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ABSTRACT 

DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING IN DIGNOSING GRAFT 

DYSFUCNTION: A NON-INVASIVE ALTERNITAVE TO RENAL BIOPSIES 

Elizabeth Marie Hollis 

April 6, 2017 

The thesis is divided into three parts. The first part focuses on background information 

including how the kidney functions, diseases, and available kidney disease treatment 

strategies. In addition, the thesis provides information on imaging instruments and how 

they can be used to diagnose renal graft dysfunction. The second part focuses on 

elucidating the parameters linked with highly accurate diagnosis of rejection.  Four 

parameters categories were tested: clinical biomarkers alone, individual mean apparent 

diffusion coefficient (ADC) at 11-different b- values, mean ADCs of certain groups of b-

value, and fusion of clinical biomarkers and all b-values. The most accurate model was 

found to be when the b-value of b=100 s/mm2 and b=700 s/mm2 were fused. The third part 

of this thesis focuses on a study that uses Diffusion-Weighted MRI to diagnose and 

differentiate two types of renal rejection. The system was found to correctly differentiate 

the two types of rejection with a 98% accuracy. The last part of this thesis concludes the 

work that has been done and states the possible trends and future avenues. 
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CHAPTER I 

TOWARDS NON-INVASIVE DIAGNOSTIC TECHNIQUES FOR EARLY 

DETECTION OF ACUTE RENAL TRANSPLANT REJECTION: A REVIEW 

A. Overview 

The kidney is an essential yet complicated filtering organ of the body. When the 

kidney reaches stage 5 chronic kidney disease, end stage renal failure, the preeminent 

therapy is renal transplantation. Although renal transplants are the superior treatment, there 

is a lack of kidney donors which has proven challenging. Therefore, all efforts should be 

employed to prolong the survival rate of the transplanted kidney. However, renal graft 

dysfunction (i.e., acute renal rejection) is one of the serious barriers to long term kidney 

transplant survival. Currently, graft dysfunction’s gold standard of diagnosis is renal 

biopsy. Although renal biopsy is helpful, it is not preferred due to its invasive nature, high 

morbidity rates, and high economic cost. Therefore, noninvasive imaging techniques have 

become the subject of extensive research and intense interest, giving strong promise to 

replace, or at least to decrease, biopsy usage in diagnosing graft dysfunction. This survey 

will discuss not only the current diagnosis and treatment of graft dysfunction but also the 

state-of -the-art imaging techniques in detecting acute renal transplant rejection. 
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B. Introduction 

The kidney is a very important organ. It is the main filtration organ in the human 

body, keeping the nutrients that the body needs in and expelling the waste that can become 

toxic. Maintaining the health of this organ is very important. There are diseases that can 

cause the kidney to decrease in function such as diabetes, hypertension, glomerular disease, 

and polycystic kidney disease [1]. These can result in a gradual loss of kidney function 

leading to waste build up in the body and cause the patient to develop chronic kidney 

disease (CKD).  

Chronic kidney disease affects about 26 million people with 17,000 transplants 

being performed each year in the U.S. [2, 3]. Although transplants have greatly improved 

the outcome of patients diagnosed with stage 5 CKD, complications can still arise. One of 

the main concerns is graft dysfunction. Routine post-transplantation clinical evaluation of 

kidney function is of immense importance to prevent the graft loss. The diagnostic 

technique currently recommended by the National Kidney Foundation (NKF) to measure 

overall kidney function is estimated Glomerular Filtration Rate (eGFR), which is based on 

measuring the serum creatinine level. However, this test has low sensitivity and is a late 

marker for renal graft dysfunction. Unfortunately, a significant change in serum creatinine 

level is detectable only after the loss of 60% of renal function [4]. The needle biopsy is the 

current gold standard for diagnosing different types of renal dysfunction. [4]. However, 

needle biopsies are difficult to perform, costly, and time-consuming. More over renal 

biopsy can lead to complications such as infections, bleeding, and, at times, death.  With 

Fthe evolution of computer aided diagnostic systems, we hope to diagnose different types 

of graft dysfunction, saving time and money. Thus, there is a great need for new 



 

3 
 

noninvasive techniques with the capability to provide accurate diagnosis of kidney 

dysfunction is of countless clinical significance. 

The main purpose of this chapter is to present an overview of current clinical 

techniques for renal transplant function evaluation as well as an examination of new ways 

to improve the detection of graft dysfunction using image-based technology.  

The rest of this chapter is organized as follows. “Kidney Anatomy and Function,” 

provides a brief overview of the treatment options for people who develop stage 5 CKD, 

concentrating on transplantation as a definitive therapy. “Renal Problems/ 

Disease/Symptoms,” focuses on follow-up post transplantation care, which includes 

possible complications that could arise with a concentration on graft dysfunction. 

“Treatment,” concentrates on tests used to detect graft dysfunctions including the 

traditional methods such as blood, urine, and renal biopsy. This is followed by the image 

based techniques such as magnetic resonance imaging (MRI), and ultrasound. 

 

 

 

 

 

 

 

 

 

 



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Coronal cross-section of a normal kidney with labeled anatomy. 

 

C. Kidney Anatomy and Function 

As stated before, kidneys are the main filtration system in the body. Kidneys are 

able to keep needed nutrients like salts, sugar, and protein in. Conversely the kidney also 

expels excess nutrients, water, and waste such as urea, and ammonia out of the body. 

Kidneys help the body to maintain homeostasis as well by regulating blood pH, blood 

pressure, and osmolality. Osmolality is the amount of particles of solutes that are 

dissociated in a solvent [5].  Each kidney is shaped like a bean and is about the size of a 

fist [6] and weighs about 150 g [7]. They are located in the lower back below the rib cage.  

As shown in Figure 1, the kidney is composed of an outer “shell” (renal cortex), an inner 

layer (renal medulla), and a hollow area where the urine is collected, (renal pelvis) [7] . 

Inside the cortex and medulla are the filtration units known as the nephrons (see Figure. 2), 
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which are then made up of smaller subunits such as the glomerulus, vasa recta, and loop of 

Henle [7]. Since the kidneys filter the blood it must be connected to veins and arteries. The 

kidneys are connected to the renal artery and vein which is connected to the iliac artery and 

vein, respectively. That is the general overview of the kidney anatomy, now this paper will 

trace the filtration pathway of the blood. The blood enters the kidney by way of the renal 

artery. Once there, the blood moves to the nephrons of the cortex where the blood then 

enters the afferent arteriole which allows the blood to move through in the glomerulus. The 

glomerulus is then able to filter out waste by leveraging blood pressure. Waste is filtered 

into the Bowman’s capsule, to the lumen of the proximal tubule, then to the Loop of Henle 

and thin segment, which can be found in the medulla. At these places in the nephron more 

selective reabsorption can be done. From this, waste moves to the distal tubule and then 

collecting tubule finally ends up in the renal pelvis. The waste that ends up in the renal 

pelvis will then move out through the ureter to the bladder and then out of the body by way 

of the urethra. The clean blood exits the glomerulus by way of the efferent arteriole. Once 

blood reaches the efferent arteriole additional filtration takes place in the Peritubular 

capillaries where the blood could also move down the Vasa recta in the medulla, nutrients 

that were filtered out by the loop of Henle and thin segment can be reabsorbed there. The 

blood then exits through the venules and then through the arcuate veins, finally leaves the 

kidney through the renal vein. The clean blood then moves back to the heart [7]. As one 

can see this organ is very complex and with this complexity many problems can arise. In 

the next section this article will discuss what can go wrong as well risk associated with 

increased changes of developing these complications. 
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Figure 2. A nephron structure with labeled anatomy and pathway of filtration. 

D. Renal Problems/ Disease/ Symptoms 

The renal system is a very complex system, in which various complications and 

diseases can arise. There are multiple conditions and/or diseases that can arise in the kidney 

such as kidney stones, injury, infections, and cancer. The focus of this chapter will be on  

CKD, the 9th leading cause of death in America [8]. CKD is a gradual loss of function of 

the kidney, where the nephrons become compromised [2]. To date, 26 million people in 

the U.S. are living with CKD [2]. The risk of developing CKD could be increased due to a 

few different factors such as; pre-existing conditions, diseases, age, race, lifestyles and 

family history. Conditions that increase the likelihood of developing CKD include diabetes, 

high blood pressure, heart disease, and high cholesterol [9].  People with the following 

diseases are at increased risk of CKD, they include; Human Immunodeficiency Virus 
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(HIV), Hepatitis C, Metabolic syndrome, cancer, and sickle cell trait [10]. When an 

individual is 65 years or older they are more at risk. African Americans tend to also have 

a greater risk compared to the rest of the population [9] Lifestyles that increase risk include 

people that are obese [11] or people that smoke [9] or exposed to second hand smoke.  In 

terms of family history of CKD, that if a patient has a parent or family member with CKD 

they have a greater chance of developing CKD [9]. 

People with the aforementioned risk factors should inform their doctors if they 

experience CKD-related symptoms, summarized below become present. In early stage 

CKD the patient may be asymptomatic but as the disease progresses symptoms may arise. 

Symptoms can include change in urination whether it changes in frequency, feeling, color, 

or texture. The urine can also start to contain blood [12]. Apart from the change in urination 

symptoms such as limb swelling, iron build up that can cause nose bleeds and bad breath 

[12]. As the disease progresses infection like symptoms can arise [13]. CKD can also have 

an effect not only on the body but also on mental state and activity level. These symptoms 

can include fatigue, generalized weakness, decreased libido, change in memory [13], and 

compromised mental function [12]. Other rare yet, more serious, symptoms include rash, 

generalized pain, chest pain, and shortness of breath [12-15]. Patients with any of these last 

symptoms should seek immediate medical attention. Every patient is different and there is 

no set relationship between symptoms and stage of kidney disease [13]. If left untreated 

symptoms should worsen and lead to stage 5 CKD/ kidney failure. If the patient remains 

untreated in stage 5 CKD, toxins will build up in the body and cause death. To prevent this 

from happening the patient should be treated with dialysis or transplantation.  The next 
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section will inspect treatment options for patients at stage 5 CKD, concentrating mostly on 

transplantation.  

E. Treatment 

Luckily, treatments for patients with stage 5 renal failure include blood dialysis or 

renal transplantation. Blood dialysis is when one's blood is filtered of waste or excess 

water, either with use of a machine outside the body (hemodialysis) or chemically inside 

the body (peritoneal dialysis) [16]. Although dialysis is a helpful treatment, kidney 

transplantation constitutes a longer term treatment Kidney translation involves the surgical 

insertion of a donor's kidney into the CKD patient. The new kidney should improve 

filtration for the patient. Since transplantation is the definitive therapy for End-Stage Renal 

Disease (ESRD), the following describes in more details the kidney transplantation 

procedure and associated complications and diseases. 

1. Transplantation 

Renal transplantation does not mean nephrectomy (i.e. removal of the 

malfunctioned kidney) is performed on the patient with CKD. The CKD patient usually 

keeps both of the kidneys, unless those kidneys are causing pain or other complications 

[17]. This means the patient will have three kidneys after the procedure. The donated 

kidney also has its own ureter, renal artery, and vein intact. The donated kidney is placed 

distal (below) the native kidneys with the donated ureter connecting to the bladder, and the 

renal artery and vein connecting to the iliac artery and vein of the patient, respectively [18]. 

Figure 3 demonstrates the entire anatomy of a patient’s renal system after transplantation. 
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Figure 3. Anatomy of renal system of a patient after kidney transplant. 

 This procedure seems fairly simple in concept. However, the process to find that 

donor can be fairly complicated medically, logistically, and legally. There are two different 

types of renal transplantation donors namely cadaver and living donors. Only one-third of 

the transplantations are from living donors; whereas the remaining two-thirds are from 

cadaver donors [19]. The type of donor is often the first decision the physician and the 

CKD patient must make. Often a more desirable choice would be to have a living donor 

give one of their kidneys. However, this is not without its complications. The donor must 

meet all criteria such as being HLA (+ or -) and/or ABO compatible, in good physical 

health, and in no way coerced against their will to donate [19, 20]. This means the donors 

can back out at any time. Therefore, even if there is a willing live donor the physician may 

persuade the patient to get on the United Network of Organ Sharing (UNOS) [21]. Based 

on where the patient is on the list determines if and when they will receive a donated 

kidney. The donated kidneys from this list are from cadaver donors. In order for the 
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cadaver’s kidney to be viable the kidney must be functioning before death and undamaged. 

Also, the time and location of death may play a part since the kidney must not decompose 

before the kidney can be donated [19]. In the U.S., the living donors must be willing to 

donate their kidney and cadaver donors must also make it clear that they are willing to be 

a donor after death. 

With all of these criteria, it is clear why there are still over 100,800 people wating 

for a kidney, despite 17,000 kidney transplants are performed annually in the United States. 

With this in mind, it is very important that the transplanted kidney is kept viable as long as 

possible to avoid nephrectomy and repeat transplantation [3]. In the following section, we 

shall overview what happens during post-transplantation care, which should improve the 

organ viability following surgery. This includes follow up procedures and the 

complications that arise for transplant patients. 

F. Post-Transplant Follow-Ups and Complications 

Just as with any medical procedure, complications can arise, such as infection and 

bleeding so one must remain under the constant care of one’s physician. They must 

continue follow ups to ensure that the new kidney is functioning and that new 

complications do not arise. To prevent new complications from arising, the patient should 

follow the instructions of their physician by taking their anti-rejection medications and 

visiting their physician as directed [22]. The frequency at which a patient has to visit their 

physician will decrease as time after transplantation increases. Once the patient has reached 

210 days post-operatively, they should be seeing their physician monthly or if 

abnormalities arise [23]. During those clinical visits, various tests such as examining the 

patient’s weight, blood pressure, and temperature will be done to assess both the overall 
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health of the patient and the health of the kidney.  The urine and blood lab test will be 

discussed later in this article. If these tests appear abnormal, the physician may order a 

renal biopsy and/or scans [24]; both will be discussed in greater detail later  in the article.  

For now, this article will concentrate on the complications that can arise during these tests, 

specifically those complications that are associated with renal transplants. This section will 

take a look at those types and concentrate specifically on graft dysfunction. First, this 

article will explain different types of complications other than graft dysfunction. 

1. Types of Complications  

There are six categories of complications including: urological complications, 

vascular complications, fluid collection, recurrent native renal disease, graft dysfunction, 

and neoplasms. This section will take a short look at the first five complications, then the 

next section will go a little more in depth for graft dysfunctions. Urological complications 

are simply when organs involved in the urinary system (e.g, bladder, urethra and ureter) 

become obstructed or permit urine leakage [25, 26]. Vascular complications involving the  

renal or iliac artery/vein may include narrowing, blockage or formations of holes in the 

vascular system [27]. Fluid collection is closely related to urological and/or vascular 

complication in which blood or urine will collect in unwanted areas. This residual 

collection of blood or urine may result in urinomas, hematomas, abscesses, or lymphoceles 

[26-28]. Neoplasms are abnormal growth such as tumors that grow on the renal system and 

other areas. This is said to be caused by the prolonged exposure to immune suppressing 

drugs [27, 29, 30]. Lastly, recurrent native renal disease is when the disease that caused the 

patient to develop CKD, such as diabetes, is now affecting the donated kidney [31, 32]. 

Unfortunately, patients may develop a combination of the previously mentioned health 
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complications. It is critical to diagnose and treat these complications, as soon as possible. 

Most of these complications are typically easier to detect when compared to graft 

dysfunction. This is because these complications can be detected using various imaging 

techniques such as ultrasounds and MRIs [33]. These imaging techniques will be discussed 

later  in the paper, but the concentration will be more on graft dysfunction. The 

complication and cause that is more challenging to diagnose is graft dysfunction, which 

shall be examined next.  

2. Graft Dysfunctions 

Graft dysfunction is defined as a newly transplanted organ that longer functions. 

As a consequence, toxins build up, and the body rejects the transplanted organ [27]. It was 

calculated that within the first 5 years post transplantation, 15% of patients will experience 

graft dysfunction [34]. There are three classes of graft dysfunction: hyperacute, acute, and 

chronic. The type of graft dysfunction is differentiated by the mechanism and in part time 

of dysfunction onset [35].  Currently, hyperacute rejection is relatively rare nowadays. This 

class of rejection is caused by antibodies attacking the donated organ due to the donated 

organ having the wrong HLA (+ or -) and/or ABO blood antigens. Hyperacute rejection 

generally presents itself within in minutes or hours after transplantation [20]. There is no 

cure for hyperacute rejection [36]. Chronic kidney rejection’s mechanism is not well 

understood but appears to present itself after 5 years post-transplant [20]. This article will 

concentrate on acute kidney rejection (AKR). Just as there are different types of 

complications in renal transplant, there are different causes of graft dysfunction. This can 

provide somewhat of a challenge in diagnosis and treatment. This is due to the fact that 

there is a different treatment for each cause of graft dysfunction. There are four different 
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causes of graft dysfunction; they include: acute tubular necrosis antibody-mediated 

rejection (ATN), T-cell mediated rejection, immunosuppressive toxicity (IT), and viral 

infection (VI). ATN is when the antibodies of the patient recognize and elicit an immune-

response against the newly donated kidney as a foreign body, which ultimately causes the 

tissue to become necrotic and die. ATN is treated with a drug therapy regimen that may 

include plasmapheresis, mycophenolate mofetil, and tacrolimus [37-39].  T-cell mediated 

rejection is when killer T-cells attack the donated organ causing apoptosis in the tissue 

[40]. T-cell mediated rejection may be treated with corticosteroids, antithymocyte globulin, 

and immunosuppression therapy. Patients who experience antibody-mediated rejection 

may not respond to the T-cell mediated rejection treatment [41-43]. Immunosuppressive 

toxicity arise when immunosuppressive drugs (e.g., cyclosporine and tacrolimus), used to 

prevent kidney transplantation rejection, actually causes renal failure due to the 

nephrotoxic nature Nephrotoxicity may be treated by stopping, changing, or altering the 

does or type of drug. [44-46]. Another cause of graft dysfunction includes VI which is 

caused by Cytomegalovirus or Herpes simplex virus entering the body and damage the 

kidney [47].  Patients with these viral injections may receive immunosuppressant and/or 

antiviral treatments [37].  The causes of AKR can be presented singularly or in 

combination, which can add to the difficulty in diagnosing the cause of AKR. How the 

cause of these graft dysfunctions isdiagnosed will be discussed in the next section of this 

chapter. 

G. Detection/Assessment of Renal Rejection 

It is important the patient keeps regular visits with their physician to ensure their 

newly transplanted organ functions properly. The main focus of the post-transplantation 
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follow-up is to keep the graft viable for as long as possible.  If the patient continues regular 

follow-ups and notifies the physician of any symptoms that arise, it is feasible to detect 

complications early and save the donated organ. This section will give an overview of the 

existing techniques/methods for diagnosing graft dysfunction, including traditional non-

imaged-based and new techniques underdevelopment, as detailed below 

1. Traditional Methods 

Traditionally, blood and urine analysis are implemented during a routine follow-

up. Abnormal blood or urine test may prompt the physician to order a renal biopsy for a 

definitive diagnosis. This diagnosis should also tell the physician what is causing the 

kidney malfunction. These next sections will show how these diagnoses are determined. 

First, this article will discuss urine testing. 

a. Urine Tests 

A simple and non-invasive urine assessment can test for multiple substances. Based 

on the patient’s urine, the physician measures a number of biomarkers to determine eGFR. 

Most often the biomarker used to calculate eGFR is serum creatinine. To calculate eGFR, 

the concentration of creatinine found in the urine sample is placed into an equation which 

has constants that change based on sex, race, and age. Using the calculated eGFR, one may 

determine what stage of function the kidney(s) are in, 0 being at an increased risk and 5 

being end stage renal failure [48, 49]. This diagnostic technique is presently suggested by 

the National Kidney Foundation (NKF) to measure overall kidney function [4]. However, 

this test has low sensitivity and is a late stage marker of renal dysfunction (a significant 

change in serum creatinine level is detectable only after the loss of 60% of renal function), 
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and it does not assess the function of individual kidneys [4]. The next test that shall be 

discussed will be a blood test. 

b. Blood Test/Works 

This method is similar to urine analysis in that it measures estimated eGFR using 

serum creatinine. However, since it does pierce the skin when obtaining the blood, this test 

is slightly more invasive than urine analysis. A complete blood count and differential count 

(CBC and diff) [50] measures more substances than urine samples, including detecting the 

presence of burred blood cells which can be present in patients with CKD. Burr cells are 

blood cells that appear almost gear like. They appear when there is an excess amount of 

waste in the body, which is likely to happen in patients with CKD [51, 52]. Although blood 

analysis has a few more benefits than a urine test, it has the similar setback in that the test 

has low sensitivity and is a late marker of renal dysfunction and it does not assess the 

function of individual kidneys [4]. The last traditional method that shall be discussed is a 

renal biopsy. 

c. Biopsy (“Gold Standard”) 

Renal biopsy is the gold standard for the graft function assessment; however, it is 

by far the most invasive. For this procedure, a renal biopsy needle is guided by a camera, 

ultrasound or x-ray and is inserted into the patient’s back and kidney, as shown in Figure 

4 [50]. The tissue obtained is evaluated under a microscope [53]. The patient is fully 

conscious and told not to move [50]. If the patient moves, they run the risk of perching 

other organs, excessive bleeding and infections. Patients who use blood thinners 

particularly have and increased risk for excessive bleeding. Biopsy-associated infection 

may in part be related to the fact the patients are on an immunosuppressive therapy regimen 
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to prevent renal transplantation rejection [34, 54]. These complications can lead to 

nephrectomy or even death; both occur in 1 in every 1,000 renal biopsies [34].  

 

Figure 4. Example of renal biopsy procedure guided with Ultrasound. 

Along with the invasiveness of the procedure, there are multiple setbacks that are 

associated with this procedure. Renal biopsies, although a useful tool, have the tendency 

to give a missed diagnosis or inaccurately estimate the extent of the problem. This is 

because it is only sampling a small portion of the kidney. So if the needle is even slightly 

off target, the biopsy needle can miss an effective portion of the kidney, resulting in a false 

negative. As a consequence, the patient may have to undergo another biopsy, which may 

cause the patient additional pain and precious time lost to save the graft. On the subject of 

time, it takes up to two weeks to obtain renal biopsy results [55]. That time that could be 

used for treatment is wasted and can result in failure of the donated kidney. On top of these 
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setbacks, the financial cost of the procedure can reach over $20,000 [56]. In essence, renal 

failure can cause both physical pain and a financial burden. 

Though these tests have been routinely used for transplant assessment and have 

helped in improving graft survival, new methods are needed to diagnose and differentiate 

the cause of graft dysfunction. Additionally, existing techniques, i.e. eGFR and biopsy, for 

diagnosis of renal rejection are late biomarkers. Moreover, renal biopsy has significant 

morbidity, is very expensive, takes up to two weeks to get the final report, and can result 

in over- or under-estimates of problems by only sampling small areas of the kidney. 

Therefore, the development of non-invasive tests to monitor kidney transplant rejection 

will permit early intervention prevent rejection and associated damages, which will 

improve long-term outcomes. 

 The following section will overview existing non-invasive imaging techniques and 

their possible use for renal function assessments and graft dysfunction diagnoses. The 

imaging techniques that are included in this article are ultrasound and MRI. 

2. Image-Based Techniques for Renal Transplant Evaluation 

The progress of computer-aided diagnosis (CAD) systems for renal transplant 

assessment using diverse imaging modalities is a current area of amplified research. Non-

invasive imaging-based techniques have been clinically used to assess transplanted kidneys 

with the advantage of providing information on each kidney separately. For example, 

radionuclide imaging (also termed scintigraphy), the traditional technique in renal imaging, 

is an admirable modality for gauging graft function, both qualitatively and quantitatively, 

while also assessing for common complications [57]. However, this procedure appears to 

miss the mark in presenting accurate anatomical information due to its narrow spatial 
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resolution. Therefore, functional idiosyncrasies inside different areas of the kidney (such 

as cortex and medulla) cannot be differentiated precisely [58]. Additionally, radionuclide 

imaging contains radiation exposure [59], thus restraining the range of its applications, 

particularly in monitoring diseases such as Acute Tubular Necrosis or cyclosporine [60]. 

Computed tomography (CT) is a commonly accessible equipment that uses contrast agents 

that permits accurate evaluation of numerous diseases and complications in renal 

transplantation and at a lower cost than magnetic resonance imaging (MRI) [61]. 

Conversely, data gathered by CT to sense renal acute rejection lacks specificity and the 

contrast agents used are currently nephrotoxic. Therefore, currently CT scans are typically 

restricted to the detection of acute renal rejection [62]. In contrast to these radionuclides 

and CTs, ultrasound (US) and magnetic resonance imaging (MRI) are the most popular 

imaging modalities used for the diagnosis of kidney diseases, as described in the upcoming 

sections.  

a. Ultrasound (US) Imaging 

Typically, ultrasound (US) imaging is used for the assessment of renal allografts 

functionality during the early phases of postoperative period as well long-term follow-up. 

This imaging modality is preferred over some of the others because it is easy to perform 

and repeat, inexpensive, and repeated, inexpensive, and is non-toxic to the kidneys[63]. 

Pulsatility index (PI) and resistance index (RI) are the most common measurements to 

assess renal functionality using US. Below, we will discuss some recent studies that 

assessed renal transplants using different forms of ultrasound (e.g., power Doppler (PD), 

color Doppler (CD), contrast enhanced (CE), etc.) as shown in Figure 5.  
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Figure 5. Example of different Ultrasounds. 

In an investigation to illustrate the factors that impact Pulsatility index and 

resistance index in patients with immediate (IGF), slow (SGF), or delayed (DGF) kidney 

graft function, Chudek et al. [64] observed that ischemic injury, which occurred chiefly 

prior to organ harvesting, played an overriding role in defining intra-renal resistance in the 

early post-transplant period. Saracino et al. [65] investigated whether the long-term renal 

functionality could be predicted using resistance index measurements obtained soon after 

renal transplantation. On the other hand, Kramann et al. [66] evaluated whether resistance 

index measurements could to predict renal allograft survival. They concluded long-term 

allograft survival predictions would require attainment of, resistance index measurements 

12-18 month post-transplantation. Krejvci et al. [67] utilized a CD imaging, PD imaging, 
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and composite gray-scale to examine the power of US for early detection of a subclinical 

acute rejection. A significant difference between the different groups mentioned before in 

their study was found. In another study by Damasio et al. [68], the ability of Doppler US 

to differentiate between dual and single kidney transplantation (DKT and SKT, 

respectively) was exploited. After the measurement of resistance index parameters for both 

dual kidney transplantation and single kidney transplantation groups, they concluded that 

those patients with dual kidney transplantation had lower kidney volumes and higher 

resistance index than those with single kidney transplantation. 

A study by Shebel et al. [69] investigated the ability of PD in the differentiation 

between acute tubular necrosis and acute rejection (AR). Their study included 67 renal 

transplant recipients in the early post-transplantation period. After a manual placement of 

region of interests, cortical perfusion (CP) and resistance index were measured for all 

recipients and CP was tested with respect to resistance index and serum creatinine (SCr). 

Upon their own CP grading scale system, they found a statistical significant relationship 

between their SCr and CP grading (P < 0.01) and between resistance index and CP grading 

(P < 0.05). They concluded that the power Doppler using cortical perfusion grading is more 

sensitive in the detection of early AR compared to resistance index and cross-sectional 

measurements. 

Fischer et al. [70] demonstrated ultrasound contrast media (USCM) was more 

effective than ultrasound imaging that uses the resistance index indicator in the diagnosis 

of early stage allograft dysfunction. Additionally, Benozzi et al. [71] discovered that both 

contrast enhanced US and US could identify grafts with early stage dysfunction, but only 

some contrast enhanced US derived parameters could discriminate between AR and ATN. 
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Schwenger et al. [72] exploited the power of CE sonography (CES) in early prediction of 

long-term renal transplant functionality compared to color doppler ultrasonography 

(CDUS). In their study, 68 renal transplants were investigated using both CES and CDUS 

one week after transplantation. Renal blood flow (RBF) and resistance index were 

measured for all transplant recipients. These measurements were evaluated in relation to 

the recipients’ clinical data represented by glomerular filtration rate (GFR) in a post-

transplantation period, ranging from one week to one year. Based on their data they 

concluded RBF measurements using CES was significantly corresponded with kidney 

functionality in the aforementioned period after transplantation period. However, 

resistance index measurements using CDUS did not track with kidney functionality. In 

another study Gocze et al. [73] differentiated between acute kidney injury (AKI) stages 

using contrast enhanced US based on the quantification of blood perfusion. Instead of 

generating time-intensity curves (TIC), they used another quantification method called 

arrival time parametric imaging (ATPI). Their study included 10 patients who underwent 

contrast enhanced US of which 4 patients had no evidence of AKI, 1 with stage 1 AKI, and 

5 with stage 2 or 3 AKI. Color-maps based on inflow time (IT) of the contrast agent were 

generated using the contrast enhanced US-ATPI quantification method and were divided 

into six major categories based on their values. Then, these ITs were assessed for different 

poles of kidney cortex (i.e. lower, middle, and upper) and the total IT was the sum of all 

arrival times of these three poles for each kidney. They observed that patients with stage 2 

or 3 AKI have more delayed ITs than those of the other groups. They concluded that 

contrast enhanced US-ATPI technique may help in detecting different stages of AKI. 

Recently, Jin et al. [74] assessed renal allografts using contrast enhanced US. In their study, 



 

22 
 

57 renal transplant patients underwent contrast enhanced US. Then, they were divided into 

three groups: 23 patients with AR (group 1), 10 patients with ATN (group 2), and 24 

patients with normal allografts (group 3). After a manual placement of region of interests, 

a new index to detect AR called rising time (RT) was measured instead of arrival time 

(AT). In addition, time to peak (TTP) and delta time among region of interests (∆RT and 

∆TTP) were measured, analyzed, and correlated with clinical data (e.g., GFR). They found 

that RT, TIP, and (∆RT and ∆TTP) were significantly higher in group 1 compared to those 

in group 2 and group 3.  

Although several studies utilized US to evaluate and assess renal functionality pre- 

and post-transplantation by evaluating conventional ultrasound parameters, for instance the 

Pulsatility index and RI, two contradictory studies [75, 76] concluded that resistance index 

is not an exact sign of renal graft dysfunction, and it could only offer a predictive marker 

of the graft. Moreover, Doppler US may give high resistance index and Pulsatility index 

values (>0.8), which is an indication comparable to those of ATN [66, 77]. These 

contradictions led researchers and investigators to examine a different imaging modality to 

assess renal functionality (e.g., MRI). In the next section, we will discuss up-to-date studies 

utilizing different MR imaging modalities. 

b. Magnetic Resonance Imaging (MRI) 

MR imaging is a non-ionizing technique that has become the most important non-

invasive diagnostic tool in many clinical applications [78]. MRI not only provides excellent 

morphological information but also possesses the ability to offer the best soft tissue contrast 

compared to all imaging techniques (e.g., US and CT), which allows advanced analysis of 

different aspects of renal function. There are various specific types of MRI scans. While 
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some of these types provide only structural but not functional information, other MRI 

modalities, such as dynamic MRI, BOLD MRI and diffusion MRI are frequently used for 

renal function evaluation. Next, we overview the recent studies utilizing these MRI 

modalities for renal transplant assessment. 

i. Dynamic Contrast-Enhanced (DCE) MRI 

Renal dynamic MRI is an emerging imaging technique for assessing kidney 

function. The technique is based on repeated imaging of the organ-of-interest before and 

after administration of a contrast-gent. Figure 6 shows a typical example of DCE-MRI of 

the kidney. In recent years, several studies have exploited DCE-MRI to non-invasively 

analyze kidney function in both native and transplanted kidneys. This imaging modality 

has the ability to non-invasively characterize important functional parameters (e.g., RBF, 

GFR, and renal plasma flow (RPF)) as well as tissue-specific functional changes. 

 

Figure 6. Example of an DCE-MRI sequence with Pre -, Post-, and Late- contrast images 

In particular, a study by de Priester et al. [79] utilized dynamic MR enhancement 

curves to qualitatively evaluate diseased (27 patients) and non-diseased (8 patients) renal 

transplants. Cortical and the medullary enhancement parameters were obtained from a 

physiological model that was fitted to the raw data. Cortical arterial blood volume and 

medullary wash-out rates were found as the main discriminatory parameters between 

diseased and non-diseased patients. Yuksel [80] introduced a DCE-MRI-based CAD 
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system for the evaluation of transplant function, which employed deformable image 

segmentation, kidney registration, and cortical perfusion construction. After kidney 

segmentation, a manual cortical region of interest is used to construct the perfusion curve 

from the co-aligned images and the kidney function is evaluated visually based on the 

pattern of the constructed curves. Several studies [81-84] have been developed for early 

diagnosis of acute transplant rejection and included automated kidney segmentation, local 

kidney alignment, and classification of the allograft status. Empirical (nonparametric) 

cortical parameters were employed for the evaluation of kidney status using: the peak 

signal intensity, the time-to-peak, the wash-in slope (slope between the peak and the first 

minimum), and the wash-out slope (peak and the signal measured from the last image in 

the sequence). A supervised Bayesian classifier was employed and the system classified 

13 out 15 and 15 out of 15 correctly for both training and testing, respectively. Similar 

approaches were proposed in [85-87]. The studies utilized a global alignment step of the 

MR images, the whole kidney perfusion curves were analyzed rather than the cortical one 

as in [81-84], and the systems were evaluated on a 100 patient cohort and achieved a 94% 

diagnostic accuracy using Bayesian supervised classifier. Functional evaluation of cortical 

and medullary regions by Rusinek et al. [88] exploited rigid alignment, graph-cut 

segmentation, and compartmental modeling. Their framework was tested on 22 clinical 

data sets and the study concluded that the accuracy and precision in RPF and GFR are 

acceptable for clinical use. 

A semi-automated framework was proposed by Zikic et al. [89] to evaluate kidney 

kinetic parameters. Their framework employed manually segmenting the kidney and 

applying motion correction steps using template-matching based registration to correct for 
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image motion. Functional parameters (plasma volume and tubular flow) evaluation, 

however; was performed visually by trained physicians for 10 data sets of healthy 

volunteers.  De Senneville [90] conducted a similar study to evaluate renal function for 

healthy volunteers and transplant patients. Their framework performs sequentially rigid-

body registration, manual cortex segmentation, and the GFR estimation using Patlak-

Rutland model. Compared to the transplanted kidneys, a significant uncertainty reduction 

on the computed GFR for native kidneys was observed. Aslan et al. [91] developed an 

automated CAD system to classify normal kidney function from kidney rejection using 

DCE-MRI. Following kidney segmentation, three classification methods (least square 

support vector machines (LS-SVM), Mahalanobis distance, and the Euclidean distance) 

were compared to assess transplant status based on medullary perfusion curves. On a cohort 

of 55 clinical data sets, they achieved a diagnostic accuracy, sensitivity, and specificity of 

84%, 75%, and 96%, respectively using the Mahalanobis distance-based classifier. A trace 

kinetic modeling-based framework was proposed by Anderlik et al. [92] for quantitative 

assessment of kidney function. The GFR was estimated from the time-intensity curves for 

11 data sets after motion correction using Sourbron et al. [93] compartment model. A 

framework by Zollner et al. [94] employed a k-means clustering [95] method to extracted 

regional functional kidney parameters.  Only four dynamic MRI data sets were used and 

qualitative evaluation of the mean signal intensity time courses of kidney regions was 

performed. Wentland et al. [96] utilized MRI-based intrarenal perfusion measurement to 

differentiate between normal-functioning kidney allografts and allografts with ATN or 

acute rejection (AR) on a cohort of 24 biopsy proven patients. The study concluded that 

the cortical and medullary blood flow is significantly reduced in grafts experiencing AR, 
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as compared with normal grafts. Additionally, AR patients demonstrated medullary blood 

flow reduction as compared with ATN patients. 

Recently, a study by Abou El-Ghar et al. [97] explored the feasibility of DCEMRI 

in evaluation of renal allograft dysfunction. Their CAD system employed computer based 

techniques for motion correction and creation of renographic curves. Functional evaluation 

on 55 patients using the mean medullary intensity achieved sensitivity, specificity and 

accuracy of 75%, 96% and 84%, respectively, to separate normal kidneys from impaired 

ones. Yamamoto et al. [98] utilized dynamic MRI to prospectively assess its ability to 

identify the cause of acute graft dysfunction. Their study employed 60 patients, 31 of which 

had normal function and 29 had acute dysfunction due to AR. Their study employed a 

multicompartmental tracer kinetic model to estimate the GFR and mean transit time (MTT) 

at different compartments of the kidney. The study documented differences in the fractional 

MTT values between normal grafts and grafts undergoing AR or ATN; however, 

substantial overlaps among these groups and with normal kidneys were observed. 

Hodneland et al. [99] developed a framework for the estimation of kidney indexes. Their 

approach combined viscous fluid model for motion correction of the kidney and semi-

automated kidney segmentation with the nearest neighbor approach. Two healthy 

volunteers were enrolled in the study with a total of four data sets for evaluation. The study 

reported a slight underestimation of GFR values compared with the creatinine reference 

values. A study by Positano et al. [100] included a two-step rigid registration and adaptive 

prediction of kidney position for the estimation for renal parameters. Perfusion curves were 

constructed for both automatically and manually registered data sets. Then, four functional 

indices (peak signal intensity, MTT, initial up-slope, and time to peak) were extracted. The 
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study concluded that for both curves the perfusion parameters were similar. A framework 

by Khalifa et al. [101, 102] was proposed for automated classification of kidney transplant 

status. The system included kidney segmentation and the local kidney motion correction 

using by a Laplace partial differential equation-based method [103, 104]. Their initial study 

[101] included only 26 data sets, a K-nearest neighbor classifier, and two empirical 

parameters (the time-to-peak and wash-out slope) for evaluation. Their system achieved a 

92.31% correct classification using the whole kidney perfusion curves. Their framework 

was extended in [102] by using four augmented cortical empirical parameters (peak 

intensity value, time-to-peak, up-slope and average plateau) by the genetic algorithm [105]. 

Unlike [101], the system was tested on 50 patients, and the overall diagnostic accuracy 

increased to 96%. Another study [95] extended the work in [101, 102] and employed the 

gamma-variate analytical function-based model to fit agent cortical kinetic curves. Both 

functional model parameters and the time-to-peak and average plateau were used to assess 

the transplant status in a cohort of 50 patients. 

Although DCE-MRI has been employed as a widespread imaging technique to 

develop several CAD systems for renal transplants assessment purpose, the contrast agents 

may implicate nephrogenic systemic fibrosis; thus, many medical centers are reluctant in 

applying the DCE-MRI to patients with renal disease [99]. In order to circumvent this 

major drawback, DW-MRI and BOLD-MRI have been recently exploited to assess renal 

transplants as they do not involve any use of contrast agents, like DCE-MRI. Below, we 

will briefly discuss some recent renal transplant assessment studies using BOLD-MRI. 

This is followed by a short discussion on other studies that utilized DW-MRI to assess 

renal transplants. 
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ii. Blood Oxygen Level Dependent (BOLD) MRI 

In addition to DCE-MRI, another imaging technique, called BOLD-MRI, has been 

utilized to study renal rejection using the amount of oxygen diffused blood (i.e. oxygen 

bioavailability) in the kidney determine if it is functioning properly. Specifically, the 

amount of deoxyhemoglobin is measured by the apparent relaxation rate (R2*) parameter 

[107]. 

 

Figure 7. BOLD-MRI grey scale images (a) normal kidney and (b) kidney with graft 

dysfunction and R2* color-maps images (c) normal kidney and (d) kidney with graft 

dysfunction. 

In particular, Djamali et al. [108] investigated the ability of BOLD-MRI to assess 

renal allografts. In their study, 23 patients underwent BOLD-MRI scans, of which 5 were 

normal allografts and 18 had acute allograft dysfunction (5 with ATN and 13 with AR). 

Medullary and cortical region of interests were placed, and mean cortical (CR2*), 

medullary (MR2*), and medullary to cortical (MCR2*) were calculated. They found that 

MR2* and MCR2* values of patients with ATN and AR were significantly decreased more 

than those with normal allografts. However, no differences in CR2* values between the 

different groups were observed. In a similar study by Han et al. [109], BOLD-MRI was 
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conducted to differentiate between patients with AR and ATN after transplantation. Their 

study included 110 patients; 82 with normal allografts (group 1) and 28 with kidney 

dysfunction, including 21 with AR (group 2) and 7 with ATN (group 3). Group 2 was 

divided into two subgroups: 13 patients with T-cell-mediated rejection (TMR) and 8 

patients with antibody-mediated rejection (AMR). Manual region of interests were placed 

in the cortical and medullary regions, and CR2*, MR2*, and MCR2* were compared 

between different groups. They performed a statistical analysis, and they found that values 

of CR2*, MR2*, and MCR2* of group 2 were reduced compared to those of the other two 

groups. Contradictory to Djamali et al. [108] study, they found that values of MR2* of 

group 3 were higher than those of group 1. However, no significant difference was 

observed between the TMR and AMR subgroups. 

Sadowski et al. [110] employed BOLD-MRI to assess kidney transplants. Manual 

cortical and medullary region of interests were placed on 17 patients who underwent 

BOLD-MRI scans, and these patients were divided into three groups: 5 patients with 

normal allografts (group 1), 4 with ATN (group 2), and 8 with AR (group 3). The MR2* 

and CR2* were calculated in the same way as their previous study [108], and compared 

between the different groups. Specifically, MR2* values of group 3 allografts were 

decreased compared to those of group 1 and group 2, while no significant difference was 

observed in MR2* values between group 1 and group 2. However, no difference was 

detected in CR2* values among the three groups. Another interesting study by Liu et 

al.[107] was investigated to detect renal allograft rejection using BOLD-MRI. A total 

number of 50 patients with renal allografts were included and divided into three groups as 

35 patients with normal allografts (group 1), 10 patients with AR (group 2), and 5 patients 
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with ATN (group 3). After cortical and medullary region of interests placement, CR2* and 

MR2* were measured to assess the three groups. Group 2 had the lowest MR2*, while no 

significant difference was detected in CR2* values among the three groups. 

Although BOLD-MRI is a valuable imaging technique that has been investigated 

by some researchers in detecting renal allografts dysfunction, BOLD-MRI remains 

challenging, not only because of the low of signal-to-noise ratio (SNR) and the weakness 

of the electromagnetic fields [111], but also the limited applicability of renal BOLD-MRI 

due to kidney motions and susceptibility induced by bowel gas which may lead to impaired 

image quality [112]. 

iii. Diffusion-Weighted (DW) MRI: 

Recently, DW-MRI has become a subject of extensive research as an emerging 

imaging modality for renal function assessment thanks to DW-MRI’s ability to provide 

both anatomical and functional information, while avoiding radiation exposures (like CT) 

and contras agents’ administration (like DCE-MRI). For DW-MRI, its functional 

parameter, called apparent diffusion coefficient (ADC), is estimated from different 

gradient field strengths and duration (b-values), as shown in Figure 8, to describe the 

unique tissue characteristics of inner spatial water behavior [112]. Therefore, several 

studies have utilized DW-MRI to assess renal functionality by measuring the ADC values, 

but the results have varied [107]. 
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Figure 8. Example of an DW-MRI sequence at different b-values. 

A study by Eisenberger et al. [113] was conducted to assess renal allografts 

functionality. They started with a manual placement of region of interests in the upper, 

middle, and lower poles of the cortex and medulla on several slices to cover large regions 

of the allograft. Then, they calculated the means and standard deviations of the ADCs from 

all b-values, which combines both the perfusion free ADC and microcirculation 

parameters, quantified with perfusion fraction, Fp. A significant reduction in these 

parameters was observed in the cortex and the medulla for the AR and ATN patients, and 

the aforementioned parameters were correlated with the creatinine clearance (CrCl) values. 

Similarly, a recent study by Hueper et al. [114] included 64 patients with renal allografts, 

of which 33 were patients with initial graft function (IGF) and 31 were patients with DGF. 

These patients underwent DW-MRI scans at two b-values (0 and 600 s/mm2). After 

placement of manual region of interests and estimation of renal diffusion parameters, 

including ADC and Fp, they concluded that renal diffusion parameters were significantly 

reduced in patients with DGF and their values well correlated with renal function and renal 

allograft fibrosis in biopsy specimens. Xu et al. [115] investigated the power of DW-MRI 

to diagnose AR renal allografts on 26 biopsy-proven rejection and 43 non-rejection 

patients. Higher ADC values were obtained from the normal allografts than those from AR 

allografts. The ROC curve was constructed and demonstrated the best sensitivity and 
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specificity at the b-value of 800 s/mm2. The functionality of 21 renal allografts was 

assessed by Palmucci et al. [116]. Patients were divided into three groups by their CrCl 

values and their ADCs and true diffusion (TD) were estimated with renal function indices. 

Manual region of interests of the transplanted kidney for the three groups were placed and 

the cortical ADC and TD were evaluated. A moderate positive correlation between the 

CrCl and both the ADC and TD, as well as no difference between the ADC and TD values 

for the contiguous groups have been found. The subsequent extension [117] of these 

evaluations to 35 patients revealed a slightly smaller positive correlation than the 

previously reported one [116]. However, acute rejection responses after transplantation 

could not be detected. 

Vermathen et al. [118] investigated the determination of long-term (3 years) 

stability and potential changes for renal allograft recipients. Cortical and medullary region 

of interests were selected and the ADC values were measured from all b-values. A 

significant correlation between different ADC components was demonstrated in the case 

of normal transplants. However, the Fp values were the highest, and the medullary Fp had 

the greatest changes in the case of reduced transplants. Possible relations between the 

selected laboratory results and diffusion parameters in the early period after kidney 

transplantation was explored by Katarzyna et al. [119]. To overcome the DW-MRI T2-

“shine-through” [120], additional exponential ADCs were measured. These measurements 

were conducted in the kidney’s cortex and medulla over multiple user-defined region of 

interests at the b-values of 600 and 1000 s/mm2. They obtained the best-quality AD 

measurement in the renal cortex at the b-value of 1000 s/mm2 because of the relative 

variability of results and SNR. In addition, strong dependencies were observed between 
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the ADC and exponential ADC, measured in the renal cortex at b1000 s/mm2, and the 

estimated GFR. Kaul et al. [121] investigated renal dysfunction assessment using cortical 

and medullary ADC maps. A significant decrease in ADC values of medullas compared to 

those cortexes in normal donor kidneys and normal allografts was reported. Both the 

medulla and cortex ADCs decreased or increased significantly for a rejection or the 

recovery from the rejection itself, respectively. Abou-El-Ghar et al. [122] assessed renal 

functionality for 70 renal allograft patients. DW-MRI scans at two b-values of 0 and 800 

s/mm2 were performed for 49 patients with normal renal allografts (group 1) and 21 

patients with acute graft impairment (group 2: 10 acute cellular rejection (ACR), 7 ATN, 

and 4 immunosuppressive toxicity (IT) rejection types). In a single cross-section, a user-

defined region of interest was placed at the middle of the kidney and a pixel-wise ADC 

was calculated. Results shown that the ADC values of group 2 were significantly lower 

than those of group 1, and no overlap was detected between the ADCs of group 1 and the 

ATN patients of group 2. However, the minimal overlap was observed between the ADCs 

of group 1 and the patients with the ACR and IT of group 2. 

Detection of early renal allograft dysfunction caused by AR and ATN was exploited 

by Liu et al. [107] using DW-MRI. With manually selected cortical and medullary region 

of interests, lower ADC values of the AR group than those of the control groups were 

revealed, whereas no difference in the ADC values between the AR and ATN groups was 

detected. A similar earlier study was conducted by Thoeny et al. [123]. A recent study to 

distinguish between rejection and non-rejection renal transplants was made by Shehata et 

al. [124]. Their study included 36 renal transplants of which 6 were non-rejection and 30 

were rejection. After DW-MRI data motion correction using a 2D B-splines approach, they 
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segmented the largest coronal cross-section of the kidney using a fully automated level sets 

segmentation approach. Then, they calculated the ADCs at different b-values from the 

segmented coronal cross-section for each subject. By using a leave-one-subject-out 

scenario along with a K Star classifier, they got an 87% total classification accuracy. In 

addition, they depicted color-maps from the calculated ADCs for the visualization purpose 

at different b-values. In a more recent study, Shehata et al. [125] determined renal rejection 

type after transplantation using DW-MRI. In their study, 39 renal rejection transplants of 

which 31 were TMR and 8 were ATN-AMR. Firstly, DW-MRI data co-alignment using a 

3D B-splines approach, followed by kidney segmentation using geometric deformable 

models were performed. Then, they calculated 3D cumulative distribution functions 

(CDFs) from ADCs for the entire segmented kidney at different low and high b-values of 

(10, 20, 30, 40, 50, 100) and (200 and 300) s/mm2, respectively. To account for blood 

perfusion and water diffusion of the kidney, they fused the CDFs at low and high b-values 

together. Finally, a 98% classification accuracy was obtained using a stacked non-

negativity constrained autoencoder (SNCAE) classifier along with a leave-one-subject-out 

scenario. 

iv. MRI with specific contrast agent (Ultra small Superparamagnetic Particles of 

Iron Oxide "USPIO")" 

 

Ultra small Superparamagnetic Particles of Iron Oxide (USPIO) is a contrast agent 

used in MRI that may one day be another tool that could be used to diagnose renal rejection 

[126-132]. USPIO is said to be able to detect the amount of macrophage that is present in 

the kidney and therefore tell whether the kidney is under stress and becoming rejected [126-

132]. The more macrophages that are present to absorb the particles through endocytosis, 



 

35 
 

the weaker the USPIO signal will show on the MRI [126-129, 131, 132]. This technique 

has not been used in human kidney transplant studies and is still in its infancy and more 

studies should be performed. The present studies, which were done on rat models in vivo, 

show some promise in diagnosing preclinical renal rejection [126, 127, 129, 131, 132]. 

Though there is some promise, USPIO at present lacks specificity, which means the signal 

could be weakened by other conditions or substances that are found in the body other than 

the presence of macrophage. Another reason why USPIO lacks specificity is that it cannot 

determine why the macrophages are present at this time [126-132]. Even with some of 

these downsides there are enough possible positive aspects of USPIO that more research 

should be conducted. The next step for research of USPIO could be larger animal studies 

whose kidneys are more closely related to humans. Once USPIO is proven relatively safe 

and effective in large animal studies, human studies should be considered.  

H. Conclusion 

Though the treatment of chronic kidney disease has improved greatly with the use 

of transplants, there are still challenges such as graft dysfunction that provide a challenge 

in maintaining survival of the new organ. In the future, the use of image-based diagnosis 

will be improved and implemented in the diagnosis of both pre- and post-transplantation. 

It is hoped that by having these improved imaged based CAD systems that diagnosis of 

graft dysfunction will be less invasive, more accurate, time saving, and inexpensive 

compared to renal biopsies and other traditional methods of diagnosis. By having all of 

these advantages it is expected that graft survival will improve in cases of graft dysfunction.  

I. Thesis Organization 

This thesis is presented in four chapter. The chapters are summarized as followed 
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1. Chapter I 

This chapter was an over view of the function of the kidney, what disorder can arise in 

the kidney mainly CKD. It then discusses how CKD stage 5 is traditionally treated. 

Transplantation provides the best outcome for patients however complications can arise 

and the thesis discusses how graft dysfunction is presently diagnosed and the risk 

associated with renal biopsies. Finally, we discussed the potential alternatives for 

diagnosing graft dysfunction, mainly image based techniques such as DW MRI, BOLD 

MRI, CE US, Ultrasound PD US, DCE MRI.  

2. Chapter II 

This chapter investigates which perimeters will proved the most accurate outcome 

when diagnosing graft dysfunction while using the CAD system and a DW- MRI. 

3. Chapter III 

This chapter investigates the ability of the CAD system using DW-MRI to differentiate 

between the ATN and T-celled mediated rejection. 

4. Chapter IV 

This chapter provides a conclusion for this thesis and mentions future plans for this 

CAD system. This chapter also describes other applications other than its use in assessing 

kidney function. CAD systems can be used for assessing and/or diagnosing prostate cancer, 

lung injury, dyslexia and autism. . 
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CHAPTER II 

INVESTIGATING POSSIBLE SIGNIFICANT DIFFERENCES BETWEEN 

REJECTION AN NON-REJECTED RENAL ALLOGRAFTS USING DIFFUSION-

WEIGHTED MRI 

 

A. Overview 

The main goal of this study was to determine which parameters were correlated 

with a more accurate diagnosis of renal rejection in patients who have undergone kidney 

transplantation, using 4D (3D+b-value) diffusion-weighted MRI (DW-MRI). 

The study included 16 patients with stable renal allograft function (Group 1) and 

37 patients with rejected allografts (Group 2), determined by renal biopsy post 

transplantation. All patients’ kidneys were evaluated using diffusion-weighted magnetic 

resonance imaging (DW-MRI) coupled with a computer aided diagnostic (CAD) system, 

which integrates both clinical and MRI-derived biomarkers. In order to extract the MRI-

based biomarkers, the developed CAD system performs multiple image processing steps, 

including MRI data alignment to handle the motion effects coming from breathing and 

heartbeat, kidney segmentation using a geometric (level-set based) deformable model, and 

estimation of image-based functional biomarkers called apparent diffusion coefficients 

(ADCs) for the segmented kidney at different gradient field strengths and durations (i.e. b-

values of 50 and from 100 to 1000 with a step of 100 s/mm2). Kidneys were studied for 

any areas of diffusion restriction. Radiologists interpreted the images of the DW-MRI 

without prior knowledge of the results of the renal biopsy.  Statistical 
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analyses were performed to investigate possible correlations between renal allograft 

biomarkers and the biopsy diagnosis. The statistical analysis examined four categories of 

parameters: (i) clinical biomarkers (i.e. plasma creatinine (SPCr) and creatinine clearance 

(CrCl)) alone, (ii) the mean apparent diffusion coefficient (ADC) at 11 different individual 

b-values (b50 , and b100 to b1000 with step of 100 s/mm2), (iii) all possible combinations 

of the mean ADCs of individual b-values (i.e. 211sub-models), and (iv) the fusion of the 

clinical biomarkers with the mean ADC of fused b-values (the full model) .  

By using ANOVA along with the likelihood ratio (χ2) tests, SPCr and CrCl were 

found to have a significant effect on the likelihood of acute rejection, as did the mean ADC 

for individual b-values of 500, 600, 700, and 900 s/mm2. However, patient age, sex, and 

mean ADC at other b-values were not statistically significant. The reduced model 

incorporating only ADC at b-values of 100 and 700 s/mm2 together had the lowest Akaike 

information criterion (AIC) of 58.6, and mean ADC at those same two b-values were the 

most informative predictors of acute rejection according to their Akaike weighting. For 

comparison, the top 10 sub-models and the full model were reported. 

Preliminary findings suggest that the most statistical significant individual b-values 

are b-values of 500, 600, 700, and 900 s/mm2. On the other hand, the most informative 

model for diagnosing acute renal rejection using DW-MRI was the model that combines 

only the mean ADCs at b-values of 100 and 700 s/mm2 together along with the clinical 

biomarkers. 

B. Introduction 

The kidney is a significant organ playing vital roles in the maintenance of 

electrolytes, acid-base balance, and blood pressure. It is the primary filtration organ in the 
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human body, keeping in the nutrients that the body needs and expelling out the unwanted 

toxic wastes.  A reduction of kidney function can occur naturally as a result of age or as a 

result of acute kidney injury or chronic disease (CKD).  The primary causes of CKD can 

be attributed to diabetes and hypertension.  However other genetic (polycystic kidney 

disease or APOL1 nephropathy) or autoimmune (lupus nephritis or primary glomerular 

nephritis) diseases [1].  While the primary insult may influence the rate of CKD 

progression, the net effect of the unremitting accelerated loss of the kidney function is the 

build-up of uremic toxins in the body. The complete or near-complete loss of the kidney’s 

ability to ultrafilter the blood and product urine is referred to as end-stage kidney disease 

(ESKD).  Treatment of ESKD to address the deadly build-up of toxins is achieved thru 

renal replacement therapy- dialysis or transplantation. Both of these approaches have 

inherent life altering complications.  Hence preserving the health of this organ is of the 

utmost importance. 

The prevalence in the United States (2010-2014) of CKD was about 14.8% of the 

adult population and 680,000 cases of ESKD.  Due to a limitation in available 

transplantable kidneys only approximately 17,000 yearly transplants were performed 

during this time [2, 3]. Though this has immensely improved the outcome of patients 

diagnosed with stage 5 CKD (ESKD), there are still complications that can occur. One of 

the main concerns is graft dysfunction. Routine post-transplantation clinical evaluation of 

kidney function is of great importance to prevent the graft loss. The diagnostic technique 

presently recommended by the National Kidney Foundation (NKF) to measure overall 

kidney function is glomerular filtration rate (GFR), which is based on measuring the serum 

creatinine level. However, this test has low sensitivity and is a late biomarker for renal 
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dysfunction (a significant change in serum creatinine level is detectable only after the loss 

of 60% of renal function), and it does not assess the function of individual kidneys [4]. The 

current gold standard for acute rejection (AR) diagnosis is a renal needle biopsy. However, 

it is invasive, difficult to perform, costly, and a time-consuming procedure. It can also 

result in over- or under-estimates of AR by only sampling small kidney areas. Thus, the 

need for new noninvasive techniques to assess renal transplant status with the capability to 

provide accurate and early diagnosis of AR is of great clinical importance. A promising 

methodology to diagnose graft dysfunction, without complications, is to utilize imaging 

techniques such as diffusion-weighted magnetic resonance imaging (DW-MRI) with the 

assistance of computer aided diagnostic (CAD) systems.  

In recent years, developing noninvasive image-based CAD systems for renal 

transplant assessment has been an area of increased research. For example, scintigraphy or 

radionuclide, the traditional methods in renal imaging, has been clinically used to 

qualitatively and quantitatively evaluate graft function [57]. However, due to its limited 

spatial resolution, it fails in showing accurate anatomical details, so functional 

abnormalities inside different parts of the kidney (such as cortex and medulla) cannot be 

discriminated precisely [58]. Furthermore, radionuclide imaging includes radiation 

exposure [59], thus limiting the range of its applications [60]. Computed tomography (CT) 

is a commonly available technology that uses contrast agents and allows accurate 

evaluation of various diseases in renal transplantation [61]. However, information gathered 

by CT to detect acute rejection (AR) is unspecific and the contrast agents used are still 

nephrotoxic. Therefore, CT currently has a limited role in diagnosing AR [62]. The 

aforementioned shortcomings make these imaging techniques impractical for clinical use, 
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which has led to the use of alternative imaging techniques to assess renal transplant 

functionality, namely the ultrasound (US) and MRIs.  

In contrast to radionuclides and CTs, US is a safer imaging technique for the 

diagnosis of kidney diseases. However, US suffers from low signal-to-noise ratios (SNRs), 

shadowing artifacts, and speckles that greatly decrease image quality and diagnostic 

confidence. Moreover, conventional US parameters are not exact indicators of renal graft 

dysfunction, and it could only provide a prognostic marker of the graft [75, 76] or even a 

similar indication like other diagnostic possibilities, such as acute tubular necrosis [66, 77]. 

These shortcomings have been circumvented recently by evaluating kidney functions with 

MRI, which allows advanced analysis of different aspects of renal function. There are 

various types of MRI scans that are used for renal transplant assessment. While some of 

them provide only anatomical information, other MRI modalities, such as dynamic 

contrast-enhanced (DCE) and diffusion-weighted (DW) MRI, provide both anatomical and 

functional kidney information. Clinically, nephrologists recommend the use of DCE-MRI 

if the eGFR is greater than 30 ml/min only, because the contrast agent may be nephrotoxic 

for those patients with a eGFR less than 30 ml/min. To account for all eGFR variability 

and to cover all those kinds of patients, DW-MRI is recommended. Therefore, we focused 

our study on the use of DW-MRIs as a diagnostic tool. Briefly, we will review some of the 

existing studies that used DW-MRI in diagnosing acute renal transplant rejection. 

Lately, DW-MRI has become a subject of extensive research as an emerging 

imaging modality for renal function assessment thanks to DW-MRI’s ability to provide 

both anatomical and functional information. For DW-MRI, its functional parameter, called 

apparent diffusion coefficient (ADC), is estimated from different gradient field strengths 
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and durations (b-values) to describe the unique tissue characteristics of inner spatial water 

behavior [112]. Therefore, multiple studies have utilized DW-MRI to assess renal 

functionality by measuring the ADC values, however the results have been mixed [107].  

The aim of this study is to determine which parameters are correlated with a more 

accurate diagnosis of renal rejection in patients who have undergone kidney 

transplantation, using 4D (3D+b-value) DW-MRI. 

C. Materials 

The Institutional Review Boards of the University of Louisville approved the study 

protocol (IRB protocol # XY.ABCD). A total of 53 patients undergoing kidney 

transplantation provided consent to participate in this study with all scans and biopsies 

preformed from July 2014 to June 2015. All kidney transplants were performed at 

University of Mansoura, Egypt and the donated kidneys were from live donors. Patient 

characteristics including sex (44 males and 9 females); mean age (26.26 +/- 9.87 years 

(range, 12-54 years). Patients were divided into these groups (group 1 and group 2). Group 

1 (19 patients) included patients with healthy graft function as indicated by their renal 

biopsies. In Group 1 three patients were excluded from the study due to technical problems 

yielding total of 16 non-rejection renal transplants. All patients were evaluated by renal 

biopsy after DW-MRI  

Group 2 (41patients) included patients with acute renal rejection, based on renal 

biopsy histology. In group 2 a total of 4 patients were excluded from the study due to 

technical problems, yielding a total of 37 patients with rejection allografts. All patients 

underwent DW-MRI and renal biopsy which were performed together, respectively. Both 

DW-MRI and biopsy were included in the final analysis and examined by a nephrologist 
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and a radiologist. Details of DW-MRI demographics and statistics are documented in Table 

1. 

Table 1 

Demographics statistics of the DW-MRI data for the 53 renal transplant patient included 

in the study. 

(N=53) Overall Non-Rejected Rejected 

Age in years Mean (SD) 26.26415094 

(9.87) 

25.125 

(10.07) 

26.75675676 

(9.89) 

Gender N (%)    

Male  44 (83) 12 (75) 32 (86) 

Female  9 (17) 4 (25) 5 (14) 

Age category N (%)    

10-19  15 (28) 5 (31) 10 (27) 

20-29 19 (36) 7 (44) 12 (32) 

30-39 14 (26) 2 (13) 12 (32) 

40-49 4 (7) 2 (13) 2 (5) 

50-59 1 (2) 0 (0) 1 (3) 

Serum Creatinine Clearance 

(%) 

   

10-19 3 (6) 1 (6) 2 (5) 

20-29 4 (8) 0 (0) 2 (5) 

30-39 4 (8) 1 (6) 3 (8) 

40-49 3 (6) 1 (6) 2 (5) 

50-59 6 (11) 0 (0) 6 (16) 

60-69 9 (17) 0 (0) 9 (24) 

70-79 13 (25) 7 (44) 6 (16) 

80-89 6 (11) 2 (4) 4 (11) 

90-99 2 (4) 1 (6) 1 (3) 

100-109 2 (4) 1 (6) 1 (3) 
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110-119 2 (4) 2 (4) 0 (0) 

Plasma Creatinine (%)    

0.0-0.9 4 (8) 3 (19) 1 (3) 

1.0-1.9 37 (70) 10 (63) 27 (73) 

2.0-2.9 8 (15) 2 (13) 6 (16) 

3.0-3.9 1 (2) 0 (0) 1 (3) 

4.0-4.9 2 (4) 0 (0) 2 (5) 

5.0-5.9 1 (2) 1 (6) 0 (0) 

 

1. MRI Protocol 

The MRI study was performed using a 1.5T scanner (SIGNA horizon, General 

Electric Medical systems, Milwaukee, WI). DW-MR images were obtained by using a 

body coil and a gradient multi-shot spin-echo echo-planar sequence (TR/TE, 8000/61.2; 

bandwidth, 142 kHz; matrix, 1.25×1.25 mm2; section thickness, 4 mm; intersection gap, 0 

mm; FOV, 32 cm; signals acquired, 7; water signals acquired at different b-values of (b0, 

b50, b100, b200, b300, b400, b500, b600, b700, b800, b900, and b1000) s/mm2. 

Approximately 50 sections have been obtained in 60 - 120 s to cover the whole kidney. 

D. Methods 

The ultimate goal of this study is to determine which parameters are correlated with 

a more accurate diagnosis of AR in patients who have undergone kidney transplantation, 

using 4D (3D+b-value) DW-MRI. To move towards this goal, all patients’ kidneys were 

evaluated using DW-MRI coupled with a CAD system, which integrates both clinical 

biomarkers (e.g., serum plasma creatinine (SPCr) and creatinine clearance (CrCl) and DW-

MRI physiological biomarkers; namely, apparent diffusion coefficients (ADCs). Then, 

statistical analysis was performed to investigate possible correlations between renal 
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allograft biomarkers and the biopsy diagnosis of either AR or non-rejection (NR) renal 

transplant. Details are outlined below. 

1. DW-MRI Image Analysis 

An important and significant advantage of DW-MRI is the ability to interrelate 

local blood diffusion characteristics with the transplant status. This advantage is achieved 

through the DW-MRIs ability to measure unique tissue characteristics of inner spatial water 

behavior called apparent diffusion coefficient (ADC) [133], which can be used to assess 

the transplant status. In order to obtain accurate estimation of the DW-MRI-derived 

markers, namely ADCs, the developed CAD system [124, 134] performs multiple image 

processing steps. First, in this study the noise effects and image inhomogeneity was 

reduced first for a given DW-MRI data by applying an intensity histogram equalization 

and the nonparametric bias correction technique [135]. This was followed by a 3D B-

splines based non-rigid registration [136] to handle kidney motion to reduce the DW-MRI 

data variability across subjects. Then, the kidney as segmented using a geometric (level-

set based) deformable model [137-139]. After segmenting kidneys, the ADCs [140] were 

estimated at different gradient field strengths and durations (b-values, in our case 11 b-

values) [134]. Furthermore, our CAD system was also designed to demonstrate the local 

voxel-wise diffusion of the segmented DW-MRI data as color maps. These regional display 

mappings will be of great importance for the radiologists to help investigate which region 

of the kidney needs attention and follow-up with appropriate treatment. Figures 9&10 

demonstrates the voxel-wise parametric maps for the diffusion of the transplanted kidney 

for a NR case and an AR case, respectively. The data in Figures 9&10 reveals the expected 

relation of the DW-MRI parameters for NR versus AR status. 
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Figure 9. Illustration sample for a non-rejection subject, where (a) the raw data at the b-

value of 0 s/mm2, (b) the segmented kidney object at the b0 s/mm2, and (c) the average 

voxel-wise diffusion parametric maps across the subject. 
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Figure 10. Illustration sample for a rejection subject, where (a) the raw data at the b-value 

of 0 s/mm2, (b) the segmented kidney object at the b0 s/mm2, and (c) the average voxel-

wise diffusion parametric maps across the subject. 

2. Statistical Analysis 

After the DW-MRI-derived markers were estimated (i.e. ADCs), statistical analysis 

was performed to investigate possible correlations between renal allograft biomarkers and 

the biopsy diagnosis. The statistical analysis examined four categories of parameters: (i) 

clinical biomarkers (i.e. serum plasma creatinine (SPCr) and creatinine clearance (CrCl)) 

alone, (ii) the mean apparent diffusion coefficient (ADC) at 11 different individual b-values 

(b50, and b100 to b1000 with step of 100 s/mm2), (iii) all possible combinations of the 

mean ADCs of individual b-values (i.e. 211sub-models), and (iv) the fusion of the clinical 

biomarkers with the mean ADC of fused b-values (the full model).  
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Statistical calculations were performed using R version 3.1.1. The relationship of 

graft tolerance to ADC was tested using logistic regression of biopsy result (acute rejection 

or non-rejection) against demographic, laboratory, and imaging parameters. The full model 

included age and sex, SPCr and CrCl, and mean ADC at each b-value. Statistical 

significance of each parameter was assessed using likelihood ratio (χ2) tests. Variable 

subset selection was performed using the Akaike information criterion (AIC). All 211 

models were tested, considering all possible subsets of mean ADC, and the model yielding 

the lowest AIC was selected as the most informative. However, some questions have to be 

answered regarding the statistical significant difference between the non-rejection (NR) 

and the early rejection (ER) renal transplants using: (i) the clinical biomarkers (i.e. SPCr 

and CrCl) alone, (ii) the mean ADCs at different individual 11 b-values from (b50 to 

b1000). In addition, two more questions need to be answered regarding how informative 

the built model is using: (i) the mean ADCs of a certain group of individual b-values (sub-

model), and (ii) the fusion of the clinical biomarkers with the mean ADCs of fused b-values 

(the full model). 

E. Results 

ANOVA found that SPCr (χ2 = 10.1, p = 0.002) and CrCl (χ2 = 14.1, p = 0.0002) 

had a significant effect on the likelihood of acute rejection, as did the mean ADC for b = 

500 s/mm2 (χ2 = 3.98, p = 0.0461), b = 600 s/mm2 (χ2 = 5.81, p = 0.0159), b = 700 s/mm2 

(χ2 = 5.65, p = 0.0174), and b = 900 s/mm2 (χ2 = 4.94, p = 0.0262). Patient age, sex, and 

mean ADC at other b-values were not statistically significant, as shown in Table 2. The 

reduced model incorporating only ADC at b = 100 s/mm2 and at b = 700 s/mm2 had the 

lowest AIC = 58.6, as shown in Table 3, and mean ADC at these same two b-values were 
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the most informative predictors of acute rejection according to their Akaike weighting (see 

Figure 11). For comparison, the full model AIC = 65.0. 

Table 2. 

Results of analysis of covariance on the logistic regression model for acute rejection. 

ADCn: mean ADC at b = n; SPCr: serum plasma creatinine; CrCl: creatinine clearance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable χ2 p-value 

ADC50 2.618 0.106 

ADC100 3.791 0.0515 

ADC200 0.610 0.435 

ADC300 1.242 0.265 

ADC400 0.016 0.899 

ADC500 3.978 0.0461 

ADC600 5.813 0.0159 

ADC700 5.654 0.0174 

ADC800 1.446 0.229 

ADC900 4.944 0.0262 

ADC1000 0.087 0.769 

Age 0.846 0.358 

Sex 2.291 0.130 

SPCr 14.068 0.000176 

CrCl 10.070 0.00151 
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Table 3 

Mean ADC included in the models with the 10 lowest AIC values. The full model and the 

model with demographics only and lab results are shown for comparison. Δ = AIC − min 

AIC. 

Δ 
Predictor variables (b-value) 

50 100 200 300 400 500 600 700 800 900 1000 

0            

0.04            

0.57            

0.96            

1.04            

1.14            

1.16            

1.20            

1.28            

1.39            

3.29            

6.40            
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Figure 11. The Akaike weighting criterion versus the sub-models at different b-values, 

reflects how much informative each sub-model is. 

F. Discussion and Conclusions 

Using 4D (3D+b-value) diffusion-weighted MRI (DW-MRI) we determined the 

statistical significance of measured parameters (biomarkers, mean ADC at different 

individual b-values (b50 to b1000), sub-models, and full model) that correlated with renal 

rejection in patients who had undergone kidney transplantation. We hypothesized the most 

accurate parameters for diagnosing would be the full model, due the fact that all the mean 

ADC of each b-value would have been fused giving all the information of the scan and 

therefore giving the whole picture. To the best of our knowledge, this is the first time the 

full model and sub model parameters have been implemented. Based on the AIC the most 

accurate parameters would be the sub model which fuses b=100 s/mm2 and b=700 s/mm2. 

All other parameter’s accuracy lies in between sub-model fused b=100 s/mm2 and b=700 

s/mm2 and full model. A study by Liu et al. [107] explored the detection of early renal 
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allograft dysfunction caused by AR using DW-MRI. With manually selected medullary 

and cortical regions of interests (ROIs), lower ADC values of the AR group than those of 

the control groups were revealed. A similar earlier study was conducted by Thoeny et al. 

[123] Xu et al. [115] investigated the potential power of DW-MRI to diagnose AR renal 

allografts on 26 biopsy-proven rejection and 43 non-rejection patients. They found that 

higher ADC values were obtained from the normal allografts compared to those from AR 

allografts. The receiver operating characteristic (ROC) curve was constructed and 

demonstrated the best sensitivity and specificity at the b-value of 800 s/mm2 

A study by Hueper et al. [114] was conducted to assess renal allografts functionality 

included 64 patients with renal allografts, of which 33 were patients with initial graft 

function (IGF) and 31 were patients with delayed graft function (DGF). These patients 

underwent DW-MRI scans at two b-values (0 and 600 s/mm2). After placement of manual 

region of interests in the lower, middle, and upper poles of the medulla and cortex on 

several portions to cover large regions of the allograft and estimation of renal diffusion 

parameters, including ADC, they concluded that renal diffusion parameters were 

significantly reduced in patients with DGF and their values well correlated with renal 

function in biopsy specimens. Likewise, a recent study by Eisenberger et al. [113] was also 

conducted to evaluate renal allograft functionality. They began with a manual placement 

of region of interests. Then they calculated the means and standard deviations of the ADCs 

from all b-values. A significant reduction in these parameters was observed in the cortex 

and the medulla for the AR patients, and the previously stated parameters were correlated 

with the creatinine clearance (CrCl) values. Kaul et al. [121] examined renal dysfunction 

assessment using cortical and medullary ADC maps. They found a significant decrease in 
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ADC values of medullas compared to those cortexes in normal donor kidneys and normal 

allografts. Both the cortex and medulla ADCs decreased or increased significantly for the 

recovery from the rejection itself or a rejection, respectively. Abou-El-Ghar et al. [122] 

assessed renal functionality for 70 renal allograft patients. DW-MRI scans at two b-values 

of 0 s/mm2 and 800 s/mm2 were performed for 49 patients with normal renal allografts 

(group 1) and 21 patients with acute graft impairment (group 2). In a single cross-section, 

a user-defined region of interest was placed in the middle of the kidney and a pixel-wise 

ADC was calculated. Results show that the ADC values of group 2 were significantly lower 

than those of group 1. Possible relations between the selected laboratory results and 

diffusion parameters in the early period post kidney transplantation was explored by 

Katarzyna et al. [119]. These measurements were conducted in the kidney’s cortex and 

medulla over multiple user-defined region of interests at the b-values of 600 and 1000 

s/mm2. They obtained the best-quality ADC measurement in the renal cortex at the b-value 

of 1000 s/mm2 because of the relative variability of results and signal-to-noise ratio (SNR). 

In addition, strong dependencies were observed between the ADC and exponential ADC, 

measured in the renal cortex at b1000 s/mm2, and the estimated GFR. Vermathen et al. 

[118] inspected the determination of long-term (3 years) stability and potential changes for 

renal allograft recipients. Cortical and medullary region of interests were designated and 

the ADC values were measured from all b-values. A significant correlation between 

different ADC components was demonstrated in the case of normal transplants. 

 In conclusion, our study demonstrated that by fusing specific b-values one can get 

a more accurate picture than if one were to use a single b-value or that of fusing all b-values 

together. Our analysis has also shown that our CAD system utilizing DW-MR images, 
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holds a promise as a reliable non-invasive diagnostic tool. In the future, we plan to test the 

proposed CAD system on a larger and more diverse cohort of patients to confirm the 

accuracy and robustness of the proposed technique. In addition, new data set with lower b-

values will be included to investigate whether these lower b-values will be more helpful in 

finding more significant differences between non-rejection and rejection transplants. 

Furthermore, the ability of the developed technique needs to be examined in diagnosing 

different types of rejection for proper treatment administration
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CHAPTER III 

A NEW NON-INVASIVE APPROACH FOR EARLY CLASSIFICATION OF RENAL 

REJECTION TYPES USING DIFFUSION-WEIGHTED MRI 

 

A. Overview 

Although renal biopsy remains the gold standard for diagnosing the type of renal 

rejection, it is not preferred due to its invasiveness, recovery time (1-2 weeks), and potential 

for complications, e.g., bleeding and/or infection. Therefore, there is an urgent need to 

explore a non-invasive technique that can early classify renal rejection types. In this 

chapter, we develop a computer-aided diagnostic (CAD) system that can classify acute 

renal transplant rejection (ARTR) types early via the analysis of apparent diffusion 

coefficients (ADCs) extracted from diffusion-weighted (DW) MRI data acquired at low- 

(accounting for perfusion) and high- (accounting for diffusion) bvalues. The developed 

framework mainly consists of three steps: (i) data co-alignment using a 3D B-spline-based 

approach (to handle local deviations due to breathing and heart beat motions) and 

segmentation of kidney tissue with an evolving geometric (level-set based) deformable 

model guided by a voxel-wise stochastic speed function, which follows a joint kidney-

background Markov-Gibbs random field model accounting for an adaptive kidney shape 

prior and visual kidney-background appearances of DW-MRI data (image intensities and 

spatial interactions); (ii) construction of a cumulative empirical distribution of ADC at low 

and high b-values of the segmented kidney accounting for blood perfusion and water 

diffusion, respectively, to be our discriminatory ARTR types feature; and (iii) 
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classification of ARTR types (acute tubular necrosis (ATN) anti-body- and T-cell- 

mediated rejection) based on deep learning of a non-negative constrained stacked 

autoencoder. Results show that 98% of the subjects were correctly classified in our “leave-

onesubject-out” experiments on 39 subjects (namely, 8 out of 8 of the ATN group and 30 

out of 31 of the T-cell group). Thus, the proposed approach holds promise as a reliable 

non-invasive diagnostic tool. 

B. Introduction 

Acute renal rejection, i.e. the immunological response of the body to a foreign 

kidney, is the most serious cause of renal dysfunction [141]. Medicine has come very far 

in the treatment of CKD and renal failure with the evolution of kidney transplants, which 

has significantly improved patient outcomes and quality of life. In the U.S., approximately 

17,000 renal transplants are performed annually, and given the limited number of donors, 

the salvage of a transplanted kidney is very important [141]. Although transplants can 

improve a patient’s well-being, there is a potential risk of kidney rejection by the patient 

leading to a loss of graft function, and, if not treated in a timely manner, even death [142, 

143]. Therefore, early determination of the type of renal rejection is crucial for the 

identification of proper treatment to administer. As a reminder, the different types of renal 

rejection include: (i) acute tubular necrosis (ATN) anti-body mediated rejection; (ii) T-cell 

mediated rejection; (iii) immunosuppressive toxicity (IT); and (iv) viral infection (VI). 

Each of these rejection types has its own specific treatment procedure and the existence of 

two types of rejection at the same time further complicates and slows down the treatment 

process [41].  
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Currently, renal biopsy is the most definitive technique for diagnosing renal 

rejection type. However, there are a number of significant drawbacks to this method; 

specifically, this procedure is invasive and expensive, increases the potential morbidity 

rate, prolongs recovery time (one to two weeks), and has a high probability for over- or 

under- estimating the extent of inflammation in the entire graft [141]. Hence, a non-

invasive imaging technique coupled with computer-aided diagnostic (CAD) techniques 

holds a lot of promise due to its ability to simultaneously provide information on each 

kidney separately, speed of analysis, and decrease in patient morbidity, healthcare costs, 

and patient recovery time.  

A number of different methodologies are being implemented to assess kidney 

function. In particular, diffusion-weighted (DW) MRI is an emerging imaging technology 

that is based on the measurement of water molecules inside soft tissue [112]. The main 

advantage of DW-MRI is its ability to provide both anatomical and functional information, 

while avoiding radiation exposures and contrast agents administration. Several studies 

have utilized DW-MRI for functional renal assessment by measuring the cortical apparent 

diffusion coef- ficient (CADC) and medullary ADC (MADC), but the results have varied 

[144]. As a result, none of the studies appear to indicate any difference between the types 

of renal impairment except for the study by Abou-El-Ghar et al. [122] which showed a 

distinctive pattern. Their study consists of 21 patients with acute graft impairment with 10 

Tcell, 7 ATN, and 4 IT rejection types. A region of interest (ROI) is placed at the middle 

of the kidney in a single cross-section including the entire renal parenchyma, but excluding 

the renal sinus. For kidney images with an abnormal focal area and high signal intensity, 

another region of interest is selected separately. On a pixel-by-pixel basis, the ADC values 
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for the patients are calculated from the three groups, which demonstrate that the ADC of 

ATN appears as heterogeneous, a mosaic pattern with a tiger stripe appearance. The 

investigators conclude that under low b-values, ADC values are influenced by both 

diffusion and blood perfusion, while under high b-values, the influence of blood perfusion 

is avoided. Another study by Eisenberger et al. [113] investigates manually placing the 

region of interests in the upper, mid, and lower poles of the cortex and medulla on several 

slices to cover large regions of the allograft. Then, all individual region of interests are 

merged to yield one region of interest for the cortex and one for the medulla. Mean and 

standard deviations of ADCs are calculated for the five patients, four of which have AR 

and one has ATN. However, due to the lack of patients with transplant dysfunction, the 

investigators proposed that the trend indirectly indicates possible differences between the 

AR and the ATN groups. Two additional studies [145, 110] conclude that perfusion MRI 

demonstrates a significant decrement in renal perfusion of AR allografts, but not in ATN 

allografts. While other studies [122, 113] support the premise that both the levels of water 

diffusion and blood perfusion are impaired in AR allografts, whereas only the level of water 

diffusion is impaired in the ATN allografts.  

In addition to DW-MRI, another imaging technique blood Oxygen level-dependant 

(BOLD) MRI has been utilized to study renal rejection, using the amount of oxygen 

diffused blood in the kidney to examine the proper functionality of the kidney. Namely, 

the amount of deoxyhemoglobin is measured by the apparent relaxation rate (ARR) 

parameter [144]. Some studies find that the ATN kidneys have higher medullary ARR 

values than those of AR [144, 108–110], while others have discovered that kidneys with 

ATN have higher cortical ARR values than those with AR [109]. Nonetheless, the general 
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consensus appears to be one in which higher ARR values. All of the aforementioned 

clinical statistical analysis studies have some limitations. For example, the methods employ 

a manual delineation of the kidney using a 2D region of interest, which makes this 

delineation subjective. In addition, the methods are unable to compensate for the motion 

of the kidney since the methods did not account for the whole kidney. Furthermore, several 

of the studies performed only a statistical analysis to investigate the significant difference 

between pairs at certain b-values. Finally, the studies mentioned above did not investigate 

the fusion of ADC at multiple low and high b-values.  

Therefore, to overcome these limitations, we are developing a fully automated CAD 

system, shown in Figure 12, with the ability to: (i) delineate the whole kidney and handle 

its motion; and (ii) implement a stacked autoencoder to fuse the ADC values that have been 

calculated from the segmented DW-MRI data at low and high b-values. Experimental 

results, shown in, “Experimental Results,” hold promise of the developed CAD system as 

a reliable non-invasive diagnostic tool. To the best of our knowledge, this is the first CAD 

system of its kind to distinguish between different types of ARTR. 
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Figure 12. Block-diagram of the proposed framework for kidney rejection types 

classification from diffusion weighted MRI 

C. Methods 

Starting from a given input DW-MRI data, our CAD system classifies T-Cell from 

ATN mediated rejection kidneys in the following three steps: (i) segmenting kidney tissues 

from surrounding abdominal structures (“Preprocessing, Co-Aligment, and 3D Kidney 

Segmentation); (ii) estimating voxel-wise physiological parameters (ADC) to form a 3D 

parametric map for detecting the type of rejected kidney (“Estimating and Depicting 

Diffusion Parameters”); and (iii) classifying T-Cell from ATN rejection kidney status to 

evaluate the proposed CAD system as a diagnostic test (“Autoencoding and Deep 

Learning-Based Classifier”). 

1. Preprocessing, Co-alignment, and 3D Kidney Segmentation 

Initially, we reduce noise effects and DW-MRI heterogeneity by applying an 

intensity histogram equalization and the nonparametric bias correction method proposed 

in [135] on each DW-MRI sequence. Then, a 3D B-splines based transformation [136] 
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using the sum of square difference (SSD) as a similarity metric is applied to handle kidney 

motions, and thus get more accurate segmentation. Finally, we used the 3D kidney 

segmentation approach proposed in [137] using level-sets from DW-MRI. To provide the 

voxel-wise guidance of the level-sets, three features are integrated into a joint MGRF 

model [146], namely, regional appearance [147, 148], shape, and spatial DW-MRI features 

as shown in Figure 13. More details about our segmentation approach can be found in [137, 

124]. 

 

Figure 13. Illustration of Joint MGRF estimation guiding the level-set segmentation 

technique 

2. Estimating and Depicting Diffusion Parameters 

After segmenting the kidneys, their discriminatory physiological features are 

estimated from the images and used to distinguish between ATN and T-cell of ARTR types. 

This paper uses the ADC defined by Le Bihan [140] as a rejection transplant status feature: 

𝐴𝐷𝐶𝑝 =
1

𝑏0−𝑏
ln (

𝑔𝑏:𝑝

𝑔0:𝑝
) =

ln 𝑔𝑏:𝑝−ln 𝑔0:𝑝

𝑏0−𝑏
    where p = (x, y, z) denotes a voxel at position 
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with discrete Cartesian coordinates (x, y, z), and the segmented DW-MR images g0 and gb 

were acquired with the b0 and a given different b-value, respectively. 

 

Figure 14. Empirical ADC distributions and their CDFs for one rejection subject at 

different b-values of (b50, b100, b200, and b300) s/mm2. 

In order to reduce data dimensionality for the rejection transplant status 

classification, we characterize the entire 3D ADC maps, collected for each subject at the 

different b-values, by the CDFs of the ADCs, as shown in Figure 14. Differentiation 

between rejection types can be obtained using DW-MRI acquired at low and high b-values. 

In this paper, we constructed the CDFs at low and high b-values of (b10, b20, b30, b40, 

b50, b100) and (b200 and b300), respectively, to classify the type of rejection. The training 

CDFs are used for deep learning of a stacked non-negativity constrained autoencoder 

(SNCAE) classifier detailed in, “Autoencoding and Deep Learning-Based Classifier.” 

3. Autoencoding and Deep Learning-Based Classifier 

To classify the rejection transplant status, our CAD system employs a deep neural 

network with a stack of autoencoders (AE) before the output layer that computes a softmax 

regression, generalizing the common logistic regression to more than two classes. Each AE 



 

63 
 

compresses its input data to capture the most prominent variations and is built separately 

by greedy unsupervised pre-training [149]. The softmax output layer facilitates the 

subsequent supervised backpropagation-based fine tuning of the entire classifier by 

minimizing the total loss (negative log-likelihood) for given training labeled data. Using 

the AEs with a non-negativity constraint (NCAE) [150] yields both more reasonable data 

codes (features) during its unsupervised pre-training and better classification performance 

after the supervised refinement. 

 

Figure 15: Block-diagram of an NCAE (a) and SNCAE (b) classifier 

Let W = {We j ,Wd i : j = 1,...,s; i = 1,...,n} denote a set of column vectors of 

weights for encoding (e) and decoding (d) layers of a single AE in Figure 15. Let T denote 

vector transposition. The AE converts an n-dimensional column vector u = [u1,...,un] T of 

input signals into an s-dimensional column vector h = [h1,...,hs] T of hidden codes 

(features, or activations), such that s n, by a uniform nonlinear transformation of s weighted 
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linear combinations of signals: ℎ𝑗 = 𝜎((𝑊𝑗
𝑒)

𝑇
𝑢) ≡ 𝜎(∑ 𝑤𝑗:𝑖

𝑒 𝑢𝑖)𝑛
𝑖=1 where σ(...) is a certain 

sigmoid, i.e. a differentiable monotone scalar function with values in the range [0, 1] . 

Unsupervised pretraining of the AE minimizes total deviations between each given training 

input vector uk; k = 1,...,K, and the same-dimensional vector, uW:k reconstructed from its 

code, or activation vector, hk (Figure 15(a)). The total reconstruction error of applying such 

AE to compress and decompress the K training input vectors integrates the 2-norms of the 

deviations:𝐽𝐴𝐸(𝑊) =
1

2𝐾
∑ ‖�̂�𝑤: 𝑘 − 𝑢𝑘‖2𝐾

𝑘=1  To reduce the number of negative weights 

and enforce sparsity of the NCAE, the reconstruction error of Eq. (2) is appended, 

respectively, with quadratic negative weight penalties, f(wi) = (min{0, wi}) 2 ; i = 1,...,n, 

and Kullback-Leibler (KL) divergence, JKL(hWe ; γ), of activations, hWe , obtained with 

the encoding weights We for the training data, from a fixed small positive average value, 

γ, near 0: 𝐽𝑁𝐶𝐴𝐸(𝑊) = 𝐽𝐴𝐸(𝑊) + 𝛼 ∑ ∑ 𝑓(𝑤𝑗:𝑖) + 𝛽𝐽𝐾𝐿(ℎ𝑤𝑒;𝛾)𝑛
𝑖=1

𝑠
𝑗=1 Here, the factors α ≥ 

0 and β ≥ 0 specify relative contributions of the non-negativity and sparsity constraints to 

the overall loss, JNCAE(W), and 𝐽𝐾𝐿(ℎ𝑤𝑒: 𝑗𝑙𝑜𝑔 (
ℎ𝑤𝑒:𝑗

𝛾
) + (1 − ℎ𝑤𝑒: 𝑗)log (

1−ℎ𝑤𝑒:𝑗

1−𝛾
) 

The classifier is built by stacking the NCAE layers with an output softmax layer, 

as shown in Figure 15(b). Each NCAE is pre-trained separately in the unsupervised mode 

by using the activation vector of a lower layer as the input to the upper layer. In our case, 

the initial input data consisted of the 8 CDFs, each of size 100, i.e. n = 800. We calculated 

the minimum ADC value, the maximum ADC value, and the minimum increment value; 

thus, we have the step value. Then, we constructed each CDF as 100 regions based on the 

calculations using the aforementioned parameters in order to not waste any information 

from the ADCs and, thus, making our data well presented. The bottom NCAE compresses 
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the input vector to s1 first-level activators, compressed by the next NCAE to s2 second-

level activators, which are reduced in turn by the output softmax layer to s◦ values. 

Separate pre-training of the first and second layers by minimizing the loss of Eq. 

(3) reduces the total reconstruction error, as well as increases sparsity of the extracted 

activations and numbers of the non-negative weights. The activations of the second NCAE 

layer, h[2] = σ(We [2] Th[1]), are inputs of the softmax classification layer, as sketched in 

Figure 14(b) to compute a plausibility of a decision in favor of each particular output class, 

c = 1, 2: 𝑝(𝑐; 𝑤𝑜:𝑐) =
exp (𝑊𝑜:𝑐

𝑇 ℎ[2])

exp(𝑊𝑜:1
𝑇 ℎ[2])+exp  (𝑊𝑜:2

𝑇 ℎ[2] ; 𝑎𝑛𝑑 𝑐 = 1,2; ∑ 𝑝(𝑐; 𝑊𝑜:𝑐; ℎ[2]) = 12
𝑐=1 .Its 

separate pre-training minimizes the total negative log-likelihood J◦(W◦) of the known 

training classes, appended with the negative weight penalties:𝐽° = (𝑊°) =

−
1

𝐾
∑ 𝑙𝑜𝑔𝑝(𝑐𝑘; 𝑊𝑜:𝑐)𝐾

𝑘=1 + 𝛼 ∑ ∑ 𝑤𝑜: 𝑐: 𝑗𝑠2
𝑗=1

2
𝑐=1  

Finally, the entire stacked NCAE classifier (SNCAE) is finetuned on the labeled 

training data by the conventional error backpropagation through the network and 

penalizing only the negative weights of the softmax layer. In our experiments, we trained 

our network and tested it based on a leave-one-subject-out scenario 39 times (number of 

data sets) until we reached the best average accuracy over the entirety of the testing process. 

At this point, we considered s1 = 25, s2 = 5, s◦ = 2, α = 0.03, β = 3, and γ = 0.5 as the 

optimum settings for giving the best accuracy. It is worth noting that more conventional 

classification methods that deal directly with the voxel-wise ADCs of the entire kidney 

volume as discriminative features encounter two difficulties: (i) varying input data size 

requires either data truncation for larger kidney volumes or zero padding for smaller ones 

and (ii) large data volumes lead to considerable time expenditures for training and 

classification. Our SNCAE classifier exploits only the 100-component CDFs for the 3D 
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ADC maps estimated at the b-values of (b10, b20, b30, b40, b50, b100, b200, and b300). 

Fixing the input data size to 8 for such CDFs helps to overcome the above challenges for 

arbitrary sizes of the original ADCs and notably accelerates the classification. 

D. Experimental Results 

The proposed CAD system has been tested on a 39 biopsy-proven cohort of which 

8 are ATN and 31 are T-cell renal rejection transplants. The DW-MRI data of these patients 

has been acquired at different b-values ranging from b0 to b1000 using a SIGNA Horizon 

Scanner (General Electric Medical Systems), with the following parameters: TR = 8000 

ms; FOV = 32 cm; in-plan resolution of 1.25 × 1.25 mm2; slice thickness = 4 mm; inter-

slice gap = 0 mm; and two excitations. Since the segmentation is an essential step in 

developing any CAD system for renal rejection types classification, we tested the 

performance of our segmentation approach on the aforementioned DW-MRI data. Figure 

16 shows some coronal segmentation results for one subject acquired at different b-values. 

The accuracy of the proposed segmentation method has been evaluated using the 

percentage Dice similarity coefficient (DSC%) [151], the 95-percentile modified 

Hausdorff distance (MHD) [152], and the percentage of the absolute kidney volume 

difference (AKVD%). Metrics were computed by comparing the ground truth 

segmentation to results obtained by the developed segmentation technique. The ground 

truth segmentations were manually created by an MR expert. The DSC%, MHD mm, and 

AKVD% statistics obtained for all test data sets for our segmentation approach of the 

kidney are 92.37±2.34%, 6.87±2.37 mm, and 14.1±4%, respectively, which confirms high 

accuracy and robustness of the presented segmentation method, even at the higher b-values. 
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For more details about the kidney segmentation evaluation metrics and kidney 

segmentation results, see [138]. 

 

Figure 16. A sample coronal cross-sectional segmentation results of our segmentation 

technique for one subject using DW-MRI data at b-values of (e.g., b0, b300, b500, b700, 

and b900) s/mm2. 

Following kidney segmentation, our CAD system classifies the rejection 

transplants types. Figure 17 shows a sample of CDFs constructed for an ATN rejection 

subject vs. a T-cell rejection one at b-values of (b50, b100, b200, and b300). Obviously, 

the CDFs of the two different groups are completely separable; thus, those CDFs could be 

used as discriminatory features for classification between the two kidney transplant 

rejection groups. By using a SNCAE-based classifier and the previously constructed 8 

CDFs along with a leave-one-subject-out classification scenario, our approach has 



 

68 
 

correctly classified 98% of the data, namely, 8 out of 8 of ATN and 30 out of 31 of T-cell 

rejection kidney transplants.  

 

Figure 17. A sample of CDFs for two rejection subjects (ATN in solid lines and T-cell in 

dashed lines) at b-values of (b50, b100, b200, and b300) s/mm2. 

To validate our results, we compared the results obtained from the developed 

SNCAE classifier with ten other well-known classi- fiers provided by the Weka tool [153]: 

MultiClassClassifier (MCC), HyperPipes (HPs), IB1, K-nearest IBK, NNge, Logistic (Lg), 

END, J48, RandomTree (RT), and RandomForest (RF). Table 4 compares our classifier to 

these ten classifiers in terms of the number of ATN rejection subjects that have been 

correctly classified (ATN/8), the number of T-cell rejection subjects that have been 

correctly classi- fied (T-cell/31), and the total classification accuracy (Accuracy%). As 

shown in Table 4, our classifier provides the best diagnostic accuracy of 98%, which 

confirms the robustness and the accuracy of the developed classifier. These initial 
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diagnostic results hold promise of the proposed CAD system as a reliable non-invasive 

diagnostic tool. 

Table 4 

Diagnostic accuracy of our CAD system using SNCAE classifier and different classifiers 

from Weka tool [150]. 

 

E. Conclusions 

The CAD system presented here has been demonstrated to be capable of early 

diagnosis and classification of renal transplant rejection types from 4D DW-MRI data. The 

CAD system combines existing and new techniques for non-rigid image alignment, kidney 

segmentation with a deformable boundary, estimation of spatial diffusion parameters 

(ADCs), and an SNCAE classification of the rejection transplanted kidney status using 

CDFs of the ADCs as integral status descriptions. In a test on a biopsy-proven cohort of 39 

participants, our system showed an overall accuracy of 98% in detecting ATN and T-cell 

rejection kidneys. These experimental results make the proposed framework a reliable non-

invasive diagnostic tool for the early identification of renal rejection type. As a future 

avenue, we intend to increase the test data-sets of both ATN and T-cell rejection kidney 

transplant groups in order to further validate the accuracy and robustness of our framework 

in both segmentation of the DW-MRI and diagnosis. In addition, we intend to account for 

other different causes of rejection such as drug toxicity and viral infection, thus increasing 
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the number of rejection groups to four, and then explore the ability of our framework to 

distinguish between those four types of renal rejection. 
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CHAPTER IV 

CONCLUSION AND FUTURE WORK 

This thesis focused on why it is important that an alternative to renal biopsies needs 

to be developed that is non-invasive, less expensive economically, and saves time in 

diagnosing. The computer aided diagnostic system is that alternative. The second part also 

provide which parameters were the best for diagnosing. The third part of this thesis 

demonstrated that not only can the CAD system diagnose between rejected and non-

rejected but it shows a high level of accuracy in differentiating between ATN and T-cell 

mediated rejection. With this thesis, it is clear to see that the CAD system using DW-MRI 

will one day be an alternative in diagnosing renal graft dysfunction. 

As already stated before some future steps that will be taken for this study will be 

to obtain a larger more divers cohort of patients with are more verity of kidney disorder 

(i.e. nephrotoxic mediated rejection, acute kidney disease, and pre-clinical rejection). It is 

our goal as well to analyze smaller b-values and to confirm accuracy of both diagnosing 

and differentiating different types of graft dysfunction. 

However, though this thesis focused on diagnosing disorders of the kidney [154-

163], this work is not limited to diagnosing renal graft dysfunction. This work can be 

extended to apply to analyzing and diagnosing disorders of the prostate [164-176], heart 

[177-200], retina [201-207], lungs [208-249], and conditions of the brain such as Autism 
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and Dyslexia [250-286]. 

In America prostate cancer is the second cancer-associated cause of deaths among 

males. A study form 2015 found that there was about 220,800 new cases diagnosed that 

year. The study also found that the mortality rate for prostate cancer was estimated to be at 

27,540. Luckily, if prostate cancer is detected early it can increase the rate of survival since 

doctors can provide better treatment at earlier stages of the disease. This fact has provided 

incentive for researchers to develop non-invasive diagnostic CAD systems to detect 

prostate cancer. Such works can be found in [164-176]. 

Another application CAD systems can be used for is assessing the heart. With CAD 

systems the heart can be assessed for myocardial perfusion. CAD systems can also aid in 

the diagnosis, prognosis, and management of ischemic heart disease in patients. Works on 

this subject can be found [177-200]. 

Retinal abnormalities is another application that is implementing the use of CAD 

systems. Many ophthalmologists utilize visual interpretation to identify diseases of the 

retina. This however, can prove inaccurate and cause the patent to be missed diagnosed 

and at times lead to fatality. Due to this fact, there is a great need for CAD systems in this 

field of study. Works on this CAD systems in retinal abnormalities can be found [201-207]. 

Disorders of the lungs can also be have also been researched using CAD systems. 

The main side effect of lung cancer treatment is lung injury caused by radiation therapy. 

However, higher doses of radiation increase the effectiveness of controlling the size of the 

cancer while at the same time injuring normal lung tissue. Almost 37% of patients who 

undergo radiation will develop some form of lung injury. CAD systems can provide early 
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detection of lung injury and improve management of radiation treatment. Studies in this 

subject can be found [208-249]. 

Finally, CAD systems can one day be used in diagnosing conditions of the brain 

such as Autism and Dyslexia. Autism is a neuro-development disorder with a multitude of 

symptoms. The most dormant of the symptoms being that of repetitive behavior and social 

impairments. Dyslexia on the other hand is a condition that causes the patient to not read, 

right, or spell at an age-appropriate level despite maintain a normal to even high 

intelligence in all other areas. By detecting these conditions early in life and schooling 

children and parents can be provided with the necessary resources to live a somewhat 

normal lifestyle with their disability. A CAD system that scans the brain can provide the 

patent with early diagnosis and provide a better understanding in how these conditions 

manifest in the brain.  Such studies are included [250-286]. 

 The field of medicine is ever changing and with these CAD systems we are 

entering a new frontier that will improve the way doctors practice medicine and prolong 

the life’s’ of patients. 
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