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ABSTRACT 

BONE STRENGTH AND ARCHITECTURE: PHARMACOLOLOGICAL 
TARGETING OF CAMKK2 AS A METHOD FOR ENHANCING BONE QUALITY 

Zachary James Pritchard 

  June 24th 2014 

Mice lacking or pharmacologically inhibited for calcium/calmodulin-dependent 

protein kinase kinase 2 (CaMKK2) have enhanced bone mass and 

microarchitecture. This enhanced bone mass and architecture is due to changes 

in osteoblast and osteoclast numbers as well as activity.  Whether the enhanced 

bone mass translated to increased bone quality and strength was further 

explored by developing a method to directly test the trabecular strength of the 

distal femur.  Micro computed tomography (CT)-based measurement of the 

length of the epiphysis of the distal femur, aided in its removal, allowing the 

exposure of the trabecular bone volume used to determine the microarchitecture 

parameters. Following the development of this method, the hypothesis that the 

lack or inhibition of CaMKK2 results in enhance bone strength as well as bone 

mass could be tested. Our results then show a strong correlation between the 

enhanced bone mass and bone strength in animals lacking or acutely inhibited 

for CaMKK2. 
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CHAPTER 1 

INTRODUCTION  

Osteoporosis is a pathological condition wherein decreased bone strength 

increases the risk of fracture. Bone strength is a term that intertwines bone 

quality and bone density. Bone quality refers to the material and architectural 

properties of the bone while bone density simply measures the amount of bone 

present. Osteoporosis is widely known to accompany aging; specifically in elderly 

women. Hormonal changes are the most common contributor of osteoporosis, 

with post-menopausal women being the prime example. Osteoporosis, however, 

can also be an unintended consequence of treating other illnesses. Patients 

taking glucocorticoids are an example, often unintentionally developing 

osteoporosis [1, 2]. Osteoporosis is a leading risk factor for a variety of problems, 

including fracture. Fracture events range greatly, from simple transverse 

fractures to convoluted comminuted fractures. Hip fractures are credited with the 

lion’s share of complications and many treatment options are directed towards 

these types of fractures in particular [3]. The development of clots and 

pneumonia are common after such breaks and are some of the leading problems 

faced by hip fracture patients. These fractures are often exacerbated by other 

confounding conditions and increase a patient’s risk of mortality after fracture [4]. 

Thus prevention of fractures remains a principal objective in assisting 

osteoporotic patients. Progress towards this goal is predominantly achieved 

through maintaining and improving bone strength. 
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Addressing osteoporosis requires understanding the underlying processes 

that dictate the continuous upkeep of the skeleton. Tasked with this are a variety 

of different cells, the two that have garnered the most focus are the osteoblasts 

and osteoclasts. Osteoblasts concern themselves with depositing osteoid and 

facilitating the mineralization of our bones. Osteoclasts, on the other hand, resorb 

bone in response to a complex signaling pathway. The osteoclasts and 

osteoblasts each regulate the other and overall, this dynamic process is deemed 

“bone remodeling” [5]. The two types of cells work in concert to repair, maintain, 

and adjust the skeleton. This process balances itself accordingly throughout 

one’s lifetime to meet the body’s demands. Osteoporosis describes a change in 

this balance where deposition of bone falls below that of its removal. This results 

in net losses of material; generating bone weaknesses resulting in risks to health. 

Treating osteoporosis has been concerned with manipulating bone remodeling. 

Both lifestyle changes and pharmacological intervention are often part of treating 

osteoporosis.  

  Developing positive life style habits have been important to 

decreasing the likelihood of falls. Mechanical stimulation from exercise positively 

influences bone remodeling. The resulting influence has both qualities of 

anabolic and ant-catabolic qualities treatments[6]. As activity levels decrease 

with age, maintaining some level of activity ensures a slower rate of bone loss, 

and potentially reverses some of the deleterious effects of osteoporosis. 

Supplementing exercise increases one’s awareness, leading to the prevention of 

falls. Falls can be avoided with simple exercises that strengthen and improve gait 
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and balance [7] or avoiding seasonal hazards such as ice. However, such an 

increased sense of mobility can also lead to an increased number of falls due the 

increased exposure to risk, thus giving the perception of exercise being 

ineffective. Positive changes in diet have also been shown to protect against 

osteoporosis. Calcium supplements or increased consumption of calcium rich 

food is often prescribed as an aid against osteoporosis. This tactic should not be 

limited to the onset of osteoporosis but may be best to act decades in advance. 

Dietary measures such as increasing milk consumption in children and 

adolescents  appear to have a protective effect against the onset and 

development of osteoporosis [8].  Vitamin D is often given also as a treatment in 

addition to calcium, maximizing calcium absorbed.  Both have been shown to 

decrease prevalence of fractures [9]. Behavioral modifications are but one aspect 

of managing osteoporosis and are often used alongside pharmacological choices 

to potentiate long term success. 

  The primary approaches for pharmacologically addressing osteoporosis 

include both anti-resorptive and anabolic treatment strategies. Anti-resorptive 

treatments are chiefly tasked with restricting bone reabsorbed during bone 

remodeling, resulting in a net gain in bone deposited. Bisphosphonates (BPs) are 

the most common anti-resorptive option. BPs act primarily through binding to 

calcium and promoting osteoclast apoptosis when encountered, which in turn 

lowers the volume of bone removed, allowing more bone to remain [10]. 

Antiresorption can be accomplished by alternate routes, such as interrupting 

signal molecules to osteoclasts. An example for this tactic is Denosumab. 
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Denosumab is an inhibitor of nuclear factor kappa b ligand (RANKL). RANKL has 

a role in the maturation and propagation of osteoclasts which, if interrupted, 

results in a net reduction in bone resorbed [11]. Manipulating bone remodeling in 

the resorptive manner however eventually slows the remodeling process and 

leads to decreased bone tissue quality. The anabolic option for treatment is more 

appealing because it avoids this limitation. 

 At present, there is only one approved option for anabolic treatment of 

osteoporosis. Para-thyroid hormone (PTH) or teriparatide (TPTD) has a 

stimulatory effect on bone remodeling and encourages an accelerated rate of 

remodeling which can result in an increase in bone quality.  

 PTH does stimulate bone remodeling, however this influences the entire 

bone remodeling system. That is both bone deposition and bone removal are 

increased. With intermittent use, PTH can be used to stimulate osteoblast activity 

as it binds to osteoblasts, and without continued presence of PTH 

osteoclastogenesis is not upregulated allowing for bone deposition and limited 

amounts of bone resorption. If PTH is allowed to have continuous high levels 

then bone removal would be upregulated also. [12]. 

 Current options for the treatment of osteoporosis help reduce the risk of 

fracture and, in some cases, actively enhance bone quality. However, anti-

resorptive and anabolic treatments have a variety of limitations. For example,  

there are a variety of adverse effects ranging from gastrointestinal upset to 

unfavorable methods of delivery. These reduce patient compliance s[13]. 

Potential treatment options of osteoporosis would need to limit the amount of 
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side effects and allow for higher patient compliance. Such treatments would be 

screened to also include both anabolic and anti-catabolic qualities. One such 

option may lie with the serine-threonine kinase CaMKK2.   

 Calcium/calmodulin-dependent protein kinase kinase two (CaMKK2) is a 

member of the CaMK cascade and is activated with the release of intercellular 

calcium. CaMKK2 and phosphorylates CaMK1 or CaMK4 and has roles in 

regulating energy balance, acting through AMPK [14],. This serine-threonine 

kinase family has members that are ubiquitously expressed such as CaMK1 and 

CaMK2, but CaMKK2 itself tissue-restricted [15]. Its locations include different 

areas of the brain and lower levels of CaMKK2 are expressed in the bone, spleen 

and lungs. Expression and the ablation thereof in murine models have been 

linked with impairment of memory in males [16] and susceptibility to 

schizophrenia [17]. These links to unfavorable conditions or possible adverse 

effects of targeting CaMKK2 are paired with distinct benefits. These potential 

worrisome drawbacks may be avoided with conditional knockout models or drug 

intervention. 

 Mice deficient in CaMKK2 appear to be protected from diet induced 

obesity. This protection extends to glucose intolerance and insulin resistance 

derived from influencing macrophages activation and response [15].  

Hematopoietic stem cell (HSC) numbers were decreased along with a decreased 

total of bone marrow cells.  However these reduced populations of HSCs suffer 

no difference in proliferation or survival [18].   Animals deficient in CaMKK2 show 

an immediate visual difference in their skeletal system; the long bones appear 
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paler than wild type animals. This difference investigated further revealed 

significant differences in bone cells. Osteoblasts and osteoclasts populations 

were inversely altered; osteoblast populations grew whilst osteoclast populations 

declined.  Osteoclasts additionally displayed fewer nuclei and decreases in their 

relative size. Changes present in cellular populations were joined with 

significantly increased bone volume. Altering naturally occurring ratios of 

osteoblasts and osteoclasts appears to be responsible for promoting the 

observed phenotype. Dramatic changes in bone volume signaled that targeting 

CaMKK2 may be an option for protecting against osteoporosis. Experiments 

utilizing genetic ablation can often be reproduced in slight with pharmacological 

intervention. Inhibition of CaMKK2 can be achieved with the selective inhibitor 

STO-609 [19]. This compound is selective not specific; and at higher 

concentrations can inhibit other CaMK members. STO-609 was used 

successfully to evoke similar effects in wild type animals that were observed in 

knockouts. These effects were reflected in both osteoblast and osteoclast 

populations, and offered protection from ovariectomy induced osteoporosis [20]. 

These effects indicated the utility of acutely inhibiting CaMKK2 without the 

inherent weaknesses belonging to whole specimen knockouts. Adverse effects 

resulting from STO-609 use have yet to be fully described and are being 

explored alongside practical applications. 

 Managing osteoporosis has been both fruitful and troublesome. Many 

risks stemming from it can be mitigated with behavioral and pharmacological 

intervention. With the options available, any anabolic approach and the 
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advantages therein would be valuable in managing osteoporosis. The goal of the 

studies described herein is to investigate whether the acute pharmacological 

inhibition of CaMKK2 by STO-609 significantly increases bone quality in addition 

to having positive impacts on bone volume, resulting in an increase in bone 

strength.
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CHAPTER 2

DISTAL FEMUR INDENTATION: AN IMPROVED METHOD FOR 

DETERMINING TRABECULAR BONE STRENGTH IN MICE 

Introduction  

Bones are responsible for a variety of functions ranging from support and 

scaffolding and as levers for movement. Hence, the bone must be strong and 

capable of supporting the organism. The demands on each organism’s bones 

can be similar but unique, depending on the evolutionary adaptation [21, 22]. 

Different approaches have been developed to determine the strength of bone.  

Closely related to other material sciences, compression, tensile and torsional 

strength are among the different mechanical properties that are tested in bone 

[23, 24]. To effectively test these properties, different types of bone can be used 

to model certain situations. Human vertebrae, for example, can be loaded axially 

in compression to simulate how the bone will be loaded in vivo. 

 X-ray and micro-computed tomography (CT) imaging have been used in 

conjunction with mechanical testing to obtain a full picture of the 

microarchitectural and biomechanical properties of the bone [25]. Mechanical
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 properties of the bone can be predicted from its microarchitecture.  Thus, virtual 

inspection performed in conjunction with biomechanical testing can validate any 

potential correlations between image data and mechanical strength.  

 Because genetically modified mouse models are highly valuable tools in 

understanding the molecular pathways regulating bone biology, robust methods 

to test mechanical strength of murine long bones are critical.  Whereas methods 

to test cortical bone strength such as three- and four-point bending tests are well-

developed, assays that will effectively test trabecular bone strength in murine 

long bones are still lacking.    This study is concerned with determining the 

strength of murine trabecular bone in the femur.  Working with murine bones 

offers unique challenges, given the small size of mouse skeletons.  Femurs were 

chosen because of their size and the relative ease in the way they can be 

handled. Moreover, the femur offered a prime area to image using micro-CT 

while also being a possible site for mechanical testing. Besides, the small size of  

murine femurs precludes the need to sub-sample cubes, as is done with larger 

animals [26].  In this study, we developed a novel method of using reliable micro-

CT imaging as a basis for determining mechanical strength of murine trabecular 

bone.  We used a murine genetic model with predictable differences in 

microarchitecture to validate this technique [27]. 
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Methods 

Mice 

Five month old male wild-type (WT, n=5) and Camkk2-/- (n=5) mice were 

housed in the Baxter II Vivarium at the University of Louisville.  The mice were 

under a 12-hr light and dark cycle, with food and water provided ad libitum. All 

care and experimental procedures were performed according to University of 

Louisville (UofL) Institutional Animal Care and Use Committee protocols and in 

compliance with NIH guidelines on the use and care of laboratory and 

experimental animals.   

Micro-computed tomography (Micro-CT)  

Micro-CT imaging was performed at the University of Louisville 

Orthopaedic Bioengineering Lab with a high resolution CT scanner (Actis HR225‐

150; BIR, Lincolnshire, IL, USA). Individual or groups of femurs were imaged at a 

voxel resolution of 7 µm.  An approximate length of 5.25 mm was imaged. 

Transverse images were processed using both two-dimensional (ImageJ, NIH 

Image, Bethesda, MD) and three-dimensional software (VG Studio Max, Volume 

Graphics, Heidelberg, DE). 

Removal of epiphysis  

Transverse micro-CT image stacks, spanning from the first appearance of a 

condyle to the base of the epiphysis, were used to determine the length of the 

growth plate at the distal end of the femur. With an isotropic voxel resolution of 7 
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µm per slice, the numbers of slices encompassing the region were counted 

(Figure 1).  The epiphysis/metaphysis junction, appearing as a cross with four 

chambers on the micro-CT image (slice 177, Figure 1), represents the region 

where the trabecular bone begins and is the site of the indentation test.  As 

shown in Figure 1, the length of the epiphysis was then calculated in mm 
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Figure 1.  Determination of the indentation site by micro-CT imaging. 

Transverse µCT images were reconstructed into 3-dimensional images (top). 

Cross-sectional µCT images were counted and converted into a distance in mm 

(middle). This distance was used to determine the amount of bone material to be 

removed for mechanical testing (bottom).   

In order to remove the epiphysis the femurs needed to be properly 

mounted. Using a two part epoxy mix (Loctite® Epoxy Quick Set™, Westlake, 

OH, USA), each femur was mounted atop and centered on a socket headed #10 

cap screw (Fastenal, USA). Using an appropriate amount of epoxy is critical for 

proper mounting, and varies based on the sample. Enough epoxy must be used 

to create the base that will surround the femur past the metaphysis and even up 

to the condyles (Figure 2A).  Samples were allowed to cure for 24 hours.  

 

Figure 2. Femurs mounted prior to epiphysis removal.  (A) Femurs were 

mounted atop a #10 socket headed screw with Loctite® Epoxy and cured for 24 

hours.(B) Calculated lengths of the epiphysis were then removed using an 

Isomet® diamond sectioning saw  
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Removal of the epiphysis was done with a diamond sectioning saw 

(Isomet®, Lake Bluff, IL USA).  Because the saw is calibrated in inches, we 

converted the epiphysis length measurement from mm to inches.   The epoxy-set 

femur was mounted on the diamond saw and advanced according to the 

calculated epiphysis length in inches (Figure 2B).  Removal of the epiphysis was 

carefully performed to limit stress. A quick cutting speed was used to reduce the 

amount of stress the femur underwent, and to avoid disruption of the epoxy 

mount.  

Indentation  

Indentation of distal femoral trabecular bone was performed via blunt 

instrumentation. The indenter used to penetrate the cancellous bone was 

machined from a ¾ inch bolt into a blunt cylindrical surface, and measured 3 mm 

in length and 1 mm in diameter (Figure 3A). The indenter produced 1.27 MPa of 

compressive stress for every Newton (N) of force that was applied.  

Immediately following the removal of epiphysis, the femur was centered 

on a servo-hydraulic load frame (Model 858 Bionix, MTS Corp., Eden Prairie, 

MN).  Due to the curvature of the femur, it is possible for the indenter to 

encounter the cortical bone of the metaphyseal flare during indentation.  Hence, 

proper alignment of the indenter was important.  Centering the indenter is 

intuitive, but aligning the indenter to be slightly anterior of dead center is 

required.  
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The lowest point during the first 1.5 mm of penetration (force X 

displacement in millimeters), as shown in the graphs (Figure 3B), is determined 

to be the failure of trabecular bone upon indentation. Indentation was performed 

by applying force axially at a rate of 1 mm/minute. The maxium depth of the test 

was the full 3 mm length of the indenter.  However, the first 1.5 mm (1.5 minutes) 

is the accepted region of testing, as it measures the strength of the trabecular 

microarchitecture (Figure 3Bi).  Anything further than than that is disregarded.  

Additionally, any ambigiuous local minima were also disregarded (Figure 3Bii). 

Data in this case may be suspect due to architechural interference, such as 

contacting the cortex.  . Visual confirmation  of proper indentation of individual 

femurs should be performed  by micro-CT (Figure 3C)   
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Figure 3. Femurs prior to indentation, after indentation and representative 

mechanical strength data. (A) Femur with the epiphysis removed and placed 

before indentation. The Indenter used is also shown. (B) Strength data gathered 

from both acceptable and unacceptable test results. The distinct local minima in 

Bi clearly show a failure in trabecular strength. Ambiguous data graphs as shown 

in Bii do not easily discern a point of failure. (C)  Micro-CT cross-sectional 

images showing the femur after indentation.   



17 
 

Results 

The purpose of this study was to develop a robust methodology to measure 

trabecular bone strength in murine femurs.  We hypothesized that slicing off the 

distal femur epiphysis at the exact epiphysis-metaphysis junction would enable 

the exposure of the trabecular bone, enabling the accurate measurement of its 

strength.  To test this idea, we used long bones from mice that are genetically 

knocked out for the expression of Ca2+/calmodulin dependent protein kinase 

kinase 2 (CaMKK2; Camkk2-/- mice), that possess enhanced trabecular bone 

volume in their long bones when compared to age- and sex-matched WT 

mice,[27] (Figure 4, Table1).  Micro-CT images revealed that the trabecular bone 

in Camkk2-/- distal femurs were most concentrated just beneath the growth plate 

(Figure 4 – book slice image), presenting us with the right model system to test 

our hypothesis. 

 

 

 

 



18 
 

Figure 4. Longitudinal cross-sectional images and numerical values 

accompanying wild type and Camkk2-/- animals. Shown left are longitudinal 

book slices of wild type and knockout femurs. The distribution of bone shows 

more trabecular architecture relegated towards the distal end. (Table 1) Detail 

the mean values for bone volume fraction, trabecular thickness, and trabecular 

separation along with the p-value with each parameter.  

Sequential stacked transverse micro-CT sections of the growth plate were 

used to determine the length of the distal epiphysis of individual femurs from 5 

month-old WT and Camkk2-/- mice (Figure 5 and Table 2).  These data were then 

converted to length in mm from the distal tip of the femurs, enabling the 

determination of accurate cutting lengths (Table 2).  Results from the blunt 

indentation performed thereafter showed markedly higher trabecular 

compression strength in Camkk2-/- distal femurs, compared to WT (Table 2, 

Figure 5).    
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Figure 5. Individual epiphysis lengths and trabecular strength data. (Table 

2) lists individual lengths of the epiphysis and the strength data of each femur. 

Shown right are the mean values with standard deviation shown. The data here 

have a p-value of 0.058. 

It is important to measure individual cutting lengths using micro-CT 

imaging, rather than relying on an average value.  As indicated in Table 2, the 

average values usually exceed individual epiphyseal lengths. This will lead to 

cutting too far below the growth plate and missing the area of interest – i.e., 

epiphysis-metaphysis junction where the trabecular bone is concentrated.  If an 

average cutting length is utilized to expose the trabecular bone, the differences in 

trabecular compression strength may no longer be discernable.   

Discussion 

This paper details a method for determining the strength of trabecular 

bone in the distal femur.   Accurate measurement of the region of interest 

through calculations based on micro-CT imaging, aided in the removal of 
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epiphysis and exposure of the trabecular bone at the base of the growth plate 

(Figure 1).   This enabled the direct testing of the correlation between 

microarchitecture and trabecular strength.   .  With bone distributed more towards 

the growth plate, any excess removal of the epiphysis would be reflected in the 

strength data.  

The strength data also can give clues as to how well the technique 

worked. With acceptable local minima, such as Figure 4Bi, a strong correlation 

can be observed between trabecular microarchitecture (bone mass) and 

trabecular strength.  With the data set presented in Figure 5 and Table 2, this 

correlation has an r2 coefficient of 0.654 when adjusted for epiphyseal length.  

Thus in conclusion, the method described herein offers an improved method for 

determining trabecular strength in the distal femurs of mice. 
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CHAPTER 3 

ACUTE INHIBITION OR LACK OF CAMKK2 ENHANCES BONE MASS, 

MICROARCHITECTURE AND STRENGTH IN ADULT MICE 

Introduction 

The skeleton consists of a multifunctional tissue that protects internal 

organs, facilitates coordinated motion through muscle contraction and maintains 

physiological Ca2+ homeostasis [28].  Osteoporosis, a severe age-related bone 

disease that increases the risk of fragility fractures is characterized by the loss of 

skeletal mass, diminished microarchitecture and lower tissue strength [29, 30].  

Bone structure and material composition determines its strength, and a number 

of environmental, hormonal, metabolic, and genetic determinants during growth 

and aging affect the structure and tissue integrity of the bone [31-33].  The 

overall skeletal strength is determined by overall bone size, cortical bone porosity 

and tissue strength as well as trabecular bone volume fraction, number, 

connectivity, thickness, separation and tissue strength [31, 34].  Loss of 

trabecular connectivity is one of the early events associated with age and 

hormone-loss associated bone loss in humans [35].     

The highly porous trabecular bone is found at the proximal and distal ends 

of long bones as well as in vertebral bodies and provides supporting strength to 
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these weight bearing bones [31].  The microarchitecture and 

biomechanical properties of trabecular bone are optimized through active bone 

remodeling initiated by osteocytes and executed by osteoclasts and osteoblasts 

(reviewed in [32]).  The remodeling process is in turn  influenced by hormonal, 

paracrine and autocrine signals such as estrogen, testosterone, parathyroid 

hormone (PTH), insulin-like growth factor 1 (IGF-1), wingless (Wnt), as well as 

biomechanical stresses [35-38].  Moreover, studies using global and tissue-

specific gene knockout murine models have uncovered specific genetic 

influences on bone mass and/or strength [39-54].   

We recently identified novel roles for Ca2+/calmodulin (CaM)-dependent 

protein  kinase kinase 2 (CaMKK2) in the anabolic and catabolic pathways of 

bone remodeling [55].  CaMKs are a family of multifunctional serine/threonine 

CaMKIV [56-58].  The CaMK signaling cascade  is initiated by transient increases 

of intracellular Ca2+, that are immediately sensed by the ubiquitous Ca2+ receptor 

CaM [14]. The upstream kinases, CaMKK 1 and 2 are activated trough Ca2+/CaM 

binding and in turn phosphorylate CaMKs I and IV on a critical threonine residue 

leading to their activation.  In addition, CaMKK2 (not CaMKK1) phosphorylates 

and activates adenosine mono-phosphate activated protein kinase (AMPK) to co-

ordinate cellular energy balance [59, 60].     

CaMKK2 is tissue-restricted and its loss protects mice from diet-induced 

obesity, insulin resistance and inflammatory responses [59, 61, 62].  Loss of 

CaMKK2 through global gene deletion positively influences osteoblasts and 
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negatively affects osteoclasts, resulting in a net increase of bone mass [55].  

Moreover, pharmacological inhibition of CaMKK2 activity using its selective, cell-

permeable pharmacological inhibitor STO-609 in wild type (WT) bone marrow 

(BM) cells accelerates osteoblast differentiation while inhibiting osteoclasts in 

vitro [55, 63].  Furthermore, STO-609 treatment protects mice from ovariectomy-

induced bone loss by stimulating osteoblasts and inhibiting osteoclasts [55].  The 

consequence of these opposing effects of the absence of CaMKK2 on bone cell 

biology is a net increase in trabecular bone mass, that aids in protection from 

osteoporosis.  However, whether this increased trabecular bone mass translates 

into improved weight bearing capacity and biomechanical properties are 

outstanding questions.   

We hypothesized that the lack and/or acute pharmacological inhibition of 

CaMKK2 results in enhanced trabecular bone mass as well as improved bone 

architecture and strength.  Our objective for the current study was to assess the 

trabecular bone microarchitecture as well as trabecular and cortical bone 

strength in the long bones of Camkk2-/- mice.  We also aimed to determine 

whether the acute inhibition of CaMKK2 using STO-609 would trigger new bone 

formation in adult WT male mice that are thirty-two week old, an age at which 

their trabecular bone mass is in a maintenance phase and/or beginning to 

decline [64].  If so, we further wanted to evaluate whether the microarchitecture 

and biomechanical strength parameters indicate enhanced bone volume, 

trabecular properties and strength in STO-609 treated adult mice.    



24 
 

Materials and Methods 

Mice: WT and Camkk2-/- mice (C57BL/6 background) were housed in the 

University of Louisville (UofL) Baxter II Vivarium under a 12-h light, 12-h dark 

cycle. Food and water were provided ad libitum. All care and experimental 

procedures were performed according to UofL Institutional Animal Care and Use 

Committee protocols and in compliance with NIH guidelines on the use and care 

of laboratory and experimental animals.  Twelve or thirty-two week old male mice 

were used in these experiments. 

STO-609 treatment of mice: STO-609 was purchased from TOCRIS Bioscience 

(Ellisville, MO, USA) and prepared as mentioned previously [55]. Tri-weekly 

-609 (n=13) were administered into thirty-two week old WT male mice 

for 6 weeks.  Long bones were harvested and femurs were utilized for 

microcomputed tomography (µCT) and microarchitecture analyses as well as for 

the assessment of cortical and trabecular bone strength. Thirty-two week old 

male Camkk2-/- mice (n=6) were used as controls for microarchitecture and 

strength analyses.   

Dynamic bone histomorphometry: Seven and two days before euthanasia, the 

saline and STO-609 treated mice were injected via i.p. with calcein (5 mg/ml) and 

alizarin red (15 mg/ml) respectively, at 100 µl per mouse.  Mice were euthanized 

2 days after the alizarin red injection, and decalcified histology and dynamic 

histomorphometry were performed on tibiae that were fixed in 70% ethanol.  
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Histomorphometric analysis was performed by a blinded observer using 

BioQuant OSTEO 2010 software (BioQuant Image Analysis Corporation) and 

standard parameters [65].  

Micro-CT Imaging:  Micro-computed tomography (µCT) imaging was performed 

on a high resolution CT scanner (Actis HR225‐150; BIR, Lincolnshire, IL, USA) 

located at the University of Louisville Orthopaedic Bioengineering Lab. Up to 3 

femurs were imaged simultaneously at an isotropic voxel resolution of 7µm. 

Transverse images of femurs covering a length of approximately 5.25 mm were 

processed individually for each femur using a combination of two-dimensional 

(ImageJ, NIH Image, Bethesda, MD) and three-dimensional (VG Studio Max, 

Volume Graphics, Heidelberg, DE) imaging software. Trabecular architectural 

properties including bone volume fraction, trabecular thickness and separation 

were determined for a standardized region in the distal femoral metaphysis.  

Mechanical testing:  After the femurs were imaged in the µCT scanner, they were 

prepared for mechanical testing to determine cortical bone strength using three-

point bending and cancellous bone strength using blunt indentation.  A servo-

hydraulic load frame was used for both mechanical tests (Model 858 Bionix, MTS 

Corp., Eden Prairie, MN).  

Three-point-bending was performed by placing the femur across an 8 mm 

wide support span and loading vertically with a rounded knife edge at the center 

of the span contacting the anterior surface of the femoral diaphysis.  The loading 

was applied at a displacement rate of 1 mm/min until the femur failed.  The 
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amount of force, F, applied was recorded and the magnitude of the bending 

moment at the point of failure could be calculated as:  
 

 
      .  Three-

point-bending typically resulted in the femur breaking into two pieces, a proximal 

section and a distal section with an oblique or transverse fracture occurring under 

the center contact point.   

The resulting distal section of the femur was then prepared for a blunt 

indentation test to measure the strength of the cancellous bone material in the 

distal part of the femoral metaphysis.  The distal femur was mounted in the head 

of a #10 cap screw using two-part epoxy with the condyles exposed and the shaft 

of the femur oriented along the axis of the screw (Figure 2A). This provided a 

means to trim the end off of the femur, exposing the sub-epiphyseal cancellous 

bone of the distal metaphysis.  The screw was mounted in a low-speed diamond 

sectioning saw and the blade was advanced to coincide with the position of the 

epiphysis as observed on µCT images taken previously.  After a flat surface 

perpendicular to the shaft axis was exposed, the screw/bone combination was 

positioned under the blunt indenter tip fixed to the actuator of the MTS machine.  

The exposed cancellous surface was centered under the indenter and the tip was 

advanced at a rate of 1mm/min.  The displacement and compressive force were 

recorded.  The depth of indentation was limited to 1.5 mm to avoid contact of the 

indenter tip with the cortical wall of the distal metaphysis. 

Equations Used with Mechanical Testing:  The maximum applied loads in each 

type of test can be used as a measure of the cortical and cancellous bone 

strength, but, to determine the true tissue strength, some normalization is 
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required.  The three-point-bending failure moment can be converted to a 

maximum tissue stress using the following equation: σb  
  

 
 ; where σb 

represents stress (in MPa) of the femoral cortical bone tissue, M represents the 

maximum applied bending moment (in N•mm), y represents the vertical distance 

from the bone axis to the failure surface (in mm), and I represents the 2nd 

moment of inertia (in mm4), a geometric property of a beam that defines its 

resistance to bending. For blunt indentation, the applied compressive stress, σc is 

determined by the amount of applied force, F, divided by the cross-sectional 

area, A, of the 1 mm diameter indenter tip: σc=F/A. 

Statistical analysis:  All data are represented as average values ± standard 

deviation.  Statistical comparisons between WT and Camkk2-/- at three months 

were by Student’s t-test. Statistical comparisons between saline (WT) and STO-

609 treated samples and Camkk2-/- samples were by single factor ANOVA and 

post-hoc t-test.  Differences with p-value < 0.05 were deemed significant.   

Results  

Trabecular bone microarchitecture in young male mice lacking CaMKK2  

As a first step towards understanding whether the lack of CaMKK2 

enhanced bone quality, we analyzed the microarchitecture of the distal femurs 

from relatively young twelve week old male WT and Camkk2-/- mice (n=10 each) 

using micro-

previously in eight week old female mice [55], twelve week old male mice lacking 

CaMKK2 possessed a significant two-fold higher trabecular bone volume fraction 
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compared to age and sex matched WT mice (Figure 1B).  Next we analyzed 

trabecular separation (Tr.Sp) and thickness (Tr.Th) as these are key parameters 

characterizing the microarchitecture and quality of the trabecular bone, and are 

indicative of its weight bearing strength [35].   Accordingly, Tr.Sp was 53% lower 

in twelve week old male Camkk2-/- mice compared to WT (Figure 1C).  Further, 

trabeculae in the distal femurs of Camkk2-/- mice were 30% thicker than those in 

age and sex matched WT mice (Figure 1D).  Taken together, these data indicate 

significantly higher trabecular bone volume and architectural quality in the long 

bones of young male Camkk2-/- mice.   

Trabecular bone strength in three month-old male Camkk2-/- mice 

Ultrastructural features of  trabecular bone are optimized by bone 

remodeling, a process characterized by osteoclast-induced bone resorption and 

osteoblast-mediated bone formation [66].  Complete inhibition of osteoclast 

activity results in higher bone volume, but leads to stiff and brittle bones that 

break or fracture more easily [28, 32].  On the other hand, higher bone volumes 

and stronger bone can be achieved through increased bone formation by 

stimulation of osteoblasts without necessarily completely inhibiting osteoclasts 

[28, 32].  The lack of CaMKK2 in the present model favors osteoblasts, but the 

Camkk2-/- long bones do possess osteoclasts at significantly decreased levels 

compared to WT [55].  Therefore, we surmised that the trabecular bone in the 

mutant mice is strong with superior biomechanical properties because the 

continuing, albeit diminished, osteoclast activity prevents over-mineralization and 

brittleness.   
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To test this idea, we performed a blunt indentation test of the trabecular 

bone of distal femurs from three month or twelve week old male WT and 

Camkk2-/- mice.  Briefly, the thickness of the epiphysis and distance to the base 

analysis.  This information was employed to trim the distal femurs to expose the 

epiphyseal plates for precise indentation (Figure 2A).  The flat 1 mm diameter 

indenter tip produced approximately 1.27 MPa of compressive/contact stress for 

every 1 N of force applied.  The direct blunt indentation strength of trabecular 

bone was a significant 62% higher for Camkk2-/- (51.2 MPa) than that of WT 

(31.7 MPa) mice (Figure 2B).  Thus, the significant increase in epiphyseal 

trabecular strength correlated linearly with the enhanced BV/TV and superior 

trabecular architecture in 3 month-old male Camkk2-/- mice, in comparison to WT 

(Figures 1-2), indicating that the global deletion of CaMKK2 contributes to higher 

bone mass and enhanced strength.  

Cortical bone strength in young Camkk2-/- male mice 

We next assessed the cortical bone strength by three-point-bending to 

failure.  As shown in Figure 3A, femoral mid-shaft bending strength was 

increased by a significant 43% in Camkk2-/- mice (59.4 ± 8.3 N•mm) than that in 

WT (41.6 ± 5.7 N•mm) (Figure 3A).  The Camkk2-/- femurs are 8% longer and 

their mid-shaft diameters are on average 10% wider than WT (Figures 3C-D).  

When the differences in cross-sectional area moments of inertia (MOI) between 

Camkk2-/- (0.232 ± 0.044 mm4) and WT mice (0.157 ± 0.0345 mm4) were 

considered, the cortical bone tissue bending stress was not significantly different 
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between Camkk2-/- (129 ± 30 MPa) and WT (122 ± 39 MPa) mice (Figure 3B-C).  

Moreover, the similarity in cortical bone thickness between WT (0.46 ± 0.05 mm) 

and Camkk2-/- (0.5 ± 0.04 mm) femurs indicate that the differences in 

endocortical resorption is offset by increased periosteal apposition in the 

knockout (KO) (Figure 3C).  Overall, these data indicate that at twelve weeks of 

age, the cortical bones in Camkk2-/- mice are stronger than WT.   

STO-609 stimulates bone mass accrual in thirty-two week old male mice  

 An important question arising from these studies is whether an acute 

inhibition of CaMKK2 will trigger new bone formation in adult WT male mice at an 

age where their trabecular bone mass has begun to decline (compare Figures 1A 

and 5A).  To this end, we injected thirty-two week old male WT mice with saline 

or -609 for 6 weeks and metabolically labeled the newly formed bone 

with calcein and alizarin red, 7 and 2 days respectively, before the end of the 

treatment.  STO-609 treatment results in markedly elevated calcein and alizarin 

red incorporation (Figure 4A), indicating enhanced bone formation.  Moreover, 

dynamic histomorphometry measurements indicate significant increases in 

mineral apposition rate (MAR; +13%) and bone formation rate (BFR; +40%) 

following the acute pharmacological inhibition of CaMKK2 in thirty week old mice 

(Figure 4B-C).  Thus, treatment with STO-609 stimulates osteoblast-mediated 

bone formation in the long bones of adult mice.   

 We next evaluated bone volume and trabecular microarchitecture in thirty-

two week old saline and STO-609 treated WT as well as Camkk2-/-  
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analysis.  Compared to the twelve week old male cohorts, the thirty-two week old 

male WT and Camkk2-/- mice suffered an 11% decline in BV/TV (Compare 

Figures 1B and 5B).  However, the bone volume in the older Camkk2-/- mice was 

still significantly higher (2-fold) than that in age and sex matched WT (Figures 

5A-B), suggesting that the enhanced trabecular bone formation in the KO mice 

counteracts the age-dependent bone loss.  Moreover, a six week regimen of 

STO-609 administration in the WT mice resulted in a significant 52.5% increase 

in trabecular bone volume fraction (BV/TV) compared to saline treated controls 

(Figure 5B).  Further, parameters determining trabecular quality were significantly 

higher in older Camkk2-/- mice, as trabecular separation was 49% lower and 

trabecular thickness was 28% higher than WT (Figures 5C-D).  Treatment of 

adult WT mice with STO-609 resulted in a 28% reduction in trabecular separation 

and a 28% increase in trabecular thickness (Figures 5C-D).  Taken together, 

these data indicate that acute pharmacological inhibition of CaMKK2 prevents 

age-associated bone loss occurring in adult mice.   

Bone strength assessment in STO-609 treated adult mice  

 Having established that STO-609 treatment enhances trabecular bone 

mass accrual and trabecular architecture in adult mice that are in a maintenance 

or early catabolic phase of bone metabolism, our next question was whether the 

STO-609 treated bone possesses superior biomechanical properties and higher 

strength.  Direct blunt indentation tests (Figure 2A) were performed to assess the 

strength of distal femoral trabecular bone from thirty-two week old Camkk2-/- as 

well as saline (WT) and STO-609 treated male mice.  Our results indicate that 
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compared to control (24.9 ± 4.6 MPa); STO-609 treated femurs (37.1 ± 7.8 MPa) 

required a significant 48.9% higher force to break the trabecular bone just below 

the epiphyseal plate by direct-blunt indentation (Figure 6A).  Indeed, the breaking 

force of trabecular bone was still significantly higher (+61.4%) in thirty-two week 

old Camkk2-/- mice (40.2 ± 3.8 MPa), indicating that the elevated bone mass and 

trabecular bone strength is maintained in Camkk2-/- mice even as they age 

(Figure 6A).   

 We then assessed cortical bone strength in these cohorts by the three-

point-bending to failure, and found a significant increase (+24.8%) in femoral 

mid-shaft bending strength in STO-609 treated mice (45.2 ± 6 N•mm) compared 

to saline-treated WT controls (36.4 ± 7.1 N•mm) (Figure 6B).  Consistent with our 

observations in younger mice, femurs from thirty-two week old Camkk2-/- mice 

possessed a 22.8% higher three point bending moment (44.7 ± 3.8 N•mm) than 

WT controls (Figure 6B).  Notably, the mid-shaft mediolateral and dorsoventral 

inner and outer diameters increased significantly (+14% on average) in STO-609 

treated femurs than controls, whereas they were on average 11% higher in 

Camkk2-/- (Figure 6C).  Accordingly, as indicated in Figure 6C, the cross-

sectional area moments of inertia (MOI) were significantly higher in STO-609-

treated WT (0.157 ± 0.03 mm4) and Camkk2-/- (0.17 ± 0.02 mm4), compared to 

saline-treated control mice (0.112 ± 0.03 mm4).  In contrast to this increase in the 

mid-shaft geometry, the cortical bone thickness and three-point-bending stress 

were similar among all three cohorts analyzed (Figure 6C-D).  Taken together, 

these data indicate that the genetic ablation or acute inhibition of CaMKK2 
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results in increased bone mass and higher trabecular and cortical bone strength 

in young and adult mice.      

Discussion 

Based on our previous results indicating elevated bone mass subsequent 

to enhanced osteoblasts and diminished osteoclasts in mice lacking CaMKK2 

[55], we hypothesized that the enhanced bone mass translates into improved 

architectural and biomechanical properties.  In this study, we compared 

biomechanical properties of the trabecular and cortical bone in Camkk2-/- mice as 

they aged and asked whether acutely inhibiting CaMKK2 in adult mice that are in 

a maintenance or early catabolic phase of bone metabolism stimulated formation 

of new bone with superior quality and strength.  Indeed, both twelve and thirty-

two week old Camkk2-/- mice possessed significantly higher trabecular bone 

volume and thickness as well as diminished separation, indicating the 

maintenance of the improved trabecular volume, microarchitecture and weight 

bearing capacity with age.  Biomechanical analyses show superior trabecular 

and cortical bone strength as well as enhanced mid-shaft geometry in young and 

adult mice lacking CaMKK2, compared to WT.  In contrast to the higher femoral 

bending strength in the KO, the cortical thickness and bending stress were 

similar in both genotypes.  Metabolic labeling studies indicate stimulation of bone 

growth in the long bones of thirty-two week old WT mice following the acute 

inhibition of CaMKK2 using STO-609.  In addition to significantly higher bone 

volume, the trabecular bone from STO-609 treated mice was thicker with less 

separation compared to age and sex matched saline-treated control mice.  
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Additionally, STO-609 treatment significantly enhanced femoral bending strength 

as well as the femoral mid-shaft cross-sectional MOI, suggesting periosteal bone 

apposition.  Taken together, these data indicate that whereas genetic ablation of 

CaMKK2 helps in a sustained maintenance of increased bone mass and 

trabecular bone strength, a short-term acute inhibition of this kinase reverses 

bone loss and promotes trabecular bone mass accrual as well as superior 

trabecular and cortical bone strength in adult mice who are in the beginning 

stages of age-associated catabolic bone loss.  The natural history of the WT 

bone quality reduction can be observed by comparing the measures of both 

cortical and cancellous bone from the twelve week old mice (Figures 1-3) to 

those of the thirty-two week old mice (Figure 5-6). 

Our previous report [55] as well as the mechanical testing and imaging 

data from this study support the evidence that the lack of or inhibition of CaMKK2 

causes an upregulation of osteoblasts as well as a downregulation of 

osteoclasts.  Maintenance of optimal bone mass and strength is achieved by the 

balanced interplay between osteoclasts and osteoblasts that form the bone 

multicellular unit (BMU) in conjunction with osteoid-embedded osteocytes [67-

69].  Bone strength is determined by the balance of activity within the BMU.  For 

example, during growth, osteoblast activity exceeds osteoclast resorption, 

resulting in addition of bone and a net positive balance, whereas this is reversed 

in adults resulting in more bone resorption than addition and a negative balance 

[33].  Accordingly, over-active remodeling, as observed during aging and other 

pathological conditions that impact the bone, leads to incomplete bone filling by 
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osteoblasts resulting in excessive porosity, cortical thinning and trabecular 

disconnection [69].  This results in osteoporosis and mechanical flaws within the 

bone structure; diminishing its strength and rendering it more prone to fragility 

fractures [70, 71].   

On one hand, administration of antiresorptive therapies will inhibit age-

induced bone loss and the accumulation of mechanical flaws.  On the other 

hand, complete inhibition of osteoclast activity with or without accompanying 

anabolic activity will result in brittle bones, such as in osteopetrosis, that are 

prone to cracking [28].  The most ideal anti-osteoporosis therapies will stimulate 

osteoblast-mediated anabolic activity while suppressing, but not completely 

eliminating osteoclasts.  In mature or older individuals experiencing active 

remodeling, such a therapy will create a positive BMU balance by stimulating the 

formation of new bone with superior architecture and biomechanical properties.  

Our imaging data show that when CaMKK2 is either absent or inhibited by the 

application of STO-609, the trabecular bone has a greater volume fraction, 

greater thickness and less separation.   More importantly, administration of STO-

609 to mature thirty-two week old mice stimulates new bone formation as 

indicated by dynamic histomorphometry and increased trabecular thickness as 

evidenced by imaging.  Indeed, the STO-609 treated thirty-two week old mice 

had bone properties similar to twelve week old WT mice.  These data clearly 

suggest a renewed anabolic bone effect in adult mice following an acute 

pharmacological inhibition of CaMKK2.   In Camkk2-/- mice and STO-609 treated 

adult mice, this anabolic effect is accompanied by superior trabecular bone 
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quality and strength, resulting from the limited, but ongoing osteoclast-mediated 

remodeling activity which maintains normal bone material properties at the tissue 

level.   

Further, imaging data for the cortical bone of the femoral shaft also shows 

that there was an anabolic effect on the cortical bone in the KO and STO-609 

treated mice since the outer mediolateral and dorsoventral mid-shaft diameters 

increased significantly compared to age and sex-matched WT mice.  

Interestingly, the inner diameters also increased, indicating a continued activity of 

the osteoclasts and endocortical bone resorption.  However, increased mid-shaft 

outer diameters in the KO and STO-609 treated mice suggest that this is 

compensated by increased periosteal apposition, resulting in stronger cortices 

with increased cross-sectional MOI.   

The three-point-bending mechanical testing data support this premise 

because the overall femoral bending strength was shown to be higher in 

Camkk2-/- and STO-609 treated mice, but the tissue level strength was not 

different.  Whereas the structural differences in cortical bone are significant, 

overall material quality of between the two genotypes is similar, as evidenced by 

similar cortical mid-shaft thickness and material bending stress.  In other words, 

the net anabolic effects of CaMKK2 genetic ablation or pharmacological inhibition 

result in significantly higher breaking strength, but the continued remodeling by 

osteoclasts, albeit reduced in numbers [55], ensure that the overall material 

quality of the newly formed bone is similar to that in WT.  Thus, it is likely that the 

resulting bone tissue is normal due to continued remodeling, as opposed to 
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increased mineralization and brittleness often seen with bisphosphonate therapy 

and osteopetrosis [72, 73].   

In conclusion, the absence or acute inhibition of CaMKK2 represents a 

model that favors osteoblast-mediated bone formation while suppressing 

osteoclast activity [55], resulting in increased trabecular bone volume fraction 

and better cortical midshaft geometry.  The accompanying reduced level of 

osteoclast-mediated remodeling activity imparts the newly formed bone with 

superior microarchitecture as well as better cancellous compressive and cortical 

bending strength.  The increased bone volume fraction, trabecular bone quality 

and strength as well as cortical bone strength and mid-shaft cross-sectional area 

MOI are sustained in Camkk2-/- mice as they matured to a maintenance or early 

catabolic phase of bone metabolism.   More importantly, the fact that STO-609 

administration stimulated osteoblast-mediated bone formation in mature, thirty-

two week old mice, demonstrates the potential utility of therapeutically inhibiting 

CaMKK2 to reverse bone loss while improving cortical and trabecular bone 

strength in patients with age related bone loss or osteoporosis.   
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Figure 1.  Twelve week old male Camkk2-/- mice possess elevated trabecular 

bone volume fracture and improved microarchitecture. (A) Digital µCT cross-

sectional images of distal femurs showing enhanced trabecular bone in Camkk2-/- 

mice compared to age and sex-matched WT.  Representative images from n=10 

each are shown.  (B-D) Average µCT measurements of BV/TV (%), Tr. Sp. (µm) 

and Tr. Th. (µm) parameters from distal femurs of twelve week old male WT and 

Camkk2-/- mice (n=10 each) are shown.  Differences with p -values < 0.05 

compared to WT were deemed significant.  
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Figure 2.  Higher trabecular bone strength in younger Camkk2-/- mice.  (A) 

(Top) Digital photograph showing the direct blunt indentation device comprising 

of a flat 1 mm diameter indenter tip positioned above the distal femur mounted on 

a #10 cap screw head.  (Bottom) Digital µCT images of the epiphyseal region 

taken of the same distal femur before and after direct blunt indentation.   (B)  

Average direct blunt indentation strength ± standard deviation of the trabecular 

bone from WT and Camkk2-/- mice (n=10 each) calculated in MPa is shown. The 

difference in trabecular bone strength between WT and Camkk2-/- distal femurs is 

significant with a p-value of 0.008.    

 

 



40 
 

 

 

 

 

 

 



41 
 

Figure 3.  Lack of CaMKK2 results in increased cortical bone bending 

strength and mid-diaphysis geometry without affecting bending stress.  

Graphs depicting average three-point (A) bending moment (N.mm) and (B) 

bending stress (MPa) ± standard deviation from WT and Camkk2-/- mice (n=10 

each).   Camkk2-/- femurs possess a significantly higher bending moment (p-

value = 0.008), compared to WT, but the bending stress is similar between the 

two genotypes.  (C)  Table depicting femur mid-shaft parameters measured by 

µCT imaging.  Average values ± standard deviation from WT and Camkk2-/- mice 

(n=10 each) are shown.  * denotes where the difference in these parameters 

between the two genotypes is statistically significant with a p-value < 0.03.  (D)  

Average femur length from WT and Camkk2-/- mice (n=10 each) is shown. p-

value = 0.002.   
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Figure 4.  STO-609 administration stimulates trabecular bone formation in 

thirty-two week old adult male mice.  (A) Representative calcein and alizarin 

red-labelled sections of proximal tibiae from thirty-two week old male mice that 

were administered saline or STO-609 for six weeks (400X magnification).  (B-C) 

Dynamic histomorphometry analysis of trabecular bone formation in proximal 

tibiae: mineral apposition rate (MAR) and bone formation rate (BFR).  Average 

values ± standard deviation from saline (n=5) and STO-609 treated (n=8) 

samples are shown. Differences with p-values < 0.05 were deemed significant.   
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Figure 5.  Increased trabecular bone volume and enhanced 

microarchitecture is sustained in adult mice lacking or acutely inhibited for 

CaMKK2.  (A) Representative digital µCT cross-sectional images of distal femurs 

showing enhanced trabecular bone in thirty-two week old week old male 

Camkk2-/- (n=5) and STO-609 treated (n=11) mice compared to age and sex-

matched saline-treated WT control mice (n=6).  Mice were treated for six weeks 

with STO-609.  (B-D) Average (± standard deviation) µCT measurements of 

BV/TV (%), Tr. Sp. (µm) and Tr. Th. (µm) parameters from distal femurs of adult 

Camkk2-/- as well as STO and saline-treated WT mice are shown.  Differences 

with p-values < 0.05 compared to WT were deemed significant.  
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Figure 6.  Higher trabecular and cortical bone strength in adult Camkk2-/- 

and STO-609-treated WT mice.  (A) Average direct blunt indentation strength ± 

standard (MPa) of the trabecular bone from thirty-two week old Camkk2-/- (n=5) 

as well as saline (n=6) and STO-609-treated mice (n=11) calculated in MPa is 

shown.  Trabecular blunt indentation strength of Camkk2-/- (p = 0.004) and STO-

609-treated (p = 0.007) distal femurs were significantly higher than that of WT-

control.  (B) Average 3-point bending moment (N-mm) of femurs from indicated 

genotypes are shown.  Differences with p-values < 0.05 were deemed significant.  

(C) Table showing femur mid-shaft parameters measured by µCT imaging 

showing average values ± standard deviation from 32 week old Camkk2-/- (n=5) 

as well as saline (n=6) and STO-609-treated mice (n=11).  * and @ denote 

where the differences with the saline treated WT controls are statistically 

significant with a p-value < 0.05.  (D)  Average three-point bending stress values 

± standard deviation (MPa) from adult Camkk2-/- (n=5) as well as saline (n=6) 

and STO-609-treated mice (n=11) are depicted.  Bending stress was similar 

among all three genotypes.  
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CHAPTER 4 

SUMMARY AND DISCUSSION 

 Osteoporosis is pathological condition that can be treated in a number of 

ways, such as exercise [6] changes in diet [8], and/or by pharmacological 

intervention [10-12].  However, pharmacological therapies that are currently 

available primarily block bone resorption without inducing the replacement of lost 

bone.  The next generation anti-osteoporosis therapies will stimulate new bone 

formation while inhibiting excessive bone resorption.  Such a therapy will be 

highly desirable as it will improve bone quantity and quality in patients, lowering 

their risk for fragility fractures.  Previous studies from our laboratory recently 

demonstrated that the genetic ablation or pharmacological inhibition of CaMKK2 

results in a net increase in bone mass in mice  [20].  Mice deficient in CaMKK2 

show an increase in osteoblasts concurrent with a decrease in osteoclasts, 

resulting in enhanced trabecular bone volume [20].  The goal of my thesis 

research project was to investigate whether the enhanced bone volume and 

microarchitecture translated into superior strength.  It was hypothesized, as 

outlined in Chapter 3, that the increased amount of bone mass would lead to 

increase in bone quality and strength.   However, very limited numbers of 

techniques were available to effectively test trabecular bone strength of mouse 
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long bones.  Hence to enable us test this hypothesis, we developed an improved 

technique to test murine trabecular bone strength and this is described in 

Chapter 2. 

 With micro-CT imaging mechanical properties of bone can be predicted. 

This predictable quality of bone was utilized in developing an improved method to 

prepare the tissue for distal femur indentation. With a murine genetic model that 

has a predictable difference in microarchitecture; it was possible to refine this 

method to observe mechanical differences. Indeed, with removal of the epiphysis 

at the epiphyseal/metaphyseal junction, it was possible to test the hypothesis that 

increased amounts of trabecular bone lead to increased trabecular bone 

strength. Chapter 2 concludes that indentation of the distal femur can accurately 

depict the correlation between bone volume fraction and bone strength. This 

increase showed a strong r2 coefficient of 0.654. With the resulting success of 

the technique developed in Chapter 2, it was then possible to test whether or not 

the increased mass of bone lead to superior architecture and strength. Overall 

Camkk2-/- and STO-609-treated animals showed increased bone quality and 

strength over wild type cohorts. In conclusion with the evidence gathered, this 

thesis shows that the absence or pharmacological inhibition of CaMKK2 

positively affects bone growth, microarchitecture and strength. 
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CHAPTER 3:  

ACUTE INHIBITION OR LACK OF CAMKK2 ENHANCES BONE MASS, 

MICROARCHITECTURE AND STRENGTH IN ADULT MICE 
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Abstract  

The tissue-restricted multifunctional Ca2+/calmodulin (CaM)-dependent 

protein kinase kinase 2 (CaMKK2) has roles in the anabolic and catabolic 

pathways of bone remodeling.  Specifically, genetic ablation of CaMKK2 

positively influences osteoblasts and negatively affects osteoclasts, resulting in a 

net increase of bone mass, and its pharmacological inhibition through STO-609 

protects mice from ovariectomy-induced osteoporosis.  However, it was not 

known whether the enhanced bone mass formed in the absence of CaMKK2 
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would possess improved architectural and biomechanical properties.   Here we 

analyzed biomechanical properties of the long bones in Camkk2-/- mice as they 

aged and examined whether acutely inhibiting CaMKK2 in adult mice stimulated 

formation of new bone with superior quality and strength.  Our results indicate 

that mice lacking CaMKK2 possess increased trabecular bone volume fraction 

with higher indentation strength and microarchitectural quality.  These superior 

trabecular biomechanical properties as well as increased cortical bone bending 

strength and mid-shaft cross-sectional area moment of inertia (MOI) are 

maintained in Camkk2-/- mice as they matured to adults.  Moreover, acute 

pharmacological inhibition of CaMKK2 using STO-609 promotes trabecular bone 

mass accrual as well as improved trabecular and cortical bone strength in adult 

mice that are otherwise in an early catabolic phase of bone metabolism.  The 

reduced level of osteoclast-mediated remodeling activity present in mice lacking 

or inhibited for CaMKK2 activity confers the newly formed bone with superior 

biomechanical qualities.  Thus, pharmacological inhibition of CaMKK2 is a 

potential dual action anabolic/anti-catabolic therapeutic strategy to reverse bone 

loss while maintaining bone with high quality and strength.    

Key words:  Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2, STO-

609, bone strength, direct blunt indentation, 3-point bending moment, 

microarchitecture, osteoblasts, osteoclasts.  
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