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ABSTRACT 
MOLECULAR MECHANISMS OF HOST RESTRICTION AND ADAPTATION 

OF HANTAVIRUSES 
 

Ryan C. McAllister 

October 25, 2013 

Hantaviruses, family Bunyaviridae, are present throughout the globe in a 

variety of mouse, rat, mole, vole, shrew, or bat species.  Hantaviruses persist for 

the lifetime of the animal reservoir, while causing no signs or symptoms of 

disease. Only the rodent-borne hantaviruses cause disease in humans. In 

contrast, a “spillover” infection of a hantavirus into a nonreservoir rodent species 

results in an asymptomatic acute infection. We and others in the field are 

interested in understanding the biology of these virus-host interactions and 

mechanisms that underlie these three very different outcomes. 

The second chapter of my thesis focused on probing the intrahost viral 

population structure of the Hantaan virus (HTNV), an Old World hantavirus, in the 

suckling mouse model in the presence and absence of ribavirin. This model 

represents a lethal disease outcome in a nonreservoir species. These studies 

show, for the first time, two distinct evolutionary trajectories for HTNV within this 

lethal mouse model of disease in the presence and absence of ribavirin, as well 

as evidence for positive selection not previously observed in vitro. In the ribavirin-

treated vRNA population, analyses of rates of nonsynonymous (dN) and 
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synonymous (dS) substitutions in the S-segment revealed a positive selection for 

codons within the HTNV N protein gene, while untreated, HTNV-infected mice 

showed purifying selection. 

The third chapter of my thesis focused on development of a 

physiologically relevant, in vitro model of the hantavirus-rodent reservoir 

interaction; specifically, the deer mouse (Peromyscus maniculatus) and Sin 

Nombre virus.  As the primary target of hantaviral infection is the vascular 

endothelium, a primary lung microvascular endothelial cell (L-MVEC) culture 

system was established. Culture conditions were established and optimized for 

passage and infection. Future research will use this model to probe viral 

determinants and mechanisms that promote persistence and identify host 

responses that pose barriers to virus adaptation. 
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CHAPTER I 

HANTAVIRUSES PAST, PRESENT, AND FUTURE 

 

An introduction to the discovery of hantaviruses and their diseases 

 Historical retrospectives of medical reports suggest trench nephritis in the 

first World War, nephropathia epidemica (NE) in Scandinavia, Song‐go fever in 

Manchuria and hemorrhagic nephroso-nephritis in the Soviet Union were all 

potentially caused by hantaviruses [1-4].  However, it was not until Hantaan virus 

(HTNV) was isolated in 1977 that two human diseases were attributed to 

hantaviruses; hemorrhagic fever with renal syndrome (HFRS) in Europe and 

Asia, and NE, a mild form of HFRS, in northern Europe. Four Hantavirus species 

are now recognized to cause HFRS (HTNV harbored by Apodemus agrarius [1]; 

Dobrava-Belgrade virus (DOBV) is harbored by A. agrarius. A flavicollis, and A. 

ponticus rodents [5, 6]; Seoul virus (SEOV) is harbored by Rattus norvegicus [7]) 

and NE (Puumala virus, PUUV, harbored by Myodes glareolus).  Combined 

these viruses have a global public health impact estimated at over 50,000 cases 

each year with lethality ranging from 1 to 12% [8].   

 The wide prevalence of hantaviruses in rodents in Europe and Asia 

suggested they could be potential reservoirs for hantaviruses in the Americas. In 

the mid-1980’s rodent surveillance efforts discovered Prospect Hill virus (PHV) 

harbored by Microtus pennyslvanicus [9], and cross reactive antibodies were 
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reported in Peromyscus maniculatus, P. difficilis, P. californicus, Neotoma 

mexicana, N. cinerea [10] in the USA, and in Old World (laboratory) rodents in 

South America [11]. It was not long after these efforts that an outbreak of 

hantavirus pulmonary syndrome (HPS) in persons residing in the Four Corners 

area in the southwestern USA in 1993 confirmed the presence of disease 

causing hantaviruses in the Americas.   

 In the Spring of 1993, two young, healthy adults living in the Navajo Nation 

fell ill and died from an unexplained adult respiratory distress syndrome (ARDS) 

[12].  Unexplained deaths are reported to the Office of the Medical Investigator 

(OMI) in New Mexico. Discussions between the OMI and the Indian Health 

Service quickly recognized there were at least five cases of ARDS in the region. 

The outbreak led to collaborative investigations by state health departments in 

Arizona, Colorado, New Mexico, and Utah; the Indian Health Service; the OMI, 

the University of New Mexico, and the Center for Disease Control (CDC), with 

the assistance of the Navajo Nation Division of Health to identify cases, rodent 

reservoirs and develop diagnostic and treatment approaches.  Within a year’s 

time, the CDC identified the causative agent as Sin Nombre virus (SNV) 

harbored by Peromyscus maniculatus [13], a New World rodent species, and one 

of the rodents reported having antibodies to hantaviral antigens in 1985 [10].  

Other groups also reported the identification of SNV [14] and SN-like viruses 

from patients and a number of other rodent reservoirs [8, 15].   

 Just two years after the outbreak in the USA, outbreaks of HPS were 

recognized in Argentina and Chile caused by Andes virus (ANDV) [16-18], and in 



3 
 

Paraguay caused by Laguna Negra virus (LANV) [19, 20].  In Paraguay, the 

outbreak was associated with those living in the agricultural communities within 

the Chaco. In contrast to the severity of disease and high mortality (50%) caused 

by ANDV, the disease caused by LANV shows a lower mortality (<15%) [21].  In 

the third outbreak in El Bolson, Argentina in 1996 [22], one physician in Buenos 

Aires fell ill 27 days after taking care of an HPS patient from El Bolson [23].  This 

was the first recognition that these viruses may cause person to person 

transmission of the illness. Since that report, additional studies have shown that 

person-to-person transmission can occur between couples, persons who sleep in 

the same bed or room of index patients with ANDV infection, or sustained contact 

during travel (e.g., on a bus) [23-26].  

 

Coding and replication strategy of the Hantavirus genome 

 Hantaviruses, family Bunyaviridae, are negative-sense, single-stranded 

RNA viruses with three gene segments (or viral RNAs, vRNAs): small (S), 

medium (M) and large (L) [27].  The S-segment encodes for the nucleocapsid (N) 

protein, the M-segment encodes for the GN and GC glycoproteins, and the L-

segment encodes for the RNA dependent RNA polymerase (RdRp).  In the S-

segment of the hantaviruses carried by Arvicolinae and Sigmodontinae, but not 

Muridae rodents, the N protein has an overlapping (+1) open reading frame for a 

small, nonstructural protein (NSs) [28, 29].  The ends of each segment of the 

genome have conserved, inverted, complementary 5' and 3' termini structure that 

can form a panhandle [30, 31], which has been shown with other viruses in the 
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Bunyaviridae [32, 33]. This region of the genome may contain cis-acting 

elements that promote replication of the viral RNA (vRNA), complementary RNAs 

(cRNAs) and messenger RNA (mRNA) transcription by the RdRp [30, 31]. The N 

protein packages each of the three vRNA into three ribonucleoprotein (RNP) 

complexes which are contained within the virus [8]. By cryoelectron microscopy 

(Cryo-EM), the virion contains three to four rod-like RNP structures [34, 35], 

which presumably contain each vRNA wrapped in N proteins. The viral 

polymerase would be expected to be part of the RNP.  

 Reverse genetic approaches have been successful for other members of 

the Bunyaviridae [36-39], but success in applying these strategies to 

hantaviruses has been limited [40]. At present there has been no progress in the 

creation of systems for the generation of infectious, recombinant hantaviruses. 

The challenges in generating recombinant systems for the study of hantaviruses 

may be due to the ability to produce the correct structures of the tripartite 

genomes, which have a 5-prime monophosphate [41] or additional unknown 

structural features.  

 

Structure and function of hantaviral proteins 

 Hantavirus virions are asymmetric, pleomorphic particles, and until 

recently were thought to have an average diameter of approximately 80-120 nm 

[8, 42]. Electron microscopy studies of the HTNV and Tula virus (TULV) virions 

now show the particles range in size from 120-154 nm [34, 35].  The surface 

rendering of the virion suggests an unusual square, grid-like pattern distinct from 
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other genera in the Bunyaviridae and a lack of icosahedral symmetry typical of 

most viruses. The square spike on the outer surface reflects the glycoprotein 

projections, which extend from 0 to 12 nm from the lipid bilayer and comprise 4 

molecules of GN and GC [34].  

 Hantaviruses bind epithelial and endothelial cells via interaction of GN with 

the host’s cell surface receptor(s); 1 integrin for apathogenic and 3 integrin for 

pathogenic hantaviruses (Figure 1, step A) [43, 44]; although additional 

receptors or co-receptors may also promote entry such as the decay-accelerating 

factor (DAF/CD55) and the globular head domain of complement Clq [45]. In 

addition, hantaviruses infect macrophages, follicular dendritic cells, and 

lymphocytes [45-49]. In Vero E6 cells, HTNV has been shown to enter through 

clathrin coated pits and traffic to late endosomes (Figure 1, step B) [50]. ANDV 

do not enter via clathrin; the pathway for entry is not known [51].  Further, early 

entry events are distinct for HTNV and ANDV given their difference in the 

dependence on an intact actin (ANDV) versus microtubule (HTNV) cytoskeleton 

for viral replication [51].  Release of the RNP's into the host cell cytoplasm from 

endosomal compartments is pH dependent [50].   
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Figure 1. Hantavirus life cycle.  The virus life cycle includes: (A) Attachment to 

either β1 or β3 integrin of the host cell surface using the viral GN protein; (B) 

Entry of the virus through clathrin receptor mediated endocytosis; (C) 

Transcription via the RdRp cleaves host cell mRNA caps as primers for the 

vRNA; (D) Translation of the N and RdRp proteins on free ribosomes and M-

segment through rough ER; (E) Replication of vRNA requires N protein to form 

the RNP; (F) Assembly of the virion at the Golgi or possibly for New World at the 

plasma membrane; (G) Egress from the Golgi through the plasma membrane. 

Reproduced from Future Virology. (2014)  9(1), 87-99 with permission of Future 

Medicine Ltd. 
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 Homology modeling first suggested that the GC has a structure similar to 

the alphavirus E1, which like GC, harbors the fusion domain [52]. The alphavirus 

E1 is a class II fusion protein that forms a pH dependent, trimeric configuration to 

mediate fusion with the host cell membrane within endosomes.  A class II fusion 

peptide maps to the GC protein, and has been shown to promote fusion using 

ANDV GN/GC-pseudotyped lentiviral particles [52, 53]. With the recent Cryo-EM 

of HTNV and TULV, elucidation of the structure of the glycoproteins and mapping 

them within the Cryo-EM structures will shed light on how these GN/GC proteins 

change conformationally to promote membrane fusion.  

 While the precise site(s) for viral transcription and replication are not 

known, the RdRp protein transcribes viral mRNAs from each vRNA in the 

cytoplasm using primers derived from host cellular mRNAs (Figure 1, step C)  

[54]. The RdRp catalyzes the endonucleolytic cleavage of host cell mRNA at 7-

18 nucleotides downstream from the 5' cap, this activity is also termed "cap 

snatching" [54]. This results in hantaviral mRNAs with heterogeneous 5’-ends, 

which are not polyadenylated. Translation of the S and L mRNAs occurs on free 

ribosomes resulting in the production of the N and RdRp proteins; and NSs in 

some hantaviruses (Figure 1, step D). The N protein, which accumulates in the 

perinuclear region, is the most abundant viral protein synthesized early in 

infection. N plays structural and functional roles in the virus life cycle including 

modulation of host responses, binding to vRNA, cRNA and host mRNA caps, 

translation initiation and assembly [31]. The timing and location at which N 

protein apparently commanders the host mRNA caps is not known, but the N has 



8 
 

been proposed to retain the caps in P bodies [55].  How these complexes traffic 

from the P body to the replication complex(es) is not known. While not much is 

yet known about the NSs, the TULV NSs localizes within the perinuclear region 

[56].  It is highly likely that different oligomeric states or conformations of N occur 

during the life cycle as demonstrated by their ability to form trimeric structures 

[57, 58]. While not much is yet known about the NSs, the TULV NSs have been 

reported to localize within the perinuclear region [56].The M-segment is 

cotranslated into the rough endoplasmic reticulum (RER) (Figure 1, step D). 

Following translation into the ER, the precursor protein is proteolytically cleaved 

at a WAASA conserved amino acid motif located from amino acids, 264-268, into 

GN and GC. A small portion of the c-terminus of the GN extends into the cytoplasm 

(referred to as the GN tail). The GN and GC proteins are glycosylated in the RER 

and translocate though the Golgi complex until they assemble into particles. The 

GN cytoplasmic tail has been shown to bind to nucleic acid [59] and N protein 

[60]. At some point following mRNA transcription, the RdRp begins replication of 

the cRNAs and vRNAs (Figure 1, step E).  The signals that initiate replication 

are not known, however, it has been suggested that some level of N protein in 

the cell could drive the switch. The N protein traffics by microtubule dynein to the 

ER-Golgi Intermediate Complex (ERGIC) where they may begin to complex with 

newly synthesized vRNAs to form RNPs [61].  

 It is unclear where or how the assembly of the RNP takes place, however, 

at least in the case of the Old World hantaviruses, the RNPs must traffic to the 

Golgi since this is the compartment where GN and GC glycoproteins are directed 
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and virions have been visualized (Figure 1, step F) [62].  The RNP may interact 

with the GN cytoplasmic tail [60] and buds into the Golgi to produce the virion.  A 

Golgi vesicle forms around newly formed particles and transports the virion to be 

released from the host cell plasma membrane. Alternatively, for the New World 

hantaviruses, it has been suggested that assembly could also take place at the 

host cell plasma membrane (Figure 1, step F). This prediction was initially based 

on the absence of virions within the Golgi for SNV and Black Creek Canal viruses 

(BCCV). There is still limited evidence for where assembly takes place, however, 

the glycoproteins of BCCV have been shown to be expressed at the plasma 

membrane on the apical surface of polarized Vero C1008 cells [63]. Further, 

studies by Rowe et al., have shown that the ANDV associates with the recycling 

endosome and the Rab 9/11 proteins and this may serve as an important 

pathway for trafficking from the Golgi to the plasma membrane [64].   

 

Differential immune responses in rodents and humans 

 The survival of hantaviruses in nature depends on maintenance of 

persistent infections within its specific rodent reservoir. Hantaviruses infect and 

persist only in the rodent reservoir in which the virus has coevolved (monitored 

through phylogenetic trees using sequences from reservoir host mitochondria 

compared to hantavirus S-segment), and the infection is believed to last the life 

of the animal [65]. Notably, persistent infection of rodent reservoirs by 

hantaviruses show continuous virus replication, without complete clearance by 

the immune system, and no pathological changes [8].  Humans are not a natural 
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reservoir and therefore only become infected when they come into contact with 

excreta from the rodent reservoir. In humans, infection can result in severe 

disease although outcomes vary with different hantaviral species.  There are also 

a number of hantaviruses that do not appear to replicate in human endothelial 

cells (PHV) [66] and/or cause disease in humans (TULV and PHV). The 

molecular basis for this has been attributed to difference in receptor preferences 

of apathogenic and pathogenic hantaviruses, which will be discussed later. 

 The clinical course and pathology of HFRS and HPS has been the subject 

of several excellent recent reviews [67, 68].  It is recognized that both HFRS- and 

HPS-causing hantaviruses cause systemic vascular leakage without apparent 

damage to the endothelial cells even though the target organs for HFRS and 

HPS differ, kidneys and lungs, respectively. In severe cases, this can lead to 

hypotension and shock. Mechanisms proposed for the increase in capillary 

leakage include infection-induced increase in vascular endothelial growth factor 

(VEGF), and immunopathology (indirect through cytokines released by T cells). It 

has been hypothesized that the immune response to hantavirus infection in 

human cases causes the severe disease symptoms (e.g., acute 

thrombocytopenia, increased leukocytes) [69].  A recent study reports a third 

mechanism for promotion of vascular leakage and disease.  Using a novel in vitro 

capillary blood vessel model, HTNV or ANDV infection increases bradykinin (BK) 

through activation of the kallikrein-kinin system, which correlates with an increase 

in endothelial cell permeability  [70]. The capillary blood vessel model cocultured 

human umbilical vein endothelial cells with human mesenchymal stem cells or 
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human pulmonary artery smooth muscle cells, which generate blood vessel like 

capillary structures. BK is an inflammatory peptide that can cause vasodilation 

and vascular permeability in the vasculature upon binding of its receptor. 

Interestingly, the model showed an increase in VEGF following infection, but no 

loss in vascular integrity. The immune responses in humans following infection 

with HPS and HFRS-causing viruses have been extensively reviewed [67, 69, 

71-75]; therefore, in the following, we will highlight those responses that 

distinguish between infections of the rodent reservoir and humans. 

 In Hantavirus infection, the differences in immune responses between 

reservoir and humans are evident in composition, magnitude and kinetics of 

cytokine/chemokine responses and T cells. Generally, longitudinal studies of 

hantaviral infection show elevated TNF-α, IL-6, IL-2, IL-1 IL-10 IL-12 and 

cytotoxic T lymphocytes (CTL) responses (Figure 2) [76-80]. Levels of secreted 

cytokines and chemokines in deer mice infected with SNV cannot be compared 

directly, as many antibodies are not yet available. However, longitudinal studies 

of RNA levels of key cytokines and chemokines in lung and spleen have been 

reported in SNV infected deer mice [81] and SEOV-infected rats [82]. While most 

responses noted in humans were very low in SNV-infected deer mice (<twofold 

above uninfected mice) and variable, IL-12 rose at 7 days post infection (dpi) in 

the spleen. In addition, immune responses included increased GM-CSF (10 dpi) 

and TGF-β (biphasic peaks at 5 and 15 dpi) in the spleen. The lack on 

inflammatory signals was similar in SEOV infected rats; however, TGF-β was 

elevated in the lungs, not spleen [82]. 
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Patients with severe HPS or HFRS/NE show strong CD8+T cell responses 

with high levels of perforin and granzyme B [79, 80]. From these studies it has 

been hypothesized that the strong CD8+ T-cell responses will eliminate virus, but 

that such intensive T-cell responses might also result in an excessive amount of 

cytokines, which promote capillary leakage and endothelial cell dysfunction [69, 

73]. In contrast to these findings, a recent study of HFRS patients shows that the 

prevalence of N-antigen-specific CD8+ T cells correlated with the early, acute 

stages of infection and declined thereafter [83]. Hence, the CD8+T cells would be 

expected to have a protective effect rather than promote immune pathology. In 

support of these findings, T-cell-deficient Rowett nude rats infected with SEOV 

succumb rapidly to infection and disease, suggesting that cell-mediated immunity 

may play an important role in controlling infection [84]. More recently, the 

depletion of T cells from hamsters did not alter the progression of HPS following 

ANDV challenge, which suggests that vascular permeability does not involve T-

cell-mediated immunopathology [85]. In summary, the present literature reports a 

role for CTLs in promoting disease or protection; hence a more comprehensive 

analysis of the CTL response is needed in many more patients. However, these 

studies may be confounded in that most of the hantavirus-specific CTLs may be 

present in organs and not accounted for during analyses of CTLs from peripheral 

blood mononuclear cells (PBMC). An additional complexity is in the recent finding 

that endothelial cells infected in vitro with ANDV and HTNV are protected from 

CTL- and NK-cell-mediated apoptosis [86]. 
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Figure 2. Cellular players and responses in rodent reservoir and human 

infections with hantaviruses. While there are many gaps in our understanding 

of the role of the key immune cells and their function, recent studies suggest 

several key immune responses. During a persistent infection reservoir species 

have up regulated Protein Dependent Ligand 1 (PD-L1) and TGFβ resulting 

regulatory T cells (Treg) response, which results in suppressed immune state. 

IgG antibodies are produced suggesting a CD+4 T cell response. Whereas in 

humans, pro-inflammatory cytokines such as TNFα, IL6, and IL10 are induced as 

well as CD+8 and CD+4 T cells. Reproduced from Future Virology. (2014)  9(1), 

87-99 with permission of Future Medicine Ltd. 
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   Mouse models of transient and persistent infection for HTNV have been 

used to analyze the immune response of virus-specific CD8+ T cells with major 

histocompatibility complex (MHC) tetramers [87, 88]. In persistently-infected 

mice, N-specific CTLs are strongly regulated and were suppressed in the model 

by an unknown mechanism [88]. Viral replication in immune cells such as 

monocytes, macrophages or T cells can interfere with or actively suppress 

immunity and cause persistence. Hence Taruishi et al, 2007 proposed that the 

infection of the spleen early in infection may result in infection of immune cells 

that suppress this response. In their persistent animal model experiments, the 

infection of the spleen correlates with changes in CTL responses. Consequently, 

due to the down-regulation of the CTLs, some of the endothelial cells may remain 

infected, resulting in a persistent infection in the natural reservoir. 

 Studies of persistent infection of SEOV in the rat [89, 90] and SNV in the 

deer mouse [91] suggest a role for regulatory T cells, Treg, in establishing 

persistence. The Treg cells are Forkhead box (Fox) P3+CD4+CD25+ and are 

activated during infection of the reservoir.  In contrast, these cells are reduced in 

HFRS patients [92], although they show no chang in PUUV-infected HFRS 

patients [92]. The Treg responses can enable a persistent infection by limiting T 

helper cell responses (TH1, TH2-cell) indirectly by modulating antigen-presenting 

cell (APC) function or directly by cell–cell contact. The production of anti-

inflammatory cytokines (e.g., TGF-β and IL-10) by Treg can suppress innate 

immunity and pro-inflammatory responses, and thereby interfere with viral 

clearance and pathology [93].  Interestingly, in human cases of HFRS, higher IL-
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10 correlated with higher viral load [78]. In rat macrophages infected with SEOV, 

nuclear factor-kappaB (NFkB)-mediated inflammatory responses noted in 

patients (TNF-α, IL-6, and IL-10) are suppressed [82, 94]. Interestingly, SEOV 

induces PD-L1 expression in rat endothelial cells and TGF-β in alveolar 

macrophages [49] (Figure 1). The PD-1-PD-L1 pathway has been correlated 

with increased Treg activity and also shown to play an important role in other 

chronic viral infections such as Human Immunodeficiency virus (HIV), Hepatitis B 

virus (HBV),  Hepatitis C virus (HCV) and lower respiratory infections [95-97].  

 

Hantaviral mechanisms in regulation of nonreservoir host immune 

responses  

 While gaps remain in our understanding of how hantaviruses regulate the 

immune responses at the molecular level, studies have suggested that viral N 

(Figure 3) and glycoproteins may interact with host cellular proteins to modulate 

the innate immune signaling. While gaps remain in our understanding of how 

hantaviruses regulate the immune responses at the molecular level, studies have 

suggested that viral N and glycoproteins interact with host cellular proteins to 

modulate the innate immune signaling (Figure 3). Four different cellular 

pathways have been implicated as targets of hantaviral antagonism in primate or 

human cell models of infection; IFN-α/β responses (see reviews [71, 98, 99]), 

JAK/STAT, TNF-α receptor-mediated signaling, and apoptosis [100]. Highlights 

of what are currently known regarding hantaviral N, N proteins s and/or 
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glycoproteins (GPCs) in modulation of these cellular activities will be summarized 

in the following.  
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Figure 3. Molecular interactions of N protein. Shown in the figure is the 

suppression of the immune response during pathogenic hantaviruses infection 

and hantaviral proteins. The N protein inhibits NFκB’s transport to the nucleus by 

binding importin-alpha proteins and NFκB complex (1); or importin-alpha proteins 

alone (2). The N protein can be cleaved by caspase 3 (3). The N protein is has 

been shown to be required for JAK/STAT signaling suppression and (4) type I 

IFN induction for some hantaviruses. The glycoprotein has also been shown to 

be involved in suppression of Type I IFN induction through TBK1 (6) and 

suppression of JAK/STAT signaling (7). Reproduced from Future Virology. 

(2014)  9(1), 87-99 with permission of Future Medicine Ltd. 
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Differences in which proteins are used by hantaviruses to inhibit 

amplification of IFN responses have been reported. Moreover, differences in 

induction of IFN-β RNA and protein have been shown following infection of 

human microvascular endothelial cells by ANDV (pathogenic) or PHV 

(nonpathogenic) [101]. ANDV suppressed IFN-β induction while PHV induced its 

activation; however, both viruses suppressed STAT1/2 phosphorylation and 

translocation [101]. Levine et al. showed that ANDV uses GPC and N protein to 

suppress IFN-β induction and IFN-dependent JAK/STAT signaling [75]. In that 

same report, SNV uses the GPC, but not N protein, to suppress IFN-β induction. 

In studies of the New York virus (NYV), a pathogenic, New World hantavirus 

closely related to SNV, the Gn-CT blocks RIG-I/TBK1 activation of IFN sequence 

regulatory element (ISRE) transcriptional responses, but the PUUV Gn-CT did 

not [66]. The NYV Gn-CT coprecipitates the N-terminal domain of TRAF3 [102]. 

The interaction of the NYV Gn-CT with TRAF3 is suggested to disrupt the 

formation of TRAF3–TBK1 complexes and inhibit induction of IFN-β [102]. 

Interestingly, the Gc-CT TULV, but not PHV, inhibit IFN-β and ISRE induction 

through TBK1, but not via TRAF3 [110]. Finally, the N protein of TULV has also 

been reported to be a weak antagonist of IFN-β induction [28]. Finally, HTNV has 

been shown to activate the Type III IFN, IFN-λ1, through a mechanism 

independent of Type I IFN [103].  

In addition to suppression of IFN and JAK/STAT, the N protein down-

regulates TNF-α receptor-mediated signaling by inhibiting activation of NFκB 

[104-107]. Studies in 293T cells suggest that the HTNV N, but not ANDV or 
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PUUV N, can block activation of NFκB by binding the importin-alpha proteins, 

which are responsible for NFκB’s transport into the nucleus [107]. In a study by 

Ontiveros et al., it was suggested that N may bind to both NFκB and importin as 

a complex to prevent its nuclear translocation [106]. Both studies also show that 

TNF-α induces degradation of IκB, implicating the block at NFκB’s transport. 

Inhibition of signaling pathways normally leading to activation of caspases 

and apoptosis is evident in cells expressing HTNV N protein [106] and ANDV N 

protein [86]. Furthermore, ANDV and HTNV-infected endothelial and epithelial 

cells are protected against staurosporine induced apoptosis [86, 106] and against 

cytotoxic granule-mediated induction of apoptosis [86]. Intriguingly, the 

suppression of caspase activity in HTNV N mapped to a highly nonconserved 

region from amino acids 270 to 330. In a study by Gupta et al., it was shown that 

the ANDV N interacts with caspase 3 and granzyme B, resulting in inhibition of 

these apoptosis-inducing enzymes and cleavage of the N protein. Hence, 

hantavirus inhibits both granzyme B-mediated activation of caspase 3 and 

inhibits activated caspase 3 in infected endothelial cells targeted by natural killer 

(NK) cells, thereby protecting infected cells from being killed by cytotoxic 

lymphocytes [86]. In ANDV N, the caspase cleavage site mapped to DLID285, a 

site that is not conserved across New and Old World hantaviruses [86]. In silico 

prediction using GraBCas 1.0 [105] suggests potential caspase and granzyme B 

cleavage sites in N from other hantaviruses as well. 
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Conclusion 

 Diseases caused by hantaviruses cause a spectrum of vascular leakage 

in endothelial cells within the lung or kidney that can lead to shock and death. At 

present, there are no Food and Drug Administration (FDA) approved treatments 

and hence continued efforts on the mechanisms hantaviruses use to persist in 

their reservoirs and that cause disease in humans are essential to discovery of 

effective therapeutics.  A number of recent studies show differences among the 

Old and New World hantaviruses in several aspects of their life cycle. Further, 

studies show there are striking differences in the immune responses following 

infection of hantaviruses within the reservoir and human. Despite the enormous 

progress that has been made in understanding the pathogenesis and immune 

responses of hantaviruses in humans and rodents, there is a large gap in 

molecular based knowledge of hantaviral proteins in their structures, functions 

and the mechanisms that facilitate the differences in the immune responses. 

Importantly, little is known about the specific viral determinants and viral protein-

host interactions that drive these responses. 

 Significant gaps in knowledge remain in the entry, replication and 

assembly strategies used by hantaviruses.  Further, structural studies have been 

challenging due to difficulty in purification of hantaviral proteins and the lack of a 

reverse genetics system, which have limited researchers ability to gain insight 

into function. Additionally, the majority of the studies that characterize the 

structure and function of hantaviral proteins have been conducted in Vero E6 

cells or with viruses produced from Vero E6 cells.   
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 In the past decade, in vitro primary endothelial and immune cells models 

have emerged to study the host responses elicited by hantaviruses in human and 

in a few cases rodent reservoirs. It is assumed that the structure and function of 

hantaviral proteins are the same within the Vero E6, human, and rodent 

reservoir, but further work to confirm similarities and differences remain. New 

insight into the virion structure suggests novel Class II mechanisms for binding to 

its receptor and assembly based on the tetrameric conformation. How the two 

hantaviruses with Cryo-EM structures interact with different receptors, 1 integrin 

for TULV, and 3 integrin for HTNV remains to be elucidated. In addition, distinct 

requirements for entry and trafficking of New and Old World hantaviruses 

suggest differences in these mechanisms. Whether these differences also extend 

to rodent reservoir endothelial cells is not known.  Finally, recent findings suggest 

that hantaviruses regulate TNF-α and INF-induced responses as well as 

apoptosis within infected endothelial cells and nearby immune cells.  These 

studies also underscore differences in strategies among the hantaviruses in the 

use of the N, NSs and/or GN tails in modulating host response. While some N 

protein – host protein interactions have been uncovered, additional studies are 

needed to define the precise mechanisms across hantaviruses. Finally, studies 

show the potential importance of the CTL responses in causing disease and also 

in protection depending on the virus. Clear answers await further analysis of the 

CTL-response in many more patients across the major hantaviral diseases. 
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Future perspective for treatment 

 Design and development of vaccines and antivirals for treatment of 

hantaviral infections remains challenging. Continued advancement of vaccines 

and antivirals would be greatly accelerated with knowledge gained from future 

research focused on the structure and function of hantaviral proteins during 

entry, fusion, replication and assembly. For example, knowledge of the 

glycoprotein spike structure will enable insight into neutralization epitopes that 

can be incorporated into vaccination technology.  Knowledge of viral sites of 

replication and assembly of HTNV within cells will benefit discovery of new 

targets for antiviral drug discovery. Furthermore, future efforts that define the 

cellular components that interact with viral proteins may reveal potential 

therapeutic targets. Using current and newer approaches in structural and 

molecular virology, one can begin to unravel sites and mechanisms of binding, 

replication and assembly of hantaviruses within cells.  These types of studies will 

be important in revealing unique aspects of the viral life cycle that have 

presumably thwarted the field’s ability to generate recombinant viruses to study 

the function of viral proteins.  

 In addition to understanding the structure and function of hantaviral 

proteins, it is clear that unraveling the differences in immune responses in their 

reservoirs and humans may shed important light into novel approaches for 

treatment of these serious diseases [100]. Breakthroughs in the study of immune 

responses of hantaviruses in rodent models will require the active development 

of new reagents in lethal models of disease (e.g., hamster) and persistence (e.g., 
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deer mouse). The recent sequencing of hamster and deer mouse genomes is an 

important new development in that regard. 
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CHAPTER II 

THE MURINE MODEL FOR HANTAAN VIRUS-INDUCED LETHAL DISEASE SHOWS 

TWO DISTINCT PATHS IN VIRAL EVOLUTIONARY TRAJECTORY WITH OR 

WITHOUT RIBAVIRIN TREATMENT 
 

Introduction 

 We are interested in how hantaviruses adapt, and hence evolve, in a 

nonreservoir rodent host. In nature, hantaviruses have high selectivity of infection 

for a single reservoir host species. However, phylogenetic analyses clearly show 

that spillover and adaptation of hantaviruses to nonreservoir hosts has occurred 

throughout the evolutionary history of Hantavirus. Recent evidence suggests 

these spillover events have occurred not only across different genera, but also 

between different orders of mammals [108-111]. Understanding spillover and the 

emergence of new pathogens in new hosts is critical for safeguarding global 

health, both wildlife and human. Spillover of pathogens is the first step leading to 

the emergence of new strains, new emerging diseases and potentially, 

pandemics. Alarmingly, the “spillover” and subsequent adaptation of viruses to 

new hosts in nature is an area of biology of which we have little understanding. In 

this chapter of my thesis, I evaluated the Hantaan virus in Mus musculus over 

time following infection. The goal was to determine if any changes occurred in 

the viral genome over time in the presence and absence of ribavirin. We have 
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previously shown that ribavirin increases the mutation rate of Hantaan virus in 

vitro. We hypothesized that ribavirin would increase the error rate in vitro and 

drive the virus to lethal extinction as observed in vitro [112]. While we did 

observe the expected increase in the mutation frequency of the viral genome to 

what we observed in vitro, ribavirin appeared to increase the ability of Hantaan 

virus to persist. My contribution to the publication was in the analyses of the viral 

sequences sampled over time. In the following I give further background than 

provided in the manuscript on the evolution and some of the tools one can use to 

evaluate evolutionary changes. 

 

Mechanisms of viral evolution  

The three major mechanisms of viral evolution include Antigenic Drift 

(AGD), Antigenic Shift (AGS) and recombination [8, 113-116]. Each of these 

processes have the potential to result in a genetic change in a coding region that 

may alter protein function and therefore phenotype. AGD is an intrinsic process 

where a gene drifts due to misincorporation of nucleotides/nucleosides in genes 

during synthesis of the genome or copy of the genome by the viral polymerase. 

This natural rate of mutation has the possibility of producing both silent and 

missense mutations. A missense mutation or nonsynonymous mutation can arise 

due to the misincorporation of a single nucleotide which results in a codon for a 

different amino acid. In RNA viruses the process of misincorporation has 

enormous impact on viral evolution, because the viral polymerase (RdRp) has a 

high error rate or lower fidelity than found in the vast majority of host cellular 
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polymerases. Generally, as the RdRp synthesizes new RNA genomes, the wrong 

nucleotide is misincorporated can range from 103-104
. For hantavirus with a 

genome of approximately 12,000 nucleosides this may results in 1 nucleotide 

change per genome per round of replication [8].  

AGS is the process in which two viral strains exchange parts or entire viral 

gene segments. This is common in segmented viral RNA genomes such as 

hantaviruses and influenza viruses. AGS occurs when two virus strains infect the 

same host cell and genomes are packaged with a reassortment from the two 

viruses. Reassortment has been shown to occur with hantaviruses in natural 

wildlife settings [117]. 

Recombination is similar to AGS except it is the reorganization/orientation 

of alleles in a single gene segment which results in a new phenotype. In Europe 

a phylogenetic examination of TULV N protein harbored by Microtus arvalis 

found in Slovakia revealed two lineages from different regions that arose through 

recombination [114]. 

The three aforementioned mechanisms of viral evolution can be 

influenced by intrinsic (within-host) and extrinsic (between-host and 

environmental) factors. Each of these factors can play an important role on the 

success or failure of transmission to new hosts and the replication or life cycle 

within-host. Both intrinsic and/or extrinsic pressures within a host can promote 

and drive the selection of genetic alterations, directly or indirectly. Examples of 

extrinsic pressures that can affect transmission rates of viruses among rodent 

hosts are any changes in food, predators and water. In the instance of increased 
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predators or decreased food there would be changes in biodiversity and 

population structures of rodents in that community. In turn this would influence 

the number of infections of a single host over time. If the basic reproductive value 

(R0) falls below the rate required for maintenance of the virus in nature, the 

infection will die out in that population. Alternatively, an increase in the number of 

susceptible individuals in the community could drive spread and prevalence. This 

extrinsic pressure could be supplied by an increase in food, which can increase 

the number of litters per year and hence the rodent population. Population 

increases can also result in increased interaction among rodents through 

breeding and fighting and thus an increase likelihood of a virus transmission to 

occur, in particular, to nonreservoir rodents.  

A Genetic Selective Sweep (GSS) occurs when a mutation results in an 

amino acid change in the genome that gives rise to a viral phenotype that is more 

fit to survive than its peers. A site under diversifying selection may confer a 

phenotype to the population that has increased fitness. The newly emerged viral 

genotype may not be dominant, however, and until it reaches greater proportions 

in the population, the new genotype may not confer its advantage to the overall 

population [118]. This is due to the lag time it takes for the newly produced virus 

(now under purifying selection) to become the prominent phenotype in the 

population. GSS are most of the time due to bottle neck events (due to extrinsic 

or intrinsic pressures). The emergence of positively-selected amino acids or 

nonsynonymous amino acids can be identified using various bionformatic 

approaches and will be reviewed in the following. 
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Tools for evaluation of genetic changes in viral genomes 

Nonsynonymous amino acid changes are known as positively selected 

amino acids. Positively selected amino acids are identified on a site by site (by 

codon) basis. A common approach is to search amino acids within a coding 

region for nonsynonymous error rate (dN) greater than the synonymous error 

rate (dS). If the nonsynonymous error rate (dN) is greater that a synonymous 

error rate (dS), or a (dN/dS)>1.0, this suggests positive selection has occurred. In 

order to determine what sites are under positive selection the web server 

“DataMonkey” can be used to conduct the analysis (http://www.datamonkey.org), 

using alignments of the coding regions within a RNA population.  

Since 2010 DataMonkey has been used by the scientific community in 

over 100,000 analyses for amino acids under selection [119, 120]. The analyses 

that DataMonkey conducts are Single Likelihood Ancestor Counting (SLAC), 

Mixed Effects Models of Evolution (MEME), Fixed Effects Likelihood (Fel), 

internal Fixed Effects Likelihood (iFel), & Fast Unbiased Bayesien 

AppRoximation (FUBAR) (Table 1) [119, 120]. The SLAC, Fel, and iFel analysis 

are directed to finding amino acid sites that may have been affected by purifying 

or diversifying selection across multiple sequences in an alignment [119, 120]. 

iFel is slightly different than Fel in that is restricted to finding amino acid sites 

under positive selection in sequences that are within the internal branches of the 

Phylogenetic Tree (created by DataMonkey)[119, 120]. MEME is like Fel and iFel 

except that it has a less conservative test statistic (ω) which leads to less Type I 

error (the incorrect rejection of the null hypothesis) [119, 120]. The FUBAR 
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analysis is like MEME in that it has more computing power than SLAC, Fel, and 

iFel [119, 120]. FUBAR although can be used to determine positively selected 

amino acids in large datasets [119, 120]. When all analysis are conducted 

together on the same dataset it is certain that all amino acids under positive 

selection are identified and recombination is taken into account [121]. 

 Herein, we have used these approaches to examine the evolution of 

Hantaan virus in a mouse model of lethal infection in the presence and absence 

of ribavirin. There are two intrinsic pressures afforded by this model. First, 

infection of HNTV in this host represents a spillover infection of a nonreservoir 

rodent host. The virus is not adapted to this host and hence to survive or persist 

as it does in wild mice in nature. Hence, the virus must undergo genetic changes 

that would be favorable for survival. Secondly, we used ribavirin. We have shown 

that ribavirin increase the mutation frequency of the RdRp in vitro. Hence, 

ribavirin alters the intrinsic environment of the virus-host interaction.   
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Table 1.  

Datamonkey analysis for determining selection 

Method Description 

Single Likelihood 
Ancestor Counting 
(SLAC) 

Identifies Sites in a multiple sequences alignment that 
have been affected by positive of negative selection 
using likelihood branch lengths, nucleotide, and codon 
substitution parameters (dN) and (dS).  

Mixed Effects Models 
of Evolution  
(MEME) 

Identifies positive, negative and episodic selection 
(large proportion of positively selected sites; multiple 
positively selected sites within one sequence) at the 
level of individual nucleotide sites. 

Fixed Effects 
Likelihood 
(FEL) 

A codon based maximum likelihood test that identifies 
sites in a multiple sequences alignment that have been 
affected by positive of negative selection. The 
parameters (dN) and (dS) for this test are determined 
independently for each codon site.  

internal Fixed Effects 
Likelihood 
(iFel) 

A codon based maximum likelihood test that identifies 
sites under positive and negative selection that are 
restricted in sequences in the interior branches of the 
tree.  

Fast Unbiased 
Bayesien 
AppRoximation 
(FUBAR) 

Newest codon based maximum likelihood test that 
vastly improves speed of analysis. Parameters for this 
test are determined independently for each codon site 
and across codon sites.  
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In vivo model of hantaviral infection 

 Laboratory animal models of hantaviruses have proven useful for basic 

research to study infection and virulence [122-125] and for the discovery of 

therapeutics and potential vaccine candidates [126-131]. For example, the well-

established lethal, suckling mouse model of HTNV infection demonstrated 

ribavirin's therapeutic efficacy [129] and provided the impetus for clinical studies 

of its efficacy in humans [128, 130]. Ribavirin was recently shown to have 

efficacy in vivo in the lethal hamster model of ANDV, a New World hantavirus 

[131]. Clinical studies of intravenous ribavirin treatment of HFRS in human cases 

caused by HTNV have shown efficacy, with a decrease in occurrence of oliguria 

(decreased urine output) and severity of renal insufficiency [130]. No other 

treatment is available for either disease. 

 The study of an antiviral both in vitro and in an animal model of disease 

progression is important for a complete understanding of its mechanism of action 

and potential for selecting for drug resistance or lethal mutagenesis [132-135]. 

Lethal mutagenesis is a chemotherapeutic strategy in which one uses a viral 

mutagen to promote the lethal accumulation of mutations in an RNA viral 

genome. Ribavirin is a potent, broad-spectrum antiviral for many RNA and DNA 

viruses in vitro and in vivo [136]. The antiviral activity against several viruses is 

due to its ability to competitively inhibit inosine monophosphate dehydrogenase 

(IMPDH) [137, 138], a key enzyme in the de novo synthesis of GTP. Additional 

targets for its antiviral activity have been shown, including capping [139], 

translation efficiency of viral mRNA [140], and a direct suppressive effect on the 
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viral polymerase activity [141-143]. Ribavirin can also act as a potent RNA virus 

mutagen for several RNA viruses and can cause error-prone replication [135, 

144-147]. In addition to targeting the purine metabolic pathway and viral 

enzymes, recent studies suggest that ribavirin may act by promoting a type 1 

immune response [148]. Specifically, Kobayashi et al. showed that ribavirin can 

down modulate interleukin-10 (IL-10)-producing Treg 1 cells, which could inhibit 

the conversion of CD4+ CD25− FOXP3− naive T cells into 

CD4+ CD25+ FOXP3+adaptive Treg cells to maintain Th1 cell activity [149]. The 

role of the ribavirin-induced immune response in acting as a selective pressure 

on hantaviral population and evolution has not yet been addressed. 

 In vitro, we have shown direct effects of ribavirin on HTNV through the 

host IMPDH and viral replication [150], which correlates with an increase in 

mutations in the vRNA genome [151, 152]. Our studies on the mechanism of 

action of ribavirin's potent antiviral activity have also provided insight into the 

standing genetic variation and population structure of HTNV [151, 152]. These 

studies revealed an increase in the mutation frequency in the viral population, 

after which the mutation frequency did not correlate with a dose-dependent 

decrease in the level of viral RNA, Plaque Forming Units (PFU), or [RTP]/[GTP]. 

Intriguingly, even at the highest concentrations of ribavirin-treated cells, the 

proportion of HTNV wild-type sequences never dropped below 60% for the target 

S-segment sequence used in sampling. These studies suggested that HTNV 

could not survive past a critical mutational burden or lethal threshold. 
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 Based on the findings of our prior studies [151, 152], we sought to test 

whether mice infected with HTNV and treated with ribavirin would show an 

increase in mutation frequency and demonstrate a lethal extinction threshold. 

Specifically, would ribavirin cause extinction as revealed by an increase in viral 

mutation rate followed by a steady decrease in titer in vivo? We found that, 

surprisingly, untreated, HTNV-infected mice showed an overall apparent 

decrease in mutational frequency compared to the previous mutational 

frequencies measured for the HTNV seed stock in Vero E6 cells [151, 152]. In 

contrast, ribavirin-treated, HTNV-infected mice showed an increased mutational 

load. Both populations showed a reduction in specific infectivity over time. These 

studies show, for the first time, two distinct evolutionary trajectories for HTNV 

within a lethal mouse model of disease in the presence and absence of ribavirin, 

as well as evidence for positive selection not previously observed in vitro. In the 

ribavirin-treated vRNA population, analyses of rates of nonsynonymous (dN) and 

synonymous (dS) substitutions in the S segment revealed a positive selection for 

codons within the HTNV N protein gene, while untreated, HTNV-infected mice 

showed purifying selection. Furthermore, in contrast to our prior in vitro studies 

[151, 152], the increased mutational load did not lead to lethal extinction. 

Intriguingly, viral RNA levels remained high in both untreated and treated 

populations, with a decrease in the level of infectious virus over time. The levels 

of infectious virus produced by the two populations, however, were statistically 

significantly different, reflecting a difference in the selective pressure by the host 

with and without ribavirin. Importantly, these data reveal that while the virus 
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populations within the ribavirin-treated, HTNV-infected mice had a larger 

proportion of deleterious mutations leading to a smaller number of infectious 

particles, they harnessed the increased mutation rate to also achieve genetic 

changes that improved their survival over that of the wild type. Finally, while a 

direct analysis of the potential for ribavirin-induced immune responses as an 

added selective pressure was not possible in the context of this experiment, the 

immune system of the suckling mouse model was assessed at the time point for 

ribavirin treatment, which was 11 days postnatal (dpn) or 10 dpi. These studies 

showed a responsive innate immune system in these young mice. 

 

Materials and Methods 

Cells and viruses 

 Vero E6 cells (CRL-1586; ATCC) were propagated and used for 

production of HTNV strain 76-118 and measurement of virus in tissue samples. 

Cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Invitrogen) 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, 

and 1% L-glutamine (Sigma). The titers of virus in the seed stock and in animal 

tissues were measured by determining the numbers of PFU per ml, using an 

agarose overlay method as described previously[153]. 

 

Animal study 

 ICR suckling mice (Harlan, Prattville, AL) were used for all animal studies 

and were individually identified by tattoo. Pregnant mice were housed singly with 
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their pups in solid-bottom polycarbonate cages on stainless steel racks in an 

environmentally monitored, well-ventilated room. Bedding (P. J. Murphy Forest 

Products, Inc., Montville, NJ) was used in the bottom of the cages. Dams were 

fed on certified rodent diet 5002 (PMI Feeds, Inc., St. Louis, MO), and tap water 

was provided ad libitum during the study periods. Procedures used in this study 

were designed to conform to accepted practices and to minimize or avoid 

causing pain, distress, or discomfort in the animals and were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Southern Research 

Institute. 

 Animals were monitored for a 26-day period following intracranial (i.c.) 

challenge with HTNV (strain 76-118). On day 0, each mouse in group 1 received 

10 μL DMEM and each mouse in groups 2 and 3 received 10 μL of 1 × 103 PFU 

HTNV diluted in DMEM. Beginning at 11 dpn or 10 dpi, each mouse was treated 

with ribavirin (MP Biomedical, Inc.) via the intraperitoneal (i.p.) route at 5 μL/g of 

body weight (50 mg/kg of body weight) for 15 days. All mice were observed twice 

daily throughout the study periods for signs of morbidity and mortality and for 

body weight, and detailed observations were recorded daily beginning at −1 dpi. 

 

Isolation of total RNA, cDNA synthesis, and real-time RT-PCR 

 Briefly, total RNAs from infected tissues were homogenized and extracted 

with TRIzol (Invitrogen), and 0.5 μg of total RNA was subjected to a reverse 

transcription (RT) reaction with SuperScript III reverse transcriptase (Invitrogen). 

The HTNV S-segment vRNA copy number within virus-infected mouse tissues 
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was measured with a real-time RT-PCR assay using the comparative threshold 

cycle method, i.e., 2−ΔΔCT method [150, 151]. Real-time PCRs were performed in 

triplicate for each sample and were prepared with TaqMan universal PCR master 

mix (Applied Biosystems). 

 

Sequencing and phylogenetic analyses 

 cDNAs were cloned and analyzed for each lung tissue as described 

previously [151]. Briefly, cDNA prepared as described above was amplified by a 

PCR using Phusion High-Fidelity DNA polymerase (Finnzymes Oy, Finland) 

following the manufacturer's protocols. Primers HS24 (forward primer; 5′-

TACTAGAACAACGATGGCAACTATG-3′) and HS1336 (reverse primer; 5′-

GTGCAAATATGATTGATAATGATTCAGTAG-3′) were used to amplify the open 

reading frame of N within the S-segment gene. The amplified product was cloned 

into the pCR-4 plasmid (Topo cloning kits for sequencing; Invitrogen) after A 

tailing by using Taq polymerase (Promega). On average, 96 colonies per lung 

were subjected to colony PCR using the M13 forward and M13 reverse primers 

[151]. As a control, the background mutation frequency (inherent in the 

amplification process) was measured using the same enzymes and plasmid DNA 

encoding the HTNV S-segment cDNA. 

 SeqScape 2.1 was used to generate the open reading frame (from codons 

19 to 430) of the plus strand of the HTNV S-segment forward and reverse 

sequences from each of the clones from each lung. The ABI file of each 

sequence was evaluated manually, and sequences with inconclusive nucleotides 
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(nt) at any position, stop codons, or gaps were removed. Sequences were 

exported into fasta file format, aligned by ClustalW in Mega 5.1 [154], and 

compared to the published HTNV 76-118 sequence (GenBank accession 

number M14626) as well as other sequences to generate phylogenetic trees 

[155]. Mutation frequencies for each sample were calculated from the alignment 

of individual cDNA sequences with that of HTNV 76-118. Phylogenetic analyses 

based on maximum likelihood or neighbor-joining programs were generated from 

the ClustalW alignments in Mega 5.1, with 1,000 bootstraps [154]. 

 

Ratio of nonsynonymous to synonymous substitution rates 

 The ClustalW alignments for the mock-treated and ribavirin-treated groups 

defined above were analyzed by the Web server Datamonkey [119]. The 

sequence sets were analyzed by single-likelihood ancestor counting (SLAC), 

fixed-effects likelihood (FEL), internal fixed-effects likelihood (IFEL), mixed-

effects model of evolution (MEME), and fast unbiased Bayesian approximation 

(FUBAR), using default settings) [119]. Datamonkey removed all identical 

sequences, which left 32 and 107 sequences that differed in the mock-treated 

and ribavirin-treated groups, respectively. Automatic model selection identified 

the HKY85 nucleotide substitution bias model. 

 

Statistical analyses 

 Statistical analyses of virus loads from the animal study were performed 

using R, a language and environment for statistical computing and graphics 

http://jvi.asm.org.echo.louisville.edu/external-ref?link_type=GEN&access_num=M14626
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(www.r-project.org/). A set of generalized linear models (GLM) were used to test 

the main effects of treatment (mock or ribavirin) and dpi on viral load (given by 

vRNA copy number, number of PFU, or number of PFU/vRNA copy) in mice. Full 

models including an interaction term were included in the goodness-of-fit 

assessments, and all simpler models were considered to define the accepted 

model used in interpretation of data. Only data from time points after the ribavirin 

course of treatment were included in the analysis (i.e., ≥12 dpi). Day 26 was not 

included in the analyses. Best-fit statistical models were selected using log-

likelihood ratio estimates and the Akaike information criterion (AIC). In cases 

where single effects models were the best fit to explain the data, nonparametric 

statistical tests were used to describe the difference between groups. In all 

analyses, the type I error rate was set to an α level of 0.05. 

 

Results 

Study design 

 To define the intrahost mutation frequency and population structure of 

HTNV following infection in mock- and ribavirin-treated, HTNV-infected mice, we 

employed a standard experimental design and lethal murine model of HTNV that 

is used to measure antiviral efficacy (Table 2) (12). One-day-old suckling mice 

were infected with 1,000 PFU of HTNV, and from 10 to 24 dpi, mice were treated 

once per day with 50 mg/kg of ribavirin. Mice were sacrificed as noted in Table 2, 

and lung tissues were harvested and flash frozen in liquid nitrogen. At the same 

time that this study was conducted, an efficacy study of an analog of ribavirin 

http://www.r-project.org/
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T1
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#ref-12
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T1
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was conducted in parallel [156]. The mean time to death (MTD) and percent 

survival in ribavirin-treated, HTNV-infected mice published as part of that study 

were 18.5 days and 35%, compared to 15.5 days and 10% survival for untreated, 

HTNV-infected mice [156]. In the groups presented in Table 2, the mock-treated, 

HTNV-infected mice that survived to day 26 were moribund, and the virus was 

below the limit of detection by plaque assay. The day 26 time point was not 

included in our analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T1
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Table 2.  

Group, treatment and sampling design 

 
Group/ 

Treatment 

DPN* 5 9 11 13 15 18 18 21 22 27  
Total 
(mice) DPI** 4 8 10 12 14 17 18 20 23 26 

Group 1: No Virus (mock)    2  2  2    6 

Group 2: HTNV  2 2 2 3 5* 2 2 0 1 3 16 

Group 3: HTNV & RBV  0 0  3 3 1  3 0 3 14 
*DPN- days post-natal, **DPI-days post-infection 
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Viral titers in lungs in mock- and ribavirin-treated mice 

 Lung tissue was harvested and analyzed for S-segment vRNA copy 

number by real-time RT-PCR and for number of PFU for both mock- and 

ribavirin-treated, HTNV-infected mice (Figure 4). In the mock-treated group, the 

vRNA copy number increased through day 12 and remained fairly constant in the 

few mice that survived from days 14 to 24 (Figure 4A). Similarly, in the ribavirin-

treated group, the vRNA copy number remained steady from days 14 to 26. GLM 

testing and statistical comparison of vRNA levels (days 12 to 20)  in the mock-

treated and ribavirin-treated groups showed that they differed significantly 

(Wilcoxon rank sum test; P= 0.035). These data showed that the ribavirin-treated 

group had more vRNA copies on days 12 to 20 than the mock-treated, HTNV-

infected mice. 

 In the mock-treated, HTNV-infected mice, viral titers measured by plaque 

assay increased through day 9 (Figure 4B). After day 9, mock- and ribavirin-

treated, HTNV-infected mice showed similar levels of PFU over time. GLM model 

fitting confirmed that the dpi-only model was the best fit to explain the variance in 

numbers of PFU, and analysis of variance (ANOVA) showed no significant effect 

of treatment (with or without ribavirin) on the number of PFU, controlling for dpi 

(P= 0.84). 

 We calculated and plotted the selective infectivity (number of PFU/vRNA 

copy) over time (Figure 4C), as we have found this valuable for comparisons 

made across groups and experiments conducted in vitro [151]. Analysis of the 

data by GLM showed that treatment only was the best model to explain the 

http://jvi.asm.org/content/87/20/10997.long#F1
http://jvi.asm.org/content/87/20/10997.long#F1
http://jvi.asm.org/content/87/20/10997.long#F1
http://jvi.asm.org/content/87/20/10997.long#F1
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variation in the data. Therefore, we used a nonparametric Wilcoxon rank sum 

test to compare these two groups, ignoring changes over time, to determine if 

there was a difference in the PFU/vRNA ratio due to ribavirin treatment. These 

data suggest that the specific infectivity for the ribavirin-treated, HTNV-infected 

mice was lower than that for untreated mice (P = 0.053). A model of the 

probability density for each population is shown in Figure 4D. 

 

 

 

 

 

 

 

http://jvi.asm.org/content/87/20/10997.long#F1
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Figure 4. Viral RNA and infectious virus levels in lung tissue of untreated 

and ribavirin-treated, HTNV-infected mice. (A) Lung tissue was homogenized 

from each animal specimen and divided to measure the copy number HTNV S-

segment vRNA per gram (g) of tissue in mock-treated (open circles) and 

ribavirin-treated (solid circles), HTNV -infected mice and (B) the levels of 

infectious virus in lung tissue suspension by PFU. Asterisks indicate vRNA-

positive samples from animals that were moribund, infectious virus from these 

animals were below the limit of detection inplaque assays and were eliminated 

from the subsequent analyses of selective infectivity. Open squares indicate 

untreated, HTNV-infected, but are noted differently since statistical comparisons 

did not take these time points into consideration.  In (C), the selective infectivity 

(PFU per vRNA copy number based on gram of lung tissue) is plotted by days 

post-infection for HTNV-infected mice that were treated with DPBS or ribavirin 

from 10 to 25 dpi. In (D), smoothed histograms (probability density functions) of 
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the selective infectivity for each group, HTNV-infected mice (dashed line) and 

HTNV-infected, ribavirin-treated mice (solid line). The Wilcoxon Rank Sum show 

that there was a significant reduction in PFU/vRNA in ribavirin-treated mice, 

including only samples from 12-25 dpi (p = 0.053). 
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Intrahost genetic variation of HTNV in untreated and ribavirin-treated mice 

 Using a previously standardized approach to measure the mutation 

frequency of HTNV [151], estimates of nucleotide and amino acid (aa) mutation 

frequencies were made for each viral population in each mouse lung (Table 3). 

Briefly, total RNA was isolated, and S-segment cDNAs were PCR amplified, 

cloned, sequenced, and aligned using ClustalW. The region cloned was the open 

reading frame of the N protein. Changes from the master consensus (HTNV seed 

stock) were counted, and the estimated mutation frequency per 10,000 

nucleotides or 3,333 amino acids is shown (Table 3). Our prior analyses for 

standardization of the method showed that an accurate assessment of mutation 

frequency is reached with a sample size of 48 clones for each sample, after 

which no change in the proportion of genetic variation or frequency is noted[151]. 

The number of cDNAs examined for each mouse lung sample is shown in Table 

3, after removal of sequences with stop codons, gaps, or poor sequence 

information. For this analysis, we used a total of 653 sequences for the ribavirin-

treated, HTNV-infected group, among which 107 sequences showed nt/aa 

differences from the consensus sequence. For the mock-treated, HTNV-infected 

group, we used a total of 408 sequences, among which 32 showed nt/aa 

differences. 

On day 8 post-infection, the estimated standing genetic variation in the 

mock-treated animals ranged from 0.51 to 0.84 mutation per 10,000 nt (Table 

3; Figure 5). Our previous in vitro estimates show that HTNV has an estimated 

average mutation frequency of 1.1 to 1.4 mutations per 10,000 nt in Vero E6 cells 

http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#F2
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[151]. In the mock-treated mice, the mutation frequencies of the HTNV population 

showed a nearly 2-fold decrease (Figure 5) (P < 0.05). On average, 0.5 

mutations per 10,000 nt was estimated overall from days 8 to 23. In contrast, in 

HTNV-infected mice treated with ribavirin, the average mutation frequencies from 

days 12 to 20 (2.3/10,000 nt) or days 12 to 26 (1.8/10,000 nt) were 3- to 4-fold 

higher (P < 0.05) (Table 3; Figure 5). 

 We further examined the mutational frequency of HTNV in mock-treated 

and ribavirin-treated mice by the specific infectivity, i.e., the number of 

PFU/vRNA copy (Figure 6). The hatched line in Figure 6A shows the mutation 

frequency of approximately 1.1 mutations per 10,000 nt measured in vitro. The 

graph shows a flattening of specific infectivity with increased genetic variation in 

the population (ribavirin-treated mice). For the mock-treated group, the specific 

infectivity falls below this mutation frequency, while more than half of the ribavirin 

points fall above this line (Figure 6A). Analysis of these data by a probability 

density function showed that the mock-treated, HTNV-infected mice had a sharp 

narrow peak with decreased mutations, while the ribavirin-treated group had a 

broader and lower peak of distribution (Figure 6B). Levene's test for equal 

variance showed that HTNV-infected, mock-treated mice had marginally 

significantly more variance than ribavirin-treated animals (P = 0.067) (Figure 

6B). 

 

 

 

http://jvi.asm.org/content/87/20/10997.long#F2
http://jvi.asm.org/content/87/20/10997.long#T2
http://jvi.asm.org/content/87/20/10997.long#F2
http://jvi.asm.org/content/87/20/10997.long#F3
http://jvi.asm.org/content/87/20/10997.long#F3
http://jvi.asm.org/content/87/20/10997.long#F3
http://jvi.asm.org/content/87/20/10997.long#F3
http://jvi.asm.org/content/87/20/10997.long#F3
http://jvi.asm.org/content/87/20/10997.long#F3
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Table3.  

Summary of mock & ribavirin-treated mutation frequencies 

Mouse 
ID 
 

Day No. Nt. 
Changes1 

Total No. 
cDNAs 

 Nt. Mutation 
Frequency 

(x10-5) 

AA Mutation 
Frequency 

(x10-5) 
Mock-treated, HTNV-infected 

1007 D8 5 48  8.4 20.2 
1009 D8 2 32 5.1 7.6 
402 D12 4 44 7.4 16.6 
404 D12 2 45 3.6 16.2 
504 D12 4 48 6.7 15.2 
308 D14 0 31 0 0 
303 D14 4 37 8.8 6.6 
407 D17 1 43 1.9 5.6 
305 D17 2 33 4.9 0 
401 D23 1 47 1.7 0 

TOTAL 25 408 AVE 5.4 12.6 

Ribavirin-treated, HTNV-infected 
1012 D12 11 43  20.7 33.9 
1013 D12 2 44 3.7 11.0 
1201 D12 4 42 7.71 23.1 
1105 D14 12 117 8.3 12.4 
1112 D14 4 40 8.1 18.2 
1204 D14 16 45 28.8 37.8 
1102 D17 2 35 4.6 13.9 
1209 D20 10 43 18.8 45.1 
1208 D20 4 15 21.6 64.7 
1207 D20 5 47 8.6 20.7 
1109 D26 23 42 44.3 98.2 
1101 D26 15 95 12.8 28.1 
1110 D26 27 45 48.5 97.1 

TOTAL 135 92 AVE 18.2 38.9 

1based on a 1236 nucleotide (nt) of cDNA; 2total number of cDNAs analyzed per mouse 
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Figure 5.  Average intrahost genetic variability of HTNV population in mock- 

and ribavirin-treated mice. Mice were infected with 1000 pfu of HTNV by 

intracranial injection on day 1. After ten days, mock vehicle or ribavirin 50 mg/kg 

was administrated once per day for 14 days. 
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Figure 6. Selective infectivity of animals from untreated and ribavirin-

treated animals.  (A) The mutation frequencies for individual animals from 

mock- and ribavirin-treated infected groups were plotted against their selective 

infectivity (PFU/vRNA copy number).  The hatched area represents the range of 

the starting HTNV seed stock material measured in Vero E6 cells in vitro.  (B) 

Smoothed histograms (probability density functions) of vRNA mutation frequency 

(mutations per 10,000 nt) in tissues of mock- and ribavirin-treated HTNV infected 

mice show that RBV-treated animals have higher variance in mutation rate 

(Levene’s test, p = 0.067).  Smoothing bandwidth for mock- and ribavirin-treated 

groups are 0.5 and 1.5, respectively. 
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 In Table 4, the amino acid changes from the consensus (HTNV 76-118) 

are presented for each mouse in each of the treatment groups by day. A larger 

number of amino acid changes (92 in total) was noted in the ribavirin-treated, 

HTNV-infected group than in the mock-treated group (16 in total). Of those amino 

acids with a change, 29/92 amino acids showed a gain or loss of 

negative/positive charge (Table 4). The distribution of amino acid changes along 

the protein shows some clustering (Figure 7). The mock-treated group showed 

13 of 16 changes in the first half of the N protein. The distribution of amino acid 

changes predominated throughout the N protein in the ribavirin-treated group. 

Interestingly, a greater percentage (42%) of those changed in the amino and 

carboxyl termini (first and last 110 aa) had changes in charge. In contrast, the 

central region had many fewer (20 to 30%) changes in charge. 

 

 

 

 

 

 

 

 

http://jvi.asm.org/content/87/20/10997.long#T3
http://jvi.asm.org/content/87/20/10997.long#T3
http://jvi.asm.org/content/87/20/10997.long#F4
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Table 4. 

Amino acid changes within HNTV S-segment in mice 

DPI 
Mouse 

ID 
Amino Acid Changes* 

Mock-Treated 
Mouse 

ID 
Amino Acid Changes* 

Ribavirin-treated 

8 1007 E33G, R268Q, I325Fx2 - - 
8 1009 P182S - - 
12 402 

none 
1012 R26G, D37G, D59G, G99C, 

R156W, A410E 
12 404 V19E, D80Y, R282K 1013 Q55R, V84A 
12 504 G63R, Q79H, G196D 1201 Y265N, A291V, T318I, N423S 
14 308 n.d. 1105 A28T, K77R, M140I, K211E, 

E277G, L320M 
14 303 D110G 1112 K30R, P174S, H176Y 
14 - - 1204 M95I, L120R, F165R, R267Q, 

S333F, 
A410G, D415N 

17 407 I122T 1102 A208V, D394N 
17 305 none - - 
20 - - 1209 G72R, M95I, D118N, A212V, 

L255F, A330V 
20 - - 1208 K41M, P132L, G204R, R263K 
20 - - 1207 A70T, K245R, E280D, R367K 
23 401 none - - 
26 - - 1101 (A70V,G87E),D59N, E192K, 

R197K, A229V, E237G, P243S,  
I305T, A344V, D394N 

26 - - 1110 (R68K,P81L, 
L246F),(D88N,G99S, A288V), 
M188I, D167N, V130I, P182L, 
A227V, I193V, A260T, A260V, 
M295I, G310E, T318I, A387T 

26 - - 1109 S121N, T142I, R144K, S164L, 
Q196H, R199Kx3, C203Y, 

P218S, V222L, P248S, A251T, 
G257D, T278I, K358E, E425K 

*changes from wildtype HTNV 76-119 consensus sequence 
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Figure 7. Illustration summarizing the locations of amino acid changes in 

the HTNV N protein. The amino acid changes from the HTNV wild-type N 

protein sequence identified in mock-treated (A) and ribavirin-treated (B), HTNV-

infected mice are noted at the top. Corresponding colors reflect changes in 

amino acid charge. Functional domains within the N protein that have been 

identified in the literature are noted. 
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Phylogenetic relationships of sequences 

 Nucleotide and amino acid alignments were made with 654 sequences 

from the ribavirin treatment group and 418 sequences from the mock treatment 

group. The consensus sequences from other strains and species of hantaviruses 

reported in GenBank were included in the alignment (GenBank numbers are 

available upon request). From the alignments, 546 of the 654 ribavirin treatment 

group sequences and 386 of the 418 sequences from the mock-treated group 

were identical. The best-scoring maximum likelihood trees for mock-treated 

(Figure 8A) and ribavirin-treated (Figure 8B) mice, with additional wild-type 

sequences from Hantaan viral strains, are presented. As predicted from the 

mutation frequencies, the number of sequences showing nucleotide differences 

(light blue) and bifurcation was greater in the ribavirin-treated group (Figure 8B) 

than in the mock-treated group (Figure 8A). Tests for positive selection are 

discussed in the following section. 

http://jvi.asm.org/content/87/20/10997.long#F5
http://jvi.asm.org/content/87/20/10997.long#F5
http://jvi.asm.org/content/87/20/10997.long#F5
http://jvi.asm.org/content/87/20/10997.long#F5
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Figure 8. Maximum likelihood phylogeny of the open reading frame of the 

S-segment and wild type HTNV sequences. Phylograms of nucleotide 

sequences from mock-treated (A) and ribavirin-treated (B) HTNV-infected mouse 

lungs. The evolutionary history was inferred by using the Maximum Likelihood 

method based on the Tamura-Nei model [157]. The tree with the highest log 

likelihood is shown for each data set. Initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a 

matrix of pairwise distances estimated using the Maximum Composite Likelihood 

approach, and then selecting the topology with superior log likelihood value. The 

tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. The analysis involved 180 nucleotide sequences. Codon 

positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps 

and missing data were eliminated. There were a total of 1233 positions in the 

final dataset. Evolutionary analyses were conducted in MEGA 5 [154]. 

A 
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 Ratio of nonsynonymous to synonymous substitution rates 

 Intrahost genetic variation of RNA viruses arises due to their intrinsically 

high mutation rates, resulting from error-prone replication (i.e., a lack of 

proofreading polymerase activity). It is constrained by purifying selection (also 

called negative selection), which eliminates new mutations that reduce specific 

infectivity relative to that of the ancestral sequence, for example, by decreasing 

the ability of an organism with a particular genotype to enter or replicate in a cell. 

Selection can also favor new genetic variants, as occurs, for example, in 

vivo when novel sequences allow escape from the host's immune response. 

Such selection favoring new variation is called positive selection. Whether or not 

selection is acting on a sequence and, if so, what type of selection is present can 

be detected by comparing the ratios of nonsynonymous to synonymous 

substitution rates (the dN/dS ratio). 

 To test for evidence of sites under positive or negative selection among 

sequences from mock- and ribavirin-treated, HTNV-infected mice, the coding 

regions of the nucleotide sequences were aligned using ClustalW and analyzed 

using the Datamonkey web-based interface to the SLAC, FEL, IFEL, and FUBAR 

programs [119, 120]. Each of these models uses different approaches to 

estimate the rates of dN and dS at each site. For example, SLAC is a counting 

method that may lack power for data sets comprising a small number of 

sequences or low divergence, such as in the mock-treated group [158], but it was 

included for comparison. Fixed-effects models such as FEL and iFEL directly 

estimate dN and dS at each site, in external and internal branches, respectively. 
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The FUBAR method estimates the alignment-wide distribution of synonymous (α) 

and nonsynonymous (β) substitution rates, whose ratio (ω) is a common 

measure of the type of natural selection operating on the gene (ω values of <1 

are interpreted as representing purifying selection, ω values of >1 represent 

pervasive diversifying selection, and ω values not statistically different from 1 

represent neutral evolution) [119, 120]. Having obtained this surface via Markov 

chain Monte Carlo sampling, it is then possible to apply an empirical Bayesian 

procedure to estimate the posterior distribution of ω at a given site, and thus to 

determine which sites are constrained and which ones are evolving adaptively. 

 The SLAC method did not detect any codons under positive or negative 

selection for either the mock- or ribavirin-treated group. FUBAR analyses 

detected three codons under pervasive purifying selection in the mock-treated 

group (codons 37, 193, and 225), and FEL analyses found the same three 

codons under negative selection in the mock-treated group (codons 37, 193, and 

225). FEL also found, for the ribavirin-treated group, that codons 71 and 224 had 

two negatively selected sites. The iFEL and FUBAR analyses of the ribavirin-

treated group (Table 5) found two sites with positive selection (A410 and P248) 

and two sites with pervasive diversifying selection (F165 and P248). 

 To explore the potential for episodic selection or a small number of 

branches subject to positive selection, we used MEME [159]. MEME models 

variable ω values across lineages at an individual site (i.e., each site is treated as 

a fixed-effects component of the model). These analyses (Table 5) revealed two 

http://jvi.asm.org/content/87/20/10997.long#T4
http://jvi.asm.org/content/87/20/10997.long#T4
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codons with episodic selection (F165 and P248) within the ribavirin-treated 

group, but none within the mock-treated group. 
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Table 5.   

Summary of MEME, IFEL and FUBAR analyses 

Amino acid 
identified→ 

F165 A410 P248 

MEME
1
 α 5x10-6 0 n.d. 

β 0 0 n.d. 
β+ 10000 3627 n.d. 

p-value 9.88x10-7 0.0708 n.d. 
IFEL dS N/A 5x10-9 5x10-9 

dN N/A 78.60 95.09 
dNIdS N/A 15720120000 19017460000 

p-value N/A 0.036374 0.0293944 
FUBAR

2
 α 0.504806 n.d. 0.363532 

β 4.97696 n.d. 2.63544 
β >α 0.943738 n.d. 0.901973 

Emp. Bayes 
factor 

17.7 n.d. 9.7 

Legend: n.d.-none detected; 1episodic diversifying selection, p-values based on Simes’ procedure 
(0.1 significance level); 2Pervasive diversifying selection at a posterior probability ≥0.9. 
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Discussion 

 Infection of hantaviruses can lead to persistence in one host without 

disease (rodent reservoir), acute infection with rapid clearance in another host 

(adult laboratory mice or wild, non-reservoir rodents), or lethal disease in yet 

another (humans or suckling mice). Upon accidental infection of humans, 

hantaviruses may cause two different illnesses in humans: HFRS and HPS [8, 

15, 160]. At present, there are no vaccines or antivirals available by the FDA for 

treatment of either disease. However, intravenous ribavirin has been used in 

clinical studies in China and Korea [130] for treatment of HFRS and HPS ([161, 

162]. While the studies with HFRS show promise for ribavirin as a therapeutic 

approach, its use in treatment of HPS is as yet inconclusive. Efficacy studies in 

the lethal HPS hamster model of ANDV infection suggest that it does have 

potential [163]. Understanding ribavirin's mechanism of action and potential for 

selecting for drug resistance in vitro and in vivo is important to a full interpretation 

of its efficacy and safety for treatment of diseases caused by hantaviruses. 

 In this study, we employed a lethal murine model of hantaviral disease 

with a prototypic HFRS virus, HTNV, to gain insight into viral replication and 

genetic variation over time with and without ribavirin treatment. Our research and 

that of others have shown that small molecules such as ribavirin increase the 

mutation load of the viral genome, which results in the extinction of the virus in 

vitro [135, 144-147, 151]. Improving our understanding of how to drive a virus to 

extinction by increasing genetic variation by use of small antiviral molecules such 

as ribavirin (e.g., lethal mutagenesis) requires insight into how viruses evolve and 
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adapt within different environments. In naturally occurring infection cycles, 

changes in the standing genetic variation of viruses can arise during within-host 

(e.g., immune pressure, replication, and diversification) and between-host (e.g., 

transmission bottlenecks) processes of infection. Given the large population 

sizes and high mutation rates of RNA viruses, they are predicted to be 

enormously effective in their evolutionary response to natural selection. However, 

RNA viruses rarely show adaptive, positive selection in nature. This may be due 

to theoretical and experimental findings that suggest that many RNA viruses 

have evolved to replicate near their mutation threshold and hence have a 

relatively limited ability to explore the mutational space required for adaptation. 

Hence, the concept emerged to use mutagen-increasing small molecules such 

as ribavirin to increase the mutation load and cause error catastrophe or lethal 

extinction of the virus [135, 164-167]. Error catastrophe is defined as a loss of 

genetic fidelity during RNA virus replication that results in a lethal accumulation 

of errors. Ribavirin increases the level of genetic variation or mutation load in 

hantaviruses, polioviruses, and others in the presence of ribavirin in vitro, 

resulting in error catastrophe or lethal extinction once a specific level of mutation 

is achieved by the drug [135, 144-147, 151]. Therefore, one might predict that 

coupled with normal within-host selection processes, ribavirin would be even 

more effective in causing error catastrophe or lethal extinction of the virus in 

vivo than in vitro. 

 Our studies showed an elevation in mutation frequency of HTNV S-

segment sequences in mice treated with ribavirin similar to that we previously 
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reported for our in vitro studies [151, 152]. We observed a corresponding decline 

in specific infectivity of HTNV over the course of infection in the ribavirin-treated 

mice, but we also observed a similar decline in untreated mice (Figure 4). The 

biological bases for each were clearly different, since in the ribavirin-treated, 

HTNV-infected mice, we noted an increased mutational load and positive 

selection, while in the untreated mice, we observed a decreased mutational load 

and purifying selection (Tables 3 to 5). Hence, while the difference in phenotype 

of the populations showed only a marginally significant P value (Figure 4), 

significant changes occurred in the adaptation of the virus within the N protein 

(Table 5), in one evolutionary step (Figure 8B versus Figure 8A). Overall, the 

population data are consistent with the changes in selective infectivity (ability of a 

transcribed poliovirus RNA to produce infectious virus) reported for poliovirus in a 

direct test of the importance of mutation load in vitro [145]. In that study, the 

ability of poliovirus RNA to produce infectious virus decreased with increased 

mutations, and the phenotype became lethal at a specific mutation load. 

Intriguingly, we found a decrease in diversity of the vRNA population in the 

untreated, HTNV-infected mice, rather than an increase in genetic diversity or 

selection of individual adaptive mutations that correlated with enhanced 

pathogenesis in the suckling mouse model. 

 We have few studies to compare our data with regarding the evolution of 

viruses in animal models of infection where animals are treated with ribavirin. 

Vignuzzi et al. reported an increase in genetic diversity which correlated with 

increased pathogenesis of poliovirus in a mouse model treated with ribavirin 

http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#F1
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T2
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T4
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#F1
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T4
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#F4
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#F4
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[147]. Studies with foot-and-mouth disease virus (FMDV) showed that ribavirin-

induced mutagenesis of an FMDV population in vitro resulted in attenuation of 

pathogenicity when these viruses were assessed by infection of an in vivo mouse 

model [168]. Recently, coxsackie virus B3 has been shown to have a lower 

mutational robustness (greater sensitivity to ribavirin) than that of poliovirus [169]. 

While direct comparison of the mutational robustness of HTNV to the values 

reported for poliovirus and coxsackie virus B3 is not possible, the values 

obtained in vitro and in this study are probably similar to or higher than those for 

poliovirus. The differences in the trajectories of these viruses may reflect unique 

solutions in their biological and evolutionary strategies for survival and adaptation 

during infection. For example, in contrast to hantaviruses, polioviruses have only 

one reservoir, humans, to maintain their reproductive rate, and FMDVs are 

maintained among cloven-hoofed animals as reservoirs. Among hantaviruses, 

human-to-human transmission has never been observed for HTNV and has been 

observed only for ANDV, which is endemic in South America. 

 In addition to an elevated mutation load in ribavirin-treated mice, the 

average branch length is much longer in our phylogeny for ribavirin-treated, 

HTNV-infected mice (Figure 9B) than in that for mock-treated mice, indicating 

that the changes induced by ribavirin can trigger longer evolutionary pathways. 

Numerous gain- or loss-of-negative-charge substitutions were revealed within the 

N protein (Table 4) and propagated in the sequence pool, suggesting a selective 

pressure of amino acids in the presence of ribavirin. Signatures of adaptation in 

these populations, while preliminary, suggest the importance of the viral N 

http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#F4
http://jvi.asm.org.echo.louisville.edu/content/87/20/10997.full#T3
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protein in the adaptive process. This is not surprising, since N is multifunctional 

and may interact with at least three host proteins. The N protein has the ability to 

interact with host cellular proteins to modulate immune signaling [107] and 

apoptosis [106]. The N protein interacts with several host cellular proteins, such 

as Daxx, a Fas-mediated apoptosis enhancer [170], the ubiquitin-like modifier 

(SUMO-1), and ubiquitin-conjugating enzyme 9 (Ubc9) [171]. The precise 

mechanism associated with these interactions involving N in the life cycle of the 

virus is as yet unknown. 

 HTNV populations from mock-treated and ribavirin-treated mice followed 

two different types of evolutionary trajectories, evolving under purifying and 

positive selection, respectively. Because our data indicate that virus populations 

in ribavirin-treated hosts have greater diversity, there are two non-mutually 

exclusive potential reasons for this difference. First, the difference in trajectories 

could be influenced by changes in selection experienced by the virus that were 

caused by ribavirin. For example, ribavirin may change the nature of the mouse 

immune response, resulting in different alleles, not present in the ancestor, being 

favored when HTNV finds itself in a ribavirin-treated host. Second, the difference 

in trajectories could be influenced by ribavirin's documented effect on the supply 

of new mutations. Increased mutation rates generated by exposure to ribavirin 

may give HTNV access to new, perhaps rare, alleles that would be beneficial in 

both treated and untreated hosts. Such universally beneficial alleles may exist 

because the HTNV used in this study is naive with regard to this suckling mouse 

model and may be far from its potential genetic optimum in this host. Regardless 
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of the underlying selective cause, our experiments suggest that although the 

viruses within the ribavirin-treated, HTNV-infected mouse virus populations may 

suffer from a greater proportion of deleterious mutations, they harness the 

increased mutation rate to also achieve genetic changes that improve their 

survival over that of the wild type when exposed to a host treated with ribavirin. 

 In conclusion, the data presented herein suggest that ribavirin promotes a 

hypermutable environment that increases the mutation load in HTNV sequences 

in mice. Intriguingly, the levels of vRNA were similar in untreated and treated 

HTNV-infected mice, which suggests a potential benefit of increased mutational 

loads. Furthermore, the positive selection of amino acids in the N protein in the 

ribavirin-treated mice, but not the untreated mice, implies that ribavirin can also 

change the rate of adaptive evolution. In other words, sequence space not 

obtainable in untreated, HTNV-infected mice becomes available with ribavirin. 

With the increased availability of next-generation sequencing and reduced costs, 

future experiments will also capture other segments of the HTNV and hold 

promise to provide additional insights into evolutionary trajectories of additional 

virus-host interactions (entry-glycoprotein and polymerase-replication 

interactions). Experimental models of RNA viral evolution have largely been 

conducted within continuous cell lines in which viruses are well adapted and by 

creation of selection with temperature changes or small-molecule inhibitors of 

replication. In vivo approaches are a critical next step toward validation of these 

findings and to define the molecular mechanisms that influence zoonotic virus 

evolution and adaption in spillover hosts. In the specific case of ribavirin, the in 
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vivo mouse model revealed positive selection of amino acids, while the in vitro 

studies did not. Future efforts will continue to explore the mechanisms of 

selection and adaptation of Hantavirus in vivo to not only promote an 

understanding of how to drive lethal extinction therapeutically but also provide 

insight into the molecular mechanisms that influence zoonotic virus evolution and 

adaption in reservoirs or spillover hosts. 
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CHAPTER III 

A NEW PRIMARY LUNG MICROVASCULAR ENDOTHELIAL CELL CULTURE 

MODEL FROM DEER MOUSE TO STUDY NEW WORLD HANTAVIRUS 

INFECTIONS 
 

Introduction 

Hantaviruses persistently infect a variety of rodent, mole, vole, shrew, or 

bat species with no apparent illness or pathology [8, 65]. Only the rodent-borne 

hantaviruses cause disease in humans, although, not all cause disease. The 

New World hantaviruses that are associated with HPS have ≤50% mortality, 

while Old World hantaviruses that cause HFRS have a mortality ranging from 1-

12%  [8]; neither disease has vaccines for prevention or antivirals for treatment in 

the United States. In China and Far East Russia, three vaccines are licensed and 

used for the treatment of HFRS. The three inactivated vaccines were created 

using purified suckling-mouse brains, golden hamster kidney cells or Mongolian 

gerbil kidney cells, respectively, and have shown to elicit protective efficacy in 

approximately 90% of populations vaccinated [172].  

At present, there are at least 24 species of hantaviruses that are each 

harbored by a unique rodent reservoir species. The observed host restriction of 

rodent-borne hantaviruses is postulated to be due to coevolution over millions of 
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years [173-175]. To date, the vast majority of in vitro studies of infection and 

mechanism of New World hantaviruses have focused on nonrodent (nonreservoir 

host) cell lines such as Vero E6 (African green monkey kidney cells) or primary 

human bronchial epithelial cells. While these studies give valuable insight into 

interactions of hantaviruses with nonhuman primate and human cells, they are 

not appropriate for understanding interactions of the hantaviruses with their 

reservoir, mechanisms of host restriction or persistence in nonreservoir rodents. 

The availability of a physiologically and genetically relevant in vitro model is 

particularly important given the millions of years of coevolution that allow 

persistence of hantaviruses without disease. The availability of rodent reservoir 

models will provide an important resource to advance our understanding of 

hantavirus-reservoir host interplay that results in modulation of host reservoir 

signaling pathways results in immune suppression and persistent infection.  

The International Committee on Taxonomy of Viruses (ICTV) recognizes 

24 species within the genus, Hantavirus, from rodents, bats and shrews. Of these 

24, 19 have been isolated; the vast majority of these isolates have been from the 

lungs of wild rodents [113, 176, 177], and more recently, from human tissue 

using Vero E6 cells [113, 176, 177]. In addition to serving as a vehicle for 

isolation of hantaviruses, Vero E6 cells have also been widely used in the 

propagation and study of hantaviruses. Recently, research published by Dr. 

Jonas Klingström shows that embryonic fibroblast cells from voles can be used to 

isolate and propagate PUUV [178]. This is an important advancement since none 

of the Vero E6-derived HFRS isolates Hantavirus have been shown to cause 
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disease similar to humans in any animal model, including nonhuman primates. 

Severe disease has only been demonstrated through intracranial inoculation of 

newborn 1 day old mice with HTNV [179].  

In 2006, Hooper published the first model of HPS disease in the Syrian 

hamster using ANDV [131]. It is unknown at present what genotypic/phenotypic 

or protein function that ANDV has as compared to other hantaviruses that 

recreate disease. One potential difference of ANDV is that it is the only member 

of the Hantavirus documented to transmit person to person [180]. Therefore, we 

may reason that ANDV has evolved with less host restriction. In other words, 

ANDV may acts more like a generalist than a specialist species, perhaps 

allowing it to be isolated in Vero E6 cells without a loss in its virulent phenotype 

(in humans). Even so, ANDV was not virulent in nonhuman primates [181]. 

Several studies have shown that RNA viruses undergo genetic changes when 

they spillover into new host environments and that a virus’s fitness in one 

environment may not always extended to a different environment, in vitro or in 

vivo [182-185]. Understanding how these viruses persist in their rodent reservoir 

and adapt to new rodent hosts will provide new insight into why and how 

hantaviruses suppress disease in one host yet elicit disease in others. Moreover, 

advancements in discovery of antiviral therapeutics and vaccines depend on 

better animal models that resemble human disease.  

Fortunately, in the past decade the deer mouse, Peromyscus maniculatus, 

has gained momentum as a model for several areas of research leading recently, 

to the complete sequencing of its genome [186]. For the New World hantaviruses 
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the deer mouse has been an important model for the study of SNV infection and 

host immune responses. Deer mice infected with SNV have detectable levels of 

viral antigen at 5 days post-infection peaking at day 15 in the lung along with 

vRNA levels, with no mice showing clinical signs of HPS [81]. SNV infections of 

deer mice show chemokine and cytokine repression throughout the course of 

infections in the lung, whereas, the spleen showed a significant (p<0.05) increase 

in TGFβ and CCL2 (diphasic) and, IL-12, IL-21, IL-23 and CCL5 [81]. Persistent 

SNV infections of deer mice have been shown to promote a Treg phenotype by 

expression of Fox-p3 and suppression of T-bet and GATA3 (Th1 and Th2 genes) 

[91]. The Treg profile was suggested to be due to an increase in TGFβ, whereas 

the acute infection showed increases in INFγ and IL-5 [91]. Dr. Sabra Klein’s 

laboratory has demonstrated that SEOV infection of primary lung (from Norway 

rats), results in an increase in TGFβ in alveolar macrophages but not in lung 

microvascular endothelial cells (L-MVEC) [49]. SEOV infection of L-MVEC 

infection showed an up-regulation of PD-L1 using western blot but not in alveolar 

macrophages [49]. PD-L1 promotes an anti-inflammatory immune response by 

inducing CD+4 T cells to Treg cells. In conclusion, these studies show that a 

persistent infection of hantavirus in their reservoir hosts are promoted by eliciting 

a Treg phenotype with a down-regulated immune response [81, 91]. 

The lung endothelium is the primary site for hantavirus replication 

following infection of the lung in reservoir and nonreservoir host species. We 

chose to use L-MVEC to build a physiologically relevant in vitro model of the 

rodent reservoir host. Herein, we report the successful isolation and culture of 
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primary L-MVEC from deer mice, the reservoir for SNV. We show that L-MVEC 

retained expression of the endothelial specific surface receptors, ICAM-2, over 

eight passages. We also report the infection of the deer mouse L-MVEC with 

SNV, SEOV and BCCV and the cytokine and chemokine expression levels after 

infection. Although preliminary, SNV, SEOV and BCCV induced a TGFβ immune 

response during infection of deer mouse L-MVEC albeit at different levels.  

 

Materials & Methods 

Viruses and deer mice 

All viruses were propagated in Vero E6 cells using DMEM (10% FBS, 1% 

Pen/Strep and 5 mM L-Glutamine). Viruses used in this study: SNV strain 

Convict Creek 107 (CC107, Dr. Jay Hooper, USAMRIID), SEOV strain SR-11, 

(Dr. Connie Schmaljohn, USAMRIID) and BCCV (Dr. Christina Spiropoulou, 

CDC). Deer mice (Peromyscus maniculatus) were provided by the National 

Institute of Health’s (NIH) Rocky Mountain Laboratory. All animals were 

euthanized upon arrival at University of Louisville’s Clinical Translational 

Research Building (CTRB) vivarium. All in vivo procedures were conducted in 

accordance with an approved institutional animal use protocol from University of 

Louisville’s IACUC. 
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Isolation and culture of lung microvascular endothelial cells (L-MVEC) from 

deer mice 

A protocol was developed to isolate L-MVEC based on methods outlined 

by Hartwell et al., 1998 (Figure 9) [187]. Rodents were euthanized by CO2 

asphyxiation and their lungs were excised and placed in transport media (DMEM, 

1% penicillin/streptomycin). Lungs were then removed from media and minced 

into small pieces using two scalpels. Minced lung pieces were digested in 0.5 

mg/mL collagenase A (Sigma) for 1 hr at 37°C, shaking every 15 min. After 

incubation, the lung digest was first triturated using a 10 mL syringe (with no 

needle) then filtered through a 70-100 m cell strainer. The filtered cells were 

centrifuged twice at 100 x g for 10 min at 4°C, resuspended in 5 mL of Complete 

Endothelial Cell Culture Media (M1168 media) (Cell Biologics) and plated on a 

100 x 20 mm tissue culture dish (CytoOne) (passage 1) coated with 0.2% 

Matrigel (BD Biosciences).  After incubating for two days at 37°C and 5% CO2, 

cells were incubated with a rabbit polyclonal antibody against mouse ICAM-2 

(Fitzgerald) bound to magnetic anti rabbit Dynabeads (Invitrogen). ICAM-2 is a 

type I transmembrane glycoprotein found in tight adhesion junctions of 

endothelial cells.  ICAM-2-positive cells were purified by magnetic separation and 

washing with Dulbecco’s phosphate-buffered saline (DPBS), without Ca2+ and 

Mg2+, followed by seeding on a 0.2% gelatin-coated dish (Figure 9).  The L-

MVEC were subcultured, using 0.25% Trypsin EDTA, at a ratio of 1:2 or 1:5 and 

seeded onto 0.2% gelatin-coated dish every 2-3 or 3-4 days, until they reached 

85% confluence.  
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Figure 9. Illustration of method for isolation of deer mouse L-MVEC. Five 

main steps for isolation of L-MVEC from deer mice. Deer mice L-MVEC were 

isolated in five steps as follows: (1) Euthanize mice using CO2, extract the lung 

and place in transport media; (2) Mince lungs using scalpels and digest minced 

lungs in collagenase A for 1 hr at 37°C; (3) Pass collagenase mixture through cell 

strainer and centrifuge at 250 x g for 10 min at 4°C, twice; Cells were 

resuspended in M1168 media and cultured for 48 hr at 37°C, 5% CO2 on a 100 x 

20 mm tissue culture dish, coated for 1 hr with matrigel 0.2%; (4) ICAM-2 

conjugated bead complexes were created by incubating an ICAM-2 (Fitzgerald) 

rabbit anti-mouse antibody and a sheep anti-rabbit Dynabead secondary 

(Invitrogen) overnight at 4°C with rotation, cells were washed and ICAM-2 

antibody bead complexes were incubated on cells for 1 hr at 37°C, 5% CO2 ; 

Cells were detached from dish using 0.25% Trypsin EDTA for no more than 2 

min; (5) ICAM-2 positive cells were isolated using a magnet and suspended in 

M1168 media, three times; Cells were cultured on a 0.2% gelatin-coated dish for 

48 hr at 37°C, 5% CO2. 
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Fluorescence-Activated Cell Sorting (FACS) analyses 

Deer mice L-MVEC were detached from cell culture dishes using 2 mL 

0.2% EDTA in DPBS and vigorous pipetting.  The resulting cell suspension was 

mixed with an equal part FBS and volume was increased to 10 mL with DPBS. 

Cells were washed here, and in subsequent steps, by centrifugation at 250 x g 

for 10 min at 4°C followed by resuspension in DPBS with 2% FBS (“staining 

buffer”). After two washes in staining buffer, polyclonal rabbit anti-mouse ICAM-2 

(Fitzgerald) (1:200) was added to 100 µL cells (106 cells) and incubated for 30 

min on wet ice. Cells were washed twice as above and resuspended in 100 µL 

staining buffer. Fluorescent secondary antibody (1:1000) conjugate was added 

and incubated for 30 min in the dark on wet ice (goat-anti rabbit IgG Alexafluor-

647, Molecular Probes). Cells were washed twice as above and resuspended in 

4% paraformaldehyde for 15 min at room temperature in the dark. Cells were 

centrifuged and resuspended in 0.2 mL DPBS for analysis on a FACSCalibur 

flow cytometer (BD Biosciences).  Single-stained controls were used for 

compensation. Data was analyzed with FlowJo (TreeStar, Inc.). Control cells 

treated with secondary antibody-alone were used to set the positive population 

gate. 

 

Infections and treatment of L-MVEC 

Deer mice L-MVEC were seeded in a 6-well plate at 1.75 x 105 cells per 

well for 24 hr prior to infection (80% confluence after 24 hr). L-MVEC were 

washed with DPBS and infected with 100 µL of Vero E6-derived SNV (CC107) at 
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a MOI of 0.06 (1 x 105 PFU/mL) or treated with LPS (3.33 µg/mL) for 1 hr at 

37°C, 5% CO2. After infection, 2 mL of M1168 media was added to each well and 

infections were allowed to proceed for 48 hr at 37°C with 5% CO2. After 48 hr the 

cell culture supernatant, cellular RNA, and cellular protein were collected. 

 

Western blots 

Total protein was isolated from deer mice L-MVEC as follows. Cellular 

proteins were isolated using Trizol and dialyzed in 0.1% SDS for 23 hr in 10 kDA 

molecular weight dialysis tubing. The protein precipitate was suspended in 8 M 

urea in Tris-HCl, pH 8.0 in aqueous 1% SDS and aliquoted/stored at -80°C until 

analysis. Proteins were separated by 12% Sodium Dodecyl Sulfate (SDS) 

Polyacrylamide Gel Electrophoresis (PAGE) and transferred to nitrocellulose or 

nytran.  Membrane was blocked in 5 mL of blocking solution (5% dry, low fat dry 

milk in 1X TBST) and incubated with polyclonal antibody made to SNV N protein 

in rabbit (1:500) and polyclonal antibody against calnexin made in rabbit (Abcam) 

(1:1000). Primary antibody was detected by incubation with goat anti-rabbit 

polyclonal horseradish peroxidase (HRP)-conjugated secondary antibody 

(Abcam) (1:2000) for 1 hr at RT in the dark. Visualization of bands was 

conducted using Chemiluminescent HRP substrate (ECL, Invitrogen) followed by 

exposure to autoradiographic film. 
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Plaque assay 

Six-well plates were seeded with 3 x 105 Vero E6 cells per well and 

incubated at 37°C, 5% CO2 for 3 days, until confluent [188]. Wells were infected 

in duplicate or triplicate with 10-fold serial dilutions of supernatant from deer 

mouse infected L-MVEC. Virus and cells were incubated for 1 hr at 37°C, 5% 

CO2, with rocking every 15 min. After infection, 2 mL of 1.6% SeaKem Agar 

(Cambrex) was added to each well and plates were allowed to incubate upside 

down in a foil-covered humidity chamber for 7 or 10 days at 37°C 5% CO2. A 

second SeaKem agar containing 5% neutral red solution (Sigma) was added for 

New World viruses (SNV and BCCV) on day 7 post infection and day 10 for Old 

World viruses (SEOV). Plates were again incubated in a foil-covered chamber 

upside down at 37°C, 5% CO2 for the remaining 3 days. Plates were observed for 

plaques twice a day for 3 days after the neutral red agar overlay.  

 

Virus cell-based ELISA 

96-well plates of nearly confluent Vero E6 cells, seeded at 20,000 cells 

per well and grown at 37°C, 5% CO2 for 3 days, were infected with 2-fold serial 

dilutions of supernatant from deer mouse virus-infected cells and incubated for 3-

4 days. After three days, cells were fixed with acetone and methanol (1:4) and 

blocked with 5% nonfat milk in DPBS. Human convalescent serum was added to 

5% nonfat milk in DPBS and used to identify cells expressing N protein (1:500) 

for 1 hr at RT. The primary antibody was detected with a secondary anti-human 

HRP-labeled antibody. Plates were developed using substrate 2,2’-Azino bis [3-
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ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS) (KPL) for 30 min 

at RT in the dark and read using a Synergy 4 microplate reader (BioTek) at 405 

nm. 

 

Relative expression levels of cytokines, chemokines and quantification of 

viral RNA by qRT-PCR 

Total cellular RNA was extracted from L-MVEC supernatants using Trizol 

(Invitrogen) according to the manufacturer instructions. 1 µg of RNA along with 

random hexamer primers were used for cDNA synthesis by Superscript III 

Reverse Transcriptase (Invitrogen). For real-time PCR, we used SYBR green 

master mix (Invitrogen) and performed reactions in duplicate using 3 μL of cDNA 

(33 ng/µl) and a 10 µM of each primer (final concentration 1 µM) in a 10 μL total 

reaction volume. Sequence-specific primers used to amplify SNV S-segment 

genes were (forward: [5’-GTC TTT GCA TGT GCT CCT GA-3’] and reverse: [5’-

ATC CCC ATT GAC TGA GTT CG-3’]). Primers used to assess cytokine and 

chemokine expression levels were as published by Schountz et al. (Table 6) [81]. 

The RT-PCR consisted of 1 cycle of 50°C for 5 min and 95°C for 2 min and 40 

cycles of 95°C for 30 sec, 60°C for 30 sec using the 7900 Fast Real-Time 

System (Applied Biosystems) and data analyzed using  SDS Software version 

1.4.0. The threshold was automatically set by the instrument and Ct determined. 

Viral RNA and chemokine and cytokine mRNA was quantitated using the mean 

of the change in Ct values (ΔCt) normalized to the Ct values of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) for each sample (2−ΔΔCt). 
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Table 6 

Primers to assess cytokine and chemokine expression levels  

 Forward Reverse 

TGFβ 5'- CGT GGA ACT CTA CCA GAA ATA CAG C -3' 5'- TCA AAA GAC AAC CAC TCA GGC G -3' 

IL-6 5'- GGA GTG GTC GAG AAC CAA GA -3' 5'- CAG TGA GGA ACG TCC ACA GA -3' 

IL-10 5'- TTA GGG TTA CCT GGG TTG CCA AG -3' 5'- CAA ATG CTC CTT GAT TTC TGG GC -3' 

INFγ 5'- ATG CCT TGA AGG ACA ACC  AG -3' 5'- CAT GAA GTC GTC CCG TTT CT -3' 

CCL2 5'- CAG ACG TAC ACA AGA AAA CTG GAC C -3' 5'- GTC AAG TTC GCA TTC AAA GGT GC -3' 

CCL3 5'- AGG AAC CCA GAA ACC TCC AT -3' 5'- CAG CAA ACA GCT TGC AGA AG -3' 

GAPDH 5'- GGT GCC AAA AGG GTC ATC ATC TC -3' 5'- GCA GGA AGC GTT GCT GAT AAT CTT G -3' 
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Results 

Isolation and culture of deer mouse L-MVEC.  

To achieve insight into the evolution of host switching, I have established 

(1) a cell culture model of deer mouse L-MVEC, (2) techniques to infect and 

measure SNV and SEOV replication and (3) techniques to measure the 

production of infectious particles and host immune responses. Primary L-MVEC 

from deer mice were isolated from whole lung extract (digested using 

collagenase) using ICAM-2 dynabead conjugated antibody complex (Figure 10). 

Isolation of primary deer mice L-MVEC into a 100 x 20 mm dish required 3 deer 

mouse lungs from males at 8-12 weeks of age. ICAM-2 positive L-MVEC were 

isolated from whole lung extract using magnetic separation. M1168 media was 

used to propagate the primary L-MVEC and contains supplements and growth 

factors specific for L-MVEC.  

Culture conditions were optimized for the L-MVEC model by testing 

different flask sizes (T75, T25 and 100 x 20 mm dish), cell passaging ratios (1:2 or 

1:5), plate coating solutions and different cell culture media. Specifically cells 

were subcultured at a ratio of 1:2 or 1:5, after cells reached 80% confluence. 

Morphologically, no changes or loss in the cell number were observed with these 

two passaging ratios. We further optimized L-MVEC growth conditions by 

comparing culture dish coating methods. We compared growth on dishes coated 

with 0.2% Matrigel compared with 0.2% gelatin culture flask; and we noted no 

morphological differences. To test for potential differences in growth media, we 

grew L-MVEC in M1168 media, complete DMEM (10% FBS, 1% 
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Penicillin/Strptomycin, 5 mM L-Glutamine), Minimal Essential Medium (MEM), 

Opti-MEM or Roswell Park Memorial Institute (RPMI) media. All media except 

M1168 caused the cells to detach. M1168 media contains growth factors, 

hormones, amino acids (essential and non-essential), as well as other 

supplements not found in the other media and this media was used in 

subsequent infection studies. 

 

Characterization of L-MVEC.  

Primary cells can lose viability and phenotype overtime. Assuring the 

presence of cellular receptors can be used to characterize the phenotypic quality 

of endothelial cells. For endothelial cells, these include ICAM-2, PE-CAM1 and 

Ve-Cadherin. Deer mice L-MVEC, at passage 8, were assessed for their ICAM-2 

receptor phenotype using FACS.  

L-MVEC were detached from the culture dish using 0.2% EDTA. Cells 

were incubated with an ICAM-2 primary antibody and an Alexaflour 647 

secondary for detection. FACS analysis of deer mouse L-MVEC showed two 

fluorescent peaks ICAM-2 positive peaks (Figure 11).  The two peaks 

represented by the red line are ICAM-2 positive L-MVEC and the grey region 

represents single-stained control cells. The two peaks may be due to; 1) high and 

dim populations of staining due to the possibility of more or less secondary 

antibody staining per cell, or 2) a high level of background (represented by the 

peak in the middle). Single-stained cells were used as controls for the FACS 

analysis (represented by the grey shaded peak in Figure 11). In summary, these 
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experiments demonstrated that we are successfully able to isolate and propagate 

deer mice L-MVEC with an ICAM-2 phenotype for 8 passages (Figure 11).  
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Figure 10. Deer mouse L-MVEC. (A & B) Images of deer mouse L-MVEC using 

phase contrast. Images were taken 24 hr after bead purification (Passage 2) at 

400x magnification (McAllister and Jonsson unpublished data). Dynabeads can 

be seen as green dots. (B) Blown up lower left region of A. (C & D) Passage 4 

and passage 8 –LMVEC at 100x magnification. (C) L-MVEC 24 hr post passage 

4, at approximately 50% confluence. (D) L-MVEC 48 hr post passage 8, at 

approximately 85% confluence. 
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Figure 11. FACS analysis of deer mouse L-MVEC. Passage 8 deer mouse L-

MVEC. ). FACS analysis using a rabbit anti-mouse ICAM-2 primary antibody 

(Fitzgerald Cat. # 70R12192) (McAllister, Camp, and Jonsson unpublished data). 

Single stained control L-MVEC are represented by the grey peak whereas, 

ICAM-2 labeled L-MVEC are represented by the red line. The red line forms two 

peaks indicating two populations of ICAM-2 positive stained cells, which are 

either representing background unspecific staining or cells are tagged with 

multiple antibodies to ICAM-2 or multiple secondary antibodies are binding to the 

primary. 
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Permissiveness of deer mouse L-MVEC to SNV hantaviral infection.  

Deer mice L-MVEC were infected with Vero E6 propagated  SNV (veSNV) 

to determine the level of infectious SNV produced from infection and to 

determine the amount S-segment replication and N protein translation. The S-

segment encodes for the N protein which is the most abundant produced by 

hantaviruses. L-MVEC were infected at a MOI of 0.06 with veSNV for 1 hr in 6-

well plates. After infection, 2 mL of M1168 media was added to each well and the 

plates were incubated for 48 hr at 37°C, 5% CO2. Supernatant was harvested 

and stored at -80°C. Total cellular RNA and protein was collected using Trizol 

(Invitrogen) according to the manufacture.  

Total cellular RNA was isolated from L-MVEC using Trizol according to the 

manufacturer and cDNA was synthesized using random hexamer primers. SNV 

S-segment specific primers were used for SYBR green qRT-PCR using 100 ng of 

cDNA, in which primers were designed to generate a ~100 bp qRT-PCR product. 

SYBR green qRT-PCR was used to assess the amount of replication of SNV in 

deer mouse L-MVEC by measuring viral S-segment synthesis using the CT2-ΔΔCt 

method [148, 151]. We found that SNV S-segment RNA levels were 204-fold 

greater in veSNV infected deer mouse L-MVEC as compared to mock (M1168 

media)-infected. We can conclude that the primers from SNV are effective for 

qRT-PCR analysis, as SNV S-segment has been shown to be increased ~200 

fold compared to mock-infected L-MVEC cells (Figure 12). GAPDH was 

measured as an endogenous control to standardize cDNA levels using SYBR 

green (Figure 12). 
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Western blot was employed to determine if SNV N protein was being 

translated in the deer mouse L-MVEC. Calnexin was used as an internal cellular 

marker and loading control. Our method for extracting cellular proteins was 

effective due to the presence of the N protein and calnexin, an endoplasmic 

reticulum marker expressed in all cells (Figure 13). We have shown that SNV S-

segment was expressed and N protein was present in SNV infected deer mouse 

L-MVEC using Western blot (WB) (Figures 12 & 13).  

Supernatant from veSNV-infected deer mice L-MVEC cells was assessed 

for the presence of SNV using plaque assay and cell-based ELISA. Serial 10-fold 

dilutions of deer mouse L-MVEC SNV supernatant were created to infect Vero 

E6 cells in duplicate in a 6-well plate, for 1 hr. After infection, SeaKem agar 

overlay was added over the cells to inhibit spread of virus to cells other than 

neighbors and plates were incubated for 7 days upside down in a humidity 

chamber. After 7 days of incubation a neutral red (Sigma) agar was added to 

each well for visualization of plaques over 3 concurrent days. The seed stock, 

veSNV, was also quantified to determine if the seed had lost infectivity.  

Plaque assays showed no production of SNV in deer mouse infected L-

MVEC. Viral titers may have been probably below detection of the plaque assay, 

given the presence of S-segment RNA and N protein (Figure 12 and 13). One 

possible explanation for the lack of visible plaques may be that the viruses were 

infecting but not spreading from cell to cell. A second alternative is that the virus 

was not making plaques. Plaques are not caused by lysis of cells (for hantavirus) 
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but rather lower cell growth. Hence, hantavirus may have no effect on slowing 

the growth of deer mouse L-MVEC SNV. 

To further ascertain the presence of virus in cells, a cell-based ELISA was 

conducted which, also determines the viral titer within the supernatant while not 

relying on the formation of plaques by cell growth inhibition. A cell-based ELISA 

used 2-fold serial dilutions of virus to infect Vero E6 cells in a 96 well plate, in 

quadruplicate, for 3 days. Cells were fixed and stained with primary antibody to N 

protein and probed with secondary using the HRP substrate ABTS. Absorbance 

readings were conducted with a plate reader at 405 nm, to quantitate positively-

infected wells. Absorbance values of mock-infected wells were averaged and the 

standard deviation of these wells was determined. Positively-infected cells were 

identified by having a absorbance value greater than the value determined by the 

formula: [((Ave. Abs. Mock) + 3)/(std of Mock)]. Using the cell-based ELISA, we 

saw no levels of detectable infection (TCID50/mL) in the deer mouse SNV-

infected supernatant (Table 7). We also conducted a cell-based ELISA on the 

veSNV and found that the titer was 1 x 102 TCID50/mL. This was surprising due 

to the plaque assay titer of 1 x 105 PFU/mL using the same veSNV. We tested 

additional viruses for their levels of infection in deer mouse L-MVEC. Vero E6 

propagated SEOV (veSEOV) and BCCV (veBCCV) titers were determined to be 

106 and 107 PFU/mL, respectively using plaque assay. The titers for the same 

veSEOV and veBCCV determined using cell-based ELISA were again lower (104 

and 103 TCID50/mL). This suggests that assay requires further development or 

optimization.  
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Infection of deer mouse L-MVEC was explored using a MOI of 1.0 with 

veSEOV and veBCCV. At 48 hours post infection (hpi) we harvested supernatant 

and measure the level of infectious virus particles with a cell-based ELISA with 

produced 102 TCID50/mL. Interestingly, as with SNV, we were not able to detect 

viruses by plaque assay. We do not yet fully understand the difference in titer 

between the two assays; especially when considering that the plaque assay is 

able to detect more Vero E6 propagated virus than the cell-based ELISA, but not 

deer mouse L-MVEC supernatant. One potential explanation is the cell-based 

ELISA detects proteins in cells and not those that egress. Hence if there was a 

block in egress or spread we would not see plaques, but we would detect 

positively stained N antigen using cell-based ELISA. Future efforts will also use 

immunofluorescence which is more sensitive that the cell-based ELISA. 
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Figure 12. Viral replication of SNV S-segment in infected primary deer 

mouse L-MVEC (passage 8). SYBR green qRT-PCR analysis of SNV S-

segment vRNA levels at 48 hpi at a MOI of 0.06 using the comparative CT2-ΔΔCt 

method (McAllister, Gerlach, Jonsson unpublished data).  
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Figure 13. Deer mouse infected L-MVEC WB analysis. Cellular proteins 

extracted from veSNV (CC107) infected deer mouse L-MVEC, 48 hpi at a MOI of 

0.06 (McAllister, Adcock, and Jonsson unpublished data). Proteins were 

separated by 12% SDS-PAGE, transferred to a nitrocellulose or nytran 

membrane and visualized by exposure to autoradiographic film using ECL Novex 

ECL HRP Chemiluminescent Substrate Reagent Kit (Invitrogen). 
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Table 7. 

Cell-based ELISA and plaque assay titers of infected deer mouse L-MVEC at 

MOIs of 1 and 0.6, 48 hpi and Vero E6 seed stock viruses 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Limit of detection 102 PFU/mL or TCID50/mL 

 

 

 

 

 

Virus 

Deer Mouse 

L-MVEC (48 hpi) Vero E6  

Plaque Assay (PFU/mL) Titers 

SNV (CC107) Negative 1 x105 

BCCV Negative 4.6 x 106 

SEOV (SR-11) Negative 2.4 x 107 

Mock Negative Negative 

cell-based ELISA (TCID50/mL) 

SNV (CC107) Negative 1 x 102 

BCCV 2.5 x 102 5 x 104 

SEOV (SR-11) 1.6 x 102 3 x 103 

Mock Negative Negative 
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Innate immune signaling profiles mounted by deer mouse L-MVEC when 

infected with reservoir and nonreservoir hantaviruses 

We will probe for cytokine and chemokine responses produced by deer 

mouse L-MVEC during reservoir and nonreservoir hantavirus infections. Prior 

studies have shown that during a hantavirus infection of a reservoir host the N 

protein can inhibit NFκB translocation to the nucleus thus down regulating TNFα-

receptor-mediated-signaling (TNFR) and inhibiting a pro-inflammatory state [104, 

106, 107]. In human primary L-MVEC ANDV and PHV show a down regulation of 

INF induced Stat1/2 pathways [101]. Cellular chemokines and cytokines up-

regulate both the JAK-STAT pathway and the TNFR pathway. Also, as discussed 

earlier a reservoir infection with SEOV in Norway rat L-MVEC showed 

upregulation of PD-L1 which is known to elicit an anti-inflammatory Treg 

response [49]. Therefore, we predict that during a reservoir infection (deer mouse 

L-MVEC infected with SNV) we expect inhibition of a pro-inflamatory state, 

whereas as nonreservoir infection will induce a pro-inflamatory state through the 

JAK-STAT and/or the TNFR pathways.  

Deer mouse L-MVEC were used to assess the immune response during 

veSNV (reservoir virus), veBCCV and veSEOV viral infections [81]. Deer mouse 

L-MVEC were infected at a MOI of 1.0 for veBCCV and veSEOV and a MOI of 

0.06 for veSNV. Infections were conducted in a 6-well plate for 1 hr. M1168 

media was added at a volume of 2 mL per well and the plate was incubated for 

48 hr. After infection total cellular RNA was isolated from L-MVEC using Trizol 

and cDNA was synthesized using random hexamer primers. Using 100 ng of 
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cDNA SYBR green qRT-PCR was used to assess the amount of cytokine and 

chemokine mRNA levels in deer mouse L-MVEC using the CT2-ΔΔCt method [148, 

151]. GAPDH was measured (using published primers) and used as an 

endogenous control to standardize cDNA levels using SYBR green (Figure 12). 

Published primer sets, by Shountz et al. 2012, specific to the deer mouse were 

used to assess the immune responses. 

Our experiment shows that the deer mouse L-MVEC immune response 

can be mounted at 48 hpi, after infecting at a MOI of 1.0 for BCCV, and SEOV 

(SR-11) and a MOI of 0.06 for SNV (CC107) (Figure 14). At the time of infection 

the titer for SNV had yet to be determined so we blindly infected. The positive 

LPS showed an increase in TGFβ, IL6, INFγ, and CCL2 (Figure14). This is what 

we expected for our positive control, showing that the L-MVEC were capable of 

mounting an immune response. TGFβ increased during infection by BCCV and 

SEOV and slightly increased for SNV (Figure 14).  In contrast to Dr. Klein’s 

results with SEOV, TGFβ increased in L-MVEC during infection by BCCV and 

SEOV, but not SNV.  
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Figure 14. Infected deer mouse L-MVEC innate immune signaling. Gene 

expression of deer mouse LMVEC (passage 8) after infection with hantaviruses 

(qRT-PCR). L-MVEC were infected with veBCCV, veSNV (CC107), and veSEOV 

(SR-11) or treated with LPS (1:1000) for 48 hrs infection at a MOI 1.0 and 0.06 

(McAllister, Gerlach, Jonsson unpublished data). 
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Discussion 

My preliminary data has established a system for probing the evolution 

and signaling pathways of hantaviruses within a natural reservoir model. We 

have successfully isolated and passaged L-MVEC from deer mice, which 

maintained ICAM-2 expression and consistent cell morphologies over 8 

passages. For the FACS analysis our result for ICAM-2 expression showed two 

peaks. In order to alleviate the result (two peaks), in the future we will perform 

titrations of the ICAM-2 antibody to determine the optimal concentration to use. 

This will either bring down the fluorescence of 1) the peak possibly representing 

the L-MVEC population that are tagged with multiple secondary antibodies (right 

red peak) or 2) the middle peak possibly representing L-MVEC population bound 

by secondary antibody (not expressing ICAM-2). 

Further, we optimized culture conditions for the L-MVEC model that allow 

expansion and growth of the cells for use in future studies. In future studies we 

will characterize my L-MVEC for the presences of ICAM-2 (CD102), PECAM-1 

(CD31) and VE-cadherin (CD144) which are the main surface receptors used to 

distinguish L-MVEC from other cells [187, 189-191]. PECAM-1 and VE-cadherin 

are tight intracellular junction surface proteins. It has been shown that vascular 

leakage of human endothelial cells infected with hantaviruses are negatively-

correlated with VE-cadherin surface expression levels [192]. We will probe for 

ICAM-2, PECAM-1 and VE-cadherin L-MVEC surface proteins using FACS, 

western blots or microscopy (Table 8) as previously discussed above. The 
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positive and negative controls for each characterization experiment are outlined 

below (Table 8). 

A potential problem of characterizing the deer mouse L-MVEC lies in the 

(commercially available) antibody’s cross reactivity to the deer mouse L-MVEC 

because these antigens are derived from other mammalian species. If we 

continue to encounter this difficulty with any of the chosen antibodies, we will 

contact vendors for additional antibodies that are available. We have registered 

with AbCAM to provide them information on those we test, and to obtain other 

antibodies for the price of one. 

During hantaviral infections SEOV showed the greatest increase of TGFβ 

which is promising because SEOV is more distantly related to SNV than is BCCV 

(which shows the second highest level). TGFβ has been shown to increase 

amounts NFκB through up-regulation of TNFα in human cervix epithelial (HeLa) 

cells and human lung epithelial (A549) cells [193]. Experiments conducted with 

SEOV in Norway rat macrophages showed an increase in TGFβ but not in L-

MVEC [49]. It is very important to take into account that SNV was used to infect 

at a MOI ~20 fold less the MOI that was used for BCCV and SEOV. With that 

said SNV would have the highest level of TGFβ even if the fold change (Y-axis, 

Figure 7) was multiplied by a factor of 10 (half of the difference in MOI). 

Therefore, when taking into account the difference in MOI we can predict that 

infection of deer mouse L-MVEC with SNV, at a MOI of 1.0, is capable of 

mounting a TGFβ response as published in the literature for reservoir hantavirus 

infections.  
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Table 8.  

L-MVEC characterization approach for FACS or Western Blots/Microscopy 

Group 

Receptors and Treatment 

FACS WB/M 

PECAM-1 ICAM-2   VE-Cadherin 

Positive Control 
(Mouse or Deer 
mouse L-MVEC) 

50 ng/mL VEGF [194, 
195]  

 NA NA 

Negative 
Control 
(Mouse or Deer 
mouse L-MVEC) 

TNFα (100 ng/mL) + 
INFγ (1000 U/mL) for 8 
hr [194, 196, 197] or 
Trypsin EDTA 
treatment [191]  

TNFα (10 ng/mL) 
+ IL1β (34 ng/mL) 
for 24 hr [198] 
 

ANDV MOI 1.0 
for 24 hr [192] 

Test (L-MVEC) No treatment No treatment No treatment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

We have shown that we can determine the titer of different hantaviruses 

using both plaque assay and cell-based ELISA. We were able to isolate viral 

RNA and monitor the expression levels of SNV and SEOV S-segment in deer 

mouse L-MVEC through qRT-PCR (SEOV data not shown). We have shown we 

are capable of isolating viral and cellular proteins from deer mouse infected L-

MVEC. These techniques established in my preliminary data will be used in 

conjunction with each other for the future goals of my thesis.  

The created primer set is effective for monitoring SNV S-segment 

replication (Figure 12). Further, we were also successfully able to isolate cellular 

proteins from infected deer mouse L-MVEC (Figure 13). In future experiments 

will use purified SNV N protein from Vero E6 cells as a positive control (to assess 

the primary antibody specificity and to quantify the amount of N protein being 

produced). We plan to keep calnexin as the loading control. Although, PFU/mL 

titers of BCCV and SEOV infected deer mouse supernatant had lost titer, the 

viruses were still detectable using cell-based ELISA (TCID50/mL). The seed virus 

(veSNV) suggested a loss in titer, so we plan to regrow the virus seed and 

obtained another seed (Table 7). Lastly, the cell-based ELISA and plaque assay 

titers obtained for the Vero E6 derived viruses are not the same (Table 7). In 

future experiments we will quantify S-segment RNA and N protein amounts, 

which will give insight into which method is more accurate at determining the viral 

titer of our new in vitro deer mouse L-MVEC model.  

Experiments conducted with SEOV in Norway rat macrophages showed 

an increase in TGFβ but not in L-MVEC [49]. In our experiments, SEOV showed 
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the greatest increase of TGFβ which is promising because SEOV is more 

distantly related to SNV than is BCCV (which shows the second highest level). 

TGFβ has been shown to increase amounts NFκB through up-regulation of TNFα 

in HeLa and A549 cells [193]. It is very important to take into account that SNV 

was used to infect at ~16 fold less than the MOI that was used for BCCV and 

SEOV. With that said SNV would have the highest level of TGFβ even if the level 

was only increased by a factor of 10. 

 

Future Studies 

The Hantavirus research community has little understanding regarding the 

adaptive steps that result in host switching of hantaviruses. My proposed future 

research aims to address this gap in knowledge using our novel, highly relevant 

in vitro L-MVEC model from the deer mouse. For future work, we aim to 

understand the viral determinants that allow persistence and the host responses 

that pose barriers to host adaptation. To achieve this, we plan to adapt the Old 

World SEOV to the deer mouse L-MVEC model. Adaptation will be monitored 

through viral titer, qRT-PCR of the S-segment and/or western blots of the N-

protein.  

Hantaviruses have mostly been isolated from wild rodents and rarely from 

human tissue using Vero E6 cells [113, 176, 177]. It is well established that RNA 

virus populations can undergo genetic changes from selective pressures in new 

host environments and a viruses fitness in one environment may not extended to 

a different environment, in vitro or in vivo [182-185]. This is shown for our viruses 
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in that SNV propagated in Vero E6 cells are unable to infect deer mouse L-

MVEC, which is the site the virus has adapted to in nature (Table 6). Therefore, 

we plan to first “readapt” the viruses to their natural reservoir L-MVEC model, in 

order to have an isolate that resembles what is found in nature. We use the term 

“readapt” since our initial studies showed that Vero E6 propagated SNV showed 

a very low level of infection and hence, low fitness on deer mouse L-MVEC 

(Table 7).  

We propose to examine the genetic architecture and fitness of the Vero 

E6 propagated SNV and SEOV (veSNV and veSEOV) versus seed stocks 

derived from reservoir L-MVEC deer mouse SNV (dmSNV) and Norway rat 

SEOV (nrSEOV) L-MVEC. To define the genetic architecture, we will measure 

the intrahost population richness by its genetic variability as determined by: (1) 

number of different mutations, (2) haplotype number, and/or (3) polymorphic 

variability of the entire genome. The diversity of the intra- and inter-host viral 

genome populations will be assessed using Shannon entropy, Simpson index 

and mutation frequency. We may also explore other approaches that are as yet 

unpublished. The sequences of SNV or SEOV isolates will be determined by 

Sanger Sequencing of the PCR product to obtain the consensus sequences and 

Ultra-deep pyrosequencing (UDPS). Sequences will be analyzed using 

Seq.Scape 2.1, Vector NTI, MEGA 5, the Shannon Entropy-Two calculator at Los 

Alamos (http://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy. html), and 

the web based server Datamonkey.  
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Fitness of each virus will be determined by infecting Vero E6 or deer 

mouse L-MVEC in triplicate at a low 0.1, mid 0.5, and high 1.0 MOIs with each 

virus separately. The ability for each virus to replicate in each cell type will be 

determined by measurement of infectious particles (TCID50/mL) released into 

supernatant at days 1, 2, 3, and 4 to measure viral titers (or alternatively 

PFU/mL). Viral titer will be plotted verses the day and the slope of the linear line 

of regression generated, will give the fitness of each virus [199]. 

After determining the differences between Vero E6 derived hantaviruses 

and “readapted” hantavirus, we will test the relationship of extrinsic (new host) 

pressures on preexisting intrahost genetic variation and viral fitness using in vitro 

models of adaptation (spillover and host-switching). To achieve this, we will use 

Norway rat adapted SEOV (nrSEOV) to adapt the virus to deer mouse L-MVEC 

(dm-nrSEOV). Adaptation of dm-nrSEOV will be monitored as above using qRT-

PCR (S-segment), viral titer and N protein levels. We will use CCSS to determine 

the censuses sequence of our adapted viruses and UDPS to assess the genetic 

architecture and perform infections of Vero E6 and deer mouse L-MVEC to 

assess fitness. Lastly, in order to understand the host responses that pose 

barriers to host adaptation, we will characterize immune responses elicited in 

Vero E6 and deer mouse L-MVEC during infection with veSNV, veSEOV, 

dmSNV, nrSEOV, and dm-nrSEOV. The immune response will be assessed 

using qRT-PCR, using published primer sets (as discussed). We expect that 

viruses replicating in their reservoir will have high fitness and viruses replicating 

in their nonreservoir will have low fitness (Table 9). We expect the pro-



100 
 

inflammatory immune response to be on during all Vero E6 infection and during 

nonreservoir infections of deer mouse L-MVEC (Table 9).  

 

Conclusion 

All data presented in Chapter IV is preliminary data characterizing the 

New World hantavirus (SNV-deer mouse L-MVEC) model for infection and has 

not been repeated. In establishing this model, we have successfully isolated and 

passaged L-MVEC cells from deer mice while maintaining ICAM-2 expression 

and consistent cell morphologies. We were able to see consistent L-MVEC 

morphologies over 8 passages without losing viability or proliferation (Figure 10). 

After the initial isolation, ICAM-2 positive L-MVEC were selected using a 

magnetic bead secondary antibody (passage 2) (Figure 10 A, B & C). After 

further passaging of the L-MVEC to passages 4 and 8, we were able to maintain 

ICAM-2 expression and show consistent cell morphology over 8 passages 

(Figure 10 D & E). 

Hantaviruses are known to be harbored by a single specific reservoir 

species for each isolate. The emergence of new hantavirus strains in nature is 

due to reassortment and spillover events that occur through rodent to rodent 

transmission of hantavirus. There have been limited studies on hantavirus 

spillover from their reservoir rodents into nonreservoir rodents, therefore little is 

known regarding how host restriction is overcome. The proposed study outlined 

in this chapter aims to address gap in our knowledge by adapting nonreservoir 

Old World, SEOV to a New World rodent reservoir (deer mouse L-MVEC). 
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Knowing which phenotypes are altered and assessing the immune response 

elicited during adaptation may provide insights into the host pathways that are 

manipulated or avoided by hantavirus during a reservoir infection.  
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Table 9 

Proposed viruses and predicted phenotypes 

Virus Cell Line Fitness 
Prediction 

Innate Response 
Prediction 

Level 

veSNV Vero E6 H On M 

dmSNV Vero E6 L On H 

veSEOV Vero E6 H On M 

nrSEOV Vero E6 L On H 

dm-nrSEOV Vero E6 L On H 

veSNV Deer mouse L-MVEC L On H 

dmSNV Deer mouse L-MVEC H Off L 

veSEOV Deer mouse L-MVEC L On H 

nrSEOV Deer mouse L-MVEC L On H 

dm-nrSEOV Deer mouse L-MVEC H Off L 
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Appendix A 

LIST OF ABBREVIATIONS 
 

Hantaan Virus …………………... HTNV 
Hemorrhagic Fever with Renal Syndrome …………………... HFRS 
Nephropathia epidemica …………………... NE 
Dobrava-Belgrade virus  …………………... DOBV 
Seoul virus …………………... SEOV 
Puumala virus …………………... PUUV 
Prospect Hill virus …………………... PHV 
Hantavirus Pulmonary Syndrome …………………... HPS 
Adult respiratory Distress Syndrome …………………... ARDS 
Office of the Medical Investigator …………………... OMI 
Center for Disease Control …………………... CDC 
Sin Nombre virus …………………... SNV 
Andes virus …………………... ANDV 
Laguna-Negra virus …………………... LANV 
Small …………………... S 
Medium …………………... M 
Large …………………... L 
Nucleocapsid …………………... N 
Glycoproteins …………………... GN/GC 
RNA dependent Reverse polymerase …………………... RdRp 
Nonstructural Protein …………………... NSs 
Viral RNA …………………... vRNA 
Complementary RNA …………………... cRNA 
Messenger RNA …………………... mRNA 
Ribonucleoprotein  …………………... RNP 
Cryoelectron Microscopy  …………………... Cryo-EM 
Tula virus …………………... TULV 
Rough Endoplasmic Reticulum …………………... RER 
ER-Golgi Intermediate Complex …………………... ERGIC 
Black Creek Canal virus  …………………... BCCV 
Vascular endothelial growth factor …………………... VEGF 
Bradykinin …………………... BK 
Cytotoxic T Lymphocytes …………………... CTL 
Days post infection …………………... dpi 
Peripheral blood mononuclear cells …………………... PBMC 
Protein Dependent Ligand 1 …………………... PD-L1 
Major histocompatibility complex …………………... MHC 
Regulatory T cells  …………………... Treg 
Foxhead box  …………………... Fox 
T Helper cells …………………... TH1 or TH2 
Antigen Presenting Cell …………………... APC 
Nuclear Factor Kappa-B …………………... NFkB 
Human immunodeficiency virus …………………... HIV 
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Hepatitis B virus …………………... HBV 
Hepatitis C virus …………………... HCV 
glycoproteins …………………... GPCs 
New York virus …………………... NYV 
IFN sequence regulatory element  …………………... ISRE 
Natural Killer …………………... NK 
Food and Drug Administration …………………... FDA 
Interferon …………………... IFN 
Antigenic Drift …………………... AGD 
Antigenic Shift …………………... AGS 
reproductive value …………………... R0 
Genetic Selective Sweep …………………... GSS 
Nonsynonymous Error rate …………………... (dN) 
Synonymous Error rate …………………... (dS) 
Single-Likelihood Ancestor Counting …………………... SLAC 
Fixed-Effects Likelihood …………………... FEL 
Internal Fixed-Effects Likelihood …………………... iFEL 
Mixed-Effects Model of Evolution …………………... MEM 
Fast Unbiased Bayesian Approximation …………………... FUBAR 
((dN) / (dS)) ratio …………………... ω 
Inosine Monophosphate Dehydrogenase …………………... IMPDH 
Plaque Forming Units …………………... PFU 
Days postnatal …………………... dpn 
Dulbecco’s Modified Eagles Medium …………………... DMEM 
Fetal Bovine Serum  FBS 
Institutional Animal Care and Use Committee …………………... IACUC 
Intracranial …………………... i.c. 
Reverse Transcriptase …………………... RT 
Nucleotides …………………... nt 
Generalized Linear Models …………………... GLM 
Akaike Information Criterion …………………... AIC 
Mean Time to Death …………………... MTD 
Analysis of Variance …………………... ANOVA 
Selective Infectivity …………………... PFU/vRNA 
Amino Acid …………………... aa 
Foot-and-Mouth disease virus …………………... FMDV 
International Committee on Taxonomy of 
Viruses …………………... ICTV 
Lung Microvascular Endothelial cells …………………... L-MVEC 
Convict Creek 107 …………………... CC107 
National Institute of Health …………………... NIH 
Clinical Translational Research Building …………………... CTRB 
Complete Endothelial Cell Culture Media …………………... M1168 
Dulbecco’s phosphate-buffered saline  DPBS 
Facilitated-Activated Cell Sorting …………………... FACS 
Sodium Dodecyl Sulfate …………………... SDS 
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Polyacrylamide Gel Electrophoresis …………………... PAGE 
Horseradish Peroxidase …………………... HRP 
2,2'-Azino bis [3-ethylbenzothiazoline-6-
sulfonic acid]-diammonium salt …………………... ABTS 
Glyceraldehyde-3-phosphate 
Dehydrogenase …………………... GAPDH 
Minimal Essential Medium  MEM 
Roswell Park Memorial Institute  RPMI 
Vero E6 propagated SNV …………………... veSNV 
Western Blot …………………... WB 
Vero E6 propagated SEOV …………………... veSEOV 
Vero E6 propagated BCCV …………………... veBCCV 
hours post infection …………………... hpi 
TNFα-receptor-mediated-signaling …………………... TNFR 
human cervix epithelial cells …………………... HeLa 
human lung epithelial cell line …………………... A549 
deer mouse L-MVEC SNV …………………... dmSNV 
Norway rat L-MVEC SEOV …………………... nrSEOV 
Conventional Cloning Sanger Sequencing …………………... CCSS 
Ultra-Deep Pyrosequencing …………………... UDPS 

deer mouse L-MVEC adapted nr-SEOV  …………………... 
dm-

nrSEOV 
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