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ABSTRACT 

TARGETING THE GLUCOSE METABOLISM OF MYELOID-

DERVIED SUPPRESSOR CELLS (MDSCs) TO STIMULATE 

CANCER IMMUNITY 

Jaspreet Grewal 

April 20, 2017 

 

Myeloid derived suppressor cells (MDSCs) are a heterogeneous group of 

immature myeloid cells that are significantly increased in cancer patients and 

correlate with higher stage and poor prognosis (1-4). MDSCs negatively 

modulate anti-tumor immunity, suppress T cell activity, promote angiogenesis 

and increase the risk of metastasis (1). In this study, we report that monocytic-

MDSCs (M-MDSCs) but polymorphonuclear-MDSCs (PMN-MDSCs) over-

express 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatases 3 (PFKFB3), 

an important regulator of glycolysis. Furthermore in the melanoma model, M-

MDSCs but not PMN-MDSCs suppressed T cell function which correlated with 

PFKFB3 over-expression and increased rate of glycolysis. PFKFB3 inhibition 

with the first-in-class small molecule inhibitor, PFK-158 reversed M-MDSC 

mediated T cell suppression and decreased the expression of arginase 1 and 

inducible nitric oxide synthase (iNOS) both in vitro and in vivo. In addition, both in 
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B16-F10 tumor-bearing mice and patients enrolled in Phase 1 clinical trial, 

PFKFB3 inhibition resulted in decrease in M-MDSC frequency and increase in 

effector T cell populations. In this first-of-a-kind study, we present strong 

evidence for targeting metabolic profile of M-MDSCs to modulate their immune 

suppressive phenotype. This study provides the basis to study PFK-158 as an 

immunomodulatory agent in combination with immune checkpoint blockade 

therapies to improve T cell activity and anti-tumor responses.
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1. INTRODUCTION 

1.1 Historical background 

About 35 years ago, Strober et al identified a population of myeloid cells 

with T-cell suppressive functions affecting alloreactive immune responses in 

allogeneic bone marrow chimera experiments (1, 5). Because of the lack of 

common phenotypic markers, these cells were originally called the “natural 

suppressor (NS)” cells (5). Initially, these cells were thought to appear only 

transiently during certain phases of life such as in the placenta during pregnancy, 

fetus and during maturation of lymphoid tissues in neonates (5). However, later 

these cells were also identified following immune system manipulation such as 

following total body irradiation (TBI) or chemotherapy, in chronic inflammatory 

states, graft-versus-host disease (GVHD) and cancer (5). Due to technical 

difficulties associated with the isolation and disagreements in the scientific 

community regarding phenotypic characterization, these cells were defined on

the basis of their suppressive function

clkerr01
Typewritten Text

clkerr01
Typewritten Text
.
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First evidence for the involvement of NS cells in lowering immune 

surveillance and in promoting cancers came in 1995. It was noticed that following 

the administration of an antibody directed against the glutathione reductase 1 

(GR1 or GSR) antigen, which recognizes cross-reacting molecules of lymphocyte 

antigen 6 complex locus C and G or Ly6C and Ly6G, to immunocompetent mice 

reduced the growth of UV light-induced tumor (5). It was initially thought that the 

GR1 antibody resulted in the elimination of granulocytes; however, subsequent 

studies showed that the GR1pos cells were mainly CD11bpos (integrin‑αM) 

polymorphonuclear and mononuclear cells at different stages of maturation along 

the myelomonocytic differentiation lineage (5, 6). 

Subsequently, observations were made during therapeutic anticancer 

vaccine research with powerful immunogens which revealed dysfunction of 

CD8pos cytotoxic T-lymphocytes (CTLs) in immunocompetent hosts (7). This 

observation was attributed to accumulation of splenic CD11bposGR1pos cells (7). 

Following elimination of this cell population, CTL function was restored both in 

vitro and in vivo (7). In 2001, it was reported that the decrease in the dendritic 

cells (DCs) in the peripheral blood of cancer patients correlated with the 

appearance of immature cells lacking markers of mature lymphoid and myeloid 

cells (7). These immature cells capable of suppressing T-cell responses were 

called “immature myeloid cells” (ImCs) and were characterized by the absence of 

lineage markers such as CD3, CD19 and CD57 (7). They were positive for CD13, 

CD33 and lacked the expression for HLA-DR and CD15. After few years, the 

term “ImCs” was dropped and it was proposed that these cells be called “Myeloid 
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Suppressor Cells” (MSC) (1). A myeloid cell suppressive population 

characterized as CD14posHLA-DRlow/neg was identified for the first time in 

melanoma patients treated with an anti-cancer vaccine containing GM-CSF as an 

adjuvant (7). Finally in 2007, the term MDSC was formally introduced to 

characterize these immature myeloid cells in both mice and humans (1, 8). 

1.2 Phenotype of myeloid derived suppressor cells (MDSCs) 

MDSCs are a heterogeneous group of bone marrow derived immature 

myeloid cells at different stages of differentiation which are greatly expanded in 

cancers, inflammation, trauma and infection, and suppress both innate and 

adaptive immune responses (Fig. 1) (1, 2, 4, 7-35). This population of cells 

includes immature monocytes, granulocytes and other myeloid progenitors (9, 

11-13, 17, 25, 26, 28, 36). MDSCs are characterized by morphological, 

phenotypic and functional heterogeneity which essentially demonstrates the 

plasticity of this immune suppressive cell population (35). This further outlines 

how different tumors, infectious agents or inflammatory states can result in 

similar biological effects on myeloid progenitors despite the differences in the 

factors that they produce (8). This heterogeneity over the years created 

tremendous amount of ambiguity and confusion in developing a standard 

definition and other biological characteristics of MDSCs. To overcome this 

limitation, standard definitions characterizing the phenotypical and functional 

characteristics of these cells were published recently (35).  
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Cells with typical MDSC phenotype are present in the bone marrow and in 

the spleens of healthy individuals as well as naïve mice (13, 17, 24, 37). Under 

normal conditions, these cells make up about 20-40% of the bone marrow and 

about 2-4% of all splenocytes (9, 11, 13, 17, 24, 36, 37). However, these cells 

are not suppressive and largely represent ImCs (7, 13, 15, 22, 37). Under normal 

conditions, these ImCs migrate to the peripheral lymphoid organs and 

differentiate into macrophages, DCs, and granulocytes/neutrophils (1, 17, 35, 

37). In cancer, hematopoietic differentiation pathway is altered and maturation of 

these cells into normal myeloid cells is blocked. These cells under the influence 

of tumor-derived soluble factors (TDSFs) become activated, expand 

exponentially (>20% of all splenocytes in some tumor models) and accumulate in 

peripheral blood, lymph nodes, spleen, tumors, and immune-activated tissues 

and develop in to immune suppressive MDSCs (1, 11, 12, 22, 35, 38). 

Interestingly, acute bacterial infection or stress does not necessarily result in the 

generation of MDSCs. They accumulate only during chronic infection, 

inflammation, or cancer (24). 
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Figure 1. Normal vs. abnormal differentiation of immature myeloid cells to 

terminally differentiated cells and MDSCs (25). 

In mice, MDSCs are generally defined as CD11b and GR1 positive (6, 8-

16, 19-22, 24, 25, 27, 28, 30, 35-37, 39-41). Further classification of murine 

MDSCs to monocytic (M-) and granulocytic or polymorphonuclear (PMN- or G-) 

MDSCs is based on graded measurements of GR1 expression or by using two 

different GR1 epitopes (8, 12, 20, 35). To differentiate MDSCs from steady state 

granulocytes, it is now proposed to use the term PMN-MDSCs as opposed to G-

MDSCs (35). Murine M-MDSCs are SSClowCD11bposLy6ChighLy6Gneg CD49dpos 

(or GR1low) and G- or PMN-MDSCs are SSChighCD11bposLy6ClowLy6Gpos 

CD49dneg (or GR1high) (1, 5-22, 24-26, 30, 33-38, 41-46). Both subsets express 

IL-4Rα (CD124); however, expression is higher in GR1low compared to GR1high 

subset (7, 42, 47, 48). Murine M-MDSCs also express chemokine receptor 2 

(CCR2) and low levels of F4/80, and PMN-MDSCs express CD244 (7, 42). 

Macrophage – colony stimulating factor receptor (M-CSFR or CD115) is 
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expressed by both subsets (7). On May-Grünwald-Giemsa staining, PMN-

MDSCs are morphologically similar to neutrophils and M-MDSCs are similar to 

monocytes (5, 7, 47, 49).   

Human M-MDSCs are generally defined as 

CD11bposCD14posCD15negCD33posHLA-DRlow/neg and PMN-MDSCs as 

CD11bposCD14negCD15posCD33dimCD66bpos (1, 4-12, 15-19, 22, 24-26, 28, 30, 

34, 35, 37, 44, 45, 49, 50). Another population of more immature progenitors 

lacking lineage specific antigens (Linneg) such as CD3, CD14, CD15, CD19, 

CD20, CD40, CD56, CD57, CD80 and CD83 but positive for CD33 has been 

recently classified as  “early-stage MDSC (eMDSC)” (1, 7, 17, 19, 35). Both 

mature monocytes and granulocytes express HLA-DR. Interleukin – receptor 

alpha (IL-4Rα or CD124), IL-13, vascular endothelial growth factor receptor 

(VEGFR) and macrophage – colony stimulating factor receptor (M-CSFR or 

CD115) are other markers that define immune suppressive MDSCs in humans 

(1, 6, 13, 15, 19-21, 37).  

1.3 Functional characteristics of MDSCs 

Tumors and TDSFs not only sustain the accumulation of MDSCs but also 

determine their functional differentiation leading to their heterogeneity in different 

cancers and tumor models. This makes it important to not only determine the 

presence of all MDSC subsets in each cancer patient, but also which MDSC 

subsets have clinical relevance in a particular tumor environment/model (21).  
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Both MDSC subsets undergo substantial expansion in the peripheral 

blood, lymphoid organs and spleens of tumor bearing animals and cancer 

patients. PMN-MDSCs expand in much greater numbers accounting for 70–80% 

of the MDSC population in a tumor bearing host, whereas M-MDSCs account for 

20–30% of MDSCs (Fig. 2) (5, 7, 8, 13, 21, 24, 25). M-MDSC, however, is the 

dominant subset at the tumor site (21, 51). This may be secondary to the 

chemokines produced by the tumor cells that support preferential migration of M-

MDSCs to the tumor site or alternatively, the TME may not support PMN-MDSC 

survival because of hypoxia, low pH, and accumulation of metabolic products 

(Fig. 2) (21, 51). Regardless, M-MDSCs are more suppressive on a per cell 

basis compared with PMN-MDSCs in most tumor models and cancer patients (5, 

8, 36, 42, 47). Interestingly, MDSC frequencies start to increase early during 

tumor development, but only MDSCs from mice with established tumors 

demonstrate a strong immune suppressive phenotype (48). 
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Figure 2. Expansion and migration of MDSCs from the bone marrow to 

peripheral lymphoid organs and tumor (51).  

MDSCs potently suppress both innate and adaptive immunity through 

inhibition of T cell activation, disruption of naive T-cell homing to lymph nodes, 

suppression of NK cell cytotoxicity, expansion of Tregs cells and arrest of DC 

maturation (1, 15-18, 20, 32, 45, 52). In addition, MDSCs protect tumors from the 

effects of chemotherapy and radiotherapy, drive tumor growth by promoting 

cancer stemness, promote angiogenesis through upregulation of vascular 

endothelial growth factor (VEGF), beta – fibroblast growth factor (bFGF), VEGF 

analogue Bv8, stroma deposition and epithelial-to-mesenchymal transition 

(EMT), and facilitate tumor cell motility and metastasis through expression of  

matrix metalloprotease (MMP9) (6, 8, 11, 12, 17, 25, 33, 53).  
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MDSC employ several mechanisms to inhibit T cell activity which includes 

arginine depletion through expression of the enzyme arginase 1 (Arg1), 

production of reactive oxygen species (ROS) and reactive nitrogen species 

(RNS), expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) 

production, up-regulation of cyclooxigenase-2 (COX-2) and prostaglandin E2 

(PGE2) production, induction of Tregs, expression of transforming growth factor 

– β (TGF-β) and interleukin – 10 (IL-10), sequestration of other amino acids such 

as cysteine, cystine and phenylalanine, depletion of tryptophan through 

expression of indolamine 2, 3-dioxygenase (IDO) and down-regulation of L-

selectin expression on T cells (1, 9, 10, 13, 15-17, 24-26, 31, 36, 39, 45, 46, 51). 

Functional differences between MDSC subsets pertain to their mechanism 

of T cell suppression. PMN-MDSCs mainly suppress T cell function through 

production of high levels of ROS, expression of Arg1 and myeloperoxidase 

(MPO) whereas M-MDSCs suppress T cell function by depleting arginine through 

expression of Arg1, and production of NO and RNS through expression of iNOS 

(Fig. 3) (5, 6, 12, 13, 15, 21, 24, 25, 37).  
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Figure 3. Markers of suppression of polymorphonuclear- and monocytic-

MDSCs (25). 

Similarly, MDSCs isolated from peripheral lymphoid organs and tumors 

have profound functional differences despite similar phenotype and morphology. 

Tumor MDSCs suppress both antigen-specific and nonspecific T cell activity (8, 

11, 25). However, MDSCs isolated from peripheral lymphoid organs fail to 
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suppress antigen-nonspecific T cell function but mediate antigen-specific T-cell 

tolerance by processing and presenting tumor associated antigens (TAAs) to T 

cells in the context of major histocompatibility complex class – I (MHC-1) (8, 9, 

11, 25). This observation is supported by the fact that despite the presence of a 

large number of MDSCs in the spleens and lymph nodes of tumor-bearing mice 

and in the peripheral blood of cancer patients with advanced disease, T cells 

mostly retain the ability to respond to different tumor-nonspecific stimuli including 

viruses, lectins, costimulatory molecules, IL-2, and stimulation with CD3- and 

CD28-specific antibodies (11). 

Molecular mechanisms behind MDSC recruitment, expansion, and 

activation are still not clear. However, a “two-signal” model has been proposed 

(8, 18, 34, 51). First step is promoted by chronic inflammation resulting in 

accumulation of immature cells and involves factors such as granulocyte colony 

stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), GM-

CSF, C-X-C motif chemokine ligand 5 (CXCL5), CXCL12, C-C motif chemokine 

ligand 2 (CCL2), cyclooxygenase-2 (COX-2) and PGE2, VEGF, IL-1β, IL-4, IL-6, 

IL-8, IL-10, IL-12, IL-13, IL-17, FMS like tyrosine kinase 3 ligand (FLT3L), 

fibroblast growth factor – 2 (FGF-2), S100A8/A9, stem cell factor (SCF or KIT 

ligand), TGF-β and tumor necrosis factor α (TNFα) (Fig. 4) (1, 5, 6, 12, 13, 15, 

18, 21, 25, 26, 28, 30, 32-34, 38, 39, 42, 47, 51). These signals converge on one 

common pathway – Janus kinase/signal transducers and activators of 

transcription 3 (JAK/STAT3) pathway involved in cell survival, proliferation and 

differentiation (Fig. 4) (9, 12, 20, 21, 46). MDSCs isolated from tumor bearing 
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mice and patients with malignant melanoma have dramatically increased levels 

of phosphorylated STAT3 (pSTAT3) compared to ImCs from naive mice or 

healthy donors (Fig. 4) (8, 9, 15, 21, 25, 30). STAT3 is important for MDSC 

recruitment and suppressive activity through increased levels of Arg1, NADPH-

oxidase 2 (NOX2), iNOS or Nos2, IDO, VEGF, GM-CSF, S100A8/A9, 

cyclooxygenase (COX)-2, IL-1β, IL-6 and IL-10 (Fig. 4) (9, 12, 15, 21, 26, 30, 34, 

39, 46). In addition, STAT3 is responsible for maintaining MDSCs in immature 

state and preventing their differentiation through upregulation of B-cell lymphoma 

XL (BCL-XL), cyclin D1, MYC and survivin (8, 12, 15, 21, 25, 30, 34).  

The second signal is needed for the pathological activation of these cells. 

The factors involved in the second signal are produced mainly by activated T 

cells, tumor stromal cells or are induced by different bacterial and viral products, 

or result from tumor-cell death, and include molecules such as IFN-γ, IL-1β, IL-4, 

IL-13, TGFβ and TLR ligands (51). These factors activate several signaling 

pathways in MDSCs that involve STAT1, STAT6 and nuclear factor-κB (Fig. 4) 

(15, 25, 30, 46, 51). 

Bronte et al have reported that CCAAT/enhancer-binding protein beta 

(C/EBPb) family of transcription factors along with STAT proteins regulate shift 

from normal to aberrant hematopoiesis, allowing differentiation into MDSCs, 

recruitment and activation (Fig. 4) (46). In a separate study, Ostrand-Rosenberg 

et al proposed that MDSC levels in developing tumors are maintained by 

resistance to apoptosis by FasL+ expressing activated T cells which is mediated 

by inflammation and secretion of TGFβ by the tumors (8, 18, 34). 
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Figure 4. External and internal signals involved in MDSC accumulation, 

expression of markers and mechanisms of suppression (46). 
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1.3.1 Arginine depletion 

Both MDSC subsets – PMN- and M-MDSCs use L-arginine depletion as 

mechanism for their T cell inhibitory activity. M-MDSCs from tumor-bearing mice 

express high levels of Arg1 and this is accompanied by high iNOS activity likely 

through the combined autocrine action of IL-13 and IFN-γ (4, 12, 19, 34, 36). 

Arg1 hydrolyzes the amino acid L-arginine to ornithine and urea, and 

iNOS/NOS2 oxidizes L-arginine to generate NO and citrulline (Fig. 4) (1, 17, 21, 

36, 42, 46). In mice, Arg1 remains cytoplasmic while in humans it is secreted 

from the cell (12, 36). 

L-arginine is essential for T cell replication and proliferation (1). Increased 

Arg1 activity leads to enhanced L-arginine catabolism resulting in depletion of 

this non-essential amino acid from the TME. This depletion results in translational 

blockade of the CD3ζ (CD247) chain and prevents T cells from responding to 

various stimuli (10, 26, 38). Further, lack of L-arginine blocks protein translation 

through the accumulation of empty aminoacyl-t-RNAs. This in turn results in 

activation of general control nonderepressible 2 (GCN2) kinase and 

phosphorylation of the translation initiation factor eukaryotic initiation factor 2 α 

(eIF2α). Phosphorylation of eIF2α increases its affinity for eIF2β which blocks the 

exchange of GDP with GTP, thus interfering with protein synthesis. Finally, L-

arginine depletion results in G0–G1 cell cycle arrest through upregulation of cyclin 

D3 and cyclin dependent kinase 4 (cdk4) but not cyclin D1, cyclin D2, and cdk6 

(1, 6, 12, 19, 21, 25, 34, 36). Tumor-infiltrating M-MDSCs further upregulate 

expression of Arg1 which is accompanied by antigen-nonspecific T cell 
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suppression (42). Inhibition of Arg1 restores T-cell function in vitro and induces 

an antitumor response in vivo. Arg1 acts as a tumor-landscaping gene by 

supporting tumor growth and suppressing antitumor immune responses (54). 

In melanoma patients, ARG1 expression has been shown to be a 

dominant mechanism of T cell suppression (19). A recent study had 

demonstrated that the increased numbers of MDSCs in the peripheral blood of 

esophageal, gastric and renal cancer patients correlated with low L-arginine and 

high ornithine levels in plasma, and a profound T-cell dysfunction (4, 12, 36). 

1.3.2 Nitric Oxide (NO) 

Monocytic subset of MDSCs is the predominant producer of NO through 

increased expression of iNOS/NOS2 (42). iNOS is another L-arginine 

catabolizing enzyme which results in the production of NO as a byproduct 

following the conversion of L-arginine to citrulline (Fig. 4).  

High levels of NO produced by M-MDSCs inhibit T cell activity through 

different mechanisms. Similar to Arg1 activity, iNOS expression results in the 

depletion of L-arginine causing down regulation of CD3ζ chain, thus rendering 

the T cells unresponsive (36, 52). NO can result in the nitration of proteins 

involved in interferon receptor signal transduction which reduces responsiveness 

of immune cells to cytokine stimulation (31). In human T cells, NO affects the 

stability of IL-2 mRNA and the release of IL-2. High concentrations of NO can 

inhibit T-cell signaling cascade downstream of the IL-2 receptor in an antigen 

independent manner by blocking the phosphorylation of JAK1, JAK3, STAT5, 



16 
 

extracellular signal-regulated kinase (ERK) and protein kinase B (PKB/AKT) 

which are important downstream signaling molecules (6, 34). High levels of NO 

prevent downregulation of L-selectin (CD62L) but cause downregulation of 

homing cell adhesion molecule (CD44) and selectin P ligand (CD162) (34). NO 

negatively regulates intracellular signaling proteins either directly, by S-

nitrosylation of crucial cysteine residues, or indirectly, by activation of soluble 

guanylate cyclase and cyclic-GMP-dependent protein kinase (34). Increased 

production of NO inhibits the expression of MHC class II and induces T-cell 

apoptosis likely mediated by the accumulation of the tumor suppressor protein 

p53, signaling by CD95 (Fas) and TNF receptor family members, or signaling 

through caspase-independent pathways (6, 25, 36).  

1.3.3 Peroxynitrite (PNT) 

Both subsets of MDSC produce increased levels of PNT (ONOO−). PNT is 

a product of interaction between NO and superoxide (O2•–), therefore, increased 

level of either ROS or NO would result in increased PNT (12, 13, 34, 36, 55). 

PNT can also be produced by the combined activity of Arg1 and iNOS. L-arginine 

depletion by Arg1 switches on the reductase domain on iNOS leading to the 

production of superoxide anion and subsequently PNT (6, 34). It is one of the 

most powerful oxidants and is present at sites characterized by accumulation of 

MDSC, inflammatory cells, or ongoing immune reactions (36). 

Increased PNT activity is associated with nitration and nitrosylation of the 

amino acids cysteine, methionine, tryptophan, and importantly tyrosine in 
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different proteins and enzymes, thus changing their biological functions (6, 12, 

25, 34). PNT also causes oxidation of lipids and nucleic acids, and thus affecting 

their normal functions (6, 34). PNT directly inhibits T cell activity through nitration 

of TCRs, thereby reducing their responsiveness to cognate antigen-MHC 

complexes (8, 12, 21, 36). Nitration of the TCR also reduces binding of antigenic 

peptides to MHC molecules on tumor cells. Moreover, PNT can act on α and β 

chains of the lymphocyte TCR, preventing signaling and promoting dissociation 

of the CD3ζ chain from the complex (6). High levels of PNT block T cell migration 

by nitrating T cell–specific chemokines and promote homing of immune-

suppressive subsets other than T cells (6, 8, 12). 

High levels of PNT are directly implicated in tumor progression, via 

modification and inactivation of different proteins (25). Association of high PNT 

levels with tumor progression has been documented in breast, colon, head and 

neck, lung and pancreatic cancers, malignant gliomas, melanoma and 

mesothelioma (36, 55). In breast cancer patients, high tumor PNT levels 

correlated with reduced disease-free survival (DFS) and OS (55). 

1.3.4 Reactive oxygen species (ROS) 

PMN-MDSCs induce T cell suppression mainly through production of high 

levels of ROS. PMN-MDSCs significantly increase the expression of NOX2, 

primarily p47phox and gp91phox catalytic subunits, an enzyme that reduces 

oxygen to superoxide anions using electrons supplied by NADPH (9, 10, 21, 36). 

Another mechanism involved in the generation of ROS involves the combined 
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activity of Arg1 and iNOS. During L-arginine deprivation caused by increased 

Arg1 activity, iNOS utilizes molecular oxygen as the principal substrate to 

produce superoxide anions (21, 36). 

Expression of NOX2 subunits is finely tuned at transcriptional and 

posttranslational level. Cytokines such as IL-3, IL-6, IL-10, TGFβ, TNF-α and 

IFN-γ, growth factors such as platelet derived growth factor (PDGF), GM-CSF 

and VEGF, and transcription factors mainly STAT3 upregulate NOX2 levels, 

whereas specific phosphorylation patterns and subunit availability modulate its 

activity (6, 25). 

Increased levels of ROS are responsible for maintaining the immature 

phenotype of MDSCs and inhibit their differentiation to mature myeloid cells (9). 

ROS results in the loss of T cell receptor (TCR) ζ-chain which is very important 

for transduction of activating signals required for T cell proliferation and cytokine 

secretion (1, 12, 17, 42). Similar to the PNT activity, ROS can cause protein 

oxidation, frequently affecting tyrosine side chains. This impairs the ability of TCR 

to interact with peptide-MHC complexes and prevent appropriate T cell response 

(12). It also causes oxidation of lipids, nucleic acids and proteins which modifies 

their tertiary and quaternary structures and subsequently results in modification 

of signaling cascades and modulation of biological processes, including immune 

responses (6). 
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1.3.5 Regulatory T cells (Tregs) and Th17 cells 

Tregs represent another immune suppressive population that potently 

inhibits T cell and NK cell function in cancer patients and tumor-bearing mice. 

CD4posCD25pos Tregs expressing the transcription factor, forkhead box P3 

(Foxp3) inhibit autoimmune responses and promote tumor growth. Depletion of 

Tregs, thus results in improved antitumor immune responses and delays tumor 

growth (42). MDSCs specifically M-MDSCs promote the induction and 

proliferation of these Tregs, thereby downregulating anti-tumor immune 

responses (12, 25, 52).  

M-MDSCs produce increased levels of CCR5 ligands CCL3, CCL4, and 

CCL5. Because CCR5 is preferentially expressed on Tregs, tumor-infiltrating M-

MDSCs directly attract high numbers of Tregs via CCR5 in vitro. Further in vivo 

studies showed that the intratumoral injection of CCL4 or CCL5 increased tumor-

infiltrating Tregs, and deficiency of CCR5 led to their significant decrease. 

Studies done in CCR5-deficient mice, showed that tumor growth was delayed 

which points to the importance of CCR5 in the control of antitumor immune 

responses (42).  

Because of their ability to suppress T cell activity, accumulation of Tregs 

at the tumor site is associated with poor prognosis (42). It has been shown that in 

hepatocellular carcinoma (HCC), M-MDSCs exert their immunosuppression 

partially through the induction of functional Tregs when co-cultured with 

autologous T cells. The induction of Tregs depended on cell-to-cell contact and 

was abolished when M-MDSCs and T cells were separated (49). Another study 
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showed a significant increase in Tregs in esophageal, gastric and pancreatic 

cancer patients compared with healthy controls. And, there was a positive 

correlation between the increase in MDSC and Treg numbers (4). A direct 

correlation between high levels of Tregs in tumors, and high tumor grade and 

stage and poor prognosis has been demonstrated in different cancers (4, 42). 

Sunitinib, which is multi-tyrosine kinase inhibitor, resulted in significant reduction 

in MDSC numbers in patients with renal cell carcinoma (RCC). And, this 

decrease in MDSC numbers significantly correlated with decrease in Tregs (4).  

Another population of immune regulatory cells induced by MDSCs is the 

Th17 cells. The generation of Th17 cells by MDSCs did not depend on cell-to-cell 

contact but was more dependent on the secretion of various cytokines. It has 

also been shown that the suppressive activity of MDSCs increased following 

incubation with IL-17 through the upregulation of Arg1, IDO, and COX-2. Another 

study showed that MDSCs from tumor-bearing IL-17 knock-out mice were less 

suppressive and expressed lower levels of Arg1, MMP9, and S100A8/A9 

compared with tumor-bearing WT mice (49). These studies suggest that MDSCs 

and Th17 cells likely upregulate each other’s populations through secretion of 

various cytokines such IL-17.  

1.3.6 Programmed death ligand 1/2 (PD-L1/2) 

A recent study has shown that most of ImCs and MDSCs expressed PD-

L1 and CD80 but not PD-L2 (13). No significant differences were noted in the 

percentage of PD-L1 or CD80 positive cells within the populations of ImCs from 
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naïve mice and MDSCs from tumor-bearing mice (13). Further PD-L1 blockade in 

vitro or in vivo did not ameliorate MDSC associated T cell suppression (13). Lack 

of increased expression and no effect of PD-L1 blockade in MDSCs points to the 

fact that these molecules may have no role in MDSC mediated immune 

suppression in cancer (3, 13). 

1.3.7 Indoleamine 2,3 dioxygenase (IDO) 

IDO, an intracellular enzyme is a key regulator of tryptophan 

metabolism/catabolism (7). Tryptophan is essential for  T-cell function and 

immune regulation (7). IDO expression depends on the pSTAT3 (7). L-tryptophan 

starvation inhibits T cell proliferation by activating GCN2 kinase and causing cell 

cycle arrest. Depletion of tryptophan can induce T cell anergy and direct CD4 T-

cell differentiation towards Tregs by Foxp3 upregulation (6). IDO was found to be 

increased in M-MDSCs isolated from both chronic lymphocytic leukemia (CLL) 

patients and patients after allogeneic hematopoietic stem cell transplantation 

(allo-HCT) (7).  

1.3.8 Inhibition of NK cell activity 

MDSCs have also been shown to have potent NK cell inhibitory activity 

(10). M-MDSCs efficiently block NK cell proliferation, cytokine production, and 

cytotoxicity (12). Murine studies have demonstrated an inverse correlation 

between NK cell activation and MDSC frequency (12). NK cell inhibitory activity 

of MDSCs is not mediated by ARG, iNOS, or IDO, but required MDSC-NK cell 
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contact involving the NK cell activating receptor NKp30 (12, 19). Furthermore, 

MDSCs block perforin and NKG2D expression, and IFN-γ production both in vitro 

and in vivo (12). In vitro studies have demonstrated that blockade of NKp30 and 

depletion of MDSCs can reverse MDSC suppressive activity on NK cells (19). 

1.3.9 Cysteine depletion 

MDSCs also deplete cysteine in the TME, another amino acid essential for 

T cell activation, proliferation, and differentiation (1, 28, 42). Cells are able to 

import cystine (an oxidized form of cysteine) from exogenous sources either 

through the cysteine-glutamate (XC) transporter or from the conversion of 

methionine by cystathionase (6). However, T cells lack both and are entirely 

dependent on cysteine in the environment which is normally produced by mature 

DCs and macrophages during antigen presentation (1). During this process, 

antigen presenting cells (APCs) release reduced cysteine in the extracellular 

space through the alanine-serine-cysteine (ASC) transporter which can then be 

taken up by T cells. However, MDSCs express xc-transporter allowing for the 

uptake of cystine but lack ASC transporter to export cysteine and do not express 

cystathionase. This results in sequestration of cysteine in the MDSCs, thereby 

limiting the availability of this essential amino acid required for T cell function (6, 

34). 
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1.3.10 Other mechanisms of T cell suppression 

PGE2 produced by the cancer cells via COX-2 has been shown to be an 

important stimulus for Arg1 expression. COX-2 has also been to shown to be 

overexpressed in MDSCs. Studies have shown that COX-2 inhibitors in vitro and 

in vivo improve anti-tumor T cell immune responses (34). 

MDSC also play an important role in tumor progression and angiogenesis 

through expression of VEGF and MMP9. A recent study has revealed a more 

direct role of MDSC in tumor vascularization. MDSCs when co-injected with 

tumor cells lined the endothelial walls of newly formed tumor vasculature and 

differentiated into cells with endothelial cell characteristics (12). 

M-MDSCs isolated from prostate cancer patients expressed high levels of 

IL-10 while in melanoma patients they expressed high levels of TGF-β (12). TGF-

β expression has direct effect on T cell proliferation. It results in cell cycle arrest 

typically in the G1 phase through the expression of the cell cycle inhibitors 

p27Kip1 and p21Cip1 or by inhibiting IL-2 secretion (6). TGF-β has also been 

shown to inhibit the differentiation of CD4 T cells into Th1 or Th2 cells by 

suppressing the expression of T-bet and GATA-3 respectively (6). TGF-β-

producing MDSCs promote the clonal expansion of antigen-specific natural Treg 

cells and induce the conversion of naïve CD4 T cells into induced Treg cells (6). 

MDSCs also down-regulate the expression of the lymph node homing 

receptor, CD62L on CD4 and CD8 T cells. As consequence, T cells do not 

migrate to lymph nodes where they would otherwise undergo activation (1). 
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1.4 Clinical relevance of increased MDSCs in cancer 

Numerous studies have demonstrated an increase in MDSC population in 

patients with cancer (9, 11, 13, 17). However, significant difference is only 

observed between patients with advanced tumor and healthy donors while 

patients with stage I/II cancers have moderately increased percentage and 

absolute number of circulating MDSCs (13, 22). There is a significant correlation 

between circulating MDSC, and clinical cancer stage and prognosis (2, 10, 12, 

13, 15, 17, 21, 50, 52). Patients with extensive metastatic tumor burden have the 

highest percent and absolute number of MDSCs (10, 13). MDSCs are increased 

in patients with different cancers such as breast, bladder, gastrointestinal, head 

and neck, hepatocellular, non-small cell lung, prostate and thyroid cancers, 

melanoma, multiple myeloma (MM), ovarian carcinoma, RCC, glioblastoma and 

sarcoma (Fig. 5) (1, 2, 4, 6, 7, 10, 12, 15, 17, 19, 22, 28, 51, 52).  



25 
 

 

Figure 5. High MDSC count is inversely correlated with overall survival (OS) 

(2-4) 

Studies have shown that if tumor-derived MDSCs were placed in culture 

conditions without TDSFs or injected into tumor-free recipients, they differentiate 

into mature functionally competent macrophages (MΦ) and DCs (24). This is 

consistent with observations that surgical removal of tumors result in elimination 

or decrease in MDSCs (15, 24). Also, these cells express no suppressive activity 

compared to MDSCs from patients with active disease (15). It has also been 

observed that antibody-mediated depletion of MDSCs restores T cell frequency 



26 
 

and function (5). In a study of patients with newly diagnosed stage I-IV solid 

cancers, circulating M-MDSCs levels prior to the start of treatment were found to 

correlate both with clinical stage (p <0.0001) and metastatic burden (p <0.01) 

(28). Also, patients with radiographic evidence of disease progression had 

increased levels of circulating MDSCs while the patients who responded to 

treatment had decreased MDSCs (28). 

In melanoma, M-MDSCs (CD14posHLA-DRlow/neg) population is expanded 

in the peripheral blood and is associated with CD4 and CD8 T cell suppression, 

decreased IFN-γ production and decreased OS (2, 10, 15, 26, 39, 50, 52). 

Studies have shown that in patients with malignant melanoma, even at the 

physiologically low MDSC to T cell ratio of 1:4; MDSCs suppressed T cell 

proliferation and IFN-γ production by 40% (15, 17, 26). Recent studies have also 

suggested that increased numbers of pretreatment MDSCs and Tregs, and high 

levels of lactate in patients with advanced melanoma predicts poor response to 

ipilimumab (Yervoy®) (2, 7, 56). 

Studies have reported that the presence of increased number of MDSCs 

predicted poor OS in breast, colon, esophageal, gastric and pancreatic cancer 

patients (Fig. 5) (12, 22). In another study of patients with pancreatic cancer, 

high CD14pos cells to CD8 ratio in the tumor infiltrates correlated with a 

significantly reduced OS (7). In HCC, impaired DC function correlated with the 

presence of CD14posHLA-DRlow/neg M-MDSC cell population (19). 

Different studies have shown the increased presence of both PMN- and 

M-MDSCs in patients with RCC (15, 22). This increase was negatively 
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associated with OS in the retrospective analysis of RCC patients (22). Circulating 

M-MDSCs and Tregs are increased in patients with metastatic prostate cancer 

(mPC) compared to healthy donors and negatively correlates with OS (6, 52). 

Further, M-MDSCs isolated from patients with mPC express significantly high 

levels of iNOS compared with healthy donors (6, 52). 

A recent study reported that the suppressive activity of human MDSCs 

resides in a CD14posS100A9pos inflammatory monocyte or M-MDSC population in 

non-small cell lung cancer (NSCLC) patients (22). Ovarian carcinomas recruit 

CD14pos cells that inhibit T cell proliferation and negatively correlate with OS and 

DFS in both primary and metastatic ovarian cancers (10).  

In MM, CD14posHLA-DRlow/neg M-MDSCs are significantly increased in both 

PB and bone marrow of patients with active disease compared with healthy 

donors (15, 52).  These cells also possess more pronounced inhibitory capacity 

compared to cells with similar phenotype from healthy donors (15, 52). 

Furthermore, studies have demonstrated a bidirectional relationship between 

MDSCs and MM cells and immune effector cells. MDSCs induce MM growth and 

suppress T cell activity. While MM cells induce the development of MDSCs from 

healthy donor peripheral blood mononuclear cells (PBMCs) (45). 

In patients with chronic myelogenous leukemia (CML), percentage of M-

MDSCs was higher in high risk compared to those with low risk patients and 

correlated with decreased OS (7). In CLL patients, expansion of M-MDSCs was 

associated with decreased T-cell proliferation in a dose-dependent manner and 
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its levels negatively correlated with the absolute number of circulating T-

lymphocytes (7). 

1.5 Pharmacological interventions targeting MDSCs 

In mouse tumor models, it has been shown that T cell function can be 

restored, and tumor growth and development delayed by blocking MDSC 

suppression or through their depletion (15). Elimination of MDSC accumulation in 

tumors can help overcome T cell resistance (intrinsic resistance), improve anti-

tumor immunity and further potentiate T cell response to immune checkpoint 

blockade therapies such as anti-PD1/PD-L1 and anti-CTLA4 mAbs.   

To this end, various therapeutic strategies targeting MDSCs as an adjunct to 

conventional and immune therapies are being studied. These strategies have 

been broadly placed into four categories (30);  

a. Deactivation of MDSC immune suppressive function 

Phosphodiesterase-5 inhibitors such as sildenafil deactivate MDSCs by 

interfering with Arg1 and iNOS expression (30, 57). Nitro-aspirin (NO-aspirin) 

interferes with MDSC NO metabolism (30). Synthetic triterpenoids deactivate 

MDSC by reducing ROS. COX2 inhibitors reduce MDSC suppressive function by 

decreasing expression of Arg1. N-hydroxy-L-Arginine (NOHA) and N(G)-Nitro-L-

Arginine Methyl Ester (L-NAME) inhibit MDSC suppressive function by 

downregulating Arg 1 activity (30). Anti-glycan antibody and inhibitors of colony 

stimulating factors and their receptors block the migration of MDSC (30). Studies 
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have shown that histamine may stimulate GMCSF and IL-6 production via H1 

and H2 receptors on human PBMC in-vitro. Anti-histamines can block this activity 

and modulate MDSC suppressive function (30). IL-17 is important for recruitment 

of MDSCs to tumor sites. In tumor-bearing IL-17R and IFN-γR deficient mice, 

tumor development was inhibited which was associated with increased CTL 

infiltration of tumors and lower MDSC levels (30). A recent study showed that 

murine and human MDSC express Bruton’s tyrosine kinase (BTK). BTK inhibitor, 

ibrutinib (Imbruvica®) was able to inhibit the phosphorylation of BTK in these 

cells which resulted in impaired NO production, migration, and generation of 

MDSCs in vitro (31). 

b. Differentiation of MDSC into mature cells 

Agents such as all-trans retinoic acid (ATRA) and vitamins such as vitamin 

D3 or A enhance maturation of myeloid cells. DNA fragments that contain high 

frequency of unmethylated deoxycytosine-deoxyguanine dinucleotide (CpG) 

motifs (common in bacterial and viral DNA) can stimulate maturation of immune 

cells via Toll-like receptor 9 (TLR9) (30). Anti-microtubular agent, paclitaxel has 

been recently shown to promote differentiation of MDSCs into DC in vitro in a 

TLR4-independent manner (57). 
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c.  Inhibition of MDSC development  

Nitro-Bisphosphonates (N-Bisphosphonates), platinum agents, and 

STAT3 inhibitors such as sunitinib (Sutent®) have been shown to block the 

formation of MDSCs.  

d. Depletion of MDSC 

Pyrimidine analogues like gemcitabine and 5‑fluorouracil (5-FU), and anti-

microtubule agents like docetaxel and paclitaxel have been found to reduce the 

number of splenic and tumor MDSCs without affecting the numbers of T cells, NK 

cells, macrophages, or B cells (5, 30, 57). Paclitaxel has also been shown to 

reduce Tregs and their inhibitory function (57). Treatment of tumor-bearing mice 

with ibrutinib resulted in a significant reduction of MDSC and improved the 

antitumor effect of anti-PD-L1 checkpoint blockade (31). 

1.6 Overview of metabolism in cancer and immune cells 

Otto Warburg in the early 20th century made an observation that rat 

hepatoma tissue slices maintained a higher rate of glucose catabolism than 

normal liver tissues even in the presence of oxygen (58, 59). This phenomenon 

was then called the “Warburg effect” and provides the basis for 2-[18F]fluoro-2-

deoxy-glucose positron emission tomography (PET) imaging (58, 59). 

Supporting the energy needs of the cell with glycolysis alone is a wasteful 

process. Catabolism of 1 mol of glucose to lactate yields only 2 mol of ATP; 
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however, 38 mol of ATP are produced on complete combustion of glucose to 

carbon dioxide and water in the presence of oxygen (58, 59). Cancer cells need 

not only ATP, but also need biosynthetic precursors from glycolytic intermediates 

in order to proliferate and invade (32). High glycolytic flux to pyruvate/lactate 

observed in tumors not only provides a ready supply of fructose-6-phosphate (F-

6-P) and glyceraldehyde-3-phosphate for shunting into de-novo nucleic acid 

synthesis but also decreases intracellular and extracellular pH, causing apoptosis 

in normal cells that express functional p53 (18, 32, 58-60).  

Hexokinase (HK) phosphorylates glucose to form glucose-6-phosphate 

(G-6-P), which can be converted into glycogen, oxidized by the pentose 

phosphate pathway (PPP) to generate NADPH or F-6-P. HK is the first 

irreversible but not rate-limiting step of glycolysis (58, 59). However, 6-

phosphofructo-1-kinase (PFK-1) is the irreversible and rate-limiting step of 

glycolysis which dictates the pace of glycolytic flux (Fig. 6) (58-60). PFK-1 

activity is modulated by several allosteric effectors such as adenosine 

triphosphate (ATP), citrate and hydrogen (H+) ions (58-60). ATP is the most 

potent inhibitor of PFK-1 and can directly inhibit PFK-1 as result of negative 

feedback when energy is abundant, also called the Pasteur effect (58, 59).  

PFK-1 activity is markedly increased in cancer cell lines and primary tumor 

tissues in situ; and the oncogenes ras and src activate PFK-1 in immortalized 

cells (58, 59). Fructose-2,6-bisphosphate (F2,6BP) allosterically activates PFK-1 

by shifting the conformational equilibrium of PFK-1 from a low to a high affinity 

state for F6P. F2,6BP can relieve the ATP induced allosteric inhibition of PFK1, 
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and thus allowing cancer cells to maintain high glycolytic flux despite the 

presence of physiologic ATP (58, 59). 

The steady-state concentration of F2,6BP is maintained by a family of 

bifunctional enzymes called 6-phosphofructo-2-kinase/fructose-2, 6-

bisphosphatases (PFK-2/FBPases), which phosphorylate F6P to F2,6BP or 

dephosphorylate F2,6BP back to F6P (Fig. 6) (58-60). The PFK-2/FBPases are 

encoded by four genes (PFKFB1–4). The enzymes encoded by the PFKFBi1, 

PFKFBi2 and PFKFBi4 genes display nearly equal kinase:phosphatase ratios. 

An inducible PFK2/FBPase encoded by the PFKFBi3 gene was recently 

identified to be activated by mitogenic, inflammatory and hypoxic stimuli and to 

display markedly reduced bisphosphatase activity (kinase:phosphatase ratio 740 

: 1) (58, 59). 
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Figure 6. HIF-1α regulates the expression of PFKFB3 which synthesizes 

F26BP, a potent allosteric activator of PFK1. 

Metabolic adaptation to hypoxia in cancer cells is largely mediated through 

upregulation of transcription factor hypoxia inducible factor 1 alpha (HIF-1α) 
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which promotes increased expression of various glucose transporters and 

glycolytic enzymes such as Glut1 glucose transporter, HK2, PFK-1, pyruvate 

kinase M2 (PKM2) and lactate dehydrogenase A (LDH A) (Fig. 6) (32, 58, 59, 

61). Past studies have shown that exposure of Hep-3B human hepatoma cells to 

hypoxia or hypoxia mimics resulted in rapid induction of the PFKFB3 mRNA. This 

induction of PFKFB3 mRNA was completely abolished in mouse embryonic 

fibroblasts conditionally nullizygous for HIF-1α.  This suggests that the induction 

of PFKFB3 mRNA may be an essential component to the HIF-1α mediated 

adaptive response to hypoxia. In addition to stabilization of HIF-1α, loss of tumor 

suppressor gene phosphatase and tensin homolog (PTEN), and activation of 

oncogenes such as rat sarcoma (Ras) and PKB/Akt result in increased activity of 

PFKFB3 in cancers (58-61). The role of PFKFB3 in cancer development and 

progression is now well established.  

Upregulated aerobic glycolysis in immune cells was first reported in 

neutrophils. Activation of neutrophils resulted in upregulation of glycolysis, 

increased glucose consumption and increased oxygen consumption which was 

used primarily to produce ROS (62). It was shown that increased flux through the 

PPP generates nicotinamide adenine dinucleotide phosphate (NADPH), which is 

used by NOX enzymes to generate ROS (62-64). Studies evaluating the 

metabolic profile of macrophages and DCs have shown that inflammatory signals 

or activation is accompanied by increased glycolysis, lactate production and flux 

through PPP, and decreased oxygen consumption and TCA cycle activity (63, 

65, 66). Enhanced PPP provides biosynthetic precursors for purines and 
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pyrimidines. In macrophages and DCs stimulated with LPS and IFN-γ, 

expression of iNOS is increased which inhibits mitochondrial respiration through 

NO and results in metabolic shift away from oxidative phosphorylation (63, 67, 

68). 

Bone marrow cells from naïve wild type mice cultured in the presence of 

GM-CSF and IL-6 result in generation of MDSCs which are functionally and 

phenotypically similar to tumor derived MDSCs. These BM-MDSCs express high 

levels of Arg1 and iNOS. This is accompanied by increased L-glutamine and 

glucose metabolism by anaerobic glycolysis which results in the accumulation of 

TCA or Kreb cycle intermediates and lactate, and upregulated production of 

energy-rich nucleotides (69). These data show that MDSC maturation and 

immunosuppressive potential are associated with an increase in the central 

carbon metabolism activity level and bioenergetic status (69). 

Hammani et al showed that the increase in glucose uptake in BM-MDSCs 

resulted in cell specific concentration of F-6-P that was approximately 60% to 

70% that of G-6-P suggesting an upregulation of glycolysis. This was further 

associated with increased glucose consumption rate at 72 hours and decreased 

cell respiration. AMP-to-ATP ratio was up to 5-fold higher than in the control 

culture. The lactate-to-glucose yield started to increase at 32 hours and peaked 

after 80 hours. Conversely, the lactate-to-glucose yield remained stable (69). 

This accumulation of glycolysis intermediates may suggest that cells continue 

producing these intermediates without consuming them which can be observed 

at the time of initiation of cell death. However, cells were found to be alive. L-Arg 
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and lactate were continuously produced, suggesting that cells consumed these 

intermediates to support both the catabolic processes and the sparse synthesis 

of anabolism-related macromolecules (69). These results support the studies 

done by Ando et al. where it was seen that IL-6 enhances the expression of the 

glycolytic enzymes HK2 and PFKFB3 in mouse embryonic fibroblasts via the IL-

6/STAT3 pathway (69, 70). BM-MDSCs upregulate glycolysis despite non-limiting 

oxygen conditions and produce lactate rather than obtaining high energy yields 

from respiration.  

Accumulation of TCA cycle intermediates such as fumarate and succinate 

is associated with the inhibition of HIF hydroxylases resulting in the stable 

expression of HIF-1α (24, 63). This is in concert with recent findings reported by 

Corzo et al that MDSCs express HIF-1α to adapt to the quasi-hypoxic conditions 

encountered in tumors (11). Decreased respiration in BM-MDSCs in the 

presence of GM-CSF and IL-6 is likely related to HIF-1α expression (69). Another 

study had demonstrated that monocytes exposed to hypoxia rapidly stimulate 

glycolysis by activating PFKFB3 through phosphorylation of serine (58). In 

addition, accumulation of fumarate suggests that L-Arginine is being continuously 

synthesized which supports a permanent immunosuppressive activity (69). 

GM-CSF has been shown to induce a rapid glucose-dependent 

extracellular acidification that is regulated by protein kinase C (PKC) and the 

sodium/proton antiporter (69, 71). Furthermore, iNOS activity is associated with 

an increased glucose consumption rate, increased glycolysis and PPP, and the 

inhibition of oxidative phosphorylation in zymosan (a glucan with repeating 
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glucose units and aTLR2 agonist) treated macrophages (69). MDSCs tend to 

behave like tumors when it comes to their bioenergetics and metabolic needs. 

These findings substantiate the findings that M-MDSCs express and stabilize 

HIF-1α to help adapt to oxygen poor TME. 

Another recent study demonstrated a link between upregulated glucose 

metabolism and fatty acid oxidation (FAO) to immunosuppressive phenotype of 

MDSCs (53, 69). Authors showed that this was accompanied by an increase in 

the mitochondrial mass, upregulation of the enzymes involved in glycolysis and 

FAO and increase in oxygen consumption rate (53, 69). Authors also 

demonstrated that pharmacologic inhibition of FAO blocked the 

immunosuppressive function of PMN-MDSCs resulting in delayed tumor growth 

and improved T cell activity (53).   

Yet another recent study showed that the activation of the inflammatory 

response is accompanied by a metabolic shift to anaerobic glycolysis for the 

reasons as described above. Authors reported that mechanistic target of 

rapamycin complex 1 (mTORC1) -dependent glycolysis is critical for the lineage 

commitment of M-MDSCs but not PMN-MDSCs. It was observed that mTORC 

inhibition or deletion resulted in significant decline in glycolysis during MDSC 

differentiation as evidenced by the lower glucose uptake and glycolysis-related 

enzymes like HK1, HK2, PFK1, PKM2 and LDHA. 2-DG, which blocks HK activity 

significantly, inhibited M-MDSC development from bone marrow. On the other 

hand, metformin which is an enhancer of the glycolytic pathway significantly 

enhanced M-MDSC differentiation and rescued rapamycin-mediated poor 
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differentiation of MDSCs in vitro and in vivo. Thus, rapamycin is able to block M-

MDSC differentiation from bone marrow precursors mainly through mTORC1-

dependent glycolysis pathway (72). 

Glycolysis results in the production of pyruvate and under normoxic 

conditions; pyruvate is converted to acetyl-CoA by the enzyme pyruvate 

dehydrogenase (PDH). Acetyl-CoA then enters into the TCA or Krebs cycle and 

results in the production of more ATP and other biosynthetic precursors. 

However, under anaerobic conditions, pyruvate is converted to lactic acid by the 

enzyme lactate dehydrogenase (LDH) (73). Tumors preferentially convert 

pyruvate into lactate instead of entering into the TCA cycle, even under normoxic 

conditions (73). In addition, lactate is also produced as a by-product of 

glutaminolysis where glutamine is converted to glutamate, then to α-

ketoglutarate, followed by conversion into malate, which is then oxidized into 

pyruvate in the cytosol. This pyruvate is then converted to lactate allowing the 

coupled regeneration of NAD+ and the production of ATP via the glycolysis 

pathway. This allows cells to produce ATP under hypoxic conditions and places 

glucose, rather than fatty acids or amino acids, in the unique position of being 

essential for cells to survive (73-75). LDH-A is induced by different oncogenes, 

including c-myc and, thus, providing a link between malignant transformation and 

metabolic pathways (73, 76). 

Lactate generation contributes to the acidic TME that increases the 

frequency of MDSC accumulation, induces tolerogenic T cells and decreased 

CTL and NK cell activity, stimulates angiogenesis and promotes metastasis (18, 
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32, 73). Lactic acid can also be actively produced in immune-regulatory myeloid 

cells by cytokine-activated, anaerobic glycolysis (33). Lactate accumulation 

affects DC maturation and results in the arrested development of APCs from 

myeloid progenitors (18, 32, 73). Further, it affects CTL activity through 

polarization of immune responses to a more pro-inflammatory profile consisting 

of Th17 and Th23 phenotypes (18, 32). Lactate can also induce transcription of 

Arg1 gene leading to increased arginase expression and suppressed T cell 

activity (73). Studies have also shown that when mice are subjected to a 

ketogenic diet, essentially a suboptimal surrogate for LDH-A inhibition, tumors 

have higher frequency of T effector cell infiltration further providing evidence that 

high lactate levels can effect T cell recruitment (77). Lactate has also been 

shown to be an endogenous inhibitor of histone deacetylases (HDAC), regulating 

the transcription of genes involved in metabolism and immune responses, such 

as natural cytotoxicity triggering receptor 1 (NCR1), which encodes NK-cell 

activating receptor (77). High levels of LDH or lactate in the peripheral blood of 

patients with advanced melanoma have been shown to predict poor outcome 

with ipilimumab (2, 56, 73). 

1.7 Hypoxia  

Hypoxia is one of the hallmarks of the tumor microenvironment (TME). It is 

the consequence of insufficient blood supply and rapid tumor growth. 

Subsequently, cells adapt to the low oxygen environment and upregulate the 

transcription of genes required for cell survival and metabolism under these 
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conditions. HIF-1α promotes the metabolic switch to glycolysis so cells can 

continue to produce ATP when oxygen is limited. HIF plays a critical role in the 

modulation of cellular responses, and recently, also the anti-tumor immune 

responses (37). 

HIF-1α is a predominant oxygen sensing subunit in hematopoietic cells. 

HIF-1α activity is regulated by post-translational modification of oxygen-

dependent degradation domain (ODD). When oxygen levels are above 5%, 

hydroxylation of the proline residues at positions 402 and 564 in the ODD enable 

binding of the ubiquitination ligase von Hippel-Lindau (VHL) tumor suppressor 

protein leading to the degradation of HIF-1α by the proteosome. However, at 

oxygen levels below 5%, hydroxylation is inhibited resulting in stabilization of 

HIF-1α allowing it to translocate to the nucleus, bind to HIF-1β and regulate 

transcription (37). In activated macrophages, it has been shown that mTOR helps 

cells meet high metabolic needs by increasing expression of HIF- 1α which then 

increases the expression of glycolytic and inflammatory genes (78, 79). 

In anaerobic glycolysis, pyruvate, which is an end product of glycolysis is 

metabolized to lactate instead of feeding into the TCA cycle to boost subsequent 

oxidative phosphorylation (80). HIF-1α induces the expression of genes such as 

the glucose transporter GLUT1 and enzymes involved in glycolysis by binding to 

their hypoxia response elements (HRE) (81-83). It also induces the expression of 

LDH which catalyzes the production of lactate from pyruvate limiting the supply of 

acetyl-CoA for the TCA cycle (84). It has also been shown to suppress oxidative 

phosphorylation in mitochondria. (11). HIF-1α expression is also stabilized by the 
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lactic acid produced by anaerobic glycolysis in cancer cells (85). In 

macrophages, Colegio et al showed that lactic acid can stabilize HIF-1α even 

under normoxic conditions and stimulate the transcription of VEGF and Arg1 

genes (85). Also in macrophages, it has been shown that iNOS is a hypoxia-

inducible gene (86). Hypoxia induced iNOS-HRE activity and activated the iNOS 

promoter and induced iNOS transcription and mRNA expression (86). Based on 

data from studies done in macrophages, hypoxia appears to be a common 

denominator for the metabolic shift to glycolysis and production of lactic acid and 

ultimately upregulation of inflammatory genes such as Arg1 and iNOS (Fig. 4).    

Hypoxia in the TME plays a critical role in the regulation of MDSC function 

via upregulation of HIF-1α.  Exposure of splenic MDSCs to hypoxia can mimic 

the effects of the TME on these cells by inducing a dramatic up-regulation of 

iNOS and Arg1 expression and downregulation of NOX2 and ROS (10, 11, 15, 

17, 21, 24, 25, 37, 42, 51, 55). Further, these cells functionally differentiate from 

antigen-specific to antigen-nonspecific T cell suppressors (Fig. 7) (10, 11, 15, 17, 

21, 24, 25, 37, 42, 51, 55). TME due to hypoxia and low pH does not support the 

survival of PMN-MDSCs (24). 

Further, under hypoxic conditions and in the presence of TDSFs, splenic 

M-MDSCs differentiate to tumor associated macrophages (TAMs) which express 

F4/80 in mice and CD68 in humans resulting in further immune suppression and 

a tolerogenic state (Fig. 7) (1, 11, 16, 17, 20, 24, 37). These macrophages do not 

show preferential polarization to either the M1 or M2 subtype and express high 

levels of genes associated with both such as CXCL10 and CD206 typical of M1 
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and M2 activation, respectively. HIF-1α-deficient MDSCs have reduced ability to 

differentiate in to macrophages and instead acquire markers of DC (8, 37).  

 

Figure 7. Hypoxia and MDSC. (A) MDSCs from HIF-1α knock-out mice result in 

reduced antigen non-specific suppression of T cells as compared to MDSCs from 

WT mice. (B) Hypoxia results in further expansion of MDSCs and macrophages 

(11). 

Upregulation of HIF-1α inhibits effector functions of tumor-infiltrating 

lymphocytes (TILs), promotes development of Th17 cells and Treg recruitment to 

the tumor site (37). HIF-1α also regulates the expression of genes involved in 

angiogenesis, apoptosis, proliferation, cell cycle progression, cancer stem cell 

self-renewal and metastasis (37).  

1.8 MDSCs – in vitro models  

One of the major difficulties with MDSC studies is the ability to obtain 

adequate number of cells from in vivo models. Studies by Marigo et al. have 

demonstrated that the combination of GM-CSF and IL-6 can allow for a rapid 
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generation of MDSCs from mice and human bone marrow (14). In mice, these 

bone marrow derived MDSCs (BM-MDSCs) are highly tolerogenic, suppress T 

cell activity and have a functional phenotype similar to tumor MDSCs (14, 26, 

69). In another study, GM-CSF and IL-6 combination was used to generate 

suppressive human CD33pos myeloid cells ex vivo. Following adoptive transfer, 

BM-MDSCs generated from mouse embryonic stem cells and bone marrow 

hematopoietic progenitor cells prevented alloreactive T-cell-mediated GVHD 

(87). LPS has also been shown to induce BM-MDSCs from bone marrow 

progenitor cells and on adoptive transfer suppressed allergen-induced airway 

inflammation in recipient mice (24). Mouse bone marrow-derived IL4Rαpos MDSC 

induced following incubation with GM-CSF+G-CSF or GM-CSF+IL-6 or IL-13 

consist of a mixture of immature cells and exhibit immune suppressor activity 

(19). Human MDSCs induced following incubation of PBMC with GM-CSF+IL-6 

or GM-CSF+IL-1β, PGE2, TNF-α and VEGF resulted in immune suppressive 

cells that were CD33, CD11b and CD66b positive and HLA-DR negative, and 

inhibited the proliferation and IFN-γ production by autologous human T cells after 

anti-CD3/CD28 stimulation (3, 19). 

BM-MDSCs obtained following incubation with GM-CSF and IL-6 resulted 

in a significant upregulation of ARG1 and iNOS activity after 16 and 24 hours, 

respectively (69). This was followed by changes in glycolytic intermediates and 

cell respiration levels at 32 hours. BM-derived MDSCs exhibit 

immunosuppressive potential only after 48 to 72 hour exposure to cytokines (69). 
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Co-culture of CD14pos cells obtained from normal donor PBMCs with 

melanoma cell lines such as A375 or EST can allow for rapid generation of 

MDSCs in vitro (26, 50). On multicolor flow cytometry analysis, the percentage of 

CD14posCD11bposCD33posHLA-DRlow cells was substantially increased in 

melanoma-monocyte co-cultures compared with that in monocytes cultured in the 

absence of melanoma cells (26, 50). CD11bpos cells purified from the melanoma-

monocyte co-cultures exhibited a significant reduction in HLA-DR and increase in 

CD14, CD33, PD-L1, CD86 and DC-SIGN (CD209) markers (26, 50). Phenotype 

of A375-MDSCs was similar to circulating M-MDSCs obtained from late-stage 

malignant melanoma patients (26, 50). Separation of melanoma cells and 

monocytes in a transwell system did not result in the upregulation of CD14 or 

CD11b as compared with control cultured monocytes, which points to the fact 

that cell-to-cell contact or mechanisms that require close proximity to tumor cells 

were necessary (26). 

Importantly, it should be noted that cryo-preservation can affect not only 

MDSC phenotype but also their functional activity. Studies have shown that 

MDSCs sorted from fresh blood samples of cancer patients suppressed the 

proliferation of autologous T cells. However, when MDSCs were isolated from 

frozen PBMCs, they failed to suppress T cell activity (7). 

1.9 MDSCs in other disease states 

MDSC are present in a low frequency in healthy individuals, but are 

increased in bacterial, viral and parasitic infections, and trauma to facilitate 
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wound healing (26). There is growing evidence that MDSCs play a central role in 

different models of autoimmune diseases such type 1 diabetes mellitus, auto-

immune arthritis, colitis, alopecia areata, myocarditis, GVHD or experimental 

autoimmune encephalomyelitis (EAE) (19, 27). 

Chronic infections such as trypanosomiasis, toxoplasmosis, candidiasis, 

and leishmaniasis results in expansion of M-MDSCs and mediates suppression 

through NO secretion (6, 49). In lupus-prone MRL-Faslpr mice, MDSC 

suppressive effect on CD4 T cell proliferation was blocked by an Arg1 inhibitor 

(49). Sepsis results in MyD88-dependent expansion of MDSCs, T cell 

suppression and Th2 polarization (49).   

In an inflammatory bowel disease model, the repeated transfer of antigen-

specific T cells resulted in an increase in the frequency of iNOS and Arg1-

expressing MDSCs in spleen and intestine (49). However, co-transfer of MDSCs 

with specific CD8 T cells ameliorated enterocolitis suggesting a direct 

immunoregulatory effect of MDSCs (49). In a Theiler’s murine encephalomyelitis 

virus mouse model of multiple sclerosis (MS), M-MDSC depletion resulted in an 

increase of virus specific CD4 and CD8 T cell responses, and an increased 

expression of IFN-γ and IL-17, and a decreased expression of IL-10 in the CNS 

(49). In vivo transfer of MDSCs ameliorated EAE which was followed by 

significantly decreased demyelination, and delayed disease onset through the 

inhibition of Th1 and Th17 immune responses (49). In obese mice, MDSCs have 

been shown to counter proinflammatory immune responses in the liver and 

adipose tissue through suppression of CD8 T cell proliferation, induction of 
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apoptosis, and skewed differentiation of macrophages into insulin-sensitizing, 

alternatively activated M2 macrophages (49). MDSCs together with Tregs are 

also involved in the regulation of immune response during organ transplantation 

and GVHD (49). MDSCs, generated in vitro or in vivo, alleviate GVHD in murine 

allogeneic bone marrow transplantation models (49). Studies have shown a 

significant correlation between the MDSC levels, disease progression, and the 

response of patients to antiviral therapy in patients with chronic Hepatitis C (49). 

In HIV, the presence of M-MDSCs in peripheral blood correlated with prognostic 

HIV-1 disease markers such as HIV-1 viral load and CD4 T cell loss. M-MDSCs 

from HIV-1 positive patients suppressed T cell responses in both HIV-1–specific 

and -nonspecific manners (49). 
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2.0 METHODS AND MATERIALS 

2.1 Media and reagents 

Tumor cell lines were cultured in Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 100 mg/ml penicillin and streptomycin (Gibco, 

Carlsbad, CA), 1% sodium glutamate (Gibco, Carlsbad, CA) and 10% heat-

inactivated FBS (Life Technologies, Carlsbad, CA). Splenic MDSCs were 

cultured in Roswell Park Memorial Institute medium (RPMI) 1640 medium 

supplemented with 100 mg/ml penicillin and streptomycin, 1% sodium glutamate, 

50 mM beta-mercaptoethanol (BME) (Gibco, Carlsbad, CA), and 10% heat-

inactivated FBS. Bone marrow-derived MDSCs were cultured in the same media 

as for splenic MDSCs but with the addition of 50 µM HEPES. Human MDSC and 

CD14pos cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) 

supplemented with 100 mg/ml penicillin and streptomycin, 1% sodium glutamate, 

and 10% human AB sera (Sigma-Aldrich, St. Louis, MO).  
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2.2 Patient samples and cell lines 

Peripheral blood was collected from 33 patients with stage III-IV 

melanoma, and from eight normal donors. Melanoma patients included in the 

study were treatment naïve or had not received any active treatment in the six 

months prior to when their samples were collected. Informed consent was 

obtained prior to patient sample collection by the staff of the JG Brown Cancer 

Center Biorepository and covered under University of Louisville IRB protocol 

number 08.0388. Peripheral blood mononuclear cells (PBMC) were isolated from 

the melanoma patients using cell preparation tube (BD Vacutainer® CPTTM). For 

in vitro induction of human MDSC experiments, PBMC were isolated from normal 

donors by density gradient centrifugation (Ficoll-Hypaque, GE) within 2 hours of 

sample collection.  

The melanoma cell lines A375 (ATCC® CRL-1619TM) and B16-F10 

(ATCC® CRL-6475TM) were purchased from the ATCC and maintained in 

complete DMEM as described above. Cell lines were never cultured for longer 

than six to eight weeks. All of cell line stocks came from thawed vials that were 

frozen at passage two after they were received from the ATCC. A375 and B16-

F10 cell lines were authenticated by the ATCC cell bank using short tandem 

repeat profiling. 

2.3 Mice  

Wild-type (WT) male C57BL/6 mice were purchased from Envigo (Dublin, 

VA) and the Jackson Laboratory (Bar Harbor, ME). Mice were six-eight weeks 



49 
 

old. OT-II CD4 ovalbumin TCR-Tg mice were purchased from the Jackson 

Laboratory. All mice were kept in pathogen free conditions and handled with the 

approval of the Institutional Animal Care and Use Committee at the University of 

Louisville (Louisville, KY). 

2.4 Tumor models 

C57BL/6 WT mice were injected subcutaneously (s.c.) with B16-F10 

melanoma cell line (1 × 105/mouse) in to their left flanks. Tumor measurements 

were performed with digital calipers every three to four days. Mice were 

sacrificed at 18-21 days after tumor challenge or when the tumor diameter 

reached 15-18 mm in size. Tumor volumes were calculated based on the 

formula=length × width2/2. Starting day 11 post-implantation, mice were given 

intra-peritoneal injections of PFK-158 (60 mg/kg) for a total of four doses at day 

11, 13, 16 and 18. On day 19, spleens from vehicle control and PFK-158 treated 

mice were harvested and splenic M-MDSCs were sorted by magnetic bead 

separation for functional assay as described below.  

2.5 Isolation of Splenic Myeloid Derived Suppressor cells (MDSCs) 

Tumor-bearing C57BL/6 WT mice were sacrificed 18–21 days after tumor 

challenge. To collect MDSCs, single cell suspensions were prepared from 

spleens, and red cells were removed using ammonium chloride (ACK) lysis 

buffer. Post-ACK lysis, cells were washed twice with RPMI 1640 medium 

containing 10% FBS. Single-cell suspensions were then treated with Fc-blocker 
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for 10 minutes on ice. GR1highLy-6Gpos PMN- and GR1dimLy-6Cpos monocytic-

MDSCs were isolated from the spleens using the mouse MDSC isolation kit 

(Miltenyi Biotec, San Diego, CA). The purity of cell populations was confirmed by 

flow cytometry and was >98%. 

2.6 Hypoxic cell culture conditions 

Freshly isolated M-MDSCs from the spleens of tumor-bearing mice were 

cultured for 16, 24 and 48 hours in 25% B16-F10 tumor cell conditioned media 

(TCCM) under normoxic and hypoxic conditions (1% oxygen with 5% carbon 

dioxide) as described previously (11). For functional assays, cells were cultured 

under normoxia, and hypoxia with and without addition of PFK-158 (5 µM) for 48 

hours.   

2.7 Mouse bone marrow–derived MDSCs (BM-MDSCs) 

Tibias and femurs from C57BL/6 WT mice were removed using sterile 

techniques, and bone marrow was flushed with cold PBS. To obtain bone 

marrow–derived MDSCs, bone marrow cells were cultured for four days with GM-

CSF (40 ng/mL) (Peprotech, Rocky Hill, NJ), and IL6 (40 ng/mL) (Peprotech, 

Rocky Hill, NJ), as previously described (14). Bone marrow cultures were treated 

with 0.1% DMSO (vehicle control) and PFK-158 on day zero and day three of the 

culture period. The dose of PFK-158 was 5 µM on day zero and 2.5 µM on day 

three. For functional assays, whole bone marrow-derived MDSCs were used. 
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Using mouse MDSC isolation kit (Miltenyi) both PMN- and M-MDSCs were 

sorted from these bone marrow cultures. Sorted cells were then treated with 

vehicle control (0.1% DMSO) and PFK-158 (5 µM) overnight and then used for 

functional assays and other mechanistic studies.   

2.8 Melanoma patient MDSC 

CD14pos monocytic MDSCs from melanoma patients were isolated from 

PBMC using anti-CD14 magnetic microbeads and the autoMACS Pro Separator 

(Miltenyi Biotec, San Diego, CA), per manufacturer's protocol. One million M-

MDSCs were plated in complete IMDM per well in a six-well plate (BD Falcon) 

and treated with PFK-158 (5 µM) and DMSO (0.1% vehicle control) for 16-18 

hours. For functional experiments, autologous T cells were isolated from PBMCs 

using the Pan T-cell Isolation Kit (Miltenyi Biotec).  

2.9 In vitro generation of human MDSCs 

One million CD14pos cells isolated from PBMCs from normal donors were 

co-cultured with 5 × 105 A375 melanoma cells in 3.5 mL complete IMDM per well 

in a six-well plate for three days (26). Tumor/monocyte co-cultures were treated 

twice with PFK-158 (5 µM on day zero and on day two) or 0.1% DMSO (vehicle 

control). A375 co-cultured monocytes (both vehicle control and PFK-158 treated) 

and control monocytes cultured without tumor cells were harvested by gently 

scraping after three days of culture and CD11bpos cells were purified by anti-

CD11bpos microbeads and MS columns (Miltenyi Biotec). Further, A375 
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melanoma and CD14pos cells were co-cultured for three days without the addition 

of PFK-158. CD11bpos cells were purified as above and then treated with PFK-

158 (5 µM) and vehicle control for 16-18 hours in 2 mL complete IMDM in six-well 

plates. Following day, cells were harvested and washed prior to functional 

assays and other mechanistic studies. 

2.10 Functional Assays 

Freshly isolated PMN- and M-MDSCs (1 × 106 cells/well) from the spleens 

of B16-F10 tumor bearing C57BL/6 WT mice were cultured in 1 mL complete 

RPMI and treated with PFK-158 (5 µM) or DMSO (vehicle control) for 16-18 

hours in flat-bottom 24-well plate. Cells were harvested, washed and then co-

cultured with splenocytes from OT-II mice in triplicates in flat-bottom 96-well 

plates in the presence of the ovalbumin (200 µg/mL; Sigma-Aldrich) at 1:2, 1:4 

and 1:8 ratios for an additional 72 hours. Eighteen hours before harvesting, co-

cultures were pulsed with [3H]-thymidine (1 uCi/well; MP Bioscience). [3H]-

thymidine incorporation was counted using a liquid scintillation counter and 

relative counts per minute (cpm) were used to determine percent inhibition of 

proliferation. Similarly, whole bone marrow-derived MDSCs were co-cultured with 

splenocytes from OT-II mice in the presence of ovalbumin at 1:4, 1:8 and 1:16 

ratios for 72 hours and then pulsed with [3H]-thymidine eighteen hours prior to 

harvesting. Percent inhibition of proliferation was determined as above.  

To determine the suppressive activity of PMN- and M-MDSCs sorted from 

bone marrow-derived MDSCs, and splenic M-MDSCs cultured under hypoxic 
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conditions, both treated and non-treated cells were co-cultured with 5 mmol/L 

carboxyfluorescein succinimidyl ester (CFSE, Invitrogen) labelled splenocytes 

from C57BL/6 WT mice in an anti-CD3 coated flat-bottom 96-well plate for 72 

hours with addition of anti-CD28. Cells were then harvested and stained with 

CD4 and CD8 APC flourochrome (Biolegend, San Diego, CA), and proliferation 

was measured using flow cytometry.  

To evaluate the suppressive functions of melanoma patient–derived 

MDSCs and A375-MDSCs, autologous T cells were labeled with 5 mmol/L CFSE 

and seeded at 100,000 cells per well in a 96-well U-bottom plate. For melanoma 

patient samples, CD14pos cells pretreated with vehicle control and PFK-158 (5 

µM) for 16-18 hours were added to T cells at 2:1 and 1:1 ratios. T cells were 

activated by the addition of anti-CD3/CD28 monoclonal antibody (mAb) coated 

beads (Invitrogen) per well for four days. T-cell activation was measured by flow 

cytometry, and IFN-γ concentrations in the supernatants were determined by 

ELISA. Controls included non-activated T cells or T cells activated with beads 

alone. For A375-MDSCs, CD11bpos cells purified from tumor co-cultures with 

vehicle control and PFK-158 treatment or CD11bpos cells treated with PFK-158 

post-purification were added to T cells at ratios of 1:1 and 1:2, and T-cell 

activation was measured as above. 

2.11 Arginase assay 

Arginase activity was quantified in cell lysates by measuring the 

production of urea using the QuantiChrom™ arginase assay kit as per 
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manufacturer’s instructions (DARG-200, BioAssays Systems). One million cells 

per condition were lysed for 10 minutes in 100 µL of 10 mM Tris-HCl (pH 7.4) 

containing 1 µM pepstatin A, 1 µM leupeptin, and 0.4% (w/v) Triton X-100. Cell 

lysates were centrifuged at 14,000 g at 4˚C for 10 min. Supernatants were used 

to measure arginase activity following incubation with arginase reaction mix and 

urea reagent. OD was measured at 430 nm.     

2.12 Nitric oxide assay 

Supernatants from PFK-158 and vehicle control treated cell cultures were 

collected. To detect nitric oxide (NO), equal volumes of culture supernatants (100 

µl) were incubated with Greiss reagent (Sigma Aldrich) at room temperature (RT) 

for 15 minutes in a 96-well plate. Absorbance at 550 nm was measured using a 

microplate plate reader (BioTek, Winooski, VT). NO concentrations were 

determined by comparing the absorbance values for the test samples to a 

standard curve generated by serial dilution of 0.25 mM sodium nitrite. 

2.13 ROS detection 

Oxidation-sensitive dye dichlorodihydrofluorescein diacetate (DCFDA, 

Molecular Probes/Invitrogen, Carlsbad, CA), was used to measure ROS 

production by MDSCs. Cells were incubated at 37°C in RPMI in the presence of 

5 µM DCFDA for 30 min. For induced activation, cells were simultaneously 

cultured, along with DCFDA, with 30 ng/ml phorbol 12-myristate-13-acetate 
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(PMA) (Sigma, St. Louis, MO). The mean fluorescence intensity (MFI) of 

intracellularly retained DCF in CD14pos cells was determined by flow cytometry. 

2.14 Lactate assay 

Lactate production was measured using colorimetric assay (Biovision, 

CA). Supernatants collected from the PFK-158 and vehicle treated groups were 

filtered through a 10 kDa molecular weight spin filter (Amicon Ultra) to 

deproteinize and remove LDH present in FBS containing medium and diluted in 

dH2O. Equal volumes (50 µL) of the supernatants were incubated with reaction 

mix containing the assay buffer, enzyme mix and probe at RT for 30 min. 

Absorbance at 570 nm was measured using a microplate plate reader (BioTek).  

2.15 F-2,6-BP assay 

Intracellular concentration of F-2,6-BP was determined based on 

previously described protocol (88). Briefly, cells were washed in PBS and lysed 

in NaOH/Tris acetate by heating at 80°C for 5 minutes. Lysates were neutralized 

to pH 7.2 by adding ice-cold acetic acid and HEPES. Samples were incubated at 

25°C for 2 minutes in the following assay mixture: 50 mM Tris, 2 mM Mg2+, 1 mM 

F6P, 0.15 mM NAD, 10 U/l PPi-dependent PFK-1, 0.45 kU/l aldolase, 5 kU/l 

triosephosphate isomerase and 1.7 kU/l glycerol-3-phosphate dehydrogenase 

(Sigma). In total, 0.5 mM pyrophosphate was added and the rate of change in 

absorbance (OD=339 nm) per minute was followed for 5 minutes. F-2,6-BP was 
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calculated based on a calibration curve produced by measuring 0.1 to 1 pmol of 

F-2,6-BP (Sigma) and normalized to total cellular protein. 

2.16 Glucose uptake assay 

Glucose uptake in cells was measured using cell-based glucose uptake 

assay kit (Abcam, ab204702). Bone marrow-derived M-MDSC (2 × 106 cells) 

were cultured in 400 µL of RPMI medium with 0.5% FBS with vehicle control and 

PFK-158 for one hour at 37˚C with 5% CO2. Cells were then centrifuged at 400 x 

g for 5 minutes, media was removed and 400 µL of glucose uptake mix 

containing 376 µL of RPMI with 0.5% FBS, 4 µL of glucose tracker reagent, 20 

µL of glucose tracker enhancer, and PFK-158 and vehicle control was then 

added and cells incubated for additional 30 minutes under same conditions. Cells 

were then washed with ice cold analysis buffer and flow cytometry analysis was 

performed where MFI was quantified in FL1 channel.    

2.17 Bioenergetic analysis 

The Seahorse XF96e Extracellular Flux Analyzer (Seahorse Bioscience, 

North Billerica, MA) was used to perform bioenergetic analysis of MDSCs. The 

Extracellular Flux Analyzer enables simultaneous live cell measurement of 

oxygen consumption rate (OCR) which is an indicator of mitochondrial 

respiration, and extracellular acidification rate (ECAR) which is an indicator of net 

proton loss during glycolysis. Bioenergetic analysis was performed comparing 

fresh bone marrow cells and fresh CD14pos monocytes to their respective in vitro 
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induced MDSC counterparts and between vehicle and PFK-158 treated MDSCs. 

Cells were seeded in growth media (1 × 105 cells/well) into the XF96e cell culture 

plate and allowed to loosely attach for 1-2 hours. Cell culture media was then 

gently replaced with XF media (Seahorse Bioscience), lacking sodium 

bicarbonate and FBS, after prior washing with XF media. Cell culture plate was 

placed in a non-CO2 37°C incubator for 1 hour, prior to start of the experiment. 

OCR and ECAR were measured over a 3 or 5 minute periods, followed by 3 or 5 

minute mixing and re-oxygenation of the media. Basal rate measurements were 

taken prior to injection of pharmacological manipulators of mitochondrial 

respiratory chain proteins. Following the determination of basal OCR reading, 

oligomycin A is applied to inhibit proton (H+) flow through ATP synthase, 

essentially blocking all ATP-linked oxygen consumption. Maximal respiration is 

initiated by exposing cells to carbonyl cyanide-ptrifluoromethoxyphenyl 

hydrazone (FCCP), an ionophore that transports H+ across the mitochondrial 

membrane leading to collapse of membrane potential and rapid consumption of 

O2. Antimycin A prevents mitochondrial respiration by blocking complex III 

(Ubiquinone:Cytochrome b-c complex). Program was set to first inject 1 µM 

oligomycin A (Sigma), followed by 750 nM FCCP (Sigma) and at last, 1 µM 

antimycin A (Sigma) was injected. Three measurements of OCR/ECAR were 

obtained following injection of each drug. 
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2.18 Western blotting 

Cells were lysed with radioimmunoprecipitation assay (RIPA) buffer in the 

presence of protease and phosphatase inhibitors. Protein lysates were subjected 

to 8-20% gradient SDS-PAGE gel (BioRad) and transferred to PVDF 

membranes. Membranes were probed with appropriate specific antibodies 

overnight at 4°C. Membranes were washed and incubated for 2 hours at RT with 

secondary antibody conjugated with peroxidase. Results were visualized by 

chemiluminescence detection using Amersham ECL Prime western blotting 

detection reagent (GE Healthcare Life Sciences). To confirm equal loading, 

membranes were stripped and reprobed with antibody against β-actin (Santa 

Cruz Biotechonology, Santa Cruz, CA). Anti-arginase 1 antibody was obtained 

from Santa Cruz Biotechnology, anti-NOX2 and NOX4 antibodies were obtained 

from Cell Signaling Technology (Boston, MA), anti-HIF-1α antibody was obtained 

from Novus Biologicals (Littleton, CO) and anti-PFKFB3 antibody was obtained 

from Proteintech (Rosemont, IL). 

2.19 ELISAs 

IFN-γ concentration was measured using ELISA in the supernatants from 

T-cell:MDSC co-cultures using instructions as per the manufacturer. ELISA kit 

used was the human IFN-γ kit obtained from R&D Systems. 
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2.20 RNA extraction and quantitative real-time PCR 

RNA was extracted from MDSCs using Trizol (Invitrogen, Frederick, MD) 

as per manufacturer’s protocol. cDNA was synthesized using iScript cDNA 

synthesis kit (BioRad). Quantitative real-time PCR (qRT-PCR) was performed 

using TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA), 

and target gene assay mix containing sequence-specific primers and 6-

carboxyfluorescein (6-FAM) dye–labeled TaqMan minor groove binder (MGB) 

probe (Applied Biosystems, Foster City, CA). Amplification with an 18S 

(Hs99999901.s1; VIC; Applied Biosystems) endogenous control assay mix was 

used for controls. qRT-PCR was carried out in triplicates for each sample. Data 

quantitation was performed using the relative standard curve method. Expression 

levels of the genes were normalized by 18S mRNA. The change in gene 

expression was measured by calculating the fold change in threshold (ΔΔCt), 

where ΔCt = Cttarget gene minus Cthousekeeping gene, ΔΔCt = ΔCtinduced minus ΔCtreference 

and fold change = 2(-∆∆Ct). All primers used are listed in Table 1. 

Table 1. Primers used in qRT-PCR analysis of different gene expressions in 

this study. 

Genes Primer ID Dye 

Mouse Arginase 1 Mm00475988_m1 FAM-MGB 

Mouse iNOS/Nos2 Mm00440502_m1 FAM-MGB 

Mouse LDHA Mm01612132_g1 FAM-MGB 

Human Arginase 1 Hs00163660_m1 FAM-MGB 

Human iNOS/NOS2 Hs01075529_m1 FAM-MGB 

18s Hs99999901.s1 VIC-MGB_PL 
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2.21 Antibodies and flow cytometry 

Untreated or PFK-158–treated murine and human MDSCs were stained 

using anti-mouse and anti-human antibodies according to the manufacturer's 

recommendations. Details on flow cytometry antibody panels are provided in 

Tables 2 and 3. We assessed the frequency and phenotype of MDSCs in all the 

models described above both in mice and humans. Cells were harvested, 

washed, counted and resuspended in FACS buffer. 0.5 million cells live cells (by 

trypan exclusion) were stained with multi-color Ab panel. Following the initial 

FSC/SSC discrimination to exclude dead cells and aggregates, the gate was set 

on CD45pos leukocytes to exclude the tumor cells and then on CD11bpos cells. 

Next, we gated on the subpopulations defined as MDSC in humans: CD14, CD33 

and HLA-DR cells and their combinations (Table 2), and in mice: GR1 (Table 3). 

Gates were set based on isotype controls. 

Table 2. Human MDSC flow antibody panel 

Antibody Specificity/Marker Stained Flurochrome Source 

CD4 APC Biolegend 

CD8 APC Biolegend 

CD11b FITC Biolegend 

CD14 PE Biolegend 

CD33 PerCP-Cy5.5 Biolegend 

HLA-DR APC Biolegend 

CD45 APC-Cy7 Biolegend 

 

Table 3. Mice MDSC flow antibody panel 

Antibody Specificity/Marker Stained Flurochrome Source 

CD11b FITC Biolegend 

GR1 APC Biolegend 
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2.22 Statistical analysis 

GraphPad Prism 5.0 software (GraphPad Prism Software, Inc., La Jolla, 

CA) was used for all statistical analyses. Comparisons between groups were 

done by two tailed Student’s t tests. For all tests, statistical significance was 

assumed where p≤0.05. 
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3.0 WORKING HYPOTHESIS AND RATIONALE  

Immune checkpoint inhibitor therapies have shown great results in the 

treatment of malignant melanoma and lung cancer. However, immune 

suppressive cells such as Th17 cells, TAMS and MDSCs attenuate effective anti-

tumor responses in many patients. MDSCs provide an important therapeutic 

target as they are responsible for T cell tolerance, angiogenesis and increased 

risk of metastasis. 

Targeting of MDSCs has been very challenging especially due to lack of a 

unique marker and plasticity of MDSCs. Despite these limitations, numerous 

studies have demonstrated the varying degree of efficacy of different agents in 

modulating MDSC suppressive phenotype. Based on recent studies, it has been 

identified that HIF-1α is important for MDSC differentiation and function (11). In 

addition, it has been reported that monocytic MDSCs upregulate glycolysis for 

their metabolic and biosynthetic needs (72). These data provide substantial 

evidence that glucose metabolism in monocytic MDSCs can be targeted to 

modulate their immune suppression and improve anti-tumor responses. 
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We believe that MDSCs upregulate the expression of 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and ultimately glycolysis (Fig. 8). 

This maintains a functional phenotype of MDSCs that suppress CD4 and CD8 T 

cell responses and result in poor anti-tumor responses (Fig. 8). We hypothesize 

that PFKFB3 blockade with small molecule inhibitor PFK-158 can modulate 

immune suppressive phenotype of MDSCs and result in improved anti-tumor 

immunity (Fig. 9).       
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Figure 8. MDSCs upregulate the expression of PFKFB3 that results in an 

increased rate of glycolysis. This maintains a functional phenotype of MDSCs 

that suppress anti-tumor CD4 and CD8 T cell responses. 
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Figure 9. PFKFB3 inhibition will result in reduced MDSC mediated CD4 and 

CD8 T cell suppression and improved anti-tumor immunity in a tumor-

bearing host. 
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4.0 RESULTS – MOUSE STUDIES 

4.1 Both MDSC subsets, PMN- and M-MDSC expand in the spleens of 

tumor-bearing mice 

In order to study the functional characteristics of MDSCs – both PMN- and 

M-MDSCs and perform mechanistic studies, C57BL/6 WT mice were 

subcutaneously injected with B16-F10 melanoma cells (1 × 105 cells per mouse) 

in their left flanks. Spleens from tumor-bearing mice were harvested at 18-21 

days or when the tumor diameter reached 15-18 mm in size (Fig. 10). We then 

assessed and compared the frequency of both MDSC subsets in the spleens of 

naïve and tumor-bearing mice. Both MDSC subsets differentially expanded in the 

spleens of tumor-bearing mice compared with naïve mice (Fig. 11). Murine PMN-

MDSCs are defined as SSChighCD45posCD11bposLy6-Gpos and M-MDSCs are 

defined as SSClowCD45posCD11bposLy6-Cpos (Fig. 10). 
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Figure 10. Schematic representation of the steps involved in the sorting of 

PMN- and M-MDSCs from the spleens of B16-F10 tumor bearing mice. Six-

eight week old male C57BL/6 WT mice were injected subcutaneously with 1 × 

105 B16-F10 melanoma cells. After 18 days or when the tumor diameter reached 

15-18 mm in size, spleens from these tumor bearing mice were harvested. PMN- 

and M-MDSCs were sorted using mouse MDSC isolation kit as per 

manufacturer’s protocol (Miltenyi Biotec). 
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Figure 11. MDSC subsets differentially expanded in the spleens of tumor-

bearing mice compared with naïve mice. C57BL/6 WT mice were 

subcutaneously implanted with B16-F10 melanoma (1 × 105 cells per mouse) 

and spleens were harvested at day 18 or when the tumor diameter reached 15-

18 mm in size. Representative dot plots of the frequencies of PMN- 

(SSChighCD11bposLy6-Gpos) and M-MDSCs (SSClowCd11bposLy6-Cpos) in naïve 

and tumor-bearing mice spleens. 
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4.2 PFKFB3 is over-expressed in splenic M-MDSCs from B16-F10 tumor 

bearing mice 

Western blot was performed to determine the expression of PFKFB3 in 

both MDSC subsets from both naïve and tumor-bearing mice. We found that 

PFKFB3 is significantly over-expressed in M-MDSCs sorted from the spleens of 

B16-F10 tumor-bearing mice compared with M-MDSCs sorted from the spleens 

of naïve mice (Fig. 12A and B). However, in PMN-MDSCs there was no 

difference in PFKFB3 expression between the naïve and tumor-bearing mice 

(Fig 12C). 
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Figure 12. PFKFB3 is over-expressed in splenic M-MDSCs from tumor-

bearing mice. PMN- and M-MDSCs were sorted from the spleens of naïve and 

B16-F10 tumor-bearing mice using magnetic bead sorting as per manufacturer’s 

protocol (Fig. 9). Using western blot, expression of PFKFB3 was determined in 

(A) M- and (C) PMN-MDSCs from the spleens of naïve and B16-F10 tumor-

bearing mice. (B) Representative bar graph of relative expression of PFKFB3 in 

M-MDSCs from naïve and B16-F10 tumor bearing mice determined using 

ImageJ® software. Results are representative of three independent experiments. 
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4.3 PFKFB3 inhibition with PFK-158 reduces M-MDSC suppressive activity 

MDSCs circulating in the peripheral blood or in the peripheral lymphoid 

organs such as spleen result in antigen specific T cell suppression. To this end, 

we first wanted to determine if PMN- or M-MDSCs sorted from the spleens of 

B16-F10 tumor-bearing mice suppressed OVA-specific T cell proliferation. Next, 

we wanted to determine if PFKFB3 inhibition with PFK-158 resulted in reduced 

MDSC antigen specific T cell suppression (Fig. 13). M-MDSCs sorted from the 

spleens of B16-F10 tumor-bearing mice suppressed OVA-specific T cell 

proliferation and this suppression was significantly reduced following PFKFB3 

inhibition with PFK-158 (Fig. 14). However, PMN-MDSCs did not suppress OVA-

specific T cell proliferation and the functional profile of these cells did not change 

following PFKFB3 inhibition with PFK-158 (Fig. 15). This provides evidence that 

in B16-F10 melanoma model, M- and not PMN-MDSCs are suppressive. 

Furthermore, M-MDSCs express high PFKFB3 and inhibition with PFK-158 

resulted in reduced suppressive activity.  
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Figure 13. Schematic representation of the steps involved in set-up of 

functional assay using splenic MDSCs. PMN- and M-MDSCs from the spleens 

of B16-F10 tumor-bearing mice were sorted using magnetic bead separation as 

per manufacturer’s protocol. MDSCs were then cultured overnight with vehicle 

control or PFK-158 (5 µM). The following day, cells were washed and plated with 

OT-II splenocytes in a 96-well flat-bottom plate in different ratios for 72 hours in 

the presence of ovalbumin (200 µg/ml). Cells were pulsed with [3H]-thymidine 

12-16 hours before harvesting. Uptake of [3H]-thymidine was measured using 

scintillation reader and percent splenocyte inhibition was calculated to evaluate 

the difference in suppressive activity of MDSCs treated with vehicle control and 

PFK-158.  
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Figure 14. PFKFB3 inhibition with PFK-158 reduces M-MDSC suppressive 

activity. M-MDSCs pretreated with vehicle control and PFK-158 (5 µM) were co-

cultured with OT-II splenocytes in the presence of ovalbumin (200 µg/mL) for 72 

hours at 1:2, 1:4 and 1:8 ratio. Percent splenocyte inhibition was calculated. Line 

graph of percent splenocyte inhibition following treatment of splenic M-MDSCs 

with vehicle control and PFK-158. Results are representative of three 

independent experiments. *p≤0.05. 
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Figure 15. Splenic PMN-MDSCs do not suppress T cell activity in B16-F10 

tumor model. PMN-MDSCs pretreated with vehicle control and PFK-158 (5 µM) 

were co-cultured with OT-II splenocytes in the presence of ovalbumin (200 

µg/mL) for 72 hours at 1:2, 1:4 and 1:8 ratio. Percent splenocyte inhibition was 

calculated. Line graph of percent splenocyte inhibition following treatment of 

splenic PMN-MDSCs with vehicle control and PFK-158. Results are 

representative of three independent experiments.  
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4.4 PFKFB3 inhibition with PFK-158 reduces markers of suppression in 

splenic M-MDSCs 

Arginase 1 and iNOS are important markers of suppression in monocytic 

MDSCs. We have clearly demonstrated that PFKFB3 is over-expressed in 

monocytic MDSCs from the spleens of B16-F10 tumor bearing mice and its 

inhibition reduces M-MDSC suppressive activity (Fig. 12A and 14). In order to 

determine the mechanistic link for reduced M-MDSC suppressive activity 

following PFKFB3 inhibition with PFK-158, we first determined baseline 

expression of arginase 1 and iNOS mRNA in naïve and tumor-bearing mice. Both 

arginase 1 and iNOS were highly expressed in splenic M-MDSCs from tumor-

bearing mice compared to naïve mice (Fig, 16A and 17A). Then we sought to 

evaluate the expression of arginase 1 and iNOS mRNA following treatment with 

vehicle control and PFK-158. Both arginase 1 and iNOS mRNA expression 

decreased significantly following treatment with PFK-158 compared to treatment 

with vehicle control (Fig. 16B and 17B). Using arginase activity assay, we saw a 

significant decrease in arginase activity following PFKFB3 inhibition with PFK-

158 both with and without the addition of lipopolysaccharide (LPS) (Fig. 16C). 

Splenic M-MDSCs did not produce NO without LPS stimulation. However, LPS 

stimulation resulted in the production of NO which was completely abrogated 

following PFKFB3 inhibition with PFK-158 (Fig. 17C).      

PFKFB3 inhibition with PFK-158 reduced splenic M-MDSC suppressive 

activity and markers of suppression such as arginase and iNOS. Next, we sought 

to determine if treatment with PFK-158 resulted in phenotypic change in the M-
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MDSCs. On flow cytometry, no change in the frequency or phenotype of splenic 

M-MDSCs was noted following treatment with vehicle control and PFK-158 (Fig. 

18). This provides evidence that PFKFB3 inhibition results in reduced 

suppressive activity primarily through decreased expression of arginase 1 and 

iNOS, and not through the induction of phenotypic change in these cells to 

antigen presenting cells such as dendritic cells (DCs).    
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Figure 16. PFKFB3 maintains arginase expression in splenic M-MDSCs 

from B16-F10 tumor-bearing mice. (A) qRT-PCR analysis of arginase 1 mRNA 

expression in fresh M-MDSCs sorted from the spleens of naïve (n=3) and tumor-

bearing mice (n=3). (B) Arginase 1 mRNA expression was determined in splenic 

M-MDSCs following treatment with vehicle control (n=4) and PFK-158 (5 µM) 

(n=4). (C) Arginase activity was determined following treatment with vehicle 

control (n=4) and PFK-158 (5 µM) (n=4) both with and without the addition of 

lipopolysaccharide (LPS, 200 ng/mL). Results are representative of three 

independent experiments. *p≤0.05, ***p≤0.0005. 
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Figure 17. PFKFB3 maintains iNOS expression in splenic M-MDSCs from 

B16-F10 tumor-bearing mice. (A) qRT-PCR analysis of iNOS mRNA 

expression in fresh M-MDSCs sorted from the spleens of naïve (n=3) and B16-

F10 tumor-bearing mice (n=3). (B) iNOS expression in splenic M-MDSCs 

following treatment with vehicle control (n=4) and PFK-158 (5 µM) (n=4). (C) NO 

production was determined following treatment with vehicle control (n=4) and 

PFK-158 (n=4) both with and without the addition of LPS (200 ng/mL). Results 

are representative of three independent experiments. *p≤0.05, ***p≤0.0005. 
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Figure 18. Phenotype of splenic M-MDSCs from B16-F10 tumor-bearing 

mice does not change following PFKFB3 inhibition with PFK-158 (5 µM). 

Representative contour plots of (A) splenic M-MDSCs treated with vehicle control 

and (B) splenic M-MDSCs treated with PFK-158.   
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4.5 Bone-marrow derived MDSCs express high PFKFB3 

Sorting of tumor MDSCs using magnetic bead separation has limitations 

especially with significant tumor cell contamination. In order to overcome this 

limitation and study the functional and mechanistic characteristics of tumor 

MDSCs, we used bone marrow MDSC model as described by Marigo et al (Fig. 

19) (14). Bone marrow cells from C57L/B6 WT mice are cultured in the presence 

of GM-CSF and IL6 for four days. MDSCs induced subsequently provide an ex-

vivo correlate of tumor MDSCs. 

We first sought to determine if bone marrow-derived MDSCs using this 

model has high expression of PFKFB3. Western blot analysis showed that bone 

marrow cells cultured in the presence of GM-CSF and IL6 expressed high 

PFKFB3 compared with fresh bone marrow cells and bone marrow cells cultured 

in the presence of GM-CSF alone (Fig. 20A and B). On flow cytometry, the 

frequency of CD11bposGR1pos cells increases significantly when fresh bone 

marrow cells are cultured in the presence of GM-CSF and IL6 (Fig. 20C). 
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Figure 19. Schematic representation of the steps involved in the induction 

of bone marrow-derived MDSCs. Bone marrow cells obtained from the tibias 

and fibulas of C57BL/6 WT mice were cultured in the presence of GM-CSF (40 

ng/mL) and IL6 (40 ng/mL) for four days. MDSCs obtained subsequently provide 

an ex-vivo correlate for tumor MDSCs.  
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Figure 20. PFKFB3 is over-expressed in bone marrow-derived MDSCs (BM-

MDSC). Bone marrow cells from C57BL/6 WT mice were cultured in the 

presence of GM-CSF (40 ng/mL) and IL6 (40 ng/mL) for four days. (A) western 

blot and (B) bar graph of relative expression of PFKFB3 in BM-MDSC compared 

with fresh bone marrow cells and bone marrow cells cultured in the presence of 

GM-CSF alone. (C) Representative greyscale density plot of fresh bone marrow 

cells and BM-MDSCs (CD11bposGR1pos). Results are representative of three 

independent experiments.  
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4.6 PFKFB3 inhibition with PFK-158 reverses bone marrow-derived MDSCs 

suppressive activity 

Next, we sought to determine if bone marrow-derived MDSCs were 

suppressive and if suppressive activity can be reversed following PFKFB3 

inhibition with PFK-158. Bone marrow cells obtained from C57BL/6 WT mice 

were cultured in the presence of GM-CSF and IL6 for four days. PFK-158 at 5 

µM dose or vehicle control (DMSO) was added to the cultures on day zero and 

then 2.5 µM dose or vehicle control was added again on day three. On day four, 

cells were harvested and then co-cultured with OT-II splenocytes in different 

rations in a 96-well flat-bottom plate in the presence of ovalbumin for 72 hours. 

12-16 hours before harvesting the plates, cells were pulsed with [3H]-thymidine 

and percent splenocyte inhibition was calculated (Fig. 21). We found that the 

bone marrow-derived MDSCs suppressed the T cell proliferation which was 

reversed following PFKFB3 inhibition with PFK-158 at all the ratios that were 

tested (Fig. 22).  
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Figure 21. Schematic representation of the steps involved in functional 

assay with BM-MDSC. PFK-158 (5 µM) or vehicle control was added on day 

zero and then again on day three (PFK-158, 2.5 µM) to the bone marrow cells 

co-cultured with GM-CSF and IL6. On day four, cells were harvested, washed 

and then plated with OT-II splenocytes in a 96-well flat-bottom plate in different 

ratios for 72 hours in the presence of ovalbumin. Cells were pulsed with [3H]-

thymidine 12-16 hours before harvesting. Incorporation of [3H]-thymidine was 

measured using scintillation reader and percent splenocyte inhibition was 

calculated to evaluate the difference in suppressive activity of BM-MDSCs 

treated with vehicle control and PFK-158. 
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Figure 22. PFKFB3 inhibition with PFK-158 reduces bone marrow-derived 

MDSC suppressive activity. Bone marrow-derived MDSCs treated with vehicle 

control and PFK-158 were co-cultured with OT-II splenocytes in the presence of 

ovalbumin at 1:4, 1:8 and 1:16 ratios. Line graph showing the suppressive 

activity of vehicle control and PFK-158 treated bone marrow-derived MDSCs. 

Results are representative of three independent experiments. **p≤0.005, 

***p≤0.0005. 
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4.7 PFKFB3 inhibition reduces markers of suppression in bone marrow-

derived MDSCs  

Bone marrow-derived MDSCs suppress T cell proliferation primarily 

through the upregulation of arginase 1 expression and NO production. Inhibition 

of PFKFB3 during the induction of bone marrow-derived MDSCs resulted in 

complete loss of arginase 1 expression on western blot and reduced activity on 

arginase assay (Fig. 23A and B). We also sought to analyze if NADPH-oxidase 

(NOX)/ROS pathway contributed to immune suppressive phenotype of these 

cells. On western blot analysis, there was no difference in the expression of 

NOX2 and NOX4 enzymes between the vehicle control and PFK-158 treated 

BM-MDSCs (Fig. 23A). Similarly, on flow cytometry analysis, there was no 

detectable difference noted in DCF-detectable ROS between the two (Fig. 24B).  

We also assessed NO production using Griess assay both during 

induction and following differentiation of BM-MDSCs. To evaluate the NO 

production during the induction process, PFK-158 was added as described 

previously, on day zero and then on day three. In the post-differentiation 

condition, bone marrow cells were cultured with GM-CSF and IL6 for four days 

and then treated with vehicle control or PFK-158 for 16-18 hours. NO production 

was stimulated by the addition of LPS. Supernatants from these conditions were 

used to determine NO level as per manufacturer’s protocol. PFKFB3 inhibition 

with PFK-158 both during induction and post differentiation resulted in 

significantly reduced production of NO compared with control (Fig. 24A).  
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We next performed flow cytometry analysis of bone marrow-derived 

MDSCs following treatment with vehicle control and PFK-158 to assess if 

PFKFB3 inhibition resulted in phenotypic transformation of these cells to APCs. 

No change in the phenotype of these cells was seen with or without treatment 

with PFK-158 (Fig. 25 B and C). These experiments provide further evidence 

that PFK-158 modulates immune suppressive phenotype of bone marrow-

derived MDSCs through reduced arginase 1 expression and NO production, and 

not through ROS or through induction of phenotypic change. 
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Figure 23. PFKFB3 maintains arginase 1 expression in BM-MDSCs. (A) 

Western blot analysis of arginase 1, NOX2 and NOX4 expression relative to 

beta-actin in vehicle control and PFK-158 treated bone marrow-derived MDSCs. 

(B) Arginase activity was assessed using QuantichromTM arginase assay – Darg 

100 as per manufacturer’s protocol. Bar graph of arginase activity between the 

vehicle control and PFK-158 treated groups. Results are representative of three 

independent experiments. ***p≤0.0005.  
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Figure 24. PFKFB3 maintains NO production in BM-MDSCs. (A) NO 

production was stimulated using LPS. Using Griess assay, NO production was 

determined in the supernatants from the vehicle control treated group and bone 

marrow-derived MDSC groups treated with PFK-158 during induction and post-

differentiation. (B) DCF-detectable ROS levels in bone marrow-derived MDSCs 

treated with vehicle control and PFK-158 (5 µM). Results are representative of 

three independent experiments. *p≤0.05, ***p≤0.0005. 
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Figure 25. PFKFB3 inhibition does not change phenotype of BM-MDSCs. 

(A-C) Flow cytometry analysis of fresh bone marrow cells, BM-MDSCs and BM-

MDSCs + PFK-158. Representative contour plots of (A) fresh bone marrow cells 

(B) BM-MDSCs (C) BM-MDSCs following PFKFB3 inhibition with PFK-158.  

Bone marrow-derived PMN or G-MDSCs are SSChighCD11bposGR1high and M-

MDSCs are SSClowCD11bposGR1low. 
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4.8 Bone marrow-derived monocytic MDSCs express high PFKFB3 and 

cause antigen non-specific T cell suppression 

 Tumor MDSCs result in antigen non-specific T cell suppression. Bone 

marrow derived MDSCs provide an ex-vivo model to study tumor MDSCs. To this 

end, we then sought to determine the functional and mechanistic characteristics 

of monocytic subset sorted from bone marrow-derived MDSCS. Bone marrow 

cells from C57BL/6 WT mice were cultured with GM-CSF and IL6 for four days 

(14). At the end of four day culture, monocytic and granulocytic subsets were 

sorted using mouse MDSC isolation kit as per manufacturer’s protocol (Miltenyi 

Biotec) (Fig. 26). We first assessed the expression of PFKFB3 in the monocytic 

subset. Using western blot analysis, bone marrow-derived M-MDSCs had high 

expression of PFKFB3 compared with fresh bone marrow cells (Fig. 27).  

In order to study the suppressive function, both granulocytic and 

monocytic subsets were then treated with vehicle control and PFK-158 (5 µM) for 

16-18 hours. The following day, cells were harvested, washed and co-cultured 

with CFSE labeled splenocytes from WT mice in an anti-CD3 coated 96-well flat-

bottom plate in the presence of anti-CD28 in different ratios for 72 hours. Cells 

were then stained for CD4 and CD8, and T cell proliferation was determined 

using flow cytometry (Fig. 26). M-MDSC induced suppression was more 

impressive for CD4 compared to CD8 T cells (Fig. 28 and 29). Furthermore, 

PFKFB3 inhibition with PFK-158 resulted in reduced the suppressive activity of 

the M-MDSC subset (Fig. 28 and 29) while there was no change in the 

suppressive profile of PMN-MDSC subset (Fig. 30 and 31).  
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Figure 26. Schematic representation of the steps involved in the generation 

and sorting bone marrow-derived M-MDSCs and functional assay. Fresh 

bone marrow cells were cultured in the presence of GM-CSF (40 ng/mL) and IL6 

(40 ng/mL) for four days (14). Following the manufacturer’s protocol, monocytic 

and polymorphonuclear subsets were sorted using magnetic bead separation 

(Miltneyi Biotec). Sorted cells were cultured with vehicle control or PFK-158 (5 

µM) for 16-18 hours. The following day, cells were washed and co-cultured with 

CFSE labeled splenocytes from WT mice in an anti-CD3 coated flat-bottom 96-

well plate in the presence of anti-CD28 for 72 hours. Cells were then harvested 

and stained for CD4 and CD8. Flow cytometry was then performed to determine 

CD4 and CD8 T cell proliferation.  
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Figure 27. PFKFB3 is over-expressed in bone marrow-derived M-MDSCs. 

Representative western blot of PFKFB3 expression in bone marrow-derived M-

MDSCs and fresh bone marrow cells.  
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Figure 28. PFKFB3 inhibition with PFK-158 reverses bone marrow-derived 

M-MDSC suppression on CD4 T cell proliferation. Bone marrow-derived M-

MDSCs were cultured with CFSE-labeled splenocytes in anti-CD3 coated 96-well 

flat bottom plate in the presence of anti-CD28 beads for three days. Splenocytes 

were then stained for CD4 and activation was determined. Representative (A) 

histograms and (B) bar graphs showing the percentage of proliferated 

splenocytes. Results are representative of three independent experiments. 

**p≤0.005. 
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Figure 29. PFKFB3 inhibition with PFK-158 reverses bone marrow-derived 

M-MDSC suppression on CD8 T cell proliferation. (A and B) Bone marrow-

derived M-MDSCs were cultured with CFSE-labeled splenocytes in anti-CD3 

coated 96-well flat bottom plate in the presence of anti-CD28 beads for three 

days. Splenocytes were then stained for CD8 and activation was determined. 

Representative (A) histograms and (B) bar graphs showing the percentage of 

proliferated splenocytes. Results are representative of three independent 

experiments. *p≤0.05. 
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Figure 30. Bone marrow-derived PMN-MDSCs do not suppress CD4 T cell 

proliferation. Line graph for splenocytes showing the percentage of proliferated 

splenocytes. Results are representative of three independent experiments. 
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Figure 31. Bone marrow-derived PMN-MDSCs do not suppress CD8 T cell 

proliferation. Line graph for splenocytes showing the percentage of proliferated 

splenocytes. Results are representative of three independent experiments. 
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4.9 PFKFB3 inhibition reduces arginase 1 expression and activity in bone 

marrow-derived M-MDSCs 

Tumor MDSCs result in antigen non-specific T cell suppression through 

dramatic upregulation of arginase 1 and iNOS. We showed that bone marrow-

derived M-MDSCs suppress T cell function in an antigen independent manner. 

To study the mechanistic basis for reduced bone marrow-derived M-MDSC 

induced T cell suppression following PFKFB3 inhibition, we determined the 

change in arginase 1 activity. We found that following PFKFB3 inhibition with 

PFK-158, arginase 1 mRNA expression (Fig. 32A) and arginase activity 

decreased significantly compared with vehicle control (Fig. 32 B). Bone marrow-

derived M-MDSCs did not produce NO even after LPS stimulation (Fig. 32C). 

These experiments provide evidence that bone marrow-derived M-MDSCs result 

in antigen non-specific T cell suppression primarily through upregulation of 

arginase expression and activity. And, PFKFB3 inhibition with PFK-158 reduces 

the arginase expression and activity. 
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Figure 32. PFKFB3 maintains arginase 1 activity in bone marrow-derived M-

MDSCs. (A) Bar graphs showing qRT-PCR analysis of arginase 1 mRNA 

expression, (B) QuantichromTM arginase assay showing arginase activity in bone 

marrow-derived M-MDSCs following treatment with vehicle control and PFK-158, 

and (C) Griess assay showing NO production in whole BM-MDSCs and bone 

marrow-derived M-MDSCs following LPS stimulation. Results are representative 

of three independent experiments. *p≤0.05, **p≤0.005. 
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4.10 Bone marrow-derived MDSCs upregulate glycolysis 

Next we sought to study the metabolic profile of MDSCs. To this end, we 

used the Seahorse® platform which analyzes the extracellular acidification rate 

(ECAR), an index for glycolysis and oxygen consumption rate (OCR) which 

provides a measure for mitochondrial activity or oxidative phosphorylation. Bone 

marrow-derived MDSCs were obtained following culture of bone marrow cells 

with GM-CSF and IL6 as described previously. In addition, fresh bone marrow 

cells were harvested from WT mice. Using the Seahorse® platform, we 

measured the ECAR and OCR for fresh bone marrow cells and bone marrow-

derived MDSCs. We found that the bone marrow-derived MDSCs had higher 

ECAR and OCR compared with fresh bone marrow cells (Fig. 33 A and B).  

Taking in to account PFKFB3 over-expression in bone marrow-derived M-

MDSCs compared with fresh bone marrow cells (Fig. 27), we sought to 

determine the effect of PFKFB3 inhibition on ECAR and OCR in these cells. 

Bone marrow-derived M-MDSCs were sorted using magnetic bead separation as 

described previously and then treated with vehicle control and PFK-158 for 16-18 

hours. Bioenergetic profile of these cells was then analyzed using the 

Seahorse®. Following PFKFB3 inhibition, both ECAR and OCR decreased 

significantly compared with vehicle control (Fig. 33 C and D). These data 

demonstrate that MDSCs upregulate glycolysis which is the result of higher 

expression of PFKFB3 in these cells.  
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Figure 33. PFKFB3 maintains high rate of glycolysis in BM-MDSCs. Bar 

graphs of (A) ECAR and (B) OCR in fresh bone marrow cells and bone marrow-

derived MDSCS, (C) ECAR and (D) OCR comparing bone marrow-derived M-

MDSCs following treatment with vehicle control and PFK-158. Results are 

representative of three independent experiments. ***p≤0.0005. 
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4.11 HIF-1α expression correlates with the expression of PFKFB3 in M-

MDSCs in hypoxic culture conditions 

HIF-1α has been shown to play an important role in MDSC function and 

differentiation (11). We then sought to determine the relationship between the 

expression of HIF-1α and PFKFB3 in monocytic MDSCs. Splenic M-MDSCs from 

B16-F10 tumor-bearing mice were sorted as described previously using magnetic 

bead separation (Miltneyi Biotec). M-MDSCs were then cultured in 25% B16-F10 

tumor cell conditioned media (TCCM) under hypoxic (1% O2) and normoxic 

conditions for 24 and 48 hours (Fig. 34). Western blot analysis was then 

performed to evaluate the expression of HIF-1α and PFKFB3 under these 

conditions. HIF-1α expression was upregulated at 24 hours which correlated with 

a higher expression of PFKFB3 under hypoxia relative to the expression under 

normoxia (Fig. 35). At 48 hours, expression of HIF-1α and PFKFB3 was still high 

under hypoxia compared to normoxia (Fig. 35). These results clearly 

demonstrate that HIF-1α expression correlates with the expression of PFKFB3 in 

M-MDSCs under hypoxic conditions.    
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Figure 34. Schematic representation of the steps involved in the culture of 

splenic M-MDSCs under hypoxia. M-MDSC sorted from the spleens of B16-

F10 tumor bearing mice were cultured in 25% B16-F10 tumor cell conditioned 

media (TCCM) under 1% oxygen for 24 and 48 hours. 
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Figure 35. Hypoxia inducible factor 1α (HIF-1α) expression correlates with 

the expression of PFKFB3 under hypoxic conditions. Representative western 

blot of HIF-1α and PFKFB3 in splenic M-MDSCs cultured in 25% B16-F10 tumor 

cell conditioned media (TCCM) under normoxia and hypoxia (1% O2) at 24 and 

48 hours.     
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4.12 M-MDSCs under hypoxia result in antigen non-specific T cell 

suppression  

In the hypoxic tumor microenvironment (TME), MDSCs have been shown 

to cause antigen non-specific T cell suppression (11). MDSCs isolated from HIF-

1α knockout mice resulted in less antigen non-specific T cell suppression 

compared with HIF-1α WT mice (11). In order to study the differential functional 

characteristics of splenic M-MDSCs under hypoxia, cells were cultured in 25% 

B16-F10 TCCM under normoxia and hypoxia for 48 hours. M-MDSCs were then 

co-cultured with CFSE labeled splenocytes from WT mice in an anti-CD3 coated 

96-well flat-bottom plate in the presence of anti-CD28 for 72 hours. Cells were 

then stained for CD4 and CD8, and T cell proliferation was measured using flow 

cytometry (Fig. 36). Our results show that MDSCs cultured under hypoxic 

conditions result in antigen non-specific suppression of CD4 and CD8 T cell 

proliferation (Fig. 37 and 38). However, MDSCs cultured under normoxia failed 

to cause substantial antigen non-specific T cell suppression (Fig. 37 and 38). 

These findings clearly demonstrate that M-MDSCs under hypoxia upregulate the 

expression of HIF-1α which then upregulates the expression of PFKFB3 and 

increases the rate of anaerobic glycolysis, and results in a functional phenotype 

of M-MDSCs which suppress T cell activity in an antigen non-specific manner. 

The experiment was not repeated as it was done to demonstrate the induction of 

antigen non-specific suppressive profile of splenic M-MDSCs cultured under 

hypoxic conditions. 
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Figure 36. Schematic representation of the steps involved in set-up of 

functional assay for splenic M-MDSCs cultured under normoxia and 

hypoxia. M-MDSC sorted from the spleens of B16-F10 tumor bearing mice were 

cultured in 25% B16-F10 tumor cell conditioned media (TCCM) under normoxia 

or hypoxia for 48 hours. Cells were then co-cultured with CFSE labeled 

splenocytes from WT mice in anti-CD3 coated flat-bottom 96-well plate in the 

presence of anti-CD28 for 72 hours. Cells were then stained for CD4 and CD8 to 

determine differences in T cell proliferation under these two conditions.  
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Figure 37. Splenic M-MDSCs cultured under hypoxic conditions result in 

antigen non-specific suppression of CD4 T cells. (A and B) Splenic M-

MDSCs were cultured under normoxia and hypoxia as described above in the 

schematic representation. Subsequently, M-MDSCs were co-cultured with CFSE-

labeled splenocytes in anti-CD3 coated 96-well flat-bottom plate in the presence 

of anti-CD28 beads for three days. Splenocytes were then stained for CD4 and 

activation was determined. Representative (A) histograms and (B) bar graphs 

showing the percentage of proliferated splenocytes. 
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Figure 38. Splenic M-MDSCs cultured under hypoxic conditions result in 

antigen non-specific suppression of CD8 T cells. (A and B) Splenic M-

MDSCs were cultured under normoxia and hypoxia as described above in the 

schematic representation. Subsequently, M-MDSCs were co-cultured with CFSE-

labeled splenocytes in anti-CD3 coated 96-well flat-bottom plate in the presence 

of anti-CD28 beads for three days. Splenocytes were then stained for CD8 and 

activation was determined. Representative (A) histograms and (B) bar graphs 

showing the percentage of proliferated splenocytes. 
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4.13 PFKFB3 inhibition reduces M-MDSC-mediated antigen non-specific 

suppressive activity under hypoxic culture conditions 

Next we wanted to determine if PFKFB3 inhibition resulted in reduced M-

MDSC antigen non-specific suppressive activity under hypoxia. Splenic M-

MDSCs from B16-F10 tumor-bearing mice were sorted as described previously 

using magnetic bead separation (Miltenyi Biotec). M-MDSCs were then cultured 

in 25% B16-F10 TCCM under 1% O2 for 48 hours with vehicle control and PFK-

158 (5 µM). At the end of 48 hours, cells were harvested, washed and co-

cultured with CFSE labeled splenocytes from C57BL/6 WT mice in different ratios 

in an anti-CD3 coated 96-well plate in the presence of anti-CD28 for 72 hours. 

Cells were then harvested and stained for CD4 and CD8, and T cell proliferation 

was determined using flow cytometry (Fig. 39). PFKFB3 inhibition with PFK-158 

resulted in reduced M-MDSC antigen non-specific CD4 and CD8 T cell 

suppression under hypoxia (Fig. 40 and 41). Again, M-MDSC suppression was 

more pronounced for CD4 compared to CD8 T cells (Fig. 40 and 41). These data 

provide further evidence that PFKFB3 inhibition can modulate M-MDSC 

suppression and improve T cell proliferation.  

Similar to our previous experiments, we wanted to determine if hypoxic 

conditions and PFKFB3 inhibition resulted in the change of phenotype. At 48 

hours, there was no difference in the frequency and phenotype of splenic M-

MDSCs cultured under normoxia, hypoxia with vehicle control and hypoxia with 

PFK-158 (Fig. 42). The percentage of GR1pos population decreases when cells 

are cultured ex vivo due to spontaneous loss of antigenic expression. 
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Figure 39. Schematic representation of the steps involved in set-up of 

functional assay with splenic M-MDSCs under hypoxia with or without PFK-

158. M-MDSC sorted from the spleens of B16-F10 tumor bearing mice were 

cultured in 25% B16-F10 tumor cell conditioned media (TCCM) under hypoxia for 

48 hours with vehicle control and PFK-158 (5 µM). Cells were harvested and 

washed after 48 hours, and then co-cultured with CFSE labeled splenocytes from 

WT mice in an anti-CD3 coated flat-bottom 96-well plate in the presence of anti-

CD28 for 72 hours. Cells were then stained for CD4 and CD8 to determine 

differences in T cell proliferation under these two conditions.  

 



111 
 

 

Figure 40. PFKFB3 inhibition reduces M-MDSC antigen non-specific 

suppressive activity for CD 4 T cells under hypoxic conditions. (A and B) 

Splenic M-MDSCs were cultured under hypoxia with vehicle control and PFK-158 

as described above in the schematic representation. Subsequently, M-MDSCs 

were co-cultured with CFSE-labeled splenocytes in anti-CD3 coated 96-well flat-

bottom plate in the presence of anti-CD28 beads for three days. Splenocytes 

were then stained for CD4 and activation was determined. Representative (A) 

histograms and (B) bar graphs showing the percentage of proliferated 

splenocytes. Results are representative of three independent experiments. 

*p≤0.05.  
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Figure 41. PFKFB3 inhibition reduces M-MDSC antigen non-specific 

suppressive activity for CD 8 T cells under hypoxic conditions. (A and B) 

Splenic M-MDSCs were cultured under hypoxia with or without PFK-158 as 

described above in the schematic representation. Subsequently, M-MDSCs were 

co-cultured with CFSE-labeled splenocytes in anti-CD3 coated 96-well flat-

bottom plate in the presence of anti-CD28 beads for three days. Splenocytes 

were then stained for CD8 and activation was determined. Representative (A) 

histograms and (B) bar graphs showing the percentage of proliferated 

splenocytes. Results are representative of three independent experiments. 

*p≤0.05. 
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Figure 42. PFKFB3 inhibition does not change phenotype of splenic M-

MDSCs under hypoxic conditions. Representative contour plot (A) splenic M-

MDSC under normoxia, under hypoxia for 48 hours with (B) vehicle control, and 

(C) PFK-158.  
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4.14 PFK-158 reduces M-MDSC suppressive activity in vivo 

In order to evaluate the efficacy of PFKFB3 inhibition on M-MDSC 

suppressive function, B16-F10 tumor bearing C57BL/6 WT mice were injected 

intra-peritoneally with PFK-158. Mice were randomized to vehicle control 

(DMSO) or PFK-158 groups. When the tumor volume reached approximately 100 

mm3, they were injected with DMSO and PFK-158 intraperitoneally on days 11, 

13, 16 and 18. Tumor volumes were measured on the days of injections. On day 

19, spleens from mice in the both groups were harvested. M-MDSCs were sorted 

as described previously using magnetic bead sorting (Miltneyi Biotec). Equal 

number of splenic M-MDSCs from both groups were co-cultured with CFSE 

labeled OT-II splenocytes in the presence of ovalbumin in flat-bottom 96-well 

plate for 72 hours. Cells were then stained for CD4 and T cell proliferation was 

measured using flow cytometry. PFKFB3 inhibition with PFK-158 was associated 

with decrease in tumor volumes compared to the control (Fig. 43A). Also, splenic 

M-MDSCs from PFK-158 treated mice were less suppressive to CD4 T cell 

function compared to the vehicle control treated mice (Fig. 43B).  

Further, we sought to evaluate the effect of in vivo PFKFB3 inhibition on 

markers of suppression in splenic M-MDSCs. Using qRT-PCR, splenic M-

MDSCs isolated from PFK-158 treated mice had lower expression of arginase 1 

mRNA compared with vehicle control treated mice (Fig. 44A). Also, splenic M-

MDSCs from tumor bearing mice treated with vehicle control had significantly 

higher arginase activity compared with naïve mice (Fig. 44B). This high arginase 

activity in tumor bearing mice decreased significantly following treatment with 
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PFK-158 (Fig. 44B). In addition, we analyzed the expression of iNOS by qRT-

PCR in vehicle control and PFK-158 treated tumor-bearing mice. Treatment with 

PFK-158 resulted in reduced expression of iNOS mRNA compared to treatment 

with vehicle control (Fig. 44C).  

Next, we wanted to assess phenotypic changes in different immune cell 

populations in tumor-bearing mice with and without treatment with PFK-158. 

Interestingly, following treatment with PFK-158 monocytic MDSC 

(SSClowCD11bposGR1low) population decreased compared with vehicle control 

treated mice (Fig. 45). However, PFKFB3 inhibition did not have any effect on 

the frequencies of PMN-MDSCs (SSChighCD11bposGR1high) between vehicle 

control and PFK-158 treated mice (Fig. 45). There was also no change in the 

frequencies of macrophages (CD11bposF4/80pos) seen following treatment with 

PFK-158 (Fig. 46A); however, there was an increase in the population of DCs 

(CD11bposCD11cpos) (Fig. 46B). 

These data combined, provide substantial evidence that PFKFB3 

inhibition in vivo not only reduces splenic M-MDSC suppressive activity through 

reduced expression of suppressive markers such as arginase 1 and iNOS but 

also reduces the frequency of this immune suppressive population.    
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Figure 43. In vivo PFKFB3 inhibition reduces tumor volume and M-MDSC 

suppressive function. C57BL/6 WT mice were randomized to vehicle control 

and PFK-158 treatment (n = four per group). Mice were injected with vehicle 

control (DMSO) and PFK-158 when tumor volumes on average reached 100 

mm3. DMSO and PFK-158 were administered intra-peritoneally on days 11, 13, 

16 and 18 for total of four injections. Tumor measurements were taken on the 

days of the injections using digital calipers and tumor volumes were calculated 

based on the formula=length × width2/2. On day 19, spleens from each group 

were harvested and M-MDSCs were isolated using magnetic bead separation as 

described previously. M-MDSCs were co-cultured with CFSE labelled OT-II 

splenocytes in the presence of ovalbumin and percent splenocyte proliferation 

was determined using flow cytometry. (A) Line graph of tumor volumes and (B) 

bar graph showing the percentage of proliferated CD4 T cells following intra-

peritoneal injections with DMSO and PFK-158. Results are representative of 

three independent experiments. *p≤0.05, **p≤0.005. 
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Figure 44. In vivo PFKFB3 inhibition reduces splenic M-MDSC suppressive 

markers. Representative bar graph showing results of (A) qRT-PCR for arginase 

1 mRNA expression in splenic M-MDSCs isolated from the spleens of tumor 

bearing mice injected with DMSO and PFK-158, (B) QuantichromTM arginase 

activity assay in splenic M-MDSCs from naïve mice, tumor bearing mice injected 

with vehicle control and PFK-158, and (C) qRT-PCR for iNOS expression in 

splenic M-MDSCs isolated from the spleens of tumor bearing mice injected with 

DMSO and PFK-158. Results are representative of three independent 

experiments. *p≤0.005, ***p≤0.0005.  
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Figure 45. In vivo PFKFB3 inhibition reduces the frequencies of splenic M-

MDSCs. Representative contour plots of splenic M-and PMN-MDSCs in (A) 

vehicle control and (B) PFK-158 treated mice. 
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Figure 46. In vivo PFKFB3 inhibition increases the frequencies of DCs. (A) 

Representative contour plots of (A) macrophages and (B) DCs in vehicle control 

and PFK-158 treated mice. 
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4.15 PFKFB3 inhibition reduces lactic acid production in M-MDSCs 

One of the consequences of increased glycolytic flux is the increased 

production of lactic acid (32). Changes in the amount of lactic acid produced 

following PFKFB3 inhibition with PFK-158 was performed using a colorimetric 

lactate assay. Supernatants from M-MDSCs cultured in equal numbers treated 

with vehicle control and PFK-158 were collected and amount of lactic acid was 

measured as per manufacturer’s protocol. PFKFB3 inhibition resulted in 

significant decrease in lactic production in splenic M-MDSCs, whole BM-MDSCs 

and bone marrow-derived M-MDSCs compared to treatment with vehicle control 

(Fig. 47A, B and C). LDHA mRNA expression on qRT-PCR showed significant 

decrease in the mice treated PFK-158 compared to vehicle control (Fig. 47D).  
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Figure 47. PFKFB3 maintains lactic acid production in M-MDSCs. 

Colorimetric lactate assay was performed to measure differences in lactic acid 

production between vehicle control and PFK-158 treated groups. Representative 

bar graphs for lactic acid production in (A) splenic M-MDSCs, (B) whole BM-

MDSCs and (C) bone marrow-derived M-MDSCs with and without treatment with 

PFK-158, and (D) qRT-PCR for LDHA mRNA expression in the splenic M-

MDSCs sorted from tumor-bearing mice injected with vehicle control or PFK-158. 

Results are representative of three independent experiments. *p≤0.05, 

**p≤0.005, ***p≤0.0005. 
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4.16 PFKFB3 inhibition reduces intracellular concentration of F-2,6-BP and 

glucose uptake 

To evaluate the efficiency of PFK-158 at inhibiting PFKFB3, intracellular 

levels of F-2,6-BP were determined using a previously described protocol. PFK-

158 at 5 µM dose significantly reduced intracellular levels of F-2,6-BP in the 

whole BM-MDSCs (Fig. 48A) and GR1pos BM-MDSCs (Fig. 48B). We also 

evaluated the efficiency of PFK-158 in reducing glucose uptake by MDSCs. In 

bone marrow-derived M-MDSCs, one hour treatment with PFK-158 resulted in 

reduced glucose uptake (Fig. 49). Together, these results provide evidence that 

PFK-158 inhibits PFKFB3 function and reduces glucose uptake by MDSCs. 
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Figure 48. PFK-158 reduces intracellular concentration of F-2,6-BP. 

Intracellular concentration of F-2,6-BP was measured as per previously 

described protocol. Representative bar graphs for F-2,6-BP levels with and 

without treatment with PFK-158 in (A) whole BM-MDSCs and (B) GR1pos BM-

MDSCs. Results are representative of three independent experiments. 

**p≤0.005.  
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Figure 49. PFK-158 reduces glucose uptake in bone marrow-derived M-

MDSCs. Glucose uptake by bone marrow-derived M-MDSCs was performed 

following one hour treatment with vehicle control and PFK-158. Cells were gated 

on FL1 channel. Representative bar graph and histogram for glucose uptake in 

bone marrow-derived M-MDSCs. Results are representative of three 

independent experiments. 
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5.0 RESULTS – HUMAN STUDIES 

5.1 PFKFB3 inhibition reduces circulating M-MDSC suppressive activity 

from late-stage melanoma patients 

We have now demonstrated that PFKFB3 inhibition reduces suppressive 

activity of M-MDSCs in mice. Next we wanted to determine if PFKFB3 inhibition 

resulted in reduced suppressive activity of circulating M-MDSCs from late-stage 

melanoma patients. Patients with late-stage melanoma presenting to the James 

Graham Brown Cancer Center at the University of Louisville who had been 

recently diagnosed and had not received any treatment in the prior six months 

were identified. Informed consent was obtained from the patients prior to the 

collection of peripheral blood as covered under University of Louisville IRB 

protocol number 08.0388. Peripheral blood from the patients was collected in 

CPT® tubes. Buffy coat was removed after centrifugation at 1600xg for 20 

minutes. Cells were washed and CD14pos MDSCs were isolated using magnetic 

bead separation as per manufacturer’s protocol (Miltneyi Biotec). M-MDSCs were 

then treated with vehicle control and PFK-158 for 16-18 hours. The following day, 
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cells were washed and co-cultured with CFSE labeled autologous T cells for four 

days. Flow cytometry was then performed to measure T cell proliferation (Fig. 

50). 

PFKFB3 inhibition with PFK-158 significantly reduced circulating M-MDSC 

suppression on T cell proliferation and increased IFN-γ secretion compared to 

vehicle control (Fig. 51 A-C). We also sought to determine the effect of PFKFB3 

inhibition on M-MDSC markers of suppression. qRT-PCR showed that circulating 

M-MDSCs from late-stage melanoma patients had high expression of iNOS 

mRNA compared with normal donors (Fig. 52A). And following treatment with 

PFK-158, the expression of iNOS mRNA was reduced significantly (Fig. 52B). 

Similarly on arginase assay, PFKFB3 inhibition with PFK-158 resulted in 

significant reduction in activity compared to vehicle control (Fig. 52C). No 

difference in frequency or the phenotype was noted following treatment with 

vehicle control and PFK-158 (Fig. 53 A and B).      
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Figure 50. Schematic representation of the steps involved in isolating 

circulating M-MDSCs from late-stage melanoma patients. Patients with late-

stage melanoma presenting to the James Graham Brown Cancer Center 

(JGBCC) at the University of Louisville were identified for the study. Peripheral 

blood was collected in CPT® tubes by the staff of the JGBCC Biorepository and 

covered under University of Louisville IRB protocol number 08.0388. Following 

centrifugation at 1600xg, buffy coat was collected and CD14pos M-MDSCs were 

sorted using magnetic bead separation as per manufacturer’s protocol. M-

MDSCs were then treated with vehicle control and PFK-158 for 16-18 hours. 

Cells were washed and then co-cultured with CFSE labelled autologous T cells 

for 96 hours. Flow cytometry was then performed to determine T cell 

proliferation. 
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Figure 51. PFKFB3 inhibition reverses suppressive activity of circulating M-

MDSCs from late-stage melanoma patients. Melanoma patient-derived 

CD14pos MDSCs (n=7) were pretreated with vehicle control and PFK-158 (5 µM). 

M-MDSCs were then co-cultured with CFSE-labeled autologous T cells in the 

presence of anti-CD3/anti-CD28 beads for four days and T-cell activation was 

determined. Representative (A) histograms and (B) bar graphs showing the 

percentage of proliferated T cells and (C) IFN-γ production. *p≤0.05, **p≤0.005.  
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Figure 52. PFKFB3 inhibition decreases markers of suppression in 

circulating M-MDSCs from late-stage melanoma patients. Representative bar 

graphs showing results of (A) qRT-PCR analysis of iNOS mRNA expression in 

circulating CD14pos cells from normal donors (n=5) and late-stage melanoma 

patients (n=5), (B) iNOS mRNA expression (n=5) and (C) QuantichromTM 

arginase assay (n=2) showing arginase activity in circulating M-MDSCs following 

treatment with vehicle control and PFK-158. *p≤0.05, ***p≤0.0005.   
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Figure 53. PFKFB3 inhibition does not change frequency and phenotype of 

circulating M-MDSCs from late-stage melanoma patients. Representative 

contour plots of circulating M-MDSCs from late-stage melanoma patients 

(CD14posHLA-DRlowCD33posCD11bpos) cultured with (A) vehicle control (DMSO) and 

(B) PFK-158.  
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5.2 PFKFB3 inhibition reduces A375-MDSC suppressive activity 

We next sought to recapitulate the findings of PFKFB3 inhibition in 

circulating M-MDSCs from late-stage melanoma patients using MDSCs derived 

from the A375:monocyte co-culture model. We tested two independent models 

for different timing of PFKFB3 inhibition by PFK-158. In the first model, we 

cultured A375 melanoma cells with CD14pos monocytes from normal donors in 

the presence of PFK-158 during the induction phase, followed by co-culturing 

purified A375-MDSCs (CD14posCD11bpos) with CFSE labeled autologous T cells 

for an additional 96 hours (Fig. 54). In the second model, A375:monocyte co-

culture was allowed to differentiate for 72 hours, followed by purification of A375-

MDSCs which were then treated with PFK-158 and vehicle control for 16-18 

hours and then co-cultured with CFSE labeled autologous T cells for four days 

(Fig. 55). At the end of the 96-hour MDSC:T cell co-culture, T cell proliferation 

was measured by flow cytometry. In both the models, PFKFB3 inhibition resulted 

in reduced A375-MDSC suppressive activity as determined by increased T cell 

proliferation and IFN-γ production in PFK-158 treated A375-MDSC:T cell co-

cultures (Fig. 56 and 57). In the first model, PFK-158 was added during the 

CD14pos monocyte and A375 co-culture. This may have inadvertently resulted in 

reduced TDSFs from the decrease in melanoma cell line proliferation. In order to 

overcome this limitation, second model was employed where PFK-158 was 

added following CD11bpos cell sorting. On western blot analysis, A375-MDSCs 

expressed high PFKFB3 compared to cultured monocytes and fresh monocytes 

from normal donors (Fig. 58).  
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Next step was to determine the mechanisms for A375-MDSC suppressive 

activity. qRT-PCR showed that A375-MDSCs had high expression of both 

arginase 1 and iNOS mRNA compared with cultured monocytes (Fig. 59A and 

60A). PFKFB3 inhibition with PFK-158 resulted in significant decrease in mRNA 

expression of both these markers (Fig. 59B and 60B). Arginase assay showed 

that A375-MDSCs had significantly higher activity compared with fresh and 

cultured monocytes (Fig. 59C). The arginase activity decreased significantly 

following PFKFB3 inhibition (Fig. 59C). Furthermore, there was no difference in 

DCF-detectable ROS in A375-MDSC following PFKFB3 inhibition. These data 

validate our murine studies, where PFKFB3 inhibition was associated with 

reduced M-MDSC suppressive activity which correlated with significant 

reductions in arginase and iNOS expression.  
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Figure 54. Schematic representation of the steps involved in generation of 

A375-MDSCs and PFKFB3 inhibition during the differentiation process. 

CD14pos monocytes sorted from the peripheral blood of normal donor were 

cultured with A375 melanoma cells for four days. PFK-158 (5 µM) or vehicle 

control (DMSO) was added on day zero and day two. On day three, using 

magnetic bead separation CD11bpos cells were isolated as per manufacturer’s 

protocol. A375-MDSCs (CD14posCD11bpos) cells were then co-cultured with 

CFSE labelled autologous T cells for 96 hours and flow cytometry was performed 

to determine T cell proliferation.  
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Figure 55. Schematic representation of the steps involved in generation of 

A375-MDSCs and PFKFB3 inhibition post-differentiation process. CD14pos 

monocytes sorted from the peripheral blood of normal donor were cultured with 

A375 melanoma cells for three days. On day three, using magnetic bead 

separation CD11bpos cells were isolated as per manufacturer’s protocol. A375-

MDSCs (CD14posCD11bpos) were then treated with vehicle control and PFK-158 

(2.5 µM or 5 µM) for 16-18 hours. The following day, cells were washed and co-

cultured with CFSE labelled autologous T cells for 96 hours. Flow cytometry was 

then performed to determine T cell proliferation.  
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Figure 56. PFKFB3 inhibition during the A375-MDSC differentiation process 

reduces their suppressive activity. Autologous CFSE-labeled T cells were 

cultured in the presence of fresh healthy donor monocytes (fresh mono), with 

monocytes cultured for 72 hours in the absence of melanoma cells (cultured 

mono), or with monocytes co-cultured with A375 cells in the absence (A375-

MDSC), or presence of PFK-158 (A375-MDSC + PFK-158 (5 µM), day zero and 

day two). T cells were activated with anti-CD3/anti-CD28 beads in the absence or 



136 
 

presence of the indicated monocytes/MDSCs for four days. (A) Representative 

histograms and (B) bar graphs showing the percentage of proliferated CFSE-

labeled T cells and (C) IFN-γ production. Results are representative of three 

independent experiments. *p≤0.05, **p≤0.005, ***p≤0.0005.   
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Figure 57. PFKFB3 inhibition in A375-MDSCs after differentiation reduces 

their suppressive activity. Autologous CFSE-labeled T cells were cultured in 

the presence of A375-MDSC treated with vehicle control and PFK-158 (2.5 µM or 

5 µM). T cells were activated with anti-CD3/anti-CD28 beads in the absence or 

presence of the indicated MDSCs for four days. Representative (A) histograms 

and (B) bar graphs showing the percentage of proliferated CFSE-labeled T cells 

and (C) IFN-γ production. Results are representative of three independent 

experiments. **p≤0.005.   
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Figure 58. PFKFB3 is over-expressed in A375-MDSCs. Western blot analysis 

of PFKFB3 expression in A375-MDSCs compared with fresh and cultured 

monocytes. (A) Western blot film and (B) bar graphs showing relative PFKFB3 

expression in fresh monocytes, cultured monocytes and A375-MDSCs. Results 

are representative of three independent experiments. *p≤0.05. 
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Figure 59. PFKFB3 maintains arginase expression in A375-MDSCs. Bar 

graphs showing results of (A) qRT-PCR of arginase 1 mRNA expression in 

healthy donor monocytes (n=5) cultured for 72 hours in the absence (cultured 

monocytes) or presence of A375 cells, (B) qRT-PCR of arginase 1 mRNA 

expression in A375-MDSCs treated with vehicle control and PFK-158 and (C) 

QuantichromTM arginase assay showing arginase activity in cell lysates from 

fresh monocytes, cultured monocytes, A375-MDSC treated with vehicle control 

and PFK-158. Results are representative of three independent experiments. 

*p≤0.05, ***p≤0.0005.   
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Figure 60. PFKFB3 maintains iNOS mRNA expression in A375-MDSCs. Bar 

graphs showing results of (A) qRT-PCR of iNOS mRNA expression in healthy 

donor monocytes (n=5) cultured for 72 hours in the absence (cultured 

monocytes) or presence of A375 cells, (B) qRT-PCR of iNOS mRNA expression 

in A375-MDSCs treated with vehicle control and PFK-158, and (C) histogram of 

mean fluorescent intensities (MFI) of DCF-detectable ROS in A375-MDSC 

treated with vehicle control and PFK-158. Results are representative of three 

independent experiments. *p≤0.05.   
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5.3 A375-MDSCs upregulate glycolysis and lactic acid production 

We have shown that A375-MDSCs over express PFKFB3 which is 

associated with high rate of glycolysis. We used the Seahorse® platform to study 

the bioenergetic profile of A375-MDSCs. Using the Seahorse® platform, ECAR 

and OCR for fresh monocytes from healthy donor, cultured monocytes 

(monocytes cultured for 72 hours in the absence of A375 cells) and A375-

MDSCs was measured. A375-MDSCs had significantly higher ECAR compared 

with fresh and cultured monocytes indicating high rate of glycolysis in these cells 

(Fig. 61A). A375-MDSCs also had higher OCR compared to the fresh and 

cultured monocytes (Fig. 61B). Next, we sought to determine is PFKFB3 

inhibition resulted in decrease in the rate of glycolysis. A375-MDSCs were 

treated with vehicle control and PFK-158 (5 µM) for 16-18 hours. The following 

day, cells were washed and plated in the Seahorse® XFe96 plate. ECAR and 

OCR were measured. PFKFB3 inhibition with PFK-158 resulted in significant 

decrease in both ECAR and OCR compared to treatment with vehicle control 

(Fig. 61C and D).   

 Increased rate of glycolysis as a consequence of over-expression of 

PFKFB3 is associated with increased production of lactic acid. Increased lactic 

acid in addition to the upregulation of arginase and iNOS likely provides MDSCs 

with an additional mechanism for suppression of T cell activity. Lactate assay 

showed that A375-MDSCs produced increased amount of lactic acid compared 

to cultured monocytes which decreased following PFKFB3 inhibition with PFK-

158 (Fig. 62A). In addition, we also assessed change in lactic acid production by 
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circulating M-MDSCs from late-stage melanoma patients following PFKFB3 

inhibition. Similar results were obtained where lactic acid production decreased 

significantly following overnight treatment with PFK-158 (5 µM) (Fig. 62B). In line 

with its mechanism of action, treatment with PFK-158 decreased the intracellular 

concentration of F-2,6-BP in A375-MDScs (Fig. 62C).  
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Figure 61. PFKFB3 over-expression maintains high rate of glycolysis in 

A375-MDSCs. Bioenergetic analysis was performed using the Seahorse® 

platform to determine extracellular acidification rate (ECAR) and oxygen 

consumption rate (OCR) in fresh monocytes, cultured monocytes and A375-

MDSCs and A375-MDSC + PFK-158. Representative bar graphs showing results 

of (A) ECAR and (B) OCR of fresh monocytes, cultured monocytes and A375-

MDSCs. Representative bar graphs showing results of (C) ECAR and (D) OCR 

of A375-MDSCs treated with vehicle control and PFK-158. Results are 

representative of three independent experiments. **p≤0.005, ***p≤0.0005.     
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Figure 62. PFKFB3 inhibition reduces lactic acid production and 

intracellular concentration of F-2,6-BP. Lactate assay was performed using 

the supernatants from cultured monocytes, A375-MDSCs + vehicle control and 

A375-MDSCs + PFK-158 (5 µM). Peripheral blood M-MDSCs from late-stage 

melanoma patients were cultured with vehicle control or PFK-158 (5 µM) for 16-

18 hours and supernatant was collected for lactic acid production. 

Representative bar graphs showing results of lactic acid measurements for (A) 

cultured monocytes, A375-MDSCs + vehicle control and A375-MDSCs + PFK-

158, and (B) circulating M-MDSCs treated with vehicle control and PFK-158. (C) 

A375-MDSCs were treated with vehicle control or PFK-158 post-differentiation 

for 16-18 hours and intracellular concentration of F-2,6-BP was determined 

based on previously described protocol (88). Results are representative of three 

independent experiments. ***p≤0.0005.       
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5.4 Treatment of cancer patients with PFK-158 reduced the frequency of 

circulating M-MDSCs and increased activated T cells 

To study the effects of PFKFB3 inhibition on the immune cell populations 

in human patients, we analyzed the peripheral blood from a patient with 

metastatic breast cancer who had responded to treatment on a Phase 1 clinical 

trial with PFK-158. At cycle one day one (C1D1), patient had high circulating M-

MDSCs (LinnegCD14posCd11bposHLA-DRlow) (Fig. 63A). However, at C1D22 of 

PFK-158 administration the percentage of the circulating M-MDSCs decreased 

by over six fold (Fig. 63B). The decrease in the frequency of M-MDSCs was 

associated with not only a decrease in the frequency of other immune 

suppressive populations but also an increase in the percentage of activated CD8 

T cells (Fig. 64 A-C). Imaging studies showed that the same patient had 

stabilization of vertebral bony mets and necrosis of liver lesions following four 

cycles of PFK-158 (Fig. 65).  
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Figure 63. PFK-158 treatment was associated with a decrease in the 

circulating M-MDSCs in a patient with metastatic breast cancer. Flow 

cytometry analysis of peripheral blood in a patient with metastatic breast cancer 

who had responded to the treatment on Phase 1 clinical trial with PFK-158. 

Representative contour plots at (A) cycle one day one (C1D1) and (B) C1D22 of 

PFK-158 treatment showing percentage of LinnegCD14posCD11bposHLA-DRlow M-

MDSC population.  
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Figure 64. PFK-158 treatment was associated with a decrease in the 

percentage of immune suppressive and an increase in the activated CD8 T 

cell populations. Representative line graph showing the trend of (A) immune 

suppressive and (B) activated T cell populations following each cycle of PFK-

158, cycles one through 22 in a patient with metastatic breast cancer. (C) 

Percentage change (expressed as mean ± SD) in the immune cellular population 

following treatment with PFK-158.    
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Figure 65. Patient with metastatic breast cancer who received PFK-158 as 

part of Phase study had stabilization of vertebral bony mets and necrosis of liver 

mets at cycle four. 
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6.0 DISCUSSION, CONCLUSION AND FUTURE DIRECTIONS 

 

6.1 Discussion and Conclusion: 

Complex interactions between the tumors and the immune system have 

recently received tremendous attention. The concept of “cancer immune 

surveillance” or recently rephrased as “cancer immunoediting” was first described 

more than a century ago (89, 90). This concept is divided in to three phases – 

elimination, equilibrium and escape (89, 90). In the elimination phase, the 

immune system is able to recognize and eliminate the cancer cells. Partial 

elimination of the cancer cells can result in a state of equilibrium during which 

cancer cells continue to evolve and mount increasing pressure on the immune 

system, ultimately leading to the escape phase. During the escape phase, 

tumors not only evolve to express epitopes that are not recognized by the 

immune system but also secrete factors or ligands that attract immune 

suppressive populations and downregulate effective anti-tumor responses by the 

immune effector cells.  
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In 2011, recognizing the importance of immune system in cancer 

development and progression, Hanahan and Weinberg published an update to 

their original publication “The Hallmarks of Cancer” (91). This update included an 

emerging hallmark “avoiding immune destruction” and an enabling characteristic 

“tumor-promoting inflammation” (92). Experimental animal models have shown 

that deficiencies in the development or function of CD8 CTLs, CD4 Th1 or NK 

cells increase their susceptibility to tumor development (90, 93). Combined 

deficiencies in both T and NK cells further enhances the susceptibility to tumor 

development indicating the importance of both the innate and the adaptive 

immune system in immune surveillance and tumor eradication (90, 93). Similarly 

in transplantation models, cancer cells from immunodeficient mice are not 

capable of initiating tumors in syngeneic immunocompetent hosts; however, 

cancers cells from immunocompetent mice are able to initiate tumors in both 

immunodeficient and immunocompetent hosts (90). These models highlight the 

concept of highly immunogenic tumors which induce effective anti-tumor 

responses as opposed to weakly immunogenic tumors. Some highly 

immunogenic tumors include RCC, melanoma and merkel cell carcinoma where 

spontaneous regressions are not uncommonly seen. In addition, the induction of 

inflammatory response in the tumors and recruitment of immune suppressive 

inflammatory cells to the TME promote tumor growth and suppress anti-tumor 

immune responses.   

Better understanding of these complex interactions between the tumors 

and the immune system has helped us make significant advances in the field of 
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cancer immunotherapy. New therapies such as immune checkpoint blockade 

mAbs and adoptive cell therapies (ACT) have translated in to better response 

rates (RR) and OS in cancer patients. Presence of lymphocytic infiltrates within 

the tumor has been shown to correlate highly with improved outcomes across 

various tumor subtypes (94-97). These tumor infiltrating CD4 and CD8 T cells 

recognize TAAs and are tumoricidal as proven by the anti-tumor activity of 

adoptively transferred ex vivo expanded tumor-infiltrating lymphocytes (TILs). 

Further, the response to treatment strongly correlates with the absolute numbers 

of CD8 T cells infused. In phase III clinical trials, anti-CTLA4 monoclonal 

antibody ipilimumab showed a four month increase in median OS in patients with 

metastatic melanoma which has translated into long-term survival in 20–25% 

(98-100). More striking results were seen with anti-PD1/anti-PD-L1 blocking 

therapies with ORR ranging from 18 to 52% across different cancer types and 

well selected patients (101-103). In addition, these therapies are associated with 

durable complete remissions (CR) even after the discontinuation of the therapy. 

Despite these advances, many patients still fail to achieve any meaningful 

response.  

Resistance to immune checkpoint blockade therapies has been described 

at two levels – intrinsic and naturally acquired resistance (104). Patients who are 

non-responders, lack anti-tumor immune response and fail to elicit an effective T 

cell response upon immunotherapy are described to have intrinsic resistance 

(104). This could be the result of local or systemic factors that contribute to 

ineffective anti-tumor response. Systemic factors could be related to a weak 
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immune system especially in the elderly and immunodeficient patients or 

expression of few neoantigens by certain tumors. Local factors are associated 

with lack of TILs or tolerogenic TME. T cell function in the TME is inhibited by the 

infiltration of suppressive myeloid and lymphoid cells, expression of inhibitory 

receptors/ligands and secretion of inhibitory cytokines by the tumors and immune 

suppressive cells (Table. 4) (104). Naturally acquired resistance occurs when 

patients may have an ongoing anti-tumor immune response but fail to derive any 

benefit from immune modulatory therapies (104). This may result from 

loss/downregulation of MHC class I by tumor cells or from expression of other T 

cell inhibitory receptors (Table. 4).    

Numerous therapeutic strategies are currently under or in late-phase 

development which are designed to target the immune suppressive components 

of the TME. These include modalities to strengthen T cell responses by ex vivo 

enrichment of antigen-specific T cells, chimeric antigen receptor T cells and 

combination of immune checkpoint blockade agents such as ipilimumab and 

nivolumab. Inhibitors of immune suppressive molecules such as IDO 

(ClinicalTrials.gov Identifier: NCT02752074) are currently being studied in 

combination with immune checkpoint blockade antibodies. Combination 

therapeutic strategies with chemotherapy agents, radiotherapy and small 

molecule inhibitors with immune checkpoint blocking agents are being studied as 

they have been shown to modulate the TME by reducing immune suppressive 

cell populations, and release and upregulate neoantigens.  
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Table 4. List of immune suppressive cells and negative regulators of T cell 

function (104, 105). 

Immune suppressive 
cells 

T cell inhibitory 
receptors 

Immune suppressive 
molecules 

Regulatory T cells (Tregs) Programmed cell death 
protein 1 (PD1) 

Transforming growth 
factor-β 

T helper 17 cells (Th17) Cytotoxic T-lymphocyte-
associated protein 4 
(CTLA4) 

Interleukin-1 (IL-1), IL-6, 
IL-10, IL-12, IL-17, IL-18  

Tumor associated 
macrophages (TAMs) 

T-cell immunoglobulin and 
mucin-domain containing-3 
(TIM-3) 

Indoleamine 2,3 
dioxygenase (IDO), 
arginase, nitric oxide (NO), 
peroxynitrite (PNT), 
reactive oxygen and 
nitrogen species 
(ROS/RNS) 

Tumor associated 
neutrophils (TANs) 

Glucocorticoid-induced 
TNFR-related protein 
(GITR)  

Tumor necrosis factor-α 
(TNF-α) 

Tumor-associated 
fibroblast and other 
stromal cells 

Lymphocyte activation 
gene 3 protein (LAG3) 
 

 

Tolerogenic dendritic cells 
(DC) 

Inducible T cell co-
stimulator (ICOS) 

 

Type 2 natural killer T cells 
(NKT cells)  

B and T lymphocyte 
attenuator (BTLA) 

 

Myeloid derived 
suppressor cells (MDSCs) 

CD28  

Regulatory B cells   

Regulatory γδ T cells   

 

MDSC targeting therapies are divided in to four major categories – 

deactivation of MDSCs, inducing differentiation of MDSCs to mature myeloid 

cells, inhibition of myeloid cell development in to MDSCs and depletion of 

MDSCs (30). Deactivation of MDSCs has been studied in the context of blocking 

the suppressive markers such as arginase 1, ROS and iNOS. COX-2 inhibitors 

have been shown to reduce the expression of arginase 1 (30). Agents like ATRA 

have been shown to induce the differentiation of MDSCs to mature myeloid cells 
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(30). Bisphosphonates block the differentiation of myeloid cells to MDSCs and 

chemotherapy agents such as 5-FU and gemcitabine, and recently, ibrutininb has 

been shown to deplete MDSCs (30). However, randomized controlled studies to 

study the effect of these therapeutic strategies on MDSC populations are lacking.  

Our studies demonstrate for the first time a correlation between 

upregulated glycolysis and immune suppressive phenotype of monocytic 

MDSCs. We show that the enzyme PFKFB3, an important regulator of glycolysis 

is over-expressed in M-MDSCs and is required for their functional differentiation. 

We had demonstrated previously that circulating M-MDSCs in late-stage 

melanoma patients are differentially expanded and result in T cell suppression 

(50). We now provide further evidence that in B16-F10 melanoma and BM-

MDSC model, monocytic and not polymorphonuclear MDSCs are suppressive to 

T cell function. In an attempt to evaluate the role of PFKFB3 in modulating the 

immune suppressive phenotype of M-MDSCs, we isolated CD14pos circulating M-

MDSCs from late-stage melanoma patients. Ex vivo inhibition of PFKFB3 with 

the first-in-class small molecule inhibitor, PFK-158 improved T cell activity and 

IFN-γ production. Similar results were seen in A375-MDSCs, an ex vivo model of 

human MDSCs. PFKFB3 inhibition in murine splenic M-MDSCs reduced antigen 

specific T cell suppression. In splenic M-MDSCs cultured under hypoxic 

conditions and bone marrow-derived M-MDSCs, PFKFB3 inhibition reduced the 

antigen non-specific T cell function. Interestingly, in vivo PFKFB3 inhibition both 

in mice and in patients enrolled under Phase 1 study resulted in substantial 
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decline in M-MDSC population. In mice, splenic M-MDSC suppressive activity 

was also reduced following treatment with PFK-158.   

 High rate of glycolysis and increased glucose catabolism has been well 

described in tumors (58, 59). Glycolysis alone is insufficient to meet the energy 

needs of the cell. However in addition to ATP, tumors also need biosynthetic 

precursors from glycolytic intermediates in order to proliferate and invade (32). 

Furthermore, high glycolytic flux to pyruvate/lactate decreases intracellular and 

extracellular pH causing apoptosis in the neighboring normal cells (18, 32, 58-

60). Tumors are able to upregulate glycolysis through over-expression of several 

key regulators of glycolysis including PFKFB3. This enzyme produces F-2,6-BP 

that allosterically activates PFK-1, an irreversible and committed step that 

dictates the pace of glycolysis.  

A previous study showed that mTORC1-dependent aerobic glycolysis was 

necessary for lineage differentiation of M-MDSCs but not PMN-MDSCs (72). 

And, exposure to GM-CSF and IL6 has been shown to upregulate L-glutamine 

and glucose metabolism by anaerobic glycolysis resulting in the accumulation of 

TCA or Kreb cycle intermediates, lactic acid, and upregulated production of 

energy-rich nucleotides, arginase and iNOS (69). Fumarate and succinate both 

TCA cycle intermediates and lactic acid have been shown to stabilize the 

expression of HIF-1α through inhibition of HIF hydroxylases resulting in 

upregulated PFKFB3 expression and glycolysis in M-MDSCs (24, 63, 85). In our 

study, we showed that HIF-1α maintains the expression of PFKFB3 in M-MDSCs 

especially under hypoxia. Yet, another study showed that monocytes exposed to 
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hypoxia rapidly stimulate glycolysis by activating PFKFB3 through 

phosphorylation of serine (58). However, PMN-MDSCs have been shown to 

upregulate FAO along with an increase in mitochondrial mass and oxygen 

consumption rate (53). These differences in metabolic profiles of PMN- and M-

MDSCs may explain functional differences in these two subsets. Despite, the 

well-established role of PFKFB3 in carcinogenesis, its role as an 

immunomodulator has never been explored. Similar to the tumors, our studies 

show that M-MDSCs over-express PFKFB3, upregulate glycolysis and produce 

lactic acid. And, PFKFB3 inhibition was associated with decrease in glycolysis 

and lactic acid production. These data suggest that increased rate of glycolysis 

through upregulation of PFKFB3 may be necessary to maintain the suppressive 

phenotype of M-MDSCs. 

M-MDSCs mount their suppression on T cell activity primarily through the 

increased expression of arginase 1 and iNOS (Fig. 66) (4, 12, 19, 34, 36, 42). L-

arginine is very important for T cell function and its depletion by arginase 1 and 

iNOS results in translational blockade of CD3ζ chain and prevents T cells from 

responding to various stimuli (10, 26, 38). In addition, iNOS catabolizes L-

arginine producing NO as a by-product that causes nitrosylation of the TCR (36, 

52). In our study, we confirmed that M-MDSCs express high levels of arginase 1 

and iNOS, and PFKFB3 inhibition with PFK-158 reduced the expression or 

activity of both these markers. However, we did not see any change in the 

expression of NOX2 or NOX 4 enzymes nor did we see a change in DCF-

detectable ROS. These findings fall in line with the functional and metabolic 
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changes reported in activated macrophages and DCs where inflammatory 

signals or hypoxia stimulate the upregulation of glycolysis, lactic acid production 

and flux through PPP, and decreased oxygen consumption (63, 65, 66). This is 

accompanied by increased expression of inflammatory genes such as iNOS and 

Arg1 (63, 67, 68). Furthermore, in macrophages it has been shown that lactic 

acid can stabilize HIF-1α even under normoxic conditions and stimulate the 

expression of Arg1 and VEGF (85). Hypoxia in macrophages can also induce 

iNOS-HRE which can activate iNOS promoter and mRNA expression (86). 

Similarly in BM-MDSCs, GM-CSF and IL6 result in increased L-glutamine and 

glucose metabolism by anaerobic metabolism, accumulation of lactic acid and 

increased expression of Arg1 and iNOS (69). In our present study, we do not 

provide any evidence for the mechanistic link between upregulated glycolysis in 

M-MDSCs and increased expression of Arg1 and iNOS. We speculate that 

similar mechanisms linking hypoxia and production of lactic acid with increased 

expression of Arg1 and iNOS may exist in M-MDSCs as have been described in 

activated macrophages. However, neutrophils also have been shown to 

upregulate glycolysis but have significant increase in oxygen consumption which 

is used primarily to produce ROS (62). Likely a similar mechanism is in play in 

PMN-MDSCs where increase in oxygen consumption and mitochondrial mass 

generates NAPDH required for production of ROS by NOX enzymes (Fig. 67). 

The ability to upregulate HIF-1α, PFKFB3 and anaerobic glycolysis provides M-

MDSCs with the ability to survive in the hypoxic TME and differentiate in to 

TAMs. PMN-MDSCs on the other hand increase the mitochondrial mass and 
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oxidative phosphorylation and produce ROS; but are unable to survive in hypoxic 

TME.  

Several observational studies have demonstrated the role of increased 

number of MDSCs – both polymorphonuclear and monocytic in downregulating T 

cell responses in cancer patients. This increase is also correlated with poor 

prognosis and OS (2, 10, 12, 13, 15, 17, 21, 50, 52). Our studies involving 

PFKFB3 inhibition in both murine and human M-MDSCs provide strong evidence 

for the role of PFKFB3 in maintaining M-MDSC induced T cell suppression. PFK-

158 is a first-in-class small molecule inhibitor of PFKFB3 developed in the lab of 

Jason Chesney at the University of Louisville. A phase 1 clinical trial was 

conducted at four major institutions in the United States. Patients with solid 

tumors who had failed at least one previous regimen were enrolled. Drug was 

dosed at 24 mg/m2 to 650 mg/m2 delivered intravenously every other day for 

three weeks followed by one week rest. Cycle was repeated every four weeks 

until disease progression or unacceptable toxicity. Out of 27 patients enrolled 

under the study, 18 patients completed two cycles. Six of the 18 patients 

experienced clinical benefit in terms of stable disease (SD) and no drug-related 

serious adverse effects (SAEs) were reported. In addition to the decrease in M-

MDSC population, patients with clinical benefit showed a decrease in Th17 and 

γδ regulatory T cells and an increase in CD4pos and CD8pos effector T cells. 

Following treatment, PD1 expression on CD8pos T cells decreased. Results from 

the Phase 1 study of PFK-158 proved its role as safe and effective 

immunomodulatory drug. 



159 
 

Based on the data presented in this study, there is strong evidence that 

PFKFB3 inhibition or downregulation of glycolysis modulates M-MDSC 

suppressive function while it has no impact on PMN-MDSC frequency or function 

(Fig. 66 and 67). We believe that PFKFB3 inhibition improves anti-tumor immune 

responses in vivo through reduction in the frequency and suppressive function of 

M-MDSCs (Fig. 66). Further, immunomodulatory effects of PFK-158 were seen 

primarily in the low-dose cohorts in the Phase 1 clinical trial which indicates that 

anti-tumor responses were primarily driven through the decrease in the 

frequency and downregulation of M-MDSC suppressive function, and increase in 

the activity of CD8pos T cells as opposed to entirely the anti-tumor activity of the 

drug. Although it would be reasonable to suspect that there was some anti-tumor 

activity which may have contributed to reduced tumor volumes and decrease in 

secretion of TDSFs resulting in decrease in the number of circulating M-MDSCs. 

However, anti-tumor effect of PFK-158 would not be as dramatic as seen in the 

clinical trial especially at low doses resulting from its cytotoxic activity alone.    
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Figure 66. Model for M-MDSC induced T cell suppression and reversal of 

suppression with PFK-158. 

 

Figure 67. Model for PMN-MDSC induced T cell suppression with no 

reversal seen with PFK-158. 

 We present here some very exciting results from our studies but we also 

realize few limitations and/or pitfalls. We used B16-F10 transplantation model to 

study the functional and metabolic characteristics of MDSCs. 

Subcutaneous/transplantation tumor models do not recapitulate natural history or 

progression of tumors in animals or humans. This in turn may not provide true 
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insights into patterns of accumulation of immune suppressive populations let 

alone their functional characteristics at primary site versus metastatic lesions 

versus in circulation. In order to overcome this limitation, use of the MT/ret 

transgenic mouse may prove to be a better model to study various immune 

suppressive populations including MDSCs. These mice express the human ret 

transgene in melanocytes which is controlled by the mouse metallothionein I 

promoter-enhancer and develop spontaneous malignant cutaneous melanoma 

which metastasizes to lymph nodes, lungs, brain, kidney, and spleen (106, 107). 

This model shows similarity to human melanoma with respect to histopathology 

and clinical development and provides ability to study natural interactions of 

tumors with the host immune system over a period of time (106, 107). Also for 

future in vivo tumor experiments, we may use a tumor cell line with knock-down 

expression of PFKFB3 so that the tumor growth and the secretion of TDSFs is 

not significantly different between the PFK-158 and vehicle-treated mice.          

 MDSCs are characterized by their morphological, phenotypic and 

functional heterogeneity. This exhibits their incredible plasticity and how different 

conditions – different cancers and infections can modulate this immune 

suppressive myeloid population (24). The heterogeneity of MDSCs is also 

exhibited in the fact that in some tumor models PMN-MDSCs and in others M-

MDSCs are suppressive (35). Many previous studies reported in the literature 

were limited by the ambiguous morphological and functional markers of PMN- 

and M-MDSCs, and hence, the results of these studies did not reflect upon the 

true characteristics of these cells. Furthermore, MDSCs in humans lack a true 
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homologue of GR1 as in mice or unique surface marker, thus impairing the ability 

to specifically target them with mAb. In order to overcome the ambiguity and 

confusion related characterization of MDSC subsets, consensus standards have 

been published (35). In our studies, we preferentially followed phenotypic and 

functional characteristics defined recently as per consensus standards. Despite 

adhering to current standards, we suspect that as our knowledge of this highly 

heterogeneous myeloid cellular population grows the results of our current study 

may need to be refined based on prevailing phenotypic and functional definitions.  

 In our study, we report that in mice in vivo experiments and in patients on 

Phase 1 clinical trial, a marked reduction in the circulating M-MDSC population 

was seen. However, in the in vitro experiments we report no change in cell 

viability. Justification for these disparate results lies in the fact that different 

doses of PFK-158 were used for in vitro and in vivo experiments. For the in vitro 

experiments, we used non-lethal dose of PFK-158 to demonstrate the 

immunomodulatory effects resulting from PFKFB3 inhibition and not from 

elimination of M-MDSCs. Also, M-MDSCs were normalized to number for these 

functional studies. For the in vivo mice experiments, previously studied dose of 

PFK-158 was used and for patients on Phase 1 clinical trial, maximal tolerated 

dose (MTD) for human subjects was being determined. The decrease in the M-

MDSC population in mice following subcutaneous injection and in human 

patients following parenteral injection is thought to be secondary to the higher 

dose and likely from decrease in the Th17 cells which regulate MDSCs. In order 

to overcome these limitations and to determine the direct effect of PFKFB3 
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inhibition on M-MDSC mediated T cell suppression, we plan to conduct tumor 

inoculation studies and ex vivo M-MDSC functional analysis in PFKFB3 

conditional knockout (KO) mice. We will compare tumor growth and ex-vivo 

function of splenic M-MDSCs from PFKFB3 KO mice with WT mice. A cross 

between PFKFB3flox/flox and lysM-Cre mice will help us determine the requirement 

of the PFKFB3 expression for suppressive function of the myeloid compartment 

when compared with tumor-bearing WT mice.  

 We also concede that other metabolic inhibitors that target glycolysis and 

glycolytic enzymes may have similar immunomodulatory effects on M-MDSCs as 

PFK-158. Furthermore in our current study, we do not show changes in the 

expression of HIF-1α if any following PFKFB3 inhibition as HIF-1α is thought to 

be the likely promoter of expression of inflammatory genes such as Arg1 and 

iNOS.     

In conclusion, we show that in the melanoma model, M- and not PMN-

MDSCs suppress T cell activity. M-MDSCs express high PFKFB3 resulting in 

high rate of glycolysis and lactic acid production. Increased PFKFB3 expression 

in M-MDSCs under hypoxic conditions is dependent on expression of HIF-1α and 

is required to maintain their suppressive phenotype, and expression of 

inflammatory genes such as Arg1 and iNOS. PFKFB3 inhibition was associated 

with reduced M-MDSC suppression and improved T cell activity and function in 

vitro. PFKFB3 inhibition in vivo was associated with reduced M-MDSC frequency 

and tumor volumes, and reduced suppressive activity. Metabolic targeting of this 

highly suppressive population with PFK-158 provides an opportunity to further 
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improve anti-tumor T cell responses especially in combination with immune 

checkpoint blockade.   

6.2 Future directions 

 These are exciting times in oncology, especially in cancer immunotherapy. 

Prior to the FDA approval of anti-CTLA4 antibody ipilimumab (Yervoy®) in March 

2011, immunotherapy in solid malignancies was mostly discredited. High-dose 

IL-2 in advanced melanoma and RCC was associated with significant toxicities 

and poor response rates. At present, numerous clinical trials with anti-PD1 alone 

or in combination with anti-CTLA4 or anti-TIM3 or anti-LAG3 mAbs are ongoing 

in different cancer types. Immunotherapies are also being studied in combination 

with contemporary cancer treatments such as chemo and radiotherapies. Despite 

ORR upwards of 20% across different cancer subtypes, intrinsic and naturally 

acquired resistance to anti-PD1 therapies are being recognized in non-

responders. Agents that target other immune checkpoint receptors or immune 

suppressive populations are now being studied to overcome this resistance. In 

our study and Phase 1 clinical trial with PFK-158, we provide substantial 

evidence for PFKFB3 inhibition as a novel immunomodulatory therapeutic agent. 

PFKFB3 inhibition decreases immune suppressive M-MDSC population and its 

suppressive activity and can be effectively combined with immune checkpoint 

blockade therapies for improved anti-tumor T cell responses. We next intend to 

study PFKFB3 inhibition in combination with anti-PD1/anti-CTLA4 therapy in the 
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context of a Phase 1 clinical trial and hopefully, bring this novel treatment 

strategy to the clinic and to the patients.  

 Further, our study has laid the foundation to study the metabolic profile of 

TAMs as they differentiate from M-MDSCs in the TME. We suspect that PFKFB3 

is over-expressed in TAMs and PFKFB3 inhibition with PFK-158 will modulate 

their immune suppressive profile, thus providing another mechanistic link to 

immunomodulatory effects of PFK-158. We have provided evidence that increase 

in the rate of glycolysis in M-MDSCs results in the upregulation of Arg1 and 

iNOS; however, exact mechanistic link between the two is still not clear. Future 

project can attempt to identify the link between upregulated glycolysis and 

expression of inflammatory genes whether it is a transcriptional factor or a 

metabolic by-product. 
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