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ABSTRCT 
 

ASSESSING THE ROLE OF ARSENITE IN DISRUPTING THE EGFR SIGNALING 
AXIS 

 
Christine Kim 

 
August 16, 2018 

 
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase 

localized on the cell surface. Overexpression of EGFR has been used as biomarkers for 

many different types of cancers, including lung cancer. There is a strong association 

between arsenic and lung cancer development, although the mechanism is unclear. We 

hypothesize that chronic exposure of “a physiologically relevant” level of arsenite 

disrupts the EGFR endocytic trafficking. The goal of this project is to identify 

molecular mechanisms and roles of chronic arsenite-induced EGFR overexpression in 

lung cancer development. A non-malignant human bronchial epithelial cell line, Beas-2B 

cells were exposed to 100 nM sodium arsenite for 24 weeks. The chronic arsenite-

treated cells had increased EGFR protein expression levels and activity, increased 

transcription levels of TGFα, and altered the distribution of the EGFR. In conclusion, the 

impact of chronic arsenite exposure on the EGFR signaling axis can explain arsenite-

induced overexpression of the EGFR.
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CHAPTER 1 

INTRODUCTION 

 
Arsenic 

Environmental contamination of heavy metals is a global health hazard. Among 

heavy metals, arsenic is ranked number one on the Agency for Toxic Substances and 

Disease Registry (ATSDR) Substance Priority List (ATSDR, 2017), and in 1973, arsenic 

was classified as group I “carcinogenic to humans” by the International Agency for 

Research on Cancer (IARC) based on epidemiological carcinogenicity evidence in 

human and in animal models [1-3]. Arsenic is ubiquitous in the environment, and it has 

been used by of human civilization since ancient times, both for constructive and 

destructive purposes. Arsenic is a powerful poison, owing to its lack of color, taste and 

odor. Moreover, the symptoms from arsenic poisoning are very similar to the symptoms 

of food poisoning, thus rendering it nearly untraceable without sophisticated analytical 

procedures. 

i. Arsenic Uses in Medical Applications 

Arsenic is a double-edged sword, as it has been used for medical applications 

(Fig. 1). In the 18th century, Thomas Fowler, an English physician, produced Fowler’s 

Solution, a potassium bicarbonate-based arsenic solution, which was widely used to 

treat many conditions such as asthma, convulsions [4] and psoriasis [5]. Also known as 

a cancer of the blood cells, leukemia is associated with abnormally high number of white 

blood cells. Arsenic was also used to treat leukemia; with the Fowler’s Solution, the 

number of white blood cells declined dramatically in leukemia patients over 10-weeks
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Figure 1. Arsenic is a double-edged sword. Arsenic is now a well-established 

carcinogen and is prominently associated with skin, lung, and bladder cancers.  Arsenic 

is also used in medical applications, especially as a treatment for leukemia. Despite its 

effectiveness, over time, carcinogenicity was observed in patients who had received 

arsenic treatment. Thus, its usage declined, but due to its potency in medical 

applications, it is under investigation for the treatment for other diseases.  

 

 

 

 

 

 

 

Arsenic: A Double-Edged Sword 
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treatment period [6]. Discontinuation of the therapy, however, led to clinical relapse 

within few weeks. Because of its anti-leukemic ability, arsenic was approved by Food 

and Drug Administration (FDA) in 2001 for the treatment of acute promylelocytic 

leukemia (APL) [7], and is under investigation for the treatment of other cancer types [8-

10].  

Arsenic hinders repair processes of UV-induced photoadducts [11-14], and its 

role in repressing DNA repair processes also contributes to chemotherapeutic effect. 

Wang et al. showed combination treatment of arsenic with cisplatin is more effective in 

treating hepatocellular carcinoma than cisplatin treatment alone [15]. Further, Neher et 

al. observed cisplatin treatment alone induces xeroderma pigmentosum group C (XPC), 

which is an important protein in the global genomic nucleotide excision repair pathway 

[16], suggesting cisplatin-induced XPC expression is a part of the resistance mechanism 

in cisplatin-resistant cells. Interestingly, co-treatment of arsenic with cisplatin suppressed 

cisplatin-induced XPC expression by sensitizing wild-type p53, inhibiting the repair 

pathway [17]. This study highlights the enhanced chemotherapeutic effect of cisplatin 

when it is given with arsenic, and suggests a potential role of arsenic in enhancing 

sensitivity towards chemotherapeutic agents. Overall, such characteristics of arsenic 

support its contribution not only to carcinogenesis, but also to chemotherapy. 

Health Effects of Acute and Chronic Arsenic Exposure 

 Arsenic toxicity is highly dependent on its dose and duration of exposure time, as 

its acute toxicities are different from chronic toxicities. Usually acute toxicity results from 

accidental ingestion of high levels of arsenic. Ingestion of large amounts of arsenic will 

require treatment, such as decontamination, administration of intravenous fluids, and 

chelation therapy. The symptoms, including diarrhea, vomiting, dehydration, and 

hypotension, are commonly observed in workers who ingest high levels of arsenic in 

their workplaces from dust and fumes. In severe cases, the symptoms can lead to death, 
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primarily due to dehydration and shock [18]. To determine the acute exposure to arsenic, 

several tests can be performed, including blood and urine tests. Blood test, however, is 

accurate only for 2-4 hours after initial exposure due to rapid clearance from the blood 

[19]. More accurate measurement would be determined by performing urine test. 

Twenty-four hour urine arsenic levels greater than 50 µg/L are considered acute arsenic 

toxicity [20].  

Chronic toxicity is also commonly seen in workers who are exposed to low levels 

of arsenic over a long period of time. The skin, lungs, and liver are the main target sites, 

as arsenite, especially, readily interacts with thiol or sulfhydryl groups in tissue proteins 

of the organs [21]. The reaction between arsenic and thiol groups can hinder critical 

biochemical events that lead to major toxicities, and symptoms include skin lesions, 

pulmonary disease, hypertension, cardiovascular disease, diabetes, neurological 

disorders, cancer, and death [21-23]. Because epithelial cells have high content of 

cysteine residues, arsenic tends to accumulate at those locations due to its reactivity 

with thiol groups of cysteine residues [24, 25]. Thus, for chronic arsenic exposure, 

usually hair and nail analysis are useful to measure the time of exposure. The 

concentration of arsenic in hair in individuals who have no known arsenic exposure 

ranges from 0.02 to 0.2 mg/kg [26-32]. In areas with high concentrations (>50 µg/L) of 

arsenic in drinking water, the arsenic hair level ranges from 3 to 10 mg/kg [33]. Chelation 

therapy can be used to mitigate chronic arsenic toxicity, but chronic arsenic exposure 

can cause many irreversible changes in organs and tissues. Unfortunately, there is no 

effective treatment, which increases mortality rate [34, 35]. It is difficult to deduce 

whether acute and chronic toxicities result from two distinct mechanisms, because 1) 

different biochemical mechanisms may occur in different tissues and organs, and/or, 2) 

different duration time at the same organ may result in different biochemical 

mechanisms. Therefore, depending on dose and duration of exposure, arsenic can 
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target many different types of tissues and organs, causing adverse health effects [36]. 

The acute and chronic arsenic toxicological effects on human health are summarized in 

Table 1. 

Arsenic in Drinking Water 

As mentioned above, due to its toxicity and the frequency of human exposure, 

arsenic is ranked number one on the ATSDR Substance Priority List, and its 

environmental contamination is a global issue. Although the Environmental Protection 

Agency (EPA) has set the standard for arsenic in municipal drinking water of 10 ppb 

(parts per billion), which is approximately 133 nM, we are still exposed to low levels of 

arsenic on a daily basis. Exposure to arsenic is associated with an increased risk for a 

variety of health problems, such as skin and nerve damage, and cancer. More than 200 

million people worldwide are chronically exposed to drinking water that is contaminated 

with arsenic that exceed 10 µg/L, the limit of arsenic contaminant level in drinking water 

[37], and suffer from different types of diseases from drinking arsenic-contaminated 

water. The major countries that suffer from arsenic contamination are Taiwan, 

Bangladesh, India, and Chile, where the arsenic concentrations in drinking water range 

from 40 µg/L to 2 mg/L [38, 39], which corresponds to 532 nM and 27 µM, respectively. 

In the United States, the maximum arsenic contaminant level in drinking water is 10 ppb. 

However, approximately 15% of the U.S. population rely on private wells for their water 

supply that were found to have arsenic levels greater than 10 ppb [40-43]. Ingesting 

arsenic in naturally contaminated food and water is the most common route of arsenic 

exposure. Unfortunately, it is difficult to obtain an accurate measurement of the 

absorbed dose of arsenic in specific tissues, mainly due to variation among individuals 

[44], including both endogenous and exogenous factors, such as gender and 

occupational exposures, respectively. In 2000, Pi et al. demonstrated the average blood 

arsenic level in people who were exposed to high levels of arsenic in their drinking water 
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Table 1. Acute and chronic arsenic toxicological effects on human health. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acute Arsenic Exposure (<24 hours) Chronic Arsenic Exposure (>3 
months) 

Vomiting, diarrhea, dehydration, 
hypotension, abdominal pain, renal 
failure 

Cancer in many organs, skin pigment 
changes, cardiovascular disease, 
respiratory disease, diabetes, 
hypertension, skin lesions, neurological 
disorders 
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approximately for 18 years to be about 100 nM [45], which is the concentration that we 

used in this thesis and from this point forward referred to as “a physiologically relevant” 

level of arsenic. The lethal human adult dose for ingested arsenic is about 600 µg/kg/day 

[19], which is about 60 times higher than the standard set by the EPA.  

Arsenic Absorption, Distribution, Metabolism, and Excretion (ADME) 

Ingestion is the main route of arsenic exposure, and arsenic is readily absorbed 

from the gastrointestinal-tract (GI tract). The liver is the main site of arsenic metabolism, 

and historically, methylation steps have been characterized as a critical arsenic 

metabolism process. This arsenic methylation process was initially studied by Frederick 

Challenger and his colleagues in the 19th century [46, 47]. In the liver, arsenic 

metabolites including, monomethylarsonous acid (MMAIII), monomethylarsonic acid  

(MMAV), dimethylarsinic acid (DMAIII), and dimethylarsenic acid (DMAV) are produced 

(Fig. 2). When arsenate (pentavalent arsenic) enters the cells, it gets rapidly reduced to 

arsenite (trivalent arsenic) [48, 49]. Arsenite, then, gets methylated by arsenic (III) 

methyltransferase (AS3MT) as it attaches a methyl group. AS3MT uses S-

adenosylmethione (SAM) as the methyl donor, to generate the metabolites [50]. The 

average relative distribution of arsenic metabolites in the urine varies among population 

groups, which suggests genetic polymorphism of human methyltransferases [51-53].  

Because the methylation process is important in elimination of arsenic from the systemic 

circulation, it is easy to assume that methylation is just a detoxification process of 

arsenic, as it enhances excretion of arsenic from the systemic circulation. However, all 

arsenic metabolites are toxic to different degrees. For example, DMAV, MMAIII and 

DMAIII are observed to be more cytotoxic and genotoxic than arsenite [54-57]. Thus, 

arsenical metabolites are not just the by-products of inorganic arsenic metabolism; they, 

too, exert toxic effects.  

Alternative schemes for arsenic metabolism were proposed. First, 
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Figure 2. The metabolism pathway of inorganic arsenic. The metabolism pathway of 

arsenate undergoing reduction and methylation to produce metabolites in pentavalent 

and trivalent forms. The products of inorganic arsenic metabolism include MMAIII, MMAV, 

DMAIII and DMAV. Unlike humans, rats can undergo another round of methylation from 

DMAIII to trimethylarsine oxide (TMAO or TMAV). 
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Hayakawa et al. focused on the toxicological effects of the metabolites produced by the 

conventional metabolic pathway of arsenic, and the abundance of DMA from inorganic 

arsenic than from MMA [58]. The group proposed the reduced form of glutathione (GSH) 

is critical, and As-GSH complexes are directly involved in inorganic arsenic methylation 

and important substrates for human arsenic methyltrasnferases [58]. Second, Rehman 

et al. proposed a reductive methylation pathway [59]. The group proposed the 

methylation reaction occurs simultaneously, instead of stepwise oxidative methylation, 

by detecting trivalent form of inorganic arsenic bound to both soluble and non-soluble 

proteins [59]. Nonetheless, both the conventional and the alternative pathways support 

the liver serves as the major site of arsenic methylation. 

Though many toxicological effects of arsenic are studied using rodent models, 

the ADME of arsenic is significantly different between rodents and humans. Unlike 

humans (Fig. 2), rats can metabolize further to TMAV [60]. Thus, the metabolite ratios 

are different between the two species, indicating differences in metabolism. Not only 

species, but also strain differences in rodents also alter sensitivity to arsenic. Thus, to 

design experimental model to study human toxicological effects of arsenic using rodents 

requires many considerations including, routes of exposure, dose, and strains, to make 

the study applicable as possible to human exposure. Nonetheless, rodent models are 

great tools to study carcinogenicity of arsenic, because the target sites of arsenic 

carcinogenic effects in rodents are strongly concordant with most of the human targets 

of arsenic [61]. 

Arsenic and Lung Cancer 

i. Arsenic in Drinking Water and Lung Cancer Development 

A common type of cancer in the U.S. that is induced by chronic exposure of 

arsenic is lung cancer [62-64]. The two major forms of lung cancer are non-small cell 

lung carcinoma (NSCLC), and small cell lung carcinoma (SCLC). NSCLC accounts for 



10		

more than 80% of all lung cancer. NSCLC can be divided into three major histological 

subtypes: squamous-cell carcinoma, adenocarcinoma, and large-cell lung cancer. 

Adenocarcinoma is the most common type of lung cancer in patients who have never 

smoked. Squamous-cell carcinoma is also frequently observed in non-smokers, and is 

highly associated with chronic exposure to arsenic [65, 66]. Previous studies reveal a 

direct correlation between arsenic in drinking water and cancer development [39, 63, 65-

80]. To investigate a direct environmental factor that is associated with lung cancer 

development in individuals who have never smoked, Putila and Guo identified a positive 

correlation between arsenic levels and lung cancer incidence [63]. This study 

underscored the association between arsenic and lung cancer, independent of smoking 

and socioeconomic status in the United States [63]. Particularly, people who reside in 

the Appalachian portion of Kentucky have a higher incidence of lung cancer due to coal 

mining in Appalachia [81], as arsenic is naturally found in rocks and coal. This direct 

relationship between arsenic and lung cancer was also observed in countries that have 

high levels of arsenic in drinking water that can range up to 300 µg/L, which 

approximately corresponds to 4 µM, and these countries had some of the highest 

incidences of lung cancer in the world [74, 79, 82-84]. In Bangladesh, 1 in 16 cancer 

deaths are attributable to arsenic exposure in drinking water [85].  

ii. Early Life Exposure to Arsenic and Lung Cancer 

Not only post-natal arsenic exposure, but also pre-natal arsenic exposure can 

lead to lung cancer as well. As pre-natal stage is a critical period of development, young 

individuals in Chile, who had in utero-only and/or early-life arsenic exposure 

concentrations nearly up to 1,000 µg/L, developed lung cancer [86]. Consistently, when 

pregnant mice received 85 ppm arsenic-contaminated water only during pregnancy 

(gestation days 8 to 18), the offspring had lung tumor formation in adulthood [87]. These 

studies highlight the lethality of pre-natal exposure to arsenic, as the placenta cannot 
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serve as a barrier to arsenic. A study compared the cancer progression in mice with 

whole-life 24 ppm arsenic exposure (exposure after birth and termination months before 

a full life span [88]) and in utero-only 85 ppm arsenic exposure (gestation days 8 to 18), 

and observed development of lung adenocarcinoma and hepatocellular carcinoma in 

both groups of mice with whole-life and in utero-only exposure [89]. However, there were 

higher incidences of cancer development in offspring that had whole-life arsenic 

exposure. This result suggests whole-life arsenic exposure, or post-natal arsenic 

exposure, can aggravate the tumor progression [90-92]. 

iii. In vitro and In vivo Studies of Arsenic and the Effects on Lung 

 Both in vitro and in vivo models are used to measure toxicological effects on lung 

and to understand arsenic-induced lung cancer development. The majority of in vitro 

studies use non-malignant cell lines with chronic arsenic exposure, and the reported 

toxicological effects include increased cell proliferation, colony formation, cell 

transformation, and ROS induction [93-96]. Furthermore, lung adenocarcinoma 

development is predominantly observed in in vivo model in response to chronic arsenic 

exposure [87, 89, 91, 97]. The in vitro and in vivo studies of arsenic and the effects on 

lung are summarized in Table 2. 

iv. Proposed Mechanisms of Arsenic-induced Carcinogenesis 

Proposed mechanisms of arsenic-induced carcinogenesis include oxidative 

stress [98-104], epigenetic changes including histone modification, miRNA expression, 

and DNA methylation [105-116], aneuploidy [117], and activation of oncogenic pathways 

[118-136], such as the epidermal growth factor receptor (EGFR). The EGFR is a well- 

established biomarker of cancer [137-140], and studies have found the EGFR is 

overexpressed in a variety of tumors and cancer cells, which correlates with poor patient 

prognosis [141-156], including NSCLC [157-159]. Both previous studies and our 

preliminary data have shown acute arsenic exposure induces overexpression of EGFR  
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Table 2. In vitro and In vivo studies of arsenic and the effects on lung 

*= acute arsenic exposure; §= Effect on EGFR expression 

 

 

 

Type of 
Study 

Target 
Organ 

Cell type 
or Animal 

Strain 

Arsenic 
Exposure 

Pathological 
Phenotype 

References 

In vitro Lung Beas-2B 10 µM for 24 
hours 

Overexpression of 
EGFR 

[160]§* 

Beas-2B 0.25, 1, and 5 
µM for 26 
weeks 

Increased cell 
proliferation, anchorage-
independent growth, 
ROS levels, and colony 
formation 

[93] 

Beas-2B 5 µM for 6 
hours, 0.25 
µM for 24 
weeks 

Increased ROS levels, 
cell transformation 

[94] 

Beas-2B 0.125, 0.25, 
and 0.5 µM 
for 6 months 

Increased cell 
transformation, ROS 
levels, activation of 
STAT3,  

[95] 

16-HBE 2.5 µM for 13 
weeks 

Increased cell 
transformation, 
percentage of cells in 
G2/M and S phases, 
colony formation, 
chromosome aberration 

[96] 

HELF 1 µM for 15 
weeks 

Activation of Erk, NF-κB, 
increased cell 
transformation 

[161] 

HBE 1 µM for 3 
hours 

Activation of STAT3 [162]* 

In vivo C3H, CD1 Gestation day 
8 to 18 (42.5, 
85 ppm), 
Gestation day 
8 to 18 (85 
ppm). 

Lung adenoma, 
carcinoma incidence  

[89, 91] 

CD1 Whole-life 
exposure 

Lung adenocarcinoma, 
bronchiolo-alveolar 
tumors formation 

[87, 91, 97] 
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in human bronchial epithelial cells [160] (Fig. 3). Despite a direct association between 

supraphysiological levels of arsenic and lung cancer, how chronic exposure to “a 

physiologically relevant” level of arsenic affect EGFR expression and signaling are not 

known. 

EGFR Biology 

i. Structure and Activation of EGFR 

EGFR is a receptor tyrosine kinase (RTK) localized on the cell surface (Fig. 4). 

As one of the ErbB family receptors (EGFR, ErbB2, ErbB3, and ErbB4), EGFR is 

activated by specific ligands, and there are 7 endogenous EGFR ligands (epidermal 

growth factor (EGF), transforming growth factor-α (TGFα), HB-EGF, amphiregulin 

(AREG), betacellulin (BTC), epigen (EPGN), epiregulin (EREG)). Of these ligands, HB-

EGF and BTC are known to have high affinity for the receptor and have relatively high 

downstream effects [163-165]. The EGFR and the other ErbB family members can be 

divided into three main domains: extracellular domain, transmembrane domain, and 

intracellular domain, which consists of kinase domain and tyrosine residues on the C 

terminus that serve as docking sites for many downstream proteins. Ligand binding to 

the extracellular domain of the EGFR leads to a conformational change that allows 

receptor dimerization and activation of the intrinsic kinase activity. Once activated, the 

kinase from one receptor trans-phosphorylates tyrosine residues on the intracellular 

carboxy-terminus of its receptor pair (Fig. 4). These newly formed phosphotyrosines 

then serve as docking sites for downstream signaling proteins (effectors) that mediate 

cell proliferation, survival, tumorigenesis, and differentiation.  

ii. EGFR Function in Epithelial Development 

The EGFR is a critical component in development. The EGFR expression was 

observed in embryogenesis, and its ligands, specifically EGF and TGFα, were also 

expressed from 4- to 8-cell stage of embryogenesis [166-171]. The co-localization of the 
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Figure 3. Acute arsenite induces overexpression of EGFR. Immunblot of EGFR and 

phosphotyrosine 1068 (pY1068) in Beas-2B cells treated with arsenite at the indicated 

concentrations for 24 hours. 10 ng/mL of EGF treatment in Beas-2B cells was used as a 

positive control. EGF was stimulated after 2 hours of serum-starvation, and it was 

stimulated for 7 minutes. The samples were resolved on 7.5% SDS-PAGE.  
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Figure 4. EGFR structure. When the receptor is not occupied by a ligand, the cysteine-

rich regions of the extracellular domain of the receptor interact with each other and 

maintain a “closed” conformation. When a ligand binds to the ligand binding domains of 

the extracellular domain, the EGFR undergoes a conformational change, exposing 

cysteine-rich regions. These regions, then, interact with other exposed cysteine-rich 

regions of another ErbB family receptor. This allows receptor dimerization and activation 

of the intrinsic kinase activity. Once activated, the intracellular kinase from one receptor 

trans-phosphorylates tyrosine residues on its receptor pair. These newly formed 

phosphotyrosines then serve as docking sites for downstream signaling proteins that 

mediate cell proliferation, survival, tumorigenesis, and differentiation. Red=ligand; 

green=cysteine-rich regions; blue=ligand-binding domains; purple=inactive kinase 

domains; yellow=active kinase domains.   
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ligands with the EGFR throughout the critical stages of embryogenesis underscores the 

requirement of full activation of EGFR for proper development. Therefore, EGFR null 

and/or EGFR mutations are deleterious. Earlier studies have found EGFR null mice were 

either embryonically lethal or died shortly after birth [172]. The mice that had EGFR 

mutation manifested changes in hair and skin, which support the roles of EGFR in 

epithelial development [173, 174].  

iii. The Endocytic Trafficking Pathway of EGFR 

When a ligand binds to the EGFR, the activated EGFR gets internalized via 

clathrin-coated pits into the cell. Once the clathrin is shed, the vesicle then fuses with the 

early endosomes [175]. From the early endosomes, the receptors can have two different 

fates; the receptors can move back to the plasma membrane from the early endosomes 

(recycling), or the receptors can be degraded via lysosomes. For receptors to degrade, 

the receptors-containing early endosomes increase acidity to “mature” into the late 

endosomes [176]. The late endosomes then fuse with lysosomes to degrade the 

receptors (Fig. 5). The degradation of EGFR is tightly regulated to control the 

downstream signaling events, such as proliferation. Thus, improper regulation of 

degradation of EGFR can lead to overstimulation of proliferative signaling and contribute 

to cancer development. When the receptors are activated, the tyrosine residues of the 

kinase domain of the receptors get phosphorylated and get internalized into the cell. This 

receptor activation triggers c-Cbl, which is an E3 ubiquitin ligase, to be recruited and 

binds to a specific phosphorylated tyrosine residue (pY1045) of the kinase domain of the 

receptor [177]. This binding causes ubiquitination of the receptors and the receptors get 

marked for degradation via lysosomes [178, 179]. As mentioned earlier, the other fate of 

the internalized receptors is to recycle back to the plasma membrane. Previous studies 

have found even without any ligand stimulation, about 10% of the EGFR constitutively 

internalize and recycle back to the plasma membrane [180], predominantly by the basal 
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Figure 5. The endocytic trafficking pathway of EGFR. When a ligand binds to the 

receptor, the receptors become activated. The activated tyrosine kinase domains then 

induce trans-phosphorylation of the tyrosine residues on the carboxy-terminus of its 

receptor pair. This phosphorylation triggers c-Cbl to be recruited to the activated 

receptors and ubiquitinates the receptors. The activated receptors get internalized via 

clathrin-coated pits into the cell. Once the clathrin is shed, the vesicle then fuses with the 

early endosomes. From the early endosomes, the receptors can have two different fates; 

the receptors can move back to the plasma membrane from the early endosomes 

(recycling), or the receptors can be degraded via lysosome.  
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expression of TGFα, an EGFR ligand that is involved in the recycling of the receptors 

[181]. EGF, on the other hand, is a well-known EGFR ligand, and EGF-stimulated EGFR 

undergo degradation. The different effects between TGFα and EGF ligands are mainly 

due to their sensitivity to the acidic environment [182]. TGFα is pH sensitive, and it is 

known to dissociate from the receptors at pH of about 6.8, whereas EGF get dissociated 

from the receptors at pH of about 5.8 [183-185]. Thus, TGFα gets dissociated from the 

early endosome compartment (pH of about 6.8), which allows the EGFR to recycle back 

to the plasma membrane, whereas EGF:EGFR complex endure the acidic environment 

until they get degraded [185]. The ErbB2 expression levels also affect the recycling 

pathway of the receptors. Previous studies have observed decrease in EGF-stimulated 

EGFR degradation in cells that overexpress ErbB2 [186, 187]. Further studies supported 

these observations by demonstrating ErbB2 overexpression preventing clathrin-

mediated endocytosis of EGFR [186, 188]. However, a clear mechanism for ErbB2-

induced impairment of EGFR endocytosis remains elusive.  

EGFR and Cancer 

There are four main events that can perturb the EGFR regulatory mechanisms, 

which all contribute to cancer development: 1) overexpression of EGFR,  

2) overproduction of its ligands, 3) improper receptor trafficking, and 4) the EGFR kinase 

domain mutations. 

i. Overexpression of EGFR 

The overexpression of EGFR (as compared to adjacent non-cancerous tissue) is 

seen in many cancers, including colorectal cancer, pancreatic cancer, NSCLC [159, 189-

195], and gliomas [196-201], and is associated with a poor prognosis. Under 

pathological conditions, such as cancer, the normal regulatory mechanisms of the 

signaling pathways are perturbed, resulting in hyperactivation of the signaling pathways. 

The overexpression of EGFR and its association with a poor prognosis can be explained 
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by increased sites for the ligands to bind to the receptors, leading to enhanced 

downstream signaling events, such as proliferation.  

ii. Overproduction of the EGFR Ligands 

An increase in synthesis of ligands above the basal levels also triggers 

enhancement of the EGFR-induced activation of proliferative pathways. High levels of 

EGFR ligands, including EGF, TGFα, AREG, and BTC, were observed in cancers [202, 

203]. The frequency of overexpression in protein levels of the EGFR and TGFα, has 

been observed in NSCLC patients, and predicts a poor outcome [190]. All ligands 

function similarly to EGF; they bind to the ligand binding domain of the receptors, and 

induce a conformational change in the receptors that leads to dimerization of the 

receptors and increased tyrosine kinase activity. However, their tissue distribution, 

expression regulation, and binding affinity and preferences on the receptors differ from 

one another, which all can alter the EGFR signaling by changing the endocytic trafficking 

itinerary [204-208].  

iii. Improper Receptor Trafficking  

 Disruption of proper EGFR trafficking is known to contribute to cancer  

development [209-216] mainly due to poor downregulation of the receptors and 

sustained downstream proliferative signaling. Without any ligand stimulation, the 

unstimulated receptors predominantly localize on the surface of the cells. However, 

when the cells are stimulated with ligand, such as EGF, the internalized receptor co-

localizes with the early endosomes within 10 minutes post-stimulation [217]. Over time, 

the EGF-stimulated cells will have reduced staining of the EGFR in the early endosome 

compartment, due to its lysosomal degradation. However, when the EGFR endocytic 

trafficking pathway is perturbed, specifically between the early and the late endosomes, 

the EGFR will remain in the early endosome compartment and still active, prolonging the 

signaling as the EGFR accumulate in the early endosome compartment [218].  
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Consistently, a previous study observed an increase in the EGFR protein expression 

level in response to prevention of the EGFR degradation [213], which suggests improper 

EGFR endocytic trafficking can contribute to both overexpression and hyperactivation of 

EGFR, leading to carcinogenesis. Thus, abnormalities in the endocytic trafficking of 

signaling receptors are now well-established hallmarks of malignant cells [219, 220].  

iv. Kinase Domain Mutations. 

 Not only overexpression of the wild type EGFR, but also expression of the 

mutant EGFR kinase domain can contribute to cancer development. The most common 

EGFR kinase domain mutation is EGFRvIII, which is a deletion of residues from 6 to 

273. Despite the inability to bind to the ligands, EGFRvIII is known to induce constitutive 

activation and trigger downstream signaling [221]. This form of receptor is known to 

enhance tumorigenesis, proliferation, and metastasis of tumors [222-225]. Such 

mutation is commonly observed in about 40% of glioblastoma cases [226-228]. Even 

though the overexpression of EGFR is commonly observed in NSCLC cases, there are 

only about 10 to 30% of NSCLC patients who are EGFR mutant positive [229]. The most 

common EGFR kinase domain mutations in NSCLC patients are exon 19 deletion, which 

is near the ATP-binding pocket that tyrosine kinase inhibitor (TKI) targets, and a 

mutation in exon 21 by substituting leucine 858 with arginine, or L858R [221, 230]. 

These kinase mutations cause constitutive activation of the EGFR by destabilizing the 

inactive conformation of EGFR [231, 232]. Therefore, NSCLC patients with the EGFR 

kinase domain mutations have better clinical response to TKI, as the mutants are more 

sensitive to TKI than the wild type EGFR [233, 234]. Unfortunately, patients with mutant 

EGFR kinase domain acquire resistance to the TKI therapy. A common EGFR kinase 

domain mutation that leads to resistance is T790M (substitution of threonine 790 with 

methionine). The location of T790 is significant, as it is located in the ATP binding pocket 

[235]. This substitution allows structural conformation of the receptors to gain near wild 
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type levels of ATP affinity and allow ATP to bind to the kinase domain with higher affinity 

than the drug [235, 236], which supports T790M-induced resistance to TKI. Additionally, 

Shtiegman et al. observed decrease in endocytosis and downregulation of L858R- and 

T790M-containing EGFR, and continuous phosphorylation status of the receptors 

several hours following EGF stimulation, unlike the wild type receptors [211], which 

suggests prolonged downstream signaling and predisposition to lung cancer. 

Particularly, L858R-containing EGFR mutant had impaired recruitment and 

phosphorylation of c-Cbl with EGF stimulation [211].  

v. EGFR-targeted Chemotherapy 

Because of the importance of EGFR in cancer development, there have been 

several chemotherapeutic agents that target EGFR. The EGFR-targeting 

chemotherapeutic agents can be divided into two main classes: monoclonal antibodies 

and small molecule kinase inhibitor. An example of the monoclonal antibody is 

Cetuximab, which targets the extracellular domain of the receptor to prevent 

ligand:receptor interactions. This drug is approved for treatment of cancers, such as 

colorectal cancer and squamous cell carcinoma of the head and neck (NCI, 2018). 

Erlotinib and getfitnib are examples of TKI, which bind to the kinase domain of the 

receptor to prevent activation of the downstream proteins and their signaling. Erlotinib is 

widely used as first-line therapy to treat particularly NSCLC patients [237]. As mentioned 

earlier, patients with mutant EGFR, such as L858R, have good responses to TKI, as 

they induce constitutive activation of the kinase, and such activity is found to increase 

sensitivity to the drug [233, 234, 238]. These specific mutations have higher affinity for 

TKI than does the wild type EGFR, and they have lower affinity for ATP, as compared to 

the TKI [231, 239]. Consistently, NSCLC cells with the mutant EGFR kinase domain 

have lower IC50 value of TKI, as compared to the wild type EGFR [240]. Furthermore, 

TKI inhibited both EGFR activation and proliferation, and induced apoptosis in NSCLC 
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cells with the mutant EGFR kinase domain, but it did not induce apoptosis in NSCLC 

cells with the wild type EGFR [233, 241, 242]. Interestingly, when the ErbB2 expression 

was blocked by monoclonal antibodies, enhancement of the mutant receptors’ 

downregulation was observed [211], which highlights the importance of ErbB2 

regulation. Thus, these studies suggest the complexity of the mutant receptors, and 

more specific targets-driven chemotherapeutic agents are needed. There are several 

irreversible inhibitors that target these mutations, and they act through covalent binding, 

but they are yet to be approved [235]. 

EGFR and Arsenic-induced Carcinogenesis 

As mentioned above, both previous studies and our preliminary data have shown 

acute high levels of arsenite exposure induces the overexpression of EGFR in human 

bronchial epithelial cells [160] (Fig. 3). Understanding the molecular mechanism of such 

phenomena will contribute to developing new drug target. This thesis examines the 

effect of “a physiologically relevant” level of arsenite on the EGFR signaling. 

Arsenic readily accumulates in epithelial cells as they have high content of thiol 

groups, and EGFR plays a critical role in epithelial development. The interaction 

between arsenic and thiol groups supports arsenic role in lung cancer development 

through EGFR signaling axis in epithelial cells. In this thesis, we suggest a potential role 

of chronic arsenite exposure in the regulation of components of the EGFR signaling axis. 

A previous study used micromolar range of arsenite, and observed increased level of 

EGFR ligand mRNAs, specifically HB-EGF [119]. HB-EGF is seen in a variety of 

cancers, such as colorectal, cervical, breast and gastric cancers [243-247]. Consistently, 

an earlier study demonstrated increase in TGFα mRNA expression levels in mice 

chronically exposed to arsenic-contaminated drinking water [248]. Also, overexpression 

of TGFα was observed in the tumor from nearly 50% of primary NSCLC patients [190]. 

As mentioned earlier, TGFα is an EGFR ligand that is involved in the constitutive 
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recycling of EGFR, which can delay the EGFR lysosomal degradation [181], resulting 

overexpression of the receptors. Thus, these studies support the hypothesis that arsenic 

has an impact on regulation of the ligands, resulting in overexpression of the EGFR. 

There is a scant amount of studies that observed the effect on the receptor 

trafficking upon chronic toxicant exposure. A study has shown arsenic increases protein 

levels of Rab4, a protein involved in the recycling of EGFR [249]. This study suggests a 

potential role of arsenic in altering the endocytic trafficking of EGFR. Under normal 

conditions, EGFR internalizes via clathrin-mediated endocytosis, but at high doses of 

EGF, the EGFR undergoes clathrin-independent endocytosis, including caveolin-

mediated endocytosis [250]. This interplay between clathrin-mediated endocytosis and 

caveolin-mediated endocytosis controls the expression of EGFR in the cells to prevent 

overstimulation, as caveolin-mediated endocytosis preferentially couples to the EGFR 

degradation [251]. In our preliminary study, we observed overexpression of EGFR in 

response to chronic arsenic exposure (Fig. 7), suggesting a possible role of arsenic in 

dysregulating the interplay between the two distinct endocytic trafficking pathways, 

which contributes to arsenic-induced carcinogenesis by allowing overstimulation of 

EGFR signaling. Additionally, acute high levels of arsenic exposure is known to prevent 

microtubule disassembly by losing the integrity of the tubulins and mircotubules [252], 

and microtubules are critical component in movement of proteins between the organelles 

[253]. Thus, the EGFR endocytic trafficking pathway is a potential target site of chronic 

arsenic to induce overexpression of EGFR in the cells. Disruption of proper EGFR 

trafficking is known to contribute to cancer development, such as lung, pancreatic, and 

breast cancers [211, 213, 254]. Despite of the importance of proper EGFR trafficking in 

cancer development, there has been no study that tested alterations in the route of 

EGFR trafficking from chronic arsenic exposure.  
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Importance of the study 

 There are several chemotherapies for lung cancer; however, cancer cells acquire 

resistance to therapy, as they find alterative routes to survive. More specific cellular 

targets are needed to be found, and an understanding of the underlying mechanisms to 

cancer development is critical. The present study was achieved by using Beas-2B cells, 

which are non-malignant human lung bronchus epithelial cells generated by SV40 

transfection [255]. They have been widely used to study heavy metal-induced 

carcinogenesis [256-260], and they are commonly used in arsenic studies because the 

lungs are known to be the major target of inorganic arsenic carcinogenesis [62, 261]. 

The long-term goals are to understand the molecular mechanisms of arsenite-induced 

overexpression of EGFR and to identify novel roles of chronic arsenite exposure in the 

EGFR endocytic trafficking. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

Cell culture 

Human bronchial epithelial cells, Beas-2B cells obtained from ATCC were grown in LHC-

9 media (Gibco) supplemented with or without 100 nM of sodium arsenite (Fisher 

Scientific) on a matrix of 10 µg/mL of fibronectin and 35 µg/mL of collagen (FNC Coating 

Mix, AthenaES). This concentration of sodium arsenite (arsenite) was selected based on 

the average blood arsenic level in people who were exposed to high levels of arsenite in 

drinking water [45]. Cultures were grown in 5% CO2 at 37°C atmosphere. Multiple 

cultures of cells (4 with and 4 without 100 nM sodium arsenite) were maintained 

separately for 24 weeks. Cells were propagated by splitting at 1 x 106 cells/ 10 cm dish 

every 3-4 days. Once a week, the arsenite treated cells were frozen down at 1 x 106 

cells/vial and stored in liquid nitrogen.  

Immunoblotting 

Cells were washed with phosphate-buffered saline (PBS), and kept in EDTA/PBS 

solution for 15 minutes at 37°C to allow non-enzymatic dissociation of cells. Then the 

cells were harvested in RIPA buffer [150 mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, 50 

mM Tris (pH 8.0)] containing protease inhibitor, PMSF (EMD Millipore)]. The samples 

were diluted in the 6X SDS buffer containing 10% βME, then the samples were boiled at 

95°C for 3 minutes prior to gel loading. The lysates were separated by 7.5% SDS-PAGE 

gel and transferred onto a nitrocellulose membrane. The membrane was blocked with 
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5% milk/TBST before probing with primary antibody overnight at 4°C. The following 

antibodies were used for protein detection: EGFR (Santa Cruz, sc-03) (1:1000 dilution in 

5%milk/TBST), pY1068 (Cell Signaling, 2234L) (1:500 dilution in 5%milk/TBST), and α-

tubulin (Sigma-Aldrich, T6199-200UL) (1:4000 dilution in 5%milk/TBST). After incubation 

with the horseradish peroxidase-conjugated secondary antibody (anti-mouse or anti-

rabbit, Thermo Fisher), we used enhanced chemiluminescence (ECL) to visualize the 

proteins using a Fotodyne imaging system. The immunoblot was analyzed and 

quantified using ImageJ software.  

Indirect Immunofluorescence 

Beas-2B cells were cultured on sterile 12mm round #1 glass cover slips for 2 days. The 

cells were serum-starved for 2 hours prior to EGF stimulation. After 15 minutes of EGF 

stimulation, cells were washed with PBS++ (PBS with 0.5 mM Ca2+, 0.5 mM Mg2+). The 

cells were fixed in 4% paraformaldehyde/PBS++ for 5 minutes at room temperature 

followed by 15 minutes incubation on ice. After PBS++ washes, the cells were 

permeabilized in blocking buffer (0.1% saponin, 5% FBS in PBS++) for 15 minutes at 

room temperature. After washes with PBS++, the cells were incubated with the indicated 

primary antibody [EGFR (Ab-1, EMD Millipore, GR01)] in the blocking buffer (1:1000 

dilution) for 60 minutes at room temperature. After 3 washes with PBS++, the cells were 

then incubated with fluorophore-conjugated secondary antibody (Alexafluor-488, Life-

technologies) in the blocking buffer (1:250 dilution) for 60 minutes at room temperature 

in the dark. After 6 washes with PBS++, the glass cover slips were dipped into beaker 

with ddH2O to remove associated salts. Kimwipes were used to carefully remove excess 

liquid on the cover slips. The coverslips were mounted onto slides using Prolong Gold 

Antifade Mountant with DAPI (Thermo-Fisher Scientific). The slides were cured in the 

dark overnight and examined the next day using a Nikon Eclipse Ti-E Inverted 

fluorescence microscope, using Nikon NIS Elements software. The images were taken 
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with a 60X oil immersion objective lens. Multiple images were acquired and 

representative images are presented. A total of 100 cells from randomly selected fields 

were imaged.  

Alamar Blue assay 

Beas-2B cells were plated onto 96-well microplates (10,000 cells/well) for 24 hours. 

Cells were treated with different concentrations of AG1478 (Cayman Chemical), and 

0.1% of DMSO was used as a control. Cells were incubated with AG1478 for 24 hours. 

Then, 10 µL (10% of total volume) of Alamar Blue Reagent (Bio-Rad) was added to each 

well of the 96-well microplate. After cell incubation for 2 hours at 37°C, the fluorescence 

of each well was measured in plate reader with Gen5 BioTek software at 530nm of 

excitation wavelength and 590nm emission wavelength. The data were plotted as the 

percentages of the cell viability vs. the increasing concentrations of AG1478.  

RT-qPCR 

RNA was isolated from Beas-2B cells by using RNAqueous-Micro Total RNA Isolation 

Kit (Thermo Fisher, AM1931). cDNA was synthesized using High-Capacity cDNA 

Reverse Transcription Kits (Thermo Fisher, 4368814). qPCR was performed using 

TaqMan Gene Expression Master Mix (Thermo Fisher, 4369016), and the primers were 

commercially designed by Thermo Fisher. The following primers were used for qPCR 

analysis: EGFR (Catalog# 4331182, Assay ID Hs01076089), ErbB2 (Catalog# 4331182, 

Assay ID Hs01001580_m1), AREG (Catalog# 4331182, Assay ID Hs00950669_m1), 

BTC (Catalog# 4331182, Assay ID Hs00156140_m1), and TGFα (Catalog#4331182, 

Assay ID Hs00608187_m1). All primers have been validated either by the company itself 

or in the literature. The 96-well plate (Thermo Fisher, 4346906) was read in 

StepOnePlus System (Thermo Fisher, 4376600). GAPDH was used as a housekeeping 

gene. For each experiment, gene expressions (average of the technical replicates) were 
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normalized to the average GAPDH levels. Data were plotted as the fold difference 

compared to the untreated Beas-2B cells at week 0.  
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CHAPTER 3 

RESULTS 

 The overarching goal of these experiments was to understand the molecular 

mechanisms of arsenite-induced overexpression of EGFR and to identify novel roles of 

chronic arsenite exposure in the EGFR endocytic trafficking. We hypothesized 

carcinogenicity of chronic arsenite exposure induces improper endocytic trafficking of 

EGFR, resulting EGFR overexpression.   

Chronic arsenite exposure does not alter the morphology of Beas-2B cells.  

As a typical epithelial morphology, Beas-2B cells maintain cell-to-cell adhesion, 

cell polarity, and have projectile morphology (Fig. 6). The cell morphology can change in 

response to heavy metals, such as chromium, by altering cell-cell contact, and losing the 

formal shapes [262]. To test whether low levels of arsenite alter the morphology of the 

cells, Beas-2B cells were grown in the presence of 100 nM arsenite for 24 weeks. 

Interestingly, we did not observe any morphological changes, as compared to the 

passage-matched untreated cells and 0 week Beas-2B cells (Fig. 6).  

Chronic arsenite exposure induces overexpression of EGFR.  

Overexpression of EGFR in response to acute micromolar range of arsenite 

exposure is now well-established [120, 160] (Fig. 3). To determine whether chronic 

exposure to “a physiologically relevant” level of arsenite (100 nM) stimulate the EGFR 

levels in a similar way, the EGFR and phosphotyrosine (pY1068) levels were measured 

in cells that were grown in arsenite for 24 weeks. As a measure of EGFR 

phosphorylation (activity), pY1068 levels were monitored. The passage-matched 

untreated Beas-2B cells were used as a negative control to make sure the cells’  
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Figure 6. Chronic arsenic treatment does not alter the morphology of Beas-2B 

cells. The Beas-2B cells were grown in the presence of 100nM arsenic for 24 weeks, 

and the morphology was compared to the passage-matched untreated Beas-2B cells 

and 0 week Beas-2B cells.  
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characteristics did not change over time. We did not observe any differences in the 

expression levels of both EGFR and pY1068 among the passage-matched untreated 

cells (Fig. 7). Similarly to acute exposure of arsenite, chronic low levels of arsenite, too, 

induced the overexpression of EGFR (Fig. 7). When 24-weeks arsenite treated cells 

were co-treated with AG1478, a small molecule inhibitor of the kinase domain, the 

expression level of pY1068 significantly decreased, which suggests arsenite acts directly 

on the tyrosine kinase domain, rather than via another protein (i.e. a non-receptor 

tyrosine kinase) to induce autophosphorylation of the EGFR (Fig. 8). The expression 

level of pY1068 of the untreated cells establishes the basal level of EGFR 

phosphorylation (Fig. 8, lane 1). 

Chronic arsenite exposure increases the mRNA levels of EGFR ligand, TGFα.  

 To understand the underlying mechanism of arsenite-induced overexpression of 

EGFR, we investigated mRNA levels of the ErbB family receptors, as well as their 

ligands. RT-qPCR data showed chronic exposure of “a physiologically relevant” level of 

arsenite increases TGFα mRNA levels in an exposure time-dependent manner (Fig. 9).  

Chronic arsenite exposure alters the route of the EGFR endocytic trafficking 

pathway. 

 Previous studies have observed increase in protein and mRNA levels of proteins 

that are highly involved in the recycling of EGFR in response to acute arsenite exposure 

[248, 249, 252]. However, whether arsenite alters the EGFR endocytic trafficking 

pathway still remains elusive, thus we wanted to determine any alterations in the route of 

the EGFR endocytic trafficking pathway when the cells are chronically exposed to “a 

physiologically relevant” level of arsenite. The EGFR in the untreated Beas-2B cells 

were punctate and randomly scattered, but when the cells were exposed to 100 nM of 

arsenite for 24 weeks, the route of EGFR trafficking was altered; the EGFRs were 

aggregated (Fig. 10). However, due to obscurity in the EGFR localization, further studies   
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Figure 7. Chronic exposure to low levels of arsenite induces EGFR 

overexpression and activity. 10 ng/mL of EGF was stimulated after 2 hours of serum-

starvation, and it was stimulated for 7 minutes. The samples were resolved on 7.5% 

SDS-PAGE. The EGFR and pY1068 expression levels of Beas-2B cells that were 

treated with arsenite were compared with the passage-matched untreated cells.  
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Figure 8. AG1478 prevents chronic-arsenite induced EGFR activity. The EGFR and 

pY1068 expression levels were measured in the cells that were grown in arsenite, EGF, 

or AG1478. 10 ng/mL of EGF was stimulated after 2 hours of serum-starvation, and it 

was stimulated for 7 minutes. The cells were exposed to 30 nM of AG1478 for 24 hours. 

The samples were resolved on 7.5% SDS-PAGE. 
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Figure 9. Chronic arsenite increases mRNA levels of EGFR ligand, TGFα. RNA was 

isolated from Beas-2B cells (untreated, 6 weeks, 12 weeks, 18 weeks, and 24 weeks) 

and cDNA was synthesized. qPCR was performed using the primers that were 

commercially designed. For each experiment, gene expressions (average of the 

technical replicates) were normalized to the average GAPDH levels. Data were plotted 

as the fold difference compared to the untreated Beas-2B cells at week 0. (N=2) 
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Figure 10. Chronic arsenite exposure alters the route of the EGFR endocytic 

trafficking pathway.  Immunofluorescence was performed to analyze the EGFR 

trafficking in response to chronic arsenic exposure. Cells were fixed with 4% 

paraformaldehyde and stained for EGFR (Alexafluor-488 (Green)). Scale bar=10 µm 
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are needed to draw conclusions. 

Chronic arsenite does not sensitize Beas-2B cells to tyrosine kinase inhibitor.  

 Because we observed chronic arsenite-induced EGFR overexpression, we next 

wanted to determine how chronic exposure to “a physiologically relevant” level of 

arsenite treatment affects cell sensitivity to tyrosine kinase inhibitor. Tyrosine kinase 

inhibitor is a well-established EGFR-targeted chemotherapy. A previous study has 

shown overexpression of EGFR in thyroid cancer cells increases its sensitivity to a well-

known tyrosine kinase inhibitor, getfitnib [149]. Because arsenite stimulates 

overexpression of EGFR, we performed Alamar Blue assay to determine whether 

chronic arsenite alters the sensitivity of Beas-2B cells to AG1478. AG1478 is known to 

share the same structural backbone with getfitnib [263], and it is known to have the 

same biological function as getfitnib [264]. We performed the assay by using different 

concentrations of AG1478  (10 nM, 30 nM, 100 nM, 300 nM, 1 µM, 3 µM, 10 µM, 30 µM, 

100 µM) and measured cell viability. The overall trend of dose-response between the 

untreated and the 24-weeks arsenite treated cells was comparable (Fig. 11). Thus, there 

were no changes in sensitivity to AG1478 in the chronic arsenic-treated Beas-2B cells. 

Chronic arsenite may prevent EGFR lysosomal degradation.  

 A previous study observed prevention of the EGFR degradation in response to 

acute arsenite exposure, and this phenomenon persisted with cyclohexamide treatment 

[265]. To determine whether the overexpression of EGFR is mediated by arsenite-

induced prevention of the EGFR lysosomal degradation, we performed immunoblot on 

EGF-treated cells to measure the EGFR and pY1068 expression levels in the absence 

and presence of 24-weeks of arsenite exposure, and stimulated with 50 ng/mL of EGF 

with selected time points (0, 5, 10, 20, 40, 60 minutes) to analyze the EGFR protein 

degradation efficiency. We predicted, with time, we would observe prevention of EGFR 

degradation in arsenite-treated cells, as compared to the untreated cells. Although the  
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Figure 11. Chronic arsenite does not sensitize Beas-2B cells to tyrosine kinase 

inhibitor. Alamar Blue assay was performed to measure and compare the cell viability 

of 24 weeks arsenite-treated cells and the passage-matched untreated cells in response 

to different concentrations of AG1478 for 24 hours. (N=2) 
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kinetics of EGFR degradation were not altered with arsenite treatment, the overall 

protein expression levels of the EGFR and its activity were stronger in the arsenite-

treated cells than in the untreated cells (Fig. 12).  
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Figure 12. Chronic arsenite may prevent degradation of EGFR. Immunoblot was 

performed to measure any prevention in the EGFR degradation in response to 24-weeks 

of arsenic treatment. The EGFR and pY1068 expression levels were measured in cells 

that were grown with or without 100 nM of arsenite. Beas-2B cells were treated with 50 

ng/mL of EGF for selected time points, after 2 hours of serum-starvation. The samples 

were resolved on 7.5% SDS-PAGE. 
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CHAPTER 4 

DISCUSSION 
 

The overall purpose of this work was to identify novel roles of chronic arsenite 

exposure in cancer development to mitigate arsenite toxicity. Acute high levels of 

arsenite-induced EGFR overexpression have been well-established based on previous 

studies and our own preliminary data [120, 160] (Fig. 3). In this thesis, we examined the 

effect of “a physiologically relevant” level of arsenite on the EGFR signaling. This study 

was achieved by first, performing immunoblot to support chronic arsenite exposure does 

increase EGFR expression levels and activity (Fig. 7A, B). Our results were consistent 

with previous studies that observed the activation of EGFR in response to chronic 

arsenite exposure [93, 119]. We also measured the expression levels and the activity of 

EGFR in response to AG1478 exposure to determine whether arsenite acts directly on 

the kinase domain to induce autophosphorylation of the EGFR. We observed decrease 

in EGFR expression and activity in both of the untreated and the arsenite-treated cells 

when the cells were exposed to AG1478 (Fig. 8). With 30 nM AG1478 treatment, a 

nearly complete inhibition of the EGFR activity (pY1068) was observed (Fig. 8), 

however, there is no clear explanation to decreased protein expression level of the 

EGFR in both untreated and arsenic-treated cells. One possible explanation is that 

AG1478 prevents activation of EGFR downstream signaling, resulting prevention of 

further EGFR synthesis.  

Previous studies support a role of arsenite in inducing expression levels of 

protein and mRNA that are highly involved in the trafficking, such as TGFα [248] and 

Rab4 [249], respectively. As mentioned earlier, TGFα is an EGFR ligand that is involved 



41		

in the constitutive recycling of EGFR, which can delay the EGFR lysosomal degradation 

[181], resulting the overexpression of the receptors. Rab4, too, is a protein that is 

involved in the recycling of EGFR [249]. Additionally, acute high levels of arsenite 

exposure is known to prevent microtubule disassembly by losing the integrity of the 

tubulins and mircotubules [252], and microtubules are critical component in movement of 

proteins between the organelles [253]. As a result, the EGFR endocytic trafficking 

pathway could be a potential target site of chronic arsenite exposure to induce the 

overexpression of EGFR in the cells. We performed immunofluorescence to analyze any 

changes in the trafficking of EGFR in response to chronic arsenite exposure. Based on 

our immunofluorescence results, we observed alterations in the trafficking of EGFR, but 

it is unclear whether the receptors are localized on the cell surface or inside the cell. 

Further studies, such as confocal analysis and co-localization immunofluorescence, are 

needed to draw conclusions on their altered trafficking phenotype in response to chronic 

arsenic exposure. There are several possibilities; 1) chronic arsenite exposure may 

prevent the EGFR to transport from the ER-Golgi intermediate compartment (ERGIC) to 

the plasma membrane, 2) chronic arsenite exposure may prevent lysosomal degradation 

of EGFR by inducing accumulation of the EGFR in the early endosomes and allow 

constitutive downstream signaling, or 3) chronic arsenite may allow continuous recycling 

of the EGFR from the early endosomes to the plasma membrane by overexpressing the 

proteins that are involved in the recycling, such as Rab4. The possibility of EGFR 

accumulation in the ERGIC is likely, because chronic arsenic exposure may prevent 

EGFR endocytic transport by hindering microtubule disassembly, as a previous study 

has shown acute high levels of arsenic exposure prevent microtubule disassembly [252]. 

The second possibility is also likely, because a recent study from our laboratory 

observed signaling from the early endosomes [266]. Even when the EGFR are 

accumulated in the early endosomes, the receptors are able to emit signals and activate 
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the downstream effectors. This study also supports our observation of chronic arsenite 

exposure-induced overexpression of EGFR and strong EGFR activation at 60 minutes 

post-stimulation by EGF (Fig. 7, Fig. 12). Because previous studies have observed 

increased levels of proteins that are involved in recycling, the third possibility is highly 

likely as well, as we observed a similar results in our RT-qPCR data (Fig. 9). Overall, in 

response to chronic arsenite exposure, the route of EGFR trafficking was altered, and 

they were aggregated, which was significantly different from the untreated Beas-2B 

cells. However, further studies need to be performed to draw conclusions. 

Another approach to identifying alterations in the endocytic trafficking of EGFR 

was to measure the mRNA levels of the ErbB family receptors as well as their ligands. 

We performed RT-qPCR and observed a significant increase in mRNA level of TGFα. 

The increase in TGFα was observed in an exposure time-dependent manner (Fig. 9). 

Though the actual protein level of TGFα is still yet to be measured, our data suggest that 

in response to chronic arsenite exposure, the cells try to make more of the ligand that is 

associated with the recycling of the EGFR, due to possible decreased cell surface 

expression of the EGFR. Though it may not be the predominant mechanism to chronic 

arsenite carcinogenicity, it is likely that an increase in TGFα mRNA levels will contribute 

to arsenite carcinogenicity, as increase in TGFα mRNA levels have shown to accelerate 

cell proliferation [248, 267].  

To determine if there are any alterations in sensitivity to AG1478 in arsenite- 

treated Beas-2B cells, we performed Alamar Blue assay and measured the cell viability 

in response to different concentrations of AG1478. Because 24-weeks arsenite treated 

cells stimulated overexpression of EGFR, we expected the cells to have higher 

sensitivity to AG1478, as Schiff et al. have shown increased sensitivity to getfitnib in 

thyroid cancer cells that overexpress EGFR [149]. However, we observed a comparable 

trend of cell viability between 24-weeks arsenite treated cells and the untreated cells 
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(Fig. 11). Further studies are needed to make a concrete conclusion on their sensitivity 

to tyrosine kinase inhibitor.  

Because Andrew et al. observed prevention of EGFR degradation in response to 

acute high levels of arsenite treatment [119], we investigated whether chronic exposure 

of “a physiologically relevant” level of arsenite treatment prevents the EGFR degradation 

in a similar manner. Under normal physiological conditions, EGF-induced EGFR 

activation increases significantly within 5 minutes, and diminishes within an hour. 

Although we did not observe a clear decrease in the EGFR degradation in response to 

chronic arsenite treatment, the overall protein expression levels of the EGFR and activity 

in the arsenite-treated cells were stronger than the untreated cells (Fig. 12). This 

incomplete EGFR degradation suggests we will need to select longer time points for 

EGF treatment to observe a nearly complete degradation of EGFR. The present work is 

summarized in a schematic diagram in Figure 13. 
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Figure 13. The schematic diagram of the possible mechanisms of chronic 

arsenite-induced carcinogenesis. Chronic exposure of “a physiologically relevant” 

level of arsenite alters the endocytic trafficking of EGFR via constitutive recycling of the 

internalized EGFR, leading to overexpression of EGFR on the surface of the cell. 

Another possible mechanism of chronic arsenite-induced overexpression of EGFR is 

chronic arsenite-induced increase in induction of TGFα synthesis.   
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CHAPTER 5 

FUTURE STUDIES 
 

This thesis contributes in identifying novel roles and targets of chronic arsenite 

exposure. To determine whether chronic exposure to “a physiologically relevant” level of 

arsenite alter the EGFR endocytic trafficking pathway, we performed 

immunofluorescence. We observed altered EGFR distribution in cells that were grown in 

arsenite for 24 weeks, as compared to the untreated cells, but we were not able to 

conclude the exact location of the EGFR. To understand the underlying mechanism 

behind this phenomenon, the EGFR co-localization with other organelles, such as the 

ER and Golgi apparatus, or with other endocytic compartment, such as the early 

endosomes, will be needed to identify which step(s) of the EGFR endocytic trafficking 

are being inhibited by chronic arsenite exposure.   

In order to draw conclusions from RT-qPCR analysis, we would need to analyze 

other ErbB family receptors and their ligands, and repeat the experiments with other 

human bronchial epithelial cell lines, such as HBEC. We observed a significant increase 

in TGFα mRNA levels in an exposure time-dependent manner. After we determine a 

consistent increase in the protein expression level of TGFα and cell surface EGFR 

localization, we will knockout TGFα by transfection of its shRNA to the cells and observe 

its phenotypes, such as proliferation efficiency and anchorage-independent growth, to 

determine contribution of increased level of TGFα in arsenite-induced carcinogenicity. If 

we do not observe a consistent increase in TGFα protein expression level and observe 

less cell surface EGFR localization, it is possible that chronic arsenite-treated cells may 

be upregulating TGFα mRNA level to bring the EGFR to the plasma membrane due to 
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chronic arsenite-induced accumulation of EGFR in the endocytic compartments. If this 

were the case, we will introduce exogenous TGFα to the chronic arsenite-treated cells 

and determine if TGFα mRNA level is still being induced. Once this has been completed, 

we will then be able to determine the significance of TGFα role in an arsenite-induced 

carcinogenesis. An inconsistent changes in the protein levels of TGFα can be explained 

by chronic arsenite exposure affecting the expression of proteins that control ligand 

processing and ligand:receptor down-regulation. By analyzing expression levels of 

proteins involved in ligand processing, such as ADAMs (A Disintegrin And 

Metalloproteinase) [268], we will be able to refine our model and identify appropriate 

molecular mechanisms. Also, it is possible that TGFα mRNA level is not consistent with 

the protein level due to non-coding RNA, such as miRNA, thus we will investigate 

miRNA that are involved in TGFα regulation. Partial complementarity between miRNA 

and the target mRNA can decrease protein expression level without decreasing the 

mRNA level. It should be noted that there was no observed change in EGFR mRNA 

level in response to chronic arsenite exposure. This phenomenon can be due to 1) 

arsenite-induced increased translation of EGFR, 2) arsenite-induced decreased EGFR 

degradation, or 3) combination of both mechanisms. To elucidate whether arsenite-

induced overexpression of EGFR is due to prevention of EGFR degradation, we will 

perform immunoblot analysis using cyclohexamide to measure EGFR degradation 

efficiency in response to chronic arsenic exposure.  

Furthermore, as mentioned earlier, the interplay between clathrin-mediated 

endocytosis and caveolin-mediated endocytosis controls the expression of EGFR in the 

cells to prevent overstimulation, as caveolin-mediated endocytosis preferentially couples 

to EGFR degradation [251]. In our study, we observe overexpression of EGFR in 

response to chronic arsenite exposure, this suggests a possible role of arsenite in 

dysregulating the interplay between the two distinct endocytic trafficking pathways, 



47		

contributing to arsenite-induced carcinogenesis by allowing overstimulation of the EGFR 

signaling. Ironically, however, an earlier study showed sub-chronic high levels of 

arsenite increases caveolin protein expression level in liver sinusoidal endothelial cells 

[269]. If we observe increase in caveolin levels in cells treated with low levels of chronic 

arsenite exposure, we will, then, use chloroquine (CHQ), lysosomal inhibitor, to assess 

relationship between caveolin expression and chronic arsenite-induced EGFR 

overexpression. If we observe a greater EGFR overexpression in cells that are co-

treated with arsenite and CHQ, as compared to cells with arsenite treatment only, this 

will suggest chronic arsenite-induced caveolin-mediated endocytosed EGFR are being 

degraded via lysosomes, suggesting chronic arsenite does not cause accumulation of 

the EGFR in the cells by disrupting the interplay between the two distinct endocytic 

trafficking pathways. Alternatively, if we observe comparable levels of the EGFR 

expression with CHQ, as compared to the cells with arsenite treatment only, this 

suggests caveolin-mediated endocytosed EGFR are not being degraded via lysosomes, 

and this could further lead to a possible perturbed degradation pathway. 
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