentation results. 

In the quantitative analysis section, the four statistical evaluation metrics used in this study 

and their mathematical representations are presented. Next to this is the quantitative results 

obtained from each of the evaluation metrics and their respective interpretations. 

 

4.1 Analysis of Performance Evaluation 
The universal problem in the development of an image segmentation algorithm, which is 

approachable through experimentations, is a comprehensive measure of its accuracy to 

validate that one algorithm is better than the other. Moreover, if the image segmentation 

algorithm is better than its counterparts, will it be consistent under varying image conditions 

and other factors? These questions are thereby answerable using the following procedures.  

1. Two or more image data sets that offer different image conditions should be used to 

observe the behaviour of a segmentation algorithm to ensure its consistency across the 

image data sets. 

2. Both qualitative and quantitative evaluation techniques should be adopted to cater for 

the deficiency by using one evaluation technique. 

3. Qualitative evaluation should be carried out to judge the quality of the segmentation 

results quality based on the capability of segmentation to accurately segment the 

salient object in an image. 

4. During the quantitative evaluation, a minimum number of three evaluation metrics 

should be used to ensure that the overall performance of a segmentation algorithm is 

significant to an extent. 
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4.1.1 Comparison with State-of-the-art Saliency and Non-Saliency 
Segmentation Algorithms  
In this section, to validate the effectiveness of the proposed PCDS segmentation algorithm, 

the researcher compares the performance of PCDS segmentation algorithm qualitatively and 

quantitatively with four benchmark saliency segmentation algorithms which are Spatially 

Weighted Dissimilarity (SWD) [Duan et al., 2011], Principal Component Analysis (PCA) 

[Margolin et al., 2013], Markovian Chain (MC) [Jiang et al., 2013] and Saliency-based Skin 

Lesion Segmentation (SSLS) [Ahn et al., 2015] as well as four state-of-the-art non-saliency 

image segmentation algorithms which are the Otsu thresholding method [Otsu 1979], K-

means [Lloyd 1982], FCM [Dunn 1973] and modified JSEG [Celebi et al., 2007]. The SSLS 

source code for the comparative saliency segmentation algorithms with default parameter 

settings was provided by the author of the method. The source codes for SWD, PCA and MC 

methods are available at the web link 

https://github.com/MingMingCheng/SalBenchmark/tree/master/Code/matlab.  

 

4.2 Qualitative Analysis of Experimental Results  
The goal of this section is to test the effectiveness of the experimental results computed by 

the PCDS segmentation algorithm by visual inspection of the selected experimental test 

images across the four data sets explored in this study. For qualitative comparison, some 

samples of the generated saliency map results of the PCDS segmentation algorithm and the 

other four benchmark saliency segmentation algorithms are presented. In a similar vein, 

binary segmentation results of the proposed PCDS default thresholding technique are 

compared with the four non-saliency state-of-the-art image segmentation algorithms in the 

absence of image artefact filtering. 

 

4.2.1 Qualitative Analysis of Saliency Results with Images from ISBI 2016 
Challenge Dataset 
In this section, the researcher qualitatively evaluates and verifies the robustness of the 

proposed PCDS segmentation algorithm in direct comparison with the four benchmark 

saliency segmentation algorithms using some samples of melanoma skin lesion images 

selected from the ISBI 2016 challenge dataset. A few examples of the challenging melanoma 

skin lesion images in varying image conditions such as the presence air bubbles (Im1 and 

https://github.com/MingMingCheng/SalBenchmark/tree/master/Code/matlab
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Im2), low contrast between lesion and healthy skin (Im3 to Im8), presence of thin hair (Im9), 

presence of thick hair (Im10).  

The results of Figure 4.1 show that most of the salient lesion objects were correctly 

segmented by the proposed PCDS segmentation algorithm and largely consistent across the 

entire melanoma skin lesion images displayed in the figure 4.1. It can be observed from Im1 

when melanoma skin lesion image possesses air bubbles and illumination variation, this is a 

situation whereby the lesion object colour distribution appears to be uneven. It can be seen 

that compared to the other four benchmark saliency segmentation algorithms, the proposed 

PCDS segmentation algorithm highlights the complete salient lesion object more effectively 

thereby producing a better saliency map representation. This apparent improvement can be 

linked to the proposed luminance image enhancement using the adaptive gamma correction 

implemented in this study to improve the quality of saliency segmentation. Similarly, it can 

be observed in Im2 that in the presence of air bubbles and at the same time little contrast 

between the lesion and healthy skin. The CPDS segmentation algorithm generates an 

improved saliency map with more defined image borders compared to other four benchmark 

saliency segmentation algorithms. 

It is worth mentioning from observation that for virtually all the melanoma skin lesion 

images displayed in Figure 4.1, the SWD segmentation algorithm has the poorest 

performance as the algorithm generates saliency maps with low resolution, blurry and poorly 

defined borders. From Im3 to Im8 when there is low contrast between the lesion and healthy 

skin, the qualitative results show that the PCA and SSLS segmentation algorithms do not 

uniformly highlight the salient lesion objects. As it can be seen that the PCA and SSLS 

saliency segmentation algorithms only highlighted certain parts of the lesion while some parts 

share a similar colour intensity with the background colour. Though the MC segmentation 

algorithm produced better saliency maps compared to the PCA and SSLS saliency 

segmentation algorithms, yet one can observe that the saliency maps generated by the MC 

algorithm possess the heterogeneous lesion object, salient object borders are imprecise and 

fuzzy across the entire melanoma skin lesion images presented in Figure 4.1. Furthermore, 

the SSLS segmentation algorithm produced saliency maps that are quite smaller in size as 

compared to the ground truth images in virtually all the melanoma skin lesion images 

presented in Figure 4.1.  
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The proposed PCDS segmentation algorithm, on the other hand, shows improved 

saliency maps across the melanoma skin lesion images than the other algorithms. The PCDS 

segmentation algorithm completely and uniformly highlighted the lesion objects with no 

varying lesion colour. This is an indication that the PCDS segmentation algorithm assigned 

pixels within the salient lesion objects with uniform saliency values. Im9is an indication that 

all the saliency segmentation algorithms are able to achieve satisfactory results for melanoma 

skin lesion image has high contrast between lesion and healthy skin. Another important 

observation from Figure 4.1 below can be seen in Im10, when melanoma skin lesion image 

possesses thin hair. Although it can be observed that the other benchmark saliency 

segmentation algorithms highlighted only the visible part the lesion object which as a result 

of this could lead to diagnostic error. By contrast, it can be observed that the proposed PCDS 

segmentation algorithm highlighted the almost invisible tail end of the lesion as seen in the 

human reference standard not highlighted by the other saliency segmentation algorithms. This 

improvement in the performance of the PCDS segmentation algorithm can be attributed to 

object and background colour contrast difference measurement based on the CIEDE2000 

colour difference formula implemented in this study.  

S/N Original 
image 

SWD PCA MC SSLS  PCDS  Ground 
Truth 

Im1 

       
Im2 

       
Im3 

       
Im4 

       
Im5 

       
Im6 

       
Im7 
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Im8 

       
Im10 

       
Im10 

       
Fig 4.1: Qualitative illustration of saliency segmentation results obtained using four 
benchmark saliency segmentation algorithms and PCDS segmentation algorithm on the 
melanoma skin lesion images from ISBI 2016 challenge dataset. 
 

4.2.2 Comparison of Non-Saliency Results with Images from ISBI 2016 
Challenge dataset without Image Artefact Filtering 
In this section, the researcher presents the binary segmentation results of the proposed PCDS 

segmentation algorithm using the default thresholding technique executed on the saliency 

maps to obtain a binary image of the lesion boundary using melanoma skin lesion images 

from the ISBI 2016 challenge corpus. The result of Fig.4.2 shows some of the examples of 

the binary segmentation results produced by the proposed PCDS segmentation algorithm and 

the four non-saliency image segmentation algorithms. The melanoma skin lesion images 

presented in this section for qualitative comparison are the same as the melanoma skin lesion 

images from the ISBI 2016 challenge dataset presented in Fig.4.1 in the absence of artefact 

filtering. It is worth mentioning that the modified JSEG algorithm source code provided by 

the author of the method is inherently embedded with both preprocessing and postprocessing 

techniques, as it can be observed that the resulting images by the modified JSEG algorithm 

do not contain image artefacts. 

The results of Figure 4.2 show that despite the absence of image artefact filtering, an 

observer can easily note that the binary segmentation results produced by the proposed PCDS 

segmentation algorithm show an improvement in its overall performance. For example, the 

binary segmented image of the proposed PCDS segmentation algorithm shows a better 

segmentation performance for Im1. It is observed that the Otsu thresholding, K-means and 

FCM image segmentation algorithms produced incomplete binary segmented images that are 

smaller in size compared to the one in the ground truth image. Furthermore, it can be seen 

that there is also a considerable amount of border irregularities in the segmented lesion border 

of the binary segmented image produced by the modified JSEG algorithm. This is a demerit 
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as border irregularities caused by inaccurate segmentation can mislead the automatic 

diagnosis process. Moreover, the binary segmentation results produced by the three non-

saliency image segmentation algorithms can be attributed to the illumination variation in the 

original skin lesion image which was corrected at the luminance image enhancement stage 

proposed in the methodology chapter of this study.  

The second image that is Im2 also reveals that the first three non-saliency image 

segmentation algorithms exhibit poor performance when the image has little contrast between 

the lesion and healthy skin. It is also noticeable that apart from the presence of image 

artefacts in the binary segmented images produced by the Otsu thresholding, K-means and 

Fuzzy C-means, some part of the healthy skin in the binary segmented results produced by 

these algorithms have similar colour intensity as the lesion. This is an indication that Im2 

contains heterogeneous regions with different visual properties. Most especially when the 

healthy skin colour intensity is similar to the lesion, as it can be seen that the healthy skin in 

the segmented binary images produced by the first three algorithms share a similar colour 

intensity as the lesion region as seen also in Im5. Still on Im2, there is an indication that the 

modified JSEG algorithm failed to produce a binary segmented image. This is because the 

algorithm was unsuccessful at segmenting Im2. It was observed by the researcher that the 

modified JSEG algorithm at the initial stage performed preprocessing of all the input 

melanoma skin lesion images in the absence or presence of image artefacts.  

As a result of the modified JSEG algorithm to suppress the presence of oil bubbles in 

Im2, the contrast between the lesion and healthy skin becomes weakened, which in turn 

causes the algorithm to be unsuccessful at segmenting the lesion where there is a weak 

contrast between the lesion and healthy skin, which can be seen in the case of Im4. The 

unsuccessful cases recorded by the modified JSEG algorithm as reported in this study is not 

first of its kind. The original authors of the algorithm reported similar unsuccessful cases 

produced by the algorithm during experimentation (Celebi et al., 2007). Norton et al., (2012) 

also reported unsuccessful case of the modified JSEG where it failed for fourteen images 

during experimentation in the most challenging situations. On the other hand, the proposed 

PCDS segmentation algorithm successfully segmented the lesion in Im2. Moreover, it can be 

seen that in the absence of image artefact filtering, the binary segmented image produced by 

the PCDS segmentation algorithm does not contain oil bubbles as in seen in the original 

image. It is evident that the binary segmented results produced by the PCDS segmentation 

algorithm much more than better than the segmented images produced by the other 
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algorithms. The results of Im2 and Im5 indeed show the improved separability of the lesion 

and healthy skin of the proposed PCDS segmentation algorithm over the four state of the art 

image segmentation algorithms. 

In Im3, it can be seen that the binary segmented image produced by the proposed 

PCDS segmentation algorithm is almost comparable to the result of the modified JSEG 

algorithm even in the absence of image artefact filtering. This is because the appearance of 

binary segmentation results of the proposed PCDS segmentation algorithm in Im3 and Im6 

produced well connected and precise lesion boundary than the Otsu thresholding, K-means 

and Fuzzy C-means image segmentation algorithms. Im7 is also an apparent evidence of 

when melanoma skin lesion possesses low contrast between the lesion and healthy skin, it can 

be observed that the performance of the Otsu thresholding, K-means and FCM image 

segmentation algorithms are similar to Im2 except for the absence of image artefact in Im7. 

One can easily note that the first three non-saliency image segmentation algorithms faced 

difficulty in segmenting the lesion object from the healthy skin. This is because there is low 

contrast between the lesion and healthy skin. In addition, it can be observed that the modified 

JSEG tried to segment the lesion region. However, the algorithm produced binary 

segmentation results with smaller lesion object compared to the ground truth image.  

The proposed PCDS segmentation algorithm, on the other hand, irrespective of the 

low contrast between the lesion and healthy skin produced a significantly improved 

segmentation result for this image. The PCDS algorithm segmented the lesion area of healthy 

skin in spite of the presence of the low contrast between the lesion region and the healthy 

skin. This is one of the numerous proofs that the proposed PCDS segmentation can improve 

the performance of colour image segmentation, especially in a situation whereby the contrast 

between the object and background is extremely low. Besides the presence of thick hair in 

Im9, it can be observed that virtually all the four non-saliency image segmentation algorithm 

produced binary segmented images close to the ground truth. This happens when there is a 

good contrast between the lesion and healthy skin, thus the lesion boundaries are well 

defined. However, it can be observed that the modified JSEG algorithm segmented hair trace 

to be part of the lesion which as earlier stated can result in automatic diagnosis error. 

Furthermore, Im10 has shown that the proposed PCDS segmentation algorithm 

produced a full representation of the lesion compared to other four non-saliency image 

segmentation algorithms. It can be observed that the tailed end of the segmentation results as 
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seen in the first four segmentation algorithms has been distorted. In conclusion, the results 

presented in Figure 4.2 that when melanoma skin lesion images selected from the ISBI 2016 

challenge dataset with image artefact filtering, the PCDS segmentation algorithm has 

consistently produced segmented binary images with an improved performance than the four 

image segmentation algorithms with no report of unsuccessful cases. 

S/N Otsu K-means Fuzzy C-
means 

Modified 
JSEG 

 PCDS   GT 
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Fig 4.2: Qualitative illustration of binary segmentation results obtained using four state-
of-the-art non-saliency image segmentation algorithms and the PCDS segmentation 
algorithm on melanoma skin lesion images from the ISBI challenge dataset. 
 

4.2.3 Comparison of Saliency Results with Images from PH2 Dataset 
In this section, the qualitative comparison of saliency results with images from PH2 dataset to 

validate the performance of the proposed PCDS segmentation algorithm in direct comparison 

with the four saliency segmentation algorithms is presented. Some examples of the generated 

saliency maps produced by the CPDS segmentation algorithm and the four benchmark 

saliency segmentation algorithms are presented in Figure 4.3. From observation, it can be 

seen that the proposed PCDS segmentation algorithm achieves good performance against the 

other four benchmark saliency segmentation algorithms. This is because the PCDS 

segmentation algorithm has an advantage of uniformly highlighting the whole salient object 

with high resolution compared to the other benchmark non-saliency segmentation algorithm 

that a good saliency segmentation algorithm must possess as seen across the entire melanoma 

skin lesion images presented in Figure 4.3. 

The SWD segmentation algorithm as is seen in the figure has the least performance on 

the PH2 dataset. It can be observed that the output saliency maps generated by the SWD 

segmentation algorithm are blurry and do not convey too much useful information with 

respect to segmenting the lesion object in the image. Although the PCA segmentation 

algorithm can correctly locate the lesion in the images, but usually the algorithm highlights 

some parts of the salient lesion boundaries as seen in Im6 and Im7 which can lead to error 

during diagnosis. Moreover, it can be observed that the PCA segmentation algorithm failed at 

precisely locating the salient lesion object. For instance, the Im1 produced by the PCA 

segmentation algorithm segmented the salient lesion region in such a way that it touches the 

image border. 

The MC segmentation algorithm highlights the object boundaries and detects the 

salient lesion region. However, it can be seen that the output saliency map boundaries are 

imprecise and fuzzy across the test images. Besides, imprecise and fuzzy object boundaries 

produced by the MC segmentation algorithm can easily result in the segmentation of 

background region as a lesion region for fuzzy based similarity image segmentation 

algorithms. Furthermore, it can be observed that the SSLS segmentation algorithm can 

highlight the salient lesion boundaries, but still cannot assign uniform salient pixel values in 
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the inner part of the salient object as in Im3, Im4 and Im6. Moreover, it is also observed that 

the saliency map produced by the SSLS segmentation algorithm in Im7 is smaller than the 

actual lesion region as seen in the ground truth image. By contrast, it can be seen that the 

PCDS segmentation algorithm developed in this study uniformly highlighted the complete 

salient object, predicted the precise location of the salient lesion region, produced well 

defined salient lesion borders with high resolution across the images displayed in the figure. 

This is an indication that the PCDS segmentation algorithm shows a good performance and 

desirable saliency segmentation. 

S/N Original 
Image 

SWD PCA MC SSLS  PCDS  
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Fig 4.3: Qualitative illustration of saliency segmentation results obtained using four 
benchmark salient segmentation algorithms and PCDS segmentation algorithm on PH2 
dataset 
 

4.2.4 Comparison of Non-Saliency Segmentation Results with Images from 
PH2 dataset without Image Artefact Filtering 
In this section, the researcher reports some samples of binary segmentation results of the 

PCDS segmentation algorithm with the four state-of-the-art non-saliency image segmentation 

algorithms with melanoma skin lesion images selected from PH2 dataset. The binary 

segmentation results presented in Figure 4.4 below shows that for some of the melanoma skin 

lesion images, there are no apparent differences in the binary segmentation results produced 

by the PCDS segmentation algorithm and the four non-saliency image segmentation 

algorithms. This is because melanoma skin lesion images from the PH2 dataset are not 

varying image conditions and challenging compared to the melanoma skin images provided 

in the ISBI 2016 challenge dataset.  

 It is important to note that the white borders seen in the image borders on the 

segmented images in Figure 4.4 are as a result of the vignette effect. As seen in the original 

images, the darkened image corners are as a result of the round circular lens designed for a 

smaller sensor used during image capturing. The image vignette has been seen in most cases 

has approximately similar intensity as the lesion and can be easily removed by morphological 

analysis as seen in the modified JSEG algorithm. Furthermore, it is evident that from the 

original melanoma skin lesion images presented in Figure 4.3, quite a large number of the 

melanoma skin lesion images possess good contrast between the lesion and healthy skin 

except for Im5 and Im8. For Im5 and Im8, it can be observed that the PCDS segmentation 

results show an improvement in performance compared to the binary segmentation results 

produced by the Otsu, K-means and Fuzzy C-means segmentation algorithms when there is 

low contrast between the lesion and healthy skin.  

Moreover, border irregularities can be observed in Im3, Im6, Im7 and Im10 of binary 

segmentation results produced by the modified JSEG algorithm when compared to the ground 

truth image. The Im8, 9 and 10 images are clear cases of when there is little contrast between 

the lesion and healthy skin, thus lesion pixels can easily be mistaken for healthy skin. This 

can be seen in the binary segmentation results produced by the Otsu thresholding, K-means, 
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Fuzzy C-means algorithms. These algorithms have failed at segmenting the lesion for Im8, 

Im9 and Im10. 
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Fig 4.4: Qualitative illustration of binary segmentation results obtained using four state-of-
the-art non-saliency image segmentation algorithms and the PCDS segmentation algorithm 
on PH2 dataset. 
 

In summary, these sections have presented both qualitative results of the saliency and 

non-saliency segmentation algorithms for melanoma skin lesion images selected from the 

ISBI 2016 challenge and PH2 datasets. The experimental results presented in the first four 

figures in this chapter have shown that the proposed PCDS segmentation algorithm produced 

good segmentation results. The figures have also shown that the results produced by the 

PCDS segmentation algorithm compared to the eight saliency and non-saliency image 

segmentation is more robust even in challenging imaging conditions, especially where there 

is low contrast between the lesion and healthy skin for melanoma skin lesion images selected 

from the medical image datasets explored in this study. 

 

4.2.5 Qualitative Analysis of Saliency Results on MSRA Dataset 
This section presents the qualitative analysis of saliency results with natural images selected 

from the MSRA dataset. The results presented in Figure 4.5 illustrate some examples of the 

saliency maps generated by the PCDS segmentation algorithm with the other four benchmark 

saliency segmentation algorithms. The first column shows the original image. Meanwhile, the 

second, third, fourth, fifth and sixth columns are the resultant saliency maps obtained when 

the SWD, MC, PCA, SSLS segmentation algorithms and the proposed PCDS segmentation 

algorithm were processed. To show the qualitative comparison results clearly, the selected 

images for qualitative analysis include difficult scenes, such as low background and 

foreground contrast, salient object not situated in the centre, multiple salient objects in an 

image and salient object that touches the image boundary. 

The results in figure 4.5 below shows that the saliency maps produced by the 

proposed PCDS segmentation algorithm are distinct from the other four benchmark saliency 

segmentation algorithms. One can see vividly that the PCDS saliency maps convey much 

more useful information, especially in difficult scenes, such as low background and 

foreground contrast, salient objects that are close or touches the image borders. Similar to 

previous saliency results presented in the previous Figures, it can be observed that the 

saliency maps generated by the SWD segmentation algorithm show the least performance 

because it produced saliency maps with low resolution across the selected experimental 
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images from the MSRA dataset. From the results in Figure 4.5 below, at least three key 

observations can be derived from the saliency maps displayed.  

To begin with, it can be observed that for natural images with simple object and 

smooth background, for example Im1, Im5 and Im6, the PCA, MC, SSLS and the proposed 

PCDS segmentation algorithms produced pretty good saliency maps with high resolution. 

However, for complicated images with low foreground and background contrast and 

structurally complex background, the benchmark saliency segmentation algorithms exhibited 

weak performances, such as im7 where the gymnast held a stick, it can be observed that both 

sticks were completely erased by the SSLS segmentation algorithm and almost invisible for 

the MC segmentation algorithm and slightly visible for the PCA segmentation algorithm. In 

actual fact, it is clear that the four benchmark saliency segmentation algorithms only 

highlighted the salient object with high contrast, but fail to pop out the whole salient objects 

uniformly. Oppositely, the proposed PCDS segmentation algorithm uniformly highlighted the 

salient objects more effectively than the other benchmark saliency segmentation algorithms. 

Secondly, the proposed PCDS segmentation algorithm is capable of segmenting 

multiple salient objects such as the two coins in Im8. Here, it can be observed that asides 

from the MC segmentation algorithm, the SSLS and PCA saliency segmentation algorithms 

failed at segmenting both salient objects simultaneously. It can be seen that for the PCA 

segmentation algorithm, the smallest coin that touches the upper border is rarely visible. On a 

related note, for the SSLS segmentation algorithm, some parts of the bigger coin that touches 

the image border is invisible. Likewise, the sign post and aircraft image in Im9, a close 

observation shows that the MC segmentation algorithm clearly erased the aircraft in the scene 

leaving just the signpost. Moreover, the SSLS and PCA algorithms faintly reveal the aircraft 

with a closer look at the image even though it appears almost invisible looking at the saliency 

map generated by the SSLS segmentation algorithm. Contradictory to this, the proposed 

PCDS segmentation algorithm reveals the two salient objects in the image.  
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Fig 4.5: Qualitative illustration of saliency segmentation results obtained using four 
saliency segmentation algorithms and PCDS segmentation algorithm on MSRA dataset. 

 

Another interesting phenomenon in Figure 4.5 is when the salient object does not fall 

in the centre of the image. For example, Im3 and Im10 are really good examples. It can be 

observed that in this case, the proposed PCDS segmentation algorithm segmented the whole 

salient objects clearly. To be specific, one can see that the uppermost part of Im3 close to the 

image border is assigned similar intensity as the background colour as seen in the PCA, MC 

and the SSLS segmentation algorithms. In Im10, an observer can see that the MC and SSLS 

segmentation algorithms suppressed the information in the lower part of the image. Different 

from this, the proposed PCDS segmentation algorithm uniformly highlighted the salient 

object, even as the bottom part touches the image border. 

Thirdly, the images in Im4 and Im12 are clear indications that it is risky to simply 

assume that image pixels along the image boundaries contain only background information. 

Im4 and Im12 have clearly revealed that the assumption can be easily broken and is bound to 

fail when some parts of the salient object touch the image boundaries. It can be observed that 

the MC and SSLS segmentation algorithms failed at segmenting the part of a long-range 

homogeneous salient object in Im4. In Im11, one can see that the PCA, MC and SSLS 

algorithms completely failed at segmenting the body of the cock that touches the image 

boundary. It can be seen that the benchmark saliency segmentation algorithms were only able 

to highlight the later part of the bridge in Im4 and just the head of the cock in Im11. It can be 
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seen that the situation is completely different from the proposed PCDS segmentation 

algorithm. It is clear that the proposed segmentation algorithm highlighted the whole salient 

objects in the Im4 and Im11 even as they touch the image boundaries without any loss of 

vital information where the other four benchmark saliency segmentation algorithms failed.  

Lastly, close attention should be paid to Im12, the researcher mentioned earlier in the 

literature chapter that most computational saliency segmentation algorithms are built on the 

assumption that the salient object in an image requires high colour contrast between the 

background and foreground. It is interesting to show that high colour contrast in some cases 

is insufficient to help a salient object stand out when the colour contrast between foreground 

and background is low. The scenario is illustrated using the calf statue in Im12 where both 

foreground and background share approximately homogeneous colour properties. It is 

observed that although the benchmark saliency segmentation algorithms highlighted the 

salient object in the image.  It can be seen that the saliency maps produced by the MC, PCA 

and SSLS segmentation algorithms are not uniformly highlighted as one can see that some 

parts of the image are almost similar to the background colour especially for the SSLS 

segmentation algorithm. Moreover, the resolution between the foreground and background 

saliency maps generated by the PCA, MC and SSLS algorithms are not high as the saliency 

map produced by the proposed PCDS segmentation algorithm.  

In a nutshell, the qualitative comparison with the other benchmark saliency 

segmentation algorithms with images from the MSRA dataset shows evidence that the PCDS 

segmentation algorithm achieves an improved performance on these images in terms of the 

precise location of salient objects, complete segmentation of salient object and robust in 

different image scenarios. The PCDS segmentation algorithm has also shown superiority in 

some of the issues raised during the experimental results analysis, some of which are a case 

of part of the object touching the border. The qualitative results have shown that that 

proposed PCDS algorithm acted differently compared to the other benchmark saliency 

segmentation algorithms by not suppressing the object colour intensity in such cases. This 

behaviour can be attributed to the fact that the PCDS segmentation algorithm does not 

automatically assume that object parts that touch the image boundaries always contain 

background information. Moreover, in cases where the colour contrast of the object and 

background are approximately similar, the CIEDE2000 colour difference formula 

implemented in this study to measure the contrast difference showed superiority in 

performance when the other benchmark saliency segmentation algorithms failed. 
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4.2.6 Qualitative Analysis of Non-Saliency Results on MSRA Dataset 
without Image Artefact Filtering 
This section presents the qualitative analysis of non-saliency results with images selected 

from the MSRA data set in the absence of image artefact filtering. The results presented in 

Figure 4.6 illustrates samples of segmented binary images for the proposed PCDS 

thresholding technique against four state-of-the-art non-saliency image segmentation 

algorithms used in this study based on their capability to detect the important regions in the 

image. The first and last columns in Figure 4.6 represent the original image and their 

corresponding ground truth images. The second to sixth columns are the resultant segmented 

binary images obtained when the Otsu thresholding, K-means, Fuzzy C-means and modified 

JSEG segmentation algorithms and the PCDS default thresholding technique were processed 

on the natural images selected from the MSRA dataset respectively.  

For this qualitative analysis presented in this section, twelve out of the selected 

images are chosen to illustrate the performance of the PCDS default thresholding technique 

on MSRA dataset. Generally, the PCDS segmentation algorithm produced improved 

segmented binary images compared with the four state-of-the-art image segmentation 

algorithms. For example, Im1, it can be seen that the PCDS segmentation algorithm 

outperforms the Otsu thresholding, K-means and FCM and Modified JSEG algorithms by 

producing well clustered segmented binary image. However, one can easily observe that a 

considerable number of background pixels are assigned to the object pixel for the Otsu 

thresholding, K-means and FCM algorithms. Moreover, it can be seen that modified JSEG 

failed was not successful for this image. For the bird in Im2, it is acceptable for an observer 

to say the proposed PCDS segmentation algorithm performed better in segmenting the bird as 

compared to the other four state of the art non-saliency algorithms. A segmentation error can 

be observed around the neck/head part of the bird are segmented as background pixels for the 

Otsu thresholding, K-means and FCM algorithms. The modified JSEG failed producing the 

head and tail part of the bird image. The PCDS segmentation algorithm shows a better 

segmentation results and preserves important parts of the image. 

From the result of the crab image in Im3, it can be observed that the upper part of the 

crab close to the image border shares similar colour intensity with the background pixels for 

segmented binary images produced by the Otsu, K-means and FCM algorithms. The result is 
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similar to those produced by the other four benchmark saliency segmentation algorithms in 

Figure 4.5. The modified JSEG algorithm produced a better segmented image compared to its 

counterparts. However, the algorithm failed at completely segmenting the crab image as the 

legs of the crab were detached by the algorithm. On the other hand, the PCDS segmentation 

algorithm shows better segmentation result than the Otsu, K-means and FCM and modified 

JSEG algorithms. It is clear that the crab image was properly segmented in reference to the 

ground truth image. The swimmer’s legs in Im4 shows that the PCDS segmentation algorithm 

produced a well clustered and more uniform homogeneous legs than the Otsu thresholding, 

K-means and FCM algorithms. Although these algorithms segmented the image, however, it 

can be observed that background pixels are present in the object image. In fact, the modified 

JSEG algorithm completely failed in segmenting the swimmer’s legs. The same scenario is 

repeated for the apple image in Im6, it can be seen that the segmented objects produced by 

the four state-of-the-art image segmentation algorithms combine both background pixels in 

the object. The case is completely different from PCDS default thresholding technique as it 

produces more homogeneous apple image. 

In Im7, an observer can notice that the final binary segmented images produced by the 

first three non-saliency segmentation algorithms do not convey any useful information about 

the image. Again, the modified JSEG was unsuccessful as the algorithm produced no 

segmentation result. The PCDS segmentation algorithm, on the other hand produced a 

segmented image that conveys vital information concerning the image. Although one can see 

that heads of the salient objects are missing in the binary image produced by the PCDS 

segmentation algorithm, which leaves room for further improvement. Furthermore, the binary 

segmentation result produced by the PCDS segmentation algorithm, one can deduce that 

there are three salient objects in the image and the algorithm also succeeded in suppressing 

majority of the background information compared to the results of the Otsu thresholding, K-

means and Fuzzy C-means algorithms.  

The Im8 also shows major segmentation errors experienced by the Otsu thresholding, 

K-means and Fuzzy c-means algorithms, as it can be observed that the algorithms failed at 

separating the background from the foreground accurately which is similar to their 

performances shown in Im9. Although the modified JSEG algorithm showed an improvement 

in its segmented binary image in Im8. However, the algorithm failed for Im9. Remarkably, 

the segmentation error in the resultant binary image produced by the PCDS segmentation 

algorithm are minimal. This similar behaviour can be observed across the Im10 to Im12, 
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practically all the four non-saliency image segmentation algorithms did not perform well for 

this set of images. Seamlessly, the resultant segmented images for Im10 to Im12 produced by 

the PCDS segmentation algorithm contains more homogeneous object and background 

regions than those produced by the four non-saliency image segmentation algorithms. It is 

worth mentioning that the segmented images produced by the PCDS segmentation algorithm 

in Im10 and Im12 are quite impressive even in the absence of image artefact filtering when 

compared to their corresponding ground truth images. Conclusively, the qualitative analysis 

of the binary segmentation results with images from the MSRA dataset without image 

artefact filtering has proven that the PCDS segmentation algorithm proposed in this study 

shows a great deal of improvement in colour image segmentation. 
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Fig 4.6: Qualitative illustration of binary segmentation results obtained using four state-
of-the-art image segmentation algorithms and our default thresholding technique on 
MSRA dataset. 

 
 
4.2.7 Qualitative Analysis of Saliency Results on ECSSD  
This section presents the qualitative analysis of saliency results of the proposed PCDS 

segmentation algorithm on natural images selected from the ECSSD. As seen in the previous 

figures, some samples of saliency maps generated by the proposed PCDS segmentation 

algorithm as well as the four benchmark saliency segmentation algorithms are displayed in 

Figure 4.7 for visual comparison. From the figure below, it can be seen that saliency maps 

generated by the PCDS segmentation algorithm are higher resolution and maintains its good 

performance, despite the scrambled backgrounds and heterogeneous foregrounds the test 

images possess. It can be seen that in reference to the qualitative analysis of saliency results 

presented in the previous figures, the SWD segmentation algorithm still maintains its poor 

performance with saliency maps with low resolution, blurry and poorly defined borders, 

carrying less or no information. 

The Im1 and Im2 images in Figure 4.7 are examples of when there is high contrast 

between the salient object and background. It is noticeable that the PCA, MC and SSLS 

saliency segmentation algorithms, including the PCDS segmentation algorithm produced 

credible saliency maps for the images in Im1 and Im2. Im3 shows that the PCDS 

segmentation algorithm highlighted the salient object more accurately and does not lose the 
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real image information, see the legs of the animals in Im2 compared to the PCA and SSLS 

algorithm. A similar occurrence can be observed for salient objects in Im3, the PCA and 

SSLS algorithms, generate saliency maps with very low resolution, closely related to the 

background colour and the output are not prominently salient. The MC and PCDS 

segmentation algorithm produced satisfactory results. However, the MC segmentation 

algorithm suffered information loss at the lower part of the image (see legs of animals in Im3 

and Im4) while the PCDS segmentation algorithm preserves the information. This ongoing 

qualitative analysis takes the researcher to Im5. Virtually all the four benchmark saliency 

segmentation algorithms realized that there is an object in the image. However, these 

algorithms failed at uniformly highlighting of some parts of the salient object. It can be 

observed that the saliency map produced by the SSLS algorithm is low and some parts of the 

background is being highlighted. By sharp contrast, the PCDS segmentation algorithm 

successfully suppresses the image shadow and shows precise salient object segmentation with 

high resolution saliency maps. 
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Fig 4.7: Qualitative illustration of saliency segmentation results obtained using four 
benchmark salient object segmentation algorithm and the proposed PCDS segmentation 
algorithm on ECSSD. 

 
In continuation to the qualitative analysis of Fig 4.7, some examples of different 

scenarios are discussed, when the contrast between the foreground and background is low, as 

shown in Im6 and Im7, it can be seen that the four benchmark saliency segmentation 

algorithms struggled to highlight the butterfly in this scenario. In Im7, one can see that the 

MC segmentation algorithm produced imprecise and fuzzy image border. Moreover, it can be 

observed that the saliency maps produced by the PCA and SSLS algorithms have low 

resolution. Another observation is that the some parts of log of wood the animal rested on 

have been suppressed by PCA, MC and SSLS algorithms when the edges of the wood touch 

the image borders. Interestingly, the proposed PCDS segmentation algorithm effortlessly 

produced saliency maps highlighting both salient objects in Im6, high resolution saliency 

maps in Im6 and Im7, clearly defined image borders for Im6 and Im9. The image in Im8 has 

similar object and background colour. It is evident that the PCA and SSLS algorithms failed 

at highlighting the salient object. But, the proposed PCDS segmentation algorithm 
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highlighted the complete salient objects in Im8, Im9. The outputs generated by the PCDS 

segmentation algorithm can be attributed to the overall implementation steps taken within the 

proposed framework of this study.   

  The image in Im9 shows that all the four benchmark saliency segmentation algorithms 

highlighted certain part of the salient object, it can be seen that the PCA, MC and SSLS 

segmentation algorithm suppressed the lady’s legs in the image, highlight just the body area. 

This qualitative result is different in the case of the proposed PCDS segmentation algorithm 

as it uniformly highlights the whole salient object in the image. Besides, the performance of 

the PCDS segmentation algorithm is also consistent when the salient objects pop into the 

image boundaries as seen in Im10, Im11 and Im12. It is s clear that the other four benchmark 

saliency segmentation algorithms failed at segmenting the image parts that touch the image 

boundaries. The attractiveness of the proposed PCDS segmentation algorithm is that the 

extracted salient objects do not lose any information whatsoever and the salient objects are 

evenly highlighted. The qualitative results presented in this section have also shown and 

validate the proposed PCDS segmentation algorithm’s strong potential in handling images 

with complex scenes than the other four benchmark saliency segmentation algorithms. 

 

4.2.8 Qualitative Analysis of Non-Saliency Results With Images on ECSSD 
without Image Artefact Filtering 
This section presents the qualitative analysis of non-saliency results with images selected 

from the ECSSD without image artefact filtering. The results presented in Figure 4.8 

illustrates the resultant segmented binary images produced by the PCDS segmentation 

algorithm and the four state-of-the-art saliency image segmentation algorithms based on their 

proficiency to separate the important regions in the image from the background region. The 

first and last columns in Figure 4.8 represent the original image and their corresponding 

ground truth images. The second to the sixth columns are the resultant segmented binary 

images of the Otsu thresholding, K-means, Fuzzy C-means and modified JSEG segmentation 

algorithm and the PCDS default thresholding technique respectively. 

To carry out the qualitative analysis, twelve out of the selected images from the 

ECSSD data set were used to illustrate the performance of the PCDS default thresholding 

technique. It can be seen from Figure 4.8 that PCDS default thresholding technique produces 

better segmentation results compared with the four non-saliency image segmentation 
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algorithms. The segmented binary images presented in the figure below show that the Otsu, 

K-means and FCM algorithms contain several in-homogeneous object regions.  Moreover, 

due to the complexity of the natural images from ESCCD, the modified JSEG algorithm 

failed for quite a large number of images used during experimentation.  

From observation, it can be seen that the four state-of-the-art non-saliency image 

segmentation algorithms produced poor segmentation results compared to the proposed 

PCDS segmentation algorithm. The resultant segmented binary image produced by the 

modified JSEG algorithm in Im1 does not convey any usable information about the image. 

Moreover, the modified JSEG algorithm failed at producing the segmentation results for Im2 

and Im3. On the contrary, the proposed PCDS segmentation algorithm produced an 

improved, neater, segmented binary images even in the absence of image artefact filtering. 

The flower image as shown in Im4, it can be seen that the proposed PCDS segmentation 

algorithm shows a better segmentation result as compared with the four non-saliency image 

segmentation algorithms. It is noticeable that the segmented binary image produced by the 

proposed PCDS segmentation algorithm contains more information about the image than the 

Otsu thresholding, K-means Fuzzy C-means and modified JSEG algorithms.  

A more significant qualitative comparison between the Otsu, K-means and FCM 

algorithm and the proposed PCDS segmentation algorithm can be observed in Im5. It can be 

seen that the object pixels in the image foreground are segmented with the background. 

Therefore, making the segmentation error to be quite visible in this instance. The segmented 

binary images produced by the PCDS segmentation are quite similar for Im5. However, one 

can see that the ground truth image does not contain information about the lower part of the 

image as seen in the original. This is one of many cases whereby the ground truth image does 

not necessarily correspond with the original image. With reference to Im6, it can be seen that 

similar to Im5, background pixels are visible in the salient object produced by the Otsu 

thresholding, K-means and Fuzzy C means algorithms. Moreover, the modified JSEG 

algorithm as seen in Im6 suffered information loss. In a different way, the PCDS 

segmentation algorithm produced a full segmented binary image with less noisy pixels.  

The structure of the bird in Im7 was maintained in the segmentation results produced 

by the Otsu thresholding, K-means and FCM algorithms. However, it can be observed that 

these algorithms contain white noisy pixels at the background region. The modified JSEG 

segmented some parts of the image out such as the head and legs of the bird. The proposed 
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PCDS segmentation algorithm, on the other hand maintained the structural information of the 

image with no noisy pixel. The image in Im8 shows that the modified JSEG algorithm 

produced better segmentation results followed by the proposed PCDS segmentation 

algorithm. The segmented binary images produced by the Otsu, K-means and FCM 

algorithms contain more background pixels in the object region and object pixels in the 

background region. 

Out of the four images that is from Im9 to Im12, the modified JSEG algorithm failed 

for three of the four images. The otsu thresholding, K-means and Fuzzy C-means algorithms 

produced similar binary segmentation results as seen in the figure below. Based on the 

resultant images from the Im9 to Im12, the Otsu thresholding, K-means and Fuzzy C-means 

algorithms did not perform well as to what is expected as seen in the corresponding ground 

truth columns. Contrarily, the proposed PCDS segmentation algorithm produced improved 

binary segmentation results, separating the salient object from the background. The overall 

suggestion based on the qualitative analysis presented in this section, the proposed PCDS 

segmentation algorithm evidently produced a better segmentation performance compared to 

the four state-of-the-art non-saliency image segmentation algorithms regardless of the image 

complexity. 
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Fig 4.8: Qualitative illustration of binary segmentation results obtained using four state-
of-the-art non-saliency image segmentation algorithms and PCDS segmentation 
algorithm on ECSSD. 

 

4.3 Quantitative Analysis of Binary Segmentation Results 
The purpose of the comparison is to quantitatively test for the effectiveness of the PCDS 

segmentation algorithm using the existing state of the art saliency and non-saliency 

segmentation methods. To perform the quantitative comparison, the supervised quantitative 

evaluation method was carried out in this study due to the availability of manual segmented 

ground truth images made available by the four corpora explored in this study using four 

widely used state of the art evaluation metrics. Since thresholding based algorithms are 

conventionally applied to generate a binary saliency map from the greyscale saliency, for the 

fairness of comparison of the experimental results, all saliency maps produced by the four 

benchmark saliency segmentation methods and our PCDS segmentation algorithm were 

segmented by the traditional Otsu thresholding method (Otsu 1979) to convert the greyscale 

saliency map to a binary image.  
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Moreover, we compare the performance of our simple default thresholding decision 

technique with the traditional Otsu algorithm to test its effectiveness. Consequently, we have 

realized ten variants of segmentation algorithms for quantitative comparison purpose. It is 

also important to note that to make a fair comparison, the image artefacts filtering procedure 

implemented in this study was applied on the segmented images produced by the four state-

of-the-art non-saliency image segmentation algorithms except for the modified JSEG 

algorithm that is inherently embedded with a preprocessing and post-processing techniques 

so there was no need to consider further lesion enhancement.  
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4.3.1 Evaluation Metrics 
There are several ways to quantitatively measure the agreement between the final binary 

segmentation result and ground truth image. The main objective of a segmentation algorithm 

is to capture as accurately as possible the object of interest in an image, the effectiveness of 

the proposed methodology needs to be proven for quality using suitable evaluation metrics. In 

this study, to assess the quality of the results of the proposed PCDS segmentation algorithm 

with the other state-of-the-art saliency and non-saliency image segmentation algorithms. A 

total number of four universally agreed, standard, and easy-to-understand statistical 

evaluation metrics in terms of precision, F-measure, error and dice to numerically score the 

segmentation results. They are computed based on the following parameters described below: 

1. True Positive (TP): the number of true positive pixels, foreground pixels that are 

correctly identified as foreground; 

2. False Positive (FP): the number of false positive pixels, background pixels that are 

incorrectly identified as foreground; 

3. True Negative (TN): the number of true negative pixels, background pixels that are 

correctly identified as background region. 

 

4.3.1.1 Precision  
The precision score, also known as the positive predictive value computes the fraction of the 

number of ground truth pixels segmented as the salient (foreground) region to the total 

number of pixels segmented as the salient (foreground) region. It penalizes for classifying 

background pixels as foreground (Qi et al., 2017; Pont-Tuset et al., 2017). It is also referred 

to as the measure of quality. It is mathematically defined as: 

FPTP
TPecision
+

=Pr       ( 4.1) 

4.3.1.2 F-measure 
The F-measure score is the weighted average between precision and recall and can be 

regarded as an overall performance measurement to produce a more comprehensive metric 

(Khelifi and Mignotte 2017; Tokmakov et al., 2017). It is calculated using the equation 

below; 
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 Where 2β represents a non-negative harmonic weight between the precision and the 

recall. 2β =0.3 is recommended to emphasize precision rate, which is agreed to be more 

important than recall to build significance in the accuracy esteem for better quantitative 

interpretation (Qi et al., 2017). 

 

4.3.1.3 Error Rate 
The error rate measures the ratio of pixels incorrectly identified as part of the foreground or 

background over all the pixels. In this case, a lower value of error indicates better 

segmentation (Sumithra et al., 2015; Fan et al., 2017).    

                                 
FNTNFPTP

FNFPError
+++

+
=                                                   (4.3) 

4.3.1.4 Dice 
The Dice coefficient similarity measure computes the agreement between binary segmented 

image and the ground truth image. In this case, a value of 0 means the segmented result does 

not match the ground truth while a value close to 1 indicates good segmentation (Fan et al., 

2017; Patel et al., 2017). 

   
FNFPTP

TPDice
++

=
2

2                                                                 (4.4) 

It is important to note that amongst the four evaluation metrics discussed above, high 

precision, F-measure, dice and low error values connote a good segmentation output. 

4.3.2 Quantitative Analysis of Precision Scores 
This section presents quantitative experimental results of the proposed PCDS segmentation 

algorithm with the other eight state-of-the-art saliency and non-saliency image segmentation 

algorithms. Table 4.1 lists the average (AVE) and standard deviation (STD) precision scores 

calculated for the overall resultant test images selected from the four data sets explored in this 

study. Comparing the statistical values in Table 4.1, the proposed PCDS segmentation 

algorithm consistently outperforms the other eight state-of-the-art saliency and non-saliency 

image segmentation algorithms. It can be observed that the precision scores of the proposed 

PCDS segmentation algorithm are consistently higher than the other algorithms across the 

four data sets.  
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Specifically, it can be observed that the performances of the overall average precision 

scores of the K-means algorithm continue to deteriorate as the dataset becomes challenging. 

As a matter of fact, the overall performance of the algorithm drops from ISBI 2016 challenge 

dataset with an overall average precision value of 0.8420 to 0.7904 on PH2 dataset, 0.7250 

on the MSRA dataset and 0.6843 on ESCCD. Likewise, Fuzzy C-means algorithm 

experienced a fall in its overall performance from overall average precision scores of 0.8464, 

0.7480, 0.7691, 0.6976 for ISBI 2016 challenge, PH2 and MSRA and ECSS data sets 

respectively. Oppositely, it can be observed that the overall performance of the modified 

JSEG algorithm improved across the first two data sets with overall average precision values 

of 0.8681 and 0.8984 for melanoma skin lesion images from the ISBI 2016 challenge and 

PH2 data sets respectively.  

In fact, it is worth mentioning that the algorithm scored higher values in the overall 

average precision on melanoma skin lesion images from the ISBI 2016 challenge dataset than 

the other four state-of-the art saliency segmentation algorithms, despite the fact that the 

algorithm failed for four out of the seventy melanoma skin lesion images selected from the 

ISBI challenge dataset.  However, the algorithm recorded the overall least average precision 

values on natural images selected from the MSRA and ECSSD data sets. The performance is 

a clear indication that the algorithm lacks robustness when extended to natural images as the 

researcher recorded fourteen and nineteen failed cases on MSRA and ECSS data sets 

respectively. Therefore, one can note that the drop in the performances of the four state of the 

art non-saliency segmentation algorithms in the overall precision scores across the data sets 

are a pointer to the fact that it becomes harder to segment multiple salient objects in complex 

scenes. 

The statistical values of the overall average precision scores of the four benchmark 

saliency segmentation algorithms explored in this study show that the performance of these 

algorithms improves for melanoma skin lesion images from ISBI 2016 challenge and PH2 

data sets and then decreases for natural images from MSRA dataset and ECSSD. It is easy for 

one to observe that each of the benchmark saliency segmentation algorithms ranks differently 

across the data sets. Specifically, it can be observed that the PCA segmentation algorithm 

ranks the highest amongst its benchmark counterparts with an average precision value of 

0.8593 and 0.9141 on melanoma skin lesion images selected from the ISBI 2016 challenge 

and PH2 data sets respectively. Meanwhile, SWD segmentation algorithm ranks the highest 

amongst its counterparts on selected natural images from the MSRA and ESCC data sets with 
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an average precision value of 0.7964 and 0.7924 respectively. Moreover, the SSLS 

segmentation algorithm consistently ranks the lowest amongst its counterparts across the four 

data sets with an average precision value of 0.6439, 0.8318, 0.6014 and 0.5643 for ISBI 2016 

challenge, PH2, MSRA and ECSS data sets respectively.  

Impressively, from the quantitative results, it can be seen that the proposed PCDS 

segmentation algorithm outperforms the eight state-of-the-art saliency and non-saliency 

image segmentation algorithms across the four image data sets explored in this study. 

Specifically, Otsu thresholding method for  the proposed PCDS map computation achieves an 

overall outstanding average and standard deviation of 0.9617 (0.0497) and 0.9308 (0.0763) 

on PH2 and MSRA data sets respectively. Similarly, the default thresholding technique for 

the PCDS saliency computation achieves an overall outstanding average and standard 

deviation of 0.8911(0.01157) and 0.9087(0.1039) on the ISBI 2016 challenge and ECSS data 

sets respectively despite the complexity of images selected from the data sets. 

In summary, the quantitative performance comparison of the overall average precision 

values in Table 4.1 demonstrates that the proposed PCDS segmentation algorithm can better 

segment salient objects, even in complex natural images than the eight state-of-the-art 

saliency and non-saliency image segmentation algorithms. 

Table 4.1: Precision scores of saliency and non-saliency image segmentation algorithms 
on ISBI 2016, PH2, MSRA and ECSS data sets. 

METHOD ISBI PH2 MSRA ECSSD 

AVE STD AVE STD AVE STD AVE STD 

Otsu 0.8134 0.2428 0.5557 0.3660 0.6437 0.2350 0.6524 0.2176 

K-means 0.8420 0.1985 0.7904 0.2000 0.7250 0.2252 0.6843 0.1981 

Fuzzy C-
means 

0.8464 0.1965 0.7480 0.3229 0.6976 0.1785 0.7691 0.1464 

Modified 
JSEG 

0.8681 0.2346 0.8984 0.2414 0.4128 0.3916 0.2681 0.3928 

SWD + Otsu 0.8437 0.1998 0.9118 0.2364 0.7964 0.1681 0.7924 0.1454 

PCA + Otsu 0.8593 0.1663 0.9141 0.1985 0.7816 0.1884 0.6957 0.2254 

MC + Otsu 0.8495 0.1869 0.8969 0.1453 0.7689 0.2361 0.7727 0.2283 
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SSLS + Otsu 0.6439 0.2139 0.8318 0.2074 0.6014 0.2620 0.5643 0.2808 

 PCDS  + Otsu 0.8823 0.1218 0.9617 0.0497 0.9308 0.0763 0.9005 0.1304 

 PCDS  + 
Default 

0.8911 0.1157 0.9499 0.0548 0.8667 0.1322 0.9087 0.1039 

 

4.3.3 Quantitative Analysis of F-measure Scores 
This section presents the overall average (AVE) and standard deviation (STD) of F-measure 

scores for all test images selected from the four data sets explored in this study. The least 

scores for the first two data sets according to the overall average and standard deviation 

values for the four state-of-the-art non-saliency image segmentation algorithms as presented 

in the Table 4.2 below can be linked to the Otsu thresholding algorithm. The algorithm 

recorded an overall average F-measure values of 0.8354 (0.2374) and 0.5837 (0.3709) for 

melanoma skin lesion images selected from the ISBI 2016 challenge and PH2 dataset. From 

these values, especially from the overall standard deviation values, it is clear that the 

algorithm did not perform well for some melanoma skin lesion images during 

experimentation. Relatedly, modified JSEG algorithm recorded the least performance with 

overall F-measure score of 0.4170 (0.3809) and 0.2634 (0.3772) for natural images selected 

from the MSRA dataset and ESCCD respectively, following the number of failed cases 

recorded for the modified JSEG algorithm.  

 One can also observe from the numerical figures in the Table 4.2 that the modified 

JSEG algorithm scored higher than the other state-of-the-art non-saliency image 

segmentation algorithm with an overall average F-measure score of 0.8793 on ISBI 2016 

challenge dataset, which means that for sixty-six out of the seventy melanoma skin lesion 

images selected from the ISBI 2016 challenge dataset, the overall average F-measure shows 

that the algorithm was able to segment the lesion appropriately more than the other three state 

of the art non-saliency image segmentation algorithms. However, it is noticeable that the 

overall standard deviation value is higher, the ones recorded for K-means and Fuzzy C-means 

algorithms even though the algorithm recorded slightly higher overall average higher values 

than K-means and Fuzzy C-means algorithms. The overall standard deviation value of 0.2312 

reflects the failed cases recorded for this algorithm. However, when there are no failed cases 

recorded for the algorithm on the PH2 data set, it can be observed the overall average value 

recorded for the algorithm matches the standard deviation values of 0.8888 and 0.2338. 
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 By observing the numerical values in Table 4.2, it is evident that for melanoma skin 

lesion images selected from the ISBI 2016 challenge, the SSLS segmentation algorithm 

scored the least overall F-measure value of 0.6907 across all the eight state-of-the-art saliency 

and non-saliency segmentation algorithms. On a similar note, SWD segmentation algorithm 

produced the least overall F-measure amongst the state-of-the-art saliency segmentation 

algorithms on melanoma skin lesion images selected from the PH2 data sets with an overall 

average F-measure score of 0.8280 with a relatively high standard deviation value of 0.2150. 

The least performance value recorded for each of these algorithms shows that across these 

two melanoma skin lesion data sets, these algorithms were only able to accurately segment 

some parts of the lesion. Preceding to the last two data sets, one can also observe that the 

consistency in the poor performance of the SSLS segmentation algorithm following the 

overall F-measure scores recorded for the algorithm for MSRA and PH2 data sets. For the 

sake of emphasis, the SSLS segmentation algorithm recorded an overall least average F-

measure score of 0.6433 and 0.6000 for MSRA dataset and ECSSD respectively, which is an 

indication that segmentation did not perform in segmenting the salient objects. 

In spite of the fact that the MC segmentation algorithm scored high average F-

measure for skin lesion images selected from the PH2 dataset and natural images from the 

ECSSD, once can easily observe that the performance of the MC segmentation algorithm is 

not consistent across the four data sets, which means the overall performance of the algorithm 

is dependent of the image dataset used.  Contradictorily, it is evident that the overall 

performance of the PCDS segmentation algorithm is consistent across the data sets. For the 

sake of emphasis, it is notable that the proposed PCDS segmentation algorithm scores an 

overall highest F-measure score of 0.9096 which is also supported by the least standard 

deviation value of 0.0966 on melanoma skin lesion images selected from the ISBI 2016 

challenge dataset. The overall average and standard deviation values shows that the 

performance of the PCDS segmentation algorithm was quite consistent even with 

complicated image conditions. This impressive performance of the PCDS segmentation can 

be observed in the melanoma skin lesion images selected from the PH2 dataset as Otsu 

thresholding on PCDS map computation shows a significant improvement with an overall 

average F-measure of 0.9580. In fact, it is worthy of note that the default thresholding 

technique for PCDS map computation scored the least standard deviation and the second 

highest value F-measure value of 0.0396 and 0.9504 respectively.  
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 Furthermore, it can be observed that the overall F-measure score of the Otsu 

thresholding on the proposed PCDS map computation shows a slightly higher performance 

on natural images selected from the MSRA dataset. It was noticed during experimentation 

that for natural images selected from the MSRA dataset, some of the images consist of certain 

details of which its corresponding ground truth image expects it to be white, the researcher 

took note of the fact the proposed PCDS thresholding technique produced segmented images 

with details unlike the Otsu thresholding method that generalizes. Finally, one can see that 

the PCDS segmentation algorithm outperforms all the eight state-of-the-art image 

segmentation algorithms for natural images selected from the ECSSD with the highest overall 

average and the least standard deviation F-measure values of 0.9043 and 0.1092 respectively. 

While Otsu thresholding on the proposed PCDS map computation scored the second best 

average and standard F-measure scores of 0.8888 and 0.1401 respectively. 

Table 4.2: F-measure scores of saliency and non-saliency image segmentation 
algorithms on ISBI 2016 challenge, PH2, MSRA and ECSS data sets 
 METHOD ISBI PH2 MSRA ECSSD 

AVE STD AVE STD AVE STD AVE STD 

Otsu 0.8353 0.2374 0.5837 0.3709 0.6491 0.2214 0.6154 0.2015 

K-means 0.8656 0.1897 0.8079 0.2964 0.7319 0.2241 0.6561 0.1909 

Fuzzy C-means 0.8678 0.1895 0.7677 0.3224 0.6746 0.2188 0.7065 0.1436 

Modified JSEG 0.8793 0.2312 0.8888 0.2338 0.4170 0.3809 0.2634 0.3772 

SWD + Otsu 0.8213 0.1915 0.8280 0.2150 0.7373 0.1435 0.7567 0.1401 

PCA + Otsu 0.8792 0.1634 0.8953 0.1909 0.8055 0.1676 0.7154 0.2062 

MC + Otsu 0.8763 0.1496 0.9288 0.1410 0.7938 0.2159 0.7930 0.2063 

SSLS + Otsu 0.6907 0.2029 0.8538 0.2015 0.6433 0.2579 0.6000 0.2684 

 PCDS  + Otsu 0.8963 0.1055 0.9580 0.0440 0.9176 0.0751 0.8888 0.1272 

 PCDS  + Default 0.9096 0.0966 0.9504 0.0396 0.8803 0.1144 0.9043 0.1092 

 

4.3.4 Quantitative Analysis of Error Scores 
This section describes the overall average (AVE) and standard deviation (STD) of error 

scores for all experimental images selected from the four data sets explored in this study. 
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From the numerical values presented in the Table 4.3 below, one can easily note that out of 

the four non-saliency image segmentation algorithms, the modified JSEG algorithm scored 

the highest average and standard deviation error values of 0.0810 and 0.2281 respectively for 

melanoma skin lesion images selected from the ISBI 2016 challenge dataset. These figures 

can be tied to the performance of the algorithm on ISBI 2016 challenge dataset as it was 

earlier mentioned by the researcher that the algorithm recorded a total number of four failed 

cases for melanoma skin lesion images selected from the ISBI 2016 challenge dataset. But for 

PH2 dataset with no failed cases recorded, one can observe that the difference in the error 

values compared to the ISBI 2016 challenge dataset is minimal.  

The Otsu thresholding method which recorded the least average F-measure score for 

melanoma skin lesion images selected from the ISBI 2016 challenge and PH2 data sets 

maintained its position as the algorithm scored the second highest average and standard 

deviation scores after modified JSEG with error values of 0.0544 and 0.1196 respectively. On 

the PH2 dataset, the algorithm ranked the least with an overall average and standard deviation 

error scores of 0.0579 and 0.0631 respectively. The fuzzy c-means algorithm performed 

better than its counterparts with an overall average error values of 0.0423 (0.0566) and 

0.0255 (0.0388) for melanoma skin lesion images from the ISBI 2016 challenge and PH2 

data sets. Across natural images selected from the MSRA and ECSS data sets, one can see 

that the high number of failed cases recorded for modified JSEG algorithm also reflected in 

its overall error performance. It can be observed that the algorithm recorded the overall 

highest error values for all the eight state-of-the-art image segmentation algorithms used in 

this study. Next to this is the Otsu thresholding algorithm, the overall average error scores 

recorded shows that the algorithm did not perform well for quite a large number of 

experimental images from the MSRA and ESCC data sets.  

Following the performance of the Otsu thresholding is the K-means algorithm with an 

overall average and standard deviation values of 0.0870 (0.1218) and 0.1797 (0.1633) 

respectively. Again, Fuzzy C-means algorithm performed better than its counterparts with 

lower average and standard deviation error values of 0.0846 (0.1015) and 0.0711 (0.1103). So 

it is safe for one to say that the performance of Fuzzy C-means algorithm was consistent 

across the four image data sets in terms of the error values. A step away from the four non-

saliency segmentation algorithms to the other four saliency segmentation algorithms shows 

that for melanoma skin lesion images selected from the ISBI 2016 challenge, SSLS 

segmentation algorithm recorded the highest overall average error value of 0.1132. The 
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overall average error value greatly supports the algorithm’s least overall F-measure score 

recorded in the previous table. This performance is followed by the SWD segmentation 

algorithm with an overall average error value of 0.1038. It is interesting to note that although 

SSLS segmentation scored a higher overall average error value than SWD segmentation 

algorithm. It should be observed that the overall standard deviation score of the SWD 

segmentation algorithm is higher compared to SSLS segmentation algorithm. This indicates 

that the SWD segmentation algorithm performed poorly for some of the melanoma skin 

lesion images selected from the ISBI 2016 challenge data sets.  

Moving from ISBI 2016 challenge dataset with  PH2 data set, one can observe that 

SWD segmentation algorithm recorded the highest average and standard deviation error 

values of 0.0815 (0.1160) while the MC segmentation algorithm shows an improvement 

compared to its counterparts on both ISBI and PH2 data sets. For natural images selected 

from the MSRA and ECSS data sets, SWD segmentation algorithm consistently recorded the 

highest error values followed by the SSLS segmentation algorithms. Again, the MC 

segmentation algorithm shows a better overall error value than its counterparts. From the 

following observations, one can depict that SWD segmentation algorithm consistently did not 

perform well across the four image data sets which is relative to the saliency results produced 

by the algorithm in the qualitative result analysis section. On the other hand, MC 

segmentation algorithm’s performance is quite consistent across the data sets. Remarkably, 

PCDS segmentation algorithm demonstrated its effectiveness with an outstanding least 

average across the four data sets.  

Emphatically, it can be observed that the binary segmentation of the saliency map 

using the simple default thresholding technique for the proposed PCDS recorded an 

outstanding overall minimum average and standard deviation error scores of 0.0231(0.0300) 

and 0.0321(0.0498) on ISBI 2016 challenge and ECSS data sets respectively. On a similar 

note, it can be observed that when Otsu thresholding was applied to the proposed PCDS 

saliency map computation, the researcher recorded the least average and standard deviation 

error values of 0.0112 (0.0112) and 0.0335 (0.0592) on PH2 and MSRA data sets 

respectively. The 0.001 difference in the standard deviation values of the Otsu thresholding 

method for PCDS map computation and the default thresholding technique is also 

commendable. This is an indication shows that the proposed PCDS default thresholding 

technique performed well for quite a large number of melanoma skin lesion images selected 

from the PH2 dataset.  
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Table 4.3: Error scores of saliency and non-saliency image segmentation algorithms on 
ISBI 2016 challenge, PH2, MSRA and ECSS data sets 

 

METHOD 

ISBI PH2 MSRA ECSSD 

AVE STD AVE STD AVE STD AVE STD 

Otsu 0.0544 0.1196 0.0579 0.0631 0.0980 0.0837 0.1872 0.1486 

K-means 0.0428 0.0576 0.0265 0.0543 0.0870 0.1218 0.1797 0.1633 

Fuzzy C-means 0.0423 0.0566 0.0255 0.0388 0.0846 0.1015 0.0711 0.1103 

Modified JSEG 0.0810 0.2281 0.0271 0.0428 0.4242 0.4378 0.6936 0.4346 

SWD + Otsu 0.1038 0.1181 0.0815 0.1160 0.1232 0.0735 0.1415 0.0658 

PCA + Otsu 0.0502 0.0707 0.0322 0.0349 0.0564 0.0623 0.1111 0.0901 

MC + Otsu 0.0429 0.0727 0.0139 0.0169 0.0547 0.0746 0.0757 0.0824 

SSLS + Otsu 0.1132 0.1079 0.0263 0.0378 0.0838 0.0762 0.1284 0.0965 

 PCDS  + Otsu 0.0378 0.0507 0.0112 0.0112 0.0335 0.0592 0.0563 0.0658 

 PCDS  + 
Default 

0.0231 0.0300 0.0153 0.0113 0.0358 0.0321 0.0498 0.0645 

 

4.3.5 Quantitative Analysis of Dice Scores 
This section presents the overall average (AVE) and standard deviation (STD) of Dice scores 

that measures the overall structural agreement between binary segmentation result and 

ground truth image. Table 4.4 is a reflection of the segmentation performance of the eight 

state-of-the-art image segmentation algorithms and the proposed PCDS segmentation 

algorithm. From observation, it can be observed that out the four non-saliency image 

segmentation algorithm, Fuzzy C-means algorithm produced slightly higher average Dice 

values of 0.8977 for melanoma skin lesion image selected from the ISBI 2016 challenge 

dataset followed by the K-means algorithm with an overall dice value of 0.8949. However, 

Fuzzy C-means algorithm produced a higher standard deviation value compared to the K-

means algorithm, which means that the K-means algorithm must have maintained the 

structural information for certain melanoma images than the Fuzzy c-means algorithms. 

Oppositely, Otsu thresholding method produced the least overall average and standard 

deviation in dice values of 0.8665 and 0.2296 on ISBI 2016 challenge dataset.  
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Further observation of the overall Dice performance of non-saliency image 

segmentation algorithms shows that the modified JSEG algorithm produced a higher overall 

average and standard deviation Dice value of 0.8812 (0.2306) for melanoma skin lesion 

images selected from PH2 database compared to the other non-saliency image segmentation 

algorithms. On this same data set, K-means algorithm followed suit as it ranks the second 

after modified JSEG algorithm with an overall average and standard deviation Dice values of 

0.8336 (0.2899), followed by the Fuzzy C-means algorithm. Across the melanoma skin lesion 

image data sets, Otsu thresholding algorithm recorded the least overall average and standard 

deviation Dice values. Across MSRA and ECSSD data sets, the overall average and standard 

deviation of modified JSEG is a result of the recorded failed cases. Otsu thresholding has also 

demonstrated its inability to maintain structural information following the overall average 

Dice values the algorithm attained across MSRA and ECSS data sets. The overall average 

Dice value of the K-means algorithm shows that the algorithm was able to preserve the 

structural information than its counterparts on the experimental images selected from the 

MSRA dataset. The Fuzzy C-means algorithms, on the other hand performed better than the 

others for selected experimental images from ECSSD. On a general note, the four state-of-

the-art non-saliency image segmentation algorithms have demonstrated their inconsistencies 

across varying image data sets. 

 As revealed in Table 4.4, none amongst the four benchmark saliency segmentation 

algorithms score higher overall dice values across the four image data sets. But, one can see 

that the MC segmentation algorithm came close enough by performing better than it 

counterparts on three out of four image data sets which are ISBI, PH2 and ECSS data sets. 

Meanwhile, PCA segmentation algorithm performed better than its counterparts on 

experimental images selected from the MSRA dataset. By sharp contrast, the proposed PCDS 

segmentation algorithm shows substantial improvements with an outstanding overall average 

Dice values of 0.9342, 0.9522 and 0.9024 for ISBI 2016 challenge PH2 and ECSS data sets 

respectively. Moreover, the Otsu thresholding on the proposed PCDS map computation 

produced the highest overall Dice values of 0.9129. This indicates that a higher percentage of 

the images selected across the four data sets can be well segmented by the proposed PCDS 

segmentation algorithm as the improvement demonstrated by the PCDS segmentation 

algorithm is statistically significant and highly consistent. 
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Table 4.4: Dice scores of saliency and non-saliency image segmentation algorithms on 
ISBI 2016 challenge, PH2, MSRA and ECSS data sets. 

METHOD ISBI PH2 MSRA ECSSD 

AVE STD AVE STD AVE STD AVE STD 

Otsu 0.8665 0.2296 0.6262 0.3777 0.6786 0.2203 0.6118 0.2233 

K-means 0.8949 0.1757 0.8336 0.2899 0.7539 0.2308 0.6577 0.2136 

Fuzzy C-means 0.8977 0.1806 0.7962 0.3204 0.6886 0.2515 0.6778 0.1907 

Modified JSEG 0.8941 0.2284 0.8812 0.2306 0.4347 0.3833 0.2662 0.3772 

SWD + Otsu 0.8061 0.1806 0.7542 0.2079 0.7044 0.1545 0.7340 0.1401 

PCA + Otsu 0.9067 0.1235 0.8762 0.1867 0.8416 0.1398 0.7480 0.1811 

MC + Otsu 0.9120 0.1253 0.9291 0.1395 0.8087 0.2250 0.7931 0.2324 

SSLS + Otsu 0.7601 0.1807 0.8631 0.2293 0.7067 0.2447 0.6591 0.2475 

 PCDS  + Otsu 0.9166 0.0811 0.9360 0.1424 0.9129 0.1001 0.8820 0.1343 

 PCDS  + 
Default 

0.9342 0.0704 0.9522 0.0284 0.9008 0.0941 0.9024 0.1109 

 

4.4 Chapter conclusion 
This chapter has dealt with the empirical validation of the proposed PCDS segmentation 

algorithm segment by comparing its performance with eight state-of-the-art saliency and non-

saliency image segmentation algorithms with the ground truth images made available in the 

data sets. Therefore, the validation method quantitatively evaluates the similarity between the 

ground truth images with the computed segmented binary images. The experiments 

conducted using four benchmark segmentation data sets have pointed to a high correlation 

between the ground truth image and the binary segmentation results produced by PCDS 

segmentation algorithm. The computed scores across the four evaluation metrics scored 

relatively high overall average values across the data sets.  
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CHAPTER 5 
 

SUMMARY AND CONCLUSIONS 
This chapter is the concluding part of this dissertation. The chapter presents possible research 

recommendations for further improvements based on the proposed approach.  

5.1 Summary 
In this study, a new perceptual colour difference saliency segmentation algorithm was 

investigated. The overarching goal of this study was to investigate the effectiveness of 

perceptual colour difference saliency method to improve the performance of colour image 

segmentation. The research objectives have been met in order to achieve the goal of this 

study. They are thereby summarized for the sake of clarities as follows: 

1. To comprehensively review relevant publications based on image segmentation 

algorithms. 

The first objective which was to comprehensively review relevant publications based 

on image segmentation was presented in the chapter 2 of this study. Chapter 2 

presented a comprehensive survey of image segmentation algorithms and several 

developments of new algorithms that address the research gaps in the literature. The 

chapter begins with the three fundamental classifications of image segmentation 

algorithms and their limitations. This led to the survey of diverse improvements, the 

extension of conventional image segmentation to colour image segmentation and the 

diverse challenges faced. The chapter also includes the introduction of colour object 

salient segmentation that has been proposed to facilitate the performance of colour 

image segmentation. Subsequently, the researcher reviews how different colour 

models have been investigated for colour image segmentation and performance 

evaluation methods. 

2. To develop an image segmentation algorithm based on perceptual colour difference 

Saliency Segmentation. 

The development of a new image segmentation algorithm based on perceptual colour 

difference saliency segmentation was presented in the chapter three of this study. The 

proposed PCDS segmentation algorithm integrated both background and foreground 

information which complement each other in the accurate salient object segmentation. 
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The methodology of the proposed PCDS segmentation algorithm was implemented 

based on four major stages: colour image transformation, luminance image 

enhancement, salient pixel computation and image artefact filtering. First, the 

transformation of colour image is performed to convert Adobe RGB colour image to 

the CIE L*a*b colour image to achieve perceptual saliency. This is followed by the 

adaptive gamma correction that was performed on the image luminance channel to 

enhance the luminance channel of the image. To compute the salient pixel, the mean 

value of the background object colour was estimated by the mean of image pixel 

values on an ellipsoidal patch drawn close to the image boundaries. Afterwards, the 

mean value of object colour was estimated by the mean of image pixels within a 

rectangular patch drawn over the image centre. Thereafter, the computed object and 

background mean values are aggregated to create a greyscale saliency map followed 

by a simple thresholding technique to realize a binarized image. The CIEDE2000 

colour difference formula implemented in this study was used to compute the 

difference of background colour and difference of object colour.  Finally, 

morphological analysis was performed on the resultant segmented binary image to 

filter artefacts. All of these steps have contributed to the overall performance of the 

proposed PCDS segmentation algorithm. 

3. To experimentally compare the performance of the developed segmentation algorithm 

with existing state of the art image segmentation algorithms using well known 

statistical evaluation metrics. The third objective was intrinsically met by 

experimentally validating the performance of the proposed PCDS algorithm with 

existing state-of-the-art saliency and non-saliency image segmentation algorithms 

using well known statistical evaluation metrics. For the purpose of the performance 

evaluation of the investigated perceptual colour difference saliency segmentation 

algorithms, the proposed saliency segmentation algorithm was tested on a hundred 

and ninety challenging diversified medical and non-medical images acquired from 

four diverse benchmark corpora. Both qualitative and quantitative evaluation methods 

were explored for performance evaluation. For qualitative measures, the evaluation 

was carried with comparison with state of the art saliency segmentation algorithms to 

test the effectiveness of the saliency maps produced by the newly developed colour 

difference perception saliency segmentation algorithm. The performance of the 
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default thresholding binary segmentation results was also compared state of the art 

image segmentation algorithms. 

For the quantitative performance evaluation, eight state-of-the-art saliency and non-

saliency image segmentation algorithms were used to test the effectiveness of the newly 

developed colour difference saliency segmentation algorithm with default thresholding 

technique with five well known statistical evaluation metrics, namely, precision, F-measure, 

Error and Dice. The experimental results reported in this study confirm that the proposed 

colour difference saliency segmentation algorithm significantly outperforms eight state-of-

the-art segmentation algorithms. More importantly, the research reported in this study has 

proven the effectiveness of the newly proposed perceptual colour difference saliency 

segmentation to improve colour image segmentation performance. 

 

5.2 Future Work 
Despite significant research progress in colour image segmentation research field, there is 

always room for improvement in the image processing field. The researcher presents possible 

applications and extensions by highlighting a few of the many exciting future works using the 

preliminary version of the proposed segmentation algorithm in this study. In the view of the 

researcher, the following studies are worth continuing;  

1. As a scope of further research, the proposed PCDS segmentation algorithm can be 

extended to extract distinctive features for the skin lesion classification of melanoma 

skin lesion images. 

2. The proposed PCDS segmentation method can be extended to other well-known 

existing colour models and colour difference formulae for comparative purposes. 

3. It will be prudent to look at more challenging practical application areas. 

4. Besides colour information, the combination of other visual features such as shape, 

texture, motion is an approach that merits further study. 
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5.3 Conclusion 
This dissertation investigated the problem of colour image segmentation, as an image 

segmentation and salient object segmentation task. A comprehensive review of research work 

was presented. It is unfortunate that despite vast research efforts, image segmentation remains 

an important problem that is yet unsolved. The work reported in this study has investigated a 

new PCDS segmentation algorithm towards improved colour image segmentation. The 

proposed PCDS segmentation algorithm was tested on four benchmark image data sets to 

measure its accuracy, effectiveness and validate its performance. The proposed PCDS 

segmentation has proven to be comparable to and even outperform other existing state-of-the-

art saliency and non-saliency image segmentation algorithms. Moreover, the application of 

the proposed PCDS segmentation algorithm to melanoma skin lesion segmentation has 

indeed shown that the algorithm is feasible and successful for such an application. 
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