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ABSTRACT 
 
 

NOVEL INSIGHT INTO THE LIVER-LUNG AXIS IN ALCOHOL-ENHANCED 
 

 ACUTE LUNG INJURY 
 
 

Lauren G. Poole 
 

June 8, 2017 
 
 

Background. Individuals who chronically abuse alcohol are almost 4 times more 

likely to develop Acute Respiratory Distress Syndrome (ARDS), the most severe 

form of Acute Lung Injury (ALI), but the mechanisms by which alcohol abuse 

sensitizes the lung to injury are poorly understood. However, the lung appears to 

share many parallel mechanisms of injury with the liver- a primary target of alcohol 

abuse. The overarching goal of this dissertation was therefore to expand on 

established mechanisms of alcohol-induced liver injury to ask innovative questions 

about mechanisms of alcohol-enhanced acute lung injury, as well as to develop new 

tools that may be used to gain novel insight into the liver-lung axis of alcohol-

induced injury.  Methods. Male mice were exposed to ethanol containing liquid diet 

either chronically (6 weeks) or in a chronic + binge pattern. Some mice were 

administered lipopolysaccharide (LPS) to induce acute lung injury. Lung injury and 

inflammation were assessed. To develop an animal model by which liver-lung 

interactions could be investigated, tamoxifen-loaded polymer nanoparticles were 

administered intrasplenically to a tamoxifen-inducible, Cre-mediated, dual-
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fluorescent reporter construct. Results. Chapter III of this dissertation describes a 

mechanism by which plasminogen activator inhibitor-1 (PAI-1) is involved in alcohol-

enhanced acute lung injury. Specifically, it was proposed that PAI-1-mediated fibrin 

accumulation promotes the aggregation of platelets, thereby propagating lung injury 

and inflammation. Chapter IV of this dissertation characterizes a recently-developed 

animal model of chronic + binge alcohol exposure, finding that animals exposed to 

chronic + binge alcohol exposure exhibit pulmonary inflammation and airway 

hyperresponsiveness. Finally, Chapter V of this dissertation develops an animal 

model to investigate liver-lung interactions during chronic alcohol exposure. It was 

found that tamoxifen-loaded polymer nanoparticles, when administered 

intrasplenically, selectively alter the genetics of hepatic cells, while avoiding other 

tissues, including the lung. Discussion. The work presented in this dissertation has, 

in conclusion, uncovered novel mechanisms by which alcohol sensitizes the lung to 

a second injury, shown that ethanol alone is sufficient to cause lung inflammation, 

and developed a novel animal method to examine liver-lung interactions during 

alcohol exposure.  
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CHAPTER I 

 

INTRODUCTION1 

 

A. Background and rationale for this study 
 
 

1. Alcohol use and its impact 
 

The discovery of fermented beverages was likely accidental and derived 

from improper food storage.  As agrarian culture developed throughout the world, 

so did the intentional cultivation of crops for alcoholic beverage production.  

Alcoholic beverages were valued in ancient cultures for several reasons beyond 

them being a ‘social lubricant’ (1).  In a time when potable water was difficult to 

acquire, alcohol acted as a relatively safe source of hydration.  Additionally, 

alcohol’s modest nutritional value supplemented malnourishment.  Furthermore, 

alcohol had significant medicinal value as an antimicrobial agent.  Taken 

together, the pervasive nature of alcohol consumption throughout the world is 

unsurprising.  Even in cultures that forbid alcohol consumption, the development 

of such taboos speaks to the fact that these peoples have been exposed to 

alcohol consumption.   

There are many potential benefits of alcohol consumption, as discussed 

above.  Despite these benefits, the idea of a need for moderation in alcohol 

consumption is as ubiquitous as the consumption of alcohol itself; indeed, almost 
                                                           
1 Parts of this section appear in Poole LG and Arteel GE. Biomed. Res. Int. 2016;2016:3162670 
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every culture frowns upon public intoxication and alcohol abuse and/or 

dependence.  For example, Aristotle strongly extols the virtue of temperance in 

his work, “The Nicomachean Ethics.”  In modern society, alcohol abuse has an 

even more significant impact.  For example, there is, on average, more than one 

alcohol-related driving fatality every hour in the US (2).   

In addition to these social consequences, alcohol abuse significantly 

impacts health.  Alcohol requires relatively high concentrations to exert many of 

its toxic effects in organisms and is therefore, arguably, not an incredibly potent 

toxin. However, alcohol must be consumed in relatively high doses to cause any 

noticeable inebriating effects; the legal driving blood alcohol content (BAC) in 

most US States (0.08% w/v) translates to ~20 mM ethanol.  Therefore, the sheer 

volume of alcohol which humans consume is enough to offset its low potency.  In 

fact, one could argue that alcohol is the most common poison voluntarily 

consumed at toxic doses by the human population.  In the United States alone, 

over 17 million adults suffer from an alcohol use disorder (AUD), a condition that 

the National Institute on Alcohol Abuse and Alcoholism (NIAAA) defines as “a 

chronic relapsing brain disease characterized by compulsive alcohol use, loss of 

control over alcohol intake, and a negative emotional state when not using.”  

Chronic alcohol consumption/abuse has been demonstrated to directly damage 

several organs, including liver (3), lung (4), skeletal muscle and heart (5), the 

brain (6), and the pancreas (7).  Additionally, alcohol consumption increases the 

risk of developing several cancers; it is considered a group 1 carcinogen for 

cancers of the GI tract, liver, breast and pancreas by the International Agency for 
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Research on Cancer (8).  Ultimately, alcohol consumption is responsible for ~6% 

of all disability-adjusted life years (DALY) lost in the United States (9), most of 

which are attributable to alcohol-induced toxicity as opposed to alcohol-related 

accidents. 

 

2. Alcoholic Liver Disease  

The liver is located between the intestinal tract and the rest of the body, 

making it a critical organ in the clearance of toxins and xenobiotics, including 

alcohol, that enter the portal blood.  The concentration of alcohol found in the 

portal blood is much higher than those in the systemic circulation.  Additionally, 

the liver is the primary site of alcohol metabolism, which produces many toxic 

metabolites.  Therefore, it is unsurprising that the liver is a primary target of 

alcohol toxicity.  Although excessive alcohol consumption has been associated 

with organ toxicity since ancient times, the first suggestion that alcohol 

consumption may directly cause organ damage is credited to Thomas Addison in 

1836 (10).   

Alcoholic Liver Disease (ALD) affects millions of patients worldwide each 

year.  The progression of ALD is well-characterized and is actually a spectrum of 

liver diseases, ranging initially from simple steatosis, or fat accumulation, to 

inflammation and necrosis (often called steatohepatitis), and ultimately, to fibrosis 

and cirrhosis.  Although the risk of developing ALD increases in a dose- and 

time-dependent manner with alcohol consumption (11, 12), only a small fraction 

of even the heaviest drinkers develop the severe form of the disease, suggesting 
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that other environmental (e.g., hepatitis B virus (HBV) or hepatitis C virus (HCV) 

infection) or genetic (e.g., gender or polymorphisms in key genes) factors 

contribute to overall risk (13).  Clinical management of ALD primarily focuses on 

maintaining abstinence in the alcoholic, and on treating sequelae associated with 

acute alcoholic hepatitis or cirrhosis (14).  The effects of decompensation (e.g., 

hepatorenal syndrome) usually lead to the death of the patient, except in the 

case of a successful liver transplant (15).  Furthermore, the overall risk of 

developing hepatocellular carcinoma (HCC) increases roughly 20-fold by 

preexisting cirrhosis, even in patients in which compensation is maintained (i.e., 

‘stable cirrhotics’) (16).  HCC has an even more dismal prognosis than cirrhosis 

with very high mortality rates (17).   

 

3. Alcoholic lung phenotype 

The lung is also recognized as a target of chronic alcohol abuse, and 

alcohol-related lung injury is estimated to account for tens of thousands of deaths 

in the United States each year (18).  Although chronic alcohol consumption is not 

directly linked to the development of an “alcoholic lung disease” (i.e., as it is to 

liver disease), alcohol is a significant risk factor in the morbidity/mortality of lung 

damage from other causes.  For example, acute respiratory distress syndrome 

(ARDS), the most severe form of acute lung injury (ALI), occurs 3.7 times more 

often in individuals meeting the diagnostic criteria for alcohol use disorders (19, 

20).  Furthermore, Moss and colleagues demonstrated that chronic alcoholics 

who developed ARDS showed in-hospital mortality rates of 65%, whereas 
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nonalcoholic patients had mortality rates of 36% (19-21).  The exact mechanisms 

by which alcohol mediates these effects on the lung are unknown, but 

experimental ethanol exposure has been associated with the up-regulation of 

pro-inflammatory cytokines (22-24), disruption of regulatory signaling pathways 

(25), activation of tissue remodeling (26, 27), and the induction of oxidative stress 

in rodent lungs (28).  All of these factors may promote the development of the 

“alcoholic lung” phenotype.  This phenotype appears to enhance the host’s 

susceptibility to serious lung diseases, including ARDS, ALI following severe 

trauma (e.g. car accident, gun shot, etc.), and respiratory infection (e.g., 

pneumonia) (18).  In fact, having an alcoholic use disorder is a major 

independent risk factor for development and susceptibility to sepsis-induced 

ARDS, even after adjusting for smoking status and co-morbitities (21). 

To investigate mechanisms by which alcohol exposure sensitizes the lung 

to sepsis-induced ARDS, experimental mouse models may be utilized.  

Intraperitoneal (i.p.) injection of bacterial lipopolysaccharide (LPS), or 

endotoxemia-induced lung injury, is one such animal model employed to study 

ALI and ARDS (29, 30).  Indeed, this model has been demonstrated to cause 

sequestration of neutrophils in the pulmonary vasculature and interstitium (31, 

32).  Furthermore, i.p. LPS administration has been demonstrated to cause 

pulmonary edema, diffuse alveolar damage, and induction of inflammatory 

cytokines and chemokines, such as IL-6 and MCP-1 (33).  Systemic 

administration of LPS (versus intratracheal) is a particularly relevant model to 

investigate mechanisms of alcohol-induced organ pathology, as chronic alcohol 
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consumption has been demonstrated to increase systemic LPS in patients (34). 

Systemic endotoxin may, in turn, damage the lung directly or via inflammatory 

mediators released from other tissues.  Furthermore, although intratracheal 

administration of LPS has been demonstrated to cause a large influx of PMNs 

into the alveoli, there are concerns that this model may include confounding 

factors, such as aspiration injury (32).  In the setting of chronic alcohol exposure, 

ethanol feeding enhances glutathione depletion and oxidative stress in a rat 

model of endotoxemia-induced ALI (4, 28).  Additionally, this group recently 

characterized the effects of chronic ethanol pre-exposure on endotoxemia-

induced ALI (35). Therefore, experimental endotoxemia with chronic ethanol pre-

exposure is a useful experimental model to investigate mechanisms by which 

alcohol increases risk and susceptibility to ARDS. Although this experimental 

mouse model has been characterized, mechanisms by which ethanol pre-

exposure exacerbates endotoxemia-induced ALI remain poorly understood. It is 

proposed that building on knowledge of established mechanisms of alcohol-

induced injury in the liver- a direct target organ of alcohol toxicity- may aid in 

exploration of mechanisms of alcohol-enhanced ALI. 

 

4. Parallel mechanisms of injury in the liver and lung 

A major focus of the Arteel group’s recent research has been to 

investigate liver-lung interactions in the setting of chronic alcohol abuse, and this 

group has accordingly sought to develop and characterize animal models to 

study both systems simultaneously.  Indeed, the liver and lung share many 



7 
 

mechanisms of injury.  First, resident macrophages, e.g., Kupffer cells in the liver 

and alveolar macrophages in the lung, play key roles in mediating the 

inflammatory response via the release of inflammatory cytokines.  Alcohol-

induced damage to both organs also appears to involve oxidative stress (4, 36).  

Furthermore, alcohol appears to enhance damage caused by a second “hit,” or 

inflammatory stimulus in both organs (37-40).  For example, damage caused by 

intraperitoneal injection of LPS is enhanced by alcohol consumption in both the 

liver and the lung, as discussed briefly in Section 3 of this Chapter (28, 41, 42).  

Finally, an altered extracellular matrix (ECM) profile appears to be a key feature 

of pre-fibrotic inflammatory injury in both tissues.  This pre-fibrotic, inflammatory 

remodeling of the ECM which does not alter the overall structure of the organ is a 

concept known as “transitional ECM remodeling” (43, 44).  This group has 

demonstrated that the hepatic ECM responds dynamically to alcohol exposure, 

sensitizing the liver to LPS-induced inflammatory damage (38).  Similarly, data 

from the laboratory of Jesse Roman, has demonstrated that chronic alcohol 

exposure alters the expression and degradation of the ECM, favoring fibronectin 

deposition (40).  Although alcohol-induced liver and lung injury are by no means 

synonymous, they share many mechanisms of alcohol-induced organ injury, and 

understanding of one system can be used to leverage novel questions in the 

other.   
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5. Coagulation and fibrin ECM remodeling in alcohol-induced organ 
injury 
 
A predominant theme of this dissertation is to explore a potential role of 

established mechanisms of alcohol-induced liver injury in the setting of alcohol-

enhanced ALI. As discussed in Section 4 of the current Chapter, one potential 

parallel mechanism of liver and lung injury in response to alcohol is the 

development of a transitional ECM.  To re-iterate, the “transitional ECM” can be 

defined as alterations in the amount or composition of the ECM that occur in the 

inflammatory, pre-fibrotic stages of disease that do not alter the overall structure 

or function of the organ (44).  Fibrin(ogen) is one such transitional ECM protein in 

particular that is known to be affected by exposure to alcohol.  Plasminogen 

activator inhibitor-1, or PAI-1, is a key regulator of fibrin degradation (i.e., 

fibrinolysis).  PAI-1 is an acute phase protein normally expressed by adipocytes 

and endothelial cells, but is also expressed by other cells, including 

macrophages, during times of inflammation and/or stress (45).  Classically, PAI-1 

is an inhibitor of tissue-type plasminogen activator and urokinase-type 

plasminogen activator (tPA and uPA, respectively), thereby preventing the 

conversion of plasminogen to plasmin.  Plasmin is a protease which degrades 

insoluble fibrin to fibrin degradation products.  Thus, PAI-1 induction negatively 

regulates fibrinolysis.  

 The Arteel group has identified the critical role of PAI-1 in the progression 

of alcohol-induced liver injury.  Specifically, knocking out PAI-1 produced potent 

anti-inflammatory effects in a chronic enteral alcohol model (46).  Additionally, 

data from the Arteel group has also revealed a key role for PAI-1 in acute 
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alcohol-induced liver injury (38).  In this setting, acute ethanol pre-exposure 

enhanced LPS-induced fibrin deposition in the hepatic sinusoidal space, and 

inhibiting fibrin deposition protected against enhanced liver injury and 

inflammation. Similar effects have also been demonstrated in other models of 

hepatic inflammation, including LPS-induced liver injury enhanced by partial 

hepatectomy (47).  PAI-1 is also known to contribute to the development of ALI 

and ARDS (48, 49), and elevated plasma PAI-1 levels in patients with these 

conditions is associated with increased mortality (50-52).  PAI-1 induction has 

also enhances susceptibility to LPS-induced ALI (53).  PAI-1 induction also 

exacerbated fibrosis in a model of experimental, bleomycin-induced pulmonary 

fibrosis (54).  Although the role of PAI-1 has been studied in many models of lung 

injury, including cancer (55), fibrosis (56), and ALI (57), the role of PAI-1 in 

alcohol-enhanced ALI remains largely unknown. 

PAI-1 also indirectly regulates the expression of many other ECM 

proteins, including laminin, proteoglycan, and type IV collagen via inhibition of 

matrix metalloproteinases (MMPs) (58-61) (62).  PAI-1 induction has also  been 

shown to enhance fibronectin ECM deposition (63).  Many cell types, including 

alveolar macrophages, bind to select ECM proteins under basal conditions, and 

cell surface receptors known as integrins mediate crosstalk between the ECM 

and the cell (64).  For example, fibrin interacts with RGD-binding integrins, 

including integrin αVβ3.  The Arteel group has demonstrated that blocking fibrin-

integrin interactions protects against alcohol-induced liver injury with no effect on 
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fibrin accumulation (65), suggesting that this integrin signaling is critical for the 

progression of liver injury. 

Altered integrin signaling may also contribute to injury in the lung. Alveolar 

macrophages, for example bind with high affinity to fibronectin via the integrins 

α5β1.  Chronic alcohol exposure has been shown to cause deposition of a 

fibronectin-enriched pulmonary ECM.  Data from the Roman group has 

demonstrated that monocytes cultured on ECM from ethanol-exposed alveolar 

type II cells have an enhanced pro-inflammatory phenotype, and that blocking 

integrin α5β1-mediated  monocytye-fibronectin interactions attenuates this pro-

inflammatory phenotype (62).  Ligation of integrin αVβ3, an integrin receptor for 

fibrinogen, vitronectin, and other ECM proteins that may be altered by alcohol 

has also been shown to be pro-inflammatory (66). PAI-1 may alter integrin 

signaling, both by promoting accumulation of integrin ligands, such as 

fibrin(ogen), as well as more directly inhibiting ECM-integrin interactions. For 

example, PAI-1 induction can inhibit vitronectin-integrin interactions, impairing 

tissue repair (67).  Taken together, these data suggest that changing the ECM 

substratum can alter integrin signaling, and subsequently may promote 

inflammation and injury in a tissue. This dissertation will explore the hypothesis 

that PAI-1-mediated transitional remodeling of the pulmonary ECM, specifically 

accumulation of fibrin, may contribute to alcohol-enhanced acute lung injury, 

potentially via altered ECM-integrin signaling. 
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6. Murine models of alcohol exposure 

At this point, it becomes necessary to explore the strengths and limitations 

of experimental models that may be used to investigate the questions presented 

in this dissertation. Murine models of alcohol exposure are one of the most 

valuable tools available to study the toxic effects of alcohol exposure, due to their 

relatively low maintenance cost and the wide prevalence of genetically modified 

strains available.  Many potential routes of alcohol exposure are available in 

rodent models, including intravenous or intraperitoneal administration, as well as 

inhalation.  While these models may be useful for investigating other pathologies 

associated with alcohol abuse, such as addiction, they produce little to no 

relevant alcohol-associated pathology, such as liver injury, in mice (68).  

Moreover, alcohol exposure in humans is overwhelmingly via an oral route.  

Therefore, oral administration of alcohol to mice is most commonly utilized to 

investigate alcohol-induced organ toxicity. 

Murine models of oral alcohol exposure address different patterns of 

alcohol abuse, including acute (binge) drinking, as well as chronic abuse.  Acute 

alcohol exposure models typically involve administration of ethanol (4-6 g/kg) via 

oral gavage over the course of 1-3 days.  Pathologic changes (e.g., hepatic lipid 

accumulation and inflammatory cell recruitment) in acute ethanol models are 

typically minimal, yet these models can be useful for detecting biochemical (e.g., 

alterations in lipid/glucose metabolism) caused by alcohol (69).  Furthermore, 

acute alcohol exposure, at doses that are not overtly toxic themselves, enhances 

the toxicity of other compounds, such as xenobiotics or bacterial endotoxins 
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(e.g., LPS).  For example, in the liver, acute alcohol administration exacerbates 

damage caused by LPS (41).  In the lung, acute alcohol exposure has been 

shown to exacerbate pulmonary congestion and inflammation in a model of burn 

injury (70). 

Chronic administration of ethanol to mice is typically achieved by ad 

libitum feeding, either by ethanol in drinking water or a “forced choice” model of 

alcohol exposure, in which alcohol is incorporated into a liquid diet that serves as 

the only source of calories.  In the lung, chronic administration of ethanol in 

drinking water (20% vol/vol for two weeks) depletes pulmonary glutathione levels 

and causes dysfunction of alveolar macrophages in mice (71).  However, there 

are several concerns with utilization of this “ethanol in drinking water” mouse 

model, including low blood alcohol content (BAC), dehydration, and lack of an 

appropriate nutritional control (72).  Furthermore, this model lacks significant 

manifestation of pathology in target organs, such as the liver. Indeed, Best et al. 

observed in 1949 that there was “no more evidence of a specific toxic effect of 

pure ethyl alcohol upon liver cells than there is for one due to sugar” (73).  Based 

on these observations, it was proposed at the time that ALD was due to 

nutritional deficiencies rather than to alcohol itself.   

To address these concerns, Lieber and DeCarli developed the first 

“forced-choice” model of chronic alcohol exposure, in which rats were 

administered a nutritionally complete ethanol-containing or iso-caloric maltose 

dextran-containing liquid diet for six weeks, with alcohol added in increasing 

concentrations up to 36% total calories (74).  This feeding model at least partially 
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overcomes the rodent’s natural aversion of alcohol, and thereby achieves higher 

BACs (typically around 0.10 g/dL) (75).  Use of this model solidified the 

hypothesis that alcohol is indeed a direct hepatotoxin.  In rats and mice, the 

Lieber-DeCarli liquid diet produces hepatic steatosis, mild elevations in plasma 

transaminases, and some necroinflammatory changes in the liver.  In the lung, 

chronic alcohol exposure via ethanol containing liquid diet depletes glutathione 

levels (76), causes remodeling of the ECM (62), causes mitochondrial 

dysfunction (77), and sensitizes the lung to endotoxemia-induced ALI (35).  

Although these mechanisms of injury are important for understanding how 

chronic alcohol abuse sensitizes the lung to a second injury, this model does not 

produce overt histologic injury or inflammation in the lung.  

A more robust model of chronic alcohol exposure involves enteral 

administration of ethanol-containing liquid diet via surgical implantation of an 

intragastric pump.  In rodents, this feeding model produces micro- and macro-

vesicular steatosis, apoptosis, inflammatory cell infiltration, and focal necrosis, 

making this model one of the most relevant for producing pathologies associated 

with ALD in humans (78).  This model also produces ethanol-mediated toxicity in 

other organs, such as the pancreas (79).  The effects of enteral alcohol exposure 

on other target organs, including the lung, is unknown.  However, the technical 

skill required for the surgical implantation of the pump used in this model limits its 

widespread implementation.   

Recently, the laboratory of Dr. Bin Gao developed the chronic + binge 

mouse model of alcohol exposure (80).  In this model, mice are acclimatized to 
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control (0% ethanol) Lieber-DeCarli liquid diet for 5 days, followed by 10 days of 

5% (v/v) ethanol-containing or iso-caloric control liquid diet.  Then, animals 

receive a single binge (5 g/kg) of ethanol.  This model more accurately 

reproduces drinking patterns of alcoholic patients who typically have a history of 

chronic drinking coupled with episodes of binge drinking. In animals, this alcohol 

exposure model produces high BACs (approximately 0.4 g/dL), elevations of 

plasma transaminases, and steatohepatitis which is predominately neutrophilic in 

nature, similar to what is observed in patients with alcoholic hepatitis. 

Furthermore, this model requires only moderate technical skill, and is relatively 

low-cost. Overall, this mouse model reproduces pathologies seen in human 

alcoholic patients and is relatively simple to perform, making it a useful 

experimental model for addressing questions relating to alcohol toxicity in target 

organs. However, the effects chronic + binge alcohol exposure on target organs 

other than the liver, such as the lung, have not been characterized.   

 

7. Organ-organ crosstalk during alcohol exposure 

As discussed throughout the current Chapter, alcohol abuse affects 

several organs and cell types in the body. For example, end-stage, 

decompensated liver disease is widely recognized as a systemic disorder.  In 

fact, in patients with end-stage liver disease, cause of death is usually due to 

multiple organ failure, rather than liver disease itself (81).  In one recent study of 

patients with alcoholic hepatitis (AH), 36% of patients developed multiple organ 

failure (82). In addition to the liver, kidney failure was found to be the most 
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common, followed by circulatory failure, coagulopathy, respiratory failure, and 

neurological failure.  Ultimately, 90-day mortality in patients with multiple organ 

failure was found to be significantly higher than those without.  Furthermore, 

patients with AH are also susceptible to the development of systemic 

inflammatory response syndrome (SIRS).  This condition has also been 

associated with increased mortality.  Indeed, multiple organ failure and 

widespread, systemic inflammation, is a hallmark of the end stage of alcoholic 

liver disease.  

In addition to the end stage of disease, communication between the liver 

and other organs may be involved in the progression of disease in earlier, (i.e., 

inflammatory) stages.  A primary goal of this dissertation is to investigate organ-

organ interactions in the setting of chronic alcohol abuse, specifically, 

interactions between the liver and lung. The idea of the liver-lung axis in the 

setting of chronic alcohol exposure is based on clinical data demonstrating that 

patients with a diagnosed alcohol use disorder have increased incidence of and 

mortality from acute respiratory distress syndrome (ARDS), and in ARDS 

patients with hepatic failure, mortality increases to almost 100% (83).  More 

recent data have indicated that even early liver dysfunction in ARDS is 

associated with worse prognosis in these patients (84).  Additionally, 

experimental data suggest that communication with the liver may be required for 

lung injury in ALI models. For example, pulmonary injury induced by LPS can be 

altered by mediators released from the liver (e.g., TNFα).  Indeed, in an elegant 
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study by Siore and colleagues, LPS-induced lung damage required perfusion 

through the liver (85). 

In a more recent study from the Arteel group, mice were exposed to 

chronic ethanol on the Lieber DeCarli liquid diet for six weeks, followed by 

intraperitoneal injection of LPS to produce endotoxemia-induced ALI (35).  The 

differential effects on cytokine expression in systemic circulation and locally in 

the lung (i.e., in the BALF) were examined.  Animals pre-exposed to ethanol diet 

had significantly elevated levels of plasma TNFα after LPS injection compared to 

animals fed a control diet.  TNFα levels in the BALF, however, were unaffected, 

yet ethanol pre-exposed animals had elevated levels of the TNFα-responsive 

chemokines, MIP-2 and KC.  This elevated chemokine expression also 

correlated with increased pulmonary neutrophil recruitment.  Interestingly, 

blocking systemic TNFα using a TNFα-inhibiting antibody, etanercept, 

significantly attenuated the alcohol-enhanced pulmonary chemokine expression, 

and ultimately, alcohol-enhanced lung injury and inflammation after LPS.  While 

the liver is not the sole source of systemic TNFα in this experimental setting, 

other studies have demonstrated that ablation of Kupffer cells shows that these 

cells are in fact a predominate source of plasma TNFα in experimental 

endotoxemia (86).  These data, however, merely suggest a liver-lung axis in this 

disease state.  Targeted animal models to specifically investigate the role of liver-

derived mediators are not yet available. Therefore, a major goal of this 

dissertation is to develop a more specific system to directly examine the role of 

hepatic-derived cytokines in alcohol-enhanced pulmonary injury.  
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8. Statement of goals  

As discussed throughout this chapter (Section 4), the liver and the lung 

share many parallel mechanisms of injury in response to alcohol exposure, such 

as transitional remodeling of the ECM.  Furthermore, as discussed in Section 7, 

the liver and lung may communicate during the development of disease.  

Therefore, the goal of this dissertation is to expand on established mechanisms 

of alcohol-induced liver injury to ask innovative questions about mechanisms of 

alcohol-enhanced acute lung injury, as well as to develop new tools that may be 

used to gain novel insight into the liver-lung axis of alcohol-induced injury.  These 

goals will be discussed in detail in the following Section.  

 

B. Aims and proposals 
 
 

1. Investigating the role of PAI-1 in alcohol-enhanced acute lung injury: 
parallel mechanisms of liver and lung injury 

 

 

This dissertation proposes that exploring parallel mechanisms of liver and 

lung injury in response to chronic alcohol exposure will enhance the field’s 

understanding of alcohol-induced organ injury as a whole, as well as provide new 

targets for therapy.  Recent work in the Arteel laboratory indicates that activation 

of plasminogen activator inhibitor-1 (PAI-1) and subsequent fibrin ECM 

remodeling drives inflammatory liver damage in alcohol-induced liver injury.  

Previous studies have established that PAI-1-mediated ECM remodeling 

contributes to inflammatory damage in several organs, including lung.  However, 
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the role of PAI-1 in alcohol-enhanced ALI remains unknown.  It is hypothesized 

that PAI-1 induction and PAI-1-mediated fibrin accumulation in the lung is critical 

for the progression of alcohol-related lung inflammation.  The goals of the first 

Aim of this dissertation are therefore 1) to establish if PAI-1, as well as 

downstream targets of PAI-1 (e.g., fibrin) are up-regulated in a two-hit mouse 

model of chronic alcohol exposure and experimental endotoxemia, 2) to 

determine the role of PAI-1 in injury and inflammation in this model using PAI-1 

knockout mice, and 3) to establish a potential mechanism by which PAI-1 and 

fibrin are involved in alcohol-enhanced ALI.   

 

2. Characterizing lung injury in a clinically relevant mouse model of 
“chronic + binge” alcohol exposure 
 
 
A major focus of research in the Arteel group is to understand how alcohol 

abuse affects the organism as a whole, including multiple target organs 

simultaneously. One common limitation of the models typically employed to study 

the effects of alcohol on the lung is the absence of relevant pathology in other 

target organs, such as the liver.  Indeed, the ethanol in drinking water model, 

which is commonly used to study alcohol-induced lung toxicity, has been 

demonstrated to cause little to no liver pathology.  Interestingly, only a small 

minority of patients with alcohol use disorders have histologically normal livers 

(87).  Established in 2013, the “chronic + binge” (i.e. “NIAAA model” or “acute-on-

chronic model) is quickly becoming recognized as a more accurate 

representation of human alcohol abuse, particularly risky drinking behavior.  This 
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model has been used extensively to study the development and progression of 

alcoholic (steato)hepatitis.  However, the effects of acute-on-chronic alcohol 

exposure on the lung are unknown, although risky drinking behavior is clearly 

associated with ALI.  Therefore, it is proposed that chronic + binge alcohol 

exposure may unmask alcohol-induced pathologies in the lung that are not seen 

with other, more moderate patterns of alcohol exposure.  The goals of the 

second Aim of this dissertation are therefore 1) to characterize lung injury and/or 

inflammation in this clinically relevant model of alcoholic exposure, 2) to 

determine if acute-on-chronic alcohol exposure causes functional effects in the 

lung, and 3) to determine if alcohol exposure alone, absent any secondary injury 

is sufficient to cause pulmonary inflammation.  

 

3. Establishing a transgenic animal system to investigate 
communication between the liver and lung during alcohol exposure 

 

 

Recent work from this group has demonstrated that the liver and lung not 

only share parallel mechanisms of alcohol-induced injury, but that hepatic-

derived cytokines (TNFα) may, at least in part, contribute to lung injury.  This 

group showed that EtOH-fed mice that were co-treated with etanercept, a TNFα 

inhibitor, showed significantly attenuated lung injury after LPS injection.  

However, these data are only suggestive of a liver-lung axis in alcohol-induced 

organ toxicity. The third Aim of this dissertation will build on these findings by 

attempting to develop an inducible transgenic animal in which genes of interest, 

(e.g., TNFα converting enzyme (TACE)) may be selectively deleted from hepatic 
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macrophages, thereby providing a mechanism to definitively test the hypothesis 

that hepatic-derived inflammatory mediators play a significant role in alcohol-

enhanced ALI.  Furthermore, this transgenic system will have limitless 

applications in a wide variety of disease models. The goals of this Aim are 

therefore 1) to identify a drug-delivery method which selectively targets the liver 

versus the lung, and 2) to develop a transgenic animal to demonstrate the 

feasibility of selectively inducing a transgene in the liver versus the lung. 

 
 
Overall aim of this dissertation 
 
 

The overall aim of this dissertation is to expand on the unifying hypothesis 

that not only do the liver and lung share parallel mechanisms of injury in 

response to alcohol exposure, but that injury in these two systems may be 

interdependent.  For example, dysregulation of fibrinolysis has been 

demonstrated to be critical in the development of alcohol-induced liver injury, as 

well as in various models of ALI. However, the effect of PAI-1 and subsequent 

fibrin accumulation on alcohol-enhanced ALI is not known. This question will be 

addressed in Aim 1.  Additionally, recent data from this group, as well as others, 

have suggested that communication between the liver and lung, possibly via 

hepatic-derived inflammatory cytokines like TNFα, may contribute to alcohol-

enhanced injury and inflammation in the lung.  The pulmonary effects of a well-

established, relevant model of alcoholic liver disease, would therefore be of 

interest to establish. This question will be the primary goal of Aim 2 of this 

dissertation. Finally, although recent data with the TNFα inhibitor etanercept 
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suggests that hepatic-derived TNFα contributes to alcohol-enhanced ALI, an 

empirical system by which to address this mechanistic link remains 

unestablished. Aim 3 will seek to establish an inducible transgenic animal model 

to interrogate this hypothesis.  Taken together, this dissertation will build novel 

insight in the liver-lung axis of disease.  
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CHAPTER II 

 

EXPERIMENTAL PROCEDURES 

 

A. Animals and Treatments 

Mice were housed in a pathogen-free barrier facility accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care, and 

procedures were approved by the University of Louisville’s Institutional Animal 

Care and Use Committee. 

 

1. Animal sacrifice, tissue collection and storage 

At time of sacrifice, animals were anesthetized with ketamine/xylazine 

(100/15 mg/kg, i.p.).  Blood was collected from the vena cava just prior to 

sacrifice by exsanguination and citrated plasma was stored at -80 ˚C for further 

analysis.  Prior to lavage of the lungs, 10 mL of sterile PBS was perfused through 

the heart to flush the pulmonary vasculature of erythrocytes.  Bronchoalveolar 

lavage (BAL) was performed by flushing the lung two times with 400 μL sterile 

PBS.  Cells in the BALF were separated by centrifugation and removed from 

remaining BALF and fixed on slides for further analysis (88).  Portions of tissue 

(liver, lung, kidney, and spleen) were snap-frozen in liquid nitrogen for later 

analysis or fixed in 10% neutral buffered formalin for subsequent sectioning and 
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mounting on microscope slides  Total RNA was immediately extracted from fresh 

lung tissue using RNA STAT-60 (Tel-Test, Inc., Friendswood, TX) and 

chloroform:phenol separation (see section D for additional details). 

 

2. Chronic model of alcohol exposure 

Eight week old male C57BL6/J, Pai-1 knockout (B6.129S2-

Serpine1tm1Mlg/J: PAI-1−/−), and integrin β3 knockout (B6.129S2-Itgb3tm1Hyn/JSemJ: 

β3
-/-) mice were purchased from the Jackson Laboratory (Bar Harbor, ME) and 

exposed to either ethanol-containing Lieber-DeCarli diet (Dyets, Inc., Bethlehem, 

PA) or iso-caloric control diet.  During the exposure period, animals were housed 

in pairs in shoebox cages in a room held at 75 ˚F.  Diet was provided in vacuum 

tubes and replaced between 4:00 and 5:00 PM daily.  Both ethanol-fed animals 

and their pair-fed counterparts received control diet for the first two days of liquid 

diet feeding to allow acclimation to the liquid diet feeders.  After 2 days of 

acclimation, ethanol concentrations were increased incrementally over the 

course of three weeks before reaching the highest ethanol concentration, 6% 

(vol/vol) for the final three weeks of exposure.  Ethanol concentrations in the 

ethanol-containing diets were as follows: 0% for two days of acclimation, 1% for 

two days, 2% for two days, 4% for one week, 5% for one week, and 6% for three 

weeks.  Ethanol-containing diet was provided ad libitum for the entire course of 

the study.  Because of the relatively high caloric content of ethanol, pair-fed 

control animals received an iso-caloric control diet; the calories in the iso-caloric 

diet were matched by adding a calorie-equivalent of maltose-dextran.  To 
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account for the reduced food consumption of ethanol-fed mice, pair-fed mice 

were given the volume of diet consumed by their ethanol-fed counterparts the 

night before.  At the conclusion of the feeding period, the two diet groups were 

further separated into additional groups that received either LPS (E. coli; 10 

mg/kg i.p Sigma-Aldrich, St. Louis, MO) or vehicle (saline).  Animals were 

euthanized 4 or 24 h after LPS (or vehicle) injection, and samples were collected 

as described in section A1.  

 

3. Chronic + binge model of alcohol exposure 

Ten-week-old C57Bl6/J mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME).  Mice were treated as described by Bertola et al 

(80).  During the exposure period, animals were housed in pairs in shoebox 

cages in a room held at 75 ˚F.  Diet was provided in vacuum tubes and replaced 

between 4:00 and 5:00 PM daily. Animals were acclimatized to control (0% 

EtOH) Lieber-DeCarli liquid diet (Dyets, Inc., Bethlehem, PA) for 5 days.  Mice 

were then split into two groups to ethanol-containing (5% v/v) or iso-caloric 

control liquid diet for 10 days.  To account for the reduced food consumption of 

ethanol-fed mice, pair-fed mice were given the volume of diet consumed by their 

ethanol-fed counterparts the night before.  On day 11, mice received ethanol (5 

g/kg) or iso-caloric maltose dextran binge via oral gavage.  Mice were sacrificed 

9 or 24 hours post-binge.  Tissues were collected as described in section A1.  

 

 



25 
 

4. Generation of transgenic mice 

Female mice homozygous for tamoxifen-inducible Cre recombinase 

(B6;129-Gt(ROSA)26Sortm1(cre/ERT)Nat/J or simply, R26CreER) and male mice 

homozygous for a two-color fluorescent Cre reporter allele (B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J, or simply ROSAmT/mG) were purchased 

from the Jackson Laboratory (Bar Harbor, ME).  The two-color fluorescent 

reporter allele used in these experiments, also known as ROSAmT/mG expresses 

cell membrane-targeted red fluorescence (tdTomato) ubiquitously prior to 

exposure to Cre recombinase.  Upon Cre-mediated recombination, the tdTomato 

cassette, which is flanked by lox-p sites, is excised, allowing for expression of 

membrane-targeted enhanced green fluorescent protein (EGFP) located 

downstream.   

Female homozygous R26CreER mice were crossed with male ROSAmT/mG 

mice at 8-10 weeks of age to produce mice heterozygous for these two 

transgenes (R26CreER+/mTmG+, F1 generation).  All pups were weaned at post-

natal day 21.  Animals used in future experiments were between 6-12 weeks of 

age.  

 

5. Intraperitoneal administration of tamoxifen 

Tamoxifen (Sigma-Aldrich, St. Louis, MO) was injected in 

R26CreER+/mTmG+ mice according to a protocol described by The Jackson 

Laboratory (Bar Harbor, ME).  Briefly, tamoxifen was dissolved in corn oil (20 

mg/mL) by shaking overnight in a light-protected vessel at 37 ˚C.  Tamoxifen was 
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then injected at a final concentration of 75 mg/kg*bw once every 24 hours for a 

total of 5 consecutive days.  Mice were sacrificed 7 days after the final injection 

as described in Section A.1 and B.6.  

 

6. Intravenous administration of tamoxifen-loaded PLGA nanoparticles 

Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared in 200 µL 

sterile saline at a final concentration of 1.5 mg nanoparticles per 25 g of body 

weight.  Just prior to injection, nanoparticles were sonicated in a water bath 

sonicator for 1 minute to break up any nanoparticle clusters.  Mice were 

restrained, and nanoparticles were injected with a 28 gauge insulin syringe in the 

tail vein after warming the tail with a heat lamp.  Mice were sacrificed 7 days after 

the final injection as described in Section A.1 and B.6. 

 

7. Intrasplenic administration of tamoxifen-loaded PLGA nanoparticles 

PLGA nanoparticles were administered via intrasplenic injection in mice as 

described elsewhere (89) under aseptic conditions. Briefly, mice were 

anesthetized with inhaled isofluorane and abdominal hair was removed. After 

laparotomy, the spleen was visualized and PLGA nanoparticles were injected 

with a 28 gauge insulin syringe at a dose of 0. 0.375, 0.75, or 1.5 mg per 25 g of 

body weight in 200 µL sterile saline. Just prior to injection, nanoparticles were 

sonicated in a water bath sonicator for 1 minute to break up any nanoparticle 

clusters.  Antibiotics (penicillin [10,000 Units/mL] streptomycin [10,000 µg/mL]) 

(Life Technologies, Carlsbad CA) were administered intraperitoneally (50 µL) and 
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the incision was closed using 3-0 silk sutures. Animals were singly housed after 

the procedure and sacrificed as described in Section A.1 7 days later. Tissues 

were collected as described in Section A.1 and B.6.  

 

B. Histology 

1. General morphology 

Formalin fixed, paraffin embedded liver and lung tissues were cut at 5 μm 

and mounted on charged glass slides.  Sections were deparaffinized with 

Citrisolv (Thermo Fisher Scientific, Waltham, MA) and rehydrated through graded 

ethanol.  Sections were then stained with hematoxylin and eosin (H&E).  After 

staining, samples were dehydrated through graded alcohol, washed in Citrisolv 

and then mounted with Permount (Thermo Fisher, Waltham, MA). 

 

2. Scoring of alveolar septal thickening 

Twenty blinded photomicrographs per sample of hematoxylin and eosin-

stained paraffin embedded lung tissues were taken in successive fields at 400x 

magnification and saved.  Four randomly selected alveolar septa per photograph 

were measured using the straight line tool on ImageJ software (90).  Resulting 

measurements are given as length of the straight line pixels and represented as 

fold of control. As per guidelines established by the American Thoracic Society, 

areas of the tissue that were underinflated during histological preparation were 

avoided, as this may cause the septa to appear artificially thickened (29).  

Additionally, septa directly adjacent to a blood vessel or airway were avoided, as 



28 
 

these septa are normally thickened by collagen present in the 

peribronchovascular bundle (29). 

 

3. Neutrophil accumulation 

Neutrophil accumulation in lung tissue was measured using chloracetate 

esterase (CAE) staining.  Briefly, formalin fixed, paraffin embedded lung tissue 

was cut at 5 μm and mounted on charged glass slides.  Sections were 

deparaffinized with Citrisolv (Thermo Fisher Scientific, Waltham, MA) and 

rehydrated through graded ethanol.  Tissue specimens were incubated in a 

solution of napthol AS-D chloroacetate (1 mg/ml) in N,N-dimethylformamide, with 

4% sodium nitrite and 4% new fuchsin (Sigma-Aldrich, St. Louis, MO).  The 

napthol AS-D chloroacetate is enzymatically hydrolyzed by chloroacetate 

esterase in neutrophils, liberating the napthol compound.  Napthol combines with 

a freshly-formed diazonium salt, leaving bright pink color deposits at the site of 

enzymatic activity (University of Calgary Airway Inflammation Research Group).   

 

4. Immunohistochemistry 

Immunohistochemistry for CD41 was performed by the Michigan State 

University Investigative Histopathology Laboratory.   Previously sectioned slides 

were subsequently de-paraffinized in xylene and hydrated through descending 

grades of ethyl alcohol to distilled water.  Slides were placed in Tris Buffered 

Saline pH 7.4 (Scytek Labs, Logan, UT) for 5 minutes for pH adjustment.  

Following TBS, slides underwent heat retrieval utilizing Scytek Citrate Plus 
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Retrieval pH 6.0 in a vegetable steamer for 30 minutes at 100C, allowed to cool 

on the counter at room temperature for 10 minutes and rinsed in several changes 

of distilled water. Endogenous Peroxidase was blocked utilizing 3% Hydrogen 

Peroxide / Methanol bath for 30 minutes followed by running tap and distilled 

water rinses.  Following pre-treatment standard micro-polymer complex staining 

steps were performed at room temperature on the IntelliPath™ Flex Autostainer.  

All staining steps are followed by rinses in TBS Autowash buffer (Biocare 

Medical, Concord, CA).  After blocking for non-specific protein with Background 

Punisher (Biocare) for 5 minutes; sections were incubated with Rabbit Polyclonal 

anti - CD41/integrin αIIB (Abcam ab83961, Cambridge, MA) @ 1:100 in normal 

antibody diluent (NAD-Scytek) incubated for 2 hours. Mach 3 Probe and Mach 3 

Polymer™ anti rabbit reagents (Biocare) were applied for 10 minutes each 

followed by reaction development utilizing Romulin AEC™ (Biocare) for 5 

minutes and counterstain with (Biocare) Cat Hematoxylin for 5 minutes.  Slides 

were visualized on a Nikon Eclipse E600 microscope (Nikon Corporation, Tokyo, 

Japan), and DAB staining was quantified in ten high-magnification (400x) fields 

using Metamorph software (Molecular Devices, Sunnyvale, CA). 

Green fluorescent protein (GFP) was detected immunohistochemically in 

liver and lung sections.  Previously sectioned formalin-fixed, paraffin-embedded 

liver and lung sections were deparaffinized and heat-mediated antigen retrieval 

was performed in 0.01 M sodium citrate (pH 6.0) in a vegetable steamer. 

Following antigen retrieval, endogenous peroxidases were quenched in 3% 

hydrogen peroxide. Blocking for endogenous biotin was performed using a 
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commercially available kit (Agilent Technologies, Santa Clara, CA). Prior to 

applying primary antibody, sections were blocked in 10% goat serum in PBS.  

Sections were incubated in 1:200 rabbit anti-GFP (Cell Signaling Technologies 

2956S, Danvers, MA) overnight at 4 ˚C. The Vectastain Elite ABC kit was used 

for detection (Vector Laboratories, Inc., Burlingame, CA). Briefly, tissues were 

incubated in a biotinylated anti-rabbit IgG secondary antibody for 30 minutes at 

room temperature. Tissues were washed and incubated in a solution containing 

avidin-bound horseradish peroxidase (HRP) for 30 minutes. The HRP substrate 

3, 3’-diaminobenzidine (DAB) (Agilent Technologies, Santa Clara, CA) was 

added to sections until positive (brown) staining was macroscopically visible. 

Slides were counterstained with hematoxylin for 1 minute, washed, dehydrated 

through graded ethanol and then mounted with Permount (Thermo Fisher, 

Waltham, MA). Each slide contained a negative tissue section that did not 

receive primary antibody.  Slides were visualized using a Nikon Eclipse E600 

microscope (Nikon Corporation, Tokyo, Japan) with Metamorph software 

(Molecular Devices, Sunnyvale, CA). 

 

5. Immunofluorescence  

Immunofluorescent detection of fibrin accumulation has been described 

previously (38), and was conducted with minor modifications.  Previously 

sectioned lung tissues (5 µM) were deparaffinized with Citrisolv (Thermo Fisher, 

Waltham, MA) and rehydrated through graded ethanol.  To quench 

autofluorescence of paraffin-embedded tissue, tissue sections were incubated in 
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70% EtOH containing 0.25% NH4OH for 1 hour at room temperature during 

deparaffinization.  Proteolytic digestion was performed by incubating 

deparaffinized tissue sections using 0.03% Pronase E (Sigma-Aldrich, St. Louis, 

MO) for 10 minutes at 37˚ C, then sections were incubated in sodium 

borohydride (10 mg/mL) for 40 minutes at room temperature for additional 

autofluorescence quenching.  To minimize non-specific binding of the antibody, 

sections were incubated in 10% goat serum in PBS for 30 minutes at RT.  

Sections were then incubated with rabbit polyclonal anti-fibrinogen (Agilent 

Technologies A0080, Santa Clara, CA) in blocking buffer (1:1000) overnight at 4 

˚C.  After washing in PBS, sections were incubated with AlexaFluor 488 goat 

anti-rabbit secondary antibody (1:500) (Life Technologies, Carlsbad, CA) in 

blocking buffer for 3 hours at RT.  After washing, slides were mounted with 

VECTASHIELD Antifade Mounting Medium with DAPI (Vector Labs, Burlingame 

CA).  Slides were visualized a Nikon Eclipse E600 microscope (Nikon 

Corporation, Tokyo, Japan) with Metamorph software (Molecular Devices, 

Sunnyvale, CA).  

 

6. Visualization of red and green fluorescence in frozen tissue sections 

For visualization of TdTomato red fluorescent protein (RFP) and enhanced 

green fluorescent protein (EGFP) native fluorescence in tissues, mice were 

perfused through the heart with ice cold 4% paraformaldehyde (PFA) in 0.1 M 

PBS. Tissues were fixed in 4% PFA in 0.1 M PBS for 24 hours.  After fixing, 

tissues were cryoprotected in 30% sucrose solution for 24 hours, then embedded 



32 
 

in Tissue-Plus Optimal Cutting Temperature (OCT) embedding medium (Thermo 

Fisher, Waltham MA) by freezing in liquid nitrogen.  After embedding, samples 

were allowed to come to -20 ˚C and sectioned at 5 µM on a Leica cryostat.  

Sections were air-dried for 1 hour at RT, washed 3 times in PBS, and mounted 

with VECTASHIELD Antifade Mounting Medium with DAPI (Vector Labs, 

Burlingame CA).  Slides were visualized using a Nikon Eclipse E600 microscope 

(Nikon Corporation, Tokyo, Japan) with Metamorph software. 

 

7. Differential staining of BAL cells 

Cells in BAL fluid were counted using a hemocytometer, and cells were 

spun onto glass slides using a Cytospin centrifuge (Thermo Fisher Scientific, 

Waltham, MA).  Cells were stained with the Shandon Kwik-Diff (Thermo Fisher 

Scientific, Waltham, MA) differential staining kit according to manufacturer’s 

instructions.  Slides were visualized on a Nikon Eclipse E600 microscope (Nikon 

Corporation, Tokyo, Japan) with Metamorph software (Molecular Devices, 

Sunnyvale, CA), and total number of cells in 2 low-magnification (100x) fields 

were counted using ImageJ software.  

 

C. Clinical chemistry 

1. Plasma transaminase activity 

Plasma activity levels of alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) were determined spectrophotometrically using standard 

kits (Thermo Fisher Scientific, Waltham, MA). 
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2. Myeloperoxidase Activity 

Myeloperoxidase activity was measured as previously described (91, 92). 

Frozen lung tissue samples were thawed and homogenized in 50 mM potassium 

phosphate buffer (pH 6.0), then centrifuged at 9000 x g for 15 minutes at 4˚C.  

Supernatant (containing hemoglobin) was discarded, and the resulting pellet was 

resuspended in potassium phosphate buffer (pH 6.0) containing 50 mM 

hexadecyltrimethylammonium bromide (HTAB) and homogenized again.  This 

suspension was sonicated, and snap frozen in liquid nitrogen and thawed for 

three freeze-thaw cycles.  Samples were then centrifuged at 9000 x g for 10 

minutes at 4˚C. The resulting supernatant was then assayed 

spectrophotometrically for myeloperoxidase activity in 50 mM potassium 

phosphate (pH 6.) with 0.0005% hydrogen peroxide and 0.167 mg/mL o-

dianisidine dihydrochloride (substrates of myeloperoxidase) at 450 nm.  Results 

are reported as rate of reaction per mg of lung tissue. 

 

3. BALF total protein measurement 

BALF from treated animals was collected as described previously.  Total 

protein in BALF was measured spectrophotometrically using a modified Lowry 

Assay (Bio-Rad DC Protein Assay, Bio-Rad Laboratories, Hercules CA) 

according to manufacturer’s instructions.   
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4. ELISA 

Plasma thrombin-antithrombin (TAT) complex levels were detected in 

citrated plasma as previously described (38, 93) using a commercially available 

ELISA kit (Dade Behring Inc., Deerfield, IL).  

 

D. RNA Isolation and Quantitative Reverse-Transcription Polymerase 

Chain Reaction 

 

Total RNA was extracted from lung tissue by a guanidinium thiocyanate-

based method (RNA STAT-60, Tel-Test, Inc., Friendswood, TX). RNA 

concentrations were determined spectrophotometrically and 1µg of total RNA 

was reverse transcribed using a kit (Quantabio, Beverly, MA). 

The pulmonary mRNA expression of select genes was detected by 

quantitative reverse-transcription polymerase chain reaction (qRT-PCR), which is 

routine for the Arteel group (38).  PCR primers and probes for Tnf-α, Pai-1, Il-6, 

and Il-1β were designed using Primer 3 (Whitehead Institute for Biomedical 

Research, Cambridge MA).  Primers and probes for Icam-1, Vcam-1, 

Pecam/Cd31, Cxcl2, Cxcl1, F4/80, Cxcl15, Ly6g, Cd68, and β-actin were 

purchased from Life Technologies (Carlsbad, CA).  All primers were designed to 

cross introns and ensure that only cDNA and not genomic DNA was amplified.  

PerfeCta qPCR Fast Mix (Quantabio, Beverly, MA) was added to the PCR 

mixture.  This 2X mixture is optimized for TaqMan reactions and contains MgCl2, 

dNTPs, and AccuFast Taq DNA Polymerase.  Amplification reactions were 

carried out using the ABI StepOne Plus machine and software (Applied 

Biosystems, Foster City, CA) with initial holding stage (95˚C for 30 seconds) and 
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50 cycles of a 2-step PCR (95˚C for 30 seconds, 60˚C for 20 seconds).  

Fluorescent intensity of each sample was measured at each cycle to monitor 

amplification of the target gene.  The comparative CT method was used to 

determine fold changes in mRNA expression compared to an endogenous 

reference gene (β-actin).  This method determines the amount of target gene, 

normalized to an endogenous reference and relative to a calibrator (2ΔΔCT). 

 

E. Pulmonary Mechanics Measurements 

Pulmonary mechanics at baseline and in response to inhaled 

methacholine were measured in mice as described in (94). Measurements were 

performed by forced oscillation technique using a flexiVent system (SCIREQ, 

Montreal, Quebec, Canada). Mice were anesthetized with tribromoethanol (375 

mg/kg i.p.). A cannula connected to a pressure transducer and ventilator was 

inserted into the trachea. Mice were placed on a warming plate and attached to 

EKG leads, and lungs were mechanically ventilated with air at a tidal volume of 6 

ml/kg and a frequency of 150 breaths/min. To prevent endogenous breathing 

effort, mice were given pancronium bromide (0.8 mg/kg i.p.) every 20 min until 

the completion of airway reactivity measurements. During the experiment, mice 

were given additional tribromoethanol to maintain heart rate at or below the 

baseline level. Baseline pulmonary mechanics measurements were collected 

using 1) a single perturbation at 2.5 Hz to derive resistance and compliance 

based on the single compartment model, 2) a broadband perturbation from 1 to 

20.5 Hz to derive frequency-dependent impedance and parameters based on the 
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constant phase model, and 3) quasi-static pressure-volume curves. Following 

baseline assessment, measurements were then repeated following 

administration of increasing doses of aerosolized methacholine generated from 

solutions of 0, 6.25, 12.5, 25, or 50 mg/mL methacholine. Methacholine was 

aerosolized for 10 seconds from an Aeronib nebulizer that delivered 0.15 mL/min 

and respiratory parameters were repeatedly collected for a total of 15 

measurements of each parameter. For each methacholine dose the average of 

15 measurements was collected.  

 

F. Synthesis of PLGA nanoparticles 

PLGA nanoparticles (NPs) encapsulating tamoxifen (Sigma-Aldrich, St. 

Louis, MO) were synthesized as previously described, using an oil-in-water (o/w) 

single emulsion technique (95-97).  Briefly 100 mg tamoxifen was dissolved in 2 

mL dichloromethane (DCM). In parallel, 100 mg poly(lactic-co-glycolic acid) 

(PLGA) carboxyl-terminated polymer (0.55-0.75 dL/g, LACTEL®, DURECT Corp.) 

was dissolved in 1 mL of DCM. The PLGA and tamoxifen (200 µL) solutions were 

combined to obtain a final theoretical loading of 200 µg tamoxifen per mg of 

PLGA. The PLGA/tamoxifen/DCM solution was added dropwise to a 2 mL 5% 

polyvinyl alcohol (PVA) solution, then vortexed and sonicated. Residual DCM 

was evaporated by adding the NP solution to 50 mL of 0.3% PVA for 3 hrs while 

mixing.  After solvent evaporation, the tamoxifen NPs were transferred to tubes 

and centrifuged at 20,444 x g at 4°C and washed 3 times in deionized water 

(diH2O).  NPs were frozen, lyophilized, and stored at -20°C until use.  
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G. Characterization of PLGA nanoparticles 

Particle size and morphology were determined using scanning electron 

microscopy (SEM, JSM-820, JEOL). Dry NPs were mounted on carbon tape and 

sputter-coated with gold under vacuum. The average unhydrated NP diameters 

were determined from SEM images of at least 200 particles per batch using 

ImageJ image analysis software.   

The amount of tamoxifen encapsulated within the NPs was quantified by 

dissolving 3-5 mg tamoxifen NPs and control blank NPs in dimethyl sulfoxide 

(DMSO) for 30 min. Subsequent dilutions were done to obtain samples within the 

linear range of a free tamoxifen standard in DMSO.  The loading of tamoxifen, 

defined as the amount of tamoxifen incorporated per milligram of NP, was 

measured using UV absorption spectroscopy at 265 nm. Background 

measurements of blank NPs in DMSO were subtracted from tamoxifen NP 

sample readings. Encapsulation efficiency, or the percent Tamoxifen 

incorporated relative to the amount of tamoxifen initially loaded, was calculated 

as follows: [(Mass of tamoxifen incorporated per mg of NP) / (Mass of tamoxifen 

initially added to electrospinning solution per mg of NP)] x 100.  

To determine the release profiles of the tamoxifen in vitro, triplicate NP 

samples of 3-5 mg were suspended in 1 mL PBS. NP samples were incubated at 

37°C and constantly shaken. At each of the following time points: 1, 4, 8, 24, 48, 

72, and 168 hrs, NPs were centrifuged to obtain a pellet (13,000 rpm), and the 

complete volume of PBS was removed and replaced with fresh PBS.  Tamoxifen 



38 
 

released into PBS was quantified using absorption spectroscopy at 265 nm. All 

samples were analyzed in triplicate.  

 

H. Statistical Analyses 

Results are reported as means ± standard error (SEM). Unless otherwise 

specified, one-way or two-way ANOVA with Bonferroni’s post-hoc test (for 

parametric data) or was used for the determination of statistical significance 

among multiple treatment groups, as appropriate.  A p value less than 0.05 was 

selected before the study as the level of significance. 
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CHAPTER III2 

 

PLASMINOGEN ACTIVATOR INHIBITOR 1 PLAYS A CRITICAL ROLE IN 

ALCOHOL-ENHANCED ACUTE LUNG INJURY IN MICE2 

 

A. Introduction 

Alcohol consumption is a common custom worldwide.  In the United 

States alone, 87.6% of adults report consuming alcohol at some point in their 

lives (98).  This widespread consumption of alcohol continues, despite the fact 

that the detrimental health effects of alcohol abuse are well-established.  In fact, 

alcohol is known to contribute to the development of over 200 disease states 

(99), making alcohol the fifth leading risk factor for premature death and disability 

worldwide (100).  The lung is recognized as a target of chronic alcohol abuse, 

and alcohol-related lung injury is estimated to account for tens of thousands of 

deaths in the United States each year (18).  Although chronic alcohol 

consumption is not directly linked to the development of lung disease per se, it 

appears to sensitize the lung to damage from other causes.  For example, acute 

respiratory distress syndrome (ARDS), the most severe form of acute lung injury 

(ALI), occurs 3.7 times more often in people meeting the diagnostic criteria for 

alcohol use disorders, and these patients have a worse prognosis (19-21).   

                                                           
2  Published in Poole LG et al. Am J Respir Cell Mol Biol. 2017 Apr 26. Reprint with permission. 
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The exact mechanisms by which alcohol sensitizes the lung to ALI are 

incompletely understood.  Although alcohol does not appear to directly cause 

overt histologic injury to the lung, experimental alcohol exposure induces 

expression of pro-inflammatory cytokines (22-24), activates tissue remodeling 

(26, 27), and increases oxidative stress in rodent lungs (28).  These factors are 

hypothesized to contribute to the development of an “alcoholic lung” phenotype, 

which enhances the host’s susceptibility to serious lung diseases (18).  Better 

understanding of this complex process could identify potential therapeutic targets 

to treat or prevent alcohol-related lung dysfunction, including enhanced 

susceptibility to ALI and ARDS.  

Plasminogen activator inhibitor-1, or PAI-1, is a key regulator of the 

fibrinolytic system.  PAI-1 is an acute phase protein normally expressed by 

adipocytes and endothelial cells, but is inducible in other cell types, including 

macrophages, during times of inflammation and/or stress (45).  PAI-1 is readily 

induced by almost all stress signaling, including hypoxia, oxidative stress and 

inflammatory cytokines (101). PAI-1 is the primary physiological inhibitor of 

fibrinolysis.  PAI-1 inhibits tissue-type plasminogen activator and urokinase-type 

plasminogen activator (tPA and uPA, respectively), enzymes that convert 

plasminogen to plasmin, which degrades fibrin.  The Arteel group has 

demonstrated that PAI-1 is critical in experimental inflammatory liver injury 

caused by alcohol (38, 46).  PAI-1 also plays a critical role in experimental ALI 

(54), and is a suspected to contribute to the incidence and severity of ARDS in 

humans (50, 52).  However, the contribution of PAI-1 in alcohol-enhanced ALI 
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has not been determined.  The purpose of this study was to determine the role of 

PAI-1 in alcohol-enhanced inflammatory lung injury caused by LPS.   

 

B. Experimental Procedures 

1. Animals and treatments 

Animals were administered ethanol-containing Lieber-Decarli liquid diet for 

6 weeks and injected with LPS (See Scheme 1.1) as described in Chapter II, 

Section A.2.  Upon sacrifice, tissues were collected as described in Chapter II, 

Section A.1.  

  

2. Histology 

Lung tissues were stained with hematoxylin and eosin for general 

morphology and scored as described in Chapter II, Sections B.1 and B.2  

Neutrophil accumulation in tissues were visualized with chloracetate esterase 

staining as described in Chapter II, Sections B.3.  CD41 and Fibrin were detected 

in paraffin-embedded lung sections as described in Chapter II, Sections B.4 and 

B.5.  

 

3. Clinical chemistry 

BALF total protein levels were measured as described in Chapter II, 

Section C.3.  Plasma thrombin anti-thrombin (TAT) was detected using a 

commercially available ELISA kit, as described in Chapter II, Section C.4.  



42 
 

Myeloperoxidase activity in lung tissue was measured as described in Chapter II, 

Section C.2.  

 

4. RNA Isolation and qRT-PCR 

Details for RNA isolation and qRT-PCR are described in Chapter II, 

Section D.  

5. Statistical analysis  

Statistical analysis was performed as described in Chapter II. 

 

C. Results 

1. Chronic ethanol feeding enhances pulmonary PAI-1 expression and 
fibrin accumulation caused by LPS. 
 
PAI-1 is proposed to play a role in models of ALI in the absence of alcohol  

(53, 54).  Furthermore, PAI-1 is critically involved in alcohol-induced liver injury 

(47). Therefore, animals were treated with chronic ethanol-containing diet and 

LPS as described in Chapter II (Scheme 3.1.), and the effects of ethanol and 

LPS on pulmonary PAI-1 expression were determined (Figure 3.1A).  LPS  

administration robustly increased the expression of Pai-1 mRNA (~1000 fold, 

p<0.05) in the lungs.  Although, ethanol feeding alone did not affect Pai-1  

expression, it significantly enhanced the increase in Pai-1 expression caused by  

LPS, with values ~2-fold higher than with LPS alone. PAI-1 protein levels in the 

BAL fluid (24 h after LPS) paralleled the pattern of mRNA expression (Figure 

3.1A).   
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Scheme 3.1: Lieber-DeCarli model of chronic alcohol exposure and 

experimental endotoxemia 

Mice received ethanol-containing or isocaloric maltose-dextrin containing 

Lieber-DeCarli diet (see Experimental Procedures) for six weeks and were 

injected with LPS (10 mg/kg i.p.) or vehicle (saline) 4 or 24 hours prior to 

sacrifice. 
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Figure 3.1. Effect of ethanol on LPS-induced pulmonary PAI-1 expression 

and pulmonary fibrin accumulation.  

Pulmonary Pai-1 mRNA expression measured by qRT-PCR and PAI-1 protein 

levels in BAL fluid. (B) Representative photomicrographs (400×) of pulmonary 

fibrin deposition detected immunofluorescently (green) in paraffin-embedded 

tissues 24 h after LPS injection. Results are reported as means ± standard 

error mean (SEM; n= 4-6), a, p < 0.05 compared to pair-fed control, b, p < 0.05 

compared to LPS alone, c, p < 0.05 compared to WT animals. Appears in 

Poole LG et al. Am J Respir Cell Mol Biol. 2017 Apr 26. DOI: 

10.1165/rcmb.2016-0184OC, reprinted with permission.  
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As the canonical inhibitor of urokinase-type plasminogen activator and 

tissue-type plasminogen activator, PAI-1 induction prevents the degradation of 

fibrin by plasmin.  Therefore, fibrin accumulation in lung tissue was also 

measured.  Figure 3.1B shows representative photomicrographs of lung tissue 

stained immunofluorescently for fibrin.  LPS administration caused fibrin to 

accumulate in both vascular and extravascular tissue in the lung 24 h after LPS.  

There was no detectable effect of LPS on this variable at the 4 h time point (not 

shown).  In contrast, ethanol feeding alone did not affect pulmonary fibrin 

deposition; however, it enhanced fibrin accumulation caused by LPS 

administration (Figure 3.1B).  

 

2. PAI-1 deficiency blocks alcohol-enhanced pulmonary fibrin 
deposition and LPS-induced pulmonary platelet accumulation. 

 
Fibrin may accumulate at sites of injury via enhanced activation of the 

coagulation cascade (i.e., thrombin activation), or by impaired fibrinolysis (i.e., 

PAI-1 induction).  Therefore, the effect of PAI-1 deficiency on activation of the 

coagulation cascade was determined.  In the current study, ethanol pre-exposure 

enhanced Pai-1 expression in the lung after LPS exposure, and this enhanced  

Pai-1 expression correlated with increased deposition of fibrin in lung tissue  

(Figure 3.1A and 3.1B). LPS administration significantly increased plasma TAT (4  

h after injection) by 7-fold, indicating activation of the coagulation cascade 

(Figure 3.2A).  Ethanol feeding alone did not significantly enhance plasma TAT; 

however, ethanol significantly enhanced the increase caused by LPS 

administration, with values ~13-fold over control.  Interestingly, PAI-1 deficiency 
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Figure 3.2. Effect of PAI-1 deficiency on pulmonary fibrin accumulation 

and platelet accumulation.  

(A) Plasma thrombin anti-thrombin (TAT) levels. (B) Representative 

photomicrographs (400x) of pulmonary fibrin deposition detected 

immunofluorescently in paraffin-embedded tissues 24 h after LPS injection. 

(C). Representative photomicrographs (400x) of platelets detected 

immunohistochemically in paraffin-embedded sections via integrin αIIB (CD41) 

4 h after LPS injection. (D) Quantitative image analysis of CD41-positive 

staining. Results are reported as means ± standard error mean (SEM; n= 4-6), 

a, p < 0.05 compared to pair-fed control, b, p < 0.05 compared to LPS alone, c, 

p < 0.05 compared to WT animals. Appears in Poole LG et al. Am J Respir Cell 

Mol Biol. 2017 Apr 26. DOI: 10.1165/rcmb.2016-0184OC, reprinted with 

permission. 
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Figure 3.2: Effect of PAI-1 deficiency on pulmonary fibrin accumulation 

and platelet accumulation  

(A) Plasma thrombin anti-thrombin (TAT) levels. (B) Representative 

photomicrographs (400×) of pulmonary fibrin deposition detected 

immunofluorescently (green) in paraffin-embedded tissues 24 h after LPS 

injection. (C). Representative photomicrographs (400×) of platelets detected 

immunohistochemically in paraffin-embedded sections via integrin αIIB (CD41) 4 

h after LPS injection. (D). Quantitative image analysis of CD41-positive 

staining. Results are reported as means ± standard error mean (SEM; n= 4-6), 

a, p < 0.05 compared to pair-fed control, b, p < 0.05 compared to LPS alone, c, 

p < 0.05 compared to WT animals.  
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dramatically attenuated pulmonary fibrin deposition (Figure 3.2B), despite plasma 

TAT being unchanged in knockout animals (Figure 3.2A).  

One potential mechanism by which fibrin matrices can be pro-

inflammatory is by contributing to platelet aggregation.  Fibrin can drive platelet 

aggregation at sites of injury, and in turn, the platelets themselves may 

propagate injury (102).  Therefore, platelet accumulation in lung tissue was 

determined immunohistochemically by detecting the platelet-specific integrin 

αIIBβ3 and subsequently performing quantitative image analysis (Figure 3.2C and 

3.2D).  Ethanol feeding alone had no significant effect on platelet accumulation 

(CD41-positive staining), and LPS administration significantly enhanced platelet 

accumulation in lung tissue. LPS-induced platelet accumulation was not affected 

by ethanol pre-exposure. PAI-1 deficiency prevented platelet accumulation in 

lung tissue after LPS administration. 

 

3. PAI-1 deficient mice are protected from alcohol-enhanced edematous 
lung injury caused by LPS.  
 
The results described in Figures 3.1 and 3.2 suggest that ethanol feeding 

enhances LPS-induced fibrin deposition at least in part by super-inducing PAI-1 

expression (Figure 3.1A and 3.2B).  Additionally, Figure 3.2C indicates that PAI-1 

is critical for LPS-induced platelet aggregation in lung tissue.  Previous studies 

indicate that PAI-1 contributes to inflammatory damage to the lungs (53, 54), as 

well as other organs (e.g., liver) (38), and that platelet aggregation is involved in 

the development of ALI (103).  It is also known that chronic ethanol feeding 

sensitizes the lung to endotoxemia-induced ALI and enhances edematous lung 
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injury (e.g.,(28, 104)).  Therefore, the effect of PAI-1 deficiency on alcohol-

enhanced experimental ALI was determined.  

There was no significant effect of diet or genotype on growth of animals 

over the six week feeding period (not shown).  Additionally, neither ethanol pre-

exposure nor genotype affected attrition after LPS injection.  As expected (104), 

extrathoracic LPS administration caused pulmonary injury and inflammation, as 

indicated by extravasation of erythrocytes (4 h after LPS, data not shown) and 

inflammatory cells (4 h after LPS) [Figure 3.3A (insets) and 3.3B].  At the 4 h time 

point, there was no discernable effect of ethanol pre-exposure on LPS-induced 

injury.  Additionally, ethanol feeding was associated with pulmonary edema 24 

hours after LPS administration, as indicated by an increase in BAL total protein 

content (Figure 3.3C) and enhanced thickening of the alveolar septa (Figure 

3.3D).  The increase in BAL protein and in septal thickening caused by the 

interaction of ethanol and LPS was completely attenuated in PAI-1-/- mice 

compared to wild-type (Figure 3.3A, bottom panels, Figure 3.3C, and 3.3D).  LPS 

administration increased the number of pulmonary neutrophils, as indicated by 

an increase in MPO activity (Figure 3.3B).  Ethanol exposure did not significantly 

alter the increase in MPO activity caused by LPS.  

 

4. Alcohol enhances LPS-induced cytokine/chemokine expression; 
effect of PAI-1 or integrin β3 deficiency.  
 
The results of the current study indicate that PAI-1 deficiency attenuates 

alcohol-enhanced pulmonary fibrin deposits and platelet accumulation, and also 

protects against alcohol-enhanced acute lung injury.  Although the number of  
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Figure 3.3: Effect of PAI-1 deficiency on ethanol-enhanced ALI.  

(A) Representative photomicrographs (400×, hematoxylin & eosin) of formalin-

fixed paraffin-embedded lung tissues 24 h after LPS and CAE staining (inset, 

800×). Neutrophils are shown as bright pink cells (4 h after LPS). (B) 

Pulmonary MPO activity 4 h after LPS. (C) BAL total protein content 24 h after 

LPS. (D) Quantification of alveolar septal thickening, as described in Materials 

and Methods, 24 h after LPS. Results are reported as means ± standard error 

mean (SEM; n= 4-6), a, p < 0.05 compared to pair-fed control, b, p < 0.05 

compared to LPS alone, c, p < 0.05 compared to WT animals. Appears in 

Poole LG et al. Am J Respir Cell Mol Biol. 2017 Apr 26. DOI: 

10.1165/rcmb.2016-0184OC, reprinted with permission. 
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infiltrating neutrophils is unaffected by ethanol pre-exposure or PAI-1 deficiency, 

the phenotype of recruited inflammatory cells may be influenced by how these 

factors affect inflammatory cytokine and chemokine expression (105).  Therefore, 

the mRNA expression of key inflammatory mediators was measured in whole 

lung homogenate (Figure 3.4).  Protein levels of cytokines and chemokines 

relative to mRNA expression has been validated previously (104).  Ethanol alone 

did not affect expression of any of the tested cytokines (Tnfα, Il-6, Il-1β; 3.4A), 

chemokines (KC (Cxcl1), MIP-2 (Cxcl2); 3.4A) or adhesion molecules (Icam-1, 

Vcam-1, Pecam; 3.4A) measured.  LPS administration induced expression of all 

variables, with the exception of Pecam, which was significantly decreased by 

LPS administration (Figure 3.4A).  As demonstrated previously (104), ethanol 

feeding enhanced the induction of Il-6, Cxcl1 (KC), Cxcl2 (MIP-2), Icam-1, and 

Vcam-1 expression caused by LPS.  With the exception of Il-6, these effects of 

ethanol were significantly attenuated in PAI-1-/- mice, with values in the knockout 

strain similar to wild-type mice receiving LPS in the absence of ethanol feeding.   

For example, the expression of MIP-2 caused by ethanol/LPS was ~3-fold lower 

in PAI-1-/- compared to wild-type mice. In the absence of ethanol pre-exposure, 

PAI-1 deficiency did not significantly affect LPS-induced expression of any 

mediators measured compared to wild-type animals (Figure 3.4A).  

The CXC chemokines, MIP-2 (CXCL1) and KC (CXCL2) are murine 

homologues of IL-8. In experimental studies, these chemokines are critical for the 

development of ALI (106).  In the current study, ethanol feeding enhances 

expression of the chemokines MIP-2 and KC, and this effect is significantly  
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Figure 3.4: Effect of PAI-1 deficiency and integrin β3 deficiency on LPS-

induced cytokine and chemokine expression. 

(A) Pulmonary mRNA expression in whole lung homogenate of cytokines, 

chemokines, and vascular adhesion molecules measured by qRT-PCR in wild-

type and PAI-1 knockout mice treated with ethanol and/or LPS. (B) Pulmonary 

mRNA expression of select chemokines measured by qRT-PCR in wild-type or 

integrin β3 knockout mice measured by qRT-PCR.  Results are reported as 

means ± standard error mean (SEM; n= 4-6), a, p < 0.05 compared to pair-fed 

control, b, p < 0.05 compared to LPS alone, c, p < 0.05 compared to WT 

animals. Appears in Poole LG et al. Am J Respir Cell Mol Biol. 2017 Apr 26. 

DOI: 10.1165/rcmb.2016-0184OC, reprinted with permission. 
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attenuated in PAI-1 deficient mice (Figure 3.4A).  One potential mechanism that 

may drive expression of these CXC chemokines is aggregation of platelets in the 

pulmonary vasculature (107).  Results in Figure 3.2C indicate that PAI-1 

deficiency attenuates LPS-induced platelet aggregation in the lung, which is 

mediated, at least in part, by integrin αIIBβ3 binding to fibrin.  Therefore, the effect 

of β3 integrin deficiency on ethanol-enhanced expression of the chemokines MIP-

2 and KC in whole lung homogenate were determined (Figure 3.4B).  The 

enhanced induction of pulmonary MIP-2 and KC caused by the interaction of 

ethanol and LPS exposure was completely attenuated by β3 deficiency.  

Interestingly, the super-induction of PAI-1 caused by this interaction was also 

completely attenuated (Figure 3.4B).  Markers of other integrin β3-expressing 

cells, such as Th17 cells (e.g., IL-22 and IL-23), were also measured, and found 

to be unaffected by diet or genotype (data not shown).  Moreover, the surface 

expression of CD41 is altered by β3 deficiency (108), so quantitation of CD41 

staining via image analysis was not feasible.  However, morphologic assessment 

of CD41 staining in β3 knockout mice suggested that β3 deficiency blocks LPS-

induced platelet accumulation in the lung after ethanol (not shown), similar to 

findings in PAI-1 deficient mice (Figure 3.2).   

  

D. Discussion 

Endotoxemia in the setting of sepsis is one of the top causes of acute lung 

injury.  As mentioned in the Introduction, chronic alcohol exposure is one of the 

most clinically important susceptibility factors for this deadly disorder in at-risk 
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individuals. The goal of the current study was to investigate the mechanisms 

responsible for these events in mice exposed to ethanol chronically (6 weeks) 

followed by induction of endotoxemia.  Furthermore, this study explored the role 

of anti-fibrinolytic PAI-1 and β3 integrins using genetically engineered (i.e., 

knockout) animals.  

These studies revealed important and novel observations.  First, it was 

observed that extrathoracic LPS induced the deposition of fibrin in the lung, 

which was associated with elevated PAI-1 levels (Figure 3.1).  These effects 

were also associated with the accumulation of platelets in the lung (Figure 3.2).  

LPS caused inflammatory injury in the lung, as indicated by accumulation of 

neutrophils and extravasation of erythrocytes (Figure 3.3), and induced 

expression of several pro-inflammatory mediators (Figure 3.4).  Second, although 

exposure to ethanol alone did not affect these variables, ethanol enhanced LPS-

induced PAI-1 expression (Figure 3.1A), pulmonary fibrin deposition (Figure 

3.1B) and plasma TAT (Figure 3.2A), and indices of transient lung damage 

(Figure 3.3), as well as expression of proinflammatory mediators described 

above (Figure 3.4).  As such, these studies further strengthen available data 

implicating alcohol as a major susceptibility factor in acute lung injury.  Third, 

PAI-1 deficiency dramatically blunted pulmonary fibrin deposition and platelet 

accumulation, as well as attenuated alcohol-enhanced ALI.  PAI-1 deficiency also 

significantly protected against the alcohol-enhanced expression of inflammatory 

mediators (Figures 3.2-4).  Finally, mice lacking αIIBβ3, the primary platelet 
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receptor for fibrinogen, displayed a dramatic reduction in early inflammatory 

change after alcohol/LPS challenge (Figure 3.4).  

In the current study, alcohol enhanced the activation of the coagulation 

cascade, as well as induction of PAI-1 (Figures 3.1 and 3.2), both of which are 

capable of enhancing fibrin ECM deposition (Figure 3.1).  Changes in the amount 

and composition of the ECM are well-recognized events in the pathology of end-

stage diseases (e.g., hepatic cirrhosis and pulmonary fibrosis).  However, the 

extracellular matrix is a dynamic and responsive entity, and subtle alterations to 

the ECM may be involved in inflammatory/pre-fibrotic stages of disease (43).  

The term “transitional tissue remodeling” describes qualitative and quantitative 

changes of matrix proteins in response to insults that do not alter the overall 

architecture of the organ.  Recent studies suggest that transitional tissue 

remodeling contributes to damage caused/enhanced by alcohol in several 

organs, including the liver and the lung (44).  The Arteel group has demonstrated 

that the hepatic fibrin ECM responds dynamically to alcohol exposure, sensitizing 

the liver to LPS-induced inflammatory damage (38).  Similarly, chronic alcohol 

exposure alters the expression and degradation of the pulmonary ECM, favoring 

fibronectin deposition (40).  The activation of the coagulation cascade is a key 

shared response to acute organ injury that transiently alters the ECM.  Although 

these changes often revert without any prolonged tissue damage, they have the 

potential to alter the immune/inflammatory response to stress.  

The finding that knocking out PAI-1 almost completely attenuated alcohol-

enhanced fibrin deposition in the lung (Figure 3.2B), despite no effect on plasma 
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TAT (Figure 3.2A) indicates that PAI-1 induction is critical under these conditions, 

regardless of activation of the coagulation cascade.  These results are in line with 

previous investigations into fibrin and PAI-1 in mouse liver (38).  These results 

suggest that the half-life of fibrin is regulated predominantly at the level of 

fibrinolysis, rather than at the level of deposition.  Interestingly, ethanol did not 

impact the increase in neutrophil recruitment caused by LPS (Figure 3.3B), but 

nevertheless increased injury (Figures 3.3A, 3.3C, 3.3D) and proinflammatory 

chemokine expression (Figure 3.4).  These results suggest PAI-1/fibrin is 

mediating the inflammatory injury rather than inflammatory cell recruitment, per 

se.  Fibrin matrices contribute to inflammation in many models through several 

potential mechanisms [see (101) for review].  For example, fibrin matrices 

provide a chemotactic substrate for monocytes and leukocytes and induce 

cytokine expression (109).  

In addition to physiochemical effects that may enhance inflammatory 

injury, fibrin may facilitate recruitment of platelets to sites of injury.  Indeed, the 

enhanced lung damage caused by the interaction between ethanol and LPS was 

associated with an increase in platelet recruitment and/or indices of platelet 

activators (i.e., TAT; Figure 4).  Impairment of the ability of platelets to bind to 

fibrin via integrin αIIBβ3 (such as in the case of β3
-/- mice) also prevented injury.  

Platelets are known to be involved in many forms of lung injury (102), including 

allergic inflammation (110), cystic fibrosis (111), acid aspiration (112), and 

importantly for the current study, endotoxemia (113).  Platelets adhere to the 

pulmonary endothelium after LPS injection (113).  After this initial adherence, 
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platelets can become more tightly bound and aggregated by activation of integrin 

αIIBβ3 by binding to fibrin.  Additionally, thrombin can then further activate 

platelets via the protease-activated receptors (PARs) (114, 115). Adhered and 

activated platelets can promote inflammatory injury by releasing mediators (e.g., 

CD40L) that upregulate expression of chemokines and vascular adhesion 

molecules in endothelial cells (107).  In the current study, PAI-1-dependent 

platelet accumulation was associated with enhanced expression of the 

chemokines MIP-2 and KC, as well as vascular adhesion molecules Icam-1 and 

Vcam-1 (Figure 3.4); these effects were paralleled by integrin β3 deficiency 

(Figure 3.4B), supporting the hypothesis that these are linked events.  

Interestingly, PAI-1 appeared to play a dominant role in mediating this effect; 

specifically, PAI-1-deficient mice were protected against injury and platelet 

accumulation despite not decreasing plasma TAT levels.  These effects of 

ethanol/LPS represents a hypothesized pathway for the accumulation of fibrin, 

platelet recruitment and activation, and the progression of inflammatory injury in 

which both PAI-1 and platelet β3 integrins are necessary (Scheme 3.2). 

PAI-1, like many acute phase proteins, can act as a “double-edged 

sword;” it is required for injury, and in some cases, required for wound healing 

and repair.  For example, the Arteel group has demonstrated that PAI-1 deficient 

animals are protected against both acute and chronic alcohol-induced liver injury; 

importantly, injury in these models is inflammatory and relatively low-grade.  On 

the other hand, PAI-1 deficient mice show exacerbated damage in more robust 

models of liver injury, including acetaminophen overdose (116, 117), partial 
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hepatectomy (118), and in carbon tetrachloride-induced fibrosis (119).  Similarly, 

PAI-1 deficiency has been demonstrated to enhance acute lung injury in severe 

models of ALI/ARDS, such as intratracheal LPS instillation (120).  The studies 

presented in this chapter demonstrate that PAI-1 deficient mice are protected 

against the enhancing effect of alcohol on extrathoracic endotoxemia induced 

acute lung injury, in which injury is less severe than the thoracic injection model.  

These data therefore indirectly suggest that PAI-1 may also play dual roles in 

lung injury, depending on the severity of that injury. 

In summary, the study presented in this chapter has demonstrated a 

critical role for PAI-1 in experimental alcohol-enhanced acute lung injury.  PAI-1-

deficient mice were protected against alcohol-enhanced inflammatory lung injury. 

It is hypothesized that these effects are mediated, at least in part, through PAI-1-

induced fibrin accumulation and subsequent platelet aggregation driven via 

integrin αIIBβ3.  This study provides insight into novel targets for therapy to 

prevent the development and/or progression of acute lung injury in at-risk 

patients.  
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Scheme 3.2: Working hypothesis for the role of PAI-1 in alcohol-enhanced 

acute lung injury.  

It is hypothesized that excessive accumulation of fibrin after tissue injury and/or 

endotoxemia (LPS) can contribute to αIIBβ3-mediated platelet accumulation and 

aggregation. Activated platelets can contribute to acute lung injury by many 

potential mechanisms, including release of pro-inflammatory cytokines and 

chemokines from inflammatory cells and ultimately, enhanced tissue injury. 

These effects are dramatically exacerbated by ethanol pre-exposure. 

Interventions designed to block this pathway, such as PAI-1 blockade and β3 

integrin inhibition may stop the propagation of injury and promote wound healing. 

Appears in Poole LG et al. Am J Respir Cell Mol Biol. 2017 Apr 26. DOI: 

10.1165/rcmb.2016-0184OC, reprinted with permission. 
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CHAPTER IV 

 

ACUTE-ON-CHRONIC ALCOHOL EXPOSURE PROMOTES PULMONARY 

INFLAMMATION AND AFFECTS LUNG MECHANICS 

 

A. Introduction 

The consumption of alcoholic beverages is a common practice throughout 

the world. In fact, it has been reported that 87.6% of adults in the United States 

will consume alcohol at some point (98). The detrimental health effects of 

excessive alcohol consumption have been well-characterized. Alcohol is the fifth 

leading risk factor for premature death and disability worldwide (100), 

contributing to the development of over 200 disease states (99). Although the 

liver is considered to be the major target of alcohol toxicity, alcohol also damages 

several distal organs. The lung is recognized as a target of chronic alcohol 

abuse, and alcohol-related susceptibility to lung injury is estimated to account for 

tens of thousands of deaths in the United States each year (18). Although 

chronic alcohol consumption is not directly linked to the development of lung 

disease per se, it appears to sensitize the lung to damage from other causes. For 

example, acute respiratory distress syndrome (ARDS), the most severe form of 

acute lung injury (ALI), occurs 3.7 times more often in people meeting the 
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diagnostic criteria for alcohol use disorders, and these patients have a much 

worse prognosis (19-21).   

Although some of the clinical impacts of alcohol consumption on the lung 

are well-described, mechanism(s) by which ethanol impacts pulmonary function 

are incompletely understood.  These gaps in our knowledge are due, at least in 

part, to the complexity of alcohol consumption in the human population.  For 

example, the impact of alcohol consumption/abuse on the lungs is often 

confounded by comorbities (e.g., smoking) (121).  Furthermore, it is possible that 

alcohol consumption has a complicated dose response in the lung, vis-à-vis what 

is observed in cardiovascular disease (i.e., hormesis) (121).   

Rodent models of alcohol exposure to study the effects of alcohol on the 

lung have been employed to compensate, at least in part, for the limitations of 

the human consumption data. Common models include ethanol in drinking water, 

acute (binge) ethanol intoxication, and chronic, ad libitum feeding of ethanol in 

the Lieber-Decarli liquid diet. These animal models have been used to elucidate 

many important mechanisms of pulmonary alcohol toxicity, including the 

development of oxidative stress (4), the induction of transitional tissue 

remodeling (4), and the sensitization of the lung to second injuries, (such as 

lipopolysaccharide exposure (28, 104), burn injury (122), or infection (123)).  

Alcohol consumption in most models is not sufficient to overtly change lung 

tissue architecture, and thereby require a second ‘hit’.  Specifically, rodent 

aversion to alcohol-containing water/diet limits the blood alcohol concentrations 

achievable in ad libitum models.  By extension, these models serve as paradigms 
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of low/moderate alcohol consumption and do not recapitulate end organ damage 

associated with the drinking patterns of those with alcohol use disorders (124).   

Aversion to alcohol is a well-known limitation of rodent models of alcohol 

exposure, not only restricted to pulmonary models.  Recently, a new model of 

acute-on-chronic alcohol exposure was developed to study alcohol-induced liver 

disease (80), in which chronic dietary exposure is followed by an acute bolus 

gavage of alcohol.  It is hypothesized that this model better recapitulates the 

drinking patterns of an individual with an alcohol use disorder.  Importantly, 

hepatic pathology in this acute-on-chronic model is more similar to human 

alcoholic liver disease.  The impact of such an alcohol exposure regimen on lung 

architecture and function has not been previously determined.  Therefore, the 

goal of this study was to examine lung injury and inflammation in a well-

characterized experimental model of acute-on-chronic alcohol exposure.  

 

B. Experimental Procedures 

1. Animals and Treatments 

Animals were administered ethanol containing liquid diet or isocaloric 

control liquid diet for 10 days, then a single binge of 5 g/kg ethanol or maltose 

dextran as described in Chapter II Section A.3 

 

2. Clinical Chemistry 

Plasma transaminase activity (ALT and AST) were measured using 

commercially available kits as described in Chapter II, Section C.1. 
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3. Histology 

Formalin-fixed paraffin-embedded liver and lung sections were stained 

with hematoxylin and eosin and for CAE as described in Chapter II, Sections B.1 

and B.3. BAL cells were stained as described in Chapter II, Section B.7. 

 

4. RNA and real-time RT-PCR 

Messenger RNA was isolated from tissue homogenate, and gene 

expression of F4/80, CD68, Ly6g, CXCL1, CXCL2, CXCL15, and β-actin were 

measured via real-time RT-PCR as described in Chapter II, Section D. 

  

5. Pulmonary Mechanics Measurements 

Pulmonary function was assessed in mice 24 hours after ethanol binge at 

baseline and in response to inhaled methacholine as described in Chapter II, 

Section E.  

 

6. Statistical Analysis 

Results are reported as means ± standard error mean (SEM; n= 4-6). 

ANOVA with Bonferroni’s post-hoc test was used for determination of statistical 

significance among treatment groups, using SigmaPlot (version 11.0). For 

baseline pulmonary function measurements, a Student’s T-test was used to 

determine significance between groups. For pulmonary function in response to 

inhaled methacholine, statistical significance was determined using a two-way 

repeated measures ANOVA. If necessary, transformation of data was used to 
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achieve normally distributed data before ANOVA analysis.  A p-value < 0.05 was 

selected before the study as the level of significance. a, p < 0.05 compared to 

pair-fed + maltose dextran binge, b, p < 0.05 compared to ethanol-fed + maltose 

dextran binge. 

 

C. Results 

1. Alcoholic steatohepatitis results from chronic + binge ethanol 
exposure in mice. 
 
Acute-on-chronic, or chronic + binge alcohol feeding produces alcoholic 

steatohepatitis in mice (80). Therefore, to validate the model, indices of liver 

injury and inflammation were measured in liver tissue 9 hours after oral gavage 

of ethanol or isocaloric control (Figure 4.1A). Compared to animals receiving an 

isocaloric control liquid diet and isocaloric control binge, animals fed an ethanol 

containing liquid diet developed mild hepatic steatosis, as indicated by fatty 

droplets in the liver tissue (Figure 4.1B, bottom left). Animals administered 

ethanol binge after chronic ethanol feeding (Figure 4.1B, bottom right) developed 

more pronounced alcoholic steatohepatitis, as indicated by fat accumulation and 

the development of inflammatory foci (inset). This enhanced liver injury and 

inflammation correlated with increased levels of plasma ALT and AST- markers 

of liver injury. While ethanol feeding alone did not affect plasma ALT or AST, 

chronic + binge ethanol exposure significantly increased ALT and AST levels, to 

68 ± 7 and 81 ± 6 IU/L, respectively.  

Chronic + binge ethanol feeding is known to cause immune cell infiltration 

in the liver, predominantly characterized by neutrophil accumulation. Therefore,  
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Figure 4.1. Effect of acute-on-chronic alcohol feeding on liver injury and 

inflammation.  

(A) Scheme of chronic + binge alcohol feeding. (B) Representative 

photomicrographs of paraffin-embedded liver tissues stained with hematoxylin 

and eosin (200×) and plasma alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) activity, 9 h post-binge. (C) Macrophage (F4/80 and 

Cd68) and neutrophil (Ly6g) markers measured in liver tissue by qRT-PCR 9 h 

post-binge 
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markers of macrophages (F4/80 and Cd68) and neutrophils (Ly6g) were 

measured in liver tissue 9 h post-binge using qRT-PCR (Figure 4.1C). Ethanol 

feeding alone did not affect expression of any marker measured. However, 

chronic + binge ethanol significantly decreased expression of F4/80 and Cd68 by 

~50% of control (0.4 ± 0.1 and 0.5 ± 0.2 fold of control, respectively) but 

significantly increased Ly6g expression by ~50% (1.5 ± 0.2 fold of control) 

suggesting increased neutrophil infiltration.   

 

2. Chronic + binge ethanol feeding produces mild neutrophilic 
inflammation in the lung.  
 
Although the effects of chronic + binge ethanol feeding have been well-

characterized in the liver, the effects of this pattern of alcohol exposure on the 

lung are unknown. Therefore, the effects of this pattern of ethanol exposure on 

general lung morphology were characterized (Figure 4.2A, left). Neither ethanol-

containing liquid diet alone, nor chronic + binge administration caused any overt 

pathological changes to the lung tissue, including the lung parenchyma and 

major airways (not shown). However, an increase in lung tissue cellularity was 

observed in lung tissue after chronic + binge alcohol exposure (Figure 4.2A, left). 

To determine if this was due to inflammatory cell infiltration, lung tissues were 

stained for chloracetate esterase (CAE), a relatively specific stain for neutrophils 

(Figure 4.2A, right). Ten days of ethanol feeding alone did not cause any 

significant neutrophil accumulation in the lung tissue; however, ethanol binge 

after ethanol feeding caused a marked increase in neutrophil accumulation in 

lung parenchymal tissue 9 h post-binge.  
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Figure 4.2. Lung inflammation in chronic + binge ethanol-exposed mice.  

(A) Representative photomicrographs of paraffin-embedded lung tissues 

stained with hematoxylin and eosin (200×, left) and for chloroacetate esterase 

(400×, right), 9 h post-binge. CAE-positive cells are stained bright pink. (B) 

Macrophage (F4/80 and Cd68) and neutrophil (Ly6g) markers measured in 

lung tissue by qRT-PCR 9 h post-binge. (C) Neutrophil chemokines, Cxcl1, 

Cxcl2, and Cxcl15 were measured in lung tissue by qRT-PCR 9 h post-binge.  
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To further characterize the influx of inflammatory cells into the lung tissue, 

markers for macrophages and neutrophils were also measured in lung tissue via 

qRT-PCR (Figure 4.2B). Neither ethanol feeding alone nor chronic + binge 

ethanol exposure significantly affected expression of F4/80 or Cd68 in lung 

tissue. However, similarly to the effects seen in liver tissue, chronic + binge 

feeding significantly increased expression of the neutrophil marker Ly6g in lung 

tissue by 2.8 ± 0.3 fold of control 9 h post-binge (Figure 4.2B). 

To determine whether the influx of neutrophils into lung tissue was 

mediated by neutrophil chemokines, the expression of Cxcl1, Cxcl22, and Cxcl15 

was measured in lung tissue 9 h post-binge (Figure 4.2C). Compared to control, 

animals administered 10 days of ethanol-containing liquid diet and ethanol diet 

plus ethanol binge had significantly elevated pulmonary expression of Cxcl1 and 

Cxcl2.  In animals exposed to chronic + binge ethanol exposure, but not 10 days 

of ethanol alone, expression of the lung-specific chemokine, Cxcl15, was 

increased by ~50% (1.5 ± 0.1 fold of control) of control.  

 

3. Inflammatory cells infiltrate the airways after chronic + binge ethanol 
feeding. 
  
To determine if the influx of neutrophils into the lung tissue was persistent, 

the number and type of cells in the bronchoalveolar lavage fluid (BALF) 24 hours 

after binge were examined. In control animals and animals fed ethanol-containing 

liquid diet alone, the total number of cells recovered was similar at approximately 

20,000 cells (23,428 ± 1407 and 18,666 ± 2942 cells, respectively). Additionally, 

these cells were primarily macrophages (Figures 4.3A and 4.3B). However, the  
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Figure 4.3. BAL cell accumulation after chronic + binge ethanol exposure.  

(A) Total and differential counts of cells recovered (macrophages, neutrophils, 

and lymphocytes) in bronchoalveolar lavage fluid. (B) Representative 

photomicrographs (400x) of cytospins stained with Kwik-Diff differential 

staining 24 h after binge.  
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number of cells recovered in animals exposed to ethanol diet and ethanol binge 

was significantly increased by approximately 2 fold (47,545 ± 8324 cells) (Figure 

4.3A).  This increase in total cell number was driven primarily by increased 

neutrophils. Indeed, the total number of neutrophils (Figure 4.3B, arrows), as well 

as the number of lymphocytes, was significantly increased in these animals while 

the number of macrophages was unaffected (Figure 4.3A).  

 

4. Chronic + binge alcohol exposure alters pulmonary mechanics: 
airway hyper-responsiveness to methacholine. 
  
To assess the impact of chronic + binge ethanol exposure on pulmonary 

function, pulmonary mechanics were measured using the flexiVent system, as 

described in Chapter II Section E, using the forced oscillation technique. Chronic 

+ binge ethanol exposure had no significant effect on any variables measured at 

baseline, including resistance (Rrs), compliance (C), pressure-volume loop 

(Area), Newtonian resistance (Rn), tissue damping (G), or tissue elastance (H) 

(Figure 4.4).  However, animals exposed to chronic + binge ethanol feeding 

demonstrated airway hyper-reactivity in response to the inhaled 

bronchoconstrictive agent methacholine, as exhibited by significantly increased 

airway resistance (Rrs) at 25 and 50 mg/mL methacholine, and increased 

Newtonian Resistance, which is related to resistance in the central airways, at 

the same doses (Figure 4.5). Compliance, tissue damping, and tissue elastance 

were not significantly affected by chronic + binge ethanol exposure. Respiratory 

resistance (i.e., the real part of respiratory system impedence) was significantly  
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Figure 4.4: Effect of chronic + binge ethanol exposure on baseline 

pulmonary mechanics.  

Baseline pulmonary mechanics assessed 24 h post-binge using the forced 

oscillation technique at a single perturbation frequency (2.5 Hz), or broadband 

perturbation (1 to 20.5 Hz), and area of pressure-volume loops.  
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Figure 4.5: Airway hyper-responsiveness to methacholine in chronic + 

binge ethanol-exposed animals.  

Airway reactivity to inhaled methacholine (0-50 mg/mL) assessed 24 h post-

binge. Pulmonary mechanics were measured using the forced oscillation 

technique at a single perturbation frequency (2.5 Hz), or broadband 

perturbation (1 to 20.5 Hz).  
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Figure 4.6: Effect of chronic + binge alcohol exposure on respiratory 

resistance.  

Respiratory resistance (the real part of respiratory system impedance) as a 

function of frequency, measured 24 h post-binge in response to inhaled 

methacholine (0 or 50 mg/mL).  
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elevated at all frequencies measured, further indicating increased resistance in 

the central airways (Figure 4.6). 

 

5. Discussion 

Alcohol consumption is well known to negatively impact the lung and to 

increase the risk of upper respiratory tract infections and pneumonia (125, 126).  

Furthermore, individuals with a history of an alcohol use disorder are more 

susceptible to the development of ARDS, and often have a worse prognosis (19).  

Importantly, all of these pulmonary complications of alcohol consumption appear 

to be relegated to relatively heavy consumption.  For example, the risk of ARDS 

only increases dramatically in individuals who drink >3 drinks per day (127).  

Likewise, the risk of pneumonia increases predominantly with heavy alcohol 

consumption (126).  There are still significant gaps in our understanding on the 

mechanisms by which alcohol abuse mediates these effects on the pulmonary 

system.  Nevertheless, the prevailing hypothesis is that alcohol enhances injury 

caused by a secondary insult (e.g., infection), rather than directly injuring the 

lung, per se. 

As mentioned in the Introduction, discovery of mechanisms of alcohol-

induced organ damage has been hampered by a lack of relevant rodent models.  

For example, Best et al. (73) incorrectly concluded that alcohol was not a direct 

hepatotoxicant, based on studies of rodents consuming alcohol-containing 

drinking water.  Even with the development of liquid diets that increased daily 

alcohol consumption (e.g., Lieber-DiCarli diet) (128), histologic changes to more 

sensitive organs, such as the liver, did not recapitulate the human disease (124).  
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This factor is likely due, at least in part, by a failure of these models to achieve 

blood alcohol concentrations that are relevant to humans with an alcohol use 

disorder (129, 130).  For example, blood alcohol levels in mice on the chronic (6 

week) Lieber-DeCarli liquid diet model typically reach maximally ~150 mg/dL 

(80), and blood alcohol levels in mice on the ethanol in drinking water model are 

typically lower (131).  As mentioned previously, even though these relatively low 

blood alcohol levels produce few pathologic changes in the lung, they do 

sensitize the lung to further injury (104). 

The purpose of the current study was to explore the impact of alcohol 

exposure on lung histology and function in a newly developed model of chronic + 

binge alcohol consumption.  The rationale for this study is that the blood alcohol 

contents (BACs) and alcohol exposure regimen may better recapitulate the 

pattern of alcohol consumption observed in humans (124).  In the United States, 

the incidence of heavy binge drinking has significantly increased over the last 10 

years, with currently 33% of adults reporting binge drinking in the last year.  

Furthermore, individuals who heavily binge are more likely to go to the 

emergency room with alcohol-related traumatic injuries (132).  These statistics 

speak to the need for a relevant animal model of heavy alcohol exposure for 

these individuals at risk for ALI, such as the one used in the current study. As 

has been shown previously, this model produced significant steatohepatitis, as 

indicated histologically and by elevated plasma ALT and AST (Figure 4.1).  

Interestingly, this ethanol exposure regimen increased recruitment of neutrophils 

to the lung 9 hours after the ethanol binge (Figure 4.2); this pattern is similar to 
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what is observed in the liver (Figure 4.1).  Neutrophil recruitment 9 hours after 

binge was associated with significant elevations in mRNA expression of the 

chemokines Cxcl1, Cxcl2, and Cxcl15. This model also increased the total 

number of cells collected in the BALF, driven primarily by an increase in the 

number of BAL neutrophils (Figure 4.3). Finally, chronic + binge ethanol 

exposure caused airway hyper-responsiveness to methacholine, indicative of 

increased resistance in the central airways (Figures 4.5-6). 

Previous studies have shown that alcohol exposure is sufficient to produce 

pathologic changes to the lung, including ECM remodeling, oxidative stress and 

alveolar macrophage dysfunction (4, 43).  However, these changes have 

previously been considered insufficient to directly cause histologic damage to the 

lung.  Moreover, few (if any) studies have shown that ethanol exposure alone will 

directly induce an inflammatory response in the lung.  Indeed, a similar absence 

of pathology was observed here when dietary ethanol was given alone (i.e., 

without the binge).  The finding in the current study that ethanol exposure is 

sufficient to cause a marked increase in inflammatory cell recruitment to the lung 

and into the BALF is therefore novel.  

Although chronic + binge ethanol feeding caused influx of inflammatory 

cells into the lung tissue and BAL, this inflammation was relatively mild.  The 

functional consequences of these changes were therefore unclear. Indeed, due 

to the “interdependent” nature of the lung parenchyma and central airways, 

inflammatory damage to the parenchyma may manifest as resistance in the 

central airways, and vice-versa (133). This ethanol exposure regimen did not 
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impact any basal index of airway function, as determined by pulmonary 

mechanics assessment (Figure 4.4); however, it did increase airway resistance 

(Rrs) and Newtonian resistance (Rn) in response to methacholine (Figure 4.4). 

These data, combined with an upward shift in Rrs over increasing frequency (the 

real part of respiratory impedence), indicate increased resistance in both the 

central airway and lung parenchyma in response to an exogenous stimulus.  

These effects of alcohol exposure on pulmonary function are novel in an 

experimental model.  However, they are not without precedence in human 

alcohol exposure studies.  For example, airway hyper-responsiveness or 

“alcohol-induced asthma” has been demonstrated in humans; this phenomenon 

is hypothesized to be potentially the result of acetaldehyde toxicity and/or of 

impurities in the beverage (121, 134, 135).  In contrast, others have shown that 

ethanol can cause bronchodilation in humans (136, 137) and it was used 

historically as a rescue therapy for asthma.  The underlying causes of these 

apparent differing responses are unclear; however, alcohol dose may be critical.  

Furthermore, most studies have investigated the effect of concomitant alcohol 

exposure on lung hyper-responsiveness (138).  In contrast, the impact of ethanol 

pre-exposure on stimulated lung mechanics, such as performed here, has not 

been tested.  Several studies in lung and in other organs have demonstrated that 

alcohol has differing, even contradictory, responses depending on the timing of 

the exposure.  Nevertheless, the development of this mouse model yields a new 

tool to directly determine impacts and mechanisms of alcohol on lung mechanics.   
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In conclusion, current mouse models of alcohol exposure have not 

previously been shown to cause overt inflammatory changes in the lung. One 

common limitation of ad libitum ethanol exposure models (e.g., ethanol in 

drinking water or chronic Lieber-DeCarli liquid diet) is their inability to sufficiently 

recapitulate risky human drinking patterns, as well as pathology on sensitive 

target organs, such as the liver.  This liver pathology may be an important feature 

for reproducing the disease state of alcoholic patients at risk for developing 

ARDS. In fact, mortality in ARDS is almost 100% in patients with end-stage liver 

disease. The newly developed chronic + binge model of alcohol exposure more 

accurately reproduces risky drinking patterns in alcoholic patients, who are most 

at risk for developing sepsis-induced ARDS. The current study provides novel 

findings that this pattern of alcohol exposure, in the absence of any secondary 

inflammatory insult, caused mild neutrophilic inflammation 9 and 24 hours after 

ethanol binge, as well as exacerbated central airway resistance after 

methacholine inhalation. This animal model may be useful, and potentially more 

relevant, for identifying mechanisms by which alcohol abuse sensitizes at-risk 

individuals to ALI and ARDS.  
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CHAPTER V 

 

ASSESSING THE ROLE OF HEPATIC-DERIVED CYTOKINES IN ALCOHOL-

ENHANCED ALI; A NOVEL, NANOPARTICLE-BASED APPROACH TO 

SELECTIVELY GENETICALLY MODIFY HEPATIC MACROPHAGES 

 

A. Introduction 

Human diseases are generally multi-stage, multi-hit processes; it is 

therefore not surprising that multiple cells within a target organ contribute to 

disease pathology.  The potential contribution of signals outside the target organ 

to disease pathology is also a well-accepted concept.  However, experimental 

validation of these concepts has been technically difficult in some cases.  The 

advance of temporal and/or locational control of gene expression (e.g., with 

conditional transgenics) has further enabled research to be performed on a 

system level.  These advances coevolved with the era of ‘omics research in 

which large amounts of data can be simultaneously analyzed for trends and 

effects.  The net result is that system level analyses of disease, and organ-organ 

interactions are gaining attention of the research community.  Mechanistic 
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understanding of some of these inter-organ interactions is subsequently very 

strong [e.g., the ‘gut-liver axis’ (139)]. 

Although less well-characterized, several studies indicate 

interdependence between liver and lung, potentially via mediators released from 

the gut.  For example, mortality in ARDS patients with hepatic failure is almost 

100% (140).  Furthermore, pulmonary injury induced by systemic endotoxin can 

be altered by mediators released from the liver (e.g., TNFα) (141, 142).  In an 

elegant study, Siore et al. (85) demonstrated that LPS-induced lung damage 

requires perfusion through the liver.  Recently, depletion of systemic TNFα 

(etanercept) was demonstrated to prevent pulmonary injury in a mouse model of 

alcohol-enhanced ALI (35).  However, while experimental data indicate that the 

liver is a major source of circulating TNFα after LPS administration, blocking 

systemic TNFα using drugs such as etanercept does not directly address the 

hypothesis that hepatic-derived cytokines drive injury in distal organs, such as 

the lungs (Figure 5.1A). 

To more empirically ascertain the role of hepatic-derived cytokines in 

injury in other organs, including the lung, a liver-specific, targeted approach must 

be developed.  Several “liver-specific” knockout animal models have been 

established using Cre-lox technology, in which the bacterial enzyme Cre 

(cyclization recombinase) excises a gene of interest flanked by loxp (locus of X-

over in P1) sites. Cre recombinase can be engineered to be driven by specific 

promoters to target various cell types in the liver, such as the albumin-Cre mouse 

to target hepatocytes and the lecithin-retinol acyltransferase (Lrat)-Cre mouse, 
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among others, to target hepatic stellate cells (143).  However, hepatic 

macrophages, Kupffer cells, are the primary source of cytokines, including TNFα 

in the setting of inflammatory injury. Therefore, these available liver-specific 

knockout mice will be insufficient to target expression of hepatic-derived 

cytokines. To date, the most “selective” genetic approaches available to target 

Kupffer cells target cells of the myeloid lineage, including M lysosome (LysM-Cre 

mouse) and colony stimulating factor-1 receptor (CSF1R-Cre mouse).  These 

approaches would induce Cre-mediated excision, therefore, in all macrophage 

populations. There are more traditional approaches available to ablate Kupffer 

cells, such as administration of gadolinium chloride or liposome-encapsulated 

chlodronate.  However, these compounds only serve to eliminate macrophages, 

and therefore do not allow for investigation of specific macrophage-derived 

mediators. Moreover, these approaches are not entirely selective to liver 

macrophages. For example, intravenous administration of chlodronate liposomes 

also targets a wide variety of macrophage populations, and is not specific to the 

liver (144).  Taken together, these limitations highlight the need for a selective, 

inducible, transgenic approach. 

A second variety of Cre recombinase is that which can be temporally 

induced by drugs. For example, the estrogen receptor agonist, tamoxifen, can be 

used to induce Cre expression. The commercially available R26CreER mouse 

utilizes an endogenous, tamoxifen-inducible promotor, Gt(ROSA)26Sor, that will, 

upon activation, express Cre in any cell that has been targeted by tamoxifen. 

Therefore, it is hypothesized that liver-targeted delivery of tamoxifen may be 



93 
 

sufficient to induce selective Cre-mediated excision in Kupffer cells.  To achieve 

this targeted delivery, a nanoparticle-based approach may be utilized. Poly 

(lactic-co-glycolic acid) (PLGA) nanoparticles are non-toxic, biodegradable 

nanoparticles which, in their unmodified state, have been shown to accumulate in 

the liver with a majority of particles accumulating in Kupffer cells (89). The goal of 

the study presented in this chapter is therefore to determine if tamoxifen-loaded 

PLGA nanoparticles may be utilized to selectively induce Cre-mediated excision 

in the liver, while avoiding other macrophage populations such as those in the 

lung. Development of such an inducible transgenic system would be useful for 

determining the role of hepatic-derived cytokines in propagating injury in other 

organs.  

 

B. Experimental Procedures 

1. Generation of transgenic animal lines 

 R26CreER/mTmG mice were generated as described in Chapter II 

 

2. Animals and treatments 

 Mice were injected intraperitoneally with tamoxifen, or injected 

intravenously or intrasplenically with tamoxifen-loaded PLGA nanoparticles as 

described in Chapter II, Sections 5, 6, and 7, respectively. Tissues were collected 

upon sacrifice as described in Chapter II.  
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3. Synthesis of PLGA nanoparticles 

 Nanoparticles were synthesized as described in Chapter II Section F. 

 

4. Characterization of PLGA nanoparticles 

 PLGA nanoparticles were characterized as described in Chapter II Section 

G. 

 

5. Imaging of native fluorescence 

 Tissues were fixed and native fluorescence of tdTomato and eGFP were 

imaged in liver and lung sections as described in Chapter II, Section B.6. 

  

6. Histology 

 Immunohistochemistry for GFP was performed in formalin-fixed, paraffin-

embedded liver and lung sections as described in Chapter II Section B.4  

 

7. RNA isolation and qRT-PCR 

 RNA was isolated from liver, lung, kidney, and spleen homogenates and 

reverse transcribed as described in Chapter II. Messenger RNA expression of 

select genes was measured via qRT-PCR as described in Chapter II.  

 

8. Statistical analysis 

 Statistical significance was determined as described in Chapter II, Section 

H.  a, p < 0.05 compared to vehicle control.  
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Figure 5.1: Proposal to utilize transgenic reporter mouse model to 

investigate interactions between the liver and lung.  

(A) In the setting of inflammatory injury (e.g., intraperitoneal LPS), the liver and 

lung may be directly damaged. However, hepatic-derived mediators, such as 

TNFα, may contribute to injury in the lung. (B). Scheme of tamoxifen-inducible 

Cre-mediated excision of the mT/mG reporter construct. 
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Figure 5.2: Intraperitoneal administration of tamoxifen successfully 

induces complete Cre-mediated excision of red fluorescence and 

expression of green fluorescent protein.  

Representative photomicrographs (200x) of native red fluorescence (top 

panels) and green fluorescence (middle panels) counterstained with DAPI 

(blue) in frozen liver tissues after i.p. administration of tamoxifen (right) or corn 

oil vehicle (left) as described in Materials and Methods. Merged images are 

shown in bottom panels.  
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C. Results 

1. Validation of the R26CreER+/mTmG+ mouse strain.  

As mentioned in the Introduction, the goal of the current study was to 

design and characterize a transgenic animal model to selectively genetically alter 

hepatic resident macrophages (Kupffer cells) without transducing alveolar 

macrophages. A previously-established reporter mouse strain, known as the  

mT/mG mouse, was utilized to test this hypothesis. Prior to Cre-mediated 

recombination, this mouse ubiquitously expresses red fluorescent membrane-

targeted tandem dimer Tomato (mT) driven by a chicken β-actin core promotor 

with CMV enhancer (pCA). In the presence of Cre recombinase, flox-flanked mT 

is excised, and the mice express membrane-targeted enhanced green 

fluorescent protein (mG) (Figure 5.1B). As discussed in Chapter II (Experimental 

Procedures), these mice were crossed with tamoxifen-inducible Cre recombinase 

(R26CreER). When injected intraperitoneally with vehicle (corn oil) tissues 

ubiquitously express mT (red fluorescence), as demonstrated by imaging native 

fluorescence in liver tissues. After i.p. tamoxifen injection, red fluorescence is 

diminished, and all cells express mG (green fluorescence) (Figure 5.2).  

 

2. Characterization of tamoxifen-loaded PLGA nanoparticles.  

PLGA nanoparticles had an average diameter of 178 ± 34 nm, and 

demonstrated smooth and spherical morphologies (Figure 5.3A). PLGA 

nanoparticles encapsulated 144.6 ± 18 µg tamoxifen per mg of nanoparticles, 

corresponding to an encapsulation efficiency of 72%.  The total cumulative 

release of tamoxifen from PLGA NPs was measured over 1 week (Figure 5.3B  
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Figure 5.3: Characterization of tamoxifen-loaded PLGA nanoparticles.  

(A) Scanning electron microscopy (SEM) image of PLGA nanoparticles. Scale 

bar represents 1 µM. (B) Cumulative release of tamoxifen from nanoparticles 

over one week as µg of tamoxifen released per mg of nanoparticles and (C) as 

the percent of total tamoxifen loaded.  
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and 5.3C). Release of tamoxifen was relatively low, with less than 20% of loaded 

tamoxifen released into solution after 1 week.  

 

3. Intravenous administration of tamoxifen-loaded PLGA NP fails to 
selectively transduce liver cells.  
 
It is proposed that tamoxifen-loaded PLGA nanoparticles could be utilized 

to selectively activate tamoxifen-inducible Cre in the liver, thereby causing liver-

specific excision of the mT/mG reporter construct. One potential route of 

administration was intravenous (tail vein) injection. Tamoxifen-loaded 

nanoparticles (1.5 mg nanoparticles per 25 g mouse) or vehicle (saline) were 

administered i.v., and fixed tissues were collected for frozen sectioning and 

imaging 7 days later, as described in Chapter II (Experimental Procedures). 

Compared to vehicle control, i.v. nanoparticle administration robustly induced 

expression of mG in the liver (Figure 5.4A), though not as robustly as i.p. 

tamoxifen administration (Figure 5.2). However, Cre-mediated excision was not 

liver-specific. For example, Figure 5.4B illustrates that Cre-mediated excision and 

subsequent mG expression was also seen in the lung compared to vehicle 

control.  

 

4. Intrasplenic injection of tamoxifen-loaded PLGA nanoparticles 
selectively induces expression of mG in the liver.  
 
Previous studies have reported that PLGA nanoparticles accumulate in 

the liver after intrasplenic injection, with a high percentage of injected 

nanoparticles accumulating in Kupffer cells (89). Therefore, tamoxifen-loaded  
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Figure 5.4: Native green fluorescence in liver and lung after i.v. 

administration of tamoxifen-loaded PLGA nanoparticles.  

(A) Representative photomicrographs (200x) of native red (left) and green 

(middle) fluorescence in liver sections after i.v. administration of vehicle 

(saline) or 1.5 mg tamoxifen-loaded PLGA nanoparticles. (B) Representative 

photomicrographs (200x) of native red (left) and green (middle) fluorescence 

counterstained with DAPI in lung sections after i.v. administration of vehicle 

(saline) or 1.5 mg tamoxifen-loaded PLGA nanoparticles. Merged images are 

shown in the right column.  
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PLGA nanoparticles were injected at increasing concentrations (0-1.5 g/mouse) 

intrasplenically in R26CreER+/mTmG+ mice. Membrane-targeted eGFP was 

detected immunohistochemically in the liver and lung (Figure 5.5). Some cases 

of spontaneous mG expression was observed in animals receiving vehicle 

(saline) alone in both the liver and lung (Figure 5.5, top panels). In the liver, 

intrasplenic injection of nanoparticles produced a dose-dependent increase in 

GFP staining (Figure 5.5, right panels). GFP staining appeared in both 

hepatocytes and non-parenchymal cells.  There was no observable effect of 

nanoparticle injection on GFP staining in the lung (Figure 5.5, left panels).  

To quantify mG expression in various tissues, mRNA expression of Egfp 

was measured by qRT-PCR (Figure 5.6A).  In lung, kidney, and spleen tissue 

homogenates, Egfp expression was unaffected by tamoxifen NP injection.  

Alternatively, in the liver, Egfp expression was significantly induced 

approximately 2 fold after 0.75 mg tamoxifen NPs, and induced ~10 fold at the 

highest dose of tamoxifen NP.  To further confirm tamoxifen-mediated excision, 

native fluorescence of mT (red fluorescence) and mG (green fluorescence) was 

detected in frozen liver and lung sections (Figure 5.6B).  In the lung, red 

fluorescence was observed ubiquitously with no detectable green fluorescence.  

In the liver, red fluorescence also predominated, however, clear green 

fluorescence was also observed throughout the tissue.  
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Figure 5.5: Membrane-targeted eGFP expression after intrasplenic 

injection of tamoxifen-loaded PLGA nanoparticles in liver and lung.  

Representative photomicrographs (200x) of eGFP detected 

immunohistochemically after intrasplenic administration of tamoxifen-loaded 

PLGA nanoparticles (0.375, 0.75, or 1.5 mg per 25 g mouse) or vehicle (saline) 

in formalin-fixed, paraffin-embedded lung and liver sections 
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Figure 5.6: Enhanced-GFP expression in liver, lung, kidney, and spleen 

following intrasplenic administration of tamoxifen-loaded PLGA 

nanoparticles.  

(A) mRNA expression of Egfp measured via qRT-PCR in liver, lung, kidney and 

spleen tissue homogenates of animals injected intrasplenically with 0, 0.375, 

0.75, or 1.5 mg tamoxifen-loaded PLGA nanoparticles. (B) Representative 

photomicrographs (200x) of native red and green fluorescence in frozen liver 

and lung sections following intrasplenic administration of 0.75 mg tamoxifen-

loaded PLGA nanoparticles.  
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D. Discussion 

The goal of this study was to develop an in-vivo system to determine the 

role of hepatic-derived mediators, such as cytokines and chemokines, in 

propagating injury in other organs.  Interactions between the liver and other 

organs have been well-characterized in certain disease models, e.g., the “gut- 

liver axis” in alcoholic liver disease.  Current approaches used to target the liver 

are limited in specificity (the cell population they target) and the persistence of 

the effect.  For example, liver-specific Cre-lox approaches, such as albumin-

driven Cre, target only hepatocytes and are therefore insufficient to interrogate 

the role of Kupffer cells- the hepatic cell type which produces a majority of 

inflammatory meditators.  Other methods to target the liver, such as viral vectors 

(e.g., rAd and rAAV), are limited by poor transduction efficacy (rAAV) or relatively 

brief transduction (rAd).  Methods to selectively target Kupffer cells (versus other 

hepatic cells) include transgenic approaches, including LysM-Cre transgenics 

and ‘Kupffer cell chimeras’ have also been developed. Although these methods 

are relatively selective for hepatic macrophages versus other hepatic cell types, 

both tend to target extrahepatic macrophages.  Therefore, the current study 

sought to develop a targeted transgenic approach to selectively modify the 

genetics of hepatic macrophages while avoiding macrophage populations in 

other tissues, such as the lung.  

To achieve this goal, a double transgenic (i.e., Cre-LOX) approach was 

employed, wherein Cre induction was controlled by an external stimulus 

(R26CreER+/mTmG+).  In this strain, systemic tamoxifen administration will 
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transduce nearly every cell in the organism (Figure 5.2).  Restriction of the 

induction of Cre was facilitated by selective delivery of tamoxifen to the target 

cells with nanoparticles.  The liver in general, and Kupffer cells in particular, are 

well known targets of injected nanoparticles.  Indeed, several of the modifications 

to the current generation of nanoparticles are designed to avoid the RES and the 

liver (145).  Thus, nanoparticles employed in this study were ‘reverse engineered’ 

to accomplish exactly the opposite goal. 

Based on this previously published work, it was expected that i.v. injection 

of nanoparticles would accumulate in the liver and thereby selectively transduce 

that organ.  It was therefore initially somewhat surprising that i.v. injection of 

nanoparticles, although effective at transducing the liver, also had off-target 

effects in other organs (e.g., lungs; Figure 5.4).  These data may not be mutually 

exclusive with previous findings; the lungs are the first capillary bed that an 

intravenous agent contacts.  Furthermore, final accumulation of nanoparticles 

determined in previous work may differ from sites wherein the particles 

accumulate at least transiently.  Nevertheless, a more liver-specific delivery 

method was developed employing intrasplenic injections. Previous work has 

shown that PLGA nanoparticles, when injected intrasplenically, accumulate in 

Kupffer cells (89). Indeed, intrasplenic injection of tamoxifen-loaded PLGA 

nanoparticles induces dose-dependent expression of Egfp in the liver, but did not 

induce expression in the lung, kidney, or spleen (Figures 5.5 and 5.6).  

Interestingly, both hepatocytes and Kupffer cells were transduced. 
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The implications of these results are far-reaching.  First, these 

experiments have developed a tool to discern the specific role of liver-derived 

cytokines in injury in other organs. Although hepatocyte-specific promoters exist, 

many cytokines are derived from the resident hepatic macrophages, the Kupffer 

cells.  To date, no Kupffer cell-specific promotor has been identified that selects 

for this cell type over macrophages in other tissues.  Furthermore, liver-derived 

products may be sourced from several hepatic cell types.  For example, the 

release of TNFα into the systemic circulation is controlled by TNFα converting 

enzyme (TACE), which is derived from both hepatocytes and Kupffer cells.  To 

study the role of hepatic TNFα on extrahepatic injury, a flox-flanked TACE 

(TACEflox ) mouse could be employed. Selective deletion of this enzyme could, in 

theory, prevent the release of TNFα from the liver into systemic circulation while 

not affecting local, paracrine effects of TNFα in the liver.  Systemic TNFα is 

proposed to contribute to injury in the lung (35) and brain (146), among others, 

and cytokines that may be of hepatic origin have been implicated in multiple 

organ failure in a variety of disease states, including decompensated liver 

disease, systemic inflammatory response syndrome (SIRS) (82), and acute 

pancreatitis (147).  The system described here would be useful for determining 

the specific origin of cytokines of interest. Finally, the development of this tool 

has implications beyond the scope of basic research. Clinically, identifying the 

role of hepatic-derived cytokines in disease in other organs provides novel insight 

for the treatment of these conditions. For example, these data provide support for 
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identifying underlying liver disease as a screening and/or treatment goal in 

patients at risk for developing multiple organ failure.  

This approach, however, is not without limitation. First, this approach 

requires intrasplenic administration of nanoparticles, and therefore requires 

moderate technical skill to perform the necessary surgical procedure. Next, 

although it was histologically observed that Cre-mediated mG expression was 

robustly induced in Kupffer cells, mG expression was also noted in hepatocytes 

and possibly other non-parenchymal cells. The current approach will therefore 

not be sufficient to specifically target Kupffer cells while avoiding other hepatic 

cell types.  This limitation, however, may actually be advantageous in some 

scenarios.  Additionally, this approach could be more selective by employing a 

Kupffer-cell specific promotor to drive expression of Cre. Indeed, the C-type 

lectin CLEC4F has been characterized as a Kupffer cell-specific gene (148). 

However, no commercially available Cre-expressing mouse driven by this 

promotor is currently available.  Third, this model does not address the possibility 

that communication between the liver and other organs may be bi-directional.  

Indeed, in experimental studies of ventilator-induced ALI, data suggests 

mediators released from the lung may damage tissues in other organs, including 

the liver (149, 150).  However, the dose and route of administration of 

nanoparticles could be easily altered to target macrophage populations in other 

tissues.  For example, direct administration of nanoparticles to the lung (e.g., 

intratracheal instillation or oropharyngeal aspiration) would likely selectively 

target alveolar macrophages, while avoiding hepatic macrophages. Finally, the 



114 
 

current system will only address the role of inflammatory mediators released from 

the cells that are residing in the liver at the time of intrasplenic nanoparticle 

injection.  As such, inflammatory cells recruited to the liver at any point in the 

disease model after nanoparticle administration will likely be unaffected. This 

limitation, however, may also be a strength because it allows for separation of 

the effects of resident versus recruited macrophages on systemic release of 

inflammatory mediators.   

In conclusion, the findings presented here describe a novel, in-vivo 

approach to selectively edit the genetics of hepatic cells, including hepatocytes 

and Kupffer cells. Using animals expressing tamoxifen-inducible Cre 

recombinase, any flox-flanked gene of interest may be excised following targeted 

delivery of the inducing agent. This system has potential applications for 

research in any disease state in which hepatic-derived cytokines or other 

signaling molecules are implicated, such as alcohol-enhanced ALI or shock-

induced multiple organ failure. Such studies may provide new insight for the role 

of underlying liver injury or inflammation in the diagnosis and treatment of 

disease in other organs.  
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CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

A. Restatement of goals and questions 

The overall goal of the work described in this dissertation was to expand 

on the unifying hypothesis that not only do the liver and lung share parallel 

mechanisms of injury in response to alcohol exposure, but that injury in these two 

systems may be interdependent.  The Arteel group has demonstrated that PAI-1 

and fibrin ECM deposition are critical in alcohol-induced liver injury. The 

experiments in Chapter III were performed to determine the role of this 

mechanism of injury in alcohol-enhanced endotoxemia-induced ALI, thereby 

identifying potential parallel mechanisms of injury in the liver and lung. Chapter 

IV characterized lung injury and inflammation in a model of acute-on-chronic 

alcohol exposure originally developed to study alcoholic liver disease, thereby 

laying the groundwork for further exploring parallel mechanisms of injury.  Finally, 

Chapter V describes the development of an inducible transgenic animal model to 

selectively alter the genetics of hepatic macrophages to test the hypothesis that 

hepatic-derived mediators may contribute to lung injury.  Taken together, these 

studies provide new insight into the complex mechanisms of alcohol-related 
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acute lung injury by building on well-described mechanisms of liver injury, and 

also develop a novel transgenic animal model to explore the communication 

between these two organs.  

 

B. Major findings of this dissertation 

1. PAI-1-mediated fibrin accumulation and platelet aggregation play a 
critical role in alcohol-enhanced experimental ALI.  
 
Previous studies from the Arteel group have demonstrated that PAI-1 

plays a critical role in alcohol-induced liver injury. Genetic deletion of PAI-1 

protected against alcohol-induced inflammation and necrosis in a model of 

chronic enteral ethanol administration in mice, as well as in LPS-induced liver 

injury after acute ethanol exposure.  Additionally, PAI-1 has been shown to be 

involved in the development of LPS-induced acute lung injury, as well as other 

forms of lung injury, such as bleomycin-induced pulmonary fibrosis. However, the 

role of PAI-1 in alcohol-enhanced ALI has not been previously determined. The 

goals of Chapter III were three-fold: 1) to establish if PAI-1 and its downstream 

targets are up-regulated in alcohol-enhanced acute lung injury, 2) to determine 

the role of PAI-1 in injury and inflammation in this disease state and 3) to 

establish a potential mechanism by which PAI-1 and its downstream targets 

contribute to alcohol-enhanced ALI.  

First, to investigate this potential parallel mechanism of liver and lung 

injury, PAI-1 expression and fibrin accumulation were measured in the lung 

tissue of animals receiving LPS injection with chronic ethanol pre-exposure (a 

previously established model of alcohol-enhanced ALI) (35). The studies in 



117 
 

Chapter III determined that, in fact, chronic ethanol pre-exposure exacerbated 

Pai-1 mRNA induction and protein expression after LPS administration.  As 

discussed in detail in Chapter I Section A.5, induction of PAI-1 impairs fibrin 

degradation by inhibiting plasmin.  The Arteel group has previously demonstrated 

that blocking fibrin accumulation in the liver by knocking out PAI-1 or inhibiting 

thrombin cleavage protected against alcohol-enhanced inflammation (38).  

Therefore, fibrin accumulation in the lung was also assessed. Similar to the 

phenomena observed in the liver, chronic ethanol pre-exposure exacerbated 

fibrin accumulation in the lung tissue.  

Fibrin can accumulate in a tissue as a result of enhanced activation of the 

coagulation cascade (thrombin cleavage) or by impaired fibrin degradation (PAI-1 

induction). In addition to the enhanced PAI-1 induction seen in the lung tissue in 

Chapter III, ethanol pre-exposure was also associated with enhanced thrombin 

activation.  These data suggest that in this experimental setting, fibrin 

accumulation in the lung is promoted on “both sides” of the coagulation cascade, 

i.e., by both enhanced generation and impaired degradation.  Fibrin matrices can 

be pro-inflammatory by a number of mechanisms, as discussed in Chapter I, 

Section A.5.  One such mechanism is by acting as a substrate for the adhesion 

of inflammatory cells, including platelets.  In Chapter III, LPS administration, both 

alone and with alcohol pre-exposure, caused accumulation of platelets in the 

lung.  Next, the causal role of PAI-1 induction on fibrin deposits and platelet 

accumulation was determined using PAI-1-deficient mice. As expected, PAI-1 
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deletion attenuated pulmonary fibrin deposition. Interestingly, the loss of fibrin 

was associated with complete mitigation of platelet accumulation.  

The second goal of this study was to determine the role of PAI-1 and its 

downstream targets in injury and inflammation in alcohol-enhanced ALI.  To this 

end, lung injury and inflammation were assessed in ethanol and/or LPS-treated 

wild-type or PAI-1 knockout mice.  As expected, ethanol pre-exposure 

exacerbated endotoxemia-induced ALI in wild-type mice.  Interestingly, in a 

finding similar to that of previous studies in the liver, PAI-1-deficient animals were 

protected against alcohol-enhanced edematous lung injury. Alcohol-enhanced 

alveolar septal thickening and BAL total protein levels were completely 

attenuated in mice lacking PAI-1.  Interestingly, pulmonary neutrophil 

accumulation was unaffected by ethanol pre-exposure or PAI-1 deficiency, 

despite the effects of these variables on the measurements of injury assessed in 

this model. 

Finally, the experiments in Chapter III were performed to suggest a 

proposed mechanism by which PAI-1 and its downstream targets are involved in 

alcohol-enhanced ALI.  Even though the number of neutrophils was unaffected 

by diet or genotype, the activation state of these inflammatory cells may be 

altered by exposure to different cytokines and chemokines.  Additionally, 

cytokines and chemokines themselves may also promote tissue damage (105).  

Therefore, mRNA expression of cytokines, chemokines, and vascular adhesion 

molecules was measured. PAI-1 deficiency attenuated the ethanol-enhanced 

expression of the chemokines MIP-2 (Cxcl2) and KC (Cxcl1), as well as the 
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vascular adhesion molecules Icam-1 and V-cam1.  Platelet-mediated signaling 

events can lead to expression of these chemokines upon aggregation and 

activation, and, interestingly, Chapter III illustrated that PAI-1 deficiency almost 

completely blocks LPS-induced platelet accumulation in the lung.  Therefore, 

expression of MIP-2 and KC was measured in lung tissue of mice lacking integrin 

β3, the beta subunit of the platelet specific integrin αIIBβ3, a primary integrin 

receptor by which platelets adhere to fibrin matrices.  Interestingly in β3 knockout 

animals, ethanol-enhanced MIP-2 and KC expression was significantly blunted to 

levels similar to LPS administration alone, similar to what was seen in PAI-1-

deficient animals.  Interestingly, ethanol-enhanced PAI-1 expression was also 

attenuated in these β3 knockout animals.  Taken together, these results indicate 

that the mechanism whereby alcohol exaggerates LPS-induced lung injury 

requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel 

mechanism whereby alcohol contributes to inflammatory ALI by enhancing 

fibrinogen-platelet engagement.   

Text Box 6.1 

 

Take-home points 
 

 Alcohol pre-exposure exacerbates PAI-1 induction and fibrin 
deposition in the lung. LPS injection causes pulmonary platelet 
accumulation. 
 

 Knocking out PAI-1 almost completely attenuated fibrin and platelet 
accumulation. Furthermore, these PAI-1-deficient mice were protected 
against alcohol-enhanced ALI. 

 

 Blocking PAI-1-mediated fibrin accumulation, as well as platelet 
adherence to fibrin (β3 knockout animals), mitigated chemokine 
expression in the lung, suggesting a possible novel mechanism of 
alcohol-enhanced ALI.  
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2. Chronic + Binge alcohol exposure promotes inflammation in the lung 
and alters pulmonary function. 
 
As described in the Chapter I Section 6, a major limitation of in vivo 

studies investigating the toxic effects of alcohol on the lung is the mouse models 

which are often employed. Indeed, ad libitum ethanol exposure models, including 

ethanol in drinking water and chronic Lieber-DeCarli liquid diet produce relatively 

low blood alcohol levels and mild, if any, clinically relevant liver pathology. 

Recently, a new model of acute-on-chronic alcohol exposure was developed to 

study alcohol-induced liver disease (80), in which chronic dietary exposure is 

followed by an acute bolus gavage of alcohol.  It is hypothesized that this model 

better recapitulates the drinking patterns of an individual with an alcohol use 

disorder.  Importantly, hepatic pathology in this acute-on-chronic model is more 

similar to human alcoholic liver disease.  The experiments described in Chapter 

IV characterize the previously uninvestigated effects of this alcohol exposure 

regimen in the lung.  As such, the goals of the experiments in Chapter IV were to 

1) characterize lung injury and/or inflammation in this new, perhaps more 

relevant model of alcohol exposure, 2) to determine what, if any, functional 

effects this ethanol exposure pattern has on pulmonary function, thereby 3) 

determining if alcohol exposure alone, absent any secondary injury, is sufficient 

to cause pulmonary inflammation or injury.  

Liver injury and inflammation in the acute-on-chronic, or chronic + binge, 

has been previously well-characterized as resembling alcoholic steatohepatitis, 

with fat accumulation, inflammation, and necrosis. These findings were 
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recapitulated in Chapter IV. While mice administered 10 days of ethanol-

containing liquid diet alone showed little liver pathology, as seen histologically or 

biochemically, 10 days of alcohol feeding followed by ethanol binge (chronic + 

binge ethanol) dramatically exacerbated liver injury and inflammation. As 

previously characterized, this inflammation was predominately neutrophilic in 

nature, more closely resembling the human pathology.  The effects of chronic + 

binge ethanol exposure have been uncharacterized in the lung, and the first goal 

of this study was to address this question.  Similar to what is seen in the liver, 10 

days of ethanol-containing liquid diet produced no overt pathologic effects in the 

lung, i.e., no inflammatory cell recruitment or alterations in tissue architecture.  

Alternatively, chronic + binge ethanol exposure promoted recruitment of 

neutrophils, which were seen sequestered in the lung parenchyma 9 hours after 

ethanol binge.  This neutrophil recruitment was associated with significant 

induction of the neutrophil chemokines Cxcl1, Cxcl2, and Cxcl15.  This 

inflammation was persistent. Indeed, although 24 hours after ethanol binge, the 

neutrophil infiltration in the lung tissue had decreased (data not shown), the 

number of cells recovered in the BALF was significantly elevated. This increase 

in total BAL cells was driven primarily by an increase in neutrophils. Indeed, the 

total number of BAL neutrophils was significantly elevated in mice exposed to 

chronic + binge ethanol.  The total number of lymphocytes was also significantly 

elevated in this group, although to a lesser extent.   

Population studies have indicated that alcohol consumption may trigger 

asthma attacks in some individuals (135).  However, data from experimental in-
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vivo studies are unclear, and at times conflicting. Therefore, in accordance with 

the second goal of this study, the effect of chronic + binge alcohol exposure on 

pulmonary mechanics were measured.  At baseline, ethanol exposure did not 

affect pulmonary mechanics. However, alcohol exposure caused airway 

hyperreactivity in response to inhaled methacholine, as demonstrated by 

increased airway resistance, Newtonian resistance, and respiratory resistance 

(the real part of respiratory impedence). These data suggest that acute-on-

chronic alcohol exposure promotes hyperreactivity, likely in both the central 

airways and lung parenchyma.  Taken together, these data address the third goal 

of this study- to determine if ethanol alone is sufficient to cause inflammation in 

the lung. The results of this study suggest that chronic + binge ethanol alone 

causes pulmonary inflammation and affects pulmonary mechanics.  

Text Box 6.2 

 

 

 

 

Take-home points 
 

 Chronic + binge alcohol exposure causes inflammation in the lung, 
marked by neutrophil infiltration in the lung tissue and BALF 
 

 Airway resistance in response to inhaled methacholine is increased in 
animals exposed to chronic + binge alcohol 

 

 Taken together, these data suggest that, based on dose and pattern 
of exposure, alcohol alone is sufficient to cause inflammation in the 
lung and alter pulmonary mechanics.  
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3. Intrasplenic administration of tamoxifen-loaded PLGA nanoparticles 
selectively induces cre-mediated recombination in the liver. 
 
Multiple organ failure is highly recognized as a hallmark of end-stage 

alcoholic liver disease. However, the role of organ-organ crosstalk in the early 

stages of disease is increasingly appreciated. In fact, studies have suggested 

that extra-thoracic cytokines, like TNFα, may contribute to alcohol-enhanced ALI. 

However, no experimental system is currently available to test this hypothesis. 

The goals of Chapter V of this dissertation were therefore 1) to identify a drug 

delivery method which selectively targets the liver versus the lung and 2) to 

develop a transgenic animal to demonstrate the feasibility of selectively inducing 

a transgene in the liver versus the lung.  

To address the first goal, this study used tamoxifen-loaded PLGA 

nanoparticles and a dual-fluorescence reporter mouse to attempt to develop this 

tool. The mT/mG reporter construct expresses red fluorescent, membrane-

targeted TdTomato (mT) before Cre-mediated excision. Upon induction of Cre, 

flox-flanked mT is deleted and membrane-targeted enhanced GFP (mG) is 

expressed. These animals were crossed with tamoxifen-inducible Cre 

(R26CreER) that is expressed in every cell. Therefore, any cell exposed to 

tamoxifen would express Cre, thereby inducing mT excision and mG expression. 

For example, when tamoxifen is injected intraperitoneally, every cell in the body 

expresses mG, as demonstrated in Chapter V.  It was proposed that i.v. injection 

of PLGA nanoparticles would be sufficient to target hepatic macrophages. While 

mG was robustly induced in the liver upon examination of green fluorescence in 
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frozen tissues, it was observed that mG was also induced in the lung, indicating 

that tamoxifen-loaded PLGA nanoparticles must have also targeted the lung. 

After i.v. (tail vein) administration of a pharmacologic agent, the first 

capillary bed that agent contacts is the lung.  This property may explain why 

green fluorescence was observed in both the liver and lung.  As such, a more 

liver-specific delivery method was required. Blood from the spleen empties 

directly into the hepatic portal vein, thereby making intrasplenic injection an, 

essentially, direct route of administration of pharmacologic agents to the liver.  

Furthermore, the majority of PLGA nanoparticles, when injected intrasplenically, 

have been shown to accumulate in Kupffer cells (89).  It was therefore proposed 

that intrasplenic administration of PLGA nanoparticles would induce Cre-

mediated excision in the liver, while avoiding off-target organs like the lung. 

As such, to address the second goal of this study, tamoxifen-loaded PLGA 

nanoparticles were injected intrasplenically in R26CreER+/mTmG+ mice.  

Interestingly, the experiments in Chapter V demonstrate that this method induces 

dose-dependent expression of Egfp in the liver, but did not induce expression in 

the lung, kidney, or spleen when compared to injection of vehicle control. At all 

doses of nanoparticles injected, both hepatocytes and non-parenchymal cells 

appeared to express mG. Taken together, the data from Chapter V indicate that 

liver-specific (intrasplenic) delivery of tamoxifen-loaded PLGA nanoparticles may 

be sufficient to selectively induce Cre-mediated excision in hepatic macrophages 

while avoiding macrophage populations in other tissues, including the lung.  
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Text Box 6.3 

 

 

C. Significance of new findings 

As discussed in Chapter I, alcohol abuse is the number one risk factor for 

developing ARDS in the setting of sepsis. However, the mechanisms by which 

alcohol sensitizes the lung to development of ALI and ARDS are poorly 

understood.  One of the primary aims of this dissertation was to utilize knowledge 

of established mechanisms in alcohol-induced liver injury to unmask novel 

mechanisms of alcohol-enhanced lung injury. The experiments in Chapter III 

identify a novel role for the fibrinolytic inhibitor, PAI-1, and by extension, fibrin 

accumulation and integrin β3- mediated platelet aggregation. The results from 

this study suggest that alcohol pre-exposure enhances PAI-1 induction after LPS 

administration, thereby promoting accumulation of fibrin in the lung tissue, which 

acts as the ligand for platelet aggregation via platelet integrin αIIBβ3.  This study 

revealed several potential druggable targets which could be explored for 

prevention of the development of ARDS in at-risk individuals. For example, anti-

Take-home points 
 

 Chapter V identified a drug delivery vehicle (tamoxifen encapsulated 
in PLGA nanoparticles) and a suitable reporter system (a dual-
fluorescence reporter construct regulated by tamoxifen-inducible Cre 
to develop an in-vivo model to investigate the liver-lung axis.  
 

 Intrasplenic, but not intravenous, administration of nanoparticles 
selectively induced Cre-mediated excision of the reporter construct in 
the liver, and not in the lung.  
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coagulants are already being actively clinically explored as treatment options for 

sepsis-induced ARDS (151).  Additionally, platelet aggregation inhibitors are FDA 

approved and readily clinically available.  The studies presented in Chapter III, 

therefore, are just one example of how understanding parallel mechanisms of 

liver and lung injury may provide new treatment options for at-risk patients.  

Murine models are useful tools to investigate mechanisms by which 

alcohol pre-exposure promotes injury and inflammation in target organs, 

including the liver and the lung. However, many animal models employed are 

limited in their ability to recapitulate risky human drinking patterns and the human 

pathologies that are associated with them.  The recently developed “acute-on-

chronic” or “chronic + binge” mouse model of alcohol exposure more accurately 

reproduces risky human drinking behavior, in which episodes of binge drinking 

are coupled with alcohol abuse. Liver pathology in this model of alcohol exposure 

is well characterized (152).  This pattern of ethanol exposure in mice produces a 

phenotype more similar to human alcoholic steatohepatitis, including hepatic fat 

accumulation, neutrophil infiltration, and necrosis. Novel findings in Chapter IV 

show that chronic + binge alcohol exposure also promotes inflammation and 

airway hyper-responsiveness in the lung. This work has characterized the effects 

of a new model of ethanol exposure in mice, unmasking lung pathologies that are 

not seen with different models of ethanol administration.  Importantly, this study 

is the first to demonstrate that ethanol exposure alone, absent any exogenous 

inflammatory insult (e.g., LPS), is sufficient to induce inflammation in the lung. 

Additionally, population studies have indicated that in some individuals, alcohol 
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consumption can trigger asthma attacks. However, these episodes have 

traditionally been linked to impurities in alcoholic beverages and/or acetaldehyde 

detoxification insufficiencies.  The experiments in Chapter IV indicate that ethanol 

alone may contribute to mild airway hyperresponsiveness. Taken together, these 

results indicate that this model may be used in the future to investigate how 

ethanol exposure may drive the development of a pro-inflammatory milieu in the 

lung and airways, thereby promoting injury.  Once again, these studies represent 

another example of how understanding alcohol-induced toxicity in one organ, 

such as the liver, may provide novel insight into a second target organ, like the 

lung.  

Finally, the third Aim of this dissertation sought to develop a tool that could 

be used to empirically assess the role of hepatic, or more specifically, Kupffer-

cell derived cytokines in the development of alcohol-enhanced acute lung injury. 

The experiments in Chapter V demonstrate that when tamoxifen-loaded PLGA 

nanoparticles are delivered directly to the liver of animals expressing tamoxifen-

inducible Cre recombinase, Cre-mediated excision occurs exclusively in the liver, 

with recombination occurring in both hepatocytes and non-parenchymal cells, 

including Kupffer cells. These results are significant for several reasons. First, 

these experiments have developed a tool to discern the role of hepatic-derived 

cytokines in alcohol-enhanced acute lung injury. To date, no Kupffer cell-specific 

promotor has been identified that exclusively targets resident hepatic 

macrophages while avoiding macrophages in other tissues, including the lung.  In 

the system developed in Chapter V, the role of any gene that can be flox-flanked 
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may be assessed. For example, to determine the role of hepatic-derived TNFα in 

alcohol-enhanced ALI, the commercially-available, flox-flanked TNFα converting 

enzyme (TACEflox ) mouse could be employed. Selective deletion of this enzyme 

could, in theory, prevent the release of TNFα from the liver into systemic 

circulation while not affecting local, paracrine effects of TNFα in the liver.  

Second, while communication between the liver and lung may be of most interest 

for the current study, the role of hepatic-derived cytokines in alcohol-induced 

toxicity is of great interest in other organs as well. For example, systemic TNFα is 

established to play a role in alcohol-induced brain inflammation (153).  The 

system described in Chapter V would be useful for determining the origin of this 

systemic cytokine. Third, the applications of this system are not limited to the 

context of alcohol-induced organ toxicity. For example, hepatic macrophages 

have been widely implicated in multiple organ failure in acute pancreatitis (147).  

The system described in Chapter V could be utilized to investigate the specific 

role of any flox-flanked gene in hepatic macrophages in this disease. Finally, the 

development of this tool has implications beyond the scope of basic research. 

Clinically, identifying the role of hepatic-derived cytokines in alcohol-induced 

toxicity in the lung, as well as other organs, provides novel insight for the 

treatment of these conditions. For example, these data provide support for 

identifying underlying liver disease as a screening and/or treatment goal in 

patients at risk for developing ARDS, as well as other systemic diseases.  
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D. Strengths and weaknesses 

1. Strengths 

There are several strengths of the work presented in this dissertation.  

First, this work uses relevant whole animal models to address the Aims 

presented here. The effects of alcohol use are complex phenomena which are 

not limited to a single organ or cell type, directly supporting the necessity of the 

work presented in this dissertation which investigates parallel mechanisms of 

injury in the liver and lung, as well as the potential interdependence of these two 

organs, during alcohol exposure.  The questions explored here could likely not be 

sufficiently addressed by the use of other model systems (e.g., cultured cells).  In 

particular, this study explores the effects of a new, relevant mouse model of 

ethanol exposure in the lung. Chronic + binge ethanol exposure has been 

characterized as, perhaps, a more clinically-relevant mouse model of ethanol 

exposure. Blood alcohol levels achieved in this model, as well as the liver 

pathology it produces, are similar to that of individuals at risk of developing 

alcohol-induced disease. For example, increased risk of ARDS only occurs in 

patients consuming more than three drinks per day (127).  For the first time, the 

work in this dissertation explores the effects of chronic + binge alcohol exposure 

on the lung, and produced the novel finding that, under these conditions, ethanol 

alone is sufficient to cause pulmonary inflammation and alter lung mechanics.  

In addition to exploring alternative alcohol exposure models to investigate 

the effects of ethanol on the lung, this dissertation also developed a new tool to 
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gain novel insight in the liver-lung axis of disease. The wide range of applications 

for this new tool is an obvious strength of the work presented in this dissertation. 

The use of a tamoxifen-inducible ubiquitous promotor allows for targeted excision 

of any gene of interest that is flox-flanked. As mentioned previously, targeted 

deletion of TNFα converting enzyme (TACE) from the liver, specifically hepatic 

macrophages, would prevent the release of TNFα from the liver into systemic 

circulation and, if the hypothesis is correct, protect against alcohol-enhanced 

acute lung injury. However, even if this hypothesis is insufficient, the system 

developed here would allow for selective deletion of other genes, and depending 

on the nanoparticle delivery method, selective deletion of genes from other 

macrophage populations.  

Finally, this dissertation has identified a new mechanism of alcohol-

enhanced ALI. Building on knowledge of the role of the protease inhibitor, PAI-1 

in alcohol-induced liver injury, this dissertation sought to explore the idea that 

similar mechanisms involving transitional ECM remodeling may be involved in 

alcohol-enhanced lung injury. Using an established model of experimental 

endotoxemia with ethanol pre-exposure, the experiments in Chapter III 

demonstrated a novel role for PAI-1 and subsequent fibrin accumulation and 

platelet aggregation. While platelets have been implicated in other forms of lung 

injury (103), the involvement of platelets in alcohol-enhanced ALI has not been 

explored.  This dissertation has identified novel, druggable targets to prevent the 

progression of ARDS, such as PAI-1, fibrin, and platelet aggregation (potentially 

via integrin αIIBβ3).  In fact, treatment options targeting dysregulation of the 
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coagulation cascade (e.g., nebulized heparin) are already being investigated as 

promising treatment options in patients with ARDS (154) 

.  

2. Weaknesses 

Although the animal models employed in this dissertation are a key 

strength of this body of work, they also add a source of complexity.  First, 

because a conditional (i.e., flox-flanked) PAI-1 knockout mouse is not currently 

commercially available, whole-body knockouts were used.  This approach, 

unfortunately, does not allow for the assessment of the effect of the deletion in a 

tissue of interest, in this case, lung, or a specific cell type. It is possible, 

therefore, that effects of PAI-1 deletion observed in this model may be due to the 

modulation of PAI-1’s pro-inflammatory effects in other tissues, such as the liver.  

In addition to specific limitations of the animal models used, there is 

always an element of uncertainty when using animal models to attempt to 

recapitulate human disease.  Although in-vivo research is certainly preferred to 

simpler models, such as cultured cells, to both the effects of chronic alcohol 

exposure on a specific tissue (the lung) as well as organ-organ crosstalk during 

chronic alcohol exposure, no animal model can completely recapitulate the 

human condition. Indeed, there is currently no rodent model that exactly 

represents the pattern of progression of alcoholic liver disease or alcohol-

enhanced susceptibility to ALI, or all of the clinical sequela associated with these 

disease states.  Although increased PAI-1 levels has been associated with 

increased mortality in ARDS patients (52), there are currently no clinical studies 
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investigating if ARDS patients with a history of alcohol abuse have elevated 

plasma or BALF levels of PAI-1 compared to patients who do not have an alcohol 

use disorder.  Additionally, the “chronic + binge” mouse model of alcohol 

exposure employed in this dissertation more accurately reproduces 

characteristics of human alcoholic liver disease, including hepatic neutrophil 

infiltration and inflammation.  However, the effects of this alcohol exposure 

pattern have not been examined clinically in the lung. Indeed, the pulmonary 

inflammation and functional effects presented in mice in this dissertation were 

relatively mild. As such, if this low-grade inflammation were to occur in the 

human population, it may remain clinically silent in routine examination (i.e., if no 

obvious lung injury has occurred).  Therefore, a direct correlation of the findings 

in Chapter IV to a human population is difficult to determine.   

This dissertation also has limitations in terms of the experimental 

approaches that were employed. For example, the experiments in Chapter III use 

genetic modification (PAI-1 knockout and Integrin β3 knockout) to investigate the 

role of PAI-1, fibrin accumulation, and platelet aggregation in alcohol-enhanced 

ALI. Based on the results of this study, it was concluded that ethanol-enhanced 

PAI-1 induction in the lung may contribute to exacerbated fibrin deposition and 

platelet aggregation, and these aggregated platelets may contribute to lung injury 

by driving chemokine expression and/or inflammatory damage in the tissue. 

However, this study did not directly test the role of platelets themselves. For 

example, platelet depletion using a depleting antibody, or administration of 

platelet activation inhibitors, such as clopidogrel, would more directly address the 
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role of platelets in this proposed mechanistic pathway.  Furthermore, the 

approach utilized in Chapter V relied on tamoxifen-inducible Cre-recombinase 

driven by a ubiquitous promotor paired with liver-specific delivery of tamoxifen to 

selectively modify the genetics of Kupffer cells. However, although it was 

histologically observed that Cre-mediated mG expression was robustly induced 

in Kupffer cells, mG expression was also noted in hepatocytes and possibly other 

non-parenchymal cells. The current approach outlined in Chapter V will therefore, 

likely not be sufficient to specifically target Kupffer cells while avoiding other 

hepatic cell types.  

Finally, the primary goal of the experiments in Chapter V was to develop 

an animal model that may be used to interrogate the role of hepatic-derived 

cytokines in alcohol-enhanced ALI. This model, therefore, does not address the 

possibility that communication between the liver and lung may be bi-directional.  

Indeed, in experimental studies of ventilator-induced ALI, data suggests 

mediators released from the lung may damage tissues in other organs, including 

the liver (149, 150).  One advantage of the system developed in Chapter V is that 

the dose and route of administration of nanoparticles could be altered to target 

macrophage populations in other tissues.  For example, direct administration of 

nanoparticles to the lung (e.g., intratracheal instillation or oropharyngeal 

aspiration) would likely selectively target alveolar macrophages, while avoiding 

hepatic macrophages. Additionally, the current system will only address the role 

of inflammatory mediators released from the cells that are residing in the liver at 

the time of intrasplenic nanoparticle injection.  Recent studies have suggested 
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chronic alcohol administration causes infiltration of monocyte-derived 

macrophages into the liver (155).  While the exact role of these infiltrating 

inflammatory cells, compared to that of the macrophages residing in the liver, is 

still widely debated, it is proposed that at least a subpopulation of the recruited 

macrophages promote inflammatory tissue damage (156).  Although the system 

proposed in Chapter V may be limited by its inability to target macrophages that 

are recruited after the time of injection, this limitation may also be a strength 

because it allows for separation of the effects of resident versus recruited 

macrophages on systemic release of inflammatory mediators.  However, it is 

possible that blocking release of inflammatory mediators into circulation may 

attenuate the recruitment of inflammatory cells into the liver.  Future studies 

should consider the limitations presented here to further investigate these 

important research questions.  

Summary Table 6.1 

Strengths Limitations 

 Relevant animal model of chronic 
+binge alcohol exposure unmasks 
alcohol-induced pathology in lung 

 

 Novel approach to investigate 
liver-lung interactions has a wide 
range of applications, inside and 
outside the context of this 
dissertation 

 

 Clinically relevant, new, 
druggable targets in alcohol-
enhanced ALI for at-risk patients 
identified. 

 Pathologies identified in animal 
models used here remain 
uninvestigated in human patients. 

 

 Liver-specific, transgenic system 
targets multiple hepatic cell 
types and does not address 
potential for bi-directional 
communication  

 

 Exact role of platelets in this novel 
mechanism of ALI requires 
further investigation. 
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E. Future Directions 

While the experiments described in this dissertation answered specific 

gaps in the field’s knowledge of the alcoholic lung phenotype and the liver-lung 

axis of disease, it has also created new questions to be addressed in future 

studies. Some of these questions are addressed below. 

 

1. What is the role of platelet activation in alcohol-enhanced ALI? 

 

The experiments performed in Chapter III identified fibrin-mediated platelet 

aggregation as a mechanism by which alcohol enhances endotoxemia-induced 

ALI. Deletion of the β subunit of integrin αIIBβ3, an integrin involved in platelet 

adherence to fibrin, significantly blocked alcohol-enhanced chemokine 

expression and PAI-1 expression. A logical next step for future experiments 

would be to directly test the role of platelets and platelet activation in the 

development of the alcoholic lung phenotype.  This question could be addressed 

by various approaches. First, to more broadly test the hypothesis that platelet 

accumulation promotes chemokine expression in the lung, platelets could be 

depleted from the whole animal by injection of an anti-CD41 monoclonal antibody 

(157).  Next, platelet inhibitors could be used to more specifically interrogate 

various platelet functions.  Integrin αIIBβ3 inhibitors, such as abciximab, prevents 

adhesion of platelets (158). Clopidegrel is an antagonist of the platelet ADP 

receptor, P2Y12; administration of this drug could investigate the specific role of 

activated platelets. More “platelet-specific” genetic approaches could also be 



136 
 

utilized (159).  For example, mice lacking protease-activated receptor-4 (PAR-4), 

the platelet receptor for thrombin, is also an available option to study platelet 

activation in alcohol-enhanced ALI.  Indeed, thrombin, a potent activator of 

platelets, was elevated in the plasma of animals exposed to ethanol and LPS.  It 

is proposed that blocking platelet activation would mitigate alcohol-enhanced 

cytokine and chemokine expression, and ultimately, inflammatory injury. 

Additionally, the effect of the pattern and dose of alcohol exposure (i.e., chronic 

alcohol versus chronic + binge alcohol) would be an interesting question to 

explore. Further investigating the contribution of platelets to alcohol-enhanced 

ALI would be an interesting future direction for this study.  

Summary Table 6.2 

Platelet activation in ALI? 

Rationale 
Blocking platelet aggregation significantly attenuated 
alcohol-enhanced chemokine expression in the lung. 

Approach 
Platelets may be depleted entirely using monoclonal 
antibodies, or drugs and/or genetic modification can be 
used to target specific activation pathways. 

Expected Results 
Blocking platelet activation will mitigate alcohol-
enhanced ALI. 

 

2. To what extent is the mechanism identified in Chapter III involved in 
alcohol-induced liver injury? 
 
A major goal of this dissertation was to utilize established mechanisms of 

alcohol-induced liver injury to explore new questions about alcohol-enhanced 

ALI.  The Arteel group found that PAI-1 induction and subsequent fibrin 

accumulation were critical in the development of liver injury and inflammation in 

the setting of chronic alcohol exposure (47), as well as acute alcohol-enhanced 
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LPS-induced liver injury (38). It was therefore proposed that similar mechanisms 

may be involved in alcohol-enhanced ALI. During this investigation, a new 

mechanism of inflammation, potentially mediated by platelets, was uncovered.  

An interesting target for further investigation would be to determine if this is a 

parallel mechanism of injury in the liver.  One study demonstrated that platelets 

accumulate in the periportal microcirculation after acute ethanol administration in 

mice (160). Paradoxically, thrombocytopenia, or low platelet levels, is associated 

with chronic liver diseases, including alcoholic cirrhosis. It is proposed by others, 

however, that thrombocytopenia in end-stage liver disease may be a product of 

decompensation and not necessarily involved in pathogenesis at this stage of 

disease (161).  The involvement of platelets in the inflammatory phase of 

alcoholic liver disease is unknown, and would therefore be an interesting 

question for future study.  To study this effect, the model of chronic alcohol 

exposure with experimental endotoxemia employed in this dissertation could be 

utilized, and platelet accumulation could be detected in the liver 

immunohistochemically, as described in the lung in Chapter III.  If platelets are 

found to accumulate in the liver, similar approaches as described in the previous 

section could be employed to determine if platelet activation contributes to 

alcohol-induced liver injury.  Based on the findings of this dissertation, it is 

expected that platelet aggregation may occur in the liver in this disease model, 

and that blocking this aggregation may attenuate alcohol-induced liver injury.  
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Summary Table 6.3 

Role of platelets in alcohol-induced liver injury? 

Rationale 
Blocking platelet aggregation significantly attenuated 
alcohol-enhanced chemokine expression in the lung. 

Approach 
Platelets may be depleted entirely using monoclonal 
antibodies, or drugs and/or genetic modification can be 
used to target specific activation pathways. 

Expected Results 
Blocking platelet activation may attenuate alcohol 
induced injury or inflammation.  

 

 

3. What is the mechanism by which chronic + binge alcohol exposure 
causes airway hyperresponsiveness? 
 
Population studies have indicated that alcohol consumption may trigger 

asthma attacks in certain individuals, including those with a genetic 

polymorphism that prevents them from efficiently detoxifying acetaldehyde (127).  

The effects of alcohol-induced damage, separate from alcohol intoxication itself, 

on lung mechanics has not been extensively characterized.  The experiments 

outlined in Chapter IV demonstrate that chronic + binge alcohol exposure causes 

airway hyperresponsiveness, as indicated by exacerbated resistance, Newtonian 

resistance and respiratory resistance in response to inhaled methacholine. These 

measurements were performed 24 hours after ethanol binge, and animals had 

been fasted from ethanol.  Therefore, it is unlikely that any effects on lung 

mechanics seen in this study were due to alcohol intoxication or toxic alcohol 

metabolites, such as acetaldehyde.  Potential alternative mechanisms of airway 

hyperresponsiveness would, therefore, be of interest to explore in future studies.  
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Airway responsiveness to methacholine can be altered by a variety of 

factors.  First, interruption of the bronchial epithelium may exacerbate airway 

resistance in response to methacholine by allowing the drug to more freely 

access the underlying smooth muscle (162).  The bronchial epithelium is 

protected by layers of phospholipids, or surfactants. In one study, guinea pigs 

exposed to chronic ethanol had significantly reduced surfactant levels in BALF 

compared to control animals (163).  Surfactant levels could be measured in 

animals exposed to chronic + binge ethanol.  If found to be reduced, an 

intervention study could be performed to attempt to restore surfactant proteins 

using a number of experimental approaches, including administration of 

exogenous surfactant (164).  If surfactant loss is involved in this phenomenon, 

restoring surfactant may mitigate alcohol-induced airway hyperresponsiveness.  

A second potential mechanism of exacerbated airway resistance is the 

induction of oxidative stress (165).  Indeed, oxidative stress is hypothesized to be 

a key player in the alcoholic lung phenotype (4).  Indices of oxidative stress, such 

as glutathione depletion, could be measured in animals exposed to chronic + 

binge ethanol.  If elevated, antioxidants, such as N-acetyl cysteine, could be 

administered to attempt to attenuate alcohol-induced airway 

hyperresponsiveness (166). 

  Pulmonary inflammation can also promote airway hyperresponsiveness 

(162). For example, the experiments in Chapter IV demonstrated that chronic + 

binge alcohol exposure promotes neutrophil recruitment to the lung tissue and 

airways. Neutrophils release reactive oxygen species, which may therefore be 
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one potential mechanism of airway hyperresponsiveness seen in this model, as 

previously discussed.  Additionally, a study measuring cytokine and chemokine 

levels in BALF of patients with alcohol use disorders found that regulated on 

activation, normal T-cell expressed and secreted (RANTES/CCL5) levels 

positively correlated with the severity of the alcohol use disorder (167, 168). The 

role of this chemokine has been widely characterized in airway 

hyperresponsiveness in asthma and allergic airway inflammation (169).  One 

potential future study could investigate levels of this chemokine in the BALF of 

animals exposed to chronic + binge alcohol.  If found to be elevated, the role of 

this chemokine in alcohol-induced airway hyperresponsiveness could be 

investigated in a commercially-available knockout mouse.  

Finally, there is evidence suggesting that dyfunction of the 

parasympathetic neurons innervating the airway may play a role in airway 

hyperresponsiveness, but the exact mechanism has not been characterized 

(170, 171).  It is therefore possible that chronic + binge alcohol exposure may 

somehow alter the innervation of the airway, thereby promoting 

hyperresponsiveness.  This hypothesis could be investigated via approaches that 

block innervation, such as vagotomy.  Taken together, these mechanisms, 

including epithelial barrier dysfunction, oxidative stress, inflammation, and 

innervation, are all plausible targets for future investigation. Furthermore, it would 

be of interest to determine if other patterns of alcohol exposure, such as acute or 

chronic alcohol exposure, also promote airway hyperresponsiveness, or if this 

phenotype is unique to chronic + binge alcohol exposure.  
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Summary Table 6.4 

Mechanism of airway hyperresponsiveness? 

Rationale 

Chronic + binge ethanol caused increased airway 
resistance in response to inhaled methacholine. Several 
factors known to contribute to airway 
hyperresponsiveness, including surfactant loss, oxidative 
stress, inflammation, and innervation, have previously 
been associated with alcohol exposure.  

Approach 

Exogenous surfactant administration, antioxidant 
administration, genetic deletion of specific inflammatory 
cytokines, or vagotomy may be used to investigate these 
questions.  

Expected Results 
An intervention to target one of these mechanisms may 
block alcohol-induced airway hyperresponsiveness.  

 

4. Does hepatic-derived TNFα contribute to the alcoholic lung 
phenotype? 
 
The experiments described in Chapter V developed a new tool for 

targeted transduction of cells in the liver that avoided the lung.  While the 

implications of this work are far-reaching, the most relevant to this dissertation is 

that this system could be used to determine the role of hepatic-derived cytokines 

in alcohol enhanced ALI. TNFα-converting enzyme (TACE) is an enzyme 

required for cleavage and systemic release of TNFα into the blood. Previous 

research from the Arteel group has suggested that extra-thoracic TNFα, at least 

in part, drives alcohol-enhanced inflammation in endotoxemia-induced ALI. The 

system developed in Chapter V could be easily used to selectively delete TACE 

from the liver in mice expressing tamoxifen-inducible Cre and flox-flanked TACE. 

The use of this system would target TACE deficiency to Kupffer cells and 

hyepatocytes and, if the overall hypothesis is correct, block TNFα signaling in the 
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lung.  In fact, these are currently being generated, and preliminary studies are 

being performed.  

Summary Table 6.5 

Role of hepatic TNFα in alcohol-enhanced ALI? 

Rationale 
Previous studies indicate extra-thoracic TNFα may 
contribute to alcohol-enhanced ALI.  

Approach 
Using the liver-specific transduction method developed in 
Chapter V, TACE could be selectively deleted from 
hepatocytes and Kupffer cells.   

Expected Results 
Liver-specific deletion of TACE would prevent TNFα from 
being released into circulation from the liver, preventing 
TNFα-responsive signaling in the lung.   

 

F. Summary and conclusions 

The overall goal of the work described here builds on the overarching 

hypothesis that the liver and lung share parallel mechanisms of alcohol-induced 

toxicity, and that liver injury may contribute, at least in part, to the development of 

the “alcoholic lung phenotype.” The experiments in Chapter III describe a new 

potential mechanism of alcohol-enhanced ALI driven by exacerbated fibrin 

accumulation and platelet aggregation, identifying platelets as a target for 

investigation of future study in both the liver and lung. Chapter IV characterizes 

the effects of a perhaps more relevant ethanol exposure pattern in the lung, 

building on findings that acute (binge) alcohol administration following chronic 

alcohol exposure causes exacerbated liver injury and inflammation. Future 

studies will seek to identify the mechanism by which chronic + binge alcohol 

causes airway hyperresponsiveness.  Finally, Chapter V describes the 

development of a novel tool using liver-targeted delivery of tamoxifen-loaded 

nanoparticles to selectively delete a gene of interest from hepatic macrophages 
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that does not also target the lung.  The implications for this system are far-

reaching, and importantly, can be used to selectively delete inflammatory factors 

(e.g., TACE) from the liver to determine if mediators (TNFα) of hepatic origin 

drive injury in the lung.  Taken together, the data presented in this dissertation 

shed new light on mechanisms by which alcohol promotes injury in the lung, as 

well as developed a tool to examine the potential extra-thoracic origins of this 

condition.  
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ABBREVIATIONS 

 

AH Alcoholic hepatitis 

ALD alcoholic liver disease 

ALI Acute lung injury 

ALT Alanine aminotransferase 

ANOVA Analysis of variance 

ARDS Acute respiratory distress syndrome 

AST Aspartate aminotransferase 

AUD Alcohol use disorder 

BAC Blood alcohol content 

BAL Bronchoalveolar lavage 

BALF Bronchoalveolar lavage fluid 

C Compliance 

CAE Chloroacetate esterase 

CCL5 C-C chemokine ligand-1 

CD41 Cluster of differentiation-41 

CD68 Cluster of differentiation-68 

Cre Cyclization recombinase 

CXCL1 C-X-C chemokine ligand-1 

CXCL15 C-X-C chemokine ligand-15 

CXCL2 C-X-C chemokine ligand-2 
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DALY Disability-adjusted life year 

DCM Dichloromethane 

ECM Extracellular matrix 

EGFP Enhanced green fluorescent protein 

ELISA Enzyme-linked immunosorbent assay 

EtOH Ethanol 

G Tissue damping 

H Tissue elastance 

HBV Hepatitis B virus 

HCC Hepatocellular carcinoma 

HCV Hepatitis C virus 

ICAM-1 Intracellular adhesion molecule-1 

IL-1β Interleukin-1 beta 

IL-22 Interleukin-22 

IL-23 Interleukin-23 

IL-6 Interleukin-6 

KC Keratinocyte chemotractant 

Loxp Locus of X(cross)-over in P1 

LPS Lipopolysaccharide 

MCP-1 Monocyte chemotactic protein-1 

mG Membrane-targeted enhanced green fluorescent protein 

a Macrophage inflammatory protein-2 
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MMP matrix metalloprotease 

mT Membrane-targeted tandem-dimer Tomato 

NIAAA National Institute on Alcohol Abuse and Alcoholism 

NP Nanoparticle 

PAI-1 Plasminogen activator inhibitor-1 

PAR Protease-activated receptor 

PBS Phosphate-buffered saline 

PECAM Platelet-endothelial cell adhesion molecule 

PFA Paraformaldehyde 

PLGA Poly(lactic-co-glycolic acid) 

PMN Polymorphonuclear leukocyte 

qRT-PCR Quantitative reverse transcription polymerase chain reaction 

RANTES Regulated on activation, normal T-cell expressed and secreted 

RGD arginine-glycine-aspartic acid domain 

Rn Newtonian resistance 

Rrs Resistance 

SEM Standard error of the mean 

SIRS Systemic inflammatory response syndrome 

TACE TNFα-converting enzyme 

TAT Thrombin anti-thrombin 

TNFα Tumor necrosis factor-alpha 

tPA Tissue-type plasminogen activator 
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uPA Urokinase-type plasminogen activator 

VCAM-1 Vascular cell adhesion molecule-1 

WT Wildtype 
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