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ABSTRACT 

THE ROLE OF ALDEHYDE DEHYDROGENASE 2 IN LIVER INJURY CAUSED 
BY VINYL CHLORIDE AND HIGH-FAT DIET 

 

Liya Chen 

 

November 16, 2018 

 

Background. Vinyl chloride (VC) is an abundant environmental 

contaminant that causes steatohepatitis at high exposure levels. We have 

shown previously that low concentrations of VC exacerbate high fat diet 

(HFD)-induced liver injury in mice. The mechanisms involved in the 

progression of liver injury caused by VC and HFD include oxidative stress, 

inflammation, metabolic and mitochondrial dysfunction. Mitochondrial 

aldehyde dehydrogenase 2 (ALDH2) serves as a key line of defense against 

most reactive aldehydes, including lipid aldehydes (e.g., 4-HNE) and 

chloroacetaldehyde (VC metabolite). We hypothesize that this defense may 

play a key role in the interaction between HFD and VC in fatty liver disease. 

Methods. Mice were exposed to VC via inhalation at concentrations below 

the current OSHA limit (<1 ppm), or room air for 6 hours per day, 5 days per 

week for 12 weeks. Mice were fed HFD or a low-fat control diet. Some mice 

were administered ALDH2 agonist Alda-1 (i.p. 20 mg/kg, 3 times/week) for 3 
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weeks prior to sacrifice. Metabolic phenotyping, biochemical and histological 

assessment of liver injury, indices for oxidative stress, inflammation and 

mitochondrial function were examined. Results. ALDH2 is a direct target of 

VC metabolite toxicity. Moreover, we demonstrated that ALDH2 activation by 

Alda-1 pre-treatment decreased lipid accumulation, oxidative stress, and 

prevented liver injury induced by acute exposure to VC metabolites. Chapter 

IV describes a chronic model of low-dose VC exposure with HFD. The 

interaction of VC and HFD decreased ALDH2 expression and activity in 

mitochondria. Liver injury was characterized by enhanced steatosis, 

inflammation and oxidative stress. This interaction correlated with 

mitochondrial dysfunction and metabolic stress.  Administration of ALDH2 

agonist Alda-1 prevented the decrease in ALDH2 activity and conferred 

profound protection against these changes caused by HFD+VC. Conclusion: 

Taken together, these results support the hypothesis that ALDH2 appears to 

be a direct target of VC exposure, which likely contributes to the 

enhancement of liver injury under these conditions.  Importantly, ALDH2 plays 

a critical role in liver injury caused low-level VC exposure and HFD and may 

therefore be a potential target for future therapies.  
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CHAPTER I 

 

INTRODUCTION 

 

A. Background and the rationale for this study 

1. Liver structure and function 

Liver, the largest and heaviest internal organ in the human body, is 

structurally and functionally complex. Unlike most organs, the liver has two 

distinct blood supplies. The portal vein supplies about 75-80% of blood flow 

while hepatic artery supplies 25% of the flow (1). The blood vessels divide 

into small capillaries known as liver sinusoids, which then leads to lobule. 

Lobules are the functional units of the liver and consist of millions of cells. 

Hepatocytes are most numerous and comprise 80% of the volume of liver. 

Being the workforce of liver, hepatocytes contain thousands of vital functions. 

Hepatocytes contain abundant organelles including endoplasmic reticulum 

(ER), lysosomes, peroxisomes and mitochondria, as well as cytoplasmic lipid 

and glycogen. Due to the variety of functional components, hepatocytes play 

a role in protein synthesis, lipid/carbohydrate metabolism and detoxification 

(2).  In addition to hepatocytes there are also several other cell types in the 

liver which are vital to its overall health and function. Kupffer cells represents 
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of 15% of the liver cells and derived from monocytes. They are the major 

producer of cytokines contributing to inflammation. Hepatic stellate cells 

(HSC) comprise 5% of liver cells and are known to be play a role in 

regeneration and hepatic fibrogenesis and cirrhosis (2).  

The hepatic portal blood drains from gastric, splenic and pancreatic veins 

and travels to liver with various nutrients, toxins and chemicals. Liver, as the 

target of toxicant exposure, initiates detoxification in response to 

accumulative harmful substances. Cytochrome P450 (CYP) family is a group 

of enzymes highly expressed in the liver and linked to metabolism of 

endogenous and exogenous chemicals. They convert toxic chemicals into 

less harmful chemicals, this can be achieved by various reactions including 

oxidation, reduction and hydrolysis. However, free radicals are also generated 

during this process and lead to cell damage (3). Normally, antioxidants such 

as vitamin C and E protect the cell from these free radicals. When the 

balance between antioxidants and toxicants is disrupted, toxic chemicals 

become far more dangerous. Impaired cytochrome P450 system by toxic 

compounds results in a high level of free radical generation and leads to liver 

injury. Additionally, hepatocytes have the capacity to regenerate for 

compensating damaged cells to preserve healthy function of the entire organ. 

This protective capacity is limited, if the damage is too severe or if the injury is 

chronic, hepatic cell death and irreversible injury may occur.     

Multiples risk factors including host genetics (e.g. gender, ethnicity), 

primary risk factors (e.g. obesity, alcohol) and comorbidities (e.g. viral 
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hepatitis, nutrition) can cause liver damage. According to different etiology or 

manifestation, liver diseases are diagnosed as different types. In this study, 

we mainly focused on the non-alcoholic fatty liver disease (NAFLD). 

2. Non-alcoholic fatty liver disease and risk factors 

Non-alcoholic fatty liver disease (NAFLD) is a clinical diagnosis that 

include the presence of 5% or more hepatic steatosis in the absence of 

excessive alcohol use as determined by liver imaging or biopsy in the 

absence of secondary causes of hepatic fat accumulation. It ranges from 

simple steatosis to non-alcoholic steatohepatitis (NASH), liver fibrosis and 

cirrhosis, with its associated complications such as hepatocellular carcinoma 

(HCC). The prevalence of NAFLD in the United States has risen from 18% 

since 1988-1991 to 31% in 2011-2012 (4). Recent epidemic research has 

shown that NAFLD is the most prominent cause of liver diseases, 

representing over 75% of chronic liver disease (5).  It has been reported that 

up to 70% of patients with NAFLD are also affected by NASH and about 25% 

of patients with NASH develop to cirrhosis (6). NASH is also a leading third 

indication for liver transplantation in the United States. That contributes to a 

major burden to mortality and morbidity, and it is expected to be the number 

one in 2020 (7). Moreover, NAFLD not only affects liver function, but is also 

related to the metabolic disorders such as diabetes (8). Therefore, it is 

significant and necessary to understand the physiopathologic mechanisms of 

NAFLD. NASH is a histological term that characterized by the presence of 

necro-inflammatory process whereby hepatocytes become injured in a 



 

4 
 

background of steatosis (9). About 40% of NASH develop to progressive 

fibrosis, leading to cirrhosis in 10-27% and HCC in 4-27% of those cirrhosis 

(10).  

As the most common type of NAFLD, NASH can be affected by many risk 

factors including host genetics (e.g. gender, ethnicity), life style (e.g. smoking, 

alcohol consumption) and comorbidities such as diabetes (11). Diet, 

especially a diet high in fats, has been thought as an independent risk factor 

of NASH. Obesity in adults is defined as body mass index (BMI) of greater or 

equal to 30. The prevalence of obesity in United States is increasing in the 

past few years. There are about 39.8% of adults and 18.5% of youth being 

obese in 2016 (12). Based on the cohort studies, obese individuals have a 

3.5-fold increased risk of liver damage and a has been reported dose-

dependent relationship between BMI with NAFLD progression (13). As the 

obesity rate increases, the burden of obesity on liver diseases is 

nonnegligible. The fat accumulated in liver varies with different degree of 

obesity and even subtle changes in body weight are associated steatosis 

(14). Thus, obesity can be considered as a predictor of NAFLD (15).   

Environmental toxicants are another relevant cause that are thought to be 

a primary risk factor of liver disease development. Long term occupational 

and environmental exposures to industrial chemicals directly cause 

steatohepatitis, which is termed as toxicant-associated steatohepatitis 

(TASH). Increasing evidence suggests that exposure to elevated levels of 

various industrial chemicals including volatile organic compounds, persistent 
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organic pollutants and toxic metals can contribute to the development of 

TASH, eventually leading to liver failure (16, 17). Chlorinated hydrocarbons 

are the most prevalent form of organic contaminants that cause human health 

problems via groundwater or air inhalation. Vinyl chloride (VC) is a specific 

type of chloride compound that is greatly concerning since it is distributed in 

both liquid and gas phase. Additionally, it is known for its role as a human 

carcinogen capable of damaging DNA (18). VC is therefore identified as a risk 

factor that impacts human health, especially in liver (19). What is less known, 

is that VC may also cause hepatic steatosis (20). The degree of liver damage 

caused by VC may be correlated to dose exposure. The cases of high-dose 

(> 1000 ppm) of VC induced severe liver injury has been reported (20), the 

effect of low-dose of VC exposure on liver function is less studied. 

3. Vinyl chloride and liver damage 

Vinyl chloride (VC) monomer is a colorless gas that is widely used in 

industrial chemical synthesis such as polyvinyl chloride (PVC). PVC is a 

polymerized form of VC that is extensively involved in plastic manufacture. 

VC doesn’t occur naturally, and it is mostly found in the industries for PVC 

manufactures. Additionally, VC is the intermediate of some volatile organic 

compounds such as trichloroethene (TCE), tetrachloroethene (PCE) and 

dichloroethylene (DCE), which is globally applied as degreasing agent for 

automotive and metal industries (21). VC is even present in cigarette 

smoking, depending on the concentration of chloride in tobacco. VC is closely 

related to our daily life and it serves as the commercial production that has 



 

6 
 

been widely consumed over 70 years in the United States (22, 23). VC 

production was recently estimated at 27 million metric tons in the America 

annually (22). As a representative organochlorine toxicant, VC has been 

considered as a priority pollutant listed by the US Environment Protection 

Agency (EPA) (24) as well as the Centers for Disease Control and 

Protection’s Agency for Toxic Substances and Disease Registry (ATSDR).  

Industrial discharges, landfill leaching, improper storage or disposal, as well 

as atmospheric transport and deposition are important ways to enter 

groundwater or air for VC. It is present in landfill leachates and in the 

groundwater near military installations such as Camp Lejeune. To date, over 

tens of thousands of American chemical workers have been exposed to 

organochlorine pollution. Such huge amount of VC emission load causes 

occupational diseases especially among the people working in chemical and 

plastic industries. VC is reported to be easily absorbed in human body 

through respiratory system and to affect multiple organ functions including 

bronchial irritation, central nerves system impairment and liver damage (25). 

The toxicity of VC was first reported in the 1970s associated with 

angiosarcoma of the liver (ASL) (26, 27). In the past few decades in 

Louisville, cohort studies also elucidated the relationship between VC 

exposure and liver cancer (28). Attarchi et al also reported the case of altered 

liver function was found in PVC workers compared with office workers in the 

same industries (29). These data suggested that liver is the main target to 

VC. 
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Dr. Cave’s laboratory documented that workers exposed to high-level VC 

had steatosis, hepatomegaly and fibrosis, in association with insulin 

resistance, altered adipocytokines, and antioxidant depletion (16). It may not 

be surprising that VC exposure leads to steatohepatitis because of its similar 

metabolism pathway to ethanol. Concentrations of VC up to approximately 

220 ppm, are metabolized through cytochrome P450 2E1 (CYP2E1) forming 

the highly reactive genotoxic epoxide and chloroethylene oxide (Scheme 1.1). 

Chloroethylene is either spontaneously or enzymatically converted into 

chloroethanol (CE) and chloroacetaldehyde (CAA) (18). Previous work by our 

lab has shown that individual treatment of CE or CAA alters cytokine 

production, causes mitochondrial dysfunction, leads to disruption of hepatic 

carbohydrate/lipid metabolism and exacerbates steatohepatitis (30). Those 

studies showed that high-level of VC exposure is acknowledged to be an 

inducer of liver injury and the effect can not be ignored. The Occupational 

Safety and Health Association (OSHA) lowered the workplace air standard for 

VC from 500 ppm to a safety limited dose of 1 ppm (2.5 mg/m3). The 

morbidity of liver diseases is lower than before, however there are some 

cases of liver injury that were still observed in the low VC exposure workers 

(31, 32). This phenomenon suggests that it is possible for another risk factor 

to enhance liver damage by inhaled VC. 

4. Liver injury caused by fat and VC 

It is demonstrated by many studies that VC toxicity is associated with the 

development of liver disease. It has been well documented that workers 
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exposed to high concentrations of VC are prone to have high incidence of 

liver injury, ranging from simple steatosis, steatohepatitis to fibrosis even 

HCC (19). Obesity is also a risk factor for developing steatohepatitis. Fat 

accumulation in the liver may mediate hepatocyte injury (33). Our recent 

studies have shown that mice exposed to VC inhalation below the OSHA limit 

concentration (<1 ppm), could exacerbate liver injury in combination with a 

HFD. Increased inflammation, oxidative stress and mitochondrial impairment 

were observed (34). Based on our previous research of the mechanisms 

involved in NAFLD progression by VC and dietary fat, we aim to seek for a 

novel target avenue of treating liver damage in this study.  

5. Aldehyde dehydrogenases 2 

Aldehyde dehydrogenases (ALDH) are a group of enzymes that are 

responsible for the oxidation of aldehydes. These ALDH isoforms are 

encoded by nuclear genes. Nineteen different functional genes have been 

identified in the human genome and are widely expressed in multiple tissues 

at the highest concentration in the liver (35). ALDH isoforms are found in 

various subcellular organelles including nucleus, mitochondria, cytosol and 

ER (36). ALDH2 is a tetrameric enzyme located in mitochondrial matrix 

belonging to the ALDH family. It is ubiquitously expressed in all tissues but is 

most abundant in the liver. ALDH2 is the most efficient enzyme in ethanol 

metabolism, and it converts acetaldehyde to acetic acid. ALDH2 has the 

lowest Km to this substrate. This Km is 900-fold lower than that of the other 

members of ALDH family (37). 
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ALDH2 genetic polymorphism studies show that the ALDH2*2 allele is the 

most relevant form of ALDH2 variant. People with ALDH2*2 allele are 

susceptible to having reactions such as facial flushing and nausea after 

alcohol consumption, due to a lower catalytic activity. ALDH2*2 is thought to 

be the most common enzyme deficiency effect the 8% of world population 

including in 35-45% Asian people (38). In the United States, ALDH2 

deficiency is mostly found in the American Indian and the Asian populations 

(39, 40). The role of ALDH2 in acetaldehyde detoxification and liver disease 

progression has been reported in human and experimental models. High 

blood acetaldehyde levels were observed in individuals with ALDH2 mutant 

alleles after alcohol consumption, suggesting that the ALDH2 deficit 

increased human susceptibility to alcohol-induced organ injury (41). ALDH2 

knockout mice showed an increased acetaldehyde accumulation in the liver 

after alcohol exposure or acetaldehyde inhalation, along with exaggerated 

inflammation and fibrosis (42). In contrast, activation of ALDH2 reverses 

alcohol-induced hepatic steatosis and overexpression of ALDH2 significantly 

reduced acetaldehyde as well as apoptosis in mice fed with chronic alcohol 

ingestion (43). These findings provide a strong rationale that ALDH2 

activation plays a protective role in alcoholic fatty liver disease (AFLD). 

However, the role of ALDH2 in liver injury caused by VC and dietary fat 

remains elusive. 

It is now understood that substrates to mitochondrial ALDH2 expand well 

beyond the canonical acetaldehyde. Other aldehydes including 4-
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hydroxynoneal (4-HNE) and malondialdehyde (MDA) that are derived from 

lipid peroxidation are also substrates of ALDH2 (44). Our lab has 

demonstrated that oxidative stress as well as mitochondrial impairment 

caused by 4-HNE can be reversed by activation of ALDH2 (45), indicating 

that ALDH2 plays a role as an antioxidant enzyme. Indeed, ALDH2’s 

protective role has been highlighted by many studies. 

ALDH2 impairment has a deleterious effect on cellular function via 

overburden of lipid adducts, oxidative or ER stress, increased mitophagy and 

DNA damage, developing hepatic fibrosis, cirrhosis and cancer (46-48). 

Epidemic research revealed that the prevalence of NAFLD tends to be higher 

in the ALDH2*2 population (49). These researches suggest that ALDH2 

dysfunction may be a part of the mechanisms contributing to fatty liver 

disease. We have determined that mitochondrial function was impaired by VC 

(34). We therefore hypothesize that ALDH2 dysfunction may play a role in 

liver damage caused by VC. Our previous work showed that multiple 

mechanisms were involved in the liver injury caused by VC and fat such as 

oxidative stress, inflammation, ER stress (34). ALDH2 has been 

demonstrated to be a protective enzyme in alcoholic liver injury via regulation 

of ER stress, inflammation, oxidative stress and autophagy (50). Moreover, 

ALDH2 is capable to catalyze CAA (knowns as VC metabolite) (51). We 

hypothesize that ALDH2 activation will protect the liver from dietary fat and 

VC exposure. 

6. Statement of Goal 
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In our previous work, we showed that low-level VC exposure exacerbates 

liver injury caused by dietary fat via multiple mechanisms including 

inflammatory damage, oxidative stress, ER stress and mitochondrial 

dysfunction. In this study, we aim to seek for a novel molecular factor as a 

liver protective target. As introduced throughout this chapter, we know that 

ALDH2 is an important enzyme that has been clarified to be a protective 

factor in liver function against alcohol abuse in many studies. VC shares a 

similar pathway for metabolism as ethanol. Therefore in this dissertation, we 

hypothesize that activation of ALDH2 may affect liver injury caused by VC 

and HFD, and we will investigate the role of ALDH2 in regulating liver function 

recovery. 

 

B. Specific aims in this study.  

1. Aim1: Evaluate the protective role of ALDH2 againist VC 

metabolite exposure in mice 

This aim is mainly to investigate the role of ALDH2 in the CE or CAA 

exposure (metabolites of VC). Previous work by our lab showed that CE 

increased 4-HNE adducts and altered energy metabolism including disruption 

of carbohydrates/lipids, CAA treatment also caused toxicity in primary 

hepatocytes and HepG2 cells (30). ALDH2 is known to reduce 4-HNE 

induced oxidative stress and mitochondrial dysfunction (45). We hypothesize 

that ALDH2 plays a role in the protecting liver from VC metabolites.  The goal 

of this aim is to study whether ALDH2 prevents co-induced liver damage. The 
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potential mechanisms that could be affected by ALDH2 are investigated. We 

also aim to explore the effect of CAA on ALDH2 activity. 

2. Aim2: Investigate the protective role of ALDH2 against liver injury 

caused by VC and HFD in mice 

Recent work from our group showed that the low-dose VC exposure 

enhanced HFD-induced liver injury. The role of ALDH2 in this animal model 

has not been studied before. The goals of this aim are therefore to (i) 

characterize whether ALDH2 function is impaired in the liver injury of our 

model; (ii) to determine whether activation of ALDH2 prevent liver damage 

from VC and HFD; (iii) and to explore the mechanisms involved in the effect 

of ALDH2 on liver injury.  
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Scheme 1.1: VC metabolism 

VC metabolism in the cell is represented. VC is metabolized through CYP2E1 

and form chloroethylene oxide, which can be transformed into chloroethanol 

(CE) or chloroacetaldehye (CAA). CAA can be degraded by ALDH2 into chlor-

acetic acid 
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CHAPER II 

  

EXPERIMENTAL PROCEDURES  

 

 

A. Animals and treatment  

 

6-week old male C57BL/6J mice from Jackson Laboratory (Bar Harbor, 

ME), were housed in a pathogen-free barrier facility accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care, and 

procedures were approved by the University of Louisville’s Institutional Animal 

Care and Use Committee. 

1. Acute mice model of CE exposure 

During the exposure period, mice were housed in pairs in shoebox cages 

in a room held at 75 ˚F. Food and tap water were allowed ad libitum. Mice 

were given control diet and randomly divided into 4 groups: 1) control, 2) 

Alda-1(ALDH2 activator), 3) chloroethanol (CE, 50mg/kg, i.g.)  and 4) Alda-

1+CE. The Alda-1 group was pretreated with ALDH2 activator (20mg/kg/d i.p.) 

for 3 days, on the fourth day, the mice were administered CE after 30 min-

Alda-1 injection. Mice were anesthetized and sacrificed the after 24h CE 

treatment. 
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2. Chronic mice model of VC and HFD exposure 

Mice were fed low-fat control (LFD,13% calories as fat) or high-fat diet 

(HFD,42% calories as fat) for 12 weeks in bedding-free cages. The mice were 

exposed to VC (Kin-tek, La Marque, TX) via inhalation at the concentration 

below the current limit of OSHA (~0.85±0.1 ppm) for 12 weeks (6 hours per 

day, 5 days per week). Some mice were administrated room air for the same 

pattern. At the end of 9th week, some mice were injected with a specific 

agonist of ALDH2, Alda-1(20mg/kg i.p., 3 days/ week; EMD Chemicals, 

Gibbstown, NJ), which is dissolved in the vehicle of 50% dimethylsulfoxide 

and 50% polyethylene glycol. Body weight and food consumption were 

monitored weekly in modeling period. Mice were sacrificed at 12th week.  

3. Oral glucose tolerance test  

Blood glucose level of chronic mice model of VC and HFD was measured 

at the 12th week by oral glucose tolerance test (OGTT). Transfer mice to 

cages without food and bedding 6 hours prior to experiment. After fasting 

period, blood was sampled from the tail cutting immediately after fasting to 

determine baseline. Following oral administration of 2 mg/kg glucose (Sigma, 

St Louis, MO) in 4 ml/kg of sterile saline solution, blood from tail vein was 

measured at 15, 30, 60, 90 and 120 minutes for glucose level. Glucose 

concentrations were tested using an Accu-Chek Aviva Plus glucometer and 

test strips (Roche Diagnosis Corp., Indianapolis, IN). 
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4. Animals sacrifice, samples collection and storage 

 
At sacrifice, animals were fasted for 4 hours and anesthetized with keta-

mine/xylazine (100/15 mg/kg, i.p.). Blood was collected from the vena cava 

just prior to sacrifice and citrated plasma was stored at -80°C for further anal-

ysis. After washing with PBS buffer, liver tissue will be collected with portions 

of all tissues were snap-frozen in liquid nitrogen, embedded in frozen speci-

men medium (Sakura Finetek, Torrance, CA), or were fixed in 10% neutral 

buffered formalin for later histological staining. Total hepatic RNA will be ex-

tracted from additional portions using RNA STAT-60 (Tel-Test, Inc., Friends-

wood, TX) and chloroform: phenol extraction.  

 

B. Histology 

1. General morphology 

Liver tissues were fixed in formalin, paraffin embedded liver section was 

cut at 5 μm and mounted on charged glass slides. Sections were 

deparaffinized with Citrisolv (Fisher Scientific, Waltham, MA) and rehydrated 

through addition of graded ethanol solutions. Sections were then stained with 

hematoxylin and eosin (H&E). After staining, samples were dehydrated 

through graded alcohol, washed in Citrisolv and then mounted with Permount 

(Fisher, Waltham, MA). Pathology was scored (inflammation and necrosis) in 

a blinded manner as described before, the number of inflammatory or necrotic 

foci was determined ten 400x fields. 
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2. Neutrophil accumulation 

Neutrophil accumulation in liver tissue was measured using chloroacetate 

esterase (CAE) staining. Briefly, formalin fixed, paraffin embedded liver tissue 

was cut at 5 μm and mounted on charged glass slides. Sections were 

deparaffinized with Citrisolv (Fisher, Waltham, MA) and rehydrated through 

addition of graded solutions of ethanol. Tissue specimens were incubated in a 

solution of napthol ASD chloroacetate (1 mg/ml) in N,N-dimethylformamide, 

with 4% sodium nitrite and 4% new fuchsin for 25 min. The napthol AS-D 

chloroacetate was enzymatically hydrolyzed by chloroacetate esterase in 

neutrophils, liberating the napthol compound. Napthol combined with a freshly 

formed diazonium salt, leaving bright pink color deposits at the site of 

enzymatic activity. The slides were counterstained in the hematoxylin for 15-

30s and dipped in ammonium hydroxide solution for few seconds to stain 

nucleus in blue. After staining, check liver section for counter stained color 

and dehydrated them through graded ethanol, washed in Citrisolv, then 

mounted with Permount (Fisher, Waltham, MA). CAE positive cells were 

counted by Metamorph Imagen Analysis Software (Molecular Devices, 

Sunnyvale, CA) and expressed by the ration of positive staining cells in 100 

hepatocytes. 

3. Lipid and glycogen accumulation  

Lipid accumulation was detected via Oil Red-O (ORO) staining. This 

staining was based on the great solubility of oil-soluble dyes in lipoid 

substances. Oil Red-O powder was dissolved in 99% 2-proponal (Fisher 
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A416-4) and make the stock solution at the concentration of 3mg/ml. Before 

staining, Oil Red-O must be made freshly by mix the stock with distilled water 

at the ration of 3:2. Frozen sections of liver were cut at 10 μm and stained 

with Oil Red-O solution (Sigma, St. Louis, MO) for 10 minutes, washed, and 

counterstained with hematoxylin for 45 seconds. Samples were then rinsed in 

water and mounted with Permount (Fisher, Waltham, MA).  

Hepatic glycogen reserves were visualized as a dark purple color using 

Periodic Acid-Schiff (PAS) staining. Formalin fixed, paraffin embedded liver 

tissue was cut at 5 μm and mounted on charged glass slides. Sections were 

deparaffinized with Citrisolv (Fisher, Waltham, MA) and rehydrated through 

graded ethanol. Sections were incubated in 0.5% Periodic Acid solution for 5 

minutes, washed in water, and incubated with Schiff reagent for 15 minutes. 

Slides were washed in lukewarm water for 5 minutes, tissue section turned 

into dark pink color. Samples were then counterstained with hematoxylin for 

45 seconds, washed in water, dehydrated through graded ethanol, washed in 

Citrisolv, and then mounted with Permount (Fisher, Waltham, MA). 

4. Immunohistochemistry 

 

4-HNE and MDA stained liver were performed by immunohistochemistry 

(IHC). Previous sectioned formalin-fixed, paraffin-embedded liver sections 

were deparaffinized in Citrisolv and hydrated through descending grades of 

ethanol to distilled water. Slides were incubated in target retrieving solution 

overnight at 72°C. Slides were placed in room temperature and then rinsed in 
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TBS. Following that, endogenous peroxidases were quenched in 3% 

hydrogen peroxide. Blocking for endogenous biotin was performed using a 

commercially available kit (Agilent Technologies, Santa Clara, CA). Prior to 

applying primary antibody, sections were blocked in 10% goat serum in TBS-

0.01% Triton. Positive sections were incubated in 1:500 rabbit anti-MDA (Cell 

Signaling Technologies 2956S, Danvers, MA) and negative parts were 

incubated in TBS-0.01% Triton for 2 hours at room temperature. After 

washing several times in TBS, tissues were incubated in a biotinylated anti-

rabbit IgG secondary antibody from the Vectastain Elite ABC kit detection 

(Vector Laboratories, Inc., Burlingame, CA) for 15 minutes at room 

temperature. Slides were rinsed in TBS and then incubated in a solution 

containing avidin-bound horseradish peroxidase (HRP) for 30 minutes. For 4-

HNE staining, using peroxidase from DAKO kit to block deparaffinize and 

rehydrated tissues, slides were incubated in primary antibody of 4-HNE 

(Alpha diagnostics) which was diluted in PBS-T at 1:500 for 30 minutes at 

room temperature, second antibody was applied for 5 minutes. The HRP 

substrate 3, 3’-diaminobenzidine (DAB) (Agilent Technologies, Santa Clara, 

CA) was added to sections until positive (brown) staining was 

macroscopically visible. Slides were counterstained with hematoxylin for 1 

minute, washed, dehydrated through graded ethanol and then mounted with 

Permount (Thermo Fisher, Waltham, MA). Each slide contained a negative 

tissue section that did not receive primary antibody. Slides were visualized 
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using a Nikon Eclipse E600 microscope (Nikon Corporation, Tokyo, Japan) 

with Metamorph software (Molecular Devices, Sunnyvale, CA).  

 

C. Biochemistry assay 

1. AST, ALT assay 

Plasma activity levels of alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) were determined spectrophotometrically using 

standard kits (Thermo Fisher Scientific, Waltham, MA). 

2. Lipid, glycogen extraction and quantification  

A small piece of frozen liver was homogenized in tissue pulverizer, staying 

as cold as possible with the liquid nitrogen. Liver powder was transferred to a 

tared glass tube with chloroform and methanol addition using glass syringes. 

Appropriate volume of water was added in the samples followed by a 

complete vortex and sitting on ice for at least 30 minutes. Samples were 

mixed with chloroform and water, then vortexed completely and centrifuged 

down at a full speed. Appropriate volume of sample was taken out from the 

bottom phase and transferred to a new tube. N2 drying apparatus was applied 

for drying samples. After that, dried lipids were resuspended with 200 μl 5% 

lipid free BSA.  For triglyceride and cholesterol measurement, standard of L-

DC cal solution in graded concentration were prepared with addition of 

triglyceride (TG)/cholesterol reagent as described in the protocol from Infinity 

kit (Thermo TR 13421). The plates were incubated in the plate reader for 5 
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minutes and read at wavelength of 500 nm. Non-essential fatty acid (NEFA) 

assay was measured as describe in instruction, then read absorbance at 

wavelength of 520 and 680 nm. 

Glycogen determination in liver was modified from Seifter et al (52). 50-

100 mg liver tissue was placed in 500 μl of 30% KOH and incubated in 100°C 

for a complete digestion. After adding 625 μl of 95% ethanol, samples were 

sitting at room temperature overnight. Samples were centrifuged at full speed 

and the pellets were resuspended in water. Samples or glucose standards 

were mixed with 0.2% anthrone solution by the ration of 1:2 and incubated at 

100°C for 10 minutes. 150 μl of vortex samples were transferred to 96-well 

plate. OD value was measured at 620 nm, glycogen was calculated by 

glucose standard curve and reported at μg/g tissue.      

3. ALDH2 activity assay 

In the in vivo model, ALDH2 enzymatic activity was determined in 

mitochondrial extracts using a commercial kit (Abcam, ab115348). The 

enzyme is captured within wells of the microplates and activity is determined 

by the production of NADH in the ALDH2 catalyzed reaction. The generation 

of NADH is coupled to the 1:1 reduction of reporter dye to yield a colored 

reaction product whose concentration can be monitored by measuring the 

increase in absorbance at 450 nm. All the reagents were prepared as 

described in the protocol. Mitochondrial sample pellets were mixed with 

extraction buffer and centrifuged down for 20 minutes. Supernatants were 

diluted and placed in the well covered with acetaldehyde. After 3 hours of 
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incubation, wells were washed 3 times. The absorbance was recorded at 450 

nm at 30 minutes and 120 minutes after addition of the activity solution. 

Purified ALDH2 protein (10 μg) purchased from Sigma (St Louis, MO) 

were added to 50mM sodium phosphate buffer (pH 7.4) containing 1mM 

EDTA, 1 mM DTT and 1 mM NAD+. The reaction was initiated by the addition 

of CAA (Sigma, St Louis, MO) into the 1 ml cuvette. The ADLH2 activity was 

measured spectrophotometrically at 340 nm via the formation of NADH. For 

Alda-1 group, ALDH2 was incubated in Alda-1 (20 μM) for 2 minutes and 

measured activity immediately after CAA and NAD+ addition. For CAA group, 

enzyme was exposed to CAA (40 μM) for 5 minutes, added NAD+ and 

determined absorbance. To investigate the effect of Alda-1 intervention on 

CAA exposed enzymatic function, we pre-incubated enzyme to Alda-1 for 2 

minutes, then exposed it to CAA for 5 minutes and measured activity after 

NAD+ addition.   

4. TBARS assay 

The liver MDA level was quantified by determination of thiobarbituric acid 

reactive substances (TBARS) concentration using a commercial kit (R&D 

system, Minneapolis, MN). Free MDA is typically low, requiring release of 

MDA by acid treatment of proteins and breakdown of peroxides by heat and 

acid to facilitate color development in the TBARS assay. Liver homogenate 

was mixed with the same volume of TBARS acid reagent, incubated at room 

temperature for 15 minutes and centrifugated. TBARS standard and sample 

supernatants were placed in the 96-well plate with the addition of TBA 
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reagent. The OD value of each well was pre-read using a microplate reader at 

532 nm. After incubation at 45°C for 2 hours, the OD was determined again. 

The pre-reading was subtracted from final the reading to correct for samples 

contribution to the final absorbance at 532 nm. A standard curve was created 

and MDA concentration was calculated. The MDA levels were reported at 

nmol/mg protein. 

 

D. Sample protein extraction 

Liver samples were homogenized in RIPA buffer [20 mM Tris-HCl, pH 7.5, 

150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% (wt/vol) Triton X-100], 

containing protease and phosphatase inhibitor cocktails (Sigma, St. Louis, 

MO). Liver homogenates were centrifugated at full speed for 5 minutes, 

supernatants were collected and stored at -80°C. Mitochondria protein was 

isolated as describes by Wiekowski et al (53). Fresh liver tissues were 

washed in IB-1 (225 mM mannitol, 75 mM sucrose, 0.5% BSA, 0.5 mM EGTA 

and 30 mM Tris-HCl) immediately and then transferred to IB-3 (225 mM 

mannitol, 75 mM sucrose and 30 mM Tris-HCl).  Liver homogenates were 

mixed with appropriate IB-1(4 ml/g of liver) and centrifuged at 740g for 5 

minutes. Supernatants were collected and centrifuged by a higher speed at 

9,000g for 10 minutes. The pellets were resuspended with IB-2 (225 mM 

mannitol, 75 mM sucrose, 0.5% BSA and 30 mM Tris-HCl) following by 

centrifuging at 10,000g for 10 minutes. The pellets were washed in IB-3 and 

centrifugated at the same speed. After that, the pellets were dissolved in MRB 
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(225 mM mannitol, 5 mM HEPES and 0.5 mM EGTA) and crude 

mitochondrial proteins were stored at -20°C. 

 

E. Immunoblots  

Samples were loaded onto SDS-polyacrylamide gels (4-12%) (Invitrogen, 

Thermo Fisher Scientific, Grand Island, NY), followed by electrophoresis and 

Western blotting onto PVDF membranes (Hybond P, GE Healthcare Bio-

Sciences, Pittsburgh, PA). The PVDF membrane was washed in TBST buffer 

and blocked by TBST containing 5% milk. The membrane was incubated in 

the primary antibodies against Atg7, p62, LC-3 I/II, GAPDH (Cell Signaling 

Technology; Beverly, MA), PINK1 and PARKIN (Santa Cruz Biotechnology, 

Dallas, TX) of dilution in 1:1000 overnight at 4°C. Second antibodies were 

used at 1:5000. Target proteins were visualized using a chemiluminescence 

detection system. The expression of ALDH2 was determined using 

mitochondria extraction and primary antibodies of ALDH2 diluted in 1:1000, 

VDAC was performed as a loading control for mitochondria. Densitometric 

analysis was performed using UN-SCAN-IT gel (Silk Scientific Inc., Orem, 

UT) software. 

 

F. RNA Isolation and Real-Time qPCR 

RNA was extracted immediately following sacrifice from fresh liver 

samples using RNA Stat60 (Tel-Test, Ambion, Austin, TX) and chloroform. 
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Sample mixtures were centrifugated at 12,000g for 15 minutes at 4°C. The 

aqueous phase was transferred into a new tube, mixed with isopropanol and 

subsequently centrifugated completely. The pellets were washed in 75% 

ethanol. After removing supernatant by centrifuging, the pellets were 

resuspended with RNAse free water in 65-70°C for 5 minutes. RNA 

concentrations were determined spectrophotometrically and 1μg of total RNA 

was reverse transcribed using a kit (Quanta Biosciences, Gaithersburg MD). 

Real-time qPCR was performed using a Step One real time PCR system 

(Thermo Fisher Scientific, Grand Island, NY). Primers and probes were 

ordered as commercially available kits (Thermo Fisher Scientific, Grand 

Island, NY). The comparative CT method was used to determine fold 

differences between the target genes and an endogenous reference (18S). 

 

G. Hepatocytes and cellular function analysis 

1. Primary hepatocytes isolation and culture 

Mice were anesthetized with ketamine/xylazine (100/15 mg/kg, i.p.).  

Thread was set around inferior vena cava (IVC). Catheter was inserted into 

the vein in an appropriate position by visualizing a backflow of blood. EGTA 

solution was connected to catheter to perfuse liver (5 ml/min) for 6 minutes, 

then switch to collagenase buffer for 10 minutes. Liver was taken out and 

minced well in Waymouth media. The cells were filtered and centrifuge at a 

low speed for several times. After washing the cell pellet with HBSS buffer, 

the hepatocytes were seeded in the collagen covered plate at density of 



 

26 
 

10,000 cells per well. Cells were washed with HBSS after 90 minutes of 

incubation at 37°C.     

2. Hepatocytes cytotoxicity measurement 

Primary hepatocytes isolated from 12-week HFD fed mice exposing to VC 

were then exposed to CAA (Sigma) at the different concentration for 1 hour in 

the incubator. Media containing Hoechst 33342 (1.5 μM, nuclear 

fluorescence), TMRM (20 μM, mitochondrial membrane potential indicator), 

TOTO-3 (1μM, index of cell membrane permeability), fluo-4 AM (1μM, 

intracellular ionized Ca) and MitoSox (5 μM, mitochondrial superoxide 

indicator) dye was add to the wells after CAA treatment. Following 45 minutes 

incubation with mixed dye, the plate was placed into the Cellomics Assay San 

VTI HCS reader and analyzes as previously described by O’Brien et al (54). 

Ten fields per well at the 20× objective was used to collect images for valid 

cell count (defined by Hoechst 33342 staining). The average of individual 

values for all fluorophores for each valid object was analyzed. 

3. Hepatocytes oxygen consumption rates measurement  

Primary hepatocytes were placed at 10,000 cells per well on collagen-

coated XF96 culture microplate (Seahorse Biosciences, Billerica, 

Massachusetts) and incubated at 37 °C to allow cell attachment. Cells were 

pre-exposed to Alda-1 at 20 μM for 30min and changed to XF medium 

(Seahorse Biosciences) containing the same concentration of Alda-1. For 

mitochondrial respiration measurement, hepatocytes were injected with CAA 
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(40 μM), oligomycin (1 μg/ml), FCCP (4 μM), antimycin A (10 μM) and 

rotenone (10 μM). The injected compounds were diluted in XF medium. 

Oxygen consumption rates (OCRs) were measured using an XF96 

Extracellular Flux Analyzer (Seahorse Biosciences, Billerica, Massachusetts). 

H. Statistic analysis  

Results were reported as means ± SEM (N=4-7) and analyzed using 

Sigma Plot 11.0 (Systat Software, Inc; San Joes, CA). ANOVA with 

Bonferroni’s post host test (for parametric data) or Mann-Whitney Rank sum 

test were used for determination of statistical significance among treatment 

groups, as appropriate.  A p value < 0.05 was selected before the study as 

the level of significance. 
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CHAPTER III 

 

ALDH2 PROTECTS LIVER FROM VC METABOLITES 

 

A. Introduction 

The liver is the largest organ in the body and serves as the most complex 

organ in terms of metabolism. It plays a critical role in the metabolism of 

amino acids, biochemical oxidation and detoxification of drugs or 

environmental toxicants. Due to the role of liver functioning as the first line of 

defense, the liver is also the most common organ to be damaged by toxicants 

or chemicals. Industrial chemicals induced hepatocyte toxicity is depended on 

dose exposure (55). VC is an environmental toxicant ranked #4 on the 

ATSDR substances priority list that known to induce hepatoxicity (56). High-

levels of VC exposure have been demonstrated to be associated with 

occupational liver diseases such as steatohepatitis (TASH), liver cancer (30). 

Thus, we aim to find a potential target factor for protecting the liver from VC 

exposure. VC has a similar metabolic pathway to ethanol. VC is metabolized 

to CE and subsequently forms into CAA depend on aldehyde dehydrogenase 

pathways, therefore CE or CAA may be an important mediator in VC-induced 

liver injury.  
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Previous work by our lab has shown that CE slightly increases liver 

damage through elevating 4-HNE adducts, which is an index of oxidative 

stress, destroying energy metabolism including increased lipid droplets and 

depleted glycogen reserves in the liver (30). CAA damaged mitochondrial 

function and directly impaired cell viability in hepatocytes (30). These data 

demonstrated that VC metabolites are detrimental to the liver and could be 

the mediator in liver damage caused by VC inhalation. Mitochondrial 

dysfunction is known to be a part of mechanisms attributing to VC metabolites 

induced hepatocytes damage (30, 34). Protecting mitochondria may reduce 

CE or CAA caused cytotoxicity.  

It is now accepted that substrates for ALDH2 go well beyond the canonical 

acetaldehyde, namely lipid aldehydes (e.g. malondialdehyde) are also 

reduced by ALDH2 (see also Chapter I). Indeed, we previously have found 

activation of ALDH2 protected mitochondrial function from 4-HNE cytotoxicity 

related mitochondrial membrane polarization and reduced oxidative stress in 

liver (45). The mitochondrion is the main organelle for cellular energy supply, 

which is especially important for carbohydrate and lipid metabolism. Thus, 

ALDH2 is proposed to protect mitochondria and to therefore maintain energy 

metabolism homeostasis. Whether ALDH2 plays a role in protecting liver of 

mice exposed to VC inhalation remains unclear. Therefore in this section, we 

aim to study the role of ALDH2 in the presence of VC metabolites instead of 

chronic VC inhalation.  

Since CAA is also a substrate of ALDH2 (51), it is reasonable to speculate 
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that cell damage caused by CAA can be attenuated by ALDH2 and that effect 

may be via protecting mitochondrial function, normalizing energy homeostasis 

and oxidative balance.  In this Chapter, we will investigate the impact of 

ALDH2 on liver phenotype and explore the mechanisms involved in.   

 

B. Results 

1. ALDH2 regulates energy metabolism in liver of acute CE exposed 

mice 

Lipid accumulation and glycogen deposition are the important aspects that 

reflect fat and glucose metabolism in liver. Therefore, we performed analysis 

of lipids and glycogen by staining the quantitative level by hepatic extraction 

using commercial kits. ORO staining of neutral lipids showed that CE 

treatment caused an increase in lipid droplet accumulation. Pre-treatment of 

Alda-1 decreased ORO positive staining in the CE group (Figure 3.2A). This 

was also reflected in triglyceride (TG) levels in liver and plasma. CE or Alda-1 

alone did not change NEFA and cholesterol levels in either liver or plasma 

(Figure 3.2B). Hepatic glycogen storage was visualized by PAS staining. CE 

caused an obvious depletion of glycogen deposition while Alda-1 did not blunt 

this effect (Figure 3.2A). Quantitation of PAS staining in liver also showed that 

CE significantly decreased glycogen stores. This was not prevented by Alda-1 

pre-exposure (Figure 3.2B). Hepatic steatosis and glycogen depletion was 

mediated by alteration in expression of metabolic associated gene. To 

explore the regulation of ALDH2 in lipids and carbohydrates homeostasis, we 
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analyzed the expression of genes involved in the synthesis and catabolism of 

fat or glucose by RT-qPCR (Scheme 3.2).   

Carnitine palmitoyltransferase 1a (CPT1) is the rate-limiting enzyme in 

fatty acid β-oxidation in the mitochondria. ATP citrate lyase (ACLY) is 

an enzyme representing an important step in fatty acid biosynthesis. It 

converts citrate to acetyl CoA, which is an intermediate link the metabolism of 

carbohydrates and production of fatty acids. Fatty acid synthase (FAS) is a 

multi-enzyme protein that catalyzes fatty acid synthesis. ALDH2 activation by 

Alda-1 significantly increased Cpt1 expression suggesting that ALDH2 

activation increased fatty acid β-oxidation in the mitochondria. There was no 

significant difference of Fas and Acly mRNA expression in each group (Figure 

3.3).  

Glucose transporter (GLUT4) permits glucose to enter the cell and 

increases glucose absorption, glucokinase (GCK) is a rate-limiting enzyme in 

glycolysis that facilitates phosphorylation of glucose to glucose-6-phosphate, 

it plays an important role in the regulation of carbohydrate metabolism. 

Glycogen synthase kinase 3b (GSK3b) increases the phosphorylation of the 

gluconeogenic enzymes, suppressing glycogen synthesis. 

Phosphoenolpyruvate carboxykinase (PCK) is a rate-limiting enzyme that 

catalyzes an irreversible step of gluconeogenesis and thought to be essential 

in glucose homeostasis. SIRT1 is a factor involving hepatic glucose and lipid 

hemostasis. However, by PCR data we found that none of these markers 

showed significantly different mRNA expression in each group (Figure 3.3). 

https://en.wikipedia.org/wiki/Fatty_acid_biosynthesis
https://en.wikipedia.org/wiki/Fatty_acid_synthesis
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2. ALDH2 activation inhibited CE-induced oxidative stress in liver 

4-HNE is a byproduct of lipid peroxidation and thought to be an indicator 

of oxidative stress. Previous work by our lab showed that CE increased 

oxidative stress in liver (30).  For investigating whether ALDH2 functioning in 

protecting liver from CE, 4-HNE protein adduct accumulation was measured 

by staining and expressed by quantitation of positive staining. CE increased 

in 4-HNE positive staining comparing to control mice, pre-injection by Alda-1 

decreased 4-HNE adducts level in the CE mice (Figure 3.4).   

3. The effect of ALDH2 on proinflammatory cytokine gene expres-

sion in CE mice 

We also wanted to know how ALDH2 affected the inflammatory response 

in liver. Pai-1 is a plasminogen activator inhibitor that inhibits fibrinolysis. It is 

also known as a proinflammatory cytokine. Tumor necrosis factor-α (TNF-α) is 

a pleiotropic cytokine produced by a variety of immune cells including 

macrophages/monocytes. TNF-α can trigger multiple signaling pathways 

involved in inflammation. Moreover, TNF-α has been shown to be an 

upstream regulator of PAI-1 (57). However, neither CE nor Alda-1 significantly 

changed mRNA expression of Pai-1 and Tnf-α (Figure 3.5). 

4. Pre-incubation of Alda-1 prevented reduction in ALDH2 activity by 

CAA 

ALDH2 is known to protect liver injury by decreasing 4-HNE caused 

oxidative stress or reducing lipid accumulation (45). There are multiple signal 
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pathways involved in the animal model so that might be complex to figure out 

a predominant mechanism contributing to liver protection. ALDH2 utilizes 

aldehydes as substrate and NAD+ as cofactor to form into their corresponding 

acid. It is known that 4-HNE is one of the substrates to ALDH2 (58), activation 

of ALDH2 is demonstrated to play a critical role in aldehyde clearance thereby 

leading to cell protection (59). We want to know how ALDH2 performs in the 

exposure of CAA and explore a direct reaction between enzyme and toxic 

CAA. Purified ALDH2 were measured for enzyme characterization. We 

proved that CAA acted as the substrate for ALDH2, moreover, prolonged 

single CAA treatment blocked the utilization of NAD+ to form NADH and 

showed a significant inhibited ALDH2 activity. Alda-1 pre-treatment elevated 

enzymatic activity in both control and CAA group (Figure 3.6).    
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Scheme 3.1: animal treatment by CE and Alda-1 

Mice received Alda-1(20mg/kg) injection for 4 days and were gavaged with CE 

(50mg/kg) 24 hours prior to sacrifice. For mice of Alda-1+CE group, CE was 

given after 30 minutes Alda-1 treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 
 

 

 

 

 

 



 

36 
 

Figure 3.2. The effect of ALDH2 on hepatic lipids and glycogen level in CE 

treated mice.  

A. Representative photomicrographs of ORO (neutral lipid, red) and PAS 

(glycogen, dark purple) staining are shown at 200x magnification. B. Hepatic 

and plasmatic TG, cholesterol and FFA level were measured as described in 

Chapter II, quantitative positive staining of glycogen storage in liver was 

expressed by Image Metamorph analysis software. Results are reported as 

means ± standard error mean (SEM; n=4-6). a, p<0.05 compared to control 

group, b, p<0.05 compared to absence of Alda-1.   
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Scheme 3.2: energy metabolism related gene regulation 

Changes in glucose and lipid metabolism are represented. Carbohydrates me-

tabolism related genes includes Glut4, Gck, Pck, Gsk3b. Lipid metabolism re-

lated gene includes Cpt1, Acly, Fas. Sirt1 serves as the regulator in both glu-

cose and lipid homeostasis. 
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Figure 3.3. The effect of ALDH2 on energy metabolism related mRNA ex-

pression in CE mice 

Lipid metabolism mRNA (Cpt1, Fas, Acly) and carbohydrate metabolism mRNA 

(Gsk3b, Gck, Pck, Glut4, Sirt1) expression in liver homogenate were measured 

by RT-qPCR in mice treated with CE or Alda-1. Results are reported as means 

± standard error mean (SEM; n= 4-6), a, p < 0.05 compared to control mice, b, 

p < 0.05 compared to the absence of Alda-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

40 
 

 

 

 

 

 

 

 



 

41 
 

Figure 3.4. The effect of ALDH2 on liver oxidative stress caused by CE 

A. Representative photomicrograph of 4-HNE staining (index of oxidative 

stress, brown) in liver are shown at 200x magnification.  B. Quantitative positive 

staining of 4-HNE adducts in liver was expressed by Image Metamorph 

analysis software. Results are reported as means ± standard error mean (SEM; 

n=4-6). a, p<0.05 compared to control group, b, p<0.05 compared to absence 

of Alda-1.  
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Figure 3.5. The effect of ALDH2 in proinflammatory cytokines mRNA ex-

pression in the CE group  

Hepatic mRNA expression in liver homogenate of proinflammatory cytokines 

(Tnf-α, Pai-1) were measured by RT-qPCR in mice of all groups. Results are 

reported as means ± standard error mean (SEM; n= 4-6), a, p < 0.05 compared 

to control mice, b, p < 0.05 compared to the absence of Alda-1. 
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Figure 3.6. Purified ALDH2 characterization  

ALDH2 enzymatic activity was measured in purified protein after treating with 

CAA or Alda-1 as described in Chapter II. The activity was determined at 1 min 

time point after substrate addition. Results are reported as means ± standard 

error mean (SEM; n= 4-6), a, p < 0.05 compared to control group, b, p < 0.05 

compared to the absence of Alda-1. 
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C. Discussion 

As mentioned in the Introduction, NAFLD is composed of steatosis and 

steatohepatitis that potentially develops to hepatic fibrosis and cirrhosis. 

Steatosis or steatohepatitis are considered a hallmark for diagnosis of early-

stage liver damage. Environmental toxicants such as VC cause hepatic 

steatohepatitis. Most clinical cases were found in workers with chronic 

occupational exposure to VC at high concentrations (20). CE and CAA, 

metabolites of VC, are important mediators in VC induced liver damage. 

Here, we exposed mice to acute CE at a concentration which equates to ~100 

ppm of VC bolus rodents. The concentration of CE was determined by others 

to not directly cause liver damage (60) and was validated in our previous work 

(30). Activation of ALDH2 has been shown to be a protective,  especially in 

alcoholic liver disease (43). The role of ALDH2 in VC exposed liver function 

has not been studied. Here, our first aim was to investigate the effect of 

ALDH2 activation in an animal model of short-term treatment of CE. We 

determined by ORO staining that CE increased lipid accumulation in liver. 

The main form of lipid storage in hepatocytes are TG. Other lipids that can 

accumulate are FFA or free cholesterol (61). Elevated TG levels in both liver 

tissue and plasma were observed in CE-treated mice. Alda-1 pre-treatment 

attenuated lipid droplet formation in the liver, paralleled with an decrease in 

TG levels (Figure 3.2).  Hepatic TG accumulation is mainly synthesized from 

FFA. We speculated that the effect of CE or Alda-1 on TG showed a 

consistent trend with FFA level.  However, neither CE nor ALDH2 changed 
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FFA level (Figure 3.2). FFA content is depended on the lipolysis, lipid 

synthesis and the destination such as FFA oxidation in mitochondria (7). We 

measured some key gene in catalyzing FFA synthesis (Acly, Fasn) by PCR, 

however there was no significant difference found in each group. CE didn’t 

alter Cpt1 mRNA expression while Alda-1 caused significantly upregulated 

expression levels (Figure 3.3). This suggested that CE did not affect FFA 

lipogenesis or oxidation. The effect of ALDH2 in lipids metabolism might be 

attributed to the increased FFA oxidation in mitochondria. Overall, these data 

indicate that ALDH2 activation is sufficient to inhibit CE mediated steatosis. 

Additionally, previous data in our lab showed that CE decreased hepatic 

glycogen storage due to an increased demand of glucose compensation for 

ATP depletion which is derived from CE caused mitochondrial impairment 

(30, 34). The protective role of ALDH2 in mitochondria has been 

demonstrated previously (45). Here we measured the effect of ALDH2 on 

glycogen deposition in liver. Glycogen can be impacted by some key 

metabolic process such as glycolysis, glycogenolysis, glycogenesis and 

gluconeogenesis. In this study, CE did not affect mRNA expression of genes 

(Glut4, Pck, Sirt1, Gsk3b, Gck) involved in glucose homeostasis but showed 

a decrease in glycogen levels in the liver (Figure 3.3). However, this may be 

due to temporal differences in gene expression and appearance of an altered 

phenotype.  The effect of ALDH2 on glycogen levels was parallel with the 

performance of gene expression (Figure 3.2). However, activation of ALDH2 
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does not seem to play a significant role in regulating glucose metabolism in 

the acute CE exposure model. 

Excessive fat production has been shown to promote low grade 

inflammation by increasing expression of proinflammatory cytokines resulting 

in further damage and/or fibrogenesis (7). TNF-α is a key factor involved in 

the M1 response that mediates steatohepatitis (62). PAI-1 contributes to liver 

lipid transport in the early stages of liver injury leading to steatosis, in the later 

stages, PAI-1 acts as a key regulator in inflammation or fibrosis (63). By our 

study, the mRNA level of Tnf-α and Pai-1 weren’t altered by CE or Alda-1 

significantly (Figure 3.5). This result indicates that these factors are not major 

players in the mechanism(s) of action in this model.   

It is accepted that increased lipid accumulation and liver damage are 

linked with oxidative stress (64). increased lipid deposition is the source of 

endogenous aldehydes such as 4-HNE. ALDH2 is known for its role in 

aldehydes degradation and antioxidant. Indeed, we demonstrated ALDH2 

activation reversed lipid accumulation and suppressed 4-HNE level (Figure 

3.4). These results indicate that activation of ALDH2 protects the liver from 

CE-induced oxidative stress. The VC metabolite, CAA is a reactive aldehyde 

similar to 4-HNE that has been demonstrated to cause hepatocellular damage 

by our previous work (30). CAA has been demonstrated to be not only 

substrate to ALDH2, but also a direct inhibitor of ALDH2 enzymatic activity 

(Figure 3.6). It has been known that aldehydes inactivate ALDH2 by 

interfering with the correct binding of the substrate to the active site or 
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disrupting protein-substrate interaction (58). We hypothesize that CAA reacts 

with ALDH2 at the active site and affects the binding of NAD+ and therefore 

blocks the enzymatic activity. We showed that pre-incubation of ALDH2 to 

Alda-1 affected the decrease in enzymatic activity caused by CAA. As a 

selective ALDH2 agonist, Alda-1 binds to the entrance of the active site but 

does not interfere with catalytic residue; it permits substrate binding and 

facilitates catalytic product release, protecting enzymatic activity (38, 65). We 

proposed that pre-activation of ALDH2 prevented enzymatic activity from CAA 

inhibition and blunted decreased aldehydes clearance, this effect decreased 

the production of CAA and other endogenous aldehydes (e.g. 4-HNE), and 

therefore attenuated liver damage.  

 

 

D. Conclusion 

 
In this aim, we demonstrated that Alda-1 pre-treatment plays a role in 

protecting the liver from acute CE exposure. Alda-1 improved metabolism 

dyshomeostasis, especially on the lipids level and it decreased 4-HNE-

associated oxidative stress. We suggested that this effect was initiated by 

activation of ALDH2-mediated clearance of toxic aldehydes. CAA inhibited 

ALDH2 activity and enhanced production of aldehydes, leading to liver injury. 

Alda-1 activates ALDH2 and prevents inhibition of enzymatic activity by CAA. 

As major metabolites of VC, CE and CAA are mediators of VC-induced liver 

injury. We therefore hypothesize that ALDH2 is impaired by inhalation of VC 
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proper and that ALDH2 activation may ameliorate liver injury caused by 

chronic VC exposure.  
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CHAPTER IV 

 

ALDH2 FUNCTIONS IN PROTECTING LIVER AGAINST CHRONIC VC EXPO-
SURE CONCOMITANT WITH HIGH-FAT DIET 

 

 

A. Introduction 

VC was first used commercially in the 1920s, the techniques was not 

devised to polymerize VC into a stable PVC until 1930s. Over that period, 

workers were required to clean up the reaction tank because a film of PVC 

forms inside wall of reactor after the polymerization finished, so that the 

workers were exposed to high concentration of VC up to 1,000 ppm or higher 

peaks of exposure (21). This occupational exposure of VC caused multiple 

complications such as liver cancer. The cases of hepatic angiosarcoma (ASL) 

were diagnosed in 1974 among VC workers in Louisville, Kentucky (66). 

Additionally, the mortality risks of other liver cancers (e.g. HCC) were 

associated with VC exposure (19). Based on those epidemiological 

investigations, VC exposure is regarded as a carcinogen of liver as evaluated 

by IARC. ASL and HCC, as the typical VC-induced liver cancers, were 

normally observed in workers exposed to high concentrations of VC. Since 

1975, OSHA has set stricter limitations for VC exposure (1 ppm, 8hrs/day), 

which efficiently decreases morbidity of occupational acute exposure of VC 
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related liver diseases. However, to this day it is unclear if low concentrations, 

that are currently considered safe, may enhance or alter liver injury caused by 

other risk factors. The risk for low-dose chronic exposure of VC therefore 

remains a concern for workers and residential populations surrounding to 

industrial or VC-contaminated sites.  

As a terminal state of liver disease, liver cancer can be mediated by high-

level VC exposure. We have shown that chronic low-dose VC exposure 

mediates low to moderate degrees of liver damage and we hypothesize that 

these concentrations may also potentially contribute to more severe and 

irreversible stages of liver injury. It is proposed that additional other risk 

factors synergistically lead to progression of liver damage, ultimately leading 

to fibrosis and liver cancer (67). Obesity is the most prevalent underlying 

disorder that impacts over 50% of the US population (see also Chapter I). 

NAFLD is the major hepatic manifestation associated with obesity. Previously, 

we have demonstrated that VC dysregulates metabolic homeostasis and 

enhances liver injury caused by high-fat diet (34). ALDH2 is accepted to be a 

protective enzyme for its pivotal role in metabolism regulation as well as 

clearance of aldehydes, which results in reduced oxidative stress. Indeed, we 

have data supporting a similar mechanism in our animal model of acute CE 

exposure (see Chapter III).  

In this section, we focused on the effect of ALDH2 on liver function in the 

interaction of chronic low-dose of VC exposure and consumption of a high-fat 

diet. We have shown previously that the mechanisms involved in the chronic 
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low-level VC exposure induced liver injury in HFD fed mice is similar to that of 

single acute CE exposure (34). Here, we proposed that ALDH2 activation will 

decrease liver injury caused by VC and HFD. Although we will determine the 

role of ALDH2 in the interaction of VC exposure and HFD in vivo, it is 

extremely difficult to obtain complete toxicological data due to the various cell 

types and multiple signal pathways that are involved. For further 

investigations of the underlying mechanism(s), we will utilize cell culture 

models and document pathological changes on organelle and molecular level. 

Mitochondria are key to maintaining cellular energy homeostasis. Previous 

work by our lab showed CAA causes cellular damage to HepG2 and primary 

hepatocytes via mitochondrial dysfunction, involving mitochondrial respiration 

impairment as well as decreased mitochondrial membrane potential (30). 

Furthermore, cellular toxicity induced by 4-HNE can be reversed by ALDH2-

catalyzed aldehyde degradation (45), which is also supported by the data 

shown in Chapter III. Thus, we hypothesize that activation of ALDH2 protects 

hepatocytes from VC and HFD, and we aim to investigate the involved 

mechanisms as well.  

 

 

B. Results  

1. ALDH2 dysfunction is involved in the interaction of VC and HFD 

in liver 
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ALDH2 is a critical enzyme for aldehyde metabolism as well as a 

protective factor in liver injury. However, the role of ALDH2 function in 

exposure to VC has not been elucidated yet. For investigating ALDH2 

function in this model, hepatic mitochondria were isolated from mice exposed 

to VC and HFD for12 weeks. Western blot and enzymatic activity assays 

were performed for determination of protein expression levels and of 

aldehyde clearance rate, respectively.  Figure 4.2 shows the effect of VC and 

HFD on ALDH2 protein expression and activity in vivo. VDAC was used as a 

loading control for mitochondrial protein. ALDH2 protein levels were 

quantitated by densitometric analysis. Western blot results showed a 

significant difference in ALDH2 levels between control and mice exposed to 

VC inhalation (Figure 4.2A). Quantified protein level was expressed as the 

ratio of intensity of ALDH2 to VDAC. HFD significantly increased ALDH2 

protein expression compared to LFD feeding mice, VC exposure significantly 

decreased ALDH2 levels in both LFD and HFD groups. Interestingly, the 

ALDH2 enzymatic activity of HFD showed a different trend from the Western 

blot results. HFD feeding significantly decreased ALDH2 activity in the liver 

compared to LFD control, while the addition of VC enhanced this effect only in 

the presence of HFD (Figure 4.2B). This result supports the hypothesis that 

VC-enhanced liver injury in the HFD group might be via, at least in part, 

regulating ALDH2 function. 

2. ALDH2 affected metabolic phenotype of mice in the interaction of 

VC and HFD 
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For evaluating the metabolic phenotype of mice, body weights were 

measured once per week and food consumption was monitored twice per 

week. Blood glucose levels were determined at the 12-week time point. 

Figure 4.3 A shows that there was no difference in body weights between the 

LFD and LFD+VC groups. Body weights were significantly increased with 

HFD. VC did not further increase body weights. Mice injected with Alda-1 

were significantly lighter in body weight compared to non-Alda-1 treated mice. 

Figure 4.3B shows the amount of food consumed by each dietary group 

throughout 10 weeks.  All these groups consumed similar amounts of food 

and no significant difference was observed (Figure 4.3B). Figure 4.3C shows 

blood glucose levels at different time points after administration of glucose. 

None of the groups showed significantly different baseline glucose levels. At 

15, 30, 60, 90, 120 min, blood glucose levels of HFD fed mice were 

significantly higher than that of LFD control. However, glucose level of neither 

LFD nor HFD mice was changed by VC addition. Alda-1 significantly 

decreased blood glucose levels compared to mice without Alda-1. The area 

under the curve (AUC) of OGTT, shown in Figure 4.3C, was not altered by 

either HFD or VC, while activation of ALDH2 with Alda-1 significantly 

decreased AUC, suggesting an increase in glucose tolerance. 

3. Activation of ALDH2 attenuated liver injury caused by HFD and 

VC 

Figure 4.4A shows representative photomicrographs depicting general 

hepatic morphology (H&E). No obvious pathological changes were observed 
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in liver tissue of LFD groups and VC did not enhance this effect. HFD fed 

mice showed obvious steatosis while VC did not visibly change this effect. 

Alda-1 intervention, however decreased hepatic steatosis. Liver pathology 

scores for inflammation and necrosis are shown in Figure 4.4C. While HFD 

significantly increased liver pathology scores compared to LFD, VC did not 

change this effect. ALDH2 activation by Alda-1 decreased hepatic 

inflammation significantly in both HFD groups. The enzymatic activity of 

transaminases AST and ALT were determined in plasma as a marker of liver 

injury (Figure 4.4B). LFD control had normal plasma transaminase activity 

and VC did not significantly alter that. HFD alone significantly increased both 

ALT and AST activity. in the HFD group VC inhalation significantly enhanced 

this effect. Importantly, Alda-1 significantly decreased transaminase activity, 

both in the HFD and in the HFD+VC group.  

4. ALDH2 decreased neutrophil infiltration and oxidative stress in 

livers of VC and HFD 

Figure 4.5A shows representative photomicrographs depicting neutrophil 

accumulation (CAE) and oxidative stress (MDA) in livers of mice exposed to 

VC for 12-week. HFD alone slightly promoted inflammatory cell recruitments 

and the addition of VC enhanced this effect. Alda-1 significantly reduced 

these markers. Neutrophil infiltration was quantitated and expressed as the 

ratio of CAE positive cells to hepatocytes (Figure 4.5B). HFD significantly 

increased the amount of CAE positive cells comparing to LFD group, which 

was furtherly increased by VC. Alda-1 significantly alleviated inflammatory cell 
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accumulation in livers of mice exposed to HFD and VC. MDA is the main 

byproduct of lipid peroxidation and is typically used for evaluating cellular 

oxidative stress. LFD and LFD+VC showed mild positive staining of MDA in 

liver, HFD alone caused a stronger staining compared to the LFD controls 

(Figure 4.6A), but VC did not enhance this effect. However, Alda-1 

suppressed lipid peroxidation in mice exposed to HFD+VC. These data were 

also reflected in a quantitative TBARS (Figure 4.6B).   

CYP2E1, is known as the major enzyme in drug metabolism as well as in 

metabolism of xenobiotics (68). Also, CYP2E1 mediated ROS production is a 

part of cause of alcohol induced liver injury (69). In our study, whether ALDH2 

affects CYP2E1 expression in the interaction of HFD and VC remains 

unknown. As Western blots show (Figure 4.7), HFD and HFD+VC significantly 

increased CYP2E1 protein expression comparing to the respective control 

groups, and these effects were reversed by Alda-1. 

5. ALDH2 reversed metabolic disorders in the interaction of HFD 

and VC. 

Lipid accumulation and glycogen storage are associated with energy 

metabolism in liver, disruption of carbohydrate/lipid homeostasis can 

potentially impact hepatic regeneration and induce hepatotoxicity (70). Liver 

sections were stained for ORO and PAS to evaluate hepatic metabolism. 

Figure 4.8A shows representative photomicrographs depicting lipid and 

glycogen deposition and quantitative analysis of hepatic glycogen and lipid 

levels. LFD and LFD+VC showed normal fat accumulation in ORO stained 
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livers. As expected, more lipid droplets accumulated in HFD fed mice, and 

this was enhanced by VC. Quantitative lipids were measured by TG and 

NEFA analysis were expressed as the ratio of lipid amount to liver weight 

(Figure 4.8B). HFD significantly increased TG, NEFA and cholesterol 

production in liver comparing to LFD group, however VC enhanced this effect 

only on TG levels. Alda-1 intervention reduced both hepatic TG and NEFA 

levels significantly. However, cholesterol levels were further increased by 

ALDH2 activation. Hepatic glycogen content as visualized by PAS staining, 

was normal in the LFD and the LFD+VC group. HFD and HFD+VC decreased 

hepatic glycogen stores, which was restored by Alda-1 administration (Figure 

4.9A). Quantitative analysis of hepatic glycogen level shows a similar trend 

(Figure 4.9B), albeit not significant.  

6. ALDH2 decreased liver damage via participating in autophagy 

regulation 

Autophagy is considered an adaptive process that degrades unwanted, 

excess and/or damaged cytosolic components in response to multiple cellular 

stressors including oxidative stress and pharmacological insults. Ubiquitin-

activating enzyme Atg7 is required for conversion of the soluble form of LC3I 

to autophagic vesicle associated form of LC3II which is associated with the 

autophagosome membrane and also serves as an index of autophagy. 

Sequestosome 1 (p62) interacts with LC3II and is subsequently degraded. 

Impaired autophagy causes p62 accumulation in the cell; thus, decreased 

p62 also reflects autophagic activity (71, 72). Our previous data showed that 
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mitochondrial function was impaired by VC (34). The cell removes damaged 

mitochondria to control mitochondrial quality, this process is mediated by 

mitophagy, a subtype of autophagy. The autophagic recognition of damaged 

mitochondria is mediated by the PINK/PARKIN signalling pathway (73). As 

the Western blot results show (Figure 4.10), HFD and HFD+VC increased 

Atg7 expression significantly compared to their respective control mice. Alda-

1 didn’t affect Atg7 level but caused a significant decrease in p62 protein 

expression. VC increased the ratio of LC3II to LC3I in LFD and HFD mice, 

while Alda-1 had no effect on LC3II expression. ALDH2 activation significantly 

suppressed PINK1/PARKIN level in the HFD and HFD+VC groups.       

7. The effect of ALDH2 in cytotoxicity of primary hepatocytes 

As the data above have shown (Figure 4.1) activation of ALDH2 protects 

the liver from damage caused by the combination of VC inhalation and HFD. 

There are multiple signalling pathways and cell types involved in animal 

models, making an in depth analysis complicated. Therefore, in addition we 

utilized cells for investigating the effect of ALDH2 on cellular function directly. 

Primary hepatocytes isolated from mice fed a HFD for 12-weeks in 

combination with VC inhalation ± Alda-1, were used for measurement of 

cytotoxicity parameters as described in previous section. Furthermore, we 

investigated whether the hepatocytes were more susceptible to damage by 

the ex vivo addition of CAA.  

TMRM dye acts as an indicator of mitochondrial membrane potential. 

which is an essential component in the process of energy generation 



 

58 
 

reflecting oxidative phosphorylation. The cell maintains stable levels of 

mitochondrial membrane potential for normal cellular function, therefore 

changes to this factor may induce loss of cell viability and various pathologies 

(74). TOTO-3 is a nucleic acid dye that can not penetrate intact cells but 

stains permeabilized, damaged cells (75).  Fluo-4 AM is a dye that has been 

widely used as an indicator of intracellular free calcium concentration. Large 

increases of intracellular calcium are thought to trigger apoptosis (76). 

MitoSox is a novel fluoroprobe for selective detection of superoxide 

production in mitochondria of living cell, indicating oxidative stress (77). Via 

HCS analysis of hepatocytes, there was no significant difference of these 

indices of cytotoxicity (TMRM, TOTO-3, Fluo-4, mitoSox) among the groups. 

Ex vivo exposure to CAA significantly decreased TMRM fluorescent intensity 

and increased mitoSox levels.  This effect was not reversible by Alda-1 

(Figure 4.11).   

8. ALDH2 protected mitochondrial function from VC metabolites in 

primary hepatocytes  

Mitochondrial function is indicative of altered mitochondrial respiration. 

Previous work by our lab demonstrated that VC metabolites (CAA) directly 

impaired mitochondrial membrane potential, decreased oxygen consumption 

rate (OCR) which represented mitochondrial reserve bioenergetic capacity 

(30). Our recent work also showed that ALDH2 reversed decreased 

mitochondrial membrane potential caused by 4-HNE exposure (45). We 

hypothesized that CAA causes mitochondrial dysfunction that can be rescued 
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by activation of ALDH2. To explore this hypothesis and the effect of ALDH2 

activation on the impairment of mitochondrial respiration, Seahorse 

bioenergetic analysis for electron transport chain function was performed on 

murine primary hepatocytes. OCR at all time points is shown in Figure 4.12A. 

Delta OCR (Figure 4.12B) was calculated by subtracting the OCR at the first 

measured time point after CAA addition from the OCR baseline. CAA 

treatment significantly increased delta OCR, indicating that OCR was 

inhibited immediately after CAA addition. Importantly, pre-exposure cell to 

Alda-1 significantly attenuated this effect.  
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Scheme 4.1: Chronic animal model of VC and HFD 

Mice were randomly divided into 6 groups and exposed to either VC (1ppm) or 

room air (control) in our inhalation facility as described above. Alda-1 treatment 

started 3 weeks prior to sacrificing. 
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Figure 4.2. ALDH2 expression and enzymatic activity. 

A: ALDH2 expression levels were measured in mouse liver mitochondria via 

Western blot analysis, as well as densitometric analysis of ALDH2. VDAC 

serves as a loading control for mitochondrial protein. B: ALDH2 activity was 

determined as described in Chapter II. Results are reported as means ± 

standard error mean (SEM; n=4-6). a, p<0.05 compared to LFD control, b, 

p<0.05 compared to absence of VC.  
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Figure 4.3. Metabolic phenotype of 12-week mice 

A: Body weights of mice for all groups were monitored once per week over 

the course of the 12-week exposure period B: Food consumption was 

measured twice per week for the 12 weeks exposure period. C: Blood 

glucose level at different time point was measured as describe in Chapter II, 

OCTT area under curve stand for glucose tolerance is performed. Results are 

reported as means ± standard error mean (SEM; n=4-6). a, p<0.05 compared 

to LFD control, c, p<0.05 compared to absence of Alda-1. 
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Figure 4.4. ALDH2 decreased liver injury caused by HFD and VC 

A: Representative photomicrographs of H&E (general morphology, 200x) are 

shown at the 12-week time point. B: Plasma transaminase (ALT/AST) levels 

were determined for all the experimental groups at the 12-week time point. C: 

Pathological score including inflammation and necrosis of all groups was 

evaluated as described in Chapter II. Results are reported as means ± 

standard error mean (SEM; n=4-6). a, p<0.05 compared to LFD control, b, 

p<0.05 compared to absence of VC, c, p<0.05 compared to absence of Alda-

1. 
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Figure 4.5. ALDH2 reduced liver inflammation in HFD and VC 

A: Representative photomicrographs of CAE (neutrophils, purple) of all 

groups are shown at the 200x magnification. B: CAE-positive cells were 

counted and graphed as positive cells per 100 hepatocytes. Results are 

reported as means ± standard error mean (SEM; n=4-6). a, p<0.05 compared 

to LFD control, b, p<0.05 compared to absence of VC, c, p<0.05 compared to 

absence of Alda-1.   
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Figure 4.6. ALDH2 reduced oxidative stress in HFD and VC 

A: Representative photomicrographs of MDA (index of oxidative stress, 

brown) of all groups are shown at the 200x magnification. B: MDA levels in 

liver were measured by TBARS assay as described in the previous section. 

Results are reported as means ± standard error mean (SEM; n=4-6). a, 

p<0.05 compared to LFD control, b, p<0.05 compared to absence of VC, c, 

p<0.05 compared to absence of Alda-1.   
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Figure 4.7. ALDH2 decreased CYP2E1 expression in liver of HFD+VC 

A: Representative Western blot results of CYP2E1 expression are shown for 

12 weeks mice. B: Densitometric analysis of CYP2E1 expression is graphed. 

Results are reported as means ± standard error mean (SEM; n=4-6). a, 

p<0.05 compared to LFD control, b, p<0.05 compared to absence of VC, c, 

p<0.05 compared to absence of Alda-1.   
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Figure 4.8. The effect of ALDH2 in lipids level  

A: Representative photomicrographs of ORO (neutral lipid, red) are shown at 

200x magnification. B: TG, FFA and cholesterol level of all groups were 

measured as described Chapter II. Results are reported as means ± standard 

error mean (SEM; n= 4-6), a, p<0.05 compared to LFD control, b, p<0.05 

compared to absence of VC, c, p<0.05 compared to absence of Alda-1.   
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Figure 4.9. The effect of ALDH2 in hepatic glycogen deposition  

A: Representative photomicrographs of PAS (glycogen, dark purple) staining 

are shown at 200x magnification. B: Hepatic glycogen expression of all 

groups were measured as described in previous section. Results are reported 

as means ± standard error mean (SEM; n= 4-6), a, p<0.05 compared to LFD 

control, b, p<0.05 compared to absence of VC, c, p<0.05 compared to ab-

sence of Alda-1.   
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Figure 4.10. The effect of ALDH2 on autophagy regulation 

A: Representative western blot results for autophagy associated indices 

expression level in liver: Atg7, p62, LC3I/LC3II, PINK1 and PARKIN. B: 

Densitometric analysis for western blot is calculated by the ratio of intensity of 

autophagy related protein to GAPDH. Results are reported as means ± 

standard error mean (SEM; n= 4-6). a, p<0.05 compared to LFD control, b, 

p<0.05 compared to absence of VC, c, p<0.05 compared to absence of Alda-

1.   
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Figure 4.11. The effect of ALDH2 on cytotoxicity in primary hepatocytes 

A: Representative photomicrographs depicting nuclear fluorescence 

(Hoechst; blue), mitochondrial membrane potential (TMRM; red), cell 

membrane permeability (TOTO-3; green) and intracellular calcium flux (Fluo-

4; pink) were determined in primary hepatocytes from 12-week modeled mice 

using Cellomics HCS analysis. B: Fluorescence values analysis of TMRM, 

TOTO-3 and Fluo-4 were performed. C: Representative photomicrographs 

depicting nuclear fluorescence (Hoechst; blue) and mitochondrial superoxide 

(MitoSox; red) were determined. D: Fluorescence values analysis of MitoSox 

for each group are performed. a, p<0.05 compared to absence of VC, b, 

p<0.05 compared to absence of Alda-1, c, p<0.05 compared to absence of 

CAA treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 
 

 

 

Figure 4.12. ALDH2 protects mitochondrial respiration from CAA 

A: OCR at different time point is measured in primary hepatocytes exposed to 

CAA by Seahorse XF96 analyze as described in Chapter II. B: Delta OCR is 

calculated by the subtracting the OCR at the first measured time point after 

CAA addition from basal OCR value. a, p<0.05 compared to absence of CAA, 

b, p<0.05 compared to absence of Alda-1.  
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C. Discussion 

VC is an important hazard that causes many diseases. VC contaminated 

water or air are the major ways to enter the human body and increase the risk 

of multiple health problems, especially liver function. High concentrations of 

VC (>100 ppm) have been demonstrated to cause hepatotoxicity. However, 

the effects of low concentrations (< 1 ppm) of VC in combination with other 

risk factors are understudied. Another independent risk factor that promotes 

liver injury is obesity due to consumption of diets rich in fat. The pandemic of 

obesity is arguably the most prevalent underlying disorder that impact US 

population. Ingestion of large amounts of fat causes health complications 

such as NAFLD, which is closely associated with metabolic syndrome. 

Previous work in our lab also showed that low-dose exposure of VC 

exacerbated NAFLD in the interaction of HFD (34). This conclusion is a 

concern for occupational exposure and residential populations living in close 

proximity to VC-contaminated sites.  VC directly impairs hepatic mitochondrial 

electron transport chain independent of diet (45, 78). In this section, we 

hypothesize that VC will also affect mitochondrial ALDH2, an enzyme that has 

previously shown to be protective.  The aim was to explore the role of ALDH2 

in the combination of low-dose VC and HFD, as well as the impact of ALDH2 

in regulating cellular function using an in vitro model. For the mouse model of 

VC inhalation, we used a concentration below the OSHA standard (<1 ppm, 8 

hour/day) for12 weeks in combination with HFD feeding. We first determined 

ALDH2 function as well as expression levels in this model.  
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1. ALDH2 is impaired by VC and HFD.  

ALDH2 is an important mitochondrial enzyme involved in several cellular 

processes, notably in detoxification of alcohol-derived aldehyde. Ethanol is 

transformed to acetaldehyde which can further be converted to acetate by 

ALDH2. ALDH2 dysfunction causes aldehyde aggregation and increases 

ROS production (38). The active site of ALDH2 contains a thiol group which is 

sensitive to oxidative modification, making ALDH2 prone to oxidative 

inactivation (30). The results summarized here showed that VC enhanced the 

inhibition of ALDH2 activity in the interaction of HFD (Figure 4.2). Decreased 

ALDH2 activity can be result from covalent modifications of the pivotal amino 

acid residues of ALDH2 such as cysteine (79). Cysteine containing thiol 

groups are sensitive to redox modifications.  Furthermore, cysteine residues 

can also be oxidized by endogenic aldehydes such as MDA and 4-HNE (80). 

MDA and 4-HNE are products derived from lipid peroxidation, which can be 

enhanced by ingestion of fatty acids (34); thus, feeding mice with HFD could 

oxidize cysteine residues, leading to ALDH2 inactivation. Indeed, MDA 

staining and quantitative TBARS levels were elevated by HFD feeding (Figure 

4.6), which supports the previous observation of decreased ALDH2 activity. 

Moreover, CAA (VC metabolite) was found to impair ALDH2 function directly 

as shown in the previous chapter. In addition, Moon et al have reported that 

inhibition of ALDH2 activity is mediated by phosphorylation via JNK (79). 

Activated JNK is translocated to the mitochondria and phosphorylates serine 

residues on ALDH2, causing conformational changes and contributing to the 
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inhibition of ALDH2 activity (81). Chloroethanol (CE), as a metabolite of VC, 

has been shown to increase JNK phosphorylation (82). Therefore, the 

enhancing effect of VC on HFD-induced inhibition of ALDH2 activity, might be 

regulated, in part through activating JNK-mediated phosphorylation. However, 

the full mechanism of ALDH2 activity regulation by VC and HFD is still 

unclear.   

One reason for a decrease in enzyme activity can be alterations in protein 

expression (83). We therefore expected a decrease in ALDH2 protein levels 

in mitochondria isolated from mice fed a HFD. However, HFD significantly 

increased ALDH2 expression (Figure 4.2). It has been shown that condensed 

mitochondria with increased cristae membrane caused by HFD, could be due 

to the overexpression of protein including ALDH2 (84). It is suggested that 

this is a compensated upregulation of protein expression in response to 

inhibition of the enzymatic activity caused by increased aldehyde toxicity. It is 

also known that ɛPKC translocation mediated by HFD-induced ROS 

production in mitochondria is a direct activator of ALDH2 expression (78). 

Upregulation of ALDH2 expression contributes to recovery of mitochondrial 

functional, improves metabolism of drugs and xenobiotic in liver (85). As 

shown by Western blot (Figure 4.2), a decreased ALDH2 activity by VC 

inhalation was only seen in HFD mice, however, VC decreased protein 

expression levels independent of diet. These data suggest that VC exposure 

inhibits ALDH2 enzymatic activity rather than affecting protein levels in the 

LFD mice, but enhances ALDH2 impairment in both two aspects during 
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additional risk factor exposure (HFD). Based on these findings, we confirmed 

that VC exacerbates ALDH2 impairment in the HFD mice. Hence, we next 

activated ALDH2 by Alda-1 in the HFD group to investigate the role of ALDH2 

in liver function in the combination of HFD and VC.   

2. ALDH2 reduced liver injury caused by HFD and VC 

Previous work by our lab has shown that low concentrations of VC 

increase the risk of liver damage in the present of HFD (34). Consistently, we 

showed VC promoted hepatic aminotransferase level including AST and ALT 

in the mice with HFD. AST and ALT are the representative and sensitive 

enzymes that can be elevated in response to liver injury in humans and 

animals. Activation of ALDH2 significantly blunted the increase in 

transaminase levels as well as pathological morphology (e.g. inflammation) in 

livers of the HFD mice (Figure 4.4). Indeed, the increased neutrophil 

infiltration in the HFD mice by VC inhalation was reversed by Adla-1 

administration (Figure 4.5), indicating that hepatic inflammation and injury 

was attenuated by ALDH2. Neutrophil recruitment can be induced by 

chemokines such as lipopolysaccharide-induced CXC chemokine (LIX) which 

serves as the mediator of neutrophil recruitment that can be induced by 

oxidative stress (86). Decreased neutrophil accumulation by Alda-1 might 

therefore be due to the inhibition of oxidative stress-induced inflammatory 

chemokines. ALDH2 restores disruption of energy metabolism, reduces 

inflammation, decreases oxidative stress and protects liver function. 

Furthermore, increased hepatic MDA in the mice of HFD+VC was decreased 
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by Alda-1 treatment (Figure 4.6), supporting that ALDH2 reduced liver injury 

is via suppressed lipid mediated oxidative stress. Additionally, CYP2E1 

expression was increased in the HFD groups and this was reversed by Alda-1 

intervention (Figure 4.7). CYP2E1 is known to be a contributor to oxidative 

stress (87), decreased CYP2E1 level by Alda-1 demonstrated that ALDH2 

activation protected liver from oxidative stress.  These data demonstrated that 

ALDH2 is critical in protecting the liver against damage due to environmental 

toxicant exposure and dietary fat. 

HFD and VC are risk factors that have been shown in our previous studies 

to cause disruption of hepatic metabolism (34). Energy metabolism includes 

lipid and carbohydrate homeostasis.  Abnormal fat or glycogen storage in liver 

can cause cell damage. An overload of lipid accumulation is associated with 

cellular oxidative stress caused by aldehyde production, which result from 

lipid peroxidation. Metabolic phenotyping (Figure 4.3) showed that HFD 

increased body weight and blood glycose level of the mice, however VC 

addition did not enhance these effects. ALDH2 activation caused an opposite 

trend in the HFD mice. Consistent with the observations in body weight, HFD 

increased macrovesicular steatosis as depicted in ORO staining and 

quantitative hepatic TG levels, as well as microvesicular lipids (FFA and 

cholesterol) (Figure 4.7). TG levels were enhanced by VC exposure whereas 

FFA and cholesterol were not changed significantly. It suggested that VC has 

a stronger effect on regulating hepatic TG level rather than FFA and 

cholesterol level in the HFD group. We hypothesized that VC addition may 
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increase lipogenetic gene expression involved in TG synthesis such as 

peroxisome proliferated-activated receptor γ (PPARγ) and sterol regulatory 

element-binding protein-1c (SREBP-1c) in the HFD mice (88). All these 

markers were reduced by ALDH2 intervene except cholesterol. TG is thought 

to be the main component of fats, decreased lipids accumulation or steatosis 

by Alda-1 is predominantly attributed to ALDH2 mediated TG downregulation. 

Even though cholesterol was elevated after Alda-1 treatment, we believed the 

total effect of these forms of lipids in the HFD+VC was suppressed by 

ALDH2.  

However, the mechanisms of ALDH2 involvement in lipid regulation 

remains unclear. It has been shown in mice that after Alda-1 treatment the 

most upregulated proteins were related to β-oxidation of fatty acid in 

mitochondria such as enoyl-Coenzyme A hydratase (ECHS1) and acetyl-

Coenzyme A acyltransferase 2 (ACAA2) (81). These proteins assist with fatty 

acid degradation and ameliorate TG and FFA content in the liver. On the 

other hand, ALDH2 activity may also affect hepatic lipogenesis. You et al., 

found that acetaldehyde increased SREBP1 known as a mediator in lipid 

synthesis, inhibition of ALDH2 enhanced SREBP1 expression thereby leading 

to fatty liver (89). These studies may explain how ALDH2 regulates lipids 

storage in liver. Together with mice phenotype, these data affirmed that 

ALDH2 activation attenuated hepatic steatosis caused by HFD and VC.     

Glucose homeostasis is also an important component of energy 

metabolism. HFD has been demonstrated to elevate blood glucose in our 
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study (Figure 4.3C). This was also previously demonstrated by increased 

insulin resistance as measured by ITT performed (34). Insulin resistance not 

only controls blood glucose but also is related to dyslipidemia (e.g. increased 

TG level) (90). Moreover, lipid peroxidation derived aldehydes could induce 

insulin resistance and result in metabolic syndrome (91). Alda-1 treatment 

was shown to decrease blood glucose in the HFD group, indicating a 

reversed effect of ALDH2 on glucose intolerance (Figure 4.3C). The role of 

ALDH2 in ameliorating insulin insensitivity has been demonstrated to act via 

regulating insulin signaling factors such as insulin receptor substrate (IRS) 

(50). We also found that decreased storage of glycogen in liver by HFD can 

be blunted by ALDH2 (Figure 4.9). HFD-induced FFA production inhibited 

glycogen synthesis (92), leading to energy depletion and lipids synthesis 

(causing steatosis) (34). ALDH2 has been reported for its role in regulating 

cellular glycogen synthesis related transcriptional factors including AKT, as 

well as its downstream target GSK3. It is known that inactivation and 

phosphorylation of GSK3 by AKT induction increases glycogen synthesis 

(93). Zhang and colleagues observed that Alda-1 increased activation of 

AKT/GSK3 signalling pathway leads to cardio-protection in an experimental 

diabetes model (94), suggesting that increased ALDH2 activity ablated cell 

damage via participating in AKT/GSK3 pathway and regulating glucose 

homeostasis. In the HFD+VC group, however, there was no significant 

difference in glycogen level after Alda-1 treatment. We hypothesize that VC 

impacts factors involving in the ALDH2 mediated glucose or glycogen 
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regulation. Taken together, these data suggest that ALDH2 plays a role in 

protecting impaired energy metabolism from HFD and VC. 

3. The mechanisms involved in the role of ALDH2 in liver injury of 

HFD and VC 

We demonstrated that ALDH2 played a role in protecting the liver in the 

interaction of HFD and VC. However, the mechanisms of ALDH2 activation in 

hepato-protection remains elusive. We have shown that VC and HFD 

associated liver injury could be via increased inflammation, oxidative stress 

and metabolic homeostasis disruption. During the response to stress, cells 

initiate rapid changes to guarantee survival and to protect themselves against 

harmful conditions. Autophagy is one of the key pathways that mediate 

stress-induced adaption and damage control, allowing cells to eliminate 

damaged components such as organelles, proteins and portions of cytoplasm 

(71). LC3II is associated with the autophagic membrane and acts as an 

indicator of autophagy. However, here Alda-1 did not change LC3II 

expression (Figure 4.10). It is also known that p62 can be degraded by the 

autophagy-lysosome pathway, and an increase in p62 protein levels may 

result from impaired autophagy (60). Here, we found that Alda-1 significantly 

decreased p62 protein expression in the HFD and HFD+VC groups (Figure 

4.10), possibly suggesting increased autophagy to protect from liver injury 

caused by HFD and VC. From our previous work, we know that VC promotes 

mitochondrial dysfunction in mice (34). Cells keep quality control by removing 

damaged mitochondria via mitophagy. This process is mediated by the 
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PINK1/PARKIN pathway. Here, Alda-1 was shown in the HFD+VC mice to 

decrease PINK1 and PARKIN expression, suggesting an inhibition of 

mitophagy (Figure 4.10). Ji et al., have also shown that ALDH2 activation had 

a protective effect on cells via suppressing PINK1/PARKIN mediated 

mitophagy (47). ROS-induced mitochondrial damage is an important 

upstream activator of mitophagy, and the PINK1/PARKIN pathway may be 

activated in response to oxidative stress induced cell damage (47). ALDH2 

activation by Alda-1 reduced oxidative stress caused by HFD and VC, 

suggesting to play a role in mitochondrial protection. It seems paradoxical that 

ALDH2 activation protects mitochondria by inhibition of mitophagy. We 

hypothesize that under severe pathophysiologic conditions, such as oxidative 

stress, excessive mitophagy was triggered and caused mitochondrial fission 

and loss, which was detrimental to mitochondrial quality control (95). 

Activation of ALDH2 attenuated oxidative stress and suppressed 

PINK1/PARKIN-mediated mitophagy, resulting reduced mitochondrial injury. 

Thus, we proposed that ALDH2 has a dual regulatory role in autophagy to 

protect liver from HFD and VC. 

Further, we studied ALDH2 function at the cellular level for cytotoxicity 

related indices, including mitochondrial membrane potential (TMRM), cell 

membrane permeability (TOTO-3), intracellular calcium ion (Fluo-4) and 

mitochondrial superoxide (mitoSox). As shown in the data above, ALDH2 

ameliorated liver injury by reversing disruption of energy metabolism and 

oxidative stress, both of which are linked to mitochondria. Mitochondrial 
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membrane potential is a representative marker of mitochondrial function, 

serving as an intermediate involving in ATP synthase (74). Oxidative stress is 

an inducer of mitochondrial depolarization or Mitochondrial membrane 

potential loss, leading to mitochondrial dysfunction and deleterious effects 

(96). ALDH2 activation was shown to inhibit oxidative stress caused by HFD. 

However, there was no significant difference of TMRM fluorescent intensity 

found in Alda-1 groups compared to their controls (Figure 4.11). Intracellular 

calcium is known as one of the key events that causes mitochondrial injury 

via ROS generation, such as superoxide (97, 98). These markers were 

unchanged by ALDH2 activation as depicted by the cellomics assay.  This 

suggests that the protective role of ALDH2 in hepatocytes of chronic HFD and 

VC model is not mainly controlled by regulation of calcium or superoxide 

related mitochondrial membrane potential. We additionally determined that 

Alda-1 treatment didn’t alter TOTO-3 fluorescent intensity, which implied an 

unchanged cell membrane permeability during chronic HFD feeding. 

Previously, we have shown that ALDH2 increased mitochondrial membrane 

potential and decreased membrane permeability in the acute 4-HNE 

exposure (45). This paradoxical role of ALDH2 in these cytotoxicity indices, 

might be due to a cellular adaption in response to prolonged conditions of 

stress. When the cells are suffering from long-term harmful factors, 

mitochondrial membrane potential and cellular membrane permeability may 

be more compromised to the cellular stress and therefore not sensitive to 

ALDH2 mediated regulation.  
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Via Seahorse analysis, OCR was measured in primary mouse 

hepatocytes immediately after adding CAA. CAA decreased OCR and this 

effect was blunted by Alda-1 pre-incubation. However, this effect only 

occurred at the very beginning and disappeared as time progressed (Figure 

4.12). We propose that ALDH2 activation protects mitochondrial respiration 

from short-term damage. CAA is a strong mitochondrial toxicant and the 

extent of the damage caused by CAA exceeds the protective properties of 

ALDH2 activation. ALDH2 catalyzes the conversion of CAA in the presence of 

NAD+ and forming NADH. In our Seahorse experiment, we did not supply 

extra NAD+, while NAD+ was consumed as time progressed. Thus, it might be 

possible that the effect of ALDH2 in degrading CAA was decreased due to 

insufficient coenzyme. Additionally, it is proposed that Alda-1 has an inhibitory 

effect on ALDH2 when aldehyde levels are at a low concentration. Binding of 

Alda-1 to ALDH2 induces a change in the sequence of binding of substrate to 

enzyme. Alda-1 promotes a decrease of the pKa of the catalytic cysteine, 

which may facilitate the nucleophilic attack to the aldehyde prior to NAD+. 

Alternatively, NAD+ could bind to ALDH2 as the first substrate and form the 

non-productive complex (Alda-1-ALDH2-NAD+). When aldehyde levels are 

low, the non-productive complex is predominantly formed and this complex 

can decrease catalytic reaction rate (99). In our study, CAA concentration 

was high at beginning, binding of Alda-1 to ALDH2 accelerated CAA 

catalysis. As the reaction continued, substrate of CAA was lower, the 

substrate binding sequence might be changed and resulted in the formation 
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of the non-productive complex, which inhibited ALDH2 function, leading to a 

decreased mitochondrial protection. These data might also explain the 

discrepant role of ALDH2 in mitochondrial dysfunction caused by different 

time point-depended deleterious factors exposure.  

Mitochondrial membrane potential is known to not only play a role in 

energy supply but also participate in the process of elimination of damaged 

mitochondria (74). It has been demonstrated that mitophagy mediated by 

PINK1/PARKIN signal is triggered by depolarization of the Mitochondrial 

membrane potential (100). Interestingly, the mitochondrial membrane 

potential in ALDH2 was not consistent with PINK1/PARKIN expression. 

However, mitochondrial membrane potential is not the only factor in 

regulation of PINK1/PARKIN-mediated mitophagy. There are other signalling 

factors participating in this process. It has been found that Nrf2 is a novel 

transcriptional upregulator of Pink1 genes via the activation of an antioxidant 

responsive elements (ARE) sequence in the promotor of PINK1. Nrf2 is 

normally in the cytosol and degraded by KEAP1. While under oxidative stress 

conditions, oxidants and electrophiles oxidize cysteine residues in KEAP1 

and increase Nrf2 release, leading to PINK1 increase (101). Additionally, 

ATF4, known as the marker of ER stress involved in liver damage (102), is 

demonstrated to upregulate PARKIN by binding to a specific CREB/ATF site 

within PARKIN promoter (103). As discussed before, augmented mitophagy 

under severe condition could be deleterious to mitochondria. We hypothesize 

that excessive PINK1/PARKIN-mediated mitophagy might be triggered by 
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increased oxidative and ER stress. ALDH2 decreased oxidative stress may 

attenuated Nrf2 mediated PINK1 promotion. It has been shown that ATF4 

upregulation is associated with ALDH2 impairment (104). We suggest that 

ALDH2 inhibited PINK1/PARKIN signal pathway might be due to the 

suppressed oxidative and ER stress. These data also suggest complex and 

mixed mechanisms of ALDH2 in protecting mitochondria. In the early state of 

liver injury, ALDH2 activation may have increased PINK1/PARKIN signalling 

via preserving mitochondrial membrane potential (45, 105) and plays a role in 

mitochondrial protection, partly to attenuate cell damage. As the time went on 

or under more severe conditions, more excessive mitophagy may have 

occurred and impaired mitochondrial homeostasis. The severe degree of 

mitochondrial membrane potential depolarization might not be rescued by 

ALDH2 regulation, thus, ALDH2 may shunt to regulate other factors (e.g. 

Nrf2, ATF4) and suppress PINK1/PARKIN-mediated mitophagy, protecting 

mitochondrial function.   

    

D. Conclusion 

In this aim, we employed a model of chronic low-dose VC exposure in 

mice fed with a HFD and studied the role of ALDH2 in this combination as 

well as the related mechanisms in vivo and in vitro. Both ALDH2 enzymatic 

activity and expression level were impaired in the interaction of HFD and VC. 

This impairment contributes to liver injury via increased aldehyde levels and 

related oxidative stress. Activation of ALDH2 accelerated aldehyde clearance 
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and provided a protective effect. Additionally, ALDH2 plays a role in reversing 

metabolic disorder including lipids/carbohydrates and inhibiting inflammation 

caused by HFD and VC. This protection by ALDH2 activation can be 

mediated by some signalling factors. ALDH2 decreased p62 expression, 

indicating increased autophagy resulting in the removal of damaged proteins 

or components in hepatocytes. Further, ALDH2 was demonstrated to inhibit 

PINK1/PARKIN-induced mitophagy, to decrease excessive mitophagy and to 

act a regulator of mitochondrial quality control. Impairment of the 

mitochondrial respiratory chain by CAA was reflected in a decrease in OCR of 

hepatocytes. This effect was attenuated by ALDH2 activation, suggesting that 

ALDH2 activation protects mitochondrial respiration from the toxic effects of 

CAA. Overall in this aim, we demonstrated that ALDH2 alleviated liver 

damage in the interaction of chronic VC exposure and HFD, via decreasing 

oxidative stress and inflammation, reversing metabolic dysfunction, regulating 

autophagy and protecting mitochondrial function (Scheme 4.2). 
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Scheme 4.2: regulation of ALDH2 in liver injury caused by HFD and VC 

ALDH2 dysfunction is involved in the liver injury caused by HFD and VC, 

which is due to an increased aldehydes attack. Activation of ALDH2 plays a 

role in protecting liver function against HFD and VC by decreasing oxidative 

stress, inflammation, protecting mitochondrial function and regulating 

autophagy.   
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CHAPTER V 

 

SUMMARY AND CONCLUSION 

 

 

A. Aims in this study  

VC and obesity are the independent risk factors that are known to induce liver 

injury. Our group has previously observed that low-dose of VC exposure 

exacerbated liver damage in HFD-fed mice and started to gain insight into the 

associated mechanisms (34). ALDH2 is known to play a protective role in the 

many diseases. However, whether it ameliorates liver injury caused by HFD and 

VC has not been studied. The overall goals in this dissertation were to 

investigate the role of ALDH2 in the interaction of VC and HFD. For that goal, we 

set two aims. The first aim was to determine the effect of ALDH2 in an acute 

setting of VC metabolite exposure. Part of that aim was also to study the catalytic 

activity of ALDH2 protein under exposure to CAA, as described in Chapter III. 

The second aim described in Chapter IV was to characterize the role of ALDH2 

in liver injury caused by chronic low-dose VC exposure and HFD. Taken 

together, these studies provide the evidences that ALDH2 plays a role in 

protecting liver function by regulating complex mechanisms of liver injury. 
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B. Major findings in this dissertation 

1. Protection of ALDH2 enzymatic activity reduced liver injury 

against acute CE exposure 

Since CE is a major metabolite of VC, the role of ALDH2 on liver function 

after CE exposure serves as an indicator to evaluate its impact in mice 

exposed to a moderately high, acute dose of VC.  Mice therefore received CE 

at concentrations equal to high-level VC inhalation that caused liver damage.  

In Chapter III, we first determined the effect of ALDH2 in the disease 

phenotype. CE was shown to disrupt hepatic carbohydrate and lipid 

metabolism as presented by histologic staining and quantitative 

measurements. ALDH2 activation reversed lipid (e.g. TG) accumulation in the 

CE group while it did not increase glycogen stores. When looking at the 

expression of metabolism related genes, ALDH2 increased cpt1 expression 

supporting a promotion of FFA β-oxidation in the mitochondria.  These data 

may explain the fact that ALDH2 decreased lipid storage. Previous work in 

our lab showed that CE increased 4-HNE adduct formation after LPS 

administration (30).  It has also been shown previously that 4-HNE adduct 

formation can be inhibited by ALDH2 (45). Therefore, oxidative stress was 

also assessed in this aim. As expected, ALDH2 decreased 4-HNE adduct 

formation induced by CE, indicating that lipid peroxide levels were attenuated 

by ALDH2 activation. Overall, we demonstrated that ALDH2 prevented liver 

injury caused by CE exposure via reducing hepatic steatosis and oxidative 

stress. 
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The second aim in Chapter III was to explore a direct reaction between 

ALDH2 and CAA. ALDH2 catalyzes aldehydes into nontoxic acids with NAD+ 

as a cofactor. We showed that ALDH2 degraded CAA, which was initiated 

immediately by addition of NAD+. ALDH2 pre-incubation with CAA showed 

lower catalytic activity after adding NAD+. This result suggests that CAA is not 

only the substrate but also an inhibitor of ALDH2. Activation of ALDH2 prior to 

CAA exposure rescued the inhibition of the enzymatic activity caused by 

CAA. These data demonstrated that ALDH2 activation by Alda-1 pre-

treatment prevented enzyme function from CAA. The preserved ALDH2 

catalytic activity accelerated elimination of toxic aldehydes such as 4-HNE 

and CAA, removed aldehyde-related oxidative stress, and therefore 

protecting the liver from the detrimental effects of VC metabolite exposure.  

2. ALDH2 dysfunction is involved in the liver injury caused by HFD 

and VC 

As described in Chapter III, we found that ALDH2 activity was impaired by 

CAA. It is reasonable to speculate that ALDH2 function will also be inhibited 

by VC inhalation in HFD-fed mice. First, in Chapter IV, we measured ALDH2 

expression as well as enzymatic activity in chronic low-level VC exposure in 

combination with HFD. HFD decreased ALDH2 activity but increased protein 

expression, likely as a compensatory reaction.  VC however, decreased both. 

These data supported our hypothesis that ALDH2 dysfunction is critically 

involved in the interaction of VC and HFD. In the in vitro experiment as 

described in Chapter III, we demonstrated ALDH2 activity played a protective 
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role in the liver during exposure to VC metabolites. That provided a strong 

rationale to assume that ALDH2 activation attenuated liver injury caused by 

HFD and VC.   

3. ALDH2 activation reduced liver injury of VC and HFD through 

protecting mitochondrial function  

Previously we have found that VC exacerbated liver damage in the HFD 

mice involving multiple mechanisms including metabolic dysfunction, 

oxidative stress, and to a lesser extent, inflammation (34). Thus, these 

hallmarks were measured as described in Chapter IV for evaluating the role 

of ALDH2 in the combination of VC and HFD. Indices of liver injury, 

transaminases activity (AST, ALT) were decreased by ALDH2 activation in 

the VC and HFD group. The effect of VC inhalation and dietary fat on the 

hepatic general morphology was also improved by ALDH2 activity, particularly 

neutrophil infiltration was decreased. Increased lipid accumulation (e.g. TG, 

FFA) mediated by HFD and VC was alleviated by ALDH2, while the reversed 

effect of ALDH2 on depleted glycogen was only observed in HFD group. 

Oxidative stress-mediated liver damage has been studied previously, as 

aldehydes derived from lipid peroxidation are known substrates of ALDH2 

(58). Steatosis caused by HFD+VC was associated with elevated toxic 

aldehyde production such as MDA. ALDH2 catalyzed MDA degradation and 

ameliorated oxidative stress in liver of HFD and VC. Furthermore, we 

measured the expression of CYP2E1 in response to ALDH2 activation. 

CYP2E1 is not only known as the critical enzyme for drug metabolism but 
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also serves as an inducer of ROS. ALDH2 decreased CYP2E1 levels and 

partly ameliorated oxidative stress.  

Cells often evoke an adaptive process in response to such stress-

mediated injury. Autophagy is one of the key pathways allowing cells to 

eliminate damaged components for quality control, homeostasis of 

organelles, proteins and portions of cytoplasm. Atg7, LC3 and p62 are the 

factors typically regulating autophagy (71, 72). ALDH2 did not alter Atg7 and 

LC3 expression in the HFD and VC but decreased p62 expression, which 

suggested an increase in autophagy by ALDH2. Selective autophagy termed 

mitophagy is initiated by PINK1/PARKIN signal pathway and these markers in 

the HFD and VC were suppressed by ALDH2. Previous work in our group has 

demonstrated mitochondrial dysfunction was induced by aldehydes such as 

4-HNE in the in vitro experiments (45). We hypothesized that ALDH2 

decreases mitophagy due to its function in reducing oxidative stress in 

mitochondria. Moreover, decreased OCRs in hepatocytes after CAA addition 

was blunted by pre-treatment of Alda-1, indicating that impaired mitochondrial 

respiration was prevented by ALDH2 activation.  However, we found that this 

protection did not persist. Moreover, ALDH2 showed no effect on cytotoxicity 

indices (e.g. mitochondrial membrane potential) in the HFD fed mice. It is 

possible for ALDH2 to play a role in protecting liver via different patterns 

according to different time point exposure of risk factors.  
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Summarized table 1: The effect of ALDH2 in indices change in VC    

metabolites exposure  

 

 

 

Summarized table 2: The effect of ALDH2 in indices change VC and   

HFD exposure  
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C. Significance 

In the United States, NAFLD is becoming the most common cause of liver 

disease that leads to a non-negligible health problem. Obesity and 

environmental toxicants are two independent risk factors causing liver injury. 

VC, as the representative toxicant has been demonstrated to exacerbate liver 

damage at a low-dose level in the presence of a HFD (34). This model 

allowed us a better understanding of the underlying mechanisms in the 

interaction of VC and obesity, which provided the rationale for determining a 

target to protect the liver from injury. ALDH2 is a mitochondrial enzyme 

known for its role in ethanol metabolism and its participation in protecting 

organs from not only alcohol but also other stress (78). The effect of ALDH2 

in the interaction of VC and HFD induced liver injury remains elusive. In this 

project we found that ALDH2 impairment is, at least in part, involved in the 

deleterious effects of VC and HFD. Indeed, ALDH2 activation by Alda-1 

protected the liver from the detrimental effects of not only acute VC 

metabolite exposure but also of chronic exposure to HFD and VC.  

Our model of low-dose VC inhalation and HFD feeding mimics the 

situation of subjects living/working near manufacturing and/or superfund sites 

who are also likely to ingest a Western style diet, rich in fat and 

carbohydrates. Based on our findings, we raised several concerns for this 

kind of population: 1) subjects with ALDH2 dysfunction or deficiency 

(ALDH2*2 allele) might be more susceptible to liver damage caused by VC 

exposure and dietary fat. Therefore, we suggest that screening for these 
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ALDH2 activity defects might be beneficial for these subjects. 2) For those 

subjects who have ALDH2 impairment, ALDH2 activation by Alda-1 will serve 

as a potential therapeutic target. These proposed concerns are based on the 

experimental animal data. The effect of ALDH2 in humans needs further 

investigation.  

 

D. Strength 

Liver disease caused by high-level VC exposure has been studied 

extensively, however, the effect of low-level VC exposure on liver function is 

largely understudied. Our group focuses on the impact of chronic 

administration of sub-OSHA concentrations of VC exposure (<1 ppm) on liver. 

Indeed, in our previous work, we observed the importance of VC exposure on 

hepatic metabolism, oxidative stress activation, and mitochondrial 

dysfunction. This effect was exacerbated when combined with a HFD. These 

findings suggested that even low-dose VC exposure may not be safe for 

people in combination with other factors, such as diets rich in fat. Moreover, 

there are no potential targets for therapy known to halt or reverse the disease. 

Therefore, seeking such a target was a major focus of this study.  

In this work, we focused on the effect of ALDH2 in liver injury. Although 

ALDH2 has been shown to reduce liver injury caused by alcohol, the role of 

ALDH2 in our animal model remains unclear. We employed an animal model 

to closely mimic human exposure of VC and co-exposure of HFD. The major 

goal was to investigate whether activation of ALDH2 by Alda-1 changed the 
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disease phenotype. ALDH2 activation was found to improve the dysregulated 

energy metabolism and to decrease oxidative stress in this model. We also 

used the state-of-the-art techniques such as Cellomics Assay Scan VTI HCS 

reader and XF96 Extracellular Flux Analyzer to gain insight into the role of 

ALDH2 in mitochondrial function. Indeed, ALDH2 activation protected 

mitochondrial respiration from the toxic effects of CAA. 

This dissertation revealed that ALDH2 plays a role in the mechanisms 

involved in liver injury caused by VC and HFD, and that its activation may 

protect the liver in this model. Other related organochlorine contaminants 

such as TCE and PCE, that have also been demonstrated to cause liver 

injury, could also be following a similar pathway (e.g. oxidative stress) (70). 

This work provides rational evidence that ALDH2 is a potential target in 

preventing liver injury from chlorinated solvent mixtures. 

 
 

E. Weakness 

In this dissertation, the role of ALDH2 in liver protection against VC and 

HFD was shown in an animal model. Animal models may not completely 

mimic human liver disease progression. Therefore, the effect of ALDH2 in 

regulating liver function may not be applicable to a human population. 

Moreover, multiple factors participate in the liver damage, it is therefore 

difficult to identify an exact pathway. We here showed the role of ALDH2 in 

altering disease phenotype in mice, however, we did not perform a direct 

regulation of ALDH2 at molecular level in liver protection in the animal model. 
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Additionally, only male mice were used in this study. It is important to note the 

effects observed may vary with sex. Indeed, recent data by Wahlang et al., 

(unpublished observation) showed that female mice are less susceptible to 

liver injury caused by VC and HFD. 

 
F. Future direction 

1. Investigate how CAA modulates ALDH2 activity 

ALDH2 contains a catalytic domain and a NAD+ binding domain. Cys302 

is known as the main aldehyde binding site in the catalytic domain of ALDH2 

for aldehydes clearance (38). It has been also proposed that Cys302 is the 

target for ALDH2 inactivation by 4-HNE. Additionally, it has been observed 

that the Lys residue in the NAD+ binding site of ALDH2 is susceptible to be 

targeted by toxic aldehydes such as acrolein (58). In our work, we have 

shown that chronic VC exposure decreased ALDH2 activity in an animal 

model, and that CAA pre-incubation binds to the active site and therefore 

inhibiting NADH formation. These findings suggested that VC or its 

metabolites react with residues within the ALDH2 enzyme and therefore 

decrease its catalytic activity. However, how these active sites were regulated 

remains subject to further studies. Although ALDH2 shows a high affinity of 

toxic aldehydes, this enzyme also was sensitive to inactivation reversibly or 

irreversibly by these toxicants. It would be beneficial to have a more in-depth–

understanding of the interaction between enzyme and aldehydes.    

2. Investigate whether Alda-1 protects liver injury from VC and HFD 

in defect ALDH2 mice  
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The most prevalent ALDH2 variant is ALDH2 2*2 allele, which is found in 

the 35-45% Asian population (38). The ALDH2 2*2 has a lower catalytic 

activity than the wild-type allele. For those subjects with an ALDH2 mutation, 

it would be beneficial to know whether Alda-1 still protects liver function. 

ALDH2 2*2 knock-in mice may serve as an ideal experimental model for the 

research of human diseases associated with ALDH2 deficiency. In our study, 

we demonstrated that activation of ALDH2 by Alda-1 reduced liver injury 

caused by VC and HFD in the wild-type mice. Moreover, Alda-1 is shown to 

activate both human and mouse ALDH2 2*2 enzyme with a similar potency 

profile and activation kinetics (38). It is likely that Alda-1 treatment also 

protects ALDH2 deficient livers against environmental toxicants and dietary 

fat.  

3. Investigate whether ALDH2 activation prevents liver against 

chronic VC and HFD 

In Chapter IV, we demonstrated that ALDH2 intervention reduced liver 

injury caused by chronic exposure of VC and HFD. In mice exposed to long-

term noxious compounds, ALDH2 impairment may occur in an early stage of 

liver damage (ALDH2 dysfunction was measured at the 6 week time-point of 

the animal model; data not shown). Aldehydes including 4-HNE, MDA and 

CAA caused ALDH2 inactivation may not be completely reversed by Alda-1 

treatment. As the toxicant exposure continues, the effect of Alda-1 on ALDH2 

activation may not be strong enough to maintain the protective effect in liver 

damage. In Chapter III, we observed that pre-treatment of Alda-1 protected 
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livers from acute CE exposure. It is promising that pre-treatment of Alda-1 

prevent liver damage from chronic VC and HFD. 

 

G. Summary and conclusion 

Taken together, this dissertation described ALDH2, an enzyme as a 

potential therapeutic target in the novel interaction between of chronic VC 

exposure and dietary fat. The experiments described in Chapter III revealed 

that ALDH2 played a role in the preventing liver injury caused by acute CE 

exposure. This effect was due to the decreased oxidative stress and reversed 

metabolic dysfunction. Inhibition of ALDH2 activity by CAA was prevented by 

Alda-1 pre-incubation. These findings showed that ALDH2 function in this 

phenotype might be mediated via a preservation of enzymatic activity by 

Alda-1. Chapter IV demonstrated that ALDH2 dysfunction was a part of the 

mechanisms mediating liver damage in the interaction of chronic VC 

exposure and HFD. Indeed, activation of ALDH2 reduced indices of liver 

injury in this combination. Additionally, metabolic stress, oxidative damage 

and impaired autophagy were observed to be affected by ALDH2. This could 

result from an intact mitochondrial function. Activation of ALDH2 by Alda-1 

increased toxic substrate elimination, which attenuated oxidative stress and 

protected mitochondrial respiration. Therefore, energy metabolism and 

autophagy (mitophagy) were also improved. Overall, this project 

demonstrated the role of ALDH2 in liver protection using an experimental 
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animal model. In our future studies, we will further explore the mechanisms in 

this model.     
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