

Determining and Developing Appropriate Methods

for Requirements Verification and Modelling of

Telecentre Operational Monitoring in a Developing

Country

By

Jeebodh Pancham

Submitted in fulfilment of the requirements of the Master of Information

and Communications Technology Degree

In the

FACULTY OF ACCOUNTING AND INFORMATICS

DEPARTMENT OF INFORMATION TECHNOLOGY

DURBAN UNIVERSITY OF TECHNOLOGY

DURBAN, SOUTH AFRICA

December 2016

ii

Declaration

I, Jeebodh Pancham, declare that this thesis is a representation of my own work in both

conception and execution.

 12 December 2016

 Date

Approval for examination

 29 March 2017____

Supervisor Date

Prof R C Millham (PhD)

iii

ABSTRACT

Telecentres are a means of allowing members of disadvantaged communities access to

information and communication technologies (ICTs) so that they are included in the

digital world. Thorough literature searches, along with communication with the Uni-

versal Service Access Agency of South Africa (USAASA) indicated that there was no

common operational monitoring model for Telecentres. The lack of such a model re-

sulted in a lack of real time user and usage profile information to provide strategic

business insights for managers. To obtain the requirements for this model, different

stakeholders of South African Telecentres were consulted, and these consultations

were supplemented by research studies based on international Telecentres.

After a detailed evaluation of the different research methodologies, positivism and re-

ductionism were selected as the most appropriate conceptual frameworks for the re-

search. The research design included both quantitative and qualitative research meth-

ods. Requirements engineering was used to provide a number of different methods for

verification and modelling. The UML methodology was used to represent the TeleMun

monitoring model. A specific UML diagram, the activity diagram, was used to validate

the phase consistency of the TeleMun model using the semiformal tool of VeriScene.

The choice of methods depended on several factors, for example, the problem domain,

and the nature of the solution required, amongst others. Design science methodology

was selected as an overarching methodology to encompass the full process from re-

quirements to the final design and reporting phases. This methodology was used both

in the design of the model and in the design of VeriScene. (The literature review had

revealed that there was a gap concerning appropriate phase consistency tools to ensure

consistency between the requirements and design phases. To address this gap, a tool

‘VeriScene’ was developed to provide this consistency). In order to analyse these re-

quirements, a combination of different appropriate methods was selected, providing

the design strength associated with triangulation. These requirements engineering

methods were applied to derive the TeleMun model.

iv

Thus the monitoring model, TeleMun, was developed, verified and partially validated

using several requirements engineering methods. The model is designed at a high level

and therefore can be modified to suit other local and international Telecentre opera-

tions.

ACKNOWLEDGEMENTS

I would first like to thank my thesis supervisor Professor Richard C. Millham of the

Department of Information Technology at Durban University of Technology for his

guidance and support during this study. Professor Millham has made this journey an

interesting one by making it practical with relevance to industry, and in steering me

consistently in the right the direction.

I would also like to thank Prof Thiruthlal Nepal and Mr Mandla Sithole from USAASA

for initiating discussions and for providing the necessary requirements on which this

design is based.

My special thanks to Dr Jane P. Skinner for editing this thesis and to Ms Sara Mitha

for ensuring that all references are correctly documented.

Finally, I must express my very profound gratitude to my wife (Nasha) and children

(Rivajh, Shivash, Shreeya) for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible without

them. Thank you.

v

Table of Contents
ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

List of Publications and Artefacts .. ix

Abbreviations ... xi

List of Figures ... xii

List of Tables.. xiv

CHAPTER 1 – Introduction .. 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Objectives .. 4

1.4 Significance of Study .. 4

1.5 Limitations .. 4

1.6 Chapter Summaries ... 5

1.7 Conclusion .. 7

CHAPTER 2 – Literature Review... 8

2.1 Introduction ... 8

2.2 Digital Divide .. 8

2.3 Telecentres to Bridge the Digital Divide .. 8

2.3.1 Definitions of Telecentres ... 9

2.3.2 The Impact of Telecentres ... 9

2.3.3 South African Context of Telecentres ... 10

2.4 Need and Benefits of Monitoring of Telecentres .. 11

2.4.1 Research Indicating the Need for Telecentre Monitoring 11

2.4.2 Common Business Processes .. 12

2.4.3 Common Set of Attributes .. 12

vi

2.5 Challenges in Data Collection ... 13

2.6 More Responsive Model Needed .. 16

2.7 Research Approaches for Development of an Electronic Model 18

2.8 The Development Process for a Validated Monitoring Model 24

2.9 Requirement Engineering.. 25

2.9.1 Requirements Elicitation ... 25

2.9.2 Requirements Analysis.. 30

2.9.3 Requirements Description and Modelling .. 31

2.9.4 UML Activity Diagrams ... 36

2.9.5 Requirements Evaluation and Validation ... 37

2.9.5.1 Validation and Verification ... 37

2.9.5.2 Existing Tools for Validation and Verification ... 38

2.10 Conclusion .. 40

CHAPTER 3 – Methodology .. 42

3.1 Introduction ... 42

3.2 Research Approach ... 42

3.2.1 Research Philosophy ... 42

3.2.2 Research Design ... 43

3.2.3 Research Method .. 44

3.3 System Development Methodologies ... 45

3.4 Application of Design Science Methodology ... 48

3.4.1 Requirements Elicitation... 50

3.4.2 Analysis .. 52

3.4.2.1 Stage 0 – Reduction of Attributes .. 52

3.4.2.2 Stage 1 - Drafting and Consolidation of Scenarios ... 52

3.4.2.2.1 Identification of Test Data for Scenarios and Consolidation of Requirements54

vii

3.4.2.4 Stage 2 - Confirmation of Scenarios ... 56

3.4.3 High Level Design .. 57

3.4.4 Verification ... 58

3.4.4.1 Application of Chosen Research Design for VeriScene Phase Consistency Tool 62

3.4.4.2 Requirements ... 63

3.4.4.3 Analysis .. 64

3.4.4.4 Design ... 65

3.4.4.5 Implementation ... 71

3.5 Summary ... 72

CHAPTER 4 – Results .. 73

4.1 Introduction ... 73

4.2 TeleMun Model ... 74

4.2.1 Requirements Elicitation... 74

4.2.2 Analysis .. 75

4.2.2.1 Stage 0 – Reduction of Attributes ... 75

4.2.2.2 Stage 1 – Drafting and Consolidation of Scenarios 75

4.2.2.3 Identification of Test Data for Scenarios and Consolidation of

Requirements... 78

4.2.2.4 Stage 2 – Confirmation of Scenarios .. 80

4.2.3 Design ... 92

4.2.4 Final Verification and Validation.. 94

4.3 VeriScene .. 98

4.3.1 Requirements Elicitation ... 98

4.3.2 Analysis ... 98

4.3.3 Design ... 99

4.3.4 Evaluation ... 104

4.3.5 Communication ... 108

viii

4.4 Final Results of TeleMun .. 108

4.5 Summary ... 108

CHAPTER 5 – Recommendations and Conclusion .. 110

5.1 Introduction ... 110

5.2 Overview ... 110

5.3 Research Objectives Met... 111

5.4 Recommendations ... 113

5.5 Future Work .. 114

5.6 Summary ... 114

Appendix A – Researcher’s Attributes ... 116

Appendix B - Activity Diagrams .. 118

Appendix C – Testing VeriScene with Different Domains 122

Appendix D – Initial Models... 124

Appendix E – Use Case Diagrams .. 127

Appendix F – Database Structure ... 131

Appendix G – Letter from Media Platform... 135

References ... 136

ix

List of Publications and Artefacts

1. Paper 1

 Pancham, J., Millham, R., Singh, P.,‘A Validated Model for Operational

Monitoring of Telecentres’ Activities in a Developing Country’ in Proceedings of

the 7th International Development Informatics Association Conference, IDIA

International Development Informatics Association, Bangkok, Thailand, 2013.

2. Paper 2

 Pancham, J. and Millham, R., 2015, June. ‘Design Phase Consistency: A Tool for

Reverse Engineering of UML Activity Diagrams to Their Original Scenarios in

the Specification Phase’. In International Conference on Computational Science

and Its Applications (pp. 655-670). Springer International Publishing.

Note: Many of the phrases used to express concepts and the description of the tool

from the paper were incorporated in this thesis. Hence, the possibility of phrase

matches from Springer.

3. Project Funding

After a successful competitive proposal submission, the researchers received

funding from the Technology Innovation Agency (TIA), a government department

that sponsors innovative projects that impact on citizens’ lives. In order to be

awarded funding, submitted projects must have a good scientific basis and must be

implementable. As a result of this TIA funding, an electronic monitoring software

application is in the process of being developed. The design model was verified

against the user requirements, partially using this dissertation’s own phase

consistency tool “VeriScene”, to ensure that user requirements would be fully

incorporated in the design. Pilot Telecentre sites have been identified and this

application, once fully developed, will be deployed at the selected sites to

implement the concepts in the dissertation. Furthermore, this application will

monitor and report on Telecentre user profiles and usage to Telecentre managers at

the local level. The application will pass this information on to a centralised

database at national headquarters. Based on the data from this centralised database,

reports that are more sophisticated can be generated to provide better business

x

insights into Telecentre operations for higher levels of management and for

sponsors.

4. Artefact

A phase consistency tool, VeriScene, was developed to traverse a derived activity

diagram and produce a set of scenarios. These generated scenarios have been

compared with the original scenarios, from which the activity diagram was derived,

to ensure consistency and completeness between the specification and design

phase. This tool was demonstrated to several local software development firms who

expressed a written desire to utilise it to improve software quality and reduce errors

(see Appendix G). Funding for further development of this VeriScene tool has been

made via a TIA application.

xi

Abbreviations

Abbreviation Full Description

AGG Attributed Graph Grammar

AOSD Aspect-Oriented Software Development

AOSE Aspect Oriented Software Engineering

ATM Automated Teller Machine

BI Business Intelligence

DFD Data Flow Diagram

DFS Depth First Search

ICT Information and Communication Technologies

ITU International Telecommunication Union

KZN KwaZulu Natal

OCL Object Constraint Language

OOA Object-Oriented Analysis

OOP Object Oriented Programming

RE Universal Service Access Agency of South Africa

SDLC Software Development Life Cycle

SOP Standard Operating Procedure

TeleMun Telecentre Monitoring Model

TIA Technology Innovation Agency

UCEd Use case Editor

UML Unified Modelling Language

UNISA University of South Africa

USAASA Universal Service Access Agency of South Africa

VeriScene Verification of Scenarios

xii

List of Figures

Figure Title Page

2.1 Nominal Design Science Process 23

2.2 Methods applied in RE process - Adapted from (Xuping 2008) 26

2.3 Use case Diagram Key 36

3.1 Phase, Model, and Artefact 45

3.2 Design Science for TeleMun 46

3.3 Methodology to build and verify TeleMun 50

3.4 Reduction of attributes 52

3.5 Drafting and consolidation of Scenarios 53

3.6 Confirmation of scenarios 57

3.7 High level design process 58

3.8 DS Verification Process for Phase Consistency 60

3.9 Design verification and validation 61

3.10 Verification of VeriScene 66

4.1 Initial use case – Use Service 77

4.2 Services 79

4.3 Age Category 79

4.4 Equipment 80

4.5 Use case – Request Service 84

4.6 Use case – Allocate Service 85

4.7 Use case – Complete usage of service 86

4.8 Use case – Bill usage 88

4.9 Use case – Make Cash Payment 88

4.10 Use case – Bill Account Payment 89

4.11 Create user profile 90

4.12 Allocate Service 91

4.13 Graph of service usage over a 6 month period 91

4.14 User and usage Profile 95

4.15 TeleMun 97

xiii

Figure Title Page

4.16 Walkthrough of TeleMun with checklist 107

B1 Start of day routine 118

B2 Billing and payment 118

B3 Final use service process 119

B4 Refund fee 120

B5 End of day routine 121

C1 Trouble Ticket 122

C2 Order processing 123

D1 Call box and internet café business model 124

D2 Telecentre business model 125

D3 Monitoring model 126

E1 Telecentre monitoring and reporting system 127

E2 Acquire equipment 128

E3 Start Application 128

E4 Terminate Application 128

E5 Surf Internet 129

E6 Internet connection fault 129

E7 Internet connection restored 129

E8 PC switched on 130

E9 PC switched off 130

F1 TeleMun ERD

xiv

List of Tables

Table Title Page

2.1 Four Worldviews (Creswell 2013) 19

3.1 Use case Definition 54

3.2 Scenario definition 54

3.3 Formalization, by action and action link rules, of the Telecentre activity

diagram

69

4.1 Data for scenario 78

4.2 Sample Attributes 78

4.3 Use cases 82

4.4 Use case and scenario Request Service 83

4.5 Use case and scenario – Allocate a service 85

4.6 Use case and scenario – Complete usage of service 86

4.7 Use case and scenario – Bill Usage 87

4.8 Use case and scenario – Make Payment 88

4.9 Activity 2: Telecentre operation, Scenario 1: Successful usage = Yes 100

4.10 Activity 2: Telecentre operation, Scenario 2: Reuse Service = Yes 100

4.11 Activity 2: Telecentre operation, Scenario 3: Reuse Service = No 101

4.12 Activity 2: Telecentre operation, Scenario 4: Continue Wait = Yes 101

4.13 Activity 2: Telecentre operation, Scenario 5: Continue Wait = No 102

4.14 Scenario 1, Successful usage = Yes 102

4.15 Scenario 2, Reuse Service = Yes 103

4.16 Scenario 3, Reuse Service = No 103

4.17 Scenario 4, Continue Wait = Yes 104

4.18 Scenario 5, Continue Wait = No 104

A1 Researchers on Telecentres 116

A2 Attributes on Telecentres 117

F1 Databases Attributes 131

1

CHAPTER 1 – Introduction

1.1 Background

The International Telecommunication Union (ITU) Information and Communication

Technologies (ICT) 2016 report states that only 47% of the world’s population uses

the internet. The reason for this low figure is the skew in internet access between

developing and developed countries which stood at 41% and 84% respectively at the

time of this research (Sanou 2016). These figures highlight the existence of the digital

divide and indicate the lack of connectivity and of access to information by people in

the developing world. The ‘digital divide’ refers to the difference in levels of access to

ICTs, as well as the divergent quality of access, between communities in the developed

and developing worlds (Mossberger, Tolbert and Hamilton 2012). One of the ways to

bridge this digital divide has been found in the opening of ICT facilities in the form of

‘Telecentres’. These provide public access to the internet and to other ICT facilities.

There has been growing utilization of ICTs for interventions in developing countries

including initiatives at community level in social and economic development

(Walsham and Sahay 2006) and in community mediation and violence prevention

(Bailey and Ngwenyama 2010). Telecentres overall have been established as a means

to enhance people’s quality of life by providing them with greatly improved access to

information, including useful commercial and employment information on, for

instance, markets and vacancies, along with more basic facilities such as the ability to

create, fax and email documents.

However, despite the promise that Telecentres offer to their users, the support

processes for managing these centres has been identified by (McConnell et al. 2001;

Sey and Fellows 2009; Pather and Gomez 2010) as a weakness, and in particular an

automated monitoring system is needed for Telecentres’ operational activities.

2

Currently, Telecentre usage data is collected using ad-hoc traditional, manual, practices

(Gomez, Pather and Dosono 2012; Rajapakse 2012). These methods are subject to

variation and inconsistency in personnel employed, information requested, and

opinions obtained. One of Universal Service Access Agency of South Africa’s

(USAASA’s) mandates involves recognizing these limitations and the need for a

continuous monitoring tool (USAASA 2011). The most effective and the cheapest

method of continuous monitoring is recognised to be an electronic model. However,

such a system requires a verified design model before deployment (Liu and Yang

2005). This model, in turn, requires the use of a selected set of reliable, industry-

accepted, practices to first develop and then verify it (Khan et al. 2011).

The methods, tools and processes needed to develop this model belong to the

Requirements Engineering (RE) domain. Requirements engineering is a phase of the

systems development process that focuses on gathering and documenting system

requirements from stakeholders to serve as a basis for further system development such

as draft design, verification and validation (Pohl 2010). RE can also be used to verify

the derived requirements and validate the subsequent draft model in the design phase

(Hull, Jackson and Dick 2010). In addition RE can encompass the viewpoints of

different stakeholders (Pandey, Suman and Ramani 2010).

Triangulation of appropriate methods is sometimes needed to guarantee accurate

results, as the deficiencies of any one method can be circumvented by a combination

of methods, thus capitalizing on their individual strengths (Yeasmin and Rahman

2012). While investigating the verification of requirements for the Telecentre

Monitoring Model (TeleMun), a new method of verification was developed because

the existing methods were deemed inadequate.

1.2 Problem Statement

As indicated in the literature, in order to make sustainable business decisions for

Telecentres, there is a need for continuous and systematic collection of operational

3

Telecentre data. An operational monitoring model for Telecentres is needed to

accomplish this.

The first step in developing a common monitoring model would be to investigate the

commonality of the processes and attributes required. Once these are identified, the

existence of a model needs to be determined. If no appropriate model exists, then

specific requirements and appropriate methods for developing, verifying, and partially

validating such an operational model need to be identified. If available verification

methods are not suitable, a set of scoping parameters needs to be investigated before a

method of filling this gap can be developed.

In this study, feasible RE models had to be established to capture and verify

requirements and to validate the TeleMun. It was recognised that if such a model did

not exist, a new model to meet the stakeholders’ needs would need to be developed.

Such a model would use industry-accepted methods where these existed, or, where a

gap in the required existing methods was identified, new methods would be developed.

Questions

The following questions were identified as pertinent to the research:

1. Do suitable electronic Telecentre operational monitoring models exist which

are able to monitor user and usage profiles along with internet and power failure

data, or does a model need to be developed to fill this need?

2. If a model needs to be developed, are there feasible RE methods to capture and

verify the requirements for, and to partially validate, the ensuing model?

3. If there are gaps in existing feasible requirement engineering methods, can

these gaps be addressed through the development of appropriate methods and

tools to check that the model meets:

a. consistency of the requirements from the design to the specification

software phase, and

b. Full path coverage?

4

1.3 Objectives

The purposes of this research are to:

1. Determine whether there are feasible models for electronic operational

Telecentre monitoring that are able to gather user and usage profiles as well as

monitor internet and power failures.

2. If no appropriate model exists, to determine appropriate RE methods to capture

and verify the requirements for, and to partially validate, the ensuing model.

3. Investigate existing methods and, if necessary, to develop new feasible methods

to verify and partially validate iteratively, the requirements for this draft model,

and to ensure that the model meets the requirements of:

3.1 Consistency from the design to the specification software phase,

3.2 Path coverage.

1.4 Significance of Study

Research indicates that there is a need for continuous operational monitoring of

Telecentres so that timely and accurate information for their activities is available for

better decision making. (Harris 2007) identifies the need for robust monitoring and

appraisal systems to capture operational data systematically, and to facilitate future

management decisions based on this real time data.

This study develops a common verified, and partially validated, model with the

flexibility needed to be able to monitor Telecentres at different locations in South

Africa and in other countries. This model enables the implementation of a monitoring

tool as required by USAASA in order to make better sustainability and other decisions.

Suitable RE methods were used to investigate, develop, verify and partially validate

the TeleMun. The investigations identified a gap in these methods, and a tool was

subsequently developed to fulfil these requirements.

1.5 Limitations

The Telecentre operational monitoring model was generated from a set of requirements

acquired from Telecentre managers in KwaZulu Natal (KZN), a province in South

5

Africa. Although these requirements regarding monitoring are representative of a

Telecentre operation in South Africa, some variation will exist in the implementation

detail. As a result, the Telecentre operational monitoring model design, and its

validation, remained at a high level. This adds flexibility in its implementation in the

different Telecentres, however.

Because the research relied on the Telecentre managers from the KZN area for

requirements elicitation, there is a possibility that some requirements were omitted.

Consequently:

1. The model might not cater for universal implementation.

2. There is a possibility that some requirements might have gone undetected.

3. Community viewpoints on Telecentres and their operations were not taken

into account.

4. It is possible that a comprehensive set of reporting requirements was not

obtained.

5. The requirements, in the form of natural languages, could be translated into

formal languages, but these are difficult for stakeholders to review for errors.

Therefore, because of the non-technical background of the stakeholders,

certain RE methods were not feasible. The initial requirements could be

translated into a formal notation, but this translation brings the risk that the

stakeholders might not understand these formally notated requirements.

In addition, as access to stakeholders was limited, all the reporting requirements were

not known and therefore could not be fully accommodated in the design. The standard

processes for the collection of Telecentre data, as expressed in the literature and

stakeholder elicitation, were taken into account in this model, which could however

still have excluded data from some different processes.

1.6 Chapter Summaries

Chapter 1 presents the digital divide and the introduction of Telecentres as an

intervention to assist in bridging this divide. The need for an intervention involving

6

continuous operational monitoring of Telecentres to enable better decision making was

then discussed, leading to the need for a common monitoring model to be developed

and verified through various RE methods. This chapter outlines the background of the

Telecentre environment and provides the problem statement relating to Telecentre

monitoring. It also provides the research questions, the objectives to be achieved, the

importance of the study, and its limitations.

By reviewing the literature, Chapter 2 provides a critical analysis of the issues outlined

in Chapter 1. It discusses the digital divide and the need for Telecentres and their

monitoring. It indicates the need for monitoring to have a validated common model

that in turn requires the use of existing RE methods. It highlights the need for RE

methods to verify requirements, as well as methods to validate the draft model. It

identifies a gap in RE methods, which validates the need for a model in this domain.

Chapter 3 discusses the methodology that was followed to obtain and verify the

requirements, to develop a draft model, and to partially validate the model. It discusses

the gap which was discovered in the RE methods, and the resulting necessity for

verification. It explains the new feasible RE methods which were developed to address

this gap.

Chapter 4 presents the results obtained from the requirements, and verification of these

requirements. A draft model from these verified requirements is presented along with

a prototype based on this model. This is used to verify and partially validate the model.

Stakeholder feedback after demonstration of the prototype is presented. The results of

the verification of the model, using RE methods, including newly developed methods,

are detailed.

Chapter 5 concludes the discussion of the research project into the design of a validated

model for continuous monitoring of Telecentre activities. Recommendations for further

research in this area are provided.

7

1.7 Conclusion

This chapter provides a synopsis of the research undertaken. The concepts of the digital

divide, Telecentres, the need for real time monitoring, the need for a verified and

partially validated Telecentre model, and RE methods to verify and partially validate

this model are discussed. Later chapters will discuss how the model was designed,

verified, and partially validated. The problem statement, objectives and the importance

of the study are given in order to indicate the relevance of this research. This study has

limitations due to the broad nature of RE and its implementation – and these are

explained. The structure of the study provides a description of the chapters that includes

a literature review, the methodology employed, analysis of the results of the research,

the conclusions drawn, and recommendations for future research.

8

CHAPTER 2 – Literature Review

2.1 Introduction

This chapter begins with the definitions and concepts relevant to the digital divide,

which is defined as a gap between those with access to ICTs, with their global means

to connect to the world, and those who lack this access. The role of Telecentres as a

community-centred solution, or bridge, to help address this digital divide is presented.

Telecentres have been researched widely using traditional methods, such as surveys,

which have disadvantages in terms of speed and accuracy. In order to make sound

business decisions and to ensure the sustainability of Telecentres, the need for timely

and accurate monitoring information is indicated in the literature. It is shown that this

can be provided through a common TeleMun. In addition, to develop this model, sev-

eral different paradigms, methodologies, and methods are presented and evaluated as

to their suitability for developing the model.

2.2 Digital Divide

The various definitions of the digital divide focus on different issues such as

discrepancies in usage and skills (Min 2010); (in)equality in the of use of ICT’s

(Gomez 2012); poor broadband access in rural areas (Townsend et al. 2013) and level

of education and economic status, along with the significance of rural as opposed to

urban contexts (Mossberger, Tolbert and Hamilton 2012). This research subscribes to

the broad definition of this gap as one existing between those who have access to IT

and those who do not and in particular, it localises the gap to varying opportunities for

people to use computers and the internet (Van Dijk, 2005).

2.3 Telecentres to Bridge the Digital Divide

As explained above, one of the most promising ways to help bridge the digital divide

is understood to lie in the implementation of Telecentres which are physical spaces that

provide and enable public usage of ICT facilities and internet access involving online

communication tools and providing for online learning (Razak, Hassan and Din 2010).

9

2.3.1 Definitions of Telecentres

Although there are different definitions of Telecentres (Pather and Gomez 2010;

Gomez and Baron-Porras 2011; Gomez, Pather and Dosono 2012; Seman et al. 2013)

this research uses the most common definition of Telecentres by the

(Telecommunication Regulatory Authority. Sultanate of Oman 2012). This definition

defines a Telecentre by its purpose of allowing people to access IT services in a public

place and in terms of the telecommunication and IT services offered

(Telecommunication Regulatory Authority. Sultanate of Oman 2012). There are a

number of common IT services offered, most commonly internet access and word pro-

cessing facilities (Colle 2005; Jacobs and Herselman 2006).

2.3.2 The Impact of Telecentres

Although challenges including sustainability, financing, monitoring and reporting of

activities, have been identified by many researchers including (Hunt 2001) and

(Benjamin 2009) there are also notable positive impacts of Telecentres worldwide.

These include increased ICT literacy levels achieved by centres which offer extensive

training to their staff and users in Malaysia (Rajapakse 2012); assistance with home-

work and transcription (Bayo, Barba and Gomez 2012); access to training, internet and

office applications (Razak, Hassan and Din 2010); business growth resulting from

online collaboration between customers and vendors in Nigeria (Achimugu et al. 2009)

and extending e-governance services in India (Naik 2011). Furthermore, (Baron and

Gomez 2012) identify some of the positive social impacts of usage of public access

computing including clients having access to more sources of information, and to a

greater volume of information, than would otherwise be possible, stronger interper-

sonal relationships resulting from a feeling of being included in a global community,

and being given opportunities for improved learning.

Telecentres therefore serve as important facilities that provide access to technologies

in areas that have limited or no access to ICT’s. These examples highlight the many

diverse benefits of access to ICT for the population, especially within developing coun-

tries.

10

2.3.3 South African Context of Telecentres

An initial study of Telecentres in South Africa by (Benjamin 2001) identified several

challenges frequently faced by South African Telecentres including minimal financial

support, equipment failure and poor technical support, all of which can threaten their

sustainability. In addition there is a lack of any monitoring model to capture user and

usage profiles or to record equipment and internet connection failure (Benjamin 2001).

South Africa therefore does not have a sustainable model for Telecentres which can be

rolled out on a large scale (Benjamin 2009). Coupled with this, there is no electronic

monitoring model that can be used to monitor these Telecentres and provide the

information required to analyse user and usage profiles in real time. Consequently, the

impact that Telecentres have had so far on rural communities in South Africa is largely

unknown. It has yet to be investigated and interpreted, as noted by Benjamin as long

ago as 2001 (Benjamin, 2001).

The strategic plan of USAASA has listed the need for monitoring and reporting on

these activities and for the impact of the Telecentres in South Africa to be documented

(USAASA 2011). Monitoring will be the first step in providing the data necessary in

determining access numbers at Telecentres. As a partial solution to this monitoring

issue, the development of a monitoring model, along with the data it gathers, could be

a valuable resource for future research in measuring the impact on rural communities.

One of the strategic objectives of USAASA is to monitor and evaluate the degree to

which universal access has been accomplished in South Africa. In particular, one of

the key performance goals is to develop a monitoring and evaluation tool (USAASA

2011).

According to (Gomez 2012) attempts by the South African government to improve

access to ICTs have been slow and this can be attributed partly to the problems

experienced by Telecentres which often do not function adequately due to equipment

failure and / or internet downtime. He notes also that new strategies focusing on current

policy have led to outsourcing Telecentre operations to private organisations (Sitole

2014). Now USAASA will need hard real-time monitoring data for these outsourced

11

organizations to make informed decisions on the functioning of their Telecentres, and

on the best use of their resources as well as their investment viability.

2.4 Need and Benefits of Monitoring of Telecentres

In this section the need for a common model to produce timely, consistent and accurate

Telecentre user and usage data are highlighted. A common set of business process and

data attributes will enable the development of a typical monitoring model.

2.4.1 Research Indicating the Need for Telecentre Monitoring

According to (Rahmat et al. 2013) quality decision making on issues relating to Tele-

centres is dependent on a Business Intelligent (BI) approach. BI can be referred to as a

process of turning data into information and then into knowledge that can be used for

good decision making (Ahmad and Shiratuddin 2010). This accurate, real time infor-

mation needs to be gathered automatically rather than manually from the source if it is

to provide timely BI at all levels. Such information will inform important decisions on

sustainability of Telecentres, allocation of assets, and most needed locations. Once this

type of real time data is available it can also be used to market the Telecentres to po-

tential advertisers (Sitole 2014).

Monitoring will provide the raw data that can be turned into the information needed to

provide insights into the current and future needs of Telecentres. BI, which is able to

discover patterns from real time accurate data, is however beyond the scope of this

research. Current ad-hoc queries based on data collected via questionnaires and inter-

views have a reliability challenge as this data relies on human participant input, which

could entail bias. Ideally, more timely and fuller sets of data, employing BI, could be

used in appealing to potential private sponsors and advertisers, as discussed by (Sitole

2014).

As indicated above, data from Telecentres is generally gathered on an ad-hoc basis and

this process lacks uniformity in terms of times and data collected. In addition, because

12

there is no systematic gathering or methodological process, it becomes difficult time

consuming and costly to report on user and usage profiles. A literature search could

identify no formal standard operating procedure (SOP) or work flow, which had been

documented to address this monitoring gap. This lack of a standardised process and

indicators is highlighted by (Gomez, Pather and Dosono 2012) in their discussion of

Telecentres in South Africa where they found it hard to discover vital information from

Telecentre operators sufficient to allow USAASA to monitor their progresses effi-

ciently. Moreover, USAASA has never developed standards for key terms that would

permit it to plan effectively (Parkinson 2005).

In some cases, irregular monitoring was done whilst in other cases monitoring was

omitted from the management plan altogether (Harris 2007). The issue of irregular

monitoring is further emphasised by (Gomez, Pather and Dosono 2012) where they

conclude that there is little proof of any comprehensive understanding of the impact of

Telecentres, but only snippets of evidence from a few selected Telecentres as recorded

in specific studies. These note that some resources became unusable within the first

year, or that resources were barely used, and that there were long queues at Belhar and

Bonteeuwel Telecentres in Cape Town, South Africa. The consistent monitoring of

activities, on the other hand, would enable an understanding of equipment usage and

such problem cases could be identified at an early stage.

2.4.2 Common Business Processes

Business processes are defined as a combination of associated activities within an en-

terprise that delivers a service or product (Rodríguez et al. 2011). The work by

(Veeraraghavan et al. 2006) on the commonality of Telecentre business processes

demonstrates the potential for a universal monitoring model.

2.4.3 Common Set of Attributes

As outlined in section 2.4.2 these Telecentre business processes generate data on which

decisions are based. As highlighted by (Gomez, Pather and Dosono 2012) a common

13

design model would provide real time Telecentre data through uniform processes to

enable sound business intelligence on Telecentre operations to be gathered. This re-

search indicates that a common design model that gathers data through common pro-

cesses would be a solution able to provide for the needs of real time data collection.

After reviewing the types of data collected by Telecentre researchers, a common set of

data attributes emerged, including gender, service usage, age, occupation, and number

of visitors (Alasow, Udomsade and Niyamangkoon 2010; Cheang and Lee 2010;

Lashgarara, Karimi and Mirdamadi 2012; Rajapakse 2012). Other researchers col-

lected other attributes including qualification and distance of user to Telecentre

(Cheuk, Atang and Lo 2012; Gomez 2012). However, because data on these attributes

were collected manually, the process faced many challenges such as inconsistency

(Burnard 1991), intensive resource usage, and high cost (Gomez, Pather and Dosono

2012).

Initially there was limited functionality and an emphasis on automating existing pro-

cesses (data-driven) of existing data. In the late nineties and early 2000s the focus

shifted to Business Process Reengineering (BPR) that modified existing processes for

better efficiency (Stoilov and Stoilova 2006). This business reengineering signified

the move from manual to automation, which included the transformation of data, and

the automation of business processes to integrated electronic systems. It would be in

keeping with BPR, for Telecentres’ business processes to be standardised and incorpo-

rated into a common model (Xiaodong 2007).

2.5 Challenges in Data Collection

At present conventional manual data collection methods, as outlined below, are used

to gather data from Telecentre users, operators and managers worldwide, for example

(Gomez 2012) used semi-structured interviews, questionnaires with open and closed

questions, interviews with experts and operators, visits to sites, surveys of users, liter-

ature reviews, and focus group interviews to collect data from 250 000 centres across

25 countries. In another study (Rajapakse 2012) face-to-face, semi-structured, and in-

depth interviews were conducted in seventeen Telecentres across Sri Lanka. These data

14

collection methods clearly pose serious challenges especially as regards the enormous

amount of time and cost associated with them.

Again, (Bailey 2009) used interviews together with thematic content analysis to study

concerns which appeared to impact the social viability of Telecentres in developing

contexts. His study categorised and discussed the different issues that affect sustaina-

bility. In another study, in-depth, semi-structured interviews were used by (Cheuk,

Atang and Lo 2012) to study community perspectives regarding the Telecentre in

Bario Borneo, Malaysia. This interview process included two interviewers per inter-

viewee, one to focus on the questions whilst the other documented all responses. This

indicates the costly and time-consuming aspects of using multiple resources to achieve

a common aim. Furthermore, distilling common themes from qualitative answers is

difficult, and non-uniform, due to the richness these responses (Burnard 1991).

In his work Gomez (2012) examines the user profiles and services rendered in twenty-

five developing countries, in particular one study completed and analysed 799 user

surveys in South Africa. This again indicates the large amount of work needed to col-

lect, analyse and manage the data. Furthermore, these manually based research meth-

ods require staff training on data collection methods to assist the researchers (Gomez

et. al., 1999).

As indicated by Gomez, each survey requires enormous resources. Another such re-

search project conducted by (Pather and Gomez 2010) studied the success levels of

public access to ICT programs in 25 countries. This international research also high-

lights the extensive resources required by traditional methods of data collection in the

absence of an effective electronic monitoring model. A further problem with these sur-

veys is that they only provide snapshots of the status quo at the time of the survey

(Gable 1994). The time and cost of assimilating such survey results to produce con-

clusions also tends to negate the purpose of determining the success of Telecentres as

the conclusions are inevitably based on outdated data. Consequently, a more responsive

model that collects data on a real-time basis and produces timeous and accurate data is

strongly indicated.

15

(Sopazi and Andrew 2008) in their qualitative study of Telecentres, used face to face

interviews for a full day and thereafter observations and interviews over a period of

four months in their South African case studies. They also noted the high cost of inter-

views and of non-participatory observations, and possible biases in the answers given.

One important finding of their research was that internet access was only available two

years after the opening of a Telecentre. This fact was only discovered after the inter-

views were completed. This finding illustrates a high delay factor in this method of

collecting data and reaching conclusions. Findings from this study, along with the bur-

den of work, and time spent, when using manually based methods, all go to prove the

high time and cost factors involved in traditional data collection practices.

Another issue noted by (Hudson 2001) is that the sources of information on Telecentres

contain stories and anecdotes that provide useful insights and lessons learned on usage,

user profile and services offered. Anecdotes may provide insightful information, but

are difficult to collect. These anecdotes could also be open to subjective interpretations

as well as being multifaceted which makes synthesis difficult (Moore and Stilgoe

2009). In addition, brainstorming and focus groups need a well-trained moderator, as

well as exhibiting the limitations experienced when participants shy away from con-

tributing for various reasons. Interviews and questionnaires may include bias from re-

spondents as well as researchers. Questions can be ambiguous and questionnaires and

interviews are time consuming and costly. As a result of the unsatisfactory nature of

some of this data poor, and sometimes incorrect, decisions can be made.

These are only some of many such manual surveys carried out by many researchers

over the decades to gather information on users and usage of Telecentres. This quali-

tative data can be used to alert management and other stakeholders to problems, but

they will need reliable quantitative data in order to produce accurate and usable infor-

mation in the future. Therefore it can be concluded that traditional methods of data

collection have major disadvantages (Lethbridge, Sim and Singer 2005) including

cost, effort, record keeping, effort required to analyse the data, and resulting problems

with the accuracy and reliability of reports.

16

If a more responsive model were used the results would have been obtained more

quickly, more accurately and more timeously. An electronic monitoring model is such

a responsive model, where the researcher is not on site, and knowledge of internet us-

age would be immediately available for management to respond quickly to problems.

2.6 More Responsive Model Needed

Support processes for management of Telecentres is identified by (McConnell et al.

2001; Sey and Fellows 2009; Pather and Gomez 2010) as one of the areas that is lacking

in the Telecentre operational process. (Harris 2007) concluded that even programs that

were meant to prove the potential of ICTs through pilot projects have often lacked

strong monitoring and appraisal systems, negatively impacting on effective

implementation. Gomez and Reilly’s (2002) research on the needs and expectations of

Telecentre operators in Latin America and the Caribbean revealed that monitoring did

not begin immediately after implementation, but rather at the end of a long-term

project, resulting in incomplete data.

(Veeraraghavan et al. 2006) recognized traditional means of data collection as

extremely time consuming and resource intensive, requiring the continuous active

participation of the researcher. In reporting on their research they emphasized the need

to use a software based logging tool to understand the software usage of kiosks. Such

a logging tool was subsequently implemented to gather precise usage statistics for

Kiosks in Maharashtra and Uttar Pradesh, India. This tool collected information on

sites visited, hardware and software configurations and applications used. Jacobs and

Hersleman (2006) proposed that such systems could support community centre staff

and enable management to provide and improve service to users.

Razak’s (2009) paper discusses the aspects that contribute to the sustainability of

Telecentres in Malaysia and highlights the importance of improved methodologies for

continuous monitoring and evaluation of Telecentres.

17

Evidence of non-usage and of demand for services only becomes known when

researchers happen to conduct research on such facilities – and the findings of this

research are often delayed. This lack of real time information makes decision making

on sustainability very difficult, while at the same time it is becoming ever more

important due to the changing needs of users and the introduction of the latest

technologies.

The urgent need for an efficient process that will perform continuous monitoring.

Dependent upon an electronic, validated model that will take into account the common

processes and data identified above, is therefore evident. Therefore this lack of

common business processes, despite the use of common attributes for analysis, created

an impetus to formulate a model which would incorporate these attributes and

processes, that was then verified and partially validated by (Pancham, Millham and

Singh 2013) for use in Telecentres.

(Veeraraghavan et al. 2006) tested an electronic software tool which collected

information on sites visited, hardware and software configurations, and the applications

used. By querying the data gathered, information on number of users, applications

used, time spent, and sites visited and internet searches could be obtained.

Results from this research show that for certain types of questions the tool appeared to

gather more reliable data than did surveys. For example, the survey reported an

increase in customer traffic on particular days whereas the tool did not show this

consistent bias; 53% of the kiosks surveyed reported higher customer traffic than did

the tool; in 69% of the cases the survey reports overstate usage and in the remaining

31% of cases the survey understates traffic by between half an hour and four hours per

day. Thus, there is an inconsistency in application usage between the survey and the

tool results. Electronic monitoring, through software, appears here to produce more

accurate results.

However, there were weaknesses in implementation, and collection of data from the

system collected by the tool was combined using a memory stick. This was not only

18

labor intensive, but also it did not operate in real time and was error prone. Another

drawback of this tool was that the user login was based on the continuous idle time

exceeding a certain value, based on a heuristic. Furthermore, this design did not collect

data on user profiles and therefore cannot be used to compare usage with user profiles.

However the similarities of the model used by (Veeraraghavan et al. 2006) and the

design of the model by Pancham (2015) in which the attributes and processes are the

same, indicates that there is a common need and applicability of the model.

The research by (Veeraraghavan et al. 2006) highlights the issues identified in the

earlier collection of data by researchers and the attempts to design electronic data

collection tools in this regard. Most of the attributes used are common to those

identified by authors in section 2.3.9. The verified model (Pancham, Millham and

Singh 2013) is an attempt to present a universal model using the common attributes

used in their electronic tool as well as the common attributes identified by the authors

in section 2.3.9. The implementation of such a model will result in the continuous

collection of data that is independent of the researcher.

2.7 Research Approaches for Development of an Electronic Model

The research approach to the development of an electronic operational monitoring

model must include a combination of the philosophical worldview of the researcher,

research designs and research methods. (Creswell 2013) sees worldview as a general

philosophical perspective regarding the world and the essence of the researchers’ con-

tribution to the study, whist other authors call these perspectives ‘paradigms’ or differ-

ences in epistemology or ontology. Creswell goes on to explain that these worldviews

can be categorised as falling within postpositivism, constructivism, transformative ap-

proaches, or pragmatism as indicated in Table 2.1.

Table 2.1 Four Worldviews (Creswell 2013)

Postpositivism Constructivism

 Determination

 Reductionism

 Understanding

 Multiple participant meanings

19

 Empirical observation and measurement

 Theory verification
 Social and historical construction

 Theory generation

Transformative Pragmatism

 Political

 Power and justice oriented

 Collaborative

 Change-oriented

 Pluralistic combination of two or more

world views to address a real world prob-

lem

Positivism

 Experimental

 Reliance on existing methods and theo-

ries

 Reliance on establishing quality through

established methods

(Guba and Lincoln 1994) suggest three questions that need to be addressed in defining

a paradigm:

1) What is the nature of reality that is addressed (ontology)?

2) What is the nature of knowledge (epistemology)?

3) What is the best approach to obtaining the desired knowledge and understanding

(methodology)?

(Creswell 2013) definition of positivism includes the need to identify and assess the

causes, which are identified through experimentation, that influence outcomes. Posi-

tivism is based on objectivity that uses established methods to explore phenomena, to

generalise reality in order to build a model, and establish the quality of the derived

product (Lincoln, Lynham and Guba 2011). Positivism relies on using established

methods or developing new methods using existing methods (Creswell, 2013). This

definition of positivism also includes a reductionist approach in that the goal is to re-

duce concepts into a distinct set of ideas in order to evaluate the variables that constitute

hypotheses and research questions. Postpositivism is similar to positivism but it as-

sumes an underlying theory which can be supplanted by a new derived theory. If no

theory exists to be verified, this worldview is not applicable. A transformative

worldview involves research related to political policy and change (Mertens 2015). If

research is not directly related to political change, this worldview is not applicable.

Another worldview, constructivism is dependent on the multiple varying viewpoints of

20

the community of participants. Research that is not reliant on participants’ viewpoints,

but which relies on purely objective data, is not suitable for the constructivism

worldview.

The methodology may be defined as a system of methods within the paradigm and the

method refers to the systematic rules or tools used to collect and analyse data for re-

search (Mackenzie, 2006). It is important to note and differentiate research method as

procedures, schemes and algorithms used in research whilst research methodology as

a systematic way to solve a problem (Rajapakse 2012).

Systems development as a research methodology is a multi-faceted approach that in-

corporates further exploration of a problem, development of better concrete solutions,

and the evaluation of solutions through empirical means (Nunamaker Jr and Chen

1990). From a research methodology point of view, the steps of systems development

processes can be considered as follows: build a system, develop theories and principles

from observing behaviour, and incorporate expertise in software tools for increased

availability. These tools in turn will be utilised to assist in the development of new

systems (Kim 2013). This process is similar to the design science methodology where

the entry point is a design and development centred approach.

Within the positivist paradigm, a specific software development methodology is cho-

sen that allows the researcher to incorporate their research and further develop it into a

software model. Some of the traditional software development methodologies include

the Software Development Life Cycle (SDLC), waterfall model and rapid prototyping.

In addition, incremental (a base for non-traditional agile software development) meth-

odology is discussed due to its increasing prominence.

The most widely used methodology used to develop information systems is the SDLC,

which comprises a sequence of well-defined linear tasks such, are requirements elici-

tation, analysis, and detailed design. The limitations of the SDLC methodology – for

21

instance, the traditional approach using a Data Flow Diagram (DFD) – prompted sev-

eral new approaches that include data oriented, prototyping, object oriented, and stra-

tegic methodologies (Avison and Fitzgerald 2003).

According to (Royce 1970) the waterfall methodology is characterised by distinct

phases of requirements elicitation, analysis, program design, coding, testing and oper-

ations. During each of these phases, detailed documentation of each phase is required

by the team for communication, operations and maintenance purposes. Each successive

phase requires completion of its predecessor phase, with documentation. This method-

ology is often used and justified on large business critical systems. However, this meth-

odology has required documentation that is time consuming to compile and maintain

as the system requirements change. Other drawbacks of this methodology include new

requirements arising after certain phases have been concluded, with no chance of their

incorporation into the project, no flexibility in partitioning the project into stages, and

difficulty in estimating time and budget for each stage. This methodology is only well

suited to cases where the requirements are well understood, non-ambiguous, clear and

final, and where product definition is final (Stoica, Mircea and Ghilic-Micu 2013).

A rapid prototyping methodology produces a dynamic model that is functionally equiv-

alent to a selected part of the product (Schach 2008). This prototype is produced

quickly in order to obtain feedback and clarify requirements from the client and users.

However this prototype must not be expanded to the final product as it often lacks full

functionality, among other things (Azeem and Gondal 2011).

Agile methodologies are based on adaptive software development methods, tailored to

client requirements, while traditional methodologies are based on a predictive approach

to these requirements (Stoica, Mircea and Ghilic-Micu 2013). These agile methodol-

ogies possess a number of advantages such as adaptation to dynamic changes, close

interaction with the client, and minimal documentation. This methodology is suited for

22

small and medium size projects. However, its non-requirement to produce detailed doc-

umentation makes it difficult for larger teams and for future software maintenance

(Stoica, Mircea and Ghilic-Micu 2013).

The design science methodology of software development itself provides a model for

the design of a model. Empirical research can be used in two ways: firstly, the valida-

tion of a designed artefact before it has been implemented, and, secondly, assessment

of the performance of a design that has been implemented (Wieringa 2010) and

(Hevner et al. 2004). Although both validation and verification can be housed in the

Design Science process model evaluation phase, it can be used for verification and

partial validation for software design before implementation. Design Science accord-

ing to (Peffers et al. 2006) is a notable process model for performing research. The

process includes six steps: problem definition and motivation, objectives for a solution,

design and development, evaluation and communication (as shown in Figure 2.1). This

process aims to develop and provide instructions for action that allow the design and

operation of IS and innovative concepts within IS which result in artefacts, models,

methods, and instantiations (Österle, H., 2011) and (Hevner et al. 2004). Although de-

sign science is used in different disciplines, one common domain is for development

of software artefacts such as monitoring systems (Baskerville et al. 2011).

Within design science methodology, the object oriented design approach is adopted

enabling analysts to decompose a complex system into smaller, more workable mod-

ules, develop modules independently, and integrate the modules to constitute an infor-

mation system (Dennis, Wixom and Tegarden 2015).

23

Figure 2.1: Nominal Design Science Process

The three main types of research design involve qualitative, quantitative or mixed

methods. Quantitative research design (collection, analysis and generalization of

numerical data) differs from qualitative approaches (understanding human experience

and meaning within a given context) (Petty, Thomson and Stew 2012). Within the

chosen methodology, different research methods may be chosen. The different types

of research methods can fall into two basic approaches to research viz. qualitative and

quantitative (Kothari, 2011). The aim of qualitative research methods is to understand

problems by investigating the viewpoint and behaviour of the people in these settings

and the context within which they operate, resulting in a rich understanding of the

meaning and context of the phenomena studied in real life (Kaplan and Maxwell,

2005). These qualitative methods are often based on opinions, case studies or complex

phenomena and are responsive to local situations, specific conditions and stakeholder’s

needs. They have the disadvantage of difficulty in generalising and of making

predictions and are also very time consuming. However, qualitative research methods

can be used to gain rich insights on narrow topics. Quantitative research methods rely

primarily on the collection of quantitative data, determining variables and constants,

and studying the relationships between them (Johnson and Christensen, 2004). Using

quantitative research methods one is able to generalize and predict based on the precise

data gathered. This type of research is useful for large samples and will mitigate

24

researchers’ bias. However, it is difficult to explore in-depth issues with quantitative

research.

Within the positivist paradigm and its appropriate subset methodology, information

systems researchers traditionally have employed a number of different research

methods that can, at one level, be broadly categorized again into two: quantitative and

qualitative. Further, triangulation of different methods ensures that the requirements

are validated accurately as the deficiencies of any one method can be mitigated by

combining methods and thus exploiting their individual advantages (Holtzhausen

2001; Yeasmin and Rahman 2012), thus increasing validity (Hussein 2009). Interviews

are a common method of data collection in qualitative research. Interviews may be

conducted in structured, semi-structured or unstructured form (Robson 2011).

2.8 The Development Process for a Validated Monitoring Model

The lack of a model highlighted in the above research discussion, strongly indicates

the need to design an electronic monitoring model for common Telecentre processes.

The model will need to be developed using an appropriate methodology. This model

will also need to be verified to ensure that it meets the users’ needs as well as being

validated to ensure that it is built correctly. Using an appropriate paradigm,

methodology, and approach, the first step in developing a monitoring model is to gather

the requirements of the stakeholders who will require such information. The RE

process for designing a system includes the following five main activities -

requirements extraction, analysis, documentation, requirements validation and

management (Attarha and Modiri 2011).

The recognised and “standardised” RE methods of these activities are depicted in

Figure 2.2 which is adapted from (Xuping 2008). The most commonly used and

appropriate method / methods were evaluated and selected for this research.

25

2.9 Requirement Engineering

2.9.1 Requirements Elicitation

A number of methods, involving both methods and tools, are used to gather

requirements. RE methods include interviews, scenarios and prototyping (Attarha and

Modiri 2011). Examples of these and other methods are discussed below.

Requirements gathering methods considered for use include traditional methods

(interviews, focus groups), prototyping, model driven technologies (use cases,

scenarios), and other methods (goal oriented software engineering, aspect oriented

software engineering, extreme user centred design, and quality models and goals).

These recognised and “standardised” RE methods and tools are depicted in Figure 2.2

which is adapted from (Xuping 2008). This outline was chosen to include a broad range

of commonly used methods from traditional to modern.

Requirements elicitation will normally begin with the functional aspects indicating

client requirements. The procedure for determining the client’s requirements is called

requirements elicitation (or requirements capture) (Schach 2008). Once the original set

of requirements has been formulated, the process of clarifying and expanding them is

termed ‘requirements analysis’.

Most of the methods listed in Xuping’s diagram were investigated for suitability for

this research. Although the diagram outlined a number of methods categorised in

different software development phases (Wilson, Rosenberg and Hyatt 1997), some of

these methods, such as Automated Requirements Measurement, were not included in

this research as investigation indicated that these methods were too complex, or

awkward to use, and required well-defined requirements as their starting point

26

Requirements

Elicitation

Requirements

Analysis

Technologies

and Tools

Applied in

RE processes

Requirements

Description and

Modeling

Requirements

Evaluation and

Validation

(1) Traditional methods: questionnaire, summary, interview, group

 discussion, analysis of existed documents

(2) Prototyping technologies: suit systems which have uncertain

 requirements, using stakeholders early feedback to establish

 prototypes, though analysis and discussion to elicit clearer

 requirements

(3) Model-driven technologies: elicit requirements using specific

 information class model. goal-based method and scenario-based

 method are representative ones.

(4) Cognition technologies: the knowledge acquisition technologies

 which are applied in knowledge-based systems are used for

 requirement elicitation

(5) Goal oriented is concerned with the use of goals for eliciting,

 elaborating, structuring, specifying, negotiating documenting

 and modifying requirements.

(6) Aspect oriented Software Development on the other hand

 separated all features of a program and modularises them

 ...

(1) Object-oriented analysis (OOA)

(2) Structured analysis (SA)

(3) Prototypical analysis

(1) Nature language: words, tables, figures
(2) Function-oriented technologies: function decomposition
diagram, etc.
(3) Data-oriented technologies: data flow diagram (DFD), E-R
diagram, data dictionary, etc.
(4) Procedure-oriented technologies: IDEF0, control flow diagram,
etc.
(5) Object-oriented technologies: UML, ODL, class diagram, etc.

(1) Appraisement: multi-subjects experts group appraisement, outer

 appraisers, etc.

(2) Test Case: design and establish one or more possible test cases,

 in order to examine whether the system can satisfy the

 requirements

(3) Automated Requirement Measurement (ARM)
(4) Prototyping and formalizing code execution: state transition
 diagram, petri net, time sequence diagram, etc.
(5) Simulation technologies: OPNET, NS2, etc.

Figure 2.2 Methods applied in RE process - Adapted from (Xuping 2008)

Several RE methods have been proposed by researchers in order to reduce requirements

ambiguity and to improve requirements clarity (Bee Bee, Bernardo and Verner 2010).

A common method proposed by (Bee Bee, Bernardo and Verner 2010) is a

27

combination of face-to-face RE methods such as stakeholder and focus groups

interviews. (Face-to-face interviews are possible if the user community is accessible

and has the time to dedicate to such requirement gathering sessions. These respondents

also need to have expertise in the system to be designed, among other things). This

coincides with (Xuping 2008) traditional method of requirements elicitation as

indicated in Figure 2.2.

However, if there are a large number of users, and face-to-face individual interviews

are not possible, focus groups are widely used as a qualitative method to ensure that

the requirements are coordinated and the process is efficient. This method encourages

group interaction and will generally stimulate richer responses than individual

interviews with reduced cost and time (Debus 1988; Kontio, Lehtola and Bragge

2004). However, researchers find that focus groups work well only if led by an

experienced facilitator, otherwise there is a risk that they will be dominated by only a

few members.

Focus groups are group interviews that are based on participants’ communication

(Kontio, Lehtola and Bragge 2004). Consequently, the researcher must acknowledge

both the direct answers to interview questions and the communication between

participants. Members of the team will be encouraged to deliberate each other’s

contributions. This deliberation is useful when exploring participant knowledge and

experiences. It is used to research not only what participants think, but also their way

of thinking and its context (Martakis and Daneva 2013). This method aids in

understanding the different business contexts and processes and thereby helps to

develop a good set of requirements. Focus groups are excellent data collection tools to

use when one is new to a domain and seeking ideas for further exploration as well as

identifying what is important (Lethbridge, Sim and Singer 2005).

Another data collection method is the analysis of documents (Xuping, 2008). This

method is helpful for understanding business processes but there is a risk that

documents may be outdated (Lethbridge, Singer and Forward 2003) and they are often

28

incomplete. Consequently, document analysis will normally need to be complemented

by other methods of requirements elicitation.

If documents are poor or unavailable, another method is to use prototyping to help to

ascertain which requirements users want, rather than helping reduce the complexity of

business and technology requirements (Bee Bee, Bernardo and Verner 2010).

Prototyping allows the developer to demonstrate (or walkthrough) a system or part

thereof quickly, allowing early visibility of the prototype and giving the user an idea

of what the final system will look like and how it functions (Azeem and Gondal 2011).

Further it gives the client and end-user intense exposure and hands-on involvement

early in the life cycle so that problems can be identified and addressed (Moscove 2011).

Prototyping is a good communication tool that allows the developer to explore ideas

between the analyst and the client as well as to exchange feedback (Eker 2014). This

communication is an important step in preparing to develop better software that is fit

for purpose, does what it needs to do, and does it well (Arnowitz, Arent and Berger

2010). Although the prototype is not used by the client directly, it prepares the analyst

in providing the best possible solution. A prototype is used to obtain tacit information

from the user after the user has been shown the prototype and after some interaction

with him/her (Rantapuska and Millham 2010). In addition, concepts of complex

systems can be demonstrated using a working model where requirements are further

elicited and clarified.

Although prototyping promises positive results there are disadvantages such as the

time and cost involved in delivering a prototype, too many iterations of a prototype

resulting in dissatisfaction and impatience amongst users, and reducing time for

documentation and testing, which could result in maintenance problems (Moscove

2011). Prototypes are usually constructed quickly mainly to obtain feedback,

demonstrate particular features, or prove a concept. They are generally discarded after

use thereby costing the developer time and effort. The prototype in fact, should not be

extended to a live system because it lacks detailed design within its composition and

often does not have important related aspects such as security. Although a prototype is

indicative of the potential features of the live system it is not recommended in a

29

production environment, as it is not constructed from a detailed design. If this is rolled

out to a live environment it could lead to implementation of incomplete systems and

project management difficulties such as unreasonable expectations of completion times

(Azeem and Gondal 2011).

Aspect Oriented Software Engineering (AOSE) is aimed to address previously

overlooked issues of modularizing crosscutting concerns (Mohamed, Hegazy and

Dawood 2010) by addressing the relationships between both functional and non-

functional requirements and aspects of a system. However, within this method, there is

a lack of agreed processes in separating concerns and there is no universal model that

can be followed to translate requirements to aspects. Aspect-Oriented Software

Development (AOSD) which follows AOSE takes imperfectly-defined aspects and

encapsulates them into objects, structurally similar to an object-oriented system

(Filman and Friedman 2000). One problem with AOSE and AOSD is its focus on non-

functional requirements which makes elicitation of functional requirements from

stakeholders secondary and/or unavailable in this model Furthermore, not all scenarios

are suitable for aspect extraction and AOSD expects developers to be able to analyse

and extract concerns, which requires training and practice, with no universal agreement

on the method (Besa 2011). While AOSE may be useful in modularisation of non-

functional requirements, its drawbacks made it unsuitable for this research.

Another RE method that is used to elicit requirements from stakeholders in the

modelling and the development of a system is Goal Oriented Software Engineering

(GORE). According to (Van Lamsweerde 2001) GORE is concerned with the use of

goals for eliciting, elaborating, structuring, specifying, negotiating documenting and

modifying requirements. Goals are prescriptive statements of purpose whose

fulfillment requires the collaboration of agents (or active components) in the software

and its environment (Van Lamsweerde 2004). This mode of RE is useful where the

stakeholders pay attention to the achievement of goals that are clear and known such

as servicing more passengers for a transportation system or retaining cards after three

wrong passwords for an Automated Teller Machine (ATM) system. However, there is

no standard method of defining goals across systems. In practice, customers for a

30

system often find it difficult to translate their goals into measurable requirements

(Sommerville 2011).

Most business analysts and software developers interviewed by Bee Bee et al (Bee Bee,

Bernardo and Verner 2010) preferred to use interviews alone for RE, and only chose

multiple methods if the single method did not result in clear requirements. However,

choosing multiple methods ensures that requirements are clear and reinforces the

system requirements. This also minimises the shortcomings of one method whilst

maximising the benefits of other methods used (Yeasmin and Rahman 2012).

2.9.2 Requirements Analysis

Structured analysis methods evolved in the early 1980s to help clarify requirements for

a computer system before developers designed the programs. This method helps the

developer define what the system needs to do (the processing requirements), what data

the system needs to store and use (data requirements), what inputs and outputs are

needed, and how the functions work together to accomplish tasks. The traditional key

graphical model of the system requirements that are used with structured analysis is

called the DFD that depicts the flow of data between processes. According to (Braude

and Bernstein 2011) nodes shown as circles or rectangles represent processing units,

arrows between nodes denote flow of data, and data stores are denoted by a pair of

horizontal lines. Data and processes are considered separately in a traditional

approach.

The combination of data and processes led to the new object oriented approach adopted

by (Booch, Rumbaugh and Jacobson 1999). In an object-oriented approach,

information systems are viewed as collections of interacting objects consisting of

encapsulated data and operations that manipulate them. During Object-Oriented

Analysis (OOA) the objects and use cases are analysed and documented (Satzinger,

Jackson and Burd 2011). Most current software development uses object oriented

languages as well as OOA with objects and with use cases at an early stage of software

development where use cases depict user tasks (Dennis, Wixom and Tegarden 2015).

31

The implementation of OOA and Object Oriented Programming (OOP) can be

extended to different domains.

2.9.3 Requirements Description and Modelling

There are many challenges in gathering and representing requirements. One of these is

highlighted in the (Raatikainen et al. 2011: 257) case study which indicates that use of

natural language in requirements definition entails that “natural language sentences

provide a relatively one dimensional and fragmented view of requirements”. A

description of requirements using natural language is context dependent and therefore

natural language cannot clearly define the processes. Various problems can arise when

natural language is used to write user and system requirements: difficulty in using

specifying requirements in a precise and unambiguous way resulting in a lack of clarity,

and difficulties in distinguishing functional and non-functional requirements, and

amalgamation of requirements (Sommerville 2011). Most of the system requirements

are written in a natural language. However, is not easy for the system development

team to understand unambiguously a document which is written in a natural language,

without domain specific knowledge and furthermore, it is difficult to check the

accuracy of these requirements (Hon, Gayen and Ehrich 2008). Using natural language

for specifications is also prone to be culturally dependent and therefore to result in

ambiguous or unclear meanings (Yang et al. 2011).

In order to mitigate this ambiguity, formal specifications, rather than specifications in

a natural language, are proposed as they are unambiguous, analysable and facilitate

rigorous testing procedures. However, there are disadvantages of using formal methods

for specification and latter workflows, as they are highly dependent on stable and

strictly defined requirements. If their requirements are not well defined, as is often the

case, formal specification is impractical. In addition, formal methods are not practical

where the target implementation language is not formally defined and, consequently,

there cannot be a crossover from formal requirements to implementation phases

(Gibson and Méry 1998).

32

Most software developers are unwilling to use existing formal methods because they

require a huge learning curve as well as enormous effort. This time and effort spent to

implement a formal method may not be worth the advantage provided by the method.

In some cases, this effort could be better spent implementing an alternative method,

such as simulation (Heitmeyer 1998). These formal specifications are very labour

intensive and hence have an increased cost in the process. For such processes to be

used personnel must be highly skilled in the methods to be used and as they are tedious

and expensive they are seen as suitable only for critical systems and hard problems,

where traditional methods are ineffective (Rushby 1997).

Development methods such as structured analysis and structured design for traditional

languages emerged in 1970s and became widespread in the 1980s. However, these

methods did not have uniformity. Unified Modelling Language (UML) consolidated

diverse structuring modelling notations including the emerging object oriented

notations that achieved penetration into the large system area. Both the structured and

emerging object oriented modelling methodologies had their own concepts, definitions,

notations, terminologies and processes. Once the object oriented language became

prominent a number of authors produced a range of books on object-oriented

methodology, each with its own concepts, definitions, notations and terminologies

(Watson 2008). (Britton and Doake 2004) note different notations to denote process

and data flow within the same system. Each of the authors used and standardised the

best methods of structured analysis and design which maintained both the static and

dynamic views of the program. In 1995 Grady Booch, James Rumbaugh and Ivar

Jacobson combined concepts to form UML (Booch, Rumbaugh and Jacobson

1999).The final collaborative effort by these three together with many others resulted

in the final version of UML, now a de-facto standard in RE (Swain, Panthi and

Behera). UML has become the industry standard for requirements specification that

are used by analysts. The uniformity in UML has led to the development of tools that

provide multiple perspectives for analysis. It is easier to integrate the various phases

using these UML processes and tools.

33

An object-oriented process modeling approach provides a more holistic view of

business operations as it models the mechanistic processes of business along with its

human interactions (Kosalge and Chatterjee 2011). This allows objects to be easily

understood by client stakeholders. This object-oriented paradigm regards both

attributes and operations to be equally important and looks at an object as a unified

software artifact that includes both the attributes and the operations performed on the

attributes (Schach 2008). The object-oriented approach to software development has a

decided advantage over the traditional approach in coping with complexity (Munassar

and Govardhan 2011).

Object oriented processes illustrated through UML diagrams are easily understood by

client stakeholders. Several different UML tools can be used during the analysis and

design phases. In this section the use of scenarios and use cases are explained. UML

has multiple perspectives – for example, scenarios and use cases are used for end users

whilst activity diagrams and sequence diagrams are used for developers. Use cases are

a requirements discovery method that were first introduced in the Objectory method

(Jacobson et al., 1993). Objectory is an object-oriented methodology that uses design

method called ‘design with building blocks’. With this building block design in mind,

UML was designed to be used with object oriented design and development as the

dominant modelling standard. Industry experience and research validates that the UML

reflects some of the best modelling practices and that it includes notations that have

been recognized as useful in practice. Yet, basic UML has the disadvantage of lack of

modelling precision (Evans et al. 2014).

In order to address the lack of modelling precision, (Chanda et al. 2009) proposed a

formal model for UML activity diagrams which includes correctness, traceability and

consistency rules for activity diagrams and for inter-diagram. This model checks for

correctness, traceability and consistency between use case events, activity events

(analysis phase) and class events (design phase). It checks for the above criteria by

using predefined rules and depends on the definition of the different UML diagrams in

a fomal way. It does not check for any variance between the initial defined

requirements and those translated to UML constructs. (Bhattacharjee and

34

Shyamasundar 2009) explored the specification of operational semantics for the

activity diagrams of UML 2.0 for simulation and code generation. However, the

resulting model was not verified. Consequently the subsequent code generation and

simulation components could not be used. This highlights the need to verify a design

model before implementation becomes feasible.

A use case is a coherent unit of functionality expressed as a transaction between the

software product itself and the users of the software product (actors) (Booch,

Rumbaugh and Jacobson 1999; Schach 2008; Sommerville 2011; Satzinger, Jackson

and Burd 2012). Use cases are extensively used to document user requirements and to

drive the software development process (Juan Zheng, Liu and Liu 2010) (Simmons

2005). A use case generally describes several scenarios that will allow an actor (usually

a system user) to benefit from the services offered by that use case (El-Attar 2011).

Further (Bee Bee, Bernardo and Verner 2010) and (Kof et al. 2010) also recommend

employing use cases to determine requirements as they are easily understood by users.

Modelling requirements employing use cases therefore become a viable option. There

is no hard and fast rule in defining scenarios and use cases. Some people consider that

each use case is a single scenario; others, as suggested by Stevens and Pooley (2006),

encapsulate a set of scenarios in a single use case. According to Pooley, each scenario

is a single thread through the use case, thereby consolidating the common scenario into

a single use case. This has the advantage of guiding the number of use cases in a system

to the core requirements. Any variation of the core feature will be encapsulated within

a use case. A scenario may be used to illustrate an interaction or the execution of a use

case instance (Booch, Rumbaugh and Jacobson 1999) and (Sommerville 2011). A

scenario is a specific instantiation of a use case, just as an object is an instantiation of

a class (Schach 2008). Thus, a scenario is a unique set of internal activities within a

use case and represents a unique path through the use case. A fully developed use case

increases the probability of a developer thoroughly understanding a business process

and the ways in which the system must support them (Satzinger, Jackson and Burd

2012).

35

Scenarios provide partial rigour in specification, in comparison with natural language

specifications that are understandable by the end user (Somé 2005). Scenarios’ rigour

stems from pre-defined structures and rules that are understandable by users. Use cases

provide a framework for grouping and organising related scenarios (Somé 2005). One

disadvantage of scenarios is that if each scenario is required to cover all the exceptional

cases, the requirements specification will suffer from scenario explosion and

redundancy. Consequently, software developers, unless in certain domains (such as

critical systems) may not detail exceptional circumstances as this would make

specifications unwieldly.

Another modelling method is the use of formal methods. Many different modelling

notations support the precise formal description of requirements. These formal

methods support the reasoning which helps achieve completeness and consistency in

the specified requirements (Kof et al. 2010). However, formal languages have not

found general acceptance as the level of expertise required is fairly high (Krishnan

2003). In order to use formal languages, the stakeholders who approve requirements

must be familiarised with this language, which often entails the involvement of formal

language experts (Woodcock et al. 2009). A formal verification of a system will need

to be repeated every time requirements change which is not economically viable

(McDermid et al. 1998). Inability to scale up to larger systems, specificity to a

particular technical environment, and lack of corresponding formal constructs in

modern programming languages due to their complexity or constraints, are some of the

disadvantages noted by (Kneuper 1997). Furthermore, most formal languages do not

allow seamless transition from one phase to the next: for example, Z is used for

specification but it is not continued in the later phases (Crow and Di Vito 1998).

One method within formal methods is the implementation of petri-nets to represent a

program which requires that all possible states of the program be explored (Peterson

1977). Although these methods guarantee consistency at a particular phase in a life

cycle, they are time consuming as they require exhaustive formal analysis and hence

become very costly. In addition it is difficult to model every possible state (Heitmeyer

1998). This will result in a combinatorial explosion that will become difficult to

36

manage, or to check, and hard for end users to understand. Formal approaches, such as

the use of petri-nets, are therefore applicable in limited and specific domains and their

corresponding tools are constructed for research purposed and have limited usability.

Defining every possible state for non-trivial programs is difficult and time consuming

and exploring all possible states is time consuming. Object Constraint Language

(OCL), a semiformal notation for UML diagrams is also tedious and time consuming

to document. Furthermore, the normalization of post conditions in OCL needs

preferred patterns while modelling operations. Moreover, many transformations are

required before test data can be generated and complex types of redundancy or

inconsistency have to be identified manually (Aggarwal and Sabharwal 2012).

2.9.4 UML Activity Diagrams

An activity diagram is one of the nine diagrams in the UML, which shows the dynamic

aspects of systems (UML 2005). Activity diagrams emphasize the flow of sequential

or concurrent control from activity to activity.

The following UML use case diagram is used to identify the actor, use case and their

interaction. The actor can be a human or an external system (Bruegge and Dutoit 1999).

The use cases are illustrated using the symbols in Figure 2.3 where the actors include

persons and / or subsystems interacting with the system.

Actor

Use Case

Comminucation Link

Figure 2.3 use case Diagram Key

37

Although Xuping categorises various methods under RE, there is often an overlap

between the requirements phase and the early stages of the design phase. Some of the

tools mentioned above can also be used during various software phases to achieve

different objectives. For example, prototyping may be used the clarify requirements as

well as demonstrating the fesibility of a design (Azeem and Gondal 2011).

2.9.5 Requirements Evaluation and Validation

2.9.5.1 Validation and Verification

There are varying definitions given by different authors of verification and validation.

According to (Boehm 1984) verification refers to the process of establishing the truth

of the correspondence between a software product and its specification. Static methods

such as expert opinion, walk-throughs, inspections and reviews are used to establish

and document whether items, processes, services or documents conform to specific

requirements and whether the products of a given development phase satisfy the con-

ditions imposed at the start of the phase (ESA Board for Software Standardisation and

Control (BSSC) 1994; Sommerville 2011). Expert opinion is also used to resolve any

ambiguity in specifications (Bakhouya et al. 2012). Requirements modelled as use

cases, activity diagrams, and interaction diagrams are used in the process.

Walkthroughs with experts having the requisite domain knowledge is a valuable

method when the stakeholders giving the requirements have the time and skill to com-

municate these clearly. Inspections and walkthroughs are two types of reviews that

serve as important processes by a team of experts in order to identify errors as early as

possible in the software development life cycle (Schach 2008). Each of these methods

will have its own disadvantages and advantages. However, the advantages experienced

when combining the appropriate methods given above will outweigh the individual

disadvantages of each of the methods.

Validation refers to the process of establishing the fitness or worth of a software prod-

uct for its operational mission (Boehm 1984). This will entail evaluating a system at

the end of the development process to determine whether it satisfies specified require-

38

ments (ESA Board for Software Standardisation and Control (BSSC) 1994). Static val-

idation has limitations and therefore this disadvantage is addressed through dynamic

methods of validation (Ling, Jing and Xiaoshan 2009). Because developers and testers

consider verification difficult for software engineers, dynamic analysis (such as rapid

prototyping) is regarded as an effective alternative method for model validation. Veri-

fication of specification does not imply validation, consequently methods such as dy-

namic analysis must be used for validation (Bakhouya et al. 2012). Dynamic analysis

has the ability to check properties which is very difficult and costly using static analysis

(Colcombet and Fradet 2000).

Systems for modelling and simulation are developed to model physical processes or

situations, which include many separate, interacting objects. Modelling and simulation

are often computationally intensive and require high-performance parallel systems for

execution (Sommerville 2011). Simulation is best suited for systems that are to be used

in a life threatening or dangerous environment. Simulation is usually carried out in a

closed environment where the variables are known and processes have been verified.

Simulation sometimes becomes very costly and complex to set up and this cost will

need to be justifiable prior to its implementation. The domain of the system determines

the level of accuracy in the evaluation and validation required and therefore any simu-

lation must be representative of the actual scenario. Furthermore, variations and re-

sponses encountered in the simulation are restricted to the designer of such a system.

Critical systems with well-known scenarios that are subject to costly failures require

verification and validation through simulation (Ouyang 2014) and formal modelling

(Ostroff 1992).

2.9.5.2 Existing Tools for Validation and Verification

There are only a limited number of formal verification tools available to verify incom-

plete requirements that justifies the need to develop a verification tool. In most cases,

tools are not available and, even where they are; they are inflexible and have limited

support for various languages and methodologies. (Kneuper 1997).

39

Automatic verification and validation which includes checks for consistency,

completeness and dependability requirements of activity diagrams, was conducted

using graph transformation by (Rafe et al. 2009). These researchers used a graph

transformation approach to check automatically for aspects of verification and

validation. However, this transformation involves manual intervention at times, and is

very time-consuming. While, for example, informal analysis and requirements and de-

sign reviews are possible, the lack of precise semantics for object oriented modelling

makes it difficult to develop rigorous, tool-based validation and verification procedures

(Evans et al. 2014).

A number of researchers invesigated how activity diagrams could be used in the

validation and verification process in a Software Development Life Cycle (SDLC).

Linzhang et al’s research checked for inconsistency between the implementation and

the design phases by using the test cases generated from a formalised UML activity

diagram through a gray-box method. Linzhang’s research restricted fork nodes to two

exit edges only. Furthermore, concurrent activity states can not access the same object

and concurrent activity states can only execute asynchronously. These limitations will

place restrictions on the way in which business processes can be modelled using

activity diagrams. Again, a Depth First Search (DFS) method can be used to traverse a

tree stucture. However, a tree structure is not suitable for business process activity

diagrams on account of their loops and concurrent structures. In order to traverse an

activity diagram (Linzhang et al. 2004) stipulated the constraint that the decision path

be executed at most once and that all action states and transitions be covered in order

to get all basic paths – but the constraint of traversing a decision at most once negates

the free flow of paths through an activity diagram. Although a DFS graph search may

be used to traverse certain graphs, this type of search is not suitable for business process

activity graphs due to its cyclic nature

A review of tools such as Use Case Editor (UCEd) and Attributed Graph Grammar

(AGG) that transfer specifications to the design phase, indicates that these are domain

specific, costly to utilise, and have a steep learning curve. The AGG is a development

environment supporting an algebraic approach to graph transformation (Taentzer 2003)

40

while a UCEd tool produces validated requirements in the form of use cases and sce-

narios (Somé 2007). These tools have the disadvantages of being implementation spe-

cific and in addition, they are mainly developed for research purposes. The UCEd sup-

ports use case elicitation, clarification, composition and simulation. The approach is

rooted in the Unified Modelling Language (UML) (Maiden 1998). Attempts to obtain

and utilise this tool to perform any validation were unsuccessful.

The AGG tool environment consists of a graphical user interface supporting several

kinds of validations which comprise graph parsing, consistency checking of graphs,

applicability checking of rules sequences, and conflict and dependency detection by

critical pair analysis of graph rules (Runge, Ermel and Taentzer 2011). This model

will require a complete, detailed design from which the rules will translate into graphs.

It is therefore useful for validation during the later stages of implementation. Further-

more, the lack of a construct to match and transform collections of similar subgraphs

makes graph transformation complex, or even impractical in a number of transfor-

mation cases (Grønmo, Krogdahl and Møller-Pedersen 2013).

2.10 Conclusion

This chapter presented a literature review of the digital divide, Telecentres and RE. The

research highlighted the need for a common model, TeleMun, to gather the data needed

for sound business decisions, including sustainability. Although sustainability of

Telecentres is discussed by many researchers, the lack of systems to perform electronic

monitoring and reporting is also highlighted - indicating the necessity of ensuring that

accurate and timely data is available.

Several RE models were presented in order to develop arguments for this monitoring

model. It was found that the use of scenarios and use cases for RE is commonly

accepted practice in industry. The different methods and tools have their advantages

and disadvantages. By using a combination of different methods, the advantages can

41

be maximised and the disadvantages minimised. Therefore, a combination of methods

is recommended to reduce, if not eliminate, ambiguity and to ensure completeness.

The literature on RE indicates a gap in going from scenarios to use cases as well as to

activity diagrams. Manual processes used can miss some of the scenarios and therefore

there is a need for a tool to perform checking between the scenarios obtained during

the requirements and the design specifications. Against this background, there is a

demonstrable need to develop a TeleMun, which can effectively monitor Telecentres

and distribute this information to relevant stakeholders, researchers and sponsors.

42

CHAPTER 3 – Methodology

3.1 Introduction

The literature review identified the importance of Telecentres and the need for a

monitoring model to collect their operational data. Methods of developing this model

were researched and the most appropriate methods were identified. However, the

research also identified a gap within these methods in terms of an appropriate phase

consistency tool to ensure consistency between the requirements and design phases.

After the most suitable methods were identified, including design science methodology

with the object oriented analysis and design approach, the requirements were obtained

and documented using a variety of methods in UML. The requirements were analysed,

consolidated and verified using these appropriate methods. The set of requirements

and the ensuing draft design model were then iteratively refined until all requirements

and the model were finalised. Using design science methodology, a tool (VeriScene)

was also developed to fill the gap identified in the literature with respect to phase

consistency between requirements and design stages, and this tool was tested in

different domains for correctness. Once verified, it was applied against the model for

requirements verification.

3.2 Research Approach

The approach required to conduct research involves the intersection of philosophy,

research designs and specific methods (Creswell 2013). The selection of the research

philosophy, design strategy and methods will depend on the discipline, beliefs and

experience of the researcher and this will form the basis of the research methodology

and design.

3.2.1 Research Philosophy

After considering the paradigms outlined in the literature and evaluating them against

the research environment, it was decided that positivism was best suited for the

research. Rather than using the research based upon the viewpoints of participants in

43

the research environment [constructivism], validating an existing theory [post-

postivism], or advocating change on behalf of these participants [transformativism],

this research environment was constrained to collecting empirical monitoring data from

machines which best fits the positivism worldview. Because this research fits the

positivism worldview well, there is no need to consider other worldviews [including

pragmatism].

Positivism was considered the most appropriate worldview as it incorporated

mathematical formalism, reductionism, and reliance on existing methods and theories

for both development and quality. The reductionist approach described in the literature

review was used to reduce the natural language requirements identified by the

Telecentre managers to defined scenarios that were further consolidated into use cases.

Through the literature review and stakeholder input, ill-defined processes were

iteratively refined (through reductionism and design science) until they were definite

and clear enough to be translated into UML. Possible scenarios provided by

Telecentres were reduced, through commonality, to a set of scenarios and similarly

with a set of use cases. Reductionism was also utilised to reduce the set of attributes

gathered by Telecentres to a common set of attributes to be incorporated in a model.

Thus, using reductionism, a common set of data attributes to be measured was

identified. Positivism is the most suitable conceptual framework for this methodology.

TeleMun was further enhanced and verified using semi-formal action rules via the

VeriScene tool, this use of mathematical formalism also indicates a positivist approach,

which is often based on mathematical formalism in order to develop an empirical

model. A positive along with an empiricist view [that phenomena can be sensed and

evaluated] (Deshpande, 1983) was therefore adopted and this was then followed by

system development methodologies.

3.2.2 Research Design

This Telecentre research warranted both the use of quantitative and qualitative

research. One of the goals was to streamline and standardise the Telecentre processes

into a common consistent yet flexible workflow. The small number of participants

44

available and accessible for the research entailed the use of some qualitative methods.

The problems were unknown at the beginning and needed joint exploration between

the participants and the researcher.

The researcher therefore used qualitative methods to explore the problem, and

quantitative methods to analyse and formulate a solution. The qualitative methods

helped to understand and explore ill-defined processes. These qualitative explanations

of scenarios were then transformed by quantitative methods into structured and

consistent requirements. These requirements were then used in the RE workflows to

produce a uniform set of processes that would yield a consistent monitoring data set.

A combination of different methods was used to validate the requirements and the

derived model. These methods, housed within design science, included walkthrough

[requirements and prototype with Telecentre managers], expert opinion [confirming

and verifying requirements by Telecentre managers], and prototyping [demonstration

of prototype screens to verify processes]. The process involved combining methods in

such a way that the advantages of the methods were capitalised (Yeasmin and Rahman

2012).

3.2.3 Research Method

A suitable research method had to be selected. One method, a strategic approach,

involves BPR to align the process to the business objectives. This approach is used at

a higher level as compared to the process and model design level that this research

considers. In the case of this Telecentre research, the processes were not well defined

and so had to be first defined and then formalised into a model. Because the initial

processes of Telecentres were not well defined, applying reengineering to these

processes would only result in a further ill-defined mode.

A method that allowed iterative refinement of these processes, such as Design Science,

was therefore needed. Design Science was combined with the well-known and utilised

Software Development Life Cycle (SDLC) to encapsulate the requirements and to

45

design a validated and partially verified TeleMun. These methods are described in

detail in the following sections.

Figure 3.1 illustrates the progression of the process followed, together with the

relationship between the tool and the phases, models, and artefacts of the SDLC. The

phases of SDLC are followed according to the requirements needed to design for the

TeleMun and to the requirements of tool construction for VeriScene. The equivalent

models of these phases are textual description, UML and Design Science. Design

Science was used to construct the TeleMun model and VeriScene at the tool prototype

phase. The research results include the equivalent user scenarios, TeleMun activity

diagrams, and lastly the scenarios generated by the phase consistency tool. The

generated scenarios were compared with the user scenarios to ensure that all scenarios

matched.

Model ArtefactPhase

Telecentre
Process

Modelling
UML Diagrams TeleMun

P
ro

gressio
n

Requirement
Definition

Textual
Description

User Scenarios

Tool Prototype
Generated
Scenarios

Design Science
Ev

al
u

at
io

n

Figure 3.1 Phase, Model, and Artefact

3.3 System Development Methodologies

Given the previous choices of the components of research design approaches, the most

appropriate high-level methodology for the systems development approach needed to

be selected. Given different methodologies outlined in the literature review, design

science was chosen as the most appropriate due to its iterative nature. Several iterations

between the requirements and design phases were used because requirements were not

46

completely specified, or were ambiguous. For software development to be successful

there must be several iterations between the development and evaluation phases as all

requirements are not identified or completely specified at the beginning of the

development phase.

Design science is a well-established software engineering practice with a good success

record in industry as it encompasses an iterative element that most information systems

modelling the systems development require. The Design Science process consists of

the following phases: problem identification and motivation, defining the objectives of

the solution, design and development of the solution, and demonstration, evaluation

and communication of the solution. It also provides for feedback loops and iterations

that were required for TeleMun as the requirements, as explained above, were not well

defined and therefore needed several opportunities for confirmation and

reworking/redefinition. This is illustrated in Figure 3.2. This approach suited the

development of a validated TeleMun.

 Figure 3.2 Design Science for TeleMun

Various languages / models can be used to document requirements, analysis and design

artefacts including formal methods, BPR, and UML. The reasons that formal methods

and BPR were not considered are highlighted in the literature and these reasons include

complexity of understanding in formal methods and BPR being suitable for large

47

projects only. Given the size of the system, UML was chosen over BPR as UML offers

multiple perspectives of the system for various groups of stakeholders. The emergence

and advantages of UML are discussed in the literature review by reference to (Booch,

Rumbaugh and Jacobson 1999). UML activity diagrams were used to model the

Telecentre activities with specific emphasis on monitoring. UML has features for all

workflows of the systems development life cycle. Therefore, models from one

workflow can easily be migrated into the next workflow. For example, the Telecentre

use cases, formulated during requirements elicitation, can be migrated to the activity

diagrams and then later to the system sequence diagrams used in detailed design. UML

is a standardized, object-oriented, visual language for modelling software intensive

systems (Milicev 2008) which offers multiple perspectives of TeleMun. These multi

perspectives help in that the scenarios, as well as activity diagrams, are easily

understood by the end users (Telecentre managers) whilst the developers will use the

use cases to proceed to a detailed design and then implementation.

Scenarios described by the Telecentre managers are grouped into use cases that can be

easily modelled. The use cases are documented using standardised templates described

in section 3.4.2. One or more use cases are modelled in activity diagrams to represent

the process flow. Each use case is allocated a unique identification number for easy

identification, which is later used to associate it with the scenarios. The use case is also

related to a specific requirement obtained from the semi-structured interviews and each

use case achieves a specified goal. UML includes constructs such as scenarios, use

cases and activity diagrams to describe requirements. These give multiple views of the

requirements at different levels as well as adding detail to the requirement – for

example, the activity diagram shows the process flow from one activity to the next,

whilst the scenario indicates a single thread through a use case. In software and systems

engineering, a use case is a list of actions or event steps, typically defining the

interactions between a role (known in the UML as an actor) and a system, to achieve a

goal.

Although UML offers many types of diagrams that provide different views of the

system, the ones that are relevant to TeleMun, and that are relevant to the stakeholders,

48

were chosen. These relevant diagrams are activity diagrams, scenarios and use case.

Other types of diagram such as state charts and collaboration diagrams required more

formalisation. Consequently they are often used to model real time systems which

require precision and the ability to handle reactive and exceptional behaviour (Köhler

et al. 2000). These diagrams lend themselves to object oriented design and

development (Satzinger, Jackson and Burd 2012). Use case diagrams and descriptions,

together with activity diagrams were used, as these were more understandable to the

Telecentre managers who were not familiar with the details of software engineering.

3.4 Application of Design Science Methodology

Because the business processes were not well-defined in this case system, the

traditional method of using a series of semi-structured interviews from stakeholders

was used to discover initial system requirements (Xuping 2008). The requirements for

Telecentre monitoring were not known or, if known, they were not well defined;

therefore, an iterative model was used to ensure that the experts were consulted and

their inputs were fed back into the draft model for further refinement. Although experts

knew the domain, they were not equipped to express this domain knowledge as well

defined requirements for the development of an information system. The iterative

model is well suited for a domain where requirements are unclear, documentation non-

existent and processes ill defined. The defined processes and a common data set were

not formalised for this environment as would be required to proceed to the design

phase.

As indicated in Figure 3.2 the requirements (or specification) phase in design science

produces a textual description of the requirements that are then translated into UML

user scenarios. After the specification phase, the business process construction (or

design) phase produces a business model that is translated into a UML activity

diagrams

Due to the unclear requirements and consequent ill-defined processes and data set,

various strong verification and validation methods were required to ensure that the

49

requirements captured were indeed a true reflection of what was needed. This required

the selection of a triangulation of different methods to ensure a verified and validated

TeleMun at various stages of the development process. The process followed to

develop TeleMun is illustrated in Figure 3.3. This process began with requirements

elicitation followed by analysis.

50

Obtain Requirements

Create Business Model

Validate Requirements

Build Prototype

Validate Business Model

Write Use Cases Write scenarios

Revision Required ?

[Yes]

[No]

Changes Required ?

[Yes]

[No]

Finalise Model

Modify Prototype

Figure 3.3 Methodology to build and verify TeleMun

3.4.1 Requirements Elicitation

The design and development phase of the design science model began with

requirements elicitation. The principal means of requirements elicitation, as explained

above, involved qualitative interviews with Telecentre managers. To begin the

51

requirements gathering process, a series of semi structured qualitative interviews with

key stakeholders (consisting of the area manager and Telecentre managers) were used

to obtain information on preliminary requirements. Qualitative interviews were used,

as respondents are known to be comfortable and familiar with this method. The

respondents enjoyed answering questions related to their work, and researchers were

able to probe unexpected responses to obtain further or hidden requirements

(Lethbridge, Sim and Singer 2005). Because the number of stakeholders was small (a

narrow group of Telecentre managers) it was deemed unnecessary to set up focus group

interviews. Consequently, a set of requirements consisting of scenarios was drafted

which was clarified at subsequent interviews / walkthroughs. This clarification

produced the basis for subsequent stages.

The callbox and Internet café business model shown in Figure D1 and appendix D were

investigated during the initial stages of the research. One of the dangers of relying on

user requirements only, without the various stages of analysis, design and verification

along with the use of scenarios and use cases, is illustrated in Appendix D. Appendix

D shows the model derived from users’ requirements and business processes only,

without the above-mentioned stages. Consequently, the flow is awkward and does not

allow for flexibility and / or a comprehensive model.

In addition to the interviews with Telecentre managers, requirements were also based

on related research, from which a set of commonly used attributes were derived, being

those required for monitoring activities at most Telecentres throughout the world.

(Pancham and Millham 2015) developed a model for operational monitoring of

Telecentre activities based on data attributes that were identified by other researchers

and a common set of processes for Telecentres as defined by (Veeraraghavan et al.

2006).

This group of attributes was reviewed and verified by domain experts from USAASA.

The expert opinions from the area manager and Telecentre managers also formed an

integral part of the modelling, within the requirements definition process, including,

for example, services offered, services used, and payment before or after usage. These

52

managers were the most knowledgeable about the domain as a result of their daily

involvement in the Telecentres.

The TeleMun is a model designed from these requirements that represents the

activities, and their interactions with external entities, that are performed at a

Telecentre. These activities and interactions with entities form the basis of scenarios

and use cases. The data generated from these are captured for monitoring purposes.

This includes the actions that are performed prior and after the service is used. These

requirements were then analysed and drafted into scenarios that were reduced to use

cases. These use cases were used to formulate the draft activity diagrams that

encompassed the corresponding activities of the Telecentre.

3.4.2 Analysis

3.4.2.1 Stage 0 – Reduction of Attributes

The inputs consisting of attributes and processes from the literature in conjunction with

attributes and processes identified during the interviews with Telecentre managers,

were consolidated and reduced using the researcher’s expertise. This is shown in Figure

3.4.

Methodolgy

Researchers
Expertise

Consolidated
Attributes

Attributes

Input Output

Figure 3.4 Reduction of attributes

3.4.2.2 Stage 1 - Drafting and Consolidation of Scenarios

Requirements obtained from the interview processes that needed to be collated and

organised were consolidated into coherent use cases and scenarios. Initial requirements

were unstructured and vague and therefore needed structuring and clarification. Due to

limited user stakeholder interaction, initial requirements needed to be organized by the

53

researcher so that further analysis could be performed. This was the application of the

reductionist paradigm. These were documented in a suitable structured way using the

UML standard formal definitions of use cases and scenarios as detailed in tables 3.1

and 3.2.

The scenarios formulated from the interviews were consolidated into use cases. The

analysis of the scenarios would indicate that the respective use case is analysed

implicitly. Similarly, the test data gathered for the scenarios would be applicable to the

corresponding use case. Researcher opinion was used for verification and perhaps

initial validation ensuring scenarios and use cases were valid. This researcher opinion

ensured that requirements from interviews were well structured into scenarios and into

use cases that had a logical flow. Using walkthroughs with Telecentre managers

together with the researcher’s expertise, these diagrams were checked for consistency

and logical flow of events. This process formed part of Stage 1 of analysis as depicted

in Figure 3.5, where the initial set of requirements from literature and stakeholders’

input formed the input, and the researcher’s expertise and walkthroughs formed the

methodology. The possible set of scenarios and use cases formed the output.

Methodolgy

Researchers
Expertise

Possible
Scenarios

Requirements
from Literature

Input Output

Requirements
from selected
stakeholders

Possible
Use Cases

Walkthrough

Figure 3.5 Drafting and consolidation of Scenarios

As per the analysis, during Stage 1 the use case template in Table 3.1 was used to

describe each of the use cases. The UML notation in Figure 3.2 was used to design the

use cases, to indicate their actors and their related functionality. The processes

modelled in the TeleMun, and detailed scenarios defined using criteria in table 3.2,

were used to create the use cases.

54

Table 3.1. Use Case Definition

Category Description

Use Case No Use Case Identification

Related Requirements Indicate the requirements this use case partially or completely fulfils.

Goal in Context The use case’s place within the system and why this use case is important

Table 3.2: Scenario definition

Category Description

No Scenario Identification

Name Scenario Name

Preconditions What needs to happen before the use case can be executed?

Successful End Condition What should the system’s condition be if the use case executes

successfully?

Failed End Condition What should the system’s condition be if the use case fails to execute

successfully?

Primary Actors The main actors that participate in the use case. Often includes the actor

that triggers or directly receives information from a use case’s

execution.

Secondary Actors Actors that participates but are not the main players in a use case’s

execution.

Trigger The event triggered by an actor that causes the use case to execute.

Main Flow Action Steps The place to describe each of the important steps in a scenario’s normal

execution.

Extension Branching Steps A description of any alternative steps from the ones described in the

main flow.

3.4.2.2.1 Identification of Test Data for Scenarios and Consolidation of

Requirements

The Telecentre managers were consulted again and shown the draft scenarios and use

cases to obtain possible data for each scenario. (Ogata and Matsuura 2010) agree that

prototypes can be used together with concrete test data to validate requirements to the

55

satisfaction of test data for the user profiles). Scenario usage data was generated to

cover all possible combinations of users and service usage. A total of one thousand

combinations of usages of the different services was created to provide a wide range of

data including exceptional circumstances. This data was used in walkthroughs in

various stages of the methodology:

1) Analysis Stage 1 – to ensure that there was a logical flow of the draft scenarios

and their derived use cases

2) Analysis Stage 2 – to ensure logical flow within scenarios for formalisation and

reduction (see section 3.4.2.4)

3) High level Design – to ensure that the use cases encapsulate the requirements

in a complete and logical fashion (see section 3.4.3)

4) Verification – to ensure that all finalised scenarios are contained within the

TeleMun model and that a logical and consistent flow of activities exists within

the design.

Prototyping also utilised this test data to show a realistic functioning proto-system in

stage 2 of analysis in order to elicit further requirements and acquire feedback

regarding functionality. Prototyping, based on the draft TeleMun, was also used with

test data during the verification phase to ensure that the actual outputs produced by the

prototype matched the expected outputs. The matching of these outputs corresponds to

dynamic analysis of the system, resulting in partial validation of the model.

The drafting of the use cases was an iterative process and each iteration further refined

the use cases, the scenarios and the TeleMun. This refinement also follows the

reductionist principle as redundancies identified were reduced in scenarios and then in

use cases. As an example, the following facilities were offered: internet, fax, and word

processing along with other services. These facilities or services were reduced to

“Service Offering”. The loop in the first half of Figure 3.3 illustrates the iterative nature

of the design science methodology. After analysing the scenario in light of the common

attributes achieved, many of the scenarios were condensed allowing for flexibility of

the model.

56

3.4.2.4 Stage 2 - Confirmation of Scenarios

Reverting to the requirement elicitation phase, another set of interviews, showing the

consolidated scenarios and attributes to the Telecentre managers, was conducted.

Scenarios have been advocated as an effective means of acquiring and verifying

requirements as they capture examples and real world experiences that users can

understand (Stevens and Pooley 2006). The scenario template in table 3.2 is used to

describe each scenario as it is executed in the live situation. Although theoretically

possible, documenting all scenarios and then condensing them is often not done

because it is too time consuming and therefore not all scenarios are listed in their full

detail. However, consolidation of scenarios occurred during the drafting of use cases.

Similar scenarios were grouped as per their common actors and processes in order to

form a use case.

Once the possible set of reduced scenarios and use cases was formalised using the

researcher’s experience and walkthroughs, further interviews were conducted with

Telecentre managers to obtain their expert opinion on the findings. Their confirmation

of the newly derived diagrams during this Stage 3 of the analysis workflow resulted in

a verified set of scenarios and use cases. Furthermore, these possible scenarios, use

cases and initial processes were incorporated into a prototype that was demonstrated to

the users. Feedback from the users served to clarify some ambiguous requirements and

to confirm other requirements. These inputs, methods and outputs are illustrated in

Figure 3.6.

Using prototypes, clients gain an earlier and much clearer understanding of a proposed

system via an intuitive mock-up (Robertson and Robertson 2012). In this research the

requirements from Telecentre managers were not well defined, thus the prototyping

methodology presented possible functionalities, screens, and workflows that led to

opportunities for discussions about requirements, and for clarification and

confirmation.

57

Once the requirements were confirmed using the prototype they were used in the

analysis and design workflows. An object-oriented approach incorporates data and

actions within a structured set of processes that are well suited to modern programming.

Attributes and processes were identified, with documentation, which can be used for

object-oriented analysis for encapsulation into a class design. These attributes and

processes led to the formation of use cases. (Schach 2008) states that identification of

use cases and actors from the initial analysis workflow which form potential class

activities/methods in the detailed design, aids in a smooth transition from analysis to

the detailed design workflow in an object-oriented environment

Possible
Scenarios

Possible
Use Cases

Verified
Scenarios

Inputs OutputMethod

Verified Use
Cases

Expert Opinion

Prototyping

Prototyping

Figure 3.6 Confirmation of scenarios

After user cases and scenarios were finalised, a suite of test data for each finalised

scenario, as indicated section 3.4.2.2.1, was obtained. Once Stage 3 resulted in finalised

use cases and scenarios, the development proceeded to the high-level design phase.

3.4.3 High Level Design

During the first phase of the design, a draft TeleMun was developed from the valid use

cases, scenarios and business processes from analysis Stage 3. Once the requirements

in the form of scenarios and use case diagrams were confirmed, these were used to

draft activity diagrams. The tasks / sub-tasks of the use cases form the activities within

the activity diagrams; the sequencing of activities and paths within the activity

diagrams are derived from the paths of the scenarios. The methodology to verify the

model included walk through and expert opinion as illustrated in Figure 3.7.

58

Valid
Scenarios

Valid
Use Cases

Draft
TeleMun

Inputs OutputMethod

Walkthrough

Expert Opinion

Figure 3.7 High-level design process

This involved a walkthrough of the scenarios with test data for their corresponding use

cases to ensure that the use cases were representative of conditions and processes

within the requirements. Using expert opinion and walkthroughs, these requirements,

in the form of UML diagrams, were verified. Once verified, draft activity diagrams

were formulated into a model (TeleMun) to represent the design phase of the software

development cycle.

To verify this draft design, multiple traditional methods were used in order to ensure

that the requirements were verified and draft activity diagrams were preliminarily

validated as the deficiencies of any one method could be overcome by combining

methods and by capitalizing on their individual method strengths (see Figure 3.6)

(Yeasmin and Rahman 2012). As explained above, expert opinion, in the form of

managers who were experts in their domain, was used to ensure that all business

scenarios reflected the business processes and events in the draft diagrams.

Walkthroughs, with typical business test data, were conducted to ensure that all paths

of the activity diagrams were traversed and the expected outputs obtained.

3.4.4 Verification

During the second stage, the draft TeleMun was verified using a combination of expert

opinion, VeriScene, prototyping, and walkthrough of the scenarios. These

methodologies are illustrated in Figure 3.8. Using a checklist of scenarios and business

rules in conjunction with a walkthrough using a full set of test data, it was ensured that

all scenarios and all possible paths of the draft TeleMun were covered and that they

59

were representative of all TeleMun workflows. Expert opinion verified first scenarios

as legitimate and then verified the design as encompassing their processes and

capturing their data. Prototyping, representing the core feature set of functionality, used

dynamic analysis with this test data to match expected outcomes with actual outcomes,

in order to ensure that the design functionality was correct thus partially validating the

TeleMun. VeriScene was used to ensure phase consistency between the requirements

and the design phases [see section 3.4.4.1].

These various methods used in the analysis phase, clarified the originally ill-defined

requirements from specification composed in a natural language, partially verified

them, and structured them using relevant UML diagrams. The phases transformed the

ambiguous natural specifications into well-defined and structured requirements that

met the requirements of formal methods for well-defined requirements. The various

methods and stages of the methodology clarified ill-defined requirements and ensured

their consistency. Unlike the Telecentre stakeholders, the researcher had some

familiarity with formal languages, but in order to avoid the steep learning curve of

formal methods, a lightweight formal method for verification was selected.

Consequently, given that one of the requirements for formal methods is that it requires

well-defined requirements; these multi-phased methods enabled the translations that

transformed requirements into a formal notation for further verification.

The strength of formal notations within UML diagrams was used to develop a tool to

fill the gap, which had been identified in the literature concerning phase consistency

tools. The tool provided phase consistency between the requirements and design phases

involving model scenarios. Using design science, a tool (VeriScene) was developed to

traverse activity diagrams based on scenarios, in order to generate scenarios based on

the particular path(s) and activity processes traversed. These generated scenarios,

notated in terms of semi-formal actions and action link rules, were compared to the

original scenarios to ensure that the original scenarios’ flow steps were the same as

those generated by the tool. In so doing, this comparison ensured that all of the

scenarios derived from the specifications, using traditional methods, had been

incorporated into the activity diagram. Consequently, VeriScene ensured that all

60

scenarios (in the specification phase) were brought into the activity diagrams (the

design phase). This design led to the identification and formulation of action rules and

an algorithm. Figure 3.8 illustrates the process of design science applied in developing

VeriScene.

In order for the project to proceed beyond the design phase:

 the design needed to be validated to ensure that the requirements had no

inconsistencies

 the design had to be correct in order to ensure that the system was developed

correctly and that

 it satisfied the user needs during the first stage.

A grant was awarded for the full development of the TeleMun and a third party was

contracted to perform the development. Consequently, there was a need for a well-

designed system that minimized the need for changes and minimized the cost.

Publications

Compare

generated

scenarios with

those compiled

from requirements

(derived from

traditional RE

methods)

Explanation

Design an

algorithm to

traverse and

activity diagram to

produce scenarios

Develop phase

consistency tool for

Business Process

Scenarios

Lack of Verification

Tool for Phase

Consistency

Problem

Identification

and Motivation

In
fe

re
n

c
e

Objectives of

a solution

Design an

development
Demonstration Evaluation Communication

T
h

e
o

ry

H
o

w
 t
o

 K
n

o
w

le
d

g
e

M
e

tr
ic

s
,
A

n
a

ly
s
is

 K
n

o
w

le
d

g
e

D
is

c
ip

lin
a

ry
 K

n
o

w
le

d
g

e

To ensure

consistency

between the

Specification and

Design phases

Problem

Centered

Approach

Objectives

Centred

Solution

Design and

development

Centred

Approach

Observing a

solution

Possible entry points for research

Figure 3.8 DS Verification Process for Phase Consistency

61

The design science approach caters for an iterative workflow that allows for multiple

revisions of specifications and design to ensure correctness. There was an iterative

cycle between the design and demonstration phases of the design science to ensure the

requirements were accurately captured and verified. The evaluation phase of design

science included testing through comparison of the generated scenarios against the

consolidated scenarios elicited during the requirements phase. This process ensured

that all logic errors were identified and resolved. The success criteria consisted of a

correspondence between processes in the model and those in the requirements. Logic

errors identified during prototyping and presentation to the user were iterated back to

the objectives, design or development phases depending on the results that needed to

be obtained. The inputs consisting of scenarios, use cases and the draft TeleMun were

verified and partially validated through a combination of methods of expert opinion,

walkthroughs, VeriScene and dynamic analysis to produce a completed checklist of

use cases from the requirements, verified scenarios and use cases as illustrated in

Figure 3.9. These four methods formed a triangulation of methods for TeleMun

verification and validation.

Check List
Verified and

Partially
Validated
TeleMun

Inputs OutputsMethod

Walkthrough

Expert Opinion

Dynamic Analysis
- Prototyping

VeriScene

Draft
TeleMun

Figure 3.9 Design verification and validation

Using activity diagrams as the basis of development, a prototype was built to provide

both dynamic analysis verification and validation (Rantapuska and Millham 2010). In

order to simulate the Telecentre operations, test data derived from stage 1 (see section

3.4.2.2) was fed into the prototype and the output produced for each test case was

62

compared with the corresponding expected outcome. If all matches occurred, this

would indicate a partial validation of TeleMun through dynamic analysis. As explained

above, expert opinion used was a very accurate method of ensuring coverage of all

possible activities and of as far as possible, of all contingencies. Expert opinion was

used to complete a checklist confirming that all possible scenarios were covered in the

activity diagram, a walkthrough was also conducted with the test data to ensure proper

outputs were produced and that all paths were followed. VeriScene ensured phase

consistency in that the verified scenarios from the specification phase were

incorporated in the activity diagrams.

Figure 3.9 illustrates the validation process of the TeleMun where scenarios, prototype

and the TeleMun formed the inputs. The prototype, scenarios and TeleMun inputs were

fed into the walkthrough, expert opinion, VeriScene, and dynamic analysis processes

to successfully produce a verified and partially validated model.

The need for verification was important to provide developers with a verified set of

requirements so that a pilot of implemented TeleMun could be deployed by the

developer who had been awarded the grant.

3.4.4.1 Application of Chosen Research Design for VeriScene Phase Consistency

Tool

Once the activity diagrams were verified in the TeleMun model, there was a need to

ensure that all of the specifications from the earlier phase were brought down and

incorporated into the activity diagram. The lack of any appropriate tool that could be

identified from the literature led to the second implementation of design science in

order to develop such a tool that was needed to ensure phase consistency between the

requirements and the design phases. To ensure this, another method, involving a tool

to reverse engineer activity diagrams back to their original scenarios, was needed and

this tool was consequently developed. This led to the second phase that involved

63

building VeriScene to verify the scenarios created in the requirements phase, indeed to

complete this, and to be consistent.

There was an identified need to perform a formal verification of the design during

design stage 2 of TeleMun. Once the inputs were well defined using the scenarios and

use cases explained above, the activity diagrams were developed in the TeleMun. In

order to ensure correctness and broadness of applicability, two complex activity

diagrams from different domains (stock inventory control and trouble ticket), in

addition to the TeleMun activity diagram, were selected for the validation of the tool.

Design science was used to develop TeleMun up to the design phase, and design

science was used again to develop VeriScene, but in different way. The development

of TeleMun followed utilized distinct stages within phases of design science, whereas

in VeriScene these stages were blurred. The reason for this lay in the nature of what

was being developed. TeleMun needed to be carefully analysed, designed and verified

at most stages. The development of TeleMun stopped at the design phase and because

it did not lead to implementation, the output could not be used for validation. On the

other hand, VeriScene was a full prototyping tool, which produced outputs that could

be evaluated against the expected outcomes. Any mismatches would indicate errors,

which would iteratively lead to redesigning and redevelopment. Full prototyping by its

nature involves rapid development with immediate output for its evaluation. As a

result, there is less need to break down development processes into distinct phases and

to verify and validate them. Due to the nature of prototyping there is more emphasis

on the implementation and evaluation aspect with frequent iterations back to the

requirements and design phases (Kordon 2002). Design science by its flexibility

allowed both types of artefacts to be developed following its methodology.

3.4.4.2 Requirements

The initial requirements for VeriScene were obtained from the previous phases of the

TeleMun development cycle along with various similar tools identified in the literature

review, which could be used for verification. Inconsistency between the requirements

64

from end users and the design derived from this set of requirements could be identified.

The requirement of the VeriScene was to ensure that there was consistency between

the requirements obtained during the requirements phase, as represented by UML

scenarios, and the design phase as represented by UML activity diagrams. The

requirements evolved through the iterations within the design science methodology.

Tools reviewed in the literature had identified a gap in existing phase consistency tools

between the requirements and design phases (see section 2.9.5.2). It was apparent that

existing tools used semi-formal methods and notations. An initial set of requirements

was therefore drawn from the literature and these were supplemented from researcher’s

industry experience.

The requirement was that the tool use existing programming structural notation,

particularly UML, rather than proprietary formal structures. In addition, the tool should

be easy and simple to use with a short learning curve, in order to mitigate some of the

disadvantages of formal methods.

3.4.4.3 Analysis

The first stage in the analysis was to establish suitably feasible and rigorous

methodologies to develop VeriScene. Hence, suitable notations and rules that

encompassed rigour to formalise UML activity diagrams were investigated. Once these

were established the next process was to ensure that the activity diagram could be

traversed to obtain the different scenarios.

Based on the definition of a scenario as a single path of a use case (Stevens and Pooley

2006) the requirements of VeriScene were refined to traverse the activity diagram with

full path coverage. The activity diagram needs to be traversed so that full path and node

coverage are accomplished. Based on the definition of scenario, the use case needed to

be traversed in a certain way to produce the list of scenarios from which the use case

was derived. In order to traverse the activity diagrams correctly, different methods

were identified and considered – for example breadth first or depth first. Due to the

65

design science methodology, a clear distinction was often lacking between the analysis

and design phases. However, there were analysis type tasks such as reducing and

clarifying requirements and incorporating new requirements.

The second stage used a walkthrough, check list, and researcher experience to further

refine the requirements in order to accommodate advanced UML constructs such as

‘fork’ and ‘merge’. A checklist was used to ensure all nodes were visited. The accuracy

of this list was based on research experience.

3.4.4.4 Design

That the model needed to be verified to add rigour was determined during the first

application of design science to the model design. This process allowed for iterative

development and testing until the desired results were achieved.

The problem of phase consistency between the specification and design phases in the

software development process was identified from the literature review. This allowed

for the development of an algorithm to traverse an activity diagram in order to produce

a set of scenarios. Action and action link rules from another researcher were

incorporated within this algorithm to provide rigor and consistency, and the tool was

evaluated by comparing its generated scenarios from the activity diagram to those

original scenarios from which it was derived. According to the design science

evaluation process, the generated scenarios (results) were reviewed and if any

discrepancies with the manually created scenarios were identified, these discrepancies

were resolved by modifying the algorithm or by determining if there were any

unforeseen legitimate scenarios omitted from the original activity diagram. This

iterative process is in line with design science iterations of the different phases.

In this way, all possible path traversals and the consistency of the activity diagrams are

both ensured. The scenarios were defined manually using action and action link rules

as outlined in Table 3.4 (Maiden 1998). The draft activity diagram was also defined

using an action to denote a scenario step, and an action link rule to connect the steps

66

into a consistent flow. The definition of scenarios and activity diagrams using action

and action link rules provided some consistency and rigor to these diagrams. The

scenarios, as defined by these rules, followed the action flow steps as outlined in the

scenario description.

To ensure that the correct design was adopted a suitable verification method needed to

be identified and deployed. As explained above, one combination of verification

methods (a walkthrough using a checklist) ensured that all possible paths and activities

for each scenario were covered and no orphaned activities remained in the activity

diagram. Consequently, this checklist was adopted. The inputs to this checklist process

were the original scenarios of the draft TeleMun and the generated scenarios from

VeriScene. Each of the original scenarios were compared with those generated by

VeriScene using a walkthrough and any differences were resolved through

modification of the software. Figure 3.10 shows the input, methodologies used and the

result of this process.

Draft
Scenarios

Generated
Scenarios

Inputs OutputMethod

Verified
VeriScene

Check List

Walkthrough

Figure 3.10 Verification of VeriScene

Action Rules

As indicated in the analysis phase, a suitable semiformal notation capable of

encompassing an activity diagram was used. The action rules and action link rules used

in the manual specification, the set of initial confirmed scenarios, and the coding of

the different structures that are traversed in the activity diagram of scenarios, are as

follows (Maiden 1998):

Action Link Rule Definition:

 Strict sequence (A then B): Defines sequential order of actions i.e. action B occurs

after the completion of action A

67

 Alternative (A or B): Defines a choice i.e. action A or action B occurs. This is

used in the case of a Branch – Merge condition.

 Concurrent (A and B): Defines a concurrent set of actions where action A and B

occur concurrently. This is used in the case of a Fork and Join condition.

 Equal-end (A ends-with B): Define two actions A and B that end together.

Notating of Activity diagrams

The activity diagrams and initial confirmed scenarios were formally notated using the

action rules and link rules defined previously. The following nodes, together with

transitions, will be used in activity diagrams: Start, End, Branch, Merge, Fork Join, and

Guard Condition. Each activity diagram will begin at a Start node and finish at the End

node, and all nodes will be linked via a directed transition. The scenarios were formally

notated in order to increase structure and rigor which enables easier comparisons to be

made.

 Each activity diagram will have one Start node and one End node.

 Each of these actions will be linked to subsequent actions in their paths using the

Strict Sequence rule.

 Branch Merge construct rules

─ A Branch–Merge construct will be used in the case of a decision so that a single

path can be selected based on a guard condition.

─ An action (generally a question that results in a single guard condition) will link

to a decision node using a Strict Sequence rule.

─ A decision will link to a branch using a Strict Sequence rule.

─ Each of the subsequent actions following a branch will be linked using the

Alternative rule.

─ The Branch will also link to the subsequent actions using the Strict Sequence

rule.

─ Each of these actions will be linked to subsequent actions in their paths using

the Strict Sequence rule.

68

─ The last action of each branched path will be linked to the merge using a Strict

Sequence rule.

─ Each of these actions will also be linked to each other using the Equal End rule.

 Fork – Join construct Rules

─ An action will link to a Fork node using a Strict Sequence rule.

─ The first set of actions of each path following the Fork will be linked using the

Concurrent rule.

─ Each of these actions will also be linked to subsequent actions using the Strict

Sequence rule

─ The last action of each forked path will be linked to the join using a Strict

Sequence rule.

─ Each of these actions will also be linked to each other using the Equal End rule.

Table 3.3 provides a coded description of an activity diagram using the rules to

formalize the activity diagram together with the action link rules (Maiden 1998). This

table is used by the algorithm to walkthrough the activities, flows, and

decision/merge/fork/join nodes of the given activity diagram to generate all possible

scenarios. The algorithm takes into account decision and parallel activities during its

walkthrough.

69

Table 3.3 Formalized notation, by action and action link rules, of the Telecentre activity

diagram

ID Action One Name Rule Name Action Two Name

30 Start Strict Sequence Start of Day

31 Start of Day Strict Sequence Request Service

32 Request Service Strict Sequence Log User Profile

33 Log User Profile Strict Sequence Service Available

34 Service Available Strict Sequence Branch-Service Available

35 Service Available-Yes Alternative Service Available-No

36 Branch-Service Available Strict Sequence Bill Usage

39 Bill Usage Strict Sequence Allocated Service

41 Allocated Service Strict Sequence Use Service

43 Use Service Strict Sequence Successful Usage

44 Successful Usage Strict Sequence Branch-Successful Usage

45 Successful Usage-Yes Alternative Successful Usage-No

46 Branch-Successful Usage Strict Sequence Rate Service

47 Rate Service Strict Sequence Merge-Successful Usage

49 Branch-Service Available Strict Sequence Join Queue

50 Join Queue Strict Sequence Continue Wait

52 Continue Wait Strict Sequence Branch-Continue Wait

53 Continue Wait-Yes Alternative Continue Wait-No

54 Branch-Continue Wait Strict Sequence Service Available

55 Branch-Continue Wait Strict Sequence Merge-Service Available

56 Branch-Successful Usage Strict Sequence Reuse Service

57 Reuse Service Strict Sequence Branch-Reuse Service

58 Reuse Service-Yes Alternative Reuse Service-No

59 Branch-Reuse Service Strict Sequence Service Available

60 Branch-Reuse Service Strict Sequence Refund Fee

61 Refund Fee Strict Sequence Merge-Successful Usage

62 Merge-Successful Usage Strict Sequence Merge-Service Available

63 Merge-Service Available Strict Sequence End of Day

66 End of Day Strict Sequence End

VeriScene Algorithm

After the diagrams were formally notated, a suitable algorithm needed to be developed

to traverse the activity diagrams to generate scenarios as per the definition. The final

VeriScene algorithm, iteratively developed for the scenario generation tool, is

expressed in pseudo-code as follows:

Create List of Rules

Set Path Traversed

Count Paths Remaining

While there are paths remaining

70

 Create Scenario Header for a new scenario

 Set Available Paths = 1

 While Scenario is not complete

 Get next Rule

 If ActionOne = ‘Branch’

 IF ActionTwo = ‘End’ OR Loop Identified

 Set Scenario Complete

 Save Action as scenario action

 ELSE IF ActionTwo = ‘Fork’

 IF AvailablePaths > 0

 Save BranchPaths traversed

 Call ProcProcess Concurrent Actions

 ELSE

 Find the next available Path

 IF another path is available

 Prepare to Get Next Rule

 END

 ELSE

 IF AvailablePaths > 0

 Save BranchPaths traversed

Save Action as scenario action

Prepare to Get Next Rule

 ELSE

 Find the next available Path

 IF another path is available

 Prepare to Get Next Rule

 END

 END

 ELSE

 IF ActionTwo = ‘End’ OR Loop Identified

 Set Scenario Complete

 Save Action as scenario action

 ELSE IF ActionTwo = ‘Fork’

 IF AvailablePaths > 0

 Call ProcProcess Concurrent Actions

 ELSE

 Find the next available Path

 IF another path is available

 Prepare to Get Next Rule

 END

 ELSE IF ActionTwo = Branch and PathTraversed = 0

 Save Action as scenario action

 Update BranchPathsUsed

71

Prepare to Get Next Rule

 END

 ELSE

 IF AvailablePaths > 0

Save Action as scenario action

Prepare to Get Next Rule

 IF Loop Encountered

 Set Scenario Complete

 END

 END

 END

END

Proc ProcessConcurrentActions

Set PathsRemaining

While PathsRemaining > 0

Get Next Rule

Save Action as scenario action

IF ActionOne = ‘Fork’

 Decrease the available paths

IF ActionTwo = ‘Join’

 Get PathsRemaining

 IF PathsRemaining > 0

 Set Next action to Fork

Save Action as scenario action

END

END

Proc UpdateBranchPaths

Get BranchPaths

Get NoOfBranches in Current Branch

While BranchPaths are available

 Get Next Branch

 Increase BranchPaths = BranchPaths + NoOfBranches -1

END

3.4.4.5 Implementation

As indicated in the design the algorithm was coded, implemented and evaluated for

correctness. If any errors were found the algorithm was refined, re-implemented and

re-evaluated. The algorithm was also tested against two different domains viz. ‘trouble

ticket’ and ‘order processing’ as indicated in Figure C1 and Figure C2 in appendix C.

72

3.5 Summary

This chapter described both the different research methodologies that were evaluated

and how positivism and reductionism were selected as the most appropriate conceptual

frameworks for the research. The research design included both quantitative and

qualitative research methods. Design science was selected as the overall methodology

due to its iterative nature that suited the development, verification and partial validation

of TeleMun with its new/clarified requirements. A combination of different methods

included walkthrough, expert opinion and prototyping, was used during different stages

to correct errors and refine / manage new requirements.

The model is limited to high-level design as implementation of the model is beyond

the scope if this research. As this model is being developed by an outside party, the

strength of the methods chosen for requirements elicitation, analysis, design, and

verification is demonstrated by the fact that these requirements and design were

presented to, and accepted by, the developers without any required changes

(Ramjugath 2015). In addition, the methods used ensured the scenarios identified in

the requirements elicitation were complete and consistent. A gap identified from the

literature in available methods led to the development of a universal software tool,

VeriScene, using the same methodology and using some of the same combinations of

methods. This tool has also been used on other non-trivial examples to demonstrated it

universality. The next chapter presents the results obtained from the application of the

selected methods in the design and validation of the TeleMun.

73

CHAPTER 4 – Results

4.1 Introduction

The methodology chapter identified and justified an appropriate research worldview,

approach, research methodology, and methods for the development of a Telecentre

operational monitoring model and for the software development of a required phase

consistency tool, VeriScene. The Design Science approach was chosen due to its ability

to iteratively correct errors found at later stages of the software lifecycle and refine

requirements. At different phases of the software lifecycle, various combinations of

methods were used to clarify and verify/validate requirements to ensure a proper

design. This chapter shows how the requirements were elicited and then, through

methods at various stages, requirements/design were verified or errors discovered with

iterations back to the appropriate phases for correction. Examples of errors/omissions

found at various stages are given to show the usefulness of the multi-step methods in

identifying these, and ensuring that the final requirements and design are well

structured, consistent, and easily implemented.

 The VeriScene tool was designed and developed to verify and partially validate the

operational Telecentre model design. The chapter concludes with the results of the

comparison of the initial scenarios and those generated by the VeriScene tool.

Scenarios, use cases and activity diagrams were drafted, consolidated, and refined to

produce a draft TeleMun using the methods in the various stages of analysis and design

outlined in the methodology. Through the methods of verification and validation this

draft TeleMun was used to create a final TeleMun. As the requirements were refined,

the draft TeleMun was altered to reflect these changes. After the requirements were

verified, a final TeleMun was produced. Using the methods outlined in the

methodology and shown in Figure 4.1 the final TeleMun was verified and partially-

validated.

74

4.2 TeleMun Model

The TeleMun resulted from the combination of research, observations and close con-

sultation with local Telecentre representatives. The scenarios noted were documented

using UML diagrams and were later validated using the VeriScene tool that was de-

signed and implemented by the researcher.

4.2.1 Requirements Elicitation

After a series of interviews with selected Telecentre stakeholders, their initial

requirements were obtained. During these interviews, Telecentre managers presented

the different scenarios that could be experienced at the Telecentres and the managers

outlined the different business processes of the Telecentres. These initial requirements

formed the basis of the inputs required for a more detailed analysis. An example of an

initial requirement (described as a ‘scenario’) that required expansion was power loss

at the Telecentre. When this loss occurs, a record should be kept which records when

the loss occurred and when power was restored. Consequently, this requirement was

expanded to require a device that will detect both power loss and its duration. This had

to be installed in such a way that it could not be inadvertently disconnected by the

Telecentre users or managers. This ensured that accurate records of power losses could

be kept.

As new scenarios were discovered in subsequent stages, they iterated back to the

requirements phase as per the Design Science model. Another example of a new

scenario being identified and included was loss of internet connectivity. Since most of

the users visit the Telecentres to browse the internet, it was important to establish when,

and for how long, this connection becomes unusable.

As indicated by requirements elicitation, the attributes identified must be recorded

when a user requests a service. The initial attributes identified through the interviews

were supplemented by additional attributes identified from an analysis of the

Telecentre monitoring literature. When users request a service that is not available, a

record of the user profile and service is made. As part of the Telecentre process, the

75

user is requested to wait if the service is unavailable and this waiting time needs is

established and recorded. This type of data will inform future needs of the Telecentre.

Initial data attributes from interviews identified for monitoring purposes included age,

distance from Telecentre, employment status, specific application usage, browser

usage and sites visited. Together with this data, the managers identified Telecentre

usage scenarios such as fax, photocopier, as well as specific applications usage such as

word, and excel. Common data attributes of Telecentre monitoring, identified through

the literature review, complemented these initial data attributes. Together these

attributes and scenarios contributed to a broad scope of Telecentre operations.

4.2.2 Analysis

Analysis and design are quite closely linked. As a result, the draft activity diagrams

form part of the preliminary design phase. As the analysis progressed, the correspond-

ing activity diagrams were refined.

4.2.2.1 Stage 0 – Reduction of Attributes

A total of twenty attributes were identified from the literature review as detailed in

Table A1 of Appendix A. Common attributes such as age category, profession, distance

from Telecentre, and gender were identified from the literature and from the interviews.

During this Stage 0, processes were identified such as use of the internet, fax, photo-

copier, and preparation of a document, payments for services rendered, and recording

of internet and power outages.

4.2.2.2 Stage 1 – Drafting and Consolidation of Scenarios

Once the initial requirements were obtained the researcher’s expertise and the expert

opinion of the Telecentre managers were used to formalise these requirements into

UML scenarios and use cases with reduction and non-duplication. As part of this

reduction, walkthroughs of scenarios were utilised in order to identify common and

redundant processes and to ensure proper process flow for each draft scenario. During

the refinement process, commonalities were looked for and categorised accordingly.

76

As an example, the Telecentre managers explained that users will visit the Telecentre

to write CV’s, browse the internet and send faxes, amongst other things, as indicated

in Figure 4.1. These were consolidated into a single scenario ‘Use Service’. This gives

flexibility as fax is being replaced by scanning and email. Several iterations of this

consolidation process were carried out in conjunction with expert opinion sessions to

affirm that the use cases and scenarios were accurate and a complete representation of

the requirements. The test data was reduced and modified to fit the consolidated

scenarios. Further reduction and consolidation of events is indicated in Figure B3

where processes are executed once after a “Self Service” decision is made.

77

Use Service

Launch
Browser

Start
App

Print
Doc

Work
Handed In?

Service Type?

[App]

[Internet]

[Print]

Use
App

Close
App

Surf
Internet

Close
Browser

[Copy]

ScanCopy

Hand in work?

[No] [Yes]

[Fax]

[Scan]

Fax

PC On?

Switch
PC On?

Equipment On?

Switch
Equipment On?

Service Type? Service Type?

Hand Over Work

User Exit

Administrator
performs work

Call User

User collects
work

[No] [Yes]

End of day

Switch
Equipment Off?

Figure 4.1 Initial use case – Use Service

78

4.2.2.3 Identification of Test Data for Scenarios and Consolidation of

Requirements

Once the scenarios were consolidated each required test data for the walkthrough

process to be conducted in subsequent phases. The following scenario shows the

sample test data identified as being required for the walkthrough process. A user

requests the use of a computer to surf the internet. From this scenario, the data that was

required is tabulated as shown in table 4.1.

Table 4.1 Data for scenario

No Attribute Typical data

1. Age 20

2. Occupation Unemployed

3. Distance from Telecentre 5 Km

4. Service requested To surf the internet

5. Payment type Cash

To use the developed prototype, a suitable test suite was needed. Using the test data

that was set up in Table 4.2, 1000 scenarios were generated for a six-month period

covering all of them. This test data consisted of a combination of the different age

categories, and possible equipment and occupation categories obtained from Telecentre

stakeholders, in addition to different scenario paths that these different users might use,

including service and service type allocation.

Table 4.2 Sample Attributes

Age Category Application Name Occupation Category Services

Age 15 to 20 Word Learner Internet access

Age 21 to 30 Excel Student PC

Age 31 to 40 Power Point Entrepreneur Print

Age 41 + Publisher Unemployed Fax

 Outlook Copy

 Scan

79

The screen in Figure 4.2 below indicates the different services with sample codes that

was used for testing.

Figure 4.2 Services

The sample Figure 4.3 below indicates the age category that was used by the prototype

to generate the test cases. These age categories are used to profile the users of the

system and can be used later to generate statistics.

Figure 4.3 Age Category

Once the profile is created the administrator checks to see if the equipment is available.

The administrator will select this from a list and allocate the appropriate one to the

user. Available equipment categories are listed in Figure 4.4.

80

Figure 4.4 Equipment

The above set of test data, together with the features to capture them, formed a basis

for the subsequent phases. The test data contained inputs that would be required by

different methods at different stages to provide full test coverage of scenarios, use

cases, and activity diagrams.

4.2.2.4 Stage 2 – Confirmation of Scenarios

The combined methods of researcher’s opinion and walkthrough produced a

consolidated set of scenarios with a logical flow but these scenarios may not have been

representative of every one of the business processes of the Telecentre. Consequently,

there was a need for stage 2, which involved prototyping and expert feedback from

Telecentre managers. Although the scenarios were logically correct, they did not reflect

the actual business processes executed within the Telecentre environment. The

combined methods of stage 2 indicated that there were design errors and non-

universality of UML diagrammed scenarios concerning the business process. For

example, the billing process is executed at the beginning in some cases while at other

Telecentres, the user is not billed at all, or the user is billed at the end of usage (as are,

for instance, UNISA students). Therefore, when the prototype presenting the

Telecentre scenarios and functionality was presented to the managers they were able

to identify that these scenarios did not reflect the actual business process universally

for all of their Telecentres. From the prototype demonstration and expert opinion

feedback, this information was, however, able to be corrected, and then confirmed.

81

After consolidating the identified scenarios, they were condensed into logical use

cases. As an example the two scenarios, UC09SC01 (Payment Cash for service) and

UC09SC02 (Bill Account for service), as described in Table 4.8, were consolidate into

a use case (make payment) indicated in Figure 4.9. These two scenarios and their

corresponding use case formed the activity diagram Figure B2 in appendix B. This use

case contains a decision with each decision path constituting a scenario (either

UC09SC01 [Payment Cash for service] or UC09SC02 [Bill Account for service]).

Fifteen use cases, listed in table 4.3 covering all possible scenarios, was created after

consolidation and verification. Five of the use cases that are related to user profile and

service usage, which provide the most needed information required by the Telecentre

mangers and researchers, are explained and shown. In this chapter these five main use

cases, together with one scenario for each of the use cases, is discussed. They are

request a service; allocate service; complete usage of service; bill usage; and make

payment. The remaining use cases and scenarios are listed in Appendix E. Each of the

use cases were documented in Tables 4.4 to 4.8 using the template. These were

complemented by use case diagrams in Figures 4.5 to 4.10. Besides use cases related

to the service offering, additional use cases were identified to monitor power and

internet connectivity, as listed in Table 4.3. These use cases were included due to the

intermittent nature of the internet connection and power supply in the areas where the

Telecentres are situated. (The use case diagrams are included in appendix E).

Table 4.3 provides a full list of use cases produced in the final iteration of analysis.

These include scenarios that were discovered and / or refined during the design phase

and (as explained above) led to the inclusion of power outage and internet loss cases.

82

Table 4.3 Use Cases

No Name Description

UC01 Acquire Equipment Maintain an inventory of equipment that will

be used at the Telecentre.

UC02 Dispose Equipment Removal of unusable equipment from

inventory

UC03 Request Service The users request for a service from the

administrator is logged. This service is

executed either by the administrator (full

service) or by the user.

UC04 Allocate Service A User is allocated a service by the

Administrator

UC05 Start Application Log the start of an application

UC06 Terminate Application Log the close of an application

UC07 Complete usage of service Log the completion of usage of a service and

completion of a survey.

UC08 Bill Service Bill for all services rendered

UC09 Make payment Record all payments received

UC10 Identify Internet connection

fault

Record all internet connection failures

UC11 Restore Internet connection Record all internet connection restorations

UC12 Power failure Record all power failures

UC13 Power restored Record when power is restored

UC14 PC is switched on Record all instances when the PC is switched

on

UC15 Equipment is switched off Record all instances when the PC is switched

off

The use case descriptions are described using the templates together with a use case

diagram, explained in Chapter 3. The use cases and scenarios described here represent

the most common functions performed at the Telecentres.

83

Figure 4.5 illustrates the “Request a service” use case “UC03” in standard UML version

2.0 format. The accompanying scenario(s) of a user who requests a service from the

administrator, who will log the request in the service request log, are described in table

4.4. Figures 4.11 and 4.12 show a typical screen which would capture and display the

service request and allocation of a service. The administrator logs the user profile,

involving their age and occupation category, together with the services requested. This

use case corresponds to common user profile attributes identified above. In this

scenario, UC03SC03, the process can follow one of three possible paths as extension

branching steps: viz. firstly the service is usable and the user can perform the task,

secondly the task is handed over to the administrator to perform and, thirdly, service is

not available. Note that this scenario is the scenario developed after several iterations

beyond information obtained at the initial design phase. Hence, it contains information

that was obtained at the design phase, such as the option for self-service or

administrator-service, and fed back to the appropriate phase for remodeling and

incorporation into scenarios.

Table 4.4 Request Service

Category Description

use case No UC03

Related Requirements Request a service

Goal in Context The user’s request for a service from the administrator is logged.

Scenario

No UC03SC03

Name Request a PC to use an application

Trigger User arrives at the Telecentre to use an application on a PC.

Main flow action steps 1. A user requests to use a PC for an application.

2. The administrator enters the user profile where the following

detail is captured: services requested, occupation, and age

category.

84

3. The administrator saves the profile in the service request log.

4. The user joins the queue.

Extension branching Steps 3.1 The user asks the administrator to perform the task.

3.2 The user exits.

1.1 The service is not available / unusable.

1.2 The administrator captures a reason for non-usage of service.

1.3 The user is removed from the queue.

1.4 The user leaves.

Telecentre Monitoring
System

User

Request Service

Administrator

Figure 4.5 Use Case – Request Service

Figure 4.6 illustrates the “Allocate Service” use case “UC04” described in Table 4.5,

of a user who is allocated a service by the administrator. This allocation of service to

the user is logged by the administrator, together with the user profile, in the service

request log. The use case diagram in Figure 4.4 illustrates that one of the actors is the

“service request log” as this unit delivers part of the input whilst the remaining actors

are the administrator and the user. The scenario “UC04SC02” allows the date and time

of allocation, together with the equipment and services, to be logged together with the

user profile. This data is used for operational and reporting purposes.

85

Table 4.5 use case and scenario – Allocate a service

Category Description

use case No UC04

Related Requirements Allocate Service

Goal In Context A User is allocated a service by the Administrator

Scenarios

No UC04SC02

Name Allocate PC for application usage

Trigger Availability of service and a user is in the queue for the service

Main flow action steps 1. The User / Administrator is allocated a PC for Application usage.

2. The administrator captures the service allocated and Equipment

ID against the user profile.

Telecentre Monitoring
System

User

Allocate Service

Administrator

Figure 4.6 User Case – Allocate Service

Figure 4.7 illustrates the “Complete usage of service” use case “UC07” that is

described in Table 4.6, of a user who informs the administrator the he has completed

usage of a service. In the case of the user utilising a service on a PC, he will close all

applications/services, log off and report to the administrator. The user has the option

of completing a survey that will be initiated once the log-off process is triggered. If the

user does not log off, the administrator will log off the session. If the administrator has

performed the activities on behalf of the user, the administrator will notify the user that

86

the work has been completed. The user will be given the option of completing a survey,

and will then hand the work to the administrator.

Table 4.6 use case and scenario – Complete usage of service

Category Description

Use case no. UC07

Related Requirements 1. Complete usage of service

Goal in Context 2. Log the completion of usage of a service and completion of

a survey.

Scenarios

No. UC07SC01

Name Complete usage of the service

Trigger Administrator / User has completed usage of the service.

Main flow action steps 1. The Administrator / user closes all applications.

2. The user reports to the Administrator.

3. The Administrator / user completes a survey.

4. The user exits

Extension Branching steps 3.1 The Administrator notifies the user for the completed task.

3.2 The user collects the competed work.

3.3 The user exits.

Telecentre Monitoring System

Complete Usage of
Service

User

’

Figure 4.7 User Case – Complete usage of service

87

Figure 4.7 illustrates the “Bill usage” use case “UC08” that is described in table 4.8, of

an administrator who checks the availability of the requested service and bills the user

for the service. The cost is calculated, recorded and the receipt is printed. If the user

has an account, then the account is debited, otherwise the user is billed for the service

usage. The University of South Africa (UNISA), an example of an account customer,

has an agreement with some of the Telecentres in South Africa for students to utilise

the Telecentres upon which UNISA will settle the account. This feature can be used to

accommodate any customer of this type.

Table 4.7 use case and scenario – Bill Usage

Category Description

Use case no. UC08

Related Requirements Bill Service

Goal in Context Bill for all services rendered

Scenarios

No. UC08SC01

Name Bill usage

Trigger User is in the queue and service is available.

Main flow action steps The user requests the administrator for a service.

The administrator checks to see if the service is usable.

The administrator calculates the cost and records it.

The receipt is printed.

The user pays for the service requested.

Extension branching Steps The user positively identifies himself.

The cost is billed to the institution responsible for

the payment as the account holder e.g. UNISA.

88

Bill Usage

Adminisrator

User

Client

Figure 4.8 Use Case – Bill usage

Figure 4.9 illustrates the “Make Payment” use case “UC09” that is described in Table

4.8, of a user who makes payment to the administrator for the service usage.

Make Payment

User Administrator

Figure 4.9 Use Case – Make Cash Payment

Table 4.8 use case and scenario – Make Payment

Category Description

Use case no. UC09

Related Requirements Make payment

Goal in Context Record all payments received

89

Scenarios

No. UC09SC01

Name Payment Cash for service

Trigger A user requests for a usable service.

Main flow action steps The bill is presented to the user

The user pays the administrator for the service.

Scenarios

No. UC09SC02

Name Bill Account for service

Trigger A user requests for a usable service.

Main flow action steps The amount billed is charged to the customer’s account

Figure 4.10 Use Case – Bill Account Payment

The use cases and scenarios in Figure 4.5 to Figure 4.10 were confirmed and verified

using the expert opinion of the Telecentre managers. A prototype was created and data

were captured to show the possible reporting potential, and to further clarify the

scenarios and the use cases.

Figures 4.11 and 4.12 show the feature of the prototype that mimics the design

functionality of creating a user profile when a user requests a service, and for allocating

90

a service respectively. This profile consists of a combination of attributes that were

initially set up. In order to minimize errors and have consistent data the data capture is

validated using combo boxes where applicable. The second half of the screen has a

table that allows multiple services to be captured for a user. This functionality was

demonstrated to the Telecentre managers in order to obtain feedback and to clarify their

requirements.

Figure 4.11 Create user profile

Once the services become available, the administrator searches for the users in the

queue and allocates the respective equipment to them. This feature is shown in Figure

4.12. Only the available equipment is shown in the list.

The above data was generated so that it could be used by TeleMun in order to

demonstrate the typical graphs that could be displayed and the information that could

be extracted from this data. The administrator’s capture of the user profile and service

usage, highlighted in corresponding scenarios identified in the requirements phase, and

incorporated into the tool, demonstrated the ease of use for the administrator.

91

Figure 4.12 Allocate Service

Figure 4.13 Graph of service usage over a 6-month period.

92

Figure 4.13 shows the different services used over a 6-month period. This demonstrates

the reporting potential of the prototype’s design functionality from the test data

produced.

The area manager and Telecentre managers reported that they were not only impressed

that the model met their monitoring requirements, but that they were also impressed

with the potential reporting of the model after having captured the necessary user and

usage profiles. They were very pleased with the potential outlined in Figure 4.13 which

demonstrated the simulation of the usage of different services over a six-month period.

In particular, they said that they appreciated the value of the TeleMun’s capability to

aggregate data and produce graphs of service usage and total usage. The TeleMun’s

ability to change the granularity of the reporting data enables it to produce reporting

for the different management levels, as well as providing different perspectives on the

information. This feedback from the users, in the form of expert opinion, helped refine

the model.

4.2.3 Design

Expert opinion and walkthroughs were used to refine the use cases and scenarios that

were later transformed into activity diagrams. Initial analysis of the scenarios revealed

that there were a number of different services offered by the Telecentres. These

scenarios included using an application, using the browser, copying documents,

scanning documents and faxing documents, as indicated in Figure 4.1. This figure also

shows the initial repeated check for the type of service offered. Although “Use Service”

was consolidated during stage 1 of the analysis, two checks for type of service were

done: once at the beginning when the user is allocated a service, and then again at the

end for billing purposes. The process flow was modified in design so that a single check

for the type of service was executed once at the beginning. The services initially

considered were consolidated for simplicity and extensibility. The common service is

broken down by type of service later on, after monitoring its usage time, due to specific

93

monitoring needs of service requested. The sponsors of the monitoring system wanted

to know the details of the applications used, the sites visited, equipment used and

durations of usage of the equipment. This information required a separation at the

services level for the monitoring process to deliver the correct detail. Hence, a single

use case is used to consolidate services, as indicated by the use case “Allocate Service”

as shown in Figure 4.6. This provides for simplicity in overall diagrams, but it can also

be expanded to adapt to client needs as shown in Figure 4.14.

Further external scenarios were identified during the walkthrough with domain experts

while traversing the process flows of scenarios that were incorporated in the activity

diagrams. One of these scenarios missed in the initial analysis was that there was no

prescribed method to record and manage unavailability of external services such a

power failure. Another use case identified was the refund of usage, after allocation but

before its completion, for an event occurring during usage such as internet loss. This

resulted in further investigation to incorporate missing scenarios, which necessitated

iterations back to earlier stages of the design science model, leading to further

refinement to include these new scenarios and processes. Using a similar process, other

business activities were also formalized and included in the model.

Another example of a missed scenario, this time at the design phase, was the discovery

that some Telecentres offer services on a self-service and / or full-service model. In the

case of a full-service option, the user elects to hand over their work to be completed by

the Telecentre staff. The user will then be billed for the service. Once the task is

completed, the administrator informs the user. Alternatively, the user selects the self-

service option where they will request a service and complete it for themselves. Based

on the initial requirements of only a self-service model (as documented in Figure 4.1)

this new dual service requirement also had to be refined through design science

iterations. This process now started with a decision as to self-service or full-service:

either the user would personally use the equipment, or she/he would hand over the

work to be done to the administrator, and the staff at the Telecentre would complete it.

Once services are complete, another check establishes the service as self-service or

full-service. The user is then notified.

94

Certain scenarios could not easily be incorporated into the TeleMun model due to their

non-routine nature. Scenarios such as start of day process, status of each computer,

acquiring and disposal of equipment were considered separate activities from the

routine monitoring process.

The iterative nature of the design science model using expert opinion and walkthrough

for verification therefore ensured that the design was complete and consistent. It

allowed for multiple revisions until the desired result was obtained.

4.2.4 Final Verification and Validation

The final verification and validation of the TeleMun included a walkthrough with

Telecentre managers, prototyping and the use of VeriScene and this combination of

methods is shown in section 3.4.4.

Expert opinion in the review of TeleMun ensured that the scenarios in the model

designed encapsulated the business context, processes and rules. A final walkthrough

with test data for each scenario incorporated within TeleMun confirmed that TeleMun’s

activities and flow consistently and accurately matched the Telecentre business process

flow.

The prototype, with its test data together with the TeleMun design, formed the basis of

the dynamic analysis. Using the test data in section 3.4.2.2.1 as prototype inputs, the

possible outputs were generated based on the final TeleMun. A sample output is shown

in Figure 4.14. This includes the date requested, the date the service was allocated, and

the date it was completed – also whether it was self-service or full-service, along with

the occupation and age category of the user, the service required, the equipment used

and the amount charged. These outputs were compared with the expected outputs to

show dynamic verification and partial validation.

95

Figure 4.14 User and usage Profile

Using dynamic analysis with a prototype and user generated test data, it was

determined that the actual outputs of the prototype met the expected outputs as

determined by the sample input data. Using dynamic analysis with the prototype, it was

determined that the functionalities produced by the prototype matched the business

rules incorporated within the Telecentre business processes. Due to the matching of the

actual and expected outputs produced from the selected input data, the dynamic

analysis of the prototype verified and semi-validated the TeleMun. The TeleMun was

semi-validated because the validation process ended at the design phase. In order for

full validation the functionality at the implementation phase must match the required

functionality at the specification phase. VeriScene was used to ensure design

consistency, through a semi-formal notation, between the design phase modelled as

activity diagrams and the requirements phase modelled by scenarios. This consistency

was ensured by matching the initial scenarios coded using the semiformal notation with

the generated scenarios of VeriScene [see section 4.3]. The scenarios generated by

VeriScene, which are listed in section 4.3.3 below, matched the scenarios specified

manually during the requirements elicitation and reduced during analysis. Using the

same type of test data as the prototype, a walkthrough of the activity diagram was

conducted to ensure full path coverage of paths and activities in the model

VeriScene indicated that all scenarios that were specified during the analysis were

96

indeed the complete set of scenarios incorporated within the given activity diagram and

ensured that the activity diagrams were correct and consistent. The Telecentre experts,

via expert opinion, affirmed that there was a correlation between the business processes

of the Telecentre, modelled as activity diagrams, and their initial requirements

modelled as scenarios. They further confirmed that there were no missing processes

and scenarios ensuring completeness of the activity diagram which forms the TeleMun

model.

The methods used in the various phases resulted in the final TeleMun. Prototyping

using dynamic analysis with user-given test data semi-validated TeleMun. Expert

opinion verified that the TeleMun design met their initial requirements. Walkthrough

ensured that there was full path coverage for each of the scenarios. VeriScene

demonstrated phase consistency between the design and specification phases. By

triangulation of four different methods to verify and partially validate TeleMun, any

disadvantage by one method was overcome by the advantages other methods used

(Yeasmin and Rahman 2012).

After the verification and validation processes the resulting model is illustrated in

Figure 4.15. This begins with a start of day during which all PCs are switched on ready

for usage. Once a potential user requests to use one of the services of the Telecentre,

the user profile will be logged. If the service is available, the user is allocated the

resource to be used. If the service is not available, the user is asked to wait until the

service becomes available. The TeleMun includes a flexible billing process allowing

for pre- and post- usage as well as being able to handle both cash and account users.

Furthermore, the TeleMun is adaptable to outages and / or managing queues. For

example, should there be an interruption in service the user is reallocated the service

or offered a refund where applicable. The user is asked to complete a survey once usage

is completed – but this request is optional.

Due to the application of multiple methods at various stages, errors were corrected

which resulted in a model that reflected the actual business processes as stipulated in

the requirements. The model terminates with an end of day routine during which the

97

administrator will switch off all equipment.

Request Service

[No]
Join Queue

[Yes]

Allocate Service

Log User Profile

Use Service

Service

Available?

Bill Usage

Rate Service

Telecentre operational monitoring
model

Successful
usage?

[No][Yes]

Reuse Service?

Refund Fee

[No]

[Yes]

[No]

Continue Wait ?

[Yes]

Start of Day

End of Day

Figure 4.15 TeleMun

98

Requirements for TeleMun were identified both from the literature and from domain

experts. These requirements were notated in scenarios that were then reduced to use

cases. At each stage of TeleMun’s analysis and design, a combination of methods was

used to verify these requirements. An example of a common method used was

walkthroughs, which used test data to walk through various diagrams. Using

prototyping, dynamic analysis, walkthrough and VeriScene the Telecentre Model was

verified and partially validated. As explained above, during the verification and

validation phase, a gap in existing verification tools was identified, and subsequently a

verification tool VeriScene was designed to address this gap.

4.3 VeriScene

The tool to bridge this gap was developed to ensure consistency between specification

and design phases. The tool generated all possible scenarios from a formal notation of

an activity diagram.

4.3.1 Requirements Elicitation

As indicated in the literature review, a gap was identified between the requirements

and design phases. There was a need for a phase consistency tool (Muskens, Bril and

Chaudron 2005) to ensure that the initial scenarios identified during the requirements

phase matched those in the detailed design phase. There was a need to incorporate

formal notation into the tool to add rigour. This notation was able to encode UML

diagrams, both scenarios from the requirement phase, and activity diagrams from the

design phase.

4.3.2 Analysis

The processes from the activity diagrams formed the input to VeriScene. The

requirement of the tool was to generate the scenarios from the activity diagrams. These

processes and paths were coded to enable the activity diagrams traversal. These coded

activity diagrams are shown in tables 4.9 to 4.13. VeriScene was required to traverse

all possible paths from the start node to the end node. The result of this traversal of all

99

possible paths was the generated scenarios. During the analysis, each unique path in

the activity diagram translated to one use case. Scenarios were denoted in formal

notation both for rigour and for easier comparison and generation.

4.3.3 Design

The design science methodology was used to iteratively refine the algorithm to traverse

the paths. The depth first search was iteratively modified to accommodate constructs

of activity diagrams such as loops, merges and forks, which other search algorithms do

not accommodate. During the design phase, a path traversal method was used to do a

depth first search. Several iterations were used to correct errors and incorrectly

generated scenarios, as explained above.

Tables 4.9 to 4.13 represent the coded versions of the manually specified scenarios

from the analysis phase. These scenarios needed to be coded so that they could be

compared to the automatically generated scenarios in the evaluation phase. The

sequence of actions determined the order in which the actions were coded and each

action was paired with the next. Each scenario commenced with a “Start” action and

ended with an “End” action. The individual scenarios are determined by the decisions

made which identify a unique path – for example in Table 4.9 the decision made is

“Successful usage = Yes”.

100

Table 4.9 Activity 2: Telecentre operation, Scenario 1: Successful usage = Yes

 Action One Action Two

1 Start Start of Day

2 Start of Day Request Service

3 Request Service Log User Profile

4 Log User Profile Service Available

5 Service Available Branch-Service Available

6 Branch-Service Available Bill Usage

7 Bill Usage Allocated Service

8 Allocated Service Use Service

9 Use Service Successful Usage

10 Successful Usage Branch-Successful Usage

11 Branch-Successful Usage Rate Service

12 Rate Service Merge-Successful Usage

13 Merge-Successful Usage Merge-Service Available

14 Merge-Service Available End of Day

15 End of Day End

Table 4.10 Activity 2: Telecentre operation, Scenario 2: Reuse Service = Yes

 Action One Action Two

1 Start Start of Day

2 Start of Day Request Service

3 Request Service Log User Profile

4 Log User Profile Service Available

5 Service Available Branch-Service Available

6 Branch-Service Available Bill Usage

7 Bill Usage Allocated Service

8 Allocated Service Use Service

9 Use Service Successful Usage

10 Successful Usage Branch-Successful Usage

11 Branch-Successful Usage Reuse Service

12 Reuse Service Branch-Reuse Service

13 Branch-Reuse Service Service Available

101

Table 4.11 Activity 2: Telecentre operation, Scenario 3: Reuse Service = No

 Action One Action Two

1 Start Start of Day

2 Start of Day Request Service

3 Request Service Log User Profile

4 Log User Profile Service Available

5 Service Available Branch-Service Available

6 Branch-Service Available Bill Usage

7 Bill Usage Allocated Service

8 Allocated Service Use Service

9 Use Service Successful Usage

10 Successful Usage Branch-Successful Usage

11 Branch-Successful Usage Reuse Service

12 Reuse Service Branch-Reuse Service

13 Branch-Reuse Service Refund Fee

14 Refund Fee Merge-Successful Usage

15 Merge-Successful Usage Merge-Service Available

16 Merge-Service Available End of Day

17 End of Day End

Table 4.12 Activity 2: Telecentre operation, Scenario 4: Continue Wait = Yes

 Action One Action Two

1 Start Start of Day

2 Start of Day Request Service

3 Request Service Log User Profile

4 Log User Profile Service Available

5 Service Available Branch-Service Available

6 Branch-Service Available Join Queue

7 Join Queue Continue Wait

8 Continue Wait Branch-Continue Wait

9 Branch-Continue Wait Service Available

102

Table 4.13 Activity 2: Telecentre operation, Scenario 5: Continue Wait = No

 Action One Action Two

1 Start Start of Day

2 Start of Day Request Service

3 Request Service Log User Profile

4 Log User Profile Service Available

5 Service Available Branch-Service Available

6 Branch-Service Available Join Queue

7 Join Queue Continue Wait

8 Continue Wait Branch-Continue Wait

9 Branch-Continue Wait Merge-Service Available

10 Merge-Service Available End of Day

11 End of Day End

The corresponding activity diagrams were coded using the set of actions and action

link rules defined in the methodology. VeriScene was then used to generated all

possible scenarios for the given activity diagram. These scenarios are listed in tables

4.14 to 4.18.

Table 4.14 Scenario 1, Successful usage = Yes

 A1

ID

Action One A2

ID

Action Two

1 1 Start 19 Start of Day

2 19 Start of Day 20 Request Service

3 20 Request Service 21 Log User Profile

4 21 Log User Profile 22 Service Available

5 22 Service Available 3 Branch-Service Available

6 3 Branch-Service Available 23 Bill Usage

7 23 Bill Usage 24 Allocated Service

8 24 Allocated Service 25 Use Service

9 25 Use Service 26 Successful Usage

10 26 Successful Usage 33 Branch-Successful Usage

11 33 Branch-Successful Usage 27 R a t e S e r v i c e

12 27 Rate Service 34 Merge-Successful Usage

13 34 Merge-Successful Usage 4 Merge-Service-Available

14 4 Merge-Service - Available 28 End of Day

15 28 End of Day 2 End

103

Table 4.15 Scenario 2, Reuse Service = Yes

 A1

ID

Action One A2

ID

Action Two

1 1 Start 19 Start of Day

2 19 Start of Day 20 Request Service

3 20 Request Service 21 Log User Profile

4 21 Log User Profile 22 Service Available

5 22 Service Available 3 Branch-Service Available

6 3 Branch-Service Available 23 Bill Usage

7 23 Bill Usage 24 Allocated Service

8 24 Allocated Service 25 Use Service

9 25 Use Service 26 Successful Usage

10 26 Successful Usage 33 Branch-Successful Usage

11 33 Branch-Successful Usage 31 Reuse Service

12 31 Reuse Service 41 Branch-Reuse Service

13 41 Branch-Reuse Service 22 Service Available

Table 4.16 Scenario 3, Reuse Service = No

 A1 ID Action One A2

ID

Action Two

1 1 Start 19 Start of Day

2 19 Start of Day 20 Request Service

3 20 Request Service 21 Log User Profile

4 21 Log User Profile 22 Service Available

5 22 Service Available 3 Branch-Service Available

6 3 Branch-Service Available 23 Bill Usage

7 23 Bill Usage 24 Allocated Service

8 24 Allocated Service 25 Use Service

9 25 Use Service 26 Successful Usage

10 26 Successful Usage 33 Branch-Successful Usage

11 33 Branch-Successful Usage 31 Reuse Service

12 31 Reuse Service 41 Branch-Reuse Service

13 41 Branch-Reuse Service 32 Refund Fee

14 32 Refund Fee 34 Merge-Successful Usage

15 34 Merge-Successful Usage 4 Merge-Service Available

16 4 Merge-Service Available 28 End of Day

17 28 End of Day 2 End

104

Table 4.17 Scenario 4, Continue Wait = Yes

 A1

ID

Action One A2

ID

Action Two

1 1 Start 19 Start of Day

2 19 Start of Day 20 Request Service

3 20 Request Service 21 Log User Profile

4 21 Log User Profile 22 Service Available

5 22 Service Available 3 Branch-Service Available

6 3 Branch-Service Available 29 Join Queue

7 29 Join Queue 30 Continue Wait

8 30 Continue Wait 37 Branch-Continue Wait

9 37 Branch-Continue Wait 22 Service Available

Table 4.18 Scenario 5, Continue Wait = No

 A1

ID

Action One A2

ID

Action Two

1 1 Start 19 Start of Day

2 19 Start of Day 20 Request Service

3 20 Request Service 21 Log User Profile

4 21 Log User Profile 22 Service Available

5 22 Service Available 3 Branch-Service Available

6 3 Branch-Service Available 29 Join Queue

7 29 Join Queue 30 Continue Wait

8 30 Continue Wait 37 Branch-Continue Wait

9 37 Branch-Continue Wait 4 Merge-Service Available

10 4 Merge-Service Available 28 End of Day

11 28 End of Day 2 End

The designed algorithm was coded using T-SQL stored procedures. A relational

database was created to house all the data in MSSql Server. The structure of the

database is shown in Appendix F.

4.3.4 Evaluation

The purpose of the evaluation phase was to compare the output of VeriScene with the

expected outcomes. In this case, the evaluation phase compared the original scenarios

(converted using formal notation) to their corresponding VeriScene generated

scenarios for an exact match.

105

Figure 4.16 shows the initial scenarios numbered 1 to 5 identified from the

requirements phase. These five scenarios formed a checklist that was used to walk

through the TeleMun. The numbering indicates the respective activities that are

executed for the different scenarios. A scenario is a unique single path through activity

diagram of TeleMun as defined by (Stevens and Pooley 2006). While traversing the

activity diagram and encountering a decision, one scenario will follow one path of the

decision whilst another scenario will follow the alternative path of the same decision.

In so doing, a unique path through the activity diagram for each scenario is guaranteed.

Using a checklist, each scenario is numbered to indicate its unique activities in the

diagram. In doing so, the checklist ensures that all relevant activities in each of the

scenarios are incorporated within it. Based on this criterion, traversing a path as per a

given scenario will use all the relevant processes. By matching traversed activity

numbers with relevant activities incorporated within scenarios, the checklist ensures

that all activities of a given scenario will incorporate their specified activities

Initially all scenarios begin at a start node with a common path and then, later on, are

separated by decisions. Each path of a decision contains one or more scenarios of the

initial group and nested decisions further separate the scenarios of the parent decision

path. Merges of decision path join the scenario contained with these paths. Certain

paths could lead to a previous process forming a loop. Once all processes within a

scenario are completed, the scenario terminates at the End Node referred to in Figure

4.16.

Scenario 1 – Successful first time

The following is a sequence of activities during the successful first time usage of a

service at the Telecentre. Start > Start of Day > Request Service > Log User Profile >

Service Available = Yes > Bill usage > Allocate Service > Use Service > Successful

usage = Yes > Rate Service > End of Day > Stop. After a user requests a service that

is available, the following steps occur: the user profile is logged; the user is billed; the

service is allocated; and the user uses the service. The user successfully completes

usage of the service and then rates the service and exits.

106

Scenario 2 – Service is unavailable and user waits

The following is a sequence of activities that follows when a service is unavailable at

the Telecentre. Start > Start of Day > Request Service > Log User Profile > Service

Available = No > Join Queue > Continue Wait = Yes. After a user requests a service

that is unavailable, the user profile is logged and the user joins a queue. The user is

advised when a service becomes available.

Scenario 3 – Service is unavailable and user does not wait

The following is a sequence of activities that follows when a service is unavailable at

the Telecentre. Start > Start of Day > Request Service > Log User Profile > Service

Available = No > Join Queue > Continue Wait = No. After a user requests a service

that is unavailable, the user chooses to exit the Telecentre.

Scenario 4 – Service is available and Successful usage is no – (Use chooses to reuse

service after unsuccessful usage)

The following is a sequence of activities that follows when a service is unavailable at

the Telecentre. Start > Start of Day > Request Service > Log User Profile > Service

Available = Yes > Bill Usage > Allocate Service > Use Service > Successful Usage =

No > Reuse Service = Yes. After a user requests a service that is available the user

profile is logged and the user is billed, allocated a service and then uses the service.

Whilst using the service if it is interrupted and the usage is not complete, the user can

choose to reuse the service. When the service is available again, it is offered to the user

again. The user is advised when a service becomes available.

Scenario 5 – Service is available, Successful usage is No and Reuse service is No –

(User chooses a refund after unsuccessful usage)

The following is the sequence of activities that follows when a service is unavailable

at the Telecentre. Start > Start of Day > Request Service > Log User Profile > Service

Available = Yes > Bill Usage > Allocate Service > Use Service > Successful Usage =

No > Reuse Service = No. After a user requests for a service that is available, the

following steps occur: the user profile is logged and the user is billed; the user is

107

allocated a service; and the user uses the service. Whilst using the service it is

interrupted and the usage is not complete and the user chooses to receive a refund.

Once the refund is paid, the user exits the system.

4 5

Request Service

[No]
Join Queue

[Yes]

Allocate Service

Log User Profile

Use Service

Service
Available?

Bill Usage

Rate Service

Telecentre operational
monitoring model

Successful
usage?

[No][Yes]

Reuse Service?

Refund Fee

[No]

[Yes]

[No]

Continue Wait ?

[Yes]

Start of Day

End of Day

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

5

4 51

5

5

Scenarios

Figure 4.16 Walkthrough of TeleMun with checklist

108

4.3.5 Communication

Once the evaluation of these sets of scenarios resulted in an exact match, the design

was validated. The result consisted of the original coded scenarios with their

corresponding generated scenarios.

4.4 Final Results of TeleMun

The managers noted that there were variations in the mode of operation across

Telecentres, even for the same activity. It was identified, for instance, that there are

different modes of charging. For example, one Telecentre will charge for PC usage

which will include printing, word processing and internet usage, whilst another

Telecentre will classify and charge for these services separately. Consequently,

TeleMun was designed to be adaptable to these different modes of operation. It will log

the service usage whether it is charged separately or charged as a combined service. In

the case of a combined service the service usages will be logged using monitoring

software on the PC. In the case of separate charges, such as PC usage or photocopying,

the individual service usages will be logged by the administrator.

The area manager and Telecentre manager recognized the potential for monitoring the

Telecentre activities live from a remote site. Activities such as number of people in the

queue, service usage and user profiles can all be monitored live from the data captured

by TeleMun.

4.5 Summary

The literature review identified the importance of Telecentres and the need for a com-

mon monitoring model. Hence a draft TeleMun was developed, verified and partially

validated using various industry accepted methods. These methods included

walkthrough, expert opinion and prototyping. Walkthrough and expert opinion verified

the requirements and the initial design of TeleMun. Prototyping of the model was used

to gain first hand feedback from the Telecentre managers on the use of the model and

on potential reporting capabilities. At a later stage, prototyping, through dynamic anal-

ysis using given test data, was used to partially validate the design. In order to ensure

109

phase consistency a VeriScene tool was developed and tested. VeriScene re-generated

exact scenarios, identified during the analysis phase, from an activity diagram in the

design phase, coded using a semi-formal notation. The thorough methodology outlined

in chapter 3 was followed to obtain these results.

110

CHAPTER 5 – Recommendations and Conclusion

5.1 Introduction

In this chapter, the researcher looks at what was accomplished in this research and

makes suitable recommendations based on the findings.

5.2 Overview

The literature review indicated that although there is diversity in Telecentre operations,

there are common data attributes and processes that can be consolidated for continuous

operational monitoring of their activities. An electronic model represented via software

design is the most feasible method of instituting this type of monitoring, as it will

produce results that are more accurate over a longer period than any other available

method. Results from Telecentre monitoring are critical for decision making on the

sustainability and success of their operations.

Design science (Peffers et al. 2006) was used as the overarching methodology to allow

iterative development when requirements elicitation, analysis and design methods

indicated new or missing requirements that had to be incorporated into the model. The

process incorporated the following stages: derive scenarios and use cases from initial

user requirements; reduce and verify these derived scenarios and use cases; transform

the use cases into activity diagrams in a design and then verify and validate the design.

This design is flexible and incorporates the common Telecentre operational processes.

The combination of methods ensured that the disadvantages of one method would be

overcome by the advantages of another (Yeasmin and Rahman 2012). At each stage,

this combination of methods discovered missing or new requirements that had to be

incorporated in the final design (as demonstrated in Chapter 4) in order to ensure that

the design was consistent and had a logical flow, as shown in the VeriScene results

(see section 4.3.4). See also the letter from the software company that implemented the

design into the electronic operational Telecentre monitoring system (Appendix G).

111

As a spin-off from the combination of identified methods to be used at each stage, a

gap was identified in the verification tools (Taentzer 2003) and (Somé 2007) indicating

that a simple available tool was needed that would be able to verify phase consistency

between the specification and design phases in different domains. In order to address

this gap, a tool, VeriScene, was developed that would be able to traverse activity

diagrams, regardless of domain, in the design phase, and regenerate scenarios from

which it was derived. These regenerated scenarios were compared to the original

scenarios to ensure consistency. VeriScene was developed based on a semi-formal

notation to ensure rigor and consistency. Each scenario was transformed, using these

semi-formal rules (Maiden 1998), from a visual diagram to a formalised notation which

aided comparison and enhanced rigor.

Due to the variety of methods for verification and validation and the use of a

combination of verification / validation methods at several phases of development, this

combinatorial use of methods produced a design model that was very consistent and

easily understandable. As a result, the developers implemented the design model

without any further clarifications being needed (see Appendix G). Due to the selection

of the best practices, and including the use of VeriScene, the development process,

which was made possible through the Technology Innovation Agency (TIA) grant, had

no requirement inconsistencies. The development process also demonstrated that the

scenarios and use cases encompassed in TeleMun provided a full coverage of the

selected scope of Telecentre activities. Hence, this demonstration indicated that the

practices chosen in this research were appropriate.

5.3 Research Objectives Met

1. Determine whether there are feasible models for electronic operational

Telecentre monitoring that are able to gather user and usage profiles as well as

monitor internet and power failures.

A review of the literature indicated that there were problems with traditional

means of data collection and that these affected the potential for electronic

112

continuous operational monitoring of Telecentres. The literature also indicated

that, despite the commonality of attributes and processes followed by

Telecentres, there was no common Telecentre operational monitoring model

(either electronic or manual).

2. If no appropriate model exists, to determine appropriate RE methods to capture

and verify the requirements for, and to partially validate, the ensuing model.

Determine appropriate RE methods for developing a draft common model for

automatic monitoring and for capturing a select set of information regarding

Telecentre operational activities in South Africa.

It was discovered no common operational monitoring model existed.

Consequently, a review of the literature and of best-accepted industry practice

led to the selection of an appropriate worldview, methodology, and research

methods to develop the TeleMun. The methodology adopted allowed for

flexibility for software iterations regardless of the phases. The combination of

methods for a single purpose ensured a rigour in the approach through a

triangulation of methods such that the disadvantage of one method would be

compensated by the advantages of another (Yeasmin and Rahman 2012).

3. Investigate existing, and develop new feasible, methods to iteratively validate

the requirements for this draft model and to ensure that this model meets the

requirements of

3.1 Consistency

3.2 Path coverage

The literature review indicated that a gap existed in software verification tools

able to compare scenarios derived from the requirements and scenarios from

the design phase. This gap led to the development of VeriScene to ensure phase

consistency between the requirements and the design phases that are commonly

specified using the appropriate UML diagrams. The results of VeriScene

113

ensured that the requirements and design phases were consistent. This

consistency by implication indicated that all paths were traversed.

5.4 Recommendations

The common Telecentre model developed in this thesis is suitable for its

implementation elsewhere. Because it is a high-level design, it has flexibility to allow

for local customised implementations. The identification of a common set of attributes

while monitoring this model indicated that these are suitable for providing information

generally to Telecentre managers.

The attributes identified from the literature and from the Telecentre requirements were

adequate for the purpose of this research. The model can also be extended, allowing

for more flexibility to accommodate future changes as the priorities are bound to

change over time – for example a decade ago age was an important attribute but

currently attributes such as usage and websites accessed, are considered to be more

important. Furthermore, the role of Telecentres may change to provide eGovernment

services to limit the public travelling long distances at considerable cost. Historically,

Telecentres were set up to provide access but now a popular service provided by the

Telecentres is training of groups of individuals, including end users, in computing

skills. Other opportunities that can be explored by the Telecentres are customised

services for entrepreneurship, ecommerce, education, and research, amongst others.

The monitoring model can be extended to provide specific statistics on each of these

services.

Through the experimental work completed, the combination of methods at each phase

of the selected software development methodology produced both a system design and

a prototype. The combination and sequence of these methods produced a system design

that met the stakeholders’ needs and that exhibited consistency from the requirements

to the design phases, with no ambiguity. This was attested to by the implementers (see

Appendix F). In addition, these combinations and sequences of methods can be

incorporated into a model for verification and partial validation of system design within

114

a software development methodology. Similarly, combination and sequence of

methods used for the design of VeriScene can be incorporated into a model for use in

the prototyping development domain.

Since the VeriScene tool was successfully tested using different domains, as well as

the Telecentre domain, it can be utilised in activity diagrams of other software

development domains using similar constructs.

5.5 Future Work

At the time of writing of this thesis, TeleMun was developed fully and was

implemented at a selected site with plans to implement it at further selected pilot sites.

TeleMun, being an electronic mode, produces continuous real time data. This data

could be used to support management, researchers and sponsors in their decision

making. Furthermore, the reporting capability of this tool could be enhanced to better

visualise the data.

The aggregation of such a large volume of data opens the possibility of various big data

mining approaches, which could provide more useful insights than TeleMun’s

reporting capability currently provides.

The VeriScene tool can be further enhanced to accommodate a graphical web user

interface for better usability. Activity diagrams are generally constructed at different

levels of complexity. The VeriScene tool can be enhanced to check for consistency in

multi-level activity diagrams.

5.6 Summary

In this chapter, an overview of what was accomplished in the research, as well as

recommendations and areas for future work within the scope of this thesis are

discussed. The methodology and methods chosen demonstrated that the design

produced could be easily implemented. The original objectives were evaluated against

115

the results to ensure that these objectives were met. The chapter highlights the further

possible enhancements for TeleMun and VeriScene.

116

Appendix A – Researcher’s Attributes

Table A1 - Researchers on Telecentres

No Author

1 (Hudson 2001)

2 (Rajapakse 2012)

3 (Cheuk, Atang and Lo 2012)

4 (Abdulwahab and Dahalin 2012)

5 (Naik, Joshi and Basavaraj 2012)

6 (Cheang and Lee 2010)

7 (Hassan et al. 2010)

8 (Razak, Hassan and Din 2010)

9 (Gomez 2012)

10 (Alasow, Udomsade and Niyamangkoon 2010)

11 (Gomez, Pather and Dosono 2012)

12 (Lashgarara, Karimi and Mirdamadi 2012)

Table A2 contains a list of researchers (listed by the respective number in Table A1)

together with the attributes used by researchers in their studies. The columns labelled

1 to 12 correspond to the authors in Table A1. The ‘Y’ in the corresponding cell indi-

cated whether the author used the attribute in their research.

117

Table A2 - Attributes on Telecentres

No Attribute 1 2 3 4 5 6 7 8 9 10 11 12

1 Reliability Y

2 Technical Assistance Y

3 Target group Y

4 Gender Y Y Y Y Y Y Y Y Y Y

5 Suggestions Y

6 Application usage Y Y

7 Issues in app usage Y

8 Usage frequency Y

9 Frequency of users Y Y Y Y Y Y Y

10 Services offered Y Y Y Y Y

11 Service usage Y Y Y Y Y Y Y Y

12 Internet URL Usage Y Y

13 Age Y Y Y Y Y Y Y Y

14 Income Y Y Y Y

15 Qualification Y Y Y

16 Occupation Y Y Y Y Y Y Y

17 Location to Telecentre Y Y Y Y

18 Expenses Y

19 Resources Y Y Y Y Y Y

20 No of Visitors Y Y Y Y Y

118

Appendix B - Activity Diagrams

The Telecentre operations commence with a start of day routine by switching each

piece of equipment on.

Figure B1 – Start of day routine

The user type is determined prior to usage of the service to determine whether the user

is a cash or an account user. If the user type is “Cash”, the use is billed and the payment

is collected, and if the use type is “Account”, the respective account is billed.

Figure B2 – Billing and payment

119

During the initial iterations, the processes were duplicated after a decision on “Self

Service”. Thereafter the processes were reorganised to execute on decisions made once

at the beginning.

Figure B3 – Final use service process

120

In cases where the usage of the service is interrupted or not completed for any reason,

the user may request for a refund. In the case where a user has paid “Cash”, the user is

refunded and in the case where the user type is “Account”, the respective account is

credited.

Figure B4 – Refund fee

121

At the end of each day, the administrator will ensure that each piece of equipment is

switched off.

Figure B5 – End of day routine

122

Appendix C – Testing VeriScene with Different Domains

The following activity diagram shows different domains used to test the VeriScene

Tool. This process entails an issue management system where an issue is recorded and

resolved at the different stages.

Figure C1 – Trouble Ticket

123

The activity diagram in Figure C2 represents an order processing system from initial

reception of the order to shipping the goods. It entails decisions and concurrent pro-

cesses.

Figure C2 – Order processing

124

Appendix D – Initial Models

Figure D1 shows common similar processes being followed in the internet café model.

Based on previous research through personal interaction with internet cafes the follow-

ing process model was developed. Some of the similarities between internet cafes and

Telecentres included request for services, use service etc. while some of the differences

included place cash in till, end of day cash up, etc. The restrictions on payment process

and flow is awkward and hard to read and understand in this model.

Figure D1 – Call box and internet café business model

125

The business process of call boxes and internet cafes have similar processes but offer

limited services. These processes formed the basis for the initial requirements for a

Telecentre operation.

Figure D2 – Telecentre business model

126

Figure D3 indicates some of the improvements envisaged in a future model. These

include recording of faulty equipment and software for statistics purposes.

Figure D3 – Monitoring model

127

Appendix E – Use Case Diagrams

Initial use cases provided for different actors to initiate and receive services. These

were consolidated to a single user. The user of the data was also consolidated into one

user. Consequently, it became inclusive of different actors. TeleMun focuses on

monitoring usage and user profiles as opposed to equipment and reporting although

these three sub systems are interlinked.

Figure E1 – Telecentre monitoring and reporting system

128

Figure E2 – Acquire equipment

Figure E3 – Start Application

Figure E4 – Terminate Application

129

Initially the service was classified as ‘surf internet’. The final model has an activity,

which includes usage of application / services from the internet.

Figure E5 – Surf Internet

Figure E6 – Internet connection fault

Figure E7 – Internet connection restored

130

Figure E8 – PC switched on

Figure E9 – PC switched off

131

Appendix F – Database Structure

Table F1 – Database Attributes

Table Name Column Name Data Type

AgeCategory Id int

AgeCategory Code varchar

AgeCategory Name varchar

EquipmentCategory Id int

EquipmentCategory Code varchar

EquipmentCategory Name varchar

EquipmentManagement Id int

EquipmentManagement DateAcquired Datetime

EquipmentManagement SerialNo varchar

EquipmentManagement EquipmentCategoryId int

EquipmentManagement Description varchar

EquipmentManagement Make varchar

EquipmentManagement Model varchar

EquipmentManagement MACAddress varchar

EquipmentManagement EquipmentTag varchar

EquipmentManagement Active bit

EquipmentManagement DateDisposed Datetime

EquipmentManagement ReasonforDisposal varchar

EquipmentManagement Comments varchar

EquipmentManagement TeleCentreId int

EquipmentManagement TrackingDeviceId int

InternetLoss Id int

InternetLoss TeleCentreId int

InternetLoss DateLost Datetime

InternetLoss DateRestored Datetime

InternetLoss Comments varchar

Occupation Id int

Occupation Code varchar

Occupation Name varchar

PowerFailures Id int

PowerFailures TeleCentreId int

PowerFailures DateLost Datetime

PowerFailures Date Restored Datetime

PowerFailures Comments varchar

Province Id int

Province Name varchar

QueueStatus Id Tinyint

QueueStatus Name Varchar

132

Table Name Column Name Data Type

ServiceAllocation Id int

ServiceAllocation TeleCentreId int

ServiceAllocation EquipmentManagementId int

ServiceAllocation ServiceRequestId int

ServiceAllocation StartDate Datetime

ServiceAllocation EndDate Datetime

ServiceQueue Id int

ServiceQueue TeleCentreId int

ServiceQueue QueueNo int

ServiceQueue QueueDate Datetime

ServiceQueue OccupationId int

ServiceQueue AgeCategoryId int

ServiceQueue TeleCentreDistanceId int

ServiceQueue ContactNo varchar

ServiceQueue StudentNo varchar

ServiceQueue Self-Service bit

ServiceQueue DateOut Datetime

ServiceQueue UserId Smallint

ServiceQueue QueueStatusId Tinyint

ServiceRequest Id int

ServiceRequest ServiceQueueId int

ServiceRequest ServiceRequestNo int

ServiceRequest TeleServicesId int

ServiceRequest AmountPaid decimal

ServiceRequest DateOut Datetime

ServiceRequest RefundAmount decimal

ServiceRequest Comments varchar

ServiceRequest UserId Smallint

SIMCards Id int

SIMCards SerialNumber varchar

SIMCards PhoneNumber varchar

SIMCards PIN varchar

SIMCards PUK varchar

Suburb Id int

Suburb Name varchar

Suburb ProvinceId int

SurveyQuestions Id int

SurveyQuestions Question varchar

SurveyQuestions Active bit

SurveyQuestions List Order Smallint

133

Table Name Column Name Data Type

TeleCentreDistance Id int

TeleCentreDistance Code varchar

TeleCentreDistance Name varchar

TeleCentres Id int

TeleCentres Name varchar

TeleCentres ProvinceId int

TeleCentres SuburbId int

TeleCentres LineAddress varchar

TeleCentreUsers TeleCentreId int

TeleCentreUsers TeleCentreUserId Smallint

TeleServices Id int

TeleServices Code varchar

TeleServices Name varchar

TrackingDevices Id int

TrackingDevices GPSTag varchar

TrackingDevices SIMCardId int

UserSurvey Id int

UserSurvey SurveyDate Datetime

UserSurvey TeleCentreId int

UserSurvey Comments varchar

UserSurveyDetails Id int

UserSurveyDetails UserSurveyId int

UserSurveyDetails SurveyQuestionsId int

UserSurveyDetails SurveyRating varchar

134

Figure F2 – TeleMun ERD

135

Appendix G – Letter from Media Platform

136

References

Abdulwahab, L. and Dahalin, Z. M. 2012. Assessing the Catalyst and the Barriers to

Rural Community Based Telecentre Usage. Journal of Emerging Trends in Computing

and Information Sciences, 3 (6): 826-832.

Achimugu, P., Oluwagbemi, O., Oluwaranti, A. and Afolabi, B. 2009. Adoption of

information and communication technologies in developing countries: an impact

analysis. Journal of Information Technology Impact, 9 (1): 37-46.

Aggarwal, M. and Sabharwal, S. 2012. Test case generation from UML state machine

diagram: A survey. In: Proceedings of Third International Conference on Computer

and Communication Technology (ICCCT). Piscataway, NJ, USA: IEEE, 133-140.

Available:

http://ieeexplore.ieee.org/ielx5/6387875/6394656/06394682.pdf?tp=&arnumber=639

4682&isnumber=6394656 (Accessed 7 December 2014).

Ahmad, A. and Shiratuddin, N. 2010. Business Intelligence for Sustainable

Competitive Advantage: Field Study of Telecommunications Industry. In:

Proceedings of Annual International Academic Conference on Business Intelligence

and Data Warehousing, Singapore (BIDW 2010). 96-102.

Alasow, M. A., Udomsade, J. and Niyamangkoon, S. 2010. Notice of Retraction People

attitude towards telecenter utilization in Roi Et Province of Thailand. In: Proceedings

of International Conference on Education and Management Technology (ICEMT).

Piscataway, NJ, USA: IEEE, 595-599.

Arnowitz, J., Arent, M. and Berger, N. 2010. Effective prototyping for software makers.

Oxford: Elsevier.

Attarha, M. and Modiri, N. 2011. Focusing on the importance and the role of

requirement engineering. In: Proceedings of the 4th International Conference on

Interaction Sciences (ICIS). Busan, Korea, 16-18 Aug. 2011. 181-184.

Avison, D. E. and Fitzgerald, G. 2003. Where now for development methodologies?

Communications of the ACM, 46 (1): 78-82.

Azeem, M. and Gondal, M. B. 2011. Prototype framework: Prototypes, prototyping

and piloting in terms of quality insurance. Academic Research International, 1 (2):

301-307.

Bailey, A. 2009. Issues affecting the social sustainability of telecentres in developing

contexts: A field study of sixteen telecentres in Jamaica. The Electronic Journal of

Information Systems in Developing Countries, 36 (4): 1-18.

Bailey, A. and Ngwenyama, O. 2010. Community mediation and violence prevention

through telecentre usage: ICTs mediating the ‘Border Line’. In: Proceedings of

http://ieeexplore.ieee.org/ielx5/6387875/6394656/06394682.pdf?tp=&arnumber=6394682&isnumber=6394656
http://ieeexplore.ieee.org/ielx5/6387875/6394656/06394682.pdf?tp=&arnumber=6394682&isnumber=6394656

137

Proceedings of SIG GlobDev Third Annual Workshop, Saint Louis, USA, December

12.

Bakhouya, M., Campbell, R., Coronato, A., Pietro, G. D. and Ranganathan, A. 2012.

Introduction to special section on formal methods in pervasive computing. ACM

Transactions on Autonomous and Adaptive Systems (TAAS), 7 (1): Art. 6:1-9.

Baron, L. F. and Gomez, R. 2012. Social network analysis of public access computing:

Relationships as a critical benefit of libraries, telecenters and cybercafés in developing

countries. In: Proceedings of Proceedings of the 2012 iConference. ACM, 377-383.

Baskerville, R., Lyytinen, K., Sambamurthy, V. and Straub, D. 2011. A response to the

design-oriented information systems research memorandum. European Journal of

Information Systems, 20 (1): 11-15.

Bayo, I., Barba, M. and Gomez, R. 2012. Better Learning Opportunities through Public

Access Computing. Paper presented at the the Prato CIRN Community Informatics

Conference. Monash Centre, Prato Italy 7-9 November, 1-16.

Bee Bee, C., Bernardo, D. V. and Verner, J. 2010. Understanding the Use of Elicitation

Approaches for Effective Requirements Gathering. In: Proceedings of the 2010 Fifth

International Conference on Software Engineering Advances (ICSEA). 22-27 Aug.

IEEE, 325-330.

Benjamin, P. 2001. Telecentres and Universal Capability. PhD, Aalborg University.

Benjamin, P. 2009. Does' Telecentre'mean the centre is far away? Telecentre

development in South Africa. The Southern African Journal of Information and

Communication, 1: 32-50.

Besa, P. J. 2011. Advantages and disadvantages of aspect oriented design in an

enterprise environment. Pontificia Universidad Católica de Chile.

Bhattacharjee, A. K. and Shyamasundar, R. 2009. Activity diagrams: a formal

framework to model business processes and code generation. Journal of Object

Technology, 8 (1): 189-220.

Boehm, B. W. 1984. Verifying and validating software requirements and design

specifications. In: Proceedings of IEEE software. Piscataway, NJ, USA: IEEE,

Available: http://ieeexplore.ieee.org/document/5657584/?arnumber=5657584&tag=1

(Accessed 16 September 2015).

Booch, G., Rumbaugh, J. and Jacobson, I. 1999. The unified modeling language user

guide. Reading, Massachusetts: Addison Wesley Longman, Inc.

Braude, E. J. and Bernstein, M. E. 2011. Software engineering: modern approaches.

Long Grove, IL: Waveland Press.

http://ieeexplore.ieee.org/document/5657584/?arnumber=5657584&tag=1

138

Britton, C. and Doake, J. 2004. A student guide to object-oriented development.

Amsterdam: Butterworth-Heinemann.

Bruegge, B. and Dutoit, A. A. 1999. Object-oriented software engineering; conquering

complex and changing systems. Upper Saddle River, N.J.: Prentice Hall PTR.

Burnard, P. 1991. A method of analysing interview transcripts in qualitative research.

Nurse Education Today, 11 (6): 461-466.

Chanda, J., Kanjilal, A., Sengupta, S. and Bhattacharya, S. 2009. Traceability of

requirements and consistency verification of UML use case, activity and Class

diagram: A Formal approach. In: Proceedings of International Conference on Methods

and Models in Computer Science. Piscataway, NJ, USA: IEEE, 1-4.

Cheang, S. and Lee, J.-D. 2010. Evaluation telecenter performance in social

sustainability context: A Cambodia case study. In: Proceedings of the 6th International

Conference on Advanced Information Management and Service (IMS). Piscataway, NJ,

USA: IEEE, 135-141.

Cheuk, S., Atang, A. and Lo, M.-C. 2012. Community Attitudes towards the Telecentre

in Bario, Borneo Malaysia: 14 Years on. International Journal of Innovation,

Management and Technology, 3 (6): 682-687.

Colcombet, T. and Fradet, P. 2000. Enforcing trace properties by program

transformation. In: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. Boston, MA, USA, January 19 - 21. ACM, 54-

66.

Colle, R. D. 2005. Memo to telecenter planners. The Electronic Journal of Information

Systems in Developing Countries, 21 (1): 1-13.

Creswell, J. W. 2013. Research design: Qualitative, quantitative, and mixed methods

approaches. Thousand Oaks, Calif.: Sage publications.

Crow, J. and Di Vito, B. 1998. Formalizing space shuttle software requirements: Four

case studies. ACM Transactions on Software Engineering and Methodology (TOSEM),

7 (3): 296-332.

Debus, M. 1988. Methodological review: a handbook for excellence in focus group

research. Washington, DC.: Academy for Educational Development.

Dennis, A., Wixom, B. H. and Tegarden, D. 2015. Systems analysis and design: An

object-oriented approach with UML. Hoboken, N.J.: John Wiley & Sons.

Eker, B. 2014. The effects of prototyping technologies on product design. Paper

presented at the the 8th International Quality Conference. Kragujevac, 611-616.

139

El-Attar, M. 2011. A systematic approach to assemble sequence diagrams from use

case scenarios. In: Proceedings of the 3rd International Conference on Computer

Research and Development (ICCRD). Piscataway, NJ, USA: IEEE, 171-175.

ESA Board for Software Standardisation and Control (BSSC). 1994. Guide to Software

Verification and Validation. The Netherlands: European Space Agency.

Evans, A., France, R., Lano, K. and Rumpe, B. 2014. Developing the UML as a formal

modelling notation. arXiv preprint arXiv:1409.6928,

Filman, R. E. and Friedman, D. P. 2000. Aspect-oriented programming is

quantification and obliviousness. Moffett Field, CA.: Research Institute of Advanced

Computer Science. Available: https://ntrs.nasa.gov/search.jsp?R=20010071445

(Accessed 15 October 2014).

Gable, G. G. 1994. Integrating case study and survey research methods: an example in

information systems. European journal of information systems, 3 (2): 112-126.

Gibson, J. P. and Méry, D. 1998. Teaching Formal Methods: Lessons to Learn. In:

Proceedings of IWFM. Citeseer,

Gomez, R. 2012. Libraries, telecentres, cybercafes and public access to ICT:

International comparisons. Hershey, PA: Information Science Reference (an Imprint

of IGI Global).

Gomez, R. and Baron-Porras, L. F. 2011. Does public access computing really

contribute to community development? Lessons from libraries, telecenters and

cybercafés in Colombia. The Electronic Journal of Information Systems in Developing

Countries, 49: 1-11.

Gomez, R., Pather, S. and Dosono, B. 2012. Public access computing in South Africa:

Old lessons and new challenges. The Electronic Journal of Information Systems in

Developing Countries, 52 (1): 1-16.

Grønmo, R., Krogdahl, S. and Møller-Pedersen, B. 2013. A collection operator for

graph transformation. Software & Systems Modeling, 12 (1): 121-144.

Guba, E. G. and Lincoln, Y. S. 1994. Competing paradigms in qualitative research. In:

Handbook of qualitative research. Thousand Oaks, CA: Sage, 105-117.

Harris, R. W. 2007. Telecentre evaluation in the Malaysian context. Paper presented at

the the 5th International Conference on IT in Asia. Kuching, Sarawak, Malaysia, 10-

12 July.

Hassan, S., Yusof, Y., Seman, M. A. A. and Sheik, W. R. 2010. Impact Analysis on

Utilization of Telecenter: The Case of Telecentre in Baling.

https://ntrs.nasa.gov/search.jsp?R=20010071445

140

Heitmeyer, C. 1998. On the need for practical formal methods. In: Proceedings of

Formal Techniques in Real-Time and Fault-Tolerant Systems. Lyngby, Denmark,

September 14–18. Germany: Springer, 18-26.

Hevner, V. A., R , March, S. T., Park, J. and Ram, S. 2004. Design science in

information systems research. MIS quarterly, 28 (1): 75-105.

Holtzhausen, S. 2001. Triangulation as a powerful tool to strengthen the qualitative

research design: the Resource-based Learning Career Preparation Programme

(RBLCPP) as a case study.

Hon, Y. M., Gayen, J.-T. and Ehrich, H.-D. 2008. OOLH: A Formal Framework for

Specifying System Requirements. In: Proceedings of SIGSAND-EUROPE. 75-78.

Hudson, H. E. 2001. Telecentre evaluation: Issues and strategies. In: Latchem, C. and

Walker, D. eds. Telecentres: Case studies and key issues. Vancouver: The

Commonwealth of Learning, 169-181.

Hull, E., Jackson, K. and Dick, J. 2010. Requirements engineering. 2nd ed. London:

Springer Science & Business Media.

Hunt, P. 2001. True stories: telecentres in Latin America and the Caribbean. The

Electronic Journal of Information Systems in Developing Countries, 4 (5): 1-17.

Hussein, A. 2009. The use of triangulation in social sciences research: Can qualitative

and quantitative methods be combined. Journal of Comparative Social Work, 1 (8): 1-

12.

Jacobs, S. and Herselman, M. 2006. Information access for development: a case study

at a rural community centre in South Africa. Issues in Informing Science and

Information Technology, 3: 295-306.

Juan Zheng, X., Liu, X. and Liu, S. 2010. Use case and non-functional scenario

template-based approach to identify aspects. In: Proceedings of the 2010 Second

International Conference on Computer Engineering and Applications (ICCEA).

Piscataway, NJ, USA: IEEE, 89-93.

Khan, K., Kumar, P., Ahmad, A., Riaz, T., Anwer, W., Suleman, M., Ajmal, O., Ali,

T. and Chaitanya, A. 2011. Requirement Development Life Cycle: The Industry

Practices. In: Proceedings of the 9th International Conference on Software

Engineering Research, Management and Applications (SERA), . Piscataway, NJ, USA:

IEEE, 12-16.

Kim, S. 2013. iScholar: A mobile research support system. M.Sc, University of Regina.

141

Kneuper, R. 1997. Limits of formal methods. Formal Aspects of Computing, 9 (4):

379-394.

Kof, L., Gacitua, R., Rouncefield, M. and Sawyer, P. 2010. Ontology and Model

Alignment as a Means for Requirements Validation. In: Proceedings of the IEEE

Fourth International Conference on Semantic Computing (ICSC). 22-24 Sept.

Piscataway, NJ, USA: 46-51.

Köhler, H. J., Nickel, U., Niere, J. and Zündorf, A. 2000. Integrating UML diagrams

for production control systems. In: Proceedings of the 22nd international conference

on Software engineering. ACM, 241-251.

Kontio, J., Lehtola, L. and Bragge, J. 2004. Using the focus group method in software

engineering: obtaining practitioner and user experiences. In: Proceedings of the

International Symposium on Empirical Software Engineering, ISESE. Piscataway, NJ,

USA: IEEE, 271-280.

Kordon, F. 2002. An introduction to rapid system prototyping. IEEE Transactions on

Software Engineering, 28 (9): 817-821.

Kosalge, P. and Chatterjee, D. 2011. Look before you leap into ERP implementation:

an object-oriented approach to business process modeling. Communications of the

Association for Information Systems, 28 (1): 509-536.

Krishnan, P. 2003. A framework for analyses of use case descriptions. Available:

https://www.researchgate.net/profile/P_Krishnan2/publication/228973656_A_Frame

work_for_Analyses_of_Use_Case_Descriptions/links/0c96053bef44ec55a0000000.p

df (Accessed 15 February 2015).

Lashgarara, F., Karimi, A. and Mirdamadi, S. M. 2012. Effective factors on the

villagers use of rural telecentres (case study of Hamadan province, Iran). African

Journal of Agricultural Research, 7 (13): 2034-2041.

Lethbridge, T. C., Sim, S. E. and Singer, J. 2005. Studying software engineers: Data

collection techniques for software field studies. Empirical software engineering, 10

(3): 311-341.

Lethbridge, T. C., Singer, J. and Forward, A. 2003. How software engineers use

documentation: The state of the practice. IEEE Software, 20 (6): 35-39.

Lincoln, Y. S., Lynham, S. A. and Guba, E. G. 2011. Paradigmatic controversies,

contradictions, and emerging confluences, revisited. In: Denzin, N. K. and Lincoln, Y.

S. eds. The Sage Handbook of Qualitative Research. Los Angeles: Sage, 97-128.

Ling, Y., Jing, L. and Xiaoshan, L. 2009. Validating Requirements Model of a B2B

System. In: Proceedings of the Eighth IEEE/ACIS International Conference on

https://www.researchgate.net/profile/P_Krishnan2/publication/228973656_A_Framework_for_Analyses_of_Use_Case_Descriptions/links/0c96053bef44ec55a0000000.pdf
https://www.researchgate.net/profile/P_Krishnan2/publication/228973656_A_Framework_for_Analyses_of_Use_Case_Descriptions/links/0c96053bef44ec55a0000000.pdf
https://www.researchgate.net/profile/P_Krishnan2/publication/228973656_A_Framework_for_Analyses_of_Use_Case_Descriptions/links/0c96053bef44ec55a0000000.pdf

142

Computer and Information Science, ICIS. 1-3 June 2009. Piscataway, NJ, USA: 1020-

1025.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L. and Guo, Z. 2004.

Generating test cases from UML activity diagram based on gray-box method. In:

Proceedings of the 11th Asia-Pacific Software Engineering Conference. Piscataway,

NJ, USA: IEEE, 284-291.

Liu, F. and Yang, M. 2005. Validation of system models. In: Proceedings of the IEEE

International Conference Mechatronics and Automation. Piscataway, NJ, USA: IEEE,

1721-1725.

Maiden, N. A. M. 1998. CREWS-SAVRE: Scenarios for acquiring and validating

requirements. Automated Software Engineering, 5 (4): 419-446.

Martakis, A. and Daneva, M. 2013. Handling requirements dependencies in agile

projects: A focus group with agile software development practitioners. In: Proceedings

of the IEEE Seventh International Conference on Research Challenges in Information

Science (RCIS). Piscataway, NJ, USA: IEEE, 1-11.

McConnell, S., Richardson, D., Doehler, M. and Wong, W. 2001. Telecentres Around

the World: Issues to be considered and lessons learned. Available:

http://portal.unesco.org/ci/en/file_download.php/053c2bb713f94903fc72a2a910a4e4

95Telecentres+around+the+world.pdf (Accessed 01 March 2014).

McDermid, J., Galloway, A., Burton, S., Clark, J., Toyn, I., Tracey, N. and Valentine,

S. 1998. Towards industrially applicable formal methods: Three small steps, and one

giant leap. In: Proceedings of the Second International Conference on Formal

Engineering Methods. Piscataway, NJ, USA: IEEE, 76-88.

Mertens, D. M. 2015. Research and evaluation in education and psychology:

Integrating diversity with quantitative, qualitative, and mixed methods. 4th ed.

Thousand Oaks, Calif.: Sage.

Min, S.-J. 2010. From the digital divide to the democratic divide: Internet skills,

political interest, and the second-level digital divide in political internet use. Journal

of Information Technology & Politics, 7 (1): 22-35.

Mohamed, A. Y. A., Hegazy, A. E. F. A. and Dawood, A. R. 2010. Aspect Oriented

Requirements Engineering. Computer and Information Science, 3 (4): p135.

Moore, A. and Stilgoe, J. 2009. Experts and anecdotes the role of ‘‘anecdotal

evidence’’in public scientific controversies. Science, Technology & Human Values, 34

(5): 654-677.

Moscove, S. A. 2011. Prototyping: An Alternative Approach To Systems Devleopment

Work. Review of Business Information Systems (RBIS), 5 (3): 65-72.

http://portal.unesco.org/ci/en/file_download.php/053c2bb713f94903fc72a2a910a4e495Telecentres+around+the+world.pdf
http://portal.unesco.org/ci/en/file_download.php/053c2bb713f94903fc72a2a910a4e495Telecentres+around+the+world.pdf

143

Mossberger, K., Tolbert, C. J. and Hamilton, A. 2012. Broadband Adoption| Measuring

Digital Citizenship: Mobile Access and Broadband. International Journal of

Communication, 6: 37.

Munassar, N. M. A. and Govardhan, A. 2011. Comparison between traditional

approach and object-oriented approach in software engineering development.

International Journal of Advanced Computer Science and Applications, 2 (6): 70-76.

Muskens, J., Bril, R. J. and Chaudron, M. R. 2005. Generalizing consistency checking

between software views. In: Proceedings of the 5th Working IEEE/IFIP Conference

on Software Architecture (WICSA'05). Piscataway, NJ, USA: IEEE, 169-180.

Naik, G. 2011. Designing a sustainable business model for e-governance embedded

rural telecentres (EGERT) in India. IIMB Management Review, 23 (2): 110-121.

Naik, G., Joshi, S. and Basavaraj, K. 2012. Fostering inclusive growth through e-

governance embedded rural telecenters (EGERT) in India. Government Information

Quarterly, 29: S82-S89.

Nunamaker Jr, J. F. and Chen, M. 1990. Systems development in information systems

research. In: Proceedings of System Sciences, 1990., Proceedings of the Twenty-Third

Annual Hawaii International Conference on. IEEE, 631-640.

Ogata, S. and Matsuura, S. 2010. Evaluation of a use-case-driven requirements analysis

tool employing web UI prototype generation. WSEAS Transactions on Information

Science and Applications, 7 (2): 273-282.

Ostroff, J. S. 1992. Formal methods for the specification and design of real-time safety

critical systems. Journal of Systems and Software, 18 (1): 33-60.

Ouyang, M. 2014. Review on modeling and simulation of interdependent critical

infrastructure systems. Reliability Engineering & System Safety, 121: 43-60.

Pancham, J. and Millham, R. 2015. Design phase consistency: A tool for reverse

engineering of uml activity diagrams to their original scenarios in the specification

phase. In: Computational Science and Its Applications-ICCSA 2015. Heidelberg:

Springer, 655-670.

Pancham, J., Millham, R. and Singh, P. 2013. A validated model for operational

monitoring of telecentres' activities in a developing country. In: Steyn, J. and Van der

Vyver, A. G. eds. Proceedings of Public and private access to ICTs in developing

regions, 7th International Development Informatics Association Conference. Bangkok,

Thailand, 103 November 2013. 103-125.

Pandey, D., Suman, U. and Ramani, A. 2010. An effective requirement engineering

process model for software development and requirements management. In:

144

Proceedings of the International Conference on Advances in Recent Technologies in

Communication and Computing (ARTCom). Piscataway, NJ, USA: IEEE, 287-291.

Parkinson, S. 2005. Telecentres, access and development: experience and lessons from

Uganda and South Africa. Warwickshire, UK: IDRC.

Pather, S. and Gomez, R. 2010. Public Access ICT: A South-South comparative

analysis of libraries, telecentres and cybercafés in South Africa and Brazil. In:

Proceedings of AMCIS. Lima Peru, 12- 15 August. Paper 526.

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V. and Bragge,

J. 2006. The design science research process: a model for producing and presenting

information systems research. In: Proceedings of the First International Conference

on Design Science Research in Information Systems and Technology (DESRIST 2006).

Claremont, California, DESRIST, 83-106.

Peterson, J. L. 1977. Petri nets. ACM Computing Surveys (CSUR), 9 (3): 223-252.

Petty, N. J., Thomson, O. P. and Stew, G. 2012. Ready for a paradigm shift? Part 1:

introducing the philosophy of qualitative research. Manual therapy, 17 (4): 267-274.

Pohl, K. 2010. Requirements engineering: fundamentals, principles, and techniques.

Berlin: Springer.

Raatikainen, M., Mannisto, T., Tommila, T. and Valkonen, J. 2011. Challenges of

requirements engineering: A case study in nuclear energy domain. In: Proceedings of

the 19th International Requirements Engineering Conference (RE). Piazza Duomo

Trento, Italy, 29 Aug - 2 Sept. Piscataway, NJ, USA: 253-258.

Rafe, V., Rafeh, R., Azizi, S. and Miralvand, M. R. Z. 2009. Verification and validation

of activity diagrams using graph transformation. In: Proceedings of Computer

Technology and Development, 2009. ICCTD'09. International Conference on. IEEE,

201-205.

Rahmat, R., Ahmad, A., Razak, R., Din, R. and Abas, A. 2013. Sustainability model

for rural telecenter using business intelligence technique. International Journal of

Social Human Science and Engineering, 7 (12): 1356-1361.

Rajapakse, J. 2012. Impact of telecentres on Sri Lankan society. In: Proceedings of the

2012 8th International Conference on Computing and Networking Technology

(ICCNT). Gyeongju, Korea (South), IEEE, 281-286.

Ramjugath, V. 2015. Private Inverview Durban, South Africa: Durban University of

South Africa

Rantapuska, T. and Millham, R. 2010. 15P. Applying Organisational Learning to User

Requirements Elicitation.

145

Razak, N. A., Hassan, Z. and Din, R. 2010. Bridging the Digital Divide: An Analysis

of the Training Program at Malaysian Telecenters.

Robertson, S. and Robertson, J. 2012. Mastering the requirements process: Getting

requirements right. Upper Saddle River, NJ: Addison Wesley.

Robson, C. 2011. Real world research: a resource for users of social research methods

in applied settings. Wiley Chichester.

Rodríguez, A., Fernández-Medina, E., Trujillo, J. and Piattini, M. 2011. Secure

business process model specification through a UML 2.0 activity diagram profile.

Decision Support Systems, 51 (3): 446-465.

Royce, W. W. 1970. Managing the development of large software systems. Available:

http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf (Accessed 17

June 2014).

Runge, O., Ermel, C. and Taentzer, G. 2011. AGG 2.0–new features for specifying and

analyzing algebraic graph transformations. In: Applications of Graph Transformations

with Industrial Relevance. Berlin, Heidelberg: Springer, 81-88.

Rushby, J. 1997. Formal methods and their role in the certification of critical systems.

In: Shaw, R. ed. Safety and reliability of Software based systems. London: Springer, 1-

42.

Sanou, B. 2016. ICT Facts & Figures The world in 2015. ICT Data and Statistics

Division Telecommunication Development Bureau International Telecommunication

Union. 2015. Geneva, Switzerland: International Telecommunication Union.

Available: http://www.itu.int/en/ITU-

D/Statistics/Documents/facts/ICTFactsFigures2016.pdf (Accessed 12 June 2016).

Satzinger, J., Jackson, R. and Burd, S. D. 2011. Systems analysis and design in a

changing world. Boston, MA: Course Technology, Cengage Learning.

Satzinger, J. W., Jackson, R. B. and Burd, S. D. 2012. Introduction to systems analysis

and design: An agile, iterative approach. Boston, MA: Course Technology, Cengage

Learning.

Schach, S. R. 2008. Object Oriented and Classical Software Engineering. 8th ed ed.

New York: McGraw-Hill.

Seman, M. A. A., Ibrahim, H. H., Kasiran, M. K., Yusop, N. I., Aji, Z. M., Dahalin, Z.

M. and Yasin, A. 2013. Community Characteristics for Self-Funding and Self-

Sustainable Telecenter. Global Journal on Technology, 3: 1666-1671.

http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf

146

Sey, A. and Fellows, M. 2009. Literature review on the impact of public access to

information and communication technologies. 2009: Available:

http://library.globalimpactstudy.org/sites/default/files/docs/CIS-

WorkingPaperNo6.pdf (Accessed 25 February 2013).

Simmons, E. 2005. The usage model: a structure for richly describing product usage

during design and development. In: Proceedings of the 13th IEEE International

Conference on Requirements Engineering. Paris, France, 29 Aug. - 2 Sept. Piscataway,

NJ, USA: IEEE, 403-407.

Sitole, M. 2014. Private Interview Durban, South Africa: Durban University of

Technology.

Somé, S. S. 2005. Use cases based requirements validation with scenarios. In:

Proceedings of the 13th IEEE International Conference on Requirements Engineering.

Paris France, 29 Aug.-2 Sept. 2005. Piscataway, NJ, USA: IEEE, 465-466.

Somé, S. S. 2007. Use Case Editor (UCEd) User Guide Version 1.6.2. Available:

http://www.site.uottawa.ca/~ssome/UCEdWeb/publis/userGuide.pdf (Accessed 10

March 2014).

Sommerville, I. 2011. Software engineering. 9th ed. Boston: Pearson Education.

Sopazi, P. N. and Andrew, T. 2008. Evaluation of a Telecentre Using Stakeholder

Analysis and Critical Systems Heuristics: A South African Case Study. Scientific

Inquiry, 9 (1): 19-28.

Stevens, P. and Pooley, R. J. 2006. Using UML: software engineering with objects and

components. 2nd ed. Harlow, Essex: Pearson Education.

Stoica, M., Mircea, M. and Ghilic-Micu, B. 2013. Software Development: Agile vs.

Traditional. Informatica Economica, 17 (4): 64-76.

Stoilov, T. and Stoilova, K. 2006. Automation in business processes. In: Proceedings

of International Conference" Systems for Automation of Engineering and research-

SAER. 23-24.

Swain, R. K., Panthi, V. and Behera, P. K. Generation of test cases using activity

diagram. International Journal of Computer Science and Informatics, 3 (2): 1-10.

Taentzer, G. 2003. AGG: A graph transformation environment for modeling and

validation of software. In: Proceedings of International Workshop on Applications of

Graph Transformations with Industrial Relevance. London, UK.: Springer, 446-453.

Telecommunication Regulatory Authority. Sultanate of Oman. 2012. TRA Position

paper on Telecentres. Available:

http://library.globalimpactstudy.org/sites/default/files/docs/CIS-WorkingPaperNo6.pdf
http://library.globalimpactstudy.org/sites/default/files/docs/CIS-WorkingPaperNo6.pdf
http://www.site.uottawa.ca/~ssome/UCEdWeb/publis/userGuide.pdf

147

https://www.tra.gov.om/pdf/563_trapositionpaperontelecetnersen.pdf (Accessed 21

June 2015).

Townsend, L., Sathiaseelan, A., Fairhurst, G. and Wallace, C. 2013. Enhanced

broadband access as a solution to the social and economic problems of the rural digital

divide. Local Economy, 28 (6): 580-595.

UML, O. 2005. 2.0 specification. URL http://www. omg.

org/technology/documents/formal/uml. htm,

USAASA. 2011. USAASA Business plan 2011 - 2012. South Africa: Available:

http://www.usaasa.org.za/export/sites/usaasa/resource-centre/download-

centre/downloads/USAASA_Business_Plan_2011-2012.pdf (Accessed 16 May 2015).

Van Lamsweerde, A. 2001. Goal-oriented requirements engineering: A guided tour.

In: Proceedings of the 5th IEEE International Symposium on Requirements

Engineering. Toronto, Canada, 27-31 Aug. Piscataway, NJ, USA: IEEE, 249-262.

Van Lamsweerde, A. 2004. Goal-oriented requirements enginering: a roundtrip from

research to practice [enginering read engineering]. In: Proceedings of the 12th IEEE

International Requirements Engineering Conference. 6-11 Sept. 2004. Piscataway,

NJ, USA: 4-7.

Veeraraghavan, R., Singh, G., Toyama, K. and Menon, D. 2006. Kiosk usage

measurement using a software logging tool. In: Proceedings of Information and

Communication Technologies and Development, 2006. ICTD'06. International

Conference on. IEEE, 317-324.

Walsham, G. and Sahay, S. 2006. Research on information systems in developing

countries: Current landscape and future prospects. Information Technology for

Development, 12 (1): 7-24.

Watson, A. 2008. Visual Modelling: past, present and future. Available:

http://www.omg.org/UML/Visual_Modeling.pdf (Accessed 25 Aug 2015).

Wieringa, R. 2010. Design science methodology: principles and practice. In:

Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 2. Cape Town, South Africa, 01-08 May. New York: ACM, 493-

494.

Wilson, W. M., Rosenberg, L. H. and Hyatt, L. E. 1997. Automated analysis of

requirement specifications. In: Proceedings of the 19th International Conference on

Software Engineering. Boston, MA, 17-23 May. New York: ACM, 161-171.

Woodcock, J., Larsen, P. G., Bicarregui, J. and Fitzgerald, J. 2009. Formal methods:

Practice and experience. ACM computing surveys (CSUR), 41 (4): Article 19.

https://www.tra.gov.om/pdf/563_trapositionpaperontelecetnersen.pdf
http://www/
http://www.usaasa.org.za/export/sites/usaasa/resource-centre/download-centre/downloads/USAASA_Business_Plan_2011-2012.pdf
http://www.usaasa.org.za/export/sites/usaasa/resource-centre/download-centre/downloads/USAASA_Business_Plan_2011-2012.pdf
http://www.omg.org/UML/Visual_Modeling.pdf

148

Xiaodong, L. 2007. A review of SOA. Computer Applications and Software, 24 (10):

122-124.

Xuping, J. 2008. Modeling and Application of Requirements Engineering Process

Metamodel. In: Proceedings of the IEEE International Symposium on Knowledge

Acquisition and Modeling Workshop. 21-22 Dec. 2008. Piscataway, NJ, USA: 998-

1001.

Yang, H., De Roeck, A., Gervasi, V., Willis, A. and Nuseibeh, B. 2011. Analysing

anaphoric ambiguity in natural language requirements. Requirements Engineering, 16

(3): 163-189.

Yeasmin, S. and Rahman, K. F. 2012. Triangulation research method as the tool of

social science research. BUP Journal, 1 (1): 154-163.

	CHAPTER ONE
	CHAPTER TWO
	CHAPTER THREE
	CHAPTER FOUR
	CHAPTER FIVE

