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ABSTRACT 

AIR POLLUTION, PULMONARY OXIDATIVE STRESS, AND THE ENDOTHELIN 

SYSTEM IN THE DEVELOPMENT OF CARDIOVASCULAR INJURY 

Jordan B. Finch 

July 28, 2016 

The goal of this project was to examine the role of endothelin-1 (ET-1) as a 

mediator in the pathway between air pollution exposure and the development of vascular 

injury.  A human cohort and male mice (C57BL/6 and ecSOD-Tg) were used to evaluate 

changes in the ET-1 system in response to exposures of fine particulate matter (PM2.5).  

Human ET-1 levels were significantly associated with environmental factors and markers 

of vascular change, but were decreased with increased PM2.5.  No association was seen 

between ET-1 and endothelial progenitor cells (EPCs) except for EPC-4, possibly 

indicating a regulatory relationship with this specific population.  In mice, the expression 

of the ET-1 system in the cardiopulmonary tissues changed significantly with exposure, 

with changes varying between exposure conditions.  A potentially protective effect was 

seen in the lungs of ecSOD-Tg animals.  These data suggest that ET-1 plays an important 

role in the vascular response to PM2.5 exposure. 
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INTRODUCTION 

 

Air pollution is a complex mixture of gases, particulates, and other molecules that 

permeate the atmosphere, making exposure largely unavoidable in most indoor and 

outdoor settings.  Outdoor, or ambient, pollution can be produced by exhaust from 

numerous sources, including motor vehicles, coal-fired power plants, industrial 

processes, agricultural dust, and smoke from biomass, structural, and wild fires.  

Incomplete fuel combustion from open fires (wood, coal, organic matter) and cooking 

stoves is the major source of indoor or household air pollution (1, 2).  Sources of 

particulate matter (PM), such as cigarette smoke, can affect individuals in both indoor 

and outdoor locations.  All sources of PM have the potential to impact human health, but 

while household pollution impacts individuals on a personal level, ambient pollution has 

the potential to influence global health.  To address this issue, several countries have 

passed air quality laws designed to reduce air pollution through the regulation of a variety 

of specific air toxics.  For example, in the United States, 187 air toxics, including 

acrolein, lead, and ozone (O3), are regulated by the Clean Air Act passed in 1963 (3).  

Numerous other policies have been introduced to decrease annual pollution levels, and 

new technologies have been introduced that work to remove contaminants from smoke 

and other aerosols before these reach the atmosphere (4).  These efforts led to a 49% 

decrease in aggregate emissions between 1980 and 2006 (5) and to an average 72% drop
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in emissions of the six most common pollutants: particles, ozone, lead, carbon monoxide, 

nitrogen dioxide, and sulfur dioxide (5).  

Despite the concerted efforts, decreases in PM are not sufficiently effective 

enough to prevent pollution-induced impacts on human health. The World Health 

Organization (WHO) attributed 7 million premature fatalities in 2012 to exposure from 

ambient and indoor air pollution, which roughly equates to 1 in 8 global deaths (6).  The 

WHO attributed the majority of these deaths to cardiovascular diseases (CVD), with 37% 

and 33% due to stroke and ischemic heart disease, respectively.  Other causes of death 

included respiratory conditions (24%) and lung cancer (6%) (6).  In the United States, the 

Centers for Disease Control and Prevention (CDC) attributes an annual 600,000 

American deaths to heart disease, emphasizing the significant burden of heart disease on 

a national level (7).  Although air pollution has a low odds ratio for the increased risk of 

myocardial infarction (MI) (1.02; confidence interval 1.01-1.02), the 100% exposure rate 

significantly increases the percentage of MIs attributable to air pollution, with levels 

similar to physical exertion and alcohol (8).  Although epidemiological studies well 

support an association between air pollution and CVD, this research is insufficient to 

elucidate the mechanisms responsible, and thus, more research is required in order to 

ultimately improve pollution-related health outcomes.  Based on the health and financial 

burden of CVD, it is necessary from medical, legislative, and economic standpoints to 

continue working towards decreased air pollution emissions in an effort to collectively 

reduce morbidity and mortality and to reveal the biological mechanism(s) by which air 

pollution causes and/or exacerbates CVD. 

AIR POLLUTION AND CARDIOVASCULAR DISEASE 
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Over the past 20 years, a number of clinical and epidemiological studies have 

established the damaging effects of air pollution on human health.  The majority of this 

damage is found in the pulmonary and cardiovascular systems, leading to an increased 

risk of heart disease or stroke.  Many of these health effects are linked to different forms 

of air pollution, including ambient air pollution and diesel (DE) and gasoline engine 

exhausts (GEE).  Ambient air pollution is composed of a gaseous suspension of 

aerosolized particles that typically have an aerodynamic diameter <10 µm (9, 10); this 

range is classified into specific particle sizes: ultrafine (<0.1 µm), fine (PM2.5, 0.1-2.5 

µm), and coarse (PM10, >2.5-10 µm).  There is strong evidence linking increased levels 

of PM2.5 with increased cardiovascular effects (9, 11, 12).  A 10 µg/m3 increase in PM2.5 

levels is associated with an increased risk of heart failure hospitalization (13) and with 

long-term all-cause mortality (14-18). 

Additional studies of specific types of air pollutants further strengthen the link 

between exposure and cardiovascular events.  PM2.5 exposure significantly increases left 

ventricular mass (19) and systolic (20-22) and mean ambulatory arterial (23) blood 

pressures.  Changes in PM2.5 are associated with the onset of MIs (24) and increased 

intima media thickness progression (25, 26), with accelerated carotid intima media 

thickness (CIMT) progression of up to 5.5 µm (per 10 ug/m3) per year (27).  Similarly, 

exposure to diesel exhaust and traffic-related pollution increases arterial stiffness (28) 

and systolic blood pressure (29) and is associated with both increased mortality hazard 

ratio and increased risk of dying after hospital discharge (30).  Collectively, these 

pathogenic changes (e.g., increased CIMT, increased blood pressure) suggest that an 
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underlying vascular alteration or dysfunction is responsible, and thus, there is a need to 

explore mechanisms consistent with these vascular manifestations.   

Brook et al. (12) propose three likely mechanisms by which air pollution may 

contribute to the development of CVD: 1) an imbalance in the autonomic nervous 

system; 2) translocation of particles, specifically ultrafine PM, into the circulation; and, 

3) the development of systemic oxidative stress and inflammation within the vasculature.  

These hypothetical pathways are generally accepted (11, 23, 28, 31-36).  A primary 

outcome of these mechanisms is the initiation of endothelium dysfunction, which appears 

central (perhaps as a result of or in combination with oxidative stress and inflammation) 

to further development of CVD.  Evidence suggests a strong association between 

endothelium dysfunction and cardiovascular events, leading to high morbidity and 

mortality from CVD (37) as well as other disease states (38-43).  Endothelium 

dysfunction is characterized by an imbalance between the dilator and constrictor forces in 

the vasculature.  This is best exemplified by concurrent decreased formation and 

bioactivity of nitric oxide (NO, derived from endothelial nitric oxide synthase, eNOS) 

and increased levels or activity of the endothelium-derived vasoconstrictor peptide 

endothelin-1 (ET-1) (37).  

THE ENDOTHELIN SYSTEM 

Endothelin-1 (ET-1) 

Research in the early 1980s led to the chemical identification of the endothelium-

derived relaxant factor NO that is recognized as one of the most important factors in 

regulating vascular smooth muscle tone (44, 45).  Soon after, it became obvious that the 
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endothelium also produces a vasoconstrictor to counteract NO’s effect and maintain 

vascular homeostasis.  Yanagisawa and colleagues isolated and sequenced the gene for a 

vasoconstrictive endothelin peptide (46); two more isoforms were later discovered, and 

the peptide sequenced by Yanagisawa was termed endothelin-1 (ET-1), with the 

subsequent peptides named endothelin-2 (ET-2) and -3 (ET-3) (47-52).  A fourth isoform 

has since been discovered, but evidence suggests that this peptide serves solely as an 

intestinal smooth muscle constrictor (50, 53, 54).  Of these four, ET-1 is the predominant 

isoform, and it exerts the greatest vasoconstrictive effect (50, 52, 55).  ET-1 is a 21-

amino acid peptide formed by the cleavage of pro-ET-1 (aka big ET-1) by the endothelial 

cell-specific endothelin-converting enzyme, ECE-1, into the active form (46, 50, 52, 55, 

56) (Figure 1).  As expected, the endothelium is the most common source of ET-1 

production, but the peptide may also be produced by vascular smooth muscle cells, 

cardiomyocytes, macrophages, leukocytes, and fibroblasts (48, 55, 57).  A number of 

physical and chemical factors upregulate the expression of the ET-1 gene: reactive 

oxygen species (ROS) (58), angiotensin II (49, 55, 57-59), cytokines (57, 59), tumor 

necrosis factor-alpha (TNFα) (55, 58), interleukins (55, 58), insulin (49, 55), 

norepinephrine (55), transforming growth factor-beta (TGFβ) (49, 55, 58-60), thrombin 

(49, 55, 57, 58, 61), and exposure to cold temperature (62).  Despite the number of 

factors that have the potential to increase ET-1 production, the physiological range of 

plasma ET-1 levels in a healthy individual is both relatively low (pg/ml) and narrow, 

emphasizing the tight homeostatic regulation of this potent peptide (48, 58, 59, 63).   

ET-1 Receptors 

Once secreted, ET-1 binds to one of its two G-protein-coupled receptor types to 
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Figure 1 

 

Figure 1: Schematic of vascular wall cell dependent production and receptor-mediated 

actions of ET-1.  ET-1 is produced through a series of precursors in response to 

stimulating signals.  Abluminally-released ET-1 binds to either the ETA or ETB receptor.  

Binding to the ETA receptor causes vasoconstriction and may lead to increases in blood 

pressure.  Chronic activation of this receptor can lead to hypertension or atherosclerosis.  

Binding to the ETB receptor leads to clearance of ET-1 from the vasculature and to the 

production of nitric oxide.  ET-1 and nitric oxide homeostatically balance with one 

another to maintain basal vascular tone.    
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mediate its downstream effects (57, 64, 65).  The ETA receptor, found on vascular smooth 

muscle cells and cardiomyocytes, mediates a contractile response, while the ETB 

receptor, found on vascular endothelial, epithelial, endocrine, and nerve cells, generally 

causes the release of vasodilators and is also responsible for the rapid clearance of ET-1 

from the vasculature (57, 64-67).  Binding to the ETB receptor also stimulates the protein 

kinase B (Akt) pathway, leading to phosphorylation of eNOS and production of NO (57, 

64).  As expected, these receptors are distributed in high levels throughout the 

vasculature, and although the ETA receptor is found in higher levels in the heart, the ETB 

receptor has a greater distribution in the lungs and kidneys (55, 63, 68, 69).  A subtype of 

the ETB receptor, ETB2, also causes vasoconstriction, but it is not found widely 

throughout the vasculature, and its activity is negligible in healthy individuals (55, 59, 

70).  Upon binding to the ETA receptor, ET-1 produces a vasoconstrictive response that is 

100-times more potent than norepinephrine, thus making it the most potent 

vasoconstrictor known (52, 71).  ET-1-mediated vasoconstriction decreases forearm 

blood flow and causes a significant increase in blood pressure (72-76); prolonged ET-1-

induced constriction facilitates the development of hypertension (21, 77, 78) and 

promotes atherosclerosis (48, 49, 52, 55, 79-81).  ET-1, however, under normal 

conditions, maintains vascular tone (65, 82) in balance with NO.  Moreover, ET-1 is 

necessary for proper skeletal development of the head and neck (83-85) and the 

formation of the vasculature in and around the heart (86), as well as control of embryonic 

heart rate (87).  

Physiology and Pathology of the Endothelin System 
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Like all homeostatic mechanisms in the body, the interaction between ET-1 and 

NO must be in balance in order for the vascular system to function properly, and it is 

when these two factors become unbalanced that pathological states such as endothelium 

dysfunction can begin to develop.  Although endothelium dysfunction is commonly 

assessed as a decrease in NO production, it can be caused by an increase in ET-1 

production (50, 52, 79). Nonetheless, it is important to consider that increased ET-1 

activity could also be caused by decreased ET-1 clearance and/or by lower levels of NO 

production or stability (79).  Decreased NO in the vasculature allows a greater effect of 

ET-1 independent of any change in ET-1 levels.  Regardless of the cause, many studies, 

including a number of pharmacological trials, show ET-1-dependent activity initiates 

pleiotropic effects beyond only vasoconstriction.  ET-1, working through a variety of 

pathways, generates ROS (88-90) such as superoxide (48, 79, 81, 89-91); activates 

macrophages, leading to increased production of pro-inflammatory mediators (65, 79-81, 

90, 92-94); induces extracellular matrix formation (95); and stimulates vascular smooth 

muscle cell proliferation (48, 59, 81, 88, 95, 96).  Furthermore, increased ET-1 inhibits 

eNOS and blocks the production of NO (79, 96). These actions can disrupt the 

equilibrium within the vascular wall and initiate endothelium dysfunction (12, 32, 81, 90, 

97-100), and thereby, generally promote the development of CVD.  Therefore, it is 

plausible and likely that altered ET-1 production and/or activity is one mechanism by 

which air pollution enhances the development of vascular dysfunction (40, 41, 76-79, 

100).  

The endothelin system is spread along 60,000 miles of vasculature in the body, so 

it is within reason that dysregulation of ET-1 could have effects in multiple organ 
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systems and potentially augment the development of other diseases.  As with CVD, the 

vasoconstrictive effect of ET-1 is the proposed major cause of these conditions.  In the 

extremities, cold-temperature-induced increases in ET-1 contribute to the pathogenesis of 

Raynaud’s phenomenon (38, 101), in which exaggerated vasoconstriction causes 

discomfort (ischemic pain) and discoloration of the affected areas.  Likewise, ET-1-

related vascular dysfunction in the eye leads to intraocular inflammation; this plays an 

important part in the development of primary open-angle glaucoma (42).  In the kidneys, 

ET-1 controls renal blood flow and the reabsorption of water and salt, as well as 

maintains acid-base balance (55, 58, 79, 102).  If any of these factors are disrupted, it can 

result in the development of hypertensive neuropathy, glomerulonephritis, or proteinuria 

(58, 80).  Within the pulmonary system, ET-1 is produced both by endothelial cells and 

by airway epithelial cells and cleared by the high levels of the ETB receptor found in the 

pulmonary tissue (55, 63, 68, 69).  ET-1 influences the maintenance of airway tone, and 

so increased production or decreased clearance may lead to bronchial constriction (55, 

103).  Chronic bronchial constriction can promote asthma and chronic obstructive 

pulmonary disease (COPD) (39, 104-106).  ET-1 also affects the arteries and veins in the 

lungs, and thus, elevated ET-1 can lead to the development of pulmonary hypertension, 

just as it can stimulate the development of systemic hypertension (98, 107, 108).  Thus, 

changes in ET-1 or its activity can be a link between exposure to air pollution and the 

development of a variety of pathogenic states through the induction of vasoconstriction 

and endothelium dysfunction as prevalently seen in CVD. 

AIR POLLUTION AND ENDOTHELIN-1 

Human Studies 
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Despite the wealth of evidence described above, few studies have examined the 

relationship between air pollution exposure and circulating levels of ET-1 in humans, and 

those studies that have been performed have produced conflicting results.  In 

epidemiological studies, Calderon-Garciduenas and colleagues have repeatedly examined 

the effects of elevated levels of air pollution on children in Mexico City, which has been 

shown to significantly exceed the WHO’s annual mean PM2.5 standard (109, 110).  In a 

2007 study, the group measured plasma ET-1 levels in healthy children (n=81) from both 

Mexico City and Polotitlán, a control city.  They observed that the cumulative PM2.5 level 

of the previous 7-days was associated with higher plasma ET-1 levels in the children of 

Mexico City (109).  Similarly, there was a positive correlation between the number of 

hours a child spent outdoors and plasma ET-1 level (109).  The authors suggested that the 

time spent outside increased each child’s exposure to air pollution that, in turn, increased 

plasma ET-1.  In a related study, clinically healthy children (n=28) from Mexico City and 

Polotitlán were used to investigate the effect of PM2.5 on markers of systemic 

inflammation and endothelial cell injury.  Again, Mexico City children were shown to 

have significantly higher levels of ET-1 and various inflammatory markers positively 

associated with elevated levels of PM2.5 exposure (111).  Controlled human exposures 

have been performed to substantiate the findings of these few epidemiological studies and 

to provide a better understanding as to whether air pollution alters ET-1.  A small study 

exposed healthy adults (n=10) to diesel exhaust (100 µg/m3) and showed that DE 

significantly increases plasma ET-1 and matrix metalloproteinase-9 (MMP-9) compared 

with filtered air-exposed controls (112).  Dysregulation of MMP-9 contributes to 



11 
 

pathological changes in the vasculature, and MMP-9 levels are increased via ETA 

receptor activation (112). 

Other studies, however, have found no change in the ET-1 system related to air 

pollution exposure or no alteration in the functional outcomes related to ET-1-induced 

vasoconstriction.  Peretz et al. (113) exposed a mixed group of both healthy subjects and 

people with metabolic syndrome to 2 hours of DE.  They reported an average 0.11-mm 

greater vasoconstriction in the brachial artery in the DE exposure group regardless of 

health status.  Likewise, plasma levels of ET-1 increased in both groups following DE 

exposure and to a greater degree within the healthy adults.  The authors attributed this 

latter finding to the arterial stiffness associated with metabolic syndrome; the vessels in 

the diseased individuals are less responsive to the effects of DE due to decreased 

plasticity, whereas the vessels of the healthy individuals are capable of producing a 

normal vascular response, and thus, could mount a greater range of vasoconstriction.  DE 

exposure, however, did not affect blood pressure or flow-mediated dilatation (FMD), the 

latter being a common indicator of endothelium function.  Similarly, after a 2 hour 

exposure to concentrated ambient air particulate matter (CAP), healthy non-smokers had 

no change in either FMD or in blood pressure, although they did have a significant 

reduction in brachial artery diameter (114).  Both Mills et al. (115) and Langrish et al. 

(116) exposed participants to higher levels of DE-derived PM2.5, which was expected to 

have a greater effect on the endothelium, but neither investigation demonstrated any 

change in the plasma levels of ET-1 or big ET-1. The varied results of these human 

exposure studies indicate that the effect of air pollution exposure on the ET-1 system is 
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difficult to measure and may differ based on factors such as pollution type, the length and 

concentration of exposure, and each measurement protocol. 

Other research has focused on the targets of ET-1 – the ET-1 receptors.  For 

example, administration of the selective ETA receptor antagonist, BQ-123, is used to 

explore the possibility of an increased secretion of ET-1 abluminally, which would not 

necessarily change ET-1 levels in the plasma (49, 116).  Exposure to DE decreased the 

amount of vasodilation seen as a result of the BQ-123 infusion, yet previous research 

indicated that BQ-123-induced vasodilation was in part due to endothelial cell-derived 

NO release mediated by the ETB receptor (117).  Thus, Langrish et al. (116) proposed that 

DE-elicited vasoconstriction results from decreased NO bioavailability and not increased 

ET-1.  Because NO and ET-1 must be delicately balanced in order to properly maintain 

the tone of the vasculature, a decrease in NO likely produces a similar effect as an 

increase in ET-1, so this remains a difficult relationship to disentangle.  Further use of ET 

receptor blockers and observation of the effects of direct ET-1 administration should 

allow for elucidation of which of these two factors more significantly influences 

alterations within the vasculature. 

Occupational Exposure 

Occupational exposures often result in unique forms of personal air pollution 

exposure.  A few studies have examined the cardiovascular effects of occupational traffic 

pollutant exposure (104, 118).  A large study of professional drivers (n=1,922) revealed 

that bus drivers who had more than 10 years’ experience, theoretically with more engine 

exhaust exposure, had a two-fold increased odds-ratio of myocardial infarction, even 
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after adjustment for unfavorable lifestyle factors; taxi drivers also had an increased odds 

ratio, while there was no evidence of increased risk for truck drivers (118).  In another 

study, air-quality monitors were used to measure personal and ambient exposure of North 

Carolina State Highway Patrol troopers during four successive 9-hour shifts (104).  

Although the report indicates lower in-vehicle PM2.5 levels compared with ambient 

PM2.5, higher levels of other pollutants, including carbon monoxide, nitrogen dioxide, 

and hydrocarbons, were present in the vehicle.  Furthermore, they showed that for every 

10 µg/m3 increase in PM2.5, the officers exhibited increased C-reactive protein (hsCRP), 

which serves as an indicator of inflammation, and increased next-morning heart rate 

variability (HRV).  HRV, like ET-1, has been shown to be altered by increased PM2.5, 

which indicates a relationship, either direct or indirect, between these two factors (20). 

Workers in other occupations are also prone to high-level exposures of pollution.  

In a study of sugarcane harvesters, higher levels of PM2.5 are measured during the harvest 

season (119).  Sugarcane fields are cleared by burning, and workers are exposed to high 

amounts of smoke and pollutants during burning and subsequently in the harvesting of 

the burnt sugarcane.  Both systolic and diastolic blood pressures are significantly 

increased in the workers during the harvest season compared with the non-harvest period 

(119).  Welding is another profession wherein workers are exposed to higher amounts of 

air pollution (120).  However, Jarvela et al. (121) determined that an 8 h dust and welding 

fume exposure (inhalable dust; 1.5-35 mg/m3) did not significantly change the workers’ 

levels of plasma ET-1, yet exposure to welding fumes (alveolar particle fraction; 1.0-25.3 

mg/m3) significantly decreased ET-1 (122).  The investigators hypothesized that this 

contradictory response could be due to the heterogeneous mix of the welding fumes, 
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which included high levels of nitrogen oxides that could disrupt the homeostasis in the 

vasculature.  Regardless, the study had insufficient evidence to accurately describe the 

mechanism of the response (122), and so further research is needed to determine the 

cause of this somewhat paradoxical result.   

Animal Studies 

Both environmental and controlled exposures in animals show a consistent trend 

between air pollution and alterations in ET-1 levels.  Mice exposed to GEE or DE have 

significant increases in plasma ET-1 (123), ET-1 mRNA expression in the aorta (105, 

123), and ET-1-induced vasoconstriction (124).  Some studies also noted elevated plasma 

levels of MMPs (105, 112, 123), which, as noted, are upregulated via activation of the 

ETA receptor (112).  Similarly, air pollution exposures in rats induced effects consistent 

with those observed in exposed mice.  For example, exposure of rats to DE enhances both 

the arterial vasoconstriction response to ET-1 (125) and the expression of ET-1 and ETA 

receptor mRNAs (126).  A combination exposure of DE particles and ozone also 

increases the expression of the ETB receptor in the aorta (126).  Similarly, CAP exposure 

in rats upregulates the mRNA expression of the ETA receptor in the heart (127), and 

inhalation of urban dust particles increases plasma ET-1 level and decreases the 

production of pulmonary NO (128).  In rabbits, PM10 exposure significantly increases 

plasma ET-1 level (129).  Thus, in a number of different animal models, well-designed 

exposure experiments provide evidence that a variety of air pollutants (e.g., PM, PM + 

O3, DE, GEE) are capable of increasing the level of plasma ET-1 and/or enhancing its 

receptors in the vasculature while decreasing NO status.  These changes likely prime 

blood vessels for endothelium and vascular dysfunction. 
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ENDOTHELIAL PROGENITOR CELLS (EPCs) AND ET-1 

ET-1-induced changes to the endothelium are likely to lead to vascular injury.  

Prime markers of this injury are endothelial progenitor cells (EPCs).  EPCs are stem cells 

produced by the bone marrow in response to vascular injury.  Once activated, these cells 

differentiate into new endothelial cells to replace damaged cells in the vasculature (130).  

Exposure to PM2.5 has been shown to deplete circulating levels of EPCs in humans (131) 

and mice (132), the latter study indicating a mechanism related to vascular endothelial 

growth factor (VEGF) resistance; both studies suggest lower EPCs reduce vascular 

repair.  Similar EPC and VEGF resistance effects were found in mice exposed acutely to 

acrolein (133), although ET-1 was not measured.  Studies with tyrosine kinase inhibitors 

have shown that inhibition of the VEGF receptor stimulates the extracellular signal-

regulated kinase (ERK) pathway, increasing the expression of prepro-ET-1 while also 

inhibiting the Akt pathway and decreasing NO production (134-137).  These results 

strengthen the hypothesis that VEGF resistance is a key component in the mechanism 

through which air pollution influences ET-1 and, downstream, EPCs.  A small number of 

studies have looked at ET-1 and EPCs in relation to ischemic stroke (130), diabetes 

(138), and cancer (139), but none of these studies have been specifically designed to 

relate ET-1 and EPCs with air pollution.  Further research is needed to clarify the role of 

ET-1 in the release of EPCs from the bone marrow and the interaction between these two 

factors within in the vasculature. 

OXIDATIVE STRESS AND ET-1 

As previously mentioned, ET-1 gene expression has been shown to be 

upregulated by ROS (58).  Studies utilizing xanthine oxidase and hydrogen peroxide have 
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demonstrated the ability of ROS to increase the expression and/or production of both ET-

1 and its precursors in human umbilical vein endothelial cells (HUVEC) (140), vascular 

smooth muscle cells (141, 142), human mesangial cells (143), and diabetic rat glomeruli, 

both in vitro and in vivo (144).  This increase in ET-1 explains the link between increased 

levels of oxidative stress (OS) and incidence of increased vasoconstriction (140, 142, 

143).  Furthermore, these increases have been linked to the development of disease states 

such as diabetes (144, 145), hypertension (140), atherosclerosis (140, 145), and 

ischemia/reperfusion injury (143, 145).  In attempts to better understand the underlying 

mechanisms of these diseases, it was discovered that the use of antioxidants could be 

used to ameliorate symptoms; as expected, ROS scavengers decreased ROS levels, which 

in turn prevented increased production of ET-1, allowing the vasoactive factors to remain 

balanced and preventing negative downstream effects.  In particular, superoxide 

dismutase (SOD) and catalase have been shown to significantly decrease ET-1 

production (144).  Mice either under- or over-expressing levels of SOD have been used to 

evaluate OS under a number of different conditions (146-149), but no studies to date have 

used these mice to examine the relationship between OS and ET-1 after air pollution 

exposure.  As air pollution has been shown to increase levels of OS and alter components 

of the ET-1 system, such exploration would be relevant to assess the impact of increased 

antioxidant levels on the vascular impact of PM2.5 exposure. 
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OBJECTIVES AND HYPOTHESES 

This study was designed to examine the role of ET-1 as a mediator in the pathway 

between PM2.5 exposure and the development of endothelium dysfunction and vascular 

injury.  A young healthy human cohort and a mouse model were used to evaluate changes 

in the ET-1 system under varying PM2.5 exposure conditions.  These studies test the 

following hypotheses: 

1. Exposure to PM2.5 will increase levels of the ET-1 system components in 

human plasma and various mouse tissues. 

2. PM2.5-induced changes in EPC levels will be associated with concurrent 

changes in ET-1 levels. 

3. PM-induced ROS contributes to cardiopulmonary dysfunction by altering the 

ET-1 system.  Thus, upregulation (or overexpression) of extracellular SOD 

(ecSOD) selectively in the lungs will attenuate extracellular ROS and prevent 

ROS-dependent injury and systemic changes. 
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MATERIALS AND METHODS 

HUMAN STUDY 

This study was designed as a case-crossover study.  Young, healthy nonsmokers 

(8 males and 8 females) were recruited from the Provo, Utah area between January and 

March of 2009 (131).  All study consent forms and research protocols were approved 

through the Institutional Review Board for human subjects at Brigham Young University 

and through the Institutional Review Board at the University of Louisville.  Exclusion 

criteria included: (1) not 18-30 years of age; (2) active smoking; (3) unwilling to 

participate and/or sign the consent forms; (4) body weight of less than 110 pounds; (5) 

health problems that would preclude participation, including but not limited to lack of 

two healthy arms, any known chronic pulmonary or cardiac disease, current infectious 

illness, chronic renal failure, Parkinsonism, alcohol abuse, mental illness, bleeding 

disorders, current pregnancy, past or current history of hepatitis, AIDS, or HIV; and, (6) 

currently living, working, or attending school with exposure to environmental tobacco 

smoke.  Patients who met the enrollment criteria answered a questionnaire to obtain 

demographic information and baseline characteristics.   

Daily PM2.5 monitoring was conducted by the State of Utah Division of Air 

Quality at two sites located in the Utah Valley.  24-hour monitoring was conducted at 

both the North Provo site and the Lindon Elementary site according to the U.S. 

Environmental Protection Agency’s federal reference method (150).  Tapered element 
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oscillating microbalance (TEOM) monitors were also used to measure real-time PM2.5 

mass concentrations.  Additional weather parameters were collected from the National 

Weather Service using data reported from the Salt Lake City International Airport.   

The whole Utah Valley region, including Provo, Utah, is subject to winter 

temperature inversions that cause the development of a stagnant air mass over the valley 

floor.  PM2.5 and other emissions become trapped, and residents are exposed to high 

levels of pollution (151).  Blood collections were coordinated to occur before, during and 

after an inversion period.  The subjects underwent four blood draws: one during a high 

pollution period (PM2.5 >40 µg/m3), one during a moderate level (PM2.5 ≈20 to 40 µg/m3), 

and two draws during low pollution (PM2.5 <10 µg/m3); the draws during low pollution 

served to establish baseline levels.  Blood was collected at Brigham Young University by 

venipuncture at approximately the same time on each collection day.  Approximately 20 

mL of blood was collected in three separate tubes: a Vacutainer® CPT Mononuclear Cell 

Preparation Tube (Becton Dickinson) for EPC analysis, a Vacutainer® Plus PSTTM 

plasma separator tube for analysis of plasma components, and a Vacutainer® whole 

blood ACD tube for platelet-monocyte aggregate analysis.    

The analysis of serum components and EPC identification from these blood 

samples has been previously published, both as it was first described (152) and as it was 

modified by O’Toole et al. (131).  In short, blood samples were collected and processed 

at Brigham Young University before being shipped overnight to the University of 

Louisville for analysis (131). EPCs and hematopoietic cell populations were 

characterized by 7-color flow cytometry using previously established markers (131).  In 

all, six different cell types were identified and used for this study (Table 1).  A Cobas  
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Table 1 

 

Table 1: Antigenic identity of endothelial progenitor cells.  Six unique populations of 

endothelial progenitor cells were measured in blood samples of healthy young adults in 

response to PM2.5 exposure. 
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Mira 5600 Autoanalyzer was used to measure fibrinogen, C reactive protein, cholesterol, 

high density lipoprotein, low density lipoprotein, triglycerides, albumin, and total plasma 

protein.  ELISA kits were used to quantify serum amyloid A (Invitrogen), endothelin-1, 

interleukin 6, interleukin 1β, VEGF, stromal cell-derived factor-1, and platelet factor 4 

(R&D Systems).  Platelet-monocyte aggregates (CD41+/45+) were measured using a 

double-positive gating FACS strategy.   

Population demographics, environmental factors, and blood parameters between 

low (ET-1 ≤ 0.6881 pg/mL) and high (ET-1 > 0.6881 pg/mL) levels of ET-1 were 

compared using one-way ANOVA and t-tests.  Demographic variables that were found to 

be non-normally distributed were logarithmically transformed.  Generalized linear 

modeling was used to determine an association between ET-1 and plasma components of 

interest, with adjustments for subject-specific fixed effects: gender, age, and PM2.5 

(average of 24 hours before blood draw).  EPC levels were log transformed for normality 

and normalized to the sample volume.  Associations between ET-1 and EPC levels were 

assessed using linear regressions.  Statistical significance was assumed at p < 0.05.  IBM 

SPSS Statistics Version 21.0 for Windows (Armonk, NY) and Microsoft Excel 2010 

(Redmond, WA) were used for statistical analyses. 

ANIMAL STUDIES 

Because plasma levels of ET-1 may not reflect local changes in the ET-1 system, 

PM-induced changes in mouse tissues were also examined.  All mice were maintained 

under standard laboratory conditions and treated humanely following protocols approved 

by the University of Louisville Institutional Animal Care and Use Committee.  Male 
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C57BL/6 mice and mice overexpressing lung-specific ecSOD (ecSOD-Tg) were exposed 

to either high-efficiency particulate air (HEPA)-filtered air or to PM2.5 concentrated from 

ambient downtown Louisville air for six hours a day for either 9 or 30 consecutive days.  

Ambient PM2.5 was concentrated (CAP) via a modified versatile aerosol concentration 

enrichment system (VACES) (153) located in the University of Louisville Inhalation 

Facility (Figure 2).  PM2.5 was separated out of ambient air drawn in through an 

externally-mounted high volume exhaust pump via a cyclone generator.  Particles were 

passed through a heated, humidified stainless steel chamber (approximately 28-30 °C) 

coupled to a chiller (approximately 4°C) where they were humidified  and then 

concentrated using a virtual impactor.  Immediately following, the particles were passed 

through a diffusion dryer, producing concentrated PM2.5 similar in dimension to the 

originally collected particles.  

Charcoal- and HEPA-filtered room air was pumped through a second pump 

(GAST, Benton Harbor, MI) to further dry the particles, and a secondary exhaust pump 

facilitated the delivery of CAP to the stainless steel exposure chambers containing mice.  

HEPA-filtered air exposure was achieved in a similar fashion, without passing through 

the cyclone generator or the virtual impactor.  Use of a DataRAM 4 (ThermoScientific) 

dual-wavelength nephelometric monitor allowed for real-time measurement of particle 

mass and median diameter; this ensured that the animals were being exposed to 

particulate matter only within the PM2.5 range. 

Animals were euthanized at the end of the final six hour exposure period by 

sodium pentobarbital overdose.  Blood was taken by cardiac puncture using EDTA as an  
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Figure 2 

 

 

Figure 2: The versatile aerosol concentration enrichment system (VACES).  The 

VACES was used to concentrate ambient PM2.5 particles for in vivo murine exposure.  

Ambient air was pulled into the system and used to separate and concentrate PM2.5, 

which was subsequently used in the exposure.   High-efficiency particulate air (HEPA)-

filtered air was also used in the exposure to allow for an air control mouse population. 
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anticoagulant and immediately centrifuged (4.6 rpm, 20 min, 4°C) to separate plasma.  

Additionally, heart, lungs, aorta, and perivascular adipose tissue (PVAT) were dissected, 

weighed, and immediately frozen in liquid nitrogen.  All tissues were stored at –80°C 

until time of analysis.   

Total RNA was isolated from heart, lungs, aorta, and PVAT, n=5-8 for each 

exposure group, using TRIzol (Invitrogen, Merelbeke, Belgium) and RNeasy MiniKit 

(Qiagen, Hilden, Germany) per manufacturer’s instructions.  The total RNA was eluted 

from miRNeasy minicolumns in 30 µL of RNAse free water and the concentration 

determined using a NanoDrop 2000c spectrophotometer (ThermoScientific, Wilmington, 

DE).  The resulting concentration was used in the synthesis of cDNA via iScript cDNA 

Synthesis Kit (Bio-Rad, Hercules, CA) per manufacturer’s instructions.  Briefly, 15 µL of 

denatured RNA was mixed with 4 µL 5x iScript reaction mix and 1 µL iScript reverse 

transcriptase for a total volume of 20 µL.  cDNA synthesis was performed in a MyCycler 

Thermal Cycler (Bio-Rad, Hercules, CA), and the total cDNA was either directly used for 

further analysis or stored at –20°C.   

Total cDNA was diluted using RNAse free water immediately prior to use at a 

dilution of 1:5 for heart and lungs and 1:2.5 for PVAT.  No dilution was used for aortic 

cDNA.  Real-time quantitative PCR (qRT-PCR) was performed using iTaq universal 

SYBR Green supermix (Bio-Rad, Hercules, CA) per manufacturer’s instructions.  In 

short, 2 µL diluted cDNA, 5.0 µL iTaq 2x universal SYBR Green supermix, and 3 µL of 

the primers of interest or of mouse ribosomal protein P0 (mRPPO), used as an internal 

control, were mixed and added to each well.  Primers of interest consisted of mouse ET-

1, ETA receptor, and ETB receptor for all tissues as well as additional primers for markers 
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of systemic perturbation in particular tissues, specifically osteopontin, calponin, and 

smooth muscle actin (SMA) in aorta and leptin in PVAT.  qRT-PCR was run using 

protocols standard for Applied Biosystems 7900HT Fast Real-Time PCR System (Foster 

City, CA).  Each sample was run in triplicate. 

Sigma Plot 12.5 (San Jose, CA) and Microsoft Excel 2010 (Redmond, WA) were 

used for statistical analysis.  The relative expression (RQ) of each sample was calculated 

using the threshold cycle (CT) value for each sample and the following equations:  

∆𝐶𝑇 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝐶𝑇𝑇𝑎𝑟𝑔𝑒𝑡 −  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝐶𝑇𝑅𝑃𝑃𝑂 

∆∆𝐶𝑇 =  ∆𝐶𝑇𝐶𝐴𝑃 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 −  ∆𝐶𝑇𝐴𝑖𝑟 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 

𝑅𝑄 = 2−∆∆𝐶𝑇 

RQ values were used to compare CAP exposure expression of the target 

compared to normalized air exposure expression.  Rank sum tests were performed on the 

RQ values to find significant differences between groups based on duration and 

concentration of exposure or between murine models.  Data expressed as mean ± SD.  

Statistical significance assumed at p < 0.05.
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RESULTS 

HUMAN STUDY 

The human subject population for this study consisted of 8 males and 8 females 

between the ages of 18 and 26.  A demographic summary of the study participants 

stratified by median ET-1 level is given in Table 2, with each collected blood sample 

being treated as an individual sample.  Measured variables were grouped into common 

categories.  There was no significant difference between the ET-1 groups and gender or 

age.  All three environmental factors—temperature, relative humidity, and barometric 

pressure—were significantly different between the ET-1 groups, as were both stromal 

cell-derived factor -1 and red blood cell count.  No differences in fibrinogen, platelet-

monocyte aggregates, interleukin 6, interleukin 1β, VEGF, hsCRP, platelet factor 4, 

white blood cell count, cholesterol, high density lipoprotein, low density lipoprotein, 

triglycerides, albumin, or total plasma protein were observed (Table 2).   

Analysis of the association between overall ET-1 levels and the blood parameters 

with adjustments for subject-specific fixed variables showed positive associations 

between ET-1 and platelet-monocyte aggregates, interleukin 6, albumin, and total plasma 

protein and a negative association with white blood cell count (Table 3).  Comparison of 

ET-1 levels for each individual at the four blood draws with PM2.5 levels at each time 

point revealed an inverse association between the two factors (Figure 3).  A similar 

outcome was seen when ET-1 levels were stratified, with the highest ET-1 levels found
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Table 2 

 

Table 2: Demographic summary of the study participants stratified by median ET-1.  

Low ET-1 ≤ 0.6881 pg/mL, high ET-1 > 0.6881 pg/mL.  Platelet-monocyte aggregates 

are given as the % total of cells CD41+/45+.  For vascular endothelial growth factor and 

platelet factor 4, n = 32.  * indicates significance at the p < 0.05 level.   
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Table 3 

 

 

Table 3: Association between ET-1 levels and blood study variables.  Generalized linear 

models were used to compare ET-1 and plasma components of interest.  Models were 

adjusted for gender, age, and PM2.5 (average of 24 hours before blood draw).  Platelet-

monocyte aggregates, interleukin 6, albumin, and total plasma proteins were all positively 

correlated with high ET-1.  * indicates significance at the p < 0.05 level. 
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Figure 3 

 

 

Figure 3: Inverse association between PM2.5 and ET-1.  Previous 24 hour PM2.5 levels 

were regressed against ET-1 using a generalized linear model.  Colored numbers 

represent study subjects at each individual blood draw.  Data indicate a significant 

inverse association between the two factors, with the highest ET-1 levels measured in 

blood samples collected at the lowest PM2.5 exposures. 
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after the lowest PM2.5 exposures (Figure 4A).  PM2.5 was also compared to plasma 

components with a significant association with ET-1 (Figure 4B-F).  ET-1 levels were 

additionally compared to previously measured levels for six unique EPC populations 

(Table 4).  The majority of  these populations showed no association, as represented by 

the most abundant EPC population in Figure 5, but a strongly positive association was 

seen between ET-1 and EPC-4 (CD31+/34+/45+/ACC133+) (Figure 6).   

ANIMAL STUDIES 

A summary of the murine exposures is given in Table 5.  The concentration of 

each exposure was calculated and used to classify each exposure as low or medium 

(Table 5).  The exposures in December 2014 and April 2015 had similar concentrations 

(21 µg/m3 and 18 µg/m3, respectively) and were combined to increase sample size.  The 

body weight of each mouse was measured before and after exposure; mice had normal 

body weights and did not show any visible signs of distress in response to exposure 

(Figure 7).  Comparisons of the calculated RQ values between the air and CAP exposed 

mice for each exposure were made to examine the effect of exposure on the gene 

expression of the ET-1 system and of other systemic markers.  An acute, low PM2.5 

exposure showed no effect in the tissues in C57BL/6 mice (Figure 8A-D).  A higher 

concentration exposure of the same duration, however, resulted in significant changes in 

expression of the ET-1 receptors in the heart (Figure 9A-D).  In ecSOD-Tg mice, the 

same acute, low PM2.5 exposure had no significant effect in the heart (Figure 10A) or the 

PVAT (Figure 10D), but led to strongly significant increases in the gene expression of 

the clearance receptor in the lungs (Figure 10B) and in smooth muscle actin in the aorta 
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Figure 4 

 

Figure 4: Association between PM2.5 and blood variables.  Associations between PM2.5 

and ET-1 (A), platelet-monocyte aggregates (B), interleukin 6 (C), white blood cells (D), 

albumin (E), and total plasma protein (F).   Mean ± SEM ET-1 levels for low (PM2.5 < 15 

µg/m3) and high (PM2.5 > 15 µg/m3).  Stratified ET-1 levels indicate a significant inverse 

association with PM2.5, with various associations between PM2.5 and the other variables, 

indicating varying downstream outcomes.  * indicates significance at p < 0.05.   
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Table 4 

 

 

Table 4: Association between ET-1 and EPC levels.  Estimation regression was used to 

compare ET-1 and circulating EPC levels for six cell populations. * indicates significance 

at the p < 0.05 level. 
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Figure 5 

 

 

Figure 5: No association between ET-1 and CD34+/31+ cells.  ET-1 levels measured in 

each blood draw for each individual were regressed against levels of EPC-6, the most 

abundant cell population measured in the study subjects, in each blood draw for each 

individual.  Regression indicates that there is no association between overall ET-1 and 

CD34+/31+ cells.   
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Figure 6 

 

 

Figure 6: Positive association between ET-1 and CD31+/34+/45+/ACC133+ cells.  ET-1 

levels measured in each blood draw for each individual were regressed against levels of 

EPC-4 in each blood draw for each individual.  Regression indicates a significantly 

positive association between overall ET-1 and CD31+/34+/45+/ACC133+ cells. 
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Table 5 

 

 

Table 5: Summary of murine exposures.  Each exposure lasted six hours per day for the 

duration noted.   
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Figure 7

 

Figure 7: Body weight of C57BL/6 mice before and after exposures.   Mean ± SE body 

weights for C57BL/6 mice exposed to CAP at varying concentrations and durations.  

Comparison of the body weights before and after exposure showed no significant 

difference, with all mice showing normal body weights at each time point.  
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Figure 8 

 

 

Figure 8:  mRNA expression of C57BL/6 cardiopulmonary tissues after an acute, low  

concentration CAP exposure.  Mean + SD gene expression of the ET-1 system and other 

markers of interest in heart (A), lung (B), aorta (C), and PVAT (D) tissue after nine days 

of CAP exposure.  Acute exposure to low concentration CAP did not cause any 

significant changes in the tissues of C57BL/6 mice.   
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Figure 9 

 

 

Figure 9:  mRNA expression of C57BL/6 cardiopulmonary tissues after an acute, 

medium concentration CAP exposure.  Mean + SD gene expression of the ET-1 system 

and other markers of interest in heart (A), lung (B), aorta (C), and PVAT (D) tissue after 

nine days of CAP exposure.  Acute exposure to medium concentration CAP significantly 

decreased gene expression of the ET-1 receptors in the heart of C57BL/6 mice.  * 

indicates significance at p < 0.05.   
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Figure 10 

 

 

Figure 10:  mRNA expression of ecSOD-Tg cardiopulmonary tissues after an acute, 

low concentration CAP exposure.  Mean + SD gene expression of the ET-1 system and 

other markers of interest in heart (A), lung (B), aorta (C), and PVAT (D) tissue after nine 

days of CAP exposure.  Acute exposure to low concentration CAP significantly increased 

gene expression of the ET-B receptor in the lungs and within ET-1 and smooth muscle 

actin in the aorta of ecSOD-Tg mice.  * indicates significance at p < 0.05.   
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(Figure 10C).  Chronic exposure to C57BL/6 mice at a middling PM2.5 concentration 

caused strongly significant changes in the gene expression of the receptors in both the 

heart (Figure 11A) and lungs (Figure 11B) and in smooth muscle actin in the aorta 

(Figure 11C).  Although expression of both ET-1 and leptin genes was increased in 

PVAT, these increases were not significant (Figure 11D).  Conversely, gene expression 

of the receptors in both the heart and lungs in the ecSOD-Tg mice in this exposure were 

not significantly changed, although there was a trend towards an decrease in the ETB 

receptor in the heart (Figure 12A) and in the lungs (Figure 12B).  There was also a strong 

but nonsignificant decrease in smooth muscle actin gene expression in the aorta (Figure 

12C) and a similarly strong but nonsignificant increase in ET-1 gene expression in the 

PVAT (Figure 12D).   

Comparisons were also made between the exposures of varying concentrations 

and durations to examine the specific effects of these characteristics on gene expression 

in the cardiopulmonary system.  Looking at acute low versus medium exposures in 

C57BL/6 mice, the higher concentration exposure more significantly increased both ET-1 

and the ETA receptor gene expression in the lungs (Figure 13B) compared to the lower 

exposure.  There was also a greater increase in gene expression in both receptor types in 

the PVAT with higher PM2.5 (Figure 13D).  Neither the heart (Figure 13A) nor the aorta 

(Figure 13C) were more affected by the higher concentration.   

A comparison of the gene expressions between the C57BL/6 and ecSOD-Tg mice 

from the same acute, low PM2.5 exposure revealed differences only in the lungs (Figure 

14B) and the aorta (Figure 14C), with significant changes in ETB in both tissues and in  



41 
 

Figure 11 

 

 

Figure 11:  mRNA expression of C57BL/6 cardiopulmonary tissues after a chronic, 

medium concentration CAP exposure.  Mean + SD gene expression of the ET-1 system 

and other markers of interest in heart (A), lung (B), aorta (C), and PVAT (D) tissue after 

30 days of CAP exposure.  Chronic exposure to medium concentration CAP significantly 

reduced gene expression within the ET-1 system of the heart and lungs and within 

markers of systemic disturbance in the aorta of C57BL/6 mice.  * indicates significance 

at p < 0.05.   
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Figure 12 

 

 

Figure 12:  mRNA expression of ecSOD-Tg cardiopulmonary tissues after a chronic, 

medium concentration CAP exposure.  Mean + SD gene expression of the ET-1 system 

and other markers of interest in heart (A), lung (B), aorta (C), and PVAT (D) tissue after 

30 days of CAP exposure.  Chronic exposure to medium concentration CAP did not 

cause any significant changes in the tissues of ecSOD-Tg mice.   
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Figure 13 

 

Figure 13: Comparison of mRNA expression of C57BL/6 cardiopulmonary tissues 

after acute low and medium concentration CAP exposures.  Comparison of mean ± SD 

gene expression of the ET-1 system and other markers of interest in heart (A), lung (B), 

aorta (C), and PVAT (D) tissue after nine days of varying CAP exposure.  Medium 

concentration CAP exposure significantly increased gene expression of the ET-1 system 

in the lungs and PVAT in comparison to a low concentration CAP exposure in acutely 

exposed C57BL/6 mice.  * indicates p < 0.05 compared to air.  ** indicates p < 0.05 

compared to air.  # indicates p < 0.05 compared between CAP exposures.   
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Figure 14 

 

Figure 14:  Comparison of mRNA expression of C57BL/6 and ecSOD-Tg 

cardiopulmonary tissues after an acute, low concentration CAP exposure.  Comparison 

of mean ± SD gene expression of the ET-1 system and other markers of interest in heart 

(A), lung (B), aorta (C), and PVAT (D) tissue after nine days of CAP exposure. An 

ecSOD-Tg background significantly altered gene expression of the ET-1 system in the 

lungs and aorta in comparison to C57BL/6 mice in the same acute low concentration 

CAP exposure.  * indicates p < 0.05 compared to air.  ** indicates p < 0.05 compared to 

air.  # indicates p < 0.05 compared between CAP exposures.  
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also in ET-1 in the aorta.  The heart (Figure 14A) and PVAT (Figure 14D) showed no 

significant difference between the two exposures.  Duration of exposure had a significant 

impact in all the tissues at a similar medium PM2.5 concentration.  After 30 days of 

exposure, C57BL/6 mice had significant changes in the gene expression of ETA in the 

heart (Figure 15A), of both receptors in the PVAT (Figure 15D), of all ET-1 system 

genes in the lungs (Figure 15B), and of smooth muscle actin in the aorta (Figure 15C) 

compared to the levels after a 9-day exposure.  Gene expression in these tissues were all 

more significantly decreased with the chronic exposure compared to the acute exposure.   

 Compared to C57BL/6 mice, ecSOD-Tg mice showed significantly increased 

gene expression of pulmonary ET-1 and the ETA receptor after the same chronic, medium 

PM2.5 exposure (Figure 16B).  No differences were seen between the two mouse models 

in the heart (Figure 16A), aorta (Figure 16C), or the PVAT (Figure 16D).   
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Figure 15 

 

Figure 15:  Comparison of mRNA expression of C57BL/6 cardiopulmonary tissues 

after acute and chronic medium concentration CAP exposures.  Comparison of mean ± 

SD gene expression of the ET-1 system and other markers of interest in heart (A), lung 

(B), aorta (C), and PVAT (D) tissue after varying durations of medium CAP exposure. 

Chronic exposure significantly decreased gene expression of the ET-1 system and other 

markers in all tissues of C57BL/6 mice compared to an acute exposure of a similar 

medium CAP concentration.  * indicates p < 0.05 compared to air.  ** indicates p < 0.05 

compared to air.  # indicates p < 0.05 compared between CAP exposures. 
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Figure 16 

 

Figure 16:  Comparison of mRNA expression of C57BL/6 and ecSOD-Tg 

cardiopulmonary tissues after a chronic, medium concentration CAP exposure.  

Comparison of mean ± SD gene expression of the ET-1 system and other markers of 

interest in heart (A), lung (B), aorta (C), and PVAT (D) tissue after 30 days of CAP 

exposure.  ecSOD-Tg mice had significantly increased gene expression of the ET-1 

system in the lungs in comparison to C57BL/6 mice in the same exposure.  * indicates p 

< 0.05 compared to air.  * indicates p < 0.05 compared to air.  ** indicates p < 0.05 

compared to air.  # indicates p < 0.05 compared between CAP exposures.
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DISCUSSION AND CONCLUSIONS 

HUMAN STUDY 

We conducted a case-crossover assessment of the association between PM2.5 

exposure, ET-1, and EPC levels in a young, healthy cohort.  We found that higher ET-1 

levels were found on days with higher environmental temperature but lower relative 

humidity and barometric pressure.  In an adjusted analysis of ET-1 and measured blood 

parameters, we found that platelet-monocyte aggregates, interleukin 6, albumin, and total 

plasma protein were positively associated with ET-1 levels, while white blood cell count 

was negatively associated with ET-1 levels.   

Although not many studies have been performed relating ET-1 levels with these 

environmental factors, Kruse et al. (154) report seasonal variation in ET-1 levels, with the 

highest concentrations measured in July and the lowest in January.  Although this study 

also examined the effects of relative humidity on ET-1 and other plasma parameters, 

there was no significant variation of relative humidity between the seasons and no 

association seen with ET-1 (154).  Other studies have reported an inverse relationship 

between temperature and blood pressure, which can be altered by changes in the ET-1 

system (72-76, 155, 156).  However, these studies were performed in older (154) or 

diseased (156) cohorts or using indoor temperature measurements rather than ambient 

temperature (155), which may explain the different results.  As in our study, studies in 

healthy school children relating blood pressure and ambient temperature saw increases in
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blood pressure in colder months, with these changes likely related to changes in ET-1 

(157, 158).  Nevertheless, all of these studies, regardless of outcome, examined 

temperature over a period of several months spanning multiple seasons, whereas our 

study only occurred between January and March of 2009, as inversions only occur within 

the winter months.  A longer study unrelated to PM2.5 would likely allow for a better 

understanding of the relationship between ET-1 and environmental factors.  

The development of inflammation within the vasculature has been proposed as 

one mechanism through which air pollution may contribute to the development of CVD 

(12).  ET-1 has been shown to be involved in the regulation of a number of inflammatory 

mediators (55, 81, 94, 95, 104, 111, 138, 159, 160) and is known to contribute to 

downstream inflammation via the development of endothelium dysfunction (42).  We 

found a significant positive association between ET-1 level and interleukin 6, which is a 

cardiovascular indicator of inflammation.  We did not, however, see any association with 

hsCRP, which is the most common indicator of inflammation and which has been shown 

to be increased with PM2.5 exposure (104).  Multiple studies have reported a relationship 

between hsCRP and ET- 1 levels (111, 138, 161-164).  Jung et al. (138) found a 

significant correlation between ET-1 and hsCRP levels in patients with type 2 diabetes 

mellitus microalbuminuria, and Calderon-Garciduenas and colleagues (111) reported a 

similar association in a young, clinically healthy cohort from Mexico City.  Our lack of 

an association may be due to the periodic nature of the Utah inversions; the positive 

associations found in the other cohorts may be linked to the pervasive high PM2.5 

exposure of the study subjects, while our subjects were only subjected to abnormally high 
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levels for a short period.  Additional studies of cohorts exposed to high levels of PM2.5 

for varying durations are needed to clarify this discrepancy. 

White blood cell count is used as another marker of inflammatory status.  White 

blood cell accumulation and transformation play a significant role in the development of 

endothelial dysfunction (12, 32) and the subsequent development of atherosclerosis (12, 

32, 81, 165, 166).  Diehl et al. (165) report a positive association between increased white 

blood cell count and vasoconstrictive activity of ET-1, which contradicts our finding of a 

negative association between ET-1 level and white blood cell count.  This difference 

could be due to the type of ET-1 assessment; our results were based on endogenous 

measurements of ET-1, while Diehl’s finding were based on changes in forearm blood 

flow in response to intra-brachial infusion of ET-1.  Furthermore, the individuals that 

participated in our study were much younger than the ones enrolled in Diehl’s study (18-

26 years old versus 53-57 years old, respectively) and were healthier in terms of BMI 

status.  The subject characteristics of the older cohort show that all of the participants 

would be considered overweight based on the CDC’s definition of standard weight status 

categories (165), and white blood cell count has been shown to be increased in 

overweight and obese individuals (167, 168).  Thus, confounding factors such as weight 

and age could be contributing to the variation in results seen here.  Expanding the study 

in Utah to include a greater diversity of individuals may enable us to relate ET-1 with 

white blood cell count more conclusively.   

Regressions between the blood parameters and PM2.5 in an initial study of this 

cohort found significantly positive correlations with platelet-monocyte aggregates, high 

density lipoprotein cholesterol, total plasma protein, and nonalbumin protein (131).  In 
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looking at ET-1 and these parameters, positive associations were seen between ET-1 and 

platelet-monocyte aggregates, albumin, and total plasma protein, indicating that these 

factors may be influenced by PM2.5 exposure, changes in ET-1 levels, or perhaps both.   

Platelet-monocyte aggregates are used as clinical indicators of thrombosis, while 

albumin is used as an indicator of blood pressure.  Total plasma protein can provide 

information on both of these measures.  ET-1 is a potent vasoconstrictor and plays an 

important role in the regulation of the vasculature.  Imbalances in ET-1 and/or its 

counterpart, NO, initially causes endothelium dysfunction, which, as discussed above, is 

one of the underlying causes for a number of CVDs.  It has been shown that increased 

blood pressure (71-76) and, chronically, the development of hypertension (21, 77, 78) can 

result from increases in ET-1 related to endothelium dysfunction.  Similarly, endothelium 

dysfunction has been associated with thrombosis (90, 96, 169-171), specifically through 

decreased levels of bioactive NO (169, 170).  Bioactive NO plays a role in inhibiting the 

activation of platelets, and thus its loss allows for increased platelet activation and 

aggregation, possibly leading to the development of thrombosis (169, 170).  The 

development of endothelium dysfunction explains the positive associations between ET-1 

and markers of both blood pressure and thrombosis seen in our study.  There is a clear 

relationship between ET-1 and endothelium dysfunction, and even small changes in ET-1 

could lead to downstream adverse cardiovascular effects triggered by changes in blood 

pressure, thrombotic factors, or a number of other elements within the vasculature.  

Future research should seek to establish associations between ET-1 and other commonly 

used clinical indicators of CVD that could allow for earlier detection of endothelial 

dysfunction.   
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Endothelium dysfunction is theorized to be one of the initiating events in the 

development of CVD in response to air pollution exposure.  Exposure to many types of 

air pollutants has been linked to different cardiovascular and pulmonary diseases, and 

detailed studies have linked specific pollutants to different health outcomes.  Human 

studies have established significant cardiovascular effects in relation to DE and traffic-

related pollutants (28-30, 104, 113, 115-118), PM2.5 (19-27, 111, 112) , CAP (114), and 

occupation-specific air pollutants (119-122).   A number of these studies have examined 

ET-1 in relation to exposure in hopes of clarifying the role between the two, but the 

subsequent results are conflicting.  Some studies report increases in ET-1 levels (109, 

111-113) with or without changes in functional measurements, while others report no 

change (115, 116) or even a decrease (121) in levels.  As previously described, Brook et 

al. (114), Mills et al. (115), and Langrish et al. (116) all failed to find significant changes 

in ET-1 or in commonly-used indicators of endothelium dysfunction in relation to 

controlled exposures, while Jarvela (121) found a decrease in ET-1 with exposure to 

welding fumes.   

Our results, like Jarvela (121), found an inverse association between ET-1 and 

PM2.5 levels, with the lowest ET-1 levels corresponding to higher previous 24 hour PM2.5 

levels for almost all subjects.  These contradictory outcomes could have a number of 

explanations, including differences in pollution type, exposure length and concentration, 

and collection methods; small variations in the composition of PM2.5 could lead to 

varying changes in the vasculature and subsequently to varying health outcomes.  

Likewise, heterogeneous mixtures of pollutants could result in differences in results 

between studies.  Jarvela (121) attributed the decrease in ET-1 to increased levels of 
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nitric oxides within the welding fumes that could have an inhibitory impact on the 

production of ET-1 via its homeostatic balance with nitric oxide, as has been shown with 

direct exposure to nitric oxide gas in both endothelial cells (172, 173) and humans (174).  

On the other hand, combustion-derived metals such as vanadium that have been found in 

high levels in ambient urban air pollution (41) have been shown to increase 

vasoconstriction, both generally (175, 176) and in relation to increased ET-1 (177, 178); 

this fits data seen in studies with combustion-related pollutant exposures (111-113).  

Thus, the particular composition of the exposure could significantly impact the outcomes 

of air pollution exposure in relation to ET-1. 

 Furthermore, because ET-1 is largely released abluminally, plasma levels may 

not accurately reflect the amount of ET-1 produced in response to air pollution exposures, 

and thus studies utilizing plasma measurements may vary due to basic collection and 

measurements methods.  Future studies, therefore, should seek to standardize exposure 

protocols in terms of analyzing the composition of exposure pollutants and in regards to 

the collection and measurement of samples.  This would allow for assessments of 

changes in ET-1 between truly comparable studies and would hopefully allow for a more 

accurate evaluation of the role of ET-1 in response to air pollution exposures.   

High levels of PM2.5 exposure have been shown to decrease circulating EPC 

levels in humans, as shown in the original analysis of this study (131).  EPC levels are 

known to decrease with increasing CVD risk and progression (131, 132, 179, 180), and as 

PM2.5 exposure increases the risk of developing CVD, it can be construed that changes in 

EPC levels can result from PM2.5 exposure and lead to downstream vascular injury.  Few 

studies have looked at the relationship between ET-1 and EPCs (130, 138, 139, 181), and 
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none have looked in a healthy human cohort as in our study.  We found no association 

between ET-1 and the majority of the EPC populations assessed.  However, there was a 

significant positive association between ET-1 and EPC-4 (CD31+/34+/45+/ACC133+).  

This particular population also had the strongest statistical correlation seen in the 

negative association between PM2.5 and circulating EPC levels (131), and the exclusivity 

of an association with ET-1 levels may indicate a unique role of this EPC population in 

vascular injury and changes in relation to PM2.5 exposure.  This assessment may also 

indicate a role of ET-1 in regulating the levels of specific EPC populations, and it may 

also suggest a potential feedback or reciprocal relationship between ET-1 and select 

EPCs.  Further investigation is required to determine what is contributing to this 

association between ET-1 and EPC-4 and what role in particular ET-1 may have on the 

regulation of this population.  Future studies should examine a larger population of EPCs 

and assess their relationship to ET-1 to determine if there are any other associations 

between the populations and the vasoconstrictor. 

In summary, this human study shows that ET-1 is associated with a number of 

vascular markers related to cardiovascular outcomes, particularly those related to 

inflammation, thrombosis, blood pressure, and overall vascular injury.  Changes in these 

markers are used clinically to indicate the development of CVD, and they inherently 

reflect changes in the functioning of the vascular endothelium.  ET-1 has been shown to 

be upregulated in a number of disease states related to endothelium dysfunction, and 

although exposure to air pollutants such as PM2.5 are hypothesized to induce CVD via the 

development of endothelium dysfunction, research has indicated mixed results in terms of 

the relationship between ET-1 and PM2.5.  A likely explanation for this discrepancy is the 
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varying exposure types and the differences in collection and measurement methods.  The 

inverse association between ET-1 and PM2.5 seen here may indicate decreased production 

of ET-1 in relation to exposure or could signify an increased clearance of the peptide 

from the vasculature.  ET-1’s lack of association with five of the six measured EPC 

populations would seem to indicate no relationship between the two markers, but the 

positive association specifically with EPC-4 (CD31+/34+/45+/ACC133+) reveals a unique 

link that may imply regulation of this cell type by ET-1.  Future direction should assess 

changes in a larger, more diverse cohort through a variety of PM2.5 levels to better assess 

the relationship between ET-1, vascular changes, and pollution exposure.  A better 

understanding of this relationship could allow for the use of ET-1 as a diagnostic tool and 

could help develop therapeutics to diminish the impact of alterations in the ET-1 system 

on cardiovascular health.  

ANIMAL STUDIES 

We performed PM2.5 exposures in two murine models to assess the effect of PM2.5 

exposure on the gene expression of the ET-1 system in the cardiopulmonary tissues.  Our 

results showed significant changes in the expression of specific components of the ET-1 

system with CAP exposure.  These changes varied between the tissues and were largely 

associated with the specific concentration and/or duration of the exposure.  There were 

also significant differences seen between the tissues based on the mouse model.   

Few studies have examined changes in the murine ET-1 system in relation to air 

pollution exposure.  Increases in aortic ET-1 mRNA expression have been noted in 

response to both GEE and DE (31, 105, 123), and greater ET-1-induced vasoconstriction 
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has been measured after exposure to DE (124).  Changes in ET-1 receptor levels have not 

been well assessed in murine models, and there has been little assessment of the ET-1 

system in relation to exposures of different durations and concentrations.  Our study 

showed changes in the gene expression of various components of the system between air 

and CAP exposure regardless of exposure duration or concentration or mouse model.  

Although not all of these changes were significant, the potency of ET-1’s 

vasoconstrictive effect and its role in maintaining vascular homeostasis means that even 

small changes in the levels of the peptide or its receptors could have a significant impact 

on proper endothelial function and on downstream cardiovascular and pulmonary injury.  

Despite the changes seen within individual exposures, comparisons in C57BL/6 

mice between corresponding exposures revealed that an acute CAP exposure with a 

higher PM2.5 concentration did not have significantly more of an impact on gene 

expression of the ET-1 system in the tissues overall than did a similarly acute exposure of 

a lower concentration.  On the other hand, although significant changes were seen in 

response to the acute, higher concentration exposure, an exposure similar in 

concentration but longer in duration (9 days vs. 30 days, respectively) showed greater 

overall decreases in the ET-1 system gene expression in each tissue examined.  This may 

indicate that duration of exposure plays a greater impact on the integrity of the 

vasculature of the cardiopulmonary tissues than does the concentration of the exposure.  

Although it is well known that even short periods of exposure to high levels of air 

pollution can have many negative health impacts (8, 131, 182, 183), acute but chronic 

exposures may have a more important role in the development of chronic conditions (12, 

32, 182, 184, 185).   Additional studies are needed to measure the protein levels of these 
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markers in response to exposure, which would give us a true assessment of changes in the 

ET-1 system and in other systemic markers that could lead to changes in vascular 

function.  Furthermore, future studies should continue to utilize varying concentrations 

and durations of exposure to produce dose- and duration-response curves that allow for a 

better understanding of both short-term effects of high level exposures and the 

cumulative effect of repeated exposures.   

The use of ecSOD-Tg mice in our exposure studies explored the potential benefit 

of overexpression of the antioxidant enzyme ecSOD as a protective mechanism against 

PM2.5 exposure.  ecSOD plays a significant role in scavenging superoxide anions, whose 

presence has been linked to a number of disease states (146, 186-189).  Increased levels 

of ecSOD have been shown to be protective in both cardiac (188) and pulmonary (149, 

190) tissues.  Our study indicates that, in the lungs, this protective effect may be due to 

increased levels of the ETB receptor.  After an acute, low PM2.5 exposure, the gene 

expression of the ETB receptor was significantly increased.  As the ETB receptor is 

responsible for clearance of ET-1 from the vasculature (57, 64-67), the evidence suggests 

that any PM2.5-induced ET-1 production is likely quickly rendered ineffective due to 

rapid binding and removal.  As there was no concurrently significant increase in the gene 

expression of the ETA receptor, there is no indication that there would be increased 

activation of the downstream vasoconstriction pathway, so there would seem to be no 

increased risk of the cardiopulmonary diseases associated with PM2.5 exposure.  In fact, 

since ET-1 would be having a decreased vasoconstrictive response to exposure, there 

may actually be a decreased risk with a short term, low concentration exposure.  

However, this increase in ETB gene expression was not seen after a chronic, higher dose 
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exposure, indicating that this protective effect may be lost either over time or at higher 

concentrations of exposure.  Future exposures at varying concentrations and duration 

using ecSOD-Tg mice would help clarify the nature of this seemingly protective increase 

in the ETB receptor.   

Similarly, the impact of exposure on smooth muscle actin in the aorta was 

dramatically different between the two exposure durations, although not all these changes 

were significant.  Smooth muscle actin is a marker of differentiated smooth muscle cells 

(191, 192), and it plays a major role in the contraction of smooth muscle cells (191-194).  

Lack of this contractile ability can lead to vascular stiffness, which can lead to conditions 

including hypertension and atherosclerosis (192, 195), as well as to dysregulated airway 

reactivity (196, 197).  Exposure to certain types of air pollutants has been shown to 

increase vascular stiffness (28), although similar exposures have been shown to increase 

airway contractibility (39, 104-106).  Our study, however, only examined smooth muscle 

actin expression in the aorta and thus could only assess the vascular changes.  After 9 

days, gene expression of aortic smooth muscle actin was significantly increased, but 

expression was then significantly decreased after 30 days.  Based on the combined 

results, it can be hypothesized that the duration of the exposure has a greater impact on 

the expression of smooth muscle actin than does the concentration of the exposure or the 

strain of mouse.  These results fit functional data in our lab (149) that short term PM2.5 

exposure increases aortic contractility, similar to the hyperreactivity seen in the airways 

during asthma attacks (39, 196, 197).  This is perhaps related to the measured increase in 

smooth muscle actin expression and a logical increase in downstream aortic contractility.  

Likewise, the decreased gene expression in smooth muscle actin seen after 30 days may 
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be expected to cause aortic hypocontractility, which has also been demonstrated in 

functional studies in our lab (149).  These dramatic changes in contractile ability are 

perhaps the result of changes in the contractile apparatus of the vascular smooth muscle 

cells themselves as a result of air pollution exposure.  Furthermore, as smooth muscle 

actin is a marker of differentiated smooth muscle cells, its decrease likely indicates that 

smooth muscle cells are becoming dedifferentiated, which is a sign of endothelium 

dysfunction and is one of the earliest signs of atherosclerosis (191, 198, 199).  Additional 

studies will focus on study of these early gene and phenotypic changes and correlated 

functional alterations in hopes of identifying possible interventions to deter the 

beginnings of atherosclerotic development.    

The results seen in the PVAT may also indicate the beginning of a chronic 

disease.  In both C57BL/6 and ecSOD-Tg mice, ET-1 and leptin showed increased gene 

expression with specific exposures.  Leptin is a hormonal indicator of the body’s fed 

status; that is, leptin is secreted by adipose tissue and serves as a signal to decrease 

appetite and increase energy expenditure (200-202).  Paradoxically, although leptin is 

meant to suppress one’s appetite, significantly increased levels are consistently measured 

in obese individuals (200-204).  This condition has been termed leptin resistance, in 

which the body fails to respond to increased leptin levels and continues to signal for more 

energy despite an already obese weight status (200-202).  Levels of ET-1 have also been 

noted to be increased in obese individuals (205, 206), with increased endothelium 

dysfunction (207) and enhanced ET-1-dependent vasoconstriction (207, 208) seen in this 

group compared to normal weight counterparts.  Thus, taken together, these increases of 

both ET-1 and leptin seen in this study seem to denote that PM2.5 exposure is contributing 



60 
 

to the development of leptin resistance.  And in fact, several epidemiological studies have 

linked exposure to air pollutants to increases in BMI (209-211).  The results of this study 

may also support the hypothesis that leptin stimulates ET-1 release (212-214), which 

could help explain the increased incidence of cardiopulmonary conditions seen in obese 

individuals (215-220).  Future studies should work towards a better understanding of the 

possible relationship between leptin, ET-1, and PM2.5 in hopes of providing relevant data 

that could be used to better understand and possibly impede the ever-growing obesity 

epidemic.    

CONCLUSIONS 

Taken together, the results of our human study show that young, healthy 

individuals exposed to air pollution experience changes in the vasculature that can 

potentially lead to downstream cardiovascular problems.  ET-1 was associated with 

environmental factors as well as a number of markers of thrombosis, inflammation, and 

blood pressure, implicating ET-1 as a likely mediator in the mechanism through which 

PM2.5 causes CVD.  Surprisingly, ET-1 levels were seen to significantly decrease with 

increasing PM2.5 concentration.  While most studies report an increase in ET-1 with 

exposure, exposures of varying compositions and durations have shown a fair amount of 

variability in the changes induced in the ET-1 system.   Thus, although we did not see an 

increase in ET-1 with high PM2.5 exposure as we had expected, the significantly inverse 

association between the two factors indicates that ET-1 production is altered by exposure 

to air pollution.  Combined with the positive association between ET-1 and EPC-4 

(CD31+/34+/45+/ACC133+) and the strongly inverse association between EPC-4 levels 
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and PM2.5, the data likely indicates that ET-1 is, in fact, a mediator between air pollution 

exposure and the development of CVD.   

There are a number of both strengths and limitations within this study.  Although 

our study population was small, the population possessed few confounding health factors 

that could possibly have affected the results.  Our population may therefore not have 

reflected the general population, but the lack of confounding health factors allowed for a 

more accurate assessment of the relationship between ET-1, PM2.5, and EPCs.  In terms 

of EPC measurement, flow cytometry is one of the quickest and most accurate methods 

for measuring circulating levels of EPCs, as it utilizes antigenic markers (CD31+, CD34+, 

CD45+/dim, AC133+/-) highly specific to EPCs to make the counts.  There is some 

potential bias in the measurement of the EPCs via the gating of the cells, as the process 

may appear rather arbitrary and may vary between investigators.  Therefore, a single 

investigator both directed and verified the gating of the EPCs to minimize the potential 

for different gating strategies.  Furthermore, as ET-1 is largely released abluminally from 

the circulation, measuring ET-1 in the plasma may not accurately reflect changes at a 

more local level.  Plasma is, however, the easiest and most common sample used to 

measure ET-1 in humans, and we therefore assessed ET-1 in the plasma as well to allow 

for comparison to similar studies.   

Future human studies should work towards increasing the sample size of the 

cohort in any single year.  A longitudinal study of past participants who still meet the 

enrollment criteria should also be performed to assess how the body adapts or fails to 

adapt to this repeated seasonal exposures.  It would also be interesting to assess ET-1, 

EPCs, and the other blood parameters in this cohort during different seasons to better 
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study the influence of temperature and other environmental factors on the relationship 

between air pollution exposure and CVD.  Additional EPC populations should also be 

examined; our lab currently has fifteen EPC populations that have been used to assess 

changes in the vasculature, and it would be important to see if there is an association 

between ET-1 and any of these other populations.  It would also be beneficial to examine 

the association between ET-1 and the equivalent of EPCs in murine models.  Mice 

represent a relevant and available model of human physiology but allow for a wider range 

of treatments and mechanistic studies than human subjects.  Using mice, therefore, to 

study ET-1 and EPCs would allow for the use of interventions that could possibly shed 

more light on the relationship between these markers on a more mechanistic level.   

The results of our animal studies overall reveal that exposure to PM2.5 causes 

significant changes in the gene expression of the ET-1 system of the cardiopulmonary 

tissues.  These changes were dependent on the varying exposure durations and 

concentrations and with varying genetic backgrounds of the models.  The ET-1 system in 

C57BL/6 mice showed a number of both significant increases and decreases in gene 

expression depending on the tissue and the specific exposure, but a greater response was 

seen in the chronic exposures regardless of the concentration level.  This finding supports 

evidence showing that chronic air pollution exposures, whether at low or high levels, can 

cause vascular changes and lead to the development of chronic health conditions, 

cardiopulmonary or otherwise.  Our findings in the tissues of ecSOD-Tg mice support our 

hypothesis that that the upregulation of this antioxidant enzyme prevents ROS-related 

changes, at least after an acute, low-dose exposure.  The significant increase in the gene 

expression of the ETB receptor seen in the ecSOD-Tg lungs may serve as a protective 
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mechanism by which PM2.5-induced increases in ET-1 levels are mitigated by increased 

clearance.  However, this protective effect was not seen in a chronic, higher-dose 

exposure, so it would seem that, given that the increase in ETB is a protective effect 

conferred by the increase in the ecSOD enzyme, the overexpression of pulmonary ecSOD 

is not able to prevent ROS-related injury perpetually.  Nonetheless, the indication of any 

sort of protective effect could play a significant role in the understanding of the 

mechanism through which air pollution causes downstream cardiopulmonary diseases.  

Furthermore, the changes in smooth muscle actin gene expression in the aorta and in ET-

1 and leptin in the PVAT seem to be early indicators of the development of chronic 

diseases: atherosclerosis and obesity, respectively.  ET-1 has been hypothesized to play a 

role in both of these conditions, and our studies in these murine models seem to indicate 

that air pollution exposure may be contributing to the changes in the ET-1 system that 

subsequently contribute to disease development.   

Our results, however, must be viewed in light of both the strengths and 

weaknesses of the study overall.  In terms of the exposures themselves, we have no 

control over ambient PM2.5 levels and thus we cannot control the concentration of any 

given exposure.  We are also limited in the number of mice we can expose during any 

single experiment; together, these two factors have the potential to reduce the sample size 

for the groups at varying exposure concentrations and durations.  Exposures are thus run 

with as many mice as possible and as often as possible to increase the likelihood of 

conducting exposures at varying concentrations.  When two or more exposures have the 

same duration and a very similar overall concentration, we have combined the samples 

into a single exposure level in order to increase sample size.   
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In regards to assessing changes within the ET-1 system in response to exposure, 

qRT-PCR was used to measure the gene expression of ET-1 and its two receptors, as well 

as other relevant markers, in each of the tissues.  qRT-PCR is problematic in that it 

measures gene expression and not the actual gene product, and changes in expression 

may not be reflected in actual production.  Also, there is always the possibility of 

genomic contamination in RNA prepared from the tissues, and with dilution of the cDNA 

samples in preparation for qRT-PCR, any contamination will give a larger signal and lead 

to falsely increased CT values.  Furthermore, as tissues are composed of a variety of cell 

types, we cannot attribute any specific cell type for the changes seen in the ET-1 system.   

Future studies in murine models will focus primarily on addressing the limitations 

of the current study.  Continuing exposures will allow for both increased sample size and 

a wider range of exposure concentrations and durations.  Gathering data over a wider 

range of conditions will allow us to more accurately measure changes in the ET-1 system 

related to specific levels of PM2.5 or to particular time points; such results could help 

provide more detailed information on changes in the cardiovascular and respiratory 

systems related to air pollution exposure and could potentially contribute to larger 

undertakings seeking to decrease the incidence of pollution-related CVD.  Protein 

measurement of the ET-1 system, as well as functional data in exposed mice, would 

additionally provide more concrete evidence for the role of ET-1 in the interplay between 

air pollution exposure and disease development.  Additionally, measurement of EPC 

levels in exposed mice would provide evidence of vascular injury, and these levels could 

then be associated with plasma levels of ET-1, as was done in the human study.  The use 

of pharmacological interventions such as ET receptor inhibitors could also help clarify 
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ET-1’s role in the overall mechanism of exposure as well as the role of ET-1 in the 

regulation of EPCs.   

It would also be beneficial to assess ET-1 changes in female mice to determine 

how sex plays a role in the impact of air pollution on CVD and pulmonary conditions.  

The vast majority of pollution exposure studies use only male models, which fails to take 

into account that heart disease is the leading cause of death for females in the United 

States (221) and that women have been found to be more susceptible to certain 

cardiopulmonary conditions than men (222).  Pulmonary hypertension, for example, has a 

female-male ratio of 2.7:1 (222), and development and exacerbation of the disease has 

been linked to air pollution exposure (223, 224).  Accordingly, exposure studies in 

females are needed to explain this phenomenon and to help curtail the growing incidence 

of CVD and pulmonary disease. 

In summary, these studies examine an important mediator in the mechanism 

through which air pollution exposure causes CVD.  Our human data reveal a significant 

association between ET-1 and markers of change and injury in the vasculature and 

between ET-1 and PM2.5, thus providing evidence that PM2.5-induced changes in ET-1 

can have a significant effect on the health of the vascular endothelium.  Our exposures in 

C57BL/6 mice showed that expression of ET-1 system genes can be significantly altered 

by a variety of exposure conditions, although chronic exposures seem to have a greater 

impact and may, thus, have a more negative impact on overall health.  Our interventional 

study utilizing mice with pulmonary overexpression of the antioxidant enzyme ecSOD 

revealed a potentially novel protective effect in the lungs via increased gene expression 

of the ET-1 clearance receptor, ETB.  Although this increase was lost with increasing 
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concentration and duration of exposure, the initial change still shows that decreasing 

PM2.5-induced ROS has the capability of preventing downstream injury.  Overall results 

of this investigation provide insights into the role of ET-1 in the vasculature in response 

to PM2.5 exposure as well as its relationship with clinical indicators of vascular changes.  

The results presented here could be used to drive future investigations into the link 

between air pollution exposure and CVD, pulmonary diseases, and other chronic 

conditions and could also be used as a basis for potential interventional therapies for 

diseases caused or exacerbated by environmental exposure.     
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APPENDICES 

ABBREVIATIONS 

Akt  Protein kinase B 

Ca2+  Calcium 

CAP  Concentrated ambient air particulate matter 

CDC  Centers for Disease Control and Prevention 

CIMT  Carotid intima media thickness 

cGMP  Cyclic guanosine monophosphate 

COPD  Chronic obstructive pulmonary disease 

CT  Threshold cycle 
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DE  Diesel exhaust 

EC  Endothelial cell 
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ECM  Extracellular matrix
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