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ABSTRACT 
 

EVALUATION OF THE SAFETY AND PHARMACOKINETIC PROFILE OF THE 
 

 BROAD SPECTRUM ANTIVIRAL LECTIN GRIFFITHSIN 
 

Christopher Lynn Barton 

June 23, 2014 

 

Carbohydrate binding agents that target viral envelope glycans are being 

studied for their potential use as microbicides and antiviral therapeutics.  

Griffithsin is a lectin originally identified in a red alga Griffithisia sp. Multiple 

studies have shown that GRFT inhibits HIV-1, Coronaviruses, Hepatitis C, 

influenza and Ebola virus replication in vitro. This antiviral activity suggests 

potential uses in chemoprophylaxis and disease treatment.  However, safety of 

GRFT administration has not been extensively studied.   In vivo testing--chronic 

subcutaneous treatment as well as single dose subcutaneous, oral, and 

intravenous administrations of Griffithsin in Sprague Dawley Rats (Rattus 

Norvegicus)--was used to assess Griffithsin’s pharmacokinetic properties and to 

predict whether use of Griffithsin for antiviral treatment might be safe and 

effective. Based on histological, serological, and biochemical data derived from 

these experiments, Griffithsin is generally well tolerated.  However, protein 
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binding assays revealed interactions with complement and apolipoproteins and 

calorimetric assays revealed changes in serum thermograms that may require 

further study.   
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CHAPTER 1 
 

INTRODUCTION AND BACKGROUND 

 

A number of enveloped viruses continue present significant threats to 

public health in the United States and the developing world.  Discovery and 

development of antivirals with broad spectrum activity is important for both 

antiviral prophylaxis as well as for therapy.  

Perhaps the most significant viral epidemic in the recent past is Human 

Immunodeficiency Virus (HIV).  With no effective vaccine, HIV-1, affects over 35 

million people worldwide, and still claims the lives of millions of people per year 

despite effective treatment options [1]. In the United States alone, approximately 

50,000 new infections still occur yearly, with over 50% of those infections being 

among men who have sex with men (MSM).  Other enveloped viruses also cause 

persistent viral infections and present serious threats to public health.  Aside from 

HIV-1, the most clinically significant persistent viral infections are caused by 

Hepatitis C Virus (HCV), and human herpesviruses such as cytomegalovirus 

(CMV), Karposi’s sarcoma-associated herpesvirus (KSHV), and type 2 herpes 

simplex virus (HSV-2).  Viruses that cause chronic, often life-long infections have 
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all needed to evolve strategies to evade the host immune response.  Viruses use 

a diverse range of immune evasion strategies, from blocking the interferon 

response through induction of interfering ribonucleic acids (RNAs) [2-7]. For 

example, HIV-1 employs many of these strategies ranging from inhibition of 

humoral immune responses by complement to antigenic variation attributable to 

low fidelity reverse transcriptase [8, 9]. Further, HIV-1 downregulates interferon 

(IFN) production to prevent an immune response [10], as well as possibly 

encodes silencing RNAs [11, 12].  Many of the viruses that persist for long 

periods of time display dense glycan shields on their envelopes to evade humoral 

immune responses by display of “self” epitopes that occlude functionally 

important domains of the envelope proteins, and in some cases to suppress 

induction of an immune response.  

Enveloped viruses from taxonomic families not necessarily linked by a 

common evolutionary history often display heavily glycosylated envelope 

glycoproteins. Dense, asparagine-linked (N-linked) glycans attached to viral 

surface proteins are a common structure amongst these viruses [13, 14].  These 

glycans present on viral envelope proteins have roles in host immune evasion 

and modulation, as well as stabilization of viral envelope structures [15-17].  In 

the case of HIV, oligomannose glycans have been theorized to assist in immune 

evasion through presentation “self” epitopes [18], as well as down-regulation of 

INF production and immunosuppressive cytokine induction under some 

circumstances [2, 10, 19, 20].     
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While glycans are structurally important for these viruses, they also 

present new targets for antiviral agents.  Agents which could selectively bind 

these glycans could thus be attractive targets for ongoing antiviral research – 

both as a preventative as well as a treatment [21]. In recent years, natural 

product derived lectins have been recognized for this very purpose [14, 22-24]. 

These lectins have been observed to inhibit viral transmission by binding to the 

specific N-linked glycans present on the surface of the viral envelopes [14].  In so 

doing they have the effect of preventing viral fusion and entry [22, 25-27].  

Outcomes of lectin therapy have also generally been positive. Animal 

survival and amelioration of viral infection has been observed in a number of viral 

challenges.  Treatment with cyanovirin (CV-N) conveyed marked survival 

benefits in a murine influenza challenge [28].  Treatment with large 

concentrations of human mannose binding lectin (MBL) conveyed a survival 

benefit versus Ebola virus challenge in mice [29].  Additionally, HCV infection has 

been modestly inhibited through lectin therapy [30, 31].   

Griffithsin (GRFT) is a lectin originally identified from the red algae 

Griffithisae sp [32].  Now recombinantly produced in tobacco plants, GRFT is a 

candidate topical microbicide and systemic therapeutic [33, 34].  In vitro studies 

into GRFT’s anti-HIV-1 activity have demonstrated an average inhibitory EC50 of 

40 pM [32].  While initially investigated as a microbicide, systemic administration 

studies are currently underway to evaluate potential uses of GRFT in antiviral 

therapy [34].  
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Given GRFT’s potent antiviral activity and low immunogenicity, GRFT has 

the diverse potential applications, including use as a systemic anti-viral therapy, 

chemoprophylaxis, or microbicidal agent [35-37].  The purpose of this 

dissertation is to explore GRFT’s potential usage as a pre-exposure prophylaxis 

and systemic therapeutic for enveloped viruses possessing high-mannose N-

linked glycans.  While GRFT has activity against multiple viruses, this 

dissertation focuses on GRFT in the context of HIV-1 infection given robust in 

vitro assays to measure and analyze GRFT’s anti-HIV activity in serum and other 

biological products.  The specific aims of these studies included:  evaluation of 

GRFT’s practical pharmacokinetic parameters to elucidate how method of 

administration may impact GRFT’s utility; evaluation of GRFT’s potential as an 

orally dosed rectal microbicide through gastric lavage of different concentrations 

of GRFT in rats; evaluation of GRFT’s systemic impacts both in the presence and 

absence of an antibody response with accompanying intermediate-term dosing; 

and identification of GRFT’s potential endogenous serum protein binding 

partners through affinity purification; as well as evaluation as to whether 

Differential Scanning Calorimetry is capable of revealing alterations in serum 

protein interactions following both chronic systemic administration and serum 

spiking of GRFT.  

Glycosylation States 

Glycosylation is enzymatic addition of complex carbohydrate chains to 

organic molecules, such as proteins [38].  These additions assist in maintaining 

proper protein folding, increase protein stability, and contribute to protein 
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functionality [39]. Furthermore, glycosylation can result in greater hydrophilicity.  

Viral glycosylation can also alter infectivity and viral fitness [40]. 

Glycosylation is a covalent post-translational modification that can occur in 

either the Golgi apparatus or the endoplasmic reticulum and is fundamental to 

many biological processes [29]. This modification process can result in five 

different types of glycans (glycoforms) can result: N-linked, O-linked, C-linked, 

glipiated, or phospho-glycans [29].  The glycoform relevant to the studies at hand 

are of the N-linked variety, given GRFT’s high affinity for oligomannose N-linked 

glycans. 

N-linked glycosylation begins with the addition of a 14 unit oligosaccharide 

precursor to an asparagine in a polypeptide chain.  The signal for N-linked 

glycosylation occurs through one of two sequences: Asn-X-Ser or Asn-X-Thr, 

where X can be any amino acid except proline [41].  The general branched 

carbohydrate chain contains 3 glucose, 9 mannose, and 2 N-acetylglucosamine 

molecules attached to a carrier molecule (a dolichol), and transferred to the 

appropriate signal sequence on the protein as it is translocated into the ER 

lumen [42]. 

Saccharide compositions between glycans of the same linkage type may 

also vary, leading to High-mannose, Hybrid, or Complex glycans (with the 

terminal structure presented after editing determining the glycan subtype) (Figure 

1.1) [29]. High-mannose glycans exclusively present mannose on the terminal 

portions of the sugar, and contain 5-9 mannose residues [29] (Figure 1.1 A &B).  

No N-acetyl glucosamine residues are presented. As the initial state for many 

http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Mannose
http://en.wikipedia.org/wiki/Dolichol
http://www.mondofacto.com/facts/dictionary?mannose
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glycans, further editing occurs which result in either Complex (Figure 1.1 D) or 

Hybrid glycans (Figure 1.1C) [29].  This editing is thought to depend on 

accessibility to multiple saccharide-modifying proteins present in the Golgi [29].   

Further editing results in either Hybrid glycans – where at least one mannose 

residue and one N-acetylglucosamine are presented, or Complex glycans [29]. 

Complex glycans, which do not have mannose terminal residues, can have 

multiple N-acetyl glucosamines or other terminal sugar structures presented [29]. 

Endogenous glycans have many vital physiological roles.  Glycans can 

prevent self-recognition and autoimmunity[43].  Functionally, glycans can 

stabilize protein folds as well as become vital parts of extracellular matrix [44].  

Further, glycans can function in cell trafficking and communication through 

recognition of glycan binding proteins[45].  In the case of antibodies and other 

circulating proteins, serum half-life and cell receptor interaction may be 

influenced by glycosylation [46-49]. 

 

Viral Glycosylation 

Upon taking over the cellular machinery upon infection, virally produced proteins 

are also known to be glycosylated.  In the case of HCV, a number of envelope 

proteins are glycosylated [17, 50].  Further, as mentioned previously, these viral 

glycans assist in immune evasion, with the loss of the glycans related with 

increased susceptibility to antibody neutralization [17, 51, 52].  Influenza virus 

also present glycosylated glycans [40].  Influenza hemagglutinin (HA) initiates the 

infection process by binding to cellular receptors and is known to possess 

http://en.wikipedia.org/wiki/Golgi_apparatus
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multiple glycosylation sites which has been linked to virulence in mice[53].  The 

Severe Acute Respiratory System Coronavirus(SARS-CoV) possesses a number 

of glycosylation sites, particularly in the S glycoprotein necessary for cellular 

binding[54, 55].  Ebola virus possesses both N- and O-linked glycans[56, 57].   

 

HIV-1 – A virus possessing Oligomannose N-linked glycans 

HIV-1, a lentivirus of the retrovirus family, continues to spread worldwide [58].  

HIV’s genome consists of nine genes[59].  Six genes in the HIV genome:  tat, 

rev, nef, vif, vpr and vpu code for viron processing [59]  Whereas, Gag, Pol, and 

Env encode structural and functional proteins [59].  Many of the proteins 

produced are precursors that require additional modification.  Gag encodes 

protein which is cleaved into matrix (p17), capsid (p24), nucleocapsid (p7), and 

p6 [59].  Similarly replication proteins associated with cDNA synthesis and cDNA 

integration are generated as precursors cleaved to produce viral protease, 

reverse transcriptase and integrase [59].   

 Virion surface glycoproteins gp120 and gp41 are encoded on the Env 

gene. These glycoproteins are initially synthesized as a 160kDa glycoprotein 

precursor protein, requiring cleavage before assembly into a spike [59].  

Following glycosylation in the endomembrane system, gp160 is enzymatically 

cleaved into gp120 and gp41 [43]. Trimerization of three molecules of gp41 with 

gp120 molecules spikes on the viral envelope for interacting with CD4 receptor 

molecules [59]. 

GP120 structure and glycosylation 
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Gp120 protein of HIV is highly glycosylated, with an average of 24 

glycosylation sites occupied [55].  Further, those glycans are almost entirely of 

the high-mannose variety [13, 60].  These glycans can greatly impact viral 

infectivity and fitness.  For example, an increase in potential N-linked 

glycosylation sites can result in increased viral fitness by obscuring binding sites 

recognized by antibodies [56]. Additionally, viruses isolated from early time points 

in infection tend to be less heavily glycosylated than viruses isolated from later 

time points [57, 58].   

 

HIV Infection  

Cellular binding is the first step in the process of HIV infection.   Viral 

particles with reduced numbers of N-linked glycans infect activated T-cells and 

dendritic cells in the genital mucosa [61-64]. CD4+ T cell infection results in 

migration of the virus to gut-associate lymphoid tissues [65, 66].  There acute 

infection takes hold as gut-associated T-cells possessing the α4β7 gut homing 

integrin are infected and depleted [64]. 

The routes of sexual exposure and transmission may vary.  Vaginal 

transmission is the most common route of transmission worldwide, though in the 

United States the majority of new infections occur via rectal exposure[67]. In 

vaginal transmission, the cervix is a major site for HIV-1 transmission as rich in 

HIV-1 target cells [68-70].  However, receptive anal intercourse provides the 

greatest probability of transmission [71, 72].   Fragile rectal tissue which can be 

damaged by intercourse, and a large population of T cells and dendritic cells 

http://en.wikipedia.org/wiki/HIV#Replication_cycle
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resident in the rectal mucosa contribute to high probability of productive infection 

[71, 73-77]. 

 The biochemical steps of cellular infection begin with gp120 present on 

the envelope of HIV binding with the CD4 receptor molecule expressed on the 

surface of mature CD4+ T cells, macrophages and dendritic cells [78-80].  Upon 

binding, the CD4 receptor molecule undergoes conformational changes with 

allow for interaction with either of two 7-transmembrane spanning chemokine 

receptors, CCR5 or CXCR4 [81-83].  Co-receptor engagement and binding leads 

to a second conformational change in the viral envelope spike, altering the state 

of gp41 [84, 85].  This alteration of gp41 leads to insertion of the N-terminal 

domain of gp41 into the cellular membrane.  This insertion triggers formation of a 

six-helix bundle that provides the energy for cellular fusion. [84-86].  Upon fusion, 

the viral capsid releases two copies of RNA, reverse transcriptase, integrase, 

and viral protease.  Reverse transcriptase acts to convert the RNA into DNA 

while Integrase cleaves host DNA and integrates the new viral DNA into the host 

cell genome.  Later, viral protease acts to cleave precursor polyproteins into 

functional proteins for new virion packing and assembly. 

 Within weeks of infection, some persons display Acute Retroviral 

Syndrome associated with primary HIV infection.  During that period, a large 

burst of viral replication occurs as the immune system reacts to the infection, 

attempting to eliminate the virus and infected cells.  During this period, 

nonspecific symptoms such as fever, rash, body aches occur as a consequence 

of immune system activation.  After a number of days to weeks, symptoms 
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resolve, however the immune system is remains in a persistent inflammatory 

state.  Despite a lack of outward symptoms, a slow but steady decrease in CD4+ 

cells occurs over a number of years.  During this time, a gradual increase in viral 

load accompanies the decrease in CD4+ t cells.   

 

Prevention Methods and Antiviral treatments 

 Pharmacological strategies are currently in use for the treatment of many 

of enveloped viruses, with small molecule pharmaceuticals designed to block 

specific events in the viral life cycle.  These strategies include 

preventing/reducing viral replication, preventing virion processing and maturation, 

as well as preventing viral entry into cells.   

HIV-1 currently has many treatment options available for infected 

individuals with the goal of suppressing viral replication below the limits of 

detection. However, maintenance of an undetectable viral load may be difficult to 

maintain due to drug side effects, drug adherence, and emergence of drug 

resistant virions.  As such, a long acting adjuvant treatment acting upon a novel 

drug target may be useful for those with adherence issues, or those with few 

treatment options left.  As such, anti-viral lectins targeting N-linked oligomannose 

glycans present on HIV-1 gp120 spike proteins may be a new treatment option 

for maintaining an undetectable viral load, and thus maintaining the health 

benefits an undetectable viral load brings. 

Drugs to suppress HIV infection currently include non-nucleoside reverse 

transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, protease 
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inhibitors, integrase inhibitors, and fusion/entry inhibitors.  Collectively known as 

Highly Active Anti-Retroviral Therapy (HAART), these medications, when given in 

combination therapy, offer the potential for infected individuals to live a normal 

lifespan [87].  The goal of HAART is to as suppress viral load to undetectable 

levels.  In many cases, this leads to preservation of immune function [88]. 

Further, due to continued thymic output, durable viral suppression is often 

accompanied by a restoration of CD4+ cell populations [89, 90]. However, even 

in those who are virally suppressed, as significant subset, known as 

immunological non-responders, fail to see full immune system recovery [88, 91]. 

Prior to the initiation of HAART, genetic testing is conducted to determine 

HIV-1 drug resistances.  With this knowledge in hand, the typical regimen 

consisting of 3 or more drugs of at least two classes is chosen [92, 93].  After 

initiation of HAART, the majority of patients see a very rapid decline in viral load 

levels as well as an increase in CD4+ T cells [94, 95]. Many individuals can 

achieve undetectable viral loads with vigilant adherence to therapy [94].  Further, 

increases in CD4 cells counts can continue for years after durable viral 

suppression is achieved [88, 95-97].  Nonetheless, lifetime adherence to therapy 

is currently required. 

One complicating factor in disease management is that once HIV-1 is 

systemically established, viral reservoirs appear to make systemic eradication of 

the virus impossible [98-101]. Viral reservoirs are believed to be the latent 

infection of long lived memory cells.  However, it is also possible that a low level 

viremia intermittently continues or a combination of both of those factors [98-
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102].  The practical effect of this latent infection is seen through the fact that 

shortly after discontinuing HAART, viral load levels rebound in the majority of 

patients.   

In addition to viral rebound after discontinuation of therapy, intervening 

periods of low level viral replication can occur.  Despite durable suppression of 

viral replication, T-cell activation during times of illness or infection can cause 

bursts of HIV-1 replication activity in infected cells[94].  The clinical significance 

of these “blips” are currently not thought to be relevant[103].  However, it is 

possible that detectable viremia may be indicative of the acquisition of viral 

resistance[103].    

Nonetheless, many studies now support the notion that undetectable viral 

loads are the primary goal of treatment.  Studies have indicated that 

undetectable viral load levels could be even more important than CD4+ counts 

[104].  Thus a patient who is consistently undetectable in their viral load testing 

may need less periodic testing for CD4 counts [104]. As such, anti-viral agents, 

such as antiviral lectins, that could further prevent cell-to-cell transmission of HIV 

during periods intermittent or transient viremia may aid in maintaining 

undetectable viral loads.  

 

Pre-Exposure Prophylaxis (PrEP) 

 Recently, a new prevention method was approved for usage within the 

United States which validates the concept of patient pre-treatment with anti-viral 

agents to prevent HIV-1 infection.  Pre-exposure Prophylaxis (PrEP) is a 
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chemotherapeutic intervention that offers the promise of preventing HIV-1 

infection if used as directed [105, 106].  PrEP currently consists of administration 

of antiviral drugs to HIV negative persons at risk for infection [107].  Presently, 

Truvada (a combination of emtricitabine and tenofovir) is the only drug 

combination provided to high-risk, HIV-1 negative, individuals [96].  If taken daily 

as directed, PrEP has been observed to substantially reduce chances of HIV-1 

infection after exposure [105, 108].  Nonetheless, PrEP is not devoid of risks.  

Rarely, kidney damage and malfunction can occur which would necessitate 

cessation of PrEP [109-112].  As such, frequent kidney function testing is 

recommended [96].   As such, this emerging field prevention method is likely to 

increase as additional antiviral drug interventions are validated. 

 

Treatment as Prevention (TasP) 

A second concept which underscores the need to maintain undetectable 

viral loads is summarized as Treatment as Prevention (TasP) [113].  Preliminary 

results from the PARTNER study have shown no transmissions between 

individuals when the positive partner has an undetectable viral load [114].  While 

the final results of the study will not be available for a number of years, it appears 

that an undetectable viral load in a positive individual strongly correlates with 

infectiousness [115, 116].  As such, attaining and maintaining an undetectable 

viral load may prove crucial in curbing new infections. 
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Post Exposure Prophylaxis (PEP) 

Post Exposure Prophylaxis (PEP) has also been used successfully to 

prevent viral infection [117-120].  PEP consists of a month long course of anti-

retroviral medication after both occupational and nonoccupational exposures.  

With needlesticks being a common occupational exposure, PEP has been 

observed to be effective in preventing infection [120].  Further, in a non-

occupational exposure setting, such as condom breaks during intercourse, PEP 

has shown great efficacy [119].  However, it typically must be initiated within 48 

hours after exposure in order to reduce the odds of transmission. 

 

Entry Inhibitors 

Entry inhibitors that prevent viral fusion with its target cell at various 

phases of the viral entry process are currently being used in treatment and 

research.  These agents target proteins on either the HIV-1 virus or the cell.  

Targets include: gp120 of HIV-1, gp41 of HIV-1, and T-cell receptors and co-

receptors.  Entry inhibitors mechanistically present a barrier to infection through 

binding activity to viral or cellular receptors necessary for infection [33, 121]. 

Entry inhibitors that neutralize the virus, such as isolated broadly 

neutralizing monoclonal antibodies, are potential chemoprophylactic and 

therapeutics for HIV-1.  These broadly neutralizing antibodies recognize epitopes 

(such as gp41, V1V2-glycans, and the CD4 binding site) on the HIV-1 envelope 

and can neutralize multiple strains.  For instance, antibody b12 recognized the 
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CD4 binding site of HIV-1 [122], whereas 2G12 recognizes the outer domain 

glycan [123].  Other monoclonal antibodies, such as 3BNC117 and 10-1074, 

which target the CD4 binding site and V3 region respectively, have been 

examined both as monotherapy and together in a Macaque SHIV models [124]. 

When used individually, emergence of neutralization-resistant variants often 

limits their long term utility [124]. However, broadly neutralizing may hold promise 

when used in cocktails to treat chronic HIV infection [124, 125].  

While many entry inhibitors directly act on the virus, an alternative 

approach may include the competitive blockage of receptor or co-receptor 

molecules on HIV target cells. For example, Ibalizumab is a non-

immunosuppressive CD4-targeting IgG molecule [126-128]. Ibalizumab binds the 

CD4 molecule present on T-cells receptors in the D2 region [129, 130].  While 

blocking portions of the CD4 receptor, it does not interfere with binding of MHC II 

molecules or the gp120-- thus it does not interfere with normal immune function 

[129-131].   

Enfuvirtide, is a 36 amino acid peptide mimic of the HR2 fragment of gp41. 

Functionally it binds to the HR1 region of gp41 [132, 133].  Enfuvirtide  binding 

blocks formation of the six helix bundle required for the cellular fusion process 

[85].  While it is an injectible peptide fusion inhibitor [134],  it was approved for 

treatment of HIV infection in 2003 [135]. 

Maraviroc is CCR5 co-receptor antagonist [136-138].  Maraviroc binds to 

the transmembrane cavity of the CCR5 co-receptor, halting the co-receptor 

interactions necessary for viral fusion [139].  
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Entry Inhibitors – Antiviral Lectins  

Lectins are also being investigated as potential HIV-1 entry inhibitors [22].   

Lectins are highly specific carbohydrate binding proteins.  In animals, lectins can 

function in the immune system recognition of carbohydrates exclusively 

presented by pathogens.  For example, mannose binding lectin is protein of the 

innate system that activates complement or triggers pathogen opsonization [83].   

Antiviral lectins consist of a subset of lectins which bind to viral envelope 

glycans [22].  Among these are Griffithsin (GRFT), Scytovirin (SVN), Bananna 

lectin (BanLec), Concanavalin A (ConA), Cyanovirin-N (CVN), and Actinohivin  

[27, 140-142].  While different lectins have different carbohydrate targets, such 

as high-mannose glycans or complex glycans, lectins specific for HIV glycans are 

thought to bind high-mannose glycans of gp120, preventing cell fusion [21, 22, 

143].  

Despite their promise, lectin therapy may be challenging.  First, 

exogenous lectins, like Phytohemagluttinin (PHA), are well known to agglutinate 

red blood cells [144] and often induce mitogenic and cytotoxic effects [145].  

Second, lectins are often considered anti-nutrients given their sugar binding 

activities [146].  For example, large consumption of lectins can cause side effects 

such as diarrhea, nausea, and vomiting [147].  Finally, lectins may interact with 

leptin receptors, leading to leptin resistance [148]. 

In vitro studies with antiviral lectins have also identified a number of 

potential issues.  For instance, studies into CVN, which binds to alpha (1,2) 

mannose termini, have identified cell morphology changes in PBMC’s treated 
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with CVN as well as increased expression of cellular activation markers [149].  

These changes rendered the PBMCs more susceptible to HIV-1 infection by R5 

trophic variants.  Further, CVN was found to increase production in a number of 

cytokines.  BanLec, a potent anti-HIV-1 lectin with specificity for oligomannose 

glycans higher than (Man)6GlcNAc, has been found to be an agglutinating agent 

in rabbit erythrocytes as well as a powerful murine T-cell mitogen [150, 151]. 

In vivo studies with antiviral lectins has also identified challenges.  ConA, 

which has an anti-HIV-1 50% effective concentration (EC50) of approximately 

98nM has significant in vivo toxicity [25]. ConA binds high-mannose type, hybrid 

type and biantennary complex type N-glycans [152] and has been observed to 

strongly agglutinate many cell types, as well as has been identified as having 

fetal development toxicity in rats [153].  Further, investigation into ConA’s toxicity 

identified ConA as inducing focal hepatic necrosis, lymphoid atropy, and vascular 

endothelial damage at a 200-800 µg dosage in mice [154, 155]. 

In addition to potential toxicities associated with carbohydrate binding 

activity, lectins may induce allergic reactions and anaphylaxis.  Immune reaction 

to exogenous proteins are not uncommon [156].  The largest potential threat is 

anaphylaxis [82].  However, other, less life threatening immune reactions may 

also occur, such as the generation of neutralizing antibodies [82].     

Protein therapy-induced anaphylaxis has been observed with approved 

therapeutics Rituximab, Omalizumab, and alpha galactosidase A [157-160].      

These therapeutics are testament to the idea that despite the risks, the benefits 

of protein based therapy can weigh in favor of approval. Nonetheless, efforts to 
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reduce the chance of lethal reactions continue. For example, efforts into structure 

guided protein modifications to reduce immunogenicity have been theorized [161, 

162].  These modifications would lessen the potential for immune system 

recognition, thus reducing the possibility of an immune response [161, 162]. 

 

Griffithsin Structure and Mechanism of action 

GRFT is an antiviral lectin derived from the red algae Griffithsia sp, 

possessing a strong affinity for N-linked high mannose glycans [32, 33].  GRFT 

forms ~25kDa domain swapped homodimers in solution, with the first 16 amino 

acids of each monomer completing the B-prism fold of the other monomer [163]. 

These jacalin-like binding pockets are formed by 3, four stranded beta sheets, 

with an internal symmetry. A total of 6 mannose binding sites have been 

identified by X-ray crystallography of dimeric GRFT at 1.3A resolution [163, 164].  

The six carbohydrate binding pockets are equally split, with three carbohydrate 

binding pockets being located on opposite ends of the double-prism structure 

[163].  Atomic resolution crystal structures of an engineered monomeric GRFT 

have revealed that each monomer can bind to two different nonamannoside 

molecules through all three carbohydrate binding sites [163, 165].  Further, 

structural complexes of GRFT with saccharides have identified 3 virtually 

identical active sites on each monomer consisting of a GGSGG motif [166]. Upon 

dimeric folding, X-ray crystallography has also identified the geometries of the 

binding sites as being equilaterally triangular in shape [164].   
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In the case of HIV-1, GRFT’s inhibitory activity is associated to its binding 

of the almost exclusively high-mannose glycans present on gp120 protein [13, 

32].  Supporting this theory is the fact that lectin-resistant isolates of HIV have 

reduced numbers of glycosylation sites [16]. Additionally, a loss in antiviral 

activity was observed with monomerization of GRFT, suggesting that GRFT’s 

ability to cross link virions or gp120 proteins is key to its antiviral activity[167].  

This crosslinking of N-linked glycans present on the envelopes is thought to 

inhibit structural transitions required for viral entry.  GRFT has also been 

observed to inhibit HIV-1 transfer from dendritic cells (DC) receptor DC-SIGN to 

uninfected T-cells.  To date, GRFT is the most potent antiretroviral drug of any 

drug class for preventing transmission of cell-free and -associated HIV-1. 

  Prior work has suggested that GRFT can be cost effectively produced in 

tobacco plants [168, 169].  Additionally, prior studies have suggested GRFT’s 

weak immunogenicity and demonstrated low induction of inflammatory cytokines 

and chemokines in animal models [33, 169].  These studies have confirmed 

GRFT displays no human T-cell mitogenic activity, and unlike many other lectins 

does not induce production of pro-inflammatory cytokines in treated human 

peripheral blood mononuclear cells at >10,000 times antiviral concentrations [35, 

169].  

GRFT also has a notably broad spectrum of activity. Antiviral activity 

against HCV [30, 170], HIV-1 [32, 169, 171], HIV-2 [171],  and SARS-CoV [172] 

has been documented. Unpublished studies have also demonstrated activity 

versus influenza A virus, and several other enveloped viral pathogens (O’Keefe 
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BR, unpublished). For many of these diseases, GRFT has a markedly low in vitro 

inhibitory activity.  Against HCV, GRFT’s EC50 has been found to be 

approximately 13.9 nM [170].  Versus SARS-CoV, it has an EC50 of 48 nM. [163, 

172]. However, in the case of HIV-1, Griffithsin has an in vitro EC50 in the mid 

picomolar to low nanomolar range [16, 32, 169].   

General studies into GRFT’s systemic tolerance have also been 

encouraging.  We observed GRFT to be tolerable during a 10 day chronic dosing 

regimen [34].  This tolerability, seen in both mice and guinea pigs 

subcutaneously dosed with GRFT raises the potential for short term usage of 

GRFT as a prophylactic treatment.  Further, continued antiviral activity against 

HIV-env pseudoviruses and a long serum persistence of GRFT were observed 

[34].  These factors would support in vivo administration of GRFT in an exposure 

setting wherein amelioration or prevention of establishment of infection were the 

goal of therapy. 

GRFT’s antiviral activity has also been observed both ex vivo and in vivo.   

HIV-1 infection of human cervical explants has been prevented by topical 

application [169].  In vivo challenges in mice have also been positive, with activity 

versus: SARS-CoV (intranasal treatments) [172]; Japanese encephalitis virus 

(JEV) (intraperitoneal treatment) [173]; and HCV (subcutaneous treatment - 

mouse-human chimeric liver models) [30, 170]. 

With the short term tolerability of GRFT administration established, as well 

as the potential for viral inhibition in vivo, it is possible that GRFT may be useful 

in established infections.  Despite the advent of modern HAART, which can 
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suppress viral replication below currently detectible limits, new therapies are 

constantly  needed.  HIV’s propensity for mutation under drug pressure translates 

into an eventual viral breakthrough.  Further, as mentioned previously, during 

times of immune activation-such as a cold or infection, viral “blips” may occur in 

which a person with a previously undetectable viral load displays a detectable 

viremia[94, 103].   Accordingly, agents which could further reduce the chance of 

drug resistant isolate proliferating may assist in maintaining viral undetectable 

viral loads – a key factor in infectiousness. Further, given the current window of 

opportunity for preventing establishment of a productive infection, additional 

drugs that could be used for PrEP or PEP may have utility in both occupational 

and nonoccupational settings. However, for GRFT’s usage in established 

infections, long term systemic impacts, including potential immune activation 

which may trigger low level viremia, a neutralizing antibody response, or 

systemic toxicity, need to be assessed. 
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OVERARCHING HYPOTHESIS 

This work presents a compilation of work investigating the overarching 

hypothesis that GRFT is a candidate for systemic antiviral therapy.  However, a 

number of unknowns currently exist.  In Chapter 2, we review the animal studies 

which laid the foundation for the present evaluation of GRFT’s systemic 

tolerance. In Chapter 3, we examine the practical pharmacokinetics of GRFT in 

Sprague Dawley rats and its potential impact upon method of administration, 

timing of dosage, and method of excretion.  In Chapter 4, we examine the 

tolerability of sub-chronic dosing of GRFT in Sprague Dawley rats, with an 

immune response primed by pre-immunization with GRFT as well as passive 

immunization with anti-GRFT IgG.  Finally in Chapter 5, we examine GRFT’s 

biochemical interactions through Differential Scanning Fluorometry and Affinity 

Purification, as well as examination of the effects on endogenous proteome 

interactions through Differential Scanning Calorimetry.  The findings in this 

Dissertation lay a foundation for further study to validate GRFT’s usage as a 

systemic antiviral therapeutic or prophylactic. 
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Figure 1.1 N-linked Glycans – structural arrangement of subtypes.  Schematics 

illustrating examples of different N-linked glycans.  Oligommanose Glycans –

Man9 (A) and Man5 (B) present exclusively mannose termini.  Hybrid Glycans 

(C) present both mannose termini and GlcNAc termini.  Complex glycans (D) 

have no mannose termini. 
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CHAPTER 2 

ACTIVITY AND EFFECT OF SUBCUTANEOUS TREATMENT WITH THE 

BROAD SPECTRUM ANTIVIRAL LECTIN GRIFFITHSIN IN TWO 

LABORATORY RODENT MODELS1 

INTRODUCTION 

The glycan structures displayed on envelope glycoproteins frequently play 

important roles in virus transmission and entry into target cells [40].  Viruses that 

establish chronic infections, such as HIV and HCV, display a dense shield of 

oligomannose glycans that also assist the pathogen in immune evasion, both 

through the display of “self”-like epitopes as well as by induction of 

immunosuppressive innate immune responses [13, 17, 19, 51, 60]. Antiviral 

compounds that target envelope glycoproteins are classified as “carbohydrate 

binding agents” (CBA), and generally encompass lectins and non-peptidic 

antibiotics such as pradimicin A and –S and benanomicin A (reviewed by 

Balzarini [14]). Several different lectins from natural sources show significant 

antiviral activity in vitro and have been proposed as antiviral prophylactic and 

                                                           
1
 Antimicrob Agents Chemother. 2014 Jan;58(1):120-7. 
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therapeutic compounds.  While there is a plethora of publications in the scientific 

literature showing in vitro antiviral activity of CBA against a broad array of 

enveloped viruses, most in vivo studies on safety and efficacy of this class of 

compounds are in pre-exposure prophylaxis models.  However, two important 

studies demonstrate the potential of antiviral therapy with lectins.  Smee et al. 

[28] demonstrated that post-exposure treatment with the antiviral lectin 

cyanovirin-N, which targets an  α-(1–2)-linked mannobiose substructure on 

oligomannose glycans, showed significant survival benefit 6 hours after infection 

in a murine influenza model. A recent study by Michelow and colleagues [29] 

demonstrated that high dose therapy with human mannose binding lectin (MBL), 

an endogenous C-type lectin that recognizes glycan structures including 

mannose, glucose and fucose on the surface of pathogens, could ameliorate 

Ebola virus infection in a murine model.  Despite their demonstrated antiviral 

activities, the fact that many natural product lectins have significant in vitro and in 

vivo toxicity, acting as non-specific T-cell stimulants and red blood cell 

agglutinating agents, has limited their development as antiviral therapeutics. 

However, not all antiviral lectins are toxins and not all antiviral lectins have cell 

agglutinating activity.  

Griffithsin is a 12.77 kDa red algae derived lectin, that binds the terminal 

mannose residues on the asparagine (N)-linked Man5-9GlcNAc2 structures that 

comprise the vast majority of N-linked glycans in the HIV-1 glycan shield [32, 

163-165]. GRFT displays no human T-cell mitogenic activity, and unlike many 

other lectins does not induce production of pro-inflammatory cytokines in treated 
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human peripheral blood mononuclear cells [35, 169]. In collaborative studies, we 

have shown that GRFT has broad spectrum antiviral activity against HIV-1 [32, 

169, 171], HIV-2 [171], HCV [30, 170], an array of pathogenic coronaviruses, 

including SARS-CoV [172], in addition to influenza A virus, and several other 

enveloped viral pathogens (O’Keefe BR, unpublished).  The in vitro inhibitory 

activity (EC50) of GRFT against HIV-1 is in the mid picomolar to low nanomolar 

range, for most isolates [16, 32, 169]. GRFT has EC50 against HCV (13.9 nM) 

[170] and SARS-CoV (48 nM) [163, 172].  There is a growing body of published 

evidence that GRFT also has antiviral activity ex vivo as well as in vivo:  topical 

application of GRFT prevents HIV-1 infection of human cervical explants [169]; 

intranasal treatments with GRFT prevents disease in mice challenged with 

SARS-CoV [172]; intraperitoneal (IP) treatment with GRFT prevents Japanese 

encephalitis virus infection in mice [173]; and subcutaneous treatment with GRFT 

shows some efficacy against HCV challenge in a mouse-human chimeric liver 

models [30, 170]. The JEV and HCV studies demonstrated that GRFT is 

relatively well tolerated by mice exposed to the drug systemically at 5 mg/kg 

doses, but did not report a comprehensive assessment of GRFT safety as a 

potential systemic antiviral treatment.  Here, we report that minimal toxicity is 

induced by a range of subcutaneous doses of GRFT in two rodent species.  The 

drug was systemically distributed, and accumulates to high levels in the serum 

and plasma after subcutaneous delivery.  Furthermore, we demonstrated that 

serum from GRFT treated animals retained anti-viral activity against HIV-1 

enveloped pseudoviruses in a cell-based neutralization assay. Overall, these 
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findings support further investigation into GRFT’s potential as a systemic antiviral 

therapeutic agent against enveloped viruses including HIV-1. 
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MATERIALS AND METHODS 

Lectin reagents 

Recombinant GRFT was produced in Nicotiana benthamiana plants as described 

previously, purified to >99% purity, and formulated in phosphate buffered saline 

(PBS), pH 7.4 [169]. Phytohemagglutinin A (PHA) was purchased from Sigma. 

Animal housing and care 

6-8 week-old female BALB/c mice (Jackson Laboratory) and Hartley guinea pigs 

(Cavia porcellus, Charles River Laboratories) were housed in a temperature- and 

humidity-controlled room with an alternating light/dark cycle of 12h, with standard 

diet and water ad libitum. All experimental procedures were approved by the 

University of Louisville’s Institutional Animal Care and Use Committee. 

Mouse treatments and sample collection 

To evaluate effects of a single high dose of GRFT, mice were injected 

subcutaneously with 50 mg/kg GRFT (n = 30) or PBS (n = 15).  At 1, 7, and 14 

days post-treatment 10 mice treated with GRFT and 5 control animals were 

sacrificed and blood was collected by cardiac puncture. Kidneys, livers, and 

spleens were excised. For chronic administration, mice were treated with 10 

mg/kg GRFT (n = 15) or PBS (n = 15) daily for 14 days.  Each group was further 

subdivided into 3 groups of 5 mice each.  Blood was collected from the 

submandibular vein every other day, alternating between subgroups. Animals 

were sacrificed on day 14 (9 mice per treatment group), day 16 and day 21 (3 
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mice per treatment group at each time point), and the samples collected as 

outlined above. 

Guinea pig treatment and sample collection 

For chronic administration in guinea pigs, two studies were conducted at different 

times.  In the first experiment, 10 mg/kg GRFT (n=12) or 1 ml/kg PBS (n=6) was 

subcutaneously administered daily for 10 days. The second experiment was 

similar to the first, except for the number of animals (GRFT, n=10; PBS, n=6). 

Half of the animals in each group were sacrificed on day 11 after cardiac 

puncture exsanguination under isoflurane anesthesia, and the remaining animals 

were euthanized on day 15.  Blood and organs were collected at sacrifice.  

Extraction of GRFT from mouse organs 

100-500 mg pooled organ tissues were homogenized in 1 ml PBS supplemented 

with complete, EDTA-free Protease Inhibitor Cocktail (Roche) and the samples 

cleared by a series of two centrifugations steps at respectively 10,000 and 

15,000 x g for 10 min each. The supernatants were stored at - 20˚C until use.   

GRFT capture immunoassay using the HIV-1 envelope glycoprotein gp120 

To detect trace amounts of GRFT present in serum and plasma, and in 

homogenized organ tissues, we used a HIV-1 gp120 binding ELISA as previously 

described [35] with a few modifications.  Briefly, Maxisorp plates (Nunc) were 

coated with 25 ng purified gp120 (Protein Sciences) and incubated overnight at 

4oC.  Plates were blocked with 3% (w/v) Bovine Serum Albumin (BSA) in PBS 
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containing 0.05% Tween 20 (PBS-T).  Samples were diluted 1:10 in blocking 

buffer and were incubated at RT for 1 hour.  Serial dilutions of purified GRFT 

were run in parallel to generate a standard curve.  The gp120-bound GRFT was 

detected by rabbit anti-GRFT antiserum (1:25,000) followed by HRP-conjugated 

goat anti-rabbit IgG (1:10,000).  Plates were developed with SureBlue TMB 

Microwell Peroxidase Substrate, and reactions were stopped with 1N H2SO4.  

Absorbance readings at 450 nm and 570 nm were measured using a BioTek 

Synergy HT plate reader. 

Evaluation of Anti-HIV Activity.   

HIV-1 neutralization activity of heat-inactivated serum or plasma was measured 

using pseudovirus neutralization assays as previously described [174]. Briefly, 

molecularly cloned DU156 env-pseudotyped virus particles were generated by 

transfection of 293T cells and titrated in TZM-bl cells.  Antiviral activity was 

measured as a function of luciferase reporter gene activity. ID50 values were 

defined as the sample dilution required to reduce luminescence by 50% in 

comparison to wells with no sample added (within the linear range of the assay).  

Hematology parameters and Serum Chemistry.   

A complete blood count (CBC) was run for guinea pig samples using a 

Hemavet® 950 (Drew Scientific) standardized for guinea pig blood. The following 

parameters were quantified in potassium-EDTA anticoagulated whole blood: red 

blood cells (RBC; 104/µl), total and differential leukocyte count (neutrophils, 

lymphocytes, monocytes, eosinophils, and basophils as 103/µl or %), hemoglobin 
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concentration (HGB; g/dl), hematocrit (HCT; %), mean corpuscular volume 

(MCV; fl), mean cell hemoglobin (MCH; pg), mean cell hemoglobin concentration 

(MCHC; g/dl), red cell distribution width (RDW; %), platelets (PLT; 104/µl), and 

mean platelet volume (MPV; fl). 

In the first guinea pig experiment levels of the following serum chemistries  were 

assessed and  the differences analyzed by two-way ANOVA: serum albumin 

(Alb), alkaline phosphatase (ALKP), amylase (Amy), alanine aminotransferase 

(ALT), blood urea nitrogen (BUN), calcium (Ca), cholesterol (Chol), creatinine 

(Creat), globulin (Glob), glucose (Glu), phosphorus (Phos), total bilirubin (TBil), 

and total protein (TP). Based on the results obtained, we decided to further 

measure the effect of GRFT on selected markers including serum albumin, 

alkaline phosphatase, and amylase  in the second experiment using a VetTest® 

Chemistry Analyzer (IDEXX Laboratories)  

Hemagluttination assays.   

Guinea pig, sheep, and human blood (Innovative Research), and blood collected 

from untreated mice was washed and resuspended at a final concentration of 1-

2% (v/v) in 1X PBS containing 3 g/L BSA and 1 g/L sodium azide.  PBS, PHA, or 

GRFT were mixed with an equal volume of erythrocytes in a 96-well round 

bottom plate. The plate was incubated for 1 hr at RT, followed by overnight 

incubation at 4°C.  Finally, wells were dried and hemagglutination activity was 

determined by visual examination.   
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Statistical Analysis.  

Statistical analysis was conducted using Graph Pad Prism 5 and SAS software 

version 9.3.  Because of the stratification by guinea pig study, day of sacrifice 

and treatment group, it was decided to increase statistical power by using all the 

data from both studies.  Three-way ANOVA [175] analysis was utilized, which 

allowed testing for treatment effect while at the same time adjusting for 

differences between the two studies and the days of sacrifice. For initial 

univariable analysis, the two-sample t-test [176] or Wilcoxon rank sum test [177] 

was used to test for differences between study, day of sacrifice, and treatment.  

For data sets collected in only one guinea pig study – such as weight change and 

non-selected serum chemistries, a two-way ANOVA was utilized. A p-value < 

0.05 was deemed significant. 
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RESULTS 

Griffithsin serum concentrations.   

Plasma samples collected from mice injected with a single high dose of 50 mg/kg 

GRFT showed up to 4 nM GRFT (4 nM equals 51.08 ng/ml) in animals sacrificed 

one day post treatment (Figure 2.1A).  These levels decreased considerably to 

less than 0.5 nM by day 7, and persisted through day 14. 

In chronically dosed mice, plasma concentrations of GRFT peaked at 25 nM 

(Figure 2.1B) by day 11, followed by a gradual decrease in detectable GRFT 

even with subsequent treatments. This trend continued throughout the recovery 

time. Notably, concentrations of GRFT persisted in the plasma at levels of 

approximately 4 nM after a week of recovery (Figure 2.1B).  GRFT 

concentrations in sera from chronically treated guinea pigs were similar to that of 

chronically treated mice, with mean concentrations of 36 nM at day 11 and 11.36 

nM at day 15 (Figure 2.1C).   

Anti-HIV Activity of plasma and serum.   

Plasma samples collected from mice treated with a single dose of 50 mg/kg 

GRFT neutralized HIV-1 pseudoviruses (Clade C primary sexually transmitted 

isolate Du156) with a mean ID50 (dilution required for a 50% reduction in 

luminescence versus controls) of 1500 on experimental day 2 (Figure 2.2A).  

This neutralization activity decreased in samples obtained at days 8 (ID50 of 300) 

and 15 (ID50 of 200). Plasma from chronically treated mice neutralized the HIV-1 

Du156 pseudovirus with an ID50 value of approximately 800 (Figure 2.2B) at day 
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14.  After the 7 day recovery period, the ID50 values decreased to approximately 

200.   Serum samples collected from guinea pigs after chronic treatment with 10 

mg/kg GRFT displayed a mean ID50 of approximately 3277 at day 11 and 576 at 

day 15, respectively.   The HIV-1 Du156 neutralization activity of guinea pig sera 

correlated well with the concentration of GRFT detected in the serum; however, 

the GRFT serum concentrations detected in mouse samples predicted only about 

14-25% of the actual serum HIV-1 neutralization activity we observed, confirming 

that additional non-specific HIV-1 neutralizing activities in mouse serum 

contribute to the higher-than expected overall HIV-1 inhibitory activity in the 

mouse sera.  

GRFT distribution into tissues. 

Organs from mice chronically treated with GRFT were harvested, and total 

protein extracted.  We measured the total amounts of GRFT that accumulated in 

these tissues by gp120 binding ELISA.  Figure 2.3 shows that GRFT 

accumulated in all three organs assayed, with most GRFT accumulating in the 

spleen.  Non quantitative immunofluorescence studies detected GRFT in the 

same organs (liver, kidney and spleen) harvested from treated guinea pigs (data 

not shown). 

GRFT is tolerated after subcutaneous administration 

We studied the toxicity of GRFT in guinea pigs using several parameters 

including mortality, behavior, animal body and organ weight changes, tissue 

pathology, and changes in blood properties. 
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All animals survived and no change in behavior was observed.  Since the guinea 

pigs used in this work were juvenile, we evaluated their overall fitness after 

GRFT treatment using body weight as a surrogate marker. Animals were 

weighed at day 1 and at time of sacrifice. Using a 2-way ANOVA to measure the 

impact of treatment and time on bodyweight gains, we found that GRFT 

treatment resulted in significantly less bodyweight gain in comparison with PBS 

treated controls (p=0.0011, Figure 2.4) 

Liver, kidney, and spleen weights measured at termination were normalized to 

total body weights and compared to time matched controls. A statistically 

significant increase of the normalized weights of guinea pig livers and spleens 

was observed for GRFT treated animals (p=0.008 and 0.005, respectively, Figure 

2.5).  Tissue sections from guinea pigs in the second experiment were stained 

with hematoxylin and eosin and evaluated in a blinded fashion by a veterinary 

pathologist (O.F.).  No distinct pathologies were observed as a result of GRFT 

treatment.  Of all CBC parameters tested, a statistically significant difference was 

observed only in Red Blood Cell Width (RDW) (p=0.016, Table 2.1).  Of note the 

RDW values obtained for GRFT-treated animals were still within the normal 

physiological range described for guinea pigs (38).  

In addition to CBCs, serum chemistries were examined. When data collected 

from both experiments were combined for analysis, a statistically significant 

increase was observed for Alkaline Phosphatase after GRFT treatment 

compared with controls (p=0.001, Figure 2.6). There were no statistically 

significant differences between the GRFT treated group and the PBS control 
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group in the remaining serum chemistry when examined by 2-way ANOVA 

(Figure 2.6).  

Since many natural product lectins cause hemagglutination, we investigated 

GRFT’s hemagglutination activity in several species. Blood samples from guinea 

pig, mouse, sheep, and human were tested. Interestingly, only red blood cells 

from guinea pigs were affected by GRFT—at concentrations over 5 µg/ml (Fig. 

2.7).  As expected, the vehicle (PBS) did not show any hemagglutination activity 

on erythrocytes, and the known hemagglutinating agent PHA demonstrated 

activity at concentrations of 5 µg/ml and above for all species tested.   
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DISCUSSION 

In this study, we demonstrate that GRFT persists in serum and plasma of 

laboratory rodents at concentrations well above the EC50 described for several 

known enveloped viruses [23, 32, 170, 178] after subcutaneous administration. 

Although decreasing in concentrations after final administration, functionally 

active concentrations of GRFT, as determined by gp120 binding ELISA, remain 

in circulation for many days after treatment cessation both in single and chronic 

dosing regimens.  These findings support further investigations of the utility of 

GRFT in treatment of both acute and chronic viral infections.   

Every drug candidate must show a favorable safety profile to advocate for 

its further development. Previously, we demonstrated that GRFT was devoid of 

any mitogenic and cytotoxic activity, was unable to induce cell mediators of 

inflammation, and had only minimal off target effects on human cells [35] 

corroborating with other works [32, 169] and unlike other anti-HIV lectins 

including CVN and ConA [149, 179]. In the present in vivo studies GRFT did not 

alter experimental animal behavior and no animal died as a result of treatment. 

Using juvenile animals, we did notice that guinea pigs treated with GRFT gained 

weight significantly slower than those injected with PBS. This is not the case 

when adult mice are treated s.c. with GRFT (manuscript in preparation). Organ 

toxicity was also assessed both by measuring weights and histopathology. While 

liver and spleen percentages displayed a statistically significant increase in 

comparison with controls, histopathological examination of the organs from 

GRFT treated animals did not show any pathology.  
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When a complete blood count was performed and serum chemistries 

analyzed, we observed that most of the parameters were not significantly 

changed as a result of GRFT treatment. The only exception was RDW.  Although 

significantly different from PBS controls, RDW values obtained from GRFT-

treated animals remained within the normal range described for guinea pigs. In 

serum chemistries, alkaline phosphatase was significantly elevated in GRFT 

treated guinea pigs.  Whether this elevation is related to the increased liver mass 

to body weight ratio seen with GRFT-treated animals is yet to be determined 

since the alkaline phosphatase isotype was not determined.  

As a xenogeneic protein, a key concern is a possible immune response to 

GRFT which could lead to anaphylaxis [180]. Our data showing treatment 

associated increases in spleen and liver mass to body weight ratios is suggestive 

of a nascent immune response to GRFT treatment. However, we were unable to 

detect anti-GRFT antibodies in sera from these treated animals, probably 

reflective of the short duration of these studies.  Although GRFT is a relatively 

weak immunogen, we are able to raise high titer antibodies in animals immunized 

with GRFT in the presence of adjuvant; these hyperimmune sera are binding, but 

non-neutralizing (data not shown).  Immunogenicity of biologic drugs is a widely 

acknowledged issue, and our data suggest that future efforts to de-immunize 

GRFT by structure-guided elimination of T-cell epitopes [161, 162], may be 

necessary before the product is used for chronic treatment of viral infection in 

humans. Lectins are well known for their mitogenic and agglutinating properties 

[149, 151, 179, 181-183] which prevent their use as therapeutics. We have 
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addressed the mitogenicity concern by showing previously that GRFT lacks T-

cell mitogenic activity [35]. Here, we demonstrated that GRFT does not 

agglutinate red blood cells from several species including human, mouse and 

sheep. However, we observed that guinea pig erythrocytes were agglutinated by 

GRFT at high concentrations. The cause of this discrepancy is unclear, but may 

well be associated with the treatment-associated increase in red blood cell width 

we observed.  We conclude that the preliminary toxicity profile of GRFT is 

acceptable and favors its further development in antiviral prophylaxis and 

therapy. 

GRFT is currently under development as a topical microbicide as well as a 

broad spectrum antiviral. However GRFT is not systemically bioavailable after 

topical administration (our unpublished observations), so parenteral 

administration is probably necessary to achieve sufficient drug in systemic 

concentrations necessary for effective suppression of viral replication.   Our data 

confirm that subcutaneous  administration of  GRFT is a viable and efficient way 

to get the drug into circulation to allow a sustained pharmacodynamic effect 

[184].  Our data support the results of published studies on GRFT prophylactic 

efficacy in murine models of HCV and JEV infection[30, 31, 173].  Both studies 

found that GRFT effectively suppressed viral replication when administered at a 

5 mg/kg dose, either subcutaneously or intraperitoneally. We are currently 

studying whether administrations of GRFT, under the 10 mg/kg dosage, are 

sufficient to maintain drug concentrations at potentially therapeutic levels. There 

is substantial precedent for patient self-administration of drugs via the 
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subcutaneous route; indeed the peptide HIV fusion inhibitor Enfurtide (T-20) is 

dosed in this fashion.  Our data confirm that we can achieve HIV-1 Du156 50% 

serum neutralization indices in excess of 500 after 14 daily doses of GRFT at 10 

mg/kg (Fig. 2.2), which should be sufficient to inhibit HIV replication, and perhaps 

promote viral evolution towards enhanced humoral antibody suppression[14, 

151, 184].  These levels were also more than sufficient to prevent JEV and HCV 

infection in respective mouse models [16, 31] 

Under selection pressure with CBA, susceptible viruses may evolve 

towards resistance through loss of key N-linked glycosylation sites [25, 185-188]. 

Interestingly, in the case of HIV-1, CBA resistance correlates with reduced viral 

fitness and enhanced susceptibility to neutralizing antisera [14, 186, 188]. 

Consequently, it has been suggested that CBA therapy of chronic viral infections 

like HIV-1 and HCV may promote viral evolution towards resistance to the CBA 

concomitant with enhanced susceptibility to host immune control.  This concept 

of CBA-mediated immunotherapy holds considerable appeal as a method to 

promote durable immune control, and perhaps even eradication of HIV infection 

[14]. Given GRFT’s antiviral activity in the mid picomolar range, and our data 

here that show that the drug accumulates to relevant therapeutic concentrations 

which are tolerated with minimal toxicity, GRFT is a strong candidate for further 

experimental testing of this idea first put forward by Dr. Balzarini and colleagues 

[14].     
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Figure 2.1 Griffithsin concentrations in plasma and serum samples.  Data were 

obtained from mouse plasma after a single high-dose administration of 50 mg/kg 

GRFT (A), a chronic daily administration of 10 mg/kg GRFT (B), and from guinea 

pig serum after 10 daily administrations of 10mg/kg GRFT (C).  PBS was 

administered to control animals and bars indicate mean group concentration. 
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Figure 2.2.  Antiviral activity of samples collected from GRFT treated animals. 

HIV-1 env- pseudovirus neutralization activity was assessed for mouse plasma 

after a single high dose administration of 50 mg/kg GRFT (A) and expressed as 

ID50.  The ID50 values were obtained for samples from guinea pigs and mice 

chronically treated with 10mg/kg GRFT (B). Control animals were treated with 

PBS bars indicate mean group concentration. 1-way ANOVA significance 

(p<0.05) is indicated by (*). 
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Figure 2.3. Quantitation of GRFT in mouse organs.  Pooled Protein samples 

were extracted from kidneys, livers, and spleens after a chronic subcutaneous 

administration of GRFT or PBS and GRFT was detected using a gp120-binding 

ELISA. 
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Figure 2.4. Guinea pig body weight gain as an indicator of overall health.  Body 

weights were measured on experimental Day 1 and on the termination day (Day 

11 or Day 15).  Significance (p<0.05) is indicated by (*). 
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Figure 2.5. GRFT does not affect guinea pig organ weights. Liver (A), kidney (B), 

and spleens (C) weights were measured relatively to body weight at sacrifice. 
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Day 11 

 

Day 15 

Cell Type Parameter Unit PBS (n=3) GRFT (n=5) PBS (n=3) GRFT (n=5) 

Leukocyte  

WBC 

 

k/µl 4.92 ± 2.43 2.15 ± 0.23 4.35 ± 1.28 2.90 ± 1.36 

 NE k/µl 2.30 ± 1.46 0.96 ± 0.13 1.67 ± 0.45 1.01 ± 0.42 
 LY k/µl 2.49 ± 1.11 1.14 ± 0.28 2.60 ± 0.89 1.82 ± 0.99 

 MO k/µl 0.09 ± 0.10 0.03 ± 0.03 0.07 ± 0.03 0.06 ± 0.04 

 EO k/µl 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.02 
 BA k/µl 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Erythrocyte  

RBC 

 

M/µl 4.30 ± 0.06 4.12 ± 0.18 4.75 ± 0.21 4.37 ± 0.22 
 Hb g/dl 12.23 ± 0.64 11.64 ± 0.46 13.10 ± 0.46 12.22 ± 0.61 

 HCT % 38.30 ± 2.31 36.12 ± 1.47 41.57 ± 1.76 39.52 ± 1.94 

 MCV FL 88.97 ± 4.73 87.58 ± 1.29 87.53 ± 1.70 90.40 ± 0.52* 
 MCH pg 28.43 ± 1.33 28.26 ± 1.52 27.63 ± 0.61 27.96 ± 1.04 

 MCHC g/dl 31.97 ± 0.25 32.26 ± 1.33 31.50 ± 0.26 30.94 ± 1.11 

 RDW % 13.83 ± 1.43 12.92 ± 0.73 14.13 ± 0.29 12.66 ± 0.70* 

Thrombocyte  
PLT 

 
k/µl 595.33 ± 54.31 628.60 ± 44.77 677.33 ± 11.93 659.00 ± 34.26 

 MPV fL 4.40 ± 1.14 3.92 ± 0.23 3.57 ± 0.12 3.84 ± 0.24 

 

Table 2.1.  Hematological profile for guinea pigs after chronic treatment with 

GRFT. Data represent the mean values +/- standard deviation for white blood 

cells (WBC), neutrophils (NE), lymphocytes (LY), monocytes (MO), eosinophils 

(EO), basophils (BA) , red blood cells (RBC), hemoglobin (Hb), hematocrit (HCT), 

mean corpuscular volume (MCV), mean cell hemoglobin (MCH), mean cell 

hemoglobin concentration (MCHC), red cell distribution width (RDW), platelets 

(PLT), and mean platelet volume (MPV).  Significance (p<0.05) is indicated by 

(*). 
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Figure 2.6. Serum chemistry data for guinea pigs after chronic treatment with 

GRFT.  Levels of Serum Albumin (A), Alkaline Phosphatase (B), and Amylase 

(C) were obtained from GRFT or PBS treated animals at sacrifice.  Bars indicate 

mean group concentration. 
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Figure 2.7. Hemaggluttination activity of GRFT.  A wide range of GRFT 

concentrations (5 µg/ml equals 391 nM) was used to examine GRFT’s potential 

hemagluttination activity on erythrocytes from multiple species including sheep 

(A),  Guinea pig (B), Human (C), and  Mouse (D).  PHA (5 µg/ml) and PBS were 

used as positive and negative controls, respectively. 
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CHAPTER 3 

 THE PHARMACOKINETCIS OF THE ANTIVIRAL LECTING GRIFFITHSIN 

INDICATED MULTIPLE POTENTIAL USES AND CHALLENGES  

INTRODUCTION 

Various lectins, carbohydrate binding proteins that bind specific glycan 

structures, are important components of many organisms’ innate pathogen 

defense system.  Several lectins isolated from natural sources are known to 

inhibit microbial and viral infections in vitro and in vivo [29, 31, 37, 142, 189, 190].  

Griffithsin, derived from the red alga Griffithsia, is a dimeric lectin with a total of 6 

binding sites capable of binding terminal oligomannose residues on asparagine 

(N)-linked Man5-9GlcNAc2 structures[32, 163-166].  Mannose terminal glycan 

structures appear to comprise a significantly greater proportion of glycans on 

pathogen surfaces than in mammalian host cells.  In fact, oligomannose 

structures comprise the vast majority of N-linked glycans in the HIV-1 glycan 

shield [13, 60], where they assist in the virus’s evasion of immune surveillance 

[40].  Multiple studies have described Griffithsin’s HIV-1 neutralization EC50 in 

vitro as being within the mid picomolar range [16, 32, 169].  GRFT also exhibits 
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nanomolar activity against several other enveloped viruses such as HCV, HSV-2, 

SARS CoV, and JEV, amongst others[23, 31, 36, 173].  GRFT prevents viral 

infection in vitro by binding the envelope oligomannose glycans, and thereby 

occluding functionally important domains of the viral envelope protein, preventing 

interactions with cell-surface receptors, or otherwise impeding structural 

transitions necessary to effect infection.  In the case of HSV-2, GRFT may also 

act by inhibiting virus egress and spread post-infection[36].  Topical application of 

GRFT prevents HIV-1 infection of human cervical explants [169], and inhibits 

viral spread in murine HSV-2 vaginal challenge[36].   

In preexposure prophylaxis models, GRFT has displayed antiviral activity 

against HSV-2, SARS-CoV, and HCV [23, 31, 36, 171, 191].    In examining 

GRFT’s systemic chemotherapeutic potential, our previous studies  have shown 

that in two rodent models, GRFT is tolerable in short term subcutaneous dosing, 

while retaining anti-viral activity in serum [34].  This tolerability profile, retained 

antiviral activity, and broad spectrum activity against susceptible viruses further 

supports the study of GRFT as a systemic chemopreventative or 

chemotherapeutic. 

While GRFT has initially been evaluated as a potential topical microbicide, 

its pharmacokinetic profile – which could limit its practical utility as 

chemotherapeutic or chemopreventative - is currently unknown.  Given GRFT’s 

observed resistance to low pH and a number of proteases[192], we hypothesized 

that GRFT may have some degree of oral bioavailability. We compared the 

concentration of GRFT in serum from treated animals following intravenous, 
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subcutaneous, and oral dosing, and report that the pharmacokinetic profile of 

GRFT can vary greatly depending on method of administration.   Additionally, we 

report a small fraction of oral dosage of GRFT formulated in PBS passes through 

the digestive tract and retains anti-viral activity in fecal material.  Further, we 

found that after both single dose and 10 day chronic oral administration, GRFT 

was undetectable in serum and urine, indicating that GRFT is either not 

systemically absorbed to a detectible degree upon ingestion or inactivated during 

the absorption process.  Accordingly, the method of administration should be 

considered when researching the usage of GRFT as an orally dosed pre-

exposure prophylactic, or intravenously or subcutaneously-dosed systemic 

therapeutic or chemopreventative.   
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MATERIALS AND METHODS 

Lectin reagents 

Recombinant GRFT produced in Nicotiana benthamiana plants as 

described previously [169]  was purified to >99% purity in phosphate buffered 

saline (PBS), pH 7.4 with less than 0.05 Endotoxin Units (EU) per milligram. 

Animal housing and care 

250g Sprague Dawley Rats (Rattus norvegicus, Charles River 

Laboratories) were housed in a temperature- and humidity-controlled room with 

an alternating light/dark cycle of 12h, with standard diet and water ad libitum. All 

animal procedures were approved by the University of Louisville’s Institutional 

Animal Care and Use Committee. 

Pharmacokinetic Study Dosing and Sample Collection 

250g Sprague Dawley rats were procured from Charles River with 

indwelling femoral vein catheter.  Rats were weighed and treated with a single 

dose of either 10mg/kg or 20mg/kg GRFT.  For intravenous treatment, indwelling 

catheters were checked for patency and either 10mg/kg or 20mg/kg GRFT was 

infused into the catheter over a 15 second period.  Catheters were then flushed 

by PBS infusion of 3 times the catheter volume and filled with heparinized 

glycerol (Braintree Scientific) before reinsertion of the catheter plug.  For 

subcutaneous treatment, 10 mg/kg or 20 mg/kg GRFT was injected under the 
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skin between shoulders.  For oral dosing treatment, 2.5 mg of GRFT formulated 

to a final volume of 1 ml was dosed via gastric lavage. 

In intravenously and subcutaneously dosed animals, approximately 150 µl 

of blood was drawn via indwelling femoral catheter at the following time points 

after GRFT administration: 15 minutes, 30 minutes, 1 hour, 2 hour, 4 hour, 8 

hour, 24 hour, and 48 hours (sacrifice).  To capture later time points, an 

additional cohort of animals had 150ul blood drawn at 72 and 96 hours post 

dosage.  Orally dosed animals had 150µl of blood drawn at the following time 

points post administration: 10 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, 

4 hours, 6 hours, 24 hours and 24 hours.  All animals were sacrificed by CO2 

asphyxiation followed by thoracotomy at the conclusion of the study. 

Chronic Oral Dosing Treatment and Sample Collection 

18 rats were treated daily with either 1ml PBS (n=6), 5 mg GRFT (n=6, 1 

ml dosing volume), or 10 mg GRFT (n=6, 1 ml dosing volume) for a period of 10 

days via gastric lavage.  On treatment day 5, blood samples were drawn via 

lateral tail vein approximately 3 hours after oral dosing.  On day 10, animals were 

treated, and approximately 3 hours after treatment, animals were sacrificed via 

CO2 asphyxiation followed by thoracotomy.  Blood was drawn by cardiac 

puncture after euthanasia.  Urine was taken at selected time points after oral 

dosing.   
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Active Mass Balance Rat Treatment and Sample Collection. 

10 rats were treated with a single dose of either 2.5 mg GRFT (10mg/ml) 

through either intravenous indwelling catheter or subcutaneous dose.  5 rats 

were treated with 2.5 mg of GRFT (1 ml dosing volume) via gastric gavage.   

Post dosage, animals were placed in metabolic cages and urine was collected at 

the following time points after treatment: 4 hours, 8 hours, 12 hours, 20 hours, 

and 48 hours. Fecal pellets were collected at 24 and 48 hours. Urine volume and 

fecal pellet mass was quantitated for mass balance calculation. 

Fecal Pellet Collection and Extract preparation – Chronic Oral Treatment 

Fecal pellets from treated animals were obtained at 8 and 24 hours after 

initial treatment and at selected days thereafter by randomly drawing 6 dried 

pellets from animal cage bedding.  Briefly, for fresh fecal pellets not requiring 

additional PBS for rehydration, 1ml of PBS was added per 1 gram of pellets in a 

1.5ml Eppendorf tube.  For dried fecal pellets requiring rehydration 2ml of PBS 

per were added per 1 gram of pellets in an Eppendorf tube.  Pellets were allowed 

to absorb the PBS for 15-30 minutes before crushing and mixing.  After crushing 

and mixing, the resulting fecal slurry was centrifuged at 1000g for 5 minutes and 

supernatant removed.  Supernatant was spun again to pellet and remove and 

debris and final extract supernatant was removed and aliquoted for GRFT 

concentration determination and anti-HIV activity testing.  Fecal extract samples 

were pooled by combining equal volumes of extract from each cage within the 

applicable treatment group. 
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          Fecal pellet extracts from chronically treated animals underwent additional 

processing to further remove contaminants before HIV-1 pseudovirus 

neutralization assays.  Samples were sterilized and filtered using Costar Spin-X 

centrifuge Tube Filters with a 0.22 µm Cellulose acetate filter.  After filtration, 

samples were then dialyzed in a dialysis cassette with a 2000 molecular weight 

cut off membrane in PBS for 24 hours at 4ºC. 

Extracts for mass balance experiments were prepared by desiccation and 

rehydration of fecal pellets.  After overnight desiccation in a vacuum centrifuge, 

pellets were pulverized into powder using a commercial coffee grinder.  Pellet 

extracts were formulated using 0.5g of dried powder and 2 ml of PBS. After 

rehydration the resulting fecal slurry was thoroughly mixed and centrifuged at 

1000g for 5 minutes and supernatant removed.  Supernatant was spun again to 

pellet and remove and debris and final extract supernatant was removed and 

aliquoted for GRFT concentration determination. 

GRFT capture immunoassay using the Influenza HA 

To detect trace amounts of GRFT present in serum and fecal extracts, we 

used an ELISA as previously described with modifications [34].  Briefly, Maxisorp 

plates (Nunc) were coated with 10 µg/ml purified influenza hemagglutinin (HA) in 

PBS (Kentucky Bioprocessing) and incubated overnight at 4oC.  Plates were 

blocked with ~2.5% (w/v) Bovine Serum Albumin (BSA) in PBS containing 0.05% 

Tween 20 (PBS-T).  Samples were diluted in blocking buffer and were incubated 

for 1 hour at RT.  Serial dilutions of purified GRFT were run in parallel for 
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standard curve generation.  Active, HA-bound GRFT was detected by rabbit anti-

GRFT antiserum (1:25,000) followed by HRP-conjugated goat anti-rabbit IgG 

(1:10,000).  Plates were developed with SureBlue TMB Microwell Peroxidase 

Substrate, and reactions were stopped with 1N H2SO4.  Absorbance readings 

were measured at 450 nm and 570 nm using a BioTek Synergy HT plate reader. 

Evaluation of Anti-HIV Activity of Fecal Extracts.   

HIV-1 neutralization activity of fecal pellet extracts from pooled, chronically 

treated animals was measured using pseudovirus neutralization assays as 

previously described [174]. Briefly, DU156 env-pseudotyped virus particles were 

generated by transfection of 293T cells and titrated in TZM-bl cells.  Antiviral 

activity, a function of luciferase reporter gene activity, was determined by relative 

luminescence after addition of substrate. ID50 values were defined as the sample 

dilution required to reduce luminescence by 50% in comparison to wells with no 

sample added.  

Histopathology   

Hematoxylin and eosin stained tissue slides were examined in a blinded 

manner by a veterinary pathologist (M.P.) for gross or cellular abnormalities.   

Pharmacokinetic Analysis 

Pharmacokinetic Parameters were analyzed using PK Solutions Software 

(Summit PK). Parameters were determined using GRFT serum concentrations at 
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sampling time points.   Values were generated from time vs. concentration 

curves based upon amount of GRFT dosed/gram bodyweight.  Values generated 

included Absorption, distribution, and elimination half-lives, area under the curve 

(AUC), volume of distribution (Vd), clearance, and maximum serum 

concentration (Cmax). 
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RESULTS 

 

Pharmacokinetics-Intravenous Dosing 

GRFT was detectible at all time points tested - including up to 96 hours 

post dose (Figure 3.1).  15 minutes post intravenous administration, animals 

displayed an average serum concentration of approximately 74 µg/ml and 141 

µg/ml based on initial doses of 10 mg/kg and 20 mg/kg respectively.  By 8 hours 

after administration, serum concentrations had decreased to average 

concentrations 897 ng/ml (10mg/kg dosage) and 1540 ng/ml (20 mg/kg dosage) 

(Figure 3.1A).  Analysis of elimination curves by Pk Solutions software revealed a 

multiphasic elimination, with 3 distinct phases observed.    Early phase 

elimination kinetics (0-2 hrs) revealed an absorption half-life of approximately 0.5 

hours, with late phase elimination half-life ranging from 10 to 17 hours (Table 

3.1).  GRFT remained detectible in serum at low ng/ml concentrations up to 96 

hours post intravenous treatment (Figure 3.1B). 

Pharmacokinetics - Subcutaneous Dosing 

After subcutaneous administration, GRFT displayed increasing serum 

concentrations, reaching peak serum concentration approximately 4 hours post 

subcutaneous administration (Figure 3.1A).  Thereafter GRFT concentrations 

decreased at rates analogous to those seen in intravenously dosed animals.  At 

10mg/ml, GRFT displayed a Cmax of 6.6 µg/ml whereas at 20 mg/ml GRFT 

displayed a mean Cmax of 19.7 µg/ml.  GRFT remained detectible in serum at low 

ng/ml concentrations up to 96 hours post subcutaneous treatment. 
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Pharmacokinetics - Oral Dosing 

GRFT did not display any detectible serum concentrations at any time 

point tested after oral administration.   

 

Chronic GRFT oral treatment  

           Serum collected from rats orally dosed daily with PBS, 5 mg GRFT and 

10mg GRFT did not display detectible GRFT concentrations on either day 5 or 

day 10.  Urine samples obtained from these rats also failed to display detectible 

GRFT concentrations. 

 

Fecal GRFT concentrations -Chronic Dosing 

Fecal extracts from fresh fecal pellets displayed low concentrations of 

GRFT.  At 8 hours after initial dosing, animals treated with 5 mg and 10 mg 

GRFT displayed an average fecal GRFT extract concentration of approximately 2 

nM (Figure 3.2A).  However, average GRFT concentration of both groups 

decreased at 24hr after dosing, with fecal extracts from animals treated with 5mg 

GRFT displaying an average concentration of 0.5 nM while animals treated with 

10 mg GRFT displayed an average concentration of 0.75 nM. (Figure 3.2B). 

Fecal extracts from random pellet draws also displayed varying amounts of 

GRFT.   Dessicated fecal pellet extracts drawn on days 2, 3, 8 and 9 were 

analyzed.  As expected, none of the fecal pellet extracts from PBS treated 

animals displayed GRFT concentrations (Figure 3.2C).  Fecal pellet extracts from 
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animals treated with 5mg GRFT ranged from 1.7 nM to 20 nM.  Fecal pellet 

extracts from animals treated with 10 mg GRFT ranged from 1.7 nM to 126 nM.   

HIV-1 Neutralization activity Fecal Pellect Extracts of Chronically treated animals. 

          Pooled fecal extracts from rats treated with 5mg and 10mg GRFT 

neutralized HIV-1 pseudoviruses (Clade C primary sexually transmitted isolate 

Du156) with an ID50 of 590 on experimental day 3 for those animals treated with 

5mg GRFT and an ID50 of 2059 for animals treated with 10 mg GRFT (Figure 

3.3).  This neutralization activity was also observed in samples obtained at later 

time points.  On treatment day 8 sera from animals receiving a dosage of 5mg 

GRFT had an ID50 of 885 while those receiving 10 mg had an ID50 of 9452 (Figure 

3.3).  On treatment day 9 fecal pellet extracts had ID50s of 2195 and 13307 for 

groups receiving 5mg/kg and 10mg/kg GRFT respectively (Figure 3.3).   

Mass Balance of Active GRFT  

Active concentrations of GRFT were detected in urine or fecal material 

produced during the first 24 hours following intravenous, subcutaneous and oral 

dosage of 2.5 mg GRFT.  After intravenous administration and subcutaneous 

administration, GRFT was detected in urine (Figure 3.4).  After intravenous 

administration of 2.5 mg GRFT, approximately 131 µg of active GRFT was 

recovered, whereas 41 µg of active GRFT was recovered from subcutaneously 

treated animals.  However, a different elimination profile was observed following 

oral administration.   Following oral administration, approximately 2.3 µg GRFT 
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was recovered from fecal material.  GRFT was not detectible in urine at any time 

point tested in orally dosed animals.  

Histology 

Organ slides did not reveal any treatment-related pathologies.  However 

individual variation in slides attributable to sample preparation and sectioning 

were observed. 
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DISCUSSION 

 The pharmacokinetics data we derived here expand upon our previous 

studies (Barton et al.), which showed that subcutaneous treatment with 10 mg/kg 

GRFT was well tolerated in two laboratory rodent species (mice and guinea 

pigs), and accumulated to therapeutically relevant levels – above GRFT’s anti-

HIV EC50 of 40 pM. Here we show in rats, a standard rodent model used for PK 

studies, that GRFT has a complex PK profile which may prove important in 

designing future studies.     

As seen in Figure 3.1, GRFT displays different drug concentration curves 

depending upon method of administration.  Intravenously-dosed GRFT exhibits a 

multiphasic elimination pattern, with the serum half-life changing over the 

observation period.  While the majority of a single dose of GRFT is eliminated 

within 8 hours of treatment, potentially therapeutic concentrations above GRFT’s 

anti-HIV-1 EC50 remain for at least 96 hours post administration.  This complex 

elimination pattern, which can vary among other protein based pharmaceuticals 

in time to maximum serum concentrations and rates of elimination [193-195], 

may represent multiple processes going on simultaneously.  These may include 

continual absorption, degradation, protein binding, and elimination processes. 

GRFT was observed to be renally excreted in urine in substantial quantities 

shortly after dosing intravenous dosing.  However, this amount was also 

observed to decrease over time.  Further, prior research within our lab has 

detected GRFT in vaginal mucous after subcutaneous dosing (observational 

studies).  Thus, it is possible that GRFT could still be distributing more 
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extensively into deeper physiological compartments while other fractions of 

GRFT are being eliminated. This speculation will require in vivo radiolabeling 

studies of GRFT for a full determination as to GRFT’s ultimate fate. Further, it is 

also possible that degradative proteolysis is occurring.  While previous studies 

have shown GRFT is relatively proteolytically resistant to many proteases, it has 

been reported that GRFT is susceptible to leukocyte elastase [192]. Thus it is 

possible that GRFT is vulnerable to some other unknown proteases as well. This 

possibility will require both extensive in vitro protease degradation testing as well 

as examination of degradation products in serum after systemic administration 

using radiolabeled GRFT to determine whether GRFT is being degraded or 

retained within the system. 

 The final phase of elimination of GRFT appears to be substantially longer 

than the initial elimination phases.  This persistence is comparable to other 

protein therapeutics, such as monoclonal antibodies, which also present long 

serum persistence[194] as well as smaller molecule biologics, such as 

recombinant epoetin[193]—though recombinant epoetin concentrations have 

been observed to be eliminated within two to three days after intravenous dosing 

[188]. This serum persistence could potentially be from redistribution of GRFT 

from deeper physiological compartments and mucosal surfaces.  However, it is 

also very possible, if not likely, that these low residual concentrations of GRFT 

are interacting with or binding to endogenous proteins.  To confirm this 

possibility, in vivo testing with radiolabeled GRFT is suggested to identify if GRFT 

is localizing to or redistributing from, a particular compartment.  Additionally, 
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cellular protein binding experiments may be useful to identify membrane bound 

protein binding partners which may be responsible for GRFT’s long serum 

persistence. 

Subcutaneously dosed GRFT reaches peak serum concentrations at 

approximately 4 hours post administration, with elimination patterns mirroring 

intravenous dosage thereafter.   The initial distribution phase immediately 

following subcutaneously dosage appeared to be fairly comparable regardless of 

amount of GRFT dosed.  However, subcutaneous doses at higher drug 

concentration increased GRFT’s peak concentration, total drug exposure and 

bioavailability, as reflected in the area under the curve over the study period.  It is 

thought that the approximately 4 fold difference in total drug exposure observed 

between 10 mg/kg and 20 mg/kg subcutaneous doses of GRFT could be 

attributable to a gradual release or absorption of more GRFT from the site of 

subcutaneous administration over the time course of treatment while competing 

distributive, elimination, and degradative processes are occurring as it enters the 

circulatory system from the capillary bed.  Interestingly, it appears that the 

concentration of GRFT dosed, and not necessarily the volume of the 

subcutaneous bolus affected total drug exposure over the study period.  A large 

volume, lower concentration of GRFT tested did not have the sustained higher 

serum concentrations (data not shown).     

These pharmacokinetic results would seem to indicate that in a post-

exposure prophylactic setting, subcutaneous administration of GRFT may be a 

viable method of administration.  In the cases of Ebola virus and SARS-CoV, the 
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viral latency period can range from 2 days or longer. In the context of HIV-1 

exposure clinical settings, post-exposure prophylaxis initiated within 24-48 hours 

of exposure has shown a protective effect [120].  Additionally, there are now 

anecdotal evidence that even following seroconversion, immediate treatment with 

anti-viral regimens can confer clinical benefits [196-198], and in the case of an 

infant treated after birth, functional cure [199, 200].   Accordingly GRFT’s 

observed pharmacokinetic profile, peak serum concentrations achieved 4 hours 

post dosing,  and persistence up to 96 hours post single treatment would suggest 

the viability of daily subcutaneous self-dosage regimen to maintain potentially 

therapeutic effect. 

GRFT’s pharmacokinetic parameters will also be important in future 

studies.  Given that subcutaneous dosing may be a viable regimen to maintain 

potentially therapeutic drug concentrations, the pharmacokinetic parameters of 

GRFT may be useful in study design parameters such as: steady state drug 

concentrations, loading doses, maintenance doses, and dosing intervals.  

GRFT’s EC50 for HIV is approximately 40 pM [32].  From the clearance 

parameters (0.06 L/hr) determined for 10mg/kg subcutaneous dosing, a 72 hour 

dosing regimen of 2.5 mg GRFT would achieve a stead state concentration of 47 

nM, over 1000 times higher than GRFT’s EC50 for HIV-1. However, GRFT’sHCV 

EC50 has been described as 14 nM [31], whereas its SARS-CoV EC50 is 

approximately 48 nM [23].  Accordingly, as GRFT is further studied in in vivo 

animal models for varying viral diseases, it may be necessary to design dosing 

intervals and concentrations necessary to maintain serum drug concentrations at 
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potentially therapeutic steady state levels for that disease, while avoiding 

concentrations that may induce toxicities.  For example, with a calculated 14 hour 

elimination-phase half-life seen in a 10 mg/kg subcutaneous dose and a 43% 

bioavailability, a 72-hour dosing regimen would be necessary to minimize 

bioaccumulation of GRFT.  This data can also be utilized to design a more 

frequent dosing regimen to minimize peak and trough concentrations of the drug 

while maintaining a steady state serum concentration above concentrations 

necessary for potentially therapeutic effect.  For instance, to maintain a steady 

state concentration of 47 nM, 35 µg/hr or 840 µg/day would need to be 

administered.  Alternatively, using these data, a loading dose followed by regular 

maintenance dosing may be employed to achieve a desired steady state 

concentrations above the EC50 for particular disease study model.  

Interestingly, it also appears that the concentration of subcutaneously 

dosed GRFT can affect its bioavailability.  At 10mg/kg dosing, GRFT displayed a 

43% bioavailability when subcutaneously dosed. Whereas at 20mg/kg dosing, 

GRFT displayed a 90% bioavailablity (calculated as 

AUC(subcutaneous)/AUC(intravenous) for each respective dose concentration).  

The cause of this discrepancy is currently unclear and will require further study.  

However, it highlights the impact that selection of dose concentration/kg may 

have upon study design. 

In contrast to subcutaneous and intravenous routes, orally administered 

GRFT does not appear to be systemically absorbed.  Other lectins, such as 

wheat germ agglutinin, which bind to N-acetyl-D-glucosamine and sialic acid 
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structures, have been used to increase systemic absorption of some other drugs 

[201, 202].  However, given GRFT’s unique affinity for oligomannose glycans, it 

was uncertain whether GRFT would have a similar utility. At no time point 

examined was GRFT found in the serum of orally-treated animals.  While this 

difference in absorption and elimination profile likely makes GRFT unsuitable as 

an orally dosed systemic therapeutic at this time, advances in drug delivery 

systems for oral dosing of biologics may eventually enable an oral dosing method 

for GRFT. However, GRFT’s current oral dosing profile raises the potential of 

GRFT to be an orally-dosed, rectal microbicide for prevention of transmission of 

HIV-1 and other sexually transmitted pathogens that GRFT is active against 

(such as HSV-2).  Non-absorption of GRFT via oral administration allowed for a 

fraction of the drug to pass through the digestive tract, ultimately being expelled 

in fecal waste (Figure 3.4).  While this fraction is small, approximately 1% of the 

initial dosage, methods to shield GRFT from further effects of stomach acids and 

proteases could possibly be employed to make this fraction higher.  Additionally, 

as food was not controlled prior to oral administration of GRFT, food 

consumption could potentially impact GRFT’s intestinal transit and successful 

proteolytic survival.  Nonetheless, as seen in both the single oral dose mass 

balance as well as the chronic oral dosing, the concentration of GRFT in 

prepared fecal extracts exceed GRFT’s EC50 versus HIV-1 over the first 24 hours 

post treatment.  Interestingly however, GRFT’s neutralization activity in fecal 

extract did not correlate well with GRFT’s previously described EC50 of 40 pM, 

though neutralization activity did correlate well with GRFT concentration.  It is 
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believed that this discrepancy may be attributable to the background 

neutralization activity seen in fecal extracts from PBS treated animals. 

Daily prophylactic treatment for HIV-1 is well established.  For example, Truvada 

is currently being prescribed to high risk populations, namely MSM to prevent 

HIV infection [106, 203].  Additionally, anti-retrovirals are employed following 

occupational and non-occupational exposure to prevent HIV infection [117-120, 

204].  Thus, the observed fractional survival of active GRFT raises the potential 

that GRFT could be utilized as a daily dosed treatment to “seed” the bowels and 

rectal mucosa, where it could potentially block HIV infection through its 

interaction with high mannose glycans on free virions.   

Interestingly, the timing of passage of GRFT following oral dosage also 

appears to be consistent with typical intestinal transit time of 20-30 hours.  As 

seen in Figure 3.2, some animals chronically treated GRFT began to excrete 

GRFT in their fecal matter within 8 hours of initial treatment regardless of dosage 

size.  At 24 hours after treatment, more than half of the animals from each 

treatment group were still excreting GRFT in their feces.  With an intestinal transit 

time of 8-24 hours, it would appear that the majority of GRFT administered is 

passed between 8-20 hours of dosage in rats.  However, it is currently unknown 

what effect the co-administration of food would have upon GRFT’s transit time as 

food was only restricted 20 minutes before administration.  It is very possible that 

intestinal transit time for GRFT would be increased if food were restricted before 

administration. 
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While enveloped viruses such as SARS-CoV, HIV-1, HSV-2 and HCV 

continue to spread worldwide, it is imperative that all avenues for prevention be 

evaluated to assess their overall population level effect.  Our findings indicate 

that GRFT’s pharmacokinetic profile supports multiple potential uses as well as 

enables the design of different dosing regimens.  As a systemic post-exposure 

therapeutic or treatment, subcutaneous self-dosing would be both a viable and 

effective means to achieve potentially therapeutic serum concentrations of 

GRFT.   In the context of post-exposure prophylaxis to emerging viral threats, an 

initial intravenous bolus treatment may be useful to achieve very rapid peak 

serum levels of GRFT (Figure 3.1.) Further, given the apparent non-absorption of 

GRFT following oral administration, as well as the continued anti-viral activity of 

GRFT found in fecal materials, it is possible that GRFT could be utilized as an 

orally dosed rectal microbicide in a pre-exposure prophylactic setting.  While 

admittedly, it is only a small fraction of GRFT dosage which survives intestinal 

transit, we have demonstrated that levels above its anti-HIV EC50 are achievable.  

Nonetheless, methods may be needed to shield GRFT from excessive 

degradation or inactivation. 
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Figure 3.1. Pharmacokinetic profile of GRFT in Serum.  Mean GRFT 

concentrations present after single Intravenous (IV) and Subcutaneous (SQ) 

dose (n=3-4 per group) (A).  Serum Concentrations from animals dosed with 10 

mg/kg GRFT both 72 and 96 hours after administration (B).  Bars indicate mean 

± standard deviation of 5 biological replicates 
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  INTRAVENOUS SUBCUTANEOUS 

 
Units 

10 mg/kg 
(N=4) 

20 mg/kg 
(n=3) 

10 mg/kg 
(n=4) 

20 mg/kg (n=4) 

INITIAL 
DISTRIBUTION 
HALF LIFE 
(0.25-2 HR) 

hr 0.51 ± 0.09 0.46 ± 0.18 -- -- 

 
ABSORPTION 
HALF LIFE 
(0.25-2 HR) 
 

hr -- -- 1.3 ± 0.3 1.6 ± 0.4 

 
DISTRIBUTION 
HALF LIFE  
(4-8 HR) 
 

hr 1.7 ± 0.3 2.1 ± 0.7 2.1 ± 0.9 2.8 ± 1.2 

 
ELIMINATION 
HALF LIFE  
(24-48 HR) 
 

hr 10.7 ± 4.6 17.5 ± 6.1 13.8 ± 6.8 6.6 ± 1.9 

 
AUC 
 

mg-hr/L 110 ± 20 200 ± 30 50 ± 10 180 ± 50 

 
VD 
 

L 0.35 ± 0.13 0.57 ± 0.15 1.2 ± 0.6 0.23 ± 0.10 

 
CLEARANCE 
 

L/hr 0.026 ± 0.006 0.023 ± 0.004 0.058 ± 0.008 0.024 ± 0.006 

 
CMAX 

 
µg/ml 80 ± 30 180 ± 30 6.6 ± 0.6 20 ± 2 

 
 
Table 3.1.  Pharmacokinetic parameters of GRFT over 48 hours.  Data represent 

the mean values +/- standard deviation for initial distribution (intravenous),  

absorption (subcutaneous), distribution, and elimination half-lives, area under the 

curve (AUC), volume of distribution (VD), clearance, and maximum serum 

concentration (Cmax).   
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Figure 3.2.  GRFT Concentrations in Fecal Extracts following Chronic Oral 

dosing.  Mean GRFT concentrations from fecal extracts prepared from fresh fecal 

pellets obtained 8 hours (A) and 24 hours (B) after oral dosage with either PBS, 5 

mg GRFT, or 10 mg GRFT.  Bars indicate mean ± standard deviation of 5 

biological replicates. Mean GRFT concentrations of fecal extracts prepared from 

desiccated pellets randomly drawn from cages (two animals per cage) on select 

days (C).  Bars indicate mean ± standard deviation of 3 biological (cage) 

replicates.  
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Figure 3.3. Antiviral activity of pooled fecal extracts collected on select days 

during the course of chronic oral treatment with GRFT. HIV-1 env- pseudovirus 

neutralization activity (EC50 of GRFT = ~40 pM) was assessed for pooled rat fecal 

extracts from animals dosed with either PBS, 5 mg or 10mg GRFT and 

expressed as ID
50 

(dilution factor required to reduce luminescence to 50% of 

PBS treated controls) (A).  The mean GRFT concentrations were determined and 

compared to interpolated ID
50

 values (B).  
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Figure 3.4.  Total GRFT recovery following single administration.  Based upon 

likely route of excretion, urine or fecal samples were obtained for animals 

receiving 10 mg/kg GRFT after Intravenous (IV), Subcutaneous (SQ), and oral 

administration. GRFT concentrations in urine and fecal extracts were determined 

and mean GRFT recovered was calculated. Bars indicate mean ± standard 

deviation of 5 biological replicates. 
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CHAPTER 4 

 
 

SUB-CHRONIC SUBCUTANEOUS TREATMENT WITH THE ANTIVIRAL 

LECTIN GRIFFITHSIN IN RATS TO DETERMINE GRIFFITHSIN’S SYSTEMIC 

TOLERABILITY AND EXAMINE GRIFFITHSIN’S EFFECTS UPON ORGANS, 

BLOOD CELL COUNTS, SERUM CHEMISTRIES, AND CYTOKINE 

PRODUCTION 

INTRODUCTION 

The oligomannose glycan structures displayed on the surface of many 

human and animal pathogenic viruses are potential targets for antiviral 

therapeutics.  CBAsact by targeting and binding to viral oligomannose glycans 

and include both lectin and non-peptidic drugs [14, 205]. CBA relevance in viral 

therapy stems from the fact that, among enveloped viruses, glycans shields can 

be used for cellular entry, immune evasion, and in some cases, innate immune 

response suppression[13, 17, 19, 51, 60].  In vitro antiviral activity of CBAs 

against a broad array of enveloped viruses has been observed and verified by 

others [28, 29, 189]. However, most carbohydrate binding agents  that display 

broad spectrum, strongly inhibitory antiviral activity are lectins that present 
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several theoretical safety concerns for development as biologic therapies[14, 22, 

24, 149].  Chief amongst the safety concerns are toxicities associated with off-

target activity, and immunotoxicities including hypersensitivity and production of 

anti-drug antibodies (ADA) that might neutralize the lectin antiviral activity and 

lead to undesirable side effects over long-term therapy.  

One of the most promising antiviral lectins is the red alga Griffithsia-

derived homodimeric lectin Griffithsin.  GRFT (12.77 kDa) is a lectin that binds 

terminal mannose residues on (N)-linked Man5-9GlcNAc2 structures on viral 

envelopes [32, 163, 165].  These oligomannose glycans comprise the vast 

majority of N-linked glycans in the HIV-1 glycan shield [13, 16]. Consequently, 

GRFT has exceptional activity—in the mid picomolar range—against the heavily 

glycosylated lentiviruses HIV-1 and HIV-2[32, 33], and nanomolar inhibitory 

activity against other viruses of public health importance, such as HCV [30, 31], 

JEV [173]  as well as SARS-CoV in addition to other CoV pathogens [23]. Data 

published by our group and others show that GRFT does not induce 

inflammatory cytokines on treatment of cultured human cells and primary 

lymphocytes; does not agglutinate human red blood cells; shows an excellent 

safety profile in highly sensitive preclinical safety models designed to predict 

toxicity at vaginal epithelia; and shows minimal toxicity after short-term oral, 

subcutaneous and intravenous exposure.   Much like the in vivo studies into the 

efficacy of CBAs as antiviral treatments to inhibit influenza and Ebola viruses [28, 

29], in vivo and ex vivo studies using GRFT in multiple murine virus challenge 

models have also shown promise.  For example, intranasally administered GRFT 
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prevents disease in mice challenged with SARS-CoV [172].  Intraperitoneal (IP) 

treatment with GRFT has prevented JEV [173].   Furthermore, GRFT showed 

efficacy against HCV in a mouse-human chimeric liver model when administered 

subcutaneously [30, 170]. 

Our previous studies have shown that an acute subcutaneous treatment of 

GRFT in guinea pigs and mice for a period of ten (10) days was tolerable with 

minimal toxicity reported [34].  We also showed that subcutaneous administration 

of GRFT at 10 mg/kg remains at potentially therapeutic concentrations up to 48 

hours after administration, with therapeutically-relevant concentrations persisting 

for over a week after a single 50 mg/kg administration in mice [34].  However, as 

a xenogeneic protein, GRFT has the potential to elicit an immune response, up to 

and including anaphylaxis.  Accordingly, longer term administration studies are 

necessary to assess GRFT’s potential as a systemic therapeutic.  Furthermore, 

the impact that ADA may have on GRFT’s pharmacological activity, 

pharmacokinetics, and in vivo toxicity profile is unknown.  

Here we report that minimal toxicity is induced by subcutaneous doses of 

GRFT in rats after approximately 8 weeks of treatment, though development of 

immune responses that may cause IgG ADA may require more prolonged and 

periodic monitoring.  The drug remained systemically distributed, and 

accumulated at physiologically relevant levels after subcutaneous delivery for all 

time points tested.  Inflammatory cytokine analysis at treatment cessation did not 

reveal widespread alterations in inflammatory cytokine levels, though some 
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significant changes were observed in macrophage inflammatory proteins and 

leptin levels.  Importantly we demonstrated that serum from GRFT treated 

animals retained anti-viral activity against HIV-1 envelope pseudoviruses in a cell 

line-based neutralization assay despite a modest ADA response to the GRFT. 

Overall, these findings support further investigation into GRFT’s potential as a 

systemic antiviral therapeutic agent against enveloped viruses including HIV-1. 
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MATERIALS AND METHODS 

Lectin reagents 

Recombinant GRFT was produced as described previously, purified to 

>99% purity, and formulated in phosphate buffered saline (PBS), pH 7.4 [169]. 

Animal housing and care 

225-250g Sprague Dawley Rats (Rattus Norvegicus, Charles River 

Laboratories), housed in a temperature- and humidity-controlled room with an 

alternating light/dark cycle of 12h, were provided a standard diet and water ad 

libitum. All experimental procedures utilized were approved by the University of 

Louisville’s Institutional Animal Care and Use Committee. 

Rat IgG Generation  

To generate IgG antibodies for passive immunization, 9 Sprague Dawley 

rats (250g+) were injected subcutaneously with 500 µl Sigma Adjuvant 

(monophosphoryl lipid A, synthetic trehalose dicorynomycolate in 2% squalene-

Tween® 80-water) and GRFT formulated at 1mg/ml per manufacturer’s 

recommended protocol.  Booster immunizations were performed according to 

manufacturer protocol every 3 weeks for 12 weeks. Two weeks after final 

immunization animals were sacrificed by CO2 asphyxiation and serum was 

collected via cardiac puncture. Ig from these samples was purified by NAB spin 

column (Sigma) according to the manufacturer’s protocol.   For nonspecific 
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controls, IgG from commercial Sprague Dawley rat serum (InnovoResearch) was 

purified by NAB spin column (Sigma).  Ig was then dialyzed (Thermo 3500 

mwco) against PBS to remove elution buffer and sterile filtered prior to 

subcutaneous administration. 

Rat treatment and sample collection 

Age-matched, 225g Sprague Dawley rats were allowed to a week to 

acclimate before treatment according to the treatment regimen diagram shown in 

Figure 4.1.  After acclimation, two groups were pre-immunized with either 0.5 ml 

of Sigma Adjuvant and GRFT at 1mg/ml (n=7) or 0.5 ml Sigma Adjuvant and PBS 

(n=6) before commencing treatment.  Pre-immunized animals were boosted 

twice at three week intervals. Animals not undergoing pre-immunization were left 

fallow during the pre-immunization phase.  Treatment groups consisted of the 

following: pre-immunized with Adjuvant and PBS (n=6), pre-immunized with 

GRFT and Adjuvant (n=7), GRFT treated (n=7), PBS treated (n=6), GRFT treated 

and passively immunized with anti-GRFT Ig (n=7), PBS treated and passively 

immunized with nonspecific Ig (n=6).  Animals were treated subcutaneously with 

either PBS or 10mg/kg GRFT every three days.  Passively-immunized animals 

also received 1.4 mg of appropriate Ig formulated in 1 ml of PBS every 14 days.   

Serum was drawn via lateral tail vein on the following days: Day 10, 24, 

38, and 52. Animals were sacrificed on day 55 via CO2 asphyxiation followed by 

cardiac puncture exsanguination.  Blood, hearts, lungs, kidneys, liver, spleen, 

colon, and vaginas were collected at sacrifice for analysis. 
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GRFT capture immunoassay using the HA glycoprotein. 

To detect active concentrations of GRFT present in serum we used an 

Influenza HA binding ELISA.  Briefly, Maxisorp plates (Nunc) were coated with 10 

µg purified HA (Kentucky Bioprocessing) and incubated overnight at 4oC.  Plates 

were blocked with ~3% (w/v) Bovine Serum Albumin (BSA) in PBS-T.  Serum 

samples were diluted 1:10 in blocking buffer. Serial dilutions of purified GRFT 

were run in parallel for generation of a standard curve. Serum and GRFT 

dilutions and were incubated at RT for 1 hour.  HA-bound GRFT was detected by 

rabbit anti-GRFT antiserum (1:25,000) followed by HRP-conjugated goat anti-

rabbit IgG (1:10,000).  Plates were developed with SureBlue TMB Microwell 

Peroxidase Substrate, with reactions stopped with 1N H2SO4 after 10 minutes of 

development.  Absorbance readings at 450 nm and 570 nm wavelengths were 

measured using a BioTek Synergy HT plate reader.  Concentrations were 

determined by Nanoanalyze software. 

Evaluation of Anti-HIV Activity.   

HIV-1 neutralization activity of heat-inactivated serum samples obtained 

on day 52 and 55 was measured using pseudovirus neutralization assays as 

previously described [174]. Briefly, DU156 env-pseudotyped virus particles 

generated by transfection of 293T cells were titrated in TZM-bl cells both in the 

presence and absence of serum sample dilutions.  Antiviral activity of the serum 

samples was calculated as a function of luciferase activity. ID50 values were 
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defined as the sample dilution required to reduce well luminescence by 50% in 

comparison to wells with no sample added.  

Hematology parameters and Serum Chemistry.   

A complete blood count (CBC) was run for terminal bleed samples using a 

Hemavet® 950 (Drew Scientific) standardized for rat blood. Parameters 

quantified in potassium-EDTA anti-coagulated whole blood included: red blood 

cells (RBC; 104/µl), total and differential leukocyte count (neutrophils, 

lymphocytes, monocytes, eosinophils, and basophils as 103/µl or %), hemoglobin 

concentration (HGB; g/dl), hematocrit (HCT; %), mean corpuscular volume (MCV; 

fl), mean cell hemoglobin (MCH; pg), mean cell hemoglobin concentration 

(MCHC; g/dl), red cell distribution width (RDW; %), platelets (PLT; 104/µl), and 

mean platelet volume (MPV; fl). 

Serum chemistry panels were also run for terminal bleed samples using a 

VetTest® Chemistry Analyzer (IDEXX Laboratories). Parameters quantified from 

serum included: serum albumin (Alb), alkaline phosphatase (ALKP), amylase 

(Amy), alanine aminotransferase (ALT), blood urea nitrogen (BUN), calcium (Ca), 

cholesterol (Chol), creatinine (Creat), globulin (Glob), glucose (Glu), phosphorus 

(Phos), total bilirubin (TBil), and total protein (TP).  

Rat Antibody titration 

To quantitate degree of immune response to GRFT, antibody titers were 

determined for terminal bleed samples (day 55) using a sandwich ELISA.  Briefly, 
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Maxisorp plates (Nunc) were coated with 5 ug purified HA (Kentucky 

Bioprocessing) and incubated overnight at 4C.  Plates were blocked with ~3% 

(w/v) Bovine Serum Albumin (BSA) in PBS-T.  10ug/ml GRFT (to excess) was 

diluted in blocking buffer and incubated at RT for 1 hour.  Serial dilutions of 

sample sera diluted in PBS-T containing 2M urea were incubated in wells for 2 

hours. GRFT-bound rat Ig was detected by HRP-conjugated Donkey anti-rat 

polyclonal antibody (1:25,000).  Plates were developed with SureBlue TMB 

Microwell Peroxidase Substrate, with reactions stopped with 1N H2SO4 after 10 

minutes of development.  Absorbance readings at 450 nm and 570 nm 

wavelengths were measured using a BioTek Synergy HT plate reader.  Final 

absorbance 2 times background was considered a positive signal for a particular 

dilution.   

Cytokine Quantitation 

To measure any inflammatory effects of chronic exposure, cytokine levels 

in samples drawn on day 52 were determined by Milliplex Map Kit (Millipore) 

using manufacturer’s standard protocol.  The following cytokine levels were 

quantified: granulocyte colony-stimulating factor (G-CSF), Eotaxin, Granulocyte 

macrophage colony-stimulating factor (GM-SCF), Interleukin 1 alpha (IL-1a), 

Leptin, Macrophage Inflammatory Protein 1 alpha (MIP 1-a), Interleukin 4 (IL4), 

Interleukin 1 beta (IL-1B), Interleukin two (IL-2), EGF, Interleukin 13 (IL-13), 

Interleukin 10 (IL-10), Interluekin 12 (IL-12p70), Interferon gamma (INFy), 

Interleukin 5 (IL-5), Interleukin 17 alpha (IL-17A),  Interleukin 18 (IL-18), 
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monocyte chemoattractant protein 1 (MCP-1), interferon gamma induced protein 

10 (IP-10), growth-related oncogene (GRO/KC), vascular endothelial growth 

factor (VEGF), Fractalkine, lipopolysaccharide induced CXC  chemokine (LIX), 

macrophage inflammatory protein 2 (MIP-2), tumor necrosis factor alpha (TNFa), 

and Rantes. 

Statistical Analysis.  

Statistical analysis was conducted using Graph Pad Prism 5.  Two-way 

ANOVA was utilized.  A p-value < 0.05 was deemed significant.  Bonferonni post-

tests were conducted to determine whether any differences were attributable to 

GRFT treatment.   
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RESULTS 

GRFT serum concentrations.   

Serum samples collected from all rats treated with 10mg/kg GRFT showed 

nanomolar concentrations of GRFT at every time point tested (Figure 4.2A).  

These levels predictably varied by time since last dosage, which ranged from 24 

to 72 hours after administration. In Day 52 sera (24 hours after final 

administration), all groups treated with GRFT displayed active mean GRFT 

concentrations of approximately 10 nM. Notably, these concentrations of GRFT 

persisted at mean levels of approximately 4 nM, regardless of GRFT treatment 

subgroup, at 96 hours after dosing.  Serum concentrations from GRFT treated 

animals were also compared to serum concentrations from prior single 

subcutaneous administration studies described in Chapter 3 (Figure 4.2B).  Mean 

GRFT concentrations in animals chronically treated with GRFT were higher at all 

time points versus serum concentrations from animals receiving a single dose. 

Anti-GRFT and Anti-HIV Activity of serum.   

Serum Samples displayed varying levels of Anti-GRFT activity based upon 

treatment group (Figure 4.3A).  GRFT treated animals (without pre-immunization) 

showed GRFT titers slightly elevated over background.   Animals receiving 

passive Ig immunization and pre-immunization with GRFT and adjuvant had the 

highest mean activity titrations at 1:767 and 1:1542 respectively.  There was clear 
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variability in the GRFT antibody titers in both the pre-immunized and passively 

immunized groups.  

Serum samples collected from rats treated with 10 mg/kg GRFT 

neutralized HIV-1 pseudoviruses (Clade C primary sexually transmitted isolate 

Du156) with an overall mean ID50 of approximately 20500 on experimental day 

52 (Figure 4.3B).  The antiviral activity measured in rat sera was not statistically 

different between animals that were immunologically naïve at the study outset 

(GRFT group) versus the preimmune group and the passively immunized group. 

After a 96 hour recovery period, group mean ID50 values decreased to 

approximately 4300 on day 55.   PBS treated rat sera displayed a mean ID50s of 

264 and 112 on days 52 and 55, respectively.  Both pre-immunized and passively 

immunized groups also receiving GRFT treatment displayed strong neutralization 

activity on Day 52 as well, with mean ID50 values of 19800 and 17000 

respectively.  These group mean ID50s also decreased 96 hours after treatment, 

similarly to animals treated only with GRFT.  Rat neutralization titers did not 

correlate well with GRFT’s published anti-HIV-1 EC50 of 40 pM, likely as a 

product of background neutralization activity observed in rat serum. 

GRFT is well tolerated after chronic subcutaneous administration 

We studied the toxicity of GRFT in rats using several parameters including 

mortality, behavior, animal body and organ weight changes, tissue pathology, and 

changes in blood properties. 
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All animals survived treatment with no behavioral changes observed.  

Body weight, as a surrogate marker for overall fitness following GRFT treatment, 

was evaluated.  Animals were weighed at day 1 and day 55. Using a 2-way 

ANOVA, we found no significant changes in starting weight or weight gain among 

treatment groups (p=0.4177 and p=0.9170 respectively, Figure 4.4). 

Liver, kidney, and spleen weights were measured at sacrifice and 

normalized to total body weights.  No significant changes of the normalized 

weights of livers were observed (p= 0.1487, Figure 4.4C) However, animals 

passively immunized with GRFT IgG and treated with GRFT displayed 

significantly lower kidney/body weight ratios in comparison to PBS treated 

controls (p=0.0328, Figure 4.4D). Additionally, we observed a trend toward larger 

spleen weights in all animals treated with GRFT, regardless of whether they were 

pre-immunized (p=0.0561, Figure 4.4E).  

Tissue sections were stained with hematoxylin and eosin and evaluated in 

a blinded fashion by a veterinary pathologist (MaryProctor).  The pathologist 

noted differences among individual animals that were attributable to sample 

preparation and sectioning.  However, no treatment-related pathologies were 

observed for any treatment group.  

CBC results displayed no significant changes among groups though Red 

Blood Cell Width and Platelet values approached significance with p-values of 

0.0977 and 0.0796 respectively (Table 4.1).  Serum chemistries displayed some 

statistically significant differences among treatment groups (Table 4.2).  Among 



88 
 

these were albumin, amylase, phosphorus, blood urea nitrogen, and globulin.  

Bonferroni post-test identified differences among treatment groups.  Phosphorus 

levels were significantly higher in vehicle-only (PBS) than in all GRFT treated 

groups (p=0.0083).  Amylase and globulin levels were significantly higher in 

Passively Immunized/GRFT treated animals though amylase levels were within 

the normal range for rats (p=0.0468 and p=0.002 respectively).  Finally, albumin 

levels were significantly lower in pre-immunized/GRFT treated animals than in 

PBS treated controls, though within the normal range for rats (p=0.0071). 

Cytokine responses 

Cytokine panels with a minimum of 3 positive signals per group were 

analyzed.  Analysis of PBS, GRFT, Pre-Imm/GRFT, and Pass-Imm/GRFT 

revealed only 4 significant differences among the cytokines examined:  Leptin, 

MIP-1a, Ip-10, and MIP-2 (Table 3).  In the case of leptin, all groups treated with 

GRFT had significantly lower leptin levels than PBS treated controls (p=<0.0001).  

Further, IP-10 levels were lower in the group receiving GRFT-only treatment 

(p=0.0312).  MIP-1a elevation was seen in the pre-immunized/GRFT treated 

group (p=0.018).  However, posttest analysis did not reveal significance versus 

PBS-treated controls, but rather significance versus GRFT-only treated animals.  

Finally, MIP-2 displayed a significant difference among treatment groups 

(p=0.0382).  However, post-test analysis failed to identify differences between 

individual groups. 
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DISCUSSION 

In this study, we demonstrate that intermediate term sub-chronic GRFT 

administration is tolerated in rats, despite high levels of experimentally induced 

ADA.  Levels of ADA varied among groups and also varied widely within groups.  

High anti-GRFT antibody titers were not observed in any animal even when pre-

immunized with adjuvant.  Regardless of ADA levels, GRFT persisted in serum at 

concentrations above the EC50 described for multiple enveloped viruses [23, 31, 

32, 178].  Further these levels were observed in all GRFT treated animals, at all 

time points tested, and up to 96 hours after administration. Although predictably 

decreasing after final administration, functionally active GRFT concentrations--as 

determined by HA binding ELISA and HIV-env pseudovirus neutralization assay--

remain in circulation for many days after treatment cessation.  These findings 

support the continued study of GRFT as a viral therapeutic.   

As noted in prior studies, a favorable safety profile for a drug must be 

demonstrated to advocate for its further development [34, 35]. We observed 

previously that GRFT was capable of persisting in the system for many days after 

administration at potentially therapeutic levels when subcutaneously or 

intravenously dosed ([34] and manuscript in preparation).  Thus greater time 

between administrations was selected to mimic a more favorable dosing regimen 

that would be more acceptable for those relying upon subcutaneous self-

administration while not allowing GRFT to completely clear systemic circulation. 

Based upon prior work, which described GRFT’s clearance in rats following 
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subcutaneous administration at 10mg/kg at 0.058 L/hr, a dosing regimen of 2.5 

mg every 72 hours was calculated to generate steady state concentrations of 

GRFT of 47 nM, over 1000 times GRFT’s anti HIV-1 EC50 of 40 pM.  Further, 

this extended dosing regimen was sufficient to keep GRFT in the system at 

concentrations well above its EC50 for HIV at 96 hours after final dose, thus 

suggesting longer potential periods between administrations in humans may also 

be possible, if not ideal.  Injection administration of antiviral therapies is not 

unheard of, and research is currently being conducted into long acting anti-viral 

medications for HIV prevention and treatment [206-208].  Accordingly, efforts to 

prolong GRFT’s serum persistence may be necessary to further enhance an 

already acceptable administration profile. 

In these current in vivo studies in rats, GRFT was not observed to alter 

experimental animal behavior, nor did any animal die as a result of treatment. 

Potential organ toxicity was also assessed by visual inspection during necropsy, 

weight measurements and histopathology. No differences in organ appearances 

were observed during necropsy.  While kidney weight percentages of total body 

weight in passively immunized/GRFT treated animals displayed a statistically 

significant lower percentage in comparison with PBS-treated controls and pre-

immunized/GRFT treated animals trending toward lower percentages as well, 

histopathological examination of the organs did not show any treatment-related 

pathologies. Given the animals in this study were still growing, these lower 

percentages may be a result of either impaired kidney growth or potential 

nephrotoxicity.  A prior study (manuscript currently in preparation) showed a 
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significant excretion of active GRFT into urine after both intravenous and 

subcutaneous systemic administration.  Accordingly, given that the observed 

changes in kidney weights were seen in animals in which had significantly higher 

globulin levels, it is possible that GRFT-antibody complexes or some component 

on an immune response have an impact upon the renal function.  Further 

supporting this possibility was the observed trend toward lower kidney weight 

and higher globulin levels also observed in pre-immunized/GRFT treated 

animals.  Accordingly, further study will be necessary to determine how an 

antibody response impacts kidney function given that no histopathological 

abnormalities were observed by the veterinary pathologist (M.P.). 

When a complete blood count was performed and serum chemistries 

analyzed, we observed that no CBC parameters were significantly changed as a 

result of GRFT treatment.  However, serum chemistries did show some variation. 

Post hoc analysis revealed that amylase and globulin levels were significantly 

higher in passively-immunized/GRFT treated animals versus PBS treated 

controls. While amylase levels were still within the normal range for rats, elevated 

globulin levels could reasonably be expected as an outcome of Ig administration, 

and thus could be a confounding effect derived from the experimental treatment.  

Significant differences in albumin and BUN in pre-immunized animals 

versus PBS treated controls were observed.  Interestingly, the difference in BUN 

combined with the trend toward a lower kidney to bodyweight ratio may suggest 

a degree of kidney impairment associated with an immune response to GRFT 
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which impairs kidney excretion of urea, as elevated BUN levels can be indicative 

of kidney malfunction [209, 210].  Finally, a difference in phosphate levels was 

observed in PBS treated animals in comparison with all GRFT treated groups.  

However, closer analysis revealed that the PBS group average may have been 

skewed by two high values and all values for phosphate were within the 

physiological normal range for rats. 

While prior studies have demonstrated that GRFT is not mitogenic, is not 

cytotoxic to cells, and does not induce cell mediators of inflammation [35], a 

major concern with an immune response to GRFT is that, as a xenogenic protein, 

anaphylaxis is possible [180].  Although GRFT is a relatively weak immunogen, 

we were able to raise a modest IgG antibody response in animals pre-immunized 

with GRFT in the presence of adjuvant. Fortunately, it appears based upon both 

ELISA and pseudovirus neutralization assay that immune sera are binding, but 

non-neutralizing.   

Immunogenicity of biologic drugs such as GRFT is a known issue and in 

this study we demonstrate that while tolerable, some physiological changes may 

be induced by an IgG based immune reaction to GRFT. Despite differing IgG 

models of an immune response, it appears that GRFT administration does not 

significantly impact the majority of cytokines examined.  This corroborates prior 

studies suggesting that GRFT does not induce cell mediators of inflammation 

[35].  Nonetheless, there were some notable exceptions. The most significant 

difference observed was in leptin levels.  Leptin is a hormone made by body fat 
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to regulate food intake and body weight.  However, it has also been implicated in 

T-cell regulation as well as inflammation, wherein leptin is considered pro-

inflammatory and proangiogenic [211].  These findings of decreased leptin levels 

in all GRFT treated groups may indicate some anti-inflammatory effect of GRFT 

treatment.  However, further studies into GRFT’s interactions with leptin are 

needed to determine the exact mechanism by which leptin levels are lowered, 

though interestingly, a lower body weight gain was observed in guinea pigs 

treated with GRFT in a previous study [34].  This same conclusion may be drawn 

from IP-10 levels.  IP-10 (interferon inducible protein-10) levels were significantly 

lower in animals receiving GRFT treatment in absence of pre-immunization or 

simulated immune response.  Thus, in animals in which no immune response 

was generated or simulated, IP-10 levels were seen to decrease, further 

supporting the possibility that GRFT may have some discrete anti-inflammatory 

activity.  However, once an immune response was initiated, it seems this effect 

may disappear.  MIP-1a and MIP-2 were elevated in animals pre-immunized with 

GRFT and adjuvant.  In the case of MIP-1a, the elevation was significant in pre-

immunized/GRFT treated animals versus PBS treated controls.  In the case of 

MIP-2, ANOVA post hoc analysis did not reveal the source of the variation.  

However, both GRFT and GRFT/passively immunized animals displayed 

decreased levels of MIP-2 verses PBS controls, while the pre-immunized GRFT 

treated group was elevated versus PBS controls.  While further study into the 

exact effect of GRFT on these cytokines will be necessary, these results seem to 

suggest that GRFT may function to slightly decrease inflammation. These results 
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also raise the possibility that GRFT may have an immunosuppressive effect.  

Further immune suppression would likely be undesirable in HIV disease and may 

present a barrier to usage in those with existing infections.  Additionally, the 

specter of immunosuppression may require additional testing, such as viral, 

bacterial, and tumor infection challenges as well as a full complement of in vitro 

cell activation assays to ensure that GRFT does not prevent humoral or adaptive 

immune response to other pathogens. 

Resistance to CBAs occurring through a loss of specific N-linked 

glycosylation sites has been observed when those viruses are placed under drug 

pressure with CBAs [25, 185-188]. In HIV-1, CBA resistance has been correlated 

with reduced viral fitness leading to a potentially enhanced susceptibility to 

endogenous antibody neutralization [14, 186, 188]. Thus it has been 

hypothesized by Balzarini and others that CBA therapy may induce resistance to 

the CBA while enhancing susceptibility to immune system neutralization, 

particularly in the case of HIV-1[14].  GRFT’s continued antiviral activity even in 

presence of an immune response, as well its ~8 week tolerability profile, would 

seem to indicate that GRFT is a candidate drug to test that hypothesis, as it 

could be used for longer intermittent periods in attempts to guide viral resistance 

evolution.     

These results demonstrate that despite both pre-immunization and 

passive immunization, no animal mortality was observed in any treated animal. 

Furthermore, unlike our prior studies in guinea pigs and mice, our current data 
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does not show significant treatment-associated increases in spleen and liver 

mass-to-bodyweight ratios, though spleen differences approached significance, 

probably associated with an immune response to GRFT.  However, it does 

appear that an immune response may result in kidney involvement, the exact 

nature of which is not clear at present.  As such, future efforts to de-immunize 

GRFT may be necessary [161, 162], before it is viable as a long-term chronic 

treatment of viral infection in humans. Nonetheless, we conclude that the 

preliminary toxicity profile of GRFT is acceptable and encourages its further 

development as an intermediate term antiviral prophylaxis and therapy. 
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Figure 4.1.  Treatment Regimen to evaluate the impact of an immune response 

upon GRFT’s systemic tolerance and activity.  Animals were separated into 

groups of 6-7 animals and dosed every 3 days with either PBS or GRFT during 

course of treatment.  Select groups were pre-immunized prior to treatment 

commencement (3 and 5) or passively immunized with IgG during chronic 

treatment (4 and 6).  
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Figure 4.2.  GRFT serum concentrations in rats during and after chronic GRFT 

treatment and comparisons with single dose pharmacokinetic values.  (A) GRFT 

concentrations were determined (12.77 kDA) from rat sera of naïve, pre-

immunized (pre-imm), or passively immunized (passive-imm) animals following 

chronic PBS or 10mg/kg GRFT administration on day 10 (24 hrs after dosage), 

day 24 (72 hours after dosage), day 38 (48 hours after dosage), day 52 (24 hours 

after dosage), and day 55 (96 hours after dosage).  PBS was administered to 

control animals Error bars indicate standard deviation of 7 biological replicates. 

(B) Mean GRFT concentrations of chronic dosing and a single subcutaneous 

dose (projected using Clearance value of 0.058L/hr) reflect minor GRFT 

accumulation during treatment. 
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Figure 4.3. Titers of anti-GRFT IgG and antiviral activity of sera from rats pre-

immunized against GRFT, passively immunized with GRFT IgG, and controls. 

Anti-GRFT activity of Rat serum at Day 55 was evaluated via titration (A).  HIV-1 

env-pseudovirus neutralization activity was assessed for rat sera 24 hours after 

final administration of GRFT (Day 52) and 96 hours after final administration (Day 

55) (B).  Antiviral activity was expressed as ID50.  Control animals were treated 

with PBS. Anti-HIV-1 EC50 of GRFT = ~40 pM. Bars indicate mean group 

concentration.   
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Figure 4.4. Starting weight, weight gain over treatment, and Organ percentages 

from rats preimmunized against GRFT, passively immunized with GRFT IgG, and 

controls.  Animal bodyweights were measured on experimental day 1 (A) and at 

termination.  Weight gain over treatment was calculated for each animal (B).  

Liver (C), Kidney (D) and Spleen (E) weights were measured relative to body 

weight at sacrifice.  Bars indicate group mean and standard deviation of 6 to 7 

biological replicates.  Significant (p<0.05, One way ANOVA with Bonferroni 

posttest) is indicated by (*).  
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Cell Type 

 
 
 

Parameter Units 
PBS 
(n=6) 

GRFT 
(n=7) 

Pre-Imm / 
GRFT 
(n=7) 

Pass-Imm / 
GRFT 
(n=6) 

P-
value 

Leukocyte WBC K/µL 7.86±2.22 8.98±2.80 10.53±3.90 8.75±4.82 0.5978 

 Ne K/µL 2.63±0.60 3.05±1.16 3.66±1.30 2.77±1.50 0.4281 

 Ly K/µL 4.62±1.59 5.35±1.60 6.04±2.45 5.37±3.02 0.7317 

 Mo K/µL 0.37±0.21 0.41±0.24 0.62±0.32 0.38±0.33 0.3267 

 Eo K/µL 0.19±0.10 0.14±0.13 0.16±0.18 0.16±0.10 0.9540 

 Ba K/µL 0.05±0.04 0.03±0.05 0.04±0.04 0.05±0.02 0.9269 

Erythrocyte RBC M/µL 6.63±0.51 6.33±0.79 6.55±0.54 6.07±1.39 0.6663 

 Hb g/dL 14.0±0.6 13.7±0.7 13.4±1.3 12.5±2.3 0.2428 

 HCT % 37.0±1.9 34.2±4.8 35.2±2.8 32.7±8.0 0.4891 

 MCV fL 55.9±2.8 54.0±2.8 53.7±1.1 53.7±1.4 0.2442 

 MCH pg 21.2±1.0 21.9±3.4 20.4±0.9 20.8±1.6 0.5537 

 MCHC g/dL 37.9±1.4 40.8±7.4 38.0±1.6 38.7±4.1 0.6119 

 RDW % 14.0±0.5 13.8±0.6 14.4±0.4 14.4±0.4 0.0977 

Thrombocyte Plt K/µL 859±314 890±325 655±185 542±184 0.0796 

 MPV fL 7.5±0.4 7.6±0.3 7.5±0.4 7.7±0.4 0.7263 

 

Table 4.1.  Hematological profile for rats after chronic treatment with GRFT.  

Data represent the mean values +/- standard deviation for white blood cells 

(WBC), neutrophils (NE), lymphocytes (LY), monocytes (MO), eosinophils (EO), 

basophils (BA) , red blood cells (RBC), hemoglobin (Hb), hematocrit (HCT), 

mean corpuscular volume (MCV), mean cell hemoglobin (MCH), mean cell 

hemoglobin concentration (MCHC), red cell distribution width (RDW), platelets 

(PLT), and mean platelet volume (MPV).  Significance (p<0.05, ANOVA) is 

indicated by (*).   
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UNITS 
NORMAL 
RANGE 

PBS    
(N=6) 

GRFT  
(N=7) 

PRE-IMM 
/GRFT 
(N=7) 

PASS-IMM / 
GRFT 
 (N=7) 

P-
VALUE 

ALB g/dL 3.8-4.8 5.1±0.9 5.0±0.3 4.2±0.3* 4.5±0.2 0.0071 

ALKP U/L 16-302 82±13 62±22 97±33 94±30 0.0767 

ALT U/L 20-61 100±29 74±19 79±45 72±22 0.3717 

AMYL U/L 326-2246 1336±155 1577±236 1554±180 1681±190* 0.0468 

CA mg/dL 5.3-11.6 12.2±0.4 12.3±0.7 12.0±0.3 12.1±0.5 0.7027 

CHOL mg/dL 20-92 96±20 116±15 105±12 110±12 0.1292 

CREA mg/dL 0.1-0.6 0.3±0.1 0.4±0.1 0.4±0.0 0.3±0.1 0.1103 

GLU mg/dL 50-135 194±53 153±30 153±29 151±44 0.1898 

PHOS mg/dL 5.8-11.2 10.4±1.8 8.4±0.9* 8.4±0.9* 8.3±0.8* 0.0083 

TBIL mg/dL 0.1-0.7 1.9±1.8 1.0±0.6 0.6±0.2 0.9±0.8 0.1498 

TP g/dL 5.3-6.9 8.7±1.6 8.4±0.4 8.0±0.3 8.4±0.4 0.4511 

BUN mg/dL 9-21 21±4 19±2 23±2 23±3 0.0453 

GLOB g/dL 1.5-2.8 3.4±0.3 3.4±0.3 3.8±0.2 3.9±0.2* 0.002 

 

Table 4.2.  Serum Chemistry panels of animals after chronic treatment with PBS 

or GRFT.  Data represent mean values +/- standard deviation for albumin (alb), 

alkaline phosphatase (ALKP), Alanine Transferase (ALT), amylase (AMYL), 

calcium (Ca), cholesterol (Chol), Creatinine (Crea), glucose (Glu), phosphorus 

(Phos), total bilirubin (Tbil), total protein (TP), blood urea nitrogen (BUN), and 

globulin (Glob).  One-way ANOVA with Bonferroni post-test significance versus 

PBS-treated controls (p<0.05) is indicated by (*) 
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PARA 
METER 

 
PBS 

 
GRFT 

PRE-IMM / 
GRFT 

PASS-IMM / 
GRFT 

 
P-VALUE 

G-CSF 11.07±2.88 17.25±10.48 16.82±19.07 19.97±10.16 0.8646 

EOTAXIN 6.12±3.09 8.11±4.32 9.24±4.16 10.06±2.36 0.2805 

IL-1A 160.87±145.05 75.97±66.76 60.29±28.39 94.75±59.74 0.2139 

LEPTIN 29769.12±4573.37 15093.69±8081.77* 17452.83±3928.75* 13823.71±4018.78* <0.0001 

MIP-1A 27.02±7.04 22.27±5.93 45.74±19.89* 28.52±9.83 0.018 

IL-4 23.18±11.93 29.70±14.74 31.21±11.22 35.39±10.58 0.3748 

IL-1B 126.22±90.19 20.06±16.42 67.74±71.77 54.67±64.93 0.1005 

IL-2 68.46±28.80 92.71±63.96 72.42±14.68 83.74±25.80 0.6546 

EGF 234.22±202.76 369.13±181.41 323.71±62.11 192.58±112.08 0.3922 

IL-10 62.56±37.53 38.97±24.24 57.93±57.56 57.75±41.47 0.8135 

IL12P70 69.77±26.86 82.26±38.17 103.65±34.89 89.89±32.31 0.3447 

INFY 96.21±49.15 128.52±48.54 145.08±87.45 101.58±61.76 0.5661 

IL-5 56.80±26.85 75.98±15.23 78.64±16.99 77.47±20.71 0.2062 

IL17A 29.62±7.34 37.78±14.70 39.32±16.55 38.64±10.97 0.535 

IL-18 506.12±138.40 312.26±297.23 472.82±228.10 350.87±145.14 0.3132 

MCP-1 475.58±51.96 776.67±114.72 741.03±250.03 748.33±291.64 0.0568 

IP-10 185.99±42.48 129.70±22.16* 166.04±44.34 173.19±17.32 0.0312 

GRO/KC 116.17±21.69 75.73±16.15 72.99±46.29 75.60±32.01 0.0702 

VEGF 54.01±12.05 52.53±13.22 56.39±9.94 62.53±14.70 0.4857 

FRACTALK
INE 

73.31±19.45 74.41±21.88 79.95±19.41 86.25±13.81 0.5796 

LIX 2914.53±183.04 2776.74±390.75 2552.78±585.48 2700.44±326.32 0.4544 

MIP-2 120.76±37.95 87.81±22.32 137.91±48.82 90.32±25.71 0.0382 

TNFA 6.72±3.38 9.96±4.30 11.17±4.12 11.45±3.05 0.1285 

RANTES 1984.74±534.73 1598.93±603.17 1696.66±667.23 1667.29±514.59 0.6658 

Table 4.3.  Cytokine levels after chronic administration with GRFT.  Cytokine levels in serum from 

rats 24 hours after treatment was quantitated.  Analytes with three or more positive signals per 

group: granulocyte colony-stimulating factor (G-CSF), Eotaxin, Granulocyte macrophage colony-

stimulating factor (GM-SCF), Interleukin 1 alpha (IL-1a), Leptin, Macrophage Inflammatory 

Protein 1 alpha (MIP 1-a), Interleukin 4 (IL-4), Interleukin 1 beta (IL-1B), Interleukin two (IL-2), 

EGF, Interleukin 13 (IL-13), Interleukin 10 (IL-10), Interluekin 12 (IL-12p70), Interferon gamma 

(INFy), Interleukin 5 (IL-5), Interleukin 17 alpha (IL-17A),  Interleukin 18 (IL-18), monocyte 

chemoattractant protein 1 (MCP-1), interferon gamma induced protein 10 (IP-10), growth-related 

oncogene (GRO/KC), vascular endothelial growth factor (VEGF), Fractalkine, lipopolysaccharide 

induced CXC  chemokine (LIX), macrophage inflammatory protein 2 (MIP-2), tumor necrosis 

factor alpha (TNFa), and Rantes. One-way ANOVA with Bonferroni post-test analysis indicating 

significance vs PBS treated controls (p<0.05) is indicated by (*). 
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CHAPTER 5 

CHARACTERIZATION OF BIOCHEMICAL INTERACTIONS OF GRIFFITHSIN 

THROUGH DIFFERENTIAL SCANNING FLUORIMETRY, AFFINITY 

PURIFICATION, AND DIFFERENTIAL SCANNING CALORIMETRY  

INTRODUCTION 

 

GRFT is a 12.7 kDa carbohydrate binding protein derived from the red algae 

Griffithsia sp [32].  GRFT displays a strong affinity for N-linked oligomannose 

glycans (Man5-9GlcNAc2) constituting glycan shields of multiple viruses, making it 

a strong candidate as an antiviral microbicide and/or therapeutic [163, 164].  

Notable antiviral activity has been observed in the case of HIV-1, HCV, Herpes 

virus, SARS-CoV, and influenza [23, 30, 36, 171, 173].  Given this broad 

spectrum antiviral activity, research into GRFT’s suitability as a systemic antiviral 

prophylactic is ongoing.  Previous in vitro studies have demonstrated that GRFT 

possesses a favorable toxicity profile, suggesting its viability as a systemic 

therapeutic.  For example, GRFT is neither mitogenic, strongly immunogenic, nor 

a strong inducer of inflammatory cytokines in human peripheral blood 
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mononuclear cells [35, 169].  Further, previous studies into the impact of in vivo 

administrations of GRFT have also been promising.  GRFT shows in vivo activity 

against JEV, HCV and SARS-CoV in mouse models [23, 30, 31, 173]. GRFT was 

also tolerable in a 10-day acute subcutaneous administration study involving both 

mice and guinea pigs [34].   

          Recently, we confirmed that GRFT was tolerable over the course of a 55-

day chronic administration study in rats, with minimal systemic toxicity reported 

(manuscript in preparation).  Interestingly, in prior studies active GRFT 

concentrations were observable in treated mice and guinea pigs for many days 

(up to 14 days in mice) after subcutaneous administration[34].  An additional 

study into GRFT’s pharmacokinetics also displayed a rapid elimination or 

degradation of GRFT following subcutaneous or intravenous administration 

(manuscript in preparation).  However, in that study, active concentrations of 

GRFT were still detectable at potentially therapeutic levels up to 96 hours 

following systemic administration.  Given GRFTs observed serum persistence 

and its increasingly recognized potential as a systemic anti-viral therapeutic, 

further investigation into GRFT’s potential binding activity, binding partners, and 

serum interactions are necessary. 

          A number of methods exist which can elucidate potential protein-ligand 

interactions, potential protein-protein interactions, and changes in serum protein 

interactions, thus allowing full characterization of the protein of interest.  These 

include Differential Scanning Fluorometry, Affinity Purification, and Differential 
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Scanning Calorimetry.  We utilized these techniques to gain greater insight into 

GRFT’s potential interaction with endogenous proteins and ligands. 

Differential scanning fluorimetry (DSF) is useful to measure protein-ligand 

interactions.  DSF has been used to identify potential ligand interactions, 

including polysaccharide, peptide, and nucleic acid interactions with proteins, in a 

high-throughput manner [212-217]. Given that ligand binding can increase 

protein stability, shifts in fluorescence of hydrophobic dyes can be used identify 

specific binding [214]. In the presence of a ligand, increases in melting 

temperature (Tm) are observed which can yield data for identifying ligands which 

may bind to, and stabilize, the protein.  Thus DSF can screen for ligand binding 

interactions which tend to stabilize a protein.  Functionally, DSF measures the 

temperature at which a protein melts through the use of a fluorescent dye, such 

as SYPRO Orange, which possesses an affinity for hydrophobic regions of a 

protein [215].  This process, conducted with a PCR instrument in microplate 

format, provides for a high-throughput manner by which identification of specific 

protein-ligand interactions can be measured.   

Affinity Purification (AP) can identify stable protein-protein interactions.  One 

form, Tandem Affinity Purification has been used successfully to purify proteins 

for identification by Mass-Spectrometry [218-224].   In another type of AP, a 

recombinant “bait” protein is used to pull down proteins and protein complexes 

from biological samples, and these interacting proteins are identified 
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by Mass Spectrometry [225, 226].  While a number of tags have been identified 

for this process, FLAG tagging of a bait protein has been used in AP with 

success [221, 223]. 

Finally, differential scanning calorimetry (DSC) is a novel and effective 

method to explore endogenous protein interactions in serum or plasma. There 

are over 3000 different proteins in plasma or serum. However, the majority of the 

proteomic mass consists of 22 proteins, while all the others are in relatively very 

low abundance [227, 228]. DSC generates an excess specific heat capacity 

profile, represented as a thermogram, of the most abundant proteins present in 

plasma or serum[229]. These thermograms represent the weighted average of all 

the major serum proteins interactions [230].  Alterations in thermograms from a 

“normal” curve generated from healthy subjects represent changes in major 

serum protein interactions [231].  The interactome hypothesis holds that low 

molecular weight proteins or peptide binding to more abundant serum proteins 

can alter normal serum protein interactions and thermostability [232]. 

DSC has been used to identify significant differences between the healthy 

and disease thermograms in conditions such as rheumatoid arthritis, lupus 

erythematosis, and Lyme disease [229, 230, 233-235]. Furthermore, DSC has 

been proven to effectively identify changes in thermogram shapes indicative of 

degrees of disease state in cervical cancer [231].   Therefore, we hypothesized 

that DSC would be a useful additional tool in determining whether systemic 

GRFT administration alters endogenous serum protein interactions, which in turn 

could lead to identification of unseen toxicities associated with GRFT treatment. 
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By employing DSF, AP and DSC to study GRFT’s potential biochemical 

interactions, we have confirmed potential binding activity beyond oligomannose 

moieties, identified a number of putative serum binding partners in human serum, 

and demonstrated that GRFT spiked into rat serum in vitro does not appear to 

impact serum protein interactions.  However, calorimetric analysis of serum from 

prior in vivo experiments involving chronic subcutaneous administration of GRFT 

in rats revealed changes in serum thermograms.   These results suggest that 

protein and/or protein-glycan binding may be a mechanism by which GRFT 

persists in serum.  Further, GRFT by itself does not appear to perturb serum 

protein interactions.  However, it appears that GRFT administration in vivo may 

induce changes in serum protein binding interactions, though the mechanisms 

and impact of these interactions will require further study. 
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MATERIALS AND METHODS 

Lectin reagents  

Recombinant GRFT or GRFTlec- (a non-binding protein control in which 

lectin binding sites are eliminated) was produced in Nicotiana benthamiana as 

described previously, purified to >99% purity, and formulated in phosphate 

buffered saline (PBS), pH 7.4 [169]. 

 

Tandem Affinity Purification Lectin reagents 

Linear fusions of GRFT or GRFTlec- (a non-binding protein control in which 

lectin binding sites are eliminated) homodimers with a C-terminal FLAG tag and 

N-terminal 6xHis tag were cloned by a collaborator (manuscript in preparation) 

into Icon Genetics vector pICH11599. A three-component vector system was 

used for expression. Agrobacterium tumefaciens containing the gene of interest, 

integrase, and cytosolic were infiltrated into 28 d.p.s. (days post sowing) N. 

benthamiana plants. Five days after infiltration, treated N. benthamiana plants 

were harvested and ground in 20 mM sodium phosphate, 500 mM NaCl, 20 mM 

imidazole, ascorbic acid, sodium metabisulfite, 8M urea, pH 7.4 at 0.5g product 

per 1ml buffer. The extract was filtered over a 1 filter press and the subsequent 

cake washed with 25% volume of buffer. The extract was again filtered through a 

0.5 filter press and washed with 25% volume of buffer. To prepare for 

chromatography, extracts were filtered through a 0.2 bottle top filter and purified 

over nickel sepharose GE with a one-step elution gradient to 20 mM sodium 

phosphate, 500 mM NaCl, 250 mM imidazole, pH 7.4. Elution fractions were 
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pooled and diluted 10X with PBS to prepare for FLAG column (Sigma) 

purification. 

 

DSF reagents 

The lectin binding capacity of GRFT and GRFTlec- was examined by using 

SYPRO Orange thermal shift assays.  Briefly, SYPRO orange (Sigma) was 

diluted to 400x concentration in PBS, pH 7.4.  GRFT and GRFTlec- were diluted to 

125 uM concentrations.  Serial dilutions of the following potential ligands were 

formulated in PBS: mannose, maltose, glucose, N-acetylglucosamine heparin, 

mannan, and alpha 1,2 mannobiose.   

 Samples for protein melt analysis were formulated using 29.05 µL of 

GRFT or GRFTlec-, 8.75 µL of diluted SYPRO orange, and 32.2 µL of ligand 

dilutions to yield at total volume of 70 µL sample.  20 µL of each sample were 

loaded in triplicate into a 96-well PCR plate (NUNC).   

 Samples were analyzed by an Applied Biosystems StepOnePlus real-time 

PCR system. Temperature range studied was 20C to 95ºC, incrementally raised 

0.2ºC/15 seconds. The effect of saccharide binding on protein melting was 

determined by changes in fluorescent signal as the sample was heated to 95ºC.  

Controls consisting of highest saccharide concentrations containing no GRFT or 

GRFTlec- were used to determine baseline fluorescence of the ligands, if any. 
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Affinity Purification – Human Serum 

 Affinity Purification of GRFT-protein complexes was facilitated by use of 

GRFT or GRFTlec- containing a His/FLAG tag as a “bait” protein. Briefly, 500 µL of 

Anti-FLAG M2 resin (Sigma) was loaded into 2 ml gravity flow columns (Fisher).  

Columns were equilibrated by running 5 column volumes of Tris Buffered Saline 

(pH 7.4) through the column resin.  For bait containing columns, 300 µg aliquots 

of FLAG-GRFT or FLAG-GRFTlec- protein was then run through respective Anti-

FLAG gravity columns a total of four times to ensure all FLAG fusion proteins 

were bound to the resin.  A resin-only control column was used to assess non-

specific resin binding. 

          Human serum (Innovo Research) was diluted five-fold in PBS and run 

through the column by gravity filtration.  After serum was run through the 

columns, the column resins were washed with 20 column volumes (40 ml) of 

TBS, pH 7.4.  Isolated proteins were eluted by the addition of 8mL of 0.1M 

glycine HCL pH 3.5, collected in 8, 1 ml fractions.  Each 1 ml fraction was 

collected in Eppendorf tubes containing 10 µL of 1 M Tris-HCL pH 9.0.  Columns 

were re-equilibrated by running 10 column volumes of TBS pH 7.4 through the 

column.  Elution fractions were analyzed for protein content by Nanodrop.  The 

highest protein containing fractions were analyzed by Mass Spectrometry.   

Proteins in selected elution fractions were identified by ElectroSpray 

ionization, liquid chromatography and tandem mass spectrometry (Mary 

Gawinowicz).  Briefly, 100 µL of sample was combined with 200 µL 8M urea in 

0.1M Tris-HCl, pH 8.5.  Diluted sample was then added to the filter unit of a 
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Microcon YM-10 cartridge (Millipore) and centrifuged at 14,000 x g for 10 

minutes.  250 µL of 8M urea in 0.1M Tris-HCl, pH 8.5, was added to the filtration 

unit and centrifuged again. The final volume of the sample was 40 µL. The flow 

through was discarded. The concentrated sample in the filter unit was diluted 

with 60 µL 8M urea in 0.1M Tris-HCl, pH 8.5 and 10 µL of 0.1M DTT added. The 

solution was kept at 60°C for 1h and then cooled to room temperature.  The 

sample was alkylated by adding 10 µL of 0.15M iodoacetamide. The reaction 

was allowed to proceed in the dark for 30 minutes. The sample was then diluted 

with 100 µL 1M urea in 0.1M Tris-HCl, pH 8.5 and centrifuged at 14,000g for 10 

minutes, followed by another addition of the same buffer and centrifugation at 

14,000g. The process was repeated once. The remaining sample solution in the 

filter unit was collected and diluted to 50 µL with 1M urea in Tris-HCl, pH 8.5. 

Trypsin (Roche Biochemicals, sequencing grade), 0.2 µg in 20 µL 0.1M Tris-HCl, 

pH 8.5, was added and the solution incubated at 32°C overnight. The digested 

solution was desalted with a C18 tip and dried in a Speed-Vac concentrator. The 

digest was redissolved in 20 µL 0.2% formic acid and 5 µL injected onto the LC-

MS. 

LC-MS/MS was conducted on a Waters Q-Tof Ultima hybrid 

quadrupole/time-of-flight mass spectrometer with a nanoelectrospray source. 

Capillary voltage was set at 1.8kV and cone voltage 32V; collision energy was 

set according to mass and charge of the ion, from 14eV to 50eV. 

Chromatography was performed on an LC Packings HPLC with a C18 PepMap 

column using a linear acetonitrile gradient with flow rate of 200 nl/ min.  
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Raw data files were processed using the MassLynx ProteinLynx software 

and .pkl files were submitted for searching at www.matrixscience.com using the 

Mascot algorithm. 

 

DSC- Rat Serum Spiking 

For generation of rat serum thermogram profiles after spiking with PBS or 

GRFT, the protocol for sample preparation and dialysis described by Garbett et 

al. was used [231].  Briefly, a standard phosphate dialysis buffer (1.7 mM 

KH2PO4, 8.3 mM K2HPO, 150 mM NaCl, 15 mM  Na3C6H5O7, pH 7.5) was 

formulated and rat serum was dialyzed for a period of 24 hours at 4ºC to 

normalize buffer conditions.  Serum was thawed overnight at 4ºC the night before 

dialysis.  After thawing, 100 µL aliquots of rat serum (Sigma) and an aliquot of 

100 µL of 10.8 mg/ml GRFT were loaded into Slide-A-Lyzer mini-dialysis units 

(MWCO 3500; Pierce, Rockford, IL) and dialyzed  at 4ºC against 1L of buffer with 

changes occurring at 3 hours, 7 hours, 11 hours, and overnight.  Following 

dialysis, serum was filtered through a Spin-X centrifuge 0.45 micron centrifuge 

tube filter and 99 µL aliquots were made for spiking with GRFT or PBS. Final 

dialysis buffer, to serve as a reference and diluent for sample dilutions, was 

filtered using a 0.2 µm rapid flow filter and stored at 4°C.   

Dialyzed GRFT dilutions in PBS were prepared ranging from 10,000 nM to 

50 nM.  Dialyzed serum aliquots were spiked with GRFT or PBS by the addition 

of 2 µL of GRFT dilution or PBS to 98 µL of dialyzed serum.  The resulting final 

concentrations ranged from 1 nM to 1000 nM, to exceed the upper molarities of 
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GRFT concentrations previously observed after subcutaneous dosing in prior 

studies [34]. Samples were allowed to react at 4ºC for one hour.  Spiked serum 

samples were diluted in dialysis buffer (1:25) and samples and reference 

diasylates were loaded into a 96-well plate and loaded into the instrument 

autosampler thermostatically set at 4ºC.  

DSC data were collected with a NanoDSC (TA Instruments).  Scans were 

recorded from 20ºC to 100ºC at a scan rate of 1c/ per minute.  Duplicate scans 

were obtained for all samples.  Excess specific heat readings for samples and 

reference buffers were recorded.    Baseline corrected scans were obtained by 

subtracting a suitably adjacent reference buffer-buffer scan from the raw scans.  

Scans were further normalized for total protein concentration.  Total protein 

concentrations were determined using Pierce bicinchoninic acid protein assay 

key and modified microplate procedure.  Scans were corrected for non-zero 

baselines using Origin 7 for linear baseline fitting. Interpolated, final thermograms 

were calculated and average scans calculated from the duplicates were plotted 

as excess specific heat capacity versus temperature. 

 

DSC – Chronically Dosed Rat Serum 

In a previous study (manuscript in preparation), age-matched Sprague 

Dawley rats were subcutaneously treated with either PBS or 10mg/kg GRFT 

every three days for 51 days.  A group of passively-immunized animals also 

received 1.4 mg of anti-GRFT Ig formulated in 1 ml of PBS every 14 days.  

Additionally, one group animals was pre-immunized for 6 weeks prior to the study 
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with GRFT and Sigma adjuvant to prime an immune response to GRFT prior to 

treatment initiation. Blood was drawn via lateral tail vein on the following days: 

Day 10, 24, 38, and 52, with sacrifice on day 55 via CO2 asphyxiation followed by 

cardiac puncture exsanguination. Serum was separated from blood samples 

following coagulation by centrifugation and stored at -20ºC until needed. Given 

the timing of blood draws in relation to last administration of GRFT or PBS, Bleed 

1(day 10) and Bleed 4 (day 52), both 24 hours after administration, were selected 

for calorimetric analysis. 

As described previously, samples were thawed at 4ºC overnight before 

dialysis.  Samples were dialyzed into standard phosphate buffer for 24 hours with 

four buffer changes.  Following dialysis, serum samples were diluted in dialysis 

buffer (1:25) and excess specific heat readings at temperature ranges from 20°C 

to 100°C were determined.  Duplicate runs were completed and average 

baseline corrected, protein normalized, interpolated values for each sample were 

generated.  

 

Data Analysis 

 Preliminary examination of DSF curves revealed a dynamic range of 45-

95ºC.  Accordingly scans were truncated to this range for all analysis.  Melting 

transition temperatures (Tm) for each curve was determined using GraphPad 

5.01 and Boltzmann Sigmoidal non-linear fit template available at 

ftp://ftp.sgc.ox.ac.uk/pub/biophysics/GraphPad_templates/.  Mean Tm values for 
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GRFT and GRFTlec- were determined for pure protein and each ligand 

concentration. 

 Proteins recovered by AP were identified by Mascot algorithm.  However, 

not all proteins identified were deemed a reliable “hit”.  Proteins identified were 

filtered by both Mascot score and number of “significant” ion matches to increase 

positive identification confidence. Given that a significant peptide ion match could 

appear in more than one protein, a minimum of 3 significant (p<0.05) peptide ion 

matches for a particular protein identified and a minimum Mascot score of 90 

were used as thresholds for filtering.  Proteins identified were grouped by bait 

protein used (FLAG-GRFT, FLAG-GRFTlec-, or resin-only). 

 Preliminary examination of DSC thermograms revealed a dynamic 

temperature range of 45 to 90ºC for the serum thermogram curves.  Accordingly, 

scans were truncated to this range for all analysis.  Quantitative comparisons of 

the thermograms were accomplished through calculation of shape and feature 

metrics as well as selection of points of interest within the dynamic range of the 

thermogram curve.  Parameters considered included: total area under the curve 

(AUC), maximum curve height (Cp
ex), temperature at max height (Tmax) Curve 

width at half height (width), maximum peak height at the 60-67C range (Cp
ex1), 

maximum peak height of the secondary peak at the 68-72C range (Cp
ex2), and 

ratio of the first and second peak amplitudes, and first moment temperature (Tfm). 

The first moment temperature (Tfm), used to analyze geometric area distribution 

changes, was calculated as described by Garbett [231]. Additionally, excess 

specific heat capacities were analyzed for the following temperature points: 55, 
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60, 65, 67, 70, 75, and 80ºC.  Finally, a composite 'similarity metric' developed by 

a collaborator (Dan Fish) was generated for each curve [234]. This metric is a 

combination of an average z-scores or p-values for all temperature points, 

assuming a normal distribution of the control curve, and a correlation measure, 

allowing a comparison of test curves versus an average control curve.  Similarity 

scores for each curve were generated.  Mean similarity scores were then 

analyzed by one-way ANOVA with Bonferroni posttest analysis to determine 

which groups were changed, if any. 

Thermogram parameters were grouped by treatment group and 

differences in thermograms were assessed by ANOVA with post-test to identify 

changes in groups. A p-value of <0.05 was deemed significant.  Statistical 

analysis was conducted using GraphPad 5. 

For Day 52 thermogram parameters, correlations between certain curve 

parameters and serum data previously seen for Day 55 terminal bleeds (Barton) 

of the same animals were evaluated. Pearson Correlation Coefficients and p-

values were generated using GraphPad 5. 
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RESULTS 

DSF 

Ligand free, protein-only controls consisting of GRFT or GRFTlec- 

displayed marked differences in melting profiles, with   GRFT’s Tm at 

approximately 75.65ºC   and  the Tm for GRFTlec- at approximately 80.68ºC 

(Figure 5.1, Table 5.1).   

 Further differences in GRFT and GRFTlec- fluorescence signals were 

observed in response to varying ligand concentrations (Figure 2).  GRFT 

displayed substantial shifts in melting temperature in response to 460 mM 

concentrations of glucose, maltose, mannose, and N-acetyl glucosamine with 

shifts in Tm from 9 to 11ºC (Figure 5.2 and Table 5.1).  Furthermore, GRFT 

displayed shifts of >1ºC in melting temperature at 46mM concentrations of those 

saccharides as well as 2.3 mg/ml and 230 µg/ml concentrations of mannan 

(Figure 5.2B and Table 5.1).  In contrast, high concentrations of all ligands 

shifted the melting temperatures for GRFTlec- by less than 2ºC (Table 5.1).  

Further, at lower concentrations of ligand, no positive shifts were observed in 

GRFTlec-. 

 

Affinity Purification 

Purification of human serum proteins using FLAG-GRFT and FLAG-

GRFTlec- bait proteins was successful, though the majority of the proteins 

identified were Ig chains or albumin.  MS/MS analysis of the elution fractions 

revealed a number of proteins were retrieved from human serum. After 
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eliminating keratinocyte-related proteins and filtering by Mascot score and >2 

significant peptide ion hits, a number of candidate binding partners for each 

purification condition were identified (Table 5.2).  Designating and Eliminating 

proteins bound to resin as nonspecific background revealed proteins/protein 

complexes interacting with FLAG-GRFT, FLAG-GRFTlec-, as well as both FLAG-

GRFT and FLAG-GRFTlec- (Table 5.3). 

 

DSC - GRFT and PBS spiked rat serum    

 Rat sera spiked with varying concentrations of GRFT did not display a 

substantial shifts in thermograms versus PBS-spiked control serum. (Figure 5.3).   

 

DSC– Chronically Treated Rats  

 Mean treatment group thermogram curves were generated for bleed 1 

(day 10) and bleed 4 (day 52) (Figure 5.4A and B, respectively).  Standard 

deviation of mean group thermograms from both time points were generated for 

visual inspection. (Figure 5.4C and D) Analysis of thermogram area (Figure 

5.5A), max height (Figure 5.5B), Tmax (Figure 5.5C), or peak ratios (Figure 5.6C) 

did not reveal any significant differences between groups on either day 10 or day 

52.  Further, peak heights were not significantly different among groups at day 10 

(Figure 5.6A).  However, differences were observed in Width, Cp
ex1, and Tfm for 

day 52 curves.  Day 52 widths were significantly different (p=0.0266), with both 

pre-immunized and passively immunized animals displaying smaller widths in 

comparison to PBS-treated controls (Figure 5.5D).  Cp
ex1 heights in the 60-68ºC 
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range were also significantly different for day 52 samples, with passively 

immunized animals displaying a significantly decreased (p=0.0389) maximum 

peak height in that temperature range (Figure 5.6B).  Finally, Tfm were 

significantly reduced in GRFT treated groups vs. PBS treated controls (Figure 

5.6D, p=0.0179). 

 Analysis of group excess specific heat capacities at selected temperatures 

did not reveal any differences among the groups at day 10 (Figure 5.7A).  

However, day 52 groups were significantly different at both the 67ºC (p=0.03) 

range as well as the 75ºC temperature (p=0.004).  (Figure 5.7B). 

 Overall curve similarity scores did not reveal significant differences among 

treatment groups on day 10, though results did approach significance (Figure 8).  

However, significant differences between groups were observed on day 52 

(p=0.0069).  Which? Post-test analysis revealed significant differences in both 

GRFT and passively-immunized groups in relation to PBS-treated controls. 

Pearson correlation analysis among day 52 curve parameters and day 55 

serum characteristics revealed both significant positive and negative correlations 

(Table 5.4).  Significant positive correlations were observed between the 

following parameters (correlation coefficient, p-value): Albumin and Total Protein 

(0.85,p<0.0001), Area and Width (0.44, p=0.0321), Area and Max Peak(0.92, 

p<0.0001), Globulin and Total Protein (0.49, p=0.0189), Globulin and Anti-GRFT 

antibody titers (0.45, p=0.0375), Globulin and Tfm (0.50, p=0.0145), and Tmax and 

Tfm (0.52, p=0.0095).  Significant negative correlations were observed between: 
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Albumin and Anti-GRFT antibody titers  (-0.50, p=0.0188), Width and Tfm (-0.56, 

p=0.0041), and Pseudovirus neutralization activity and Tfm (-0.54, p=0.0094). 
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DISCUSSION 

Potential protein and ligand interactions can be of physiological relevance 

for a new therapeutic.  Accordingly, identification of interaction potential can be 

useful.  DSF analysis of both GRFT and GRFTlec- showed differences in melting 

points as well as differences in binding of various saccharides.  Analysis of 

fluorescence curves showed that ligand-free GRFT displayed a consistent 

melting transition temperature at approximately 75 degrees, whereas GRFTlec- 

displayed a melting temperature of approximately 80 degrees (Table 5.1).  This 

difference in melting temperature given the modest changes to the protein would 

suggest that ablation of lectin binding sites result in increased protein stability, an 

effect also generally theorized to occur when protein binding sites are occupied 

by ligand [212, 214].   

Positive shifts in melting temperature as a result of saccharide binding 

with GRFT and GRFTlec- were also observed.  Ligand binding to a protein’s active 

site will normally increase stability, leading to increase the protein melting 

temperature.  Accordingly it was expected that specific saccharide binding to 

GRFT’s lectin binding sites would result in higher transition temperatures.  This 

was confirmed by the marked increases in melting temperatures of GRFT upon 

addition of glucose, maltose, mannose, mannan, and N-acetylglucosamine.  

While of much lower affinity than oligomannose, interactions between GRFT and 

these carbohydrates have been observed in other studies [164, 166].  Although 

GRFT binds strongly to oligomannose glycans [163] via its jacalin-like 

carbohydrate binding sites, weaker or transient interactions with other 
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endogenous saccharide moieties cannot be ruled out and may help to explain 

GRFT’s long serum persistence observed in other studies [34].  Further, similar 

marked differences in melting temperature was not observed for GRFTlec- for all 

saccharide concentrations.  While GRFTlec- displayed a higher baseline melting 

temperature, it only displayed a modest (<2ºC) shifts in melting temperature at 

the highest saccharide concentrations.  This is in stark contrast to the greater 

(>9ºC) shifts observed in GRFT at comparable concentrations.   These data 

confirm that a range of weaker potential saccharide binding partners for GRFT 

exist and may be relevant to GRFT’s serum stability.  Interestingly, high heparin 

concentrations decreased GRFT’s Tm, suggesting some level of destabilizing 

effect.  However, how and why this destabilization occurs is currently unknown.  

In addition to interacting with saccharide moieties, GRFT’s ability to 

effectively bind to human serum proteins was confirmed by its interaction in the 

FLAG-GRFT serum capture columns. While some off-target serum binding was 

observed in the resin-only serum capture, a number of unique proteins, including 

lipoprotein and complement proteins, were captured by FLAG-GRFT bait.  

Further, FLAG-GRFTlec-, also captured a number of proteins, including some that 

were unique to GRFTlec-.   FLAG-GRFT and FLAG-GRFTlec- differ only in the 

lectin binding motifs, therefore capture of unique serum proteins by FLAG-GRFT 

indicates a binding mechanism which requires active lectin binding sites. We 

hypothesize that those proteins captured by both FLAG-GRFT and FLAG-

GRFTlec- may suggest alternative, non-lectin mediated binding mechanisms or 

binding of the serum proteins to structural motifs on the bait proteins.  However, 
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the specific nature of each protein’s interaction will need further investigation. 

Additionally, a SwissProt search of post translation modifications typical to the 

recovered serum proteins also revealed a varying number of N-linked glycans 

present on the proteins.  However, the vast majority of glycans noted were of the 

N-linked, complex variety.   These data, together with saccharide binding data 

from DSF, indicates that GRFT binds an array of serum proteins, and is not 

limited to those possessing oligomannose glycans.   

Interestingly, a larger percentage of proteins bound exclusively by GRFT 

were complement proteins and apolipoproteins, attractin, and vitronectin.  The 

mechanism of these binding interactions will need to be confirmed by other 

binding methods to determine whether they are recovered as a part of a 

complex, however based upon their exclusive recovery by the FLAG-GRFT 

column, it appears that they will likely involve the lectin binding sites of GRFT.  

For instance, the presence of proteins possessing no N-linked glycans, as in the 

case of Apolipoprotein A-II is suggestive of entire protein complexes being 

precipitated from serum via this method.  Interestingly, despite apparent binding 

activity with apolipoproteins, cholesterol changes in guinea pigs and rats have 

not been noted [34] (and manuscript in preparation).  Further, given continued 

antiviral activity observed in serum following systemic administration[34] (and 

manuscript in preparation), it does not appear that this binding interaction 

substantially impairs GRFT’s antiviral activity.  However, complement interactions 

may be problematic.  Complement proteins are important in the innate immune 

response to pathogens.  Accordingly, a binding interaction with these proteins 
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could have deleterious effects if it binds in a manner so as to inhibit pathogen 

recognition or cause functional deficiency of particular complement proteins [236-

240].  For instance, deficiencies in complement 2 and 4 have been associated 

with autoimmune diseases, particularly systemic lupus erythematosus [240-242].  

Whether these binding interactions cause functional depletion or complement 

activation will require further study.  However, it is entirely possible that this 

binding activity may be related to the potential immunosuppressive and anti-

inflammatory effects of GRFT observed in previous long term systemic studies of 

GRFT in rats. 

GRFT’s long serum persistence has been observed in our prior studies. It 

is believed that these protein-protein interactions may be crucial in maintaining a 

baseline serum concentration of GRFT.  Further enhancing these interactions 

may be useful in exploring GRFT’s potential as a long-term systemic pre-

exposure prophylactic.   

 Calorimetric analysis of spiked rat serum and analysis of samples from a 

GRFT chronic dosing study in rats also yielded notable results.  Spiking large 

concentrations of GRFT into rat serum did not appreciably change serum 

thermograms in comparison to the PBS spiked controls (Figure 5.3).  This would 

seem to indicate that GRFT’s presence by itself does not disturb major serum 

protein interactions.  However, thermograms of sera from animals chronically 

treated differed depending on the duration of GRFT treatment (Figure 5.4A). Both 

visual inspection of mean thermogram curves and statistical analysis consistently 

showed no significant differences on day 10 other than first moment 
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temperatures.  Notably, Bonferroni post-test analysis failed to identify which 

groups were different.  However, passively and pre-immunized animals displayed 

lower mean Tfm than PBS treated controls.  It is hypothesized that these first 

moment temperature decreases would indicate an increase in overall area at 

lower temperature ranges, possibly by a greater contribution to area of the mean 

curve by immunoglobulins (as elevated IgG levels was the aim of pre-

immunization, and the effect of passive immunization).  Further study will be 

necessary to see if this redistribution of curve area was due to an increase in 

IgG, IgM, or some other immunoglobulin in those treatment groups. 

 In stark contrast with day 10 samples, significant changes were induced 

by day 52.  Visual examination of the mean group thermograms revealed notable 

differences and statistical analysis of day 52 curve parameters revealed multiple 

changes in treatment group thermograms vs. PBS-treated controls. Categories 

such as Width, Cp
ex1, and Tfm were significantly different among treatment 

groups, which could indicate stabilizing protein interactions with major serum 

proteins, shifting the area of the curve to higher temperatures while narrowing the 

width of the curve. Stabilization of serum proteins is thought to result in an 

increased shift of their melting to higher temperatures.  A destabilization of 

endogenous serum protein interactions should result in shifting of thermograms 

to lower temperatures.  Of the serum parameters examined for day 52 samples, 

GRFT-only treatment appeared to result in a downshift of Tfm not observed in 

other groups, suggesting a destabilizing alteration of serum protein interactions.  

Further, the Tfm did not display a similar shift in pre-immunized or passively 
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immunized animals at that time point.  Nonetheless, those groups did display 

changes in width, with passively immunized animals also displaying a decrease 

in Cp
ex1.  Analysis of excess specific heat capacities at specific temperatures 

revealed few differences, with the only changes seen between Passively 

Immunized/GRFT-treated animals vs PBS controls at 67ºC and 75ºC, and a 

difference between GRFT-treated vs. PBS controls also observed at 75ºC.   

The broadest measure of differences between groups appeared to be 

accomplished by the generation of similarity scores relative to a mean control 

curve.  Day 10 curves differences approached significance, with GRFT-only and 

GRFT/passively immunized curves displaying the greatest degree of difference 

versus mean controls.  However, by Day 52, the differences are much more 

substantial.  Similarly to day 10, GRFT-only and GRFT/Passively immunized 

groups displayed very significant changes vs. PBS-treated controls.  This 

difference is not observed in the group which was pre-immunized with GRFT and 

adjuvant prior to initiation of treatment.  Further, in both cases, similarity scores 

for pre-immunized animals revealed greater similarity to controls than either 

GRFT or GRFT/passively immunized groups.  As such, it would appear that pre-

immunization or priming of an immune response may blunt some of the 

alterations in serum protein interactions.  Prior studies have suggested that de-

immunization of GRFT may be necessary to eliminate some of the changes 

induced by systemic administration of GRFT [34, 161, 162].  However, these 

data suggest that an immune response to GRFT may be protective of the 

changes induced by systemic administration of the protein. 
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Finally correlation analysis between selected day 52 curve parameters 

and serum parameters from the same animals bled at day 55 revealed a number 

of significant positive and negative correlations.  These correlations assumed 

non-rapid alteration of serum protein interactions over the intervening 3 day 

period, and were necessary given exhaustion of day 52 and day 55 serum for 

analysis.  In many instances, correlations between total globulins, albumin, and 

total protein were expected.  Further, these correlations revealed increases in 

globulin positively correlated with increased in Tfm.  However, no curve parameter 

significantly correlated with anti-GRFT activity determined by antibody titer in a 

previous study. 

In conclusion, DSF and AP confirms that GRFT is capable of binding 

saccharide moieties and proteins beyond those displaying high-mannose 

(oligomannose) glycans [164, 166]. Further, in some instances, it appears that 

GRFT may use lectin-binding sites to bind to endogenous serum proteins, 

potentially through binding to other types of N-linked glycans.  However, it is also 

wholly possible that in some instances, GRFT is the “prey”, given the number of 

proteins captured by both GRFT and GRFTlec-.  These interactions may prove to 

be the foundation of GRFT’s long serum persistence and further study may yield 

insights into how GRFT’s serum persistence could be extended without the 

sacrifice of anti-viral activity.  Additionally, DSC results have shown that while 

chronic GRFT administration has been observed as tolerable in other studies, 

alterations to endogenous serum protein interactions may result as a 

consequence of longer-term chronic treatment.  However, these alterations do 
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not appear to be due to the simple addition of GRFT into the system.  These 

results would indicate that GRFT administration results in an 

induction/suppression of other proteins, alterations in the binding of lower 

molecular weight proteins to the more abundant proteins, or alteration of higher 

abundance protein proportions, to which DSC is extremely sensitive.  Of note, 

while still altered to a degree, animals pre-immunized with GRFT and adjuvant 

consistently displayed less thermogram variation in contrast to GRFT-only or 

GRFT/passively immunized treatment groups.  This would seem to suggest a 

protective immunological response, beyond simple production of 

immunoglobulins.  Further, based on prior findings, that response does not 

appear to compromise antiviral activity.  However, further study into exactly how 

these changes are induced, as well as which proteins interactions are altered, 

will need further study. 
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Figure 5.1.  GRFT and GRFTlec- SYPRO orange denaturation curves in the 

absence of saccharide ligand.  Ligand-free fluorescence curves generated by 

thermal denaturation of GRFT or GRFTlec- in the presence of PBS and SYPRO 

Orange.  
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Figure 5.2.  Protein stabilization effects of ligand binding on GRFT and GRFTlec-.  

Fluorescence curves of GRFT and GRFTlec- in the presence of potential ligands 

(A) and shifts in melting temperatures (Tm) (B). 
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Table 5.1.  Concentration dependent shifts in melting temperatures of GRFT and 

GRFTlec- determined by SYPRO orange fluorescence shifts.  Tm values, 

representing melting temperatures for GRFT and GRFTlec- were determined in 

the absence and presence of ligands.  Tm change values were calculated for all 

ligand concentrations by subtracting the Tm for GRFT or GRFTlec- in the absence 

of ligand. 
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Table 5.2.  Proteins recovered from Human Serum by Affinity Purification with 

FLAG-fusion protein.  Proteins recovered by affinity purification with Anti-Flag 

resin, FLAG-GRFT, or FLAG-GRFTlec- were identified by tandem mass 

spectrometry and filtered by MASCOT score and >2 significant peptide ion hits. 
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Unique Proteins Identified 

FLAG-GRFT 
Gly. 
Sites FLAG-GRFT

lec-
 

Gly. 
Sites 

FLAG-GRFT and 
FLAG-GRFTlec- 

Gly. 
Sites 

Apolipoprotein 
A-I 

1N 
(glycation) 

Alpha-2-
macroglobulin 

8N Alpha-1-antitrypsin 3N 

Apolipoprotein 
A-II 

0 Ig gamma-4 chain C 
region 

1N Apolipoprotein B-
100 

19N 

Apolipoprotein D 2N Serotransferrin 3N,1O C4b-binding protein 
alpha chain 

3N 

Attractin 26N   Complement C3 3N 

Complement C2 8N   Complement factor 
H 

9N 

Complement 
C4-A 

4N,1O   Haptoglobin 4N 

Vitronectin 3N   Haptoglobin-related 
protein 

0 

    Ig mu heavy chain 
disease protein 

1N 

    Immunoglobulin 
lambda-like 

polypeptide 5 

0 

 

Table 5.3.  Unique proteins identified by affinity purification.  Proteins were 

recovered by affinity purification using Anti-FLAG resin, FLAG-GRFT, and FLAG-

GRFT.  After filtering by Mascot score and >2 significant peptide ion hits, 

background binding was determined by proteins binding to Anti-FLAG resin-only 

controls. After elimination of proteins non-specifically binding to Anti-FLAG resin,  

a number of proteins unique to FLAG-GRFT or FLAG-GRFTlec- were identified. 

Glycosylation state was determined by SwissProt search. 
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Figure 5.3.  Thermogram profiles of rat serum spiked with varying concentrations 

of GRFT.  Thermogram profiles of excess specific heat capacity versus 

temperature for rat serum spiked with a range of concentrations of GRFT.  

Concentrations were final molarity concentrations of GRFT spiked into rat serum 

before 25x dilution of samples for calorimetric analysis. 
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Figure 5.4. Mean thermograms generated from sera from rats chronically treated 

with Griffithsin or PBS.  Mean thermogram profiles of excess specific heat 

capacity (cal/°C.g) versus temperature for Day 10 (A) and Day 52 (B) serum 

samples from animals chronically treated with PBS, GRFT, Pre-

Immunized/GRFT-treated [Pre-imm], or Passively Immunized/GRFT-treated 

[Pass-Imm].  Standard Deviation of excess specific heat capacity of each group 

for day 10 (C) and day 52 (D) was generated for comparison.  
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Figure 5.5.  Thermogram shape and feature parameters for rats chronically 

treated with GRFT or PBS.  Values for Area (A), Height (B), Temperature at max 

height (C), and curve width (D) were calculated for each thermogram generated 

from serum from PBS [P], GRFT [G], Pre-immunized/GRFT-treated [Pr] and 

Passively-immunized/GRFT-treated [Pa] animals.  Mean values for treatment 

groups determined for treatment day 10 and 52 were analyzed by one-way 

ANOVA with Bonferroni posttest.  Bars represent mean and standard deviation of 

six biological replicates.  A p-value of <0.05 was deemed significant (*).  
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Figure 5.6.  Peak and First-moment (Tfm) thermogram parameters for rats 

chronically treated with GRFT or PBS.  Values for Peak Heights on day 10 (A), 

Peak heights on day 52 (B), Peak Ratios (C), and first moment temperatures (D) 

were calculated for each thermogram generated from serum from PBS [P], GRFT 

[G], Pre-immunized/GRFT-treated [Pr] and Passively-immunized/GRFT-treated 

[Pa] animals.  Mean values for treatment groups determined for treatment day 10 

and 52 were analyzed by one-way ANOVA with Bonferroni posttest.  Bars 

represent mean plus standard deviation of six biological replicates.  A p-value of 

<0.05 was deemed significant (*). 
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Figure 5.7.  Distribution of Excess specific heat capacity for rats chronically 

treated with GRFT or PBS at select temperature points.  Excess specific heat 

capacities on day 10 (A) and day 52 (B) for animals treated with PBS [P], GRFT 

[G], Pre-immunized/GRFT-treated [Pr] and Passively-immunized/GRFT-treated 

[Pa] at 55, 60, 65, 67, 70, 75, and 80ºC were determined.  Whiskers indicate 

Maximum and minimum values.  Mean values were analyzed by one-way 

ANOVA with Bonferroni posttest.  A p-value of p<0.05 was considered significant 

(*).   
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Figure 5.8.  Thermogram similarity scores for sera from rats chronically treated 

with PBS or GRFT. Similarity scores were calculated for each thermogram 

generated from serum from PBS [P], GRFT [G], Pre-immunized/GRFT-treated 

[Pr] and Passively-immunized/GRFT-treated [Pa] animals by statistical 

comparison of curves versus a time-matched, mean PBS-treated control curve.  

Mean similarity values for day 10 and 52 similarity scores were analyzed by one-

way ANOVA with Bonferroni post-test.  Bars represent mean plus standard 

deviation of six biological replicates.  A p-value of <0.05 was deemed significant 

(*). 
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TFM 
PSV. 

NEUT. 

ANTI-
GRFT 
TITER  WIDTH TMAX GLOB T.P 

MAX 
PEAK AREA 

ALB. 0.02 -0.06 -0.50 0.13 0.34 -0.07 0.85 -0.27 -0.13 

AREA -0.19 -0.02 0.21 0.44 0.04 -0.21 -0.14 0.92 
 

MAX 
PEAK 

0.07 -0.14 0.23 0.12 0.03 -0.08 -0.19 
  

TOTAL 
PROT 

0.28 0.04 -0.19 -0.08 0.35 0.49 
   

GLOB. 0.50 0.12 0.45 -0.46 0.20 
    

TMAX 0.52 -0.32 -0.05 -0.10 
     

WIDTH -0.56 -0.02 -0.05 
      

ANTI-
GRFT 
TITER 

-0.01 0.41 
       

PSV. 
NEUT. 

-0.54 
        

 

Table 5.4.  Pearson Correlations of rat serum thermogram parameters and rat 

serum characteristics.  Day 52 thermogram parameters of Area, Max Peak, Tmax, 

Tfm, and Width were compared with day 55 serum characteristics of Albumin, 

Globulin, Total Protein (T.P), Anti-GRFT antibody titers, and pseudovirus 

neutralization (Psv. Neut.) from the same animal.  Pearson Correlation and p-

values were generated. A correlation having a p-value of p<0.05 was considered 

significant.   
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CHAPTER 6 

SUMMARY OF GRFT RESEARCH AND IMPLICATIONS FOR FUTURE 

RESEARCH 

 

Throughout this work, we have analyzed GRFT’s biochemical interactions 

and physiological profile in furtherance of our overarching hypothesis that GRFT 

is a good candidate for antiviral prophylactic and therapeutics.  A number of 

hypotheses were explored.  First, we hypothesized that GRFT would be orally 

bioavailable after oral dosing.  To test this hypothesis, we performed 

pharmacokinetic testing as well as chronic oral dosing of GRFT.  Next, we 

hypothesized that chronic treatment of GRFT would be systemically tolerable.  

To test this hypothesis, we conducted a 51 day treatment regimen with GRFT in 

the presence and absence of a pre-existing immune response.  Finally, given 

data from prior experiments, we hypothesized that biochemical interactions of 

GRFT may include specific binding interactions of importance.  Further we 

hypothesized that while GRFT treatment did not cause significant toxicities in 

prior studies, perturbations in endogenous serum binding proteins may occur.  To 
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test these hypotheses, we conducted DSF, affinity purification of serum proteins, 

as well as DSC analysis of serum from chronically treated rats.  From the data 

presented in this work, a number of conclusions can be drawn, which taken as a 

whole, support the further study of GRFT as a systemic antiviral therapeutic. 

GRFT persisted in the circulation similarly upon dosed subcutaneously and 

intravenously. 

Pharmacokinetic studies of GRFT’s elimination profile revealed a number 

of insights into GRFT’s serum parameters.  First, GRFT does not appear to be 

extensively distributed in body water following intravenous administration.  

Second, GRFT displays a multi-phasic half-life, with half-life increasing after a 

very rapid elimination phase. GRFT concentrations 8 hours after either 

subcutaneous or intravenous administration were comparable, suggesting that in 

non-emergency settings, subcutaneous dosing may be a viable self-

administration method.  Regardless, physiologically relevant concentrations 

GRFT persisted for up to 96 hours in serum whether dosed intravenously or 

subcutaneously. 

Active GRFT is rapidly excreted by the kidneys, though proteolytic degradation 

may be occurring. 

Studies into the method of elimination displayed a strong excretion of 

active GRFT concentrations immediately following intravenous dosing.  However, 

over a 24 hour period, this fraction of GRFT excreted only accounted for 

approximately 1-2% of all GRFT dosed into the system.  Based upon studies of 
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others detailing GRFT’s generally strong proteolytic resistance, yet susceptibility 

to specific proteases, it is hypothesized that rapid protein degradation of free 

GRFT may be occurring. 

GRFT is not orally bioavailable at a detectable extent. 

Both single oral dosing and 10-day chronic oral dosing revealed GRFT is 

not orally bioavailable to a detectable level.  A single oral dose of GRFT, tracked 

at 8 time points after oral administration failed to yield detectable concentrations 

of GRFT in either serum or urine.  Further, a 10-day chronic oral dosing study 

was conducted, to account for the possibility of an accumulation effect.  All 

animals in that study, in which animals were orally administered by gavage with 

GRFT at two concentrations, failed to display detectable GRFT concentrations in 

serum at either day 5 or 3 hours after dosing on day 10.  These results would 

confirm that orally dosed GRFT is incapable of achieving potentially therapeutic 

concentrations in serum.   

GRFT is a potential orally dosed rectal microbicide. 

Despite studies showing GRFT is not orally bioavailable in rats, active 

GRFT concentrations were found in fecal material of rats orally dosed with 

GRFT.  These concentrations were dependent upon amount of GRFT orally 

dosed.  These GRFT concentrations, however, were only a very small fraction of 

GRFT dosed.  Nonetheless, fecal extracts prepared from fecal pellets displayed 

strong neutralization activity in HIV-env pseudovirus neutralization assays.  

Accordingly, it appears that a fraction of active GRFT can pass through the 
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digestive system intact.  Given the site of many HIV infections are in the rectal 

mucosa, oral dosing of GRFT may be a method of delivering active, potentially 

protective concentrations of the protein to the rectal mucosa.   

GRFT is tolerable in sub chronic dosing. 

Subcutaneous dosing of GRFT every 3 days was tolerable over a 51 day 

period.  No changes were observed in CBC values, body weights, or weight gain.  

Further, pathologist review of organ slides did not reveal any treatment related 

pathologies.  There were alterations in kidney weights with pre-immunized 

animals. Further, alterations in some serum chemistries and cytokine levels were 

observed.  However, varying form of immune response (pre or passive 

immunization) did not affect GRFT concentrations in serum or HIV-env 

pseudovirus neutralization activity.  Accordingly, GRFT would appear to be 

systemically tolerable for intermediate term usage as an antiviral prophylactic or 

therapeutic. 

GRFT treatment can induce changes in serum proteome with chronic dosing. 

Calorimetric analysis of serum protein interactions displayed changes over 

time associated with GRFT treatment.  At day 10, visual inspection of serum 

thermograms revealed fairly analogous mean thermograms for all treatment 

groups.  Furthermore, no changes were observed in any curve parameter other 

than First moment temperature (Tfm).  In that group, pre-and passively immunized 

animals displayed a mean Tfm lower than PBS or GRFT treated groups.  

However, by day 52, there were significant alterations in treatment group 
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thermograms in comparison to PBS-treated controls.  Many parameters analyzed 

revealed differences among groups, including passively-immunized and GRFT 

treated groups.  However, it appeared that pre-immunization was able to blunt 

alterations in parameters.  Pre-immunized groups were not generally statistically 

different in their curve parameters versus PBS-treated controls.  This would 

seem to indicate a protective effect of an immune response associated with 

GRFT treatment. 

GRFT binding, in and of itself, does not shift serum thermograms. 

While significant shifts in rat serum thermogram parameters were 

observed following chronic treatment with GRFT, those shifts do not appear to be 

attributed to the direct binding activity of GRFT.  Serum spiked with varying 

concentrations of GRFT and allowed to react for approximately 1 hour did not 

display alterations in serum thermograms.  With spiking concentrations greatly 

exceeding those concentrations observed in serum following system 

administration, it was believed that any characteristic binding changes would be 

observed by saturation with GRFT.  Given the lack of thermogram alteration in 

spiked samples, it would appear that alterations in serum thermograms following 

chronic GRFT treatment can be attributed to an immune response or alteration of 

concentrations of low molecular weight proteins which bind to the more abundant 

serum proteins. 
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GRFT is capable of specific binding to proteins which do not possess 

oligomannose glycans 

Given GRFT’s long serum persistence observed following single and 

chronic dosing, DSC and AP studies were conducted to detail the potential 

interaction of GRFT with a number of ligands.  Fluorometry results confirmed 

specific binding activity of GRFT to a number of saccharide ligands including 

glucose, mannose, maltose, mannan, and N-acetylglucosamine.  These 

interactions have been observed in other previous studies.   Further, affinity 

purification of human serum proteins with both FLAG-GRFT and FLAG-GRFTlec- 

fusion proteins revealed a number of potentially relevant biological interactions.  

Among these, interactions with complement and apoplipoproteins were the most 

numerous in FLAG-GRFT purified groups.  These data would confirm specific 

binding interactions beyond N-linked oligomannose binding activity.  However, 

the effects of these interactions will require additional study. 
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Summary 

In summary, GRFT has displayed persistent anti-viral activity in serum, 

even in the presence of an immune response, following systemic administration.  

Further, physiologically relevant concentrations can remain in serum days 

following subcutaneous administration.  While long-term dosing may induce 

biochemical changes and may have an immunosuppressive effect that will 

require additional study, it would appear that subchronic dosing of GRFT is 

tolerable.    Additionally, while lacking oral bioavailability in rats, oral 

administrations of GRFT may have utility.  A small fraction of orally dosed GRFT 

can pass into the rectal mucosa via fecal material. This transit of active GRFT 

may eventually allow for the usage of GRFT as an orally dosed rectal 

microbicide. 
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RECOMMENDATIONS FOR FURTHER STUDY 

While GRFT is still a strong candidate for anti-viral prophylaxis and 

therapy, a number of questions have been raised by these studies.  It is 

recommended that further research be conducted to address these questions. 

What is the primary mode of GRFT degradation? 

The studies in this work have consistently shown that GRFT can persist in 

serum for a long period of time.  However, the vast majority of GRFT dosed 

disappears within 24 hours of dosing.  Mass Balance experiments revealed only 

a small fraction of GRFT was excreted through the kidneys after an initial burst of 

excretion.  Thus, it would appear that GRFT is degraded in some other manner.  

Therefore, radiolabeling experiments may be necessary to follow GRFT’s journey 

through systemic circulation.  The radiolabeling could also be useful in tracking 

the extent of GRFT’s distribution as well as persistence in specific organ groups. 

What impact does GRFT have upon the kidneys? 

Sub-chronic dosing of GRFT did display changes in kidney size when an 

immune response was induced.  However, at the day 55 of the study, 

pathological differences were not observable between kidneys.  A long term 

administration of GRFT in the presence of an immune response may be required 

in order to clearly delineate alterations in kidney structure and function.  It is also 

recommended that blood nitrogen urea, creatinine clearance, and total 

glomerular filtration rate be tracked over the course of treatment.  These may 

provide valuable insights into GRFT’s effect on the kidneys. 
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Does GRFT cause immunosuppression or immunotoxicity? 

 Sub-chronic dosing of GRFT in rats was observed to lower some 

inflammatory cytokine levels in comparison to adjuvant pre-immunized animals 

and PBS-treated controls.  Further, affinity purification of human serum revealed 

complement factors were recovered by FLAG-GRFT and FLAG-GRFTlec-.  This 

suggests that GRFT administration may have some immunosuppressive or 

immunotoxic effect that could impair an immune response to invading pathogens.  

Accordingly, it is suggested that GRFT complement binding be confirmed by 

binding ELISA as well as the nature of GRFT’s mode of action to rule out a 

functional depletion of complement.  Therefore, additional in vivo and in vitro 

tests will need to be carried to out determine whether GRFT impairs humoral 

response, cellular responses of T-cells, natural killer cells, macrophages, or 

granulocytes.  Further, testing of host resistance to infection (bacterial, viral, and 

tumor) will be necessary, with a concomitant observation for illness. 

Can concentrations of active GRFT found in fecal matter be increased? 

Oral dosing studies discovered that active GRFT is excreted in fecal 

matter.  Given that HIV infection often entails exposure of fluids to rectal mucosa, 

GRFT’s presence in fecal material passing through the rectum may enable its 

usage as a rectal microbicide.  It is possible that GRFT presence in fecal material 

will be able to seed rectal mucosa with potentially protective concentrations of 

GRFT.  However, mass balance studies detailed only limited passage of active 

GRFT.  Accordingly studies into methods of increasing active concentrations of 
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GRFT may further highlight GRFT’s potential as an orally dosed rectal 

microbicide.  These could include dosage of GRFT concurrent with antacids, 

protease inhibitors, or in nanoparticle suspension or controlled release 

encapsulation.  Further, experiments with radiolabeled GRFT may be useful to 

determine whether degraded GRFT is systemically absorbed. 

Does GRFT treatment affect the gut microbiome? 

While GRFT may be a promising orally dosed rectal microbicide, its 

impact on the gut microbiome will need to be assessed.  The gut microbiome can 

be crucial in health, as well as immune system function and regulation [Citations 

needed].  Agents which alter the endogenous balance can result in loss of 

beneficial bacteria or a blooming of harmful bacteria.  Given that some bacteria, 

such as E. coli use mannose for adhesion [243, 244], it is possible that GRFT 

presence could compete with endogenous flora for mannose or other adhesion 

molecules.  Accordingly, a tracking of the speed and nature of gut microbiome 

changes over long term oral administration of GRFT will be necessary to 

eliminate the potential that oral GRFT treatment could result in negative health 

consequences. 

Determine the nature of GRFT’s interaction with apolipoproteins and complement 

GRFT’s binding to human serum proteins has been documented in this 

study.  Particularly relevant were binding interactions with complement and 

apolipoproteins.  In particular, the binding with complement could have 

physiological relevance.  Complement deficiencies have been associated with 
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autoimmune disease.  Thus, a functional depletion of complement through 

binding interactions with GRFT in a chronic administration model could 

potentially exacerbate those disease associations.  Accordingly, determining the 

nature of those interactions will be necessary.  Experiments entailing surface 

plasmon resonance assays, isothermal titration calorimetry, and biotin tag affinity 

switching using a photosensitive cross-linker may yield important information 

regarding specific binding interactions with GRFT. 

How does chronic administration of GRFT affect serum thermograms? 

Spiking of rat serum with GRFT did not alter thermogram parameters.  

However, chronic administration of GRFT resulted in significant changes in 

comparison to PBS treated controls.  However, the exact causative nature of 

these changes are unknown.  DSC can yield information as to characteristic 

changes that occur, but is limited to describe the exact nature of the protein 

interactions causing the change.  Accordingly, quantitative studies will be 

necessary into the abundance of lower molecular weight proteins present in 

altered samples.  It is recommended that these chronic dosing studies be 

repeated solely for the purpose of comparing the alterations in lower molecular 

weight proteins.  Cytokine panels may yield rough concentration changes in 

GRFT treated groups.  Further, MS analysis may be useful in identifying changes 

in serum components – however, Ig and Serum Albumin depletion may be 

required before sample processing to remove signal masking by the more 

abundant proteins.   
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Whether GRFT can be utilized in long term therapy (>6 month)  

Studies to date have yielded positive results in examining GRFT’s 

potential as a systemic therapeutic for viruses possess N-linked, oligomannose 

glycans.  However, given the changes observed in a 55-day treatment regimen, 

longer-term studies will be necessary to determine the true extent of changes 

induced.  Parameters such as kidney weight, blood urea nitrogen, spleen weight, 

and anti-GRFT antibody activity should be monitored to determine whether 

GRFT will be suitable for long-term usage. 
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List of Abbreviations 

ADA Anti-Drug Antibodies 

ALB Albumin 

ALKP Alkaline Phosphatase 

ALT Alanine Aminotransferase 

Amyl Amylase 

ANOVA Analysis of Variance 

AP 

Asn    

Affinity Purification 

Asparagine 

AUC Area Under the Curve 

Ba  Basophils 

BanLec 

BCA 

BGG 

Banana Lectin 

Bovine Gamma Globulin 

Bicinchoninic Acid 

BSA Bovine Serum Albumin 

BUN Blood Urea Nitrogen 
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Ca Calcium 

CBA Carbohydrate Binding Agent 

CBC Complete Blood Count 

CCR5 Chemokine Receptor type 5 

CD4 Cluster of differentiation 4 

Chol Cholesterol 

Cmax Maximum Concentration 

CMV Cytomegalovirus 

ConA Concanavalin A 

Cp
ex Maximum Curve Height 

Cp
ex1 Maximum Peak - Range 1 

Cp
ex2 Maximum Peak - Range 2 

Crea Creatinine 

CV-N Cyanovirin-N 

CXCR4 Chemokine Receptor type 4 

DC Dendritic cell 

DC-SIGN Dendritic Cell Specific ICAM-3 Grabbing Non-integrin 

DNA 

DSC 

Deoxyribonucleic acid 

Differential Scanning Calorimetry 

DSF Differential Scanning Fluorimetry 

EDTA Ethylenediaminetetracetic Acid 

ELISA Enzyme Linked Immunosorbent Assay 

ENV Envelope 
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Eo 

ER 

Eosinophils 

Endoplasmic Reticulum 

G-CSF Granulocyte Colony Stimulating Factor 

Glob Globulin 

GM-SCF Granulocyte Macrophage Colony Stimulating Factor 

gp120 Glycoprotein 120 

gp41 Glycoprotein 41 

GRFT Griffithsin 

GRO/KC Growth Related Oncogene Keratinocyte Cytokine 

HA  Hemagglutinin 

HAART Highly Active Anti-Retroviral Treatment 

HCL 

HCT 

Hydrochloride 

Hematocrit 

HCV Hepatitis C Virus 

HGB Hemoglobin 

HIV Human Immunodeficiency Virus 

HPLC High Performance Liquid Chromatography 

HSV Herpes Simplex Virus 

ID50 Inhibitory Dilution 

IFN Interfereon 

Ig  Immunoglobulin   

IgG Immunoglobulin G 

IL Interleukin 
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IP Interfereon Inducible Protein 

IP-10 Interfereon Inducible Protein 10 

JEV Japanese Encephalitis Virus 

kDa Kilodaltons 

KSHV Karposi's Sarcoma Associated herpesvirus 

Ly Lymphocytes 

MBL Mannose Binding Lectin 

MCHC Mean Corpuscular Hematocrit Concentration 

MCP Monocyte Chemotactic protein 

MCV Mean Corpuscular Volume  

MIP Macrophage Inflammatory Protein 

Mo Monocytes 

MPV Mean Platelet Volume 

MSM Men who have sex with men 

PBMC Peripheral Blood Mononuclear cell 

PBS Phosphate Buffered Saline 

PBS-T Phosphate Buffered Saline - Tween 20 

PEP Post Exposure Prophylaxis 

PHA Phytohemagluttinin 

Phos Phosphorus 

PLT Platelet 

PrEP Pre-Exposure Prophylaxis 

RBC Red Blood Cells    
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RDW Red Blood Cell Width 

RNA Ribonucleic acid 

SARS-Cov 

Ser 

Sudden Acute Respiratory Syndome CoronaVirus 

Serine 

SVN Scytovirin 

TasP Treatment as Prevention 

Tbil Total Bilirubin 

TBS Tris Buffered Saline 

Tfm 

Thr 

First Moment Temperature 

Threonine 

Tmax Maximum Temperature 

TMB 3,3'5,5'-tetramethylbenzidine 

TMV Tobacco Mosaic Virus 

TP Total Protein 

Vd Volume of Distribution 

VEGF Vascular Endothelial Growth Factor 

WBC White Blood Cells 
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