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ABSTRACT 

 
A NOVEL FIBROBLAST GROWTH FACTOR 1 VARIANT REVERSES 

NONALCOHOLIC FATTY LIVER DISEASE IN TYPE 2 DIABETES 

 
Qian Lin 

August 2, 2018 

 

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder 

and is strongly associated with type 2 diabetes (T2D). Our recently engineered FGF1 

partial agonist, carrying triple mutations (FGF1△HBS) exhibits greatly reduced proliferative 

potential, while preserving the full metabolic activity of wild-type FGF1. This study tests 

the preventive and therapeutic effects of FGF1△HBS on NAFLD in db/db T2D and explores 

potential mechanisms. The results showed that administration of FGF1△HBS to 2-month-

old db/db mice for 2 months constantly lowered blood glucose levels, improved insulin 

sensitivity, and lowered liver weight, lipid deposition, and inflammation, along with 

improvement of liver function. Simultaneously, FGF1△HBS treatment prevented diabetes-

induced hepatic oxidative stress along with promoting nuclear translocation of the 

antioxidant transcription factor Nrf2 and elevating its downstream antioxidant genes. In 

addition, FGF1△HBS administration inhibited the activity and/or expression of hepatic 

lipogenic genes including SREBP-1, FAS and SCD-1. Furthermore, FGF1△HBS treatment 

rescued hepatic fatty acid oxidation signaling, including elevated expressions of CPT-1α, 

PPARα and PGC-1α. Moreover, FGF1△HBS treatment greatly increased hepatic  
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phosphorylation of the key energy sensor AMPK, along with upregulating its downstream 

genes ACC and SREBP-1 phosphorylation, indicating that FGF1△HBS regulation of hepatic 

lipid metabolism is associated with AMPK signaling pathway. Mechanistically, hepatic 

cells treated with palmitate (Pal) mimicked the diabetic phenotype of hepatic oxidative 

damage and lipid disorder seen in db/db mice, all of which could be reversed by 

supplementing with FGF1△HBS. Knockdown of Nrf2 by SiRNA completely abolished the 

anti-oxidative capacity of FGF1△HBS but did not affect the beneficial effects of FGF1△HBS 

on Pal-induced lipid metabolic disorder. Whereas, AMPK knockdown by SiRNA 

completely abolished FGF1△HBS ability to prevent Pal-induced hepatic lipotoxicity and 

SREBP-1-mediated lipid metabolic disorder, along with inhibiting Nrf2-mediated 

antioxidative signaling pathway. Most importantly, administration of FGF1△HBS to 9-month-

old db/db mice for 3 months completely reversed the phenotype of NAFLD along with 

activation on Nrf2 and AMPK signaling pathways.  

Our findings demonstrate that, in addition to its potent glucose-lowering and insulin-

sensitizing effects, FGF1ΔHBS can reverse NAFLD in T2D, by its ability to upregulate AMPK 

to activate Nrf2-mediated antioxidative pathway and inhibit SREBP-1-mediated lipid 

metabolic pathway.  

 

Keywords: Fibroblast growth factor 1, nonalcoholic fatty liver disease, oxidative 

stress, AMP-activated protein kinase, nuclear factor erythroid 2-related factor 2, sterol 

regulatory element-binding protein
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OVERVIEW 

 

FGF superfamily and FGF1 subfamily 

Fibroblast growth factors (FGFs) family contains 22 members that are found in 

organisms ranging from the nematodes to humans. Based on the differences in sequence 

homology and phylogeny, these 22 members are commonly grouped into 7 subfamilies: 

FGF1 subfamily (FGF1 and FGF2); FGF7 subfamily (FGF3, FGF7, FGF10, FGF22); FGF4 

subfamily (FGF4, FGF5 and FGF6); FGF8 subfamily (FGF8, FGF17 and FGF18); FGF9 

subfamily (FGF9, FGF16 and FGF20); and FGF15/19 subfamily (FGF19, FGF21 and 

FGF23); and FGF11 subfamily (FGF11,FGF12, FGF13 and FGF14)(1, 2). Among all these, 

the FGFs with low heparin-/heparan sulfate-binding capacities showing the increased 

diffusion from their source are defined as endocrine FGF ligands (FGF19, FGF2 and 

FGF23). Intracellular FGF ligands (FGF11 to FGF14) are not extracellularly secreted and 

perform an intracrine manner to involve in regulating the electrical excitability in neurons. 

The remaining FGFs are the paracrine FGFs ligands that have high affinity for heparan 

sulfate glycosaminoglycan (HSGAG), which lead them to perform a localized manner near 

the sources of their expressions. The FGF1 subfamily includes FGF1 and FGF2, which is 

often called the “prototypical” FGF since they were the first of the FGFs to be isolated and 

identified around 1975(3). 

 

FGF1 gene and gene products  

Fibroblast growth factor 1 (FGF1), also known as acidic fibroblast growth factor 

(aFGF), is a growth factor and signaling protein encoded by the FGF1 gene. The murine 
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and human FGF1 were identified and characterized at the cDNA level in the early 90s. 

The murine gene locates on chromosome 18, and is encoded by a single copy gene,  

which spans over 30 kb of genomic sequence. FGF1 mouse recombinant protein 

produced in E. Coli is a non-glycosylated and single polypeptide chain that contains 161 

amino acids (16-155 a.a) with the molecular mass about 18kDa(4, 5). The human FGF1 

gene resides on chromosome 5q31, which spans over 100 kb. FGF1 human recombinant 

protein produced in E. Coli is also a non-glycosylated and single polypeptide chain that 

contains 140 amino acids with the molecular mass of approximately 15.8kDa.  While the 

mature form of human FGF1 is synthesized as a polypeptide of 155 amino acids, with the 

molecular mass about 17-18 kDa. The mouse FGF1 genomic organization is very similar 

to that of human, since both genes are comprised of three protein coding exons of sizes 

203, 104 and 192 bp. The sizes of the two introns are 11.4 and 4.9 kb(6).  The human 

FGF1 gene has a long 3’-untranslated region (3’-UTR) and a complex 5’-untranslated 

region (5’-UTR). In  3’-UTR, the mouse and human FGF1 genes share 60.4% similarity  in 

sequence, with stretches having more than 80% similarity(7). 

 

FGF1 receptors and their signaling 

The interaction between the ligand FGFs and its receptor is responsible and essential for 

the different biological activities of FGFs. FGF1 mediates biological responses by 

activating and binding to the cell surface FGF receptors (FGFRs). Heparan sulfate/heparin 

acts as a cofactor and is necessary for stable interactions between FGF1 and its FGFRs. 

Several major FGFR proteins (FGFRs 1b, 1c, 2b, 2c, 3b, 3c, and 4) are generated from 

FGFR1, FGFR2, FGFR3, and FGFR4 (FGFR1–FGFR4) genes by alternative splicing, with 

differing ligand-binding specificity , respectively, (8). FGF1 is considered as the universal 

ligand for FGFRs due to its ability to activate and bind with each of the alternatively spliced 

forms of FGFR1–FGFR4 (9, 10), in which FGFR1 is a common receptor for many ligands.
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FGF1-FGFR-heparin ternary complex has been demonstrated to activate four key 

intracellular signaling pathways that play a role in regulating the cell cycle, cell survival 

and apoptosis, namely the PI3k/Akt pathway, Ras/Raf/Mek/Erk pathway, JNK and p38 

MAPK pathway, and STAT3 and NF-κB pathway(11). The endocrine FGFs, such as FGF21, 

FGF15/19, also act their biological regulations in an FGFR-dependent manner with the 

presence of the cofactors (α-klotho or β-klotho) in their respective target tissues.  The 

intracellular FGFs have high sequence identity with other FGF members but do not 

activate FGFRs.   

 

The potential effects of FGF1 in diseases 

FGF1 is a well characterized growth factor among the 22 members in FGF 

superfamily in animals and humans. As a paracrine FGF, FGF1 is involved in the cellular 

regulation of many biological processes such as cell growth, proliferation, migration, 

differentiation, and survival in different cell types(12). Therefore, FGF1 is being explored for 

its therapeutic potential in cardiovascular disorders, ischemia conditions, nerve injuries 

and tissue repair(1). FGF1 shows angiogenic potential in improving myocardial flow, 

regional and global left ventricular function and artery growth and capillary proliferation 

under myocardial ischemia conditions(13-15). FGF1 can also promote nerve regeneration. 

Data indicated that it enabled the functional and axonal regeneration in the transected rat 

spinal cord(16, 17). FGF1 recovered the rat’s forelimb motor function after cord–root junction 

transection (18). In addition, FGF1 stimulated cell proliferation and angiogenesis in vitro 

and in vivo, significantly accelerating the healing of rat burn wounds(19). Although FGF1 is 

a well-known mitogenic factor, the recent discoveries of metabolic roles for FGF1 in 

glucose homeostasis have expanded the functions of those classically known mitogen. In 

2012, Jonker and his colleagues discovered an unexpected metabolic role of FGF1. FGF1 

was demonstrated to transduce of peroxisome proliferator-activated receptor gamma 
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(PPARγ) signaling that mediates the proper nutrient storage coupling in adaptive 

remodeling of adipose tissue(20). In a follow-up study, this group further demonstrated that 

exogenous FGF1 could stimulate the glucose uptake in an insulin-dependent fashion in 

vitro and in vivo(9), much like the non-mitogenic endocrine-acting growth factor, FGF21, a 

candidate drug for obesity and diabetes treatment in clinical trials(21). In recent years, 

additional studies have focused on the potential of FGF1 as a treatment for diabetes and 

diabetic complications.  In general, the mitogenic effects of FGF1 in a variety of diseases 

has been most studied and subject to the clinical trial in humans (14). However, the 

functions and mechanisms of its metabolic effects have been rarely clarified. To the 

advantage of metabolic activity of FGF1 and expand its value inpatients, studies of 

metabolic effects of FGF1 should be expanded. 

 

The effects of FGF1 at type 1 diabetes and type 2 diabetes  

Diabetes is a major and increasing metabolic disease throughout the world, which 

is clinically characterized by chronic hyperglycemia because of the absolute or relative 

insulin insufficiency and dysfunction(22).  The treatment of diabetes is determined by the 

etiopathology and is most commonly subdivided in type 1 diabetes (T1D, beta cell damage 

and/or absolute lack of insulin) and type 2 diabetes (T2D, insulin resistance and/or 

decreased secretion of insulin)(23). 

           FGF1 has not only the mitogenic activity, but also metabolic activity, representing 

a potential novel anti-diabetic therapy. FGF1 was sufficient to attain normoglycemia in the 

severely hyperglycemic mice, such as the genetic induced ob/ob and db/db mice, diet-

induced obese (DIO) and insulin-resistant T2D mice, administered through subcutaneous 

injection(9, 20, 24). However, FGF1 failed to decrease the blood glucose levels in STZ 

induced T1D mouse model whereas pretreatment with FGF1 in STZ mice markedly 

enhanced the glucose-lowering ability of exogenously supplied insulin(9). Additional 
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studies proved that FGF1 couldn’t lower blood glucose levels in STZ-induced T1D model(25, 

26). These results demonstrated that FGF1 might act as an insulin sensitizer. Further, 

intracerebroventricular (i.c.v.) injection of FGF1 also induced sustained diabetes 

remission in leptin-deficient ob/ob T2D mice(24).  Interestingly, i.c.v. injections of FGF1 

reversed the hyperglycemia in T1D rats and promoted the insulin-independent plasma 

glucose lowering effects in T1D by suppressing the hypothalamic–pituitary–adrenal (HPA) 

axis(27). Taken together, the blood lowering effect of FGF1 in T2D, even in T1D, has been 

studied, however, the molecular mechanism of how FGF1 protects from the disorders in 

diabetes still needs further exploration.   

 

The role of FGF1 in diabetic complications 

The rising global prevalence of diabetes accompanies with an high burden of 

morbidity and mortality that is attributable to the chronic hyperglycemia in the 

complications, including a range of microvascular, macrovascular and metabolic 

complications(28). The diabetic complications include cardiovascular disease, stroke, foot 

ulcers, eye damage and chronic kidney disease, which occur in individuals with both T1D 

and T2D. Current therapeutic options for controlling the chronic hyperglycemia can reduce, 

but do not eradicate, the risk of these diabetic complications(29).     

 

The effects of FGF1 on diabetic ulcers 

Diabetic ulcers are responsible for a large percentage of hospitalization among the 

complications of diabetes(30)，which is the major cause of nontraumatic lower extremity 

amputations and disability. Moreover, the mortality of diabetic ulcer is high and healed 

ulcers frequently recur(31).  Diabetic ulcers occur because of various factors, such as some 

intrinsic factors (hyperglycemia, vascular insufficiency and peripheral neuropathy) and 
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extrinsic factors (wound infection, callus formation and traumatic stress)(32-34). The 

management of diabetic ulcers requires protecting the wound by using appropriate 

footwear and antibiotic therapy, providing a moist wound environment or receiving surgical 

debridement and revascularization when necessary(35, 36). However, it is difficult for 

diabetic ulcer patients to stop scratching the wound. They can be irritated by clothing or 

shoes, which increases risk for infection and increases discomfort in patients. Therefore, 

an understanding the pathogenesis of diabetic ulcers and development of more effective 

therapies that can enhance wound healing in diabetes is greatly needed.  

FGF1 is known to exhibit mitogenic activity on various cells from different tissue 

origins including skin, vasculature and liver(1, 11, 37). Many studies have demonstrated that 

topical application of FGF1 stimulated the growth of new blood vessels, proliferation of 

fibroblast and endothelial cells and formation of capillary, suggesting translational 

potential for FGF1 in diabetic ulcers. Early studies demonstrated that FGF1 stimulated 

DNA synthesis in cultured db/db mouse skin biopsy specimens and accelerated wound 

closure in db/db mice at a dose-dependent manner. FGF1 decreased the median time of 

wound closure from 46 d to 16 d and increased granular tissue formation, and re-

epithelialization throughout healing. Although wound healing in FGF1 treated diabetic 

mice was slower than that in nondiabetic littermates, these studies suggest the therapeutic 

potential for FGF1 in promoting healing of dermal ulcers in diabetes(38, 39). Recent studies 

further confirmed that FGF1 enhanced re-epithelialization and proliferation, thereby 

promoted diabetic dermal wound healing in the T2D model of NONcNZO10/LtJ mouse(40).  

The wound healing effect of FGF1 on T1D has also been studied. Xie and 

colleagues utilized an ulcer model in STZ-induced SD rats and topically treated the wound 

surface with FGF1 for 2 weeks. Their data indicated that FGF1 improved ulcer healing on 

day 7 and promoted the re-epithelialization on day 14. FGF1 treatment significantly 

increased capillaries and fibroblast in the wound. This study revealed that FGF1 promoting 
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diabetic wound healing was possibly associated with enhancing the proteins expressions 

of TGF-β and PCNA and preventing oxidative stress(41).  

Furthermore, the modification of FGF1 with chitosan-crosslinked collagen sponge 

(CCCS) or polyethylene glycol (PEGylation) was performed to improve even further the 

diabetic wound healing. Both CCCS and PEGylated modified FGF1 accelerated wound 

healing, collagen generation, increased the TGF-β expression, and increased dermal cell 

proliferation in STZ-induced SD rats(25, 42). These results suggest that modification of FGF1 

could provide a greater effective approach for the therapeutic application of native FGF1 

in clinic. 

 

The effects of FGF1 on diabetic cardiovascular disease 

Diabetic cardiomyopathy (DCM) represents the leading cause of morbidity and 

mortality in diabetic patients. DCM consequent to various structural and functional 

changes, which is characterized by ventricular dilation, enlargement and impaired 

contractility of cardiomyocytes, prominent interstitial fibrosis and diastolic and systolic 

dysfunction(43, 44), eventually leading to heart failure without adequate medical treatment(45). 

At present, there are no effective treatments for this common pathological condition in 

DCM. Current treatments of DCM focus on intense glycemic control of the diet, oral 

hypoglycemics, frequently insulin treat and heart failure symptoms management. Novel 

drugs and new strategies for improving therapeutic and prognostic values in DCM are still 

being explored(46). 

FGF1 is regarded as the angiogenic polypeptide mitogen for cells. It has been widely 

reported that FGF1 promoted the proliferation of vascular endothelial cells and smooth 

muscle cells and stimulated the capillary angiogenesis and migration, and significantly 

minimized infarct size, thus improving cardiac function(47-49). Recent studies have indicated 

that FGF1 has beneficial effects on the heart under diabetic conditions.   

https://en.wikipedia.org/wiki/Hypertrophy
https://en.wikipedia.org/wiki/Fibrosis
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Zhang C et al. indicated that the native FGF1 and a novel non-mitogenic FGF1 (nm-

FGF1) could prevent DCM by suppressing oxidative stress and cell damage. T1D mice 

treated with nm-FGF1 intraperitoneally for either 1 or 6 months had no impact on body 

weight and blood glucose levels as compared to non-treated diabetic mice. nm-FGF1 

prevented the diabetic-induced cardiac hypertrophy by decreasing the heart weight and 

the mRNA expressions of molecular hypertrophic markers (ANP, ANG and b-MHC) at 1 

month and more obvious reduction at 6 months. The diabetes-induced cardiac fibrosis 

(Collage content, Fibronectin and TGF- β1) were also decreased by nm-FGF1 treatment.  

In vitro studies using nm-FGF1 showed similar cardiac protection as native FGF1.  Both 

native FGF1 and nm-FGF1 prevented the high glucose induced hypertrophy, fibrosis and 

even the DNA oxidative damage in cardiac cells(50, 51). This study provided evidence for 

protection of nm-FGF against DCM, implying that FGF1 might be a potential candidate for 

application in DCM therapy. In a following study, Zhang M et al demonstrated an improved 

FGF1 cardio-protective effect in DCM with nanoparticle modification and ultrasound-

targeted microbubble destruction technique. Similar with previous studies, this study 

showed that FGF1 protected the metabolism abnormalities and myocardial interstitial 

fibrosis, further preventing the left ventricle dysfunction in STZ-induced T1D rats(52, 53). In 

particular, this study indicated that prevention of FGF1 against DCM could be attributed 

to activating PI3K/Akt signaling pathway, in which the phosphorylated Akt reduced the 

myocardial apoptosis via inhibiting the caspaes-3 activity and increasing the expression 

of anti-apoptotic genes (Bax and BCL-2).    

Taken together, these studies demonstrated the preclinical efficacy and 

mechanisms of novel strategies for FGF1 protection against DCM. 

However, it is still too limited to understand the role of FGF1 in cardiac disorders 

under diabetic conditions. More specific role of FGF1 in DCM in T1D and T2D need to be 

further explored.  
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The effects of FGF1 on diabetic nephropathy 

Diabetic kidney disease, also known as diabetic nephropathy (DN), is the leading 

cause of renal failure in patients and is a chronic complication that take place in 20% to 

40% of T1D and T2D(54, 55). DN is a microvascular complication in diabetics and 

characterized by increased glomerular basement membrane width, diffuse mesangial 

sclerosis, microaneurysm, tubulointerstitial fibrosis, and vascular sclerosis. Chronic 

hyperglycemia in diabetes induces dysfunction in various cell types of the kidney, which 

is a risk factor for chronic kidney disease and end-stage renal disease (ESRD), leading to 

progressive renal failure(56). The incidence of DN is increasing each year and a significant 

number of patients who develop ESRD require renal replacement therapies(57, 58). Current 

therapies for DN are aimed at controlling blood glucose and blood pressure levels, 

inhibiting the renal artery stenosis and reducing or abrogating development of albuminuria 

and progression of DN. However, those therapies mentioned above might not be effective 

enough for DN patients who experience progressive kidney function decline resulting in 

ESRD. Hence, novel therapeutic strategies are urgently needed to improve clinical 

management. 

Numerous growth factors and cytokines are implicated in the process of progressive 

renal disease. FGF2 has been proven to involve in the pathogenesis of renal disease by 

inducing the renal fibrosis(59, 60). However, the role of FGF1 in kidney disease has been 

rarely studied, especially in diabetic kidney disease. Previous studies demonstrated that 

FGF1 gene was expressed in the normal human kidneys but was downregulated in 

kidneys from DN patients, suggesting that FGF1 might play a role in kidney function(61-63).  

Recently, Huang et al demonstrated that FGF1 could protect against DN in both T1D and 

T2D through an anti-inflammatory mechanism(26). Interestingly, FGF1 only significantly 

decreased and maintained the blood glucose to the normal level in T2D mice. This is the 

https://en.wikipedia.org/wiki/Diabetic_nephropathy
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 first study to show that the renal protective effects of FGF1 is independent of its glucose-

lowering effects. However, the functions and mechanism FGF1 in DN are still limited.  

 

The effects of FGF1 on diabetic liver disease 

The prevalence of liver damage in patients with diabetes is much higher than that in 

the general individuals. Diabetes is strongly associated with major chronic liver diseases, 

including nonalcoholic fatty liver disease (NAFLD), chronic hepatitis C (CHC), 

hemochromatosis, and alcoholic liver disease (ALD)(64). Among these liver diseases, 

NAFLD represents a global epidemic mainly associated with obesity, insulin resistance 

and metabolic syndrome(65). In T2D patients, the prevalence of NAFLD is as high as 75%(66, 

67). Recent studies found that obesity also affected the clinical features of T1D, in which 

about 30% of patients were overweight or obese, thus increasing the susceptibility and 

incidence of NAFLD in diabetes(68). NAFLD is a multifactorial disease, affecting 

extrahepatic organs and regulatory pathways(69). The complex metabolic disturbances in 

NAFLD increase the risk and the difficulty of treatment in diabetes(65, 70, 71).  

In FGF family, the function and mechanism of FGF21 in liver diseases have been 

widely studied. Unlike FGF21, FGF1 has high affinity for heparan sulfate and thus acts 

locally as a mitogenic activator(72-74). The role of FGF1 in metabolic diseases has been 

neglected. Recent studies draw an attention of FGF1 in liver under diabetic conditions. 

Jonker et al. revealed that HFD-fed FGF1–/– mice showed severer hepatic steatosis 

compared to wild-type controls(20). Furthermore, they showed that FGF1 treatment 

decreased hepatic steatosis, increased the hepatic glycogen content and insulin-

sensitivity in DIO mice(9). These results suggest that FGF1 play a critical role in the 

development of liver disease in diabetes. More recently, Liu et al showed that 

administration of FGF1 effectively suppressed the hepatic inflammation in the leptin-

deficient ob/ob mice and the choline-deficient diet mice, two etiologically different models 
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of NAFLD. The suppression of hepatic steatosis was effectively showed in ob/ob mice, 

suggesting that FGF1 could stimulate hepatic lipid catabolism. Because the anti-

inflammatory effects were observed in both the presence and absence of the antisteatotic 

effects, these findings further suggest that the anti-inflammatory property of FGF1 is 

independent of its effect on lipid catabolism. These results indicate that, in addition to its 

potent glucose-lowering and insulin-sensitizing effects, FGF1 could be therapeutically 

effective in the treatment of NAFLD(75). However, the mechanism of FGF1 protection 

against NAFLD remains largely unknown. 

 

The effects of FGF1 on other diabetic complications 

FGF1 also involves in many other diabetic complications that has not been widely 

explored. For example, diabetic retinopathy (DR) is currently the leading cause of 

blindness in T1D and T2D. Lee-Anne Khuu et al observed the lower FGF1 expression in 

DR patients compared to the health subjects. This study firstly demonstrated that FGF1 

was associated with the decreased retinal blood flow in early DR, suggesting that FGF1 

might be predisposing for diabetic vascular diseases(76). Melissa Skibba et al evaluated 

the effects of nmFGF1 on the testes in STZ-induced T1D. They found that nmFGF-1 

ameliorated the diabetic induction of testicular cell death by decreasing the BAX/Bcl-2 

ratio and endoplasmic reticulum stress, and upregulating nuclear factor E2–related factor 

2 (Nrf2) activity(77). The protective effects of FGF1 on other diabetic complications will be 

warranted in future studies. 

 

The limitation of FGF1 in diabetes 

The poor stability 

As the multifunctional proteins, FGFs have low thermal stability and high sensitivity 

to proteases, which limit the potential pharmaceutical use of wild-type FGFs(78).  In addition 
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to the powerful mitogen in numerous different cell types, FGF1 shows the locally restricted 

roles in adipose tissue as well as systemic glucose-lowering activities in vivo that shows 

much closely parallel to those of FGF21(9, 20). However, FGF21 is a well-characterized 

endocrine FGF and circulates as a true endocrine hormone. Whereas the high affinity 

heparin-/heparan sulphate proteoglycan-binding activity and serum lability of FGF1 restrict 

its endogenous actions to local tissues, causing the rapid clearance of exogenous FGF1 

from the systemic circulation(1). Thus, the novel FGF1 delivery system or the advanced 

protein design techniques to obtain new variants of FGF1 for the increased 

thermodynamic stability, prolonged half-life and improved proteolytic resistance are 

necessary, which can provide promising strategies for producing therapeutic effective 

FGF1.  

It has been demonstrated that biopolymer encapsulation effectively sustains the 

controlled release and provides a long-term delivery of growth factors(79, 80). For example, 

Zhang et al used the FGF1 encapsulated nanoparticles (FGF1-NP) to treat DCM resulted 

a greater preventive effect due to the improved stability of FGF1 both during storage and 

in blood circulation. The preventive effects of FGF1-NP on DCM were further promoted by 

using the ultrasound-targeted microbubble destruction strategy, which helped to increase 

the selectivity and efficiency of FGF1-NP delivery to the heart(52, 53). In addition, the 

conjugation of FGF1 to polyethylene glycol (PEG) (PEGylated -FGF1) or chitosan-

crosslinked collagen sponge (CCCS-FGF1) could prolong the release and improve the 

biostability of FGF1, which had been used to accelerate the wound healing in diabetic 

rats(25, 42).   

 

Tumorigenic risk   

Native FGF1 could lead to tumorigenesis, tumor invasion and metastasis, showing 

great tumorigenic risk, especially in tumor latent diseases, such as diabetes(81-83). To 
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decrease the potential side effects of FGF1 caused by its broad-spectrum mitogenic 

activity, a non-mitogenic form of FGF1 had been developed to show decreased mitogenic 

activity(50, 84). Several studies proved that this non-mitogenic FGF1 had preventive effects 

on DCM and diabetic ulcer in T1D.  

Recently, we have engineered a novel FGF1 variant by uncoupling the mitogenic 

and metabolic functions of wild type FGF1 (FGF1WT). This FGF1 partial agonist carrying 

triple mutations (FGF1△HBS) that diminished its ability to induce heparan sulfate (HS)-

assisted FGF receptor (FGFR) dimerization and activation. FGF1△HBS dramatically 

reduced the proliferative activity, while still preserving the full metabolic activity of FGF1WT 

in vitro and in vivo. Most importantly, both FGF1△HBS and FGF1WT could reverse fatty liver 

in db/db mice, implying the potential of FGF1 for liver disease therapy(85).  

 

Conclusion  

FGF1 is involved in the regulation of diverse pathophysiological processes in various 

metabolic syndrome. In addition to the functions of FGF1 in angiogenesis and cell 

proliferation, FGF1 is also associated with the inhibition of inflammation, oxidative stress 

and apoptosis in diabetic complications. Recently, the blood glucose lowering and insulin-

sensitizing capability of FGF1 in diabetes revealed the unexpected metabolic function of 

FGF1, which expanded the functions and potential application of FGF1 in metabolic 

syndrome. The following issues need to be addressed to apply FGF1 in metabolic 

syndrome and its complications: 1) the mechanisms of FGF1 in metabolic syndrome; 2) 

the strong mitogenic activity of FGF1 triggering high tumorigenic risk; 3) the weak stability 

and low bioavailability of FGF1 under pathophysiological conditions. 
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CHAPTER I 

THE PREVENTIVE EFFECTS OF A NOVEL FIBROBLAST GROWTH FACTOR 1 

VARIANT ON NON-ALCOHOLIC FATTY LIVER DISEASE IN TYPE 2 DIABETES 

 

INTRODUCTION 

1. Non-Alcoholic Fatty Liver Disease 

As the global epidemic liver disorder, NAFLD represents a spectrum of liver disease 

that ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) and cirrhosis, 

ultimately leads to the hepatocellular carcinoma (HCC) and liver failure. NAFLD is the 

pathological fat accumulation in the liver without alcohol intake, that strongly linked to the 

metabolic syndrome including obesity, insulin resistance, dyslipidemia and type 2 diabetes 

(T2D)(69). Nowadays, the complex and strong association between of NAFLD and obesity 

and T2D results to the particularly high prevalence of NAFLD in individuals with T2D, 

corresponding with the worldwide increase in obesity of childhood (86). Current population-

based prevalence of NAFLD is approximately 30–40% in men and 15–20% in women(70).   

 NAFLD is multifactorial diseases, affecting extrahepatic organs and regulatory 

pathways, in which the insulin resistance as a common pathophysiological mechanism(69). 

The excess lipid accumulation in the hepatocyte due to increased inflow of free fatty acids 

and de novo lipogenesis causes insulin resistance, chronic inflammation that, in turn, 

contributes to further abnormal hepatic metabolism. These metabolic disturbances in 

NAFLD increase the risk of progressive liver disease to fibrosis, cirrhosis and HCC, as 

well as the increased risk of T2D(65). As the second hit in NASH, oxidative stress in the 

liver exacerbates inflammation and hepatic fibrosis, and causes impairment of cellular 
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bioenergetics, leading to further disruption of hepatic lipid metabolism and cell death(87-92).  

Nowadays, there are no licensed therapies specifically for the management of NAFLD. 

Current treatments for NAFLD include lifestyle management such as diet control, exercise 

and behavior modification, pharmacological therapies that manage the underlying 

metabolic risk factors, bariatric surgery and liver transplantation of those with end stage 

liver disease(93).  

 

2. Type 2 diabetes 

 Diabetes is a chronic disease that have three major types: type 1 diabetes (T1D), 

T2D, and gestational diabetes. Among these types of diabetes, T2D is the most common 

and prevalent diabetic diseases in the world. The latest study estimated that the worldwide 

number of adult diabetes will increase by 54%, from 285 million to 439 million from 2010 

to 2030, with the increasing rate in youth(94).  In T2D, body cannot use the insulin properly 

which leads to the insulin resistance augmented by lifestyle habits, environmental factors 

and multiple genetic factors(95, 96). The increased action of insulin resistance results in high 

blood glucose also called hyperglycemia. Meanwhile, hyperglycemia may deteriorate both 

insulin resistance and insulin secretion abnormalities, thus enhancing the transition from 

impaired glucose tolerance to diabetes(97). T2D is tightly associated with many 

complications without the appropriate intervention approaches. Hyperglycemia induced 

higher risk for the complications (cardiovascular disease, liver dysfunctions, retinopathy 

and nephropathy) and multiple metabolic disorders (oxidative stress, inflammation and 

endoplasmic reticulum stress). The long-term persistence of metabolic disorders 

increases the risk development of many specific complications. Meanwhile, older diabetic 

patients have a higher burden of comorbidities, diabetes-related complications, physical 

disability, cognitive impairment and malnutrition, and more sensitive to the complications 
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of dysglycemia and polypharmacy. These complications contribute to the excess morbidity 

and mortality in older individuals with diabetes(98-103).   

The prevalence of diabetes mellitus in patients with liver damage is higher compared 

to that in the general population. Diabetes is strongly associated with major chronic liver 

diseases, including NAFLD, chronic hepatitis C (CHC), hemochromatosis, and alcoholic 

liver disease (ALD)(64). Among these liver diseases, NAFLD has been widely studied with 

diabetes, especially in T2D(65). In T2D patients, the prevalence of NAFLD may be as high 

as 75%(66, 67). Nowadays, there has no certain explanation for the substantial increased 

risk of mortality from cirrhosis of any etiology in patients with T2D. In NAFLD, the excess 

of fatty acids and impaired hepatic fatty acid oxidation exacerbate the insulin resistance, 

further increase the hepatic fat accumulation. High glucose levels, obesity and insulin 

resistance in diabetes may be independent factors contributing to progression of NAFLD 

and the ultimate development of cirrhosis(104). These complex metabolic disturbances 

between NAFLD and T2D increased risk and difficulty in treatment of NAFLD in T2D (70, 71) 

(65).  

 

3. The novel fibroblast growth factor 1 variant——FGF1△HBS 

As introduced in the OVERVIEW, FGF1 is a well-known mitogenic factor that has 

been widely studied for its therapeutic potential in cardiovascular disorders, ischemic 

conditions and nerve injury(1). Interestingly, FGF1 recently showed an unexpected 

metabolic function in diabetes by regulating the glucose homeostasis and insulin 

sensitivity(9, 20). However, FGF1 induces hyperproliferation leading to increased 

tumorigenic risk(105), becoming the primary obstacle for its wide application, particularly for 

chronic cancer prone diseases, such as diabetes. Therefore, uncoupling of the mitogenic 

and metabolic function of FGF1 could make it to be a safe and potent agent for diabetes 

therapy. 
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Structure-function relationship study  demonstrated that paracrine FGFs, such as 

FGF1, transmit their signals by binding, dimerizing and activating four FGF receptor 

tyrosine kinases (FGFR1-4) in a heparin sulfate (HS)-dependent fashion(106-108); by 

contrast, endocrine FGFs, such as FGF21, rely on Klotho co-receptors to bind, dimerize 

and activate their cognate FGFRs(12, 

109-112). Paracrine FGFs facilitate 

much stronger FGFRs tyrosine 

transphophorylation and intracellular 

kinase domains activation via HS-

dependent dimerization of FGFRs 

than that of endocrine FGFs via 

Klotho-dependent dimerization of 

FGFRs (113) (Fig. 1).  

According to the understanding 

of the molecular basis for the 

divergence in the biological activity of 

paracrine and endocrine FGFs, we hypothesized that submaximal FGFR activation by a 

weak endocrine FGF-FGFR dimer is sufficient to evoke a metabolic response (such as 

FGF21), whereas full FGFR activation by stable and sustained paracrine FGF-FGFR 

dimerization is required to elicit a mitogenic response (such as FGF1), and the mitogenic 

and metabolic function of paracrine FGF1 could be uncoupled by manipulation of its HS-

associated receptor dimerization. To test this hypothesis, we engineered a novel FGF1 

variant, with reduced ability of inducing HS-dependent FGFR dimerization by replacing 

the three key residues from the HS-binding site of FGF1, namely Lys127, Lys128 and 

Lys133 with residues that are less optimal for HS binding (Lys127Asp, Lys128Gln and 

Lys133Val), termed FGF1△HBS. In an initial study, we found that FGF1△HBS had significantly 

 

Fig 1. The functional differences between 
paracrine and endocrine FGFs. FGF1, as a 
member of paracrine FGFs, has a high affinity 
with heparin sulphate as its coreceptor, which 
acts in a localized manner near the source of 
its expression. While the endocrine FGF, 
FGF21 has β-klotho as its coreceptor with a 
weak affinity with heparin sulphate leading to 
increased diffusion of FGF21 from its source. 
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decreased receptor binding affinity compared to wild-type FGF1 (FGF1WT), which was 

accompanied by significant attenuation of the proliferative potency. While FGF1△HBS 

retained full metabolic activity of FGF1WT, including sensitization of insulin activity, 

improvement of hepatic lipid and glucose metabolism, induction of adipose remodeling, 

and prevention of diabetes-induced systemic, hepatic and adipose inflammation in db/db 

mice, leading to therapeutic efficacy for T2D without mitogenic and hyperplastic activity of 

FGF1WT(85).    

Recent studies demonstrated that high fat diet feeding induced serve hepatic 

steatosis in FGF1–/– mice compared to wild-type controls(20), while liver function and 

pancreatic function appeared normal. Furthermore, FGF1 treatment decreased hepatic 

steatosis and increased the insulin-stimulated Akt signaling in diet-induced obese (DIO) 

mice(9)  . Liu et al indicated the potent antisteatotic and anti-inflammatory effects of FGF1 

on NAFLD in leptin-deficient ob/ob mice(75). In addition, our recent study indicated that 

FGF1 prevented diabetic nephropathy largely via the anti-inflammatory effects in both T1D 

and T2D (26).  These works have brought FGF1 to the forefront as a potential new 

therapeutic agent for insulin sensitization and treatment of T2D, and NAFLD therapy(114).   

However, the functions and mechanism of FGF1-mediated metabolic actions in diabetic 

livers remain largely unknown. To investigate the metabolic activity of FGF1 and explore 

a safe treatment for NAFLD, we therefore hypothesize that the novel mitogenic and 

metabolic function uncoupled variant FGF1△HBS has potential to replace the use of FGF1WT 

to treat NAFLD in T2D.  

 

MATERIALS AND METHODS 

Animal models and drug administration 

 db/db (BKS.Cg-Dock7m +/+ Leprdb/J, Stock # 000642) mice were purchased from 

Jackson Laboratory (Bar Harbor, ME). 2-month-old male db/db mice were administered 
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with FGF1△HBS (0.5 mg/kg) or vehicle phosphate buffered solution (PBS) via 

intraperitoneal injection every other day for 2 months.  At the indicated time-points, the 

blood glucose levels were determined by FreeStyle complete blood glucose monitor 

(Abbott Diabetes Care Inc., Alameda, CA). All mice were housed under a 12:12-h 

light/dark cycle at controlled temperature. All experimental procedures were approved by 

the Institutional Animal Care and Use Committee of the University of Louisville.  

 

Glucose-tolerance tests (GTTs) 

Blood glucose levels were determined as described above. For GTTs, mice were 

fasting for 9h, and then were injected with glucose solution (1 g/kg body weight) 

intraperitoneally. Blood glucose levels were measured at 0, 15, 30, 60, 90, and 120 min 

after glucose injection.  

 

Biochemical analysis  

Plasma ALT (Cayman Chemical, Ann Arbor, MI) and AST (BioVision, Milpitas, CA) 

levels were measured using enzymatic assay kits according to the manufacturer’s 

instruction. Liver TG was determined using commercially available colorimetric kits 

(Thermo Scientific, Waltham, MA).  Briefly, liver tissues were homogenized in 50mM NaCl 

and the samples were extracted with extract reagent (Chloroform: Methanol=2:1) at 4℃ 

overnight. The next day, the samples were vortexed and centrifuged for 20mins, and the 

lower chloroform layer were collected. Then, 500 µl of lower chloroform layer were placed 

in new tubes and evaporated to dryness in the hood. The dried samples were dissolved 

in TG reagent and measured with plate reader at 500nm. 
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Liver histopathological analysis 

Liver paraffin sections were processed as previously described(85). Liver tissues 

were fixed in 10% formalin and processed to embed in paraffin. After deparaffinization and 

rehydration, the paraffin sections (5μm) were subjected to hematoxylin and eosin (H&E). 

oXLipid accumulation in the liver tissues was further analyzed by Oil Red O staining. For 

Oil-Red-O staining, frozen sections (10μm) of liver tissues were fixed in 10% formalin for 

10min and rinsed in water. Then the slides were immersed in 60% isopropanol and 

incubated in Oil-Red O solution (saturated Oil Red O isopropanol solution diluted 4:6 into 

60% isopropanol, Sigma-Aldrich) at room temperature for 40mins. The slides were 

washed in 60% isopropanol twice. All the stained sections were quantitated for Oil-Red O 

positive staining area using a Nikon Eclipse E600 microscopy system (Nikon, Tokyo, 

Japan).   

 

Quantitative determination of oxidative stress 

To detect the reactive oxygen species (ROS) levels of diabetic livers after FGF1 

treatment, the cell permeable fluorescent dye, dihydroethidium (DHE, Molecular Probes, 

Eugene, OR) was used to determine the superoxide generation in the liver sections. DHE 

can react with superoxide to form ethidium, which in turn intercalates with DNA and 

produces nuclear fluorescence(115). For DHE staining in frozen liver sections, cryosections 

were incubated with 5 μM DHE for 30 min at 37°C in dark, washed with PBS and captured 

at ×200 magnification (XI 71 Olympus, Tokyo, Japan).    

Malondialdehyde (MDA) is the most frequently used biomarker of oxidative stress in 

many health problems(116). MDA content test was performed to further confirm the ROS of 

diabetic livers after FGF1 treatment. Briefly, 50μl liver tissue lysate was incubate with 8.1% 

SDS, 20% Acetic acid and 0.57%TBA at 90℃ for 70 min. Then cold in ice and centrifuged 

at 4000x g for 15 min.  The fluorescence intensity of final MDA content in each sample 
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was detected by a microplate reader (SpectraMax M3; Molecular Devices, Sunnyvale, CA) 

under specific wavelength conditions (OD=540μm). The final MDA content in each sample 

was calculated as: MDA= (OD of Sample-OD of Standard) *178/pro-concentration 

(mmol/mg).  

 
RNA extraction, cDNA synthesis and quantitative RT-PCR 

Total RNA was extracted from liver tissues with TRIzol reagent (Invitrogen, Carlsbad, 

CA). After quantified using a Nanodrop ND-1000 spectrophotometer, 1µg total RNA was 

used to synthesize first-strand complimentary DNA (cDNA) using reverse transcription kit 

(Promega, WI) following the manufacturer’s instructions. Quantitative RT-PCR reactions 

were performed in duplicate on an ABI Prism 7500HT (PE Applied Biosystems) and were 

normalized to GAPDH. All TaqMan® assay-on-demand primers were from Thermo Fisher 

Scientific Inc. (Grand Island, NY). Sequences were as follows: GAPDH, Mm99999915_g1; 

PAI-1, Mm00436753_m1; TNFα, Mm00443259_g1; VCAM-1, Mm01320970_m1; ICAM-

1, Mm00516023_m1; SREBF1, Mm00550338_m1; FAS, Mm00662319_m1 and SCD-1, 

Mm00772290_m1. 

 

Western blot analysis  

The liver tissues from db/db mice were collected and homogenized. Protein lysates 

from liver tissues were separated using 8-12% SDS-PAGE and electro-transferred onto a 

nitrocellulose membrane. The protein blots were probed with antibodies against HO-1, 

phosphorylated AMPKα/AMPKα, phosphorylated ACC/ACC, and phosphorylated 

SREBP-1 (Cell Signaling Technology, Danvers, MA), CAT, NQO-1, PGC-1α, CPT-1α, β-

actin, and GAPDH (Santa Cruz biotechnology, Dallas, TX), Nrf2, SREBP-1, FAS, SCD-1 

and PPARα (Abcam, Cambridge, MA). The immunoreactive bands were then detected by 

incubating with the secondary antibody (Santa Cruz Biotechnology, Dallas, TX) 
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conjugated with horseradish peroxidase and visualizing using enhanced 

chemiluminescence (ECL) reagents (Bio-Rad, Hercules, CA). The amount of the proteins 

was analyzed using Image Lab analysis software and normalized against their respective 

loading controls. 

 

Statistical analysis 

Statistical analyses were performed using the statistical software package 

GraphPad Prism version 6 (GraphPad Software Inc., San Diego, CA, USA). Data are 

expressed as mean ± SEM. Statistical significance was evaluated using the unpaired two-

tailed Student t test or one-way analysis of variance. Differences were considered 

significant at a P value <0.05.   

 

RESULTS  

FGF1△HBS prevents NAFLD in db/db mice 
 

Consistent with the findings in our previous study(85), FGF1△HBS treatment at 0.5 

mg/kg every other day for 2 months greatly lowered blood glucose levels (Fig. 2A), along 

with significant improvement in insulin sensitivity (Fig. 2B, C) in db/db mice. FGF1△HBS 

treatment did not change body weight (Fig. 2D), but markedly lowered liver weight (Fig. 

2E) and prevented liver injury reflected by decreased ALT (Fig. 2F) and AST activity (Fig. 

2G). Furthermore, FGF1△HBS treatment significantly decreased hepatic TG content (Fig. 

2H), showing improved hepatic lipid metabolism.  

Histological examination using H&E staining and Oil Red O staining confirmed the 

antisteatotic effect of FGF1△HBS (Fig. 3A). Hepatic steatosis is associated with hepatic 

inflammation and oxidative stress. In addition to its potent antisteatotic action, FGF1△HBS 

also suppressed hepatic inflammation and oxidative stress reflected by reduced mRNA 

expression of hepatic inflammatory markers including TNFα, PAI-1, ICAM-1 and VCAM-1 
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(Fig. 3B-E) and inhibited super oxide generation (Fig. 3F, G) and MDA production (Fig. 

3H) in db/db mice.  

 

 

Fig. 2 The effects of FGF1△HBS on blood glucose, insulin sensitivity and liver injury 

in 2-month-old db/db mice. (A) The blood glucose over the course of 2 months treatment 

of db/db mice with FGF1△HBS (0.5 mg/kg body weight, every other day). (B and C) The 

Blood glucose levels in IPGTT and integrated area under the curve (AUC) for changes in 

blood glucose levels.  (D and E) The body weight and liver weight changes in db/db mice. 

(F and G) Plasma levels of ALT and AST. (H) Triglyceride contents in livers. Quantitative 

data are expressed as mean ± SEM, n=10-13. *P < 0.05 vs. db/db mice. 



24 
 

 

 

Fig. 3 The preventive effects of FGF1△HBS on hepatic inflammation and oxidative 

stress in 2-month-old db/db mice. (A) Representative images of H&E and Oil Red O 

staining of liver sections (magnification: X200). (B-E) The hepatic mRNA levels of TNFα, 

PAI-1, ICAM-1 and VCAM-1 in db/db mice. (F and G) Representative images of DHE 

staining of liver frozen sections (magnification: X200) and quantitative analysis of 

fluorescent intensity of DHE staining. (H) MDA contents in liver tissues. Quantitative data 

are expressed as mean ± SEM, n=10-13. *P < 0.05 vs. db/db mice. 

 

FGF1△HBS preserves hepatic antioxidant in db/db mice 

To investigate the molecular basis of FGF1△HBS for hepatic antioxidative effects, we 

observed the activation of Nrf2, an essential transcription factor in antioxidative 

responses(117, 118), in FGF1△HBS treated and non-treated db/db mice. As expected, the 

expression of nuclear Nrf2 in db/db mice was elevated significantly after FGF1△HBS 
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treatment for 2 months (Fig. 4A, B). Furthermore, the expression of Nrf2-mediated anti-

oxidative downstream genes catalase (CAT), NAD(P)H Quinone Oxidase 1 (NQO-1) and 

Heme Oxygenase 1 (HO-1), were significantly higher in FGF1△HBS-treated db/db mice 

than those in PBS-treated db/db mice (Fig4. A and C-E). These results indicate that 

FGF1△HBS reduce the hepatic oxidative stress by activating Nrf2-mediated antioxidative 

signaling pathways.  

 

 

Fig. 4 FGF1△HBS activating Nrf2-mediated anti-oxidative signaling pathway in liver 

of 2-month-old db/db mice.  (A) Protein expressions of nuclear Nrf2 and its downstream 

target genes catalase (CAT), heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase 

(quinone 1) (NQO-1) were determined by Western blot. (B-E) The quantitative analysis of 

nuclear-Nrf2 (n-Nrf2), CAT, NQO-1 and HO-1 in Western blot results by densitometry. 

Quantitative data are expressed as mean ± SEM, n=10-13*P < 0.05 vs. db/db mice. 
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FGF1△HBS promotes hepatic lipid metabolic signaling in T2D  

To decipher how FGF1△HBS regulates hepatic lipid metabolism in T2D, the key lipid 

metabolism related signaling was evaluated in this study.  As the key factors in de novo 

fatty acid synthesis, FAS, SCD-1 and SREBP-1 at mRNA levels in db/db mice were 

markedly reduced after FGF1△HBS treatment (Fig. 5A), as well as their expression at 

protein levels were inhibited as indicated by western-blot (Fig. 5B-E). In addition, CPT-1α, 

PPARα and PGC-1α, which play major roles in regulating fatty acid oxidation(119), were 

significantly increased in FGF1△HBS-treated db/db mice compared to the control db/db 

mice (Fig. 5B and 5F-H).    

Notably, FGF1△HBS-mediated lipid metabolic regulation was accompanied by a 

significant up-regulation of AMPK phosphorylation in db/db mice (Fig. 5B and 5I).  The 

phosphorylation of ACC and SREBP-1, which are the downstream targets of AMPK, were 

also obviously upregulated by FGF1△HBS treatment in db/db mice (Fig. 5B and 5J, K), 

suggesting that FGF1△HBS regulation of hepatic lipid metabolism was associated with 

AMPK signaling pathway. 
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Fig. 5 FGF1△HBS regulating lipid metabolic signaling pathway in liver of 2-month-old 

db/db mice.  (A) The hepatic mRNA levels of SREBP-1, FAS and SCD-1 in db/db mice. 

(B) Protein expressions of hepatic lipogenic genes (m/pro SREBP-1, FAS, SCD-1), 

hepatic fatty acid oxidation (CPT-1α, PGC-1α and PPARα) and AMPK signaling pathway 

(p-AMPK/AMPK, p-ACC and p-SREBP-1) related genes were determined by Western blot. 

(C-K) The quantitative analysis of Western blot results by densitometry. Quantitative data 

are expressed as mean ± SEM, n=10-13. *P < 0.05 vs.  db/db mice. 
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DISCUSSION 

NAFLD is highly associated with T2D. Considering the interaction between T2D and 

NAFLD, it is certain that NAFLD is an increased risk for the development of T2D, while 

T2D result in the progression of NAFLD to NASH, even to the end-stage of liver disease(64, 

104). However, the therapeutic options for NAFLD with T2D are rather limited.  In the 

present study, we demonstrated that FGF1△HBS, a novel variant of FGF1 uncoupled 

mitogenic and metabolic functions, effectively prevented hepatic steatosis, inhibited the 

oxidative stress via Nrf2-mediated signaling pathway and promoted the hepatic lipid 

metabolism possibly attributed to stimulation of AMPK-mediated signaling pathway in T2D.   

As a paracrine FGF, FGF1 is known to be mitogenic and involved in the regulation 

of diverse pathophysiological processes. The recent discovery of metabolic roles for FGF1 

in adaptive adipose remodeling, metabolic homeostasis and insulin sensitivity has 

expanded the functions of this classically known mitogen(9, 20).  The liver is the critical 

metabolic organ strongly involved in the major metabolic dysfunction in diabetes. 

Increasing studies suggested the role of FGF1 in managing the metabolic dysfunction in 

diabetes (9, 20), and demonstrated anti-steatosis and anti-inflammation effects for FGF1 

protection against NAFLD in diabetes(24, 75). In addition to its potent glucose lowering and 

insulin sensitizing effects, FGF1 would be a promising agent for NAFLD therapy. However, 

the mechanism of FGF1 protection against NAFLD remains largely unknown. In the 

present study, FGF1△HBS was used to define how FGF1 protects against NAFLD in T2D.   

We used 2-month-old db/db mice to determine the preventive effects of FGF1△HBS 

on diabetes-induced fatty liver disease. We demonstrated that FGF1 protected the T2D 

mice from hepatotoxicity by inducing the antioxidant capacity and promoting the lipid 

metabolism in livers. Our results showed that FGF1△HBS significantly attenuated the 

hyperglycemia and promoted the insulin sensitivity in this early-stage db/db mice (Fig. 2 

A-C). Moreover, FGF1△HBS significantly prevented injury, ameliorated the pathologic 
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abnormality and reduced the hepatic lipid accumulation and inflammation in db/db mice 

(Fig.2D-H and Fig. 3A-E). These results further confirmed the blood glucose lowering 

capability and hepatic protective effects of FGF1△HBS were similar as that FGF1WT showed 

in our previous studies(75, 85).   

Oxidative stress refers to various deleterious processes resulting from an imbalance 

between the excessive formation of ROS and limited antioxidant defenses(89), which is a 

major factor responsible for the dysfunction of diabetic livers(88). In the present study, the 

db/db mouse models exhibited robust oxidative stress in liver, indicated by upregulated 

superoxide generation and MDA production, all of which were greatly inhibited by 

FGF1△HBS (Fig.3 F-H). Among the mechanism responsible for the oxidative stress, Nrf2-

mediated signaling pathway plays a critical role in antioxidative responses by upregulating 

multiple antioxidant components(117, 118).  Our findings clearly demonstrated that Nrf2 

activation was upregulated by FGF1△HBS in livers of T2D, as indicated by increased 

nuclear translocation of Nrf2 and upregulation of Nrf2 downstream anti-oxidative genes, 

CAT, NQO-1 and HO-1 (Fig. 4). These finding suggest that the anti-oxidative functions of 

FGF1△HBS are linked to Nrf2 pathway. 

Lipid metabolic disturbance is common in diabetic and NAFLD, which is 

characterized by the excess fatty acid synthesis and impaired lipid catabolism(120, 121). 

Activation of AMPK leads to the phosphorylation of key metabolic enzymes and 

transcriptional regulators that are linked to cellular metabolism, such as glucose uptake, 

fatty acid synthesis and oxidation(122). In addition to reduction of TG and lipid accumulation 

in FGF1△HBS-treatment db/db mice, FGF1△HBS also downregulated the important 

lipogenesis transcription gene, SREBP-1 and its downstream genes, FAS and SCD-1 

(Fig.5A-E).  Moreover, FGF1△HBS significantly upregulated the fatty acid oxidation related 

genes, CPT-1α, PPARα and PGC-1α (Fig.5B and 5F-H). These findings indicate that 
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FGF1△HBS protection against NAFLD is associated with AMPK-mediated lipogenesis 

inhibition and fatty acid oxidation activation.   

These data firstly indicate that the potent preventive effects of FGF1△HBS against 

NAFLD in T2D were strongly associated with the Nrf2 mediated-anti-oxidative pathway 

and AMPK mediated lipid metabolism pathway. 
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CHAPTER II 

THE ROLE OF NUCLEAR FACTOR ERYTHROID 2-RELATED FACTOR 2 IN 

FIBROBLAST GROWTH FACTOR 1 PROTECTION AGAINST NON-ALCOHOLIC 

FATTY LIVER DISEASE 

 

INTRODUCTION 

1. Oxidative stress in diabetes  

Oxidative stress refers to increased cellular production of reactive oxygen (ROS) 

and nitrogen (RNS) species and impaired clearance of such species by antioxidant 

defense systems that cause damage to lipids, proteins and DNA(123).  Numerous studies 

have indicated that oxidative stress as a key regulator in chronic pathological status 

including cancer, cardiovascular diseases, chronic inflammation, autoimmune disorders 

and diabetes(124).  In particular, increasing evidence has established the role of oxidative 

stress in the development of diabetic complications including diabetic cardiomyopathy, 

retinopathy, nephropathy, neuropathy, and microvascular disease(125). The causes of 

increased oxidative stress in the diabetic complications are partially known by the 

activation of transcription factors, advanced glycated end products (AGEs), and protein 

kinase C(126, 127). In diabetes, the hyperglycemia increases the production of free radicals. 

The excess free radicals and the imbalance of antioxidant defense mechanisms result to 

the damaged cellular organelles and enzymes, increased lipid peroxidation, and insulin 

resistance. These consequences of oxidative stress aggressive cause the damage of 

diabetic complications(126). Meanwhile, oxidative stress has the strong cross-talk with the 
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fibrosis, inflammation, cell death and metabolic stress, which accelerate the tissue 

damage in diseases(128, 129). Therefore, antioxidant therapy has been attractive treatment 

options for diabetes treatment. 

 

2. Oxidative stress in NAFLD  

NAFLD is characterized by excess fatty acid in hepatocytes because of the increased 

inflow of free fatty acids and/or de novo lipogenesis, and decreased fatty acid oxidation 

caused by initial metabolic disturbance. As the “the first hit”, this marked hepatic fat 

accumulation is the risk for the development of NAFLD, which increases the susceptibility  

of the liver to secondary damages(92). Excess lipids in the hepatocyte impairs the 

mitochondria oxidation, inactivates the electron transport chain complexes and stimulates 

peroxisomal and microsomal pathways of fat oxidation. The consequent generation of 

ROS and reactive aldehydic derivatives causes oxidative stress and cell death, via 

multiple factors such as ATP, nicotinamide adenine dinucleotide, glutathione depletion, 

DNA, and lipid damage(89).  There has a vicious circle between the abnormal lipid 

peroxidation and the excess ROS in NAFLD, which continually aggravates the oxidative 

stress and abnormal metabolic regulation, further exacerbates the cell death in NAFLD.  

As the critical “second hit” in NAFLD, oxidative stress also triggers production of 

inflammatory cytokines, causing inflammation leading to the progression of steatohepatitis 

and cirrhosis. This ultimately results in the progress of NAFLD and end-stage liver failure. 

Application of antioxidants suggests a rational curative strategy to prevent the liver injury 

from oxidative stress(88, 130). 

 

3. The role of nuclear factor E2–related factor 2 in diseases 

Nrf2 is a transcription factor that widely distributed in the liver, kidney, muscle, lung, heart 

and other organs. Nrf2 is an important sensor in response to the toxic substances
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and oxidants in the body that is critical for cellular defense mechanisms. In non-stressed 

cells, Nrf2 is inactive in the cytoplasm because of the repressive effect of kelch like ECH 

associated protein 1 (Keap1). Once activated by ROS or electrophilic agents, Nrf2 

translocate into the nucleus and binds to the promoters of a variety genes including the 

genes relevant to anti-inflammation, anti-apoptosis and anti-aging(131). Nrf2 mainly binds 

to antioxidant response element (ARE) to regulate its target genes, such as NAD(P)H 

quinone oxidase 1 (NQO1), heme oxygenase 1 (HO1)(132, 133). The potential protective 

roles of Nrf2-mediated antioxidant activation in diabetic complications, such as diabetic 

nephropathy, cardiomyopathy and limb ischemia, have been widely studied (134-136). 

Recently, Nrf2 pathway has been investigated as a potential target to metabolic 

syndrome, such as obesity, insulin resistance and T2D(137, 138). For example, the liver 

expression of Nrf2 and its downstream genes were decreased in high fat diet fed mice. 

Nrf2 knockout mice have TG and ROS accumulation in liver(139). The Nrf2 activator, such 

as sulforaphane, can activate Nrf2 to inhibit the hepatic oxidative stress and inflammation, 

following with the protection against the hepatic lipid accumulation(140). Xue et al 

demonstrated that adipocyte-specific ablation of Nrf2 in ob/ob mice resulted in reduced 

antioxidant response, but increased plasma triglyceride and aggravated insulin 

resistance(137, 141, 142). All these results demonstrate that in addition to the anti-oxidant 

stress, Nrf2 is also involved in regulating insulin sensitivity and maintaining the glucose 

and lipid homeostasis. 

In the present study, we found that FGF1△HBS significantly ameliorated the hepatic 

oxidative stress in db/db mice associated with the upregulation of nuclear Nrf2, and its 

downstream target genes. Base on the previous studies, we hypothesize that Nrf2-

mediated signaling pathway might play a critical role in FGF1 protection against NAFLD 

in T2D. 

 

file:///C:/Users/QIAN/AppData/Local/Youdao/Dict/Application/7.5.2.0/resultui/dict/
https://www.ncbi.nlm.nih.gov/pubmed/25349820
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MATERIALS AND METHODS 

Cell treatment  

The human hepatocellular carcinoma cell line (HepG2) was purchased from the 

American Type Culture Collection. Palmitate (Pal) provided by Sigma-Aldrich (St. Louis, 

MO, USA) was used to mimic diabetes-induced hepatic lipid toxicity including oxidative 

damage and lipid metabolism disorder seen in db/db mice. HepG2 cells were cultured in 

DMEM containing 5.5 mM D-glucose, 10% fetal bovine serum, 100 units/ml penicillin, and 

100 μg/ml streptomycin, and incubated in a humidified atmosphere of 5% CO2 at 37 °C 

and passaged every 2 days by trypsinization. After serum starvation for 24 hours, HepG2 

cells and Nrf2 knockdown-HepG2 cells were treated with 100 μM Pal or control 

with/without insulin in serum free medium for 12 hours, followed by incubation with FGF1WT 

and FGF1△HBS for additional 12 hours, respectively.  Cells were collected for the following 

experiments.  All cell culture experiments were carried out under the guidelines of 

biosafety and approved by the Biosafety Committee of the University of Louisville. 

 

Palmitate preparation 

Pal was dissolved in 50% ethanol solution at 60 °C, and further dissolved in 2% fatty 

acid-free bovine serum albumin (BSA) to make 10 mM Pal stock solution, then filtered and 

stored at -20 °C.   

 

Oil-Red O analysis for cells 

 Cells were seeded in 6-well plate at a density of 104 cells per well. After stimulated 

with Pal in the presence of insulin for 12 hours, followed by incubation with or without 

FGF1WT and FGF1△HBS for additional 12 hours, cells were washed with PBS for three times, 

and then fixed in 4% paraformaldehyde for 20 mins. After washing with PBS three times, 

cells were stained with 0.5% Oil Red O for 10 mins at room temperature. Then the 
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additional Oil Red O was removed by washing with PBS. To quantify Oil Red O content, 

isopropanol (1ml) was added into each well, shaking the plate for 10 mins at room 

temperature. The intensity of Oil Red O content in each sample was detected by a 

microplate reader under specific wavelength conditions (OD=520nm). 

 

Quantitative determination of oxidative stress 

 HepG2 cells were cultured and treated as described above, then incubated with 5 

μM DHE in HBSS medium for 30 minutes at 37°C. Nuclear DHE positive staining indicates 

superoxide generation in cells. The fluorescence intensity was detected using a microplate 

reader (SpectraMax M3; Molecular Devices, Sunnyvale, CA) under specific wavelength 

conditions (excitation, 518 nm; fluorescence, 605 nm).   

For MDA analysis in vitro, 50μl proteins from cells were incubate with 8.1% SDS, 

20% Acetic acid and 0.57%TBA at 90℃ for 70 mins. Then centrifuged at 4000x g for 15 

mins. The calculation of the fluorescence intensity finally MDA content in each sample 

was same as that performed in vivo. 

 

SiRNA transfection  

knockdown of Nrf2 was performed using small interfering RNAs (siRNAs) targeting 

Nrf2 and control siRNA (Santa Cruz Biotechnology, CA) according to the manufacturer’s 

protocol. HepG2 cells were seeded at a density of 20 X 104 cells/well in 6-well plates and 

were transfected with Nrf2-siRNA using lipofectamine 2000 reagent (Invitrogen) at a final 

concentration of 100 nmol/L in Opti-MEM (GIBCO BRL) for 6 hours, respectively. Then 

cells were cultured with normal medium for additional 16 hours to determine the 

knockdown efficiency. 
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Triglyceride content determination in cells 

Cells were seeded in 6-well plate at a density of 20X104 per well. After stimulated 

with Pal and treated with FGF1WT and FGF1△HBS in the present of insulin, cells were 

washed with PBS for three times and then incubated with 0.3 ml, 0.25M NaOH for 10 mins. 

Cells were scraped into the tube and incubated with hexane/isopropanol mixture (3:1) for 

1 hour, then centrifuged at 10000g for 5 mins and then transferred the supernatants to a 

new tube. The supernatant was evaporated at room temperature overnight. A TG kit 

(Thermo Scientific, Waltham, MA) was used to solubilize the lipid pellet. After incubation 

with TG buffer for 10 mins at 37℃, the levels of TG content in each well was detected by 

a microplate reader under specific wavelength conditions (OD=505 nm). 

 

Western blot analysis 

The above cultured HepG2 cells were collected and lysed. Lysate proteins from liver 

tissues and cells were separated using 8-12% SDS-PAGE and electro-transferred onto a 

nitrocellulose membrane.  

 

Statistical analysis 

Statistical analyses were performed using the statistical software package, 

GraphPad Prism version 6, (GraphPad Software Inc., San Diego, CA, USA). Data are 

expressed as mean ± SEM. Statistical significance was evaluated using the unpaired two-

tailed Student t test or one-way analysis of variance. Differences were considered 

significant at a P value <0.05.    

 

 

 

 



37 
 

RESULTS 

FGF1 prevents Pal-induced oxidative stress in an insulin-dependent manner in 

HepG2 cells 

As shown in DHE staining result, the hepatic superoxide production was higher in 

Pal-induced HepG2 cells compared to the Control. The ROS accumulation in Pal-induced 

HepG2 cells was not decreased by FGF1WTor FGF1△HBS (FGF1) treatment alone, but 

obviously inhibited by FGF1 treatment in the present of insulin (Fig. 6A).  In agreement 

with DHE result, FGF1 effectively inhibited the oxidative stress in an insulin dependent 

manner in Pal-induced HepG2 indicated by MDA analysis (Fig. 6B, C).  Compared to the 

control, Pal significantly suppressed the expression of nuclear Nrf2 in HepG2 cells. 

Treatment with FGF1 significantly preserved Pal-induced reduction of nuclear Nrf2 in 

HepG2 cells. The marked upregulation of nuclear Nrf2 was shown in Pal-induced HepG2 

cells after FGF1 treatment with insulin, which was accompanied by a significant increase 

in expression of its downstream anti-oxidative genes, CAT, HO-1 and NQO-1 (Fig. 7). 

These results suggest that FGF1 prevents Pal-induced hepatic oxidative stress possibly 

by restoring the antioxidant capability via Nrf2-mediated signaling.       
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Fig. 6 FGF1 preventing from Pal-induced hepatic oxidative stress in HepG2 cells. 

(A and B) Representative images (magnification: X100) and quantitative analysis of 

fluorescent intensity of DHE staining in Pal-induced HepG2 cells. (C) MDA content. 

Quantitative data are expressed as mean ± SEM, n=3-5. #P<0.05 vs. Ctrl; *P < 0.05 vs. 

Pal; &P < 0.05 vs. Pal+Ins; $P < 0.05 vs. Pal+FGF1△HBS or Pal+FGF1WT. 
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Fig. 7 FGF1 preventing from Pal-induced hepatic oxidative stress via activating 

Nrf2-mediated anti-oxidative signaling pathway in HepG2 cells. (A) The protein 

expressions of nuclear Nrf2 and Nrf2 target genes CAT, HO-1 and NQO-1 in HepG2 cells 

were determined by Western blot. (B-E) The quantitative analysis of Western blot results 

by densitometry. Quantitative data are expressed as mean ± SEM, n=3-5. #P<0.05 vs. Ctrl; 

*P < 0.05 vs. Pal; &P < 0.05 vs. Pal+Ins; $P < 0.05 vs. Pal+FGF1△HBS or Pal+FGF1WT. 

 

FGF1 prevents Pal-induced lipotoxicity in an insulin-dependent manner in HepG2 

cells  

 Pal treatment caused a clear increase of TG accumulation in HepG2 cells 

compared with the Control (Fig. 8A).  Furthermore, both FGF1△HBS and FGF1WT treatment 

prevented Pal-induced lipid accumulation in HepG2 cells in an insulin-dependent manner, 

reflected by intracellular TG content analysis and Oil-Red O staining (Fig. 8A and 8B). In 

the presence of insulin, FGF1 dramatically decreased the expression of m/proSREBP-1, 

FAS and SCD-1 (Fig. 9A-D) and increased the expression of CPT-1α, PGC1α and PPARα 

(Fig. 9A, E-G). In addition, the dramatic reduction of phosphorylated AMPK by Pal in 
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HepG2 cells was preserved by FGF1 treatment, along with the increased phosphorylation 

of its downstream genes ACC and SREBP-1 (Fig. 9A, H-J).  

 

 

Fig. 8 FGF1 preventing from Pal-induced hepatic lipotoxicity in HepG2 cells. (A) 

Triglyceride contents. (B) Representative images of Oil Red O staining and Oil Red O 

content analysis. Quantitative data are expressed as mean ± SEM, n=3-5. #P <0.05 vs. 

Ctrl; *P < 0.05 vs. Pal; &P < 0.05 vs. Pal+Ins; $P < 0.05 vs. Pal+FGF1△HBS or Pal+FGF1WT. 
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Fig. 9 FGF1 inhibiting lipogenesis and promoting lipid oxidation signaling in Pal-

HepG2 cells. (A) Protein expressions of lipogenic genes (m/pro SREBP-1, FAS, SCD-1), 

fatty acid oxidation (CPT-1α, PGC-1α and PPARα) and AMPK signaling pathway (p-

AMPK/AMPK, p-ACC/ACC and p-SREBP-1) in HepG2 cells were detected by Western 

blot. (B-J) The quantitative analysis of Western blot results by densitometry. Quantitative 

data are expressed as mean ± SEM, n=3-5. #P <0.05 vs. Ctrl; *P < 0.05 vs. Pal; &P < 0.05 

vs. Pal+Ins; $P < 0.05 vs. Pal+FGF1△HBS or Pal+FGF1WT.        
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Nrf2 silencing abolishes the protective effects of FGF1 against oxidative stress 

but not lipotoxicity 

In addition to playing a central role in responding to oxidative stress, Nrf2is also a 

target for regulating lipid metabolism(143).  Nrf2 knockdown significantly aggravated the 

oxidative damage compared to Control-siRNA group, neither FGF1△HBS nor FGF1WT 

decreased the MDA content after Nrf2 knockdown in HepG2 cells (Fig. 10A). Moreover, 

FGF1 did not affect the protein levels of nuclear Nrf2, HO-1, CAT and NQO-1 in Pal-

induced HepG2 cells transfected with Nrf2-siRNA compared to Control-siRNA group 

(Fig. 10B-G), suggesting Nrf2 silencing abolished the preventive effects of FGF1 from 

Pal-induced oxidative damage. However, Nrf2 knockdown did not affect FGF1 

prevention from TG accumulation in Pal-induced HepG2 cells (Fig. 11A). Meanwhile, 

FGF1 inhibiting Pal-induced upregulation of m/pro-SREBP-1, FAS, and SCD-1 also was 

not affected by Nrf2 knockdown in cells (Fig. 11B-E). Taken together, our results indicate 

that Nrf2 is not required for the inhibitory effects of FGF1 on Pal-induced lipid disorder in 

HepG2 cells.   
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Fig. 10 Knockdown of Nrf2 in the HepG2 cells attenuated the beneficial effects of 

FGF1 on Pal-induced oxidative stress in HepG2 cells. (A) MDA contents in Pal-induced 

HepG2 cells. (B) The expressions of nuclear Nrf2, total Nrf2 (t-Nrf2), HO-1, CAT and NQO-

1 were determined by Western blot. (C-G) The quantitative analysis of nuclear Nrf2, t-Nrf2 

and HO-1 western blot results by densitometry. Quantitative data are expressed as mean 

± SEM, n=3-5. #P <0.05 vs. Control-Control-SiRNA; *P < 0.05 vs. Pal-Control-SiRNA; &P 

< 0.05 vs. Control-Nrf2-SiRNA; $P < 0.05 vs. Pal-Nrf2-SiRNA.  
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Fig. 11 Knockdown of Nrf2 cells affect the beneficial effects of FGF1 on Pal-induced 

lipiotoxicity in HepG2 cells. (A) TG content in HepG2 cells. (B) Protein expressions of 

lipogenic genes (m/pro SREBP-1, FAS, SCD-1) were determined by Western blot. (C-E) 

The quantitative analysis of m/pro SREBP-1, FAS, SCD-1 Western blot results by 

densitometry. Quantitative data are expressed as mean ± SEM, n=3-5. #P <0.05 vs. 

Control-Control-SiRNA; *P < 0.05 vs. Pal-Control-SiRNA; &P < 0.05 vs. Control-Nrf2-

SiRNA; $P < 0.05 vs. Pal-Nrf2-SiRNA. 

 

DISSISION 

Among the many potential pathogenic mechanisms responsible for the progression 

of NAFLD, oxidative stress is recognized as a secondary hit driving the pathogenesis of 

NAFLD. Oxidative stress exacerbates hepatic inflammation and fibrosis, leading to further 

disruption of hepatic lipid metabolism(87-92). It suggests a close relationship between 

dysregulated lipid homeostasis and oxidative stress in the pathogenesis of NAFLD(142, 143). 
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In the intracellular signaling system that regulates oxidative stress responses, Nrf2 

is a well-known master regulator of the cellular adaptive response to oxidative damage(137).  

Emerging evidence indicated that, in addition to regulating hepatic antioxidant defenses, 

Nrf2 plays a critical role in regulating the hepatic energy metabolism pathways(137, 141, 144).  

To further understand the protective effects of FGF1 against lipotoxicity in hepatocytes, 

Pal was used to mimic T2D-induced lipotoxicity to explore the protective mechanism of 

FGF1(145, 146).   

Pal-induced HepG2 cells successfully mimicked the phenotype of diabetes-induced 

oxidative stress and lipid toxicity. Both FGF1△HBS and FGF1WT protected Pal-induced 

HepG2 cells against hepatic lipotoxicity in an insulin dependent manner (Fig.6 and Fig.8), 

following with a significant increase in Nrf2 signaling and AMPK signaling (Fig. 7 and Fig. 

9). These results further confirmed the protection of FGF1 against NAFLD was associated 

with Nrf2- and AMPK-mediated signaling pathways. 

Accordingly, we detected the role of Nrf2 for FGF1 treatment in NAFLD. As expected, 

FGF1 could not reverse Pal-induced ROS accumulation after Nrf2 silencing in HepG2 cells 

after Nrf2 knockdown (Fig. 10). This result suggests that Nrf2 play a critical role in the anti-

oxidative stress action of FGF1 in hepatic cells. However, FGF1 administration still 

attenuated lipid accumulation and lipogenesis genes expression in Pal-induced HepG2 

cells with Nrf2 knockdown (Fig. 11). These results suggest that Nrf2 silencing was not 

required for FGF1 protection against Pal-induced lipid disorder.  
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CHAPTER III 

THE ROLE OF AMP-ACTIVATED PROTEIN KINASE α IN FIBROBLAST GROWTH 

FACTOR 1 PROTECTION AGAINST NON-ALCOHOLIC FATTY LIVER DISEASE 

 

INREODUCTION 

1. Lipid metabolism in liver 

Lipid metabolism is a process of lipid synthesis and degradation in cells. The liver is 

a central metabolic organ in the regulation of glucose and lipid metabolism. Lipid 

metabolism in hepatocytes can be summarized by three processes: (1) lipid absorption, 

including lipids and fatty acids uptake and fatty acid synthesis (de novo lipogenesis); (2) 

lipid storage, including triglyceride synthesis and lipid droplets formation; and (3) lipid 

catabolism, including lipolysis, β-oxidation, and the very low-density lipoproteins (VLDL) 

secretion(120, 121). Lipid metabolic disorders are characterized by a change in the 

concentration and/or composition of lipoproteins in the blood, such as low-density 

lipoprotein (LDL), cholesterol, VLDL, and TG(147).  

 

2. Lipid metabolic dysregulation in diabetes and NAFLD  

Lipid metabolic dysregulation is common in diabetic and NAFLD patients. Insulin 

deficiency, insulin resistance, obesity, and genetic factors are related the lipoprotein 

production and catabolism. T2D has an increased prevalence of lipid abnormalities. T2D 

patients usually show decreased HDL level and elevated VLD. LDL levels is usually not 

significantly different in T2D patients compared with nondiabetic individuals(148). The liver 

plays a particularly important role in lipid metabolism that involves in the lipoprotein

https://en.wikipedia.org/wiki/Lipid_Metabolism_Disorders
https://en.wikipedia.org/wiki/LDL-cholesterol
https://en.wikipedia.org/wiki/LDL-cholesterol
https://en.wikipedia.org/wiki/Very_low-density_lipoprotein
https://www.sciencedirect.com/topics/medicine-and-dentistry/high-density-lipoprotein
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synthesis, lipid transport and is the main site for fatty acid oxidation and ketone body 

formation. NAFLD is characterized by excessive fat accumulation in the liver, showed by 

the increased flux of free fatty acids (FFA), lipoprotein lipase (LPL) and TG 

accumulation(149).  

Generally, the mechanism contributing to the pathogenesis of NAFLD includes the 

extrahepatic mechanisms and intrahepatic mechanisms. The extrahepatic mechanism 

includes the adipose tissue that increases FFA transporting to the liver and many dietary 

macro- and micro-nutrients, such as saturated fatty acids, polyunsaturated fatty acids (n-

3PUFAs), and carbohydrate protein, participating in the increased de novo fatty acid 

synthesis. While some key enzymes, such as acetyl-CoA carboxylase (ACC), fatty acid 

synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1) and diacylglycerol acyltransferase-

2 (DGAT-2), and some key transcription factors, such as sterol regulatory element-binding 

protein 1 (SREBP-1), insulin induced gene-1 (Insig-1) and carbohydrate-responsive 

element-binding protein (ChREBP), play important roles in de novo lipogenesis as the 

intrahepatic mechanisms in NAFLD(66). The excessive fat depositions in the liver not only 

due to increased fatty acid synthesis, but also affected by the decreased mitochondrial β-

oxidation, decreased clearance of VLDL or these factors in  combination(150). Studies 

showed that hepatic fat from the de novo pathway is less than 5% under basal conditions, 

however, up to 30% of fat deposited from de novo lipogenesis in the liver under 

pathological conditions(66, 151). 

In addition, lipid metabolic disturbance in liver is also associated with the 

Inflammation, oxidative stress, fibrosis and ER stress(152), increasing the complexity of the 

molecular and pathological mechanism of liver. It is still difficult to understand the lipid 

metabolism in the development of NAFLD. The common management of lipid disorder in 

diabetes and NAFLD is directed at improving glycemic control, altering dietary composition, 
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and reducing calories intake(153). Hence, study on drug development for lipid metabolic 

regulation in liver is of great importance to the prevention and treatment of NAFLD. 

 

3. The role of AMP-activated protein kinase (AMPK) in diseases 

The AMP-activated protein kinase (AMPK) is a ubiquitously expressed 

serine/threonine protein kinase that is well-known as a central regulator of multiple 

metabolic pathways and may have therapeutic importance for treating obesity, insulin 

resistance, T2D, NAFLD, and cardiovascular disease. AMPK plays a critical role in 

increasing glucose uptake, fatty acid oxidation (FAO), mitochondrial biogenesis, and 

autophagy, and suppressing the synthesis of fatty acids, cholesterol, via regulating 

metabolic related proteins(154-156). AMPK is a heterotrimeric complex composed of catalytic 

α-subunit (α1, α2) and regulatory β- (β1, β2) and γ-subunits (γ1, γ2, γ3) with multiple 

isoforms for each subunit. These subunits are encoded by distinct genes and have unique 

tissue specific expression profiles(122, 157). Compelling evidences indicate that AMPK plays 

an essential role in the development of NAFLD. Liver specific overexpression of AMPK α1 

in T2D protected against the steatosis reflected by reduction of lipogenic gene expression 

and TG content(158). Overexpression of AMPK α1 in hepatocytes not only increased the 

fatty acid clearance via mitochondrial FAO as indicated by CPT-1 expression, but also 

decreased TG accumulation(159). Liver-specific knockout of AMPKα2 showed 

hyperglycemia and elevated hepatic glucose production compared to controls(160).  

Mechanistically, AMPK promotes the lipid metabolism in liver via regulating the important 

enzymes and transcription factors of lipid biosynthesis and FAO, such as FAS, ACC, 

SREBP-1 and SREBP-2(155, 161). AMPK also regulates some mediators for the control of 

total mitochondrial content, quality, and function, such as PPAR-γ1 coactivator (PGC-1α) 

and histone deacetylases (HDAC) and the unc-51-like autophagy activating kinase 

1(ULK1)(162). In addition to altering metabolic pathways, AMPK also triggers key proteins 
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in controlling inflammatory cell proliferation, ER stress and oxidative stress pathways, 

including NF-kB, mTOR, and Nrf2 activity(133, 163, 164). Therefore, AMPK would be a critical 

therapeutic target for NAFLD. 

The relationship between AMPK and Nrf2-mediated metabolic regulation has been 

investigated for many years.  Many recent studies found that Nrf2 and AMPK interacted 

to regulate each other under different pathological and physiological conditions. For 

example, Mo et al showed that berberine activated the AMPK and Nrf2 pathway against 

inflammation in both lipopolysaccharide-shocked macrophages and mice, in which AMPK 

worked at the upstream of Nrf2(165). However, Sids et al demonstrated that Nrf2 was 

independent of AMPK signaling pathways in human hepatocarcinoma cells treated with 

AMPK activator AICAR(117). In Yang’s study, alpha-lipoic acid improved high-fat diet-

induced hepatic steatosis by modulating Nrf2-mediated antioxidation and 

SIRT1/LKB1/AMPK pathway-mediated lipid metabolism(87). Thus, the interaction of Nrf2 

and AMPK has not been clearly clarified, especially after stimulation by FGF1.  

 In this study, our results showed that FGF1 prevented NAFLD along with 

upregulation of Nrf2- and AMPK-mediated signaling pathways. However, Nrf2 silencing 

only abolished FGF1 protection against Pal-induced hepatic oxidative stress. Thus, we 

hypothesized that AMPK-mediated signaling pathway would be critical for FGF1 protection 

against NAFLD in T2D. 

 

MATERIALS AND METHODS 

Primary mouse hepatocyte isolation and culture 

Primary mouse hepatocytes were isolated using a method described previously(166). 

Briefly, Hepatocytes were isolated from C57/BL6J mice by in situ digestion under aseptic 

conditions. The liver was perfused with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-

tetraacetic acid (EGTA) solution (10 mM HEPES, 5 mM glucose, 138 mM NaCl, 5.4 mM 
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KCl, 28.3 mM NaHCO3, 0.12 mM Na2HPO4, 0.56 mM NaH2PO4 and 0.5 mM EGTA , pH 

7.4) and collagenase solution (10 mM HEPES, 138 mM NaCl, 5.4 mM KCl, 28.3 mM 

NaHCO3, 0.12 mM Na2HPO4, 0.56 mM NaH2PO4, containing 0.0857 U/ml collagenase 

D (Roche Diagnostics, Indianapolis, IN) and 3.8 mM CaCl2, pH 7.4). The isolated 

hepatocytes were washed with HBSS (Gibco BRL, Life Technologies, Inc., NY) and then 

were cultured at a density of 20 × 104 cells/dish after the cell viability was assessed by the 

trypan blue exclusion test. Primary mouse hepatocyte was cultured in Waymouths 

medium supplemented with 5% (w/v) fetal bovine serum (FBS) (Gibco BRL, Life 

Technologies, Inc.), antibiotic-antimycotic (Gibco 100 units/mL of penicillin, 100μg/mL of 

streptomycin, 0.25μg/mL of Fungizone) and ITS supplement (VWR).  

After AMPKα1/2-siRNA transfection, primary mouse hepatocytes were induced by 

100 μM Pal with or without FGF1WT and FGF1△HBS treatment for 12 hours as described in 

HepG2 cells. Then cells were collected to observe the oxidative stress and lipid 

metabolism after FGF1WT and FGF1△HBS administration when AMPK silencing.  

 

AMPKα1/2-siRNA transfection 

Knockdown of AMPKα1/2 was performed using small interfering RNAs (siRNAs) 

targeting AMPKα1/2 (Santa Cruz Biotechnology, CA) according to the manufacturer’s 

protocol. The scramble siRNA sequences were used as control. HepG2 cells or primary 

hepatocytes were seeded at a density of 20X104 cells/well in 6-well plates were 

transfected with AMPKα1/2-siRNA using lipofectamine 2000 reagent (Invitrogen) at a final 

concentration of 100 nmol/L in Opti-MEM (GIBCO BRL) for 6 hours, respectively. Then, 

cells were cultured in normal medium for additional 16 hours to determine the knockdown 

efficiency. 
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Statistical analysis 

Statistical analyses were performed using the statistical software package, 

GraphPad Prism version 6, (GraphPad Software Inc., San Diego, CA, USA). Data are 

expressed as mean ± SEM. Statistical significance was evaluated using the unpaired two-

tailed Student t test or one-way analysis of variance. Differences were considered 

significant at a P value <0.05.    

 

RESULTS 

AMPK silencing abolished the protective effects of FGF1 against Pal-induced 

oxidative stress and lipid disorder in primary hepatocytes 

            To detect the role of AMPK in FGF1-mediated inhibiting effects on hepatic 

lipotoxicity, AMPK knockdown was performed using specific siRNA against AMPKα in 

mouse primary hepatocyte. Compared to control-siRNA, AMPKα-siRNA-mediated 

knockdown of AMPKα remarkably reduced AMPK expression (Fig. 12B,C) and 

phosphorylation (Fig. 12B,D), which was accompanied by downregulation of its 

downstream target genes ACC (Fig. 12B,F) and SREBP-1 (Fig. 12B,E) phosphorylation. 

Furthermore, knockdown AMPKα dramatically aggravated Pal-induced lipid 

accumulation, reflected by increased TG content compared with control-siRNA treatment 

(Fig. 12A), and completely abolished the preventive effects of both FGF1△HBS and 

FGF1WT against lipid accumulation (Fig. 12A) and lipogenic genes upregulation (Fig. 

12B,H-J), and FAO gene downregulation. More importantly, knockdown AMPKα also 

aggravated Pal-induced oxidative stress, reflected by MDA production compared with 

control-siRNA treatment (Fig. 13A), and completely abolished the preventive effects of 

both FGF1△HBS and FGF1WT against oxidative stress-induced by Pal in primary 

hepatocytes (Fig. 13A). This was accompanied by almost complete attenuation of Nrf2 

nuclear translocation (Fig. 13B,C) and its downstream genes expression (Fig. 13B,D-F) 
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under basal and both FGF1△HBS and FGF1WT stimulated conditions, but without 

significant effects on total Nrf2 (Fig. 13B,D) and CAT (Fig. 13B,G) expression. These 

results support the notion that AMPK plays a central role in FGF1 preventing from Pal-

induced hepatic lipid metabolic disorder and oxidative stress.  
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Fig. 12 AMPK silencing abolished the protective effects of FGF1 against Pal-

Induced lipotoxicity in primary mouse hepatocyte. (A) Triglyceride contents. (B) Protein 

expressions of AMPK signaling pathway (p-AMPK/AMPK, p-ACC and p-SREBP-1), 

PPARα and lipogenic genes (m/pro SREBP-1, FAS, SCD-1) in primary mouse hepatocyte. 

(C-J) The quantitative analysis of Western blot by densitometry. Quantitative data are 

expressed as mean ± SEM, n=3-5. #P <0.05 vs. Control-Control-SiRNA; *P < 0.05 vs. Pal-

Control-SiRNA; &P < 0.05 vs. FGF1WT-Control-SiRNA; $P < 0.05 vs. FGF1△HBS -Control-

SiRNA. 

 

 

Fig. 13 AMPK silencing abolished the protective effects of FGF1 against Pal-

Induced oxidative stress in primary mouse hepatocyte. (A) MDA contents in primary 
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hepatocyte. (B) Protein expressions of Nrf2-mediated anti-oxidative stress signaling 

pathway (n-Nrf2, t-Nrf2, HO-1, NQO-1 and CAT) in primary mouse hepatocyte. (C-G) The 

quantitative analysis of n-Nrf2, t-Nrf2, HO-1, NQO-1 and CAT Western blot results by 

densitometry. Quantitative data are expressed as mean ± SEM, n=3-5. #P <0.05 vs. 

Control-Control-SiRNA; *P < 0.05 vs. Pal-Control-SiRNA; &P < 0.05 vs. FGF1WT-Control-

SiRNA; $P < 0.05 vs. FGF1△HBS -Control-SiRNA. 

 

DISSISION 

AMPK is a central metabolic regulator of lipid and glucose metabolic homeostasis 

in many metabolic diseases. Activation of AMPK leading to the phosphorylation of key 

metabolic substrates and transcriptional regulators plays a critical role in fatty acids 

synthesis, glucose uptake, FAO and mitochondrial biogenesis. In addition, AMPK also 

involves in the regulation of the inflammation, oxidative stress and apoptosis through direct 

phosphorylation of multiple targets(122, 154, 167).   

The results in Chapter III indicated that knockdown of Nrf2 abolished the anti-

oxidative stress effects of FGF1 but did not affect the inhibition on lipid accumulation and 

upregulation on AMPK-signaling pathway of FGF1 in hepatic cells. In this study, we further 

demonstrated that knockdown of AMPKα abolished not only FGF1 protection against Pal-

induced oxidative stress and Nrf2-mediated antioxidative signaling pathway, but also 

FGF1 protection against Pal-induced lipid disorder and lipid metabolic signal dysregulation 

(Fig.12A and 13A).  

Collectively, these findings suggest that AMPK is required for FGF1 protection 

against Pal-induced lipid metabolic dysregulation and oxidative stress in hepatic cells.   
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CHAPTER IV 

THE THERAPTUTIC EFFECTS OF A NOVEL FIBROBLAST GROWTH FACTOR 1 

VARIANT ON NON-ALCOHOLIC FATTY LIVER DISEASE IN TYPE 2 DIABETES 

 

INTRODUCTION 

With the increasing incidence of obesity and T2D in every age group, the global 

prevalence of NAFLD varies from 20-30%(168). A report from the Mayo Clinic pointed out 

that people in their age of 40s and 50s show the highest incidence of either NAFLD or 

T2D, which can be mainly explained by the delayed diagnosis(168). In NAFLD, most people 

have no symptoms until they come to the medical attention.  The progression of NAFLD 

can be prevented in patients at the early stage with symptoms of enlarged liver, fatigue 

and pain in the abdomen. Without the timely intervention, inflammation and scarring of the 

liver can occur over time. The advanced symptoms that are not easy to be cured include 

the abdominal swelling, enlarged blood vessels and spleen, yellow skin and eyes(169). In 

T2D, the signs and symptoms often develop slowly. People can have T2D and not know 

it for years until an acute medical condition occurs because of the unawareness of the 

diabetic symptoms including the increased thirst and hunger, weight loss, fatigue and 

blurred vision(170-174). Patients may take attention to T2D management only when the 

complications appear. 

All aged diabetic patients have a high burden of comorbidities, and more susceptible 

to complications, as well as patients with NAFLD. T2D is associated with chronic 

complications throughout the body and with significantly accelerated rates of several 

microvascular complications such as nephropathy, retinopathy, and neuropathy, and 

https://www.mayoclinic.org/diseases-conditions/nonalcoholic-fatty-liver-disease/symptoms-causes/syc-20354567?utm_source=Google&utm_medium=abstract&utm_content=Non-alcoholic-fatty-liver-disease&utm_campaign=Knowledge-panel
https://www.omicsonline.org/open-access/the-challenges-of-microvascular-disease-in-the-era-of-endovascular-thrombectomy-2329-6895-1000219.php?aid=50485
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atherosclerosis, leading to the physical disability, cognitive impairment and malnutrition 

(175, 176). NAFLD progresses to NASH in about 20% of cases, of which 20–25% may 

progress on to hepatic fibrosis and cirrhosis(93). A small proportion of individuals develop 

advanced fibrosis, cirrhosis can lead to fluid buildup in the abdomen, veins swelling, 

drowsiness and worsen to hepatic encephalopathy, even end stage liver disease, 

hepatocellular carcinoma (HCC)(177). All these complications contribute to the excess 

morbidity and mortality in aged individuals with NAFLD and diabetes. 

Therefore, clinically, it is urgent and important to pay more attention to discover 

therapeutic drugs. To ensure greater clinical relevance, we thus choose the aged db/db 

model to determine the therapeutic effects of FGF1△HBS against NAFDL in T2D.    

 

MATERIALS AND METHODS 

Animal model  

Late-stage 9-month-old male db/db mice were administered with FGF1△HBS or PBS 

via intraperitoneal injection (0.5 mg/kg) every other day for 3 months. At the indicated time-

points, the blood glucose levels were determined by FreeStyle complete blood glucose 

monitor (Abbott Diabetes Care Inc., Alameda, CA). All mice were housed under a 12:12-

h light/dark cycle at controlled temperature. All experimental procedures were approved 

by the Institutional Animal Care and Use Committee of the University of Louisville. All the 

other experiments were performed following the same protocol as described in CHAPTER 

I. 

 

RESULTS 

Therapeutic Effects of FGF1△HBS on NAFLD in aged db/db mice 

         To explore the clinic translational potential, we further investigate whether 

FGF1△HBS is sufficient to reverse the exacerbated liver injury in late-stage db/db T2D 
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mice. We treated 9-month-old db/db mice with FGF1△HBS (0.5 mg/kg body weight) every 

other day for 3 months. Pharmacological administration of FGF1△HBS almost completely 

normalized the blood glucose levels (Fig. 14A) and significantly improved insulin 

sensitivity (Fig. 14B, C). FGF1△HBS treatment slightly reduced body weight (data not 

shown), but markedly reduced liver seizes and weight (Fig. 15A, B) and reversed liver 

steatosis (Fig. 15C) and lipid accumulation (Fig. 15D). Furthermore, FGF1△HBS treatment 

also prevented liver injury (Fig. 15E, F) and suppressed hepatic inflammation (Fig. 15G-

J) and oxidative stress (Fig. 16A).  

          To validate the universal mechanism of the efficacy of FGF1△HBS on NAFLD, the 

hepatic antioxidative and lipid metabolic markers were also examined. Likewise, 

FGF1△HBS treatment markedly increased Nrf2 nuclear translocation (Fig. 16B, C) and 

upregulated the expression of its downstream target genes (Fig. 16B, D-F). Furthermore, 

FGF1△HBS treatment significantly suppressed the activation of SREBP-1 (Fig. 17A, B) 

and the expression of its downstream target genes FAS, SCD-1 (Fig. 17C, D). In 

addition, FGF1△HBS treatment increased expression of CPT-1α, PPARα, and PGC-1α 

(Fig. 17A, E-G), which were accompanied by significant upregulation of AMPK (Fig. 17A, 

H) and ACC (Fig. 17A, I) and SREBP-1 (Fig. 17A, J). These results suggest that 

FGF1ΔHBS reverses NAFLD in late-stage T2D through the similar molecular pathways as 

seen in early-stage T2D.   
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Fig. 14 The effects of FGF1△HBS on blood glucose and insulin sensitivity in 9-month-

old db/db mice. (A) The blood glucose over the course of 3 months treatment of db/db 

mice with FGF1△HBS (0.5 mg/kg body weight, every other day). (B and C) The Blood 

glucose levels in IPGTT and integrated area under the curve (AUC) for changes in blood 

glucose levels.  Quantitative data are expressed as mean ± SEM, n=5-10. *P < 0.05 vs. 

db/db mice. 
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Fig.15 The therapeutic effects of FGF1△HBS on chronic NAFLD in 9-month old db/db 

mice. 9-month old db/db mice treated with FGF1△HBS (0.5 mg/kg, every other day) for 3 

months. (A and B) The liver size and weight. (C) Representative images of H&E-staining 

and Oil Red O staining of liver sections (magnification: X100). (D) Hepatic TG content in 

db/db mice.  (E and F) The serum ALT and AST. (G-J) Analysis for mRNA levels of hepatic 
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inflammatory marker (TNFα, PAI-1, ICAM-1 and VCAM-1).  Quantitative data are 

expressed as mean ± SEM, n=5-10. *P < 0.05 vs. db/db mice. 

 

 

Fig.16 FGF1△HBS reversed hepatic oxidative stress in 9-month old db/db mice. (A) 

The hepatic TG content in db/db mice.  (B) FGF1△HBS stimulated the Nrf2-mediated anti-

oxidative stress signaling genes in on chronic NAFLD in db/db mice. The protein 

expressions of n-Nrf2, CAT, HO-1 and NQO-1 were determined by Western blot. (C-F) The 

quantitative analysis of n-Nrf2, CAT, HO-1 and NQO-1 Western blot results by 

densitometry. Quantitative data are expressed as mean ± SEM, n=5-10. *P < 0.05 vs. 

db/db mice. 
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Fig.17 FGF1△HBS activated hepatic AMPK signaling pathway in 9-month old db/db 

mice.  (A) The expressions of AMPK signaling pathway related proteins (SREBP-1, FAS 

and SCD-1, CPT-1α, PGC-1α, PPARα, p-AMPK/AMPK, p-ACC and p-SREBP-1) were 

detected by Western blot. (B-J) The quantitative analysis of Western blot results by 

densitometry. Quantitative data are expressed as mean ± SEM, n=5-10. *P < 0.05 vs. 

db/db mice.  

 

DISSISION 

Consistent with the preventive effects of FGF1△HBS on early-stage db/db mice, here 

we clearly demonstrated that FGF1△HBS normalized blood glucose levels, improved insulin 

sensitivity and markedly prevented liver injury in these late-stage db/db mice, indicated by 

decreased hepatic TG levels, ALT and AST activity, and inflammatory marker expression 

(Fig. 14-15). These results validated the protection of FGF1△HBS against the late-stage 

NAFLD. Importantly, the mechanism studies showed that FGF1△HBS effectively activated 

AMPK-mediated Nrf2-antioxidative stress signaling pathways and lipid metabolic signaling 

pathways in those chronic liver diseases of aged db/db mice (Fig.16 and Fig. 17).    
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Combined with the preventive data found above, we demonstrate that FGF1△HBS 

could be promising candidate drug for prevention and therapeutic against NAFLD in T2D 

without the undesired mitogenic side effects of FGF1WT.   
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CHAPTER V 

OVERALL DISCUSSION AND CONCLUSIONS 

 

Several studies have indicated the potential metabolic function of FGF1 in diabetes 

and steatosis. However, the use of FGF1 in the treatment of metabolic syndrome is still 

limited due to its undefined mechanism and its potential risk of tumorigenesis. The goals 

of the study in this dissertation are to evaluate the preventive and therapeutic effects of a 

novel FGF1 non-mitogenic variant, FGF1ΔHBS, on NAFLD in T2D, and to explore the 

underlying mechanisms. The outcomes of these studies strongly suggest that FGF1ΔHBS 

can be a promising therapeutic agent for NAFLD therapy in T2D. Our results can be 

summarized as follows: 

● FGF1△HBS treatment prevented the liver injury and inhibited the hepatic oxidative 

stress via activation of Nrf2-mediated antioxidative signaling pathways.  

● FGF1△HBS treatment reduced hepatic lipid accumulation by inhibiting lipogenesis 

and increasing fatty acid oxidation mediated via AMPK signaling pathways.   

● Nrf2 activation played an important role for the anti-oxidative effect of FGF1, but 

was not required for the protective effects of FGF1 against palmitate-induced 

lipid metabolic disorder in HepG2 cells.  

● AMPK played a critical role in FGF1 protection against Pal-induced oxidative 

stress and lipid disorder possibly via activating Nrf2-mediated antioxidative 

pathway and inhibiting SREBP-1-mediated lipid metabolic pathway in primary 

hepatocytes.  
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● FGF1△HBS completely reversed the phenotype of NAFLD along with activation 

on Nrf2 and AMPK signaling pathways in late-stage T2D. 

 

Overall discussion 

As discussed above, our study demonstrated that FGF1△HBS is a promising 

therapeutic agent in the prevention/treatment of NAFLD in T2D.  However, there are 

several limitations and questions remain to be answered. Some special findings should 

be further annotated: 

 

Whether the effect of FGF1 on NAFLD depends on its glucose lowering capability?  

In this dissertation, a typical type 2 diabetes model, db/db mice are chosen to 

explore the functions and mechanisms of FGF1 in NAFLD. FGF1△HBS treatment not only 

reverse the hepatic injuries but also significantly lower the blood glucose to the normal 

levels in db/db mice. One of the significant questions is if the effect of FGF1 on NAFLD 

depends on its glucose lowering ability. There are several possible explanations:     

a) To exclude the influence of blood glucose in vivo, our study used palmitate- 

treated hepatic cell culture in vitro models, which could determine the direct effect of FGF1 

on hepatocyte. The results suggested that FGF1 protected against the palmitate-induced 

oxidative stress and lipid disorder in both HepG2 cells and primary hepatocytes.   

b) Our previous study demonstrated that FGF1 could ameliorate diabetic 

nephropathy in both T1D and T2D even without any effect on the blood glucose levels in 

T1D, suggesting that FGF1 protection against DN was independent of its blood glucose 

lowering capacity(26).  

c) As described in the OVERVIEW, several studies have showed that FGF1 

exhibited protective effect against other diabetic complications in T1D without lowering the 

blood glucose. For examples, FGF1 ameliorated left ventricle dysfunction and reduced the
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myocardial apoptosis in diabetic cardiomyopathy of STZ-induced T1D(52, 53). FGF1 

promoted wound healing in diabetic ulcer of T1D by enhancing the expression of TGF-β 

and PCNA and inhibiting oxidative stress(41).  

Based on these studies, we speculate that the effect of FGF1△HBS on NAFLD is 

related to, but independent of its glucose lowering capability. NAFLD models without 

hyperglycemia should be considered to determine the direct effects and mechanisms of 

FGF1△HBS in fatty liver diseases in future studies. 

 

Whether FGF1 directly regulates hepatic de novo lipogenesis and fatty acid β-

oxidation in the protection against NAFLD? 

Several studies have demonstrated that exogenous excessive palmitate induced 

hepatic lipotoxicity, which was characterized by ROS accumulation, mitochondrial 

dysfunction, damaged fatty acid oxidation, and increased triglyceride accumulation(178, 179). 

This dissertation utilized this model to mimic diabetes-induced lipotoxicity in liver in T2D. 

Our results showed that both FGF1WT and FGF1△HBS prevented Pal-induced oxidative 

stress via upregulating Nrf2 mediated antioxidative signaling pathway and prevented Pal-

induced lipid metabolic disorder via increasing fatty acid oxidation and inhibiting the 

lipogenic signaling pathways. 

Although this dissertation and other previous studies have shown Pal treatment 

could induce hepatic lipogenesis and inhibit fatty acid  β-oxidation(159, 180, 181), this Pal-

induced model is not a direct and specific in vitro model to define the mechanism of FGF1 

in lipid metabolism, especially in de novo lipogenesis. Hepatic de novo lipogenesis is the 

biosynthetic process of fatty acids from acetyl‐CoA subunits that are produced from the 

dietary glucose, high‐carbohydrate or fructose(182). Many key enzymes and transcription 

factors, such as ACC, FAS, SREBP-1, are strongly involved in the de novo lipogenesis by 

converting the acetyl‐CoA into malonyl-CoA, subsequently, to fatty acids. Therefore, 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lipotoxicity
https://www.sciencedirect.com/topics/medicine-and-dentistry/reactive-oxygen-species
https://www.sciencedirect.com/topics/medicine-and-dentistry/mitochondrion


66 
 

glucose is the main and direct lipogenic substrate that drives de novo lipogenesis(66) and 

nutritionally regulate the key enzymes and transcription factors(183, 184). To fully understand 

the mechanism of FGF1 in regulating lipid metabolism, the high glucose plus insulin cell 

culture models(155, 185) should be considered in future studies.  

 

Whether AMPK plays a critical role in FGF1 protects against NAFLD in vivo? 

AMPK is a well-known central regulator and therapeutic target for many metabolic 

diseases. In addition to activating metabolic processes, AMPK inhibits inflammation, ER 

and oxidative stress, and activates autophagy(167). The question becomes whether AMPK 

plays a critical role in FGF1 protection against NAFLD in vivo.  

a) The metabolic functions of FGF1 are newly discovered and its target organs 

and/or tissues have not been clearly defined. This dissertation firstly indicated that FGF1 

significantly activated the phosphorylation of hepatic AMPK and its downstream genes in 

vivo and in vitro. Reference to the well-studied endocrine growth factor FGF21, its energy 

metabolic functions are strongly associated with AMPK pathways(72, 186). 

b) The present study also indicated that FGF1 inhibited the oxidative stress in 

NAFLD via activating Nrf2-mediated antioxidative signaling pathway. Recent studies 

suggested that Nrf2 is not only an important anti-oxidative factor, but also a potential target 

to the metabolic syndrome(137, 138). Distinguishing the functions between AMPK and Nrf2 

is important to define the targets for FGF1. According to previous studies, Nrf2 and AMPK 

can interact to regulate each other at different pathological and physiological conditions(87, 

117, 165, 187). According to our in vitro study, knockdown of AMPK in hepatocyte abolished 

both Nrf2-mediated anti-oxidative signaling pathway and SREBP-1-mediated lipid 

metabolic pathway, suggesting that AMPK is an upstream factor of Nrf2 and SREBP-1 for 

FGF1 protection against Pal-induce hepatic lipotoxicity. To elucidate the critical role of 
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AMPK in FGF1 protection against NAFLD, liver-specific AMPK knockout model could be 

considered in future studies.  

 

Which FGF receptor mediates the function of FGF1△HBS in the activation of AMPK 

against NAFLD? 

           FGFs carry out their diverse functions by binding and activating specific FGF 

receptors (FGFRs)(12). In addition, AMPK as a central metabolic sensor can be regulated 

by many major upstream kinases, such as liver kinase B1 (LKB1), calmodulin-dependent 

protein kinase kinase 2 (CaMKK2) and TGF-β-activated kinase (TAK1)(188, 189).  The goal 

of present study was not to define the binding partners of FGF1△HBS. However, several 

explanations are possible based on previous studies: 

a) As introduced in the OVERVIEW, FGF1 is considered the universal ligand that 

actively bind to the four different FGFRs (FGFR1–FGFR4)(9, 10). FGFR1–FGFR4 are 

positively expressed in normal liver(190) and these receptors-mediated signaling pathways 

are essential for liver pathophysiology(191). In hepatocytes, FGFR4 is the most abundant 

FGFR that acts as a regulator of bile acid homeostasis and protects liver from fibrosis(192).  

Loss or overexpression of FGFR1, FGFR2 and FGFR3 in hepatocytes also strongly 

impairs the liver homeostasis and regeneration(191, 193) (194).  

b) Previous studies suggested that the endocrine FGF15/19 acts on the 

FGFR4/βKlotho complex showing the beneficial effects on liver metabolism. however, it 

also stimulated hepatocyte proliferation through an FGFR4-dependent mechanism(195). 

Meanwhile, FGFR1c isoform is important for the in vivo actions of endocrine FGF21. A 

previous study showed that the endocrine FGF21 activated the AMPK signaling pathway 

in the target tissues through FGFR1/β-klotho signaling directly(196).  

c) Recent study showed that the blood glucose-lowering effects of FGF1 were 

mediated through FGFR1, FGF1 failed to lower glucose levels in the FGFR1 knockout 
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mice(9). Consistent with this, a FGF1 analogue FGF1ΔNT (FGF1 L29–D155) similarly failed 

to affect blood glucose levels in FGFR1 knockout mice(9), further supporting the notion that 

FGFR1-mediated signaling is required for the glucose-lowering effects of parenteral 

FGF1(9).  

d) In our previous study, we found that compared to the FGF1WT, FGF1△HBS  

diminished its ability to induce heparan sulfate-assisted FGFR1 dimerization and 

activation, resulting in a diminished ability to induce FRS2 phosphorylation, the major 

substrate of FGFRs, and the downstream ERK activation, in both adipoctyes and 

hepatocytes(85).  

Taken together, we speculate that FGFR1 is the major receptor mediating the 

metabolic function of FGF1 in liver, as well as in adipose tissue, which needs to be verified 

in future studies.  

 

The optimal dose of FGF1△HBS 

The dose-response results in our previous study clearly showed that an acute 

injection of FGF1WT and FGF1△HBS at the dose of 0.5 mg/kg body weight significantly 

lowered blood glucose levels, and this effect lasted up to to 24 hours in db/db mice without 

further lowering effects by increasing the dose to 1 mg/kg body weight(85). Furthermore, 

treatment of db/db mice with FGF1WT and FGF1△HBS at a dose of 0.5 mg/kg every other 

day for 4 weeks resulted in the sustained glucose lowering and attenuating the hepatic 

steatosis(85). Hence, FGF1△HBS delivery at the dose of 0.5mg/kg every other day was 

applied in the present study. However, this dose might not be the optimal one for liver 

protection, although we observed that FGF1△HBS at the dose of 0.5 mg/kg exhibited an 

antisteatotic effect. To achieve the optimal effects and establish the fundamental dose 
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regime for future FGF1△HBS clinical use, the dose- and time-dependent effects of FGF1△HBS 

on the prevention and reversal of NAFLD need to be addressed in future studies.    

 

Innovations  

The innovations in this dissertation can be summarized as follows： 

● FGF1△HBS can effectively prevent and reverse NAFLD by inhibiting oxidative stress 

and regulating lipid metabolism in T2D. 

● AMPK may be a novel therapeutic target for FGF1△HBS prevention and reversal of 

NAFLD. 

● The novel non-mitogenic variant FGF1△HBS may be an effective and safe 

alternative of FGF1WT for the prevention and treatment of NAFLD and other diabetic 

complications.  

 

Limitations 

As above discussed, several limitations should be clarified in this dissertation. 

1) NAFLD model: to elucidate the direct functions and mechanisms of FGF1 in the 

fatty liver, non-diabetic NAFLD models are needed in the future study.  

2) Cell culture model: to understand the mechanism of FGF1 regulating lipid 

metabolism, the high glucose plus insulin-induced cell model should be considered. 

3) Hepatic AMPK inactive model: to dissect the critical role of AMPK in FGF1 

protection against NAFLD, liver specific AMPK knockout model should be used.  

4) Side effects: the safety for FGF1△HBS treatment of NAFLD should be evaluated 

systemically.  
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Future directions 

● Mechanistic study: In addition to regulating lipid metabolism in NAFLD of T2D, 

FGF1 is a potent insulin sensitizer that lowers the blood glucose and increases the insulin 

sensitivity in diabetes. The understanding of how FGF1 increases insulin sensitivity, as 

well as how FGF1 regulates glucose and lipid metabolism will be the key objects in our 

future studies.  

● Clinical translation: this dissertation demonstrates that the novel non-mitogenic 

variant FGF1△HBS is a promising candidate drug to replace FGF1WT to treat NAFLD in T2D 

without the risk of tumorigenesis. We will continually explore its potential for preventing 

other metabolic syndrome and their complications, such as obesity, and diabetic 

cardiovascular diseases in animals and even apply for a phase I clinical observation for 

the prevention of NAFLD for T2D patients.  

 

Conclusion 

In summary, our findings indicate that, in addition to its potent glucose-lowering and 

insulin-sensitizing effects, the novel non-mitogenic variant FGF1△HBS has not only 

preventive and but therapeutic effects on NAFLD in T2D via effectively inhibiting oxidative 

stress and improving lipid metabolism, which shows a great potential to replace the use 

of FGF1WT to treat NAFLD in diabetes. Importantly, our studies provide new insight into 

the mechanisms by which FGF1△HBS prevents hepatic oxidative stress and steatosis in 

T2D. AMPK, that activates Nrf2-mediated antioxidative pathway and inhibits SREBP-1-

mediated lipid metabolic pathway, is a critical target for FGF1 protection against NAFLD 

in T2D (Fig. 18). From our perspective, a full understanding of FGF1 function in metabolic 

disorders requires further investigation of the multiple aspects of roles of AMPK or other 

molecular targets in these pathophysiological processes. This project provides 
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fundamental evidence for FGF1 as a novel therapeutic approach to prevention of NAFLD 

via activating hepatic AMPK.  

 

 

Fig. 18 A mechanistic illustration of FGF1 preventing diabetes-induced hepatic 

oxidative stress and lipid disorder via activating AMPK signaling pathways. FGF1 activates 

AMPK-mediated lipid metabolism and anti-oxidative stress signaling via inhibiting the lipid 

accumulation and upregulating lipid oxidation, as well as Nrf2-mediated anti-oxidative 

signaling pathway, thus prevents diabetes-induced hepatic lipid disorder and oxidative 

stress, resulting in prevention and therapeutic against NAFLD in T2D. 
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FGF1: Fibroblast Growth Factor 1 

T2D: Type 2 Diabetes 

NAFLD: Nonalcoholic Fatty Liver Disease 

Nrf2: Nuclear Factor Erythroid 2-Related Factor 2 

ROS: Reactive Oxygen Species 

Pal: Palmitate 

DHE: Dihydroethidium 

MDA: Malondialdehyde 

HO-1: Heme Oxygenase 1 (HO1) 
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AMPK: AMP-activated protein kinase 
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