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ABSTRACT 
 

THE REGULATION AND MECHANISMS OF EGFR-MEDIATED APOPTOSIS 
IN MDA-MB-468 CELLS 

 
Nicole Marion Jackson 

 
July 21, 2015 

 
 

Background: The Epidermal Growth Factor Receptor (EGFR) is a 170-

kilodalton transmembrane protein that belongs to the ErbB family of receptor 

tyrosine kinases. Upon ligand-mediated activation, the EGFR responsible for cell 

growth, proliferation, and tissue homeostasis in epithelial cells; however, the 

EGFR is overexpressed in many human malignancies including MDA-MB-468 

cells, a metastatic breast epithelial cell line. Previous studies have indicated that 

within the MDA-MB-468 cell line, receptors at the cell surface promote cell 

growth when activated with Epidermal Growth Factor (EGF) ligand. Activated 

receptors that are internalized to the endosomes however induce apoptosis. This 

contrasting response at different cellular locations is defined as spatial regulation. 

The overarching research goal of this thesis is to better understand the spatial 

regulation within these cells, and identify the effector proteins responsible for the 

difference in signals emanated at the cell membrane versus intracellularly. The 

goals of this thesis were to first determine whether other EGFR ligands, 

Betacellulin (BTC) and Transforming Growth Factor-alpha (TGFA), are able to 

induce apoptosis in the MDA-MB-468 cell line. The second goal was to identify 
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effectors downstream of EGFR activation that could have potential implications in 

EGFR-mediated apoptosis.  Methods: An MTT assay was conducted in order to 

evaluate the viability of the MDA-MB-468 cells after treatment and activation with 

3 EGFR ligands: EGF, BTC, or TGFA. EGF activity was measured as a function 

of receptor phosphorylation. Western blot analysis was conducted after MDA-

MB-468 cell exposure to increasing concentrations of the three ligands. This was 

done in order to identify any variances or similarities in phosphorylation patterns 

amongst the three ligands.  Lastly, cell morphology was observed after the cells 

were exposed to 16 nM concentrations of each ligand for 24 hours. A different 

approach to assessing EGFR spatial regulation was then employed. MDA-MB-

468 cells were subjected to time course and dose response experiments, prior to 

the ultimate assessment of various different effectors. Results: All ligands 

induced dose dependent decreases in cell viability. All three ligands signaled 

through the EGFR, as measured by receptor phosphorylation, with similar 

phosphorylation patterns. Western blot analyses indicate a dose dependent 

increase in EGFR phosphorylation in response to all ligands. MDA-MB-468 cells 

were round in morphology at 24-hour time points with exposure to high 

concentrations of all ligands.  An effector screening was conducted, which 

resulted in the discovery of upregulated STAT3 activity, preferentially with high 

EGF concentrations. This suggests the potential for STAT3 to mediate apoptosis, 

and be spatially regulated in MDA-MB0468 cells. After confirming the 

upregulation of STAT3 in an EGFR dependent manner, commercially available 

inhibitors of STAT3 were employed; however the inhibitors exhibited non-specific 
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effects, in vitro. Conclusions: These data suggest that EGFR signaling in MDA-

MB-468 cells is not ligand specific, and that activation and internalization of the 

receptor in this cell line with any endogenous ligand will result in cell death. The 

results indicate a potential role of STAT3 in EGFR-induced apoptosis. Future 

experiments will entail employing siRNA targeting STAT3 in order to determine 

the role of STAT3 in EGFR-induced apoptosis. 
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BACKGROUND AND INTRODUCTION 

 

The epidermal growth factor receptor (EGFR) is a cell surface receptor 

that is expressed in almost every tissue of the body and plays critical roles in 

development and tissue homeostasis.  Further, many cancers are characterized 

by hyper-activated EGFR signaling, either due to overexpression of the receptor 

or somatic activating mutations of the receptor. These perturbations in EGFR 

expression and/or activation are associated with poor patient prognosis. Over the 

last 15-20 years, there has been a concerted effort to develop cancer 

therapeutics that specifically target the aberrant EGFRs, with the goal of 

inhibiting the progression of those cancers. Understanding the basic cell biology 

of the EGFR helps to understand its implications, and define its typical role in 

normal cell biology.  

In order to better understand the function of the EGFR, it is best to start 

with the discovery of one of the principal ligands that initiates its activity. Dr. 

Stanely Cohen isolated and discovered its endogenous ligand, Epidermal Growth 

Factor (EGF) from murine submaxillary glands in the early 1960’s. Frozen 

submaxillary glands were obtained from mice and homogenized in acetic acid, 

prior to being frozen in a dry ice-alcohol bath. The material was then thawed and 

subjected to a series of ultra-centrifugations at 100,000 x g, and acetic acid 
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washes. The newly formed pellet was then subjected to size exclusion, and ion 

exchange chromatography for purification [1]. Amino acid analysis of the purified 

product revealed that EGF is a 53 amino acid residue polypeptide, containing 

three internal disulfide bonds, as depicted in Figure 1. 

Dr. Cohen observed that injecting the purified, crude, submaxillary gland 

preparations into newborn mice stimulated growth of embryonic neurons and 

induced precocious eyelid opening.  Having identified a growth factor that was 

able to initiate some very specific physiological responses, the next goal was to 

identify the receptor. In 1978, he and Dr. Graham Carpenter were able to identify 

the presence of the 170 kilodalton EGFR specific for EGF ligand through the use 

of radiolabeled (125 I-labeled) EGF ligand in A-431 cells, a human epidermoid 

carcinoma cell line. They reported increased 32P incorporation in the A-431 cells 

in response to EGF ligand stimulation, suggesting that phosphorylation of EGFR 

components might be critical for its function [2]. In 1982, Dr. Cohen proceeded to 

then successfully isolate and purify the EGFR from A-431 cells, and from normal 

mouse liver cells by means of affinity chromatography. Purification of the 

receptor aided in the confirmation that the EGFR was able to bind 125 I-labeled 

EGF, and that the receptor possessed ligand stimulated, intrinsic kinase activity, 

which was responsible for auto-phosphorylation of tyrosine residues, upon 

binding of EGF. This particular study also confirmed that the receptor in normal 

liver cells had biochemical similarities to receptors found in the carcinoma cell 

line [3]. The contributions of Dr. Cohen and Dr. Carpenter have allowed for  
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Figure 1. The amino acid sequence of EGF ligand, isolated and purified from 

murine submaxillary glands. (from Journal of Biological Chemistry (1973) 248, 

7669-7672) 

  



! 4!

subsequent studies to unveil further information about the receptor, including its 

physiology, function, and regulation. 

Another huge leap in our understanding of the molecular mechanism of 

EGFR-mediated signaling came in 1984 when Ullrich and colleagues used the 

newly identified tools of molecular biology to clone the human EGFR.  From this 

report, a model (which has been modified numerous times over the years) was 

generated that described the functional domains of the EGFR.  

The EGFR is comprised of three major domains: 1) an extracellular, ligand 

binding domain with cysteine rich regions, 2) a cytosolic, intrinsic kinase domain, 

and 3) a cytosolic domain containing tyrosine residues [4]. Studies by Lax et al. 

devised a method utilizing 125 I-labeled EGF to label the EGFR for subsequent 

isolation, and cleavage through use of Cyanogen Bromide (CNBr). Site-specific 

antibodies were then used to identify certain residues (293 and 543) that are 

critical for the function of the receptor. On the basis of amino acid sequence 

conservation, it was then determined that the extracellular domain was 

comprised of 600 amino acids, and could be divided into 4 sub-domains [5]. 

Domains I and III are ligand binding regions, with 37% homology that physically 

bind the ligand. Domains II and IV are rich in cysteine, and have 17% amino acid 

homology that interfaces with other receptors for dimerization [6, 7].   

The model of how these domains come together is based on 

crystallographic analysis that was done by the Lemmon laboratory. In the 

unliganded state, the cysteine-rich domains of a monomeric receptor bind to one 

another through an intramolecular interaction.  Upon the introduction of ligand, 
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the receptor undergoes a conformational change such that both ligand binding 

domains bind the ligand and disrupt the interaction between the two cysteine rich 

domains.  The exposure of cysteine rich domain I then can interact with the 

corresponding domain with another EGFR to form a dimer. Ligand binding also 

brings about a conformational change that activates the intrinsic kinase domain, 

which then leads to autotransphosphorylation of the cytosolic tyrosine residues 

[8]. The kinase domain of each receptor moiety will phosphorylate tyrosine 

residues on its adjacent dimer partner by a conformational change in the receptor 

that places the tyrosine substrate in access to the kinase domain. These 

phosphotyrosines then serve as docking sites for various cytoplasmic enzymes, 

known as effector molecules. By docking to the phosphotyrosines, these 

effectors become activated and modulate various cellular processes that 

contribute to the overall cell biology [9]. For example, activation of the EGFR by 

EGF leads to activation of the Janus Kinase (JAK) tyrosine kinase in the cytosol. 

The JAK protein then proceeds to phosphorylate and activate the signal 

transducers and activators of transcription (STAT) proteins [10]. This JAK/STAT 

signaling cascade is a pathway implicated in cell survival responses [11]. 

Activation of alternative downstream signaling cascades by the EGFR induces 

known responses for cellular differentiation, proliferation, migration, and 

protection from apoptosis [12]. 

Although the EGFR is expressed at the cell surface of many normal cells, 

and is critical for animal development and cellular homeostasis, it is often 

mutated and/or hyper-expressed in a number of human malignancies [13]. In a 
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study conducted by Real et al., mouse monoclonal antibodies specific for the 

EGFR were used to assess the distribution of the receptor in various human cell 

and tissue types. These studies have confirmed EGFR expression in normal 

stomach, bladder, colon, esophageal, and lung tissue; however, no expression 

was determined in normal brain tissue or skeletal muscle [14]. In regard to 

malignant cells and tissue, the EGFR has shown to be hyper-expressed in colon, 

kidney, lung and sarcoma cancers; however, it is non-prevalent in primary 

melanoma [14] and gliosarcoma malignancies [15].  

In the analysis of large populations of cancers with EGFR mutations, one 

of the most common mutations entails a deletion of exons 2-7 of the EGFR gene 

that removes virtually the entire extracellular domain of the receptor. In the 

absence of a ligand binding domain or cysteine rich domains that have 

intramolecular binding that prevents dimerization, this receptor is free to 

associate with other mutant receptors and is constitutively active. This mutant 

receptor is referred to as EGFRvIII, and is substantially expressed in patients 

with glioblastoma malignancies [16, 17]. Mutated tyrosine residues of the EGFR 

at the cytosol have also been shown to induce aberrant signaling as well as drug 

resistance in cancers characterized by hyper-expression of the EGFR [18, 19]. In 

addition to the EGFR itself, studies have shown that alterations in EGFR ligand 

expression can hinder certain tissue physiology. Luetteke et al. bred knockout 

mice that lacked endogenous expression of various, endogenous EGFR ligands. 

Pups born to these knockout mice were runted, and showed stunted growth and 

survival. These data provide confirmation of a requirement for EGFR ligands to 
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initiate receptor signaling in order for proper development of the mouse 

mammary gland [20]. Overall, it can be inferred that regulation of tyrosine 

phosphorylation as well as endogenous EGFR ligands are both critical for proper 

signaling and modulation of cellular effects of the activated receptor. 

Numerous cellular processes play a role in controlling EGFR activity. Chief 

among these is ligand-mediated endocytosis. Co-incident with ligand binding to 

the EGFR and activation of the intrinsic kinase domain, the ligand:receptor 

complex is internalized into the cell in either a clathrin-mediated, or clathrin-

independent manner. Clathrin-coated vesicles were first identified in osteocytes 

[21], and then later in neurons [22]. In 1975, Barbara Pearse biochemically 

characterized these clathrin-coated vesicles as transport vesicles upon isolating 

and purifying them from pig brains prior and analyzing their physical properties 

via electron microscopy. She described these vesicles as intracellular vesicles 

with unique “coats” on their cytoplasmic surfaces [23]. Her discovery serves as 

the foundation of biochemical studies entailing clathrin-mediated endocytosis and 

membrane trafficking in general. 

 Sigismund et al. stimulated receptor activation with EGF for 2 minutes in 

HeLa cells prior to immunostaining and subjecting the fixed cells to 

immunoelectron microscopy. Immunoelectron microscopy allowed for viewing 

and imaging of the immunostained cells in their various compartments during 

EGFR mediated endocytosis [24]. These studies, as well as subsequent studies, 

revealed that Clathrin-mediated EGFR endocytosis is observed at all ligand 
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concentrations, where as with higher concentrations of ligand, (10-100 ng/mL) 

the receptor undergoes Clathrin-independent endocytosis via caveolae [25, 26].  

Once internalized within the cell, the EGFR is subjected to the endocytic 

pathway, a pathway responsible for sorting and determining the ultimate fate of 

the internalized ligand:receptor complex. An intermediate vesicle containing the 

ligand:receptor complex fuses with an early endosome. The mildly acidic 

environment of the early endosome (pH 6) allows for certain EGFR ligands (EGF 

and transforming growth factor–alpha (TGFA)) to dissociate from the EGFR, 

should the ultimate fate of the receptor be recycling back to the plasma 

membrane [27]. From here, the unbound-receptor will recycle back to the cell 

membrane via recycling endosomes for additional ligand binding and signaling. 

These recycling endosomes, slightly acidic at pH 6.4, are generally located within 

the cell, and are centered around the microtubule-organizing center [28]. These 

recycling endosomes exhibit tubular-vesicular morphology, which suggests 

dynamic trafficking activity and supports their involvement with the underlying 

connection of endocytosis with exocytosis [29, 30]. Should the ligand:receptor 

complex remain inside of the early endosome, however, the early endosome will 

mature into a late endosome with the complex intact. The late endosome then 

fuses with the lysosome just prior to the ultimate degradation of the 

ligand:receptor complex [31]. This endocytic pathway is essential for regulating 

the activity of the EGFR, both temporally and spatially. Temporally, meaning that 

the time it takes the receptor to transverse the entire endocytic pathway will 

ultimately dictate the duration of its signaling. Spatially, in regard to the fact that 



! 9!

at different subcellular locations, the receptor will interact with different effector 

proteins, activating different signaling cascades [32]. 

Due to hyper-expression of the EGFR in a number of human 

malignancies, including kidney, breast, pancreatic, and cervical cancers [33], the 

correlation between signaling by the EGFR and the endocytic pathway has 

important implications in both receptor tyrosine kinase and cancer biology [32]. 

One approach utilized to assess this correlation involves studying EGFR 

signaling and endocytosis upon activation with different ligands. Currently, there 

are seven identified growth factor proteins that are able to bind to and activate 

the EGFR: these include EGF, amphiregulin (AREG), betacellulin (BTC), epigen 

(EPGN), epiregulin (EREG), heparin-binding EGF-like growth factor (HBEGF), 

and TGFA [34]. Although each of these ligands stimulates EGFR activation and 

internalization, they yield diverse effects on endocytic sorting [35]. This 

information can be used advantageously to assess the differential effects and 

regulatory mechanisms different ligands have on EGFR signaling. One of the 

critical components of this thesis entails determining if EGFR ligands have 

differential effects on EGFR-mediated apoptosis. 

EGF is a 53 amino acid, 6.4 kilodalton (kDa) protein that has been shown 

to be involved in regulation of cellular proliferation in mammals [36, 37]. Similarly 

to EGF, TGFA ligand contains 50 amino acids and has a molecular weight of 

approximately 6 kDa. Both EGF and TGFA bind the EGFR; however, TGFA 

binds with 10-30 fold less affinity to the receptor in rat hepatocytes in comparison 

to EGF. Thoresen et al. isolated hepatocytes from Wistar rats prior to stimulating 
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the cells with increasing concentrations of 125 I-EGF and 125 I-TGFA. Surface 

binding curves after 24-hour ligand exposure exhibit a binding affinity of 11.9 nM 

for TGFA, and 0.42 nM for EGF. The data within this study suggest that the two 

ligands compete for a single population of binding sites in rat hepatocytes, 

although EGF has a significantly higher binding affinity for the EGFR than TGFA 

[38]. It is important to note that TGFA is synthesized and most prevalent in 

cancer cells, and cells transformed by oncogenes and retroviruses [39]. BTC, a 

slightly larger ligand (9 kDa) comprised of 80 amino acids, was originally isolated 

from mouse insulinoma cells, and is able to activate EGFR and ErbB4 [40]. 

Studies utilizing 125 I-BTC in ��	��������fibroblasts confirm a binding affinity of 

0.5 nM for the EGFR, and suggest that the preferred receptor for BTC is the 

EGFR [41]. 

All three of these ligands are able to bind to the EGFR, and stimulate 

kinase activity; however, they differ in regard to their binding affinities to the 

EGFR, and their ultimate fates upon endocytosis and endocytic trafficking. In 

order to compare ligand internalization upon EGFR stimulation, Roepstorff et al. 

used an approach of pre-binding various EGFR ligands on ice to view the 

synchronized wave of receptor internalization. After determining optimal 

incubation time using 125 I-EGF, HEp2 cells were incubated with increasing ligand 

concentrations for 100 minutes. The amount of total cell surface receptors was 

then determined by means of FACS analysis. These data show that EGF and 

BTC ligands both target the EGFR for lysosomal degradation. In contrast, TGFA 

almost always leads to recycling of the EGFR to the cell membrane within 90 
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minutes of ligand exposure [35]. EGF and BTC can both withstand the acidic 

conditions of the endosomes, dissociating at around pH 5. In contrast, TGFA 

rapidly dissociates from the receptor at pH 7, and is unable to withstand the 

acidic environment of the early endosome. This therefore causes the ligand-free 

receptor to recycle back to the cell membrane [35, 42]. The fate of the EGFR, 

whether it is for degradation or recycling, is critical for its duration of signaling, 

which will vary based on different ligands bound to the receptor. This has 

ultimate implications in the initiation different signaling cascades. 

In summary, the EGFR is a transmembrane receptor tyrosine kinase with 

critical implications in normal cell growth, proliferation, wound healing, and tissue 

homeostasis. It is regulated in both a spatial and a temporal manner. Trafficking 

of the receptor can vary depending on the ligand it is bound to. The EGFR is 

however hyperexpressed in mammalian cancer [33]. There is more known about 

EGFR cell biology in non-malignant tissue, more so than in cancer cells. 

Research has shown that pharmaceutically available EGFR inhibitors provided to 

cancer patients triggers autophagy, a degradative process that actually helps 

cancer cells withstand nutrient-poor conditions [43]. The primary focus of this 

thesis is to better understand the function and role of the EGFR in cell growth 

and apoptosis in cancer. Doing so will require determining if different ligands 

have varying effects on cell viability and apoptosis. It is also of interest to identify 

specific proteins with direct implications in EGFR-induced apoptosis. This will 

help to develop better, more efficacious therapy for cancers that hyperexpress 

the receptor.  
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CELL DEATH AND APOPTOSIS 

 

 The EGFR is typically associated with cell growth, development and tissue 

homeostasis; however, it has been also known to mediate cell death in cancers 

that hyperexpress EGFRs [44-46]. Using a cell line that undergoes EGFR-

mediated apoptosis uniquely allows for the enlightenment of the biochemical 

regulation of signaling by using a sensitive, tractable and irreversible readout. 

These findings can be used to better understand other signaling pathways and 

biological responses to cell growth, and its counterpart, programmed cell death.  

The term apoptosis entails the process of programmed cellular death in 

both single-cellular and multicellular organisms. Programmed cell death refers to 

the time and position of cell death during development of a given organism. It has 

many functions during the development process, including adjusting and deleting 

cell numbers [47]. Both apoptosis and programmed cell death are normal 

processes in growth, development and aging as a homeostatic mechanism for 

proper maintenance of cell populations in tissues [48]. John Kerr first used the 

term apoptosis in 1972, in order to describe a morphologically distinct form of cell 

death. Through the use of light and electron microscopy, morphological events 

that occur during apoptosis have been identified [49]. The process of apoptosis 

entails structural changes that take place in two distinct stages: During stage 

one, the cell rounds in shape, shrinks, and breaks into well-preserved fragments.
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Its nuclear and cytoplasmic compartments condense, causing the cellular 

organelles to become more tightly packed as well as fragmented [48, 50]. 

Pyknosis, or chromatin condensation, is a key characteristic component of 

apoptosis [48]. During the second stage, the apoptotic body, a small sealed 

membrane that is released by cells undergoing programmed cell death [51], is 

taken up by other cells just prior to being degraded and broken down within the 

lysosome [50]. This helps to remove any superfluous material, and provide 

nutrients that were once in the apoptotic cell to the cell that is viable [52].  The 

apoptotic process is a critical component in normal human embryonic 

development, and tissue homeostasis in all living organisms [48, 53]. However, 

cancer cells often have the ability to avoid apoptosis, and continue to proliferate 

[54]. This dysregulation of apoptosis is associated with many malignancies, 

including breast, ovarian and colon cancers [55, 56].  Consequently, this can lead 

to cellular accumulation within a given organism, creating a permissive 

environment for genetic instability and oncogene activation. These events are 

known to disrupt cell turnover and function, as well as damage and kill healthy, 

viable cells [57].  

Alternatively to apoptosis, cell death can also occur in a necrotic manner. 

Necrosis is considered to be a degradative, toxic process that consequently 

induces cell swelling [58, 59], opposite of apoptosis [58].  Necrosis is an 

uncontrolled process and requires no energy input. It typically affects a large 

population of cells, and causes inflammation, in vivo. Conversely, apoptosis is a 

controlled and energy-dependent process that does not induce inflammation, and 
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can occur in individual cells as well as large clusters of cells [48]. The manner of 

cell death by either necrosis or apoptosis depends on the nature of the tissue 

type, its developmental stage, and the cell death signal itself [60]. 

There are several biochemical modifications of apoptotic cells, which can be 

used to help differentiate and identify them. Such modifications include DNA 

breakdown, phagocytic recognition, and protein cleavage and cross-linking [61]. 

The caspase proteins are a family of aspartic acid-specific proteases that have 

proteolytic activity and are major effectors of apoptosis [48, 62]. They are 

normally synthesized as inactive precursors, or pro-enzymes, and only become 

activated upon the induction of apoptosis. The pro-enzymatic form gets cleaved 

and activated by other caspases, initiating a signaling cascade as well as 

apoptosis induction [62]. Currently, there are 14 caspases that have been 

identified [63]. These are categorized into three subgroups based on their 

function within the signaling cascade.  Initiator capsases (caspases 2, 8, 9, and 

10) begin the cascade by activating and cleaving the executioner caspases 

(caspases 3, 6, and 7) at aspartic acid residues. Once executioner caspases are 

activated, they cleave and activate other cellular substrates, such as poly (ADP-

ribose) polymerase (PARP), ultimately starting the apoptotic process [48, 64]. 

The third subgroup of caspase proteins includes caspases 1, 4 and 5, which 

have more active roles in cytokine maturation [65].  

Mechanistically, apoptosis is quite complex, involving two main pathways: 

the extrinsic and intrinsic pathways (Figure 2). The extrinsic signaling pathway  
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Figure 2. Schematic representation of apoptotic events. (Adapted from 

Elmore et al., Toxicol Pathol., 2007) 
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entails initiating apoptosis via transmembrane receptor-mediated interactions. 

These receptors are known as “death receptors”, and are members of the tumor 

necrosis factor (TNF) receptor family [66]. Members of this family have a “death 

domain”, which is a cytoplasmic domain comprised of 80 amino acids. 

The death domain of TNF receptors is primarily responsible for relaying 

signals for cell death from the cell membrane to the intracellular signaling 

pathways [48, 67]. Upon ligand binding, adapter proteins are recruited to the 

death receptors at corresponding death domains. For instance, Fas ligand, a 

ligand with a known biological function of inducing apoptosis [68], binds to the 

Fas receptor, a member of the TNF receptor family. This ligand-receptor 

interaction promotes the intracellular recruitment of the FADD adapter protein 

[69]. FADD then associates with procaspase-8, forming a death-inducing 

signaling complex (DISC). This then results in the auto-catalytic activation of 

caspase-8 from procaspase-8 [70]. The activated caspase-8 then activates 

executioner caspases, which leads to the induction of apoptosis. Defects in Fas 

ligand and Fas receptor are causes of various autoimmune diseases. It has been 

shown that upon knocking out the fas gene by homologous recombination, 

generalized lymphoproliferative disease (gld) can be completely recapitulated in 

mouse models [71]. Similarly, gld can be completely cured by simply expressing 

the normal fas gene in the same knockout mice [72]. These studies exhibit how 

critical Fas-induced apoptosis is to the regulation and cellular homeostasis of 

immunocompromised organisms.  
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The intrinsic signaling pathway of apoptosis initiates apoptosis in a non-

receptor mediated manner. This pathway entails mitochondrial- initiated events, 

involving certain stimuli that send intracellular signals to act on specific targets 

within the cell. These intercellular signals can be positive or negative signals.  

Negative signals often lead to withdrawal of certain growth factors, which fails to 

suppress death processes and essentially triggers apoptosis. On the other hand, 

positive signals include those for free radicals, toxins, and viral infections [48]. 

Apoptotic signals originating from the cell surface lead to the release of 

cytochrome c from the mitochondria into the cytosol, where it ultimately binds to 

the Apoptotic Protease Activation Factor-1 (Apaf-1). The binding of cytochrome c 

to Apaf-1 initiates apoptosome formation, which catalyzes the activation of 

caspase 9 [48, 73]. Identical to the extrinsic pathway of apoptosis, activation of 

caspase 3 then leads to the downstream induction of apoptosis. 

 Although the EGFR is typically associated with cell growth and 

proliferation, forms of cancer that hyper-express the receptor often undergo 

EGFR-mediated apoptosis. MDA-MB-468 cells are a metastatic breast epithelial 

cell line, derived from the M.D. Anderson Cancer Center in Houston, Texas [74].  

In this cell line, the EGFR is hyper-expressed, with approximately 1.3 X 106 

receptors per cell [75]. Initial studies with this cell line revealed that lower than 

physiological levels of EGF ligand (1 ng/mL) enhance cell growth; however, 

ligand concentrations that exceed 10 ng/mL induce dose dependent decreases in 

cell viability [44] . Studies within the Ceresa laboratory utilizing MDA-MB-468 

cells have shown that when activated and retained at the cell membrane, the 
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EGFR elicits signals for cell growth; however, once internalized within the 

endosomes, the receptor elicits signals for apoptosis. Polystyrene beads of 0.9-

micrometer size covalently conjugated to EGF ligand were used for this 

determination. The polystyrene bead itself is too large for clathrin-mediated 

internalization. The conjugated EGF is able to activate the receptor while the 

bead retains the activated receptor to the cell membrane. Cells treated with EGF 

beads did not activate Caspase 3, where as cells treated with soluble EGF did 

activate Caspase 3.  

Immunoblot analyses from the Ceresa laboratory have disclosed that 

there is a defect in endocytic trafficking within this cell line [76]. Through use of 

Percoll gradient and indirect immunofluorescence assays, Rush et al. have 

shown that instead of traversing the entire endocytic pathway to the lysosome for 

degradation, the EGFR accumulates on the limiting membrane of the early 

endosome in MDA-MB-468 cells. In the same study, HeLa cells, which express 

physiological levels of EGFR and do not undergo EGF-induced apoptosis, were 

treated with Monensin in order to block the acidification of the early endosome. 

This essentially stopped trafficking of the EGFR beyond the endosome, causing 

EGFRs to accumulate in the early endosome, mimicking the same defect found 

in the MDA-MB-468 cell line. Treatment with Monensin and EGF ligand in HeLa 

cells caused the cells to undergo EGFR-mediated apoptosis [77].  

 

In summary, apoptosis and programmed cellular death are normal 

processes within the lifespan of the cell. There are key physiological and 
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morphological features that distinguish apoptotic cells from necrotic and viable 

cells. The EGFR is implicated in apoptosis in cell lines that hyperexpress it. Data 

from the Ceresa laboratory indicate that in addition to undergoing EGFR-

mediated apoptosis, this apoptotic process is spatially regulated within MDA-MB-

468 cells. Progression within this project involves determining all of the 

necessary protein components implicated in EGFR-mediated apoptosis.
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REVIEW OF PKG AND STAT3 

 

There are two major goals of this project: the first being to determine 

whether or not various EGFR ligands induce differential outcomes on viability 

and apoptosis. The second goal was to identify proteins suspected of having 

direct implications in the EGFR-induced apoptotic process in the MDA-MB-468 

cell line. As previously mentioned, it has been shown that low (�10 ng/mL) 

concentrations of EGF ligand enhance cell growth within this cell line. Ligand 

concentrations that exceed 10 ng/mL induce cell death [44].  

An EGFR-effector screening was conducted by means of western blot 

analysis, upon exposing MDA-MB-468 cells to low (1 ng/mL) and high (100 

ng/mL) EGF for various time points within a 2-hour period. Additionally, dose 

response experiments were conducted with increasing concentrations of EGF 

ligand for effector determinations as well. Protein effectors downstream of EGFR 

activation were expected to be upregulated with low ligand treatment if they had 

implications in cell growth. Conversely, effectors that were upregulated with high 

ligand treatment were assumed to have implications with cell death. After 

completing the effector screening, only two protein candidates were identified 

with potential correlation to upregulated EGFR with high ligand treatments: PKG 

and STAT3.  This chapter serves to provide background of both effector 

candidates. 
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PKG 

Cyclic guanosine monophosphate (cGMP), a second messenger protein 

derived from GTP, elicits downstream signaling events through interactions with 

intracellular receptor proteins. It is involved in the regulation of smooth muscle 

tone, bone growth, platelet aggregation, and electrolyte and fluid 

homeostasis[78-80]. Nitric Oxide (NO), produced from nitric oxide synthase, is 

the first component involved in the activation of cGMP. NO activates soluble 

guanylate cyclases (GC-S), which increase cGMP levels. Cyclic-GMP then 

proceeds to bind to and activate a number of downstream substrates [79]. One of 

the more prominent receptor substrates of cGMP is the cGMP-dependent protein 

kinase (PKG). PKG was first discovered in 1970 in the muscle of lobster tails 

[81]. It is a serine/threonine protein kinase whose substrates include receptors, 

enzymes and ion channels [82].  

The binding of 2 cGMP molecules is required for the complete activation 

of one PKG molecule [82]. PKG is a homodimer consisting of two of the same 

monomers, each of which contains a regulatory domain and a catalytic domain 

on one polypeptide chain [78-80, 82] (Fig. 3). Dimerization, auto-inhibition, and 

autophosphorylation all occur at the regulatory domain [79]. The catalytic domain 

contains a conserved threonine residue, whose phosphorylation is critical for 

relieving auto-inhibition, and essentially for kinase activity [79, 83]. PKG exists in 

two homologous forms: PKG I and PKG II. PKG I is localized within the 

cytoplasm whereas PKG II is generally associated with the cell membrane [82]. 

Additionally, there are two isoforms of the type I PKG homologue: PKGIβ and  
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Figure 3. Domain (A) and Crystal (B) Structures of cyclic-GMP-dependent 

protein kinase (PKG). (Domain structure adapted from Francis et al., 

Pharmacol. Rev., 2010. Crystal Structure adapted from JJ Kim et al., PLOS One, 

2011.) 

 

  

A 

B 
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PKGIα. These two isoforms are closely related, except in the N-terminal domain 

of the PKGIα isoform, which has 16 fewer residues than the PKGIβ isoform [82].  

More recently, the NO/cGMP/PKG pathway has been discovered to play 

critical roles in cell proliferation and chemoresistance in cancer cells [84, 85]. 

Studies have shown that cells that express PKGIα and PKGIβ undergo a 

biphasic response when exposed to NO. Exposure to low levels of NO results in 

activation of PKGIα specifically, leading to cell proliferation and suppression of 

apoptosis. This is because the PKGIα isoform has a higher sensitivity to NO than 

the PKGIβ isoform.  Conversely, a high level of NO leads to activation of both 

PKG isoforms, and tends to promote cell apoptosis and suppress cell 

proliferation. It is believed that the activation of PKGIβ by high-level NO 

contributes to the induction of apoptosis in cancer cells [86].   

 There have also been studies correlating EGFR activity and PKG 

activation. When OV2008 cells, an ovarian cancer cell line, were treated with 

increasing EGF ligand concentrations, immunoblot analyses displayed increased 

phosphorylation of serine-239 residue of VASP, a PKG-specific protein substrate. 

Western blot data from this study also exhibit increased phosphorylation of Src, a 

non-receptor tyrosine kinase protein that encodes for the SRC gene. These data 

suggest that activation of the EGFR and subsequent PKG activation occurs in a 

Src-dependent manner [85].  

Recently, activation of PKG by cGMP has become of significant interest  

as a novel molecular tool in the induction of apoptosis in cancer [87]. PKG 

activation has been shown to induce dose dependent decreases in cell viability, 
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as well as time dependent increases in caspases 3 and 9 activity within the MDA-

MB-468 cell line. The reduction in cell viability due to PKG activation was 

remarkably rescued with the addition of a PKG-specific antagonist to the MDA-

MB-468 cells [87]. Therefore, it is of interest to explore the activation of PKG and 

subsequent induction of PKG-mediated apoptosis in regard to EGFR-mediated 

apoptosis. Correlation of these two apoptotic pathways within the MDA-MB-468 

cell line shows potential in identifying a novel protein with direct implications in 

the spatial regulation of the EGFR. 

STAT3 

In addition to PKG, STAT3 signaling was also shown to be upregulated 

with high concentrations of EGF ligand. Signal Transducer and Activator of 

Transcription (STAT) proteins were initially discovered as a family of cytoplasm-

bound transcription factors, which mediate normal cellular responses to growth 

factors, cytokines, and ligands [88, 89]. STAT activation is critical for the 

mediation of certain biological processes, including cell proliferation, survival, 

differentiation, development and inflammation [90]. To date, there are seven 

known members of the STAT family expressed in mammalian tissue: STAT1, 2, 

3, 4, 5a, 5b, and 6. During activation, STAT proteins become phosphorylated at 

their unique critical tyrosine residues (Tyr705 for STAT3). This 

phosphorylation/activation process is mediated by growth factor receptor tyrosine 

kinases, and cytoplasmic kinases [88, 89]. Phosphorylation occurs at the 

cytoplasm, which induces STAT: STAT dimer formation between two monomers 

via SH2 domain interactions. From the cytoplasm, the activated STATS 
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accumulate in the nucleus, where they initiate and mediate gene transcription by 

binding to DNA response elements [88]. This results in either upregulation or 

downregulation of the biological processes discussed previously, which are 

critical for cellular homeostasis. 

Similarly to the EGFR, STAT proteins are implicated in cell growth and 

proliferation; however, they are upregulated in cancers and have been known to 

induce aberrant signaling in cancer cells. STAT3 has been reported to be 

constitutively phosphorylated in human cancer, and has been shown to promote 

tumor survival and cancer cell progression [90, 91].  Constitutive STAT3 activity 

has been reported in 30-60% of primary mammary malignancies [92]. One study 

reports that MDA-MB-468 cells exhibit constitutive activation of STAT3, and that 

upon inhibition using a pharmacological inhibitor (5,15-DPP), STAT3:DNA 

complexes decrease in a dose dependent manner of inhibitor [93]. These finding 

were not observed among the data described within this thesis.  

Prior to being implicated in cancer, STAT3-programmed cellular death 

was found to be associated with and required for IL-6 induced cell death in 

myeloid leukemia [94] and mammary grand involution [95, 96]. After a woman is 

finished lactating, the involution process must occur in order to return the 

mammary gland to normal size of a “pre-pregnancy” state. This process is reliant 

on the post-translational upregulation of STAT3. This leads to downregulation of 

serine protease inhibitor 2A (Spi2A), and upregulation of cathepsin B. This 

upregulation of cathepsin B leads to the ultimate induction of apoptosis from the 

lysosome [97].  
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It appears as though STAT3 has been shown to play opposing roles in 

mammary tissue. In one instance, it has been shown to potentiate cell growth 

and invasion when constitutively active in cancer cells. Contrastingly, it has been 

implicated in cell death, being required for mammary gland involution, and even 

in leukemia. One of the focuses of this thesis is to define the role and activity of 

STAT3 in MDA-MB-468 cells. 

In summary, cGMP dependent protein kinase (PKG) plays critical roles in 

smooth muscle function and regulation. PKG activity has been implicated in 

breast and ovarian cancer. More importantly, PKG activity has been shown to 

induce apoptosis in a dose dependent manner of a PKG agonist in MDA-MB-468 

cells [98]. Identifying a correlation between PKG-mediated and EGFR-mediated 

apoptosis is therefore of interest for the progression of this research project. 

STAT3 has also been implicated in cancer. Although this protein is often 

associated with cell growth and survival, it is constitutively active in certain breast 

cancers, and required for cell death in certain contexts, such as post-lactation 

mammary gland involution [97]. It is unknown whether or not PKG and STAT3 

have correlations with EGFR-induced apoptosis in MDA-MB-468 cells. It is now 

of interest to determine if they are in fact intermediary effectors within this 

process.  
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MATERIALS AND METHODS 

Cell Line 

 MDA-MB-468 cells were acquired from the American Type Culture Collection 

(ATCC) and maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% Fetal Bovine Serum (FBS), 1% penicillin, 1% 

streptomycin, and 2 mM glutamine.  The cells were maintained at incubation 

conditions of 37 ºC in 5% CO2. 

 

Cell Viability Analyses 

1. MTT assay 

MTT assays were conducted in order to assess cell viability utilizing the 

MDA-MB-468 cells. The MTT assay assesses mitochondrial dehydrogenase 

activity based on its ability to cleave the tetrazolium ring of the MTT reagent 

(Sigma Aldrich), and subsequently produce formazan. Only mitochondria of 

viable cells are capable of such cleavage. Cells were plated at a density of 

5,000-10,000 cells with DMEM supplemented with 10% FBS in a 96 well plate. 

After a 48 hour incubation period, the cells were washed with PBS and serum 

starved for 3 hours in DMEM supplemented with 0.2% BSA. The cells were then 

treated with various ligands and reagents in order to induce cell death.  After 

appropriate incubation periods, the MTT reagent (5 mg/mL in PBS) was added to 

each sample within the 96-well plate. The cells were then incubated for 2 hours 
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at 37ºC in the absence of CO2.  An extraction buffer (20% sodium dodecyl 

sulfate, 50% N-dimethylformamide, 50% ddH2O, 80% Acetic Acid, 1M HCl) was 

then added to all samples of the 96-well plate in order to extract and solubilize 

the formazan crystals. After an additional 30-minute incubation with extraction 

buffer at 37ºC in the absence of CO2, the 96-well plate was then analyzed on a 

BioTek Synergy HT plate reader and Gen5 BioTek software, at a wavelength of 

570 nm. The plate was then read a second time after 24 hours at the same 

wavelength.  

2. Alamarblue assay 

Alamarblue assays were also conducted in order to assess cell viability 

within the MDA-MB-468 cells. Resazurin, the active ingredient in the alamarblue 

reagent, is reduced to Resorufin in viable cells. Resorufin is highly fluorescent 

and viable cells enhance this fluorescence, which can be analyzed and quantified 

on a plate reader.  Cells were plated at a density of 10,000 cells in DMEM 

supplemented with 10% FBS in a 96-well plate. After a 48 hour incubation period, 

the cells were washed with PBS and serum starved overnight in serum free 

DMEM. The cells were then treated with reagents in order to induce either cell 

growth or death. The cells were then incubated in the presence of the various 

reagents for 16 hours. The alamarblue reagent was then added as 10% of the 

sample volume prior to a 2 hour incubation period. The 96-well plate was then 

analyzed on a BioTek Synergy HT plate reader and Gen5 BioTek software, at 

wavelengths of 530 nm (excitation) and 590 nm (emission). 

 



! 29!

Cell Lysate Preparation and Immunoblot Analyses.  

Cell lysates were acquired by washing the cells twice in PBS prior to the 

equilibration to 4 ºC and addition of RIPA lysis buffer for cell solubilization (150 

mm NaCl, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, 50 mm Tris (pH 

8.0), 10 mm sodium pyrophosphate, 100 mm sodium fluoride, 2 mm 

phenylmethyl sulfonyl fluoride). The lysis buffer/cell mixture was then rotated 

end-over-end for 10 min at 4 °C, followed by a 10 minute centrifugation period at 

15,000 x g, also at 4 °C. The protein concentration of the supernatant from each 

sample was then assessed by a BCA assay (Pierce), and samples were 

subjected to a 1:3 dilution in SDS sample buffer. Equivalent amounts of protein 

(20-40 µg) were separated by either a 7.5%, 10% or 12% SDS-PAGE, prior to 

being transferred to nitrocellulose membranes. After being washed in a blocking 

reagent to prevent non-specific antibody binding, the membranes were exposed 

to various primary antibodies overnight at 4 ºC.  The pY99 primary antibody 

(Santa Cruz) was used to detect phosphorylated tyrosine residues of the EGFR. 

The SC-03 primary antibody (Santa Cruz) was used to detect total 

(phosphorylated and non-phosphorylated) EGFR. The α-tubulin (Sigma Aldrich) 

as well as GAPDH (Santa Cruz) primary antibodies were used as loading 

controls to ensure equivalent amounts of protein were loaded into each lane. The 

following antibodies were also employed for studies within this thesis: pY1045 

(Cell Signaling), pSTAT3(Tyr705; Cell Signaling), pSTAT1 (Tyr701; Cell 

Signaling), STAT3 (Cell Signaling), pMAPK (Cell Signaling), pAKT (Cell 

Signaling), pSRC (Cell Signaling), pVASP (Ser239; Cell Signaling), VASP (Cell 
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Signaling) and pBAD (Ser112; Cell Signaling). After a 1-hour incubation period 

with either anti-mouse (for pY99, α-tubulin and GAPDH) or anti-rabbit (for SC-03, 

pSTAT1(Tyr701), pSTAT3(Tyr705) , STAT3, pBAD (Ser112), pVASP(Ser239), 

VASP, pMAPK, pAKT, and pSRC) secondary antibodies, the membranes were 

washed in TBS-Tween and visualized by ECL reagent using a Fotodyne imaging 

system. All western blot data were analyzed and quantified using ImageJ 

software.  

Statistical Analyses 

 Treatment groups within each individual MTT and Alamarblue experiments 

were quantified to the untreated control to generate percent viabilities for each 

experimental condition. These percentages for 3 individual experiments were 

then averaged together. Data acquired from both assays are reported as the 

means of the percent viabilities ±�standard error mean (SEM; n=3) unless 

otherwise specified.  An unpaired student t-test was then performed for the 

determination of significance. Each treatment group was compared to the 

untreated, serum free (SF), DMEM control. A p value of less than 0.05 is 

designated significant, and is indicated by a single asterisk (*). A p value of less 

than 0.01 is designated significant, and is indicated by two asterisks (**). A p 

value of less than 0.001 is designated very significant, and is indicated by three 

asterisks (***). A p value of less than 0.0001 is designated extremely significant, 

and is indicated by four asterisks (****).  

 

 



! 31!

RESULTS 

 

There were two major goals of this project, the first being to determine 

whether or not EGFR-induced apoptosis is ligand specific. The second goal was 

to identify proteins suspected of having direct implications in the EGFR-induced 

apoptotic process in the MDA-MB-468 cell line.  

 
EGF, BTC, and TGFA ligands induce dose dependent decreases in cell 
viability in MDA-MB-468 cell line. 
  

The purpose of this study was to investigate the possibility that different 

EGFR ligands have differential outcomes on EGFR-mediated viability and or 

induction of apoptosis. To assess this possibility, MDA-MB-468 cells were 

subjected to an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) cell viability assay upon exposure to EGF, BTC, and TGFA ligands for 

16 hours total. All three of these ligands induce a dose dependent decrease in 

cell viability. All ligands showed statistical differences at high (16 nM) 

concentrations when quantified to the serum free DMEM control treated cells 

(Figure 4).  
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EGF, BTC, and TGFA all induce a rounded cellular morphology in MDA-MB-
468 cells. 
 
 The purpose of this study was to observe the geometry and morphology of 

the MDA-MB-468 cells after exposure to EGF, BTC, and TGFA ligands. When 

cells undergo apoptosis, they physically shrink in size, and round in morphology. 

We observed the cells at various time points upon exposure to 16 nM 

concentrations of each ligand. With increased time, we observed an increase in 

the amount of rounded cells versus cells with a viable, cobblestone-like 

morphology. At the latest, 24-hour time point, we observed that all cells exposed 

to all three ligands were morphologically rounded (Figure 5). 

 
EGF, BTC, and TGFA induce dose dependent increases in EGFR 
phosphorylation. 
 
 The purpose of this experiment was to expose MDA-MB-468 cells to 

increasing concentrations of EGF, BTC, and TGFA ligands in order to compare 

and contrast any differences in EGFR phosphorylation patterns by means of 

western blot analysis. Cells were exposed to 0, 0.16 nM, 0.5 nM, 1.6 nM, 5 nM, 

and 16 nM concentrations of each ligand for 1 hour. Western blot analyses 

confirm dose dependent increases in EGFR phosphorylation in response to each 

of the three ligands (Figure 6).
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Figure 4. 

 

 

 
Figure 4. EGF, BTC, and TGFA ligands induce dose dependent decreases 
in cell viability in MDA-MB-468 cell line. 
Results from an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) cell viability assay. EGF, BTC, and TGFA ligands all induce a dose 
dependent decrease in cell viability in the MDA-MB-468 cell line. Data are means 
of percent viability ± SEM (n=4). Data were subjected to an unpaired student T-
Test, each being compared to the untreated, serum free media control. An 
asterisk (*) indicates a significance of p<0.05. **, p<0.01.  
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Figure 5. 
 

 
  
Figure 5. EGF, BTC, and TGFA ligands each induce a rounded cellular 
morphology in MDA-MB-468 cells. 
Cells were exposed to 16 nM concentrations of each ligand and then incubated 
for 24 hours total. Photomicrographs (20x) were taken at times 0h, 8h, 16h, and 
24h on a Nikon Eclipse Ti Eclipse widefield epifluorescence microscope.  
Scale bar = 25 µm 
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Figure 6. 

 

 
 
 
Figure 6. EGF, BTC, and TGFA induce dose dependent increases in EGFR 
phosphorylation. 
After harvesting the cell lysates, 40 µg of protein from each sample were 
resolved on a 7.5% SDS-PAGE. The protein was then transferred to a 
nitrocellulose membrane, which was then immunoblotted for either total 
phosphotyrosine containing proteins (p-EGFR) (pY99), Total EGFR (Sc-03), or 
loading control, α-Tubulin. After incubation with appropriate secondary 
antibodies, the nitrocellulose membranes were imaged using a Fotodyne, ECL 
system.  
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Identifying differences in EGFR-effector signaling between low (1 ng/mL) 
and high (100 ng/mL) EGF ligand exposures.  
 

The purpose of this experiment was to expose MDA-MB-468 cells to low 

and high EGF concentrations in order to identify any differences in 

phosphorylation patterns and effector signaling. As previously mentioned, MDA-

MB-468 cells undergo cell growth when exposed to low (1 ng/mL) concentrations 

of EGF, and apoptosis when exposed to high (≥10 ng/mL) EGF concentrations. 

The goal was to subject the cells to both low and high ligand, and then look at 

effector signaling in order to identify and differentiate effectors associated with 

cell growth, versus those associated with apoptosis. Cells were exposed to each 

of the ligand concentrations at various time points for a total of 120 minutes. 

Immunoblot analyses allowed for the assessment of pY1045, EGFR, pMAPK, 

pAKT, pSRC, pBAD, p-VASP-SER239, and GAPDH (Figure 7).  

Mitogen-activated protein kinase 1 (MAPK), Proto-oncogene tyrosine-
protein kinase sarcoma (SRC), Protein Kinase B (AKT), and Bcl-associated 
Death Protein (BAD) exhibit no significant differences in EGFR signaling at 
low versus high ligand concentrations.  

These data are a quantification of three separate experiments of the 

western blot data, represented in figure 7. Western blot data of all four effectors 

were quantified to the loading control for each experiment, GAPDH. No 

significant differences between low and high ligand exposures could be 

determined in phosphorylated, (p)-MAPK (Figure 8A), p-AKT (Figure 8B), p-SRC 

(Figure 8C), or p-BAD (Figure 8D)
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Figure 7. 
 

 
 
Figure 7. Identifying differences in EGFR-effector signaling between low  
(1 ng/mL) and high (100 ng/mL) EGF ligand exposures.  
After harvesting the cell lysates, 20 µg of protein from each sample were 
resolved on a 12% SDS-PAGE. The protein was then transferred to a 
nitrocellulose membrane, which was then subjected to immunoblot analyses, to 
assess for pY1045, EGFR, pMAPK, pAKT, pSRC, pBAD, p-VASP-SER239, and 
GAPDH phosphorylation. After incubation with appropriate secondary antibodies, 
the nitrocellulose membranes were imaged using a Fotodyne, ECL system.  
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Figure 8. 

 

 

  
Figure 8. MAPK, SRC, AKT, and BAD exhibit no significant differences in 
EGFR signaling at low versus high ligand concentrations.  
Quantification of three separate experiments of the western blot data represented 
in Figure 7. Error bars are expressed as ± SEM. No significant differences in 
signaling between low and high EGF ligand exposures could be determined in 
phosphorylated, (p)-MAPK (A), p-AKT (B), p-SRC (C), or p-BAD (D). 
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Increases in EGF ligand concentration elicit a dose dependent increase in 
p-VASP(SER239) phosphorylation.  
 
 The purpose of this experiment was to assess PKG activity, by means of a 

p-VASP-SER239 antibody, in order to determine if its activity had any correlation 

with EGFR activity. A dose response was conducted, using 0, 1, 3, 10, 30 and 

100 ng/mL concentrations of EGF ligand. Data confirm that increases in EGF 

ligand induce dosed dependent increases in p-VASP-SER239 phosphorylation 

(Figure 9A). Western blot analyses of pY1045 and p-VASP-Ser239 from 3 

experiments were both analyzed and quantified to western blots of total EGFR 

and total VASP respectively (Figures 9B and 9C). Data from figure 9D are a 

quantification of three experiments of the p-VASP-SER239 western blot data, 

represented in Figure 7. 

PKG agonist, 8-Bromo-cGMP, induces a dose dependent decrease in cell 
viability.  
 
 The purpose of this experiment was to assess PKG-activation and its 

potential role in the induction of apoptosis in MDA-MB-468 cells. Literature has 

shown that PKG is able to induce apoptosis within this cell line. It was of interest 

to determine if PKG induction of apoptosis had correlation to EGFR-induced 

apoptosis. We decided to first assess cell viability by means of an MTT assay in 

order to configure an optimal concentration for Annexin V assay, a more accurate 

measure of apoptosis. MDA-MB-468 cells were subjected to increasing 

concentrations (100 µM, 300 µM, 500 µM, 1 mM, 3 mM, 10 mM) of PKG 

activator, 8-Bromo-cGMP (8-Br-cGMP; Sigma) for 48 hours total. Cells treated in 

serum free   
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Figure 9. 
 
 
 

 
 
 
Figure 9. Increases in EGF ligand concentration elicit a dose dependent 
increase in p-VASP(SER239) phosphorylation.  
A dose response was conducted, using 0, 1, 3, 10, 30 and 100 ng/mL 
concentrations of EGF ligand. Cells were exposed to the 5 different ligand 
concentrations for 30 minutes. Twenty µg of protein per sample were then 
resolved on a 12% SDS-PAGE (A). Western blot data of p-VASP-SER239 (B) 
and pY1045 (B) blot membranes were quantified to total VASP and total EGFR, 
respectively. Data from Figure 9D are a quantification of three experiments of the 
p-VASP-SER239 western blot data, represented in Figure 7. Error bars are 
expressed as ± SEM. 
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DMEM (SF) and DMEM supplemented in 10% FBS (10% FBS) served as 

positive controls for viability. Cells treated with 16 nM EGF and 100 nM 

Staurosporine (STS) served as negative controls for viability, and positive 

controls for apoptosis. Data from this experiment exhibit a clear dose dependent 

decrease in MDA-MB-468 cell viability in response to the dose dependent 

increases in PKG activation (Figure 10). 

 
The use of PKG agonist, 8-Bromo-cGMP, confirms that PKG does not elicit 
EGFR phosphorylation.  
 
 The purpose of this experiment was to assess the efficacy of commercially 

available PKG inhibitors, as well as the ability of a PKG agonist to activate the 

EGFR. The only way of determining if PKG plays a true intermediary role in 

EGFR-induced apoptosis is to reduce PKG activity, and then subsequently 

assess this effect on apoptosis and viability. The PKG antagonist, (D)-DT-2 

(Biolog Life Science Institute; IC50 ~12 nM) was used at 1.25 nM, 12.5 nM, 25 

nM, 125 nM, 500 nM, and 1.25 µM concentrations. The PKG agonist, 8-Br-

cGMP, was used at 10 µM, 30 µM, 100 µM, 300 µM, 1 mM, and 3 mM 

concentrations, with an accompanying vehicle control comprised of 33% ddH2O. 

The 8-Br-cGMP agonist was employed within this assay as a positive control for 

pVASP(Ser239) phosphorylation, whereas cells treated in serum free DMEM 

(SF) served as negative controls for EGFR (pY1045) and pVASP(Ser239) 

phosphorylation (Figure 11A).  The PKG antagonist, Rp-8Br-PET-cGMPs (Biolog 

Life Science Institute; IC50 ~25 µM) was used at 1 µM, 3 µM, 10 µM, 30 µM, and 

100 µM concentrations, with an accompanying vehicle control comprised of 
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0.38% Dimethylformamide (DMF) in DMEM (Figure 11B). The PKG agonist, 8-

Br-cGMP, was used at 300 µM, 1 mM, 1.3 mM, 2 mM, and 3 mM concentrations, 

with an accompanying vehicle control comprised of 33% ddH2O in DMEM. The 8-

Br-cGMP agonist was employed within this assay as a positive control for 

pVASP(Ser239) phosphorylation, whereas cells treated in serum free DMEM 

(SF) served as negative controls for EGFR (pY1045) and pVASP(Ser239) 

phosphorylation (Figure 11B).  Although neither antagonist functioned as 

sufficiently as anticipated, it is clear that PKG activation with 8-Bromo-cGMP 

does not induce EGFR (pY1045) phosphorylation and subsequent activation.  

 
PSTAT3(Tyr705) is upregulated in both a dose and time dependent manner, 
at high EGF ligand concentrations.  
 

The purpose of these experiments was to assess STAT3 signaling when 

exposed to low and high EGF concentrations. STAT3 was one of the proteins 

assessed in our initial EGFR-effector screening. MDA-MB-468 cells were 

subjected to 2-hour time course experiments (Figure 12A. and 12B.), and 30-

minute dose response experiments (Figure 12C. and 12D.) at low and high 

ligand concentrations, as described previously. Data confirm that both STAT1 

and STAT3 are upregulated in a time dependent manner, at 100 ng/mL EGF 

ligand concentrations. At 1 ng/mL EGF, minimal STAT1 activation and no STAT3 

activation was observed. Data from dose response experiments, utilizing 1, 3, 10, 

30 and 100 ng/mL EGF, confirm that STAT3 is upregulated in a dose dependent 

manner. 
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Figure 10.  

 

  
Figure 10. Dose dependent increase in PKG activator, 8-Bromo-cGMP, 
induces a dose dependent decrease in cell viability. 
Results from an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) cell viability assay. Increasing concentrations of a PKG activator induce 
a dose dependent decrease in cell viability within the MDA-MB-468 cell line after 
48 hours. Data are means of percent viability ± SEM (n=3). Data were subjected 
to an unpaired student T-Test, each being compared to the untreated, serum free 
(SF) DMEM control. An asterisk (*) indicates a significance of p<0.05.   **, 
p<0.01.   ***, p<0.001.     ****, p<0.0001. 
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Figure 11. 
 
 

 
 

Figure 11. The use of PKG agonist, 8-Bromo-cGMP, confirms that PKG 
does not elicit EGFR phosphorylation.  
A. The PKG antagonist, (D)-DT-2 (IC50 ~12 nM) was used at 1.25 nM, 12.5 nM, 
25 nM, 125 nM, 500 nM, and 1.25 µM concentrations. The PKG agonist, 8-Br-
cGMP, was used at 10 µM, 30 µM, 100 µM, 300 µM, 1 mM, and 3 mM 
concentrations, with an accompanying vehicle control (VC) comprised of 33% 
ddH2O in DMEM. Forty µg of protein per sample were then resolved on a 12% 
SDS-PAGE.  
B. The PKG antagonist, Rp-8Br-PET-cGMPs (IC50 = 25 µM) was used at 1 µM, 3 
µM, 10 µM, 30 µM, and 100 µM concentrations, with an accompanying vehicle 
control comprised of 0.38% Dimethylformamide (DMF). The PKG agonist, 8-Br-
cGMP, was used at 300 µM, 1 mM, 1.3 mM, 2 mM, and 3 mM concentrations, 
with an accompanying vehicle control (VC) comprised of 33% ddH2O in DMEM. 
Twenty µg of protein per sample were then resolved on a 12% SDS-PAGE.  
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Figure 12. 
 

 
 
 
Figure 12. pSTAT3(Tyr705) is upregulated in both a dose and time 
dependent manner, at high EGF ligand concentrations.  

A. MDA-MB-468 cells were subjected to a 2-hour time course experiment, 
and were exposed to 1 ng/mL and 100 ng/mL EGF concentrations at various 
time points within the 2-hour window frame (0, 15, 30, 60, 90, and 120 
minutes). Thirty µg of protein per sample were then resolved on a 12% SDS-
PAGE. 
B. Quantification of three independent time course experiments, represented 
in figure 12A. Error bars are expressed as ± SEM.  
C. The cells were also subjected to a 30-minute dose response experiment, 
and were exposed to ligand concentrations of 1, 3, 10, 30 and 100 ng/mL 
EGF.  
D. Quantification of three independent dose response experiments, 
represented in figure 12C. Error bars are expressed as ± SEM.  
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Commercially available STAT3 antagonists exhibit non-specific inhibition 
of STAT3 in MDA-MB-468 cells. 
 

The purpose of these experiments was to utilize 2 commercially available 

STAT3 inhibitors in order to examine the role of STAT3 in the induction of EGFR-

mediated apoptosis. MDA-MB-468 cells were exposed to increased 

concentrations of 5,15-DPP (Sigma; IC50= 280 nM; Figure 13A.) and STATTIC 

(Sigma; IC50= 5.1 µM; Figure 13B.) STAT3 inhibitors. In addition to the dose 

dependent decrease in pSTAT3(Tyr705) that each inhibitor induced, both 

inhibitors also induced dose dependent inhibition of phosphorylated EGFR 

(pY1045).  

STATTIC induces a dose dependent decrease in cell viability. 

 Upon completion of dose response, western blot experiments with the 

STATTIC inhibitor, cytotoxicity was observed with each utilized concentration of 

inhibitor. Therefore, Alamarblue, cell viability experiments were employed in 

order to assess and quantitate the extent of toxicity STATTIC induced within 

MDA-MB-468 cells. STATTIC was reconstituted in DMF and cells were treated 

with an accompanying vehicle control of 0.31% DMF in DMEM (Figure 14A). It 

was also of interest to determine if STATTIC used in combination with 100 ng/mL 

EGF ligand induced more apoptosis than STATTIC alone. Alamarblue 

experiments confirm that with low (3 µM) STATTIC, 100 ng/mL of EGF appears 

to slightly enhance the extent of apoptosis; however, the concentrations of both 

EGF and STATTIC alone induced over 50% cell death. Therefore, it was not 

possible to fully describe the interaction of the two components in combination 

with one another (Figure 14B). 
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Figure 13. 

 

 
 

Figure 13. Commercially available STAT3 antagonists exhibit non-specific 
inhibition of STAT3 in MDA-MB-468 cells. 

A. A dose response experiment was conducted, utilizing 30 nM, 100 nM, 300 
nM, and 1 µM concentrations of the 5,15-DPP STAT3 inhibitor. Cells were 
also treated with a vehicle control (VC) of 0.34% DMF in DMEM. Upon 
harvesting cell lysates, 40 µg of protein per sample were then resolved on 
a 12% SDS-PAGE. 

B.  A second STAT3 inhibitor, STATTIC, was employed at 1 µM, 3 µM, 10 
µM, 30 µM, and 100 µM concentrations. The cells were also treated with a 
vehicle control (VC) of 0.38% DMF in DMEM. Upon harvesting cell 
lysates, 20 µg of protein per sample were then resolved on a 12% SDS-
PAGE. 
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Figure 14. 
 

 
 

Figure 14. STATTIC induces a dose dependent decrease in cell viability. 
A. STAT3 inhibitor, STATTIC, was employed in order to examine and 

quantify its extent of cytotoxicity. EGF and staurosporine treatments 
served as positive controls for apoptosis (n=2 ± SEM). B. STATTIC was 
used in combination with 100 ng/mL EGF ligand to determine if the 
combination treatment enhanced the induction of apoptosis (n=1).  
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siRNA targeting STAT3 are able to significantly reduce STAT3 activity. 
 
 The purpose of this experiment was to determine if MDA-MB-468 cells 

could be subjected to siRNA knockdown. This determination is critical for 

employment of subsequent siRNA, and subsequent analysis of cell viability and 

apoptosis. In order to assess this, siRNA targeting STAT3 (Dharmacon; SO-

2427018G) were employed. Western blot analyses confirm that with the addition 

of both STAT3 siRNA, vast reduction in phosphorylated and total STAT3 (78% 

reduction) is observed in MDA-MB-468 cells (Figure 15).  
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Figure 15.  

 

 
 
Figure 15. siRNA targeting STAT3 are able to significantly reduce STAT3 
activity. MDA-MB-468 cells were subjected to 50 nM and 100 nM STAT3 siRNA 
for 72 and 96 hours. After allotted time points, cells were harvested, and 20 µg of 
protein per sample were then resolved on a 10% SDS-PAGE.
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DISCUSSION 
 

Initial intentions of this study were to understand the molecular 

mechanisms that elicit EGFR-mediated apoptosis.  In doing so, MDA-MB-468 

cells were exposed to various endogenous EGFR ligands and determine their 

individual outcomes on cell viability. It was of interest to determine if the EGFR 

had ligand specificity within this cell line. Knowing that EGF, BTC, and TGFA 

ligands each cause differential endocytic sorting of the receptor [35], it is possible 

that these ligands can differentially affect cell viability and apoptosis as well. If 

the ligands induce different cellular morphologies and phenotypes, this 

information could be useful in determining how the EGFR is spatially regulated 

within this cell line. We decided to first assess cell viability in order to determine 

optimal time points and concentrations for subsequent apoptosis analyses. 

Results from the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) cell viability assay confirm that the MDA-MB-468 cells undergo dose 

dependent decreases in cell viability in response to all three ligands (Figure 4). 

Cell morphology was assessed upon exposure of the MDA-MB-468 cells 

to high (16 nM) concentrations of each ligand. When cells undergo cell death, 

they tend to round morphologically. We wanted to physically assess the condition 

of the cell by taking bright field images of the cells with increased time. The 24-

hour images of each of the three-ligand treatment groups showed the same 
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rounded cellular morphologies, indicative of cell death (Figure 5). These data 

confirm the findings within the MTT analyses.  

 Lastly, phosphorylation patterns were assessed after exposure to 

increasing concentrations of each ligand (0, 0.16 nM, 0.5 nM, 1.6 nM, 5 nM, 16 

nM). This assay was conducted in order to assess for any variations in EGFR 

phosphorylation patterns. Although BTC ligand had slightly reduced 

phosphorylation in comparison to EGF and TGFA ligands, all 3 ligands induced 

dose dependent increases in phosphorylation, with similar phosphorylation 

patterns (Figure 6).  

From these three experiments, we can confidently confirm that different 

EGFR ligands do not induce any variation in cell integrity or morphology within 

the MDA-MB-468 cell line. All three of these ligands induce cell death 

morphology, decreases in cell viability, and have similar EGFR phosphorylation 

patterns within our cell line of interest. Therefore, we conclude that EGFR-

mediated apoptosis from the endosomes is not ligand specific. This 

determination means that there is a requirement for a different experimental 

approach in order to understand the effector proteins and mechanisms involved 

in EGFR-mediated apoptosis and spatial regulation.   

The findings within these studies were ultimately anticipated. We suspect 

that EGFR-mediated apoptosis is a regulatory mechanism of cancers that hyper-

express this receptor. Low concentrations of EGF ligand results in a lower ratio of 

activated receptors, leading to cell growth. Conversely, with high EGF ligand 

concentrations, a larger amount of receptors are activated, and cell death occurs 
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[44]. We speculate that in MDA-MB-468 cells, high ligand levels elicits high 

receptor activation at cell membrane, resulting in the need for an immense level 

of ligand:receptor internalization and trafficking at the same time. The endocytic 

machinery required for the internalization and trafficking of the receptor is 

incapable of efficiently sorting the large number of ligand:receptor complexes, 

causing  saturation of the endocytic machinery. As a result of this saturation, the 

increasingly high levels of activated receptors accumulate at the early endosome. 

This causes a disruption in normal cell homeostasis, inevitably resulting in 

apoptosis. We ultimately hypothesize that the accumulation at the endosome as 

a result of high receptor activation is the underlying culprit of EGFR-mediated 

apoptosis in the MDA-MB-468 cell line. Therefore, higher levels of any natural 

receptor ligand will still deduce the same extent of receptor activation, and result 

in cell death.  

It is known that the biological sequence of receptor tyrosine kinases 

entails the recruitment of downstream signaling molecules to the phosphorylated 

tyrosine residues of the activated receptor dimer [4]. These signaling molecules 

are often intermediates in signaling cascades that are ultimately responsible for 

cell growth, migration, and in our case apoptosis. Upon EGFR activation, and 

internalization within the MDA-MB-468 cell line, we speculate that endosomal 

accumulation of the receptor results in the recruitment of resident proteins, and 

which are ultimately responsible for initiating the downstream signaling cascade 

for the induction of apoptosis. Identifying the kinases/proteins that are recruited 
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specifically for the induction of apoptosis is an ideal manner of determining how 

the EGFR is spatially regulated in MDA-MB-468 cells, and in cancer.  

 In addition to the EGFR, activation of cyclic GMP-dependent protein 

kinases (PKGs) has been shown to induce dose dependent increases in 

apoptosis in MDA-MB-468 cells [98]. Data from our MTT assay, utilizing a potent 

activator of PKG (8-Bromo-cGMP) in MDA-MB-468 cells, indicate that increasing 

concentrations of the PKG activator result in dose dependent decreases in cell 

viability (Figure 10). Our findings from this MTT assay complement the findings 

from the literature, and present us with a kinase candidate with a plausible role in 

EGFR-mediated apoptosis. Western blot analyses confirm that with the addition 

of increasing concentrations of EGF ligand, a dose dependent increase in PKG 

activation is observed, by means of a pVASP(Ser239) antibody. Western blot 

analyses also confirm that with addition of 3 mM 8-Bromo-cGMP, PKG agonist, 

activation of PKG is observed, however, no EGFR phosphorylation in observed. 

This is indicative that PKG is downstream of and activated in a dose dependent 

manner by the EGFR.  Commercially available PKG antagonists, (D)-DT-2 and  

Rp-8-Br-PET-cGMPs, did not sufficiently inhibit PKG activity within the MDA-MB-

468 cell line. The lack of inhibition could be due to the fact that the EGFR is 

directly phosphorylating VASP at the serine 239 residue. It is now clear that 

siRNA targeting PKG must be employed in order to assess this possibility.     

Confirming or refuting PKG as an intermediate in EGFR-mediated apoptosis in 

MDA-MB-468 cells is the next step in defining the regulatory mechanisms of the 

EGFR in cancer.  
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Figure 16. 

 

Figure 16. Working model for how EGFR-induced apoptosis occurs in a 
PKG-mediated manner. The speculation is that PKG is a resident kinase of the 
early endosome that is recruited to elicit downstream signaling pathways that 
result in the induction of apoptosis.  
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It was also of interest to attempt to find other protein candidates that could 

potentially be implicated in EGFR-induced apoptosis. Because of this, an EGFR-

effector screening was conducted. Five proteins, MAPK, AKT, SRC, BAD, and 

STAT3 were selected due to their differential roles in various, downstream cell 

signaling pathways. Each of these effectors has been implicated with the EGFR 

and apoptosis. As previously mentioned, MDA-MB-468 cells undergo cell growth 

when exposed to low (1 ng/mL) concentrations of EGF, and apoptosis when 

exposed to high (�10 ng/mL) EGF concentrations. The goal was to subject the 

cells to 2-hour time course experiments with low and high ligand, and then look 

at signaling within the 5-effector proteins in order to identify and differentiate 

effectors associated with cell growth (preferential signaling with low ligand), 

versus those associated with apoptosis (preferential signaling with high ligand). 

We determined that there was no significant difference in signaling between low 

and high EGF concentrations among pAKT, pMAPK, pSRC, and pBAD (Figure 

7). Therefore, we chose not to pursue these four proteins for subsequent studies.  

The MDA-MB-468 cells were also subjected to dose response 

experiments with EGF ligand, and then subsequent western blot analyses of the 

dose response experiments. Two protein candidates showed to be dynamically 

upregulated in an EGFR dose dependent manner: PKG and STAT3 (Figure 9A 

an Figure 12C, respectively). Data within this thesis do not indicate that STAT3 is 

constitutively active. Both, dose response and time course data confirm that 

STAT3 is inactive at low concentrations, and preferentially activated at high 

concentrations of EGF (Figure 12A and Figure 12B).  This suggests that the 
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EGFR is activating STAT3 at the high EGF concentrations as an intermediate in 

the induction of apoptosis. However, it cannot be ruled out that STAT3 is being 

activated as a compensatory mechanism, in an attempt to rescue the cell from 

EGFR-mediated apoptosis.  

In order to assess the role of STAT3 in EGFR-induced apoptosis, two 

different STAT3 inhibitors were employed: 5,15-DPP and STATTIC. Although the 

5,15-DPP inhibitor was not cytotoxic, it inhibited the EGFR, more than pSTAT3 

(Figure 13A). Findings among this thesis also contradict that of the literature, 

which reports no reduction in pSTAT3(Tyr 705) phosphorylation with 50 µM 

treatment of 5,15-DPP in MDA-MB-468 cells [93]. Similarly to 5,15-DPP, 

STATTIC also antagonized the EGFR in a dose dependent manner, completely 

blocking EGFR activation at 100 µM. Unlike 5,15-DPP, STATTIC was however 

cytotoxic (Figure 14A). An Alamarblue experiment utilizing STATTIC confirmed a 

dose dependent decrease in cell viability in response to the STATTIC reagent. 

STATTIC was also assessed in combination with a fixed concentration (100 

ng/mL) of EGF ligand. If STAT3 is being activated as a compensatory 

mechanism, in favor of cell survival, inhibition of STAT3 with the addition of EGF 

ligand should potentiate the induction of apoptosis, more than STATTC or EGF 

alone. The dose response curve of STATTIC + EGF did seem to potentiate a 

decrease in cell viability, but only at low (3 µM) STATTIC concentrations. This is 

believed to be due to the fact that at high concentrations, STATTIC inhibits 

activation of the EGFR. Potentiation of cell death of the cells exposed to 

STATTIC in combination with EGF would not be an expected observation at high 
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STATTIC concentrations, because of the minimal EGFR activity occurring. In 

order to accurately assess the role of STAT3 in EGFR-induced apoptosis, siRNA 

targeting STAT3 must be employed. Through use of readily available siRNA, 

targeting STAT3, it can confidently be confirmed that MDA-MB-468 cells are 

cable of being subjected to siRNA transfections (Figure 15).  

The current model for the role of STAT3 in EGFR-induced apoptosis in 

MDA-MB-468 cells exists as 2 scenarios (Figure 17). In the left panel; STAT3 is 

an intermediate in EGFR-induced apoptosis. Similarly to the involution process, 

STAT3 is upregulated, which causes the post-translational upregulation of 

cathepsin B. Cathepsin B upregulation leads to lysosomal induction of apoptosis. 

Conversely, in the right panel, STAT3 is upregulated in an attempt to rescue the 

cell from EGFR-induced apoptosis. In this portion of the model, STAT3 might be 

upregulated, specifically at high concentrations as a “rescue mechanism” to 

avoid the cell undergoing apoptosis. This mechanism inevitably fails, however, 

which is evidenced by the fact the EGFR-mediated apoptosis occurs in the MDA-

MB-468 cell line.  
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Figure 17. 

 
Figure 17. Two models describing the potential roles of STAT3 in EGFR-
induced apoptosis in MDA-MB-468 cells. (Adapted from Resemann et al., 
Molecular and Cellular Endocrinology, 2013).   
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SUMMARY AND CONCLUSIONS 

 

The research conducted within this thesis attempts to identify any ligand 

specificity in EGFR-mediated apoptosis in MDA-MB-468 breast cancer cells. Cell 

viability, EGFR-phosphorylation patterns, and cell morphology were all assessed 

in the MDA-MB-468 cell line upon exposure to EGF, BTC, and TGFA ligands.  All 

of the ligands induce dose dependent decreases in viability, as well as dose 

dependent increases in EGFR-phosphorylation. Each of the ligands induced 

rounded cellular morphologies at high concentrations. These findings are 

indicative that there is no ligand specificity in regard to EGFR-mediated 

apoptosis within this cell line, and that these cells undergo cell death when 

exposed to the 3 ligands. This work helped to unveil the roles of endogenous 

EGFR ligands in receptor trafficking and overall cell viability. However, a different 

approach had to be employed in order to further understand how the receptor is 

spatially regulated within our cell line of interest.  

Due to time course and dose response experiments, two protein 

candidates have been identified to potentially play an intermediary role in EGFR-

induced apoptosis: PKG and STAT3. Ideally, it is of interest to silence each 

protein within MDA-MB-468 cells, activate the EGFR, and evaluate their 

individual roles in EGFR-mediated apoptosis. Commercially available inhibitors of 

both proteins have shown not to properly antagonize their functions. 
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Therefore, siRNA knockdown of both PKG and STAT3 will be employed for 

subsequent analyses. Sufficient inactivation of PKG and STAT3 will be verified 

through immunoblot analyses of total STAT3 and total VASP proteins.  

 

STRENGTHS OF THIS WORK 

 The major strength of this work lies within use of MDA-MB-468 cell line. 

This cell line expressed over one million EGFRs per cell. High receptor 

expression will elicit high receptor activation, which is ideal for immunoblot 

analysis and ultimate assessment of EGFR phosphorylation. It is also 

advantageous that this cell line has a defect in endocytic trafficking, causing the 

EGFR to accumulate within the early endosome. This allows for a clear, 

manageable determination of EGFR signaling at the subcellular level. Studying 

EGFR endocytic trafficking in cells that traffic the receptor efficiently requires the 

use of pharmacological reagents to trap the receptor at the desired subcellular 

location. Such use of these reagents are not required due to the natural defect 

the cells obtain upon EGFR activation and internalization. Overall, this cell line 

has a natural, tractable response in regard to EGFR activation, allowing for a 

more manageable model to study receptor trafficking and signaling. 

 

LIMITATIONS AND WEAKNESSES  

 Studies conducted at the cellular level have some unavoidable limitations. 

We are assessing the EGFR:ligand interaction solely in our cell line of interest, 

and not in vivo.  An animal model more accurately recapitulates a human with 
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metastatic breast cancer more so than a tissue culture model. An animal or 

human model is the only manner of determining if exposure to EGFR ligands has 

any effects other than the intended cancer tissue. A tissue culture experimental 

model is ideal for preliminary studies, but a major progression within this study 

and project would be to assess the findings in a more molecularly complex 

organism. Another limitation within this work lies in the use of pharmacological 

inhibitors. Data within this thesis confirm that inhibitors can often not antagonize 

sufficiently (D-DT-2 and Rp-8-Br-PET-cGMPs), or have non-specific, pleiotropic 

effects on other proteins (5,15-DPP and STATTIC). This is a common finding and 

hindrance when conducting scientific research.  Due to this, we will employ 

siRNA to specifically target PKG and STAT3 for sufficient inactivation of each 

protein.   

 
FUTURE DIRECTIONS 
  

The ultimate goal is continuously to determine receptor:effector 

relationships that have implications in EGFR-induced apoptosis. Therefore, 

siRNA knockdown of both PKG and STAT3 will be employed for subsequent 

analyses of the role of each protein in EGFR-induced apoptosis within the MDA-

MB-468 cell line. Further advancement of this project will also rely on determining 

if these 2 proteins are spatially regulated within this cell line. This will require 

synthesis and employment of EGF ligand, covalently conjugated to polystyrene 

beads. This molecular tool will allow us to differentiate signaling occurring at the 

cell membrane versus signaling occurring within the endosomes.
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