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ABSTRACT 

ACROLEIN IS A CRITICAL MEDIATOR OF ALCOHOL-INDUCED LIVER AND 

INTESTINAL INJURY IN ALCOHOLIC LIVER DISEASE 

Wei-Yang (Jeremy) Chen 

May 19, 2016 

Alcohol consumption can cause alcoholic liver disease (ALD), which remains a 

major cause of morbidity and mortality in the United States. Chronic alcohol 

consumption causes a pro-oxidant environment in the liver and increases hepatic 

lipid peroxidation. Acrolein is the most reactive and toxic aldehyde generated 

through lipid peroxidation. Acrolein forms protein adducts and triggers 

endoplasmic reticulum (ER) stress and hepatocyte apoptosis, which are 

recognized etiologic factors in ALD. Several studies have established the critical 

role of the gut-liver axis in ALD pathogenesis, wherein alcohol-induced gut barrier 

dysfunction contributes to liver injury. This study investigates, in vitro and in vivo, 

the pathogenic role of acrolein as a major mediator of intestinal barrier dysfunction, 

and hepatic ER stress and injury in ALD. 

Accumulation of acrolein adducts was seen in response to alcohol 

consumption in mouse livers and intestines. Intestinal acrolein accumulation 

correlated with serum lipopolysaccharides (LPS), suggesting that elevated
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acrolein is associated with gut permeability. Hepatic acrolein buildup correlated 

with ER stress, steatosis, JNK activation, apoptosis and liver injury.  

Further, hallmark ER chaperones GRP78 and GRP94 were minimally 

induced, suggesting that ER-adaptive/protective responses were insufficient; the 

underlying cause was lack of activation of relevant transcription factors. We used 

cultured hepatic and intestinal cells to examine the direct in vitro effects of acrolein 

in comparison to alcohol. The in vivo gut-liver effects of alcohol consumption were 

mimicked by direct in vitro acrolein exposure in intestinal Caco-2 and hepatic 

H4IIEC cells. Specifically, acrolein down-regulated tight junction proteins, altered 

their localization, and disrupted barrier function. Similarly, in vitro acrolein 

exposure in hepatic cells triggered ER stress and induced apoptosis. Notably, 

these alcohol-induced effects were attenuated by hydralazine, a known acrolein 

scavenger. 
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CHAPTER 1 

INTRODUCTION 

Alcohol consumption can lead to alcoholic liver disease (ALD), which remains a 

major cause of morbidity and mortality worldwide and in the United States. Despite 

the profound economic and health impacts, there is no FDA (Food and Drug 

Administration) approved therapy for any stage of ALD [1], emphasizing the need 

for research into therapeutic interventions during the early initiating stages of the 

disease. Further, only about 20% of heavy alcohol drinkers develop liver disease, 

and diet and environment are considered potential determining factors. The 

pathogenesis of ALD is multi-factorial, and although oxidative stress, lipid 

peroxidation, and endoplasmic reticulum (ER) stress are known etiologic factors 

[2], the molecular mediators of hepatic injury remain poorly defined.  

Alcohol liver disease (ALD)  

Alcohol consumption is known to cause alcoholic liver disease (ALD) which 

includes a spectrum of liver disorders (Figure 1), ranging from fatty liver (steatosis) 

to steatohepatitis, fibrosis, cirrhosis, end stage liver disease and potentially 

hepatocellular carcinoma (HCC) [3]. Steatosis is commonly found in approximately 

90 percent of individuals who consume more than 60 g per day of alcohol, or about 

five drinks per day [4]. Steatosis is reversible if the individuals stop or dramatically 

reduce the amount of alcohol consumption. Histology evidence has shown fat 
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accumulation of both small (i.e., microvesicular) and large (i.e., macrovesicular) 

droplets within liver cells [5]. Some individuals with steatosis progress to more 

serious liver disease such as alcoholic hepatitis, which is steatosis accompanied 

by inflammation, neutrophil infiltration, hepatocyte necrosis, and Mallory bodies. 

Approximately 10 to 35 percent of alcoholic patients may progress from steatosis 

to fibrosis and eventually cirrhosis followed by end stage liver disease and possibly 

hepatocellular carcinoma (HCC). The study of mechanisms and mediators that 

contribute to ALD is critical to understand the development and progression of ALD 

and to promote therapeutic development.  

 

 

Figure 1: Progression of alcoholic liver disease. 
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Alcohol metabolism and oxidative stress 

Ingested alcohol passes through the portal circulation from the intestine and is 

metabolized primarily in the liver. The process of ethanol metabolism involves at 

least three distinct enzymatic pathways.  Most of the alcohol in the human body is 

first oxidized in the liver to acetaldehyde which is toxic. This process is catalyzed 

by the cytosolic alcohol dehydrogenase (ADH), an NAD+-requiring enzyme 

expressed at high concentrations in hepatocytes. ADH oxidizes ethanol to 

acetaldehyde, which enters the mitochondria where it is oxidized to acetate by one 

of several aldehyde dehydrogenases (ALDH) [6]. The microsomal ethanol 

oxidizing system (MEOS) is the second major pathway for alcohol metabolism and 

involves the cytochrome P450 enzyme 2E1 (CYP2E1) and the conversion of 

NADPH to NADP+. This pathway is known to be highly induced in chronic alcohol 

drinkers. CYP2E1 also plays an important role in alcohol metabolism; alcohol can 

be oxidized by CYP2E1 to acetaldehyde, with generation of hydrogen peroxide 

which causes oxidative stress in the liver cells. Minor pathways for alcohol 

metabolism involve fatty acid ethyl ester (FAEE) synthase, or catalase in 

peroxisomes.  

Studies have shown that consumption of ethanol disrupts antioxidants 

function, which leads to elevated oxidative stress and increased interactions 

between free radicals and cellular components including lipids, proteins, and DNA, 

which alter cellular structures and functions. The production of reactive oxygen 

species (ROS) can be compensated for the antioxidant systems of the human 

body. However, when excessive ROS production exceeds the capacity of 
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physiological adaption to eliminate ROS, it could lead to health problems. The 

superoxide and hydrogen peroxide are the most dominant forms of ROS and they 

can cause acetaldehyde accumulation due to an imbalance of redox state. 

Aldehyde dehydrogenase (ADH) is responsible for the oxidation of ethanol by 

increasing the reduced form of nicotinamide adenine dinucleotide (NADH) which 

results in a decrease of the NAD+/NADH ratio and triggers the conversion of 

cytosolic xanthine dehydrogenase to xanthine oxidase, which is the enzyme 

responsible for the production of superoxide radicals. NADH is involved in the 

conversion of ferritin-bound iron to ferrous (Fe) (II) ions, and these ferrous ions 

play important roles in free radical reactions which lead to the generation of 

hydrogen peroxide, hydroxyl radicals, and increased lipid peroxidation [7, 8]. 

Alcohol-induced lipid peroxidation (LPO) generates Acrolein 

Alcohol metabolism in the liver generates free radicals which cause oxidative 

degradation of cellular polyunsaturated fatty acids (PUFAs) by LPO. Linoleic acid 

(LA) is the most common PUFA found in foods in the western diet [9]. The 

consumption of LA has dramatically increased from 2% to over 7% in the last 

century. Notably, studies by our group and others have shown that consumption 

of alcohol along with a diet rich in PUFAs (particularly, LA) gives rise to worse 

alcohol-induced liver injury, compared to alcohol plus saturated fat diet [10]. 

Moreover, LA is a precursor of arachidonic acid and can be converted to 

proinflammatory eicosanoids, which are thought to be involved in several chronic 

diseases, including cancer and cardiovascular disease [11]. Linoleic acid enriched 

diet is known to elevate lipid peroxidation (LPO). Alcohol-induced LPO is well 
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documented in animal models, as well as in patients with ALD. The products of 

LPO, including malondialdehyde (MDA), 4-hydroxynonenal (HNE) and acrolein, 

are detected in samples from animals and humans after consuming alcohol. These 

reactive aldehydes are highly likely to play a critical role in the pathology of ALD.  

Of particular interest is acrolein which is the most toxic and reactive byproduct of 

lipid peroxidation [12]. (Figure 2).  

 

 

 

Figure 2: Proposed formation of acrolein from arachidonic acid (PUFA) 

[13]. 
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Acrolein, the reactive aldehyde from lipid peroxidation 

Acrolein is listed as a Harmful and Potentially Harmful Constituent (HPHCs) among 

volatile carbonyls in tobacco products by Food and Drug Administration (FDA), and 

inhaled acrolein is a predominant rout of exposure for non-cancer respiratory 

effects from tobacco smoking. It is a highly reactive α,β-unsaturated aldehyde with 

three carbons and a double bond structure (Figure 3) and is formed endogenously 

during lipid peroxidation [14]. Acrolein is also a biotransformation metabolite 

formed from certain amino acids, allyl compounds and the anticancer drug, 

cyclophosphamide [15]. Acrolein has the potential to rapidly deplete cellular 

glutathione, and it reduces cellular antioxidant capacity [14]. Therefore acrolein 

may serve as an important oxidative stress biomarker for lipid peroxidation [16]. 

Acrolein is the most abundant, toxic, and reactive aldehyde among lipid 

peroxidation derived aldehydes, and it is over 100 times [12] more reactive and 

forty times greater in concentration than other aldehydes such as 4-HNE [17]. Due 

to its highly electrophilic nature, acrolein can form adducts with cellular nucleophilic 

groups in lipids, nucleic acids, and proteins; these acrolein adducts can cause 

cytotoxicity via irreversible adduction by disrupting cell signaling and mitochondrial 

function of the cells to produce oxidative stress. Numerous mechanisms of toxicity 

have been linked to acrolein such as adduct formation, ER stress, oxidative stress, 

inflammation and mitochondrial dysfunction; acrolein forms covalent adducts with 

DNA, proteins, and phospholipids. Notably, acrolein is also an environmental 

pollutant arising from the combustion of wood, paper, fossil fuels, and plastics. It 

is a major component of cigarette smoke and up to 600µg of acrolein is generated 
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per cigarette [18]. This is particularly relevant for ALD given the high prevalence of 

individuals that use/abuse both alcohol and cigarettes. Additionally, acrolein is 

produced by overheating fats and oils, and is now considered a significant dietary 

pollutant occurring in charred meats and fried foods [14, 18]. Thus, both 

exogenous and endogenous acrolein generation may contribute to the 

development/progression of liver diseases and the overall level of acrolein may 

determine the extent of toxic effects and injury. 

 

 

 

Figure 3: Chemical structure of acrolein. 

 

Acrolein adducts 

Acrolein is a strong electrophile and readily targets critical amino acid residues to 

form mainly Michael addition-type amino acid adducts with cysteines, histidines 

and lysines of proteins; the acrolein-lysine adduct, N«-(3-formyl-3,4-

dehydropiperidino)lysine (FDP-lysine), is readily detectable using specific 

antibodies [18], and can compromise the function of enzymes, transcription 

factors, and zinc finger proteins, often with grave consequences. Acrolein is 

associated with several chronic diseases, and elevated concentrations of acrolein-
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protein adducts are detected in the plasma of patients with several diseases, 

including Alzheimer's [19], diabetes [20], Parkinson's [21], atherosclerosis [22], 

chronic obstructive lung disease [14], spinal cord injury, diabetes mellitus, and 

multiple sclerosis [23]. Accumulation of acrolein-adducted proteins can trigger ER 

stress and the unfolded protein response [24].  

The pathogenic mechanisms of alcohol liver disease 

Some mechanisms postulated to contribute to ALD include inflammation, 

mitochondrial dysfunction, ER stress, hepatocyte apoptosis and intestinal barrier 

dysfunction. All of these mechanisms are associated with each other and one 

mechanism/pathway can lead to other(s). 

Inflammation 

Inflammation is an early indicator of more serious liver disease and several 

inflammatory response pathways are linked to ALD such as NF-κB, JNK, ROS, 

interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The inflammatory 

response is driven primarily by immune and inflammatory cells such as 

macrophages, monocytes, dendritic cells, neutrophils, and liver-resident Kupffer 

cells in response to stimuli including LPS, TNFα, etc. The activation of 

inflammasomes (e.g., NLRP3) also plays an important role in the inflammatory 

response and results in the production of IL-1β, IL-6, IL-18, and TNF-α. TNF-α is 

a cytokine which is responsible for the programmed cell death and apoptosis of 

hepatocytes in alcohol-induced liver injury. TNF-α also promotes a series of 

inflammation responses in the hepatocytes and leads to the production of other 
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inflammatory cytokines [25]. Persistent cytokine secretion causes chronic 

inflammation which leads to hepatitis, fibrosis, and cirrhosis [26].  

Mitochondrial dysfunction 

Mitochondria are the energy factories of the cells and produce ATP which is 

required to maintain normal metabolic and repair functions of the cells. Studies 

have shown that alcohol significantly decreases the viability of hepatocytes due to 

an inability to maintain a sufficient rate of ATP synthesis. The oxidation of alcohol 

by ADH and CYP2E1 and acetaldehyde by ALDH leads to a significant increase 

in the hepatic NADH/NAD+ ratio and an increase in the production of ROS. The 

enzyme activities of NADH dehydrogenase, succinate dehydrogenase and ATP 

synthase are depressed when exposed to reactive species, including superoxide, 

hydrogen peroxide and peroxynitrite, leading to the inactivation of mitochondrial 

proteins and further decreases in the function of mitochondria in the cells [27, 28]. 

Disruption of mitochondrial function can trigger signaling cascades involving the 

release of pro-apoptotic proteins from mitochondria, and activation of initiator and 

effector caspases, leading to apoptotic cell death. 

Endoplasmic Reticulum (ER) stress and unfolded protein response (UPR)  

The endoplasmic reticulum (ER) is a network of  interconnected tubules within the 

cytoplasm of eukaryotic cells [29]. The ER plays a crucial role in cell homeostasis 

and survival, and is responsible for synthesis, folding, assembly, and trafficking of 

proteins; lipid biosynthesis; and regulation of intracellular calcium and redox 

homeostasis [30]. The molecular chaperones/folding proteins in the ER (e.g., 

Grp78/BiP, Grp94, protein disulfide isomerase (PDI), calnexin, and calreticulin) 
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ensure that only properly folded proteins reach their destinations; inappropriately 

folded proteins are retained in the ER lumen for refolding or endoplasmic 

reticulum–associated degradation (ERAD) [30]. Certain stimuli (such as altered 

redox status, oxidative stress, unbalanced calcium, hypoxia, or energy deprivation) 

can disturb ER function and lead to the accumulation of unfolded proteins in the 

ER, thereby triggering ER stress and the unfolded protein response (UPR). To 

restore ER homeostasis, the UPR adaptive mechanism upregulates the folding 

capacity of the ER through induction of chaperones and foldases, and 

downregulates the biosynthetic load through inhibition of protein synthesis and   

degradation of misfolded proteins [30].  

ER stress/UPR signaling pathways involve three major ER resident 

transmembrane sensor proteins, inositol requiring protein 1 (IRE1), ds-RNA-

activated protein kinase (PKR) like ER kinase (PERK), and activating transcription 

factor 6 (ATF6), which are activated from their inhibitory binding with chaperone 

GRP78/BiP. The first sensor, IRE1, a type I transmembrane protein with both a 

serine/threonine kinase domain and endoribonuclease (RNase) activities, is 

activated by transautophosphorylation. IRE1 transcriptionally forms spliced XBP1 

(sXBP1) which activates UPR target genes and ERAD pathway genes. IRE1 also 

activates the stress-signaling kinase, JNK, and the transcription factor, NFκB, both 

of which can lead to proinflammatory cytokine production. The second sensor, 

PERK, a type I transmembrane protein with a cytosolic serine/threonine kinase 

domain, phosphorylates the eukaryotic initiation factor 2α-subunit (eIF2α), leading 

to inhibition of translation and reduction of the protein load during ER stress. Also, 
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p-eIF2α triggers activating transcription factor 4 (ATF4), which regulates ER 

chaperone genes, ERAD pathway genes, amino acid metabolism genes, and the 

proapoptotic transcription factor C/EBP homologous protein (CHOP, GADD153). 

The third sensor, ATF6, a type II ER transmembrane protein with a CREB/ATF 

bZIP transcription factor domain at the amino terminus, is activated by cleavage in 

the Golgi complex and can translocate to the nucleus to activate chaperone gene 

expression [31, 32]. Additionally, ATF6 also leads to upregulation of CHOP, and 

affects SREBP activity and consequently, lipogenesis.  

ER stress induces apoptosis  

In order to counter ER stress in the cells, the UPR adaptive signaling pathway is 

triggered. However, excessive or prolonged ER stress can overwhelm the adaptive 

pathways, and cause apoptotic and necrotic cell death. The apoptosis pathway is 

triggered to protect the cells if the PERK, ATF6, and IRE1 adaptive pathways fail 

to mitigate ER stress [33]. Several mechanisms are involved in ER stress-induced 

apoptosis such as the transcription factor C/EBP homologous protein (CHOP), 

JNK, Bcl-2 family proteins, calcium and redox homeostasis, and caspase 

activation [12]. 

ER stress triggers the JNK pathway via phosphorylation of IRE-1 with the 

adaptor protein TRAF2 (tumor necrosis factor receptor (TNFR)-associated factor-

2) which phosphorylates and activates JNK [34]. Phosphorylated JNK activates 

proapoptotic Bim and inactivates antiapoptotic Bcl-2 proteins, and triggers release 

of cytochrome C through the mitochondrial death pathway. Calcium homeostasis 

is associated with apoptosis; excess calcium release from the ER results in 
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calcium accumulation in the mitochondria and results in release of apoptosis 

effectors from mitochondria into the cytosol. Bcl-2 has the ability to reduce the 

overflow of free calcium stored in the ER and prevent cell apoptosis.  

The transcription factor CHOP/GADD153 is the best-known proapoptotic 

pathway associated with ER stress. CHOP is a bZIP-containing transcription factor 

that is a common point of convergence for all three arms of the UPR, with binding 

sites for ATF6, ATF4 and XBP1s present within its promoter. CHOP is primarily 

considered a pro-apoptotic transcription factor that mediates ER stress induced 

cell death through the regulation of Bcl-2 family members. Also, CHOP 

transcriptionally induces GADD34 and dephosphorylates p-eIF2α to enable protein 

synthesis, concomitantly generating ROS and leading to oxidative stress and 

inflammation [12]. The activation of ER stress, and consequent inflammation and 

apoptosis may be a significant contributor to many forms of liver injury, including 

ALD.  

ER stress has been reported to contribute to alcohol-induced liver injury and 

the progression of alcoholic liver disease in both animal and cell models [35-38]. 

Upregulation of ER stress related genes such as Grp78, Grp94, and CHOP has 

been observed in acute and chronic alcohol feeding animal models and in patient 

biopsies [39, 40]. Some factors that are thought to contribute to alcohol-induced 

ER stress include acetaldehyde, oxidative stress, disrupted calcium homeostasis, 

impaired one carbon metabolism, and epigenetic modifications.  
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Metabolism and removal of acrolein and scavengers 

Acrolein can deplete intracellular glutathione (GSH), GSH-linked glutathione-S-

transferases, and aldose reductase rapidly for its detoxification [41], and acrolein 

can be toxic unless removed or metabolized [42]. The primary pathway of acrolein 

metabolism is conjugation with glutathione catalyzed by glutathione S-transferase-

P (GSTP) [43, 44]. Acrolein is also metabolized by aldehyde dehydrogenase 

(ALDH2), which is primarily responsible for clearance of acetaldehyde in the 

alcohol metabolism. A recent study has shown that GSH is a major acrolein-

detoxifying compound. In the brain infarction of aging there is an increase in 

acrolein and a decrease in GSH [45] (Figure 4). Acrolein scavengers have been 

used clinically for other conditions and have demonstrated protection against 

aldehyde-induced injury in experimental disease models.  Hydralazine, a 

vasodilator and hypertension drug, was chosen due to it is effectiveness in 

preventing acrolein-mediated oxidative stress and cell death in PC12 cells, and 

tissue injury in spinal cord injury models [46]. Notably, the cytoprotective effects of 

hydralazine are shown to occur not merely by acrolein scavenging but also by 

effective trapping of acrolein-protein adducts [47]. Another acrolein scavenger, 

carnosine, is a dipeptide and inhibits acrolein from forming protein-protein cross-

linking and forming protein carbonyl groups [48]. 
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Figure 4: Alcohol metabolism and acrolein detoxification. 

 

Gut-liver axis in alcoholic liver disease 

Alcohol quickly distributes into the portal circulation and across biological 

membranes to organs throughout the body. Alcohol-induced injuries are observed 

in many organs including brain, immune system, kidney, lung, heart, pancreas, 

and particularly, the gastrointestinal tract and liver. Increasing evidence suggests 

that interactions between the intestine and liver (gut-liver axis) play a critical role 

in the development/progression of ALD [49]. Alcohol is known to disrupt intestinal 

epithelial barrier function and increase intestinal permeability, allowing 

translocation of bacteria and bacterial products such as endotoxin, flagellin, etc. 

Endotoxin (lipopolysachharide, LPS) is recognized by toll-like receptors (TLRs) on 
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liver Kupffer cells (and possibly hepatocytes), resulting in inflammation and release 

of proinflammatory cytokines such as TNFα, IL-1β, IL-8 and IL-18. These 

cytokines, in turn, can affect both the liver and the intestine, and promote further 

injury. In the liver, alcohol is known to cause ER stress, inflammation and 

hepatocyte apoptosis and injury. Thus, interactions of the intestine and liver 

involving altered intestinal permeability and systemic bacterial translocation, as 

well as hepatic ER stress, inflammation and injury are critical in the development 

and progression of ALD (Figure 5). 

 

Figure 5: Pathogenesis of the Gut-Liver axis in ALD.  

 

Intestinal barrier dysfunction and intestinal permeability  

Intestinal barrier dysfunction is linked to various intestinal disorders including 

inflammatory bowel disease, celiac disease, and diarrheal infection [50]. Several 

disorders such as multiple sclerosis, Alzheimer's, Parkinson's and autism are 
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linked to intestinal barrier dysfunction and involve the activation of the 

inflammatory response due to altered intestinal permeability (or leaky intestine) 

[51]. Importantly, altered intestinal permeability is considered as a major causal 

factor in the pathology of ALD [52]. Intestinal barrier function is maintained by 

several components: mucus layer, anti-microbial peptides, tight junctions, and 

adherence junctions. The tight junctions are controlled by the tight junction 

proteins, including ZO proteins, claudins, and occludins [53]. The pathogenesis 

of several gastrointestinal diseases relies mostly on disruption of tight junction 

proteins [54, 55]. The intestinal barrier is primarily maintained by a single layer 

of epithelial cells formed between the lumen and mucosal tissues which play a 

critical role in maintaining normal human biological function [56]. It is the key 

barrier in the body to prevent invasion of toxins, antigens and microorganisms 

and loss of water and electrolytes. Moreover, it facilitates digestion and 

absorption of nutrients from the diet [53, 57]. The intestinal epithelium is 

comprised of several different cell types organized into crypts and villi. The 

cellular components of the intestinal barrier includes the vascular endothelium, 

the epithelial cell lining, and the mucus layer [53]. The principal cell types consist 

of paneth cells, goblet cells, enterocytes, and enteroendocrine cells [58]. Among 

these cells, the paneth cells in the crypts of the small intestine produce digestive 

secretions, immune molecules, cell products such as cytokines, inflammatory 

mediators and antimicrobial peptides (small peptides which can function as 

chemoattractants), dendritic cell activators, and direct antimicrobial effectors 

[53, 59]. Intestinal permeability is closely associated with the intestinal 
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commensal microbiota and the innate immune system. The alterations of 

intestinal permeability include gut microbiota modifications, mucus layer 

alterations, and epithelial damage, which allow translocation of luminal contents 

to the inner layers of the intestinal wall [53] or the circulation. 

Tight junction proteins 

All intestinal epithelial cells are connected at lateral membranes through formation 

of an impermeable seal to the paracellular space with three major types of 

junctional complexes--tight junctions, adherens junctions, and desmosomes. 

These junctional complexes maintain intestinal barrier function and cell polarity by 

separating the apical from basolateral membranes. Among these major junctional 

complexes, the tight junctions are controlled by the tight junction proteins (TJPs) 

which include claudins, occludin, zonula occludens occludins (ZO), junctional 

adhesion molecules (JAM), and tricellulin proteins (Figure 6). The adherens 

junctions are located below tight junctions and are important in cell-cell signaling, 

epithelial restitution. Desmosomes support epithelial stability [56]. TJPs are multi-

protein complexes located at the most apical end of the lateral membrane and are 

composed of both transmembrane and cytoplasmic plaque proteins that interact 

with the cytoskeleton directly. Moreover, TJs are the critical element of mucosal 

epithelial permeability because of their ability to selectively control the paracellular 

permeability for small molecules, ion, and water [57]. Therefore, the expression of 

TJPs determines the normal function of the intestinal barrier and alterations are 

associated with changes of intestinal permeability.  
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The intercellular adhesion and paracelluar permeability are maintained and 

regulated by the interactions of these TJPs in the cell surface [60]. Among these 

key TJPs, claudins, occludin, junctional adhesion molecules (JAM), and tricellulin 

are the major transmembrane proteins for establishing the selective paracellular 

barrier. Intracellular molecules such as zonula occludens (ZO) and cingulin are the 

major cytoplasmic plaque proteins located at the peripheral membrane [61]. In the 

intestinal barrier structure, occludin, claudins, and tricellulin proteins are linked to 

the adjacent cells in the actin cytoskeleton through cytoplasmatic scaffolding 

proteins like ZO proteins [56]. Claudins are the backbone for constructing the tight 

junction structure [62]. Interestingly, in the different segments of the GI tract, each 

claudin shows a unique and diverse tissue expression pattern [57]. The ZO 

proteins include three members (ZO-1, ZO-2, and ZO-3) [63], and the JAM family 

includes three classical members (JAM-1, -2, and -3) and four related molecules 

(JAM-4, JAM-L, CAR, and ESAM) [64]. Alterations in the levels and/or the 

subcellular localization of these TJPs can result in intestinal barrier dysfunction. 

Thus, TJPs are critical components of intestinal barrier function. 
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Figure 6: Tight junction proteins [65]. 
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HYPOTHESIS 

We hypothesize that acrolein plays a pathogenic role in the gut-liver injury of ALD. 

Specifically, our hypotheses are: 

1) Acrolein generation/accumulation in the liver contributes to alcohol-induced liver 

injury by causing ER stress and consequent apoptotic cell death of hepatocytes. 

2) Acrolein generation/accumulation in the intestine causes intestinal epithelial 

barrier dysfunction leading to increased gut permeability and systemic bacterial 

translocation by disruption of tight junctions, induction of ER stress and epithelial 

cell death/dysfunction. 

3) Acrolein clearance/removal protects against alcohol-induced gut-liver injury in 

ALD. Acrolein scavengers (hydralazine) will alleviate accumulation of acrolein on 

alcohol-induced intestine and liver injury in ALD. 

SPECIFIC AIMS 

Aim 1: To determine the impact of acrolein in alcohol-induced liver ER stress, 

apoptosis and injury in ALD. 

Aim 2: To determine the therapeutic potential of acrolein scavengers in protection 

against alcohol-induced liver injury in ALD.  

Aim 3: To determine the role of acrolein in alcohol-induced intestinal dysfunction 

in ALD. 
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CHAPTER 2 

MATERIALS AND METHODS 

Animal studies  

Male C57BL/6J mice (10 weeks of age) were obtained from Jackson laboratories 

(Bar Harbor, ME). They were maintained at 24°C with a 12h:12h light/dark cycle 

and had free access to normal chow diet and tap water for 5 days before the start 

of the experiment. The mice were fed (ad libitum) a Lieber-DeCarli liquid diet (Bio-

Serv Inc., Frenchtown, NJ) containing 5% ethanol (w/v or 35% of calories) or 

maltose dextrin as control for 10 days, followed by a single oral gavage of ethanol 

(5g/kg body weight) on day 11. After 9 hours, the mice were anesthetized with 

Avertin. Plasma and tissue samples were collected for assays.  Part of the liver 

from the left lobe was harvested and fixed in 10% neutral-buffered formalin, while 

the remaining liver tissue was snap frozen in liquid N2 and stored at −80°C. All 

mice were treated according to the protocols reviewed and approved by the 

Institutional Animal Care and Use Committee of the University of Louisville. 

Reagents 

General chemicals, carnosine, hydralazine, acrolein, and β-actin antibody were 

purchased from Sigma Aldrich (St. Louis, MO).  All other antibodies were 

purchased from Cell Signaling (Beverly, MA).  Cell culture supplies were obtained 

from Invitrogen (Carlsbad, CA).  

Cell culture 
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H4IIEC, a rat hepatoma cell line was obtained from American Type Culture 

Collection (Rockville, MD).  All treatments were performed on sub-confluent 

monolayers of cells.  Cells were plated at the following densities: (i) 20,000 cells 

per well for 96-well plates; (ii) 0.25x106 cells per well for 24-well plates; (iii) 0.5x106 

cells per well for 6-well plates; (iv) 2.5x106 cells per 100mm plates. Cells were 

cultured in the DMEM media (10% horse serum, 5% fetal bovine serum) at 37 °C 

in a 5% CO2 environment. Cells were counted using a hemocytometer.  

 Caco-2 cells are colon carcinoma cells, which undergo a process of 

spontaneous differentiation in culture and fully differentiate into mature enterocytes 

in 21 days [66]. Caco-2 cells were obtained from the ATCC and were cultured in 

Eagle’s minimal essential medium supplemented with 100 U/mL penicillin, 100 

μg/mL streptomycin, and 10% fetal bovine serum at 37 °C in a 5% CO2 

environment.  

Caco-2 monolayer barrier function analysis 

Resistance (TEER)  

Caco-2 cells were cultured in Transwell inserts (Costar, Corning) for 21 days to 

polarize and differentiate into an epithelial cell-like monolayer. Caco-2 monolayers 

were measured with an epithelial volt ohmmeter (World Precision Instruments, 

Sarasota, FL). Electrical resistance was recorded with three consecutive 

measurements after subtracting the resistance value of the filters alone.  

FITC-Dextran Assay (FD4) 

Caco-2 cells were cultured in transwell inserts (Costar, Corning) for 21 days to 

polarize and differentiate into epithelial cell-like monolayer. Fluorescein 
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isothiocyanate–dextran-4 (FD-4) was added to the apical top of the culture and 

incubated for 30 min. The basal medium was collected for Caco-2 cell permeability 

measurement using a microplate fluorescence reader with an excitation 

wavelength of 485 nm and an emission wavelength of 530 nm. 

Isolation of RNA and RT-PCR 

The messenger RNA (mRNA) levels of ER stress genes were analyzed by real 

time polymerase chain reaction (RT-PCR). Total RNA (300ng), isolated using 

Trizol (Invitrogen, Carlsbad, CA), was used in reverse transcription reactions as 

described by the manufacturer. The resulting complementary DNA was then 

subjected to PCR using specific primer pairs (Table 1), with 18s and TATA-binding 

protein as internal controls. SYBR Green I dye was used for Real Time PCR in an 

ABI prism 7500 sequence detection system. 

Small interfering RNA transfection 

Prior to alcohol or acrolein treatment, siRNAs specific for rat GSTP or scrambled 

RNA (Thermo Fisher Scientific) as a negative control were transfected into H4IIEC 

cells with Lipofectamine® RNAiMAX Transfection Reagent (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. The final concentration of 

each transfected RNA was 25 nM. Inhibition of GSTP was confirmed by examining 

GSTP mRNA and protein. Cells were treated 72h after transfection with alcohol or 

acrolein for 24h.  
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Mouse   

mATF3_F1 GCGCTGGAGTCAGTTACCGTCA 

mATF3_R1 TTCTTCAGGGGCCGCCTCAGAC 

mATF4_F1 AAGCCATGGCGCTCTTCACGA 

mATF4_R1 AGTCCCCCGCCAACACTTCG 

mDDIT3_GADD_CHOP_F1 CCGGAACCTGAGGAGAGAGTGTT 

mDDIT3_GADD_CHOP_R1 AGCTGCCATGACTGCACGTGG 

mGRP78_F1 ACCACCTATTCCTGCGTCGGTGT 

mGRP78_R1 AGGCCACATACGACGGCGTG  

mGRP94_F1 AAAGGACTTGCGACTCGCCGG 

mGRP94_R1 TCTGACGAACCCGAAGGTCAGC 

mCyp2e1_F AGGGGACATTCCTGTGTTCC 

mCyp2e1_R TTACCCTGTTTCCCCATTCC 

mGstp1_F1 CCCTCTGTCTACGCAGCACT 

mGstp1_R1 CTCACACCGCCCTCGAAC 

mAdh1_F TGTTGAGAGCGTTGGAGAAG 

mAdh1_R CGCTTCGGCTACAAAAGTTG 

Rat  

rATF3_F1 GGGCCACCTCAGACTTGGTGACT 

rATF3_R1 CATCGGATGTCCTCTGCGCTGG 

rATF4_F1 GACAAGGCGGGCTCCTCAGAA 

rATF4_R1 AAAGGCATCCTCCTTGCCGGTGT 

rDDIT3_GADD_CHOP_F1 TGTTGAAGATGAGCGGGTGGCAG 

rDDIT3_GADD_CHOP_R1 TGGACCGGTTTCTCTCTCCTCAGGT 

rGRP78_F1 GGACCACCTATTCCTGCGTCGGT 

rGRP78_R1 TGGCCGCATCGCCAATCAGA 

rGRP94_F1 CGTCCTGCTGACCTTCGGGTTT 

rGRP94_R1 CCAGGTCCTCTTCTACCGTGCCA 

Human   

hsTjp1_F (ZO-1) AGCACAGCAATGGAGGAAAC 

hsTjp1_R (ZO-1) CCCCACTCTGAAAATGAGGA 

hsCldn1_F GGCAGATCCAGTGCAAAGTC 

hsCldn1_R GGTGGCCACAAAGATTGCTA 

hsOcln_F ATGCCCTCTGCAACCAATTT 

hsOcln_R CCACAATAATCATGAACCCCAGT 

Human/Rat/Mouse  

18Sreg3F CTCAACACGGGAAACCTCAC 

18Sreg3R CGCTCCACCAACTAAGAACG 

Table 1: Primers for quantitative Real Time-PCR. 
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MTT assay 

Cell viability was assessed by the 3-(4,5-dimethythiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. After treatments, cells were washed 

twice with PBS; then cell culture medium was replaced with medium containing 1 

mg/ml MTT. After 1h, cells were lysed with100ul lysis buffer containing 20% SDS 

and 50% N,N-dimethyformamide (DMF), and incubated at 37°C overnight. The OD 

values were read at 570 nm. 

Western blot analysis 

Cells were lysed in lysis buffer (50 mM Tris•HCl, pH 7.4, 150 mM NaCl, 2 mM 

EDTA, 4 mM Na3VO4, 40 mM NaF, 1% Triton X-100, 1 mM PMSF, 1% protease 

inhibitor cocktail) and centrifuged at 14,000 g for 10 min. The supernatants were 

collected and 26μg of equivalent protein in total cell lysates was resolved by SDS-

polyacrylamide gel electrophoresis and transferred onto a polyvinylidene difluoride 

membrane (Bio-Rad, Hercules, CA). Membranes were blocked for 1 h in blocking 

buffer (5% nonfat dry milk in 0.1%TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 

and 0.1% Tween 20)) and incubated overnight at 4°C with the primary antibodies 

diluted in blocking buffer.  After washing with 0.1%TBST, the membranes were 

incubated with appropriate secondary antibodies for 1 h at room temperature. 

Proteins were visualized using an enhanced chemiluminescence system (ECL, GE 

Healthcare, Piscataway, NJ) and quantified by densitometry analysis using 

UNSCANIT (Silk Scientific, Inc., Orem, UT).  The density ratio of each band 

compared to its corresponding β-actin band was determined. The density ratio was 

normalized to the untreated value which was set to 1. 
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Histology:  

Liver or intestinal sections were fixed in 10% buffered formalin for 24 hours and 

embedded in paraffin. Tissue sections were deparaffinized, stained with 

hematoxylin–eosin (H&E), and examined by light microscopy (×200 final 

magnification). 

ALT & AST assay 

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity 

were measured as markers of liver injury using commercially available reagents 

from Thermo Fisher Scientific Inc. (Middletown, VA). 

Oil Red O staining 

Frozen liver sections were washed in phosphate buffered saline twice for 5 

minutes. Oil-Red-O and 85% propylene glycol were added with agitation for 15 

minutes, followed by washing in tap water. 

Detection of apoptosis  

TUNEL staining for apoptosis was performed using ApopTag® Peroxidase In Situ 

Apoptosis Detection Kit (EMD Millipore Corporation, Billerica, MA).  

Detection of acrolein adducts 

Acrolein adducts were detected using an antibody specific for FDP-Lysine acrolein 

adducts obtained from Cell Sciences. (Canton, MA). Quantitation was done and 

calculated by ImageJ and MetaMorph microscope. Ten pictures from each liver 

were used for analysis. 
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Immunofluorescence microscopy 

Ileum sections were fixed in 10% buffered formalin for 24 hours and embedded in 

paraffin. Tissue sections were deparaffinized and incubated with polyclonal rabbit 

anti-claudin-1, occludin, or ZO-1 antibodies from Invitrogen (Carlsbad, CA) 

overnight at 4°C, followed by incubation of fluorescein isothiocyanate-conjugated 

antibody from Invitrogen (Carlsbad, CA) for 30 minutes at room temperature. 

Images were examined using a Nikon A1R-A1confocal microscope equipped with 

a digital image analysis system (Pixera, San Diego,CA) 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 5.01 for 

Windows (GraphPad Software, Inc., La Jolla, CA). One-way analysis of variance 

(ANOVA) followed by Bonferroni post test analysis (for greater than two groups) 

was used to evaluate significant differences between the compared groups. A p-

value of <0.05 was considered statistically significant. Data were expressed as 

mean ± SEM. 

 

 

 

 

 

 

https://www.google.com/search?espv=2&biw=1280&bih=623&q=Carlsbad+California&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDNLKUxS4gAxi0zK87S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDermitQwAAAA&sa=X&ved=0ahUKEwjfsJ_Tp-LLAhUF1x4KHXhjA18QmxMIiAEoATAO
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CHAPTER 3 

RESULTS SECTION I: LIVER STUDIES. 

In this study, we examined the contributory role of the lipid-derived aldehyde, 

acrolein, to alcohol-induced liver injury using cultured rodent hepatoma cells 

(H4IIEC), and the chronic+binge murine model of ALD, also called the NIAAA 

(National Institute on Alcohol Abuse and Alcoholism) model. This is a well-

accepted mouse model for hepatic steatosis and hepatocellular injury in ALD, and 

reflects a common drinking pattern in humans, particularly in patients with ALD 

who are often chronic and binge drinkers [67, 68]. 

Alcohol consumption in mice leads to hepatic acrolein generation and 

accumulation of acrolein adducts 

In order to investigate the theory that acrolein is a pathogenic mediator of ALD, we 

first examined whether alcohol consumption led to acrolein buildup in the liver. 

Although free acrolein is extremely labile and difficult to quantify, it readily reacts 

with cellular proteins to form covalent adducts which can then be assessed. A 

marked increase was observed in the levels of acrolein-protein adducts (brown 

staining of acrolein-FDP-lysine adducts) in the livers of alcohol-fed mice (Figure 

7A) compared to controls, showing that alcohol consumption led to the hepatic 

generation/accumulation of acrolein. The alcohol-induced acrolein adduct 

accumulation was largely not zone-specific, but was slightly increased close to the 

portal vein in some animals. Also, both cytoplasmic and nuclear accumulation was
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seen, suggesting that proteins in many subcellular locations were adducted by 

acrolein. Quantification of acrolein adducts revealed a 3-fold, statistically 

significant difference between control and alcohol-fed livers (Figure 7A).  

To determine the mechanisms underlying alcohol-induced acrolein 

accumulation, we examined enzymes that primarily metabolize alcohol, namely, 

ADH and CYP2E1. Alcohol is known to upregulate CYP2E1 and increase its own 

metabolism, thereby leading to oxidative stress and enhanced LPO. Hence, it is 

likely to generate higher levels of the LPO-derived aldehydes, such as acrolein. 

Accordingly, we examined CYP2E1 and ADH expression in the livers of control 

versus alcohol-fed mice. As anticipated, alcohol feeding led to a robust increase in 

CYP2E1 protein levels in the alcohol-fed mice (Figure 7B). However, CYP2E1 

mRNA was decreased by alcohol feeding (Figure 7C). Similar effects were seen 

in hepatic ADH, wherein ADH mRNA was decreased (Figure 7C) and ADH protein 

levels were slightly increased by alcohol (Figure 7B). Alcohol-induced increase in 

CYP2E1 protein in the absence of transcriptional upregulation of the mRNA, has 

been proposed to be due to stabilization of the protein [69]; whether the same 

occurs with ADH remains to be investigated. The concentration of acrolein in the 

liver is modulated not only by its generation but also by the rate of detoxification or 

removal. Since acrolein is primarily metabolized and cleared via conjugation with 

glutathione catalyzed by the enzyme glutathione-s-transferase-Pi (GSTP) [18], we 

also examined the effects of alcohol on hepatic GSTP levels. Alcohol consumption 

resulted in a decrease in the hepatic levels of both GSTP mRNA (Figure 7C) and 

GSTP protein (Figure 7B) as seen in alcohol-fed mice compared to control, 
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suggesting that the decrease in GSTP may contribute to acrolein accumulation in 

the livers of alcohol-fed mice. 
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Figure 7A. Alcohol consumption leads to accumulation of acrolein-protein 

adducts in mice livers.  

Top: Accumulation of acrolein adducts in mice livers by immunohistochemistry 

using specific FDP-lysine antibodies (20x and 80x magnification).  

Bottom: Quantification of acrolein adducts in (A). Mean ± SEM, n=6 mice, 

***p<0.001 compared to control by student’s t-test. C=Control; E=Alcohol. 
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Figure 7B. Alcohol consumption leads to upregulation of ADH and CYP2E1, 

and downregulation of GSTP in mice livers.  

Western blot analysis of ADH, CYP2E1 and GSTP was performed using total cell 

lysates. Blots were reprobed with antibody to β-actin to ensure equivalent 

loading. Densitometry analysis was performed using Imagelab software. Density 

ratio was calculated using β-actin as control. Numbers represent the mean of 

density ratio for each group of mice pair-fed the control or ethanol diet. 

C=Control; E=Alcohol. 
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Figure 7C. Alcohol consumption leads to downregulation of ADH, CYP2E1, 

and GSTP in mice livers.  

Total RNA was evaluated for mRNA expression by real-time PCR using primers 

specific for ADH, CYP2E1 and GSTP genes. Data are presented as the mean ± 

SEM (n=6). Statistical analysis was performed using GraphPad Prism Software 

using one-way ANOVA followed by Bonferroni posttest.  **p<0.01, ***p<0.001. 

C=Control; E=Alcohol. 
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Using cultured rodent hepatic cells that are known to metabolize alcohol 

(H4IIEC cells), we assessed whether in vitro exposure to alcohol resulted in the 

accumulation of acrolein adducts, similar to that seen in livers of alcohol-fed mice. 

Considerable acrolein adduct accumulation was seen in H4IIEC cells that were 

treated for 24h with alcohol (200mM) compared to untreated cells (Figure 8A). 

Alcohol is metabolized in the liver by ADH or CYP2E1 into its primary metabolite, 

acetaldehyde, which causes increased ROS production leading to enhanced LPO. 

Based on the acrolein buildup seen in alcohol-exposed mice and cultured cells, we 

explored the direct role of the alcohol metabolite, acetaldehyde, in acrolein 

generation and adduct accumulation in hepatocytes. Cells were exposed in vitro 

to acetaldehyde (50µM or 100µM) for 24h, and acrolein adduct levels were 

examined. Similar to alcohol, direct exposure of cells to acetaldehyde resulted in 

significant acrolein adduct accumulation (Figure 8A). Quantification showed that 

treatment with alcohol and 100µM acetaldehyde caused a statistically significant 

increase in acrolein adducts, and a similar trend (but not statistically significant) 

was seen with the lower concentration of acetaldehyde (Figure 8A). Once formed, 

acetaldehyde is further metabolized by aldehyde dehydrogenase (ALDH) enzymes, 

particularly ALDH2, which is also known to metabolize and remove reactive 

unsaturated aldehydes such as acrolein. Hence, we tested whether ALDA1, a 

known agonist of ALDH2, affected alcohol-induced acrolein buildup.  Pretreatment 

of cells with ALDA1 prior to alcohol exposure considerably decreased the 

accumulation of acrolein adducts (Figure 8B), showing that stimulating ALDH2 

attenuated alcohol-induced acrolein accumulation. Further, to determine whether 
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acrolein buildup was dependent on alcohol metabolism, H4IIEC cells were also 

exposed to various known inhibitors of alcohol metabolism, prior to alcohol 

exposure. Treatment of cells with either pyrazole or 4-methylpyrazole (which 

suppress both ADH and CYP2E1 dependent alcohol metabolism [70]) 

substantially attenuated the accumulation of alcohol-induced acrolein adducts 

(Figure 8B). In comparison, allyl sulfide, which is a more selective CYP2E1 

inhibitor, was less effective in blocking alcohol-induced acrolein buildup, 

suggesting that both ADH and CYP2E1 pathways led to acrolein generation, and 

that inhibition of only one metabolic pathway was insufficient to eliminate total 

acrolein adduct accumulation (Figure 8B). Thus, alcohol consumption and 

metabolism causes acrolein accumulation by simultaneously upregulating 

enzymes that lead to acrolein generation and downregulating the enzyme that 

metabolizes and removes acrolein. In order to further investigate the role of 

downregulation of GSTP in the alcohol-induced buildup of acrolein adducts, we 

used siRNA in H4IIEC cells to effectively inhibit GSTP mRNA and protein (Figure 

8C). Genetic inhibition of GSTP by siRNA led to an increase in the accumulation 

of acrolein adducts (Figure 8D) following treatment with alcohol or acrolein, which 

was not seen in cells transfected with scrambled RNA control. These data 

confirmed that the downregulation of GSTP by alcohol may be a novel mechanism 

that contributes to enhanced alcohol-induced hepatic acrolein generation and 

adduct accumulation. Thus, our data show that alcohol consumption and 

metabolism causes acrolein accumulation by simultaneously upregulating 
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enzymes that lead to acrolein generation and downregulating the enzyme that 

metabolizes and removes acrolein. 
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Figure 8A. Effect of acetaldehyde on alcohol-induced acrolein adduct 

accumulation in cultured hepatic cells.  

Top: Accumulation of acrolein adducts by immunocytochemistry using specific 

FDP-lysine antibodies (20x magnification) in H4IIEC cells treated for 24h as 
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follows: Untreated control cells (C) or cells treated with 200mM alcohol (E), 50µM 

acetaldehyde (AA50) or 100µM acetaldehyde (AA100).  

Bottom: Quantification of acrolein adducts in (A). Mean ± SEM, n=4, **p<0.01 

and ***p<0.001 compared to control by ANOVA - Bonferroni analysis.  
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Figure 8B. Effect of pharmacologic modulators of alcohol metabolism on 

alcohol-induced acrolein adduct accumulation in cultured hepatic cells.  

Top: Accumulation of acrolein adducts (20x magnification) in H4IIEC cells treated 

for 24h as follows: Untreated control cells (C); cells treated with 200mM alcohol 

alone (E); or 200mM alcohol in the presence of 10 µM Alda1 (ALDA1+E); 10 µM 

4-methyl pyrazole (4MP+E); 10 µM Pyrazole (PYR+E); or 10 µM allyl sulfide 

(AS+E). 

Bottom: Quantification of acrolein adducts in (C). Mean ± SEM, n=4, **p<0.01 

and ***p<0.001 compared to control by ANOVA - Bonferroni analysis. 
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Figure 8C. Effect of inhibition of GSTP on alcohol-induced acrolein adduct 

accumulation in cultured hepatic cells.  

Inhibition of GSTP mRNA and protein by siRNA transfection in H4IIEC cells. For 

PCR analysis *p<0.05 compared to control. For Western blot, the numbers 

represent mean densitometry ratios normalized to β-actin. C=Control; si=GSTP 

siRNA; and sc=scrambled RNA as negative control. 
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Figure 8D. Effect of inhibition of GSTP on alcohol-induced acrolein adduct 

accumulation in cultured hepatic cells. 

Accumulation of acrolein adducts (20x magnification) in transfected H4IIEC cells, 

and quantification of acrolein adducts. *p<0.05 and ***p<0.001 compared to 

control by ANOVA - Bonferroni analysis.  C=Control; E=200mM Alcohol; A=20µM 

Acrolein; si=GSTP siRNA; and sc=scrambled RNA as negative control. 
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Alcohol-induced hepatic acrolein adduct accumulation is associated with 

ER stress, with minimal activation of ER adaptive/protective responses  

The alcohol-induced accumulation of acrolein-adducted proteins in the liver is likely 

to increase the burden on the cellular ER protein folding machinery, which if 

overwhelmed, can trigger ER stress. Indeed, in our study, alcohol feeding and the 

resultant acrolein adduct accumulation was associated with upregulation of the 

prototypical ER stress markers, activating transcription factors ATF3 and ATF4, at 

the mRNA (Figure 9A) and protein levels (Figure 9B). The increase in ATF3 and 

ATF4 was attributed to phospho-activation of the upstream signaling proteins, 

PERK and eukaryotic translation initiation factor 2A, (eIF2α) (Figure 9C).  
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Figure 9A. Alcohol-induced accumulation of acrolein adducts causes 

hepatic ER stress in mice livers.  

Total RNA was evaluated for mRNA expression by real-time PCR using primers 

specific for ATF3 and ATF4 genes. Data are presented as the mean ± SEM 

(n=6). Statistical analysis was performed using Student’s t-test.  **p<0.01. 

C=Control; E=Alcohol. 
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Figure 9B. Alcohol-induced accumulation of acrolein adducts causes 

hepatic ER stress in mice livers.  

Western blot analysis of ATF3 and ATF4 was performed using total cell lysates. 

Blots were reprobed with antibody to β-actin to ensure equivalent loading. 

Densitometry analysis was performed using Imagelab software. Density ratio was 

calculated using β-actin as control. Numbers represent the mean of density ratio 

for each group of mice pair-fed control or ethanol diet. C=Control; E=Alcohol. 
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Figure 9C. Phospho-PERK and phospho-eIF2α protein levels. Western blot 

analysis of Phospho-PERK and phospho-eIF2α was performed using total cell 

lysates. Blots were reprobed with antibody to β-actin to ensure equivalent 

loading. Densitometry analysis was performed using Imagelab software. Density 

ratio was calculated using β-actin, total PERK or eIF2α as control. Numbers 

represent the mean density ratio for each group of mice pair-fed control or 

ethanol diet. C=Control; E=Alcohol. 
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Further, the effect of alcohol on the adaptive/protective responses 

associated with ER stress was also studied by examining the gene expression of 

hallmark ER chaperones, GRP78 and GRP94; these chaperones can promote 

protein folding, and thereby relieve ER stress and provide protection. A small (but 

statistically significant) increase was seen in the mRNA levels of both GRP78 and 

GRP94 (Figure 10A); while at the protein level, only GRP78 was marginally 

elevated (Figure 10B) in alcohol fed mice, suggesting that cellular ER-adaptive 

responses were not robustly activated. Next, to determine the underlying cause, 

we examined the transcription factors that are thought to regulate chaperone gene 

expression, namely, ATF6 and X-box binding protein-1 (XBP1). Activation of ATF6 

by proteolytic cleavage from the inactive ~90kDa fragment into the active ~50kDa 

cleaved form (Figure 10C) was seen in alcohol-fed mice, showing that the ATF6-

mediated ER stress pathway was also triggered in this model of alcohol 

consumption in mice. XBP1 is activated by unconventional splicing of XBP1 mRNA 

due to ER stress-induced activation of IRE1 endonuclease activity via 

oligomerization, and subsequent autophosphorylation. Accordingly, we examined 

IRE1 phosphorylation and XBP1 splicing in alcohol-fed mice and observed that 

alcohol consumption slightly decreased IRE1 phosphorylation (Figure 10C). Also, 

we observed a lack of spliced XBP1 (Figure 10D), and consequently, no induction 

of XBP1s protein in the majority of livers of alcohol-fed mice (Figure 10E). 

Interestingly, the unspliced XBP1u (~26kDa) was slightly increased in alcohol fed 

mice at the mRNA and protein level; the relevance of this finding remains to be 

clarified. These data show that alcohol feeding induced ER stress and activated 
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ATF6, but failed to splice XBP1, and these actions did not upregulate ER 

chaperones. 
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Figure 10A. Alcohol-induced accumulation of acrolein adducts induces ER 

chaperone mRNA expression in mice livers.  

Total RNA was evaluated for chaperone gene expression by real-time PCR using 

primers specific for GRP78 and GRP94 genes. Data are presented as the mean 

± SEM (n=6). Statistical analysis was performed using Student’s t-test. *p<0.05 

and **p<0.01. C=Control; E=Alcohol. 

 

 

 

 

 

 

 

 

 



50 
 

 

Figure 10B. Alcohol-induced accumulation of acrolein adducts induces 

minimal ER chaperone proteins in mice livers.  

Western blot analysis of GRP78 and GRP94 was performed using total cell 

lysates. Blots were reprobed with antibody to β-actin to ensure equivalent 

loading. Densitometry analysis was performed using Imagelab software. Density 

ratio was calculated using β-actin as control. Numbers represent the mean 

density ratio for each group of mice pair-fed control or ethanol diet. C=Control; 

E=Alcohol. 
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Figure 10C. Alcohol-induced accumulation of acrolein adducts activates 

ATF6 cleavage and decreases IRE phosphorylation in mice livers.  

Western blot analysis of ATF6 and cleaved/active ATF6, and phospho-IRE1 and 

total IRE1 was performed using total cell lysates. Blots were reprobed with 

antibody to β-actin to ensure equivalent loading. Densitometry analysis was 

performed using Imagelab software. Density ratio was calculated using β-actin or 

total IRE1 as control. Numbers represent the mean density ratio for each group 

of mice pair-fed control or ethanol diet. C=Control; E=Alcohol. 
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Figure 10D. Alcohol-induced accumulation of acrolein adducts does not 

induce XBP1 splicing in mice livers.  

XBP1 splicing by semi-quantitative endpoint reverse transcription-PCR visualized 

by agarose gel electrophoresis.  
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Figure 10E. Alcohol-induced accumulation of acrolein adducts does not 

induce spliced XBP1 protein in mice livers.  

Western blot analysis of XBP1s and XBP1u was performed using total cell 

lysates. Blots were reprobed with antibody to β-actin to ensure equivalent 

loading. Densitometry analysis was performed using Imagelab software. Density 

ratio was calculated using β-actin as control. Numbers represent the mean 

density ratio for each group of mice pair-fed control or ethanol diet. C=Control; 

E=Alcohol. 
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Acrolein adduct accumulation and ER stress occur concurrently with 

proapoptotic signaling 

Uncontrolled ER stress in cells can result in apoptosis, which is thought to occur 

by various proapoptotic pathways [71]. Accordingly, we examined the effects of 

alcohol consumption on relevant ER-associated apoptotic signaling in alcohol fed 

mice. The activation of IRE1 leads to its interaction with TRAF2 and ASK1, and 

subsequent activation of the mitogen/stress kinase, JNK, which is associated with 

ER stress-induced apoptosis. The sustained activation of JNK by phosphorylation 

is implicated in hepatocyte apoptosis and several forms of liver injury [72]. 

Hepatocytes express both isozymes JNK1 (46kDa) and JNK2 (54kDa) which 

regulate inflammation, cell proliferation and death in a cell-type dependent and 

contextual manner. Our data show that alcohol consumption caused significant 

phospho-activation of both JNK1 and JNK2, while total JNK was very slightly 

reduced compared to control mice (Figure 11A).  

Another relevant ER-driven apoptotic pathway involves the proteolytic 

activation of the ER-resident caspase-12, which is known to subsequently activate 

caspase-9 and caspase-3, resulting in apoptotic cell death [73]. Alcohol 

consumption also caused proteolytic activation of caspase-12, as demonstrated 

by a decrease in pro-caspase-12 (~55kDa) and a concurrent increase in the 

cleaved form (~38kDa) (Figure 11B). The third, and possibly the most well 

characterized, pathway of ER stress-induced apoptosis is via upregulation of 

CHOP, which is primarily responsible for ER stress-induced cell death [74, 75]. 

Activated CHOP leads to alterations in Bcl2 and BAX leading to activation of the 
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mitochondrial death pathway that is known to be involved in alcohol-induced liver 

injury. The CHOP gene promoter contains binding sites for transcription factors 

ATF4 and ATF6 which are both activated by alcohol (Figures 9 and 10, 

respectively). Correspondingly, alcohol consumption resulted in a ~5-fold 

upregulation of CHOP mRNA (Figure 11C) and a concomitant increase in CHOP 

protein (Figure 11D). Thus, alcohol consumption and consequent acrolein build up 

in mice activates ER-associated proapoptotic signaling pathways. 
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Figure 11A. Alcohol-induced hepatic acrolein build-up and consequent ER 

stress leads to proapoptotic signaling in mice livers.  

Western blot analysis of Phospho-JNK and total JNK was performed using total 

cell lysates. Blots were reprobed with antibody to β-actin to ensure equivalent 

loading. Densitometry analysis was performed using Imagelab software. Density 

ratio was calculated using total JNK or β-actin as control. Numbers represent the 

mean density ratio for each group of mice pair-fed control or ethanol diet. 

C=Control; E=Alcohol. 
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Figure 11B. Alcohol-induced hepatic acrolein build-up and consequent ER 

stress leads to proapoptotic signaling in mice livers.  

Western blot analysis of Pro- and cleaved/active caspase 12 protein levels was 

performed using total cell lysates. Blots were reprobed with antibody to β-actin to 

ensure equivalent loading. Densitometry analysis was performed using Imagelab 

software. Density ratio was calculated using β-actin as control. Numbers 

represent the mean density ratio for each group of mice pair-fed control or 

ethanol diet. C=Control; E=Alcohol. 
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Figure 11C. Alcohol-induced hepatic acrolein build-up and consequent ER 

stress leads to proapoptotic signaling in mice livers.  

Total RNA was evaluated for mRNA expression by real-time PCR using primers 

specific for CHOP genes. Data are presented as the mean ± SEM (n=6). 

Statistical analysis was performed using Student’s t-test.  **p<0.01. C=Control; 

E=Alcohol. 
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Figure 11D. Alcohol-induced hepatic acrolein build-up and consequent ER 

stress leads to proapoptotic signaling in mice livers.  

Western blot analysis of CHOP was performed using total cell lysates. Blots were 

reprobed with antibody to β-actin to ensure equivalent loading. Densitometry 

analysis was performed using Imagelab software. Density ratio was calculated 

using β-actin as control. Numbers represent the mean density ratio for each 

group of mice pair-fed control or ethanol diet. C=Control; E=Alcohol. 
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Hepatic acrolein accumulation and ER stress are accompanied by 

steatosis, hepatocyte apoptosis and liver injury 

Previous studies have shown that hepatic ER stress is causally linked to steatosis 

[76]. We examined fat accumulation in the liver. Consistent with hepatic acrolein 

and ER stress, we observed substantial microvesicular and macrovesicular 

hepatic steatosis in alcohol-exposed mice compared to controls, as seen by lipid 

droplet accumulation by Hematoxylin and Eosin (H&E) and Oil Red O staining 

(Figure 12A). Further, the activation of proapoptotic signaling culminated in 

apoptotic cell death in the livers of alcohol-fed mice, as seen by a significant 

increase in TUNEL (Terminal deoxynucleotidyl transferase dUTP nick-end labeling 

assay) positive staining in the livers of alcohol-fed mice compared to control 

(Figure 12A), which led to greater liver injury as shown by elevated serum ALT 

(Alanine aminotransferase) and AST (Aspartate aminotransferase) (Figure 12B). 

Thus, concomitant with alcohol-induced accumulation of acrolein and ER stress, 

an increase was observed in hepatic steatosis and hepatocyte apoptosis, leading 

to liver injury in alcohol-fed mice. 
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Figure 12A. Alcohol-induced acrolein and ER stress leads to steatosis, 

hepatocyte apoptosis and liver injury in mice livers.  

Hepatic steatosis [by H&E (40x magnification) and Oil Red O staining (20x 

magnification)], and apoptosis [by TUNEL staining (20x magnification)]. 

C=Control; E=Alcohol. 
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Figure 12B. Alcohol-induced acrolein and ER stress leads to steatosis, 

hepatocyte apoptosis and liver injury in mice livers.  

Liver injury – serum ALT and AST. Mean ± SEM, n=6 mice. **p<0.01 and 

***p<0.001 compared to control by Student’s t-test. C=Control; E=Alcohol. 
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Acrolein mimics the in vivo effects of alcohol in cultured hepatic cells  

Along with acrolein, alcohol metabolism in the liver is capable of giving rise to many 

toxic metabolites including HNE and malondialdehyde. Hence, to isolate and 

determine the sole contribution of acrolein in alcohol-induced hepatic injury, we 

used H4IIEC cells to examine the direct in vitro effects of acrolein in comparison 

to alcohol, particularly pertaining to induction of ER stress and hepatocyte cell 

death. Similar to alcohol exposure, direct acrolein exposure of H4IIEC cells 

resulted in considerable acrolein adduct accumulation (Figure 13A).  Further, 

analogous to alcohol exposure, direct in vitro acrolein exposure of hepatocytes 

resulted in ER stress and cell death. We exposed H4IIEC cells to variable 

concentrations of either alcohol (50mM, 100mM or 200mM) or acrolein (20µM or 

30µM) for either 6h (for mRNA) or 24h (for protein). These concentrations of 

alcohol represent levels that may be encountered with moderate to high alcohol 

consumption in humans. The exact levels of acrolein that may be generated in the 

liver following alcohol consumption are difficult to predict, and the acrolein 

concentrations used here are based on published studies [77] and represent 

pathophysiological levels that caused hepatocyte apoptosis. Exposure of H4IIEC 

cells to either acrolein or alcohol yielded similar results; both triggered ER stress 

and increased ATF3 and ATF4, with minimal upregulation of GRP78 and GRP94, 

but a robust increase in proapoptotic CHOP (Figure 13B – mRNA and Figure 13C 

– protein). Further, consistent with the induction of CHOP, we observed a 

corresponding loss of cell survival (Figure 13D). Thus, our data demonstrate that 

acrolein duplicates the effects of alcohol in cultured hepatic cells, indicating that 
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the adverse effects of alcohol may be attributed to elevated acrolein in the liver 

occurring as a result of alcohol consumption. 
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Figure 13A. Acrolein mimics the in vivo effects of alcohol and causes ER 

stress and cell death in cultured hepatic cells.  

Accumulation and quantification of acrolein adducts (immunocytochemistry using 

specific FDP-lysine antibodies - 20x magnification) in H4IIEC cells treated for 

24h. **p<0.01 and ***p<0.001 compared to control by ANOVA - Bonferroni 

analysis. C = control; E = 200mM alcohol; and A = 30µM acrolein. 

 

 

 

 



66 
 

 

Figure 13B. Acrolein mimics the in vivo effects of alcohol and causes ER 

stress and cell death in cultured hepatic cells.  

Total RNA was evaluated for mRNA expression ATF3, ATF4, GRP78, GRP94 

and CHOP by real-time PCR at 6h  

C=Control; E=alcohol (200 mM); A=Acrolein (30 µM). Mean ± SEM, n=3 

experiments. *p<0.05 and **p<0.01 compared to control by ANOVA - Bonferroni 

analysis.  
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Figure 13C. ER stress gene expression ATF3, ATF4, GADD/CHOP, GRP78, 

and GRP94 by alcohol (E) or acrolein (A).  

H4IIEC cells were treated with varying concentrations of ethanol (50mM, 100mM, 

and 200mM) and acrolein (20μM and 30μM) for 24 hours. Western blot analysis 

was performed using total cell lysates. Blots were probed with ATF3, ATF4, 

GADD/CHOP, GRP78, and GRP94 antibodies, then stripped and reprobed with 

antibody to β-actin to ensure equivalent loading. Densitometry analysis was 

performed using Imagelab software. Density ratio was calculated using β-actin as 

control. Numbers represent mean density ratio for each treatment. 
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Figure 13D. Cell viability of cultured hepatocytes from alcohol (E) or 

acrolein (A) toxicity.  

Cell viability was measured by MTT assay as described in methods. E=Alcohol 

200mM and A= acrolein 30μM. Data are presented as the mean ± SEM. 

Statistical analysis was performed using GraphPad Prism Software using one-

way ANOVA followed by Bonferroni posttest. *p<0.05 compared to Control (n=3). 
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Acrolein scavengers exhibited protective effects both in vitro and in vivo 

In order to confirm the contribution of acrolein and establish its pathogenic role in 

alcohol-induced ER stress and liver injury, we tested known acrolein scavengers 

to mitigate the injurious effects of acrolein build-up. In this study, we used an 

acrolein scavenger, hydralazine, which is known to neutralize free acrolein [78, 79] 

and acrolein-protein adducts [47, 80], both of which are cytotoxic. Also, hydralazine 

was shown to effectively prevent acrolein-mediated cell death and tissue damage 

in spinal cord injury [46, 81]. Additionally, we also used carnosine (beta-alanyl 

histidine, an endogenous dipeptide) that is known to scavenge aldehydes such as 

acrolein, and to have beneficial effects against acetaminophen-induced liver injury 

[82]. H4IIEC cells were pretreated with hydralazine or carnosine for 1h prior to 

alcohol or acrolein exposure, and the effect on cell viability was monitored by the 

MTT assay. Acrolein- or alcohol-induced cell death was significantly attenuated by 

both acrolein scavengers, and hydralazine was slightly more effective (Figure 14A).  

Finally, to firmly establish the role of acrolein in the development of ALD in 

vivo, we also tested the efficacy of hydralazine in scavenging acrolein and 

protecting against alcohol-induced liver injury in the NIAAA murine model of ALD. 

Hydralazine (5mg/kg body weight, dose based on previous literature [79, 81]) was 

administered by daily intraperitoneal injection during the 10-day alcohol feeding 

regimen. As noted previously, consumption of the alcohol diet resulted in 

significant hepatic acrolein adduct accumulation and steatosis in the liver, and the 

acrolein scavenger hydralazine effectively blocked alcohol-induced acrolein 

formation and adduct accumulation (Figure 14B) and dramatically reduced hepatic 
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steatosis as seen by histological examination and confirmed by Oil Red O staining 

(Figure 14B). Further, alcohol-induced hepatic ER stress and transcriptional 

upregulation of hallmark ER stress mRNAs (ATF3, ATF4, CHOP and GRP78) 

were also substantially attenuated by hydralazine, most to near  control levels 

(Figure 14C). Importantly, hydralazine prevented alcohol-induced proapoptotic 

signaling and activation of JNK, procaspase12 and CHOP (Figure 14D). A 

corresponding decrease was seen in alcohol-induced hepatic apoptosis as seen 

by decreased TUNEL positive cells (Figure 14E). Lastly, hydralazine showed 

marked protective effects against alcohol-induced liver injury with significantly 

reduced serum ALT and AST levels (Figure 14F). These data demonstrate that 

targeting and sequestration/neutralization of alcohol-induced hepatic acrolein 

accumulation by hydralazine administration significantly attenuated ER stress, 

apoptosis and liver injury, and protected against ALD in mice (Schematic - Figure 

25).  
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Figure 14A. Acrolein scavengers exhibit protective effects in vitro.  

Cell survival in H4IIEC cells by MTT assay (24h). Mean ± SEM, n=3 experiments. 

*p<0.05 compared to the corresponding treatment of E or A by ANOVA - 

Bonferroni analysis. C = control; E = 200mM alcohol; and A = 30µM acrolein; 

CAR=Carnosine; Hyd=Hydralazine.  
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Figure 14B. Acrolein scavengers exhibit protective effects in mice livers.  

Hepatic acrolein adduct accumulation in mice (20x magnification), and hepatic 

steatosis by H&E (80x magnification) and Oil Red O staining (20x magnification).  

C=Control; E=Alcohol; Hyd+E=Hydralazine+Alcohol. 
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Figure 14C. Acrolein scavengers exhibit protective effects in mice livers. 

ATF3, ATF4, GRP78, GRP94 and CHOP mRNA levels. Data are presented as 

mean ± SEM (n=6 mice). *p<0.05 and ***p<0.001 compared to E by ANOVA - 

Bonferroni analysis. C=Control; E=Alcohol; Hyd+E=Hydralazine+Alcohol. 
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Figure 14D. Acrolein scavengers exhibit protective effects in mice livers.  

Protein levels of phospho-JNK and total JNK, pro- and cleaved/active caspase 

12, and CHOP. Numbers represent mean densitometry ratios normalized to 

corresponding control proteins (total JNK or β-actin). C=Control; E=Alcohol; 

Hyd+E=Hydralazine+Alcohol. 
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Figure 14E. Acrolein scavengers exhibit protective effects in mice livers.  

Apoptosis by TUNEL staining (80x magnification), with quantification of 

apoptosis. **p<0.01 compared to E by ANOVA - Bonferroni analysis. C=Control; 

E=Alcohol; Hyd+E=Hydralazine+Alcohol. 
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Figure 14F. Acrolein scavengers exhibit protective effects in mice livers.  

Liver injury – serum ALT and AST. Mean ± SEM, n=6 mice. **p<0.01 and 

***p<0.001 by ANOVA - Bonferroni analysis. C=Control; E=Alcohol; 

Hyd+E=Hydralazine+Alcohol. 
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RESULTS SECTION II. 

Increasing evidence suggests that interactions between the intestine and liver (gut-

liver axis) play a critical role in the development/progression of ALD [49]. 

In the Results Section I above, we discussed the contributory role of acrolein to 

the hepatic aspect of alcohol-induced liver injury. This section describes the 

intestinal effects of acrolein in ALD using cultured human intestinal epithelial cells 

(Caco-2), and the chronic+binge murine model of ALD. 

Alcohol consumption leads to intestinal acrolein generation, accumulation 

of acrolein adducts and serum endotoxemia  

Alcohol consumption causes lipid peroxidation and leads to acrolein adducts 

accumulation. In order to validate our hypothesis that acrolein disrupts the 

intestinal epithelial barrier leading to increased gut permeability, we first examined 

whether alcohol consumption in mice led to acrolein buildup in the intestine. The 

ileum was investigated since it is critical for nutrient absorption, and it has been 

demonstrated to be affected under pathological disease conditions, such as 

ulcerative colitis and alcoholic liver disease [83]. From our data, a marked increase 

was observed in the levels of acrolein-protein adducts (brown staining of acrolein-

FDP-lysine adducts) in the ileum of alcohol-fed mice (Figure 15) compared to 

controls, showing that alcohol consumption led to the intestinal 

generation/accumulation of acrolein.  The alcohol-induced acrolein adduct 

accumulation was largely in the epithelium, lacteal, and lamina propria. 

Hydralazine, an acrolein scavenger, which effectively trapped acrolein-protein 

adducts, lowered acrolein adduct accumulation in the ileum. These data show that 
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hydralazine can reduce the accumulation of acrolein protein adducts in the ileum 

of alcohol fed animals. 

In order to test if the clearance of acrolein-protein adducts by hydralazine 

improves intestinal barrier function, we examined the level of endotoxin in the 

serum of the mice. An elevated LPS level was detected in the alcohol-fed mice 

compared to control (Figure 16) which indicated disruption of intestinal barrier 

function. In our previous liver data, hydralazine, the acrolein scavenger, showed a 

protective effect against alcohol-induced ER stress and liver injury. Interestingly, 

the increased LPS level was significantly attenuated by hydralazine in the serum 

compared to the alcohol group. These data demonstrate that alcohol causes 

intestinal barrier dysfunction and leads to increased gut permeability which, in turn, 

allows elevated LPS levels in the serum. Hydralazine, which is known to neutralize 

free acrolein [78, 79] and acrolein-protein adducts [47, 80], exhibits a protective 

effect in alcohol induced endotoxemia. Thus, hydralazine, the acrolein scavenger, 

attenuated alcohol induced endotoxemia.  
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Figure 15: Exposure to alcohol causes acrolein adduct buildup in the ileum 

of mice. 

Accumulation of acrolein adducts in mice ileum by immunohistochemistry using 

specific FDP-lysine antibodies (20x). 

C=Control; E=Ethanol; HYD+E=Hydralazine+ethanol. 
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Figure 16: Hydralazine attenuated alcohol-induced serum endotoxemia.  

Serum LPS levels. Data are presented as mean ± SEM (n=6 mice). *p<0.05 

compared to E by ANOVA - Bonferroni analysis. C=Control; E=Ethanol; 

HYD+E=Hydralazine+ethanol. (n=6). 
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Caco-2 cells were used to study the involvement of acrolein in the intestine 

in ALD.               

From our animal data, we saw accumulation of acrolein protein adducts in the 

ileum and a corresponding rise of serum endotoxemia was observed in the alcohol-

fed mice. In order to mimic the in vivo acrolein effect on the intestine, the direct 

effects of acrolein were investigated using a well characterized and accepted 

model of the intestine: murine cultured intestinal epithelial Caco-2 cells, which form 

a polarized confluent monolayer that mimics the intestinal epithelium [66]. Cells 

were grown for 21 days to form epithelial monolayers and were then treated with 

alcohol or acrolein to compare their effects. Acrolein adduct accumulation was 

seen in Caco-2 cells that were treated for 24h with alcohol (200mM) or acrolein 

(20uM) compared to untreated cells (Figure 17). To determine whether acrolein 

adduct accumulation affected the Caco-2 epithelial barrier, we measured intestinal 

barrier function and permeability using Trans Epithelial Electrical Resistance 

(TEER) and FD-4 leakage, respectively. Alcohol treatment for 6h caused a 

significant decrease in the epithelial TEER measurements in a dose-dependent 

manner. Consistent with these results, the paracellular permeability to FD-4 was 

significantly increased by alcohol exposure in a dose-dependent manner (Figure 

18). Similar to alcohol, direct acrolein exposure for 6h also caused a significant 

decrease in the epithelial TEER measurements, and a corresponding increase in 

paracellular permeability to FD-4 (Figure 19). These data indicated that alcohol or 

alcohol induced acrolein protein adducts promote disruption of intestinal barrier 
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function and an increase in intestinal barrier permeability with increasing 

concentrations of alcohol or acrolein.  
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Figure 17: Exposure to alcohol or acrolein leads to acrolein adduct 

accumulation in Caco-2 cell monolayers. 

Accumulation of acrolein adducts by immunocytochemistry using specific FDP-

lysine antibodies (20x magnification) in Caco-2 cells treated for 24h as follows: 

C=Control; E=Ethanol (200mM); A=Acrolein (20µM). 
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Figure 18. Alcohol exposure decreases barrier function and increases 

permeability (FD-4) (TEER) Caco-2 cells. 

C=Control; E=Ethanol (%) Data are presented as the mean ± SEM. Statistical 

analysis was performed using GraphPad Prism Software using one-way ANOVA 

followed by Bonferroni posttest.*p<0.05 and **p<0.01 compared to Control (n=3). 
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Figure 19. Acrolein exposure decreases and increases permeability (FD-4) 

barrier function (TEER) in Caco-2 cells. 

C=Control; A=Acrolein (µM). Data are presented as the mean ± SEM. Statistical 

analysis was performed using GraphPad Prism Software using one-way ANOVA 

followed by Bonferroni posttest. *p<0.05, **p<0.01 and ***p<0.001 compared to 

Control (n=3). 
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Alcohol or acrolein exposure leads to down regulation and redistribution of 

TJPs                                                                                                                                                       

Tight junction proteins (TJP; e.g., ZO-1, claudin-1 and occludin) are critical 

components of the intestinal barrier. ZO-1 is the tight junction scaffolding protein 

and it has been reported that reduced level of ZO-1 leads to disruption of the 

intestinal mucosa and an increase in permeability after intestinal ischemia-

reperfusion injury [84]. Claudin-1 plays an important role in the maintenance of gut 

integrity. Decreased claudin-1 leads to increased intestinal permeability while 

overexpressed claudin-1 reduces paracellular permeability and maintains the 

integrity of intestinal barrier [85]. We demonstrated that alcohol exposure 

downregulated TJP mRNAs (ZO-1, occludin and claudin-1) from 3% to 5% (Figure 

20) in 24 hours. Similar to alcohol treatment, the treatment of acrolein at 10 to 20 

uM also showed downregulation of TJP mRNAs (ZO-1, occludin and claudin-1) 

(Figure 19) in 24 hours. The effect of acrolein (10 and 20 uM) on the protein levels 

of TJPs (ZO-1, occludin, claudin-1) was also evaluated (Figure 21).    The effects 

on total protein levels were variable; claudin-1 and occludin were downregulated 

by acrolein, in agreement with the decrease in mRNA levels, but ZO-1 was 

increased slightly (Figure 21). Since the location and membrane association of the 

TJPs is critical for their function, any alterations in their localization can greatly 

impact the regulation of barrier permeability. Hence, we examined the protein 

levels in the membrane-bound (insoluble in detergent) and the soluble, or non-

membrane associated, fractions (Figure 22). Acrolein treatment resulted in a 

dramatic increase in the soluble protein levels of all three TJPs, indicating that their 
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membrane association was significantly disrupted. We observed a corresponding 

decrease in the insoluble levels of both ZO-1 and claudin, but not occludin (Figure 

22).  

To further support these findings and to examine TJP redistribution in whole 

cells rather than extracted protein samples, we used immunofluorescence 

microscopy to assess the localization of ZO-1 (as a representative TJP) upon 

exposure to alcohol or acrolein. Both alcohol (2% or 5%) and acrolein (10 and 20 

µM) showed significant and similar dose-related effects on the distribution pattern 

of ZO-1 (Figure 23). Compared with the untreated control cells which exhibited a 

smooth regular pattern of ZO-1 staining at the cell borders between the adjacent 

epithelial cells, cells treated with either acrolein or alcohol displayed an uneven 

(ruffled) distribution. ZO-1 was decreased and discontinuous at some locations, 

while a random accumulation and clumping of ZO-1 was seen in other cells.  

Overall, our data showed that alcohol or acrolein exposure caused the 

downregulation and/or redistribution of TJPs, leading to consequent intestinal 

barrier dysfunction and increased permeability. 
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Figure 20. In vitro alcohol exposure down-regulates TJP mRNAs. (Real time 

qPCR).  

Total RNA was evaluated for mRNA expression ZO-1, Occludin, and Claudin in 

Caco-2 cells treated for 24h.  

C=Control; E=Alcohol. Mean ± SEM, n=3 experiments. *p<0.05 and 

**p<0.01compared to control by ANOVA - Bonferroni analysis.  
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Figure 21. In vitro acrolein exposure down-regulates TJP mRNAs. (Real 

time qPCR).  

Total RNA was evaluated for mRNA expression ZO-1, Occludin, and Claudin in 

Caco-2 cells treated for 24h.  

C=Control; A=Acrolein. Mean ± SEM, n=3 experiments. *p<0.05, **p<0.01, and 

***p<0.001 compared to control by ANOVA - Bonferroni analysis.  
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Figure 22. Acrolein exposure alters protein levels of TJP. 

Western blot analysis of ZO-1, Occludin, and Claudin were performed using tight 

junction total, soluble, and insoluble protein lysates. Blots were reprobed with 

antibody to β-actin to ensure equivalent loading. Densitometry analysis was 

performed using Imagelab software. Density ratio was calculated using β-actin as 

control. Numbers represent the average density ratio for each treatment. 

C=Control; A=Acrolein (uM). 
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Figure 23. Alcohol treatment causes disrupted distribution of ZO-1 protein 

in Caco-2.  

Caco2 cells were treated with or without alcohol for 24 hours, and ZO-1 protein 

localization was assessed by immunofluorescent microscopy. Results are 

representative of 3 experiments. (magnification, 40X). C=Control; E=Alcohol (%). 
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Figure 24. Acrolein treatment causes disrupted distribution of ZO-1 protein 

in Caco-2.  

Caco2 cells were treated with or without acrolein for 24 hours, and ZO-1 proteins 

localization was assessed by immunofluorescent microscopy. Results are 

representative of 3 experiments. (magnification, 40X). C=Control; A=Acrolein 

(µM). 
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CHAPTER 4 

DISCUSSION 

Alcohol consumption is a major health problem worldwide and in the USA; 

it has no FDA-approved therapy for any stage of ALD. Therefore, it is critical to 

investigate the mechanisms involved in ALD, and to identify novel therapeutic 

targets and strategies for the prevention and treatment of ALD. In this study, we 

pursued in vitro and in vivo studies to demonstrate the role of the lipid peroxidation 

byproduct, acrolein, in contributing to alcohol-induced gut barrier dysfunction and 

hepatic ER stress, steatosis, cell death and liver injury in the pathogenesis of gut-

liver injury of ALD. Our study demonstrates that: (i) alcohol consumption generates 

hepatic acrolein, triggers pathological ER stress and hepatocyte apoptosis, with 

insufficient activation of ER-adaptive/protective responses; (ii) alcohol-induced 

acrolein is a major mediator of hepatic ER stress, cell death and injury, and is a 

potential therapeutic target in ALD; (iii) removal/clearance of acrolein by 

scavengers has therapeutic potential in ALD; and (iv) alcohol consumption 

generates intestinal acrolein, down-regulates tight junction proteins, alters their 

localization, and disrupts intestinal barrier function (Figure 25). Acrolein is formed 

both endogenously from lipid peroxidation and exogenously from environmental 

and dietary exposures such as air pollution, cigarette smoking, automobile 

exhausts, charred meat, and fried foods. The accumulation of acrolein can occur
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and cause problems in other diseases that involve increased lipid peroxidation and 

oxidative stress. 

Our hepatic results demonstrated significant generation/accumulation of 

acrolein in the liver following alcohol exposure resulting in cytoplasmic and nuclear 

accumulation of acrolein adducted proteins. The accumulation of acrolein-protein 

adducts triggered subsequent hepatic ER stress leading to hepatocyte cell death 

and liver injury. Notably, all three ER stress pathways involving the ER sensors 

PERK, IRE1 and ATF6, were activated; however, not all ER stress genes were 

affected in the same way. Alcohol consumption appeared to trigger ER stress and 

induce apoptotic signaling (JNK, Caspase12 and CHOP), while simultaneously 

suppressing UPR-protective responses (XBP1 splicing and ER chaperones 

(GRP78 and 94)). The differential regulation of ER stress genes may be via altered 

signal transduction, or by direct or indirect protein adduction. Also, the nuclear 

accumulation of acrolein adducts may indicate adduction and alteration of function 

of transcription factors or chromatin-modifying proteins such as histone 

deacetylases and DNA/histone methylases, which likely have significant effects on 

downstream gene expression. The exact mechanisms by which acrolein adduct 

accumulation causes ER stress, and the identity and functionality of the proteins 

adducted by acrolein are currently under investigation. 

Oxidative stress is known to induce ER stress, however, the mediators 

responsible for such effects have not been clearly identified. Alcohol-induced 

oxidative stress and aldehyde generation is shown to occur in the absence of ER 

stress in a model of early ALD, suggesting that ER stress may be a downstream 
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consequence of oxidant burden [86]. Our data clearly demonstrate a direct 

mechanistic link and identify acrolein as a major pathogenic initiator of alcohol-

induced hepatic injury. A causal role of acrolein in the pathogenesis of ALD is 

further supported by the observation that clearance of this toxic molecule by 

hydralazine (a known acrolein scavenger) largely prevented alcohol-induced 

acrolein buildup, ER stress, cell death and injury. With regard to acrolein 

accumulation during the development of ALD, our novel results show that alcohol-

mediated downregulation of GSTP may be a key mechanism that reduces the 

normal metabolism/clearance of acrolein, thereby contributing to hepatic 

accumulation of acrolein and consequent liver injury. Indeed, GSTP may be a 

potential therapeutic target, and pharmacological activation of GSTP may be of 

benefit to attenuate of ALD. Additionally, our data indicate that alcohol metabolism 

is essential, and that both ADH- and CYP2E1-dependent pathways contribute to 

acrolein accumulation. Importantly, our data show that acetaldehyde, the first 

metabolite of alcohol, plays a key role in alcohol-induced acrolein formation since 

direct exposure to acetaldehyde resulted in substantial acrolein accumulation in 

H4IIEC cells. Moreover, acetaldehyde may further support acrolein formation via 

upregulation of spermine oxidase which catalyzes the formation of free acrolein by 

oxidation of spermine as reported by Uemura et al. [87]. The vital role of ALDH2 in 

detoxification of aldehydes (both acetaldehyde and acrolein) was clearly shown by 

the observation that Alda1 (ALDH2 agonist) prevented alcohol-induced acrolein 

accumulation in cultured hepatocytes; these data are in keeping with the recent 
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demonstration that Alda1 protects against alcohol-induced steatosis and cell death 

[88].  

To the best of our knowledge our data demonstrate, for the first time, that 

alcohol consumption causes pathological ER stress without sufficient induction of 

the adaptive/protective responses involving XBP1 splicing and upregulation of ER 

chaperones.  Thus, insufficient adaptation to ER stress along with proapoptotic 

signaling may significantly contribute to hepatic injury in this model of alcohol 

consumption. Although XBP1 splicing occurred in a few alcohol-fed mice, GRP78 

or GRP94 were not significantly upregulated, suggesting that additional factors 

(such as other proteins or epigenetic modifications) may also be involved. A similar 

discordant lack of correlation has been reported in dermal fibroblasts between 

chaperone gene expression and upstream signal transduction (cleavage of ATF6 

and splicing of XBP1) [89]. Our data in the chronic binge murine model showing 

minimal to no increase in chaperones GRP78 and GRP94 differs from the murine 

intragastric alcohol feeding model, which showed substantial upregulation of 

GRP78, along with CHOP and hepatic steatosis and injury [37]. Also, in guinea-

pigs fed alcohol, liver steatosis and apoptosis were accompanied by increased 

mRNA and protein levels of CYP2E1 and GRP78, and activated caspase-12 [38]. 

These variations in ER stress-associated gene expression may reflect differences 

in model systems pertaining to animals, routes of alcohol feeding or temporal 

patterns of gene expression. Our study emphasizes the important role of 

pathological ER stress in alcohol-induced liver injury in this model of ALD, and 

indicates that impaired ER adaptive responses (e.g., GRP78) may contribute 
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significantly to injury in ALD, as has been described in other forms of liver injury 

[90]. ER stress is known to result in JNK activation through the IRE1-TRAF 

pathway; however, several other stimuli also activate JNK, including TNF and 

TRAIL, which are known to be elevated in alcohol-fed mice. The direct causative 

role of ER stress in JNK activation and alcohol-induced injury is clearly suggested 

but not established by our work; future studies to confirm this concept will involve 

investigating the effects of pharmacological or genetic inhibition of ER stress on 

JNK activation, apoptosis and liver injury. 

Notably, in addition to showing the pathogenic contribution of acrolein in the 

development of experimental ALD, our study provides novel and exciting evidence 

that acrolein removal through scavenging by hydralazine is an effective way to 

mitigate alcohol-induced hepatic ER stress, steatosis and injury in experimental 

ALD, both in vitro and in vivo. Although the protective effects of hydralazine are 

primarily reported against acrolein [47], it is possible that hydralazine may also 

interact with and neutralize other toxic aldehydes such as HNE, thereby providing 

added protection in ALD. In our study, hydralazine prevented liver injury when 

administered from the start of alcohol feeding; additional studies are needed to test 

its efficacy in a treatment paradigm. Although, the data convincingly demonstrate 

that acrolein removal/clearance by hydralazine may be a novel and effective 

treatment modality, the use of hydralazine in the treatment of ALD patients may be 

somewhat limited since hydralazine has vasodilator properties. Alternative 

compounds, with the same hydrazine-based acrolein scavenging mechanism but 

without the vasodilator effects, such as dihydralazine and the antidepressant 
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phenelzine [91], may need to be investigated for safety and efficacy in ALD. 

Further studies are needed to understand the exact mechanism by which alcohol-

induced acrolein leads to ER stress, and to examine the contribution of acrolein in 

alcohol-induced hepatic inflammation. 

In addition to hepatic effects, alcohol-induced increased intestinal 

permeability and consequent systemic endotoxemia are known to be important in 

the pathogenesis of ALD. Alcohol is associated with intestinal barrier dysfunction 

and increased intestinal permeability (‘’leaky gut’’) which results in translocation of 

bacteria and increased systemic endotoxemia. Therefore, it becomes important to 

determine the role of acrolein in intestinal barrier dysfunction and the mechanism(s) 

by which it occurs in order to assess potential therapeutic targets for prevention 

and/or treatment of ALD. Our results show that acrolein adducts accumulate in the 

lamina propria and in the border of epithelial cells in the villi of the ileum in alcohol 

treated mice. Similar to hepatic data where the acrolein scavenger, hydralazine, 

effectively protected against alcohol-induced hepatic ER stress, steatosis and 

injury in experimental ALD, our intestinal data also show that hydralazine 

significantly reduced acrolein adduct formation in the ileum and alleviated ‘‘leaky 

gut’’ as indicated by the decrease in serum endotoxin.  

These observations led us to conduct a further examination of the molecular 

mechanisms underlying acrolein-mediated intestinal barrier dysfunction and 

intestinal permeability. A well-established in vitro model of intestinal barrier 

function and intestinal permeability (Caco-2 cell monolayers grown on permeable 

inserts) were used for this study. Direct in vitro exposure of Caco-2 cells to alcohol 
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resulted in acrolein adduct accumulation. Alcohol consumption is known to result 

in the generation of acetaldehyde in the intestine; however, it remains unclear as 

to whether alcohol is metabolized by gut microbiota or by intestinal epithelial (and 

other) cells, or both. Our data clearly indicate that alcohol is metabolized by the 

epithelial cells giving rise to acrolein. Also, our data indicate that alcohol-induced 

acrolein adduct accumulation in the intestinal epithelial cells is a driving force to 

cause barrier dysfunction and leaky gut. Our in vitro data indicate that acrolein 

mimics the effect of alcohol in the epithelial cells and alters the localization and 

redistribution of tight junction proteins, hence causes the disruption of intestinal 

barrier function and enhances intestinal permeability. The similarity of the results 

observed with acrolein compared to alcohol provide further confirmation that 

alcohol-induced acrolein disrupts intestinal barrier function and leads to the 

increased intestinal permeability and further contributes to the pathogenesis of 

ALD.   

In conclusion, acrolein is the most reactive and toxic aldehyde generated 

through lipid peroxidation. Accumulation of acrolein adducts was seen in response 

to alcohol consumption in mouse livers and intestines. Acrolein adduct 

accumulation correlated with disruption of TJPs, intestinal barrier dysfunction, and 

intestinal permeability in the gut. Moreover, accumulation of acrolein adducts is 

associated with hepatic steatosis, JNK activation, ER stress, apoptosis and liver 

injury, which are recognized etiologic factors in gut-liver injury of ALD. We used 

cultured hepatic and intestinal cells to examine the in vitro effects of acrolein 

compared to alcohol. Alcohol-induced in vivo intestinal effects were mimicked by 
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acrolein in vitro Caco-2 cells, with downregulation of tight junction proteins, 

disruption of TEER, and increased FD-4 permeability. Similar to alcohol, in vitro 

acrolein triggered hepatocyte ER stress and induced apoptosis. Together the data 

indicate that acrolein may mediate the adverse intestinal and hepatic effects of 

alcohol. Notably, these effects were attenuated by the acrolein scavenger, 

hydralazine, suggesting its therapeutic potential in the gut-liver injury of ALD. 

Limitation of the study: The concentration of free acrolein is difficult to 

measure in biological samples due to its high reactivity and lability. In this study, 

we used an indirect measure of acrolein and only assessed the levels of FDP-

lysine acrolein adducts, and no other adducts that may be formed with cysteines 

and histidines. The development of more efficient novel assays for free acrolein 

and adducts would facilitate more accurate measurement of acrolein in ALD. In 

the intestinal barrier function study, we focused on the TJPs. However, the 

mucus layer (mucins and intestinal trefoil factors) [90] and/or antimicrobial 

peptides also critically contribute to gut integrity and are affected by alcohol. 

These will be highly relevant studies as a future direction for the project.  

Currently, there are several models of ALD that are similar in many 

aspects, but also differ somewhat. Moreover, no animal model perfectly 

simulates human ALD. Our data are limited to one single model of chronic binge. 

To emphasize the relevance of our findings, the reproducibility across animal 

models would need to be further examined. Moreover, mouse data may not 

exactly correlate to the responses in human ALD; hence, the role of acrolein in 

human ALD would need to be investigated and established. 
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Clinical relevance: About 30% of heavy alcohol drinkers develop severe 

ALD, and dietary and environmental factors are thought to be critical determinants. 

Acrolein is a common environmental and dietary pollutant and our study shows 

that it is a major mediator of the adverse effects of alcohol and plays a causal role 

in ALD pathogenesis. Our group has shown that diets enriched in linoleic acid 

(common dietary PUFA) exacerbate alcohol-induced liver injury [83], and 

consumption of linoleic acid has increased more than 3-fold over the last century, 

thereby increasing the substrate availability for LPO and subsequent acrolein 

generation. Additionally, acrolein is a major aldehyde component of cigarette 

smoke [92]; cigarette smoking is common in persons consuming alcohol and is 

known to negatively impact alcoholic liver disease. Thus, environmental and 

dietary acrolein exposures may add to endogenously generated acrolein with 

significant and clinically relevant pathogenic consequences. Our results indicate 

that acrolein is a major pathogenic contributor and may be an important therapeutic 

target in ALD.  Notably, our study demonstrates for the first time that acrolein 

neutralization/clearance may be an effective strategy for curtailing alcohol-induced 

acrolein-mediated gut-liver injury in the development of ALD. Hence, acrolein 

scavengers such as hydralazine may represent a novel therapeutic approach for 

the prevention/treatment of ALD.  
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Figure 25. Schematic: Acrolein mediates alcohol-induced intestinal barrier 

dysfunction, permeability and hepatic ER stress, apoptosis and injury in 

ALD, and the scavenger, hydralazine, prevents these effects. 
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