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ABSTRACT 
 

NOVEL MECHANISMS AND BIOMARKERS IN ALCOHOL-INDUCED ORGAN 

INJURY 

 

Christine E. Dolin 

April 12, 2019 

 

Background. Ethanol (EtOH) consumption is known to affect multiple organs; 

this is unsurprising, as the concentration of EtOH in the blood at relevant doses 

reaches the millimolar range.  The overarching goal of this dissertation was to 

elucidate mechanisms of alcohol-induced organ injury, specifically the effects of 

alcohol on the hepatic extracellular matrix (ECM) proteome, the alcoholic 

hepatitis (AH) plasma peptidome, and the effects of alcohol on the renal cortex 

proteome and transcriptome.  Methods. Mice were pair-fed ethanol-containing 

liquid diet chronically, and then some mice were administered lipopolysaccharide 

(LPS).  Liver sections from these mice were processed in a series of increasingly 

rigorous extraction buffers to separate proteins by ‘age’ and crosslinking.  

Extracted proteins were identified using liquid chromatography-tandem mass 

spectrometry (LC-MS/MS).  For the AH study, a workflow was developed for the 

peptidomic analysis of plasma from healthy participants or AH patients.  AH 

severity was stratified by MELD score as mild (<12; n=45), moderate (12-19; 
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n=23) or severe (>19; n=37).  The peptidome in AH and control plasma was 

analyzed with LC-MS/MS.  For the kidney study, renal cortex proteins were 

extracted in lysis buffer, and RNA was also isolated.  Extracted proteins were 

identified using LC-MS/MS, and RNA sequencing (i.e. transcriptomics) identified 

transcripts.  Results. Chapter III introduced a new proteomic approach for 

characterizing the hepatic matrisome, which demonstrated that the hepatic 

matrisome responds dynamically to both acute (LPS) and chronic (ethanol) 

stresses, long before more dramatic fibrotic changes to the liver.  Chapter IV 

demonstrated that AH causes detectable changes in the plasma ECM 

degradome/peptidome of patients, and that the LC-MS/MS analysis of the 

plasma peptidome is a novel, minimally-invasive method for prognosis 

stratification in patients with AH.  Finally, Chapter V revealed that chronic, 

moderate ethanol consumption affects renal cortical oxidant response pathways 

at the protein and transcript level.  Conclusions.  The work presented in this 

dissertation has, in conclusion, revealed that the hepatic ECM responds 

dynamically to stress, plasma peptides, including ECM peptides, change with AH 

severity, and chronic ethanol consumption affects renal cortical oxidant response 

pathways.   
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CHAPTER I 

 

INTRODUCTION 

 

A. Background and rationale for this study 

 

1. Alcohol consumption and human health 

Alcoholic beverages were valued in ancient cultures as an antimicrobial 

agent, a source of hydration and nourishment, as well as a “social lubricant” (1). 

Today, alcohol consumption is nearly ubiquitous worldwide.  In the United States 

alone, 86.4% of adults report consuming alcohol at some point in their lives (2).  

Just as alcohol use is common worldwide, so is alcohol abuse.  Chronic, 

compulsive alcohol abuse characterizes clinically recognized alcohol use 

disorder (AUD), which is defined with specific criteria in the Diagnostic and 

Statistical Manual of Mental Disorders (DSM).  AUDs affect approximately 15 

million adults in the United States (2).  Worldwide, an estimated 64 million people 

are dependent on alcohol (3).   

While AUD is, in itself, a brain disorder, the serious health consequences 

of alcohol abuse are much more extensive.  In addition to the brain (4), chronic 

alcohol consumption/abuse directly damages several organs, including the liver 

(5), lung (6), skeletal muscle and heart (7), and pancreas (8).  Alcohol 
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consumption is a risk factor for over 200 health conditions (9).  Alcohol 

consumption accounts for ~6% of all disability-adjusted life years lost in the 

United States, and alcohol-related disease and disability costs the United States 

approximately 250 billion dollars annually (2). There is a great need for 

mechanism-based therapies to treat and/or protect against alcohol-induced 

organ damage, especially given the high rate of relapse of AUDs (10). 

Unfortunately, current therapies for alcohol-induced organ damage are palliative, 

at best, and do not prevent or reverse the progression of organ injuries. The 

overarching goal of this project is to develop such means of detection and 

treatment of alcohol-induced end organ damage.  

 

2. The extracellular matrix: more than a scaffold 

The extracellular matrix (ECM) is a non-cellular three-dimensional scaffold 

within all tissues and organs (11) that is critical for structure and cell signaling.  

Genetic mutations in matrix components can cause a myriad of connective tissue 

pathologies (12-14), if not embryonic lethality (15, 16).  Therefore, the ECM is 

essential to normal tissue homeostasis. 

The most obvious function of the ECM is to physically support cells and 

thereby provide structure to tissue.  The composition of the ECM allows for its 

structural role.  A network of collagens, which provides tensile strength, is a 

major component of the ECM of the basement membranes and interstitial 

matrices in all physiological domains (17).  In all solid organs, fibroblasts secrete 
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fibrous glycoproteins and proteoglycans that adhere to this collagen scaffold in a 

highly cross-linked meshwork (17).   

In addition to its structural role, the ECM can also play a role in cell signaling. 

The heparin and heparan sulfate components of many proteoglycans readily bind 

soluble growth factors, cytokines, and chemokines and can even regulate their 

activation and presentation to cells (18).  Additionally, these signaling molecules 

can become spatially distributed and form gradients by binding to the ECM (18).  

These gradients are important for tissue development and inflammatory cell 

migration (18).   

In addition to binding signaling molecules, ECM proteins can directly engage 

in signaling.  Indeed, ECM proteins are ligands of cell surface receptors, 

including integrins, which bind specific ECM protein domains (e.g., the RGD 

motif) (19).  Through interaction with cell-surface receptors, the ECM can activate 

intracellular signaling (19) 

The ECM is far from static; it is full of activities required to maintain 

homeostasis or (mal)adapt to insult.  Proteases and protease inhibitors are key 

players in maintaining and regulating other ECM components (20).  Proteases 

may deposit (e.g., proteases involved in the complement and coagulation 

cascades) or degrade (e.g. matrix metalloproteinases, MMPs) matrix 

components to facilitate rapid changes in ECM organization.  Alterations in the 

extracellular landscape, including changes in ECM topography, crosslinking, and 

biochemistry, can affect cell migration, adhesion, and activation (21).  Indeed, 

protease-mediated modification of the ECM can have physical and/or 
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biochemical significance.  For example, ECM proteolytic degradation can create 

physical space through which cells can migrate (22).  Alternatively, ECM 

proteolysis can expose or remove binding sites; for example, protease cleavage 

of laminin-5 exposes integrin-binding sites that are necessary for cell adhesion 

(23).  Proteases can also contribute to ECM dynamics by modulating the activity 

of other enzymes (e.g., proteinase precursors (24) and soluble mediators (e.g., 

IL-8, (21)).  Degradation of ECM components, such as the glycosaminoglycan 

components of proteoglycans, can release growth factors (18).  The broad, 

consequential activity of proteases necessitates intricate, and often redundant, 

mechanisms of regulation.  Indeed, proteases are not only regulated at the levels 

of transcription and secretion, but also at the level of activity (25).  Proteases are 

often activated through cleavage by another protease, and can be targeted by 

inhibitors, such as tissue inhibitors of matrix metalloproteinases (TIMPs) (22).  

Therefore, regulation of the ECM is important for the function of tissues and 

organs.   

 

3. The role of the ECM in inflammation and disease 

As previously discussed, tight regulation of the ECM is critical for normal 

tissue homeostasis.  Such regulation also facilitates rapid changes that allow the 

ECM to play a dynamic and responsive role during inflammation and tissue 

repair.  Perturbations in the ECM during either of these physiological states can 

contribute to disease initiation and progression.  Indeed, ECM dysregulation is 

often a hallmark of tissue pathology (16).   
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During hepatic inflammation of any cause, hepatocytes express many 

different chemokines and inflammatory mediators (26).  During hepatocyte injury 

or death, they also release damage-associated molecular patterns (DAMPs), 

which activate resident macrophages (Kupffer cells, KCs).  Additionally, 

pathogen-associated molecular patterns (PAMPs, e.g. LPS) activate pattern 

recognition receptors (PRRs) (27).  DAMPs and PAMPs cause the release of 

cytokines and acute phase proteins (APPs), such as TNFα, IL-1, IL-6.  Hepatic 

stellate cells become activated, and deposit new ECM and alter matrix 

degradation.  Although this response is important for normal 

immune/inflammatory function, dysregulation of this response can cause 

inappropriate inflammation, tissue damage, and hepatic fibrosis.  During 

inflammation and injury, the functions of the ECM include providing structure, 

facilitating adhesion, presenting cytokines to receptors, sequestering and storing 

cytokines, and mechanical signal transduction.   

The ECM plays an important structural role during inflammation and disease.  

Under normal conditions, the ECM defines tissue boundaries (28).  When the 

tissue is injured, the super- and ultra- structure of the ECM is altered.  As a 

result, tissue boundaries are perturbed.  Additionally, injury alters structural 

components of the ECM (e.g. collagens I, IV, V, fibronectin, elastin) and thereby 

affects the normal elasticity provided by the ECM (29).   

Another role of the ECM during inflammation is regulation of the signaling of 

cytokines and other APPs.  The ECM acts as a chemokine reservoir.  

Additionally, ECM binding of cytokines, including IL-2, TNFα, TGFβ, and 
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RANTES ((30-32), has been shown to regulate cell activation, adhesion, and 

migration.  For example, CCL2 is concentrated in the ECM at the site of injury.  

Furthermore, glycosaminoglycan binding of chemokines can protect them from 

proteolytic cleavage.   

The ECM also acts as an adhesive substrate during inflammation.  The ECM 

directs inflammatory cells.  For example, the ECM is critical in the process of 

leukocyte adhesion and transmigration (33).  Initial leukocyte capture and rolling 

is mediated by selectins, arrest is medicated by integrins, and transmigration 

involves adhesion molecules.  The aforementioned chemokine gradients 

mediated by the ECM also play an important role in directing immune cells.   

During inflammation, the ECM also plays an important role in mechanical 

signaling.  During an acute inflammatory response, the ECM plays a pivotal role 

by serving as a structural barrier.  The ECM defines mechanical properties 

permissive and/or instructive to inflammation.  Indeed, studies have shown that 

neutrophil transmigration is greater through vascular areas with lower ECM 

concentration (34).  The interaction between the ECM and cell infiltration is 

bidirectional; as leukocytes integrate structural and biochemical signals from the 

ECM, they in turn release matrix-degrading proteases (35) which alter the 

extracellular composition and allow for easier cell migration.   

ECM dysregulation during chronic inflammation can cause pathological tissue 

remodeling.  Over time, this remodeling can culminate in disease states such as 

hepatic fibrosis (36, 37), pulmonary fibrosis (38-40), atherosclerosis (41, 42), and 

cancer (43, 44).  Dysregulated ECM synthesis and/or degradation can lead to 
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altered matrix accumulation, which is the etiologic basis of these pathologies.  

For example, robustly increased collagen Iα1 secretion by hepatic stellate cells 

(HSCs) (45), increased crosslinking, and a decrease in enzymatic degradation 

(46) all characterize hepatic fibrosis.  These dynamic ECM changes can initiate 

and perpetuate disease through multiple mechanisms, including altered tissue 

biomechanics (i.e. tissue stiffness) (47, 48), increased integrin-mediated cell 

adhesion (49) and activation of immune cells (50).   

 

4. ECM remodeling and the “degradome” 

As discussed previously, the ECM always has some level of dynamicity, even 

under normal conditions, but can undergo more dramatic, rapid changes (i.e. 

remodeling) during inflammation and disease.  Changes in ECM components can 

occur at all different levels, from protein synthesis to crosslinking or activation.  

One important means of regulation of ECM components is through proteases 

(e.g. MMPs).  At different stages of liver injury, hepatic stellate cells express and 

secrete different profiles of proteases and inhibitors (51), as do hepatocytes (52), 

neutrophils (53), and macrophages (54).  These proteases can release cytokines 

from the matrix (55), but can also release a myriad of other peptides that may or 

may not be bioactive.  The roles of protease degradation products (i.e. the 

‘degradome’) in various diseases are becoming increasingly understood.  For 

example, ECM degradation rate, the production rate of matrix degrading 

enzymes (MDE), and the conversion of ECM into soluble ECM have been 

demonstrated to strongly influence tumor growth and morphology (56).  
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Understanding the role of the ECM degradome in disease is facilitated by 

modern mass spectrometry methods that allow widespread characterization of 

the degradome (i.e. peptidomics or ‘degradomics’) (57).  Even if degradation 

products do not play a critical role in disease mechanisms, they may be useful 

surrogate biomarkers.  These peptides are particularly attractive biomarker 

candidates because they are often secreted into bodily fluids (58, 59).  This 

means that they could be detected using minimally invasive procedures (e.g. 

blood draw).   

 

5. Natural history of liver disease 

No matter their etiology, liver diseases share a common natural history that 

has been thoroughly documented.  This natural history is comprised of a 

spectrum of disease states including earlier stages of fatty accumulation and 

inflammation, such as steatosis and steatohepatitis, and later stages of disease 

such as fibrosis and cirrhosis (60, 61).  Simple steatosis is the earliest stage of 

liver disease and is characterized by micro- and macro-vesicular fat 

accumulation.  Steatosis may be reversible with lifestyle modifications or 

progress to steatohepatitis.  Steatohepatitis is characterized by persistent fat 

accumulation, chronic inflammation, and necrosis (27).  Fibrosis and cirrhosis, 

the later stages of liver disease, are characterized by accumulation of fibrillar 

collagens and regenerative nodules, respectively (61, 62).   

Although there is a great need for and large amount of money spent on liver 

disease treatment, therapeutic options are palliative at best.  Currently there is no 



9 
 

FDA-approved therapy to halt or reverse liver disease progression.  A better 

understanding of mechanisms of disease progression is needed, and new 

therapeutic targets must be identified if a rational, targeted therapy is to be 

developed.   

 

6. Alcoholic liver disease  

The liver is the primary site of alcohol metabolism and therefore the primary 

target organ of alcohol toxicity.  Indeed, after absorption from the small intestine, 

milli-molar concentrations of ethanol flow through the portal circulation and to the 

liver for degradation.  Ethanol is at least 2-3 times more concentrated in portal 

blood than in systemic circulation (63).  Oxidative metabolism of ethanol in 

hepatocytes by alcohol dehydrogenase (Adh) and cytochrome P450 2E1 

(Cyp2e1) produces toxic intermediate metabolites (e.g., acetaldehyde).  Ethanol 

metabolism also causes a robust increase in the NADH/NAD+ ratio, which 

creates a more reduced cellular environment.  This reduced microenvironment 

blocks the beta-oxidation of fatty acids and increases fatty acid esterification.  

The accumulation of excess fatty acids, which are stored in lipid droplets, 

characterizes steatosis, the earliest stage of alcoholic liver disease (ALD).   

Most individuals who consume moderate amounts of alcohol develop 

steatosis.  Steatosis most often has no health consequences, and may even be 

considered a protective mechanism, as it prevents plasma lipid levels from rising.  

However, chronic alcohol consumption can cause progression to later stages of 

ALD, including alcoholic steatohepatitis (ASH), fibrosis, and cirrhosis.  Only a 
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minority of even the heaviest drinkers will develop the most serious stages of 

ALD.  This suggests a 2-hit hypothesis in which progression to later stages of 

liver disease requires multiple insults, or ‘hits’ (64, 65).  The first ‘hit,’ such as 

hepatic steatosis, sensitizes the liver to a second hit such as oxidative stress (65) 

or inflammatory cytokine signaling (66), both of which are increased by ethanol 

consumption.   

Therefore, alcohol is one of the most commonly recognized causes of liver 

disease.  ALD affects more than 10 million Americans each year with medical 

costs of more than $166 billion annually (67).  There are no targeted therapies for 

ALD, and current therapy focuses on achieving and maintaining abstinence.  

Individuals with severe ALD are at risk of such acute alcoholic hepatitis (AH) or 

cirrhosis (68).  These sequelae of ALD have a poor prognosis and limited 

therapeutic options.  Without a successful liver transplant, patients typically die 

from the effects of decompensation (e.g., hepatorenal syndrome) (69).  

Additionally, cirrhosis increases the overall risk for hepatocellular carcinoma 

(HCC) by roughly 20-fold, even in the case of compensated cirrhosis (70).  Once 

the HCC is symptomatic, it is usually unresectable (71).  This cancer has a 

dismal prognosis, with a median survival of less than 6 months and a five year 

survival of almost nil (71).  While the stages of ALD have been well-

characterized, targeted therapies to prevent or reverse this process in humans 

are still needed.  Therefore, additional research is needed to improve 

understanding of risk factors and mechanisms of disease progression and to 

develop rational therapies to prevent or reverse ALD.   
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Alcoholic hepatitis 

AH is characterized by severe, acute hepatic inflammation, liver failure, and 

jaundice (72).  It is a sequelae of ALD that typically occurs after many years of 

heavy alcohol consumption, and it has a high mortality rate (30-50% at 3 months, 

(73)).  Cause of death in AH patients is usually due to multiple organ failure 

secondary to liver injury (74). AH patients are also at risk of systemic 

inflammatory response syndrome (SIRS), which is associated with increased 

mortality (75).   

Therapeutic options for AH are limited.  Liver transplantation for AH is 

controversial and is currently not recommended, largely due to organ shortages 

(76).  Current pharmacologic treatment options for AH are limited to 

corticosteroids or pentoxifylline, although the outcomes from the therapies are 

poor.  The benefits of anti-inflammatory pharmaceuticals only outweigh the risks 

(e.g. infection) in patients with more severe AH (72).  For this reason, assessing 

AH severity and predicting patient outcome is important.   

Predicting outcomes of AH patients is challenging.  AH patients typically have 

an AST/ALT greater than 2, but this measure is neither specific nor sensitive 

(77).  Alternatively, several clinical scoring systems have been developed.  The 

Maddrey discriminant function (DF) is based on serum bilirubin and PT/INR (78) 

which are independent predictors of short‐term mortality in AH (79).  The Model 

for End‐Stage Liver Disease (MELD) score similarly utilizes serum bilirubin and 

INR, but also considers creatinine.  MELD has been shown to more accurately 
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predict short‐term mortality in AH compared to DF (80). Other validated scores 

include ABIC, Glasgow Alcoholic Hepatitis Score, the Child-Turcotte-Pugh score; 

these have similar prognostic efficiency as MELD (81-83). These models are 

highly limited in patients with coexisting kidney disease or chronic hemolysis not 

related to the underlying liver disease (78).  Furthermore, scores such as MELD 

are more limited in predicting outcome of patients with more moderate AH (84).   

 

7. Alcohol and the kidney 

It is well established that ethanol is both directly toxic to the liver and can 

sensitize the liver to a second-hit insult.  Although the liver is the primary target 

organ of ethanol toxicity, it is becoming increasingly understood that ethanol has 

some level of toxicity in other organs, such as the brain, gut, lungs, and 

pancreas.  Chronic, heavy ethanol consumption causes kidney damage 

secondary to hepatic cirrhosis, a phenomenon known as hepato-renal syndrome.  

Moderate alcohol consumption, however, is currently not considered a risk factor 

for chronic kidney disease.  Furthermore, population based studies have shown 

moderate alcohol consumption to be inversely associated with kidney injury (85).  

However, the direct renal effects of chronic moderate EtOH consumption and 

sensitization to secondary hits are unclear.  Rodent studies have identified 

several mechanisms of alcohol-induced kidney injury that parallel those observed 

in the liver (86-88).  These investigations have been driven by the hypothesis that 

alcohol affects the kidneys similarly to the liver.  It certainly is not surprising that 

these parallel mechanisms have been confirmed, considering similarities 
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between these two organs, such as the expression of CYP2E1 (86).  However, it 

is certainly possible that ethanol affects the kidneys by mechanisms that do not 

parallel those in the liver.  Therefore, further investigation into the effects of 

ethanol on the kidneys is needed.  Additionally, it is not known whether ethanol 

exposure alters renal response to a second inflammatory ‘hit’, as has been 

observed in the liver.   

 

8. Statement of goals 

It is well established that ethanol is toxic to the liver, and the natural history of 

ALD is well characterized.  However, there are no targeted therapies to halt or 

reverse liver disease.  Development of such therapies requires a better 

understanding of mechanisms of disease progression as well as identification of 

novel drug targets.  Therefore, one goal of this dissertation is to shed new insight 

into mechanisms of progression of ALD.  In contrast to the liver, the effects of 

ethanol on the kidneys are largely unknown.  Therefore, another goal of this 

dissertation is to elucidate mechanisms by which ethanol affects the kidneys.  

Taken together, the goal of this dissertation is to examine new potential 

mechanisms by which ethanol affects the liver and kidneys.   

 

B. Aims and proposals 

 

1. Characterization of alcohol-induced matrisome changes in liver 
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As discussed in earlier sections, the role of the ECM in later stages of liver 

disease (i.e., fibrosis) is well established.  Previous studies from our group and 

others have also demonstrated changes in the ECM in early liver disease, prior 

to fibrogenesis (89-91).  These studies suggest that these transitional ECM 

changes may play an important role in the sensitization of the liver to insult.  

While several matrix proteins have been implicated as players in liver injury and 

inflammation (i.e., fibrin, fibronectin), this is only a small portion of the >1000 

known ECM related proteins (92).  Indeed, other ECM proteins likely also 

contribute to hepatic injury.  Identification of new ECM proteins that ethanol 

exposure alters would help elucidate mechanisms of ALD progression.  There 

are likely changes in the hepatic ECM that have not yet been identified, due to 

the insolubility of matrix proteins that makes them difficult to extract and analyze.  

A limitation of previous studies focused on the role of the ECM in ALD is that they 

generally studied changes in one ECM protein at a time and did not consider 

structural changes that may accompany altered ECM protein turnover.  

Additionally, the study of alterations to the hepatic ECM has primarily been 

hypothesis-driven, which limits the discovery of novel potential players.  This 

study couples a serial extraction method that allows solubilization and 

enrichment of tightly cross-linked proteins with LC-MS/MS analysis.  This 

approach allows analysis of global changes in the hepatic ECM. 

 

2. Novel biomarkers in alcoholic hepatitis: analysis of the plasma 

peptidome/degradome 
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AH is characterized by acute liver inflammation and liver failure.  It was 

hypothesized that this inflammation would involve transitional remodeling of the 

hepatic ECM, and that this remodeling would cause the accumulation of ECM 

degradation products (peptides) in the blood.  Therefore, the plasma peptidome 

in AH patients was analyzed.  This builds upon the work in Aim 1 of this 

dissertation, which will demonstrated that the hepatic ECM undergoes significant 

remodeling during inflammatory liver injury (93).  This remodeling involves 

protease cleavage of ECM proteins, which yields ECM peptide fragments (94).  

During remodeling, peptide fragments of the degraded ECM have been shown to 

increase in biologic fluids (e.g. plasma) (58, 59).  Peptidomic analysis of the 

degraded ECM (i.e., ‘degradome) has been identified as a useful 

diagnostic/prognostic tool in other diseases of ECM remodeling, such as chronic 

obstructive pulmonary disease (COPD) (58) and metastatic cancers (59).  

Current methods of predicting AH outcome (i.e. clinical scores, e.g. MELD) are 

limited in their abilities to predict at-risk patients with moderate disease (84).  

Therefore, the purpose of this study was to test the hypothesis that the severe 

inflammatory liver injury caused by AH would yield a unique degradome profile in 

patient plasma.  This was done using a peptidomic workflow analysis of plasma 

from healthy participants or AH patients.  This is expected to reveal unique 

patterns of ECM peptides or ‘features’ across different severity groups of AH 

patients  This analysis lays the groundwork for further studies investigating the 

plasma ECM degradome as potential surrogate or mechanistic biomarkers for 
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AH patient outcome.  The characterization of the AH plasma degradome also 

supports future mechanistic studies on the role of ECM remodeling in AH.   

 

3. Pathways affected by alcohol in the kidney 

The effects of ethanol consumption on the kidneys are poorly understood in 

contrast to the liver.  Some human studies have reported benefits of chronic 

moderate EtOH consumption for preservation of renal function (85, 95).  

However, the small number of rodent studies on the effects of ethanol on the 

kidneys have reported that chronic ethanol consumption upregulates Cyp2e1 

(88), causes neutrophil infiltration (88), and increases acetylation of mitochondrial 

proteins (86) in the kidney.  However, these previous studies have been limited 

by the hypothesis that ethanol affects the kidneys by mechanisms parallel to 

those in the liver.  It was hypothesized that there are additional mechanisms by 

which ethanol affects the kidneys that do not necessarily parallel mechanisms in 

the liver.  Aim 3 of this dissertation tests this hypothesis using a discovery-based 

proteomic and transcriptomic approach to discover novel players and pathways 

affected by ethanol and LPS in the renal cortex.   

 

Overall aim of this dissertation. 

The overall aim of this dissertation is to provide new insight into mechanisms 

of alcohol-induced organ injury.  To this end, a novel method of analyzing the 

hepatic matrisome will be used to determine the effects of chronic, moderate 

ethanol consumption and acute inflammation on the hepatic matrisome in mice 
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(Aim 1).  Next, ECM degradome (peptidome) in AH patient plasma will be 

analyzed (Aim 2), allowing for future investigation into the use of plasma ECM 

peptides as surrogate or mechanistic biomarkers.  Finally, a discovery based 

‘omics approach will be used to elucidate the effects of ethanol consumption on 

the kidneys (Aim 3).  Taken together, this work will shed new mechanistic insight 

into alcohol-induced organ injury. 
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CHAPTER II 

 

EXPERIMENTAL PROCEDURES 

 

A. Animals and exposures 

Animal experiments were carried out by the Arteel laboratory.  Mice were 

housed in a pathogen-free barrier facility accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care, and procedures were 

approved by the University of Louisville’s Institutional Animal Care and Use 

Committee.  

 

1. Animal sacrifice, tissue collection and storage 

At time of sacrifice, animals were anesthetized with ketamine/xylazine 

(100/15 mg/kg, intraperitoneally (i.p.)).  Blood was collected from the vena cava 

just before sacrifice.  Citrated plasma was stored at -80 ⁰C for further analysis.  

Portions of liver and renal cortex tissue were snap-frozen in liquid nitrogen, fixed 

in 10% neutral buffered formalin for subsequent sectioning and mounting on 

microscope slides, or frozen-fixed in Tissue Tek OCT-Compound (Sakura 

Finetek, Torrance, CA).   

 

2. Carbon tetrachloride model of hepatic fibrosis 
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Male (4-6 weeks old) C57BL6/J mice were purchased from Jackson 

Laboratory (Bar Harbor, ME).  Mice were injected with CCl4 (1 mL/kg i.p.; diluted 

1:4 in olive oil; Sigma-Aldrich, St. Louis, MO) or vehicle  

twice a week for 4 weeks (96). 

 

3. Chronic model of alcohol exposure 

Male (8 weeks old) C57BL6/J mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME).  Mice were given ethanol-containing Lieber-DeCarli 

diet (Dyets, Inc.) ad libitum or pair-fed isocaloric/isovolumetric maltose-dextrin 

control diet (97).  During the exposure period, animals were housed in pairs in 

shoebox cages in a room held at 75 °F.  Diet was provided in vacuum tubes and 

replaced between 4 and 5 pm daily.  Both ethanol-fed animals and their pair-fed 

counterparts received control diet for the first two days of liquid diet feeding to 

allow acclimation to the liquid diet feeders.  After 2 days of acclimation, ethanol 

concentrations increased incrementally over the course of three weeks before 

reaching the highest ethanol concentration, 6% (vol/vol) for the final three weeks 

of exposure.  Ethanol concentrations in the ethanol-containing diets were as 

follows: 0% for two days of acclimation, 1% for two days, 2% for two days, 4% for 

one week, 5% for one week, and 6% for three weeks.  Ethanol-containing diet 

was provided ad libitum for the entire course of the study.  Because of the 

relatively high caloric content of ethanol, pair-fed control animals received an iso-

caloric control diet; the calories in the iso-caloric diet were matched by adding a 

calorie-equivalent of maltose-dextrin.  To account for the reduced food 
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consumption of ethanol-fed mice, pair-fed mice were given the volume of diet 

consumed by their ethanol-fed counterparts the night before. At the conclusion of 

the feeding period, the two diet groups were further separated into additional 

groups that received either LPS (Escherichia coli; 10 mg/kg i.p. Sigma, St. Louis, 

MO) or vehicle (saline). Animals were euthanized 4 or 24 h after LPS (or vehicle) 

injection (97).  6 control mice, 5 ethanol mice, 6 24-h LPS mice, and 4 

ethanol+24h LPS mice were used for the hepatic matrisome analysis.  3 control 

mice, 3 ethanol mice, 3 4h LPS mice, and 3 ethanol+4h LPS mice were used for 

the renal cortex proteomic and transcriptomic analyses.  The same mice were 

used for the renal cortex proteomics and transcriptomics, except for 1 4h LPS 

mouse and 1 ethanol+4h LPS mouse that were different.   

 

4. Chronic+binge model of alcohol exposure 

Male (10 weeks old) C57BL6/J mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME).  Mice were exposed to ethanol as described by 

Bertola et al. (98).  During the exposure period, animals were housed in pairs in 

shoebox cages in a room held at 75 °F.  Diet was provided in vacuum tubes and 

replaced between 4:00 and 5:00 PM daily.  Animals were acclimatized to control 

(0% EtOH) Lieber-DeCarli liquid diet (Dyets, Inc., Bethlehem, PA) for 5 days.  

Mice were then split into two groups fed ethanol-containing (5% v/v) or iso-caloric 

control liquid diet for 10 days.  To account for the reduced food consumption of 

ethanol-fed mice, pair-fed mice were given the volume of diet consumed by their 

ethanol-fed counterparts the night before.  On day 11, mice received ethanol (5 
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g/kg) or iso-caloric maltose dextran binge via oral gavage.  Mice were sacrificed 

9 hours post-gavage.  Tissues were collected as described in section A1.   

 

B. Proteomics 

1. 3-step ECM extraction 

Sequential extraction of the hepatic ECM was performed as described by 

de Castro Bras et al. for heart tissue (99), with minor modifications for liver.  

Sample preparation and wash. Snap frozen liver tissue  (75-100 mg) was 

immediately added to ice-cold phosphate-buffered saline (pH 7.4) wash buffer 

containing commercially available protease and phosphatase inhibitors (Sigma 

Aldrich) and 25 mM EDTA to inhibit proteinase and metalloproteinase activity, 

respectively.  While immersed in wash buffer, liver tissue was diced into small 

fragments using a scalpel.  The diced sample was washed 5 times to remove 

contaminants.  Between washes, samples were pelleted by centrifugation 

(12,000×g, 5 min), and wash buffer was decanted.   

NaCl extraction.  Diced samples were incubated in 10 volumes of 0.5 M 

NaCl buffer, containing 10 mM Tris HCl (pH 7.5), proteinase/phosphatase 

inhibitors, and 25 mM EDTA.  The samples were mildly mixed on a plate shaker 

(800 rpm) overnight at room temperature.  The following day, the remaining 

tissue pieces were pelleted by centrifugation (10,000×g for 10 min).  The pellet 

was used for the SDS extraction (see below).  The supernatant was collected 

and desalted using ZebaSpin columns (Pierce) according to manufacturer’s 

instructions.  To precipitate proteins, desalted supernatant was incubated with 5x 
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supernatant volume of 100% acetone overnight at -20 °C, centrifuged (16,000×g, 

45 min), and dried in a rotary evaporator.  Proteins were resuspended in 

deglycosylation buffer.  SDS extraction.  The pellet from the NaCl extraction was 

subsequently incubated in 10 volumes (based on original weight) of 1% SDS 

solution, containing proteinase/phosphatase inhibitors and 25 mM EDTA.  The 

samples were mildly mixed on a plate shaker (800 rpm) overnight at room 

temperature. The following day, the remaining tissue pieces were pelleted by 

centrifugation at 10,000×g for 10 min.  The pellet was used for the GnHCl 

extraction (see below).  The supernatant was collected and desalted using 

ZebaSpin columns (Pierce) according to manufacturer’s instructions.  To 

precipitate proteins, desalted supernatant was incubated with 5× supernatant 

volume of 100% acetone overnight at -20 °C, centrifuged (16,000×g, 45 min), 

and dried in a rotary evaporator.  Proteins were resuspended in deglycosylation 

buffer.  Guanidine HCl extraction. The pellet from the SDS extraction was 

incubated with 5 volumes (based on original weight) of a denaturing guanidine 

buffer containing 4 M guanidine HCl (pH 5.8), 50 mM sodium acetate, 25 mM 

EDTA, and proteinase/phosphatase inhibitors.  The samples were vigorously 

mixed on a plate shaker at 1200 rpm for 48 hours at room temperature; vigorous 

shaking is necessary at this step to aid in the mechanical disruption of ECM 

components.  The remaining insoluble components were pelleted by 

centrifugation at 10,000×g for 10 minutes.  This insoluble pellet was retained and 

solubilized as described below.  To precipitate proteins, the supernatant was 

mixed with 6× supernatant volume of 100% ice cold ethanol overnight at 20 °C, 
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centrifuged (16,000×g, 45 min), and washed with 90% ethanol.  Pellets were 

dried in a rotary evaporator and resuspended in deglycosylation buffer.  

Deglycosylation and solubilization.  The supernatants from each extraction were 

dried in a rotary evaporator and resuspended in deglycosylation buffer containing 

150 mM NaCl, 50 mM sodium acetate, 10 mM EDTA, and 

proteinase/phosphatase inhibitors.  Resuspended samples were desalted using 

ZebaSpin columns (Pierce) according to manufacturer’s instructions.  The 

desalted extracts were then mixed with 5 volumes of 100% acetone and stored at 

-20°C overnight to precipitate proteins.  The precipitated proteins were pelleted 

by centrifugation at 16,000×g for 45 minutes.  Acetone was evaporated by 

vacuum drying in a rotary evaporator for 1 hour.  Dried protein pellets were 

resuspended in 500 µL deglycosylation buffer containing 150 mM NaCl, 50 mM 

sodium acetate, pH 6.8, 10 mM EDTA, and proteinase/phosphatase inhibitors 

that contained chondroitinase ABC (P. vulgaris; 0.025 U/sample), endo-beta-

galactosidase (B. fragilis; 0.01 U/sample) and heparitinase II (F. heparinum; 

0.025 U/sample).  Samples were incubated overnight at 37°C.  20 uL DMSO was 

added to the insoluble fraction (pellet from guanidine HCl extraction) to aide in 

solubilization.  Protein concentrations were estimated by absorbance at 280 nm 

using bovine serum albumin (BSA) in deglycosylation buffer for reference 

standards. 

 

2. Total protein extraction 
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This extraction was carried out in the Merchant laboratory.  Proteins were 

extracted from snap frozen renal cortex tissue using lysis buffer (1:1 w/v) 

containing 10% glycerol, 50 mM HEPES, 100 mM KCl, 2 mM EDTA, 0.1% 

Nonidet p-40 (NP-40), 2 mM DTT, 10 mM NaF, 0.25 mM NaVO3, and 1x Halt 

Protease and Phosphatase Inhibitor Cocktail (ThermoFisher).  Samples were 

placed in a sonication bath for 5 minutes, incubated on ice for 1 hour, and 

centrifuged at 12,000×g for 30 minutes.  Extract was removed from insoluble 

matter.  Protein concentrations were assayed using standard Bradford assay with 

BSA for reference standards. 

 

3. Sample cleanup and preparation for liquid chromatography and 

mass spectrometry 

Liver ECM extracts in deglycosylation buffer were pooled by experimental 

group and subsequently analyzed by the University of Louisville Proteomics 

Biomarkers Discovery Core (PBDC).  At the PBDC, samples in deglycosylation 

buffer were thawed to room temperature and clarified by centrifugation at 

5,000xg for 5 min at 4°C.  50 µL (25 µg) of each sample were reduced by adding 

5.55 µL of 1 M DTT and incubating at 60°C for 30 min.  144.45 µL of 8 M urea in 

0.1 M Tris-HCl, pH 8.5, was added to each sample.  Each reduced and diluted 

sample was digested with a modified Filter-Aided Sample Preparation (FASP) 

method developed by Jacek R. Wisniewski, et al. (100).  Recovered material was 

dried in a rotary evaporator and redissolved in 200 μL of 2% (v/v) acetonitrile 

(ACN)/0.4% formic acid (FA).  The samples were then trap-cleaned with a C18 
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PROTOTM 300Å Ultra MicroSpin Column (The Nest Group, Southborough, MA).  

The sample eluates were stored at -80°C for 30 min, dried in a rotary evaporator, 

and stored at -80°C.  Before liquid chromatography, dried samples were warmed 

to room temperature and dissolved in 2% (v/v) ACN/0.1% FA to a final 

concentration of 0.25 μg/μL.  16 μL (4 μg) of sample was injected into the 

Orbitrap Elite. 

Renal cortical proteins (100µg) were digested using a FASP protocol (100) 

to remove NP-40 detergent used for sample preparation.  Proteomic analysis of 

tissue lysates was conducted as previously described (101) with the following 

modifications.  Proteins were digested with Lys-c (Promega #V167A) and trypsin 

(Promega #V5111), each at a 1:100 w/w enzyme:protein ratio.  Peptides were 

desalted using HLB extraction (Waters Oasis HLB 1cc, WAT094225) (102).  50 

µg peptide were dried and resuspended in 100µL 100mM triethylammonium 

bicarbonate (TEABC).  Peptide concentrations were measured using an A205 

nm assay with an external peptide standard curve.   

 

4. TMT labeling 

Tandem mass tag (TMT) 10-plex labeling (Thermo 90111) of renal cortical 

digests was carried out according to manufacturer’s instructions.  50 µg peptide 

in 100 µL 100 mM TEABC were added to each label tube.  Labeled samples 

were admixed, dried, and resuspended in 800 µL 0.1% v/v FA.  Peptide 

concentrations were measured using an A205 nm assay with an external peptide 

standard curve.  200 µg peptide were fractionated by strong cation exchange 
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using 30-300 µg capacity SCX MacroSpin Columns (SMM HIL-SCX.25, Nest 

Group, Inc. Southborough, MA, USA) according to manufacturer’s instructions. 

Sample cleanup was performed using C18 PROTO, 300 Å Ultra Microspin 

Columns (Nest Group, Inc., Southborough, MA, USA).   

 

5. Liquid chromatography and tandem mass spectrometry 

At the PBDC, liver digest samples were separated on a Dionex Acclaim 

PepMap 100 75 μm x 2 cm nanoViper (C18, 3 µm, 100 Å) trap and Dionex 

Acclaim PepMap RSLC 50 μM x 15 cm nanoViper (C18, 2 µm, 100 Å) separating 

columns.  An EASY n-LC (Thermo, Waltham, MA) UHPLC system was used with 

buffer A = 2% (v/v) ACN/ 0.1% (v/v) FA and buffer B = 80% (v/v) ACN / 0.1% 

(v/v) FA as mobile phases.  Following injection of the sample onto the trap, 

separation was accomplished with a 140 min linear gradient from 0% B to 50% 

B, followed by a 30 min linear gradient from 50% B to 95% B, and lastly a 10 min 

wash with 95% B.  A 40 mm stainless steel emitter (Thermo, Waltham, MA; P/N 

ES542) was coupled to the outlet of the separating column.  A Nanospray Flex 

source (Thermo, Waltham, MA) was used to position the end of the emitter near 

the ion transfer capillary of the mass spectrometer.  The ion transfer capillary 

temperature of the mass spectrometer was set at 225°C, and the spray voltage 

was set at 1.6 kV. 

An Orbitrap Elite – ETD mass spectrometer (Thermo) was used to collect 

data from the LC eluate.  An Nth Order Double Play with ETD Decision Tree 

method was created in Xcalibur v2.2.  Scan event one of the method obtained an 
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FTMS MS1 scan for the range 300-2000 m/z.  Scan event two obtained ITMS 

MS2 scans on up to ten peaks that had a minimum signal threshold of 10,000 

counts from scan event one.  A decision tree was used to determine whether 

collision induced dissociation (CID) or electron transfer dissociation (ETD) 

activation was used.  An ETD scan was triggered if any of the following held:  an 

ion had charge state 3 and m/z less than 650, an ion had charge state 4 and m/z 

less than 900, an ion had charge state 5 and m/z less than 950, or an ion had 

charge state greater than 5; a CID scan was triggered in all other cases.  The 

lock mass option was enabled (0% lock mass abundance) using the 371.101236 

m/z polysiloxane peak as an internal calibrant.   

TMT-labeled renal cortex tryptic digest SCX fractions underwent 1D-LC-

MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray 

ionization into an Orbitrap Elite mass spectrometer (Thermo) using a transfer 

capillary temperature set of 225°C and the spray voltage of 1.6kV.  An Nth Order 

Double Play method was used with scan event one.  An FTMS MS1 scan 

(normal mass range; 60,000 resolution; full scan type) for the 400-2000 m/z 

range was used, with charge state screening and monoisotopic precursor 

selection enabled.  Charge state rejection was enabled for unassigned charge 

states and +1 charge states.  The lock mass option was enabled (0% lock mass 

abundance) using the 445.120028 m/z polysiloxane peak as an internal calibrant.  

Scan event two obtained HCD FTMS MS2 scans (normal mass range; 60,000 

resolution; centroid data type) on up to twelve peaks that had a minimum signal 

threshold of 5,000 counts from scan event one.  Dynamic exclusion was enabled 



28 
 

with a repeat count of one, a repeat duration of 60 seconds, an exclusion list size 

of 500, an exclusion duration of 60 seconds, and an exclusion mass width of 

±0.001% relative to reference mass (93).   

 

6. Informatics 

The hepatic ECM mass spectrometry data were analyzed at the University of 

Louisville PBDC using Proteome Discoverer v1.4.0.288.  The database used in 

Mascot v2.4 and SequestHT searches was the 6/2/2015 version of the UniprotKB 

Mus musculus reference proteome canonical and isoform sequences.  +57 on C 

(Carbamidomethylation) was selected as a fixed modification, and +1 on N (Asn-

>Asp) and +16 on MP (Oxidation) were selected as variable modifications.  A 

maximum of two missed cleavages were allowed.  A Target Decoy PSM 

Validator node was included in the Proteome Discoverer workflow in order to 

estimate the false discovery rate (FDR).   

The Proteome Discoverer analysis workflow allows for extraction of MS2 

scan data from the Xcalibur RAW file, separate searches of CID and ETD MS2 

scans in Mascot and Sequest, and collection of the results into a single file (.msf 

extension). The resulting .msf files from Proteome Discoverer were loaded into 

Scaffold Q+S v4.3.2.  Scaffold was used to calculate the FDR using the Peptide 

and Protein Prophet algorithms.  Protein identification probability of the 

sequences was set to >95% on the software.  The results were annotated with 

mouse GO information from the Gene Ontology Annotations Database.   
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Renal cortex mass spectrometry data were analyzed at the University of 

Louisville PBDC using Proteome Discoverer v1.4.0.288 and Scaffold Q+S v4.3.2 

with the 6/2/2014 version of the UniprotKB Mus musculus reference proteome 

canonical and isoform sequences.  A Target Decoy PSM Validator node was 

used to control the FDR and a Reporter Ions Quantifier node was included for 

quantification of the TMT reporter ions considering TMT purity correction factors 

obtained from the manufacturer.  Intensity based normalization of reporter ions 

was achieved using the mean calculation type, modeled on unique peptides, and 

using an average protein reference.  Scaffold was used to calculate the FDR 

using the Peptide and Protein Prophet algorithms.   

 

C. Immunoblots 

1. Dot blot 

Liver samples from the chronic EtOH model were homogenized in 

radioimmunoprecipitation assay (RIPA) buffer containing protease and 

phosphatase inhibitor cocktails (Sigma; St. Louis, MO).  10 μg protein in 100 μl 

RIPA buffer were loaded onto nitrocellulose membranes (GE Healthcare) using a 

vacuum-assisted microfiltration system (Bio-Dot; Bio-Rad, Hercules, CA).  The 

membrane was blocked for one hour with 5% non-fat milk in TBST.  Primary 

antibodies against collagen type I α1 (Meridian T40777R) and GAPDH (Santa 

Cruz SC-25778) were used.  Densitometric analysis was performed using UN-

SCAN-IT gel (Silk Scientific Inc., Orem, Utah) software.   
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2. Western blot 

Renal cortex immunoblot was carried out as described previously (103) using 

a primary antibody against Cat (Cell Signaling D5N7V).  Densitometry of 

exposed film was analyzed using the ImageJ software (ImageJ, NIH, 

http://rsb.info.nih.gov/ij/). 

 

D. Transcriptomics 

1. RNA isolation 

Snap frozen renal cortex sections were stored at -80° C and then incubated in 

RNAlater-ICE (Life Technologies, Carlsbad, CA) at -20° C for 72 hours prior to 

RNA extraction.  RNA was isolated using the mirVana kit (Life Technologies, 

Carlsbad, CA) according to manufacturer’s instructions for total RNA isolation.  

RNA quality was evaluated by Nanodrop ND-1000 (Thermo Fisher Scientific, 

Grand Island, NY) and Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) 

analysis.  Ribosomal depletion was carried out at the University of Louisville 

Center for Genetics and Molecular Medicine (CGeMM) prior to RNA seq 

analysis.   

 

2. RNA sequencing 

RNA libraries were prepared using the TruSe Stranded Total RNA LT 

sample preparation Kit- Set A with Ribo-Zero Gold.  Sequencing was performed 

on the University of Louisville CGeMM’s Illumina NextSeq 500/550 75 cycle High 

Output Kit v2.   

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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3. RNASeq data analysis 

RNA Seq data were analyzed at the University of Louisville CGeMM using 

the Tuxedo suite data analysis pipeline.  Differentially expressed transcripts were 

identified by filtering by analysis of variance (ANOVA) p-value cutoff (p<0.05), a 

more stringent Benjamini-Hochberg (BH) q-value cutoff (q<0.01) and FC cutoffs 

of 1.2 (to explore pathways analysis) and 2 (to address larger changes in RNA 

expression). 

 

E. Histology and Immunohistochemistry 

1. Histology 

In the Arteel laboratory, paraffin-embedded, formalin fixed liver sections from 

the CCl4 study were stained with Sirius Red/Fast Green to visualize fibrosis (96).   

Paraffin-embedded, formalin fixed renal cortex sections from the chronic 

EtOH study were periodic acid-Schiff (PAS) stained (103) in collaboration with 

Dr. Michelle Barati.  Blinded histology was reviewed by a fellowship-trained, 

board certified pathologist.  It was determined that there were no differences 

between groups, and so staining was not quantified.   

 

2. Immunohistochemistry 

In collaboration with Dr. Michelle Barati, immunohistochemistry (IHC) was 

carried out on renal cortex sections using a primary antibody against 

myeloperoxidase (Mpo, Abcam ab9535) and catalase (Cat, Cell Signaling 
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D5N7V) (103).  Mpo staining was quantified as average number of Mpo positive 

cells per visual field (40x) with an average number of 33 ± 4 visual fields per 

kidney section.  An n of 3 samples in each experimental group were analyzed.  

Differences between groups were determined by 2-way ANOVA and post-hoc t-

tests.   

 

F. Clinical chemistry 

1. Blood urea nitrogen analysis 

Blood urea nitrogen (BUN) in mouse plasma from the chronic and 

chronic+binge EtOH studies was measured using the Urea Assay Kit (Abnova 

KA1652) according to manufacturer’s instructions.   

 

G. Clinical study 

1. Study participants 

Plasma samples and clinical data from the following study were provided 

through collaboration with Dr. Craig McClain and Dr. Vatsalya Vatsalya.  This 

study was approved by the Institutional Review Boards at all the participating 

centers.  This study was a part of a large national multisite clinical trial indexed at 

clinicaltrials.gov: NCT01922895 and NCT01809132. All moderate and severe AH 

patients were enrolled at the University of Louisville, the University of 

Massachusetts Medical School, the University of Texas-Southwestern and the 

Cleveland Clinic.  All AUD (“mild”) patients were enrolled at NIAAA, NIH.  All 

healthy volunteers were recruited at the Louisville site.  All AH patients were 
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diagnosed using clinical and laboratory criteria described by the NIAAA 

consortium on AH (104).  Individuals with or without liver injury met the criteria for 

AUD based on DSM 4 XR or DSM 5 manual.  All healthy participants were free of 

any clinically diagnosed disease (liver or organ systems) that might contribute to 

altered laboratory values in comparison analyses.  All patient specimens and 

data were analyzed at the University of Louisville. 

 

2. Inclusion criteria 

Eligible participants were 21 years old or older.  The following individuals 

were ineligible for participation 1) those unwilling or unable to provide informed 

consent; and/or 2) those who had significant comorbid conditions (heart, kidney, 

lung, neurological or psychiatric illnesses, sepsis) and/or active drug abuse; 

and/or 3) pregnant/lactating women; and/or 4) prisoners or other vulnerable 

persons.   

 

3. Study paradigm 

112 adult male and female individuals participated in this NIH-funded study.  

This investigation was a single time point assessment of patients between the 

study cohorts.  The cohorts included healthy participants (n=7), patients with 

AUDs (“mild” , MELD<12; n=45), patients with “moderate” AH (MELD=12-19; 

n=23), patients with “severe” AH (>19; n=37).  The mild/AUD group was both 

analyzed as whole and also as sub-groups without liver injury (“mild-A”, serum 

alanine aminotransferase (ALT)<40, n=14) and with liver injury (“mild-B”, 
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ALT≥40, n=31).  Informed consent was obtained from all study participants 

before collection of data and bodily samples.  Clinical data, relevant medical 

history, measures of severity of ALD, and drinking history [using the Alcohol Use 

Disorders Identification Test (AUDIT) (105) (only in moderate and severe AH 

patients) and lifetime drinking history (LTDH) in all AH and AUD patients (106) 

were collected.  The study was designed to analyze plasma peptides for 

comparison between healthy volunteers, AUD patients (with or without liver 

injury), patients with moderate AH, and patients with severe AH for potential 

associations between parameters.  All data collected from the enrolled study 

participants were de-identified, coded, and analyzed.   

 

4. Collection of clinical data 

Clinical data include participant demographics [age, sex, body mass index 

(BMI)], drinking history (AUDIT and LTDH), medical assessments at admission 

(after obtaining consent, specific for the study to exclude any condition that might 

affect liver tests), and medical history.  Confirmatory tests for AH (laboratory and 

imaging), and markers of liver disease severity [Child-Turcotte-Pugh (CTP), 

MELD, Maddrey DF] were also obtained. Laboratory tests included a 

comprehensive metabolic profile with indices of liver injury [including serum ALT), 

aspartate aminotransferase (AST), total bilirubin (Tbili)] and coagulation.   

 

5. Plasma collection 
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Blood samples were collected from each study participant following consent.  

Blood was collected in lavender- top Vacutainer tubes containing K3 EDTA.  

Blood was separated by centrifugation, and plasma was apportioned into 1 mL 

aliquots and stored at -80 °C until use.  Freeze-thaw cycles were avoided to 

maintain the integrity of the plasma.   

 

H. Peptidomics 

1. Peptidomic workflow optimization 

During workflow optimization, peptides were purified by ACN precipitation.  

100 µL plasma were acidified with 100 µL 10% v/v acetic acid.  To precipitate 

proteins and impurities, 600 µL 99.9% v/v ACN / 0.1% v/v trifluoroacetic acid was 

added to each sample, on ice.  Samples were vortexed for 30 seconds, and 

precipitate was pelleted by centrifugation at 15,000 × g for 15 minutes at 4 °C.  

Pellets were discarded.  Supernatants were collected and centrifuged again as 

before.  Again, supernatants were collected, and pellets were discarded.   

Samples underwent cleanup and LC-MS/MS analysis as described in 

sections 3 and 4.  The LC-MS/MS analysis determined that the purity of the 

peptide samples was unsatisfactory for the relative quantification of peptide 

abundance.  For this reason, the ACN precipitation method was abandoned.  The 

trichloroacetic acid (TCA) precipitation approach developed by Parker et al, 

described below, was adopted (107).  Parker et al. demonstrated that TCA 

precipitation yields more peptides compared to ACN precipitation, acetone 

precipitation, and size-exclusion 10 kDa MWCO filtration.   
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2. Plasma peptide purification 

To avoid systematic bias, the plasma samples were handled as four sample 

flights (flight 1-4), each composed of balanced proportions of all groups with the 

sample order interwoven into a randomized fashion.  Total plasma peptides were 

purified by TCA precipitation based on Parker et al. (107).  100 µL PBS with K3 

EDTA was added to 100 µL plasma.  Samples were mixed and incubated at RT 

for 5 minutes.  Samples were placed on ice, and 200 µL 20% w/v TCA (prechilled 

to 4 °C) were mixed into each sample.  Samples were allowed to incubate for 1 

hour on ice.  Precipitate was pelleted by centrifugation at 16,000 × g for 10 

minutes at 4 °C; pellets were discarded.  Supernatant collection, centrifugation 

and discarding of pellets was repeated twice to ensure efficient removal of high 

molecular weight proteins.   

 

3. Peptide sample cleanup and preparation for liquid chromatography 

and mass spectrometry 

275 µL of each sample was desalted and concentrated using solid phase 

extraction (Waters Oasis HLB µElution 30 µm plate, part no. 186001828BA) as 

previously described by Keshishian, et al. (102).  Solid phase extraction eluates 

were dried in a rotary evaporator, and dried peptides were resuspended in 25 µL 

2% v/v ACN/ 0.1% v/v FA.  Peptide concentrations were measured by 

absorbance at 250 nm.   
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4. Liquid chromatography and tandem mass spectrometry 

A high mass accuracy approach was used for relative quantification of plasma 

peptides isolated from AH patients, AUD patients with and without liver injury, 

and healthy volunteers plasma samples using a label-free approach.  Peptides 

were prepared to a concentration of 0.1 µg/µL in 2% v/v ACN/ 0.1% v/v FA.  A 

commercial mixture of 11 synthetic peptides (iRT1-11, Biognosis USA, Beverly, 

MA) eluting across the chromatographic retention time spectrum were spiked into 

each sample following peptidome resuspension.  Peptides were separated by 

reverse phase chromatography on a Proxeon EASY-nLC 1000 UHPLC system.  

2 µL (0.2 µg) of each peptide sample was injected in random order.  The trap 

column used was a 75µm i.d. x 2cm Acclaim PepMapTM 100 nanoViper 

cartridge packed with C18, 3µm, 100Å material(Thermo); the separating column 

used was a 75µm i.d. x 50cm Acclaim PepMap RSLC nanoViper column packed 

with C18, 2µm, 100Å material (Thermo).  The separation was performed with a 

gradient of solvent A = 2% v/v ACN / 0.1% v/v FA and solvent B = 80% v/v ACN / 

0.1% v/v FA.  After loading the sample onto the trap for 6min at 2µL/min in 

solvent A, the sample was eluted and separated at 250nL/min with a gradient 

from 0% to 55% solvent B over 165min.  Following the gradient, the columns 

were washed at 300nL/min for 10min with 95% solvent B and then returned to 

initial conditions. 

Liquid chromatography eluate was analyzed with an Orbitrap Elite mass 

spectrometer with nanoelectrospray ionization.  An Nth Order Double Play was 

created in Xcalibur v2.2.  Scan event one of the method obtained an FTMS MS1 
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scan (normal mass range; 240,000 resolution, full scan type, positive polarity, 

profile data type) for the range 300-2000m/z.  Scan event two obtained ITMS 

MS2 scans (normal mass range, rapid scan rate, centroid data type) on up to 

twenty peaks that had a minimum signal threshold of 5,000 counts from scan 

event one.  The lock mass option was enabled (0% lock mass abundance) using 

the 371.101236m/z polysiloxane peak as an internal calibrant.  

 

I. Informatics 

1. Liver ECM proteomic data analysis 

Hepatic protein enrichment was quantified using total ion current (TIC).  

Within Scaffold, proteins were filtered for extracellular GO annotation.  The NaCl, 

SDS, GnHCl, and pellet fractions contained 89, 63, 84, and 46 extracellular 

proteins, respectively.  Additional analysis was only performed on these proteins 

that were classified as extracellular by GO annotation.  The extracellular proteins 

were further categorized into four classes based on their role in the extracellular 

space as determined by a comprehensive literature search.  These four ECM 

groups include class 1) glycoproteins and proteoglycans, class 2) other ECM-

associated proteins, class 3) proteases and protease inhibitors, and class 4) 

collagens.  If no record could be found supporting the hypothesis that a protein 

was associated with the ECM, the protein was placed into (5), other proteins.   

 

2. Renal cortex proteomic data analysis 



39 
 

Renal cortex data were filtered by BH corrected ANOVA p-value <0.05 and 

fold change (FC) ≥ 1.2.  Ingenuity Pathways Analysis (IPA) was used to identify 

pathways changed by EtOH, LPS, and/or the combination.  The PANTHER web 

application was used to identify statistically overrepresented GO cellular 

compartments in groups of proteins that were significantly regulated by EtOH, 

LPS, and EtOH + LPS compared to control.  The statistical overrepresentation 

test was carried out for (A) GO cellular component complete, (B) within each 

cellular compartment, and (C) for GO biological process complete and with 

Bonferroni correction using default settings.   

 

3. Multivariate analysis of renal cortex proteomic and transcriptomic 

data sets 

Hierarchical clustering of the top-20 GO biological process terms for the 

proteomic and the transcriptomic data sets were conducted using the 

Heatmapper web application (www.heatmapper.ca).  Data were clustered using 

an average linkage method and a Spearman Rank Correlation distance 

measurement method. 

 

4. AH plasma peptidome data analysis 

Peptide spectra collected in a data dependent fashion were interpreted using 

a de novo spectrum assignment approach that enabled shotgun analysis of 

peptide post-translational modification.  The AUC for high resolution extracted ion 

chromatograms were used as a label-free relative quantification of the peptide 
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abundances.  Quantitative and qualitative feature data were extracted and 

analyzed using PEAKS Studio (v8.5).  Data were normalized to TIC.  The 

following data analysis was done in collaboration with Dr. Shesh Rai and Dr. 

Sudhir Srivastava.  There were 1730 peptides initially.  In each group, a peptide 

was discarded if all observations were missing.  Therefore, peptides having at 

least one observation across all samples in each group were retained for further 

analysis.  After this filtering, 1273 peptides remained.  Data were normalized by 

taking log base 2 of raw data followed by quantile normalization using 

“normalize.quantiles” function (108) available in R package “preprocessors”.  

Missing values were imputed  using the “SVD” (109) method under the 

assumption of MAR.  The R package “imputeLCMD” was used for imputing the 

missing values. We used the imputed data for further analysis (see section J2). 

 

J. Statistics 

1. Statistical analysis of liver ECM proteomic data 

Heat maps were compiled in the Arteel laboratory by Dr. Shanice Hudson in 

the open-source statistical programming language R (R Development Core 

Team. R: A language and environment for statistical computing.Vienna, Austria: 

R Foundation for Statistical Computing, 2008.).  ECM proteome output as Log2 

FC of control was analyzed with the heatmap.2 function of the gplots package, 

using the methods described by Key et al. (110)  Pearson’s correlation coefficient 

was used to measure distance, and the Ward method (ward.D) was the 

agglomeration method for row and column clustering.  In addition, protein 
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distribution patterns across the four treatment groups were clustered using 

hierarchical clustering (function hclust within R package cluster) (Cluster analysis 

basics and extensions: R package version [computer program]. Version 1.15.3 

2014).  Patterns were clustered separately for each fraction, and the optimal 

number of clusters was determined using a combination of statistical measures 

(R package clValid) (Brock G, Pihur V, Datta S, Datta S. clValid: An R package 

for cluster validation. Journal of Statistical Software 2008;25:1-22.) and biological 

interpretability.  Since interest was in the pattern of abundance across the 

treatment groups, abundance values for each protein were standardized to mean 

zero and standard deviation one for each protein prior to clustering.   

 

2. Statistical analysis of alcoholic hepatitis plasma peptidomic data 

Statistical analyses of the peptidomic data were carried out in collaboration 

with Dr. Shesh Rai and Dr. Sudhir Srivastava.  A non-discriminant data reduction 

method termed principal components analysis (PCA) was used to evaluate the 

data at the patient level and determine the ability of the data to ‘self-sort’ into 

discrete groups.  To evaluate the data more discretely at the peptide level, a 

multivariate analysis approach using hierarchical clustering and heat-map 

annotation was used incorporating linear mixed modeling of the data to control 

for fixed and random variables.  Lastly, univariate (pair-wise t-tests with 

Benjamini-Hochberg correction for multiple comparisons) were used to establish 

differences in peptide groups and individual peptides across patient cohorts.  

Peptide abundance differences were plotted as log2FC versus –log10 BH-
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corrected p-value.  Peptides with BH-corrected p-value < 0.05 and log2FC ≥ 1 

were considered significantly upregulated, and peptides with BH-corrected p-

value <0.05 and log2FC ≤ -1 were considered significantly downregulated. The 

Tukey's HSD test was used for all pairwise comparisons.  Pairwise comparisons 

were illustrated for the major comparators of: A. Healthy vs. Mild-A, B. Healthy 

vs. Mild-B, C. Healthy vs. Moderate, D. Healthy vs. Severe, E. Mild-A vs Mild-B, 

F. Moderate vs. Severe.  Prior to statistical comparisons, these data were 

adjusted for (a) random effects by correcting in a sample dependent fashion to 

iRT peptide AUCs and sample flight number and (b) fixed effects by correcting 

for age and sex.  The peptides demonstrating differential abundance (regulated) 

in the pair-wise t-testing (BH-corrected p-value <0.05) were aggregated and 

filtered using the Matrix Annotator (http://matrisomeproject.mit.edu/analytical-

tools/matrisome-annotator/) by GO assignment for ECM.  The identification of 

regulated ECM peptides common to all or unique between AH, AUD, and healthy 

control groups were determined graphically (regulated ECM peptidome).   

 

3. Statistical analysis of renal cortex proteomic and transcriptomic data 

Statistical analyses of proteomic and transcriptomic data used one-way 

ANOVA and post-hoc t-tests corrected for multiple comparisons by the method of 

Benjamini-Hochberg, and a corrected p-value (q-value) of less than 0.05 was 

considered significant.  Analysis of immunoblot data used two-way ANOVA to 

determine interaction effects of diet (EtOH) and treatment (LPS) with post-hoc t-

test to determine significance of differences between group means with a p-value 
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≤ 0.05 considered significant.  Statistical analyses used to determine significance 

of proteins or genes with canonical pathways, gene ontological associations, and 

pathway clustering were as embedded within Ingenuity Pathways Analyses 

(analysis.ingenuity.com), MetaCore (genego.com), Gene Ontology/GO 

(patherdb.org) and Heatmapper (heatmapper.ca).   
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CHAPTER III 

 

THE HEPATIC “MATRISOME” RESPONDS DYNAMICALLY TO INJURY: 

CHARACTERIZATION OF TRANSITIONAL CHANGES TO THE 

EXTRACELLULAR MATRIX IN MICE1 

 

A. Introduction 

Although the structural role of the ECM is well known, this compartment 

contains a diverse range of components that work bidirectionally with 

surrounding cells to create a dynamic and responsive microenvironment. This 

microenvironment, in turn, regulates cell and tissue homeostasis. ECM 

components are directly involved in signaling through interactions with cell-

surface receptors. The ECM also indirectly impacts cell-to-cell communication by 

binding and retaining soluble mediators, including cytokines, chemokines, and 

growth factors (18).  Proteases and protease inhibitors interact with the ECM to 

maintain homeostasis or respond to stress or injury.(21)  A broader definition of 

the ECM proteome (i.e., “‘matrisome”‘) has been established to encompass not 

                                            
1 Published in 93. Massey VL, Dolin CE, Poole LG, Hudson SV, Siow DL, Brock GN, 
Merchant ML, Wilkey DW, Arteel GE. The hepatic "matrisome" responds dynamically to injury: 
Characterization of transitional changes to the extracellular matrix in mice. Hepatology. 
2017;65(3):969-82. Epub 2016/12/31. doi: 10.1002/hep.28918. PubMed PMID: 28035785; 
PMCID: PMC5319876.  Reprint with permission. 
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only fibrillar ECM proteins, but also the proteins that contribute to the 

homeostasis of the ECM proteome.(18) 

In some contexts, changes to the ECM are well recognized and understood; 

for example, the formation of collagenous scars in tissue is almost a canonical 

response to unresolved chronic injury.  Hepatic fibrosis (HF) is a well-known 

example of this scarring process,(45) given that fibrotic livers develop easily 

detectable collagenous scars.  Given the dominance of these changes in the 

hepatic ECM during fibrogenesis, many studies have focused on the 

mechanisms that underlie the increases in collagen deposition.  However, the 

alterations of the hepatic ECM during fibrosis are much more diverse than simply 

an increase in collagen.  Indeed, fibrosis is characterized by changes in the 

deposition and distribution of a myriad of other ECM proteins (e.g., laminin and 

vitronectin).(111)  Whereas many of these changes are described, there are still 

gaps in our understanding.  Specifically, the magnitude and impact of these 

changes on overall liver (dys)function are incompletely understood at this time. 

ECM remodeling limited to chronic fibrogenesis, but also plays a role in early 

injury responses; the wound-healing response is a well-known example of this. 

The term “transitional tissue remodeling” describes changes to the ECM that do 

not alter the overall architecture of the organ (Fig. 3.1A).  For example, changes 

in the hepatic abundance of ECM proteins, such as fibronectin(90) and fibrin,(89, 

112) have been observed in models of hepatic inflammation.  Importantly, 

blocking these ECM changes blunts, at least in part, hepatic injury in these 

models.  Therefore, transitional changes to the ECM may contribute to early 
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disease initiation and/or progression before the onset of fibrogenesis (Fig. 3.1A). 

The nature, breadth, and magnitude of these ECM changes are currently poorly 

understood.  A better understanding could forward new mechanisms and/or 

biomarkers for diseases.  

 Although previous studies have shown that subtle changes in the ECM 

may contribute to the development of inflammatory liver injury, the research in 

this area has generally been restricted to study of single ECM proteins (e.g., 

fibrin).  (89, 112)  A proteomic approach was hindered by the challenges of low 

abundance and insolubility of many ECM proteins, until the recent development 

of a new method.  This method involves a sequential protein extraction using 

increasingly rigorous solubilization buffers along with LC-MS/MS analysis.(92, 

99, 113)  The sequential extraction was specifically designed to enrich and 

characterize ECM proteins in solid organs.  This approach also potentially 

accounts for proteins that can exist in different solubility states, based on 

posttranslational modifications (e.g., cleavage, cross-linking, and degradation). 

The goals of the current study were 2-fold: (1) to characterize the sequential 

extraction method for hepatic matrisome and (2) to compare the impact of 

inflammatory liver injury (before fibrosis) on the hepatic matrisome.  

 

B. Experimental Procedures 

1. Animals and exposures 

Mice were exposed to CCl4 as described in Chapter II.  Mice were exposed to 

 



47 
 

Figure 3.1:  Scheme of transitional ECM changes and extraction 
methodology.   
 

Remodeling in response to chronic injury (i.e., fibrosis) is well known; however, 

the hepatic ECM also responses dynamically to acute stress. These acute 

responses can be viewed as an arm of the wound‐healing response and facilitate 

recovery from damage, which resolves once the damage is repaired. However, 

under conditions of chronic injury, these changes contribute to activation of a 

significant remodeling response that leads to scar formation (i.e., fibrosis).   
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ethanol and/or LPS also as described in Chapter II.  6 control mice, 5 ethanol 

mice, 6 24h LPS mice, and 4 ethanol+24h LPS mice were used for the hepatic 

matrisome analysis.   

 

2. Three-step ECM extraction 

Liver tissue was submitted to a 3-step extraction process that allows 

sequential isolation of loosely-bound extracellular proteins, cellular proteins, 

tightly bound extracellular proteins, and highly crosslinked, insoluble proteins to 

be differentially separated as described in Chapter II.   

 

3. Sample cleanup and preparation for liquid chromatography and 

mass spectrometry 

Liver tissue extracts were prepared for LC-MS/MS analysis as described in 

Chapter II.   

 

4. Liquid chromatography and mass spectrometry 

Liver tissue extracts underwent LC-MS/MS analysis as described in Chapter 

II. 

 

5. Data analysis 

LC-MS/MS data were analyzed as described in Chapter II.   

 

6. Statistical analysis 
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Statistical analysis was performed as described in Chapter II.   

 

C. Results 

1. Analysis of changes to the ECM proteome caused by CCl4-induced 

hepatic fibrosis 

Previous studies have investigated the matrisome profile for aortic vessel and 

cardiac tissue (99, 114).  However, this method has never been employed for 

liver tissue.  The first objective of this work was to validate this multi-step 

extraction and proteomic analysis of the hepatic matrisome; toward this end, a 

model that causes robust changes to the hepatic ECM (i.e., fibrosis) was used.  

Specifically, the impact of 4 weeks of CCl4 exposure (see Experimental 

Procedures) on the ECM proteome was determined (Fig. 3.2).  As expected,(96) 

CCl4 exposure caused robust ECM deposition that was easily detected with 

standard collagen staining (Sirius Red/Fast Green; Fig. 3.2A), dot blot, and 

hydroxyproline content (Fig. 3.2B).  The proteomic approach reinforced an 

increase in collagen 1α1 abundance with CCl4 (Fig. 3.2C).  Additionally, the 

proteomic approach demonstrated that CCl4 exposure also increased abundance 

of collagens type III, IV, and V (Fig. 3.2C).   

Proteomic analysis is typically carried out on total protein extracts, as 

opposed to extracts from multi-step fractionation.  To simulate this approach, 

qualitative proteomic data from the different fractions (see Experimental 

Procedures) were pooled.  The majority of ECM proteins were detected in 

extracts of livers of both naïve and CCl4‐exposed mice.  Specifically, CCl4 
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Figure 3.2: Validation of extraction technique with CCl4 model of fibrosis.   
 

Animals were injected with CCl4 or vehicle for 4 weeks.  Collagen type I 

accumulation was determined by Sirius Red staining (A) and by dot blot (control 

n=4, CCl4 n=4) and hydroxyproline content (control n=4, CCl4 n=6) (B).  

Quantitative changes in other collagens were also determined in the ECM 

extraction fractions (control n=1 pooled sample of 6, CCl4, 1 pooled sample of 5) 

(C).  Abbreviations: COL, collagen; GAPDH, glyceraldehyde 3‐phosphate 

dehydrogenase.  
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exposure increased the number of ECM proteins by 7, and only one protein was 

lost compared to the control group (data not shown).  These data indicate that, 

when analyzed as a whole, there are few qualitative changes (i.e., 

disappearance or appearance of proteins) in the hepatic matrisome, even under 

conditions of significant histological ECM changes (e.g., fibrosis; Fig. 3.2A). 

 

2. Ethanol and LPS exposure cause global changes to the hepatic 

matrisome 

After validation of the multi-step extraction method with CCl4‐challenged livers 

(Fig. 3.2), a more detailed analysis of the effects of ethanol and LPS was carried 

out. Figure 3.3A shows a heatmap comparing the quantitative changes in the 

ECM proteome between the four exposure groups (±ethanol diet, ±LPS injection) 

after fractions were combined ‘in silico’; the most up‐regulated or down‐regulated 

ECM proteins were used to compare the groups. Heatmap visualization of the 

ECM proteomes demonstrates distinct segregation between the control group 

and exposure groups, with ethanol and LPS exposure groups producing varying 

patterns; ethanol + LPS produced patterns similar to both exposures alone, but 

also demonstrated unique patterns (Fig. 3.3A). However, similar to the CCl4 

qualitative analysis (see above and Fig. 3.2), ethanol and/or LPS caused only a 

small number of proteins to change qualitatively.  

 

3. Three-step serial extraction creates distinct protein profiles 
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Figure 3.3: Liver extracts have unique protein profiles based on fraction 
type and experimental group.  
 
A heatmap depicting quantitative changes to the total ECM proteome in response 

to ethanol or LPS is shown in (A).  The number of proteins unique to, or shared 

by, all four extractions of pair-fed animals is shown (B).  Bubble graphs are used 

to show presence of plasminogen, Annexin A1 and fibrin(ogen) gamma chain 

across the four extracts (x-axis) and the four experimental groups (y-axis; C).   
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ECM proteins are not only regulated at the level of de novo synthesis, but 

also at the level of enzymatic activation, degradation, and crosslinking.  To gain 

insight into protein location and structure, previous studies have used a three‐ 

step ECM extraction method (Fig. 3.1B) in other organs.  (99, 114) Here, that 

same approach was adapted for use with liver tissue.  In the first step of this 

extraction, NaCl extraction solubilizes loosely bound proteins by displacing 

polyionic interactions. (115) Following NaCl extraction, the remaining liver tissue 

was decellularized using 1% sodium dodecyl sulfate (SDS). SDS solubilizes 

cytoplasmic and nuclear membranes, thereby releasing cellular proteins. 

Insoluble matter remaining after the decellularization then underwent extraction 

with a denaturing 4 M GnHCl buffer.(116)  Following the denaturing extraction, 

an insoluble pellet enriched in heavily cross‐linked matrix proteins 

remained.(114)  Fig. 3.3B shows a qualitative comparison of the four extracts of 

ECM proteins from control animals.  Each extract yielded a distinct ECM protein 

profile consisting of not only ECM proteins that were shared among all four 

extracts, but also proteins unique to specific extracts (Fig. 3.3B). Analysis of the 

CCl4 extracts for collagen isoforms (Fig. 3.2C) indicated that, as expected, these 

proteins tended to accumulate in the later extraction fractions. These results 

indicate that the extraction approach effectively separated ECM proteins.  

When ECM proteins were compared between experimental groups, 

interesting patterns of distribution across the extracts were revealed (Table 3.1); 

representative examples of some of these patterns are shown in Fig. 3.3C.  For 

example, some proteins (e.g., plasminogen) changed in overall “presence” or  
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Table 3.1:  Qualitative presence of ECM proteins in sample extracts 

 

Protein name 
Accession 

Number 
MW 

(kDa) 
ECM function Ref Presence of protein 

Proteoglycans and glycoproteins 

   
 

Con EtOH LPS 
EtOH 
+LPS 

Alpha-1-acid glycoprotein 1 A1AG1_MOUSE 24 Acute phase serum protein (201) NaCl  █ █ █ 

SDS     

GnHCl     

Pellet     

Alpha-2-HS-glycoprotein FETUA_MOUSE 37 Inhibitor of ECM mineralization (202) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     

Arylsulfatase A ARSA_MOUSE 54 ECM structure (203) NaCl  █   

SDS     

GnHCl     

Pellet     

Beta-2-glycoprotein APOH_MOUSE 39 Coagulation, phospholipid 
binding 

(204) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

Biglycan PGS1_MOUSE 42 Regulation of collagen fibril 
formation, ECM-cell 
interactions 

(205) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

Corneodesmosin CDSN_MOUSE 54 Adhesive protein (206) NaCl     

SDS     

GnHCl     

Pellet █  █  

Cysteine-rich with EGF-like 
domain protein 2 

CREL2_MOUSE 38 Extracellular protein heavily 
glycosylated.  ECM 
function unknown 

(207) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     
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Decorin PGS2_MOUSE 40 ECM-cell interactions, ECM 
assembly 

(208) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

Dermatopontin DERM_MOUSE 24 ECM-cell interactions, ECM 
assembly 

(209) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

Dystroglycan DAG1_MOUSE 97 Matrix organization, basement 
membrane assembly 

(210) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █  

Pellet     

Fibrinogen alpha chain E9PV24_MOUSE 87 Hemostasis, cell  signaling 
(fibrin(ogen) alpha chain) 

(211) NaCl   █ █ 

    SDS   █ █ 

    GnHCl  █ █ █ 

    Pellet    █ 

Fibrinogen beta chain FIBB_MOUSE 55 Hemostasis, cell  signaling (211) NaCl  █ █ █ 

SDS     

GnHCl     

Pellet     

Fibrinogen gamma chain FIBG_MOUSE 49 Hemostasis, fibrinogen 
polymerization 

(212) NaCl  █ █ █ 

SDS   █ █ 

GnHCl █ █ █ █ 

Pellet █   █ 

Fibronectin FINC_MOUSE 273 Scaffolding, ECM organization, 
regulation of ECM-cell 
interactions 

(213) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

Galectin-1 LEG1_MOUSE 15 Matrix  crosslinking, matrix 
organization 

(214) NaCl █ █ █  

SDS   █  

GnHCl █ █ █ █ 

Pellet     

Galectin-3-binding protein LG3BP_MOUSE 64 Cell-matrix adhesion (215) NaCl █ █ █ █ 

SDS  █ █ █ 

GnHCl █  █ █ 

Pellet     
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Granulins GRN_MOUSE 63 Cell-matrix signaling (216) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Haptoglobin HPT_MOUSE 39 Inhibition of collagen 
degradation, cell migration 

(217) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet  █ █ █ 

Insulin-like growth factor-
binding protein 2 

IBP2_MOUSE 33 Binding/retainment of ILGF in 
the extracellular  space 

(218) NaCl     

SDS     

GnHCl █ █   

Pellet     

Insulin-like growth factor-
binding protein 4 

IBP4_MOUSE 28 Binding/retainment of ILGF in 
the extracellular  space 

(218) NaCl     

SDS     

GnHCl █ █   

Pellet     

Keratin, type I cytoskeletal 13 K1C13_MOUSE 48 Cell-matrix adhesion, cell 
migration 

(219) NaCl  █  █ 

SDS     

GnHCl     

Pellet   █  

Leucine-rich HEV 
glycoprotein 

Q91XL1_MOUSE 37 Cell-matrix adhesion (220) NaCl   █ █ 

SDS     

GnHCl     

Pellet     

Lumican LUM_MOUSE 38 Regulation of collagen fibril 
formation 

(221) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet █ █  █ 

Microfibrillar-associated 
protein 5 

MFAP5_MOUSE 18 Elastic fiber assembly, binding 
of fibrillin-1 and fibrillin-2 

(222) NaCl     

SDS     

GnHCl █   █ 

Pellet     

Fibrinogen alpha chain E9PV24_MOUSE 87 Hemostasis, cell  signaling 
(fibrin(ogen) alpha chain) 

(211) NaCl   █ █ 

SDS   █ █ 

GnHCl  █ █ █ 

Pellet    █ 
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Ribonuclease inhibitor RINI_MOUSE 50 Extracellular inhibitor of 
angiogenin which can 
degrade BM 

(223) NaCl    █ 

SDS     

GnHCl     

Pellet     

Sulfated glycoprotein 1 SAP_MOUSE 61 Cell survival, cell signaling (224, 
225) 

NaCl     

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet █ █ █ █ 

Syndecan-4 SDC4_MOUSE 21 ECM organization, signal 
transduction, cell adhesion 

(226) NaCl  █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Tubulointerstitial nephritis  
antigen-like 

TINAL_MOUSE 52 Protein binding - fibronectins, 
collagens 

(227) NaCl █ █ █ █ 

SDS     

GnHCl █ █  █ 

Pellet     

Vitronectin VTNC_MOUSE 55 ECM-cell signal transduction, 
cell adhesion 

(228) NaCl █ █ █ █ 

SDS     

GnHCl  █ █ █ 

Pellet     

Other ECM-associated proteins 

 

 

Con EtOH LPS 
EtOH 
+LPS 

14-3-3 protein epsilon 1433E_MOUSE 29 Protein binding (229) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet   █  

14-3-3 protein gamma 1433G_MOUSE 28 Protein binding (229) NaCl █ █ █ █ 

SDS     

GnHCl  █ █ █ 

Pellet     

14-3-3 protein sigma 1433S_MOUSE 28 Protein binding (229) NaCl     

SDS     

GnHCl     

Pellet █  █  
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14-3-3 protein zeta/delta 1433Z_MOUSE 28 Protein binding (229) NaCl █ █ █ █ 

SDS  █ █ █ 

GnHCl     

Pellet   █  

Actin, cytoplasmic 1 ACTB_MOUSE 42 Cortical cytoskeleton (230, 
231) 

NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl     

Pellet █ █ █ █ 

Actin, cytoplasmic 2 ACTG_MOUSE 42 Cortical cytoskeleton (230, 
231) 

NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

Alpha-2-macroglobulin 
receptor-    

     associated protein 

AMRP_MOUSE 42 Protein binding, soluble 
mediator internalization 

(232) NaCl █ █ █  

SDS  █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Alpha-actinin-4 ACTN4_MOUSE 105 Focal adhesion,  cell adhesion (233, 
234) 

NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet   █  

Annexin A1 ANXA1_MOUSE 39 ECM binding, fibrinolysis (235) NaCl    █ 

SDS     

GnHCl █    

Pellet     

Annexin A2 ANXA2_MOUSE 39 ECM binding, fibrinolysis (236) NaCl █ █ █ █ 

SDS █ █   

GnHCl     

Pellet █ █ █ █ 

Annexin A5 ANXA5_MOUSE 36 ECM binding (collagen) (237) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

Apolipoprotein A-I APOA1_MOUSE 31 ECM binding (collagen, 
fibronectin) 

(238) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet █ █ █ █ 
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Apolipoprotein A-IV APOA4_MOUSE 45 Lipid metabolism (239) NaCl █ █ █ █ 

SDS   █ █ 

GnHCl █  █ █ 

Pellet █ █  █ 

Apolipoprotein E APOE_MOUSE 36 Lipid metabolism, cell signaling (240) NaCl █ █ █ █ 

SDS     

GnHCl █ █  █ 

Pellet     

Apolipoprotein O-like APOOL_MOUSE 29    NaCl █ █ █ █ 

SDS  █ █ █ 

GnHCl     

Pellet     

Beta-2-microglobulin B2MG_MOUSE 14 Protein binding, cell-ECM 
interaction 

(241) NaCl     

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Calreticulin CALR_MOUSE 48 Protein binding (collagens, 
laminin)  

(242) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Calumenin CALU_MOUSE 37 Pprotein binding, stabilization of 
fibulin-1 

(243) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet █ █  █ 

Carbonic anhydrase 2 CAH2_MOUSE 29 pH regulation of ECM (other 
isozymes) 

(244) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

Ceruloplasmin CERU_MOUSE 121 Iron, copper binding (245) NaCl  █ █ █ 

SDS     

GnHCl     

Pellet     

Chitinase-like protein 3 CHIL3_MOUSE 44 ECM turnover (246) NaCl   █ █ 

SDS     

GnHCl     

Pellet     
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Clusterin CLUS_MOUSE 52 Extracellular protein chaperone (247) NaCl     

SDS   █ █ 

GnHCl  █ █ █ 

Pellet     

Cofilin-1 COF1_MOUSE 19 Cortical cytoskeleton,  cell 
motility 

(248) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

C-reactive protein CRP_MOUSE 25 Protein binding (fibronectin) (249) NaCl █ █ █ █ 

SDS  █ █  

GnHCl     

Pellet     

C-X-C motif chemokine 9 CXCL9_MOUSE 14 Soluble mediator (angiostatic 
cytokine) 

(250, 
251) 

NaCl █ █ █ █ 

SDS     

GnHCl   █  

Pellet     

Endoplasmin ENPL_MOUSE 92 Soluble mediator (TLR  
signaling) 

(252) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl     

Pellet █ █ █ █ 

Estradiol 17-beta-
dehydrogenase 12 

DHB12_MOUSE 35 Protein binding (heparin, 
fibronectin, collagen) 

(253) NaCl     

SDS █ █   

GnHCl     

Pellet     

Ferritin heavy chain FRIH_MOUSE 21 Cell  migration (254) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl  █ █ █ 

Pellet     

Ferritin light chain 1 FRIL1_MOUSE 21 Cell migration (254) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Glucose-6-phosphate 
isomerase 

G6PI_MOUSE 63 Cell motility (255) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     
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Hepatoma-derived growth 
factor 

HDGF_MOUSE 26 Decreted heparin-binding 
growth factor 

(256) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     

High mobility group protein 
B1 

HMGB1_MOUSE 25 Heparin binding, cytokine (257, 
258) 

NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     

High mobility group protein 
B2 

HMGB2_MOUSE 24 Heparin binding, cytokine (257, 
258) 

NaCl  █ █ █ 

SDS     

GnHCl     

Pellet     

Lumican LUM_MOUSE 38 Regulation of collagen fibril 
formation 

(221) NaCl   █ █ 

SDS     

GnHCl     

Pellet     

Moesin MOES_MOUSE 68 Cell cortex organization (259) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

Myosin-9 MYH9_MOUSE 226 Cell migration, cortical actin 
organization 

(260) NaCl   █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Neutrophil gelatinase-
associated  

      lipocalin 

NGAL_MOUSE 23 ECM remodeling (modulation of 
MMP9 activity) 

(261) NaCl   █ █ 

SDS     

GnHCl   █ █ 

Pellet     

Nucleobindin-2 NUCB2_MOUSE 50 Matrix maturation (262) NaCl     

SDS     

GnHCl    █ 

Pellet     

Peptidyl-prolyl cis-trans  
     isomerase A 

PPIA_MOUSE 18 Matrix assembly of hensin (263) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet █  █  
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Pro-cathepsin H CATH_MOUSE 37 Matrix degradation (264) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

S100-A13 S10AD_MOUSE 11 Calcium binding (265) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

S100-A9     NaCl  █ █ █ 

SDS █ █ █ █ 

GnHCl  █ █ █ 

Pellet     

Serum amyloid A-1  SAA1_MOUSE 14 Cell adhesion (266) NaCl   █ █ 

SDS     

GnHCl  █ █ █ 

Pellet   █ █ 

Serum amyloid A-2 SAA2_MOUSE 14 Cell adhesion (266) NaCl   █ █ 

SDS     

GnHCl  █ █ █ 

Pellet    █ 

Serum amyloid A-3 SAA3_MOUSE 14 Cell adhesion (266) NaCl     

SDS     

GnHCl   █ █ 

Pellet     

Serum amyloid P-component SAMP_MOUSE 26 Protein binding (type IV 
collagen, laminin) 

(267, 
268) 

NaCl    █ 

SDS     

GnHCl     

Pellet     

Superoxide dismutase [Cu-
Zn] 

SODC_MOUSE 16 Protein binding 
(heparin/heparan sulfate,  
type 1 collage) 

(269) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet █ █ █ █ 

Thioredoxin THIO_MOUSE 12 Soluble mediator 
(immunomodulatory 
cytokine) 

(258) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet █ █ █ █ 
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Tubulin beta-5 chain TBB5_MOUSE 50 Microtubule formation, modified 
via ECM interactions 

(231) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     

UPF0556 protein C19orf10 
homolog 

CS010_MOUSE 18 Soluble mediator (cytokine) (270) NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

Vimentin VIME_MOUSE 54 Microtubule formation  (271) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet █ █  █ 

Vitamin D-binding protein VTDB_MOUSE 54 Vitamin D binding (272) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Proteases and protease inhibitors 

  
 

 

Con EtOH LPS 
EtOH 
+LPS 

Alpha-1-antitrypsin 1-1 A1AT1_MOUSE  46 Inhibition of ECM proteases; 
inhibition of trypsin 

(273) NaCl █ █ █  

SDS     

GnHCl  █ █ █ 

Pellet █ █  █ 

Alpha-1-antitrypsin 1-4 A1AT4_MOUSE 46 Inhibition of ECM proteases; 
inhibition of trypsin 

(273) NaCl █ █ █ █ 

SDS █ █ █ █ 

GnHCl     

Pellet     

AMBP AMBP_MOUSE 39 Precursor of protein HC 
(protein-ECM interactions) & 
bikunin (protease inhibitor),  

(274-
276) 

NaCl   █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     

Alpha-2-macroglobulin A2M_MOUSE  166 Inhibition of ECM proteases, 
inhibition of ADAMTS-7 
and ADAMTS-12 

(277) NaCl █ █  █ 

SDS     

GnHCl     

Pellet     
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Antithrombin-III ANT3_MOUSE 52 Inhibition of ECM proteases, 
inhibition of thrombin 

(278) NaCl █ █ █ █ 

SDS █ █ █  

GnHCl  █  █ 

Pellet     

Cathelin-related 
antimicrobial peptide 

CRAMP_MOUSE 20 Inhibition of ECM proteases, 
inhibition of cathepsin L-
cysteine protease activity 

(279) NaCl  █ █ █ 

SDS   █ █ 

GnHCl  █ █ █ 

Pellet     

Cathepsin B CATB_MOUSE 37 ECM degradation (264) NaCl █ █ █ █ 

SDS    █ 

GnHCl     

Pellet     

Cathepsin D CATD_MOUSE  45 ECM degradation, activation of 
cathepsin B 

(280) NaCl █ █ █ █ 

SDS     

GnHCl    █ 

Pellet     

Cathepsin Z CATZ_MOUSE 34 ECM degradation, integrin 
signaling 

(281, 
282) 

NaCl █ █ █ █ 

SDS  █ █ █ 

GnHCl   █ █ 

Pellet     

Complement C3 CO3_MOUSE 186 Activation of complement 
system 

(283) NaCl   █ █ 

SDS █ █ █ █ 

GnHCl     

Pellet     

Dipeptidyl peptidase 4 DPP4_MOUSE 87 Protein cleavage (cytokines, 
chemokines), protein 
binding (collagen) 

(284) NaCl     

SDS   █ █ 

GnHCl  █   

Pellet     

Ectonucleoside triphosphate 
diphosphohydrolase 5 

ENTP5_MOUSE 47 Hydrolysis of extracellular ATP (285) NaCl  █   

SDS     

GnHCl     

Pellet     

Fetuin-B FETUB_MOUSE 43 Cysteine protease inhibitor, 
metalloprotease  inhibitor,  
matrix mineralization 

(286, 
287) 

NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     
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Gelsolin GELS_MOUSE 86 Actin filament capping (288) NaCl █ █ █ █ 

SDS     

GnHCl   █ █ 

Pellet     

Ectonucleoside triphosphate 
diphosphohydrolase 5 

ENTP5_MOUSE  47 Hydrolysis of extracellular 
ATP/ADP (signaling) 

(286) NaCl  █  █ 

SDS     

GnHCl     

Pellet     

Hemopexin HEMO_MOUSE 51 Heme binding (289) NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     

Insulin-degrading enzyme IDE_MOUSE  118 Metalloendopeptidase (290) NaCl     

SDS     

GnHCl     

Pellet   █  

Inter alpha-trypsin inhibitor, 
heavy chain 4 

ITIH4_MOUSE 100 Chain of ITI (protease inhibitor) (291) NaCl   █  

SDS     

GnHCl     

Pellet     

Lysozyme C-1 LYZ1_MOUSE 17 Antibacterial, hydrolysis of β-1, 
4-glycosidic linkages 

(292) NaCl     

SDS     

GnHCl     

Pellet █ █ █ █ 

Lysozyme C-2 LYZ2_MOUSE 17 Antibacterial, hydrolysis of β-1, 
4-glycosidic linkages 

(292) NaCl  █ █ █ 

SDS     

GnHCl     

Pellet     

Murinoglobulin-1 MUG1_MOUSE 165 Protease  inhibitor (293, 
294) 

NaCl █ █ █ █ 

SDS     

GnHCl █ █ █ █ 

Pellet     

Myeloid bactenecin (F1) O08692_MOUSE 19 Cysteine protease inhibitor (295) NaCl  █ █ █ 

SDS  █ █ █ 

GnHCl  █ █ █ 

Pellet     
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Phosphatidylethanolamine-
binding protein 1 

PEBP1_MOUSE 21 Serine protease inhibitor (296) NaCl █ █ █ █ 

SDS  █ █ █ 

GnHCl █ █ █ █ 

Pellet     

Plasminogen PLMN_MOUSE 91 Precursor of plasmin (serine 
protease) 

(297) NaCl     

SDS     

GnHCl  █ █ █ 

Pellet     

Probable carboxypeptidase 
PM20D1 

P20D1_MOUSE 56    NaCl █ █ █ █ 

SDS  █ █ █ 

GnHCl     

Pellet     

Serpinb9 O08797_MOUSE 42 Serine protease inhibitor, 
granzyme inhibitor) 

(298) NaCl    █ 

SDS     

GnHCl     

Pellet     

Serine protease inhibitor 
A3K 

SPA3K_MOUSE 47 Serine protease inhibitor,  
chymotrypsin inhibitor 

(299) NaCl █ █ █ █ 

SDS   █ █ 

GnHCl     

Pellet     

Serine protease inhibitor 
A3N 

SPA3N_MOUSE 47 Serine protease inhibitor,  
chymotrypsin inhibitor 

(299) NaCl   █ █ 

SDS     

GnHCl     

Pellet     

Serpin B5 SPB5_MOUSE 42 Serine protease inhibitor,  (299) NaCl     

SDS     

GnHCl     

Pellet   █  

Thioredoxin THIO_MOUSE 12 Activation of transglutaminase (300) NaCl     

SDS █ █ █ █ 

GnHCl     

Pellet     

Transthyretin TTHY_MOUSE 16 Hormone binding protein, 
cryptic protease, 
peptidase 

(301) 
(302) 

NaCl     

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet     
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Collagens 

   
  

Con EtOH LPS 
EtOH 
+LPS 

Adiponectin ADIPO_MOUSE 27 Inhibition of vascular matrix 
degradation (contains 
collagen-like domain) 

(303, 
304) 

NaCl █ █ █ █ 

SDS     

GnHCl     

Pellet     

Collagen alpha-1(I) chain CO1A1_MOUSE 138 Component of collagen fibrins (303) NaCl     

SDS █ █ █ █ 

GnHCl █ █ █ █ 

Pellet █ █ █ █ 

Collagen alpha-1(III) chain CO3A1_MOUSE 139 Component  of collagen fibrils (303) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet █ █ █ █ 

Collagen alpha-1(IV) chain CO4A1_MOUSE 161 Component of collagen network (303) NaCl     

SDS     

GnHCl █ █   

Pellet █ █ █ █ 

Collagen alpha-1(V) chain CO5A1_MOUSE 184 Fibrillogenesis, crosslinking (303) NaCl     

SDS     

GnHCl     

Pellet  █   

Collagen alpha-2(I) chain CO1A2_MOUSE 130 Component  of collagen fibrils 
(contains collage-like 
domain) 

(303) NaCl     

SDS █   █ 

GnHCl █ █ █ █ 

Pellet █ █ █ █ 

Collagen alpha-2(IV) chain CO4A2_MOUSE 167 Component of collagen network (303) NaCl     

SDS     

GnHCl     

Pellet  █  █ 

Collagen alpha-2(V) chain CO5A2_MOUSE 145 Fibrillogenesis, crosslinking (303) NaCl     

SDS     

GnHCl  █   

Pellet █ █  █ 

Mannose binding protein MBL2_MOUSE 26 soluble pattern recognition  
receptor 

(305) NaCl     

SDS     

GnHCl █ █ █ █ 

Pellet     
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Extracellular - ECM interactions unknown         

60  heat shock protein, 
mitochondrial 

CH60_MOUSE 61   

78  glucose-regulated 
protein 

GRP78_MOUSE 72   

Aminoacyl tRNA synthase 
complex-interacting 
multifunctional  

      protein 1 

AIMP1_MOUSE 34   

Arginase-1 ARGI1_MOUSE 35   

BolA-like protein 1 BOLA1_MOUSE 14   

BolA-like protein 3 BOLA3_MOUSE  12   

Carboxylesterase 1C EST1C_MOUSE 61   

Clathrin heavy chain 1 CLH1_MOUSE 192   

Epididymal secretory protein 
E1 

NPC2_MOUSE 16   

Group XIIB secretory 
phospholipase A2-like 
protein 

Q8VC81_MOUSE 22   

Heat shock cognate 71  
protein 

HSP7C_MOUSE  71   

Hepcidin HEPC_MOUSE 9   

Hypoxia up-regulated protein 
1 

HYOU1_MOUSE 111   
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Interferon-inducible GTPase 
1 

IIGP1_MOUSE 48   

Lactotransferrin TRFL_MOUSE 78   

Macrophage migration 
inhibitory factor 

MIF_MOUSE 13   

Major urinary protein 12 A2CEK7_MOUSE 21   

Major urinary protein 17 MUP17_MOUSE 21   

Major urinary protein 20 MUP20_MOUSE 21   

Major urinary protein 3 MUP3_MOUSE  21   

Major vault protein MVP_MOUSE 96   

Monocyte differentiation 
antigen CD14 

CD14_MOUSE 39   

Multiple coagulation factor 
deficiency protein 2 
homolog 

MCFD2_MOUSE 16   

Myeloperoxidase PERM_MOUSE 81   

Nuclease-sensitive element-
binding protein 1 

YBOX1_MOUSE 36   

Polymeric immunoglobulin 
receptor 

PIGR_MOUSE 85   

Profilin-1 PROF1_MOUSE 15   



 

 

7
3

 

Protein CREG1 CREG1_MOUSE 24   

Protein Gm20425 E9Q035_MOUSE  108   

Pyruvate kinase PKM KPYM_MOUSE 58   

RNA binding motif protein, 
X-linked-like-1 

RMXL1_MOUSE 42   

Serotransferrin TRFE_MOUSE 77   

Serum albumin ALBU_MOUSE 69   

Serum 
paraoxonase/arylesterase 
1 

PON1_MOUSE 40  

Translationally-controlled 
tumor protein 

TCTP_MOUSE 19   

UPF0369 protein C6orf57 
homolog 

CF057_MOUSE 12   

Xanthine 
dehydrogenase/oxidase 

XDH_MOUSE 147   
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“absence” in response to exposures, but localized consistently to the same 

fraction when present.  Ethanol and/or LPS exposure caused other proteins to 

appear in different extracts in simple or complex patterns.  For example, whereas 

Annexin A1 was found in the insoluble pellet from control animals, it was not 

detected in any fraction from animals exposed to ethanol or LPS alone; however, 

the combination of ethanol and LPS caused this protein to accumulate in the 

NaCl fraction.  Similarly, fibrin(ogen) gamma chain was found in all experimental 

groups, but its fractionation pattern was unique to each exposure condition.  

These patterns likely represent differences in the synthesis, degradation, and/or 

maturity of the ECM proteins.   

 

4. Qualitative changes to the ECM proteome in response to stress 

Figure 3.4 summarizes the abundance of ECM proteins, organized by 

category (i.e., glycoproteins and proteoglycans (Fig. 3.4A), ECM‐associated 

proteins (Fig. 3.4B), proteases and inhibitors (Fig 3.4C), and collagens (Fig. 

3.4D)) across the four extraction conditions.  The majority of the proteins in the 

NaCl and SDS extracts were ECM‐associated proteins (Fig. 3.4A); this was 

unsurprising, given that proteins in this category are generally loosely associated 

with the ECM and are therefore easily solubilized.  Additionally, the low 

abundance of collagens in the NaCl and SDS fractions (Fig. 3.4D) was not 

surprising, given that collagens are often tightly cross‐linked and require 

denaturing conditions for solubilization.  As expected, the denaturing conditions  
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Figure 3.4: Ethanol and LPS cause dynamic changes in the matrisome.   
 
The impact of ethanol diet (left panels) and 24-hour LPS (right panels) on the 

types of proteins found in the ECM proteome are shown.  Proteins are 

categorized by class (A-D) and organized by extraction fraction (NaCl, SDS, 

GnHCl, and pellet).  Red proteins indicate those that appeared with exposure, 

whereas green proteins indicate those that were lost with exposure, compared to 

control.   
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created by GnHCl more than doubled the number of proteoglycans and 

glycoproteins in that extract compared to the NaCl and SDS fractions.  The 

number of collagens in the GnHCl extract was also dramatically increased 

compared to the NaCl and SDS fractions.  The pellet fraction contained the 

fewest proteins of all four extracts but contained the greatest number of 

collagens.   

Ethanol and/or LPS exposure did not change the general pattern of proteins 

found in the various extracts (Fig. 3.4), but both tended to increase the total 

number of ECM proteins in the fractions combined. For example, ethanol 

exposure caused a net increase in the number of ECM proteins by ∼25%.  These 

changes were predominantly spread across the first three protein classes, with 

the NaCl, SDS, and GnHCl extracts all increasing evenly.  The pellet fraction 

responded the least dynamically to ethanol or LPS exposure and actually 

showed a net loss in total proteins.  Likewise, collagens were the least 

responsive protein class (Fig. 3.4D).  Figure 3.5 (left panels) shows the 

distribution of the proteins in the various extracts between all four exposure 

groups.   

In addition to proteins that changed in their extraction pattern in response 

to ethanol (e.g., see Fig. 3.3C), there were several proteins that were uniquely 

detected with ethanol exposure compared to control (Figs. 3.4 and 3.5); these 

include fibrin(ogen) α and β chains, cytokeratin 13, vitronectin, plasminogen, high 

mobility group protein B2, and collagens IVα2 and Vα2 (see Table 3.1). Similarly, 

LPS exposure caused the appearance of several proteins that were unique  
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Figure 3.5: Shared and unique changes to the hepatic matrisome.   

 
Venn diagrams (left column) show all ECM proteins within each of the four 

extracts and indicate the number that are shared between, or that are unique to, 

the four experimental groups.  Bubble plots (right column) show quantitative 

changes in abundance of proteins that were shared by all four experimental 

groups.  The bubble plots show fold of control in protein abundance caused by 

LPS (y-axis), ethanol (x-axis), and the combination of ethanol + LPS (bubble 

size).  Each bubble represents a protein; bubble color indicates the protein’s 

class.   
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compared to control (Figs. 3.4 and 3.5).  Several of these proteins were the same 

as those detected with ethanol exposure, but several were unique to LPS, 

including serpine B5 (maspin), serine protease inhibitor A3N, and CXC motif 

chemokine ligand 9 (see Fig. 3.5; Table 3.1).   

Previous work has shown that ethanol preexposure sensitizes the liver to 

inflammatory injury caused by a second insult (i.e., LPS) (26, 117).  Furthermore, 

previous studies have suggested that changes in ECM composition can 

contribute to the sensitizing effect of ethanol preexposure (89).  In this study, the 

combination of chronic ethanol exposure and a second hit of LPS caused unique 

changes in the ECM protein profile of the liver.  The combination of EtOH+LPS 

resulted in the appearance of four unique proteins that were not detected in livers 

from animals exposed to either ethanol or LPS alone, including serum amyloid P 

and serpine B9.   

 

5. Quantitative changes to the ECM proteome in response to stress  

Dramatic changes to the ECM (i.e., “lost” or “gained” proteins) can 

significantly affect overall organ function; it is not surprising that the majority of 

the matrisome did not change at the qualitative level.  However, several of these 

proteins did change in relative abundance in response to ethanol and/or LPS 

compared to control (Figs. 3.5 and 3.6). Figs. 3.7‐3.10 provide results of the 

clustering analysis of the protein abundances for each fraction. Based on this 

analysis, six clusters were identified as the best visual representation of the data.  

Table 3.2 identifies the membership of each protein within each cluster. Notable  
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Figure 3.6: Quantitative changes to the matrisome.  

 
Heatmap analysis of the quantitative changes in abundance of proteins that were 

shared by all four experimental groups (see Fig. 3.5) are shown for the NaCl (A), 

SDS (B), GnHCl (C), and pellet (D) extraction fractions.   
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Figure 3.7: Clustered profiles of protein abundances for proteins identified 

in the NaCl fraction.  

 
Abundance values for each protein were first standardized to a mean of zero and 

a standard deviation of one prior to clustering. See also Table 3.2.  
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Figure 3.8: Clustered profiles of protein abundances for proteins identified 
in the SDS fraction.  
 
Abundance values for each protein were first standardized to a mean of zero and 

a standard deviation of one prior to clustering. See also Table 3.2.   
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Figure 3.9: Clustered profiles of protein abundances for proteins identified 

in the GnHCl fraction.   

 
Protein abundances were first standardized to a mean zero and a standard 

deviation one for each protein prior to clustering. See also Table 3.2.   
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Figure 3.10: Clustered profiles of protein concentrations for proteins 

identified in the pellet.  

 
Abundance values for each protein were standardized to a mean of zero and a 

standard deviation of one prior to clustering. See also Table 3.2.  
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Table 3.2: Clustering of proteins in response to ethanol and/or LPS  

NaCl fraction      

Protein  Class  Cluster  

14-3-3 protein epsilon   other ECM proteins  1  

Apolipoprotein A-I   other ECM proteins  1  

Carbonic anhydrase 2   other ECM proteins  1  

Cysteine-rich with EGF-like domain protein  proteoglycans and glycoproteins  1  

Granulins   proteoglycans and glycoproteins  1  

Hepatoma-derived growth factor   other ECM proteins  1  

Moesin   other ECM proteins  1  

Murinoglobulin-1   proteases and protease inhibitors  1  

Peptidyl-prolyl cis-trans isomerase A  other ECM proteins  1  

Antithrombin-III   proteases and protease inhibitors  2  

Dystroglycan   proteoglycans and glycoproteins  2  

Ferritin light chain 1   other ECM proteins  2  

Phosphatidylethanolamine-binding protein 1   

Serine protease inhibitor A3K   

proteases and protease inhibitors  2  

proteases and protease inhibitors  2  

Superoxide dismutase [Cu-Zn]   other ECM proteins  2  

Thioredoxin   other ECM proteins  2  

Transthyretin   proteases and protease inhibitors  2  

14-3-3 protein zeta/delta   other ECM proteins  3  

Actin, cytoplasmic 1   other ECM proteins  3  

Alpha-actinin-4   other ECM proteins  3  

Cathepsin B   proteases and protease inhibitors  3  

Cathepsin Z   proteases and protease inhibitors  3  

Ferritin heavy chain   other ECM proteins  3  
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Haptoglobin   proteoglycans and glycoproteins  3  

Hemopexin   proteases and protease inhibitors  3  

High mobility group protein B1   other ECM proteins  3  

Pro-cathepsin H   other ECM proteins  3  

14-3-3 protein gamma   other ECM proteins  4  

Annexin A5   other ECM proteins  4  

Calumenin   other ECM proteins  4  

Endoplasmin   other ECM proteins  4  

Annexin A2   other ECM proteins  5  

Cathepsin D   proteases and protease inhibitors  5  

Glucose-6-phosphate isomerase   other ECM proteins  5  

Alpha-1-antitrypsin 1-4   proteases and protease inhibitors  6  

Calreticulin   other ECM proteins  6  

C-reactive protein   other ECM proteins  6  

UPF0556 protein C19orf10 homolog   other ECM proteins  6  

Vitamin D-binding protein   other ECM proteins  6  

Adiponectin   collagens  6  

SDS fraction      

Cysteine-rich with EGF-like domain protein 2   proteoglycans and glycoproteins  1  

Ferritin light chain 1   other ECM proteins  1  

Syndecan-4   proteoglycans and glycoproteins other 

ECM proteins  
1  

Actin, alpha skeletal muscle   2  

Apolipoprotein A-I   other ECM proteins  2  

Apolipoprotein E   other ECM proteins  2  

Collagen alpha-1(I) chain   collagens  2  

Collagen alpha-2(I) chain   collagens  2  
Granulins   proteoglycans and glycoproteins  2  

Peptidyl-prolyl cis-trans isomerase A other ECM proteins 2 Complement C3  proteases and protease 

inhibitors 3  

Ferritin heavy chain   other ECM proteins  3  

Haptoglobin   proteoglycans and glycoproteins  3  

Myosin-9   other ECM proteins  3  
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Vimentin   other ECM proteins  3  
Sulfated glycoprotein 1   proteoglycans and glycoproteins  4  

Actin, cytoplasmic 1   other ECM proteins  5  

Calreticulin   other ECM proteins  5  

Endoplasmin   other ECM proteins  5  
Thioredoxin   proteases and protease inhibitors  5  

Beta-2-microglobulin   other ECM proteins  6  

Superoxide dismutase [Cu-Zn]   other ECM proteins  6  
Transthyretin   proteases and protease inhibitors  6  

Vitamin D-binding protein   other ECM proteins  6  

GnHCl fraction       

Alpha-2-HS-glycoprotein   proteoglycans and glycoproteins  1  

Beta-2-glycoprotein 1   proteoglycans and glycoproteins  1  

Decorin   proteoglycans and glycoproteins  1  

Ferritin light chain 1   other ECM proteins  1  

Lumican   
proteoglycans and glycoproteins 

collagens  

1  

Mannose-binding protein C   1  

Tubulin beta-5 chain   other ECM proteins  1  

Vitamin D-binding protein   other ECM proteins  1  

Actin, cytoplasmic 2   other ECM proteins  2  

Biglycan   proteoglycans and glycoproteins  2  

Fibrinogen gamma chain  proteoglycans and glycoproteins 2 Fibronectin  proteoglycans and glycoproteins 2  
Haptoglobin   proteoglycans and glycoproteins  2  

Hemopexin   proteases and protease inhibitors  2  

Myosin-9   other ECM proteins  2  
Protein AMBP   proteases and protease inhibitors  2  

Sulfated glycoprotein 1   proteoglycans and glycoproteins  2  

Vimentin   other ECM proteins  2  

Cysteine-rich with EGF-like domain protein 2   

Apolipoprotein A-I   

proteoglycans and glycoproteins  3  

other ECM proteins  4  

Beta-2-microglobulin   other ECM proteins  4  
Dermatopontin   proteoglycans and glycoproteins  4  

Galectin-1   proteoglycans and glycoproteins  4  

Granulins   proteoglycans and glycoproteins  4  
Hepatoma-derived growth factor   other ECM proteins  4  
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Peptidyl-prolyl cis-trans isomerase A   other ECM proteins  4  

Superoxide dismutase [Cu-Zn]   other ECM proteins  4  
Thioredoxin   other ECM proteins  4  

Collagen alpha-1(I) chain   collagens  5  

Collagen alpha-2(I) chain   collagens  5  
Syndecan-4   proteoglycans and glycoproteins  5  

Alpha-2-macroglobulin receptor-associated 

protein   other ECM proteins  6  

Calreticulin   other ECM proteins  6  

Cofilin-1   other ECM proteins  6  

Collagen alpha-1(III) chain   collagens  6  

High mobility group protein B1   other ECM proteins  6  

Phosphatidylethanolamine-binding protein 1  proteases and protease inhibitors  6  
Transthyretin   proteases and protease inhibitors  6  

Pellet fraction       

Apolipoprotein A-I   other ECM proteins  1  

Apolipoprotein E   other ECM proteins  1  

Collagen alpha-1(IV) chain   collagens  1  

Granulins   proteoglycans and glycoproteins  1  

Endoplasmin   other ECM proteins  2  

Sulfated glycoprotein 1   proteoglycans and glycoproteins  2  

Actin, alpha skeletal muscle   other ECM proteins  3  

Actin, cytoplasmic 1   other ECM proteins  3  

Annexin A2   other ECM proteins  3  
Collagen alpha-1(III) chain   collagens  4  

Superoxide dismutase [Cu-Zn]   other ECM proteins  4  

Thioredoxin  other ECM proteins 5 Collagen alpha-1(I) chain  collagens 6  

Collagen alpha-2(I) chain   collagens  6  
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(>4‐fold increase) changes caused by LPS included ferritin heavy chain (15‐fold 

increase) in the NaCl fraction, haptoglobin and myosin‐9 (11‐ and 9‐fold, 

respectively) in the SDS fraction, and fibrinogen γ chain and haptoglobin (14‐ and 

7‐fold, respectively) in the GnHCl fraction. Likewise, ethanol exposure increased 

the abundance of several proteins, including myosin‐9 (6‐fold) and cysteine‐rich 

with EGF‐like domain protein 2 (CREDL2; 6‐fold) in the SDS fraction. As was 

observed for qualitative analysis (Fig. 3.4), ethanol and/or LPS affected proteins 

in the pellet fraction the least of all fractions.   

While ethanol alone and LPS alone each changed the abundance of certain 

proteins, the combination of the two exposures caused its own unique effects on 

the matrisome (Figs. 3.7-3.10).  For example, although LPS alone did not change 

endoplasmin abundance compared to control, and ethanol only increased it 3‐

fold, the combination of ethanol and LPS increased this endoplasmin abundance 

11‐fold in the NaCl fraction (Figs. 3.5 and 3.6).  Similarly, the combination of 

ethanol and LPS increased granulin abundance 5-fold in the SDS fraction, 

despite no effect by ethanol alone and only a 2‐fold increase by LPS (Figs. 3.5 

and 3.6).  Additionally, although both ethanol alone and LPS alone increased 

CRELD2, the combination of ethanol and LPS decreased CRELD2 abundance in 

the SDS fraction.  Proteins that were differentially regulated by the combination 

of ethanol and LPS in the GnHCl fraction include hemopexin and alpha‐1‐

microglobulin/bikunin precursor. 

 

D. DISCUSSION 
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This work had two primary goals: (1) to characterize and validate an 

extraction and analysis method for the hepatic matrisome that would provide both 

the sensitivity to identify low‐abundance proteins and the power to observe global 

changes and (2) to use this method to explore transitional (i.e., prefibrotic) 

changes to the hepatic matrisome caused by ethanol diet and/or LPS exposure.  

As discussed in the Introduction, the study of the hepatic ECM has largely been 

“collagenocentric” and “fibrosocentric”—that is, centered on the dramatic 

increase in collagen deposition during fibrosis, a quasi‐permanent scarring of the 

organ.  However, the matrisome of both healthy and diseased liver is exceedingly 

more diverse than collagen ECM.  Indeed, studies have revealed that in addition 

to collagen, laminin (118) and vitronectin (119, 120) are also increased during 

fibrogenesis.  Furthermore, proteomic studies in other organs have shown that 

matrisome composition responds dynamically after insult well before organ 

fibrosis.(99, 114, 121)  Previously, this group showed that fibrin ECM 

accumulation correlates with inflammatory liver injury in several models and may 

play a causal role in hepatic damage.(89)  Additionally, Gillis et al. (90) have 

demonstrated a similar role for fibronectin ECM in experimental ALD.  However, 

global changes in the hepatic ECM during inflammatory liver injury have not yet 

been characterized.  The models herein employed (Lieber‐DeCarli ethanol diet 

and acute LPS) are well known to cause significant liver damage, but do not 

result in histologically detectable changes to the ECM. 

Global ECM changes may affect tissue function through three general types 

of mechanisms: physical, biochemical, and signaling.  Physical properties of the 
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ECM include the matrix topography, cross‐linking, and organization.(21)  These 

physical properties are not only essential to the structural role of the ECM, but 

also allow the ECM to either obstruct or facilitate cell migration.(49)  Fibrin 

matrices have been demonstrated to be permissive to monocyte and leukocyte 

chemotaxis and activation.(122, 123)  Physical alterations in the ECM can cause 

tissue rigidity, resulting in decreased organ function.  Although such physical 

changes to the ECM can indirectly affect the biochemistry of the liver (e.g., 

hemostasis‐induced hypoxia), matrisome changes can also directly cause 

biochemical changes that are independent of structural changes.  For example, 

ECM components can facilitate ligand-receptor interactions, (124) bind and retain 

chemokines,(18) and regulate activation of growth factors (i.e., transforming 

growth factor beta). (18) ECM molecules can also directly serve as signaling 

molecules through interactions with cell‐surface receptors, including integrins. 

(125) Because of the multifaceted roles of many ECM molecules, any single 

change in the ECM can, in principle, trigger a cascade of dependent changes 

that influence the composition and properties of the ECM. For example, biglycan 

acts as a structural component that regulates collagen fiber assembly, but, upon 

release from the matrix, can act as a signaling molecule binding to Toll‐like 

receptor 4 (TLR4) receptors.(126) 

The current study determined the individual and combined effects of two 

experimental exposures (ethanol and LPS) on the hepatic matrisome.  LPS was 

selected because it induces robust hepatic inflammation.  The liver is often 

exposed to LPS during several pathophysiologic states, including after alcohol 
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consumption.(127)  Whereas inflammatory responses triggered by small doses of 

LPS are typically noninjurious, other stresses can synergistically enhance the 

hepatotoxic response to LPS.  Indeed, ethanol not only increases circulating 

LPS, but also enhances inflammation and liver damage caused by acute LPS 

exposure.(117)  This “two‐hit” paradigm is common in fatty liver diseases.  (64)  

In the current study, both stresses caused the hepatic matrisome to respond 

dynamically, not only increasing the number of matrisome proteins , but also 

differentially changing protein abundance (Fig. 3.5) and likely structure or 

location (Figs. 3.4 and 3.5). 

Several of the protein changes reported here reiterate results of previous 

hypothesis‐driven studies. For example, this work validated that LPS dramatically 

alters the fibrin(ogen) ECM, and that ethanol preexposure enhances this effect.  

In the current study, LPS exposure increased the relative abundance of 

fibrinogen gamma chain in the GnHCl extract. The fibrin(ogen) gamma chain is a 

major component of fibrin clots given that it is polymerized into insoluble fibrin 

fibers.(128)  Therefore, the localization of this robust increase in fibrinogen 

gamma chain in the GnHCl fractions suggests that there was an increase in 

fibrin(ogen) gamma chain polymerization into a less‐soluble, more highly cross‐

linked form.  Furthermore, the combination of ethanol and LPS resulted in 

detection of the fibrin(ogen) gamma chain in the insoluble pellet, which suggests 

additional modifications that decreased solubility (e.g., cross‐linking).  The 

appearance of serum amyloid A‐1 and A‐2 proteins in response to LPS was also 

confirmed here. (129, 130) In fact, LPS exposure increased the abundance of 
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several other acute‐phase proteins, including haptoglobin, complement C, and 

ceruloplasmin, which are all known to be increased by LPS exposure. (131-133)  

This work also validates previous studies which reported ethanol increased 

fibronectin deposition before the onset of fibrosis. (90) 

The work herin also identified novel changes caused by ethanol and LPS. For 

example, previous studies have shown an association between vitronectin 

accumulation and HF/end‐stage liver disease.(119, 120)  The results of the 

current study suggest that more subtle changes in vitronectin abundance occur 

before the onset of fibrosis and hepatic decompensation.  Ethanol exposure also 

resulted in the detection of galectin‐1.  Galectin‐1 is a glycosaminoglycan‐binding 

lectin associated with cell proliferation and adhesion through modulation of 

glycoprotein cross‐linking.  Galectin‐1 may also play a role in hepatic 

inflammation and fibrinogenesis.(134)  These data suggest that ethanol and/or 

LPS likely contribute to a multitude of changes in the ECM composition, many of 

which have not yet been fully investigated. 

Changes in abundance of protease and protease inhibitors can also 

contribute to inflammatory liver injury and fibrogenesis. In the current study, 

several ECM‐associated proteases were increased in response to stress, 

including plasmin(ogen), antithrombin III, dipeptidyl peptidase, and alpha‐1‐

antitrypsin. Stress also resulted in the presence of protease inhibitors, such as 

serpine B5 (maspin) and plasminogen activator inhibitor‐1 (PAI‐1). Ethanol 

and/or LPS increased several other proteases and protease inhibitors that may 

be critical for ECM homeostasis (e.g., transthyretin, phosphatidylethanolamin‐
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binding protein‐1 [PEBP1], and serine protease inhibitor A2K).  These data 

support the notion that transitional remodeling of the hepatic matrisome is 

bidirectional, driven by both increased secretion of matrix proteins as well as 

altered ECM degradation. 

As mentioned above, ethanol is well known to synergize liver damage caused 

by LPS exposure.  In the current study, the combination of ethanol and LPS 

resulted in unique changes to the hepatic matrisome compared to either ethanol 

or LPS alone.  Indeed, coexposure differentially increased fibronectin and 

biglycan abundance (Fig. 3.3; Table 3.1).  Fibronectin accumulation caused by 

ethanol may contribute to hepatic inflammation through stimulation of Kupffer 

cells (KCs). (135) Biglycan is a small proteoglycan that was first recognized as a 

structural component and signaling molecule in the ECM (136).  Biglycan has 

also been implicated in inflammation, (137) possibly by retaining proinflammatory 

cytokines,(138) and/or by activating TLR4 signaling.(138)  These data suggest 

that biglycan abundance may be increased in prefibrotic stages of liver disease. 

In contrast, the combination of ethanol and LPS synergistically decreased 

PEBP1; this enzyme has been shown to inhibit trypsin‐like serine proteases, 

including thrombin, but not trypsin or tissue‐type plasminogen activator.(139)  

Multiple studies have identified PEBP1 as a critical player in metastasis (140) 

and have defined it as a metastasis suppressor gene.(141)  These changes 

represent dynamic (and potentially unique) responses of hepatic ECM to stress 

that may serve as a basis for future biomarker and/or mechanistic studies.   
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Whereas it is well established that myofibroblast‐like cells (e.g., hepatic 

stellate cells) are the primary source of fibrillar ECM during HF, most, if not all, 

hepatic cells contribute to overall matrisome homeostasis.  For example, hepatic 

sinusoidal endothelial cells are almost solely responsible for the metabolism and 

degradation of hyaluronic acid. Furthermore, stress causes inflammatory cells 

(e.g., KCs) and hepatocytes release proteases and protease inhibitors (e.g., PAI‐

1) that can affect the ECM.  Extrahepatic sources (e.g., the coagulation and 

complement cascades) can also affect the hepatic matrisome.  The ECM not only 

serves as a physical structure, but also binds/interacts with several biomolecules 

that can directly or indirectly alter responses.  For example, ECM/integrin 

interactions mediate rapid and dynamic responses to changes in the 

environment.  It is known that fibrotic ECM is known to influence cell phenotype, 

inflammation, and metastasis in the liver.(142-144)  The effects of the ECM 

changes observed here on earlier stages of liver injury should be investigated.   

In summary, the results of this work demonstrate that the hepatic matrisome 

responds dynamically to both chronic (ethanol) and acute (LPS) stresses, 

preceding more‐dramatic fibrotic changes to the liver.  It is likely that these 

transitional changes to the hepatic ECM contribute to the pathological responses 

to these stresses.  It is also interesting that several ECM proteins responded 

similarly to both stresses, suggesting a shared mechanism in both models. 

Protein changes that were unique to either ethanol or LPS exposure alone (or 

their combination) also represent potential new biomarkers or targets.  These 
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results therefore serve as a foundation for future analyses in models of liver 

disease.   
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CHAPTER IV 

 

NOVEL BIOMARKERS IN ALCOHOLIC HEPATITIS: ANALYSIS OF THE 

PLASMA PEPTIDOME/DEGRADOME 

 

A. Introduction 

AH is an acute sequela of alcoholic liver disease with a high mortality rate 

of 30-50% at 3 months and 40% at 6 months.(72, 73)  AH is characterized by 

jaundice and liver failure.(145)  AH occurs in patients with heavy chronic alcohol 

consumption (80-100 g per day) and severe ASH with or without advanced 

fibrosis and/or cirrhosis.(145, 146)  AH can be the first manifestation of clinically 

silent ALD or an exacerbation of pre-existing cirrhosis.(145)   

Accurately predicting AH patient outcome is important for clinical decision-

making.  For example, AH patients with higher risk are better candidates for 

corticosteroid treatment, and patients with lower risk could be candidates for 

long-term clinical studies.(72, 145)  While identifying AH patients at risk of liver 

inflammatory injury and failure is important, it is also difficult. Currently, the best 

approach for predicting outcome is combining static scores, such as the modified 

Maddrey’s discriminant-function, MELD, ABIC (Age, Bilirubin, INR and 

Creatinine) and/or Glasgow with the dynamic Lille scoring system.(147)  These 
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clinical scores are useful for predicting outcome in patients with severe disease, 

but are more limited in predicting outcome in patients with moderate AH.(84)   

Our group recently demonstrated significant ECM remodeling during 

inflammatory liver injury (93).  During such remodeling, peptide fragments of the 

degraded ECM increase in biologic fluids (e.g., plasma) (58). Peptidomic analysis 

of the degraded ECM (i.e., ‘degradome’) is a useful diagnostic/prognostic tool in 

metastatic cancers and other diseases of ECM remodeling (58).  

It was hypothesized that the severe inflammatory liver injury caused by AH 

would yield a unique degradome profile in human patient plasma, and that ECM 

peptides would change between patient groups.  The goals of this work are 

twofold: 1.) to identify novel candidate biomarkers for AH, and 2.) to develop new 

mechanistic hypotheses by predicting proteases that generated the observed 

degradome.   

 

B. Experimental procedures 

1. Study participants and inclusion criteria 

AH patients, AUD patients, and healthy volunteers were enrolled in the study 

as described in Chapter II.   

 

2. Study paradigm 

Relevant clinical data were collected as described in Chapter II.  As provided 

in the workflow scheme in Figure 4.1, this study was designed to analyze plasma 

peptides for comparison between healthy volunteers, AUD patients (“mild”, with 
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or without liver injury), patients with moderate AH, and patients with severe AH 

for potential associations between parameters.   

 

3. Plasma collection 

Plasma was collected from study participants as described in Chapter II.   

 

4.  Plasma peptide purification 

Plasma peptide purification was optimized and carried out as described in 

Chapter II.   

 

5. Liquid chromatography and tandem mass spectrometry 

LC-MS/MS analysis was carried out as described in Chapter II 

 

6. Data analysis 

Peptidomic data analysis was performed as described in Chapter II. 

 

7. Statistical analysis 

Peptidomic data were log2 transformed prior to statistical analysis.  Statistical 

analysis was performed as described in Chapter II.   

C. Results 

1. Patient demographics 

A total of 114 participants including healthy volunteers (n=7) and AH (n=107) 

patients stratified by MELD scores into three categories were studied.  AH 
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Figure 4.1:  Scheme of peptidomic workflow.   
 
Plasma samples were handled randomly in balanced proportions between 

groups to avoid systematic bias.  Plasma peptides were purified by TCA 

precipitation and underwent LC-MS/MS analysis with de novo spectrum 

assignment.  We identified peptides significantly changing between MELD 

groups.   
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patients with AUDs having a MELD score less than 12 were assigned to the mild 

category (n=45), patients having a MELD score between 12 and 19 were 

assigned to the moderate category (n=25), and patients having a MELD score 

greater than 19 were assigned to the severe category (n=37).  The AUD/mild 

category was further subdivided into patients without liver injury (ALT<40, “Mild-

A”, n= 14) with liver injury (ALT≥40, “Mild-B”, n=31).  A variety of clinical data was 

gathered for these patients, including transaminases, alkaline phosphatase, and 

total bilirubin.  Table 4.1 shows a list of demographics and clinical data for the 

healthy, AUD (‘mild’), moderate AH, and severe AH participants.   

 

2. Plasma peptides change between MELD groups 

To visualize differences in the patients based on the peptidomic data, PCA 

was carried out (Fig. 4.2).  Principal components 1 and 2 accounted for 51.59% 

and 5.14% of the variability between the five peptidome cohorts.  PCA1 was the 

component explaining the largest set of variability (51.59%) in the data as could 

be attributed to the differences between Mild-A + Mild-B versus Moderate + 

Severe peptidomes.  PCA2 was the component explaining the second largest set 

of variability in the data (5.14%).  This component was 10-fold less than PCA1 

and could be attributed to the differences between Healthy Controls versus AH 

(Mild-A + Mild-B + Moderate + Severe).  The hierarchical clustering of the 

peptidome as grouped patient samples by similar MELD scores (Healthy Control; 

Mild-A and Mild-B; Moderate and Severe) identified three primary clusters of 
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Table 4.1: Patient demographics 

 
Age 

    

Groups Healthy volunteer Mild-A* Mild-B** Moderate*** Severe*** 

# Samples 7 14 31 25 37 

# Missing 0 0 0 2 0 

Mean 28.14 40.02 44.05 49.83 48.92 

Median 26.00 37.30 44.00 51.00 50.00 

Std. Dev. 4.74 11.74 10.26 9.97 10.67 

Min. 25.00 25.30 23.19 31.00 27.00 

Max. 38.00 62.90 67.00 63.00 66.00 
      

 
AST (SGOT) (IU/L) 

    

Groups Healthy volunteer Mild-ANS Mild-B** Moderate** Severe** 

# Samples 7 14 31 25 37 

# Missing 2 0 0 2 0 

Mean 24.40 36.00 131.55 135.30 141.08 

Median 25.00 26.00 96.00 114.00 122.00 

Std. Dev. 2.88 20.00 103.71 77.66 71.26 

Min. 21.00 17.00 21.00 18.00 41.00 

Max. 28.00 87.00 388.00 347.00 370.00       

 
ALT (SGPT) (IU/L) 

    

Groups Healthy volunteer Mild-ANS Mild-B**** ModerateNS SevereNS 

# Samples 7 14 31 25 37 

# Missing 2 0 0 2 0 

Mean 20.40 27.57 97.68 59.78 48.95 

Median 17.00 27.00 83.00 46.00 40.00 

Std. Dev. 5.18 8.05 59.31 45.63 30.11 

Min. 16.00 14.00 40.00 15.00 12.00 

Max. 27.00 39.00 312.00 194.00 159.00       

 
Alkaline 
phosphatase 
(IU/L) 

    

Groups Healthy volunteer Mild-ANS Mild-BNS Moderate*** Severe*** 

# Samples 7 14 31 25 37 

# Missing 2 0 0 2 0 

Mean 48.80 68.50 93.52 175.91 180.65 

Median 54.00 64.50 91.00 147.00 157.00 

Std. Dev. 10.92 27.05 25.62 109.32 83.90 

Min. 37.00 44.00 56.00 41.00 72.00 

Max. 59.00 147.00 150.00 483.00 443.00 
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Bilirubin (mg/dL) 

    

Groups Healthy volunteer Mild-ANS Mild-BNS Moderate* Severe**** 

# Samples 7 14 31 25 37 

# Missing 2 0 0 2 0 

Mean 0.52 0.86 0.74 7.22 18.31 

Median 0.50 0.60 0.60 5.10 18.20 

Std. Dev. 0.13 0.93 0.57 7.66 7.69 

Min. 0.40 0.20 0.20 0.60 4.70 

Max. 0.70 4.00 2.60 35.00 34.20       

 
Albumin (g/L) 

    

Groups Healthy volunteer Mild-ANS Mild-BNS Moderate**** Severe**** 

# Samples 7 14 31 25 37 

# Missing 2 0 0 2 0 

Mean 4.06 4.03 4.17 2.77 2.51 

Median 4.20 4.10 4.20 2.80 2.40 

Std. Dev. 0.31 0.34 0.50 0.68 0.46 

Min. 3.60 3.20 2.60 1.70 1.60 

Max. 4.40 4.50 5.20 4.50 3.50       

Sex 
     

Groups Healthy volunteer Mild-AND Mild-BND ModerateND SevereND 

# Samples 7 14 31 25 37 

# Missing 0 0 0 2 0 

# Males 1 7 26 15 24 

# Females 6 7 5 8 13       

Ascites 
     

Groups Healthy volunteer Mild-AND Mild-BND ModerateND SevereND 

# Samples 7 14 31 25 37 

# Missing 0 0 0 3 0 

# None 7 14 30 11 5 

# 
Mild/Moderate 

0 0 1 11 25 

# Severe 0 0 0 0 7       

Plasma color 
     

Groups Healthy volunteer Mild-AND Mild-BND ModerateND SevereND 

# Samples 7 14 31 25 37 

# Missing 0 1 2 11 10 

# Light yellow 5 12 26 1 0 
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# Light 
orange 

0 0 2 0 0 

# Light red 0 0 1 0 0 

# Dark yellow 0 0 0 12 23 

# Orange 2 0 0 1 3 

# Red orange 0 0 0 0 1 

# Red 0 1 0 0 0 

 
ND- not determined 

NS- not significant 

*p<0.05 

**p<0.01 

***p<0.001 

****p<0.0001 
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Figure 4.2: Multivariate analysis of the plasma peptidome using principal 

component analysis biplots and heat maps with hierarchical clustering.   

Patient differences for different AH severity groups based on peptidome were 

visualized using (Fig 5A) PCA and heat maps with hierarchical clustering (Fig 

5B).  PCA was carried out for significantly changed peptides (BH corrected p-

value <0.05) using a linear mixed model approach. “Age” and “Sex” were 

considered fixed variables, and “Flight” and iRT1-11 peptide standards were 

considered random variables.   
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 peptides .  The first cluster was interpreted as peptide abundances in order of 

HC > Mild-A = Mild-B > Moderate = Severe.  The second cluster was interpreted 

as peptides abundances in order of Mild-A = Mild-B > HC = Moderate = Severe.  

The third cluster was interpreted as peptide abundances in order of Moderate = 

Severe > HC > Mild-A = Mild-B; thus each disease severity stage yielded a 

unique peptidome pattern (Figure 4.3).   

 Linear discriminate modeling of the cohort peptide abundances following 

adjustment for age, sex, iRT internal standards, and sample analysis flight 

identified 12-497 differentially regulated peptides (Table 4.2).  These pairwise 

differences were in agreement with PCA loading comparisons demonstrating 

very small numbers of significantly regulated peptides between Mild-A and Mild-B 

while large differences between HC and each AH cohort member.  Individual 

pairwise comparisons by volcano plots were used to illustrate peptides that are 

differentially abundant by both statistical significance and fold change (Figure 

4.3). 

 

3. ECM peptides change between MELD groups 

To address the working hypothesis that surrogate markers of AH would be 

associated with altered matrisome metabolism, the regulated peptides (q-value 

<0.05) identified from the iterative pairwise comparisons of Healthy Control (HC) 

versus AH cohort (Mild-A, Mild-B, Moderate and Severe) as well as the 

comparisons of Mild-A to Mild-B and of Moderate to Severe were assembled into  
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Table 4.2: Pairwise comparisons of peptidomes.   

 

Comparison 
# Differentially 

expressed 
# Up 

regulated 
# Down 

regulated 

Healthy volunteer vs. 
Mild-A 

497 130 301 

Healthy volunteer vs. 
Mild-B 

392 112 226 

Healthy volunteer vs. 
Moderate 

207 32 152 

Healthy volunteer vs. 
Severe 

344 109 205 

Mild-A vs Mild-B 12 1 1 

Moderate vs. Severe 94 37 11 
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Figure 4.3: Pairwise comparison of the peptidomes of patients with 

different AH severity by volcano plots.   

 
Peptide abundance differences were plotted as log2 of the fold-change versus –

log10 BH-corrected p-value.  Peptides with BH-corrected p-value < 0.05 and 

log2FC ≥ 1 were considered significantly upregulated, and peptides with BH-

corrected p-value <0.05 and log2FC ≤ -1 were considered significantly 

downregulated. The Tukey's HSD test was used for all pairwise comparisons.  

Pairwise comparisons were illustrated for the major comparators of: A. Healthy 

vs. Mild-A, B. Healthy vs. Mild-B, C. Healthy vs. Moderate, D. Healthy vs. 

Severe, E. Mild-A vs Mild-B, F. Moderate vs. Severe.   
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a spreadsheet.  The gene names associated with each differentially regulated 

peptide were submitted for annotation by matrisome category and division using 

the matrix-annotator tool at the MIT Matrisome project website 

(http://matrisomeproject.mit.edu/analytical-tools/matrisome-annotator/).  These 

gene names were annotated by the matrisome-annotator tool as a component of 

the core matrisome (collagen, ECM glycoprotein, proteoglycan) or the matrisome 

associated compartment (ECM regulators, ECM-affiliated proteins, secreted 

factors). The regulated ECM peptidome (Table 4.3) by absolute numbers were 

ranked in the following order: (HC versus Mild-A or Mild-B) >>> (HC versus 

Moderate or Severe) >>> (Moderate versus Severe) or (Mild-A versus Mild-B).  

These data suggest that the plasma peptidome may be able to discretely 

differentiate HC versus Mild AH and Moderate versus Severe AH.  

The regulated ECM peptides for the HC versus AH cohorts (Mild-A, Mild-B, 

Moderate, and Severe) were compared by Venn Diagram (Fig. 4.4 inset) and 

regulated peptides to all four comparisons were identified.  The annotation of 

these gene names by matrisome-annotator identified 4 ECM peptides out of 101. 

These four peptides included: one peptide derived from collagen (I) alpha 2 

labeled as COL1A2-394 with the sequence 

612SGP(OH)PGPDGNKGEP(OH)GVVGAVGTAGP635, two peptides from 

fibrinogen alpha chain FGA-649 (426REYHTEKLVTSKGDKEL442), FGA-1238 

(581KQFTSSTSY589), one peptide SRGN-392 from serglycin 

(135SLDRNLPSDSQDLG148), and one peptide from kininogen-1 (KNG1-123), 

http://matrisomeproject.mit.edu/analytical-tools/matrisome-annotator/
http://matrisomeproject.mit.edu/analytical-tools/matrisome-annotator/
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Table 4.3: ECM-Matrisome Annotation for Pairwise Regulated Peptides.   

 

Peptidome 

Healthy 
Control  
versus 
Mild-A 

Health
y 

Control  
versus 
Mild-
A2 

Healthy 
Control  
versus  

Moderat
e 

Health
y 

Control  
versus  
Severe 

Mild-A  
versu

s  
Mild-B 

Moderat
e  

versus  
Severe 

Total Peptides 497 392 207 344 12 94 

         Non-ECM 
246 (49) 

207 
(53) 

172 (83) 
204 
(59) 

9 (75) 23 (24) 

        ECM Peptides 
251 (45) 

185 
(47) 

35 (17) 
140 
(41) 

3 (25) 71 (76) 

Core Matrisome 
Peptides 

226 (45) 
169 
(43) 

31 (15) 
127 
(37) 

2 (17) 67 (71) 

  -Collagens 104 59 21 81 0 52 

  -ECM Glycoproteins 118 107 6 39 2 14 

  -Proteoglycans 4 3 4 7 0 1 

Matrisome-associated 25 (5) 16 (4) 4 (2) 13 (4) 1 (8) 4 (4) 

  -ECM Regulators 24 16 4 11 1 4 

  -ECM-affiliated 
Proteins 

1 0 0 1 0 0 

  -Secreted Factors 0 0 0 1 0 0 
 

(percentage
) 
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Figure 4.4: Regulated peptides common to HC to AH pairwise comparisons 

include ECM peptides.   

 
Regulated peptides were identified using data from volcano plots of HC vs. Mild-

A, HC vs. Mild-B, HC vs. Moderate, and HC vs. Severe were compared by Venn 

diagram analysis (inset).  Peptides common to all comparisons (n=101) were 

annotated for GO and the relative fold difference of the HC to AH-cohort plotted 

for all ECM peptides. 
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245RPPGFSP251 (also known as bradykinin 1-7).  As illustrated in Figure 4.4, two 

peptides (COL1A2-394, SRGN-392, and KNG1-123) increased with AH severity, 

one peptide (FGA-1238) decreased with AH severity and two peptides (FGA-649 

and SRGN-392) were reduced across all AH cohorts and did not change with AH 

severity. These data demonstrate the response of select matrisome 

compartments across the AH spectrum. 

 

D. Discussion 

AH is a diagnosis of acute hepatic inflammation and liver failure based on 

AST, AST/ALT, serum bilirubin, INR, neutrophilia, ascites, and history of 

AUD.(72)  AH has a 3-month mortality rate of 30-50%.(73)  Both AH diagnosis 

and prognosis could be impacted by the development of more sensitive and 

specific biomarkers.  Our group previously demonstrated that inflammatory stress 

causes the hepatic ECM to undergo dynamic transitional remodeling.(93)  Others 

have shown that ECM remodeling causes degradation products to be secreted 

into blood and that analysis of these peptides (i.e. the ECM degradome) is a 

useful prognostic tool in diseases that involve ECM remodeling.(58, 59)  

Therefore, the work in this pilot study aimed to test the hypothesis that the 

plasma ECM degradome changes with AH severity. 

To this end, peptides were purified from AH patient plasma and analyzed 

using LC-MS/MS.  Internal standards (non-human peptides, iRT, Biognosis USA, 

Beverly, MA) spiked into samples enabled normalizing of day-to-day instrument 

performance during the statistical modeling using linear mixed model approach.  



 

123 
 

Patients were divided into groups based on AH severity (MELD score) and the 

changes in the peptidome patterns across groups were examined with 

multivariate analyses, considering age and sex as fixed variables, and flight and 

the 11 peptide standards as random variables.  The PCA approach to data 

analysis is based on data reduction and collapses all data points within a sample 

into a single x,y coordinate. This approach allowed for an unbiased self-sorting at 

the patient level, not the discrete peptide level, based on the intrinsic nature of 

the data. These data demonstrated that differences in the peptidome can 

separate patients by AH severity group.  Principal component 1, which accounted 

for 51.59% of variability in the data, generally separated Mild-A and Mild B from 

Moderate and Severe, with the Healthy group in the middle.  Principal component 

2, which accounted for 5.14% of variability in the data, appeared to separate 

healthy patients from all AH patients.  PCA showed little difference between Mild-

A and Mild-B or between Moderate and Severe.  The subsequent multivariate 

approach for modeling the peptidome data was hierarchical clustering with heap 

maps grouping the relative peptide abundances into unique patterns in the 

peptidome between AH severity groups.  The hierarchical clustering of the 

complete dataset identified three strong groupings of peptide abundance patterns 

that reflected combinations of (A) increased peptide levels in healthy controls, (B) 

increased peptide levels in Moderate + Severe and (C) increased peptide levels 

in Mild-A + Mild-B AH cohorts.  These data supported the justification to conduct 

pair-wise comparisons of the mean peptide differences between HC and AH 

cohorts.  Post-hoc filtering of the differentially abundant peptides identified strong 
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relative abundance changes in ECM peptides with strong differences noted in the 

collagen and fibrinogen peptides.  Consistent with the multivariate analysis, the 

largest changes in the peptidome were observed between mild vs. healthy and 

severe vs. healthy.  While each pairwise comparison is heavily dominated by 

ECM fragments, the regulated peptides common to all HC to AH comparisons 

only contained 5 ECM peptides out of a possible 101.  While these pilot data 

provide strong evidence that altered ECM turnover is associated with the AH 

spectrum additional research is required to confirm these findings. 

While the sample handling, sample analysis and statistical modeling 

integrated methods for sample handling randomization, inclusion of internal 

standards and statistical modeling to account for random or fixed effect variables 

there are still several limitations to these studies that should be noted. The 

balance of HC to AH cohort is imbalances in “n” values and this may be 

insufficient to adequately power the study.  Additionally, the potential for a 

“clinical site effect” is present.  The HC plasma samples were recruited at the 

University of Louisville.  The Mild-A and Mild-B plasma samples were recruited at 

the NIH-NIAAA.  The Moderate and Severe plasma samples were recruited at 

the University of Louisville, the University of Massachusetts Medical School, the 

University of Texas-Southwestern and the Cleveland Clinic.  Therefore, the 

potential for a “clinical site effect” is present.  Despite these study limitations the 

statistical modeling and informatics filtering of the peptidomics data supports the 

hypothesis that the ECM plasma degradome is associated with the AH spectrum. 
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These patterns of select peptidome “features” can be investigated further in 

future studies as biomarkers for AH severity and outcome.   
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CHAPTER V 

 

CHRONIC MODERATE ALCOHOL CONSUMPTION INFLUENCES RENAL 

CORTICAL OXIDANT RESPONSE PATHWAYS 

 

A. Introduction 

Ethanol (EtOH) is arguably the most common substance voluntarily 

consumed at toxic doses by humans.  Pharmacologically relevant concentrations 

of EtOH affect multiple organs,(148, 149) and EtOH consumption is a known risk 

factor in over 200 health conditions (9).  Despite this knowledge, the ability to 

reverse EtOH-induced organ damage or predict at-risk individuals for EtOH-

induced organ damage is limited even in well-known target organs (e.g. the liver) 

(150).  In contrast to the liver, it is unclear if the kidney is a direct target of EtOH 

toxicity. Heavy EtOH consumption is well recognized to be associated with 

enhanced risk for renal failure secondary to hepatic cirrhosis, a phenomenon 

known as hepatorenal syndrome (HRS) (151). Renal failure associated with HRS 

is a complication in 14.4% of AH patients having MELD scores ≥22 (152).  The 

widespread view that this renal failure is strictly secondary to hepatic cirrhosis 

with no role for direct EtOH nephrotoxicity may largely be an artifact of clinical 

charting, as was the case for alcoholic pancreatic damage (153).  Moderate 

EtOH consumption is, however, absent from listed risk factors for chronic kidney 
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disease (154), and connections between alcohol use disorders and kidney 

damage are controversial (155).  Studies on moderate EtOH consumption have 

shown EtOH to be (1) inversely associated with development or progression of 

chronic kidney disease (85, 95, 156, 157) and (2) associated with improved 

outcomes in renal transplant patient populations (158, 159).  However, these 

studies were not specifically designed to address the question as to whether or 

not EtOH consumption damages the kidneys, and a mechanistic explanation for 

these observations has not been explored. Overall, a more in-depth investigation 

is justified to discern both the direct and indirect effects of EtOH on the kidney. 

Rodent studies have identified detrimental effects of EtOH to kidney at the 

tissue and subcellular, including increased tissue markers of oxidative damage 

and myeloperoxidase expression in rats (87) and increased Cyp2e1 

induction(88), and mitochondrial protein hyper-acetylation in mice (86). These 

investigations have been driven by the hypothesis that the effect of EtOH on the 

kidneys mirrors its effects on the liver. Confirmation of these parallel mechanisms 

between these two organs may be due to similarities in expression of EtOH 

metabolizing enzymes Cat and Cyp2e1. However, while the liver and kidney are 

the major organs for EtOH detoxification, significant differences in structure, 

function, and parenchymal composition exist.  

We used discovery-based proteomic and transcriptomic approaches to study 

the effects of EtOH on the renal cortex and secondarily the effects of EtOH pre-

exposure on the response (4h and 24h) to LPS (10mg/kg i.p.).  Integrated IPA 

studies demonstrated significant EtOH-alone effects on multiple canonical 
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signaling pathways including decreased activation of the Nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2)  and increased activation of the aryl 

hydrocarbon receptor (Ahr) oxidative stress responses pathways. These studies 

suggested an EtOH-dependent, selective dysregulation of cortical oxidant 

response pathways.   

 

B. Experimental procedures 

1. Animals and exposures 

Mice were exposed to chronic ethanol and/or LPS as described in Chapter II.  

Mice were exposed to chronic ethanol and/or ethanol binge as described in 

Chapter II.   

 

2. Histology and immunohistochemistry 

Renal cortex tissue was stained with PAS as described in Chapter II.  IHC for 

Mpo and Cat was conducted on renal cortex tissue as described in Chapter II.   

 

4. Blood urea nitrogen analysis 

BUN in mouse plasma was determined using a standard kit as described in 

Chapter II. 

 

5. Proteomic sample handling 

3 control mice, 3 ethanol mice, 3 4h LPS mice, and 3 ethanol+4h LPS mice 

were used for the renal cortex proteomic analysis.  Proteins were extracted from 
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renal cortex tissue, digested, labeled, and prepared for LC-MS/MS analysis as 

described in Chapter II.  

 

6. Liquid chromatography and tandem mass spectrometry 

1D-LC-MS/MS analysis and subsequent data analysis were carried out as 

described in Chapter II 

 

7. RNA seq analysis 

3 control mice, 3 ethanol mice, 3 4h LPS mice, and 3 ethanol+4h LPS mice 

were used for the renal cortex transcriptomic analysis.  The same mice were 

used for the renal cortex proteomics and transcriptomics, except for 1 4h LPS 

mouse and 1 ethanol+4h LPS mouse that were different.  RNA was isolated from 

renal cortex sections and RNA Seq analysis was carried out as described in 

Chapter II.  RNA Seq data were analyzed as described in Chapter II.   

 

8. Multivariate analysis of proteomic and transcriptomic data 

Multivariate analysis of proteomic and transcriptomic data was completed as 

described in Chapter II. 

 

9. Immunoblot analysis 

Western blot analysis was carried out on protein extracted from renal cortex 

tissue as described in Chapter II.  Primary antibodies against Nqo1, Sod1, Sod2, 

Gclc, and Cat were used.   
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10.  Statistical analyses 

Statistical analyses of proteomic and transcriptomic data were carried out as 

described in Chapter II.   

 

C. Results 

1. Ethanol, LPS, and the combination increase blood urea nitrogen  

The Lieber-DeCarli model (Fig. 5.1A) of chronic moderate EtOH consumption 

was used to examine the effects of EtOH ± LPS on the kidneys of male mice.  

This is an established model that causes early alcohol-induced liver injury and 

sensitizes the liver to a subsequent inflammatory insult, such as LPS.(93).  

Ethanol consumption caused a small but significant increase in BUN levels 

(p<0.05) in mice in the absence of an LPS challenge (Fig. 5.1B).  LPS injection 

significantly increased BUN levels (p<0.005) 24h after injection; ethanol exposure 

did not significantly alter the increase in BUN caused by LPS administration.   

 

2. Ethanol alone contributes little-to-no morphological changes to 

mouse renal cortex 

Analysis Hematoxylin and Eosin- (H&E, not shown) and PAS-stained (Fig. 

5.2) tissue sections identified mild proximal tubular brush border loss with LPS 

and increased infiltration of polymorphonuclear leukocytes (PMNs, as noted by 

yellow arrows). However, little-to-no obvious histologic differences were detected  
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Figure 5.1: Effects of chronic moderate EtOH feeding and low dose 

(10mg/kg intra-peritoneal (i.p.) lipopolysaccharide (LPS) on blood urea 

nitrogen (BUN).   

(A) To model chronic moderate EtOH consumption the Lieber DeCarli diet model 

of a four week escalation followed by a two week hold at 6% EtOH in the liquid 

diet was used. Control animals received a isocaloric substitute of maltose-dextrin 

in the liquid diet.  A LPS (10mg/kg) LPS or saline injection given i.p. either 4h or 

24h prior to sacrifice. (B) Baseline differences in BUN were observed with EtOH 

feeding as well as an LPS effect at 24h.  Statistical differences were determined 

using students t-test or two-way ANOVA, *p≤0.05, **p≤0.005. 
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Figure 5.2: Mild effects of EtOH and/or LPS on renal architecture.   

Histologic evaluation by periodic acid-shiff (PAS) stain (100x) demonstrates 

unremarkable effects on renal parenchymal architecture of control (left column, 

n=3) versus EtOH fed (right column, n=3) animals.  Following low-dose 

(10mg/kg) i.p. LPS renal cortical sections demonstrate low to moderate levels of 

tubular dilation, vacuolization, brush border loss and PMN infiltration at 4h 

(middle row) and 24h (bottom row). Glomerular infiltration by 

polymorphonucleated cells is noted by yellow arrows (→). 
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in kidneys from mice exposed to EtOH versus control or EtOH + LPS versus LPS 

alone, suggesting at the gross level there was no need for tissue scoring of 

kidney histology. 

 

3. Ethanol attenuates LPS-induced cortical recruitment of MPO-positive 

cells  

Although gross histology was unaffected by exposure regimen, the PAS stain 

demonstrated that LPS exposure increased the number of infiltrating neutrophils 

and caused brush border loss both 4 and 24h after challenge in the EtOH and 

control cohorts.  Based on quantitative IHC, control and EtOH-fed mouse kidneys 

were similar and unremarkably different for Mpo staining (Fig. 5.3).  LPS induced 

a strong, significant recruitment of Mpo-positive cells into the cortex.  Moreover, 

EtOH significantly attenuated the recruitment of Mpo-positive cells caused by 

LPS at 4h but not 24h post-injection (Fig. 5.3). 

 

4. Ethanol and LPS each cause unique protein abundance patterns. 

Proteomic analysis of TMT 10-plex labeled cortical digests (Fig. 5.4A) 

resulted in identification of over 2,400 proteins (Fig. 5.4B) by two or more 

peptides.  Chronic, moderate EtOH consumption increased the abundance of 22 

proteins and decreased the abundance of 70 proteins (Fig. 5.4C).  Significant 

protein abundance changes in the LPS compared to control animals were 

greatest at 24h (108 increased, 10 decreased) compared to 4h-post LPS 

challenge (43 increased and 19 decreased) (Fig. 5.4D-E).   
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Figure 5.3: LPS induced infiltration of myeloperoxidase (MPO) positive 

cells into the renal parenchyma.   

(A) Infiltration of MPO positive cells was quantified by IHC staining and counting 

of MPO-positive cells (40x) in glomerular (→) and tubular (→) compartments 

(33±4 visual fields per kidney section).  (B) Infiltration was significantly increased 

at both 4h (n=3) and 24h after LPS (n=3), compared to baseline (n=3).  There 

was significant difference between control (n=3) and EtOH fed animals (n=3) at 

4h post low dose LPS i.p. challenge.  Statistical differences were determined 

using students t-test or two-way ANOVA, *p≤0.01, **p≤0.005, @p≤0.0001. 
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Figure 5.4: Workflow and characterization of the global effect of EtOH and 

LPS on the cortical proteome.   

Using a TMT workflow (5.4A) the renal proteomic dataset included 2,487 proteins 

(>98% at ≥2-peptide level, (5.4B) detected with high confidence.  Differences of 

relative abundance are shown as Log2 fold change (FC) and are evaluated in 

volcano plots (5.4C-G) with a FC >1.2 and corrected ANOVA p-value<0.05 

considered significant. As a primary hit, the effects of EtOH and LPS are 

comparable in magnitude. This time dependent effect was maintained (5.4F-G) 

with the two-hit comparison of EtOH on an LPS background (EtOH+LPS versus 

LPS) with smaller differences observed by log2 FC (EtOH+4hLPS to 4hLPS) 

compared to log2FC (EtOH+24hLPS to 24hLPS). 
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value) <0.05) trends in protein abundance fold-changes (Log2FC>0.5 or 

Log2FC<-0.5) with larger fold changes between two or more conditions.  A four 

protein grouping (Ehhadh, Acad11, Sqstm1, and Hnrnpc) had diminished 

abundance with EtOH versus control (Fig. 5.5A, dotted box) but the differences 

were normalized at 4h- and 24h-post LPS.  A second grouping of ribosomal 

proteins  (Rpl6, Rpl8, Rpl13a, and Rps15) had increased abundance in EtOH-fed 

animals on a background of 24h LPS (Fig. 5.5B, dotted box). 

 

5. RNA seq data support proteomic data for LPS effect. 

To study the early two-hit effects of EtOH ± LPS, the RNA were isolated from 

EtOH, control, 4h LPS and EtOH+4h LPS animals only.  The RNA integrity 

number (RIN) values for RNA isolated from mouse kidneys averaged 7.8 ± 0.5. 

Following ribosomal depletion, RNA library preparation and high throughput 

sequencing, a total of 47,719 transcripts were observed including 24,405 

detected in all samples.  Of 47,719 detected transcripts, EtOH increased the 

expression of 88 and decreased the expression of 99 (Fig. 5.6D/Table 5.1A).  

LPS increased the expression of 1,468 and decreased the expression of 911 

transcripts (Fig. 5.6E/Table 5.1A).  Hence, 4h LPS, compared to EtOH, induced 

approximately a 10-fold increase of differentially abundant transcripts relative to 

the control animals (Fig. 5.6E-G).  As shown in Table 1, EtOH significantly (q ≤ 

0.05; Log2FC≥1) altered the expression of six (6) transcripts apparently 

independent of LPS. 
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Figure 5.5: Quantitative cluster analysis reveals EtOH-regulated protein 

clusters.   

Log2 FC values are plotted relative to the pooled internal standard reporter ions.  

(A) EtOH-dependent, LPS-independent protein abundance changes.  Significant 

differences (q-value <0.05) were observed for a protein cluster in control versus 

EtOH (black dotted boxes).  (B) EtOH-dependent and late (24h) low dose LPS 

protein abundance changes of ribosomal-related gene product cluster.  

Significant differences (q-value <0.05) were observed for LPS 24h versus EtOH 

+LPS 24h (black dotted boxes).  
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6. Ethanol alone downregulates Nrf2-mediated oxidative stress 

response pathways at the protein level and transcript level. 

A multivariate comparison by IPA of the top-20 canonical signaling pathways 

for the proteome and transcriptome by single-hit (EtOH compared to control, 

4hLPS compared to control) and two-hit comparisons (EtOH + 4h LPS compared 

to 4h LPS; EtOH +4h LPS compared to EtOH) are shown in Fig. 5.5A.  The 

effects of EtOH feeding ± LPS exposure on signaling pathways (Fig 5.5A) or 

individual protein abundance levels (Fig 5.5B) are illustrated as heat maps.  

Heat-map colors are assigned dichotomously to illustrate activation (positive Z-

score, red/orange) or inactivation (negative Z-score, green/blue) based on the 

Log2 relative abundance changes for proteins or transcripts within the pathway 

as previously discribed.(160, 161)  Six overlapping canonical pathways (noted by 

asterisks) for EtOH alone include effects on cell-cell interactions, oxidant stress 

response, actin reorganization, protein unfolding stress response and protein 

translation.  

 In the EtOH vs. control comparison for both the proteomic and 

transcriptomic analyses, Ahr signaling had a positive z-score (i.e. overall pathway 

activation) largely due to decreased abundance of heat shock protein 90-α and –

ß proteins, increased abundances Ahr-targets Nqo1, Aldh isoforms and Gst 

enzymes.  Nrf2-mediated oxidative stress response canonical pathway had a 

negative z score (i.e. overall pathway deactivation, Fig. 5.7A-B) due to large 

decreases in Nrf2 targets such as Sod1, Sqstm1/p62, and Gclc.  LPS caused 

overall strong positive z-scores for the acute phase response signaling pathway  
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Figure 5.6: Workflow and characterization of the EtOH and 4h LPS 

regulated transcriptomes.   

Of 47,719 detected transcripts (36,571 in Venn Diagrams) after filtering for 

corrected p-value (Benjamini-Hochberg q-value <0.05), (D) EtOH increased the 

expression of 88 (red points) and decreased the expression of 99 (green points). 

(E) LPS increased the expression of 1,468 (red points) and decreased the 

expression of 911 (green points) transcripts. (F) EtOH on a background of 4h 

LPS increased the expression of 79 (red points) and decreased the expression of 

68 (green points) transcripts. 
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Table 5.1: Effects of EtOH and LPS on differentially regulated cortical RNA 

transcripts, differentially regulated genes, and one-hit/two-hit associated 

Top-5 Gene Ontology (GO) terms.   
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Transcriptional Responses Differentially Expressed Genes (DEGs)

Treatment Comparator

Multiple Comparison 

Correction

Relative Fold-Change 

Filtered

p ≤ 0.05  q ≤ 0.05 p ≤ 0.05  q ≤ 0.05; logFC≥1

EtOH Control 187 (88↑, 99↓) 66 (22↑, 44↓)

4h LPS Control 2379 (1468↑, 911↓) 1814 (1141↑, 673↓)

EtOH+4h LPS EtOH 2695 (1538↑, 1157↓) 1842 (1114↑, 728↓)

EtOH + 4h LPS 4hLPS 147 (79↑, 68↓) 135 (68↑, 67↓)

Regulated Transcripts: Treatment versus Control (One-hit)

Treatment GO Term Description Genes q-value

EtOH

response to interferon-gamma 2 0.011

skeletal muscle tissue development 3 0.012

innate immune response 5 0.012

regulation of body fluid levels 4 0.014

skeletal muscle organ development 3 0.014

4h LPS

innate immune response* 146 8.43E-50

response to cytokine* 130 4.94E-36

regulation of cytokine production* 128 1.96E-34

defense response to other organism* 123 4.76E-34

positive regulation of cytokine production 97 4.24E-31

Regulated Transcripts: Treatment versus [EtOH + 4h LPS] (Two-hit)

Treatment GO Term Description Genes q-value

EtOH

innate immune response* 149 4.34E-51

response to cytokine* 140 6.71E-42

defense response to other organism* 122 1.22E-32

regulation of cytokine production* 126 2.18E-32

cellular response to cytokine stimulus 107 1.08E-29

4h LPS

positive regulation of smooth muscle cell proliferation 6 6.24E-06

positive regulation of cell migration 11 1.42E-05

positive regulation of cell motility 11 1.91E-05

wound healing 10 2.16E-05

positive regulation of cellular component movement 11 2.37E-05

DEG Expression Regulation Trends (q ≤ 0.05; logFC≥1)

mRNA Expression Changes by EtOH diet independent of 4h LPS exposure

Kynu ↑

Slc7a12a↑

Cntnap5↓

Cyp4a12a↓

Gm6300↓

Kif20b↓

mRNA Expression Changes by 4h LPS exposure independent of EtOH diet

Ifit1 ↑

Ifit2↑

Saa2↑

Lcn2↑

Camp ↑

Cxcl1↑

Cxcl10↑

Gm28347↑

Mx1↑

Slfn4↑

Trem1↑

Bsnd↓

Cd300lg↓

Cldn15↓

Clec14a↓

Cyp26b1↓

Exoc3l2↓

Myct1↓

Rasgrp3↓

Slc9a3r2↓

Sox17↓
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and the LXR/RXR activation pathway, whether or not mice were fed an EtOH 

diet.   

 

7. Effects of ethanol and LPS on catalase abundance. 

Cat IB analysis confirmed proteomic findings, demonstrating a significant (2-

way ANOVA, *p-value<0.05) decrease of approximately 40-50% in the renal 

cortical tissue of EtOH fed mice with an insignificant LPS-effect (Fig. 5.10A-B). 

Additional Cat IB analyses lysates from a chronic-plus-binge study of alcohol 

feeding demonstrated similar effects on Cat abundance following 10-day EtOH 

feeding or, strikingly, 9h post-EtOH gavage (Fig. 5.10C). This data suggested the 

effect of EtOH on Cat abundance was not associated with the chronicity of EtOH 

feeding, IB.   

 

8. Data Sharing 

Proteomic files including acquired LCMS data (.RAW), search engine files 

(.mgf), and search results aggregated into a Scaffold3 (.sf3, 

ProteomeSoftware.com) have been deposited with MassIVE 

(http://massive.ucsd.edu/) data repository with the Center for Computational 

Mass Spectrometry at the University of California, San Diego (MSV000083053) 

and shared with the ProteomeXchange (www.proteomexchange.org) 

(PDX011429).  Experimental details for NextGen sequencing and sequencing 
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Figure 5.7: | Effects of EtOH feeding on Cat abundance in the renal cortex.   

Cat immunoblot analysis (A) demonstrates a significant reduction of Cat protein 

with EtOH feeding (n=3) compared to control (n=3) without LPS administration 

(two-way ANOVA *p-value<0.001).  IHC staining (10X) for Cat (B) demonstrated 

comparable EtOH-associated decreases in the cortical tissue 

(cortical/juxtamedullary boundary noted by red dashed line) of LPS-naïve (n=3) 

mice compared to control (n=3) and LPS-challenged mice (n=3) compared to 

LPS alone (n=3).  (C) Similar EtOH effects on Cat abundance were observed 

using a separate more severe model of EtOH feeding (NIAAA chronic plus binge 

model; control n=3, chronic EtOH n=3, EtOH gavage n=3, chronic EtOH+EtOH 

gavage n=3).    
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results have been deposited with the NCBI Gene Expression Omnibus (162) 

(https://www.ncbi.nlm.nih.gov/geo) as the study GSE81947.   

 

D. Discussion 

Ethanol consumption is a risk factor in numerous health conditions, yet it is 

still unclear if the kidney is a direct target of EtOH toxicity. Hypothesis-driven 

studies on the effects of EtOH consumption on renal parenchyma are limited.  

We hypothesized that chronic, moderate EtOH consumption affects the kidney 

through pre- or post-translational regulation of protein abundance.  Furthermore, 

these modifications contribute to the kidneys response to a second acute 

nephrotoxic event, such as experimental endotoxemia (163, 164).  The current 

study addresses the hypothesis that chronic, moderate EtOH consumption 

significantly affects proteins, transcripts and canonical pathways in the kidney 

and the canonical response is modified by acute experimental endotoxemia (i.e. 

low dose LPS (10mg/kg) i.p.).   

First, we examined the effects of EtOH and LPS on renal function and tissue 

structure.  EtOH significantly increased BUN, a marker of kidney injury, as in a 

similar rodent model (87).  LPS increased BUN (24h > 4h) in the presence or 

absence of EtOH, consistent with other studies of the same dose of LPS in mice 

(165). The effects of chronic, moderate EtOH consumption on the kidney at the 

tissue level were largely indiscernible, as shown by PAS histology. Our data 

show no significant effect of EtOH recruitment of MPO-positive cells into the 

kidney unlike differing reports in the rat Lieber-DeCarli model (87). The effect of 
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EtOH on LPS recruitment of MPO positive cells demonstrated a significant 

decrease at 4h post i.p. challenge that was lost at 24h. It is not clear if this 

difference was mitigated at the level of recruitment or clearance.  However, EtOH 

is known to enhance neutrophil apoptosis, which suggests that our observations 

may result from increased neutrophil clearance in the EtOH fed mice (165).   

Next, a discovery-based ‘omics (Fig. 2A) approach was used to unbiasedly 

identify proteins, transcripts, and canonical signaling pathways affected by 

chronic, moderate EtOH consumption.  EtOH significantly changed 92, 14, and 

109 proteins on a control, 4h LPS, and 24h LPS background, respectively.  It is 

known that TMT-based proteomic studies may underestimate fold-change 

differences (166), and therefore these numbers may underestimate the impact of 

chronic EtOH exposure on the renal proteome.  Specifically, a cluster of proteins 

that EtOH significantly decreased in abundance compared to control included 

Ehhadh, Acad11, Sqstm1, and Hnrnpc.  Ehhadh, Acad11 and Sqstm1 are 

important peroxisomal proteins involved in oxidation of fatty acids and regulation 

of peroxisomal matrix composition.  Many other proteins changed by EtOH are 

not known to play a role in EtOH-induced mechanisms in the kidney or other 

organs (Supplemental Data).  However, EtOH also increased the abundance of a 

cluster of ribosomal proteins (Rpl6, Rpl8, Rpl13a, and Rps15) on a background 

of 24h LPS.  Rpl13a (ribosomal protein L13a) has previously been described as 

a critical component of the interferon (IFN)-γ-activated inhibitor of translation or 

‘GAIT’ system (166).  The GAIT system is comprised of glutamyl-prolyl tRNA 

synthetase, NS1-associated protein 1, Rpl13a, and glyceraldehyde-3-phosphate 
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dehydrogenase. The increased abundance of a critical GAIT component in the 

EtOH + 24h LPS animals compared to the 24h LPS animals could contribute to 

an attenuated renal IFN-γ response in the two-hit model.  Further investigation 

would be needed to confirm up-regulation of the GAIT system as a protective 

measure for experimental endotoxemia in Lieber-DeCarli EtOH-fed animals. 

The transcriptomic study identified renal transcripts and pathways affected by 

EtOH and/or the early acute phase period following 4h LPS.  Hierarchical 

clustering of transcriptomic data demonstrates 6-7 major dendrogram arms of 

robust LPS-dependent transcriptomic changes (Fig. 5.4C).  For the renal 

transcriptome LPS had a 10-fold larger effect on regulated transcripts (q<0.05) 

and with larger fold-changes as compared to EtOH as the single hit (Table 1A).  

Quantitatively, chronic EtOH consumption consistently affected a sub-set of 

regulated transcripts (e.g. increased- KYNU, SLC7A12, decreased- CNTNAP5, 

CYP4A12A, GM6300, and KIF20B) even on a background of LPS exposure.  

The KYNU gene encodes the enzyme L-kynureninase that hydrolyzes 

kynurenine into anthranilate + L-alanine.  Tryptophan metabolites such as 

kynurenine have been reported to inhibit aldehyde dehydrogenase (Aldh) activity 

(167), and increased KYNU expression suggests an EtOH-dependent 

compensatory mechanism to increase the kidneys capacity to metabolize 

acetaldehyde, a toxic intermediate in the oxidation of EtOH. SLC7A12 is an Asc-

type cationic amino acid transporter (y+ system) and increased arginine uptake 

by endothelial Asc-type cationic amino acid transporters has been shown to blunt 

oxidative stress (168).  GM6300 is a SLC7 pseudogene adjacent to SLC7A12 in 
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the murine genome.  Transcriptomic studies of 15-week old OVE26 kidneys 

identified 638 genes regulated by the diabetic state.  The single largest increased 

(SLC7A12) and decreased (GM6300) genes by informatics analyses were 

associated with endoplasmic reticulum (ER) stress (169).  EtOH-

independent/LPS-dependent mRNA expression (Table 5.1) changes modeled 

proteomic findings for acute phase stress response (Fga, Fgb, Fgg) or interferon-

responsive gene products (Ifit1, Ifit2, Saa2, and Lcn2).  Unlike previous studies in 

the liver and lung, LPS did not induce an EtOH-dependent synergistic increase 

the acute phase response gene products PAI-1 (1, 170). Our data for significant 

EtOH induction of renal CXCL1 (KC) (and CXCL10) transcript add to our prior 

report in plasma, liver and lung of the Lieber-DeCarli model requiring a two hit 

(EtOH + LPS) induction of KC (170).  The comparison of GO terms impacted by 

transcript regulation by EtOH suggested coordinated effects on a few transcripts 

associated with interferon response, innate immunity response and skeletal 

muscle development.  Consideration of GO features for transcripts regulated by 

EtOH pre-exposure on the LPS background clustered on terms for muscle cell 

proliferation and cell movement.  LPS as a single hit or second hit induced large 

changes in transcript numbers, affecting expected GO terms: innate immune 

response, cytokine response and positive regulation of cytokine production.  This 

more robust effect of 4h LPS on the transcriptome compared to EtOH is 

unsurprising, since LPS is well known to enhance and activate gene programs of 

transcription factors such as NF-κB (171, 172).  Overall, the transcriptomic effect 
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of EtOH is muted as compared to the proteomic effect but in some regards 

parallels other murine disease models associated with ER stress. 

The proteomic and transcriptomic effects of EtOH and/or LPS were integrated 

using pathways analysis.  The integrated data revealed that EtOH, LPS, and 

EtOH + LPS have differential effects on unique protein canonical signaling 

pathways (Fig. 5.5A-B) related to transcription and translational signaling 

pathways, as well as stress response pathways, for example: inactivation of Nrf2 

(EtOH) and activation of the acute phase response or LXR/RXR (LPS) pathways.  

Activation of hepatic LXRα is associated fatty liver pathogensis (172). Activation 

of renal LXR has been shown to decrease cystic fibrosis transmembrane 

conductance regulator (CFTR)-mediated chloride transport (173) and 

downregulate sodium-phosphate cotransporters (173). The expected finding that 

LPS activated the acute phase response pathway increased our confidence in 

the unpredicted and novel findings, such as the overall inactivation of the Nrf2-

mediated oxidative stress response pathway (Fig. 5B).   

EtOH-induced downregulation of select proteins in the Nrf2-mediated 

oxidative stress response pathway was an unexpected finding, as EtOH is known 

to induce Nrf2 through Cyp2E1 in the liver (174).  Of the Nrf-2 targets, only Gclc 

was down-regulated by NextGen transcriptomic data (mRNA log2FC -1.38, q-

value<0.007).  In models of chronic kidney disease, Nrf2 pathway deactivation or 

knock-out is known to cause injury from increased oxidative stress and/or death 

(174-181).  However, the EtOH-downregulation of proteins in the Nrf2 pathway 

was not accompanied by significant renal injury as indicated by histology and 
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magnitude of BUN increase.  There are several possible explanations for this.  

First, EtOH activation of other transcription factors (e.g. Ahr, Sp1, or AP-1) 

successfully compensated for the downregulated components of the Nrf2 

pathway and protected against injury (182-184).  Second, the selective induction 

of Nqo1 or Sod2 may be based on the binding to the antioxidant response 

element (ARE) by unique Nrf2:cap n collar binding partner (e.g. Maf, MafF, MafB, 

MafG, or PMF-1) complexes with targeted transcriptional activity (185-187).  

Lastly, it is possible that neither the chronic, moderate EtOH consumption nor the 

acute endotoxemia in these mice caused sufficient oxidative stress for the 

decrease in select Nrf2 targets to be histologically deleterious.  

EtOH-dependent reduction of Nrf2-related proteins may occur through one or 

more of several potential mechanisms. Nrf2 is regulated by several mechanisms, 

typically divided in to those dependent or independent of Kelch-like ECH-

associated protein 1 (Keap1)(188).  One mechanism involves Nrf2 activation 

through the Sqstm1/p62-mediated deactivation of Keap1 (189).  In the present 

study, EtOH decreased Sqstm1/p62 abundance with or without LPS-exposure.  

EtOH exposure of neuronal cells in culture has been shown to lead to an 

activation of autophagic pathways that includes loss of Sqstm1/p62 (190).  

Therefore, EtOH may deactivate the Nrf2 stress response pathway by induction 

of autophagy, Sqstm1/p62 loss, and concomitant activation of Keap1.  These and 

other potential mechanisms of EtOH-induced dysregulation of the Nrf2-mediated 

oxidative stress response pathway will be investigated in future studies.   
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Cat (a Nrf2 target) abundance in the Lieber-DeCarli model decreased by 40-

50% while the CAT mRNA was stable (Log2FC -0.08, q<0.999). This suggests a 

post-translational mechanism for decreased Cat abundance in the chronic 

setting. We hypothesized this decrease would be more pronounced in a more 

severe, acute-on-chronic NIAAA model (98) that better mimics human drinking 

patterns.  This would be an important finding as Cat plays a prominent role in 

hydrogen peroxide degradation and of the three known EtOH oxidizing enzymes 

(Ald, Cyp2E1, and Cat) is the most abundant in the renal cortex.  Our data 

demonstrated that in the NIAAA model, the chronic (10-day), acute (9h gavage), 

and acute-on chronic EtOH consumption all decreased Cat abundance in the 

renal cortex.  The direct effects of EtOH on Cat will be investigated in future 

studies.  
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CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

A. Restatement of goals and questions 

The overall goal of the work described in this dissertation was to discover new 

potential mechanisms of alcohol-induced organ injury.  The work summarized in 

Chapter III aimed to test a novel method of analyzing the hepatic matrisome and 

use that approach to determine the effects of chronic, moderate ethanol 

consumption and acute inflammation on the hepatic matrisome in mice.  Chapter 

IV aimed to characterize the ECM degradome (peptidome) in AH patient plasma 

that will allow further investigation into the use of plasma ECM peptides as 

surrogate or mechanistic biomarkers.  Finally, Chapter V of this dissertation used 

a discovery based ‘omics approach to elucidate the effects of ethanol 

consumption on the kidneys.  Taken together, these studies provide new 

understanding of the complex mechanisms of alcohol-induced organ injury.   

 

B. Major findings of this dissertation 

1. The hepatic “matrisome” responds dynamically to stress 
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The important role of the hepatic ECM in ALD pathophysiology is well known.  

However, research on this topic has been largely ‘collagenocentric’ and 

‘fibrosocentric’, that is, primarily focused on the role of the collagen matrix and 

the dramatic ECM changes in the fibrosis stage of disease.  It is now understood 

that the ECM is not simply a collagen scaffold, but a complex microenvironment 

that may be comprised of as many as 100 or more proteins at a time (191).  The 

group of proteins that makes up any specific ECM varies with organ and disease 

state, and is a dynamic subset of over 1000 known ECM-related proteins (92).  It 

is therefore unsurprising that recent studies have shown that multiple ECM 

proteins contribute to fibrosis (111).  However, it is also now known that the 

hepatic ECM is altered prior to fibrogenesis (89, 90).  A limitation of previous 

studies focused on the role of the ECM in ALD is that they generally studied 

changes in one ECM protein at a time and did not consider structural changes 

that may accompany altered ECM protein turnover.  Therefore the goal of 

Chapter III was to adapt a sequential protein extraction method originally 

developed for cardiac tissue (99, 114, 121) to allow proteomic analysis of global 

changes in the hepatic matrisome caused by chronic, moderate ethanol 

consumption and acute inflammation (LPS).  Furthermore, the sequential protein 

extraction method reveals potential changes in ECM protein crosslinking, 

location, and other aspects.  Overall, this approach provides new insight into 

novel matrisome protein changes caused by inflammatory stress.   

This approach divided the hepatic ECM proteome into four distinct extracts: 

(1) loosely-associated ECM proteins (NaCl extract), (2) intracellular and 
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membrane-associated proteins (SDS extract), (3) tightly bound ECM proteins 

(GnHCl extract), and (4) highly insoluble ECM components (the remaining pellet).  

Qualitative analysis of the matrisome demonstrated that both ethanol and LPS 

caused dynamic changes, with each exposure producing unique protein 

abundance patterns across the four fractions.  Indeed, ethanol and LPS each 

increased the number of matrisome proteins by ~25% compared to control.  The 

combination of ethanol and LPS demonstrated patterns similar to each individual 

exposure but also exhibited unique patterns.  The unique subsets of proteins 

qualitatively changed with ethanol and/or LPS may play critical roles in the 

hepatic response to stress.  Ethanol and/or LPS also quantitatively changed 

abundance of many proteins that did not change qualitatively.  These proteins 

are new potential key players in liver injury, whose roles can be determined in 

future studies.  Furthermore, analysis of ethanol-specific matrisome changes 

may provide new insights into the mechanisms of ethanol-sensitized liver injury, 

which could reveal novel therapeutic targets.  Most importantly, this work 

demonstrates the dynamic, global response of the hepatic matrisome to stress 

that opens a new, important area of future research.  This work also lays the 

foundation for future studies, such as the investigation of the ECM degradome in 

the plasma of AH patients described in Chapter IV. 

 

2. The plasma ECM degradome profile of alcoholic hepatitis patients 

changes between MELD groups 



 

161 
 

Chapter IV of this dissertation aimed to characterize the plasma peptidome in 

AH patients.  This builds upon the work described in Chapter III of this 

dissertation, which demonstrated that the hepatic ECM undergoes significant 

remodeling during inflammatory liver injury in the absence of any apparent 

fibrosis (93).  This remodeling involves protease cleavage of ECM proteins, 

which yields ECM peptide fragments (94).  During remodeling, peptide fragments 

of the degraded ECM have been shown to increase in biologic fluids (e.g. 

plasma) (58, 59).  Peptidomic analysis of the degraded ECM (i.e., ‘degradome) 

has been identified as a useful diagnostic/prognostic tool in other diseases of 

ECM remodeling (such as metastatic cancers)(58, 59).  Current methods of 

predicting AH outcome (i.e. clinical scores, e.g. MELD) are limited in their abilities 

to predict at-risk patients with moderate disease(84).  We hypothesized that the 

severe inflammatory liver injury caused by AH would yield a unique degradome 

profile in patient plasma.   

In the pilot study described herein, a workflow was developed for the 

peptidomic analysis of plasma from healthy participants or AH patients.  AH 

severity was stratified by MELD score as mild (<12; n=45), moderate (12-19; 

n=23) or severe (>19; n=37).  Hierarchical clustering of the peptidomic data 

identified three strong groupings of peptide abundance patterns that reflected 

combinations of (A) increased peptide levels in healthy controls, (B) increased 

peptide levels in Moderate + Severe and (C) increased peptide levels in Mild-A + 

Mild-B AH cohorts.  Post-hoc filtering of the differentially abundant peptides 

identified strong relative abundance changes in ECM peptides with strong 
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differences noted in the collagen and fibrinogen peptides.  The unique patterns of 

ECM and other plasma peptides ‘features’ across different severity groups of AH 

patients can be confirmed using large longitudinal studies and can be 

investigated further as potential mechanistic or surrogate biomarkers for patient 

outcome.  The characterization of the AH plasma degradome also supports 

future mechanistic studies on the role of ECM remodeling in AH.   

 

3. Alcohol consumption alters renal cortical oxidant response 

pathways 

The studies in Chapter III and Chapter IV focus on the toxic effects of ethanol 

on its primary target organ, the liver.  In contrast to the liver, the effects of ethanol 

consumption on the kidneys are poorly understood.  Some human studies have 

reported benefits of chronic moderate EtOH consumption for preservation of 

renal function (85, 95).  However, the small number of rodent studies on the 

effects of ethanol on the kidneys have reported that chronic ethanol consumption 

upregulates CYP2E1 (88), causes neutrophil infiltration (88), and increases 

acetylation of mitochondrial proteins (86) in the kidney.  However, these previous 

studies have been limited by the hypothesis that ethanol affects the kidneys by 

mechanisms parallel to those in the liver.  To bypass this limitation, the study in 

Chapter V used an unbiased proteomic and transcriptomic approach to discover 

novel players and pathways affected by ethanol and LPS in the renal cortex.   

The proteomic analysis found that EtOH significantly changed 92, 14, and 

109 proteins on a control, 4h LPS, and 24h LPS background, respectively.  
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Interestingly, ethanol significantly decreased the abundance of a cluster of 

peroxisomal proteins compared to control.  Ethanol also increased the 

abundance of a cluster of ribosomal proteins on a background of 24-hour LPS.  

The effects of ethanol on the transcriptome were more muted than the effects on 

the proteome, suggesting that ethanol-induced protein may occur through 

degradation or other transcription-independent mechanisms.  Pathways analysis 

of integrated proteomic and transcriptomic data revealed that ethanol caused 

overall inactivation of the Nrf2-mediated oxidative stress response pathway.  This 

finding, which was confirmed with western blots, was surprising, as ethanol is 

known to induce Nrf2 in the liver (174).  This demonstrates the benefit of an 

unbiased, discovery-based approach.  Chronic ethanol consumption decreased 

Cat (a Nrf2 target) abundance by 40-50%.  The EtOH-associated effects on Cat 

were confirmed using a separate chronic-plus-binge (NIAAA) model.  This work 

uncovers novel potential mechanisms by which ethanol effects the kidneys that 

can be studied further in the future.  Most importantly, these findings reveal that 

chronic, moderate ethanol consumption affects the renal cortex at the protein and 

transcript level in the absence of tissue-level changes.   

 

C. Significance of new findings 

Chapter III describes a new method of analyzing the hepatic matrisome and 

revealed that the hepatic matrisome responds dynamically to stress.  The 

significance of this new method is that it can be adapted for analysis of the 

matrisome in other liver pathologies (e.g., NAFLD) and in other organs (e.g., the 



 

164 
 

lung).  The finding that the hepatic matrisome responds dynamically to 

inflammatory stress is significant in that it provides a mechanistic link between 

steatohepatitis and fibrogenesis.  That ‘link’ is transitional ECM remodeling, 

which is thought to be a pivotal point between disease restitution and progression 

(1), and is therefore a promising target for new therapeutics.  The work in 

Chapter III identified specific protein players involved in remodeling that can be 

investigated as drug targets in future studies.  Furthermore, as ECM remodeling 

yields degradation products that can be secreted into bodily fluids, knowledge of 

remodeling also supports future investigations of the degradome (e.g. Chapter 

IV) and the eventual development of novel biomarkers.   

Plasma peptidomics is a novel approach for prognosis stratification in AH.  

The work in Chapter IV found that peptides in the plasma of AH patients change 

across groups separated by MELD score.  Interestingly, patients with lower 

MELD scores had dramatically higher abundances of plasma peptides than those 

with higher MELD scores.  This suggests that the degradome may be a positive 

predictor of outcome in AH.  Patient prognosis is a key factor in clinical risk-

benefit decision making regarding the administration of anti-inflammatory 

pharmacotherapeutics.  While this work could lead to novel surrogate 

biomarkers, understanding the peptidome can also provide insight into AH 

mechanisms.  For example, the peptidome in Chapter IV can be used to predict 

the proteases that generated it.  This protease activity can be validated and 

targeted in future studies, which could lead to new targeted therapies for AH.  

Furthermore, the plasma peptides resulting from the protease activity could serve 
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as mechanistic biomarkers for response to the targeted therapy.  Even apart from 

these possibilities, the fact that this work demonstrated that acute hepatic 

inflammation yields widespread, measurable changes in the plasma peptidome is 

significant in itself.   

The effects of ethanol consumption on the kidneys are poorly understood.  

The work in Chapter V demonstrated that although ethanol consumption does 

not cause histologically detectable changes in renal architecture, it does 

influence the renal cortex proteome and, to a lesser extent, transcriptome.  For 

example, ethanol consumption caused overall inactivation of the Nrf2 pathway, 

decreased abundance of peroxisomal proteins, and attenuated induction of LPS-

responsive genes.  This suggests unique effects of ethanol on the kidney that do 

not parallel those in the liver.  These data provide new hypotheses for future 

investigations on both the direct effects of ethanol on the kidneys and effects of 

ethanol on other renal pathologies.  More broadly, insight into the effects of 

ethanol on the kidneys contributes to understanding of alcohol toxicity, which 

could lead to new hypotheses and therapeutic approaches in the study of ALD.   

 

D. Strengths and weaknesses of this dissertation 

1. Strengths 

There are several strengths of this dissertation.  The first study provides 

insight into the role of transitional ECM changes in ethanol-sensitized hepatic 

inflammation (Chapter III) by characterizing the hepatic matrisome.  This work 

used a well-established mouse model of chronic, moderate ethanol consumption 
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and subsequent LPS exposure.  Ethanol-sensitized hepatic inflammation is a 

complex phenomenon that is not confined to a single organ or cell type and 

cannot be wholly recapitulated in a simpler model (e.g. cell culture).  The use of 

an animal model as opposed to a human study allows many variables to be 

controlled, such as number of calories consumed, genetic variability, and 

environmental factors.  This increases confidence that ethanol and/or LPS are 

the variables that caused the experiment results.  Another strength is that a new 

method of protein extraction was validated for use with liver tissue, enabling the 

analysis of low-abundance and highly insoluble hepatic ECM proteins.  This 

allowed for a discovery-based proteomic characterization of the matrisome that 

provides a foundation for new hypothesis-driven studies and the identification of 

new therapeutic targets.  Importantly, this work also demonstrates that the 

hepatic matrisome responds dynamically to stress in the absence of fibrosis.   

The second study in this dissertation examines the plasma peptidome from 

AH patients with disease severity stratified by MELD score.  This investigation 

uses plasma from human patients, and so it does not rely on assumptions 

regarding the relevance of a model.  Another strength is that several different 

methods for the purification of peptides were tested, and the method which 

yielded the most pure peptidome was chosen.  Samples were handled randomly 

in flights that contained a number of samples from each group that was 

proportional to the total.  This minimizes any bias caused by sample handling.  

Samples were also spiked with a peptide standard prior to LC-MS/MS analysis to 

control for time-dependent changes in the instrument.  Additionally, the statistical 
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analysis of the peptidomic data accounted for several covariates, including 

participant age and sex.  The analysis included in this dissertation is preliminary, 

and future analyses will ensure that all appropriate covariates are considered.  

Another strength of this study is that patient plasma, as opposed to liver tissue, 

was analyzed.  This supports the future development of a minimally invasive 

diagnostic tool.   

The third study in this dissertation examines the effects of ethanol 

consumption on the renal cortex proteome and transcriptome.  This work 

employed the same mouse model of chronic, moderate ethanol consumption and 

a second ‘hit’ of LPS used in the first study in this dissertation.  Therefore, the 

same strengths associated with this model apply.  This model is well established 

and recapitulates the complexity of human alcohol consumption, while still 

controlling many variables.  Another strength of this work is that the proteomic 

workflow included TMT labeling, which allows reliable relative quantification of 

proteins between experimental groups.  This work also used a discovery-based 

‘omics approach, as opposed to a hypothesis driven approach.  Hypotheses by 

nature rely on previous knowledge, but very little is currently known about the 

effects of ethanol on the kidneys.  For this reason, a hypothesis-generating 

approach was chosen, which provides a foundation for future studies.  Indeed, 

several effects of ethanol on the kidneys were identified which would not have 

previously been expected.  It should also be noted that expected LPS-activation 

of the acute phase response pathway was observed, which can be viewed as a 
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“positive control” that increases confidence in the less expected results of this 

study.   

 

2. Weaknesses 

The experiments described in Chapter III identified changes in the hepatic 

matrisome after alcohol and LPS exposure.  Although there are strengths 

associated with the use of a mouse model, there are also limitations that should 

be acknowledged.  Although in vivo experiments may recapitulate human 

disease more completely compared to in vitro experiments, in vivo research 

introduces more complexity and less control of variables.  Conversely, relevance 

to human disease may be questionable when mouse models are compared to 

human studies.  It is therefore possible that the observed matrisome changes are 

mouse-specific and have little direct relevance to humans.  While the inverse 

relationship between model relevance and ability to control variables can never 

be entirely avoided, it can be optimized for the question at hand and thoughtfully 

considered when interpreting results.  Another limitation of this study is that the 

biological replicate samples from the same fraction and same experimental group 

were pooled prior to LC-MS/MS analysis due to cost and time constraints.  This 

means that a sample from a single mouse could have driven the observed 

qualitative changes in protein abundance.  For this reason, follow-up studies are 

needed to confirm specific matrisome protein changes caused by ethanol and/or 

LPS.  Additionally, this study did not investigate the functional significance of 

specific protein changes, and so future studies should address this.   
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The work in Chapter IV identified plasma peptides that change with disease 

severity in AH patients.  As with all human studies, there are many variables that 

cannot be controlled, and should therefore be included as covariates in statistical 

analyses.  The analyses included herein consider age and sex as covariates, but 

do not include other covariates, such as body mass index or race.  Plasma from 

different study groups was also collected at different sites, and so site-specific 

changes need to be statistically accounted for to the extent possible.  Therefore, 

it is possible that variables other than AH severity may be involved in the 

observed changes in peptide abundances.  As noted previously, the statistical 

analysis in this dissertation is a pilot study, and future analyses will more 

thoroughly address potential confounding variables.  Another limitation of this 

study is that it is cross-sectional, and so large scale longitudinal follow-up studies 

are needed to confirm the use of select peptides for outcome prediction.   

The work in Chapter V identifies proteins, transcripts and pathways affected 

by ethanol and/or LPS in the renal cortex.  The same mouse model was used in 

Chapter III.  Therefore, the same model-related limitations apply that were 

previously discussed.  As with any animal model, the relevance of the 

experimental results to human disease is not guaranteed, and neither is the 

assumption that all potential confounding variables have been controlled.  It 

should also be acknowledged that another study reported that a similar rat model 

of chronic ethanol consumption increased recruitment of MPO-positive cells into 

the kidney, whereas we did not observe this effect (87).  Another limitation is that 

TMT labeling, which is used for relative quantification of protein abundance, is 
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known to cause signal suppression.  Therefore, the observed protein-level 

changes caused by ethanol and/or LPS may actually be greater than what was 

observed.  Additionally, it is standard practice to confirm phenomena of interest 

observed with an ‘omics approach using an additional method (e.g. immunoblot 

to confirm proteomics).  Some protein-level changes reported here were indeed 

confirmed with immunoblot, but other changes need to be confirmed in future 

studies.   

 

E. Future Directions 

While the experiments described in this dissertation answered specific gaps 

in our knowledge of alcohol-induced organ injury, it has also created new 

questions that will need to be addressed in future studies.  Three of these 

questions of these are discussed below. 

 

1. Does targeting the regulated “matrisome” proteins identified in 

Chapter III prevent, halt, or reverse alcohol-induced organ injury? 

The method described in Chapter III identified dynamic changes in the 

hepatic matrisome after ethanol and/or LPS exposure. However, whether any of 

these ECM proteins plays a critical role in alcohol-sensitized liver injury has yet to 

be determined.  To carry out this investigation, a select matrisome protein that 

was strongly and uniquely affected by ethanol in Chapter III could be genetically 

or pharmacologically targeted in a mouse model.  These mice could be 

administered the same model of chronic ethanol exposure followed by 
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inflammatory insult used in Chapter III.  Hepatic inflammatory injury in these mice 

could be examined with histology or other methods.  If targeting a protein 

mitigates damage, then that protein plays a critical role in damage.  For example, 

previous studies from our group demonstrated that the integrin inhibitor 

CycloRGDfV protects against liver injury and inflammation caused by acute 

ethanol exposure and LPS (192).  Such findings would support the targeting of 

the matrisome protein as a therapeutic strategy.   

 

2. Do the regulated peptides and features identified in Chapter IV 

predict alcoholic hepatitis patient outcome and/or response to 

treatment in longitudinal studies? 

The study in Chapter IV identifies plasma peptides of AH patients that change 

in abundance with disease severity.  Earlier in the discussion, it was noted that a 

limitation of this study is that it is cross-sectional and therefore does not follow 

the same patients over time.  Since this research asks the question whether 

peptide “features” can predict AH outcome, follow-up longitudinal outcome 

studies would help answer this question more definitively.  Such studies could 

also investigate the ability of regulated peptide “features” to predict response to 

treatment   

 

3. What are the mechanisms by which alcohol consumption alters the 

oxidant response pathways identified in Chapter V in the renal 

cortex? 
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The experiments described in Chapter V identified the effects of ethanol 

consumption on renal cortex proteins and pathways using a discovery-based 

‘omics approach.  The mechanisms by which ethanol elicits these effects are 

unknown.  The transcriptomic analysis in Chapter V revealed that the effects of 

ethanol on the transcriptome were more muted than the effects on the proteome, 

suggesting that ethanol-induced protein changes may occur through altered 

protein degradation or other transcription-independent mechanisms.  Targeting 

one of these mechanisms in the same model of ethanol consumption used in 

Chapter V would help determine the contribution of that mechanism to the 

observed ethanol-induced effects.  Since the ethanol-induced effects have 

already been identified, they can now be detected with a more targeted method 

(e.g. immunoblot or PCR) instead of an ‘omics approach.  Additionally, molecular 

signaling programs (e.g. phosphorylation cascades) likely play a role in 

regulating the observed changes in protein abundance, and could be 

investigated with a proteomic approach (e.g. phosphoproteomics), or other 

methods.  It should be noted that others have used acetylomics to determine that 

chronic, moderate ethanol consumption causes mitochondrial hyperacetylation in 

rodent kidneys (86).  Links between this acetylomic data and the results in 

Chapter V could be investigated in future studies.   

 

F. Summary and Conclusions 

The overall goal of the work described in this dissertation was to elucidate 

mechanisms of alcohol-induced organ injury.  Chapter III introduced a new 
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proteomic approach for characterizing the hepatic matrisome.  That approach 

was used to characterize the dynamic response of the matrisome to the stress of 

chronic, moderate ethanol consumption and acute inflammation in mice.  This 

provides a foundation for future experiments to identify new players in transitional 

ECM remodeling.  Chapter IV demonstrated that AH causes detectable changes 

in the plasma ECM degradome/peptidome of patients.  These findings will allow 

future investigations into the use of plasma peptide ‘features’ as biomarkers for 

AH outcome.  Finally, Chapter V revealed the effects of chronic ethanol 

consumption and acute inflammation on the renal cortex proteome and 

transcriptome.  This work provides new hypotheses for future studies examining 

the effects of ethanol on the kidneys.  Taken together, this work reveals new 

insight into mechanisms by which ethanol affects the liver and kidneys. 
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ABBREVIATIONS 
 

Adh Alcohol dehydrogenase 

AH Alcoholic hepatitis 

Ahr Aryl hydrocarbon receptor 

ALD Alcoholic liver disease 

ANOVA Analysis of variance 

Aldh Aldehyde dehydrogenase 

ALT Alanine aminotransferase 

APP Acute phase protein 

ARE Antioxidant response element 

ASH Alcoholic steatohepatitis 

AST Aspartate aminotransferase 

AUC Area under the curve 

AUD Alcohol use disorder 

AUDIT Alcohol use disorder identification test 

BH Benjamini-Hochberg 

BSA Bovine serum albumin 

BUN Blood urea nitrogen 

Cat Catalase 

CCL2 C-C Motif Chemokine Ligand 2 

CID Collision induced dissociation 

COL Collagen 

CRELD2 Cysteine-rich with EGF-like domain protein 2 

CTP Child-Turcotte-Pugh score 

Cyp2e1 Cytochrome P450 2E1 

DAMP Damage-associated molecular pattern 
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DSM Diagnostic and Statistical Manual of Mental Disorders 

DTT Dithiothreitol 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

ER Endoplasmic reticulum 

ETD Electron transfer dissociation 

EtOH Ethanol 

FA Formic acid 

FASP Filter-aided sample preparation 

FC Fold change 

FDR False discovery rate 

FTMS Fourier-transform mass spectrometry 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

Gclc Glutamate-cysteine ligase catalytic subunit 

GnHCl Guanidine hydrochloride 

GO Gene ontology  

H&E Hematoxylin & eosin 

HC Healthy control 

HCC Hepatocellular carcinoma 

HCD Higher energy collision dissociation 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HF Hepatic fibrosis 

HLB Hydrophilic-lipophilic balance 

HMGB1 High mobility group protein B1 

HRS Hepatorenal syndrome 

HSCs Hepatic stellate cells 

IFN-γ Interferon gamma 

IB Immunoblot 

i.p. Intraperitoneal 
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IHC Immunohistochemistry 

INR International normalized ratio 

IPA Ingenuity Pathways Analysis 

ITMS Ion trap mobility spectrometry 

KCl Potassium chloride 

KCs Kupffer cells 

Keap1 Kelch-like ECH-associated protein 1 

LC-MS/MS Liquid chromatography and tandem mass spectrometry 

LPS  Lipopolysaccharide 

LTDH Lifetime drinking history 

LXR Liver X receptor 

M/z Mass-to-charge ratio 

MD Maltose-dextrin 

MDE Matrix-degrading enzymes 

MELD Model for end-stage liver disease 

MMPs Matrix metalloproteinases 

Mpo Myeloperoxidase 

mRNA Messenger ribonucleic acid 

MS Mass spectrometry 

NaCl Sodium chloride 

NaF Sodium fluoride 

NAFLD Non-alcoholic fatty liver disease 

NASH Non-alcoholic steatohepatitis 

NaVO3 Sodium metavanadate 

NIAAA National Institute on Alcohol Abuse and Alcoholism 

NIH National Institutes of Health 

NP-40 Nonidet p-40 

Nqo1 NAD(P)H quinone dehydrogenase 1 

Nrf2 Nuclear factor erythroid 2–related factor 2 
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PAI-1 Plasminogen activator inhibitor 

PAMP Pathogen-associated molecular pattern 

PAS Periodic acid-Schiff 

PBDC Proteomics Biomarkers Discovery Core 

PCA Principle component analysis 

PEBP1 Phosphatidylethanolamine-binding protein 

PMN Polymorphonuclear leukocyte 

PRR Pathogen recognition receptor 

PT Prothrombin time 

RANTES 
Regulated on activation, normal T cell expressed and 
secreted 

RIN RNA integrity number 

RIPA Radioimmunoprecipitation assay 

RNA Ribonucleic acid 

RXR Retinoid X receptor 

SAA1 Serum amyloid A1 

SAA2 Serum amyloid A2 

SCX Strong cation exchange 

SDS Sodium dodecyl sulfate 

SGOT Serum glutamic oxaloacetic transaminase 

SGPT Serum glutamic-pyruvic transaminase 

SIRS Systemic inflammatory response syndrome 

Sod1 Superoxide dismutase 1 

Sod2 Superoxide dismutase 2 

Sqstm Sequestrome-1 

Tbili Total bilirubin 

TBST Tris-buffered saline and Tween 

TCA Trichloroacetic acid 

TEABC Triethylammonium bicarbonate 

TGFβ Transforming growth factor beta 
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TIC Total ion current 

TIMP Tissue inhibitor of matrix metalloproteinases 

TLR4 Toll-like receptor 4 

TNFα Tumor necrosis factor-alpha 

TMT Tandem mass tag 

UHPLC Ultra-high-performance liquid chromatography 
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