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ABSTRACT

 

INDUCIBLE TUMOR DIFFERENCE BETWEEN RAPID AND SLOW RAT NAT2 
CONGENIC FISCHER 344 RATS ADMINISTERED METHYL-NITROSOUREA  

 
Marcus W. Stepp 

August 1st 2014 

 

Human arylamine N-acetyltransferase 1 (NAT1) is a well-known phase II 

metabolic enzyme that has been associated with carcinogenesis. Its role in the 

biotransformation of aromatic and heterocyclic amine carcinogens has been 

investigated for many years, but more recent investigations focus on a possible 

endogenous role of human NAT1 in cancer initiation and progression. We 

conducted in vivo studies using homozygous Fischer 344 rats, congenic at the 

rat Nat2 locus for high (rapid) and low (slow) activity. Wistar Kyoto inbred rats 

were used to breed in the slow activity rat Nat2 locus into the Fischer 344 inbred 

rat, which contains the rapid activity rat Nat2 locus. The rat Nat2 gene is a 

functional ortholog for the human NAT1 because it has similar sequence and 

substrate specificity to human NAT1. Chemically induced breast tumors are 

produced in the rat following administration of methyl-nitrosourea (MNU). In this 

thesis, rapid and slow acetylator female congenic rats were administrated a 

single dose of MNU (50 mg/kg) by intraperitoneal injection at three weeks of age. 
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Weekly measurements of weights and palpable breast tumors were recorded. 

Palpable breast tumors showed a significantly shorter latency in rapid compared 

to slow acetylator congenic rats (p=0.040). At 23 weeks post MNU-

administration, rats were euthanized, and tumor and adjacent non-tumor tissue 

were collected. Tumors were found in 78% of the rapid acetylator congenic rats 

with an average ± SEM of 1.78 ± 0.7 tumors per rat. In contrast, tumors were 

found in only 30% of slow acetylator congenic rats with an average of 0.5 ± 0.3 

tumors per rat. Both tumor multiplicity and incidence approached significance 

(p=0.073 and 0.069, respectively) in this initial pilot experiment. Histopathology of 

the tumors classified the majority of the tumors as intraductal papillomas that 

were estrogen receptor positive by immunohistochemistry. The miRNA 574-3p 

was under expressed in intraductal papilloma breast tumors compared to normal 

tissues. These results suggest an important role for rat Nat2 in MNU-induced 

carcinogenesis and possibly carcinogenesis in general. Additional studies are 

proposed to confirm and understand the mechanism of rat Nat2’s involvement in 

carcinogenesis.  
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INTRODUCTION

Human arylamine N-acetyltransferase 1 (NAT1) is a phase II cytosolic 

isoenzyme responsible for the metabolism of arylamine xenobiotics, including 

such environmental and occupational carcinogens like 4-aminobiphenyl (ABP)[1]. 

NAT1 gene is located on the short arm of chromosome 8 (8p22), and is 

expressed in nearly all human tissues assayed [2, 3]. NAT1 catalyzes both N-

acetylation and O-acetylation. The N-acetylation of aromatic and heterocyclic 

amine xenobiotics results in the inactivation of compounds, and the inactivated 

compound is removed by urinary excretion. After N-hydroxylation of aromatic and 

heterocyclic amine xenobiotics by a cytochrome p450, O-acetylation catalyzed by 

NAT1 produces an unstable highly reactive nitrenium ion. This nitrenium ion is 

able to react with DNA and form DNA adducts, which if left unrepaired generate 

mutations that may result in cancer initiation. NAT1 is related to several cancer 

types by its ability to biotransform arylamine procarcinogens to active carcinogen 

forms. However recent findings suggest that human NAT1 activity is involved in 

cancer by an unknown mechanism independent of procarcinogen metabolism. 

Research in cancer biology has provided insights into the connections of 

NAT1 and cancer cell proliferation and invasiveness. Overexpression of human 

NAT1 in the non-transformed breast epithelial cell line, HB4a, resulted in 

increased growth and survival. These modified cells also showed a resistance to 

etoposide treatment [4]. Calu3 cells, a colon carcinoma cell line, that are resistant 
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to gemcitabine have higher expression of NAT1 [5]. In majority of human 

immortalized cells assayed there has been endogenous NAT1 expression/activity 

observed [6]. The use of a lentiviral shRNA expression system for human NAT1 

knockdown in a human breast cancer cell line, MDA-MB-231, caused a decrease 

in cell proliferation and invasiveness [7]. Similarly, NAT1 knockdown in a human 

colon cancer cell line, HT-29 showed increased cell-cell contact inhibition [8]. Up-

regulation of E-cadherin was associated with knockdown of human NAT1, but 

there was no change in the transcription factors Snail, Twist, or Slug [8, 9]. The 

small molecule inhibitor, Rhod-o-hp, specific for human NAT1 showed that 

inhibition of NAT1 activity in MDA-MB-231 cells stops cell proliferation, inhibited 

anchorage-independent growth, and reduced the invasiveness of the cell [7]. All  

in vitro experiments indicate that human NAT1 plays some role in cancer cell 

proliferation and survival. 

Microarray data on many different types of breast cancer showed NAT1 

expression was clustered with estrogen receptor expression [10, 11]. This 

correlation between positive estrogen receptor (ER) status and human NAT1 was 

confirmed by additional microarray studies [12-15]. Immunohistochemistry 

showed higher human NAT1 levels in ER+ breast cancer samples when 

compared to ER- breast cancer [4]. Expression is also affected by the deletion of 

NAT1’s chromosome region in some cancers. The deletion may explain why 

some cancer subtypes may have low expression of NAT1 [16]. Tumors, 

characterized based on which breast tissue the tumor arose from, showed 

luminal breast cancers with higher NAT1 expression than basal breast cancer 
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[11, 17, 18]. A significant correlation has been observed between breast 

carcinomas expressing the highest levels of NAT1 and those that metastasized 

to the bone [19]. Also, elevated human NAT1 mRNA level has been shown to be 

associated with more invasive breast cancers [20]. All this evidence for the 

relationship of NAT1 with some subtypes of breast cancer has led some to state 

a possible role of NAT1 in classifying cancer molecular subtypes.  

Human populations exhibit different NAT1 variant haplotypes, with 

NAT1*10 the most common variant haplotype. NAT1*10 is presently defined by 

two SNPs 1088T>A (rs1057126) and 1095C>A (rs15561) in the 3’ UTR 

(http://nat.mbg.duth.gr). NAT1*10 is associated with increased NAT1 activity in 

human bladder [21], colon [22], and liver [23]. NAT1*10 also is associated with 

higher cancer risk in some types of cancer. NAT1*10 has been associated with 

higher risk of developing cancer in the breast [24], colon/rectum [25, 26], lung 

[27], pancreas [28], and urinary bladder [29]. However, other studies have 

reported no association between NAT1*10 and cancer risk [30, 31]. 

NAT1*14B is the most common variant allele that is associated with a 

reduced acetylator activity. Allelic frequencies in American, German, French, and 

Canadian populations are less than 5% [1]. However the allelic frequency of 

NAT1*14B in Lebanese population is about 24% [32]. NAT1*14B is defined 

presently by a SNP of nucleotide G560A (rs4986782), which is located in the 

open reading frame (ORF) (http://nat.mbg.duth.gr). G560A results in an amino 

acid substitution R187Q. The arginine for glutamine substitution is thought to 

destabilize the NAT1 structure. The use of homology modeling predicts that the 
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substitution affects NAT1 binding of acetyl-coenzyme A, active site acetylation, 

catalytic activity, and substrate specificity [33]. NAT1*14B is associated with 

smoking induced cancer [34]. 4-aminobiphenyl (ABP) DNA adducts are elevated 

in cells that have been stably transfected with NAT1*14B compared with cells 

transfected with NAT1*4 (considered the reference haplotype) [35].  

In summary human NAT1 is involved in cancer cell proliferation and 

survival. Human NAT1 has been found to correlate with aggressive forms of 

cancer and estrogen receptor positive breast cancer. Human NAT1 haplotypes 

that have the highest activity stand at a higher risk for certain types of cancer. 

This evidence shows that NAT1 has a role in cancer, but the exact mechanism of 

how it is involved is unknown.  

Rat models share close similarity to humans with regard to N-

acetyltransferase gene and cancer. Rat models have been used previously for 

the study of arylamine N-acetyltransferases [36-38]. Rat arylamine N-

acetyltransferases are similar in sequence and function to human N-

acetyltransferases [38, 39]. The residues 125, 127, and 129 are the amino acids 

in human NAT1 that determine substrate access to the active site, thus 

influencing substrate selectivity [40]. Rat Nat2 and human NAT1 are orthologs as 

shown by their amino acid sequences (Figure 1). Rat Nat2 and human NAT1 

both contain Phe125, Arg127, Tyr129, which is predictive of their similar 

arylamine substrate selectivity. The C-terminal undecapeptide, which is involved 

in controlling acetyl-coenzyme A hydrolysis [41], is 100% identical when 

comparing rat Nat2 and human NAT1. Rat mammary cancer and human breast 
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cancer are very similar, and the use of rat models is extremely valuable in the 

study of breast cancer [42]. Rat mammary glands are a source of hormone 

dependent neoplasms, which are similar to the most frequent human malignancy. 

Rats, like humans, have different haplotypes. Homozygous rapid (F344) and 

slow (WKY) acetylator inbred rats have been characterized as an animal model 

for investigations of the N-acetylation polymorphism [37, 43]. Slow acetylator 

WKY inbred rats are homozygous for a rat Nat2 allele with four single nucleotide 

polymorphisms (SNPs): G361A (Val121→ Ile), G399A (synonymous), G522A 

(synonymous), and G796A (Val266→ Ile), as compared to the Nat2 allele in the 

F344 rapid acetylator inbred rat [44] (Figure 1). These two inbred rat stains were 

used in the development of congenic rats that are utilized in this study.  
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FIGURE 1 

 

 

Figure 1. Amino acid sequence comparison between Human NAT1 and Rat 
Nat2. The gray highlighting indicates areas were the amino acids differ between 
the two enzymes. The two enzymes are 83 % identical to each other. The yellow 
highlighted regions indicate the areas of importance to the enzymes, the c-
terminus tail and the three critical amino acids in the active site. The two 
enzymes share 100% similarity in the active site and c-terminus tail. In the rat 
sequence of amino acids there are two underlined amino acids, Val121 and Val266. 
Both valines are isoleucines in the slow phenotypic rats, where they are valines 
in rapid, wildtype, rats. 
  

 N-TERMINUS     

HUMAN NAT1-1	
   MDIEAYLERI	
   GYKKSRNKLD	
   LETLTDILQH	
   QIRAVPFENL	
   NIHCGDAMDL	
  

RAT	
  NAT2-­‐1	
   MDIEAYFERI	
   GYQSSRNKLD	
   LEELTEILQH	
   QIRAIPFENL	
   NIHCGESMEL	
  

HUMAN NAT1-­‐51	
   GLEAIFDQVV	
   RRNRGGWCLQ	
   VNHLLYWALT	
   TIGFETTMLG	
   GYVYSTPAKK	
  

RAT	
  NAT2-­‐51	
   NLEVIFDQVV	
   RKKRGGWCLQ	
   VNHLLYWALT	
   KMGFEATMLG	
   GYVFNTPANK	
  

HUMAN NAT1-­‐101	
   YSTGMIHLLL	
   QVTIDGRNYI	
   VDAGFGRSYQ	
   MWQPLELISG	
   KDQPQVPCVF	
  

RAT	
  NAT2-­‐101	
   YSSGMIHLLV	
   QVTLSGKDYI	
   VDAGFGRSYQ	
   MWEPLELTSG	
   KDQPQVPAIF	
  

HUMAN NAT1-­‐151	
   RLTEENGFWY	
   LDQIRREQYI	
   PNEEFLHSDL	
   LEDSKYRKIY	
   SFTLKPRTIE	
  

RAT	
  NAT2-­‐151	
   RLTEENGTWY	
   LDQIRREQYV	
   PNQEFVNSDL	
   LEKNKYRKIY	
   SFTLEPRTIE	
  

HUMAN NAT1-­‐201	
   DFESMNTYLQ	
   TSPSSVFTSK	
   SFCSLQTPDG	
   VHCLVGFTLT	
   HRRFNYKDNT	
  

RAT	
  NAT2-­‐201	
   DFESINTYLQ	
   TSPASLFTSK	
   SFCSLQTLEG	
   VHCLVGSTLT	
   YRRFSYKDNI	
  

HUMAN NAT1-­‐251	
   DLIEFKTLSE	
   EEIEKVLKNI	
   FNISLQRKLV	
   PKHGDRFFTI	
   290	
  AA	
  

RAT	
  NAT2-­‐251	
   DLVEFKSLTE	
   EEIEDVLKTI	
   FGVSLERKLV	
   PKHGDRFFTI	
   290	
  AA	
  

	
     C-TERMINUS  ~83%	
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The induction of breast tumors in rats provides useful observations, such 

as palpable tumors over the course of the experiment. Also, the use of a direct 

acting carcinogen will eliminate any differences caused by metabolism of a pro-

carcinogen. The chemical chosen for this study is methyl-nitrosourea (MNU). 

Chemically induced breast tumors have been induced for several decades with 

the administration of MNU. MNU is a simple alkylating agent, which places a 

methyl group on oxygen and nitrogen of macromolecules, like DNA. It has been 

shown previously that sexually immature F344 rats (at 3 weeks of age) are more 

susceptible to mammary carcinogenic effects from MNU than mature rats (8 

weeks of age) [45].  

The mechanism for how MNU causes cancer is by DNA damage resulting 

from the alkylation of nitrogen and oxygen in DNA. N7-alkylguanine, N3-

alkyladenine, and O6-alkylguanine account for 68%, 8%, and 7.5% of total 

methylation after MNU treatment, respectively [46]. The N7 atom of guanine is 

the most vulnerable site for attack by alkylating agents; however N7-alkylguanine 

alone has no pronounced mutagenic and cytotoxic effect [47]. Alkylation of the N7 

atom does cause chemical instability at the N-glycosidic bond, causing 

spontaneous abasic/apurinic sites to form. Abasic sites also form in the repair of 

N7-alkylguanine by N-alkylpurine DNA-glycosylases, enzymes in the BER 

pathway. The mutagenic and toxic effects of abasic sites have been well 

described previously [48]. N3-alkyladenine is not particularly mutagenic, but it is a 

cytotoxic DNA lesion because it is able to block replication and able to generate 
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abasic sites [47]. N3-alkyladenine has been shown to cause sister chromatid 

exchange, chromosome gaps and breaks, S phase arrest, accumulation of p53, 

and apoptosis in mammalian cells [49]. O6-alkylguanine is the primary mutagenic 

lesion under most conditions of alkylation damage to the genome causing G →A 

transitions after two replications [47, 50] (Figure 2). In addition to the point 

mutations following DNA replication, O6-alkylguanine can also result in mismatch 

repair-mediated DNA recombination and cell death [51]. Repair by mismatch 

repair system at O6-alkylG:T can form the “futile cycle”. The “futile cycle” is where 

repair enzymes recognize mismatch of G:T and remove the newly incorporated 

thymine opposite of O6-alkylguanine. Then, the sequence is replicated again and 

the O6-alkylguanine preferentially pairs with thymine, once more, thus reinitiating 

the repair and replication cycle [47, 50, 52, 53]. This persistent cycling of 

mismatch repair can generate a stabilized nick or gap in one strand of DNA, 

which may activate damage signaling pathways and DNA recombination [52]. 

Even with this futile cycling, it has been found that O6-alkylguanine lesions went 

from being 10% mutagenic in cells with repair capability to nearly 100% 

mutagenic in cells without DNA repair abilities [54]. When O6-alkylguanine was 

examined with regards to epigenetics, O6-alkylguanine was found to inhibit 

methylation of carbon-5 in cytosines by interfering with the binding of DNA 

methyltransferases. This interference eventually affected natural methylation 

causing the genome to become hypomethylated. Also, pairing of O6-

alkylguanine:T can lead to DNA hypomethylation [55, 56]. 
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FIGURE 2 

	
   
 
Figure 2. Mechanistic diagram for how MNU damages the genetic 
sequence. MNU alkylates guanine, which can be repaired immediately by O6-
alkylguanine-DNA alkyltransferase (MGMT), also known as O6-alkylguanine-DNA 
alkyltransferase (AGT). However if not repaired before replication, translesion 
DNA synthesis (TLS) will be done. TLS mismatches the nucleotide causing three 
possible pathways. The one on the left is that another TLS occurs resulting in a 
permanent mutation that can allow the cell to survive. The second possibility is 
on the right and is a direct signaling pathway that tells the cell to undergo 
apoptosis. The middle one is where the mismatch repair pathway tries to correct 
the mismatch of G:T and removes the newly incorporated thymine opposite of 
O6-alkylguanine. Then, the sequence is replicated again and the O6-alkylguanine 
preferentially pairs with thymine, once more, thus reinitiating the repair and 
replication cycle. This reoccurring cycling is termed the “futile cycle” Futile cycle 
can generate a stabilized nick or gap in one strand of DNA, which can cause 
replication fork collapse and a double strand DNA break (DSB). The DSB can be 
repaired by non-homologous end-joining (NHEJ) pathways, which can lead to 
cell survival but with mutations, sister chromatid exchange (SCE), or 
chromosomal aberrations. If the DSB is not repaired, cellular programing will be 
triggered to lead the cell into apoptosis. This figure has been modified from one 
previously published by Fu et al [57]. 
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In the current study we investigated whether two different rat stains that 

are genetically identical except for the Nat2 gene differ in tumor formation after 

administration of the breast carcinogen MNU. Rat Nat2 is an ortholog of human 

NAT1. Based on the work done with human NAT1 in cell lines, microarray 

studies, and human populations, the hypothesis is that the rapid Nat2 rats (high 

activity) will develop more tumors than their slow Nat2 (low activity) peers. Also, 

rats with higher Nat2 activity should develop tumors sooner than rats with lower 

Nat2 activity. The study will use the chemical MNU, which causes direct DNA 

damage and is not a substrate for rat Nat2. Administration of MNU in three-week-

old rats will induce tumors in a timely manner.  
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MATERIALS AND METHODS 

Fischer 344 Congenic Nat2 Rats 

Congenic Fischer 344 rats were housed in University of Louisville Animal facility. 

The University of Louisville Institutional Animal Care and Use Committee 

approved the procedures used in this study. The construction of the rat Nat2 

F344 congenic strain is described in a previous publication by the Hein lab [58]. 

Briefly, F344 (homozygous Nat2 rapid) males were mated to WKY (homozygous 

Nat2 slow) females to produce the obligate heterozygous F1 generation. F1 

females were then backcrossed with F344 males. Heterozygous acetylator 

female progeny from each successive backcross were identified by rat Nat2 

genotyping and mated with F344 rapid acetylator males. After ten generations of 

backcrossing, heterozygous acetylator brother/sister progeny were mated to 

produce the homozygous rapid and slow acetylator congenic rat Nat2 lines. 

Administration of methyl-nitrosourea 

Total of twenty female rats, ten rapid acetylator congenic rats and ten slow 

acetylator congenic rats, at three weeks of age were administered methyl-

nitrosourea by a single intraperitoneal injection of 50 mg/kg (10 mg/ml) solution 

dissolved in saline acidified with glacial acetic acid to pH 5.0. Three rapid and 

three slow acetylator control female animals were injected with vehicle.  

Weekly Observations 
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Weekly measurement of individual rat weights was recorded and tracked post 

MNU administration. If a rat lost 10% of body weight and/or displayed 

bradykinesia/fatigue in moving, the rat was euthanized. Rats were palpated, and 

location and number of tumors recorded weekly.  

Tissue and Tumor Collection 

The duration of the experiment was 23 weeks. The rats were euthanized by CO2 

asphyxiation followed by cervical dislocation. The rats were immediately 

dissected, and tumors with adjacent normal tissue were removed, with the 

tumors being divided in half. One half of the tumor with adjacent normal tissue 

attached was fixed in buffered formalin and used for histopathology. The second 

half had no adjacent tissue, and was flash frozen for later molecular analysis.  

Mammary Whole Mount 

The two caudal abdominal mammary glands, the fourth pair of mammary glands 

out of six pairs counting down from the pectoral area, of each rat were removed 

and whole mounted on glass slides for aluminum carmine staining. The slides 

were immersed in 70% ethanol for 1-2 weeks to allow for fat to be removed from 

the gland. The slides were fixed with one part glacial acetic acid and three parts 

100% ethanol for 60 minutes, washed in 70% ethanol for 15 minutes, 50% 

ethanol for 5 minutes, and rinsed in water for 5 minutes. The slides were left in 

aluminum carmine until stain had penetrated the entire tissue. The slides were 

then washed with 70%, 95%, and 100% ethanol for 30 minutes each. Slides were 

then placed in xylene overnight, followed by storage in mineral oil for long-term 

storage. A dissection microscope was used to analyze the slides.  
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Pathology 

Tumor and adjacent normal tissue was placed in 10% neutral buffered formalin 

solution. Samples were then given to Special Procedure Laboratory at the 

University of Louisville for processing. The Special Procedure Laboratory 

followed standard histological procedure, which is detailed below. In brief, tissue 

was paraffin embedded and sections cut at 5 µm. Sections were either used for 

hematoxylin and eosin (H&E) staining or immunochemistry (estrogen receptor, 

progesterone receptor, and p63).  

The H&E staining was done by standard histological procedure. First step was 

drying slides in 58 ºC oven until paraffin wax is melted. Next was a dewaxing 

step comprised of three changes of xylene at 5 minutes each, following 

rehydration to distilled water through graded ethanol (100% ethanol two times at 

5 minutes each, 95% ethanol two times at 5 minutes each, 50% ethanol once at 

5 minutes, distilled water for at least 3 minutes). Next, slides were stained with 

hematoxylin for about three minutes, and then rinsed with distilled water to 

remove excess stain. Slides were then dipped into Tacha’s bluing solution for 10-

15 seconds, and rinsed in running distilled water for 3 minutes. The slides were 

counter stained with Eosin Y solution for 30 to 45 seconds. Slides were rinsed in 

95% ethanol with ten quick dips, followed by ten dips 100% ethanol two times. 

The dehydrated slides were then dipped in three changes of xylene for about 20 

seconds each. Finally 2 to 3 drops of permount were applied to each slide and a 

coverslip was applied.  
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Immunochemistry slides were prepared by an automated system. In brief the 

steps were deparaffinization, epitope retrieval, H2O2 block for endogenous 

peroxidase, primary antibody, polymer detection, DAB (3,3'-diaminobenzidine) 

(positive staining), and counter staining with hematoxylin.  

miRNA 

Total RNA from flash frozen breast tissue was isolated by mirVana (Ambion, 

Foster City, CA). The cDNA was made from total RNA using Megaplex™ RT 

Primers Rodent Pool A and MultiScribe™ Reverse Transcriptase (Applied 

Biosystem, Foster City, CA). Applied Biosystems® TaqMan® Rodent MicroRNA 

A Array v2.0 (Applied Biosystems, Foster City, CA), which contains 384 

TaqMan® MicroRNA Assays was used to identify miRNAs of interest. The qPCR 

mix was comprised of supplied Megaplex™ PreAmp Primers Rodent Pool A and 

TaqMan® Gene Expression Master Mix (Applied Biosystems, Foster City, CA). 

Panel plates were run on a 7900HT Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA). Array data were analyzed with ExpressionSuite 

Software. The miRNAs found to be significantly different between normal and 

tumor tissue were validated independently by using commercially available 

reverse transcriptase primers and Taqman primers for mir574-3p (#002349), 

miR-344 (#001063), miR-543 (#003276), and U6 snRNA (#001973)(Applied 

Biosystems, Foster City, CA). The qPCR validation reactions were run on a Step 

One Plus Real-Time PCR System (Applied Biosystems, Foster City, CA) as 

directed by the manufacturer. 
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Statistics 

Statistical differences were determined using Prism Software by Graphpad (La 

Jolla, CA). Two-way analysis of variance was used to compare the curves of 

weight gain over time followed by Bonferroni post hoc test. Log-rank (Mantel-

Cox) test was used to compare the Kaplan-Meier graphs of palpable tumors. 

Whitney-Mann U-test was used to test for difference in the tumor multiplicity. 

Fisher’s exact test was used to determine if tumor incidence was significantly 

different.  A one-way analysis of variance was used to measure miRNA 

expression differences followed by Bonferroni post hoc test.  
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RESULTS

Weight gain 

Weekly weights demonstrated a continual weight gain in both rapid and 

slow untreated congenic rats. Rapid and slow treated congenic rats 

demonstrated initial decrease in weight gain after MNU administration, followed 

by normal weight gain after the second week. Treated congenic rats never 

reached the same weight as the untreated counterparts at any point during the 

experiment, as shown by a two-way ANOVA (p = 0.001) (Figure 3). Bonferroni 

post hoc test shows that rapid and slow controls were not significantly different 

(p>0.05), and that MNU-treated rapid and slow acetylator rat weights were 

significantly different from each other (p<0.001) (Figure 3).  

Palpable breast tumors 

Palpable tumors showed a significantly shorter latency in rapid compared to slow 

acetylator congenic rats. The earlier onset of tumors in rapid Nat2 rats is shown 

by a Kaplan-Meier analysis (Figure 4). Comparing the palpable tumor curves of 

rapid and slow Nat2 congenic rats with Log-rank (Mantel-Cox) Test shows a 

statistical difference between rapid and slow acetylator rats with a p = 0.040. In 

comparing two groups on a Kaplan-Meier plot over time, a hazard ratio is a 

common statistical measurement. The higher the hazard ratio the more likely 

subjects of one group will display an affect compared to another group per unit of 

time. In this experiment, the hazard ratio is 4.58 comparing rapid congenic rats to 
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slow congenic rats with a 95% confidence interval of 1.072 to 19.59. This hazard 

ratio means that the rapid congenic rats will develop tumors 4.53 times more 

frequently per week than slow congenic rats. Since the confidence interval does 

not contain the value of one, the hazard ratio is significant (p < 0.05).  

Tumor multiplicity and incidence 

Tumors were found in over half (78%) of the rapid acetylator congenic rats 

with an average of 1.78 ± 0.7 tumors per rat. In contrast, tumors were found in 

less than half (30%) of slow acetylator congenic rats with an average of 0.5 ± 0.3 

tumors per rat. Both tumor multiplicity and incidence differed between rapid and 

slow acetylator rats just missing significance (p=0.073 and 0.069, respectively) in 

this experiment. Tumor multiplicity was statistically tested with a two-tailed Mann 

Whitney U-test (Figure 5, left). Tumor incidence was statistically analyzed with a 

2x2 contingency table and performing a Fisher’s exact test (Figure 5, right). 

Whole mount mammary glands 

Whole mounts of rat mammary D glands, the fourth pair of mammary 

glands out of six pairs counted down from the pectoral area, were made for every 

rat. Of the thirty-eight slides for MNU-treated congenic rats examined (18 slides 

for rapid and 20 slides for slow Nat2 congenic rats) only one slide showed 

anything abnormal in ductal morphology when compared to control untreated 

rats. The one slide was from the left side of a rapid congenic rat (Figure 6). The 

abnormal growths in the mammary ducts were classified by H&E as hyperplasia.   
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FIGURE 3 
 
 
 
 

 
 
Figure 3. Average weights following MNU administration  
Average weights of the congenic rats treated and untreated with MNU over the 
23-week period following administration. Treated rapid acetylator rats are open 
circles, and untreated rapid acetylator rats are solid circles. The treated slow 
acetylator rats are open triangles, and the untreated slow acetylator rats are solid 
triangles. The individual points represent the average per group. Statistical 
significance was found with a 2-way ANOVA (p<0.001). Bonferroni post-test 
shows that rapid and slow controls were not significantly different (p>0.05), and 
that MNU-treated rapid and slow acetylator rat weights were significantly different 
from each other (p<0.001).  
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FIGURE 4 
 
 
 
 
 
	
  

	
  
	
  
Figure 4. Palpable breast tumors following administration of MNU. 
Kaplan-Meier plot illustrating the onset of tumors in the rapid and slow Nat2 
congenic rats over 23 weeks post-administration of MNU. Rapid acetylator 
congenic rats (circle ● and dash line) showed a significantly shorter latency 
compared to slow acetylator congenic rats (square ■ and solid line) when tested 
by a Log-Rank (Mantel-Cox) test (p=0.040). The first tumor was palpable at 11 
weeks post-injection in rapid acetylator congenic rats and at 13 weeks in slow 
acetylator congenic rats. 
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FIGURE 5 
 
 
 
 
 
 

 
 
 
 
Figure 5. Tumor multiplicity and incidence.  
Tumor multiplicity and tumor incidence found per congenic rat strain. Left: 
Multiplicity of tumors in rapid versus slow Nat2 congenic rat model displayed as 
the average and SEM. Significance was tested using a Mann Whitney U-test (p = 
0.0733). Right:  Incidence of tumors in rapid versus slow Nat2 congenic rat 
models graphically displayed in a 2x2 contingency table. Significance was tested 
using a Fisher’s exact test (p = 0.0698). 
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FIGURE 6 
 
 
 
 
 

 
 
 
 
Figure 6. Whole mounts of rat mammary gland. 
Left: A slide from a normal untreated rapid congenic rat. The red lines are 
mammary ducts (blue arrow). The large red mass on the far left is a lymph node 
(black arrow). Right: The only abnormal growth observed in over 38 slides of 
treated congenic rats. The slide is from a MNU-treated rapid Nat2 congenic rat. 
The red lines are normal mammary ducts (blue arrow) and the larger red mass 
on the left is a lymph node (black arrow). The cluster of smaller and larger red 
masses is the abnormal growth in the mammary duct (circled in blue). Upon H&E 
classification, the mammary ducts were classified as hyperplasia. 
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Pathology of Breast Tumors 

Pathological evaluation of the tumors classified the majority of the tumors 

as intraductal papillomas, with the exception of one treated (rapid acetylator) rat 

classified as a highly invasive carcinoma. Normal rat mammary glands are 

composed of highly branched system of ducts and terminal secretory alveoli. The 

mammary ducts are surrounded by adipose tissue and contain two main cell 

types epithelial and myoepithelial. Intraductal papillomas are proliferation of 

epithelial papillary cells from the wall of a cyst into the lumen with overlaying 

fibrovascular core (Figure 7). Collagenous spherulosis, milky secretion, is a 

common occurrence in intraductal papillomas. We found that of the intraductal 

papillomas tested, all were estrogen receptor (ER) positive, benign tumors, 

determined by use of p63 antibodies for myoepithelial cells (Figure 7). ER 

expression is localized to the luminal lining cells, which indicates epithelial cells 

(cells known to line the cystic space) as ER positive (Figure 7). Myoepithelial 

cells express the p63 protein, which by immunohistochemistry are the cells 

stained brown (Figure 7). The p63 positive cells show normal cell 

compartmentalization order, which is indicative of a benign tumor. 

miRNA differences between tumor and normal tissue.  

TaqMan® Rodent MicroRNA A Array v2.0 analysis showed two miRNAs 

that differed significantly between rapid intraductal papilloma tumor tissue and 

rapid adjacent normal tissue; mmu-miR-574-3p (0.114- fold, p=0.037) and mmu-

miR-344 (5.176- fold, p=0.015) (Figure 8A). An additional miRNA of significance 

was found comparing rapid intraductal papilloma tumor tissue and rapid control 
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normal tissue, mmu-miR-543-3p (48.2- fold, p=0.007) (Figure 8 B). Validation 

was conducted on all the above miRNAs, and compared across rapid congenic 

rat breast tissues of untreated normal control, MNU-treated adjacent normal, and 

tumor tissue. Only the miR-574-3p was validated by a follow up qPCR displaying 

the same fold trend, with about a 11- fold reduction in tumor tissue compared to 

normal tissue (p=0.0022) (Figure 9 A). The miRNAs mmu-miR-344 and mmu-

miR-543 were found to have an opposite fold change by validation qPCR than 

previously found with the array. The mmu-miR-344 showed a significant 

decrease of about 4- fold in expression in tumor tissue compared to normal 

tissue (p=0.0098). The mmu-miR-543 showed about a 1.5- fold decrease in 

tumor samples, however this decrease was not significantly different between 

normal and tumor tissue (p=0.1620). Individual data points show one of the four 

tumor expression levels was in the range of normal tissue, while the other three 

tumor mmu-miRNA-543 expression levels showed an extreme decrease in 

expression compared to normal tissue. If the one tumor sample, expressing in 

the normal expression level range, is removed, then the tumor tissue has about a 

13- fold reduction in expression compared to normal tissue, and is found to be 

significantly different between normal and tumor tissue (p=0.0011) (Figure 9 B). 
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FIGURE 7 

Figure 7. Photomicrographs of H&E and immunohistochemistry slides. The 
three columns show different magnifications of sectioned tissue. The first row 
shows the normal untreated mammary gland tissue by H&E staining (black arrow 
indicates the presence of a normal mammary gland duct). The remaining four 
rows are of tumor tissue. The second row is a H&E slide showing the intraductal 
papilloma proliferating into the lumen with a well defined boundary (black arrow 
marks the separation of tumor and normal tissue). The third row is a H&E stain of 
a intraductal papilloma containing hyperplasic cells and fibrovascular cores 
(black arrow indicates a fibrovascular core). The fourth row is looking at estrogen 
receptor (ER) expression (black arrow indicates ER positive epithelial cells). The 
fifth row indicates p63 expression, which is a marker of myoepithelial cells (black 
arrows indicate positive p63 cells being located below the epithelial cells).	
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FIGURE 8 
 

 

 
 

 
 
Figure 8. Volcano plots of miRNA levels between different tissues.  
Volcano plot of tumor tissue miRNA compared with either adjacent normal or 
untreated normal tissue. Fold change boundary is set to 2- fold and the p 
boundary is set to 0.005. A. Two miRNAs are shown as significantly different 
between adjacent normal tissue and tumor tissue miR-574-3p (0.114- fold, 
p=0.037) and miR-344 (5.176- fold, p=0.015). Validation by qRT-PCR of miR-344 
did not confirm the fold change found in the volcano plot. B. Two miRNAs are 
shown as significantly different between untreated normal tissue and tumor 
tissue miR-543 (48.22- fold, p=0.037) and miR-344 (5.176- fold, p=0.015). 
Validation by qRT-PCRs of both miRNAs did not confirm the fold change found in 
the volcano plot. 
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FIGURE 9 
 

 

 
Figure 9. Scatter plots of validation qRT-PCR results for selected miRNAs  
Scatter plots of qRT-PCR validations for miR-574 and miR-543. A. miR-574-3p 
validation scatter plots represent the average and the SEM. The miRNA 
expression shows a fold reduction of about -11 fold, with p = 0.0022 by one-way 
ANOVA. B. miR-543 validation scatter plots represent the average and the SEM. 
The miRNA expression shows a fold reduction of about -13 fold, and with p = 
0.0022 by a one-way ANOVA. One data point was removed from treated tumor, 
because it was an outlier.	
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DISCUSSION 

The experiments in this thesis were performed to investigate whether 

there is a difference in MNU-induced tumor formation between rapid and slow 

congenic Nat2 rats. My hypothesis was that rapid Nat2 congenic rats would 

develop more tumors than the slow Nat2 congenic rat population. This 

hypothesis is based on the previously mentioned work in human studies and 

manipulation of NAT1 in human cancer cell lines. The rapid Nat2 MNU-treated 

rats developed tumors earlier and developed more tumors over time than the 

slow Nat2 MNU-treated congenic rats. The incidence of a rat having a tumor was 

higher in the rapid congenic rat population than in slow congenic rats, 78% and 

30% respectively. Rapid congenic rats also develop more tumors per rat than the 

slow congenic rats. The significance level of the incidence and multiplicity was 

marginal significant, due to sample size.  

A common pathology of intraductal papillomas was found for nearly all 

tumors, except in one rapid Nat2 congenic rat. Intraductal papillomas can have 

areas of atypical or ductal carcinoma in situ [59]. Intraductal papillomas are often 

identified in humans by mammogram, MRI, ultrasound, and ductogram. 

Intraductal papillomas treatment is still debated in literature as to which treatment 

is best. The seemly common treatment is core-needle biopsy surgical excision. 

Variables such as size and level of atypical cells determine the need for surgical 

removal and the chance of upgrading to a malignancy. The fact that only in the 
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rapid Nat2 rats a pathology more aggressive than intraductal papillomas was 

discovered, suggests that rapid Nat2 congenic rats are more susceptible to 

carcinogenesis.  

These findings suggest that higher rat Nat2 activity contributes to an 

increased susceptibility to tumorigenesis. This thesis is to date the only 

experiment to look at direct acting carcinogen-induced tumors in congenic 

animals that have rapid (high level) and slow (low level) of Nat2 activity. This 

study suggests that the rat Nat2 plays a role in the temporal onset of tumors and 

in the multiplicity and incidence of tumor development. The role of rat Nat2 in 

tumorigenesis is not well understood.  

Current theories involve folic acid level and acetyl-coenzyme A (AcCoA) 

level. The only known endogenous human NAT1 substrate is p-

aminobenzoylglutamate (pABG), a catabolite of folate [65]. The reduced forms of 

folic acid, like the unsubstituted dihydrofolate (DHF) and tetrahydrofolate (THF) 

are chemically unstable. They spontaneously break apart at the C-9 N-10 bond 

to yield pteridine and p-aminobenzoylglutamate (PABG). These catabolites have 

not been found to have any known biologic activity. However, human NAT1 has 

been associated with various birth defects that may be related to deficiencies in 

folate metabolism [66, 67]. In the present study, the reasoning is that rapid Nat2 

congenic rats are better able to acetylate PABG causing a reduction in the 

required folic acid compounds. This lowering of folic compounds may hinder DNA 

repair, protein synthesis and DNA methylation.  However, recent research has 

shown that in wildtype mouse Nat2 mice compared to mice null for Nat2 have no 
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difference in the level of pABG in mouse tissues [68]. The same research 

showed that the folic compound levels were not different between wildtype 

female mice compared to female mouse Nat2 null mice. This research shows 

that the folate theory is unlikely.  

The AcCoA levels could be lower in rapid Nat2 congenic rats because of 

increased AcCoA hydrolysis activity of rat Nat2. Human NAT1 and rat Nat2 share 

identical C-terminal tails responsible for AcCoA hydrolytic activity, and it has 

been hypothesized that human NAT1 can catalyze the hydrolysis of AcCoA in the 

absence of any chemical substrate. This hypothesis has gained interest after 

research showed that mouse Nat2, human NAT1, and various prokaryotic 

orthologs of human NAT1 are able to hydrolysis AcCoA into CoA and acetate 

products in the presence of folate and no substrate [69]. The theoretical lowering 

of AcCoA in the cell could affect several pathways including energy production, 

fatty acid synthesis, and DNA repair. This theory seems more likely to be the 

cause of tumorigenic differences between rapid and slow Nat2 congenic rats. 

Molecular analysis of the tumors for miRNA differences indicated that 

miRNA-574-3p was expressed at significantly lower levels in tumor tissue 

compared to normal control/adjacent tissue. The miRNA miR-574-3p has been 

the center of several articles, particularly on bladder cancer [60]. The authors 

showed that miR-574-3p levels were decreased in bladder cancer cell lines, and 

once levels were restored cell lines decreased in proliferation, wound healing, 

and invasion ability. They also showed that apoptosis was elevated in miR-574-

3p restored cell lines. Another study found miR-574-3p expression to be reduced 
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mainly in early stages of gastric cancer or in cancer with high level of 

differentiation [61]. Similar to the previous paper, the authors confirmed that miR-

574-3p inhibited the proliferation, migration and invasion of gastric cancer cells 

transfected to express the miRNA. Researchers also found that miR-574-3p is 

reduced in prostate cancer cell lines, and that the drug genistein is able to cause 

an increase in miR-574-3p expression [62]. The miR-574-3p is also down-

regulated in esophageal cancer tissue [63]. 

Publications on miRNA-574-3p are only from recent years, however there 

seems to be no paper connecting this miRNA to breast cancer. So this thesis 

may serve as an indication that miRNA-574-3p is not only associated with 

bladder, colon, esophageal, and prostate cancer, but may also be associated 

with breast cancer. This finding was observed in tumors classified as intraductal 

papillomas, since that was the overwhelming majority of tumors. So further 

experiments could be done to see if this miRNA is down regulated in other breast 

cancer pathologies.  

A major issue with miRNA-574-3p is that the miRNA is not currently 

identified in the rat genome. However our experiments have shown that there is a 

dramatic difference in miRNA expression between tumor tissue and normal 

tissue using commercial primers for miRNA-574-3p expression. Also the synteny 

region is shared between human and rat genome at the region where miRNA-

574-3p is found in humans. Given how new the study of miRNA-574-3p is, it is 

reasonable to assume the sequence exists in the rat genome, however not 

identified yet.  
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An additional miRNA of interest, found while comparing rapid intraductal 

papilloma tissue and rapid control normal tissue, was the mmu-miR-543-3p. A 

recent publication has shown that miRNA-543 expression is decreased in 

endometrial cancer [64]. In the same article, they show that miRNA-543 acts as a 

tumor suppressor by decreasing Focal adhesion kinase (FAK) and Twist 

homolog 1 (TWIST1) expression. The genomic sequence for miRNA-543 has 

already been identified in the rat genome. Since the miRNA-543 has been 

located in the rat genome, this miRNA could be explored further to find evidence 

of miRNA-543 involvement in breast cancer.  

We have shown in this study that MNU-induced tumors differed between 

rapid and slow congenic Nat2 rats consistent with the initial hypothesis that rapid 

congenic Nat2 rats would develop more tumors than the slow congenic Nat2 rat 

population. This finding is also consistent with previous work in human studies 

and manipulation of human NAT1 in cancer cell lines. With the use of MNU, we 

showed a statistical temporal difference between rapid and slow congenic Nat2 

rats with the development of MNU-induced tumors. Marginal significance in 

multiplicity and incidence of tumors induced in rapid and slow congenic rat 

populations was observed. The results suggest a role of human NAT1 in 

tumorigenesis, and for the first time an association of miRNA-574-3p and breast 

cancer.  
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SUMMARY AND CONCLUSIONS 

STRENGTHS OF THIS WORK 

This work suggests that human NAT1, with the use of the ortholog rat 

Nat2 in congenic rats, plays an important role in tumorigenic incidence and 

onset. The strengths of this study are the congenic rat model and the similarity of 

human NAT1 and rat Nat2. Our laboratory made the congenic Fischer 344 rat 

stains several years ago, and characterized the differences between rapid and 

slow Nat2 congenic rats in previous publications. The rapid and slow Nat2 

congenic F344 rat stains were derived by the same approach, so the genetic 

background between rapid and slow congenic rats will be more than 99.9% 

similar. This very close similarity allows us to compare rapid and slow Nat2 with 

minimal influence of strain differences besides the Nat2 gene. As mentioned in 

the introduction, human NAT1 and rat Nat2 share over 83% amino acid 

sequence homology, with no differences in the active site or the C-terminal tail. 

The rat breast cancer model is a strength because we can measure palpable 

tumors in live animals over time. In theory this study could be conducted on 

almost any form of inducible cancer.  

 

CAVEATS AND WEAKNESSES  

Chemically induced tumors are affected by variable, yet controllable, 

factors like the inducing carcinogen, age of administration, reproductive history, 
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and diet. Diet and reproductive history of these rats are the same for both rapid 

and slow congenic rats. Chemically induced breast tumors have been induced for 

several decades with the administration of MNU. MNU is a direct acting DNA 

alkylating agent that does not need biotransformation before forming DNA 

adducts. It has been previously shown that sexually immature F344 rats (at 3 

weeks of age) are more susceptible to mammary carcinogenic effects from MNU 

than mature rats (8 weeks of age) [45]. Developmental studies on the rats over 

time can be done to see if O6-alkyguanine-DNA alkyltransferase, also known as 

O6-methylguanine DNA methyltransferase, the only enzyme shown to have a 

chemopreventive role in MNU toxicity varies between rapid and slow Nat2 

congenic rats [51]. 
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FUTURE DIRECTIONS	
  

Arylamine N-acetyltransferase 1 (NAT1), a well-known phase II metabolic 

enzyme, has been associated with breast cancer. Breast cancer is estimated to 

have more new cases than any other type of cancer in United States women and 

has the second highest mortality rate [1]. The ultimate goal of this project is to 

advance the understanding of NAT1 in breast cancer, which can in turn lead to 

improvements in breast cancer prevention and/or treatment. Overexpression of 

NAT1 in a normal human mammary luminal epithelial cell line (HB4a) enhanced 

cell proliferation [2]. The use of siRNA against NAT1 as well as small molecule 

inhibitors has shown that NAT1 is involved in cell-to-cell contact inhibition in 

several cancer cell lines [3, 4]. Microarray data have shown a strong positive 

correlation between the overexpression of NAT1 mRNA and breast cancers that 

are estrogen receptor positive [5]. To investigated this further, I propose in my 

PhD dissertation project to investigate the differences in initiation and 

progression of cancer in vivo between high (rapid) and low (slow) NAT 

activity rats, and use these two congenic rat strains, along with NAT1 

expression modified cancer cell lines, to investigate endogenous 

mechanism(s) of NAT1 involvement with breast cancer. The in vivo studies 

will use a novel congenic rat model that was produced by our lab previously, that 

have been used to observe differences in drug metabolism between rapid and 

slow acetylator phenotypes. The rats are Fischer 344 background with one strain 
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having a rapid rat Nat2 gene and the other strain is a slow rat Nat2. Rat Nat2 is 

an ortholog for human NAT1 because it has shown similar substrate specificity to 

human NAT1. The published work on NAT1 in breast cancer leads us to 

hypothesize that high Nat2 activity in rats would correspond to an increase 

number of chemically induced tumors by a direct acting carcinogen methyl-

nitrosourea (MNU). In testing that hypothesis we have shown that indeed 

chemically induced breast tumors in prepubescent female rats are elevated in 

rapid congenic rat compared to the slow congenic strains. The results suggest an 

important role for NAT1 in tumorigenesis, but further studies are needed to 

confirm the results and to help us understand the mechanism by which rat Nat2 

is affecting tumorigenesis.  
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ABBREVIATIONS

A Adenine 

ANOVA Analysis of variance 

Arg Arginine 

cDNA Complementary deoxyribonucleic acid 

CO2 Carbon dioxide 

DHF Dihydrofolate  

ER Estrogen receptor 

F344 Fischer 344 rat  

G Guanine 

H2O2 Hydrogen peroxide 

H&E Hematoxylin and eosin 

IP Intraductal papillomas  

kg kilogram 

miRNA/miR Micro ribonucleic acid 

MRI Magnetic resonance imaging 

mg milligram 

ml milliliter 

MNU methyl-nitrosourea/N-methylnitrosourea/1-nitroso-1-methylurea 

N Nitrogen 

NAT1 Human N-Acetyltransferase 1 
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Nat1 Rodent N-Acetyltransferase 1 

Nat2 Rodent N-Acetyltransferase 2 

O Oxygen 

PABG p-aminobenzoylglutamate 

PCR Polymerase chain reaction 

qPCR Real-time quantitative polymerase chain reation 

Phe Phenylalanine 

RNA Ribonucleic acid 

SEM Standard error mean 

siRNA Small interfering ribonucleic acid 

T Thymine 

THF Tetrahydrofolate 

Tyr Tyrosine  

Val Valine 

WKY Wistar Kyoto rat 
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