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ABSTRACT 

UBQLN1: A MULTI-DOMAIN PROTEIN WITH MULTPLE FUNCTIONS 

Zimple Kurlawala 

July 25, 2017 

 There are 5 Ubiquilin proteins (UBQLN1-4, UBQLN-L), which are evolutionarily 

conserved and structurally similar. UBQLN proteins have 3 functional domains: N-

terminal ubiquitin-like domain (UBL), C-terminal ubiquitin-associated domain (UBA) 

and STI chaperone-like regions in the middle. Alterations in UBQLN1 gene have been 

detected in a variety of disorders including Alzheimer’s disease, Amyotropic Lateral 

Sclerosis and lung cancer. UBQLN1 has been largely studied in neurodegenerative 

disorders in the context of protein quality control. Several studies have hypothesized 

that the UBA domain of UBQLN1 binds to poly-ubiquitin chains of substrate and 

shuttles it to the proteasome via its UBL domain for degradation. UBQLN1 can both 

facilitate degradation (Ataxin3, EPS15) and stabilize (PSEN1/2, BCLb) substrates it 

binds. The signal that determines this fate is unknown and there is conflicting data to 

support the existing working model of UBQLN1.  

BCLb is a member of BCL2 family of proteins that maintain the balance 

between apoptosis and survival in cells. BCLb is anti-apoptotic and interacts with 

UBQLN1. Using BCLb as a model substrate, we characterized UBQLN1-substrate 

interaction. We identified the first two STI domains of UBQLN1 as critical for binding 

of the UBA domain to these proteins slows their degradation. Similarly, we showed 

that UBQLN1 interacts with IGF1R and ESYT2 through the STI domains and binding 

stabilizes these proteins through its UBA domain. Interactions that are not dependent 

on STI domains, for example UBL mediated interaction with PSMD4 and BAG6, do not
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appear to be stabilized by UBQLN1. We conclude that fate of substrates that UBQLN 

associates with, is interaction domain specific. We used data derived from UBQLN1-

BCLb interactions to model how UBQLN1 regulates IGF1R in lung adenocarcinoma 

cells. We have identified Ubiquilin1 as a novel interaction partner of IGF1R, IGF2R and 

Insulin Receptor. We demonstrate here that UBQLN1 regulates expression and activity 

of IGF receptors. Following loss of UBQLN1 in lung adenocarcinoma cells, there is 

accelerated loss of IGF1R post stimulation with ligand. Despite decreased levels of 

total receptors, the ratio of active:total receptors is higher in cells that lack UBQLN1. 

We tested for differences in synthesis, degradation, trafficking, autocrine ligand 

production, survival, migration potential and response to chemotherapy in lung 

adenocarcinoma cells that have loss of UBQLN1. UBQLN1 also regulates ligand 

stimulated IGF2R, Insulin Receptor (INSR), Epidermal Growth Factor Receptor 

(EGFR). UBQLN1 deficient cells demonstrate increased survival when serum starved 

and stimulation of IGF pathway in these cells increased their migratory potential by 3-

fold. In conclusion, UBQLN1 is essential for normal regulation of these receptor 

tyrosine kinases as UBQLN1 negatively regulates total receptor levels.
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CHAPTER I 
 

INTRODUCTION 
 

UBQLN Proteins  

Ubiquilin proteins are implicated 

in a variety of diseases like Alzheimer’s 

disease, Amyotropic Lateral Sclerosis, 

Fronto-Temporal dementia, triple repeat 

pathologies and even in lung, bone and 

urothelial cancers. How loss of function 

of a protein can lead to diverse outcomes 

in different cell types is 

intriguing. For this 

dissertation, we were 

interested in 

understanding the 

mechanism of action of 

UBQLN1 and how it 

relates to differential 

regulation of its 

substrates.  

The Ubiquilin 

family of proteins 

(UBQLN1-4, UBQLNL) 

are evolutionarily 

Figure 1: Schematic of structural 
domains of UBQLN1. UBL domain: 
UBiquitin-Like domain. STI-1,2,3,4 
domains: STress-Inducible proteins. 
These domains mediate protein-protein 
interactions. UBA domain: UBiquitin-
Associated domain associates with 
ubiquitin. 
 

Gene Location 
Size 

(amino 
acids) 

Sequence 
similarity 

to 
UBQLN1 

(%) 

Tissue 
Distribution 

UBQLN1 9q21.32 589 100 All 

UBQLN2 Xp11.21 624 74 

Brain, 
spleen, 

heart, liver 
and 

pancreas 

UBQLN3 11p15.4 655 48 Testis 

UBQLN4 1q22 601 60 

Brain, 
spleen, 

heart, liver 
and 

pancreas 

UBQLNL 11 475 36 
Plasma, 

platelet and 
liver 

Table 1: UBQLN family members, their chromosomal 
location and tissue distribution. Percent of sequence 
similarity is in comparison to sequence of UBQLN1.  
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Table 2: Interacting partners of UBQLN 
  Interacting Partner Mapped Domains 

Cell Surface Receptors 

1 IAP(A. L. Wu, Wang, Zheleznyak, & Brown, 
1999) UBL  

2 Presinilin1 and 2(Mah, Perry, Smith, & 
Monteiro, 2000) 

UBA and COOH tail 
mediated.  

3 GABAA (Bedford et al., 2001) 

UBA  
(GABAA: between Tm 
domains 3 and 4 of the 
alpha1 subunit) 

4 IGF1R (Kurlawala, Shah, Shah, & Beverly, 
2017) INSR STI-1 and STI-2 

5 GPCR’s (N'Diaye et al., 2008) Not mapped 

6 nAChR(Ficklin, Zhao, & Feng, 2005) Not mapped 

7 ESYT2 (Kurlawala et al., 2017) STI-1 and STI-2 

Proteasomal Machinery 

8 S5a (Rpn10a), (Ko, Uehara, Tsuruma, & 
Nomura, 2004) Rpn3, Rpn10e UBL 

9 PSMC2 (Muller-Vahl, Kolbe, & Dengler, 1997) Not mapped 

Transmembrane Proteins 
10 K7(Feng et al., 2004) UBA 
11 Omp25 (Itakura et al., 2016) Not mapped 
12 12 Mtb proteins (Sakowski et al., 2015) Not mapped 

13 
BCLb (Beverly, Lockwood, Shah, Erdjument-
Bromage, & Varmus, 2012; Kurlawala et al., 
2017) 

STI-1 and STI-2 

Others 

14 

Ubiquitin(Feng et al., 2004; Ko, Uehara, & 
Nomura, 2002; Kurlawala et al., 2017; Massey 
et al., 2004; D. Zhang, Raasi, & Fushman, 
2008) 

 

15 HERC3 (Hochrainer, Kroismayr, Baranyi, 
Binder, & Lipp, 2008) Not mapped 

16 EPS15, EPS15R, Hrs, Hbp (Regan-Klapisz et 
al., 2005) UBL 

17 

UBQLN1 homodimer (Feng et al., 2004; 
Kurlawala et al., 2017) 
UBQLN2 heterodimer (Feng et al., 2004; 
Hjerpe et al., 2016) 

STI-4 (homodimer) 

18 mTOR (S. Wu et al., 2002) STI-1 and STI-2 (226-
323) 

19 E6AP, several proteasomal proteins (Kleijnen 
et al., 2000) Not mapped 

20 PDI (Ko et al., 2002) Not mapped 
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conserved and structurally similar to each other. These proteins are highly similar in 

sequence identity, encoded by genes on different chromosomes and have varied 

tissue distribution (Table 1) (Beverly et al., 2012). UBQLN1 is approximately 63 kDa 

protein and all its family members have 3 main domains: ubiquitin-like domain (UBL) 

at the N-terminus, ubiquitin-associated domain (UBA) at the C-terminus and STI 

chaperone-like regions in the middle (Fig. 1). UBQLN1 maintains all the functionally 

important motifs present in this group (Massey et al., 2004) is ubiquitously expressed 

in all tissues. The UBL domain of UBQLN is structurally similar to ubiquitin and 

interacts proteasomal cap (S5a) (Buchberger, 2002) while the UBA domain associates 

with ubiquitin (Wilkinson et al., 2001; D. Zhang et al., 2008).  

The central region consisting of STI domains are called so because of their 

similarity to STI-1 proteins (STress Inducible proteins or Hsp70-Hsp90 organizing 

protein, HOP). This region acts as a co-chaperone and mediates hydrophobic 

interactions with other proteins (Mueller, Kamionka, & Feigon, 2004; L. Zhao & 

Ackerman, 2006). Current working model of UBQLN1 is hypothesized as: the UBL 

domain of Ubiquilin1 binds to the proteasome while the UBA domain binds to ubiquitin 

on the substrate protein and aids in the substrate’s degradation (Buchberger, 2002).  

 There are 2 types of UBL-UBA proteins: type-1 like SUMO and NEDD1 which 

covalently attach to ubiquitin and type-2 proteins like UBQLN, Rad23, Parkin, Bat-3, 

Elongin-b, Bag-1 and so on that associate with ubiquitin through its UBA domain in a 

non-covalent manner. As a type-2 UBL-UBA protein, UBQLN proteins are mostly 

studied in the context of ubiquitination, protein degradation and protein quality control 

and are largely implicated in development of neurodegenerative disorders. Table 1 

shows a list of published substrates of UBQLN1. Ubiquilin1 interacts with a variety of 

proteins – involved in the proteasomal machinery (PSMD4, BAG6, S5a, Rpn3, 

Rpn10e) (Kurlawala et al., 2017), cell surface receptors (IAP, GABA-A (Saliba, 

Pangalos, & Moss, 2008) , GPCR’s (N'Diaye et al., 2008), Presinilins 1/2 (Mah et al., 

2000; Massey et al., 2004), IGF1R (Kurlawala et al., 2017), transcription factor 
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regulators (IκBα) (Feng et al., 2004) and intracellular transmembrane proteins 

ESYT2 (Kurlawala et al., 2017), CD47 (A. L. Wu et al., 1999), BCLb (Beverly et al., 

2012), OMP25 (Itakura et al., 2016), and others like ubiquitin, E3 ligases and so on. 

Additionally, Ubiquilin1 function is implicated in diverse cellular processes like ERAD 

(endoplasmic reticulum associated degradation) (Lim et al., 2009; Shah et al., 2015),  

autophagy (Lee, Arnott, & Brown, 2013; Elsa-Noah N'Diaye et al., 2009; Sun et al., 

2015), apoptosis (Lu et al., 2009) and epithelial to mesenchymal transition (EMT) 

(Shah et al., 2015; Yadav et al., 2017). 

 

UBQLN1 and Ubiquitin 

 The most well understood interacting partner of UBQLN proteins is ubiquitin. 

Ubiquitin is a 7 kD molecule that covalently binds to lysine residues on proteins. One 

ubiquitin molecule has 7 lysine residues (K6, K11, K27, K29, K33, K48, K63).  Ubiquitin 

is capable of mono-ubiquitinating proteins and forming ubiquitin chains through one or 

more of its 7 lysines. The process of ubiquitination involves 3 ubiquitin ligases – 

E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3, 

which recruits an E2 ubiquitin-conjugating enzyme that has been loaded 

with ubiquitin, recognizes a protein substrate, and assists in or directly 

catalyzes the transfer of ubiquitin from the E2 ligase to the protein substrate. 	

 Ubiquilin associates non-preferentially with mono- and poly-ubiquitin linkages 

through its UBA domain (Feng et al., 2004; Ko et al., 2002; Kurlawala et al., 2017; 

Massey et al., 2004; D. Zhang et al., 2008). The most widely accepted working model 

of UBQLN1 suggests that UBQLN1 associates with ubiquitin on its substrates through 

its UBA domain, while the UBL domain (known interactor of the proteasome) directs it 

for degradation. However, UBA domain of UBQLN1 can act as a receptor for ubiquitin 

on substrates, and shield them from degradation thus stabilizing the substrate. It is 

certain that UBA domain binds ubiquitin but there is no consensus on fate of interaction 
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of Ubiquilin1 with its substrate. Interestingly, Ubiquilin1 is also reported to interact with 

three E3 ligases -- E6AP and bTRCP (Kleijnen et al., 2000), and HERC3 (Hochrainer et 

al., 2008). Upon interaction with E6AP and bTRCP, UBQLN1 and UBQLN2 prevent 

degradation of their substrates - tumor suppressor p53 and TNFa-induced rapid 

degradation of inflammatory mediator IkBa, respectively. Overexpression of UBQLN 

proteins did not block the proteasome as the control protein Ornithine Decarboxylase, 

a known substrate of the proteasome continued to be degraded at its usual rate. 

Therefore, it is likely that UBQLN1 interaction with E3 ligases prevents a step that is 

common to both pathways in the presence of overexpressed UBQLN’s. In contrast, 

Hochrainer et al showed that UBQLN1 interacts with HERC3, another E3 ligase and 

stabilizes HERC3’s interaction with proteasome and NFkB. UBQLN1 strengthens 

binding of HERC3 to RelA, which delivers RelA to proteasome and thus has a 

degradation enhancing role for NFkB (Hochrainer et al., 2008; Hochrainer et al., 2015). 

Therefore, it strengthens the hypothesis that UBQLN1 does have substrate specific 

functions.  

 

UBQLN and Cell Surface Receptors 

The largest group of known substrates of UBQLN proteins are cell surface 

receptors, namely CD47, Presinilins, GABAA, IGF1R, GPCR’s. Here, we’ll review the 

ways Ubiquilin regulates these proteins.  

Ubiquilins were originally discovered as Proteins Linking IAP with Cytoskeleton 

(PLICs) by Wu Ai-Ling in 1999 as proteins that interact with CD47 (integrin associated 

protein, IAP) that anchor vimentin filaments to the plasma membrane. UBQLN1 and 

UBQLN2 were distribution was contained in the cytoplasm and membranes of 

adherent, suspension as well as cytochalasin D (inhibitor of actin polymerization) 

treated cells (A. L. Wu et al., 1999) and their overexpression increased cell spreading 

in ovarian cancer cells.  
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Soon after, Presenilin1 and Presinilin2 were identified as new interacting 

partners of UBQLN1 (Mah et al., 2000) and this discovery was of particular interest in 

the 1990’s since mutations in familial cases of Alzheimer’s had recently been identified 

in Presinilin and APP genes. Overexpression of UBQLN1 in HeLa cells led to 

increased expression (number of receptors) of Presenilins without increase in 

synthesis or altering protein degradation. This indicates that UBQLN1 may enhance 

post translational modifications of Presenilins in a way that presence of UBQLN1 

prevents Presenilins’ untimely loss (Mah et al., 2000; Massey et al., 2004). 

Additionally, UBQLN1 decreased ubiquitination of Presinilins and as a result 

decreased its fragmentation in the gamma secretase complex into N-terminal and C-

terminal fragments (NTF and CTF). The NTF and CTF fragments of Presenilins form 

the catalytic core of the gamma secretase complex (Massey, Mah, & Monteiro, 2005). 

Both, overexpression of UBQLN1 and blocking of the proteasome with multiple 

inhibitors inhibited fragmentation of Presinilins. Therefore, UBQLN1 plays a role via 

the proteasome, either directly or indirectly, in regulating components of the gamma 

secretase complex. UBQLN1 also effected other components of the gamma secretase 

complex namely Pen2, Aph-1 and Nicastrin. Overexpression of UBQLN1, increased 

levels of Pen2 simultaneously as Presenilin fragmentation increased and Aph-1 and 

mature Nicastrin levels were decreased.  

 UBQLN1 interacts with another cell surface receptor in neurons, GABAA 

receptors (Bedford et al., 2001). UBQLN1 overexpression enhanced cell surface levels 

of GABAA receptors demonstrated by ELISA (Bedford et al., 2001) and biotinylation 

assays (Saliba et al., 2008). Overexpression of UBQLN1 increased half-life of GABAA 

receptors and prevented its loss upon proteasomal inhibition.  Disruption of interaction 

between UBQLN1 with GABAA receptors produced a rapid decrease in its cell surface 

receptor expression within minutes of loss of interaction, suggesting that UBQLN1 may 

play a role in maintaining anchorage of GABAA in the plasma membrane. Additionally, 

immunofluorescence localized UBQLN1 to GABAergic synapses in clathrin-coated 
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vesicles, intracellular membranes and inhibitory synapses suggesting that UBQLN1 

may also play a role in stabilizing both recycled and de novo synthesized GABAA 

receptors. Transmembrane proteins like GABAA receptors usually require assembly in 

the Endoplasmic Reticulum once they are translated. These receptors are conjugated 

with high mannose N-linked glycans in the ER, that are sensitive to cleavage by the 

enzyme, Endoglycosidase H (Endo H). Endo H enzyme is commonly used to study 

post translational modifications by specifically removing high mannose N-linked 

carbohydrates from substrates. Once proteins the ER for Golgi for further processing, 

they are conjugated with mature N-linked glycans which are insensitive to cleavage by 

Endo H. Overexpression of UBQLN1 increased the amount of Endo H sensitive GABA 

in the ER by ~30% thus confirming a role for UBQLN1 in stabilizing newly translated 

transmembrane proteins in the ER (Saliba et al., 2008). Additionally, UBQLN1 also 

increased ubiquitinated GABA-R, enhanced cell surface accumulation of recombinant 

GABA beta3 subunits in neurons and increased insertion of GABAA into neuronal 

plasma membranes. 	

UBQLN1’s UBA domain binds to K7, a small membrane protein in Kaposi 

Sarcoma Associated Herpes Virus infected cells (Feng et al., 2004) and regulates in 

similar fashion as it regulates GABAA receptors. As seen with Presenilins and GABAA 

receptors, overexpression of UBQLN1 increased overall expression of K7. K7 has a 

half-life of 30 minutes and undergoes proteasomal degradation. Overexpressing 

UBQLN1 increased half-life of K7 by 12-fold mediated exclusively by its UBA domain 

as overexpressing UBA domain by itself and AP1, a UBA domain harboring protein, 

also prevent loss of K7 through proteasomal degradation implying that UBQLN1 binds 

to K7 through its UBA domain and may be preventing its proteasomal degradation thus 

stabilizing it (Feng et al., 2004). UBA domain overexpression also prevented loss of 

p53 and IkBa, substrates that are known to be stabilized by UBQLN1 overexpression. 

Reciprocally, overexpression of K7 led to decreased ubiquitination and dimerization of 



	8	
	
	

UBQLN1, and accelerated degradation of p53 and IkBa, likely due to occupancy of 

UBA domain by K7.  

UBQLN1 interacts with the a3, a4 and b4 subunits of nicotinic acetylcholine 

receptors (nAchR’s) in SCG neurons. Overexpression of UBQLN1 prevented nicotine-

induced upregulation of cell surface nAchR’s assessed by biotinylation assays and 

immunofluorescence staining (Ficklin et al., 2005).  UBQLN1 was identified to bind to 

12 cell surface proteins (Mtb’s) of Mycobacterium Tuberculosis in macrophages. 

UBQLN1 enhances ubiquitination of these Mtb’s and promoted IFNg driven autophagy 

to restrict growth of these bacteria (Sakowski et al., 2015).  

Overall, UBQLN1 interacts with several cell surface receptors. Overexpression 

of UBQLN1 stabilizes expression of Presenlins, GABAA receptors, K7 protein. 

Although its exact function is not known, it is likely that UBQLN1 functions to anchor 

receptor complexes in the plasma membrane and prevents their untimely activation 

and degradation.  

 

Other interacting partners of UBQLN1 

 Wu et al 2002, identified and studied interaction of UBQLN1 with the protein 

kinase, mTOR (S. Wu et al., 2002). Region 226-323 i.e. parts of STI-1 and STI-2 

domains of UBQLN1 were mapped to interact with catalytically inactive region of 

mTOR. By sucrose density gradient fractionations, mTOR was detected with 10% of 

total Ubiquilin1 in low density membranes. The biological relevance of interaction 

between these proteins is known as expression of UBQLN1 did not alter 

phosphorylation status of this kinase or its targets like p70 (S6 kinase). Hypoxia 

induced expression of UBQLN1 and an ER enzyme Protein Disulfide Isomerase (PDI) 

in neuronal cells. Their upregulation and interaction with each other protected neuronal 

cells from hypoxia induced ER stress and DNA fragmentation (apoptosis) (Ko et al., 

2002) . Endocytic proteins like EPS15, EPS15R, Hrs, Hbp harbor ubiquitin interacting 
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motifs (UIMs) which are like UBA domains and therefore can interact with ubiquitin or 

or ubiquitin like domains (UBLs). These endocytic proteins interact with UBQLN1’s 

UBL domain. Overexpression of UBQLN1 causes sequestration of these endocytic 

proteins into ubiquitin rich cytosolic aggregates (Regan-Klapisz et al., 2005). UBQLN2 

was identified to heteromerize with other UBQLN1 (UBQLN1, UBQLN2 and UBQLN4) 

and its interaction with HSP70 mediates unfolding of substrates and lead to their 

proteasomal degradation independent of autophagy.  Disease mutations of UBQLN2 

inhibit this interaction and lead to aggregations and degeneration in neurons (Hjerpe 

et al., 2016). UBQLN1 can bind transmembrane proteins in the cytosol and prevent 

them from aggregating. UBQLN was proposed to exist in a closed conformation 

(interaction of UBL domain of one UBQLN molecule with UBA domain of same or other 

UBQLN molecules) and supposed to “open” when there is a substrate (Itakura et al., 

2016). Dsk2p, the yeast homolog of UBQLN1, forms a trimeric complex with Rad23p 

and Cdc48 and enables degradation of misfolded proteins via the proteasomal system 

(Medicherla, Kostova, Schaefer, & Wolf, 2004). In human cells, the UBL domain of 

UBQLN1 has been shown to regulate degradation of misfolded proteins like Ataxin3, 

HSJ1a and EPS15 (Heir et al., 2006). UBQLN1 expression aids in poly-ubiquitination 

of viral polymerase NS5B, decreasing its half-life in HCV infected hepatocytes (Gao et 

al., 2003). Identifying functions of Ubiquilin proteins is an ongoing area of research. 

UBQLN1 is a stress-response protein; its expression protects astrocytes from hypoxia 

(Ko et al., 2002) and HeLa cells from starvation-induced death (E. N. N'Diaye et al., 

2009). In 2010, Rothenberg et al showed that UBQLN1 interacts with autophagy 

marker LC3 in a complex with other proteins and reduction in UBQLN1 expression 

decreases autophagy levels in HeLa cells, brain and liver tissue of mice (Rothenberg 

et al., 2010).  
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UBQLN in Neurodegenerative Disorders 

UBQLN1 and UBQLN2 are members of UBQLN family that are primarily 

implicated in neurodegenerative disorders. UBQLN2 has an extra collagen like domain 

where majority of ALS mutations are found. UBQLN2 mutations cause defects in 

autophagy and drive accumulation of TDP43, etc. Presenilin proteins (PS1 and 2) are 

well-established Alzheimer’s disease-associated proteins (Tanzi & Bertram, 2005). 

UBQLN1 binds to and stabilizes Presinilin1 and 2 and co-localize in a vesicular-like or 

ER-like pattern (Gao et al., 2003; Massey et al., 2004). A meta-analysis in 2014 

confirmed that a single intronic C/T polymorphism in UBQLN1 (UBQ-8i) significantly 

increased risk of Alzheimer’s disease (Bertram et al., 2005; T. Zhang & Jia, 2014). In 

the presence of this polymorphism, the STI domains of UBQLN1 are unable to bind to 

Presinilin proteins as a result of which a gamma secretase complex is formed 

generating Aβ40 and Aβ42 amyloid aggregations (Ford & Monteiro, 2007; Mah et al., 

2000; C. Zhang & Saunders, 2009). Ford et al (2006) hypothesize that UBQ-8i 

polymorphism favors formation of UBQLN dimers and loses its ability to bind to PS 

proteins. Neurofibrillary tangles and Lewy bodies in brains of Alzheimer’s disease and 

Parkinson’s patients robustly stained for anti-UBQLN antibodies provide more 

evidence to the role of UBQLN in these diseases (Mah et al., 2000). 

UBQLN1 is also implicated in pathogenesis of triplet repeat neurodegenerative 

diseases especially ones characterized by expanded polyglutamine (PolyQ) tracts. Of 

the nine different types of PolyQ diseases, UBQLN1 plays a role in Huntington’s 

disease (HD) and spinocerebellar ataxia type1 (Riley & Orr, 2006). The expansion of 

glutamine tracts leads to aggregation of the affected protein as it is unable to get 

degraded effectively in absence of UBQLN1. In an animal model of Huntington’s 

disease, UBQLN4 expression was identified to be protective as it decreased polyQ-

induced protein aggregation though its interaction with Ataxin1 and UBQLN1 (H. Wang 

& Monteiro, 2007).. UBQLN2 mutations have been identified in X-linked Amyotropic 

Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD). UBQLN2-positive 
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inclusions are detected in spinal cord of ALS patients and in hippocampus of ALS 

patients with dementia proposing a role of mutant UBQLN2 aggregation in 

neurodegeneration (Deng et al., 2011). 

 

Ubiquilins in Cancer 
 
 UBQLN1 is linked to development and progression of cancers such as 

neuroblastoma, lung adenocarcinomas, urothelial carcinoma and osteosarcomas. 

UBQLN1 aka DA41 in 1997, was identified as an interacting partner of a tumor 

suppressor protein DAN, frequently deleted in neuroblastoma (Ozaki et al., 1997). 

DA41 overexpression in Rous sarcoma virus transformed rat fibroblasts (Ras-3Y1), 

caused a decrease in cell proliferation and colony formation of these transformed cells 

(Ozaki, Nakamura, Hanaoka, Nakagawara, & Sakiyama, 2000).  Similarly, exogenous 

DAN expression in Ras-3Y1 cells depleted of endogenous DAN, caused arrest in their 

DNA synthesis. DA41 or UBQLN1 was believed to suppress overall growth through 

interaction with a cell cycle regulator, CDK2 and DAN. Additionally, DA41’s STI 

domains (155-232) were mapped as region of interaction with another protein called 

S(1-5), which bears several EGF like repeats, also capable of controlling cell cycle 

(Ozaki et al., 1997).  Funakoshi and colleagues found XDRP1 in 1999, a Xenopus 

orthologue that is 60% similar to Ubiquilin1, which interacted with another cell cycle 

regulator, Cyclin A, preventing its degradation and arresting cell division in frog 

embryo. Basic helix-loop-helix (bHLH) proteins are a large family of transcription 

regulators that function in critical developmental processes of the nervous system. 

HASH-1 is a bHLH protein, overexpressed in pediatric malignancies like 

neuroblastoma. HASH-1 and HES-1, another bHLH protein, interact with UBQLN1 in 

neuroblastoma cells. Overexpression of UBQLN1 leads to their accumulation and co-

expression of HASH-1 and UBQLN1 causes UBQLN1 to translocate to the nucleus 

(Persson, Stockhausen, Pahlman, & Axelson, 2004). This was the first evidence that 

UBQLN1 is involved in neurogenesis. Furthermore, 2DE proteome analysis of a 
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human fetal midbrain stem cell line identified downregulation in expression of UBQLN1 

as the stem cells underwent differentiation from Day 0 to Day 7 (Hoffrogge et al., 2006). 

Therefore, aberrations in UBQLN1 function can potentially lead to developmental 

irregularities and even loss of cell cycle control as in cancer. UBQLN1 mRNA and 

protein levels were increased in the nine tumor and adjacent normal tissues examined 

and UBQLN1 overexpression was identified as a target candidate for humoral immune 

response in sera of 2 large lung cancer patient samples (150 patient vs. 100 control 

and 62 patient vs. 60 control) (Chen et al., 2007). Shimada et al report that urothelial 

cancer cells produce high levels of reactive oxygen species and consequently have 

increased levels of UBQLN2 to protect from ROS induced damage. Therefore, 

immunocytochemistry staining of UBQLN2 can be used to distinguish between 

neoplastic and non-neoplastic cells in urine. Additionally, nuclear staining of urothelial 

cancer cells corresponded with a higher grade of cancer (Shimada et al., 2016). A 

cisplatin-sensitive human ovarian carcinoma cell line was treated with AuL12 and 

Au2Phen, cytotoxic gold compounds, known to be potent antiproliferative agents to discover 

that these compunds resulted in increased expression of UBQLN1 which inhibited 

degradation of p53 and thus prevented tumor proliferation (Guidi et al., 2012). UBQLN1 

was reported to be lost in approximately fifty percent of non-small cell lung 

adenocarcinomas (Shah et al., 2015). siRNA mediated loss of UBQLN1 and mir155 

mediated downregulation of UBQLN1 in lung cancer cells has been shown to promote 

an EMT-like phenotype. It has been shown that downregulation of UBQLN1 leads to a 

significant increase in mesenchymal markers, including Vimentin, Snail and ZEB1 and 

therefore, UBQLN1 has been suggested to play a role in suppression of metastasis in 

lung cancer (Yadav et al., 2017). However, overexpression of UBQLN1 in lung cancer 

cells (Chen et al., 2007) and UBQLN2 in osteosarcomas (Tsukamoto et al., 2015) have 

also been reported. At the protein level, UBQLN1 stabilizes tumor suppressor p53 

(Feng et al., 2004; Kleijnen et al., 2000) as well as anti-apoptotic protein BCLb (Beverly 

et al., 2012; Kurlawala et al., 2017). Previous work from our lab has identified UBQLN1 
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as a regulator of anti-apoptotic protein Bcl2L10/Bclb (Beverly et al., 2012). We have 

reported that UBQLN1 is lost in about 50% of lung adenocarcinomas and tissue 

samples have varying UBQLN1 mRNA levels. We have also shown that loss of 

UBQLN1 or UBQLN2 promotes epithelial to mesenchymal transition (EMT) in lung 

adenocarcinoma cell lines (Shah et al., 2015). Thus, it is fallible to conclude a definitive 

role of UBQLN proteins in cancer development until large sample sizes and deeper 

stratification of patients and subtypes of cancers have been investigated. Equally 

important is understanding how Ubiquilin1 differentially regulates multiple substrates 

thus providing a clearer insight into Ubiquilin related diverse findings in cancers. 

 Considering the range of substrates and cellular processes Ubiquilin1 is 

involved in, we hypothesize that Ubiquilin1 is a versatile, multi-purpose adaptor, 

housing domains for binding to other proteins leading to functional specificity of 

resulting multimeric complexes.  
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Overall Hypothesis 

Fate of substrates that UBQLN1 associates with is interaction-domain specific. 

Overall Goal 

The overall goal of this dissertation work is to understand the mechanism of action of 

UBQLN1 in regulating BCLb and IGF1R.  

Specific Aims 

1. To investigate biochemical functions of UBQLN1  

i. Identify domains of UBQLN1 responsible for interaction with multiple substrates 

ii. Determine role of UBQLN1 on substrate stability 

2. To investigate role of UBQLN1 in regulation of receptor tyrosine kinases  

i. Determine role of UBQLN1 in trafficking and turnover of IGF1R 

ii. Determine biological consequences of UBQLN1 loss and dysregulation of IGF 

pathway in lung adenocarcinoma cells.  

iii. Determine role of UBQLN1 in regulation of INSR and EGFR 

UBQLN1 either facilitates degradation or stabilizes substrates it binds to. The signal 

that determines this fate is unknown. Data supporting the existing working model of 

UBQLN1 is variable. Using BCLb as a model substrate, we examined characteristics 

of UBQLN1-BCLb and UBQLN1-IGF1R interaction. We hypothesize that UBQLN1 

expression normally acts to prevent untimely loss of IGF1R and terminate 

phosphorylation signal of activated IGF1R in lung adenocarcinoma cells. By doing so, 

it aids in controlled regulation of downstream signaling pathways. We studied in detail 

how loss of UBQLN1 is involved in altering mechanisms of IGF1R expression and 

activity.  
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CHAPTER 2 

MATERIALS AND METHODS 

Cell Culture  

293T cells were cultured in DMEM supplemented with 10% FBS. DNA transfections were 

done using PEI (2.5:1). All cell extracts were prepared following scrape harvesting of 293T 

cells using CHAPS lysis buffer (1% CHAPS detergent, 150 mM NaCl, 50 mM Tris pH 7, 5 

mM EDTA). Subcellular fractionation experiments were performed using the ProteoExtract 

Subcellular Proteome Extraction kit (Calbiochem/Merck), as per the manufacturer’s 

protocol. For immunoprecipitations, 400 ug of protein was incubated in 400 uL of total 

CHAPS buffer and incubated with indicated affinity matrix for 1 h at 4 °C. Following 

incubation, the matrix was washed three times in CHAPS buffer and then SDS loading 

buffer was added directly to washed matrix, boiled, and loaded directly into the wells of a 

PAGE gel. Drug treatments were performed as described in the text using 20uM 

Cycloheximide, 25 uM proteasome inhibitor MG132, 360nM Epoximide, 1uM Bortezomib. 

Human non-small cell lung adenocarcinoma cell lines A549 were purchased from 

American Type Culture Collection (ATCC, Rockville, MD, USA) and cultured in RPMI 

medium supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA) and 

1% antibiotic/antimycotic (Sigma, St Louis, MO, USA). The 3 cell lines were routinely 

subcultured every 3–4 days. All siRNA transfections were performed using Dharmafect1 

#T-2001-03 (Thermo Fisher Scientific Inc, Pittsburgh, PA, USA) as per manufacturer’s 

protocol. After total 48 hours of transfection, cells were serum starved for 12 hours. After
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 which IGF1 50ng/ml was added to stimulate the cells. For protein stability studies, 

Cycloheximide (20uM), and for testing degradation pathways, Bortezomib (1uM) and 

Monensin (10uM) were added an hour prior to stimulating with IGF1. At the end of 

stimulation for various time points, cells were harvested in CHAPS lysis buffer (1% CHAPS 

detergent, 150mM NaCl, 50mM Tris pH 7, 5mM EDTA) supplemented with protease and 

phosphatase inhibitors. Protein was quantified by using Pierce's BCA Protein Assay 

Reagent Kit (# 23227) from Pierce Biotechnology, Rockford, IL, USA as per 

manufacturer’s protocol.    

Plasmids 

All experiments using expression of BCLb proteins were performed with vectors 

engineered for this study. The following accession numbers were used to design oligos 

for PCR based cloning from cDNA libraries generated from a “universal human RNA” 

library (Stratagene/Agilent Technologies): BCLb #NM_020396. FLAG-tagged BCL2 

constructs were generated by performing PCR of the MIG- BCL constructs using an oligo 

that fused the FLAG coding sequences to the amino terminus of each BCL2-protein. This 

product was then subcloned back into the MIGRX vector. The following plasmids were 

obtained from Addgene; FLAG-Ubqln (Addgene plasmid 8663, deposited by Peter 

Howley), FLAG-Ubqln-112X (Addgene plasmid 8664, deposited by Peter Howley), pRK5- 

HA-Ubiquitin-WT (Addgene plasmid 17608, deposited by Ted Dawson), pRK5-HA-

Ubiquitin- K0 (Addgene plasmid 17603, deposited by Ted Dawson), pRK5-HA-Ubiquitin-

K48 (Addgene plasmid 17605, deposited by Ted Dawson), GFP- BCL2 (Addgene plasmid 

17999, deposited by Clark Distelhorst). The GFP-tagged BCLb construct was purchased 

from OriGene catalogue #RG211604. Lysine-less BCLb construct was engineered using 

the MIG- or MIT-BCLb constructs described above to do site directed mutagenesis with 

the Quick Change Multi Site Mutagenesis kit (Stratagene/Ambion), as per the 
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manufacturer’s protocol. MYC-UBQLN1 construct was a gift from Annakaisa Haapasalo, 

Finland. Domain deletion constructs of UBQLN1 were created using the Q5 Site-Directed 

Mutagenesis Kit (New England Biolabs). Antibodies-BCLb #ab45412 and GFP #ab6673 

(Abcam); VDAC #4866 (Cell Signaling); IGF1R #3018 (Cell Signaling), ESYT2 

#HPA002132 (SIGMA), S5a/PSMD4 #12441 (Cell Signaling), BAG6 #A302-039A-T 

(Bethyl), MYC #F2512 (Santa cruz), Tubulin #B512, FLAG M2 conjugated agarose beads, 

FLAG poly-clonal #F7425 (Sigma); UBQLN poly-clonal was made by inoculating rabbits 

with a peptide specific to UBQLN1 (Yenzym Antibodies LLC); HA affinity matrix and HA 

#3F10 (Roche).  

Immunoprecipitation and Western Blot Analysis 

HEK 293T cells were cultured in DMEM supplemented with 10% FBS. DNA transfections 

were done using PEI (PEI 2.5:1 DNA). All cell extracts were prepared following scrape 

harvesting of 293T cells using CHAPS lysis buffer (1% CHAPS detergent, 150mM NaCl, 

50mM Tris pH 7, 5mM EDTA), For immunoprecipitation, 400ug of protein was incubated 

in 400uL of total CHAPS buffer and incubated with indicated affinity matrix (Anti-FLAG 

beads) for 1 h at 4 °C. Following incubation, the matrix was washed three times in CHAPS 

buffer and then SDS loading buffer was added directly to washed matrix, boiled, and 

loaded directly into the wells of a PAGE gel.  

 

Immunofluorescence 

HEK 293T or HeLa cells were transfected with FLAG-UBQLN1, dry seeded on round 

coverslips in 12 well plates and 48 hours post transfection were fixed with 4.0% 

paraformaldehyde in PBS for 15-20 min and then permeabilized with 0.1% Saponin for 60 

minutes at room temperature. Cells were rinsed thrice with PBS, and then incubated 

overnight with anti-UBQLN1 antibody (CST# 1:1000). Next day, after three successive 
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washes with PBS, cells were then incubated with Alexa Fluor 488 goat anti-rabbit IgG 

(1:300, A11034 Molecular Probes, Invitrogen detection technologies, Eugene, OR, USA). 

After incubation with secondary antibody for 60 minutes, cells were rinsed with PBS and 

incubated with Alexa Fluor 568 Phalloidin (1:1000 A12380: Life technologies Eugene, OR, 

USA) for 10 minutes. After 3 successive washes with PBS, nuclei were counterstained 

with DAPI (1:000) for 10 min at room temperature followed by three washes (5–10 min 

each) with PBS. The cells were then imaged under Nikon A1R confocal laser scanning 

microscope. Multiple images were acquired from multiple experiments and representative 

images are presented. 

 

Radioligand Binding Assay 

Cells were incubated for 2 hours with increasing concentrations (0.001 nM to 0.05 nM) of 

125I-IGF1 (Perkin Elmer, Waltham, MA) at 4°C in binding buffer (DMEM/20 mM 

HEPES/0.1% BSA, pH 7.3). Two fractions were collected – total ligand binding (125I-IGF1) 

and non-specific binding (mixture of radiolabeled and non-radiolabeled ligand). After 2 

hours incubation on ice, cells were washed four times with binding buffer to remove 

unbound radioligand. Solubilizing buffer (0.5N SDS, 1N NaCl) was used to collect the cells 

and the radioactivity of each fraction was determined using a Beckman Coulter (Brea, CA) 

gamma counter. Specific binding for each concentration of 125I-IGF1 was calculated by 

subtracting non-specific binding from total binding for that concentration of 125I-IGF1. Bmax 

and Kd (cpm) were calculated by PRISM analysis based on Specific Binding values (non 

specific subtracted by total binding). Bmax (mmol), Kd (nmol/L) and number of receptors 

were calculated as in picture.  
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Example of calculations for Bmax, Kd, receptor numbers 
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Percoll Gradient Density Centrifugation 

A549 cells expressing UBQLN1 shRNA (shUBQLN1 and shControl) (15×106 cells) were 

seeded onto 15 cm2 plate and cultured for 12 hours in serum-free conditions before 

stimulating with IGF1 for 1 hour followed by harvesting, lysing and loading onto a Percoll 

gradient to fractionate organelles makers based on relative density. Detailed methods are 

described by Kornilova and Sorkin (Kornilova, Sorkina, Beguinot, & Sorkin, 1996). These 

experiments were performed 3 separate times and data here are representation of a single 

experiment.  

 

Survival Assay 

A549 cells expressing UBQLN1 shRNA (U1KD#1, U1KD#2 and control) (2 × 104 cells) 

were seeded onto 96 well plate and cultured for 3 days under 3 different conditions-- 

serum-free media, serum-free media supplemented with IGF1 (50ng/ml) or serum-free 

media supplemented with Linsitinib (1uM). Cell viability was assessed by Alamar Blue 

assays on each day. Data were normalized to control shRNA cells in serum-free condition. 

These experiments were performed 2 separate times and data here are representation of 

a single experiment.  

 

Transwell Migration 

A549 cells expressing UBQLN1 shRNA (shUBQLN1, shUBQLN2 and control) 

(2.5 × 104 cells) were seeded onto the wells of Transwell filters in a 12-well plate, 

according to the manufacturer's instructions (Corning). The Transwell setup consisted of 

an upper chamber (conditions of serum-free media, serum-free media supplemented with 

IGF1 (50ng/ml) or serum-free media supplemented with Linsitinib (1uM)) that was placed 

onto a lower chamber (RPMI media enhanced with 10% FBS, creating a chemotactic 

gradient). The upper chamber contained a microporous membrane allowing passage of 
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cells that migrate towards serum. After incubation at 37C and 5%CO2 for 24 hours, the 

inserts were examined for migration in the above 3 conditions. Results were compiled as 

the mean and standard error of 3 separate experiments. 

 

Total RNA Extraction and Real Time PCR 

Total RNA was isolated from the A549 cells after washing twice with phosphate-buffered 

saline (PBS) and harvested with E.Z.N.A Total RNA Extraction Kit (Omega, USA) 

according to the supplier’s protocol followed by DNAse digestion. RNA quality and quantity 

were determined by photometry. Total RNA (1μg) was reverse-transcribed to cDNA using 

Thermo Script RT–PCR kit. Briefly, RNA was reverse-transcribed in cDNA with oligo (dT) 

primers and 200 U of Superscript II (Invitrogen) following manufacturer’s instructions. 

Real-time analysis for IGF1R, INSR, IGF1, IGF2, Insulin and normalizing gene human 

β2Microglobulin or β-Actin was performed using SYBR Green Master Mix as per the 

manufacturer’s instruction (Applied Biosytems). This technique continuously monitors the 

cycle-by-cycle accumulation of fluorescently labeled PCR product. Briefly, cDNA 

corresponding to 25 ng of RNA served as a template in a 10μl reaction mixture containing, 

0.2 nM (each) primer, and 5μl FastStart DNA Master SYBR Green mix (ABI). Samples 

were loaded into 96-well plate format and incubated in the fluorescence thermocycler 7500 

(ABI System). Initial denaturation at 95 °C for 10 min was followed by 45 cycles, each 

cycle consisting of 95 °C for 15 s, touchdown of 1 °C/cycle from the primer-specific start 

to end annealing temperatures for 5 seconds, and 60 °C for 10 seconds. The primer 

sequences used for specific genes are listed in Table. All quantifications were normalized 

to the housekeeping HPRT gene, which showed a very stable expression in A549 cells. 

Fold changes in gene expression were calculated using 2−ΔΔCT method. Following are the 

primer sequences used for the reaction: 

1. IGF1R:  
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F: GCCAAGCTAAACCGGCTAA 
R: TATCCTCTTTTGGCCTGGACATA 
 

2.  IGF1 
F: GATGCACACCATGTCCTCCT 
R: AAAAGCCCCTGTCTCCACAC 
 

3. IGF2: 
F: AGTTCTTCCAATATGACACCTGGAA 
R: TGAACGCCTCGAGCTCCTT 
 

4. B2M 
F: TGACTTTGTCACAGCCCAAGATA 
R: AATGCGGCATCTTCAAACCT 
 

5: ACTIN 
F: TTGGCAATGAGCGGTTCC 
R: GGTAGTTTCGTGGATGCCCAC 
	
 

Antibodies 

IGF1R-beta (CST#3027), IGF1R Beta XP (CST#9750), p-IGF1R beta (CST #3918), AKT 

(CST #9272), p-AKT (CST#9271); Tubulin #B512 (Sigma); GAPDH #FL335 (Santa Cruz); 

Actin (Sigma#A5316), Ubiquilin1 (CST#14526); Anti-FLAG Affinity Gel (Sigma A2220), 

INSR (CST #3025), FLAG, EEA1, TfnR 

 

RNAi Sequences  

All RNAi (siRNAs) used for study were ordered from Thermo Fisher Scientific Biosciences 

Inc. Lafayette, CO 80026, USA and transfections were done using Dharmafect1 as per 

the supplier’s instructions. 

1. Non-Targeting Control 
UAAGGCUAUGAAGAGAUACAA 
 
2. UBQLN1 
#1: GAAGAAAUCUCUAAACGUUUUUU 
#2: GUACUACUGCGCCAAAUUU
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CHAPTER 3 

INTRODUCTION 

The Ubiquilin (UBQLN) family of proteins (UBQLN1-4, UBQLN-L) is 

evolutionarily conserved and structurally similar. UBQLN1 is ~63 kDa protein and all 

its family members have 3 functional domains: ubiquitin- like domain (UBL) at the N-

terminus, ubiquitin- associated domain (UBA) at the C-terminus and STI chaperone-

like regions in the middle (Fig. 1A). UBQLN1 is ubiquitously expressed in all tissues. 

Mutations and loss of the UBQLN1 gene have been detected in a variety of disorders 

ranging from neurodegenerative disorders like Alzheimer’s disease (1) to cancers like 

non-small cell lung adenocarcinoma (2). Initially, UBQLN1 was discovered as a protein 

that interacted with IAP (CD47) in ovarian cancer cells, and upon loss, increased cell 

spreading (3). However, since then UBQLN1 has been largely studied in the context 

of neurodegenerative disorders and protein quality control. UBQLN1 assists in 

proteasomal degradation of ubiquitinated substrates and also participates in ERAD 

(Endoplasmic Reticulum Associated Degradation) (2), autophagy (4,5), apoptosis (6) 

and receptor trafficking (7). As a UBL-UBA protein, UBQLN1 is hypothesized to bind 

to poly-ubiquitin chains of substrate through its UBA domain and shuttle it to the 19s 

proteasome via its UBL-S5a cap interaction. The central region of UBQLN1 consists 

of STI domains that are called so because of their similarity to STI-1 proteins (STress 

Inducible proteins or Hsp70-Hsp90 organizing protein). This region acts as a co-

chaperone and mediates hydrophobic interactions with other proteins (8,9). There is 

conflicting data to support the existing working model of UBQLN1. Several stu
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have reported that UBQLN1 facilitates proteolysis of substrates that it binds. Dsk2p, 

the yeast homolog of UBQLN1, forms a trimeric complex with Rad23 and Cdc48 and 

enables degradation of misfolded proteins via the proteasomal system (10). In human 

cells, the UBL domain of UBQLN1 has been shown to regulate degradation of 

misfolded proteins like Ataxin3, a deubiquitinase enzyme, HSJ1a, a protein that 

stimulates activity of Hsp70, and EPS15, a protein important in endosomal trafficking 

(11). UBQLN1 expression aids in poly-ubiquitination of viral polymerase NS5B, 

decreasing its half-life in HCV infected hepatocytes (12). In contrast, UBQLN1 

stabilizes proteins like Presenilin1/2 (13,14), IκBα (15), and BCLb (16) when bound to 

them. These data indicate that UBQLN1 either stabilizes or facilitates degradation of 

substrates that it binds to. The signal that determines this fate is unknown.  

 In this study, we aimed to understand characteristics of substrates that bind to 

UBQLN1 and whether the nature of UBQLN1-substrate interaction decides the fate of 

substrates – stabilization or degradation. We show that Ubiquilin interacts with multiple 

substrates through its STI or UBL domains. We also show that UBQLN1 is capable of 

forming dimers and continues to interact with proteins in its dimerized form. We have 

previously published that UBQLN1 interacts with the anti-apoptotic BCL2 protein BCLb 

and stabilizes it in the cytoplasm. Here, we have used BCLb as a model to characterize 

the nature of its interaction with UBQLN1.
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RESULTS 

Cellular distribution of UBQLN1 

HPL1D, non-transformed lung epithelial cells and HeLa cells transfected with FLAG-

tagged UBQLN1 were examined for UBQLN1 staining by indirect 

immunofluorescence. Both endogenous (green in HPL1D cells) and exogenous 

UBQLN1 (red in HeLa cells) are ubiquitously expressed in the cytosol (Fig. 2A). 

However, in both these conditions, UBQLN1 is distinctly absent from nuclei and 

vacuolar compartments. To further examine if UBQLN1 associated with specific 

compartments of cells, we collected supra-nuclear lysates from Hela cells and loaded 

onto Percoll for density gradient centrifugation of proteins (Fig. 2B). There was slightly 

higher detection of UBQLN1 towards lower density gradients but overall, UBQLN1 

seems to be expressed throughout the cytoplasm and possibly associates with multiple 

cellular compartments and organelles. Na-K-ATPase, an enzyme found in cell 

membrane of all animal cells is used as a control protein for lower density gradient 

fractions.  
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Figure 2: Cellular Distribution of UBQLN1 
A: Confocal microscopy images of indirect immunofluorescence staining of 
endogenous UBQLN1 (green) in normal lung epithelial HPL1D cells and 
over-expressed FLAG-tagged UBQLN1 (red) in HeLa cells. Both 
endogenous and exogenous UBQLN1 are ubiquitously expressed in the 
cytosol. However, in both these conditions, UBQLN1 is distinctly absent from 
nuclei and vacuolar compartments.  
B:	Supra-nuclear lysates from Hela cells were loaded onto Percoll for density 
gradient centrifugation of proteins. Overall, UBQLN1 was detected in all 
fractions with slightly higher expression towards the lower density gradients. 
Na/K-ATPase, an enzyme found in cell membrane of all animal cells is used 
as a control protein for lower density gradient fractions.  Density fractions 
were prepared by Julie A. Gosney. (Data are from one experiment). 
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UBQLN1 non-selectively interacts with diverse ubiquitin linkages through its 

UBA domain  

Our previous work suggested that UBQLN1 interacts with mono-ubiquitinated BCLb 

(16). However, previous work by Feng et al (15) and Zhang et al (17) showed that UBA 

domain of UBQLN1 is also capable of associating with poly- ubiquitin chains. 

Therefore, we investigated if UBQLN1 interacts with specific ubiquitination linkages on 

substrates. We engineered constructs of UBQLN1 missing individual domains (Fig. 

3A). Cells were transfected with empty vector (EV), FLAG UBQLN1WT or deletion 

constructs of UBQLN1 (Fig. 3A) and HA-UbWT (Ubiquitin) (Fig. 3B,C). FLAG-UBQLN1 

was immunoprecipitated and interaction with HA-Ubiquitin was examined. We 

confirmed that the UBA domain of UBQLN1 interacts with ubiquitin as constructs 

missing the UBA domain, namely UBQLN1112X and UBQLN1DUBA fail to pull down HA-

Ubiquitin. Next, we performed a similar experiment using our individual domain 

deletion constructs (Fig. 3A) and confirmed that ΔUBA does not interact with ubiquitin. 

Interestingly, ΔSTI-4 construct also failed to pull down ubiquitin probably because of 

STI-4 domain’s close proximity to the UBA domain such that when STI-4 is deleted, it 

directly impacts UBA domain’s ability to interact with ubiquitin. Next, we tested for 

preference of the UBA domain of UBQLN1 for diverse ubiquitin linkages. We used 

constructs of HA-UbiqutinWT that have all Lysines (K) mutated to Arginine (R) except 

one, for example, HA-UBQTNK33 has all K’s mutated to R except K33 and therefore 

overexpression promotes formation of K33 ubiquitin chains on substrates. K0 indicates 

all K’s have been mutated to R and this ubiquitin molecule can be conjugated to 

substrate (mono- ubiquitination), but is not capable of forming ubiquitin chains. Results 

show that UBQLN1 is capable of interacting with WT, K33-, K48-, K63- poly-ubiquitin 

chains and mono-ubiquitinated residues (Fig. 3D). Based on these data and literature 

(17) we conclude that UBQLN1 non-selectively interacts with diverse ubiquitin linkages 

on substrates via its UBA domain.
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Figure 3: UBQLN1 interacts non-preferentially with diverse ubiquitin linkages 
through its UBA domain.  
(A) Schematic of UBQLN1WT and engineered domain deletion constructs missing 
individual domains. (B,C), 293T cells were transfected with empty vector (EV), 
FLAG-UBQLN1WT, domain deletion constructs of UBQLN1 and HA-UbiquitinWT. 48 
hours post transfection, cells were lysed and Western Blot analyses were performed 
with the indicated antibody. Where indicated, immunoprecipitation with anti-FLAG 
conjugated agarose beads was performed. UBQLN1WT interacts with ubiquitin but 
UBQLN1112X and UBQLN1ΔUBA (both missing UBA domain) lose this interaction. 
Therefore, UBQLN1 interacts with ubiquitin through the UBA domain. (D) 293T cells 
were transfected with FLAG-UBQLN1WT and constructs of HA-UbiquitinWT that have 
all Lysines (K) mutated to Arginine (R) except one for example, HA-UbiquitinK33 has 
all K’s are mutated to R except K33 and therefore overexpressing and promoting 
formation of K33 ubiquitin chains on substrates. K0 indicates all K’s have been 
mutated to R and this ubiquitin molecule is can only conjugate to the substrate 
(mono-ubiquitination) and is incapable for forming ubiquitin linkages. UBQLN1 
interacts with WT, K33-, K48-, K63- poly-ubiquitin chains and K0 mono-ubiquitinated 
substrates non-selectively. (Data are from one experiment). 
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Recognition of the transmembrane domain of BCLb by STI-1/2 domains of 

UBQLN1 sequesters BCLb in the cytosol 

Recently, Itakura et al (18) found that the UBQLN4 recognizes the transmembrane 

domain of mitochondrial protein OMP25. We have previously shown that UBQLN1 

interacts with mitochondrial protein BCLb and stabilizes it in the cytosol. Here, we 

investigated the domain of UBQLN1 required for interaction with BCLb our deletion 

constructs of UBQLN1. We identified STI-1 and STI-2 domains on UBQLN1 as critical 

for interacting with BCLb. 293T cells were transfected with empty vector (EV), FLAG-

UBQLN1WT, FLAG-UBQLN1 domain deletion constructs, MYC-BCLbWT or MYC-

BCLbDTM. Where indicated, immunoprecipitation with anti-FLAG beads was performed 

and probed for MYC-BCLb by Western Blot analyses. STI-1 and STI-2 domains of 

UBQLN1 are required for interaction with BCLb (Fig. 4A). UBQLN1WT and all domain 

deletion constructs except ΔUBA, interact with multi mono-ubiquitinated BCLb, 

indicated by the ladder-like pattern at higher molecular weights. Thus, the UBA domain 

of UBQLN1 is obligatory to interact with ubiquitin on BCLb. Next, we determined that 

TM domain is essential for UBQLN1 to recognize and interact with BCLb. These data 

suggest a potential 2-fold interaction between UBQLN1 and BCLb such that that the 

STI domains of UBQLN1 associate with the TM domain of BCLb and the UBA domain 

associates with the ubiquitin on BCLb (Fig. 4B). Previously, we have shown that 

UBQLN1 interacts with BCLbWT and sequesters it in the cytosol. As we determined that 

UBQLN1 needs an intact TM domain of BCLb to interact with it, we tested if UBQLN1 

alters the location of the BCLbDTM. We performed subcellular fractionation by 

differential centrifugation to determine changes in cellular location of BCLbDTM. Results 

show that UBQLN1 does not recognize BCLbDTM, and therefore, does not interact with 

it and has no effect on its cellular location (Fig. 4C). Our data confirm results by Itakura 

et al (18) that UBQLN proteins are capable of recognizing transmembrane domains of 

some proteins, like OMP25 and BCLb. 
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Figure 4: Recognition of the transmembrane domain of BCLb by STI-
1/2 domains of UBQLN1 sequesters BCLb in the cytosol 
The transmembrane domain of BCLb is recognized by STI-1/2 domains of 
UBQLN1 and stabilizes BCLb in the cytoplasm. 293T cells were transfected 
with empty vector (EV), FLAG-UBQLN1WT, or FLAG-tagged domain 
deletion constructs, MYC-BCLbWT or MYC-BCLbΔTM. Forty-eight hours post 
transfection, cells were lysed and Western Blot analyses were performed 
with the indicated antibody. Where indicated, immunoprecipitation with anti-
FLAG conjugated agarose beads was performed to determine interaction 
between UBQLN1 and BCLb proteins. (A) STI-1/2 domains of UBQLN1 are 
required to interact with BCLb. (B) BCLbΔTM does not interact with UBQLN1. 
A functional transmembrane domain on BCLb is required for UBQLN1 to 
recognize and interact with it. (C) 293T cells expressing BCLbWT or 
BCLbΔTM with EV or FLAG-UBQLN1, were subjected to subcellular 
fractionation, followed by Western Blot analyses. Cells were fractionated 
into cytosolic (c) and membranes (m). VDAC1, a membrane bound protein, 
and Tubulin, a cytoplasmic protein were used to document the validity of the 
fractionations. UBQLN1 does not interact with BCLbΔTM and therefore, does 
not alter the location of BCLbΔTM, as it is unable to recognize it. (Data are 
from one experiment). 
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Interaction of UBQLN1 with BCLb is independent of ubiquitination of BCLb 

We showed above that the UBA domain which interacts with ubiquitin is dispensable 

for interaction of UBQLN1 with BCLb. BCLb has 4 lysines that can be potentially 

ubiquitinated (16) and therefore, we investigated whether ubiquitination of BCLb 

played a role in its interaction with UBQLN1. We generated a construct of BCLb 

(BCLbK0) in which all 4 lysines were mutated to arginine. We tested whether BCLbK0 is 

capable of being ubiquitinated and whether UBQLN1 interacts with non-ubiquitinated 

BCLb. Cells were transfected with BCLbWT, lysine-less BCLb (BCLbK0), HA-

UbiquitinWT, lysine-less Ubiqutin (HA-UbiquitinK0) and FLAG- UBQLN1. Where 

indicated, immunoprecipitation with either anti-FLAG or anti-HA conjugated beads was 

performed to determine UBQLN1- or Ubiquitin-interacting complexes, respectively as 

previously shown. BCLbWT gets mono- ubiquitinated on several of its lysine residues 

as observed by the ladder-like pattern of ubiquitination in BCLbWT in the presence of 

UbiquitinWT. BCLbK0 does not get ubiquitinated. Non-ubiquitinated BCLbK0 also fails to 

be pulled down with anti HA-Ubiquitin antibody. Immunoprecipitating with anti-FLAG 

beads showed that UBQLN1 interacts with both BCLbWT and BCLbK0 implying that 

UBQLN1 interacts with BCLb in its ubiquitinated (BCLbWT) and non- ubiquitinated 

(BCLbK0) forms. These data indicate interaction of UBQLN1 with BCLb is independent 

of ubiquitination of BCLb. 
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Figure 5: Interaction of UBQLN1 with BCLb is independent of 
ubiquitination of BCLb.  
(A) Schematic of mono-ubiquitination on BCLb. Lysine residues are 
not mapped, picture is for representation purposes only. (B) 
Schematic of poly-ubiquitination of BCLb. Lysine residues are not 
mapped, picture if for representation purposes only.  (C) 293T cells 
were transfected with BCLb (MIG-BCLbWT), lysine-less BCLb (MIG-
BCLbK0), wild-type Ubiquitin (HA-UbWT), lysine-less Ubiquitin (HA-
UbK0), and FLAG-UBQLN1WT. Forty-eight hours post transfection, 
cells were lysed and Western Blot analyses were performed with the 
indicated antibody. Where indicated, immunoprecipitation with either 
anti-FLAG or anti-HA conjugated agarose beads was performed to 
determine FLAG-UBQLN1 or HA-Ubiquitin interacting complexes, 
respectively. BCLb gets ubiquitinated on its lysine residues as seen 
by failure to pull down BCLbK0 by HA-Ubiquitin. UBQLN1 interacts 
with both BCLbWT and BCLbK0 implying that UBQLN1 interacts with 
ubiquitinated (WT) and non-ubiquitinated (K0) BCLb as observed by 
the ladder-like pattern of ubiquitination in BCLbWT in the presence of 
HA-Ubiquitin. Note; HA-tag adds ∼1 kDa to the molecular weight of 
Ubiquitin. (Data are from one experiment). (D) Schematic showing 
UBQLN1 primarily interacts with BCLb through its STI domains and there 
may exist a secondary association between UBQLN1’s UBA domain and 
ubiquitin conjugated on BCLb 
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Ubiquilin1 stabilizes BCLbWT after translational and proteasomal inhibitionWe 

We have previously shown (16) that BCLb gets completely degraded within 16 hours 

after blocking new protein synthesis by CH. However, in the presence of UBQLN1WT, 

it is stabilized and protected from degradation. We wanted to determine whether 

ubiquitination of BCLb plays a role in its stability. Cells were transfected with BCLbWT 

or BCLb engineered to lack all its four lysine residues (BCLbK0) or empty vector (EV). 

Cells were treated with the indicated translational (CH) and proteasomal (MG132, 

Epoximide, Bortezomib) inhibitors for 16 hours. GFP is used as an expression control 

since GFP is expressed from the same mRNA as BCLb following an internal ribosomal 

entry sequence. (Fig.7A). BCLbWT was completely degraded in the presence of CH for 

16 hours while BCLbK0 expression was completely stable. This may indicate that CH 

induced degradation of BCLbWT is dependent on its lysines and therefore its 

ubiquitination, whereas degradation induced by proteasomal inhibition is independent 

of ubiquitination. UBQLN1 was co- transfected with BCLbWT or BCLbK0 to test its effect 

on BCLb stability (Fig. 7B). Presence of UBQLN1 stabilized expression of BCLbWT 

following both translational inhibition and proteasomal inhibition. Thus, UBQLN1 

generally stabilizes BCLbWT. Furthermore, UBQLN1 also stabilizes BCLbK0 from 

proteasome inhibition- induced degradation. Immunoprecipitating with FLAG antibody 

demonstrated that UBQLN1 interacted with both BCLbWT and BCLbK0 under conditions 

of proteasomal inhibition by MG132 or translational inhibition by CH, implying that 

primary interaction with BCLb is not lysine mediated (Fig. 7B). We then tested the 

effect of deletion constructs of UBQLN1 on stability of BCLbWT (Fig.7C). UBQLN1DUBA 

interacts with BCLb, but fails to prevent loss of BCLbWT when exposed to CH. We 

conclude that interaction of UBQLN1 with ubiquitin is dispensable for interaction with 

BCLb, but secondary interaction with ubiquitin on substrates is essential for its 

stabilization. As the transmembrane domain of BCLb is required for interaction with 

UBQLN1, we tested its stability under similar conditions and found that by itself 
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BCLbDTM is less stable than BCLbWT. However, an interesting observation is that BCLb 

lacking the transmembrane domain is the only construct that is stabilized following 

inhibition of the proteasome by MG132. Further, presence of UBQLN1 doesn’t not alter 

stability of BCLbDTM (Fig. 7D), as it is unable to interact with it. Therefore, interaction 

between UBQLN1 and BCLb is independent of ubiquitination of BCLb but is required 

for stabilization of BCLb. 
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Figure 6: Schematic of mechanism of stabilization of BCLb by UBQLN1.  
(A) Steady state expression of BCLb molecules in cells. BCLb is distributed in the 
cytoplasm and anchored in the mitochondrial outer membrane. (B) BCLb protein 
expression is lost within 16 hours of blocking new protein synthesis or blocking 
the proteasome. (C) When UBQLN1 is overexpressed, loss of BCLb due to 
mechanisms in B, is prevent and BCLb expression is stabilized overall. (D) 
UBQLN1DUBA cannot prevent loss of BCLb as UBQLN1WT.  
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Figure 7: UBA domain of UBQLN1 is responsible for stabilization of 
BCLbWT.  
293T cells were transfected with MIG-BCLbWT, MIG-BCLbWT, MIG-BCLbΔTM, 
FLAG-UBQLN1WT, domain deletion constructs FLAG-UBQLN1112X and 
FLAG-UBQLN1ΔUBA as indicated. 36 hours post transfection, cells were 
treated with the indicated inhibitor for 16 hours; vehicle (-), translational 
elongation inhibitor Cycloheximide (CH) and proteasomal inhibitors MG132 
(MG), Epoximicin (Epoxi.) and Bortezomib (Bortez.). Cells were lysed and 
Western Blot analyses were performed with the indicated antibody. (A) 
Stability of BCLbWT and BCLbK0 was tested in the presence of UBQLN1, 
when exposed to the indicated inhibitors for 16 hours. (B) Experiment was 
performed as in A but in the presence of UBQLN1. As seen in A, expression 
of BCLbWT is lost upon exposure to CH for 16 hours, but in the presence of 
UBQLN1, it is stabilized. Loss of BCLbWT seen with proteasomal inhibitors 
is also rescued by the presence of UBQLN1. UBQLN1 also prevents loss of 
BCLbK0 seen with MG132. (C) Experiment was performed as in A in the 
presence of CH and domain deletion constructs of UBQLN1 and we 
mapped the UBA domain to be responsible for stabilizing BCLbWT. Both 
UBQLN112X and UBQLN1ΔUBA failed to prevent loss of BCLbWT. (D) Stability 
of BCLbΔTM was tested similar to BCLbWT and BCLbK0. BCLbΔTM is generally 
less stable than BCLbWT and presence of UBQLN1 does not alter its 
expression. (These experiments were performed twice). 
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IGF1R, ESYT2 and BAG6 are newly identified substrates of UBQLN1. Interaction 

of UBQLN1 with IGF1R and ESYT2 is STI-mediated while with BAG6 and PSMD4 

is UBL-mediated 

We characterized the nature of interaction between UBQLN1 and BCLb using BCLb 

as a model substrate. We wanted to determine if these interaction characteristics could 

be generalized to other substrates of UBQLN1. Our IP/MS data (not shown) identified 

insulin-like growth factor 1 receptor (IGF1R), a cell surface receptor tyrosine kinase, 

Extended Synaptogammin-2 (ESYT2), a calcium regulated intrinsic membrane protein 

and BAG6, a protein involved in proteasomal degradation machinery of misfolded 

proteins, as potential interacting partners of UBQLN1. We mapped the interaction of 

UBQLN1 with IGF1R and ESYT2 to the STI domains and BAG6 and PSMD4 (or S5a, 

26S proteasomal subunit and known interacting partner of UBQLN proteins) to the 

UBL domain (Fig. 8A). Like with BCLb, STI domains of UBQLN1 are required for 

interaction with IGF1R and ESYT2 as UBQLN1112X missing the STI domains is unable 

to interact with these 2 substrates. Interaction of UBQLN1 with BAG6 and PSMD4 is 

purely UBL mediated as detected with all 3 constructs, UBQLN1WT, UBQLN1112X and 

UBQLN1DUBA that have the UBL domain intact. Like BCLb, UBQLN1 interacts with 

IGF1R and ESYT2 via its STI domains but needs the UBA domain to stabilize it after 

proteasomal inhibition 

Once we identified additional substrates that interact with different domains of 

UBQLN1, we wanted to determine substrate stability with specific interaction domains 

(Fig. 8B). We performed stability experiments with IGF1R, ESYT2, PSMD4 and BAG6 

as we did with BCLb. Cells were transfected with empty vector (EV), UBQLN1WT, 

UBQLN1112X or UBQLN1DUBA and exposed to CH or MG132 for 48 hours. Our results 

show that IGF1R expression decreased in the presence of CH, which blocks new 

protein synthesis. IGF1R expression also decreased in response to proteasomal 

inhibition by MG132, indicating that it is being degraded through proteasomal-
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independent pathways (Fig. 8C). In the presence of UBQLN1DUBA, degradation of 

IGF1R through these non-proteasomal pathways seemed to be accelerated indicating 

that the presence of UBA domain prevents the loss of expression of IGF1R with 

MG132 exposure. We found strikingly similar data when we tested stability of another 

membrane protein ESYT2. UBQLN1DUBA failed to prevent loss of IGF1R and ESYT2 

under proteasomal blockade suggesting that the UBA domain of UBQLN1 is essential 

in stabilizing IGF1R and preventing its degradation through non-proteasomal 

pathways. PSMD4 and BAG6 levels seemed steady and unchanging under both CH 

and MG132 exposure and the presence of UBQLN1WT, UBQLN1112X or UBQLN1DUBA 

did not alter their expression suggesting that substrate interactions of UBQLN1 that 

are UBL mediated, are not stabilized as a result of their interaction.  
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Figure 8: Fate of substrates targeted by UBQLN1 is dependent on 
interaction of the substrate with specific domains of UBQLN1.  
(A) 293T cells were transfected with FLAG-tagged UBQLN1 (MIG-PLIC1) 
and an empty vector control (EV) followed by immunoprecipitation and 
analysis by mass spectrometry. The data from one representative 
experiment is shown. The number of unique peptides identified for each 
UBQLN1-interacting protein is shown. (B) 293T cells were transfected with 
FLAG-tagged deletion constructs of UBQLN1 followed by 
immunoprecipitation by FLAG antibody and Western Blot analysis. Like 
BCLbWT, STI domains of UBQLN1 are required to interact with IGF1R and 
ESYT2 as UBQLN1112X missing the STI and UBA domains do not interact 
with these two substrates. UBQLN1WT, UBQLN1112X, and 
UBQLN1ΔUBA interact with both PSMD4 and BAG6 indicating that this 
interaction is UBL mediated. (C) Stability of IGF1R, ESYT2, PSMD4, and 
BAG6 were tested upon CH and MG132 exposure for 48 h as with BCLb in 
Fig. 4. In the absence of the UBA domain (UBQLN1ΔUBA), IGF1R and ESYT2 
expression are lost upon proteasomal inhibition with MG132. PSMD4 and 
BAG6 expression are unchanged after 48 h of CH and MG132 and the 
presence of UBQLN1WT, UBQLN1112X, or UBQLN1ΔUBA does not affect their 
stability.(These experiments were performed twice). 
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UBQLN1 is capable of homodimerization through its STI-4 domains 

Several studies have reported that UBQLN1 is capable of homodimerizing (19) 

and UBQLN2 heterodimerizes with UBQLN4 (20). Feng (15) and Ford (19) showed 

that the middle region with STI domains is responsible for dimerization while other 

studies suggest a UBL-UBA dependent interaction. We investigated the presence of 

UBQLN1 dimers and determined if it is capable of interacting with substrates in its 

dimerized state. Cells were transfected with empty vector (EV), FLAG-UBQLN1WT or 

deletion constructs of FLAG-UBQLN1WT and MYC-UBQLN1WT. Results show MYC-

UBQLN1 was pulled down when we immunoprecipitated FLAG- UBQLN1 and the STI 

domains located between amino acid 112 and 542 in UBQLN1 are required for this 

interaction to take place (Fig. 9A). We mapped this interaction specifically to the STI-

4 domain (Fig. 9B). Our data do not indicate a UBL- UBA interaction, as recently 

suggested (18). These data indicate that FLAG-UBQLN1 and MYC-UBQLN1 

associate with each other. However, whether this complex is between 2 or more 

molecules of UBQLN1 cannot be answered by these data. It is possible that UBQLN1 

participates in a multimeric complex with other molecules of UBQLN1 or its isoforms. 

Next, we investigated if interaction with substrate disrupted UBQLN1 dimers (Fig. 9C). 

Results show that endogenous substrates of UBQLN1 (IGF1R; lanes 2,6,7) or 

introducing exogenous substrates (BCLb and IGF1R; lanes 7 and 8 respectively) do 

not alter the amount of dimerized UBQLN1 protein as witnessed by a consistent 

amount of MYC-UBQLN1 being pulled down with FLAG-UBQLN1. This suggests that 

the dimers do not need to be disrupted for interaction with substrates.  
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Figure 9: UBQLN1 is capable of homodimerization through its STI-
4 domains 
UBQLN1 dimerizes via its STI-4 domains. A total of 293T cells were 
transfected with empty vector (EV), MYC-UBQLN1WT, FLAG-
UBQLN1WT, domain deletion constructs of UBQLN1 MYC-
UBQLN1WT as indicated. Forty-eight hours post transfection, cells were 
lysed and Western Blot analyses were performed with the indicated 
antibody. Where indicated, immunoprecipitation with anti-FLAG 
conjugated agarose beads was performed to determine interaction. (A) 
FLAG-UBQLN1WT interacts with MYC-UBQLN1 and the STI domains 
located between amino acid 112 and 542 are required for this interaction 
to take place. (B) Domain deletion constructs map the dimerization to 
the STI-4 domain. (C) The level of dimerization of UBQLN1 proteins 
remain unchanged in the presence of endogenous substrates (IGF1R; 
lanes 2,6,7) and introducing exogenous substrates (BCLb and IGF1R; 
lanes 7 and 8, respectively). (These experiments were performed twice). 
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DISCUSSION 

In this study we aimed to identify characteristics of UBQLN1-substrate 

interaction that lead to proteostasis of the substrate. Using BCLb as a model substrate, 

our data challenge the dogma that the primary function of UBQLN1 is to facilitate 

degradation of misfolded proteins. We undertook a systematic approach to investigate 

indicators of stabilization of BCLb as a substrate of UBQLN1.  

`First, we investigated whether diverse ubiquitin linkages on proteins that 

interact with UBQLN1 play a role in its proteostasis. We used domain deletion 

constructs of UBQLN1 and confirmed that its UBA domain associates with ubiquitin 

(Fig. 3B,C). Further, we found no difference in the type of ubiquitin linkage recognized 

by the UBA domain when we overexpressed HA-Ubiquitin constructs capable of 

forming K33, K48, K63 poly-ubiquitin chains as well as mono-ubiquitinating substrates 

(Fig. 3D). Our data complement findings by Zhang et al (17) that the UBA domain of 

UBQLN1 binds to both monomeric ubiquitin as well as poly-ubiquitin chains. Feng et 

al (15) also reported that the UBA domain is capable of interacting with poly-ubiquitin 

chains but did not test for interaction with monomeric ubiquitin. We have previously 

shown that BCLb lysine residues get mono- ubiquitinated and van de Kooji et al (21) 

showed that one out of its 4 lysines, K128 residue on BCLb is capable of forming K48 

poly-ubiquitin chains which signals BCLb for proteasomal degradation. Our data 

indicate that the UBA domain non-selectively interacts with ubiquitin on BCLb, 

prevents binding of additional ubiquitin molecules that signal BCLb for proteasomal 

degradation (Fig. 3,4,7). Thus, unlike K48 ubiquitination, which specifically signals for 

degradation or K63 ubiquitination, which signals for trafficking, the ubiquitin code on 

UBQLN1’s substrates does not decide its fate. To further understand the 

characteristics of UBQLN1-BCLb interaction, we mapped the location of their 

interaction on both proteins. We identified the STI-1/2 domains on UBQLN1 and 

transmembrane domain (TM) of BCLb as essential for this association to take place 
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(Fig. 4A,B). UBQLN1 most likely recognizes the TM domain as BCLb is being 

translated and binds to it, stabilizing BCLb in the cytoplasm. We performed several 

stability experiments of BCLb in the presence of translational and proteasomal 

inhibitors (Fig. 7). BCLbWT is degraded completely following 16 hours of cycloheximide 

(CH) treatment. UBQLN1 prevents loss of BCLb implying that their physical interaction 

protects BCLb from degradation. In the presence of CH, UBQLN1DUBA interacts with 

BCLb via its STI-1/2 domains (Fig. 4A) but fails to stabilize it (Fig. 7C) indicating that 

the UBA domain is required to stabilize BCLb. Lysine-less BCLb (BCLbK0) is more 

stable than BCLbWT at 16 hours post cycloheximide treatment as our group (2009) and 

van de Kooji et al in 2013 have previously shown. Added stability of BCLbK0 over 

BCLbWT suggests that degradation is dependent on its lysines and therefore, likely its 

ubiquitination. van de Kooji et al showed that BCLb gets K48 poly-ubiquitinated on its 

K128 residue, which signals BCLb for proteasomal degradation. We hypothesize that 

when UBQLN1 is overexpressed, its UBA domain acts as a ubiquitin receptor and 

blocks chain elongation past mono-ubiquitination, thus preventing formation of K48 

ubiquitin chains and degradation.  

We tested whether UBQLN1-induced stability observed with BCLb could also 

be a phenomenon for other substrates of UBQLN1. Our IP/MS data (not shown) and 

IP/WB data (Fig. 8A) indicate that UBQLN1 interacts with insulin-like growth factor 1 

receptor (IGF1R) and Extended Synaptogammin-2 (ESYT2) and like BCLb, it interacts 

with these 2 membrane proteins through its STI domains. We tested stability of IGF1R 

and ESYT2 (Fig. 5B) under similar conditions as with BCLb (Fig. 7). Upon blocking the 

proteasome with MG132, IGF1R and ESYT2 expression is lost and most likely due to 

degradation via proteasomal-independent pathways. However, in the presence of 

UBQLN1, its loss is prevented. UBQLN1112X and UBQLN1DUBA, both missing the UBA 

domain, fail to protect IGF1R and ESYT2 from degradation. We found that as with 

BCLb, the UBA domain of UBQLN1 is responsible for stabilizing IGF1R and ESYT2.  
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Recently, Suzuki et al (22), 

showed that UBQLN4 is a 

component of the multi-protein 

proteasomal machinery complex 

involving BAG6 and is responsible 

for recognition of the exposed 

transmembrane domains of newly 

synthesized defective polypeptides, 

eventually leading to their 

proteasomal degradation. We 

found that BAG6 interacts with the 

UBL domain of UBQLN1 and also confirmed PSMD4 to be an interacting partner of 

UBQLN1 (Fig. 8A). As UBL-interacting substrates of UBQLN1, we examined whether 

UBQLN1 binding affects stability of PSMD4 and BAG6 (Fig. 8B). We tested this under 

similar conditions as with BCLb, IGF1R and ESYT2 and found that UBQLN1 does not 

regulate proteostasis of PSMD4 and BAG6 (Fig. 8B). We detected no differences in 

the stability of PSMD4 and BAG6 in the presence UBQLN1WT, UBQLN1112X and 

UBQLN1DUBA when treated with translational or proteasomal inhibitors.  

 Several studies have addressed the role of UBA domain of UBQLN1 in 

stabilizing proteins. Mah et al (14), showed that the UBA domain of UBQLN1 binds 

Presenilin1 (PSEN1) and Presenilin2 (PSEN2) proteins. Massey et al (13) confirmed 

that the UBA domain binds PSEN1/2 and stabilizes these proteins by preventing its 

poly-ubiquitination and proteasomal degradation. Haapaslo et al (23) found that 

overexpression of UBQLN1 stabilized higher molecular weight PSEN1, preventing its 

proteasomal enodproteolysis into smaller N-terminal fragment (NTF) and C-terminal 

	
 
Figure 10: Schematic showing domains of 
substrates UBQLN1 interacts with. 
Substrates with transmembrane domains 
(TM) such as BCLb, IGF1R, ESYT2 are 
stabilized as a result of their interaction. 
UBL-mediated interactions with PSMD4  
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fragment (CTF). Other substrates that have been reported to be stabilized by the UBA 

domain of UBQLN1 are p53 and IκBα. Overexpression of UBQLN1/2 prevented 

degradation of p53 by E6AP ubiquitin ligases and IκBα by SCFβTRCP ubiquitin ligase 

complex by blocking additional ubiquitination (24).  

Currently, there is little consensus on the working model of UBQLN1. Our data 

suggest that UBQLN1 is capable of forming dimers via its STI- 4 domain (Fig. 9A,B) 

and is active in its dimerized state as it continues to interact with exogenous BCLb as 

well as endogenous and exogenous IGF1R (Fig. 9C). Our dimerization data confirm 

the mapped location of dimerization shown by Feng (15) (region 441-589) and Ford 

(19) referring to the STI-4 domain (Fig. 9B) as middle regions, i.e. not the N-terminal 

UBL or C-terminal UBA. Hjerpe et al (20) suggest that when not associated with 

substrates, UBQLN2 exists in a UBL-UBA conformation or in an inactive resting state. 

They hypothesize that UBQLN1 opens up and adopts a monomer form to execute its 

function. The UBL-UBA dimer hypothesis subsists because the UBL domain is 

essentially like the ubiquitin molecule, but this domain shares only 4 lysines (K6, K11, 

K27, K48) out of 7 (other three – K29, K33, K63) found in a ubiquitin molecule which 

may contribute to its decreased affinity for the UBA domain. The UBL domain of 

UBQLN1 has been shown to interact with proteins involved in the proteasomal 

	
Figure 11: Current Model: UBQLN1 interacts with substrates through the UBA 
domain and with the proteasome through the UBL domain, directing it for 
degradation.  
Proposed Model:  UBQLN1 interacts with transmembrane proteins through its 
STI domains and secondary association through the UBA domain which stabilizes 
it and prevents its untimely loss. 
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machinery and not just UBA containing proteins. hHR23a is a UBL- UBA protein in this 

class that adopts a closed conformation due to a UBL-UBA interaction When UBL of 

hHR23a binds to the proteasomal subunit S5a, the closed conformation is disrupted 

(25). However, hHR23a has a UBL domain with 11 lysines and 2 UBA domains and 

an XPC region for DNA excision repair. Functionally and location wise, UBQLN1 is 

different from hHR23a. UBQLN1 is a largely cytosolic protein, its UBL domain has 

fewer lysines and one UBA domain and it is probably ill advised to compare functional 

dynamics of UBQLN1 to another UBL-UBA protein.  

Current model of UBQLN1 suggests that UBA domain of UBQLN1 binds to 

poly-ubiquitin chains of substrate and shuttles it to the proteasome via its UBL domain 

for degradation (Fig. 11). Our data indicate that UBQLN1 is capable of interacting with 

substrates via STI domains (BCLb, IGF1R, ESYT2), UBL domain (PSMD4, BAG6), 

and UBA domain (ubiquitin). Kleijnen et al (26) showed that not only the UBL domain 

but also UBA domain on UBQLN2 is capable of directly binding to the S5a cap of the 

proteasome. The ability of the UBA domain to bind the proteasome is unique to UBQLN 

proteins as UBA domain of c-CBL is unable to bind to the proteasome (26). Therefore, 

it is possible that the role of UBQLN1’s UBA domain is to bind to ubiquitin on substrates 

and shield them from being recognized for degradation. The UBA domain of UBQLN1 

is a highly-conserved region across different species and across different isoforms of 

UBQLN1 protein (UBQLN1-4, UBQLNL). For over a decade, UBQLN1 has been 

shown to assist in degradation of proteins but our data suggest that UBQLN1 also 

stabilizes some proteins that it binds to, like BCLb, IGF1R and ESYT2. We propose a 

substrate-stabilization model of UBQLN1 (Fig. 11) such that primary association of 

UBQLN1 with substrate occurs through the STI domains and a secondary association 

through its UBA domain, which leads to stabilization of the substrate. We do not know 

whether primary associations through the UBL domain result in degradation of 

substrate but it does not appear to stabilize the substrates it binds to. We conclude 



	47	
	
	

that fate of substrates that UBQLN1 associates with, is interaction-domain specific. All 

3 interacting partners of UBQLN1 stabilized by the UBA domain are membrane 

proteins; BCLb – mitochondrial membrane protein, IGF1R – plasma membrane 

protein, ESYT2 – endoplasmic reticulum/plasma membrane protein (27). We identified 

the transmembrane domain of BCLb to be essential to be recognized by UBQLN1. 

Thus, it is a plausible hypothesis that UBQLN1 recognizes proteins with 

transmembrane domains via its STI domains and stabilizes them via its UBA domain.  

UBQLN1 is a known stress response protein and protects cells from heat shock 

and hypoxic stress (20) and it seems reasonable that UBQLN1 stabilizes crucial 

survival proteins like BCLb, IGF1R and p53 over others. Future work will involve 

characterizing the mechanisms involved in regulation of IGF1R expression and activity 

by UBQLN1 and investigating whether UBQLN1 can be targeted in disorders resulting 

from IGF1R dysregulation.   

	
Figure 12: Models of Interaction of UBQLN1 
This schematic shows hypothetical mechanisms of interaction of UBQLN1 
with its substrates through it’s individual domains. 
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CHAPTER 4 

INTRODUCTION 

Insulin-like Growth Factor-1 Receptor 

 IGF1R (Insulin-like Growth Factor-1 Receptor) is a receptor tyrosine kinase 

ubiquitously expressed on cell surfaces of all tissues. Ligand stimulation causes the 

receptor to transmit signals to stimulate cell proliferation, differentiation, survival and 

cellular metabolism. The transmembrane IGF receptors exist in the plasma membrane 

as preformed dimers. Known ligands of IGF1R are IGF-1 (highest affinity), IGF-2 and 

insulin and stimulate IGF1R to activate PI3-AKT and RAS-MAPK downstream 

pathways among others. IGF binding proteins 1-6 (IGFBPs) bind ligands and limit their 

bioavailability and binding to IGF1R (Kurlawala et al., 2017; Yarden, 2001). 

 The IGF pathway has been under investigation as an anti-cancer drug target 

for several decades since IGF1R expression was determined to be crucial for SV40 

large tumor antigen to transform mouse embryonic fibroblasts and its activity was 

discovered to stimulate proliferation in vitro (Sell et al., 1993). IGF1R over expression 

is associated with an increased risk of recurrence of non-small cell lung cancer 

(NSCLC)(Nakagawa et al., 2012). A meta-analysis of 17 studies comprising 3,294 

NSCLC patients concluded that expression of IGF1R positively correlated with 

patients’ smoking status, tumor size and negatively correlated with disease-free 

survival (S. Zhao, Qiu, He, Li, & Li, 2014). Additionally, autocrine and paracrine 

production of IGF1 has been linked to an increased risk of development of breast, 

prostate, and colorectal cancers (Brahmkhatri, Prasanna, & Atreya, 2015; Vigneri et 

al., 2015).  

 Acromegaly or gigantism, an endocrinopathy associated with high circulating 

levels of IGF1 is associated with three times increased risk of developing colorectal
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 cancer (Renehan et al., 2003). In a contrasting condition called Laron dwarfism, 

patients have low circulating IGF1 levels and are resistant to development of cancer 

and diabetes (Laron, 2008).  

 The IGF1R gene does not harbor activating mutations like other receptor 

tyrosine kinases (EGFR and FGFR) and ligand independent activation of IGF1R is not 

known. Still, overexpression of IGF1R is a hallmark finding in lung cancer, malignant 

melanoma, primary breast cancer and pancreatic adenocarcinoma (Brahmkhatri et al., 

2015). This implies that alterations in expression and activity of IGF1R can result from 

anomalous mechanisms of autocrine and paracrine stimulation of receptor, hybrid 

assemblies of IGF receptors, abnormalities in other proteins that regulate its trafficking 

and turnover, and even epigenetic and transcriptional control (Grimberg, 2003). For 

example, mutations in c-Cbl, an E3 ligase, can dysregulate turnover of c-MET, another 

receptor tyrosine kinase, leading to persistent signaling even in the absence of 

receptor overexpression or activating oncogenic mutations (Peschard et al., 2001). 

Currently, the IGF1/IGF1R axis is a major target of research for cancer therapy. 

However, several pharmacological agents -monoclonal antibodies and small molecule 

inhibitors, targeting this axis have failed to show significant benefit on overall survival 

(Janssen & Varewijck, 2014). Unfortunately, expression of IGF1R does not always 

correlate with its cell surface expression and therefore it can be misleading to correlate 

its expression with expected response to therapy. This highlights the role of cellular 

and extracellular factors that modulate the activity of IGF1R directly or indirectly.  

We have identified UBQLN1 as a regulator of IGF1R expression and activity. 

The Ubiquilin family of proteins (UBQLN1-4, UBQLNL) are evolutionarily conserved 

structurally similar to each other. UBQLN1 is approximately a 63 kDa protein and has 

3 main domains: ubiquitin-like domain (UBL) at the N-terminus, ubiquitin-associated 

domain (UBA) at the C-terminus and STI-1 chaperone-like regions in the middle (Fig. 

1A). UBQLN1 interacts with IGF1R and its UBA domain is required to stabilize IGF1R 

expression (Kurlawala et al., 2017). UBQLN1 is lost and under-expressed in 50% of 
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lung adenocarcinomas and loss of either UBQLN1 or UBQLN2 promotes epithelial to 

mesenchymal transition (EMT) in lung adenocarcinoma cell lines (Shah et al., 2015). 

UBQLN1 is known to regulate other cell surface receptors like Presenilins (Mah et al., 

2000), GABAA receptors (Saliba et al., 2008; Y. Zhang et al., 2015) and nicotinic 

acetylcholine receptors (Ficklin et al., 2005). Here, we demonstrate that UBQLN1 

interacts with IGF1R, IGF2R and INSR and is essential for the normal expression and 

activity of IGF1R in lung adenocarcinoma cells.  

IGF1R Structure and Trafficking: The IGF1R is synthesized as an immature 

pro-receptor monomer that undergoes maturation though proteolysis and glycosylation 

to form dimers. IGF1 receptors are present on the cell surface as preformed dimers 

unlike EGFR that form dimers upon ligand binding (Figure 3). The β subunit consists 

of 627 amino acids, has a small extracellular portion, transmembrane portion and the 

intracellular C-terminal. The juxtamembranous region in the β subunit hosts the NPXY 

motif and the catalytic region. The NPXY motif participates in the process of receptor 

internalization while the catalytic region is crucial for ATP binding. Tyrosine 1131, 1135 

and 1136 in the intracellular tyrosine kinase domains are critical for receptor 

autophosphorylation. The intracellular domains hold crucial signals that decide the fate 

of receptor trafficking once it is activated. For example, even though overall there is 

70% amino acid homology between IGF1R and Insulin receptor, there is only 44% 

homology in their C-terminus sequence which dictates the differences in downstream 

signaling pathways and functions between the 2 receptors. The NPXY motif 

recognizes the phosphotyrosine binding domains (PTB) of IRS proteins and SH2 

proteins (Figure 4). The IRS proteins (IRS 1-4) undergo full activation within 1-2 mins 

and Shc protein within 5-10 mins of ligand binding to IGF1R (Girnita et al., 2014). IRS 

proteins interact with IGF1R on the cell surface through their pleckstrin homology 

domains (PH) and PTB domains are present in their N-terminus. The C-terminus 

region of IRS proteins are variable and control the variety of interactions with other 

signaling molecules. The C-terminal of IRS proteins have a high affinity for proteins 
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that have an SH 2 domain like PI3K, Grb2, SH-PTP2 (phosphatase), adaptor proteins 

like CRK, NCK1 which act as docking proteins for interaction of IGF1R with other 

proteins like β1 integrins on the cell surface.  Like IRS proteins, SHC proteins (SHC A-

D) also consist of a PTB domain at their N-terminal and a SH2 domain at their C-

terminal and interact with proteins in a similar fashion. These domains, their 

characteristics and the interactions they are capable of control further trafficking events 

of the activated receptor. Internalization of IGF1R is known to occur through clathrin 

mediated endocytosis (CME) and also through caveolin-mediated endocytosis at high 

levels of IGF1 (Goh & Sorkin, 2013). Internalized RTK’s in early endosomes proceed 

to late endosomes and continue to send signals through their C-terminus in the 

cytoplasm. In the late endosome, the RTK either gets recycled back to the plasma 

membrane through a recycling endosome or gets degraded via lysosomal or 

proteasomal pathways (Figure 5). Multi-protein complexes called Endosomal Sorting 

Complex Required for Transport (ESCRT) are critical for cellular transport of activated 

receptors (Goh & Sorkin, 2013). These processes occur by systematic co-operation of 

a variety of adaptor proteins and in absence of an interacting partner can potentially 

disturb trafficking and alter biological consequences. Ubiquitin interacting motif (UIM) 

containing adaptor proteins like Epsin, Eps15, Eps15R recognize ubiquitin on RTKs, 

bind to clathrin and AP2 simultaneously and are critical for clathrin mediated 

endocytosis (CME) of some RTKs like EGFR (Figure 6). The NPXY motif not only 

regulates internalization of IGF1R but also its downregulation. All RTKs possess a 

ubiquitin binding motif and ubiquitination has been well established as a crucial 

regulatory process of RTK trafficking. Ubiquitin is a small protein (7 kD) that is added 

to IGF1R in 3 consecutive steps via the E1, E2 and E3 ligases. The first two enzymes, 

E1 and E2 work to load the last enzyme E3 on to IGF1R to add ubiquitin molecules on 

the receptor. IGF1R is a known substrate of three E3 ligases:  Mdm2 (Girnita, Girnita, 

& Larsson, 2003)  Nedd4 (Vecchione, Marchese, Henry, Rotin, & Morrione, 2003) and 

c-Cbl (Sehat, Andersson, Girnita, & Larsson, 2008).  Ubiquitination of IGF1R occurs 
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before entering the endocytic vessels during internalization (Vecchione et al., 2003). 

Mdm2 poly-ubiquitinates IGF1R with K63-type chains and β-arrestins have been 

identified as crucial adaptor proteins to recruit Mdm2 to IGF1R (Girnita et al., 2005). 

Similarly, Grb10 is a key adaptor protein that recruits Nedd4 to IGF1R which multi 

mono-ubiquitnates the receptor (Vecchione et al., 2003). At higher doses of IGF1, c-

Cbl poly-ubiquitinates IGF1R with K48-type chains. Mdm2 recruitment favors 

stimulation of MAPK over PI3K pathways. Like IGF1R, EGFR is also poly-ubiquitinated 

with K63-type chains (Huang, Kirkpatrick, Jiang, Gygi, & Sorkin, 2006). K48 poly-

ubiquitination signals target substrates for proteasomal degradation while K63 mono- 

and poly-ubiquitination are recognized by other proteins through their ubiquitin binding 

domains (UBD) and activate enzyme cascades like kinases, phosphatases, 

phospholipases and so on that feed into and activate multiple downstream pathways 

like PI3K/AKT, RAS/MAPK, metabolic pathways and others (Adhikari & Chen, 2009; 

Varadan et al., 2004). Ubiquitination is a major molecular signal responsible for 

endocytic sorting such that ubiquitination of IGF1R is essential for its internalization 

while is not for other RTKs like EGFR and FGFR2. However, degradation of these 3 

RTK’s is highly dependent on their ubiquitin-conjugation (Haugsten, Malecki, 

Bjorklund, Olsnes, & Wesche, 2008; Huang et al., 2006; Mao et al., 2011). Previously, 

we have reported that UBQLN1 interacts with IGF1R and UBQLN1’s UBA domain is 

required to stabilize it. We have also published that UBQLN1 is lost and under-

expressed in 50% of lung adenocarcinomas and loss of either UBQLN1 or UBQLN2 

promotes epithelial to mesenchymal transition (EMT) in lung adenocarcinoma cell lines 

(Shah et al., 2015). Here, we demonstrate that UBQLN1 interacts with IGF1R, IGF2R 

and INSR and is essential for their normal expression and activity.  
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Figure 14: IGF1R signaling pathways. Adapted from Girnita et 
al, 2014. Upon activation by ligand IGF1, there is 
phosphorylation of intracellular tyrosine kinase domains of 
IGF1R.  The activated receptor phosphorylates IRS and Shc 
proteins as its first substrates, which further activate other 
proteins like GRB2, SOS and so on. Broadly, IGF1R leads to 
activation of 2 major kinase cascades - RAS/MAPK and PI3/AKT 
pathways (Girnita et al., 2014) 

 

 
Figure 13: Schematic of structural domains of IGF1R 
Receptor tyrosine kinases have an extracellular domain that 
binds to and is activated by ligand, a transmembrane domain 
spanning across the plasma membrane and an intracellular 
domain bearing multiple tyrosine residues that undergo auto- 
and trans- phosphorylation. The above schematic is of the 
receptor tyrosine kinase IGF1R that is present on the plasma 
membrane as a preformed homodimer held together by disulfide 
bonds as shown. Each part of the dimer consists of the α and β 
subunits. 
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Figure 15: IGF-1R structure–function relationship. Adapted 
from(Girnita, Worrall, Takahashi, Seregard, & Girnita, 2014) This map 
depicts location of amino acid residues in IGF1R and their functions, their 
binding partners and posttranslational modifications (PTMs) at these 
amino acid residues. 
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Figure 16: Endocytic Trafficking of RTK 
Adapted from Goh & Sorkin (Goh & Sorkin, 2013). This figure 
shows 2 pathways of endocytosis of ligand bound RTK: clathrin 
mediated and calveolin mediated. The internalized receptor in 
clathrin-coated vesicles (CCV) is transported to the early 
endosome (EE) to the sorting endosome (SE) or the 
mutivescicular body (MVB) and from here either to the recycle 
endosome to be recycled back to the plasma membrane or 
degraded in the lysosomal endosome (LE). 

	
Figure 17: Schematic of clathrin-mediated endocytosis of 
EGFR. Adapted from Madshus et al (Madshus & Stang, 2009)  
Phosphorylated RTK and activates tyrosine kinases facilitating 
binding of an E3 ligase Cbl to the C-terminal of the RTK, or 
indirectly via an adaptor protein Grb2. Poly-Ub chains added by 
Cbl interact with Ub-interaction motifs (UIMs) of Epsin-1 and 
Eps15 which act in co-ordination with other proteins (not shown) 
and subsequently cause invagination of the plasma membrane 
and form a clathrin-coated vesicle 
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RESULTS 

UBQLN1 interacts with IGF1R, IGF2R, and INSR 

We recently demonstrated that UBQLN1 interacts with IGF1R and UBQLN1’s UBA 

domain is required to protect IGF1R from MG132 (proteasomal inhibitor) mediated 

degradation (Kurlawala et al., 2017). Fig.18A shows the schematic of UBQLN1. We 

confirmed endogenous interaction between UBQLN1 and  IGF1R by 

Immunoprecipitation/Western Blot (IP/WB) analysis (Fig. 18B,C). In addition to IGF1R, 

UBQLN1 also interacts with IGF2R and INSR. We used IGF1R as a model receptor for 

future experiments. To determine IGF1R and UBQLN1 co-localize in cells, FLAG-

UBQLN1 was overexpressed in HEK 293T cells followed by immunofluorescence (Fig. 

18D). After adjusting for image saturation by JACop plugin of ImageJ software analysis, 

33.5% of FLAG-UBQLN1 was determined to overlap with endogenous IGF1R, calculated 

by the Costes method and Mander’s correlation coefficients. These immunofluorescence 

data imply that a fraction of total UBQLN1 in cells associates with IGF1R and support our 

recently published findings that UBQLN1 is available for interaction with other proteins 

and thus, is capable of participating in a variety of cellular processes (Kurlawala et al., 

2017).  
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Figure 18: UBQLN1 interacts with IGF1R: A) Schematic of structure of 
UBQLN1wt protein. N-terminal UBL (Ubiquitin-Like) domain, C-terminal UBA 
(Ubiquitin-Associated) domain and 4 STI-1 domains in between.  B) 
Immunoprecipitation (IP) of overexpressed FLAG-tagged UBQLN1 followed 
by mass spectrometry (MS) analysis to identify FLAG conjugated proteins. 
MIG is the empty vector used as a control for overexpression. IGF1R, IGF2R 
and INSR were some of the top interacting partners of UBQLN1. C) HEK-
293T cells were transfected with either control siRNA (siNT) or siRNA against 
UBQLN1 (siUBQLN1) to knock down UBQLN1 and empty vector (control) or 
FLAG-tagged UBQLN1 (FLAG-UBQLN1) to overexpress UBQLN1, followed 
by immunoprecipitation by UBQLN1 antibody and Western Blot analysis. 
Interaction was detected between endogenous UBQLN1 and IGF1R which 
was absent when UBQLN1 was absent (siUBQLN1) and slightly increased 
with UBQLN1 overexpression. (D) Confocal microscopy images of indirect 
immunofluorescence staining for FLAG-UBQLN1 (red) and IGF1R (green) in 
HeLa cells. Co-localization was determined for using JACop plugin of ImageJ 
software. Automatic threshold for images were determined by the Costes 
method and overlap coefficients (Mander’s Correlation Coefficients) were 
calculated. For the chosen field, 33.5% of FLAG-UBQLN1 overlaps with 
IGF1R. (Experiments were performed twice) 
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UBQLN1 interacts with pro-form, phosphorylated and non-phosphorylated forms of 

IGF1R  

Next, we mapped the domains of UBQLN1 required for interaction with IGF1R using a 

series of  domain deletion constructs previously described (Kurlawala et al., 2017). As we 

showed with another transmembrane protein BCLb (Kurlawala et al., 2017), we found that 

the STI1 and STI2 domains of UBQLN1 are crucial for interaction with IGF1R. We 

examined cellular distribution of these constructs (FLAG tagged UBQLN1WT, UBQLN1ΔUBL, 

UBQLN1ΔSTI-1 and UBQLN1ΔUBA) (Fig. 19A) in HEK 293T cells by immunofluorescence to 

confirm that overall distribution of UBQLN1 protein missing individual domains did not 

change  (Fig. 19A). All constructs of UBQLN1 showed uniform distribution in the cytoplasm 

and all were distinctly absent from nuclei and vacuoles. STI-1 and STI-2 domains are 

responsible for interaction with IGF1R (Fig. 19B). We conducted additional interaction 

studies with overexpressed UBQLN1 in serum-free conditions devoid of receptor ligands 

and stimulation with exogenous IGF1 (Fig. 19C). Interestingly, UBQLN1 interacts with 

phosphorylated IGF1R, detected when the receptor is stimulated with exogenous IGF1, 

and this interaction disappears when phosphorylation is inhibited by Linsitinib, a specific 

small molecule inhibitor of IGF1R activity. UBQLN1 also interacts with non-phosphorylated 

IGF1R as detected in cells devoid of receptor stimulation (serum-free media) as well as 

complete media, serum-free media supplemented with IGF1 and in the presence of 

Linsitinib. Additionally, UBQLN1 interacts with the larger, pro-form of IGF1R detected at 

135 kD (Fig. 19D). Based on our interaction data, we conclude that UBQLN1’s  association 

with IGF1R is independent of its phosphorylation status and it appears that UBQLN1 is 

recruited to the receptor from the time of its synthesis.		
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Figure 19: UBQLN1 interacts with pro-form, phosphorylated and non-
phosphorylated forms of IGF1R  
(A) HEK 293T cells were transfected with FLAG-UBQLN1ΔUBL, FLAG-UBQLN1ΔSTI-

1 and FLAG-UBQLN1ΔUBA constructs followed by indirect immunofluorescence of 
FLAG-UBQLN1. UBQLN1WT is distributed in the cytoplasm of transfected cells and 
is absent from nuclei and vacuoles. UBQLN1ΔUBL, UBQLN1ΔSTI-1 and UBQLN1ΔUBA 

show similar cellular expression. (Experiment was performed once) 
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Figure 19: UBQLN1 interacts with pro-form, phosphorylated and non-
phosphorylated forms of IGF1R  
(B) HEK 293T cells were transfected with FLAG-tagged constructs of UBQLN1 
(in A) followed by co-immunoprecipitation and Western Blot analysis. STI-1 
and STI-2 domains of UBQLN1 are required for interaction with IGF1R. (C) 
HEK 293T cells were transfected with empty vector or FLAG-UBQLN1 and 
cells were cultured in complete media (COMPLETE) or serum-free media 
supplemented with IGF1 (SS, IGF1) or Linsitinib (SS, LINSITINIB), a small 
molecule inhibitor of IGF1R activity, followed by co-immunoprecipitation and 
Western Blot analysis. UBQLN1 interacts with phosphorylated and non-
phosphorylated IGF1R. (IGF1:50ng/ml, Linsitinib:1uM). (D) HEK 293T cells 
were transfected with empty vector or FLAG-UBQLN1 showed that FLAG-
UBQLN1 interacts with both immature pro-form of IGF1R at 130kD and 
mature, processed IGF1R at 100kD. (Experiments were performed twice).  
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UBQLN1 regulates expression and activity of IGF1R in lung adenocarcinoma cells. 

Following confirmation of interaction between UBQLN1 and IGF1R, we tested effects of 

loss of UBQLN1 on steady state expression of IGF1R in A549 cells, a non-small cell lung 

adenocarcinoma cell line. UBQLN1 protein expression was downregulated using two 

different siRNAs for UBQLN1 (U1 KD#1 and U1 KD#2). A549 cells were cultured in 2 

different conditions: serum-free media for 12 hours and serum-free media (12 hours) 

supplemented with IGF1 (6 hours). Cells were incubated with Cycloheximide for an hour 

before adding IGF1 to block de novo protein synthesis, to allow assessment of steady 

state expression of IGF1R. Post-stimulation, cells were harvested, lysed and analyzed by 

Western Blot for total and phosphorylated IGF1R expression levels. While total IGF1R 

expression was decreased in UBQLN1 deficient cells in both conditions (Fig. 20A), 

differences were more pronounced post-stimulation with IGF1. Phosphorylated IGF1R 

levels were undetectable in serum free media, however, post stimulation with IGF1, the 

ratio of phosphorylated to total IGF1R levels was greatly increased in siUBQLN1 cells (2.4 

and 2.2 times) compared to control (Fig. 20B).  
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Figure 20: UBQLN1 regulates expression and activity of IGF1R 
(A) Expression and activity of IGF1R were tested in A549 lung cancer cells 
following downregulation of UBQLN1 with two different siRNA (U1 KD#1 and 
U1 KD#2). Cells were serum starved (SS) overnight (12 hours), incubated 
with protein synthesis inhibitor Cycloheximide one hour prior to 
supplementing serum-free media with IGF1. 6 hours later, cells were 
harvested and lysed analyzed by Western Blot. UBQLN1 knock down cells 
showed decrease in total IGF1R expression compared to control in both 
conditions. Post-stimulation with IGF1, phosphorylated IGF1R levels were 
detected in both control and UBQLN1 deficient cells, however, the ratio of 
phosphorylated to total IGF1R levels was greatly increased in UBQLN1 
deficient cells (2.4 and 2.2 times compared to control) as seen in the 
densitometry graphs in (B). Data are normalized to non-targeting siRNA 
control in unstimulated cells. (Experiments were performed thrice). 
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Loss of UBQLN1 results in decreased cell surface expression of IGF1R 

Following Western Blot data that showed decreased total IGF1R expression in 

cells, saturation binding assays were performed to test if the overall decrease in 

total IGF1R expression also reflected as a decrease in receptor number on the cell 

surface. Radioligand binding assays were performed utilizing radioactive ligand 

(I125-IGF1) to test for differences in the number of binding sites (number of cell 

surface receptors) in HPL1D cells between UBQLN1 deficient cells and control 

(Fig. 21). In these experiments, HPL1D cells were transfected with UBQLN1 siRNA 

(siU1) or control (siNT) and 48 hours post-transfection, cells were incubated with 

increasing concentrations of the radiolabeled ligand (I125-IGF1) with the intention 

to saturate the receptors. The purpose of performing saturation binding assays 

was to determine the differences in maximum binding capacity Bmax (number of cell 

surface receptors) between UBQLN1 deficient cells and control. Plotting saturation 

curves showed that although the amount of radioactive ligand used did not saturate 

the receptors. Overall, number of cell surface IGF1 receptors were lower in 

UBQLN1 deficient cells while the Kd i.e. affinity is almost the same. Data are 

representative of one experiment. 
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 siNT siUBQLN1 

Bmax 
16542cpm 23149cpm 

9600.47 x 10-15 mmoles 13,434.89 x 10-15 

mmoles 
Receptors/cell 46.955 +/- 16.779 15.65 +/- 7.991 

Kd 0.061 +/- 0.0077 nmol/L 0.058 +/- 0.0035 nmol/L 

 
Figure 21: Loss of UBQLN1 results in decreased cell surface 
expression of IGF1R 
Specific Binding for I125-IGF1 for both control and UBQLN1 
deficient cells are graphed. The table represents the differences in 
Bmax, Kd and number of receptors in HPL1D cells that have loss 
of UBQLN1. Bmax values are representative of one experiment for 
graphing purposes but receptor number and Kd values are 
calculated as average +/- standard error of mean from 3 individual 
experiments.   Radioactivity was measured as counts per minute 
(CPM) in a Beckman gamma counter (efficiency=0.45). Specific 
activity of I125-IGF1 = 1870 Ci/mmol. (Experiment was performed 
thrice. Data are representative of one individual experiment). 
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Loss of UBQLN1 accelerates loss of IGF1R  

After confirming that UBQLN1 regulates protein expression and phosphorylation activity 

of IGF1R at 6 hours post-stimulation with IGF1 (Fig. 21A), we asked whether loss of 

UBQLN1 altered recycling of IGF1R. Therefore, we examined cells at shorter and longer 

time points after IGF1 stimulation. A549 cells with stable expression of shRNA against 

UBQLN1 and control were treated with Cycloheximide, an inhibitor of de novo protein 

synthesis and tracked the expression and activity of IGF1R after IGF1 stimulation. We 

examined shorter time points, at intervals of 30 minutes from 0 to 180 minutes (Fig. 22A) 

and longer time points up to 24 hours (Fig. 22B) after adding exogenous IGF1.  Overall, 

the pattern of phosphorylation of IGF1R between UBQLN1 deficient cells and control cells 

were almost identical. Based on our time points, IGF1R achieved peak phosphorylation 

by 30 minutes. While control cells maintained steady levels of total IGF1R throughout 180 

mins of stimulation, its expression started to decline in UBQLN1 deficient cells by 90 

minutes. This effect on IGF1R loss in UBQLN1 deficient cells was seen more clearly when 

we tracked receptor expression for 24 hours following IGF1 stimulation. While expression 

of IGF1R declined and begun to rise gradually in control cells, UBQLN1 deficient cells lost 

almost all IGF1R by 24 hours. Cycloheximide causes arrest of translational machinery 

thus preventing all new protein synthesis resulting from transcription. Therefore, it is likely 

that the increase in IGF1R expression observed in control cells is not due to increase in 

transcription but due to stimulation of Endoplasmic Reticulum (ER) and Golgi processing 

of pre-formed, already translated monomers to its mature dimerized form. UBQLN1 plays 

a role in stabilizing and assembling newly translated GABAA receptors in the ER (Saliba 

et al., 2008) and we hypothesize that it may do the same with IGF1R. Thus, it is possible 

that UBQLN1 deficient cells cannot replenish lost IGF1R like control cells do. 
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Figure 22:  Loss of UBQLN1 accelerates loss of IGF1R 
A549 cells expressing shRNA against UBQLN1 were incubated with 
Cycloheximide (20uM), an inhibitor of de novo protein synthesis to study loss of 
IGF1R expression in UBQLN1 deficient cells, post-stimulation with IGF1. Cells 
were harvested at the indicated time points and Western Blot analysis for 
phosphorylated and total receptor levels were performed and graphed. (A) 
Post-stimulation, cells were harvested at intervals of 30 mins from 0 to 180 
minutes Western Blot analysis were performed with the indicated antibodies. 
(B) Longer time points until 24 hours were examined post-stimulation with IGF1.  
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Loss of UBQLN1 inhibits recycling of IGF1R 

Since UBQLN1 deficient cells have accelerated loss of IGF1R, we studied whether 

UBQLN1 altered recycling and degradation of the receptor. We used Monensin, an 

ionophore that traps the internalized receptor within early endosomes and prevents their 

recycling back to the cell surface. With vehicle treatment (Fig. 23A), UBQLN1 deficient 

cells have faster loss of IGF1R when compared to control. With Monensin treatment (Fig. 

23B), expression of total IGF1R was parallel between control and UBQLN1 deficient cells.  

Interestingly, this pattern of IGF1R expression in Monensin treated cells imitated the 

pattern of IGF1R expression in vehicle treated UBQLN1 deficient cells. Based on these 

data, we conclude that loss of UBQLN1 has the same effect on IGF1R expression as 

Monensin does. This implies that loss of UBQLN1 may block recycling of IGF1R and cause 

accelerated degradation of internalized receptor trapped within endosomes.  
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Figure 23:  Loss of UBQLN1 inhibits recycling of IGF1R 
A549 cells expressing shRNA against UBQLN1 were serum starved for 12 hours, 
incubated with Vehicle (A) or Monensin (B), inhibitor of early endosomes for an 
hour prior to stimulation with IGF1 and harvested post-stimulation at the indicated 
time points. Western Blot analysis for phosphorylated and total receptor levels 
were performed and graphed in both control and UBQLN1 deficient cells. 
Densitometry of Western Blot images were performed using ImageJ and P-
IGF1R and T-IGF1R expression were normalized to Actin expression in control 
cells for each treatment. (Experiment was performed twice for Monensin but once 
for Vehicle. Data representative of one complete vehicle and Monensin 
experiment). 
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UBQLN1 does not play a role in IGF1R turnover through the proteasome 

We conducted a similar experiment by inhibiting the proteasome with Bortezomib. As seen 

in vehicle (Fig. 24A), UBQLN1 deficient cells have lower expression of IGF1R, while 

expression in control cells steadily increases. Inhibiting proteasomal degradation with 

Boretzomib (Fig. 24B) prolonged the phosphorylation of IGF1R compared to vehicles and 

caused an initial accumulation of total IGF1R in UBQLN1 deficient cells which is eventually 

lost probably due to recruitment of other degradation pathways like the lysosome. There 

are no gross differences between vehicle and Bortezomib treatment in both control and 

UBQLN1 deficient cells. Based on these data, we conclude that UBQLN1 may not play a 

role in IGF1R turnover through the proteasome.  
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Figure 24:  UBQLN1 does not play a role in IGF1R turnover through the 
proteasome 
A549 cells expressing shRNA against UBQLN1 were serum starved for 12 hours, 
incubated with Vehicle (A) or Bortezomib (B), a proteasomal inhibitor for an hour 
prior to stimulation with IGF1 and harvested post-stimulation at the indicated time 
points. Western Blot analysis for phosphorylated and total receptor levels were 
performed and graphed. Densitometry of Western Blot images were performed 
using ImageJ and P-IGF1R and T-IGF1R expression was normalized to Actin 
expression in control. Experiment was performed twice for Bortezomib but once for 
Vehicle. Data representative of one complete vehicle and Bortezomib experiment. 
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Loss of UBQLN1 may direct IGF1R towards higher density compartments  

Next, we examined whether loss of UBQLN1 altered intracellular transport of IGF1R. To 

study gross differences in trafficking and organelle distribution of IGF1R in UBQLN1 

deficient cells, A549 cells (control and shRNA against UBQLN1) were serum starved for 

12 hours (Fig. 25A,C) and stimulated with IGF1 for 1 hour (Fig. 25B,D), harvested and 

cell lysates were loaded onto a Percoll density gradient. Every other fraction was resolved 

via SDS-PAGE and immunoblotted for markers of various organelles (EEA1=early 

endosomes, TfnR=plasma membrane/recycling/early endosomes).  Note that an Rf value 

of 1.0 represents the top of the gradient tube, while an Rf value of 0 represents the bottom 

of the gradient. Therefore, higher density organelle associated markers like LAMP1 for 

late endosomes are detected in the higher gradients towards Rf=1.0 and lower density 

gradient associated markers like EEA1 for early endosomes are detected towards Rf=0. 

Here, we probed for IGF1R, TfnR and EEA1. In UBQLN1 deficient cells, distribution of 

IGF1R and TfnR was slightly shifted towards higher density gradients like the lysosome 

compared to control. This indicates that loss of UBQLN1 may be altering trafficking of 

plasma membrane receptors as they get internalized from the plasma membrane 
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Figure 25: Loss of UBQLN1 may direct IGF1R towards higher density 
compartments 
A549 cells (control and shRNA against UBQLN1) were serum starved (12 hours) 
(A) and stimulated with IGF1 for 1 hour (B), harvested and cell lysates were loaded 
onto a Percoll density gradient. Every other fraction was resolved via SDS-PAGE 
and immunoblotted IGF1R and for markers of various organelles (TfnR=transferrin 
receptor, plasma membrane/recycling/early endosomes, EEA1=early endosome 
antigen 1, early endosomes).  Note that an Rf value of 1.0 represents markers 
associated with higher density gradients, while an Rf value of 0 represents lower 
density gradients). (Experiment was performed thrice. Data are representative of 
one individual experiment). 
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Figure 25: Loss of UBQLN1 may direct IGF1R towards higher density 
compartments 
These graphs represent densitometry quantifications of Western Blot analysis n 
both serum starved (C) and IGF1 stimulated (D) conditions, there is a slight 
leftward shift in distribution of IGF1R and TfnR in UBQLN1 deficient cells 
compared to control indicating that loss of UBQLN1 may be directing internalized 
cell surface receptors (IGF1R and TfnR) towards higher density compartments 
like lysosomes.   
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UBQLN1 deficient A549 cells have increased survival in serum-free conditions 

A549 cells expressing stable shRNA against UBQLN1 (U1 KD#1, U1 KD#2, and control) 

were cultured in conditions of serum-free media and serum-free media supplemented with 

IGF1 for 4 days (Fig. 26). Alamar Blue readings were recorded every 24 hours. UBQLN1 

deficient cells gradually begun to outsurvive control cells when cultured in serum-free 

media by Day 2 (Fig. 26A). Supplementing serum-free media with IGF1 (Fig. 26B) 

corresponded with a slight survival advantage in UBQLN1 deficient cells compared to 

control. Based on these data, we conclude that loss of UBQLN1 inherently confered a 

growth and survival advantage to A549 cells when cultured in serum-free media, and this 

effect is enhanced by stimulation of the IGF pathway by exogenous ligand.
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Figure 26: UBQLN1 deficient A549 cells have increased survival in serum-
free conditions 
A549 cells expressing stable shRNA against UBQLN1 (U1 KD#1, U1 KD#2, and 
control) were cultured in conditions of serum-free media and serum-free media 
supplemented with IGF1 for 4 days. Alamar Blue readings were recorded every 
24 hours. Day 2 onwards, UBQLN1 deficient cells gradually begun to outsurvive 
control cells when cultured in serum-free media (A) and supplementing serum-
free media with IGF1 (B) enhanced survival of these cells. Data are represented 
as mean±SEM from 2 independent experiments. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 
0.001, all relative to control in serum-free conditions. 
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Activation of IGF1 pathway in UBQLN1 deficient A549 cells increases their 

migration potential 3-fold 

We have previously published that lung adenocarcinoma cells (A549 and H358) that have 

loss of UBQLN1 are more migratory and invasive (Shah et al., 2015). Here, we 

investigated whether UBQLN1 deficient A549 cells migrate more upon stimulation of IGF 

pathway. In a transwell cell migration assay, cells were cultured in the top chamber in one 

of 3 conditions – serum-free media, serum-free media supplemented with IGF1 and 

serum-free media supplemented with IGF1 and Linsitinib, a small molecule inhibitor of 

IGF1R activity. Media supplemented with 10% FBS was used as chemo-attractant in the 

bottom chamber. At the end of 24 hours, pictures of migrated cells were captured (Fig. 

27A) and number of migrated cells were quantified by ImageJ software (Fig. 27B). 

UBQLN1 deficient cells are inherently more migratory compared to control as observed in 

serum-free conditions. When stimulated with IGF1, there was a 3-fold increase in 

migration in UBQLN1 deficient cells compared to serum-free conditions (p<0.01) whereas 

IGF1 stimulation did not significantly increase migration in control cells. Migration returned 

to baseline by Linsitinib in all cells and it appears that UBQLN1 deficient cells are more 

sensitive to inhibition than control.  Based on these data, we conlude that activation of 

IGF1 pathway may prime UBQLN1 deficient cells to become more migratory. 
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Figure 27:  Activation of IGF1 pathway in UBQN1 deficient A549 cells 
increases their migration potential 3-fold 
A549 cells expressing stable shRNA against UBQLN1 (U1 KD#1, U1 KD#2, 
and control) (Fig. 29E) were seeded in a transwell setup to assess cell 
migration in response to IGF1 stimulation. Cells were cultured in the top 
chamber in one of 3 conditions – serum-free media, serum-free media 
supplemented with IGF1 and serum-free media supplemented with Linsitinib, 
a small molecule inhibitor of IGF1R activity. Media supplemented with 10% 
FBS was used as chemo-attractant in the bottom chamber. At the end of 24 
hours, cells were fixed and HEMA3 stained (A). Number of migrated cells were 
quantified by ImageJ software and analyzed by ANOVA (B). UBQLN1 
deficient cells are inherently more migratory (3-4 times compared to control) 
as observed in serum-free conditions. When UBQLN1 deficient cells were 
stimulated with IGF1, there was a 3-fold increase in migration compared to 
control cells. Linsitinib blocked cell migration and brought it back to control 
cells’ baseline levels. Data are represented as mean±SEM from three 
independent experiments. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, all relative to 
control.  
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STI-1/2 domains of UBQLN1 interact with Insulin receptor (INSR) and loss of 

UBQLN1 regulates expression of INSR and IGF2R post-stimulation with IGF1. 

HEK293T cells were transfected domain deletion constructs of UBQLN1 followed by 

immunoprecipitation by FLAG antibody and probed for INSR. As with IGF1R, UBQLN1 

interacts with INSR and we mapped this interaction to the STI-1/2 domains (Fig. 28). We 

examined whether UBQLN1 regulates expression of INSR as it does with IGF1R. A549 

cells with stable expression of shRNA against UBQLN1 and control were cultured in 4 

different conditions (Fig 29A): complete media, serum-free media for 12 hours and serum-

free media (12 hours) supplemented with IGF1 (6 hours) and serum-free media (12 hours) 

supplemented with Linsitinib (1uM), an IGF1R activity inhibitor. Cells were incubated with 

Cycloheximide an hour before adding IGF1 to block de novo protein synthesis, which 

enabled assessment of steady state expression of INSR. Post-stimulation, cells were 

harvested, lysed and analyzed by Western Blot. The antibody used to detect phospho-

IGF1R recognizes auto-phosphorylation site Tyr1135 on IGF1R and cross-reacts with 

Tyr1150 on INSR, which shows increased phosphorylation in UBQLN1 deficient cells. 

INSR expression in UBQLN1 knock down cells was notably decreased upon serum-

starvation and stimulation with IGF1. Loss of UBQLN1 also caused loss of IGF2R upon 

ligand stimulation in A549 cells (Fig. 29B). Based on these data, we conclude that 

UBQLN1 interacts with INSR and regulates expression of INSR and IGF2R post-

stimulation with IGF1. Additionally, AKT, a critical regular of survival and apoptosis is 

activated (p-AKT) in A549 cells that have loss of UBQLN1 and more so when the IGF 

pathway is stimulated with exogenous ligand. Therefore, next we tested for survival of 

A549 cells in serum-free media and in presence of IGF1 with or without UBQLN1.  
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Figure 28: STI-1/2 domains of UBQLN1 interact with Insulin receptor 
(INSR)  
HEK 293T cells were transfected with FLAG-tagged constructs of UBQLN1 
followed by co-immunoprecipitation by FLAG antibody and Western Blot 
analysis. STI-1 and STI-2 domains of UBQLN1 are required for interaction 
with INSR. (Data are from one experiment). 
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Figure 29: Loss of UBQLN1 regulates expression of INSR and IGF2R post-
stimulation with IGF1. 
(A) Expression and activity of INSR were tested in A549 lung cancer cells (control and 
shRNA against UBQLN1: U1 KD#1 and U1 KD#2). Cells were serum starved (SS) for 12 
hours, or supplemented with IGF1 (6 hours) or Linsitinib, a small molecule inhibitor of 
IGF1R activity. INSR expression was decreased in UBQLN1 deficient cells only in serum 
starved and IGF1-stimulated conditions. Additionally, UBQLN1 deficient cells showed 
increased basal expression of P-AKT which was enhanced by IGF1 stimulation, while T-
AKT levels remained constant across all conditions for both control and UBQLN1 deficient 
A549 cells. (B) Expression and activity of IGF2R were tested in the above cells. Cells 
were serum starved (SS) for 12 hours and supplemented with IGF as in D. Expression of 
IGF2R is decreased with loss of UBQLN1. (Data are from one experiment). 
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UBQLN1 deficient A549 cells have decreased autocrine ligand production 

compared to control  

We hypothesized that UBQLN1 deficient A549 cells may be responsible for autocrine 

production of its ligands (IGF1, IGF2, Insulin), which can consequently lead to activation 

of AKT and therefore survival and anti-apoptotic pathways. To investigate this, mRNA 

expression of IGF1 and IGF2 were tested in these cells cultured in complete media and 

serum-free conditions (72 hours). Contrary to our hypothesis, IGF1 expression was 

significantly lower in UBQLN1 deficient cells in both conditions (Fig. 30A,B). IGF2 

expression was unchanged between control and UBQLN1 deficient cells in complete 

media (Fig. 30C,D). Although not statistically significant, when serum starved, production 

of IGF2 seemed to be decreasing in UBQLN1 knock down cells compared to control. 

Based on these data, we conclude that survival advantage conferred to cells upon 

UBQLN1 knock down may not be due to autocrine ligand production but mediated through 

other intracellular survival pathways.  
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Figure 30: UBQLN1 deficient A549 cells have decreased autocrine ligand 
production compared to control 
A549 cells expressing stable shRNA against UBQLN1 (U1 KD#1, U1 KD#2 and 
control) were cultured in conditions of complete media or serum-free media for 72 
hours and real time analysis of IGF1 and IGF2 mRNA were performed. UBQLN1 
deficient A549 cells showed significantly decreased production of IGF1 compared to 
control when these cells were cultured in both, complete (A) (p<0.05) and serum-free 
media (B) (p<0.001). Production of IGF2 was unchanged between these cells in 
complete media (C) but showed a decreasing trend in UBQLN1 deficient cells upon 
serum starvation (D). These data were not statistically significant. (Data are averaged 
from 3 individual experiments). 
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UBQLN1 does not stably associate with these markers of endocytic trafficking: 

GRB10, EEA1, RAB7, LAMP1, Caveolin1 

Loss of UBQLN1 altered lysosomal trafficking of IGF1R and Percoll density gradient 

fractionation showed that there may be a slight shift of IGF1R toards higher density 

gradients like the lysosomes, we investigated whether UBQLN1 interacts with IGF1R as 

it is internalized and proceeds through the endocytic pathway and possibly alters its 

trafficking (Fig. 31). We simply tested UBQLN1’s interaction with a few known markers on 

endocytosis. FLAG-UBQLN1WT, UBQLN1112X and UBQLN1DUBA were overexpressed in 

cells followed by Immunoprecipitation pull down with FLAG antibody and probed for the 

respective proteins. We did not detect an interaction for any of these markers. However, 

based on these data, we cannot exclude UBQLN1’s role in trafficking of IGF1R.  
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Figure 31: UBQLN1 does not stably associate with these markers of 
endocytic trafficking: GRB10, EEA1, RAB7, LAMP1, Caveolin1 
HEK 293T cells were transfected with FLAG-UBQLN1WT, UBQLN1112X and 
UBQLN1DUBA followed by immunoprecipitation by FLAG antibody and Western Blot 
analysis. Interaction was tested for the markers of the endocytic pathway as shown 
above in the table. CD47 or Integrin Associated Protein (IAP) was used as a 
positive control, as a known interacting partner of UBQLN1. UBQLN1 did not 
interact with these proteins tested. However, a faint interaction is detected for 
Caveolin1, a marker of the caveolin-mediated endocytosis. (Data are from one 
experiment). 
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Combined loss of UBQLN1 and PTP1B has a synergistic effect on activation of 

kinase domain of IGF1R 

Since UBQLN1 deficient cells have an increased ratio of active:total IGF receptors, we 

investigated whether this effect was exclusive of action of phosphatases for IGF1R.  H358 

lung adenocarcinoma cells were transfected with siRNA for UBQLN1 and PTP1B, a known 

phosphatase of IGF1R. Cells were cultured in complete media and 48 hours post-

transfection, Western Blot analysis were performed and probed for auto-phosphorylation 

and kinase activation sites of IGF1R by specific antibodies as shown (Fig. 32). Loss of 

UBQLN1 showed slight increase in auto-phosphorylation of IGF1R compared to control. 

Loss of PTP1B did not show more auto-phosphorylation compared to control. Combined 

effect of loss of both, showed no additional increases in auto-phosphorylation of IGF1R.  

However, combined loss of UBQLN1 and PTP1B have a synergistic effect on activation 

of kinase domain of IGF1R.  
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Figure 32: Combined loss of UBQLN1 and PTP1B has a synergistic 
effect on activation of kinase domain of IGF1R 
H358 lung adenocarcinoma cells were transfected with siRNA for 
UBQLN1 and PTP1B. Cells were cultured in complete media and 48 
hours post-transfection, Western Blot analysis were performed and 
probed for auto-phosphorylation and kinase activation sites of IGF1R by 
specific antibodies as shown. Loss of UBQLN1 and combined loss of 
UBQLN1 and PTP1B show a small increase in autophosphorylation of 
IGF1R. However, there is a synergistic effect of combined loss of both 
proteins on activation of kinase domain of IGF1R. (Data are from one 
experiment).  
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UBQLN1 and UBQLN2 interact with Epidermal Growth Factor Receptor (EGFR) 

Since UBQLN1 interacts with and reguates IGF receptor tyrosine kinases, we examined 

whether UBQLN also interacts with other receptor tyrsoine kinases like EGFR. FLAG-

UBQLN1 and FLAG-UBQLN2 were overexpressed in HEK293T cells followed by 

immunoprecipitation by FLAG antibody. Both, UBQLN1 and UBQLN2 interact  with EGFR 

(Fig. 33).  
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Figure 33: UBQLN1 and UBQLN2 interact with EGFR 
HEK293T cells were transfected with empty vector (EV) or FLAG-UBQLN1 or FLAG-
UBQLN2. 48 hours post transfections, cells were lysed followed by 
immunoprecipitation by FLAG antibody and probed for EGFR by Western Blot analysis. 
Both, UBQLN1 and UBQLN2 interact with EGFR. (Experiment was performed twice). 
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UBQLN1 regulates EGFR expression in K-RAS mutant A549 cells but not in EGFR 

mutant H1650 cells 

We investigated whether UBQLN1 can universally regulate EGFR expression and 

therefore tested for effects of loss of UBQLN1 in k-ras mutant A549 (Fig. 34A) and EGFR 

mutant H1650 (Fig. 34B) lung adenocarcinoma cells. These cells were transfected with 

siRNA for UBQLN1. Cells were serum starved (SS) for 12 hours, or supplemented with 

EGF (50ng/ml for 1 hour) or Erlotinib (50nM), a small molecule inhibitor of EGFR kinase 

domain. A549 cells showed increased phosphorylated EGFR levels in UBQLN1 deficient 

cells and decreased total EGFR expression was in UBQLN1 deficient cells only in EGF-

stimulated condition. These data are similar to UBQLN1’s regulation of IGF1R. However, 

H1650 cells did not show a similar effect. Although, phosphorylated EGFR expression was 

increased in UBQLN1 deficient cells in complete media, this effect was very slight and not 

accompanied with decrease in but total receptor expression as seen in A549 cells. Based 

on these data, we conclude that UBQLN1 regulates wild type EGFR but not mutant EGFR 

(E746-750Adel). A549 cells show increased basal phosphorylation of AKT in UBQLN1 

deficient cells in all conditions tested as also seen in Fig. 29A. However, basal p-AKT 

expression completely disappeared upon inhibition of EGFR activity but not with inhibition 

of IGF1R activity. This implies that between these 2 receptor pathways, stimulation of 

EGFR has a dominant effect on AKT activation (phosphorylation of Ser 473) and may be 

partly responsible for increased basal expression of p-AKT in UBQLN1 deficient cells.  
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Figure 34: UBQLN1 regulates EGFR expression in K-RAS mutant A549 cells 
but not in EGFR mutant H1650 cells 
A549 and H1650 lung adenocarcinoma cells were transfected with siRNA for 
UBQLN1. Cells were serum starved (SS) for 12 hours, or supplemented with EGF 
(50ng/ml, 1 hour) or Erlotinib (50nM), a small molecule inhibitor of EGFR kinase 
domain. (A) A549 cells showed increased phosphorylated EGFR levels in UBQLN1 
deficient cells. Total EGFR expression was decreased in UBQLN1 deficient cells 
only in EGF-stimulated condition. (B) Phosphorylated EGFR expression was 
increased in UBQLN1 deficient H1650 cells in complete media, but total receptor 
expression didn’t change. (Experiment was performed twice). 
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EGF-dose dependent regulation of EGFR by UBQLN1 

We observed that loss of UBQLN1 accelerates loss of EGFR post-stimulation with ligand, 

as seen with IGF1R. Here we tested loss in expression of EGFR with 2 different doses of 

EGF in A549 cells (Fig. 35). Cells were serum starved (SS) for 12 hours and supplemented 

with EGF (1 hour) with 2 different doses: 10ng/ml (Fig. 35A) and 100ng/ml (Fig. 35B). 

Overall, phosphorylated EGFR expression was higher when cells were stimulated with 

100ng/ml EGF. For both ligand concentrations, phosphorylated EGFR expression was 

higher in UBQLN1 deficient cells. For both ligand concentrations, EGFR expression was 

decreased faster in UBQLN1 deficient cells and more pronounced with higher dose of 

ligand. Based on these data, we conclude that UBQLN1 may regulate EGFR in a EGF-

dose dependent manner.  
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Figure 35:  EGF-dose dependent regulation of EGFR by UBQLN1 
A549 were transfected with siRNA for UBQLN1. Cells were serum starved (SS) for 
12 hours and supplemented with EGF (1 hour) with 2 different doses: 10ng/ml (A) 
and 100ng/ml (B). Overall, phosphorylated EGFR expression was higher in UBQLN1 
deficient cells for both ligand doses. Total EGFR expression decreased with receptor 
activation by ligand but its loss is faster in UBQLN1 deficient cells.   
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DISCUSSION 

 Role of UBQLN proteins is slowly emerging in the field of cancer. Recently, it was 

reported that increased UBQLN2 expression within osteosarcoma cells enhances tumor 

progression in patients. UBQLN2 expression in urine was also proposed to be used as a 

biomarker to diagnose, stage and grade urothelial cancer (Shimada et al., 2016). Our lab 

has published that UBQLN1 is lost and under-expressed in approximately fifty percent of 

non-small cell lung cancers (Shah et al., 2015). Cells that have loss of UBQLN1 adopt a 

more epithelial-to-mesenchymal (EMT) phenotype and are more and migratory and 

invasive (Shah et al., 2015). In this manuscript, we determined the role of UBQLN1 in 

regulation of IGF1R, a receptor tyrosine kinase overexpressed in lung cancer.  

 We have previously determined that fate of substrates UBQLN1 associates with is 

interaction domain specific. Transmembrane proteins like BCLb, ESYT2, IGF1R (Fig. 19), 

INSR (Fig. 29) interact with UBQLN1 through its STI-1 and STI-2 domains and are 

stabilized as a result of this interaction. UBQLN1 does not alter stability of substrates 

involved in proteasomal machinery like BAG6 and PSMD4 that associate through its UBL 

domain (Kurlawala et al., 2017). UBQLN1’s interaction with IGF1R is unusual because 

unlike other regulators, this interaction is not dependent on phosphorylation of IGF1R. 

UBQLN1 interacts with all forms of IGF1R - non-processed immature form (pro-IGF1R) 

,phosphorylated form and non-phosphorylated form (Fig. 19). It appears that UBQLN1 is 

recruited to IGF1R from the time of its synthesis and remains bound to it during trafficking. 

Known binding partners of IGF1R like IRS (L. M. Wang et al., 1993) , Shc (Wills & Jones, 

2012), Grb2 , Grb10 (Dufresne & Smith, 2005; Langlais et al., 2004; Mori, Giovannone, & 

Smith, 2005; Ramos, Langlais, Hu, Dong, & Liu, 2006; Stein, Gustafson, & Hubbard, 2001) 

are recruited to IGF1R only when the receptor is stimulated by ligand, auto-

phosphorylated, and have undergone structural conformation to accommodate binding. 
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IRS and Shc proteins are one of the first to bind to IGF1R which allows subsequent 

recruitment of more molecules in turn stimulating other signaling pathways. GRB10 (direct 

recruitment) and GIGYF2 (recruitment through GRB10) bind to IGF1R and have been 

identified as negative regulators of IGF1R phosphorylation (Giovannone et al., 2009). We 

found that UBQLN1 is a positive regulator of total-IGF1R expression. Loss of UBQLN1 

causes accelerated loss of IGF1R and overexpression of UBQLN1 stabilizes it (Kurlawala 

et al., 2017).  

 Role of UBQLN1 has been studied in regulation of  cell surface receptors like 

GABAA receptors (Saliba et al., 2008), Presenilins (Mah et al., 2000; Massey et al., 2004; 

Massey et al., 2005), GPCR’s (N'Diaye et al., 2008) and nicotinic acetylcholine receptors 

(Ficklin et al., 2005) and others. Regulation of IGF1R by UBQLN1 is similar to its regulation 

of GABAA receptors which has been studied in detail (Bedford et al., 2001; Saliba et al., 

2008). UBQLN1 interacts with GABAA receptors through its UBA domain. Loss of 

interaction led to decrease in receptor numbers, without an effect on rate of internalization 

or endocytosis. Similarly, UBQLN1 stabilizes full length Presinilins and prevents its 

fragmentation within the gamma secretase complex embedded in the plasma membrane 

(Massey et al., 2005). In A549 lung cancer cells, loss of UBQLN1 causes accelerated loss 

of IGF1R without gross changes in trafficking or phosphorylation activity. We have a few 

theories that may possibly explain this phenomena. Loss of UBQLN1 causes decreased 

mRNA expression of IGF1R. When new protein synthesis is blocked by Cycloheximide, 

loss of UBQLN1 can lead to faster loss of the relatively smaller existing pool of receptors. 

We have not determined whether UBQLN1 has a direct or indirect effect on gene 

transcription of IGF1R but based on our immunofluorescence data in variety of cell types 

(HEK 293T, HeLa, A549, H358 and HPL1D, Fig. 2, 19, 20), we have not detected nuclear 

presence of UBQLN1 thus far. Another reason for decreased transcription of IGF1R could 

be the negative feedback loop caused by a relatively active IGF pathway seen in UBQLN1 
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deficient cells leading to suppression of signal for new receptor synthesis. Once 

translated, multi-subunit proteins like IGF1R and GABAA receptors are assembled and 

processed in the Endoplasmic Reticulum and Golgi before delivery and insertion to 

designated organelles. However, the process of assembly is inefficient and only 25% of 

translated proteins are assembled into mature forms. Overexpression of UBQLN1 caused 

a ~30% increase in Endo H sensitive GABAA receptors in the ER (Saliba et al., 2008).  

UBQLN1 interacts with the higher molecular weight (~135kD), pro-form of IGF1R and 

therefore maybe involved in assembly of IGF1R in the ER. Additionally, transport of these 

receptors to the cell surface takes about 4-6 hours. It is yet to be investigated how long 

after loss of interaction between UBQLN1 and IGF1R, does IGF1R expression begin to 

decrease. If the decrease in expression occurs within a matter of minutes after loss of 

interaction, it would indicate a stability/degradation based mechanism. However, if it takes 

hours, it would solidify UBQLN1’s role in assembly in the ER of IGF1R other 

transmembrane proteins like INSR, BCLb, ESYT2, OMP25, and so on.  

 UBQLN1 also interacts with Insulin receptor and loss of UBQLN1 regulates INSR 

expression when A549 cells are serum starved and activated by IGF1 (Fig. 20, 29). 

 Despite having decreased total receptor levels in UBQLN1 deficient cells, the ratio 

of active to inactive IGF1R was at least 2 times higher (Fig. 20) and combined loss of 

UBQLN1 and PTP1B caused a synergistic increase in phosphorylation of the kinase 

domain of IGF1R (Fig. 32). This may indicate that normal dephosphorylation of IGF1R 

may be delayed in absence of UBQLN1. PTP1B and SHP2 are known phosphatases that 

negatively regulate IGF1R phosphorylation in a ligand dependent manner (Buckley, 

Cheng, Kiely, Tremblay, & O'Connor, 2002). Phosphatases are recruited to the plasma 

membrane via adaptor proteins like SHPS2. It is known that IntegrinαVβ3 acts via SHP2 to 

dephosphorylate IGF1R (Rocchi, Tartare-Deckert, Sawka-Verhelle, Gamha, & van 

Obberghen, 1996). It is a plausible hypothesis that UBQLN1 recruits phosphatases to the 
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receptor for normal dephosphorylation directly or through participation in a multi-protein 

complex involving Integrins and other cell surface proteins that help recruit phosphatases 

to IGF1R to enable normal dephosphorylation. 

 One of UBQLN1’s primary functions is in protein quality control and 

depending on type of substrate either facilitates substrate degradation or 

stabilization. We have previously shown that transmembrane proteins like BCLb, 

ESYT2 and IGF1R are stabilized by interaction with UBQLN1 and its UBA domain 

protects from MG132 (proteasomal inhibitor) mediated degradation in HEK 293T 

cells. Here, we investigated in A549 lung cancer cells whether UBQLN1 plays a 

role in normal turnover of IGF1R. IGF1R is degraded via both lysosomal and 

proteasomal pathways. Therefore, we blocked both pathways individually with 

inhibitors to determine role of UBQLN1 in degradation of IGF1R. IGF1R recycling 

is prevented upon loss of UBQLN1 as the same effect is seen with Monensin (Fig. 

23) whereas blocking the proteasome did not seem to have a profound effect (Fig. 

24). Additionally, IGF1R was detected to be slightly shifted towards higher density 

compartments (ex. Lysosomes) upon loss on UBQLN1 (Fig. 25). Taken together, 

we conclude that UBQLN1 plays a role in lysosomal turnover of IGF1R. 

We then studied the biological relevance of UBQLN1’s association with IGF1R in 

context of cancer progression. We determined that UBQLN1 deficient A549 cells showed 

improved survival when serum starved (Fig. 26). This phenomena may be at least partially 

attributable to higher basal levels of active AKT protein in UBQLN1 deficient cells (Fig. 

29). Stimulation of the IGF pathway corresponded with an enhanced survival advantage 

(Fig. 26), possibly due to additional activation of AKT, a key central molecule activated 

downstream of IGF1R stimulation that via multiple mechanisms evades apoptosis and 
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promotes survival for example directly inactivating pro-apoptotic Bad, inactivating 

Caspase 9 (Datta et al., 1997), increasing expression of anti-apoptotic NFKB which then 

downregulates p53 (Jeong, Pise-Masison, Radonovich, Park, & Brady, 2005).  

 We have previously shown that lung adenocarcinoma cells that have loss of 

UBQLN1 adopt a more Epithelial-to-Mesenchymal Transition (EMT) like phenotype and 

are more migratory (Shah et al., 2015). Here, we found that stimulating UBQN1 deficient 

A549 cells with IGF1 increased their migratory potential 3-fold (Fig. 27). As UBQLN1 

interacts with several plasma membrane proteins like IGF1R, INSR, IAP, it is worth testing 

whether UBQLN1 participates in a multi-protein complex with these receptors at the 

plasma membrane such that loss of UBQLN1 facilitates increased ECM-cell 

communication promoting migration. The IGF pathway is known to promote cell migration 

in cancer cells through multiple pathways. It can cause disassembly of adherens junctions 

and redistribution of movement fibers promoting motility (Cox et al., 2015). In 

communication with the microenvironment, IGF1R signaling can induce expression of 

proteases like cathepsin D (F. Wang, Duan, Chirgwin, & Safe, 2000), matrix 

metalloproteinases (Yoon & Hurta, 2001; D. Zhang & Brodt, 2003) and urokinase 

plasminogen activator (Dunn, Torres, Oh, Cykert, & Barrett, 2001), promoting 

disintegration of basement membranes to facilitate cell migration. These proteases can 

also bind and cleave IGFBP3, which can release bound IGF1 for further stimulation 

(Cohen et al., 1992). Integrin activation from the extracellular matrix can also regulate 

IGF1R signaling to promote migration (Clemmons & Maile, 2003).  

 UBQLN1 interacts with receptor tyrosine kinases outside of the IGF pathway, such 

as the Epidermal Growth Factor Receptor, which is also mutated and overexpressed in a 

variety of cancers. We demonstrated that UBQLN1 and UBQLN2 interact with EGFR. For 

the two doses of EGF stimulation we tested (10ng/ml and 100ng/ml) UBQLN1 regulates 

activity of EGFRWT in A549 cells in an EGF-dose dependent manner. 
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 In conclusion, the IGF1 pathway axis has been a major target of research for 

chemotherapy. However, drugs that seem effective in in vitro, in vivo, and in early phase 

trials fail to show overall clinical benefit. The IGF pathway is complicated with presence of 

different receptor types including hybridization between receptors, multiple ligands, 

autocrine and paracrine stimulation, extensive influence of extracellular matrix signals, 

and compensatory signaling via other growth factor receptors. Additionally, intracellular 

IGF1R activity does not always correlate with its cell surface expression. We have also 

observed that IGF1R expression varies with cell confluence in vitro (data not shown). All 

these factors make it challenging to predict response to therapy thus highlighting the role 

of defining better biomarker profiles for choosing patients that will benefit from anti-IGF1R 

therapy. Therefore, it is essential to study cellular and extracellular factors that regulate 

activity of IGF1R directly or indirectly. Our data indicate that UBQLN1 expression is one 

such candidate. Future studies investigating role of UBQLN1 in IGF pathway mediated 

tumorigenesis, metastasis, response and resistance to therapy are warranted. Refer to 

Fig. 36 for model of regulation of IGF1R by UBQLN1.  
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Figure 36: Model of regulation of IGF1R by UBQLN1: When 
UBQLN1 is present, it interacts with IGF1R from the time of its 
synthesis and assembly in the ER to processing in the Golgi to 
transport to the cell surface and continues to be recruited to the 
receptor upon ligand stimulation and internalization. Presence of 
UBQLN1 (A) allows normal recycling and turnover of the receptor. 
Absence of UBQLN1 (B) prevents normal recycling of the receptor, 
causes its accumulation and leads to eventual degradation by 
lysosomal and proteasomal pathways.  
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CHAPTER 5 

OVERALL SUMMARY 

Overall Goals and Specific Aims  

 The Ubiquilin family proteins are implicated in a variety of cellular processes like 

autophagy, ERAD, receptor trafficking, proteasomal degradation, substrate stabilization 

and diseases like neurodegeneration and cancer. The overall goal of this dissertation 

was to identify a mechanism of action for UBQLN1.  To do so, we developed the 

following aims:  

Specific Aims 

1) To investigate biochemical functions of UBQLN1  

a) Identify domains of UBQLN1 responsible for interaction with multiple substrates 

b) Determine role of UBQLN1 on substrate stability 

2) To investigate role of UBQLN1 in regulation of receptor tyrosine kinases  

a) Determine role of UBQLN1 in trafficking and turnover of IGF1R 

b) Determine biological consequences of UBQLN1 loss and dysregulation of IGF 

pathway in lung adenocarcinoma cells.  

c) Determine role of UBQLN1 in regulation of INSR and EGFR
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Major Findings of this Dissertation 

 We demonstrated that Ubiquilin1 regulates transmembrane proteins like BClb, an 

anti-apoptotic mitochondrial membrane protein, insulin-like growth factor 1 receptor 

(IGF1R), a cell surface receptor tyrosine kinase, Extended Synaptotagmin 2 (ESYT2), a 

calcium sensing protein localized at ER-plasma membrane contact sites. The STI domains 

of UBQLN1 are essential for interaction with these substrates while the UBA domain is 

required to protect them from degradation.  

1. BCLb 

 Using BCLb as a model substrate, we characterized UBQLN1-substrate 

interaction. We identified the first two STI domains of UBQLN1 as critical for binding to 

BCLb. Interaction of UBQLN1 with BCLb is independent of ubiquitination of BCLb, but 

interaction with ubiquitin via UBA domain is required for stabilization of BCLb. Similarly, 

we showed that UBQLN1 interacts with IGF1R and ESYT2 through the STI domains and 

stabilizes these proteins through its UBA domain. Interactions that are not dependent on 

STI domains, for example, UBL mediated interaction with PSMD4 and BAG6, do not 

appear to be stabilized by UBQLN1. We conclude that fate of substrates that UBQLN1 

associates with, is interaction domain specific. 

2. ESYT2 

 There are three Extended Synaptotagmin proteins (ESYT1/2/3).  ESYTs have an 

N-terminal ER-membrane binding domain, a mitochondrial-lipid-binding protein domain 

(SMP), and multiple calcium sensing C2 domains (Min, Chang, & Südhof, 2007). Proteins 

like ESYTs connect the vast ER network to different compartments in the cell like plasma 

membrane and mitochondria and facilitate exchange of molecules and ions and regulate 

cell signaling between these compartments. ESYT2/3 are not integral membrane proteins 

like ESYT1, but are inserted into the ER membrane through its N-terminal transmembrane 

domain and with the plasma membrane through its three C2 domains. Recently, it was 
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shown that ESYT2 interacts with activated Fibroblast Growth Factor Receptor (FGFR) 

(Tremblay et al., 2015). Subsequently, ESYT2 interacts with early endosome marker 

EEA1 during the internalization phase of FGFR upon activation with FGF. Additionally, 

ESYT2 interacts with AP2, another protein involved in clathrin-mediated endocytosis 

(Jean et al., 2010). Our data demonstrate that UBQLN1 strongly interacts with ESYT1 and 

ESYT2 but not with ESYT3 (Immunoprecipitation/Mass Spectrometry). We confirmed that 

STI domains of UBQLN1 are critical in binding to ESYT2 (Immunoprecipitation/Western 

Blot) and the UBA domain protects it from MG132 induced degradation (Kurlawala et al., 

2017). 

3. Receptor Tyrosine Kinases (IGF1R, IGF2R, INSR, EGFR) 

 Our IP/MS and IP/WB data indicate that Ubiquilin1 interacts with IGF1R, IGF2R 

and INSR. Like with BCLb, the STI-1 and STI-2 domains are responsible for interaction 

with IGF1R and the UBA domain is critical in protecting it from MG132 (proteasomal 

inhibitor) induced degradation.  

 Next, we chose to study effects of loss of UBQLN1 on IGF1R in a lung 

adenocarcinoma cell line as IGF receptors are overexpressed in lung cancers. We 

demonstrate here that UBQLN1 regulates expression and activity of IGF1R. Following 

loss of UBQLN1 in lung adenocarcinoma cells, there is accelerated loss of IGF1R, partially 

rescued by blocking the proteasome. Despite decreased levels of total receptors, the ratio 

of active:total receptors is higher in cells that lack UBQLN1. UBQLN1 also regulates INSR 

and IGF2R post-stimulation with ligand. We conclude that UBQLN1 is essential for normal 

regulation of IGF1R. UBQLN1 deficient cells demonstrate increased survival when serum 

starved and stimulation of IGF pathway in these cells increased their migratory potential 

by 3-fold.  

 Additionally, we found that UBQLN1 and UBQLN2 interact with EGFR. UBQLN1 

regulates expression of EGFR in a EGF-dose dependent fashion.   
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4. Substrate Stabilization Model for Ubiquilin1  

 We demonstrated that STI and UBA mediated interactions of Ubiquilin1 result in 

proteostasis of three transmembrane proteins such that primary association of UBQLN1 

with substrate occurs through the STI domains and a secondary association 

through its UBA domain leads to stabilization of the substrate. Additionally, we 

showed that the UBA domain of Ubiquilin1 binds non-preferentially to different ubiquitin 

linkages, Ubiquilin1 dimerizes through its STI-4 domains and Ubiquilin1 continues to 

interact with its substrates in its monomeric and dimerized forms (Kurlawala et al., 2017).  

 

Strengths of this Dissertation 

Ubiquilin1 was discovered in 1999, followed by its other family members. UBQLN 

proteins are evolutionary conserved and have distinct tissue distribution therefore these 

proteins seem to be important from an evolutionary standpoint. We developed constructs 

of UBQLN1 to study functions of individual domains of the protein and their general role 

upon interaction with substrate. We tried to identify patterns in UBQLN1-substrate 

interaction based on literature and our data and classified substrates of UBQLN1 into 2 

categories – stabilizers and degraders, thus helping us understand its mechanism of 

action. We demonstrated that Ubiquilin1 may be a key regulator of transmembrane 

proteins like BCLb, IGF1R, INSR, ESYT2 and EGFR and potentially influence their 

activity.  

 

Limitations of this Dissertation 

We did not test whether interaction of UBQLN1 with its substrates was a direct or 

indirect interaction. Irrespective of the type of interaction, UBQLN1 continues to regulate 

BCLb, ESYT2, and receptor tyrosine kinases we tested. Next, the domain deletion 

constructs of UBQLN1 may have altered secondary and tertiary structures and may affect 
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binding with substrates. Although, theoretically changes in folding can affect binding, we 

continued to detect interactions for UBQLN1 with DSTI domain, DUBL and DUBA domains 

for the proteins we tested. Thirdly, we did not test for compensation by other UBQLN family 

members in cells that have loss of UBQLN1 function, which may be responsible for lack 

of phenotype in some cell types. Regulation of receptor tyrosine kinases were tested in a 

2D in vitro model and cellular confluency is known to influence expression and activity of 

cell surface receptors. Therefore, regulation of receptor tyrosine kinases by UBQLN1 

should be tested in a more relevant 3D model and in vivo.  

 

Future directions 

So far, we have only scratched the surface of understanding the mechanics of 

interaction between UBQLN1 and its substrates. Detailed experiments characterizing their 

regulation are warranted. For example, are cancers with loss of UBQLN1 and over-

expression of IGF1R and EGFR more sensitive to IGFR and EGFR activity inhibition? 

ESYT proteins are calcium sensing proteins present at ER-plasma membrane contact 

sites and participate in connecting cellular compartments (Sclip, Bacaj, Giam, & Sudhof, 

2016) UBQLN1 interacts with several transmembrane proteins which directly or indirectly 

interact with cytoskeletal proteins like Vimentin (A. L. Wu et al., 1999). Does UBQLN1 act 

as a scaffold to hold protein complexes together and may also play a role in preserving 

normal cellular morphology and signaling networks? Identifying interactions of UBQLN1 

with components of the membrane and cytoskeleton using co-immunoprecipitation 

analysis, crosslinking protein interaction assays for detection of transient interactions, 

visualization of contact sites and tracking changes in live cells via immunofluorescence 

and electron microscopy will be valuable. Previously, Ubiquilin2 has been shown to 

negatively regulate clathrin-mediated endocytosis of G Protein-Coupled Receptors 

(GPCR’s) (N'Diaye et al., 2008). The UBL domain of Ubiquilin1 interacts with the UIMs 
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(ubiquitin interacting motif) of EPS15, Hrs, Hbp (Regan-Klapisz et al., 2005). These 

proteins form a multi-complex and assist in sorting of ubiquitinated cargo (endocytosed 

EGF receptor) into multi-vesicular bodies (Gucwa & Brown, 2014). Whether Ubiquilin1 

participates in a similar complex for regulation of IGF1R and EGFR is not known. As 

IGF1R is involved in processes of normal growth, development, metabolism and even 

cancer progression, understanding its regulation by Ubiquilin1 can be of tremendous value 

to many disciplines. 

 

Conclusions 

We identified 5 new transmembrane proteins as substrates of UBQLN1: ESYT2, 

IGF1R, IGF2R, INSR and EGFR. We proposed a new substrate stabilization model such 

that these proteins primarily interact with UBQLN1 through its STI domains and are 

stabilized by a secondary association via the UBA domain (tested only for BCLb, ESYT2, 

IGF1R). UBL-mediated interactions with BAG6 and PSMD4 do not result in their 

stabilization.  

Using these data, we determined that UBQLN1 is essential in regulation of IGF1R in 

lung adenocarcinoma cells. Loss of UBQLN1 leads to accelerated loss of IGF1R. Loss of 

UBQLN1 leads to increased activation of the IGF pathway leading to increased survival 

and migration of these cells. Additionally, we found that UBQLN1 also interacts with Insulin 

receptor, IGF2R and EGFR.  

Overall, we conclude that Ubiquilin1 performs a variety of functions in cells and fate 

of substrates it binds to is interaction-domain specific. Individual domains may determine 

Ubiquilin1’s underlying mechanism of action and elucidate its role in neurodegenerative 

disorders as well as in cancers. Ubiquilin1 may play an important role in endocytosis and 

trafficking of proteins. Whether this role is via its UBA domain associating with ubiquitin 

on substrates or through one of its other domains remains to be investigated.
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