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ABSTRACT 

ROLE OF PDE4 IN ALCOHOL-INDUCED PATHOGENIC ALTERATIONS IN 
THE GUT-LIVER-BRAIN AXIS 

 

Diana Veronica Avila 

April 12th 2016 

Alcoholic liver disease (ALD) remains a leading cause of death from liver 

disease in the U.S., and there is still no FDA-approved therapy. Alcohol 

metabolism leads to generation of free radicals and oxidative stress with a 

resultant formation of lipid peroxidation products, which, in turn, contribute to the 

development of ALD. Alcohol induced hepatic steatosis is the earliest and most 

frequent manifestation of ALD and a significant risk factor for progressive liver 

disease. Cyclic adenosine monophosphate (cAMP) signaling has been shown to 

significantly regulate lipid metabolism. Moreover, agents that increase cAMP 

have been shown to effectively mitigate oxidative stress both in vivo and in vitro. 

Hence, the role of hepatic PDE4 and a resultant dysregulation of cAMP signaling 

in alcohol induced hepatic steatosis and lipid peroxidation was examined. 

C57BL/6 wild type (WT) and Pde4b knockout (Pde4b-/-) mice were pair-fed 

control and ethanol liquid diets. One group of wild type mice received Rolipram, a 

PDE4 specific inhibitor, during alcohol feeding. Alcohol feeding resulted in a 

significant fat accumulation and oxidative stress in WT mice as demonstrated by 

increased hepatic free fatty acid levels and lipid peroxidation. This alcohol effect
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was associated with a significant decrease in hepatic carnitine 

palmitoyltransferase 1A (CPT1A) expression, a rate limiting enzyme in fatty acid 

β-oxidation.  Additionally, hepatic F4/80 staining was markedly increased in 

alcohol fed WT mice, indicating Kupffer cell activation. Importantly, alcohol 

feeding significantly increased hepatic PDE4 enzyme expression as early as in 

one week with the concomitant decrease in cAMP/pCREB levels. PDE4 inhibition 

in alcohol fed mice prevented the decrease in hepatic CPT1A expression and 

lipid accumulation. This effect on CPT1A expression was mediated by preventing 

the decrease in a critical transcription factor for CPT1A expression, peroxisome 

proliferator-activated receptor (PPARα) and increase in PPARα co-activators, 

peroxisome proliferator-activated receptor gamma coactivator 1α  and sirtuin 

1(PGC-1α and SIRT1). Moreover, compared to wild type mice, Pde4b knockout 

and Rolipram treated alcohol fed mice had higher levels of antioxidant enzymes 

SOD1/2, and GPx1/2 and decreased 4HNE and F4/80 staining. In summary, 

these results demonstrate that the alcohol- induced increase in hepatic PDE4, 

specifically PDE4B expression, and compromised cAMP signaling predisposes 

the liver to impaired fatty acid oxidation and increased oxidative stress. These 

data also suggest that hepatic PDE4 is a clinically relevant therapeutic target for 

the treatment of alcoholic fatty liver disease.  
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Chronic ethanol consumption significantly increases brain TLR4 

expression and downstream inflammatory gene expression, contributing to 

microglial activation and neuro-inflammation. Our group has previously shown 

that TLR4 inducible PDE4 expression plays a major role in regulating 

inflammatory cytokine production in alcohol exposed monocytes/macrophages. 

We have also shown that inhibition of PDE4 markedly down-regulates endotoxin 

inducible TNF expression and alcohol mediated priming of 

monocytes/macrophages. In the present study we examined the potential role of 

PDE4 in alcohol induced activation of glial cells and neuro-inflammation using 

both in vitro and in vivo models. Primary mouse microglial cells were treated in 

vitro with ethanol followed by endotoxin stimulation. Protein and gene expression 

analysis showed that alcohol treatment increased TNF and PDE4B expression 

and primed microglial cells to increase production of TNF in response to 

endotoxin. The PDE4 inhibitor, Rolipram, significantly attenuated TNF expression 

indicating the role of PDE4B in alcohol mediated effect on microglial TNF 

expression. To examine the role of PDE4B in alcohol induced neuro-

inflammation in vivo, C57Bl/6 and pde4b knockout (Pde4b-/-) mice were pair-fed 

control and ethanol liquid diets for 4 weeks. Additionally, one group of mice 

received Rolipram to pharmacologically inhibit PDE4 activity. Examination of 

brain tissues from alcohol fed mice showed increased PDE4B protein expression 

compared to pair-fed mice. Along with PDE4B, alcohol was also observed to:  (i) 

increase COX-2 expression; and (ii) induce activation of glial cells, as indicated 

by an increase in GFAP (glial fibrillary acidic protein) positive astrocytes, and 
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IBA-1 (ionized calcium-binding adapter molecule 1) positive microglial cells. 

Importantly, both alcohol-induced activation of glial cells and inflammation were 

markedly attenuated in Pde4b-/- mice and by pharmacologic inhibition of PDE4. 

Overall, these data identify the critical role of PDE4B in regulating alcohol-

induced neuro-inflammation that can be targeted for effective therapeutic 

intervention.  



viii 
 

TABLE OF CONTENTS 

           PAGE 

ACKNOWLEDGMENTS………………………………………………………………..iii 
 
ABSTRACT…………………………………………………………………..……...iv-vii 
 
LIST OF TABLES…………………………………………………………………..…..xi 
 
LIST OF FIGURES…………………………………………..………..………..….xii-xiv 

CHAPTER I: General Introduction, Background and Rationale…………………1-2 

General Hypothesis…………………………………………………………………….3 

SECTION I……………………………………………………………………..…….4-61 

Alcohol metabolism and oxidative stress…………………………….…………….4-8 

Alcohol fatty liver disease……………………………………………….………..…8-9 

Alcohol Mediated de novo lipogenesis in the liver………………….……..…….9-10 

Alcohol effect on mitochondrial fatty acid oxidation……………….…….……..10-11 

Regulation of CPT1 expression and modulation by alcohol………………..…11-12 

Effect of cAMP on hepatic lipogenesis and fatty acid oxidation………….……….13 

Regulation of cAMP levels by phosphodiesterase and alcohol……….……...14-15 

Sub-hypothesis…………………………………………………………….…….…….16 

CHAPTER II: MATERIALS AND METHODS……………………………..........17-25 

Animal Model……………………………………………………………………… 17-19 

Western blot analysis……………………………………………………...………….20 

RNA isolation and real-time PCR analysis……………...………………………20-21 

Immunohistochemistry………………………………………….……….………….…24 

Oil Red O staining………………………………………………………………..……24 

Blood alcohol levels…………………………………………………………….……..24 



ix 
 

Primary hepatocyte culture………………………………………………….………..24 

Hepatic Free Fatty Acids…………….………………………………………………..24 

Measurements of cAMP levels……………………………………………………….25 

Phosphorylated cAMP response element-binding protein (pCREB) 

immunohistochemical analysis…………………………………………………..…..25 

Statistical Analysis…………………………………………………………………….25 

CHAPTER III: RESULTS …………………..……………………………….........26-54 

Alcohol upregulates hepatic PDE4 expression leading to decreased levels of 

cAMP………………………………………………………………………….….…26-29 

PDE4 inhibition prevents alcohol mediated fat accumulation in the liver…....30-33 

PDE4 inhibition prevents alcohol induced decrease in hepatic cAMP levels and 

CPT1A expression……………………………………………………………..….34-38 

Effect of cAMP signaling on CPT1 expression in primary hepatocytes…..….39-40 

Effect of PDE inhibition on PPAR-α and PGC-1α…………………………..….41-43 

PDE4 inhibition increases SIRT1 expression…………………………………..44-45 

PDE4 inhibition increases the expression of antioxidant enzymes……….….46-47 

cAMP analog (dbcAMP) increases NRF2 and SOD1/2 mRNA levels in primary 

hepatocytes…………………………………………………………………………48-49 

PDE4 inhibition decreases alcohol-induced Kupffer cell activation and generation 

of 4-HNE and acrolein adducts……………………………………………….….50-52 

PDE4 inhibition restores AMPKα activity and inactivates acetyl-CoA 

carboxylase…………………………………………………………………………53-54 

CHAPTER IV: DISCUSSION/SUMMARY AND CONCLUSIONS……………55-61 



x 
 

CHAPTER V: 

SECTION II……………………………………………………………...………….62-98 

Alcohol-induced neuro-inflammation: role of endotoxemia…………………....62-63 

Alcohol-induced neuro-inflammation: role of activated astroglia and production of 

inflammatory cytokines……………………………………………………………63-64 

Toll-like receptors (TLRs) and glial activation…………………………………..64-66 

Alcohol-induced neuro-inflammation: role of PDE and cAMP and effect of PDE4 

inhibition………………………………………………………………………….…66-67 

Sub-hypothesis………………………………………………………………………...68 

CHAPTER VI: MATERIALS AND METHODS……………………………...…..69-72 

Animal model………………………………………………………………..…..……..69 

Primary microglial isolation and treatment………………………………………….69 

Western blot analysis………………………………………………………….…..69-70 

RNA isolation and real-time PCR analysis……………….…………………………70 

Immunohistochemistry……………………………………………………....…….72-73 

Measurements of brain cAMP levels…………………………………………….…..73 

Cytokines Determination………………………………………...……………………73 

Endotoxin Assay……………………………………….………………………………73 

Soluble CD14 ELISA…………………………………………………………………..73 

Statistical Analysis……………………………………………………………………..73 

CHAPTER VII: RESULTS…………………………………………………..….....74-92 

Chronic alcohol consumption induces systemic endotoxemia and brain 

inflammation………………………………………………………………………..74-78 



xi 
 

Chronic alcohol consumption increases PDE4B expression and decreases cAMP 

levels in the brain………………………………………………………………….79-83 

The effect of PDE4 inhibition on glial activation and inflammation…………..84-88 

PDE4B knockout mice do not exhibit glial activation in response to systemic 

endotoxin administration………………………………………………….………89-90 

The effect of PDE4 inhibition on alcohol induced proinflammatory cytokine 

production and neuro-inflammation……………………………………………...91-92 

CHAPTER VIII: DISCUSSION…………………………………………..……….93-97 

CHAPTER IX: SUMMARY AND GENERAL DISCUSSION………………....98-112 

REFERENCES: …………………………….………………………………..…113-126 

CURRICULUM VITAE……………………………………….…………………127-132 

 
 
 
 
 
 
 
 

  



xii 
 

 
 

LIST OF TABLES 
TABLE            PAGE 

1. Table 1. Primers for quantitative reverse transcriptase-PCR……………..22-23 

2. Table 2. Primers for quantitative reverse transcriptase-PCR………………...71 

 

 

 

 

  



xiii 
 

LIST OF FIGURES 

FIGURE            PAGE 

Figure 1. General hypothesis…………………………………………………………..3 

Figure 2. Oxidative metabolism of alcohol.  ………………...…….…………………5 

Figure 3. Sub-hypothesis………………………………………………………..……16 

Figure 4. Experimental Design……………………………………………..………..19 

Figure 5A-E. Alcohol increased PDE4 expression resulting in decreased cAMP 

levels in the liver ……….……………………………………………..…………...27-29 

Figure 6. CYP2E1 expression and blood alcohol levels are not significantly 

affected by PDE4(B) inhibition ……………………………...…………….……..…..31 

Figure 7A-C. PDE4 inhibition attenuates alcohol induced lipid accumulation in the 

liver…………………………………………………………………...……………..32-33 

Figure 8A-D. PDE4 inhibition prevents alcohol induced decrease in hepatic 

cAMP/pCREB levels and CPT-1A expression…………………………..……..35-38 

Figure 9A-B. Effect of cAMP signaling on hepatocyte Cpt1a mRNA 

expression............................................................................................................40 

Figure 10A-D. PDE4 inhibition prevents alcohol-induced decrease of hepatic 

PGC-1α/PPARα expression after 4 weeks of feeding..………………………..42-43 

Figure 11A-B. PDE4 inhibition increases hepatic SIRT1 expression………….…45 

Figure 12A-B. PDE4 inhibition leads to increased expression of Nrf2, SOD,1/2 

and GPx-2……………………………………………………..……………………….47 

Figure 13. dbcAMP treatment significantly increases Nrf2 and SOD1/2 mRNA 

levels in primary rat hepatocytes……………………………………………..……..49 



xiv 
 

Figure 14A-C. PDE4 inhibition decreases alcohol-induced Kupffer cell activation 

and lipid peroxidation………………………………………………..…………….51-52 

Figure 15A-B. PDE4 inhibition activates AMPKα and prevents alcohol-induced 

activation of Acetyl-CoA Carboxylase……………………………………………….54 

Figure 16. Summary and Conclusions………………………………………………61 

Figure 17. Sub-hypothesis……………………………………………………………68 

Figure 18. Alcohol increases systemic endotoxemia and sCD14 levels in 

mice…………………………………………………………………………………..…76 

Figure 19A. Schematic of brain regions………………………………………….…77 

Figure 19B. Alcohol induced glial activation and neuro-inflammation…..……….78 

Figure 20A. Alcohol significantly increases TLR-4 mRNA levels in primary 

microglial cells………………………………………………………………………….81 

Figure 20B. Alcohol and LPS selectively induce PDE4B expression in mouse 

primary microglial cells with no effect on PDE4A and D…………………………..81 

Figure 20C. PDE4B and IBA-1 expression is induced by LPS in primary mouse 

microglial cells………………………………………………………………………….82 

Figure 21A and B. Alcohol increased PDE4B protein expression and decreases 

cAMP levels in the brain………………………………………………………………83 

Figure 22A. PDE4 inhibition prevents alcohol-mediated decrease in brain cAMP 

levels…………………………………………………………………………………….86 

Figure 22B. Up-regulation of COX2 and astrocytic activation marker (GFAP) 

following chronic alcohol exposure is significantly diminished by rolipram……...87 



xv 
 

Figure 22C. Alcohol-induced increase in expression of brain astrocytic GFAP is 

prevented in PDE4B KO mice………………………………..………………………88 

Figure 23A and B.  PDE4B knockout mice are protected from endotoxin-induced 

glial activation…………………………………………………………………….……90 

Figure 24. PDE4 inhibition prevents alcohol-induced neuro-inflammatory 

cytokines/chemokines……………………………………………………..………….92 

Figure 25. Transcriptional regulation of CPT1A gene by different transcription 

factors and co-activators…………………………………………..………………...101 

Figure 26. PDE4 inhibition could serve as a therapeutic target for alcohol-induced 

organ injury…………………………………………………………………………...112 

 



1 

 

CHAPTER I 

GENERAL INTRODUCTION 

I. Background and rationale 

Excessive alcohol consumption is the third leading cause of preventable 

death in the United States, [1, 2]. Centers for Disease Control and Prevention 

(CDC) estimates about 88,000 deaths per year related to excessive alcohol 

consumption in the U.S. [3, 4]. Alcohol has been part of the human lives since 

the Stone Age. The earliest evidence of alcohol consumption was found in China, 

5000 B.C. [5].  Alcohol consumption has increased since then; the 

industrialization and marketing promoted alcohol consumption worldwide [6] 

resulting in an increase in alcohol-induced chronic diseases, including alcoholic 

liver disease, alcohol-induced acute pancreatitis, and degeneration of nervous 

system among others [6]. Alcohol-induced diseases have been traditionally 

viewed as organ-specific diseases. In this regard, important scientific advances 

have been made in our understanding of alcohol’s effects on individual systems 

such as brain, liver, gastrointestinal, immune, cardiovascular, and endocrine 

systems. However, interactions between different organ systems in the presence 

of alcohol are only beginning to be investigated. There are emerging data 

suggesting that these interactions could provide important insights into the 

mechanisms by which alcohol-induced pathology in one organ influences the 

functioning of other organs, leading to the multiple organ dysfunction associated
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with alcohol abuse. However, gaps remain in understanding of underlying 

molecular mechanism(s) that contribute to altered expression of genes involved 

in alcohol-induced organ injury. 

Alcohol consumption leads to the development of inflammation and injury 

in different organs including liver and brain. Previous studies in our group have 

shown that alcohol induced PDE4 expression and a resultant decrease in cAMP 

signaling plays a critical role in increased response of monocytes/macrophages 

to endotoxin [7, 8]. Moreover, PDE4 enzymes have been shown to play a 

pathogenic role in hepatic inflammation and injury [9]. Based on these 

observations, we hypothesized that upregulation of PDE4 expression and 

resulting decrease in cAMP signaling play a critical role in alcohol induced 

pathogenic alterations in the gut-liver-brain axis and the development of 

inflammation and injury in both organs brain and liver. 
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GENERAL HYPOTHESIS 

Alcohol-induced PDE4 expression and decreased cellular cAMP levels 

play critical pathogenic role in alcohol-induced hepatic steatosis and neuro-

inflammation. 

 

 

 

 

 

 

 

Figure 1. General Hypothesis. Alcohol increases gut permeability and 

causes changes in gut microbiome (dysbiosis); Translocation of microbial 

products, e.g. endotoxin to systemic/portal circulation affects many organs 

including the liver and the brain. Resident macrophages in the liver (Kupffer cells) 

get activated by endotoxin and produce pro-inflammatory cytokines/chemokines 

and reactive oxygen species resulting in the development of inflammation and 

dysregulation of lipid synthesis in the liver. Moreover, alcohol affects glial cells 

and induces their activation which in turn leads to the production of 

proinflammatory cytokines in the brain. Additionally, Kupffer cell-derived pro-

inflammatory cytokines and mediators are released into systemic circulation, 

translocate through blood brain barrier and contribute to increased activation of 

glial cells and further production of proinflammatory cytokines.  
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SECTION I 

II. Alcohol metabolism and oxidative stress 

Alcohol is mostly metabolized in the liver by three enzymes: alcohol 

dehydrogenase (ADH), cytochrome P4502E1 (CYP2E1) and catalase.  

ADH is located in the cytosol/mitochondria and metabolizes alcohol into a highly 

toxic byproduct aldehyde, acetaldehyde simultaneously increasing the production 

of free radicals and NADH/NAD ratio [10-12]. Oxidative metabolism of alcohol by 

microsomal CYP2E1 also leads to the production of acetaldehyde and reactive 

oxygen species e.g. superoxide anion, hydroxyl radicals [10-12]. Alcohol 

metabolism by catalase (found in the peroxisomes) also produces acetyldehyde, 

however this pathway has a minor role in alcohol metabolism compared to other 

two enzymes, ADH and CYP2E1 [12]. Acute alcohol consumption is only partly 

metabolized by CYP2E1, whereas, chronic alcohol consumption is mostly 

metabolized by CYP2E1 and partly by ADH [13, 14]. 
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Figure 2. Oxidative metabolism of alcohol.  Enzymes involved in alcohol 

metabolism: alcohol dehydrogenase (ADH), cytochrome P450 2E1 (CYP2E1), 

and catalase. ADH converts ethanol into acetaldehyde in cytosol. CYP2E1 

converts ethanol into acetaldehyde in microsomes, and catalase metabolizes 

ethanol into acetaldehyde in peroxisomes. As a result, alcohol metabolism 

generates acetaldehyde adducts, reactive oxygen species and increases the 

ratio of NADH to NAD+ [10] (as indicated in the figure). 
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Alcohol metabolism and activation of Kupffer cells increases the 

generation of reactive oxygen species (ROS) [12, 15]. The increased production 

of free radicals and non-radical species can attack lipids composed of carbon-

carbon double bonds such as polyunsaturated fatty acids (PUFAs), which can 

lead to reactive aldehyde products such as malondialdehyde (MDA), 4-hydroxy-

2-nonenal (HNE), 4-hydroxy-2-hexenal (4-HHE) [16-18]. These aldehydes 

interact with proteins and form protein adducts such as malondialdehyde-

acetaldehyde (MAA) [12]. It has been shown that MAA-adducts, can increase 

production of pro-inflammatory cytokines/chemokines and contribute to the 

development of ALD [15, 19]. 

Oxidative stress is mainly characterized by increased ROS/RNS 

generation and decreased antioxidant capacity [20]. In order to maintain 

homeostasis, organisms use non-enzymatic/ enzymatic scavengers and 

quenchers known as antioxidants. These antioxidants can donate electrons to 

the free radicals converting them into less toxic molecules. Antioxidants are able 

to lower oxidative stress, DNA mutations and prevent cell damage [20-23]. In 

order for the cell to maintain homeostasis, it contains the following endogenous 

antioxidant enzymes superoxide dismutase (SOD), catalase, glutathione 

peroxidase (GPx), and non-enzymatic antioxidants, like glutathione (GSH), 

ferritin, transferrin, ceruloplasmin, albumin, and low-molecular scavengers [20]. 

Importantly, alcohol exposure has been associated with decreased glutathione 

(GSH) content, decreased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 
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expression and activity of antioxidant enzymes (e.g. SOD, GPX) in humans as 

well as in animal studies [24-30].  

Superoxide dismutases (SOD) are a group of oxidoreductases, which 

convert superoxide radical into hydrogen peroxide and molecular oxygen. There 

are three isoforms of SODs, Cu-Zn SOD (SOD1), MnSOD (SOD2), ecSOD 

(SOD3) [31-33]. SOD1 (32 kDa) is mostly found in the cytoplasm, but it can also 

be found in the nucleus and lysosomes. SOD2 (23 kDa) is located in the 

mitochondria. SOD3 (135 kDa) is extracellular enzyme found  in the human 

plasma, lymph, ascites, and cerebrospinal fluids [34]. The common enzymatic 

activity of SODs is the alternate reduction and re-oxidation of a catalytic metal 

copper or manganese at the active site of the enzyme [33]. There are eight types 

of glutathione peroxidases (GPX1-GPX8) that covert hydrogen peroxide into 

water. Liver predominantly expresses GPX1 and GPX2. Catalases also can 

serve detoxifying enzymes by converting hydrogen peroxide into oxygen and 

water [32, 35]. In this regard, it has been shown that overexpression of SOD1 

and SOD2 protect from alcohol induced liver injury [36-38]. 

NF-E2-related factor 2 (Nrf2) is a critical transcription factor for several 

antioxidant enzymes [39, 40]. Nrf2 binding to antioxidant response element 

(ARE) will promote the transcription of antioxidant enzymes such as superoxide 

dismustases (SODs), catalase, peroxidases, and GST-transferases [39, 40]. Nrf2 

activity is controlled by Keap1 (Kelch-like ECH-associated protein 1)-dependent 

as well as independent pathway. Under normal conditions, Nrf2 is complexed 

with Keap1-cullin 3 (Cul3). Keap1-Cul3 has ubiquitin ligase activity which controls 
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Nrf2 levels through ubiquitin-proteasome degradation pathway [40]. Under 

oxidative stress conditions, redox status of Keap1 cysteine residues undergoes 

changes leading to Keap1 protein modification. This modification results in 

changes in Keap1/Cul3 complex ligase activity and stabilization of Nrf2 protein 

allowing Nrf2 to move into the nucleus [40, 41]. With regard to Keap1-

independent control, de novo synthesis of Nrf2 has been recently described as a 

mechanism of Nrf2 activation under oxidative stress conditions [40]. Importantly, 

alcohol fed Nrf2-/- knockout mice have increased oxidative stress, inflammation, 

lipid accumulation and liver injury [42, 43].  

In summary, alcohol metabolism and ensuing oxidative stress plays a critical 

role in the development of alcoholic liver disease.  

 

III. Alcoholic fatty liver disease 

Ninety percent of people consuming alcohol develop hepatic steatosis [44, 45]. 

Steatosis is a condition characterized by the increase of lipid droplets, 

triglycerides and cholesterol in the liver [46, 47]. Hepatic steatosis is the initial 

stage of alcoholic liver disease and the first response to chronic and acute 

alcohol consumption. Although alcohol-induced hepatic steatosis is reversible 

and considered to be benign, it is well-established that it predisposes the liver to 

more advanced pathologies such as alcoholic steatohepatitis (ASH), hepatic 

fibrosis, cirrhosis and even hepatocellular carcinoma [48-50]. Alcohol induced 

hepatic steatosis is mediated by increased de novo lipogenesis and impaired 

fatty acid beta-oxidation [51]. Several studies have identified the genes involved 
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in alcohol induced dysregulation of lipid metabolism leading to steatosis [52, 53]; 

however, gaps remain in understanding of underlying molecular mechanism(s) 

that contribute to altered expression of genes involved in hepatic lipogenesis.  

 

IV. Alcohol mediated de novo lipogenesis in the liver  

Lipid accumulation due to chronic alcohol consumption was first 

recognized by Lieber in 1975 [54, 55]. Hepatic lipid synthesis is accelerated after 

ethanol consumption and is associated with higher expression of lipogenic 

genes/enzymes, including fatty acid synthase (FASN), acetyl-CoA carboxylase 

(ACC), ATP citrate lyase (ACL), stearoyl CoA desaturase (SCD), and malic 

enzyme (ME) [52, 53]. Sterol regulatory element binding protein-1c (SREBP-1c) 

is a transcription factor that plays an important role in regulating the expression 

of all alcohol induced lipogenic genes (e.g. ACC, FAS). Several studies have 

shown that alcohol increases SREBP-1c expression and activation [47, 56-58].  

5’ AMP-activated protein kinase (AMPK) plays a key role in lipid  

metabolism by regulating both lipid synthesis and fatty acid β-oxidation [59]. 

AMPK is a serine/threonine heterotrimeric kinase composed of one catalytic 

alpha-subunit and two regulatory beta and gamma subunits [59]. AMPK is 

activated by the increase in the AMP/ADP ratio and phosphorylation of the AMPK 

threonine 172 residue by upstream kinases such as LKB1-STRAD-MO25 [59]. 

Activated AMPK inhibits the synthesis of fatty acids by phosphorylating acetyl-

CoA carboxylase (ACC), which prevents the production of more malonyl-CoA, (a 

rate-limiting step in lipid synthesis) [50, 60, 61]. In the context of alcohol, chronic 
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alcohol consumption has been shown to inhibit AMPK by inhibiting the 

phosphorylation of  AMPK through  inactivation of upstream kinases such as 

AMPK kinase (AMPKK) or liver kinase B1 (LKB1) [62].  

 

V. Alcohol effect on mitochondrial fatty acid oxidation  

Along with the up-regulation of fatty acid biosynthesis by ethanol, down-

regulation of fatty acid oxidation is also a critical component in the development 

of alcohol-induced hepatic steatosis. There are different types of free fatty acid 

oxidation: alpha, beta, and omega oxidation [63]. Beta-oxidation can occur in 

mitochondria as well as peroxisomes [63]. Regarding the changes in β-oxidation 

mediated by alcohol, it has been demonstrated that alcohol significantly impairs 

mitochondrial free fatty acid β-oxidation [63]. In mitochondrial β-oxidation, FFAs 

are activated in the cytosol by acyl-CoA synthase and oxidized in the 

mitochondria. These FFAs are converted into acyl-carnitine by carnitine 

palmitoyltransferase-1 (CPT-1A) and transported to the mitochondrial matrix. 

FFAs are further oxidized into acetyl-coenzyme A (acetyl-CoA), which is reduced 

in the tricarboxylic acid (TCA) cycle, resulting in formation of NADH and FADH 

[64]. CPT-1A is a key enzyme in free fatty acid β-oxidation, which has been 

shown to be decreased by chronic alcohol feeding in rodents [65, 66]. Our group 

has shown that decrease in Cpt1a gene expression by binge alcohol 

consumption is mediated by increased HDAC3 levels [67]. Specifically, it has 

been shown that when HDAC3 binds to Cpt1a promoter in the thyroid response 

element (TRE) binding region, this results in increased binding of nuclear 
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suppressor N-CoR leading to a suppression of Cpt1a gene[67]. In addition to 

transcriptional suppression of Cpt1a, alcohol has been shown to result in 

decreased activity of this enzyme [68]. Specifically, malonyl-CoA, which is 

formed from acetyl-CoA in the carboxylase reaction by ACC enzyme, 

allosterically binds CPT-1A and inhibits its activity [69].  

 

VI. Regulation of CPT-1A expression and modulation by alcohol  

CPT1 expression is regulated by a complex transcriptional machinery 

involving several transcription factors (TF) and co-activators including, PPAR-α, 

PGC-1α, SIRT1, CREB, HNF4-α etc. [70-72]. In alcohol induced hepatic 

steatosis, ethanol exposure has been shown to decrease PPARα and PGC-1α 

expression/activity, as well as HNF4-α transcriptional activity resulting in the 

reduction of CPT1A mRNA levels and β-oxidation [26, 73-77].  

Another critical transcription factor that plays an important role in the 

expression of CPT-1 is peroxisome proliferator-activated receptor α (PPARα) 

[76]. PPARα was first identified in the early 1990s, as a genetic sensor for fats 

[78, 79]. PPARα belongs to the nuclear hormone receptor superfamily and   

highly expressed in the liver [80, 81]. Long-chain fatty acids are the endogenous 

ligands of PPAR-α [81]. Once PPAR-α is activated by the ligand, PPAR-α moves 

into the nucleus forming a complex with co-receptor retinoic X receptor (RXR) 

and its co-activator PPAR gamma coactivator-1α (PGC-1α). This complex binds 

to the PPAR response element (PPRE) in the nucleus [81, 82]. Ethanol 

administration decreases the transcriptional activity of PPARα resulting in the 
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reduction of fatty acid oxidation via decreased CPT1A expression [26, 83-86]. 

Additionally, acetaldehyde, a metabolite of alcohol, has been shown to inhibit 

PPAR binding to the promoter region by forming adducts with PPAR [87]. 

Notably, induction of PPARα, which, in turn, accelerates fatty acid oxidation, 

prevents ethanol induced fatty liver [84].  

It is well established that optimal transcriptional activity of PPAR-α 

requires a formation of a complex with its critical co-activator PGC-1α [70, 72]. 

PGC-1α interacts and recruits proteins with histone acetylating activities which 

results in transcriptionally permissive promoter histone modification allowing 

increased transcription factor binding [88].  PGC-1α, in turn, has to be de-

acetylated by SIRT1 to function as a co-activator [89, 90]. The roles of PGC-1α 

and SIRT1 in promoting PPAR-α mediated fatty acid β-oxidation have been 

extensively studied in alcohol induced hepatic steatosis. Specifically, it has been 

shown that alcohol decreases PGC-1α activity via impaired SIRT1 function 

leading to decreased CPT1A expression [73-75, 91-93].  
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VII. Effect of cAMP on hepatic lipogenesis and fatty acid oxidation 

The role of cAMP in regulation of both hepatic lipogenesis as well as fatty 

acid oxidation is well established. It has been shown that cAMP decreases 

SREBP-1c mRNA levels in hepatocytes and the whole liver along with lipogenic 

target genes [94, 95]. Further, cAMP/PKA phosphorylates LXRα and prevents 

dimerization with the retinoid X receptor, which causes impaired DNA binding 

activity of SREBP-1c [95]. In relation to fatty acid oxidation, cAMP increases the 

transcriptional activity of all three PPAR isotypes via cAMP-dependent PKA 

phosphorylation. Specifically, PKA activators have been shown to increase 

PPAR-α activity and DNA binding stability [96]. Early studies on hepatocytes 

showed how cAMP analogs can increase CPT-1 expression [97, 98]. Specifically, 

it has been shown that cAMP promotes CPT1A transcription via upregulation of 

PGC-1α gene expression and increased binding of HNF4α and CREB to CPT1A 

gene promoter [71, 99, 100].  
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VIII. Regulation of cAMP levels by phosphodiesterases and alcohol 

Intracellular levels of cAMP are tightly regulated by the coordinated control 

of its synthesis via adenylyl cyclase, and its degradation via a large family of 

phosphodiesterases (PDEs). An increase in cAMP levels triggers a signaling 

cascade leading to regulation of numerous protein activities and gene expression. 

Duration and amplitude of cAMP signaling is controlled exclusively by PDEs via 

cAMP degradation. Hence, any changes in PDE expression will have a 

significant effect on cAMP signaling. Among three cAMP specific PDEs (PDE3, 

PDE4 and PDE7), the PDE4 family is the largest and most ubiquitous, with 4 

genes (PDE4A/B/C/D) encoding over 20 distinct PDE4 isoforms [101, 102]. 

PDE4 is the current therapeutic target of selective inhibitors for the treatment of 

inflammatory diseases, such as asthma and chronic obstructive pulmonary 

disease, as well as depression and cognitive deficits [101, 102].  

With regard to alcohol effect on cAMP levels, previous studies have 

shown that alcohol affects G protein-coupled receptor stimulated cAMP 

production in various immune cells through changes in the expression of G 

protein -αs (G-αs) which stimulates adenylyl cyclase to produce cAMP [103]. An 

effect of alcohol on receptor stimulated cAMP production has also been shown in 

isolated hepatocytes; however the effect was dependent on alcohol 

concentration [104, 105]. Specifically, acute exposure of hepatocytes (48 h) with 

alcohol concentration up to 50 mM had a suppressive effect, whereas high 

concentrations (50-100 mM) resulted in increased production of cAMP in 
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response to glucagon and adenosine [104, 105]. However, alcohol had no effect 

on the basal adenylyl cyclase activity [105].  

Our group has previously shown that chronic alcohol exposure 

significantly upregulates PDE4(B) expression and decreases cellular cAMP 

levels in monocytes/macrophages and Kupffer cells [7, 8]. Importantly, alcohol 

mediated upregulation of PDE4 expression/activity has been demonstrated to 

play a causal role in phenotypic changes of macrophages to produce elevated 

levels of inflammatory cytokines [7, 8]. Additionally, our group has shown that 

PDE4 enzymes play pathogenic role in the development of hepatic inflammation 

and injury [9]. 
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SUB-HYPOTHESIS 

Alcohol-induced PDE4 expression and decreased cellular cAMP levels play 

critical pathogenic role in dysregulated lipid metabolism and development of 

hepatic steatosis. 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Sub-Hypothesis 
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CHAPTER II 

MATERIALS AND METHODS 

Animal Model: Male C57Bl/6 mice (3 months of age) were obtained from the 

Jackson Laboratory (Bar Harbor, ME). A breeding pair of Pde4b knockout mice 

generated on C57Bl/6 background was a kind gift from Prof. Marco Conti (UCSF). 

Mice were housed in a pathogen-free, temperature-controlled animal facility with 

12- hour light ⁄ 12 hour dark cycles. All experiments were carried out according to 

the criteria outlined in the Guide for Care and Use of Laboratory Animals and 

with approval of the University of Louisville Animal Care and Use Committee. 

C57BL/6 and Pde4b knockout male mice were pair-fed Lieber-DeCarli liquid diet 

(Lieber-DeCarli type, Bioserv, Frenchtown, NJ) containing either alcohol (AF) or 

isocaloric maltose dextrin (PF) for 4 weeks. Alcohol was gradually increased over 

a period of one week and then mice were fed the ethanol diet [6% (v⁄v)] ad 

libitum for 4 weeks (AF). The control pair-fed (PF) mice were given the isocaloric 

liquid diet. Additional groups of AF and PF animals were treated with PDE4 

specific inhibitor, rolipram at 5 mg/kg, 3 times a week for 4 weeks. Rolipram 

(C16H21NO3) (Biomol, Enzo Life Sciences, Farmingdale, NY) was dissolved in 

sterile DMSO and diluted with sterile phosphate buffered saline just before 

injection. Wild type mice without rolipram treatment were sacrificed at 1, 2 and 4 

weeks after starting 6% alcohol. Pdeb4-/- mice and wild type mice treated with 

rolipram were sacrificed after 4 weeks of feeding. At sacrifice, mice 
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were anesthetized with intraperitoneal injection of Nembutal, 80mg/kg. Whole 

blood was collected from the inferior vena cava in a heparinized syringe and 

centrifuged at 7000g for 7 minutes at 4°C. Plasma aliquots were stored at -80°C 

for analysis. Liver tissue was cut into small pieces, snap-frozen in liquid nitrogen 

and stored at -80°C. An additional liver piece was fixed in 10% neutral-buffered 

formalin for immunohistochemical analysis. 
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Figure 4. Experimental Design. A) Schematic time line of alcohol feeding and 

Rolipram treatment. Wild type (WT, C57BL/6J) and PDE4B-/- mice were fed 

control (pair-fed) and alcohol (alcohol-fed) diet with and without Rolipram 

treatment. B) Caloric profile of diet: control and alcohol diets have the same 

amount of kcal/L; however 36% of carbohydrate calories in control diet is 

replaced with alcohol in alcohol diet. 

  

A 

B 
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Western blot analysis: Liver (50 mg) tissue was lysed using RIPA buffer 

containing protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and 

serine/threonine phosphatase inhibitor sodium fluoride and phosphotyrosine 

phosphatase inhibitor sodium orthovanadate. Proteins (25 µg) were analyzed by 

SDS-polyacrylamide gel electrophoresis using a Bio-Rad (Hercules, CA) 

electrophoresis system. Immunoreactive bands were visualized using the 

enhanced chemiluminescence light detection reagents (Amersham, Arlington 

Heights, IL). Detection of GAPDH served as a loading control. Quantification was 

performed with Image LabTMSoftware (BioRad, Life Science Research, 

Hercules, CA). PDE4A, B, D,C, CPT-1A, PGC-1α, PPAR-α, SIRT-1, Histone 3, 

SOD1, SOD2, Gpx-1, Gpx-2, catalase, NRF-2 and β-actin antibodies were 

purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX).pACC andpAMPK 

antibodies was purchased from Cell Signaling (Boston, MA). 

RNA isolation and real-time PCR analysis: Total RNA was isolated from 50mg 

liver and brain tissue using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). For 

RT-qPCR, the first-strand cDNA was synthesized using qScript cDNA SuperMix 

(Quanta Biosciences, Inc., Gaithersburg, MD). qRT-PCR was performed in  

triplicate with an ABI Prism 7500 sequence detection system and PerfeCTa 

SYBR Green FastMix, Low ROX reagents (Quanta Biosciences). The specific 

primers were purchased from integrated DNA technologies (IDT) (Coralville, 

Iowa). The parameter Ct (threshold cycle) was defined as the fraction cycle 

number at which the fluorescence passed the threshold. The relative gene 
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expression was analyzed using 2-ΔΔCt method by normalizing to 18S gene 

expression in all the experiments. 
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Mouse Pde4a   

Pde4a_F  5'-CACAGCCTCTGTGGAGAAGTC-3' 

Pde4a_R  5'-GTGATACCAATCCCGGTTGTC-3' 

Mouse Pde4b   

Pde4b_F  5'-GACCGGATACAGGTTCTTCG-3' 

Pde4b_R  5'-CAGTGGATGGACAATGTAGTCA-3' 

Mouse/Rat Pde4c   

Pde4c_F 5'-TTTCTCATCAACACCAACTCAGA-3' 

Pde4c_R 5'-CTGCAGGAGCTTGAAGCCTA-3' 

Mouse Pde4d   

Pde4d_F  5'-TGTCCACAGTCAACGCCGGGAG-3' 

Pde4d_R  5'-CCAAGACCTGAGCAAACGGGGTCA-3' 

Mouse Cpt1a   

Cpt1a_F 5'-GCTGCACTCCTGGAAGAAGA-3' 

Cpt1a_R 5'-GGAGGGGTCCACTTTGGTAT-3' 

Mouse Cyp2e1   

Cyp2e1_F 5'-AGGGGACATTCCTGTGTTCC-3' 

Cyp2e1_R 5'-TTACCCTGTTTCCCCATTCC-3' 

Mouse/Rat PGC-1α 

(Ppargc1a)   

Ppargc1a_F 5'-ACAGCTTTCTGGGTGGATTG-3' 

Ppargc1a_R 5'-CGCTAGCAAGTTTGCCTCAT-3' 

Mouse Sirt1  

Sirt1_F 5’-CAGACCCTCAAGCCATGTTT-3’ 

Sirt1_R 5’-ACACAGAGACGGCTGGAACT-3’ 

Rat Pde4a  

Pde4a_F 5’-ATGGCTGAGTTCTTCCAGCA-3’ 

Pde4a_R 5’-CCATGTCTCCCACAATGGAT-3’ 

Rat Pde4b  

Pde4b_F 5’-GGAGTTGTATCGGCAATGGA-3’ 
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Table 1. Primers for quantitative reverse transcriptase-PCR 

  

Pde4b_R 5’- CAATGAAACCAACCTGGGACT-3’ 

Rat Pde4d  

Pde4d_F 5’-TGGATCATCCTGGTGTGTCA-3’ 

Pde4d_R 5’-TTAAAGCCCACAGCCAAATG-3’ 

Rat Cpt1a  

Cpt1a_F 5’-CTGCATGGAAGATGCTTTGA-3’ 

Cpt1a_R 5’-GCCATGACATACTCCCACAA-3’ 

Rat Sirt1  

Sirt1_F 5’- CCTTTCAGAACCACCAAAGC-3’ 

Sirt1_R 5’- TGAAGTCAGGTATCCCACAGG-3’ 

Rat Sod1  

SOD1_F 5’- AAGCGGTGAACCAGTTGTG -3’ 

SOD1_R 5’- TCCAACATGCCTCTCTTCATC -3’ 

Rat Sod2  

SOD2_F 5’- GGCCAAGGGAGATGTTACAA -3’ 

SOD2_R 5’- GCTTGATAGCCTCCAGCAAC -3’ 

Rat Nfe2  

NFE2_F 5’- GGAGCTTGGAGAGATGGAACT -3’ 

NFE2_R 5’- GTATGGGGTGGGTGCTTG -3’ 
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Immunohistochemistry: Commercially available antibody against CPT-1A 

pCREB, 4-HNE, Acrolein, F4/80, GFAP were used for immunohistochemical 

analysis. Assays were performed according to the manufacturers’ protocols. 

Oil Red O staining: Frozen liver sections were washed in phosphate buffered 

saline twice for 5 minutes. Oil-Red-O and 85% propylene glycol were added with 

agitation for 15 minutes, followed by washing in tap water. 

Blood alcohol levels: Blood alcohol levels were measured in freshly drawn 

samples using Ethanol Assay Kit (Sigma, St. Louis, MO), according to the 

manufacturer's instructions. Whole blood was centrifuged at 40C and plasma was 

diluted prior to measurement. 

Primary hepatocyte culture: Primary hepatocytes were isolated from livers of 

Sprague Dawley male rats as described previously [106]. Treatments were 

performed 24 hours after isolation.   

Hepatic Free Fatty Acids: hepatic tissue (100 mg) was homogenized in 1 ml of 

50 mM NaCl. The homogenate (500 μl) was mixed with chloroform/methanol 

(2:1, 4 ml) and incubated overnight at room temperature with gentle shaking. 

Homogenates were vortexed and centrifuged for 5 min at 3000g. The lower lipid 

phase was collected and concentrated by vacuum. The lipid pellets were 

dissolved in 1% Triton X100 in phosphate-buffered saline and nonesterified-fatty 

acid (NEFA) were assayed using a commercially available kit HR Series NEFA-

HR(2) from Wako Chemical USA (Richmond,VA). 
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Measurements of cAMP levels: Hepatocytes, liver tissues were homogenized 

in 0.1N HCl and assayed according to the manufacturer instruction. cAMP ELISA 

kit was purchased  from Enzo Life Sciences (Farmingdale, NY). 

pCREB IHC analysis: The pCREB positive (3,3'-diaminobenzidine-stained in 

brown) and negative (hematoxylin-stained in blue) cells were counted using a 

freely available image analysis software http://www.cellprofiler.org [107]. 

Statistical Analysis: Statistical analysis was performed using GraphPad Prism 

Software. Data are presented as the mean ± standard deviation (SD). Statistical 

significance was calculated using one-way ANOVA followed by Bonferroni’s Test 

post-test and the Student t test P<0.05 was considered significant. 

 

 

  

http://www.cellprofiler.org/
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CHAPTER III 

RESULTS 

Alcohol upregulates hepatic pde4 expression leading to decreased levels 

of cAMP 

To address the potential pathogenic role of PDE4 in the development of 

alcohol induced hepatic steatosis, hepatic PDE4 expression was initially 

analyzed in mice fed control (pair-fed, PF) and alcohol (alcohol-fed, AF) diet. A 

significant up-regulation of mRNA expression for all PDE4 sub-families, PDE4A, 

B, C and D, was observed as early as following 1 week of alcohol feeding 

compared to controls (Figure 5A). Upregulated PDE4 expression continued for 

two weeks with a subsequent decline to baseline levels at 4 weeks (data not 

shown). Corresponding to the increased PDE4 expression, a sustained decrease 

in hepatic cAMP levels was observed in AF mice compared to PF mice (Figure 

5B).  Analysis of hepatocytes isolated from mice fed control and alcohol diet for 2 

weeks confirmed that alcohol feeding resulted in decreased hepatocyte cAMP 

levels (Figure 5C). Additionally, the effect of alcohol on PDE4 expression was 

examined on primary rat hepatocytes in vitro. Treatment of hepatocytes with 50 

mM alcohol for 48 hours led to a significant upregulation of PDE4A, B and C at 

both mRNA and protein levels (Figure 5D and E). These results show that 

alcohol affects hepatocyte PDE4 expression both in vivo and in vitro.  
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 Figure 5A and B. Alcohol increased PDE4 expression resulting in decreased 

cAMP levels in the liver.(A) mRNA levels of Pde4a, Pde4b, Pde4c, and Pde4d 

(n=5-7 in each group). (B) Hepatic cAMP levels after 1 and 2 weeks of alcohol 

feeding (n=5-7 in each group). Data are presented as mean ± S.D. *P < 0.05, 

**P<0.01compared to PF and UT. 

B. 

A. 
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Figure 5C. Alcohol feeding lowers cAMP levels in hepatocytes. Hepatocytes 

were isolated from WT mice fed control and alcohol diet for 2 weeks and cAMP 

levels measured using cAMP ELISA kit. n=3 mice per group.  

 

  

C. 
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Figure 5D and E. Alcohol significantly increases PDE4 expression in primary 

hepatocytes in vitro. (D) mRNA levels of Pde4a, Pde4b, Pde4c, and Pde4d in 

primary rat hepatocytes after 48 hour of alcohol exposure (50 mM) (n=3). Data 

are presented as mean ± S.D. *P < 0.05, **P<0.01compared to UT. (E) 

Representative Western blot analysis of Pde4a, Pde4b, Pde4c, and Pde4d 

protein levels in primary rat hepatocytes after 48 hour of alcohol exposure (50 

mM).  

D. 

E. 



30 
 

Pde4 inhibition prevents alcohol mediated fat accumulation in the liver 

To examine if increased expression of PDE4 enzymes and a resultant decrease 

in hepatic cAMP levels play a causal role in the development of alcohol induced 

hepatic steatosis, we employed both pharmacological (Rolipram) and gene-

knockout approaches (Pde4-/-) to block the activity of PDE4 and prevent the 

degradation of cAMP. Alcohol intake was carefully monitored throughout the 

feeding. No differences were observed in food consumption between the study 

groups. Importantly, alcohol inducible hepatic CYP2E1 as well as blood alcohol 

levels, were not significantly affected in Rolipram-treated or  Pde4b-/- mice, 

indicating that PDE4 inhibition does not influence ethanol metabolism (Figure 6A-

C). Notably, alcohol induced CYP2E1 protein levels showed higher induction 

compared to mRNA levels (Figure 6B) indicating that alcohol stabilized CYP2E1 

protein. This result is in agreement with previous studies demonstrating that 

alcohol prevents CYP2E1 proteolytic degradation by binding to CYP2E1 and 

inducing conformational changes [108, 109]. 

Histological analysis showed that alcohol feeding led to a significant hepatic fat 

accumulation in wild type mice, which was significantly attenuated in both  

Pde4b-/- and Rolipram-treated and mice (Figure 7A, B). Further, correspondent to 

the histological analysis, biochemical evaluation of hepatic free fatty acids also 

showed a marked reduction in FFA levels by PDE4(B) inhibition (Figure 7C). 
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Figure 6. CYP2E1 expression and blood alcohol levels are not significantly 

affected by PDE4(B) inhibition. (A) Hepatic Cyp2e1 mRNA expression. (n=5-7 in 

each group). (B) Western blot analysis of hepatic CYP2E1 protein expression. 

(Representative western blot n=-5-7 in each group). (C) Blood alcohol levels after 

1 week alcohol feeding. Data are presented as mean ± SD (n=5-7 mice per 

group). *P<0.05, **P<0.01 

β-actin 

CYP2E1 

1±0.08 3.5±0.88 1±0.54 5.5±0.43 1.3±0.4 5±0.16 
Densitometric ratio 

CYP2E1/β-actin 
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B. 
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Figure 7A and B. PDE4 inhibition attenuates alcohol induced lipid accumulation 

in the liver. (A) H&E staining. (B) Oil red O staining. Representative 

photomicrographs demonstrating lipid levels in the liver tissue.  
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Figure 7C. PDE4 inhibition attenuates alcohol induced lipid accumulation in the 

liver. (C) Hepatic free fatty acids (FFA). Data are presented as the mean ± SD, 

(n=5-7 in each group)..*P<0.05, ** P< 0.01. 

 

 

 

 

 

 

  

C. 
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Pde4 inhibition prevents alcohol induced decrease in hepatic cAMP levels 

and CPT-1a expression 

Development of alcohol induced hepatic steatosis is significantly mediated 

by decreased expression of CPT1A, a rate limiting enzyme in fatty acid β-

oxidation [26, 67, 93]. Immunohistochemical staining of CPT1A in liver sections 

showed a decrease of CPT1A after 4 weeks of alcohol feeding in WT mice 

compared to WT pair fed mice (Figure 8A). In comparison, alcohol fed WT mice 

treated with Rolipram and Pde4b-/- mice showed no decrease of CPT1A 

compared to AF WT mice (Figure 8A). Quantitative real time PCR analysis of 

hepatic CPT1A mRNA levels also demonstrated that PDE4 inhibition prevented 

an alcohol mediated decrease in CPT1A mRNA (Figure 8B).  

Previous work has shown that in hepatocytes, cAMP induces CPT1A 

expression and involves cAMP response element binding protein (CREB) [71, 

110]. To examine whether the observed decrease in CPT1A expression by 

alcohol was a result of cAMP-mediated changes in phosphorylated CREB 

(pCREB) levels, we examined hepatic levels of pCREB. Correspondent to 

decreased hepatic cAMP levels in WT-AF mice, we observed decreased nuclear 

staining of active pCREB in WT-AF mice livers compared to WT-PF mice (Figure 

8C, D, E). By comparison, PDE4B inhibition in alcohol fed mice led to maintained 

levels of both cAMP and pCREB (Figure 8C, D), indicating that among PDE4 

sub-family of enzymes, PDE4B is primarily involved in the alcohol-inducible 

decrease in hepatic cAMP levels and consequently CPT1A expression.  
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Figure 8A. PDE4 inhibition prevents alcohol induced decrease in hepatic CPT-1A 

expression.  Immunohistochemical staining with anti-CPT-1A antibody (×20 final 

magnification). (Representative photomicrographs, n=5-7 in each group). 
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WT-AF WT-AF+Rol 4B KO-AF 
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Figure 8B. PDE4 inhibition prevents alcohol induced decrease in Cpt1a mRNA 

expression.  After 4 weeks of feeding hepatic Cpt1a mRNA levels were quantified 

by real time PCR analysis. Data are presented as the mean ± SD (n=5-7 in each 

group). P<0.05. 
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Figure 8C. Alcohol mediated decrease in hepatic cAMP levels is prevented by 

PDE4(B) inhibition. After 2 weeks of alcohol feeding hepatic cAMP levels were 

measured using cAMP ELISA kit. Data are presented as the mean ± SD (n=5-7 

in each group). *P<0.05, ** P< 0.01.  

  

C. 
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Figure 8D and E. PDE4 inhibition prevents alcohol-mediated decrease in hepatic 

pCREB levels. (D) Nuclear pCREB staining of livers after 4 weeks of alcohol 

feeding. (E) Quantification of immunohistochemical staining for hepatic pCREB 

levels as described in Methods. Data are presented as the mean ± SD 

(Representative photomicrographs, n=5-7 in each group). *P<0.05, ** P< 0.01, 

*** P< 0.001. 
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Effect of cAMP signaling on CPT-1a expression in primary hepatocytes 

To further examine if cAMP dependent signaling in hepatocytes influences 

CPT1A expression, we performed in vitro experiments using primary rat 

hepatocytes. Specifically, cells were treated with the cAMP specific protein 

kinase A (PKA) inhibitor, H89 (to decrease cAMP signaling), or the non-

degradable cAMP analog, dbcAMP (to increase cAMP signaling).  Western blot 

analysis of pCREB levels confirmed that PKA inhibition by H89 significantly 

decreased CREB phosphorylation (Figure 9A).  H89 treatment also lowered 

CPT1A mRNA levels (Figure 9B), whereas dbcAMP increased CPT1A 

expression (Figure 9B). Moreover, co-treatment of hepatocytes with H89 and 

dbcAMP mitigated the dbcAMP effect on CPT1A mRNA, demonstrating that the 

dbcAMP effect is significantly mediated by PKA (Figure 9B). These findings are 

in agreement with previous work demonstrating that cAMP signaling via CREB 

plays a critical role in the transcriptional regulation of CPT1A in hepatocytes [71]. 

Taken together, these results demonstrate that PDE4 mediated decrease in 

hepatic cAMP signaling contributes to alcohol induced reduction in hepatic 

CPT1A expression and development of steatosis. 

 

 

 

 

 



40 
 

 

 

 

 

 

 

Figure 9 A and B. Effect of cAMP signaling on hepatocyte Cpt1a mRNA 

expression. Rat primary hepatocytes were treated with PKA inhibitor, H89 (10 

µM) followed by dbcAMP (250 µM) for 24 hours. (A) pCREB levels in primary rat 

hepatocytes are decreased after H89 treatment. (B) Cpt1a mRNA expression in 

primary rat hepatocytes. Data are presented as mean ± S.D from 3 independent 

experiments. **P<0.01, ***P<0.01.  
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Effect of Pde4 inhibition on PPAR-α and PGC-1α 

Expression of the Cpt1a gene is critically regulated by the transcription 

factor PPAR-α and its coactivator, PGC-1α (PPAR gamma coactivator-1α) [70, 

76, 111]. Alcohol feeding has been shown to decrease hepatic PPAR-α levels 

[26]. Thus, we first examined whether PDE4 inhibition had any effect on PPAR-α. 

Western blot and real time PCR analysis of PPAR-α expression levels confirmed 

that alcohol lowered PPAR-α protein levels in WT-AF compared to WT-PF mice 

(Figure 10A, B). In contrast, PPAR-α levels were maintained in alcohol fed 

Pde4b-/- and Rolipram-treated mice (Figure 10A, B). Further, we examined 

whether PDE4 inhibition had any effect on PGC-1α levels. Alcohol feeding 

resulted in a modest but statistically non-significant decrease in hepatic PGC-1α 

mRNA levels (Figure 10C), as observed by other studies [74, 112]; however the 

levels were significantly higher in AF Pde4b-/- and Rolipram-treated AF mice 

compared to wild type AF mice (WT-AF) (Figure 10C). Western blot analysis of 

nuclear PGC-1α also confirmed the increase in PGC-1α levels in PDE4 inhibited 

mice fed alcohol when compared to alcohol fed WT mice (Figure 10D).  
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Figure 10A and B. PDE4 inhibition prevents alcohol-induced decrease of hepatic 

PPARα expression after 4 weeks of feeding. (A) Western blot analysis of nuclear 

PPARα protein levels. (Representative western blot n=5-7 in each group).  (B) 

PPARα mRNA levels were quantified by real time PCR. (n=5-7 in each group). 
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Figure 10C and D. PDE4 inhibition increases hepatic PGC-1α expression after 4 

weeks of feeding. (C) PGC-1α (Ppargc1a) mRNA levels were quantified by real 

time PCR. (n=5-7 in each group). (D) Western blot analysis of nuclear PGC-1α 

protein levels. Data are presented as mean ± S.D. (Representative western blot 

n=5-7 in each group). *P < 0.05, **P < 0.01. 
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Pde4 inhibition increases SIRT-1 expression 
 

SIRT1 deacetylase plays a critical role in the regulation of transcriptional 

activity of several transcription factors including PGC-1α [70, 112-115]. Increase 

in hepatic SIRT1 expression has been shown to attenuate alcoholic hepatic 

steatosis [92]. Importantly, previous studies have shown that agents which 

increase cAMP levels also increase SIRT1 expression and decrease hepatic 

steatosis [93, 116, 117]. Hence, we evaluated the effect of PDE4 inhibition on 

hepatic SIRT1 expression. Examination of hepatic SIRT1 mRNA levels showed 

that there was a modest increase in SIRT1 mRNA expression in WT-AF mice 

compared to WT-PF consistent with a previous report [118]; however, Pde4b-/- 

and Rolipram treated mice showed a significant increase in SIRT1 mRNA levels 

after alcohol feeding when compared to WT-AF mice (Figure 11A). 

Correspondent to mRNA levels, PDE4 inhibition also led to increased SIRT1 

protein levels (Figure 11B). 
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Figure11 A and B. PDE4 inhibition increases hepatic SIRT1 expression. (A) After 

4 weeks of feeding SIRT1 mRNA levels were quantified by real time PCR. (n=5-7 

in each group). (B) Western blot analysis of nuclear SIRT1 protein levels after 4 

weeks of feeding. Data are presented as mean ± S.D. (Representative western 

blot n=5-7 in each group).  *P < 0.05, ***P<0.001. 
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Pde4 inhibition increases the expression of antioxidant enzymes  

Several studies have shown that alcohol decreases antioxidant enzymes 

contributing to increased oxidative stress, lipid peroxidation and steatosis. 

Previous studies also suggested that increased cAMP signaling mitigates 

oxidative stress in different animal models. Hence, we examined whether alcohol 

effect of antioxidant capacity of the liver could be prevented by PDE4 inhibition 

and prevention of decreased cAMP signaling. In agreement with the previous 

studies, we also observed decreased protein levels of SOD1 and Gpx2 in alcohol 

fed WT mice compared to PF-mice (Figure12A). Interestingly, alcohol feeding of 

Pde4b-/- mice not only did not decrease but increased protein levels of SOD1, 

SOD2, and GPx2 compared to WT mice (Figure 12A). Rolipram treatment also 

increased SOD1 and SOD2 protein levels but had no effect on GPx-2 (Figure 12 

A). Nrf2 is a transcription factor for different antioxidant enzymes, including 

SOD1/2 [119]. Hence, we next examined the effect of alcohol and PDE4 

inhibition on nuclear Nrf2 levels. Nuclear lysates were prepared from hepatic 

tissue and Western blot analyses performed to examine alcohol effect on Nrf2 

protein levels. Rolipram treated and PDE4B-/- PF mice had comparable levels of 

nuclear Nrf2 to WT-PF mice, however alcohol feeding resulted in lowering of Nrf2 

levels in WT mice compared to their PF counterparts (Figure 12B). 

Corresponding to increased SOD1/2 and GPx-2 levels in alcohol fed Rolipram-

treated and PDE4B-/- mice Nrf2 nuclear levels were maintained and were higher 

compared to WT-AF mice (Figure 12B).   
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Figure 12 A and B. PDE4 inhibition leads to increased expression of Nrf2, 

CuZn/Mn superoxide dismutase (SOD,1/2) and glutathione peroxidase 2 (GPx-

2). Western blot analysis of hepatic tissue after 4 weeks of alcohol feeding. WT – 

wild type, PF –pair fed, AF –alcohol fed, ROL- Rolipram. (Representative 

western blot n=5-7 in each group). 
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cAMP analog (dbcAMP) increases NRF2 and SOD1/2 mRNA levels in 

primary hepatocytes 

Previous studies demonstrated that NRF2 expression and signaling is 

increased via cAMP/PKA/CREB pathway [120]. To further examine whether 

increased cAMP levels have an effect on NRF2 levels and NRF2 target genes, 

we treated primary rat hepatocytes with cAMP analog, dbcAMP (250 µM) and 

extracted total RNA after 24 hours of treatment. dbcAMP significantly increased 

NRF2, SOD1 and SOD2 mRNA levels compared to untreated hepatocytes 

(Figure 13). However, we did not observe any change in GPx mRNA levels at 

this time point (data not shown).  
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Figure 13. dbcAMP treatment significantly increases Nrf2 and SOD1/2 mRNA 

levels in primary rat hepatocytes. Cells were treated with 250 µM dbcAMP for 24 

hours. NFR2, SOD1, SOD2 mRNA levels were quantified by real time PCR. Data 

are presented as the mean ± SD. n=3 *P < 0.05, **P<0.01, ***P<0.001 compared 

to PF.  
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Pde4 inhibition decreases alcohol-induced kupffer cell activation and 

generation of 4-HNE and acrolein adducts 

Alcohol consumption is known to activate kupffer cells in the liver. Once 

activated they can increase radicals through NADH oxidase [38, 121-123] 

contributing to oxidative stress. Our previous work has shown that cAMP/PDE4 

pathway plays a critical role in Kupffer cell activation [7, 8]. Hence, we examined 

the effect of PDE4 inhibition in alcohol induced Kupffer cell activation by F4/80 

staining (Kupffer cell marker). As shown in (Figure 14A), WT-AF mice had 

significantly higher F4/80 staining compared to PF mice. However, alcohol fed 

mice treated with rolipram as well as Pde4b-/- mice showed decreased activation 

of kupffer cells (Figure 14A).  

We also examined the effect of PDE4 inhibition on alcohol induced lipid 

peroxidation by examining liver tissues for 4-HNE and acrolein adducts. As 

reported by others previously, alcohol feeding resulted in increased 4-HNE and 

acrolein staining in wild type mice (Fig.14B&C) indicating increased oxidative 

stress.  Notably, corresponding to increased SOD1 and GPx2 levels in alcohol 

fed PDE4B-/- and Rolipram treated WT mice, 4-HNE and acrolein staining was 

significantly lower compared to WT-AF mice (Fig. 14B&C).  
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Figure 14A and B.  PDE4 inhibition decreases alcohol-induced Kupffer cell 

activation (A), 4-HNE (B). After 4 weeks of alcohol feeding, livers were stained 

with F4/80 and 4-HNE antibodies. WT – wild type, PF –pair fed, AF –alcohol fed, 

Rol- Rolipram. (Representative photomicrographs n=5-7 in each group). 

 

B. 
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Figure.14C. PDE4 inhibition decreases alcohol-induced acrolein formation. After 

4 weeks of alcohol feeding, livers were stained with Acrolein antibodies. WT – 

wild type, PF –pair fed, AF –alcohol fed, Rol- Rolipram. (Representative 

photomicrographs n=5-7 in each group). 

  

C. 
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Pde4 inhibition restores AMPK-α activity and inactivates Acetyl-CoA- 

carboxylase 

AMPKα has been demonstrated to play a critical role in lipid metabolism, 

particularly in alcohol induced hepatic steatosis [62, 124]. AMPK mediated 

phosphorylation of inactivates Acetyl-CoA- carboxylase (ACC), a rate limiting 

enzyme in fatty acid synthesis, leads to inactivation of ACC and results in 

decreased lipid accumulation in the liver [62]. There are conflicting reports on 

alcohol effect on AMPK phosphorylation on Threonine 172 which activates 

AMPK kinase [62, 112, 124-128]. More recently, it has been shown that 

increased 4NHE levels lead to carbonylation of AMPK which inhibits its kinase 

activity [128].  Based on our observation that PDE4 inhibition attenuated 

oxidative stress and 4HNE adduct formation in alcohol fed mice, we examined 

whether PDE4 inhibition affected AMPK activity [59, 129]. Western blot analysis 

of phosphorylated AMPKα (Thr172) in liver lysates demonstrated that alcohol 

feeding led to a modest increase in pAMPKα levels (Figure 15A), however 

alcohol fed Pde4b-/- mice had higher pAMPK levels compared to wild type mice 

(Figure 15A). Additionally, examination of pACC levels by Western blot analysis 

showed that despite increased AMPK phosphorylation in alcohol fed WT mice, 

pACC levels were not increased (Figure 15B) indicating that AMPK kinase 

activity was affected by alcohol. However, alcohol fed Pde4b-/- mice had 

increased pACC levels suggesting that PDE4 inhibition resulted in restoring 

AMPK function (Figure 15B). 
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Figure 15A-B. PDE4 inhibition activates AMPKα and prevents alcohol-induced 

activation of Acetyl-CoA Carboxylase. A. Western blot analysis was performed 

for pAMPKα and AMPK protein levels in total liver lysates after 4 weeks of 

alcohol feeding. B. Western blot analysis of total liver lysates after 4 weeks of 

alcohol feeding showed that inactive state of ACC, as indicated by pACC (S79) 

levels, were maintained in Pde4b-/- mice. (Representative western blot n=5-7 in 

each group). 
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CHAPTER IV 

DISCUSSION 

Alcoholic fatty liver is the first manifestation of alcoholic liver disease, and 

it develops in more than 90% of alcohol drinkers. Although steatosis is 

considered to be a benign condition, it has been demonstrated that the degree of 

steatosis positively correlates with the progression to more severe forms of ALD, 

such as alcoholic hepatitis and fibrosis [130-132]. The increase of lipogenesis 

and decrease of fatty acid β-oxidation contributes to the development of alcohol-

induced hepatic steatosis. Alcohol induced hepatic steatosis is mediated by 

dysregulated lipid metabolism largely involving impaired fatty acid β-oxidation 

[63].  

Although several studies have examined the impact of alcohol on β-

oxidation and the development of hepatic steatosis, the underlying mechanistic 

determinants are not completely elucidated. cAMP signaling has been shown to 

critically regulate lipid metabolism, including fatty acid β-oxidation [70, 71, 96, 

133]. Our earlier work demonstrated that chronic alcohol exposure can 

significantly induce PDE4 (B) expression and decrease cAMP levels in hepatic 

Kupffer cells and monocytes/macrophages, affecting LPS-inducible inflammatory 

gene expression [7, 8].  However, the effect of alcohol on hepatocyte PDE4 as a 

regulator of cAMP signaling in relation to lipid metabolism has never been 

investigated. Hence, in the present work, we examined the causal role of alcohol-
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induced hepatic PDE4 expression and compromised cAMP metabolism in the 

development of steatosis using pharmacological and genetic approaches. 

Our results show that alcohol significantly decreases hepatic cAMP levels 

early on in alcohol feeding following the upregulation of PDE4 expression. This 

decline in cAMP levels is accompanied by a correspondent decrease in pCREB 

levels and a reduction in CPT1A expression (a rate limiting enzyme in 

mitochondrial fatty acid β-oxidation). Importantly, alcohol effects on hepatic 

cAMP and CPT1A levels were abrogated by PDE4 inhibition via both 

pharmacological and genetic approaches. These findings suggested a pivotal 

role for PDE4 in decreasing hepatic cAMP levels in response to chronic alcohol 

feeding. Further, with regard to the involvement of a distinct PDE4 subfamily 

member, the data from Pde4b-/- animals strongly support the pathogenic 

involvement of PDE4B expression in the alcohol-induced decline in hepatic 

cAMP levels. Moreover, the key role of the gut-derived endotoxemia in ALD [134] 

also emphasizes the role of PDE4B, which is known to be endotoxin responsive 

[135-137].   

CPT1A expression is regulated by various transcription factors and co-

activators [70-72]. In experimental animal models of ALD, development of 

hepatic steatosis and reduction in CPT1A expression is attributed to a decreased 

expression and transcriptional activity of PPAR-α [26, 138] . Our results show 

that alcohol significantly decreased PPAR-α expression and this decline was 

associated with decreased hepatic cAMP levels. Importantly, the prevention of 

cAMP degradation by PDE4 inhibition prevented a decrease in PPAR-α. These 
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results could be explained by previous studies showing that cAMP promotes 

PPAR-α expression in hepatocytes [139]. It is well established that optimal 

transcriptional activity of PPAR-α requires a formation of a complex with its 

critical co-activator PGC-1α [70, 72]. PGC-1α  interacts and recruits proteins with 

histone acetylating activities which results in transcriptionally permissive 

promoter histone modification allowing increased transcription factor binding [88].  

PGC-1α in turn, has to be de-acetylated by SIRT1 to function as a co-activator 

[89, 90]. The roles of PGC-1α and SIRT1 in promoting PPAR-α mediated fatty 

acid β-oxidation have been extensively studied in alcohol induced hepatic 

steatosis [73-75, 91-93]. Our results show a marked increase in PGC-1α and 

SIRT1 expression in both Rolipram-treated and Pde4b-/- knockout alcohol fed 

mice when compared to wild type AF mice. These findings are in agreement with 

previous studies demonstrating that the proximal region of PGC-1α contains 

functional CREB binding sites which respond to increased cAMP levels by 

inducing PGC-1α mRNA [71, 89, 100, 139]. There are also several CREB binding 

sites in the SIRT1 promoter and CREB has been shown to increase SIRT1 

expression [117, 140]. With regard to SIRT1 expression in alcohol fed WT mice, 

decreased CREB levels did not seem to have a significant negative effect on 

SIRT1. This observation suggests that there are other mechanisms which play a 

role in SIRT1 transcriptional induction. Indeed, more recently, NFkB has been 

identified as a critical transcription factor for SIRT1 expression [141]. Hence, 

increased SIRT1 in AF WT mice could have been through NFkB which is known 

to be induced by alcohol feeding [142]. It is noteworthy that in addition to 
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transcriptional induction, SIRT1 activity could also be regulated by 

phosphorylation. In this regard, it has been shown that SIRT1 is activated by 

PKA-mediated phosphorylation [143]. Hence, it is possible that alcohol 

compromised cAMP/PKA signaling and reduced SIRT1 activity. Taken together, 

these results show that alcohol effect on hepatic PDE4 with a resultant decrease 

in cAMP/CREB levels contributes to decreased PPAR-α expression and 

transcriptional activity involving PGC-1α and SIRT1.  

In addition to impaired fatty acid β-oxidation, increased de novo 

lipogenesis contributes to alcohol induced hepatic steatosis [144]. Specifically, it 

has been shown that alcohol significantly attenuates AMPK activity which leads 

to increased activity of ACC, a rate limiting enzyme in fatty acid synthesis [62]. 

More recently, increased carbonylation of AMPK due to increased HNE 

production in alcohol fed mice has been shown to inhibit AMPK kinase function 

[128]. This loss of function led to decreased phosphorylation and activation of 

ACC [128]. Increased oxidative stress and reactive aldehydes is well 

documented with alcohol consumption [145-148]. Additionally, studies have 

shown the effect of alcohol on antioxidant enzymes including SODs, CAT and 

GPxs. As early as the late 80’s and mid 90’s it was observed that alcohol-treated 

rodents have decreased antioxidants activity compared to controls [149, 150]. 

And more recently it has been shown that alcohol can decrease the content GSH 

and expression of Nrf2 altogether with decreased activity of antioxidant enzymes 

[24-30]. In the present study we observed that alcohol can decrease SOD-1, Nrf2 

expression. Our results show that PDE4 inhibition and increased cAMP signaling 
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attenuated the formation of HNE and Acrolein adducts and Kupffer cell activation 

in alcohol fed mice. Importantly, there was a significant increase of SOD-2, GPx-

2 by PDE4 inhibition compared to WT-AF mice. These results are in agreement 

with other studies that cAMP signaling can mitigate oxidative stress is different 

animal models [151, 152]. Moreover, it has been shown that PGC-1α is required 

for the induction of ROS-detoxifying enzymes e.g. GPx1 and SOD-2 [153]. PGC-

1α stimulates NRF2 signaling and increased expression of mitochondrial 

detoxifying enzymes [153, 154]. Moreover, PGC-1α null mice have increased 

oxidative damage in neurons [153]. Therefore, our observations of increased 

NRF2 and antioxidant enzyme expression in PDE4B knockout mice could also 

be explained by increased PGC-1α expression. Taken together these results 

show that PDE4 inhibition prevents alcohol induced oxidative stress and 

formation of lipid peroxidation products. Decreased levels of reactive aldehyde 

adducts restores AMPK function and maintains ACC in inactive state which could 

lead to decreased lipid synthesis and hepatic steatosis in our model.  

In summary, we demonstrate for the first time that alcohol increases 

hepatic PDE4 expression leading to a decrease in cAMP levels and downstream 

cAMP/PKA/CREB signaling. Importantly, the data strongly support a predominant 

pathogenic role for PDE4B (among the PDE4 sub-family members) in the down-

regulation of CPT1A expression and consequent development of alcohol-induced 

hepatic steatosis. Additionally, PDE4 inhibition mitigates alcohol induced 

oxidative stress and attenuates fatty synthesis via AMPK/ACC pathway. It is 

noteworthy that the present work also identifies PDE4 as a potential therapeutic 
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target in the treatment of alcoholic fatty liver disease. Indeed, PDE4-specific 

inhibitors have been recently approved by the FDA for the treatment of certain 

inflammatory diseases [155-158] and could provide therapeutic benefit in patients 

with ALD. 
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SUMMARY AND CONCLUSIONS 

In conclusion, PDE4B plays an important pathogenic role in the development of 

hepatic steatosis and therefore PDE4B could serve as a therapeutic target for 

alcoholic liver disease. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Summary and Conclusions. PDE4 inhibition enhanced AMPK activity 

and led to inactivation of ACC, a rate limiting enzyme in fatty acid synthesis. 

PDE4 inhibition also increased the expression of PGC-1α, SIRT-1, prevented 

alcohol-induced decrease in PPARα and CPT-1A expression.  
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CHAPTER V 

SECTION II 
 

Alcohol-induced diseases have been traditionally viewed as organ-specific 

processes, and interactions between different organ systems in the presence of 

alcohol are only beginning to be investigated. Hence, the major goal of the work 

pursued in this chapter was to examine the mechanisms involved in alcohol 

mediated brain inflammation in the context of gut-derived endotoxemia. Indeed, 

the brain is an important target for alcohol-induced damage, and recent work 

suggests that brain injury is often associated with gut-generated signals. 

 

I. Alcohol-induced neuro-inflammation: role of endotoxemia 

Chronic alcohol consumption could cause memory and cognitive deficits and 

neurodegeneration [159-163]. Moreover, several studies have shown that 

alcoholics had decreased white matter and neuronal loss [164-171]. Alcohol 

induced changes in the brain have been attributed to neuroinflammation. 

Specifically, alcohol has been shown to increase glial activation and pro-

inflammatory cytokines in the brain [172, 173].  

 Alcohol induced alterations in the gut microbiota (dysbiosis) can cause 

increased intestinal endotoxin production, as well as compromised gut barrier 

function, leading to increased intestinal permeability and translocation of bacteria 
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and bacterial products [174-179].  The frequency of systemic endotoxemia has 

been observed to be significantly greater in patients with alcoholic cirrhosis than 

in non-alcoholic cirrhotic subjects [180, 181].  Notably, plasma endotoxin levels 

are also significantly elevated in alcohol consuming subjects without evidence of 

liver disease [181] and non-alcoholic subjects experience transient endotoxemia 

following acute alcohol intake [180, 181].  These findings suggest a direct role for 

alcohol in inducing systemic endotoxemia.  

Recently, in a mouse model we have performed metagenomic analyses to 

examine the effects of chronic alcohol feeding on the gut bacterial microbiome by 

employing deep 16s rRNA gene sequencing using DNA isolated from fecal 

samples [179]. The findings from this study showed that alcohol feeding leads to 

significant shifts in the gut bacterial community with a marked increase in the 

phylum Proteobacteria which is comprised of gram negative bacteria that contain 

lipopolysaccharide (LPS/endotoxin) in their cell wall and are the principal source 

of intestinal endotoxin and systemic endotoxemia.   

 

II. Alcohol-induced neuro-inflammation: role of activated glial and production 

of inflammatory cytokines 

Glial cells (astrocytes and microglia) are resident macrophages in the brain 

representing the brain’s immune system. Glial cells respond to invading 

pathogens and cytokines by changing from a quiescent to an activated state 

releasing various toxic substances including cytokines and inflammatory 

mediators which contribute to neuronal damage. Activated microglial cells 

undergo morphological changes and have an increase expression of ionized 
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calcium binding adaptor molecule 1 (Iba-1), an adaptor molecule regulating 

calcium signals in the monocytic cells lines e.g. microglia [182, 183]. Glial 

fibrillary acidic protein (GFAP), is a bio-marker for astrocytic activation and its 

increase is known to be an indicator of reactive gliosis [184].  

Several studies have shown that ethanol increases astrocytic activation, 

indicated by glial fibrillary acidic protein GFAP and microglial activation indicated 

by Iba-1 in vivo and well as in vitro [185-187]. Importantly, alcohol induced 

oxidative stress in the brain leads to neuro-inflammation and neuronal damage. 

Crews et. al. showed that alcohol-fed mice had an increase of oxidative stress in 

the brain, indicated by elevated levels of the catalytic subunit of NAPDH oxidase 

gp91phox, ROS generation which can result in neuro-inflammation [188]. 

 

III. Toll like receptors (TLRs) and glial activation 

 TLRs are part of the pattern recognition family and are main regulators of 

inflammation. Upon binding of various ligands pathogen-associated molecular 

pattern molecules and D=damage-associated molecular pattern molecules 

(PAMPs and DAMPs), TLR4 downstream signaling gives rise to the production of 

inflammatory cytokines [189, 190]. Glial cells are able to detect invading 

pathogens through TLRs which leads to intracellular signaling and production of 

inflammatory cytokines and mediators such as TNFα, IL-6, IL-1β and nitric oxide 

(NO) [191-193].   
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Importantly, peripheral endotoxemia and resultant inflammation leads to 

increased levels of cerebral monocyte chemoattractant protein (MCP-1) which 

mediates immune cell infiltration into the brain [194]. Relevance of systemic 

endotoxemia, as a driver of brain inflammation, is significantly supported by the 

findings that a single administration of endotoxin significantly upregulates the 

expression of inflammatory mediators such as cyclooxygenase-2 (COX-2), IL-1β, 

TNF, and VCAM-1 in the brain [195]. 

Alcohol has been shown to activate TLR-4 signaling in glial cells through both 

MYD-dependent and independent way [189, 196, 197]. Several studies have 

shown that alcohol can also activate IL-1R transduction signaling. Particularly, 

alcohol has been shown to increase MyD88 expression and IRAK 

phosphorylation, which can trigger the activation of NF-kB/MAPK/JNK pathways. 

Further, alcohol has been shown to increase phosphorylation of ERK 1/2, p38, 

SAPK/JNK, and P38 MAPK followed by an increased activity of transcription 

factors AP-1 and NFkB/p65 [189, 196-198]. Alcohol mediated activation of 

MyD88 and downstream signaling leads to increased production of pro-

inflammatory cytokines IL-1β, TNF-α, IL-6 and COX-2. In comparison, it has 

been shown that alcohol also activates MyD88 independent pathway leading to 

the induction of phosphorylation of IRF-3, STAT-1 and IRF-1 expression and 

production of inflammatory mediators [196]. 

Besides PAMPs, recent studies have demonstrated that DAMPs also play 

important role in eliciting neuro- inflammation [190]. DAMPs are molecules that 

are released by injured or stressed cells  [190].  In the context of neurological 
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injury and inflammation, HMGB1 is a critical DAMP which signals through TLR-4, 

as well as other TLRs- TLR2 and TLR9 and RAGE  [190]. Importantly, alcohol 

has been shown to increase HMGB1 expression and signaling in the brain 

leading to inflammatory cytokine expression and inflammasome activation 

causing an increase in mature caspase-1 and IL-1β levels [199]. 

 

IV. Alcohol-induced neuro-inflammation: role of pde4 and cAMP and 

effect of pde4 inhibition 

Our earlier work has demonstrated that alcohol induced increase in PDE4 

expression and consequent decrease in intracellular cAMP plays a critical role in 

alcohol “priming” effect and exaggerated response of monocytes/macrophages to 

LPS; this phenotypic change is markedly modulated by cAMP analogues and 

cAMP-specific PDE4 inhibitors [7, 101, 200-202]. Further, studies using PDE4 

transgenic mice engineered by Conti and co-workers have demonstrated that 

PDE4 subfamily B (PDE4B) is involved in TLR4 signaling and is essential in LPS 

induced TNF-α production [135, 136]. With regard to endotoxin effect on the 

induction of PDE4 enzymes in the brain, it has been shown that LPS 

administration significantly upregulates PDE4B in astrocytes, microglia and 

endothelial cells along with mRNA levels of pro-inflammatory cytokines such as 

COX-2, IL-1β, TNF-α, and VCAM-1 in the brain [195, 203]. Detailed analysis of 

cell populations expressing PDE4B2 after endotoxin injection revealed that 

microglia, astrocytes and endothelial cells showed the highest expression of 

PDE4B2 [195]. Notably, PDE4 specific inhibitor Rolipram has been demonstrated 
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to significantly attenuate microglial activation in response to various stimuli, 

including endotoxin in several studies [191, 204-207]. These studies indicate a 

critical role of PDE4B in glial cell activation.  

In addition to LPS, inflammatory cytokines have a significant effect on cAMP 

levels via increased PDE4 enzyme expression in microglia cells. Specifically, 

extensive work by Pearse’s lab has shown that TNF and IL-1β rapidly deplete 

microglial cAMP levels by upregulating PDE4 enzyme expression/activity leading 

to COX-2 and iNOS production, similar to endotoxin [206, 208]. Significantly, 

both of these cytokines upregulate PDE4B2 expression in microglia [206]. 

Importantly, PDE4 inhibition prevents these effects of TNF and IL-1β in microglia 

[206, 208]. cAMP analogs have also been shown to protect microglial cells from 

ethanol-induced oxidative stress by decreasing ROS generation, and prevented 

decreased of antioxidant enzymes (GSH and catalase) [209].In addition, it has 

also been shown that cAMP analog could reverse alcohol effect on neuronal 

cAMP levels and mitochondrial respiration function by increasing PGC-1α levels 

[73, 210, 211]. 

Accordingly, to examine the mechanisms underlying alcohol induced brain 

inflammation, the studies pursued in this chapter examine the link between 

alcohol-induced systemic endotoxemia and brain- PDE4 expression and cAMP 

metabolism, in a relevant model of chronic alcohol feeding.  
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SUB-HYPOTHESIS 

PDE4(B) plays  a critical pathogenic role in the development of alcohol-induced 

neuro-inflammation by regulating brain cAMP levels, glial activation and the 

production of inflammatory cytokines. 

 
 
 

 
 
 
 
Figure 17. PDE4 has a pathogenic role in alcohol-induced neuro-inflammation.  

Alcohol-induced gut-driven endotoxemia can lead to systemic inflammation, and 

translocation of pro-inflammatory cytokines into the blood brain barrier, leading to 

glial cells activation and further production of pro-inflammatory cytokines in the 

brain.  
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CHAPTER VI 

MATERIALS AND METHODS 

Animal Model: C57BL/6J and PDE4B knockout 3 months old male mice were 

pair-fed Lieber-DeCarli liquid diet (Lieber-DeCarli type, Bioserv, Frenchtown, NJ) 

containing either alcohol (AF) or isocaloric maltose dextrin (PF) for 4 weeks. 

Additional groups of AF and PF animals were treated with rolipram at 5 mg/kg, 3 

times a week. Mice were sacrificed at 1, 2 and 4 weeks after starting alcohol. 

LPS treatment: C57BL/6J and PDE4B knockout 3 months old male mice were 

intraperitoneally injected with a single dose of PBS or LPS (5 mg/kg) for 6 hours. 

LPS (Escherichia coli 0111:B4) was purchased from Difco (Detroit, 

MI). Before use, LPS was dissolved in sterile, pyrogen-free water, sonicated, and 

diluted with sterilized phosphate-buffered saline. 

Primary Microglial Isolation and Treatment:  Microglial cells were obtained 

from first postnatal day (P4) mice pups according to a slightly modified protocol 

[212, 213] which routinely yields about 0.5X105 cells/pup. Primary microglial cells 

were incubated in serum-free N-2 supplemented medium (recommended for 

growth of neuronal cells) and DMEM at a density of 0.3~0.5x106cells/ml and 

were exposed to ethanol (25-50mM) followed by stimulation with LPS (100 ng/ml).  

Western blot analysis: Brain tissue were lysed using RIPA buffer containing 

protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and serine/threonine 
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phosphatase inhibitor sodium fluoride and phosphotyrosine phosphatase inhibitor 

sodium orthovanadate. Proteins (25 µg) were analyzed by SDS-polyacrylamide 

gel electrophoresis using a Bio-Rad (Hercules, CA) electrophoresis system. 

Immunoreactive bands were visualized using the enhanced chemiluminescence 

light detection reagents (Amersham, Arlington Heights, IL). Detection of GAPDH 

served as a loading control. Quantification was performed with Image 

LabTMSoftware (BioRad, Life Science Research, Hercules, CA). GFAP, GAPDH 

antibodies were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX), 

and PDE4B2 was a gift from Conti’s laboratory. 

RNA isolation and real-time PCR analysis: Total RNA was isolated from brain 

tissue using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). For RT-qPCR, the 

first-strand cDNA was synthesized using qScript cDNA SuperMix (Quanta 

Biosciences, Inc., Gaithersburg, MD). qRT-PCR was performed in triplicate with 

an ABI Prism 7500 sequence detection system and PerfeCTa SYBR Green 

FastMix, Low ROX reagents (Quanta Biosciences). The specific primers were 

purchased from integrated DNA technologies (IDT) (Coralville, Iowa). The 

parameter Ct (threshold cycle) was defined as the fraction cycle number at which 

the fluorescence passed the threshold. The relative gene expression was 

analyzed using 2-ΔΔCt method by normalizing to 18S gene expression in all the 

experiments. 
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Table 2. Primers for quantitative reverse transcriptase-PCR  

Mouse Pde4a   

Pde4a_F  5'-CACAGCCTCTGTGGAGAAGTC-3' 

Pde4a_R  5'-GTGATACCAATCCCGGTTGTC-3' 

Mouse Pde4b   

Pde4b_F  5'-GACCGGATACAGGTTCTTCG-3' 

Pde4b_R  5'-CAGTGGATGGACAATGTAGTCA-3' 

Mouse Pde4d   

Pde4d_F  5'-TGTCCACAGTCAACGCCGGGAG-3' 

Pde4d_R  5'-CCAAGACCTGAGCAAACGGGGTCA-3' 
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Immunohistochemistry: Brains were harvested from mice transcardially 

perfused with 20 ml PBS alone, followed by 15 ml of 4% paraformaldehyde 

(PFA) in PBS, pH 7.4. Brains were dissected and additionally fixed overnight at 

4ºC in 4% paraformaldehyde. Following fixation, brains were transferred to 30% 

sucrose solution and stored for 3 days at 4ºC. The tissue was then embedded in 

freezing media (Triangle biomedical sciences, Durham, NC), sectioned coronally 

at 30 µm on a cryostat, then mounted on microscope slides (Fisher Scientific, 

Pittsburgh, PA) and stored at -80ºC. Slides were warmed at 37°C for 20 minutes, 

and the tissue was blocked in TBS + 0.1% Triton X-100, 0.5% BSA, and 10% 

normal donkey serum for 1 hour at room temperature and then incubated 

overnight at 4°C with primary antibodies in blocking buffer, followed by incubation 

in secondary antibodies at room temperature for 1 hour. TRITC (1:200)-, FITC 

(1:200)-, CY5 (1:200)-, or AMCA (1:100)-conjugated secondary antibody F(ab’) 

fragments (all from donkey) and normal donkey serum (017-000-121) were 

purchased from Jackson Immunoresearch (West Grove, PA). Negative controls 

included appropriate species-specific non-immune IgGs instead of primary 

antibodies. All images were captured with a Nikon TE 300 inverted microscope 

equipped with a Spot CCD camera using identical exposure settings. Elements 

software (Nikon) was used to threshold baseline brightness and contrast 

identically for each image. Immunostaining was carried out for detecting the 

presence of activated astrocytes (GFAP; ab4674; Abcam; Cambridge, MA), 

microglia (Iba-1; 019,19741; Wako; Richmond, VA),  neurons (NeuN; ABN90P; 
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Millipore; Temecula, CA) and the pro-inflammatory cytokine cyclooxygenase-2 

(COX-2; 160126; Cayman Chemical; Ann Arbor, MI).  

Measurements of brain cAMP levels: Brain tissues were homogenized in 0.1N 

HCl and assayed according to the manufacturer instruction. cAMP ELISA kit was 

purchased  from Enzo Life Sciences (Farmingdale, NY).  

Cytokines Determination: Brain homogenates were homogenized in a buffer 

containing 20 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 1 mmol/L, PMSF, 

0.05% Tween-20, and a cocktail of protease inhibitors (Sigma) [214]. 

Concentrations of IL-1B, MCP-1, IL-17, and TNF-α in the brain were measured 

using Luminex100 reader (Luminex Corp., Austin, TX 78727, USA 

Endotoxin Assay: Serum endotoxin levels were measured using limulus 

amoebocyte lysate (LAL) gel-clot assay (Lonza®). The assay was performed 

according to the manufacturer’s instructions. 

Soluble CD14 ELISA: Serum samples were collected after centrifugation, and 

quantified using sCD14 ELISA (R&D systems) kit in accordance with the 

manufacturer’s instructions. 

Statistical Analysis: Statistical analysis was performed using GraphPad Prism 

Software. Data are presented as the mean ± standard deviation (SD). Statistical 

significance was calculated using one-way ANOVA followed by Bonferroni’s Test 

post-test and the Student t test P<0.05 was considered significant. 
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CHAPTER VII 

RESULTS 

Chronic alcohol consumption induces systemic endotoxemia and brain 

inflammation 

To assess the effects of alcohol on the development of brain inflammation, 

we employed a well-established mouse model of alcohol feeding. This model 

shows intestinal barrier dysfunction, systemic endotoxemia and innate immune 

activation [199]. We first examined serum endotoxin levels for assessment of gut 

barrier function and soluble CD14 levels for gut microbial translocation and 

systemic monocyte/macrophage activation [215]. Indeed, chronic alcohol feeding 

for 2 weeks led to a significant increase in serum endotoxin and sCD14 levels 

(Figure 18) demonstrating that in our animal model alcohol feeding caused gut 

barrier dysfunction and systemic immune activation.  

Since systemic endotoxemia was evident in our animal model, we then 

examined the effect of chronic alcohol feeding on the development of brain 

inflammation. Brain inflammation was assessed by examining the glial activation 

utilizing immunohistochemical analysis. In animals chronically fed alcohol for two 

weeks, a robust activation of astrocytes was observed in the hippocampus-

dentate gyrus indicated by GFAP expression (Figure 19B), along with an 

activation of microglia in the cerebral cortex, indicated by Iba-1 expression (Fig. 

19B) as seen in other studies [185-187]. Finally, we evaluated the effect of 
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alcohol on COX-2 expression, a generalized marker for brain inflammation [216, 

217]. Correspondent to glial activation there was a significant upregulation of 

COX-2 expression in the hippocampus-CA3 region in the AF-mice compared to 

PF mice (Fig. 19B). These data suggest that chronic alcohol consumption 

mediated gut/systemic changes are linked with the development of brain 

inflammation. 
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Figure 18. Alcohol increases systemic endotoxemia and sCD14 levels in mice. 

Serum from pair-fed and alcohol-fed mice measured using LAL assay. Data are 

presented as means and SD. (n=5-7 in each group).* P < 0.05, **P<0.0. 

 

 

 

A. 

B. 
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Figure 19A. Schematic of brain regions. Red squares denote brain regions 

imaged. CA3 region (A-B), and dentate gyrus (C-D) of the hippocampus, and 

cerebral cortex (E-F) 
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Figure 19B. Alcohol induced glial activation and neuro-inflammation.  Expression 

of COX2 (purple, A-B; hippocampus-CA3 region), astrocytic activation marker 

GFAP (red, C-D; hippocampus-dentate gyrus), and microglial marker Iba-1 

(green, E-F; cerebral cortex) are up-regulated within the brains of mice exposed 

to alcohol for two weeks relative to pair-fed animals. Hoescht (blue) and NeuN 

(purple) staining are used as nuclear and neuronal markers, respectively.  

Images are representative of the inflammatory state of the whole brains of their 

respective treatment groups. (Representative photomicrographs n=5-7 in each 

group). 

 



79 

 

Chronic alcohol consumption increases pde4b expression and decreases 

camp levels in the brain 

Our earlier work has demonstrated that alcohol and LPS-inducible 

inflammatory cytokine production in peripheral monocyte/macrophages is 

critically regulated by increased PDE4 expression and a consequent decrease in 

cellular cAMP [7, 8].  

Since microglia are the important brain resident macrophages, we initially 

examined the effect of alcohol and LPS on PDE4 expression. Microglial cells 

obtained from first postnatal day (P1) mice pups were treated with ethanol (25 

mM; 48 h) followed by LPS (100 ng/ml; 4 h). Ethanol by itself induced significant 

increase in TLR4 and PDE4B expression with no effect on PDE4A and D 

expression (Figure 20A and B). As expected, LPS treatment alone led to a robust 

increase only in PDE4B expression. Importantly, in relevance to alcohol 

responsive brain inflammatory effects, ethanol treated microglia showed a 

significant enhancement in LPS-inducible PDE4B expression (Figure 20B). 

Further, induction of PDE4B protein expression and activation of microglial cells 

was also confirmed by immunohistochemical analyses. LPS-inducible PDE4B 

expression strongly correlated with the increase in Iba-1 expression, a marker of 

microglial activation (Figure 20C). Additionally, we examined the effect of high 

mobility group box 1(HMGB1) on microglial PDE4 expression. Similar to LPS, 

treatment of microglial cells with recombinant HMGB1 (5µg/ml) upregulated 

PDE4B and TNF mRNA levels without a significant effect on PDE4A and D. 
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 Subsequently we examined the effect of chronic alcohol consumption on 

brain PDE4B expression in AF mice that experience an increase in systemic 

endotoxin levels and brain inflammation indicated by COX-2 expression. Brain 

homogenates obtained after 2 weeks of alcohol feeding were assessed by 

western blot analysis. In comparison to PF mice, a significant induction of PDE4B 

expression was observed in the brain homogenates of AF mice (Figure 21A); 

however, there was no change in PDE4 A and D expression (data not shown). 

Importantly, commensurate with the observed increase in PDE4B protein 

expression we observed a significant decline in cAMP levels in the brain 

homogenates of AF mice (Figure 21B). Taken together, these data suggest that 

alcohol and endotoxin (LPS) play a contributory role in the pathogenic increase in 

brain PDE4B expression leading to a decline in cAMP levels and an increase in 

inflammation.  
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Figure 20. A) Alcohol significantly increases TLR-4 mRNA levels in primary 

microglial cells. B) Alcohol and LPS selectively induce PDE4B expression in 

mouse primary microglial cells with no effect on PDE4A and D. UT-untreated, 

EtOH-ethanol, 25mM for 48h, LPS, 100ng/ml for 4h. mRNA levels were analyzed 

by real time PCR n=3. *P<0.05 compared UT.  

* 

* 

* 

A. 

B. 
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Figure 20 C and D. The effect of LPS and HMGB1 on primary microglial cells. C. 

PDE4B and IBA-1 expression is induced by LPS in primary mouse microglial 

cells.  Immunostaining of purified mouse microglial cells stimulated with 100ng/ml 

LPS for 6hrs, and double-stained for IBA-1 and PDE4B. D. rHMGB-1 induces 

only PDE4B and TNF expression in primary microglial cells. mRNA levels of 

PDE4A,B,D and TNF were quantified using real time PCR in primary microglial 

cells treated with rHMGB-1 (5µg/ml) for 3h. n=3. *p<0.05, **<0.01 
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Figure 21. Alcohol increased PDE4B protein expression and decreases cAMP 

levels in the brain. Immunoblot analysis of brain homogenates from wild type 

(WT) mice that were PF and AF for 2 weeks. (Representative western blot n=5-7 

in each group). A) Brains from pair-fed and alcohol-fed mice were lysed, and 

cellular cAMP levels were measured. B) Obtained cAMP values were normalized 

by protein content. Data are presented as means and SD. (n=5-7 in each group). 

* P < 0.05 
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The effect of pde4 inhibition on glial activation and inflammation 

 Previous studies have shown that endotoxin mediated increase in PDE4B 

expression in the brain leads to an increase in glial activation and inflammatory 

markers [195]. Accordingly, the causal role of alcohol-induced brain PDE4B 

expression in glial activation was examined by employing both pharmacological 

and genetic approaches that inhibit PDE4B. Along with chronic alcohol feeding, 

rolipram, a well-established PDE4-specific inhibitor that can cross the blood brain 

barrier (BBB) was administered i.p (5 mg/kg; 3 times/week). Moreover, relevance 

of PDE4B inhibition was also examined in PDE4B knockout (PDE4B KO) animals.  

Initially, the efficacy of PDE4 inhibition by both approaches was assessed by 

evaluating their effect on the brain cAMP levels. Alcohol induced decrease in 

brain cAMP levels was prevented in PDE4B KO as well as WT animals treated 

with Rolipram (Figure 22A). Taken together, these data strongly support the 

notion that alcohol-induced PDE4B expression plays a contributory role in the 

decrease of brain cAMP levels.  

 Further, in the context of the regulatory role of PDE4 expression in glial 

activation, immunohistochemical analysis was performed on the brain tissue 

obtained from 2 week alcohol-fed animals with and without rolipram treatment. 

Significantly, there was a marked attenuation of alcohol-induced GFAP and 

COX-2 expression by rolipram (Figure 22B). Additionally, examination by 

immunoblotting analysis of brain homogenates from WT and PDE4B KO animals 

showed a complete inhibition of alcohol-induced GFAP expression that was seen 
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in WT animals (Figure 22C). Overall, these data strongly support the causal role 

of PDE4B expression in glial activation induced by chronic alcohol consumption. 
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Figure 22A. PDE4 inhibition prevents alcohol-mediated decrease in brain cAMP 

levels. Brains from pair-fed and alcohol-fed mice were lysed, and cellular cAMP 

levels were measured. Obtained cAMP values were normalized by protein 

content. Data are presented as means and SD. (n=5-7 in each group).* P < 0.05 
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Figure 22B. Up-regulation of COX2 and astrocytic activation marker (GFAP) 

following chronic alcohol exposure is significantly diminished by rolipram. Images 

are representative of the inflammatory state of the whole brain of their respective 

treatment groups. (Representative photomicrographs n=5-7 in each group). 
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Figure 22C. Alcohol-induced increase in expression of brain astrocytic GFAP is 

prevented in PDE4B KO mice. Immunoblot analysis of WT and PDE4B KO mice 

fed alcohol for 4 weeks. (Representative western blot n=5-7 in each group). 
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Pde4b knockout mice do not exhibit glial activation in response to 

systemic endotoxin administration 

Since previous studies demonstrated that endotoxin administration leads 

to a concomitant increase in brain PDE4B and glial activation, we examined 

whether LPS-inducible PDE4B induction in the brain plays a causal role or 

mediates this inflammatory response. Wild type and PDE4B knockout mice were 

injected with 5 mg/kg LPS for 6 hours and brain tissues were examined for glial 

activation markers. LPS administration resulted in Iba1 and CD11b expression in 

wild type mice demonstrating microglial activation (Figure 23A). Further, LPS 

administration increased astrocyte marker expression indicated by GFAP 

staining (Figure 23B). Importantly, all glial activation markers were significantly 

lower in the brain tissues of PDE4B knockout mice after LPS administration 

(Figure 23), demonstrating a contributory role of PDE4B in LPS induced glial 

activation. 
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Figure 23A and B.  PDE4B knockout mice are protected from endotoxin-induced 

glial activation. Expression of CD11b/c, GFAP, and Iba-1  are up-regulated within 

the brains of mice after 6 hours of LPS exposure. Images are representative of 

the inflammatory state of the whole brains of their respective treatment groups. 
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The effect of pde4 inhibition on alcohol induced proinflammatory cytokine 

production and neuro-inflammation 

To further assess the effect of PDE4B inhibition on alcohol-induced 

inflammatory response, brain homogenates were analyzed for cytokines by 

Milliplex cytokine kit. Commensurate with the increased activation of glial 

markers, we observed a significant increase in inflammatory cytokines TNF, IL-

1β, IL-17 and inflammatory chemokine MCP-1 in wild type alcohol fed mice 

(Figure 24). In comparison, PDE4B knockout and Rolipram treated mice had 

significantly lower levels of these cytokines after alcohol feeding demonstrating a 

causal role of PDE4B in alcohol induced neuro-inflammation (Figure 24).  
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Figure 24. PDE4 inhibition prevents alcohol-induced neuro-inflammatory 

cytokines/chemokines. Brains from pair-fed and alcohol-fed mice were lysed, and 

neuro-inflammatory cytokines/chemokines were measured. Obtained values 

were normalized by protein content. Data are presented as mean ± S.D (n=5-7 in 

each group).*P<0.05, **P<0.01, ***P<0.01. 
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CHAPTER VIII 

DISCUSSION 

Significant scientific advances have been made to understand deleterious 

effects of alcohol consumption on individual systems such as brain, liver, immune, 

cardiovascular, and endocrine systems. However, pathogenic interactions 

between different organ systems in the presence of alcohol are only beginning to 

be investigated. There are emerging data suggesting that these interactions 

could provide important insights into the mechanisms by which alcohol-induced 

pathology in one organ influences the functioning of other organs. Hence this 

study examined the role of gut associated events occurring in response to 

chronic alcohol consumption and development of brain inflammation.  

Alcohol induced neuro-inflammation has been demonstrated in different 

mouse models ranging from 10 day alcohol gavage followed by endotoxin 

administration to chronic Leiber de Carli alcohol feeding model [199, 218]. The 

Lieber De Carli diet has been extensively used for studying the pathogenesis of 

alcoholic liver disease and has also recently been used to examine alcohol-

induced neuro-inflammation [199, 219]. Significantly, there are pathogenic 

changes in the gut barrier function leading to increased intestinal permeability 

and systemic endotoxemia and inflammation in the Lieber De Carli alcohol 

feeding model [179]. Hence, this model of chronic alcohol feeding was utilized in 

the present study to examine the link between alcohol-induced systemic 
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endotoxemia and development of brain inflammation [219, 220]. Indeed, results 

of our study showed that alcohol feeding significantly increased endotoxin levels. 

More importantly, this rise in endotoxin levels was also accompanied by 

increased sCD14 (Figure 18). These results indicate that alcohol feeding led to 

gut dysfunction and translocation of microbial products resulting in the activation 

of systemic innate response. Correspondent to increased endotoxemia and 

activation of innate response, alcohol was observed to induce brain inflammatory 

changes as demonstrated by glial cell activation (Figure 19B). Having 

established a model of chronic alcohol induced brain inflammation, the 

underlying pathogenic mechanisms were investigated.  

With regards to the systemic inflammatory changes induced by alcohol our 

earlier data showed that alcohol induces PDE4 expression in circulating as well 

as hepatic monocytes/macrophages [7]. Moreover, increased PDE4 expression 

plays a critical role in the priming effects of alcohol leading to induction and 

exacerbation of LPS-inducible inflammatory cytokine expression. Interestingly, 

analogous to the peripheral inflammatory responses and cytokine production, 

alcohol was also observed to induce PDE4B expression in the brain microglial 

cells as well as total brain homogenates (Figure 20A and Figure 21A). Also, 

similar to peripheral monocytes/macrophages, alcohol exposure exacerbated 

LPS-inducible PDE4B expression in microglial cells (Figure 20A). Interestingly, 

alcohol treatment only affected expression of PDE4B, with minimal to no effect 

on PDE4A and D sub-family members. These data strongly support the notion 

that alcohol predominantly affects PDE4B expression that affects brain cAMP 
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metabolism. Although, LPS through TLR activation is a strong driver of PDE4B 

expression in peripheral monocytes/macrophages, it is well-documented that 

very little peripheral LPS gains access to the brain due to the poor passage 

through the blood brain barrier [135-137, 221]. Hence, the alcohol-induced 

systemic endotoxemia likely plays an indirect role in inducing brain PDE4B 

expression and inflammation via the triggering of systemic cytokines such as 

TNF. Indeed, TNF and other cytokines have been shown to induce PDE4B 

expression and inflammatory changes in glial cells [206]. Since the brain glial 

cells that are initially activated by systemic cytokines also produce more 

inflammatory cytokines they can further induce and sustain PDE4B expression in 

an autocrine loop in the brain. Besides cytokines, PDE4B expression could also 

be induced via activation of TLRs, particularly TLR4 in glial cells. In this regard, 

our results show that alcohol increases TLR4 expression in microglial cells and 

this increase in TLR4 is accompanied by an increase in PDE4B expression 

(Figure 20A and B). Activation of TLR4 on glial cells and induction of PDE4B 

expression could also be driven by localized DAMPs such as HMGB1 which are 

produced during alcohol-induced neuro-inflammation and injury and can act as 

ligands and activate TLR signaling [199, 222, 223]. Importantly, our results show 

that HMGB1 significantly upregulates PDE4B expression in microglial cells. 

Taken together, in the context of brain inflammatory changes obtained data 

suggest that gut derived endotoxemia and systemic inflammation likely initiate 

the induction of PDE4B expression in the brain tissue in the alcohol-fed animals.   
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 The functional consequence of alcohol induced brain PDE4B expression 

is demonstrated by a substantial decline in cAMP levels (Figure 21B). cAMP 

helps to maintain immune homeostasis by suppressing the release of 

proinflammatory mediators (e.g., TNF-α, IL-17, and IFN-γ) and promoting the 

release of anti-inflammatory mediators (e.g., IL-10) by immune cells. Hence, 

similar to our observations related to systemic/hepatic inflammatory responses, 

the induction of PDE4 expression and decrease in cAMP levels possibly plays a 

key regulatory role in alcohol-induced glial cell activation and inflammatory 

cytokine expression in the brain. Notably, the causal role of PDE4B 

expression/activity in alcohol-induced glial cell activation and brain inflammation 

was strongly supported by using a pharmacologic inhibitor, as well as PDE4B 

knockout mice. Specifically, lack of PDE4B expression in PDE4B knockout mice 

as well as inhibition of its activity by Rolipram prevented alcohol-induced 

decrease in brain cAMP levels. These data strongly suggest that alcohol induced 

alterations and brain cAMP homeostasis are predominantly regulated by PDE4B 

expression. Significantly, inhibition of PDE4 expression/activity and prevention of 

decline in cAMP levels markedly attenuated glial cell activation and brain 

inflammatory cytokine production. The attenuating effect of PDE4 inhibition on 

alcohol-induced brain inflammation could be occurring (i) indirectly, via 

suppression of systemic/hepatic inflammation as well as (ii) directly, via 

suppression of inflammatory cytokine expression by activated glial cells. 

Moreover, since inflammatory cytokines can further activate and sustain PDE4 
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expression in glial cells, PDE4 inhibition could also impact the autocrine loop of 

PDE4B activation, inflammatory signaling and cytokine production.  

 In summary, the data obtained identifies and establishes that alcohol 

mediated increase in PDE4B expression plays a critical pathogenic role in 

alcohol-induced neuro-inflammation. In relevance to clinical applications, the 

studies not only elucidate the mechanistic role of PDE4B, but also demonstrate 

that it is a significant therapeutic target for alcohol-induced neuro-inflammation 

and neurologic diseases.  
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CHAPTER IX 
 

SUMMARY AND GENERAL DISCUSSION 
 
 
Major findings:  
 
Alcohol exposure leads to early increase of PDE4 expression resulting in a 

sustained downregulation of hepatic cAMP signaling 

 cAMP signaling has been shown to critically regulate lipid metabolism in 

different cell types including hepatocytes. Our previous studies have shown that 

alcohol significantly decreases cellular cAMP levels via upregulation of PDE4 

expression and activity in macrophages including Kupffer cells [7, 8]. Accordingly, 

studies in this dissertation were designed to examine whether alcohol affects 

hepatic cAMP/PDE4 homeostasis and its relevance to dysregulated lipid 

metabolism and development of hepatic steatosis. Our results show that alcohol 

indeed significantly upregulated hepatocyte PDE4 expression as early as in 1 

week after alcohol feeding. As a functional consequence of PDE4 expression, 

there was a significant decrease in hepatic cAMP levels in a sustained manner. 

This was followed by significant downregulation of hepatic cAMP signaling as 

indicated by decreased pCREB levels. Importantly, these changes occurred in 

the context of alcohol induced hepatic steatosis representing the initial stage of 

ALD.  
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PDE4 plays a causal role in the development of alcohol-induced hepatic 

steatosis 

Alcohol mediated increase in gut permeability and systemic endotoxemia 

along with increased hepatic inflammatory cytokines and oxidative alcohol 

metabolism contribute to the development of hepatic steatosis [134, 179]. cAMP 

elevating agents, including PDE4 inhibitors, have been shown to have anti-

inflammatory and anti-oxidant effect in several cell types. Our previous work has 

shown that endotoxin significantly upregulates PDE4B expression in Kupffer cells 

without any effect on other PDE4s [7]. Moreover, PDE4 inhibitor, Rolipram 

significantly attenuates LPS-inducible TNF production by Kupffer cells. Based on 

these observations and obtained data that alcohol increases PDE4 enzyme 

expression in hepatic tissue, we examined whether PDE4 upregulation played a 

causal role in the development of alcohol induced hepatic steatosis. To test this 

hypothesis we used two approaches to inhibit PDE4 activity, pharmacological 

and genetic. PDE4 sub-family consists of 4 different genes (PDE4A through D). 

Pde4a, Pde4b and Pde4d knockout mice have been generated and used by 

several investigators to study the role of these PDE4 enzymes in different studies. 

Since endotoxemia plays a critical role in the development of ALD, we chose to 

use Pde4b knockout mice in this study. Our results showed that alcohol induced 

increase in hepatic fatty acid accumulation were significantly attenuated by PDE4 

inhibition suggesting a causal role of PDE4 enzymes in this process. These 

results also indicate that inhibition of PDE4B is sufficient to prevent alcohol 
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induced hepatic steatosis. What role do other PDE4s plays in ALD needs to be 

investigated in future studies.  

 

PDE4 inhibition prevents alcohol mediated decrease in cAMP 

signaling and CPT1A expression 

cAMP signaling has been shown to modulate expression of several genes 

involved in lipid metabolism [96, 97, 224-226]. Our results show that alcohol 

feeding decreased expression of CPT1A (a rate limiting enzyme in fatty acid b-

oxidation) along with cAMP/pCREB levels. pCREB is a critical transcription factor 

for CPT1A [71]. cAMP elevating agents have been shown to induce CPT1A 

transcription via increased pCREB and HNF4α binding to cAMP response unit 

(CRU) in CPT1A gene promoter (Figure 25,[71]). Moreover, cAMP-mediated 

increase in PGC1α further promotes CPT1A transcription [121]. Importantly, 

PGC1α activity is modulated by SIRT-1-dependent deacetylation. Our results 

show that PDE4 inhibition prevented alcohol induced decrease in pCREB levels 

and increased PGC1α and SIRT-1 expression in alcohol fed mice. Further, 

alcohol mediated decrease in PPARα expression was also prevented by PDE4 

inhibition. Taken together, we demonstrate that PDE4 inhibition prevents alcohol 

induced decrease in CPT1A expression via PPARα/PGC1α/SIRT1 pathway. 

These findings also suggest that alcohol- induced increase in hepatic PDE4, 

specifically PDE4B expression, and compromised cAMP signaling predisposes 

the liver to impaired fatty acid oxidation and development of steatosis. 
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Figure 25: Transcriptional regulation of CPT1A gene by different transcription 

factors and co-activators. This scheme illustrates transcription factor binding sites 

in CPT1A promoter region and involvement of cAMP/PKA signaling in their 

regulation  
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PDE4 inhibition increases the expression of antioxidant enzymes and 

restores AMPK-α activity 

Oxidative stress and lipid peroxidation play a crucial role in the 

development of alcohol-induced hepatic steatosis and progression of ALD [227, 

228]. Several studies have shown that cAMP pathway modulates the expression 

of antioxidants and antioxidant enzymes [229-231]. Our results show that alcohol 

induces oxidative stress and lipid peroxidation was markedly attenuated by PDE4 

inhibition. This rescue could be attributed to increased NRF2 signaling and 

expression of antioxidant enzymes [39, 40]. Consequently, decrease in 4HNE-

adduct formation could have contributed to increased activity of AMPKα and a 

resultant inactivation of ACC. These results are in agreement with the studies 

demonstrating that 4HNE-mediated carbonylation of AMPKα impairs its kinase 

function [128]. Taken together, these findings indicate that PDE4 inhibition 

mediated increase of antioxidant enzymes, AMPKα function and decreased 

activity of ACC also contributed to decreased lipid accumulation in alcohol fed 

mice.  

 

Chronic alcohol consumption induces systemic endotoxemia and brain 

inflammation 

 Alcohol-induced neuro-inflammation has been associated with gut-induced 

systemic inflammation. It is well-established that alcohol induces increase in gut 

permeability and dysbiosis leading to increased endotoxemia. Systemic 

endotoxemia promotes activation of immune cells and production of pro-
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inflammatory cytokines in many organs including the liver. Endotoxin also 

triggers the activation of endothelial cells in BBB through TLR2 and TLR4 

receptors which lead to production of cytokines by endothelial cells. Cytokines 

generated by these endothelial cells and Kupffer cells in the liver can cross BBB 

and induce activation of glial cells. Relevant to our studies, it has been shown 

that cytokine-induced activation of glial cells is critically mediated by PDE4B 

[206]. Moreover, systemic LPS administration significantly increases PDE4B 

expression in endothelial and glial cells in the brain [195]. Our results show that 

alcohol feeding increased serum endotoxin levels which was accompanied by 

increased immune cell activation indicated by sCD14. Correspondent to these 

changes, we observed increased glial activation and inflammation in the brain. 

Importantly, alcohol increased PDE4B expression in both microglia (in vitro) and 

in the brain leading to significant decrease in cAMP levels. PDE4 inhibition 

prevented glial activation and inflammation suggesting that PDE4, specifically 

PDE4B plays a causal role in alcohol induced neuro-inflammation. Another 

important finding of this study was the effect of recombinant HMGB1 on PDE4B 

expression in microglial cells. Increased HMGB1 levels are reported with alcohol 

consumption and shown to induce neuro-inflammation through activating 

inflammasome pathway and IL-1β production [199]. Taken together, these results 

suggest that PDE4B induction by alcohol feeding not only plays a causal role in 

neuro-inflammation but also is a part of a feedback mechanism to sustained 

inflammation.  
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 Significance and Clinical Relevance 

In the United States, there is about 80,000 deaths each year due 

excessive alcohol consumption [3], and about 2.5 million deaths each year world-

wide [4]. Chronic alcohol consumption can affect many organs including the liver 

and brain.  Currently there are no FDA approved therapies available for the 

treatment of ALD and alcohol-induced neuro-inflammation. The most widely-used 

(off-label) drug therapies for ALD are glucocorticoids and pentoxifylline (PTX). 

Unfortunately, an important subset of AH patients treated with glucocorticoids 

have “steroid resistance”, and some patients have contraindications to steroid 

therapy [232]. Pentoxifylline, a broad spectrum PDE inhibitor with only a weak 

PDE4 inhibitor activity, has been clinically used to treat alcoholic hepatitis and 

the data available from the limited studies indicate a possible positive 

intervention effect on all-cause mortality and mortality due to the hepatorenal 

syndrome  [233]. Treatment of alcohol-induced pathological changes that act as 

precursors to the development of advanced liver pathologies is highly desirable.  

With regard to alcohol-induced neuro-inflammation, there are potential 

therapeutic targets including TNF-α, however, when treating ALD patients with 

anti-TNF-α antibodies, the benefits were not as expected [190]. Anakinra, a 

recombinant IL-1 receptor antagonist, showed beneficial effects in alcohol-fed 

mice by preventing activation of the inflammasome complex, and increase of pro-

inflammatory cytokines [199].   

Our study shows for the first time, that PDE4B could be a therapeutic 

target for alcohol-induced liver steatosis as well as neuro-inflammation.  
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Strengths  

There are several strengths to this dissertation. First strength is that it 

identifies the causal role of PDE4B in the development of alcohol induced hepatic 

steatosis as well as neuro-inflammation. Secondly, this study uses PDE4B 

knockout mice to investigate the role of PDE4B in alcohol induced pathologies in 

the liver and brain. These studies also pinpoint to compromised cAMP signaling 

as a major predisposing factor to impaired fatty acid oxidation and development 

of neuro-inflammation.  

Additionally, this dissertation emphasizes in the importance of the gut-

liver-brain axis, how different organs interact with each other in the presence of 

alcohol. The brain is an important target for alcohol-induced damage, and recent 

work suggests that brain injury is often associated with gut-generated signals. 

Strength of this dissertation is that a change in cAMP/PDE4B homeostasis has 

been identified as a common pathway disturbed with alcohol in the liver and brain. 

Importantly, a specific PDE4B inhibitor could offer therapeutic benefits to patients 

with ALD, or other alcohol-induced pathologies including neuro-inflammation. 

The Lieber De Carli diet that we used was a very useful tool to simulate 

the American diet and human chronic alcohol drinking [220, 234]. Rodents are 

given 5% of ethanol in the liquid diet, which is similar to a strong beer. In 

comparison to a human (70kg), it is approximately to 700g per day or six bottles 

of wine [235], however, mice and rats metabolize alcohol 3-5 times faster rate 

than humans [235, 236], resulting in approximately similar blood alcohol levels of 

a regular drinker (100-150 mg/dl) [235]. Mice from our study had comparable 
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blood alcohol levels between 100 to 150 mg/dl (Figure 6C). Additionally, the 

Lieber De Carli diet prevented the natural aversion rodents have to alcohol, and 

prevented differences between the calories consumed within the groups [220, 

234]. Importantly, the Lieber De Carli diet is the best model to mimic the initial 

stage of ALD (e.g. steatosis) [220]. 

 Moreover, we used primary hepatocytes and microglia in some of our 

experiments, instead of immortalized cultured cells. Primary cells are not as 

prone to have phenotypic changes as immortalized cells. Immortalized cells are 

mostly derived from tumors and can exhibit significant differences with regards to 

signal transduction pathways and gene expression patterns leading to 

phenotypic and morphological differences [237]. In this regard, critical information 

on the effect of alcohol and pathogenic expression of PDE4 was obtained from 

primary hepatocytes and microglia. Importantly, the data obtained from primary 

cells on alcohol-mediated changes in PDE4 expression correlated with the in vivo 

observations in the liver and brain tissue samples (Figure 5 & 20).  

 

Weakness 

There are several weaknesses in this study. One major weakness is that 

the animal model used in this study does not fully recapitulate human ALD. 

Additionally, there are several mechanisms involved in the development of 

alcohol-induced hepatic steatosis. cAMP pathway has been shown to affect the 

expression of lipogenic genes, which are elevated with alcohol consumption. We 

did not examine what is the effect of increased PDE4 expression on this pathway. 
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Additionally, we observed increase in all PDE4 expression (PDE4A-PDE4D), but 

we do not know what impact other PDE4s have on alcohol induced dysregulation 

of lipid metabolism. It is also possible that PDE4s have the role in alcohol-

induced hepatic injury. We did observe that Rolipram decreased ALT levels in 

alcohol fed mice, but we did not investigate the mechanisms of this protection.  

Shearn et al. have shown that 4-HNE can induce AMPK carbonylation 

therefore inhibiting its function to phosphorylate downstream targets such as 

ACC  [128]. We suggested that AMPK function could be impaired by 

carbonylation, but we failed to show AMPK carbonylation. Additionally, we 

observed decreased of HNE-adduct formation in alcohol fed Rolipram and 

knockout group, and this could be due to decreased lipid content.  

Another limitation is that animal models are not always translational. To 

date, there are no mouse models that develop all stages of ALD, and there is still 

not much research done on the interaction between organs in the presence of 

alcohol. In our studies we used PDE4 inhibitor which can cross BBB. This 

approach cannot be used in humans, since this class of inhibitors has side 

effects like nausea and emesis. Our PDE4B knockout mice also are whole body 

knockouts. So it is difficult to say where we intervened in terms of gut-liver-brain 

interactions. Did we affect the liver and attenuated inflammatory cytokine release 

in the systemic circulation? Is it why we see less inflammation in the brain? Or 

we affected both organs simultaneously? These are the limitations of our 

approach in this dissertation.  
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FDA approved PDE4 inhibitors (Roflumilast and Apremilast) are designed 

to not cross BBB to avoid side effects like nausea and emesis. Use of these 

inhibitors and liver specific PDE4B knockouts in our studies could have answered 

the question whether we affected liver-brain axis. 

 

Future Directions 

Do alcohol-mediated temporal changes in gut bacterial composition correlate 

with the alcohol-induced liver/brain pathologies? 

Our group has recently characterized the changes in intestinal bacterial 

communities after 8 weeks of chronic alcohol feeding in mice by deep 16S rRNA 

gene sequencing and showed significant shifts in the intestinal microbiome [179]. 

This study showed that there was a marked increase in the Proteobacteria 

phylum which is comprised of Gram negative bacteria containing 

lipopolysaccharide (LPS; endotoxin) in their cell walls [179]. In future, it will be 

important to investigate the temporal changes in the gut microbiome and the 

intestinal permeability and correlate these changes with the development of liver 

and brain inflammation.  
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How does alcohol upregulate PDE4 in the liver and brain? What are the 

underlying epigenetic mechanisms of this upregulation? 

There are not many studies describing how PDE4 enzymes are regulated 

transcriptionally. Work done by our group demonstrated that histone lysine 9 

trimethylation (H3K9me3) in the Pde4b2 intronic promoter region plays a major 

role in regulating endotoxin responsive PDE4B2 mRNA expression in 

macrophages [137]. Specifically, a rapid and significant decline in the PDE4B2 

promoter-H3K9 trimethylation occurs in response to endotoxin leading to 

PDE4B2 transcriptional activation and mRNA expression [137]. We have not 

investigated the promoter-associated epigenetic modifications contributing to the 

induction of PDE4s in the liver and brain in the presence of alcohol. In this regard, 

alcohol can lead to epigenetic modifications of promoter histones resulting in 

increased transcription factor binding.  

 

Will probiotics prevent alcohol mediated liver and brain inflammation and injury? 

Modulation of the intestinal microbiota is an emerging strategy to reduce 

bacterial translocation and circulating endotoxin levels. When ingested, probiotic 

bacteria can colonize the gut, thereby changing the gut microflora and gut lumen 

leading to improved gut barrier integrity. Alcoholics have altered bowel flora 

compared to healthy controls and short-term oral supplementation with probiotics 

has been shown to restore the bowel flora and ameliorate liver injury compared 

to standard therapy [238]. Lactobacillus rhamnosus Gorbach-Goldin (LGG) unlike 

other Lactobacilli consistently colonizes the intestine. LGG has been widely 
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studied in the treatment of intestinal disorders and has been observed to 

maintain and improve intestinal barrier function and ameliorate oxidative stress 

and liver injury in a rat model of alcoholic steatohepatitis (ASH) [178].  Our group 

also showed the efficacy of LGG supplementation in preventing alcohol-induced 

pathogenic alterations in the intestinal microbiome and liver injury in the mouse 

model of ALD [179]. Hence, it will be important to evaluate the therapeutic 

efficacy of probiotics in attenuating alcohol mediated liver and brain inflammation 

and injury.  
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Summary and Conclusions: 

 This dissertation was built upon the hypothesis that alcohol-induced PDE4 

expression and decreased cellular cAMP levels play critical pathogenic role in 

alcohol-induced hepatic steatosis and neuro-inflammation. Using both in vitro 

and in vivo approaches our studies showed that that alcohol induced increase in 

hepatic and brain PDE4, specifically PDE4B expression. This increase was 

accompanied by significant decrease in cAMP levels and downstream signaling. 

PDE4-mediated compromised cAMP signaling predisposed the liver to impaired 

b-oxidation and oxidative stress. Increase in PDE4 in the brain resulted in glial 

cell activation and neuro-inflammation. Importantly, PDE4 inhibition reversed the 

changes induced by alcohol in both organs. Specifically, PDE4 inhibition in the 

liver increased PGC1α and SIRT1 levels and prevented the decrease in CPT1A 

expression. Additionally, there was an increase in anti-oxidant enzyme 

expression and decreased oxidative stress upon PDE4 inhibition in alcohol fed 

mice. In the brain, PDE4 inhibition could prevent the activation of glial cells and 

the development of inflammation. Overall, the studies in this dissertation identify 

PDE4B as a potential therapeutic target for the treatment of alcoholic fatty liver 

disease and neuro-inflammation (Figure 26). 
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Figure 26. PDE4 inhibition could serve as a therapeutic target for alcohol-induced 

organ injury.  
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