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ABSTRACT 
 

EXPLORING THE ROLES OF HOST AND TUMOR CELL α4 AND α7 
NICOTINIC ACETYLCHOLINE RECEPTORS IN LUNG CANCER  

 
John Caleb Greenwell 

 
1/30/2015  

 
 

 Lung cancer is the leading cause of cancer death in men and women 

worldwide. Tobacco exposure represents the major risk factor.  Nicotine, an 

addictive plant alkaloid found in tobacco, has been demonstrated to stimulate 

lung carcinoma cells directly via nicotinic acetylcholine receptors (nAChRs) that 

trigger downstream signals capable of promoting lung cancer growth and 

progression.  Attention has been given to α7 nAChRs, while less is known 

about α4 nAChRs.  However, most studies evaluating these receptors relied on 

chemical inhibitors notorious for their off-target effects.  Consequently, the true 

role of α4 and α7 nAChRs in lung cancer remains unclear.  To address this, we 

performed in vitro and in vivo studies using Lewis Lung Carcinoma (LLC) cells 

silenced with shRNA for α4 or α7 nAChRs.  As expected, nicotine stimulated the 

proliferation of LLC cells in vitro.  However, tumor cells treated with specific 

inhibitors of α4 or α7 nAChRs independently, did not inhibit nicotine-induced 

proliferation; inhibition of proliferation required that receptors be targeted 

concomitantly with a broad-spectrum inhibitor. Similar observations were made
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when the receptors were silenced separately with shRNA; however cells showed 

increased proliferation at baseline when silenced for nAChRs.  In LLC cells 

silenced for α4 nAChRs we observed fewer colonies on soft agar, decreased 

migration, and decreased apoptosis in response to cisplatin, when compared to 

untransfected cancer cells and cells transfected with control shRNA. Cells 

silenced for α7 nAChRs did not differ from untransfected cancer cells or cells 

transfected with control shRNA, with respect to colony formation, migration, and 

apoptosis. In a lung cancer xenograft model, silencing of α4 and α7 nAChRs in 

cancer cells resulted in no significant differences in tumor size, and did not alter 

overall survival.  While exploring the role of host cell receptors, no differences 

were observed in tumor number or size in a spontaneous tumor formation model 

in animals carrying KRAS and α7 nAChR mutations. In contrast, larger tumors 

were observed in α7 nAChR knockout mice injected with wildtype LLCs. These 

studies suggest differential roles for α4 and α7 nAChRs in murine lung 

carcinoma cells, with α4 nAChRs having a predominant role in vitro. However, 

studies performed in animals suggest that targeting these receptors 

independently in tumor cells may not affect tumor progression in vivo, while 

targeting host receptors may. 
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INTRODUCTION 

 

Lung cancer is the leading cause of cancer death in men and women in 

the United States1. In 2015 alone, lung cancer is estimated to take the lives of 

over 158,000 individuals, which represents 27% of all cancer deaths2. Lung 

cancer has a dismal 17% five-year survival rate that has not changed 

substantially over the past 35 years, despite the development of new surgical 

procedures, and the use of new radio- and chemotherapeutic protocols3. This 

underscores a desperate need for new strategies in prevention, early detection, 

and treatment of this deadly disease. Tobacco use represents the major risk 

factor and is responsible for 71% of global lung cancer deaths4.  Tobacco smoke 

is extremely complex, consisting of thousands of compounds, and over 60 

carcinogens5. Several carcinogens, in particular, thought to be responsible for 

lung cancer development and progression include the polycyclic aromatic 

hydrocarbons and the nicotine-derived nitrosamines, N'-nitrosonornicotine (NNN) 

and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), among others. The 

metabolites of these compounds cause mutations in vital genes such as Rb, p53, 

and KRAS6. However, it was recently shown that expression of oncogenic KRAS 

and knockdown of the tumor suppressor protein p53 were insufficient to confer a 

full malignant phenotype in bronchial epithelial cells, suggesting that the role 

these genes and their products play in lung cancer development may have been 
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overemphasized7. This, along with emerging data suggesting an important role of 

the microenvironment in the etiology of many cancers, leads us to believe that 

other factors are involved.  

We have focused our attention on nicotine, a major plant alkaloid in 

tobacco. Historically, nicotine was thought to only mediate smoking dependence 

and addiction by working through reward centers in the brain to cause a release 

of dopamine and a general sense of euphoria8.  More recent data, however, 

reveal that, even though nicotine may be unable to initiate oncogenic 

transformation, it promotes cancer cell proliferation in vitro and may stimulate 

tumor progression9–11. Nicotine mediates its effects through nicotinic 

acetylcholine receptors (nAChRs) by mimicking acetylcholine, the endogenous 

ligand for these receptors12. NAChRs comprise a family of multimeric cation 

channel proteins that act as central regulators of a vital network of excitatory and 

inhibitory neurotransmitters that governs the function of all organs and cells in the 

mammalian organism. They are located in the plasma membrane and can exist 

as homo- or heteropentamers. Previously thought to exist only in the nervous 

system and neuromuscular junctions, they are now recognized as being 

universally expressed in mammalian cells, and in many cancers13. Upon ligand 

binding in the alpha subunit, the receptors undergo conformational changes that 

open the channel, allowing cations to rush down their concentration gradient, 

resulting in depolarization of the plasma membrane and activation of intracellular 

signal transduction pathways14.   
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The link between nAChRs and lung cancer was recently strengthened by 

studies identifying a common variant in the nAChR gene cluster on chromosome 

15q25 with a predisposition to lung cancer15. This locus was found to account for 

14% (attributable risk) of lung cancer cases.  In tumor cells, activation of nAChR 

signaling stimulates cell proliferation, tumor progression, and metastasis through 

induction of the synthesis and release of growth, angiogenic, apoptotic, and 

metastatic factors11.  However, both tumor cells and host cells of the tumor 

microenvironment express several of these receptors and the true contribution of 

distinct nAChRs in lung cancer remains unclear.  Furthermore, studies evaluating 

these receptors have relied on chemical inhibitors, which are notorious for their 

off-target effects.  Thus, the true role of distinct nAChRs in lung cancer remains 

incompletely understood. 

Here, we evaluate the relative contribution of α7 and α4 nAChRs in lung 

cancer using Lewis Lung Carcinoma cells silenced for these receptors using 

shRNA technology.  Our data suggest that although these receptors play distinct 

roles in several biological processes in tumor cells tested in vitro, with a 

predominant role for α4 nAChRs, targeting them individually did not lead to 

significant beneficial effects for the host in a rodent xenograft model.  However, 

in experiments performed in genetically engineered animals to test the role of 

host cell α7 nAChRs, we observed larger tumor growth compared to wildtype 

animals.  These studies underscore the need to carefully define the relative 

contributions of these receptors, in both host and tumor cells, prior to the 

development of interventions for treatment in humans. 
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MATERIALS AND METHODS 

 

Reagents and Cell Culture  

Lewis Lung Carcinoma (LLC) cells were purchased from ATCC (CRL-1642; 

ATCC, Rockville, MD) and grown in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals, 

Lawrenceburg, GA), 50 IU/ml penicillin/ streptomycin, and 1 mg amphotericin 

(Corning Cellgro) at 37 ºC in a humidified 5% CO2 incubator. The mouse nAChR 

α4 or α7 subunit or control nontarget shRNA plasmid DNA constructs were 

purchased from Sigma (St. Louis, MO). Polyclonal antibodies specific for α4 

nAChR (SAB2100424) and α7 nAChR (AV13018) were purchased from Sigma 

Aldrich (St. Louis, MO). Chemical antagonists were purchased from Tocris 

Bioscience (Ellisville, MO). The Cell Titer-Glo® Luminescent Cell Viability Assay 

and Caspase-Glo® 3/7 Assay were obtained from Promega (Madison, WI). Cell 

transformation detection assay (colony formation) kit was obtained from Millipore 

(Temecula, CA).  

 

Silencing of α4 and α7 nAChRs with shRNA 

LLC cells (2.3x107 cells/mL) were permanently transfected with 160 µg of 

control, α4 or α7 shRNA plasmid DNA as previously described16. Briefly, cells 

were harvested by trypsinization, washed, and resuspended in buffer containing 
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20 mM Hepes, 137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, and 6 mM dextrose 

at pH 7.05. Afterwards, the cells were added to a 0.4-cm-gap cuvette containing 

the shRNA plasmid DNA, and transfected with a Gene Pulser II electroporation 

apparatus set at 390v and 500 mF (Bio-Rad, Hercules, CA). Cells were then 

plated onto 75-mm2 tissue culture flasks.  ShRNA-expressing cells were selected 

by the addition of 5 µg/ml puromycin antibiotic for a minimum of 2 weeks. To 

obtain individual clones, cells were serially diluted into 96-well tissue culture 

plates. Single colonies were then tested for nAChR levels by Western Blot 

analysis.  

 

Western Blot 

Western blot analysis was performed on wildtype (WT) LLC cells and cells 

transfected with control shRNA or shRNAs to α4 and α7 nAChRs as previously 

described17.  Protein (40-50 µg) was heated at 90 ºC for 5 minutes and briefly 

centrifuged.  Proteins were transferred onto nitrocellulose membranes using a 

BioRad Trans-Blot® SD Semi-Dry Transfer Cell machine for 2 hours at 25V. 

Blots were incubated overnight in 15mL conicals in 5mL 5% non-fat dry milk in 

TBST at 4ºC with anti-α4 and/or anti-α7 nAChR (1:500) antibody, washed 3 times 

for 10 minutes in TBST, and incubated with a secondary anti-rabbit IgG HRP 

(1:20,000) for 1 hour at RT. Blots were again washed (3 x 10 minutes), 

transferred to Amersham ECL Western Blotting Detection Reagents (GE 

Healthcare, Little Chalfont, UK) for 1 minute and exposed to Genemate Blue 
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Basic Autorad film (Bioexpress, Kaysville, UT) for up to 1 hour. Protein 

densitometry was completed using GS-800 Calibrated Densitometer (Bio-rad).  

 

Proliferation Assay  

WT LLC cells and cells transfected with control shRNA or shRNAs 

targeting α4 or α7 nAChRs (500 cells/well) were plated in white-walled, clear-

bottom 96-well plates and cultured with or without nicotine for 5 days in media 

containing DMEM with 2% FBS and 25mM HEPES buffer. Media was replaced 

every 2 days. Cell proliferation was evaluated using the Promega CellTiter-Glo® 

Luminescent Cell Viability Assay (Madison, WI), in a Luminoskan Ascent 

Luminometer (Beckman Coulter), according to the manufacturer’s instructions. 

The CellTiter-Glo® Luminescent Cell Viability Assay is determines the number of 

viable cells in culture based on the quantitation of the ATP present, which signals 

the presence of metabolically active cells.  

 

Migration Assay  

Cells were grown to ~70% confluence in six-well plates in culture media 

containing DMEM with 10% FBS. A sterile 1000-µl pipette tip was used to create 

a scratch in 3 separate locations within each well. Media was aspirated and 

pictures taken at 0 hours to measure the width of the unveiled area.  Afterwards, 

the media (5 mL) was replaced and cells were allowed to recover for 48 hours, 

after which pictures were taken again to measure the covered area. 
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Colony Formation Assay  

A 0.8% base agar layer was prepared and added to an equal amount of 

culture media (250 µL/12-/well). Plates were placed at 4ºC for at least 30 minutes 

to allow base agar layer to gel. Top agar (0.4%) layer was prepared by mixing 

0.8% solution with equal amount of culture media (DMEM). Plates were 

incubated at 37ºC for 5 minutes prior to addition of cells (500/well) followed by 

incubation for 21 days. Fresh media (500 µl/well) was added every 3-4 days, 

after aspiration of old media. Afterwards, colonies were photographed and 

quantified using a Beckman plate reader and cell quantification solution (OD 490 

nM).  

 

Apoptosis Assay  

WT LLC cells and control and α4 and α7 nAChR shRNA-transfected LLC 

cells (3x103) were plated in white-walled, clear-bottom 96-well plates and 

cultured in DMEM with 10% FBS with or without 20 µM cisplatin for 24 hours. 

Apoptosis was then evaluated using the Promega Caspase-Glo® 3/7 Assay 

(Madison, WI), in a Luminoskan Ascent Luminometer (Beckman Coulter), 

according to the manufacturer’s instructions. This assay works by providing a 

luminogenic substrate (Z-DEVD- aminoluciferin) for caspases 3 and 7, that upon 

cleavage, releases aminoluciferin, which then becomes a substrate for luciferase.  
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Animal Studies 

All mice used in this study were obtained from Jackson Laboratories. The 

institutional animal care and use committee of the University of Louisville 

approved all experiments. LLC cells were plated out 24 hours prior to injections 

and were harvested at ~50% confluence to insure cells were in adequate growth 

phase.  LLC cells (5 ×  105 /100 µl sterile PBS) stably transfected with control 

non-target shRNA, α4 shRNA, or α7 shRNA were injected subcutaneously into 

the hind flank of wildtype C57BL/6 mice. Afterwards, tumors were monitored and 

measured weekly. A tumor size >15mm in any direction was considered the 

endpoint, according to IACUC regulations. Animals were sacrificed and tissues 

were harvested for analysis. For experiments using α7 nAChR KO mice, 5 × 

105 WT LLC cells/100 µl sterile PBS were injected subcutaneously into the hind 

flank and followed as described above.  Animals lacking α7 nAChR and 

expressing heterozygous mutations for KRAS were developed by breeding mice 

heterozygous for α7 nAChR with mice heterozygous for KRAS. The double 

heterozygous progeny were then bred for four generations to develop animals 

lacking α7 nAChR and expressing heterozygous mutations for KRAS; mutations 

were confirmed via PCR.  These animals developed spontaneous tumors and 

were sacrificed at 90 days at which time the lungs were harvested for analysis.  

 

Histological Analysis 

 Animals were euthanized by exposure to carbon dioxide in a closed 

chamber. Lungs were isolated and inflated at standard pressure, formalin-fixed, 
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paraffin-embedded, and sectioned (6 µm) using a JUNG RM2055 microtome 

(Leica, Buffalo Groce, IL). They were then transferred onto glass microslides for 

histological analysis. Sections were deparaffinized, rehydrated, and stained with 

hematoxylin and eosin (H&E) to evaluate lung tumors.  

 

Analysis of Data 

Means plus standard deviations of the mean were calculated for all 

experimental values. Significance was assessed by using the Student's t test. All 

experiments were repeated a minimum of 3 times with each sample group 

containing a minimum number of 3. For survival distributions, the Log-rank test 

and/or Wilcoxon test were used to determine significance. 
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RESULTS 

 

Nicotine stimulates LLC cell proliferation, but its mitogenic effects are not 

affected by separate chemical inhibition of α7 or α4 nAChRs  

Nicotine has been shown to stimulate lung carcinoma cell proliferation in 

vitro18. To begin to identify key receptors mediating these effects, we exposed 

WT LLC cells to nicotine and tested the effects of nAChR inhibitors. As presented 

in Figure 1A-C, nicotine (50µg/mL) stimulated LLC cell proliferation. The 

mitogenic effects of nicotine were decreased by a broad, non-specific nAChR 

inhibitor, mecamylamine (Figure 1A). However, dihydro-β-erythroidine (DhβE), a 

more specific inhibitor of α4 nAChRs had little effect (Figure 1B). MG624, a 

more specific inhibitor of α7 nAChRs, also had no affect (Figure 1C). 

Interestingly, we observed mild increases in proliferation in cells treated with 

MG624 alone, suggesting a role for α7 nAChR in control of proliferation at 

baseline in unstimulated cells.  

 

LLC cells silenced for α4 nAChR show decreased migration, colony 

formation, and apoptosis, while cells silenced for α7 nAChR do not  

We transfected WT LLC cells with control shRNA (LLC/Consh) or shRNA 

against α4 nAChR (clones LLC/α4CLA and LLC/α4CLB) or α7 nAChR (clones 
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LLC/α7CLC and LLC/α7CLD). These clones were found to have less than ~75% 

protein expression for α4 and α7 nAChRs, and these were used for further 

studies (Figure 2A-2C, respectively). To ensure that the transfection procedure 

by itself did not affect responsiveness to nicotine, LLC/Consh cells were exposed 

to nicotine and treated with DhβE and MG624.  Again, nicotine stimulated the 

proliferation of cells transfected with control shRNA cells and, as before, DhβE 

and MG624 did not affect the response dramatically (not shown).  

We then examined the effect of α4 and α7 nAChR silencing on nicotine-

induced LLC proliferation. As presented in Figure 3, proliferation was again 

significantly increased in nicotine-treated LLC/UT (untransfected) and LLC/Consh 

cells.  Consistent with the findings related to the chemical inhibitors, silencing of 

α4 or α7 nAChRs did not prevent-nicotine-induced proliferation. However, lack of 

α4 and α7 nAChRs resulted in mild increases in proliferation of unstimulated 

cells.  

We next examined the role of α4 and α7 nAChRs in cellular migration. 

Cells were grown to ~80% confluence, after which time, a wound was created 

using a sterile 1 mL pipette tip.  After 48 hours, only ~30% of the initial wound 

area remained in LLC/UT and LLC/Consh cells (Figure 4A and 4B). In contrast, 

after 48 hours, ~85% and ~75% of the initial wound area remained in the 

LLC/α4CLA and LLC/α4CLB cells, respectively; LLC/α7CLC and LLC/α7CLD cells 

showed no difference compared to controls.  
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Figure 1 

 
 
 

 
Figure 1. Role of nAChRs in nicotine-induced lung cancer cell proliferation 
(A) WT LLC cells were cultured with increasing concentrations of mecamylamine 
in the presence or absence of nicotine (50 µg/mL) for 5 days. Fresh media 
containing nicotine was added every 2 days. The number of viable cells was 
detected using Cell Titer-Glo Luminescent Cell Viability Assay Kit (Promega) 
Mecamylamine significantly decreased nicotine-induced proliferation at 100 µM. 
(B) WT LLC cells were cultured with increasing concentrations of dhβe in the 
presence or absence of nicotine (50 µg/mL) for 5 days and treated and 
processed as described above. Note that dhβe had no effect on nicotine-induced 
proliferation. (C) WT LLC cells were cultured with increasing concentrations of 
MG624 in the presence or absence of nicotine (50 µg/mL) for 5 days and treated 
and processed as described above. MG624 mildly increased baseline 
proliferation in a dose-dependent manner in untreated cells, and had no effect on 
nicotine-induced proliferation. All data are depicted as means +/- SD.  Asterisks 
indicate a significant difference from untreated control.  
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Figure 2 

 
 

 
Figure 2. Characterization of LLC cells silenced for nAChRs 
After transfection with shRNA targeting nAChRs, LLC cells were grown to ~70-
80% confluency and were harvested via cell scraping in PBS. No trypsin was 
used. Total protein (40 µg) was isolated from LLC/UT, LLC/Consh, LLC/α4CLA, 
LLC/α4CLB, LLC/α7CLC, or LLC/α7CLD cells and Western Blot analysis for α4 (A,B) 
and α7 (C) was performed.  Anti-GAPDH antibody was used to control for gel 
loading. UT = untransfected cells. Brain = positive control. Clones labeled A and 
B were chosen for α4 knockdown, whiles clones labeled C and D were chosen 
for α7 knockdown.  
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Figure 3 

 
 

Figure 3. Silencing of α4 and α7 nAChRs does not inhibit nicotine-induced 
proliferation 
Cells were cultured with or without nicotine (50 µg/mL) for 5 days. Fresh media 
containing nicotine was added every 2 days. The number of viable cells was 
detected using Cell Titer-Glo Luminescent Cell Viability Assay Kit (Promega). 
Nicotine significantly increased cellular proliferation in LLC/UT, LLC/Consh, 
LLC/α4CLA, LLC/α4CLB, LLC/α7CLC, and LLC/α7CLD cells.  At baseline, cells 
silenced for α4 and α7 showed increased cell proliferation, but nicotine-induced 
proliferation was unchanged. 
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Figure 4 

 
 
 

Figure 4. Migration is decreased in LLC cells silenced for α4 nAChR, but 
not in cells silenced for α7 nAChR 
(A) Control and nAChR-silenced LLC cells were grown to ~80% confluency in 
six-well plates. Afterwards, a sterile 1000 µL pipette tip was used to create a 
scratch in three separate locations. Media was then aspirated to remove floating 
cells. DMEM (8mL) containing 10% FBS was then added and the cells were 
allowed to recover for 48 hours. Wound sites were photographed at 0 hours and 
48 hours.  (B) Quantification of wound length in photographs was performed by 
measuring the distance of the initial wound area in 3 separate locations at 48 
hours, which was subtracted from the initial distance at time 0 hours.  
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Next, we tested the effects of α4 nAChRs on colony formation on soft 

agar. As depicted in Figure 5A, nicotine significantly increased the number of 

colonies in LLC/UT and transfected cells. At baseline, overall colony formation 

was reduced in cells silenced for the α4 nAChR, but the cells remained 

responsive to nicotine. In contrast, cells silenced for α7 showed no difference in 

colony number when compared to controls (Figure 5B).   

Lastly, we examined the role of α4 and α7 nAChRs in drug-induced 

apoptosis. As depicted in Figure 6, silencing of α4 nAChR significantly reduced 

the amount of cisplatin-induced apoptosis when compared to LLC/UT cells,  as 

determined by caspase 3/7 activity (Figure 6A) and ATP (Figure 6B) levels, with 

a greater effect noticed in LLC/α4CLA cells. Note that α4 nAChR silencing did not 

affect the number of viable cells. Silencing of α7 nAChRs had no effect.  

 

Mice injected subcutaneously with cancer cells silenced for α4 or α7 

nAChR do not display changes in survival compared to controls  

Having examined the properties of the α4 and α7 nAChR-silenced clones 

in vitro, we proceeded to test their role in vivo. To this end, C57BL/6 mice were 

injected subcutaneously with LLC/Consh cells, LLC/ α4sh (clones A and B) cells, 

or LLC/ α7sh (clones C and D) cells. Tumor formation and size were followed for 

up to 12 weeks. 73% of mice injected with LLC/Consh cells developed tumors 

over the course of the experiment. In comparison, only 33.3% and 66.7% of the 

mice injected with LLC/ α4sh cells (clones A and B, respectively) developed 

tumors, but this difference was not statistically significant. There was also no 
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Figure 5 

 
 

 
 
 

Figure 5. Colony formation is decreased in LLC cells silenced for α4 
nAChR, but not in cells silenced for α7 nAChR 
Control and nAChR-silenced LLC cells (500) were suspended in 0.4% top agar 
layer and plated on a 0.8% base agar layer, which was prepared according to 
Millipore’s instructions. After 12 hours, 500 µL DMEM was added. Media was 
replaced every 3-4 days. Colonies were followed for 21 days and then counted. 
(A) Colony formation was decreased in LLC/α4CLA and LLC/α4CLB cells compared 
to LLC/Consh and LLC/UT cells, but nicotine stimulation was observed.  (B) There 
was no difference in colony number in LLC/α7CLC and LLC/α7CLD cells when 
compared to controls at baseline, but nicotine stimulation was observed. 
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Figure 6 

                                
 

 
 
Figure 6. Cisplatin-Induced death is decreased in LLC Cells silenced for α4 
nAChR 
Cells were cultured in complete DMEM containing 50 µM Cisplatin for 24 hours. 
Caspase 3/7 activity was detected using the Caspase-Glo 3/7 Assay Kit 
(Promega). Caspase 3/7 activity was decreased in LLC/α4CLA and LLC/α4CLB 
cells compared to LLC/Consh cells (A). The number of viable cells was detected 
using Cell Titer-Glo Luminescent Cell Viability Assay Kit (Promega) (B). Cell 
viability was increased ~4 fold in LLC/α4CLA and LLC/α4CLB cells compared to 
LLC/UT cells in cisplatin-treated cells.  
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difference in tumor size or survival amongst the experimental groups (Figure 

7A,B). Animals injected with α7 nAChR-silenced clones, also showed no 

difference in tumor number or size, and did not display changes in survival when 

compared to those injected with control clones (Figure 7C,D). 

 

Role of host cell α7 nAChRs in lung cancer  

To begin to investigate the role of host cell nAChRs, we injected WT LLC 

cells into WT C57BL/6 and α7 nAChR knockout mice. As depicted in Figure 8A, 

animals deficient in α7 nAChRs grew tumors faster compared to wildtype 

animals, and thus displayed decreased survival between 20 and 30 days (8B). 

 By their very nature, xenograft models of lung cancer allow for the study of 

tumor growth and metastasis, but not tumor development. To test this, we chose 

to study animals with KRAS mutations, which spontaneously develop tumors. 

KRAS mutations are relatively frequent in non-small cell lung cancer in 

humans19.  Animals with both KRAS mutations and α7 nAChR mutations were 

sacrificed at 90 days to examine spontaneous tumor development. As presented 

in Figure 9, no differences were noted between KRAS and KRAS/α7 nAChR 

knockout animals with respect to tumor number or size in the lungs. 
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Figure 7 

 
 
 
Figure 7. Mice injected with LLC cells silenced for α4 nAChR demonstrate 
no differences in tumor size compared to control, and do not show 
differences in survival 
(A,B) LLC/Consh (n=11), LLC/α4CLA (n=9), LLC/α4CLB (n=9) cells (5x105) were 
injected into the hind flank of WT C57BL/6 mice. Tumor formation and size were 
followed up to 12 weeks. A tumor size of ≥15mm in length or width was 
established as the endpoint according to IACUC regulations. Mice were then 
sacrificed and lungs harvested and processed for examination of metastases. No 
differences were noted amongst groups when evaluating tumor size (A) or 
survival (B).   (C,D) LLC/Consh (n=5), LLC/α7CLC (n=5) and LLC/α7CLD (n=4) 
(5x105) cells were injected into the hind flank of WT C57BL/6 mice Tumor 
formation and size were followed up to 12 weeks. A tumor size of ≥15mm in 
length or width was established as the endpoint according to IACUC regulations. 
Mice were then sacrificed and lungs harvested and processed for examination of 
metastases. No differences were noted amongst groups when evaluating tumor 
size (C) and survival (D).   
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Figure 8 

                
 

 
 
 

Figure 8. Tumor growth is increased α7 nAChR deficient animals 
LLC/WT cells (1x106) were injected into the hind flank of WT C57BL/6 mice (n=8) 
or α7 nAChR knockout mice (n=7). Tumor formation and size were followed up to 
6 weeks. A tumor size of ≥15mm in length or width was established as the 
endpoint according to IACUC regulations. Mice were then sacrificed and lungs 
harvested and processed for examination of metastases.  Larger tumors were 
observed in α7 nAChR knockout mice (A), which led to decreased survival (B). 
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Figure 9 

 
 

 
 
Figure 9. Spontaneous tumor development is unchanged in KRAS/α7 
nAChR knockout mice when compared to KRAS mice 
KRAS (n=5) and KRAS/α7 nAChR knockout mice (n=6) were sacrificed at 90 
days and lungs harvested and processed for examination of tumors. 
Representative PCR gel images shown for genotyping (A). Representative lung 
tumor images shown at 1x and 4x (B). No differences in lung tumor number or 
size were observed (C). 
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DISCUSSION 

 

It is well established that tobacco use is the number one risk factor for 

development of lung cancer, which will take the lives of millions of people 

worldwide this year4. Despite major increases in survival rates of many cancers, 

little progress has been made in the treatment of lung cancer. Data, however, are 

emerging showing important roles for nAChRs in cancer biology, which places 

emphasis on the role of nicotine, an important component of tobacco and an 

exogenous ligand for these receptors20. The mitogenic effects of nicotine are well 

known and a number of investigators have shown that these effects can be 

abolished by using chemical nAChR antagonists, such as α-bungarotoxin21–23.  

However, results obtained from experiments using such antagonists must be 

viewed with caution due to off-target effects. An important example is varenicline, 

a prescription drug used for smoking cessation. The mechanism of action of 

varenicline is reported to be through partial agonism of α4β2 nAChRs 

receptors24, but recent data suggest that this agent also binds to α3- and α6-

containing nAChRs and displays full agonism on α7 nAChRs25. These off-target 

effects make it difficult to examine the role of individual nAChRs when using such 

chemicals. We thus used shRNA technology to knockdown a single, specific 

nAChR subunit at a time, allowing for careful delineation of the roles of the 

different receptors. We tested LLCs because of the extensive literature available 
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using these cells to study lung cancer in models that allow their use in normal, 

immunocompetant C57BL/6 mice.  

First, we confirmed that nicotine exerted mitogenic effects on WT LLC 

cells. Note that, as previously reported18, this effect was relatively small (~30-

40%), which is likely due to the fact that the cells were not starved prior to 

stimulation as others have reported11,26. At least one group has shown that the 

ability of nicotine to increase expression of Akt, Erk, and mTOR activation in 

vitro, was largely dependent on the absence of serum which causes lower basal 

levels of pathway activation27. Instead, the cells were cultured in 2% fetal bovine 

serum, which we believe is more physiologically relevant. Although the most 

robust effect was noted at the highest dose tested (276% increase over control), 

we chose to use doses more physiologically relevant for further experiments. As 

expected, based on the literature, we found that a non-specific nAChR chemical 

inhibitor (e.g., mecamylamine) diminished nicotine-induced LLC cell proliferation, 

although the effect was relatively small. However, more specific inhibitors 

targeting α4 or α7 nAChRs independently did not inhibit nicotine-induced cell 

proliferation, while the α7 nAChR antagonist had a small mitogenic effect at 

higher doses. This lack of a significant inhibitory activity was confirmed in cells 

silenced specifically for either the α4 or the α7 nAChR subunits. This may 

suggest that nAChRs containing the α4 and α7 subunits play little role in 

nicotine-induced proliferation, and that effects seen in other studies performed 

using chemical antagonists were indeed due to off-target effects. On the other 

hand, we believe it is more likely that nicotine-induced proliferation in LLC cells is 
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not mediated by a single nAChR, but several, and that blocking one or the other 

independently is not sufficient to completely inhibit proliferation. In other words, 

both α4 and α7 nAChRs, and perhaps others, need to be targeted to inhibit 

nicotine-induced cell proliferation. One interesting observation that remains 

unexplained relates to the mild induction of proliferation observed in unstimulated 

α7 nAChR-silenced cells. We have observed a similar effect in lung fibroblasts 

(unpublished data); this seemingly paradoxical effect has been reported in the 

literature in airway epithelial basal cells28. Our data suggest that α7 nAChRs 

might restrain proliferation in unstimulated cells, while this effect is overcome in 

cells lacking this receptor. This raises the possibility of multiple receptors 

mediating these effects, but this requires further investigation.  

In contrast to our observations regarding cell proliferation, we found that 

cells silenced for α4 nAChRs, but not α7 nAChRs, showed reduced migration 

and ability to form colonies on soft agar when compared to controls.  Deficiency 

of α4 nAChRs also resulted in resistance to cisplatin-induced apoptosis. 

Having characterized the clones in vitro, we turned our attention to testing 

the roles of these receptors in an in vivo model of lung cancer.  For this, cells 

silenced for α4 or α7 nAChR subunits were injected subcutaneously into 

C57BL/6 mice. Mice injected with cells silenced for α4 nAChRs developed fewer 

tumors, but this was not statistically significant. No differences were observed in 

animals injected with control or α7 nAChR deficient cells. Tumor size was also 

not different between groups.  Importantly, silencing α4 or α7 nAChRs 

independently had no significant effect on the survival of animals. Note that 
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tumor growth and progression (and animal survival) were tested in untreated 

animals suggesting that these nAChRs play insignificant roles in tumor 

progression in the absence of exogenous stimulation.  Whether these receptors 

play roles in tumor progression in the setting of nicotine exposure awaits further 

exploration. 

Finally, we turned our attention to host cell nAChRs.  We focused on α7 

nAChRs because of the availability of C57BL/6 mice with α7 nAChR knockout 

mutations29.  In the xenograft model, we found increased tumor progression in α7 

nAChR knockout animals, which is consistent with our in vitro proliferation data 

for α7 nAChR silencing in unstimulated cells. However, when we created animals 

with double mutations in KRAS and α7 nAChRs to test spontaneous tumor 

development, the number and size of lung tumors was similar to that in KRAS 

mice with wildtype expression of α7 nAChRs. Together, these studies suggest 

that host cell α7 nAChRs may not play critical roles in tumor development driven 

by mutations, but may play a vital role in cancers driven by oncogenic 

microenvironments.  

 Another explanation is that other nAChRs overcompensate when α7 

nAChRs are absent. As stated before, in cultured tumor cells (this report) and in 

lung fibroblasts (unpublished observations), absence of α7 nAChRs leads to 

increased cellular proliferation.  

In summary, our studies shed light into the differential roles that α4 and α7 

nAChRs play in LLC cells when tested in vitro.  Specifically, α4 nAChRs were 

found to promote lung carcinoma cell migration and colony formation on soft 
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agar. α4 nAChRs were also found to play a role in cisplatin-induced apoptosis.  

α7 nAChRs appear to have little to no effect on these processes, but both 

receptors seem to play roles in cellular proliferation at baseline in unstimulated 

cells.  However, studies in animals suggest that neither receptor in the tumor cell 

is essential for tumor development, growth, and progression in vivo in the 

absence of exogenous nicotine stimulation. Rather, our in vivo studies point to an 

important role of these receptors, specifically the α7 nAChRs, in the host.  

Together, our studies suggest that targeting one receptor alone might be 

insufficient to inhibit tumor progression in vivo, while targeting multiple nAChRs 

might prove more successful.  Further exploration of the differential roles of 

nAChRs in both cancer cells and host cells, especially in humans, will 

undoubtedly enhance our understanding of how they influence cancer and other 

biological processes. This work is expected to better direct our efforts towards 

the development of effective strategies for intervention in the setting of lung 

cancer and other tumors.   

 

 

 



 28 

SUMMARY AND CONCLUSIONS 

 

CAVEATS AND WEAKNESSES 

Our main goal in this study was to determine if nAChRs played an important role 

in the development and progression of lung cancer. Previous studies implicating 

these receptors in the etiology of lung cancer utilized chemical antagonists in 

their methodology, which are notorious for their off-target effects. While we 

believe our approach using shRNA technology is more specific and targeted to 

individual receptors, it is important to note that knocking down the expression of 

one receptor could lead to a compensatory increase or decrease in the 

expression of other nAChRs and/or other relevant molecules.  

 While our data suggest the α4 and α7 nAChRs may play little to no role, 

individually, in lung cancer progression, our data utilizing knockout animals 

suggest an important role of the α7 nAChR in the host. We are now in the 

process of developing an α4 nAChR knockout animal to further study the role of 

these receptors in the host. However, this study did not offer any insight into what 

cells and mechanisms might be mediating these effects. A vast number of cell 

types in the body express nAChRs, and so knockout animals could have a large 

number of processes affected compared to wildtype animals. Additional studies 

are needed to examine exactly what is causing these effects in the α7 nAChR 

deficient animals.  
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FUTURE WORK 

The future directions described here will seek to address the questions that 

remain unanswered, as well as new questions that have arisen, in our attempts 

to better understand the role that nAChRs play in lung cancer development and 

progression. Our data presented here suggest an important role for the host in 

lung cancer progression. For our future studies, we thus chose to examine three 

aspects of the host that we believe important in helping us better understand lung 

cancer development and progression. 

 

Role of host nAChRs 

 Amidst the perceived importance of host nAChRs in the etiology of lung 

cancer, we hypothesize that activation of nAChRs in lung fibroblasts promotes an 

oncogenic microenvironment that renders the host susceptible to lung cancer 

development and progression. We will examine this by exposing animals 

chronically with nicotine in their drinking water and then injecting them with LLC 

cells and examining tumor development and metastases. Presumably, any 

differences we observe will be through affects on the host. However, signaling 

through nAChRs has been shown to affect a number of different host responses, 

such as inflammation, alterations in the immune system, and angiogenesis. We 

will also examine these processes and investigate what cells and mechanisms 

are mediating these effects.  
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Role of tumor cell-stromal interactions 

 Recent studies have implicated the tumor microenvironment as a new 

chemotherapeutic target, by demonstrating the importance of tumor cell-stromal 

interactions in tumor progression. However, the exact mechanisms of how tumor 

cell-stromal interactions drive lung cancer progression remain undefined. We 

suspect host fibroblasts represent an important component of the tumor 

microenvironment that may help drive tumor progression.  Consistent with the 

latter, we found that human NSCLC cells show alterations in cell morphology, 

increased proliferation, and increased colony formation on soft agar when 

exposed to conditioned media harvested from IMR-90 lung fibroblasts.  

Interestingly, the fibroblast-derived conditioned media also promoted tumor cell 

resistance to cisplatin-induced apoptosis. We plan on investigating these 

interactions further, performing in vivo studies, and determining exactly what 

soluble factors are mediating these responses.  

 

Role of aging in the etiology lung cancer  

 Cancer incidence is known to rise exponentially with age. This is thought 

to be due to the accumulation of oncogenic mutations, as well as changes in the 

tissue microenvironment. Consistent with this, we found that aged animals 

showed greater metastases to the lung in our LLC model when compared to 

young animals (Figures 10-12). We began to inquire into the mechanisms for 

this observation. Dean Jones at Emory University, after testing hundreds of 

healthy and diseased individuals, has recently shown that the physiological 
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cysteine/cystine redox potential found in the plasma of healthy subjects is around 

-80 mV. In subjects with disease, this redox potential may be oxidized to values 

between -62 to -20 mV. Relevant to our proposal is the fact that aging is 

associated with alterations in this mechanism. We have shown that this oxidative 

stress can activate nAChRs, and lead to increased expression of extracellular 

matrix proteins. We have also shown that aged lungs show alterations in the 

expression of extracellular matrices.  We thus hypothesize that aging, by 

activation of nAChRs in the lung via oxidation of the cysteine/cystine redox 

potential, promotes an oncogenic microenvironment that renders the host 

susceptible to lung cancer development and progression. If this is true, we 

deduce that we can prevent lung metastasis in old animals through dietary 

interventions. Cysteine and cystine are derived from dietary sulfur amino acids 

and Dean Jones has also shown that oxidation of the cysteine/cystine redox 

potential could be mimicked in rodents exposed to a diet with low sulfur content, 

while a diet with high sulfur content could reverse the effect30. Thus, we predict 

that a diet with supplementation of sulfur can reverse the oncogenic 

microenvironment observed in aged animals.   
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Figure 10 

 

Figure 10. Metastases in young versus old mice 
Retrospective analysis of 6 in vivo experiments was performed. Each experiment 
included WT C57BL/6 animals injected with WT LLC cells. Mice 3 months of age 
and younger failed to develop metastases, while metastasis in mice after 7 
months of age was almost consistently 100%. 
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Figure 11  

 

Figure 11. Old animals are more susceptible to lung cancer metastasis 
Young (4 months, n=7) and old (19 months, n=7) WT C57BL/6 animals were 
injected with 1x106  WT LLC cells into the hind flank. Tumor formation and size 
were followed up to 2 weeks. A tumor size of ≥15mm in length or width was 
established as the endpoint according to IACUC regulations. Mice were 
sacrificed at 2 weeks and lungs harvested and processed for examination of 
metastases.  All animals developed tumors at the site of injection, with no 
differences in size observed. 1/7 animals in the young group developed 
metastases, while 6/7 animals in the old group developed metastases. 
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Figure 12 

  

Figure 12. Lung images of young versus old mice injected with LLC cells 
Young (4 months, n=7) and old (19 months, n=7) WT C57BL/6 animals were 
injected with 1x106  WT LLC cells into the hind flank. Tumor formation and size 
were followed up to 2 weeks. A tumor size of ≥15mm in length or width was 
established as the endpoint according to IACUC regulations. Mice were 
sacrificed at 2 weeks and lungs harvested and processed for examination of 
metastases. 
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