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ABSTRACT 

ISOLATION OF EGFR-CONTAINING EARLY ENDOSOMES  

Julie A. Gosney 

June 14, 2016 

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase 

(RTK) that is an integral component of proliferative signaling.  When activated by 

a ligand at the plasma membrane, EGFR undergoes clathrin-mediated 

endocytosis.  This spatial regulation of the receptor is an important regulator of 

receptor expression as it mediates its degradation.  Endocytosis also has 

implications on EGFR downstream signaling, though the details are not fully 

understood.  The goal of this thesis is to develop a method to isolate early 

endosomes in order to study downstream effectors associated with activated 

EGFR in this compartment.  HeLa cells were used to test various subcellular 

fractionation methods, optimizing each step to develop a protocol that enriches 

early endosomes.  The isolated compartments were then analyzed by mass 

spectrometry to characterize the protein composition of early endosomes, with 

the goal of further understanding how the spatial regulation of EGFR affects its 

downstream signaling. 
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INTRODUCTION 

 

The study of growth factors and their receptors is a rapidly growing field of 

research that began in the 1960s when Stanley Cohen and Rita Levi-Montalcini 

discovered the first growth factors: Nerve Growth Factor (NGF) and Epidermal 

Growth Factor (EGF) [1, 2].  NGF and EGF are small proteins that stimulate the 

growth of nerve and epithelial cells, respectively.  Before the discovery of growth 

factors, scientists knew that cells could signal for growth and proliferation, 

particularly during development—but they didn’t understand how this 

phenomenon occurred [1].  The identification of NGF and EGF was pivotal, as 

these proteins could now be studied directly in order to elucidate their functions 

in cellular and organ physiology [3].  These discoveries were a major scientific 

breakthrough that earned Cohen and Levi-Montalcini a shared Nobel Prize in 

1986 [4]. 

 Upon Levi-Montalcini’s discovery of NGF, she and Cohen worked 

diligently to understand its function.  Because NGF was discovered in the 

submaxillary glands of mice, they continued using these extracts to study its 

effects on neuronal growth [5].  However, injecting mouse salivary gland extracts 

into newborn pups ended up yielding other, unexpected phenotypes.  Cohen 

noted that these new changes were not due to the induction of nerve growth, but 

due to changes in epithelial tissues [2].  During Cohen’s original experiments  
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characterizing his novel epithelial tissue-specific growth factor, he referred to the 

protein as the “tooth-lid factor” [2].  While the title was only temporary until he 

coined the name EGF, the “tooth-lid factor” was so named because it directly 

described the effects he saw in mice injected with EGF:  it increased the rates of 

tooth growth and eyelid opening in newborn pups [2]. 

 The discovery and characterization of growth factors led to another 

essential discovery—growth factor receptors.  Once Cohen had discovered EGF, 

he immediately began working to isolate and identify its receptor.  In 1982 Cohen 

successfully isolated and characterized EGF’s cognate receptor from mouse 

livers [3].  In this work, the receptor was identified as a 170kDa glycoprotein with 

intrinsic tyrosine kinase activity.  Over the next three decades, the EGF-receptor 

would be studied extensively, leading to our most current understandings of the 

signaling, trafficking, regulation, and physiologic implications of this protein. 

Epidermal Growth Factor Receptor (EGFR) 

The epidermal growth factor receptor (EGFR) is a membrane spanning 

receptor tyrosine kinase (RTK) that is an integral component of proliferative 

signaling.  Part of the ErbB family of receptors, EGFR is also referred to as 

ErbB1 or Her1.  The other ErbB family members include ErbB2 or Her2, ErbB3, 

and ErbB4.  Structurally, EGFR and the ErbB receptors are made up of three 

domains:  1) the extracellular ligand binding domain, 2) the transmembrane alpha 

helices, and 3) the intracellular domain which contains the kinase domain and 

multiple tyrosine residues on the C-terminus (Figure 1).  The extracellular 

domain contains two ligand-binding regions that alternate with two cysteine-rich  
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Figure 1.  Epidermal Growth Factor Receptor structure.  When unbound by a 

ligand, the receptor is often found in a “closed” conformation in which the 

cysteine-rich regions of the extracellular region interact.  When a ligand is 

introduced it binds to the two ligand binding domains and a conformational 

change occurs, exposing a cysteine-rich region which can then interact with an 

exposed cysteine-rich region of another ligand-bound ErbB family receptor.  

Red=inactive kinase domain; green=active kinase domain; orange=ligand binding 

domains; blue=cysteine-rich domains. 
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regions.  Binding of one of EGFR’s seven endogenous ligands—epidermal 

growth factor (EGF), heparin-binding EGF-like growth factor (HBE), epiregulin 

(EPR), epigen, transforming growth factor alpha (TGFα), amphiregulin (AR), and 

betacellulin (BTC)—to the extracellular region induces a conformational change 

in which the ligand binding regions directly interact with the ligand [6].  This 

structural change exposes the two cysteine-rich domains, allowing the receptor 

to associate with the exposed cysteine-rich domains of another ligand-bound 

EGFR or ErbB family RTK monomer to form a dimer [6].  

The binding of two ligand-bound receptors causes the formation of a 

dimer, which is required for receptor activation [7].  The dimer pair interaction 

structurally induces the activation of the kinase domains.  The kinase domain of 

one receptor then phosphorylates the C-terminal tyrosine residues of its dimer 

partner (transphosphorylation) [7].  The cytosolic phosphorylated tyrosine 

residues of the EGFR serve as docking sites for effector molecules that contain 

phosphotyrosine binding (PTB) or src homology 2 (SH2) domains [8].  Proteins 

that dock to the phosphorylated tyrosine residues of an activated EGFR will 

recruit and/or activate other proteins, thus inducing a signaling cascade.  For 

example, at the plasma membrane, an activated EGFR dimer will recruit the 

scaffolding proteins Shc and Grb2 to bind to phosphotyrosines and the EGFR 

kinase domains phosphorylate these proteins [8].  Activation of Grb2 leads to the 

recruitment of SOS and induction of the Ras-ERK pathway which is known to 

activate cell proliferation [8].  Activation of Shc leads to induction of the JNK 

pathway which is also known to be involved in the induction of cell proliferation  
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via the activation of nuclear transcription factors [8].  

EGFR Physiology 

EGFR signaling plays critical roles in cell proliferation, migration, 

differentiation, wound healing, development, and tissue homeostasis.  Growth 

factors are mitogens, and the EGFR is an important mitogenic signal transducer.  

In fact, the EGFR is an essential component of cellular physiology and is critical 

for proper tissue development.  In 1995, Miettinen et al. produced a line of EGFR 

knockout mice to determine the physiologic importance of the receptor in 

development [9].  They found that the knockout (-/-) pups only survived for eight 

days after birth.  The mice also had significant developmental impairments in 

multiple epithelial tissues and organs including the lungs, skin, and 

gastrointestinal tract [9].  In 1999 Miettinen also documented that EGFR (-/-) 

pups have compromised craniofacial development (Figure 2) [10].  EGFR is 

clearly a crucial component for normal tissue development and homeostasis 

throughout the body. 

While the absence or reduction of EGFR signaling unquestionably causes 

severe developmental impairments as discussed, excessive EGFR signaling also 

has detrimental effects.  It has been well documented that the receptor is often 

overexpressed and/or over-activated in many different cancer types, including 

non-small cell lung cancer, breast, pancreatic, cervical, head and neck, and 

colorectal cancer among others [11-16].  Non-small cell lung cancer (NSCLC) is 

the most common type of lung cancer, accounting for about 85% of all lung 

cancers [17].  Many driver mutations have been discovered in NSCLC patients,  
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Figure 2.  The effects of EGFR knockout on craniofacial development in 

mice.  a) A wild-type newborn mouse has a round snout, whereas b) an EGFR (-

/-) mouse has a narrower snout.  c) The nostrils of wild-type mice are open 

(arrow), d) but are often closed or narrow (arrow) in EGFR (-/-) mice.  e)  A wild-

type mouse at four months of age has long whiskers and a well-shaped snout, 

whereas f,g) EGFR (-/-) mice have smaller lower jaws (arrows), deformed eyes, 

and short, curly whiskers.  (from Nature Genetics (1999), 22, 69-73) 
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and EGFR is the driver mutation in about 50% of patients who are “never 

smokers” [18].  With a 5-year survival rate of only 17% [19], lung cancer has one 

of the highest mortality rates of all cancer types [17].  Clearly there is a great 

need for better lung cancer treatments, and the EGFR is a model candidate to 

target in these cancers. 

There are currently several FDA-approved anti-EGFR cancer therapies on 

the market.  These drugs are generally split up into two classes—monoclonal 

antibodies and kinase inhibitors.  The monoclonal antibodies (e.g. Cetuximab) 

target the extracellular portion of the receptor and block the interaction of the 

receptor with extracellular activating ligands.  Cetuximab is approved for the 

treatment of cancers that express high levels of EGFR, including colorectal and 

head and neck cancers [20].  Tyrosine kinase inhibitors (TKIs) (e.g. Erlotinib) are 

small molecules that enter the cell and bind (reversibly or irreversibly) to the 

kinase domain of the receptor, blocking effector activation and downstream 

signaling cascades.  Erlotinib is approved for use in NSCLC patients whose 

cancers express EGFR kinase activating mutations, including exon 19 deletion 

and exon 21 (L858R) substitution mutations [18].  While these drugs tend to be 

very effective initially for patients whose cancers express over-activated 

receptors, eventually all of these patients will develop resistance to the drugs 

[21].  The exact mechanism by which this resistance occurs is unclear, although 

several studies suggest that the inhibited receptors can form heterodimers with 

other ErbB family members and even the insulin-like growth factor type-1 

receptor (IGF-1R), another RTK with mitogenic effects [22].   
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Although significant advances in cell biology research have led to the 

development of targeted therapeutics such as the anti-EGFR cancer drugs, these 

therapies provide an overall survival increase of only a few months for these 

subsets of cancer patients [23].  This lack of improvement, coupled with the 

resistance that develops from these treatments, reveals that there is an 

enormous gap in our understanding of mitogenic signaling.  If more robust cancer 

treatments are to be developed, it is essential that the mechanisms driving the 

proliferation and metastasis of these cells are elucidated.  Because targeting the 

EGFR directly has yielded only a minimal benefit to patient outcomes, it would be 

prudent to find more specific targets within the receptor’s signaling pathways.  

Unfortunately, there are still many facets to EGFR signaling that have yet to be 

elucidated.  One such question that could play an important role in understanding 

EGFR downstream signaling is:  how does the spatial regulation of the receptor 

affect its signaling?  This is the primary question we seek to answer in this work.  

EGFR Regulation 

The major mechanism through which the EGFR is regulated is the 

endocytic pathway (Figure 3).  Once the activated dimer is formed it migrates to 

a clathrin-rich region of the plasma membrane where it invaginates and pinches 

off into a clathrin-coated vesicle.  The clathrin is then shed, and this intermediate 

vesicle fuses with an early endosome [24].  The early endosome, sometimes 

referred to as the signaling or sorting endosome, is the epicenter of endocytic 

trafficking.  This organelle is responsible for determining the fate of its contents, 

depending on several factors including what ligand is bound and with which ErbB 



9 

 

Figure 3.  Endocytic trafficking of the EGFR.  The EGFR undergoes ligand-

dependent, clathrin-mediated endocytosis.  Early endosomes either mature into 

late endosomes where their contents are transported to lysosomes for 

degradation, or the receptor can be trafficked back to the plasma membrane via 

a recycling endosome.  The increasing acidity of these compartments induces 

dissociation of the ligand:receptor complex.  The EGFR can continue to elicit 

signaling cascades from the early endosome.  Red=ligand, green=active kinase 

domain, orange=clathrin. 
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family member the EGFR is dimerized.  The early endosome can send proteins 

back to the plasma membrane (recycling) [25], or sequester cargo to be sent to 

and degraded in a lysosome [26].  It has been reported that endocytosis can also 

transport EGFR to the endoplasmic reticulum and the nucleus [27, 28].  Over 

time early endosomes increase in acidity and “mature” into late endosomes [29].  

The late endosomes will fuse with a lysosome, where the receptor is degraded 

and thus down-regulated.  It is important to note that while in the early endosome 

the kinase domain of the receptor remains exposed to the cytosol, allowing the 

receptor to continue interacting with other proteins and downstream effectors 

[30]. 

Until the 1990s, EGFR spatial regulation by the endocytic pathway was 

viewed primarily as a mechanism for downregulating receptor expression after 

activation.  Chen et al. discovered in 1989 that an 18 amino acid sequence of the 

EGFR C-terminus is required for both kinase activation and internalization/ 

downregulation of the receptor [31].  Shortly thereafter in 1990, Wells et al. 

discovered that EGFRs that cannot undergo endocytosis enhance cell 

transformation [7].  They concluded from this study that without endocytosis, the 

receptor cannot be degraded and thus increases ligand-dependent cell 

transformation.  As such, endocytosis was viewed as a negative regulator of 

EGFR expression.  However, in 1994 Bergeron’s group discovered that certain 

EGFR scaffolding proteins involved in Ras signaling (i.e. Shc, Grb2, and mSOS) 

retain their association with active EGFR when it is internalized [25].  Further, in 

1996, Vieira et al. created an endocytosis-defective cell line to study the changes 
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in EGFR downstream effector activation after EGF treatment.  They found that 

blocking EGFR endocytosis enhanced PLCγ and Shc phosphorylation, but 

decreased ERK1/2, EGFR, & PI3K phosphorylation [26].  These works, among 

others, pushed the field of EGFR trafficking towards a new line of thinking: 

endocytosis can positively and negatively affect receptor:effector communication.  

However, there is currently no consensus on how these changes occur, or how 

they contribute to EGFR signaling and overall cellular physiology. 

It has been well established that the endocytic pathway is important in the 

spatial as well as temporal regulation of the EGFR.  The receptor is regulated 

temporally by the amount of time it takes to traverse the entire endocytic 

pathway, and how long the receptor is sequestered at each point of the pathway.  

About 10% of a cell’s inactive EGFRs are constitutively recycled into early 

endosomes and back to the plasma membrane [32].  It has also been shown that 

different ligands induce varied endocytic responses.  For example, it is known 

that TGFα triggers rapid recycling of the receptors, while EGF triggers the 

receptor to be maintained in early endosomes, leading to its eventual 

degradation and downregulation [33].   

One explanation for these distinct differences in ligand:receptor trafficking 

amongst ligands is their affinity for the receptor.  EGF is known to have a 

relatively high affinity for binding EGFR of 0.42nM [34], and thus does not 

dissociate from the receptor in the acidic environment of early endosomes (pH 

6).  However, TGFα has a slightly lower affinity for the receptor at 11.9nM [34], 

causing the ligand:receptor complex to dissociate in early endosomes, permitting 
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receptor recycling to the plasma membrane [33].  Though both ligands are 

considered to have “high” affinities for EGFR [35], they do not have the same 

effects on receptor trafficking.  Conversely, the work of Moriai et al. suggests that 

EGF and TGFα have similar affinities for EGFR, and that certain mutations in the 

ligand binding domain of some EGFRs may contribute to the different binding 

affinities and downstream signaling effects of ligands [36]. 

The Endocytic Pathway 

 The endocytic pathway is a complex and dynamic system made up of 

various organelles [37].  Endocytosis is a fundamental cellular process in which 

extracellular nutrients and portions of the plasma membrane are internalized into 

the cell [37].  A section of plasma membrane will invaginate and pinch off to form 

an intracellular vesicle [37].  These preliminary vesicles are typically formed with 

the assistance of several adaptor and scaffolding proteins that are found near or 

on the plasma membrane [38].  For example, clathrin-mediated endocytosis 

(CME) requires the cytosolic protein clathrin, which forms a triskelion coat around 

the portion of plasma membrane that is to be internalized [38].  This process also 

requires another protein called dynamin that plays a critical role in the scission of 

the new vesicle from the plasma membrane [38].  CME is also referred to as 

receptor-mediated endocytosis, as it occurs when a plasma-membrane receptor 

is bound and activated by an extracellular ligand, triggering its internalization 

(e.g. EGF binding to EGFR) [38].  During CME, after the new vesicle is created 

the clathrin coat is shed.  This intermediate vesicle is then trafficked to and fused 

with an endosome, of which there are several types [38].  The destination of each 
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vesicle is specific to its cargo and has a direct impact on the fate of that cargo.  

This process is highly regulated by actin filaments and microtubules, adaptor 

proteins, and GTPases such as the RAB proteins [38].  The RAB family of 

proteins are Ras-like GTPases that play an essential role in the endocytic 

pathway by recruiting effectors that induce the formation and motility of 

endosomes [39].  There are more than 60 different RAB proteins, and each one 

is generally specific to a distinct cellular compartment [40].  In 1990, Chavrier and 

Zerial determined that RAB5 is specific to the plasma membrane and early 

endosomes, and RAB7 localizes to late endosomes [41].  RAB11 is another 

member of the RAB family that is specifically localized to recycling endosomes 

[42].  These three RAB proteins are the major players involved in generating the 

vesicles involved in the early phases of endocytosis (i.e. early, late, and recycling 

endosomes). 

 Clathrin-mediated endocytosis is the primary pathway by which activated 

EGFR enters early endosomes when stimulated with low, endogenous 

concentrations of ligand (i.e. ~1ng/mL or 0.16nM EGF) [43].  However, there are 

other types of endocytosis that utilize adapter proteins similar to clathrin.  For 

example, caveolae are small pits in the plasma membrane made up of lipid rafts 

and the protein caveolin [44].  Caveolae are also involved in the endocytosis of 

plasma membrane and extracellular ligands and nutrients.  This process is 

similar to CME, as it also requires dynamin for the scission and formation of 

vesicles [38].  It also differs from CME in that caveolae cargo can either be 

delivered to early endosomes or to caveosomes [44].  Caveosomes are pH-
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neutral intracellular vesicles that strictly contain cargo transported from caveolae, 

and they do not contain early endosome proteins, although their function is 

similar to early endosomes [44].  There are other routes of endocytosis that do 

not involve clathrin or caveolae, which are collectively termed clathrin- and 

caveolae-independent endocytosis [38].  The major routes of EGFR-endocytosis 

are CME at low ligand concentrations, and caveolae-mediated endocytosis 

(CavME) at high ligand concentrations (i.e. >10ng/mL or >1.6nM EGF) [43].  

 Whether via CME or CavME, most endocytic cargo will be transported into 

early endosomes.  Early endosomes are so named because they are found in 

the cytosol near the plasma membrane, and they are the first major constituent 

within the endocytic pathway.  These organelles are considered to be slightly 

acidic, with a pH of ~6.0 and a density of 1.035-1.042g/mL [29, 45].  Early 

endosomes are the first pit-stop in the pathway, and the sequestration of 

receptors here is critical to their ultimate fate.   

There are two distinct populations of early endosomes: dynamic and 

static.  In 2006 Lakadamyali and Rust discovered and characterized these types 

of endosomes by their mobility and maturation kinetics [46].   To do this, RAB5 

and RAB7 were fluorescently tagged and the association of these proteins with 

various ligands that undergo CME were tracked using live cell imaging.  They 

found that the static population of early endosomes are the most abundant, and 

they mature very slowly.  The dynamic early endosomes are strongly associated 

with microtubules and mature rapidly into late endosomes.  Remarkably, 

ligand:receptor complexes that are normally degraded via the endocytic pathway, 
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such as EGF:EGFR and low density lipoprotein and its cognate receptor 

(LDL:LDLR), were preferentially trafficked into the dynamic population of early 

endosomes.  On the other hand, complexes that are typically recycled, such as 

transferrin and its receptor (Tfn:TfnR), were trafficked non-specifically to both 

populations of early endosomes [46].  This study provides further evidence that 

the endocytic pathway is highly regulated and the fate of every cargo that enters 

is tightly monitored.   

 As evidenced by the fates of the EGFR and TfnR, early endosomal 

contents can be segregated into various legs of the endocytic pathway.  Certain 

proteins that are marked for recycling back to the plasma membrane can be sent 

directly to the cell membrane by an intermediate vesicle, or trafficked to a larger 

specialized vesicle called the recycling endosome [37].  Contents that are not 

recycled will remain sequestered in early endosomes.  The organelles that 

comprise the endocytic pathway possess proton pumps on their membranes that 

maintain their luminal pH [29, 47].  However, over time these pumps will increase 

the acidity of early endosomes.  This is a crucial step in the “maturation” process 

of an early endosome into a late endosome [48].   

Late endosomes are also termed “multivesicular bodies” or MVBs, and 

have an acidic pH of ~5.3 and a density of 1.048-1.070g/mL [29, 45].  The name 

MVBs comes from the presence of intraluminal vesicles that are created within 

the organelle [49].  These are small, membrane-bound vesicles that are 

internalized from the outer membrane of the late endosome itself, which is also 

referred to as the “limiting membrane” [49].  Receptors and other cargo found in 
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the late endosome that are to be degraded are marked as such by entering into 

these intraluminal vesicles [49].  There are specific protein complexes called 

ESCRTs (endosomal sorting complex required for transport) that are required for 

the transport of cargo from the limiting membrane into intraluminal vesicles of 

late endosomes [50].  ESCRT complexes specifically interact with ubiquitinated 

cargo within the late endosome, as ubiquitination marks proteins for degradation 

[50].  Once a cargo is sequestered into an intraluminal vesicle, it is destined to be 

transported to a lysosome where it will be degraded.  The late endosome will 

temporarily fuse with a lysosome and transfer its contents (intraluminal vesicles) 

to the lysosome [51].   

Lysosomes are separate organelles that have a pH of ~5.0 and a density 

of between 1.070-1.110g/mL [29, 45].  The sole purpose of a lysosome is to 

degrade proteins, as they are filled with acid hydrolases to break down cargo 

[51].  This compartment is the final stop in the endocytosis of cargo that is 

marked for degradation (i.e. ubiquitinated).  This degradation process is essential 

for the down-regulation of a multitude of cellular components, including signaling 

receptors like EGFR [51].   

The focus of this project is the mitogenic signaling of EGFR from early 

endosomes.  EGFR bound and activated by EGF is trafficked through the 

endocytic pathway to ultimately be degraded by a lysosome.  Further, the kinase 

domain remains active and associated with the cytosol until the receptor is 

trafficked into the intraluminal vesicles of late endosomes.  Our ultimate goal is to 

understand what specific signals are regulated by the early endosomal 
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association of an active EGFR.  In order to study this, our immediate goal and 

the focus of this thesis is to develop a protocol for isolating early endosomes. 

Endosome Isolation Methods 

 A multitude of labs have studied the biochemical properties of various 

endosomes, and have done so by isolating and separating endosomes from 

cells.  The process of breaking open cells to separate out and study specific 

intracellular compartments is termed subcellular fractionation.  Subcellular 

fractionation can be applied and modified in many ways to study the contents 

and functions of the various endocytic organelles.  In this chapter, these methods 

will be outlined to determine the strengths and weaknesses of each method.   

 The process of subcellular fractionation is generally made up of three 

parts: lysing cells, separating cytosolic organelles, and isolating the target 

organelle [52].  There are several ways to perform these steps, each of which 

must also be optimized for the type of cells being used.  Subcellular fractionation 

can be utilized to study virtually any organelle or compartment inside cells.  

However, the focus of this review will be on the application of these methods for 

isolating endocytic organelles. 

 The first step of subcellular fractionation involves breaking open cells to 

access internal compartments.  The two major methods used to achieve this are 

hypotonic and mechanical lysis.  Hypotonic lysis of cells involves incubating cells 

with a buffer containing lower than physiologic concentrations of either salt or 

sucrose until enough water moves into the cells via osmosis that the cells swell 

and eventually burst.  This is a very effective method for lysing cells, however, if 
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the organelles are continuously exposed to a hypotonic buffer, it is possible that 

the organelles themselves risk being lysed as well.  Some organelles, like 

lysosomes, are sensitive to hypotonic lysis, while others like early endosomes 

are not [53].   

The second option for lysing cells is to use mechanical disruption.  This 

can be achieved by passaging cells through a syringe and a small needle 

(typically 20-25 gauge), a ball-bearing homogenizer, or exposing cells to 

sonication.  All of these methods work to lyse cells by applying physical force to 

the membrane of the cell.  This method is less invasive than a hypotonic buffer 

and is generally considered to have little effect on the integrity of the intracellular 

compartments.  However, it has been documented that these mechanical 

techniques can cause the formation of new, non-physiologically relevant vesicles 

as a result of hybrid fusion of distinct organelles [54].  The pros and cons of both 

of these lysis methods should be considered when selecting a lysis method for 

subcellular fractionation.   

 The second step of subcellular fractionation is separating intracellular 

components.  Typically after lysis, the cell lysates will be gently centrifuged to 

pellet and remove large debris and nuclei.  The nuclei can be discarded or used 

for further analysis of nuclear proteins or DNA.  The resulting supernatant 

contains all cytosolic organelles, proteins, cytoskeleton, and the broken plasma 

membrane.  This is referred to as the post-nuclear supernatant (PNS).  The 

contents of the PNS must then be separated out to make the target organelle  

more accessible for the final isolation step of subcellular fractionation.   
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The most common methods of organelle separation utilize centrifugation.  

There are two widely used types of centrifugation—rate zonal or differential, and 

isopycnic.  Rate zonal/differential centrifugation separates samples by size, and 

isopycnic/density centrifugation separates samples by density.  Creating a PNS 

from cell lysates utilizes differential centrifugation.  This type of separation can 

also be used to separate any other subcellular compartments based on size.  

Generally, increasingly higher speeds are required to pellet increasingly smaller 

organelles.  Large nuclei require low speeds to pellet (~600 x g), while much 

smaller mitochondria and endosomes require much higher speeds to pellet 

(~10,000-20,000 x g), and still smaller ribosomes and endoplasmic reticulum 

fragments require extremely high speeds to pellet (~100,000 x g) [52].  

Differential centrifugation is typically applied in sequence, beginning with low 

speeds to pellet large organelles and collecting the supernatant to spin at higher 

speeds to pellet smaller organelles.  This process allows rapid and distinct 

separation of target compartments.  However, because several organelles can 

sediment together due to size similarities, further separation methods may be 

necessary for isolation of a pure population of the target organelle.  Differential 

centrifugation has been used for early/late endosome isolation [53, 55], but 

recently isopycnic centrifugation has been more commonly used. 

Isopycnic centrifugation requires the use of media to create a density 

gradient.  One type of density gradient is a continuous gradient.  A continuous 

gradient is typically created with the use of a commercially available 

heterogeneous media.  During centrifugation, the media creates a spontaneous, 
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self-forming gradient throughout the sample tube—the least dense materials will 

migrate to the top of the tube, and the densest materials will migrate to the 

bottom.  Percoll is an example of a commonly used density gradient media for 

isopycnic centrifugation.  Percoll is a mixture of colloidal silica coated with 

polyvinylpyrrolidone.  When cell lysates are mixed with and centrifuged in a 

continuous gradient, organelles migrate to their isopycnic point within the 

gradient.  The gradients can then be collected in multiple “fractions” to separate 

the contents with varying densities.  An advantage of using a continuous gradient 

is the ability to resolve compartments with minute differences in density.  

However, a distinct disadvantage is that samples are diluted within the media, 

decreasing their concentration.  This becomes more of an issue when the target 

organelle exhibits a range of densities and migrates within several fractions of 

the gradient, further decreasing their concentration.  For example, early and late 

endosomes exhibit two separate ranges of densities (i.e. 1.035-1.042g/mL and 

1.048-1.070g/mL, respectively) [45].  Although this increases the range of 

fractions within the gradient that will contain these vesicles, their densities are 

distinct enough to still separate both, with minimal overlap.  Percoll gradients 

have been utilized for decades to separate and isolate endosomes [56-58]. 

The second type of density gradient is a discontinuous gradient.  

Discontinuous gradients are pre-formed and made of layers of media with 

increasing densities.  Sucrose is the most common media used to create a 

discontinuous gradient—also referred to as a “step” gradient.  The final products 

of a discontinuous gradient are distinct “fractions” that can be collected from the 
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“interface” between each layer of media.  The number of interfaces/fractions in 

the gradient is dependent upon the number of layers in the gradient, and the 

quantity and density of the layers can be optimized based on the target 

subcellular compartment being collected.  This is a distinct advantage of using a 

step gradient over a continuous gradient.  The fractions from a discontinuous 

gradient can also be collected in much smaller volumes, providing more 

concentrated samples.  While samples still migrate to their isopycnic point in a 

step gradient, there are a finite number of isopycnic points as they correlate to 

each distinct interface.  As such, compartments collected at each fraction can 

exhibit a wide range of densities.  This feature can serve as either an advantage 

or a disadvantage to this technique, depending on the target compartment.  A 

disadvantage is the increased potential for samples to be contaminated with 

other subcellular organelles.  Sucrose step gradients are also commonly used to 

isolate endosomes [58, 59]. 

The third and final step of subcellular fractionation is purification of the 

target organelle.  Technically, this step is not a requirement for subcellular 

fractionation.  In fact, depending on the scientific question being asked, this step 

is frequently omitted altogether.  In many cases, the separation and enrichment 

of target organelles with density gradients is sufficient for further study with 

biochemical techniques [60, 61].  However, obtaining a pure organelle sample is 

essential for analyzing the proteome of a compartment.  Multiple platforms can 

be used for this step, and it is arguably the most important component of 

organelle isolation.  Typically, in order to isolate a particular cellular 
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compartment, a protein specific to the compartment of interest will be targeted.  

For example, antibodies against RAB11a, a protein specifically associated with 

recycling endosomes, were conjugated to magnetic beads, incubated with 

subcellular fractions, and placed on a magnet to purify recycling endosomes in 

the work of Silvis et al. [59].  The affinity of the antibody for its antigen, as well as 

the substrate to which the antibody is conjugated, are two critical components of 

this method [52].  Magnetic (Dynabeads), sepharose, and agarose beads are 

commercially available binding substrates with either Protein A or Protein G (or a 

mixture of both) coupled to the beads.  Protein A & G are immunoglobulin-

binding proteins that should be selected based on the source of the monoclonal 

antibody they will bind.  The material make-up of the beads (Dynabeads, 

agarose, or sepharose) can also be selected based on their properties.  Agarose 

and sepharose beads must be centrifuged or loaded on a column to isolate the 

beads and their bound organelles.  Dynabeads, however, can be placed on a 

magnet and the supernatant removed with a pipette.  Magnetic beads generally 

provide a gentler platform for isolating the target organelle, however they tend to 

be more expensive.  The target organelles can be eluted off of the beads using 

either pH washes or a protein solubilizing buffer.   

Various modifications of all three steps of subcellular fractionation detailed 

in this chapter were tested in order to develop a protocol optimized for the 

isolation of early endosomes from HeLa cells to study EGFR signaling from these 

compartments.  
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MATERIALS AND METHODS 

Cell Culture 

   HeLa cells were acquired from American Type Culture Collection 

(ATCC).  Cells were cultured at 37°C in 5% CO2 and maintained in Dulbecco’s 

Modified Eagle Medium (DMEM, Gibco) supplemented with 5% Fetal Bovine 

Serum (FBS, Invitrogen), 100U/mL streptomycin, 100U/mL penicillin, and 2mM 

glutamine [62]. 

Cell Lysis Preparation 

 Cells were lysed using either mechanical lysis or osmotic lysis as 

indicated in the text and figure legends.  Cells were grown to confluency in 15cm 

dishes, serum starved for 2 hours at 37°C, then incubated with the indicated 

concentration of EGF ligand (Invitrogen, #PHG0311) and/or carbocyanine dye 

“DiI” (Molecular Probes, #D-282) (dissolved in EtOH) for the indicated amount of 

time immediately prior to harvest. 

1. Mechanical Lysis 

Cell lysates were prepared by washing twice with room temperature (RT) 

PBS and equilibrating to 4°C on ice, followed by scraping into 4mLs of ice-cold 

lysis buffer (PBS supplemented with a cocktail of protease and phosphatase 

inhibitors—2mM PMSF [phenylmethylsulfonyl fluoride], 1μM Na3VO4 [sodium 

orthovanadate], 10μM pepstatin, and 1μM aprotinin).  Cell suspensions were 

pipetted into 0.5mL aliquots (~2.0 x 106 cells) and each aliquot was passaged 15 
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times through an Isobiotec metal ball-bearing cell homogenizer (Heidelberg, 

Germany) with a clearance of 14μm at 4°C.  Lysates were pooled together and 

centrifuged at 200 x g for 10’ at 4°C in a JA25.50 rotor (Beckman-Coulter).  The 

post-nuclear supernatant (PNS) was collected from each sample [45]. 

2. Osmotic Lysis  

Cell lysates were prepared by washing twice with RT PBS and 

equilibrating to 4°C on ice, followed by equilibrating in ice-cold lysis buffer (TES-

10mM triethanolamine, 1mM EDTA, 0.25M sucrose pH 7.2).  Cells were 

incubated on ice with TES buffer (supplemented with 2mM PMSF, 1mM Na3VO4, 

10μM pepstatin, and 1μM aprotinin) until cells began to swell, but before bursting 

(approx. 5 minutes), and scraped with a rubber policeman.  The collected cells 

were pipetted up and down 40 times with a P1000 pipet and centrifuged at 200 x 

g for 10’ at 4°C in a JA25.50 rotor to create a post-nuclear supernatant (PNS) 

which was subsequently collected [45].   

Percoll Gradient Fractionation 

 Twenty-four hours prior to experimentation, stock Percoll (GE Healthcare) 

was equilibrated with 2.5M sucrose at a ratio of 9:1.  The 90% Percoll/0.25M 

sucrose solution was stored at 4°C until use.  Samples were prepared as 

indicated (by PNS preparation via either osmotic lysis or mechanical lysis, or by 

sucrose gradient fractionation), and each sample was mixed with the 90% Percoll 

solution (final concentration 17% Percoll) and Percoll buffer (250mM sucrose, 

1mM EDTA, 10mM HEPES in PBS, pH 7.2) or TES to a total volume of 11.5mLs.  

Buffers were spiked with 2mM PMSF, 1mM Na3VO4, 10μM pepstatin, and 1μM 
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aprotinin before use.  PNS/Percoll/Buffer mixtures were pipetted into 16mm x 

67mm OptiSeal™ polypropylene tubes (Beckman Coulter) and loaded into a pre-

chilled VTi65.1 vertical rotor.  Density beads (with known densities in 17% 

Percoll/250mM sucrose) (GE Healthcare) were loaded into a separate tube 

containing 17% isotonic Percoll in buffer and mixed.  Samples were spun in a 

Beckman Coulter Optima L-100 XP Ultracentrifuge at 50,000 x g for 25’ with max 

acceleration and brake.  Samples were then fractionated from the bottom of the 

centrifuge tube in 10-drop aliquots (~330μL) into pre-chilled Eppendorf tubes 

(~30 fractions per gradient) using a peristaltic pump and a glass pipet at 4°C [45].  

For cells that were labeled with DiI, the collected fractions were loaded into a 96-

well dish and read on a fluorescence plate reader (BioTek) (excitation 530/25, 

emission 590/35).  For experiments where fractions were subjected to affinity 

purification, the fractions in which DiI fluorescence peaked were pooled together 

(~6 fractions per condition, ~2mL total) and mixed by inverting and gently 

pipetting up and down.  For experiments where fractions were not pooled but 

analyzed directly via immunoblot, each fraction was diluted in 6X SDS sample 

buffer containing 10% β-mercaptoethanol (βME), boiled at 100°C for 3’, and 

centrifuged at 21,000 x g to pellet Percoll.  The tube containing density beads 

was imaged and Rf values were calculated based on bead migration in the 

gradient.   

Affinity Purification of Early Endosomes 

 Protein G Dynabeads (Invitrogen) were resuspended and washed three 

times in PBS before use.  Approximately 0.22μg of EEA1 monoclonal antibody 
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(Cell Signaling, #3288) was pre-conjugated to ~2.0 x 107 washed magnetic 

beads in an equivalent volume of buffer used for cell lysis by rotating at 4°C for at 

least 2 hours.  The beads were washed again in ice-cold buffer three times to 

remove unbound antibody.  Either pooled DiI peak fractions from Percoll gradient 

samples or HeLa cell PNS (as indicated) were incubated with the EEA1 antibody-

conjugated magnetic beads (~1mL sample per tube of EEA1-conjugated 

magnetic beads) and rotated at 4°C for 1 hour.  Magnetic beads were isolated 

and the first supernatant (pass through, PT) was collected.  The beads were then 

washed two times in ice-cold buffer and eluted in 6X SDS buffer containing 10% 

βME and boiled at 100°C for 3’.  Remaining samples collected were diluted in 6X 

SDS buffer with 10% βME and boiled.  Samples containing Percoll were 

centrifuged at 21,000 x g to pellet Percoll. 

Sucrose Gradient Fractionation 

 Cells were grown to confluency in 15cm dishes, serum starved for 2 

hours, and incubated with the indicated concentration of EGF ligand and/or DiI 

for 15’ immediately prior to harvest.  Cells were washed twice in RT PBS before 

equilibrating to 4°C on ice.  Dishes were equilibrated in ice-cold lysis buffer (1mM 

Tris, 2mM EDTA, pH 7.4) followed by incubation on ice with ice-cold lysis buffer 

(supplemented with 2mM PMSF, 1mM Na3VO4, 10μM pepstatin, and 1μM 

aprotinin) until cells begin to swell, but before they burst (~5’).  Cells were 

scraped with a rubber policeman and pelleted at 800 x g for 3’ in an Allegra 25R 

centrifuge (Beckman Coulter).  The cell pellet was resuspended in 1mL ice-cold 

lysis buffer supplemented with protease inhibitors and passaged 20 times 
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through a 22-gauge (22G) needle and syringe.  Cell lysates (750μL) were loaded 

on top of a pre-loaded sucrose gradient (SW41-14 x 89mm thinwall 

polypropylene tubes [Beckman Coulter]) supplemented with protease and 

phosphatase inhibitors as follows, beginning with the bottom layer: 3.7mL 60% 

sucrose, 4.0mL 38% sucrose, 3.2mL 5% sucrose, 750uL cell lysates.  Tubes and 

buckets were weighed to ensure balance, loaded on an SW41 rotor (Beckman), 

and centrifuged in a Beckman Coulter Optima L-100 XP Ultracentrifuge at 

210,000 x g for one hour with max acceleration and max brake at 4°C.  The milky 

interface between each layer of sucrose was collected, with intracellular vesicles 

at the 5%-38% interface and membranes at the 38%-60% interface.  Samples 

were diluted in 6X SDS buffer with 10% βME and boiled for 3’ at 100°C.   

Immunoblotting 

 Samples were diluted in 6X SDS buffer with 10% βME and boiled at 

100°C for 3’ prior to gel loading.  Samples were loaded as a percentage of total 

sample volume and resolved by SDS-PAGE.  Proteins were then transferred 

onto a nitrocellulose membrane and blocked with 5% milk before probing 

overnight at 4°C with primary antibody, diluted 1:1000.  The following antibodies 

were used for immunoblot detection: EGFR (Santa Cruz, #sc-03), TfnR (BD 

Biosciences, #612124), LAMP2 (University of Iowa Hybridoma Bank, #H4B4), 

EEA1 (BD Biosciences, #610456), Na/K-ATPase (Sigma, #A276-only used 

where indicated), Na/K-ATPase (Cell Signaling, #3010), and Calnexin (BD 

Transduction, #610524).  Membranes were then washed 3 x 10’ in TBS-

Tween20 (TBST) and incubated with the appropriate horseradish peroxidase 
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conjugated secondary antibody (anti-mouse or anti-rabbit, Thermo Fisher-Pierce) 

diluted 1:2500, for one hour at RT.  Membranes were washed again 3 x 10’ in 

TBST and imaged using Enhanced Chemiluminescence on a Fotodyne imaging 

system.  Western blots were quantified using Image J software. 

Indirect Immunofluorescence 

 HeLa cells were grown to confluency on NaOH treated, sterile 12mm 

round glass coverslips.  Cells were serum starved for 2 hours and incubated with 

the indicated concentration of EGF ligand and/or DiI for 15 minutes.  Coverslips 

were washed gently in PBS++ (PBS, 0.5mM CaCl2, 0.5mM MgCl2) and cells were 

fixed in 4% paraformaldehyde/PBS++ for 5’ at RT and 15’ on ice.  After fixation, 

coverslips were removed from ice and washed 3 x 5’ in PBS++.  Cells were 

permeabilized in PBS++++ (0.1% saponin/5% FBS/PBS++) for 20’ at RT and 

washed 3 x 5’ in PBS++.  The indicated primary antibody (1°Ab) [EGFR (Ab-1, 

EMD Millipore, #GR01), EEA1 (BD Biosciences, #610456)] was prepared by a 

1:1000 dilution in PBS++++ and centrifuged for 5’ at 21,000 x g.  Coverslips were 

placed, cell-side down, on top of 30μL aliquots of 1°Ab on a piece of parafilm for 

1 hour at RT.  Coverslips were returned to dishes and washed 3 x 5’ in PBS++.  

The appropriate secondary antibody (2°Ab), either Alexa488- or Alexa568-

labeled (Life Technologies) was diluted 1:200 in PBS++++ and centrifuged at 

21,000 x g for 5’.  Cells were incubated with 2°Ab for 1 hour at RT as described 

for the 1ºAb.  Free Ab was removed with 6 x 10’ washes in PBS++ and coverslips 

were rinsed in ddH2O prior to mounting onto glass slides with Prolong + DAPI 

(Life Technologies) [63].  Slides were cured in the dark overnight before imaging  
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with a 60X oil immersion objective lens on a Nikon Eclipse Ti-E Inverted 

fluorescence microscope, using Nikon NIS Elements software. 

Coomassie Staining 

 Early endosomes immunoprecipitated from HeLa cell PNS were resolved 

on a 7.5% SDS-PAGE.  The gel was rinsed once in ddH2O and covered with 

Coomassie (50% MeOH, 0.05% Coomassie Brilliant Blue R [Sigma], 10% acetic 

acid, 40% ddH2O) and microwaved for 5 seconds.  The gel was incubated with 

Coomassie at RT with gentle rocking for 15’.  The Coomassie was removed and 

the gel was rinsed twice in ddH2O.  The gel was then covered in Destain solution 

(7% glacial acetic acid, 5% MeOH, 88% ddH2O) and incubated overnight at RT 

with gentle rocking.  The gel was rinsed in ddH2O, imaged using a Fotodyne 

imaging system, and stored in 7% acetic acid/ddH2O at 4°C.   

Mass Spectrometry 

1.  In-Gel Protein Digestion 

 This protocol is modified from Jensen, et al., 1999 [64].  A Coomassie 

stained SDS-PAGE gel was cut into 1mm3 plugs and incubated in 100mM 

triethylammonium bicarbonate (TEA-BC, Sigma) at RT for 15’.  Acetonitrile 

(ACN) was added to the TEA-BC solution and the gel plugs were incubated at 

RT for 15’ with gentle vortexing.  The solvent was removed and the washing 

process was repeated until the Coomassie blue stain was no longer visible.  

Solvent was removed and the gel plugs were dried in a SpeedVac for 5’.  The 

dried plugs were incubated in DTT (20mM DTT [BioRad],100mM TEA-BC) at 

56°C for 45’, followed by iodoacetamide (55mM iodoacetamide [Sigma], 100mM 
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TEA-BC) at RT for 30’ protected from light.  Iodoacetamide was removed and 

gels were washed in 50mM TEA-BC at RT for 15’, followed by the addition of 

ACN for 15’ at RT with gentle vortexing.  The gel plugs were again dried for 5’ in 

a SpeedVac, and incubated in digestion buffer (20ng/μL modified Trypsin 

[Promega] in 50mM TEA-BC) for approximately 10’ until the gel plugs swelled.  

After swelling, 50mM TEA-BC was added to the plugs, followed by 37°C 

overnight incubation in a shaker.  Digestion supernatants from the upper and 

lower half of the gel were combined for each sample. 

2. Extraction of Peptides 

 This protocol is modified from Shevchenko, et al. 2006 [65].  LC-MS grade 

water was added to the digested gel plugs to give a final concentration of 25mM 

TEA-BC.  Two volumes of 1:2 5% v/v formic acid:acetonitrile was added and 

incubated at RT for 15’ in a shaker (100rpm in a C25 Incubator Shaker [New 

Brunswick Scientific]).  Liquid surrounding the gel pieces was transferred to a 

clean microtube and dissolved in Chromatography Buffer A (2% v/v 

acetonitrile/0.1% v/v formic acid).  The dissolved sample was filtered through a 

0.45μm regenerated cellulose syringe filter (Thermo #F2504-7) to remove any 

remaining gel material.  Resolubilized gel band digests were desalted and 

concentrated using C18 PROTO™, 300 Å Ultra MicroSpin Column (The Nest 

Group, Inc., Southborough, MA, USA).  Samples were cooled to -80°C, dried 

using a SpeedVac, and redissolved in Chromatography Buffer A.  Sample 

absorbance was read at 205nm using a NanoDrop 2000 spectrophotometer to 

determine peptide concentration.  Sample volumes were adjusted in Buffer A to  
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normalize peptide concentrations to 0.1μg/μL. 

3.  Liquid Chromatography/Mass Spectrometry (LCMS) 

 Gel band digests (0.5µg) were separated on 12cm of Aeris Peptide XB-

C18, 3.6μm, 100Å material (Phenomenex, Torrance, CA, USA) packed into a 

360µm OD x 100µm ID fused silica tip that was pulled using a Model P-2000 

Micropipette Puller (Sutter Instrument Co., Novato, CA, USA).  Peptides were 

eluted from the column using an EASY n-LC UHPLC system (Thermo Fisher 

Scientific, Waltham, MA, USA) in an 80’ linear gradient using Buffer A and Buffer 

B (80% v/v acetonitrile/0.1% v/v formic acid) as mobile phases (from 0% Buffer B 

to 50% Buffer B).  The samples were then separated by a 5’ linear gradient from 

50% Buffer B to 95% Buffer B, followed by a 5’ wash in 95% Buffer B.  The 

sample was introduced into the LTQ-Orbitrap Elite (ThermoElectron) mass 

spectrometer by nanoelectrospray using a Nanospray Flex source 

(ThermoElectron).  The ion transfer capillary temperature was set to 225°C and 

the spray voltage was set to 1.6kV.  An Nth Order Double Play was created in 

Xcalibur v2.2.  Scan event one of the method obtained an FTMS MS1 scan 

(normal mass range; 240,000 resolution, full scan type, positive polarity, profile 

data type) for the range 300-2000m/z.  Scan event two obtained ITMS MS2 

scans (normal mass range, rapid scan rate, centroid data type) on up to twenty 

peaks that had a minimum signal threshold of 5,000 counts from scan event one.  

The lock mass option was enabled (0% lock mass abundance) using the 

371.101236m/z polysiloxane peak as an internal calibrant. 

 Proteome Discoverer v1.4.1.14 (Thermo Fisher Scientific) was used to  
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analyze the mass spectrometer data.  MS2 scan data were extracted from the 

Xcalibur RAW file, CID MS2 scans were searched in Mascot v2.5.1 (Matrix 

Science, Inc., Boston, MA, USA) and SequestHT, and results were collected in a 

single file.  The protein database UniprotKB Homo sapiens version 3/9/2016 

reference proteome canonical and isoform sequences, with cRAP database 

(thegpm.org) version 1/1/2012 appended to it, were used in the Mascot and 

SequestHT searches.  The resulting files from Proteome Discoverer were loaded 

into Scaffold Q+S v4.4.5 (Proteome Software, Inc., Portland, OR, USA).  The 

peptide false discovery rate was calculated with Scaffold Local FDR algorithm, 

and protein probabilities were calculated using the Protein Prophet algorithm.  

Results were annotated with human gene ontology information from the Gene 

Ontology Annotations Database (ftp.ebi.ac.uk). 
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RESULTS 

 The overarching goal of these experiments was to develop a strategy to 

isolate EGFR-containing early endosomes.  I hypothesized that biochemical 

enrichment of endosomes, followed by immunoisolation of an early endosome 

specific protein would lead to a preparation enriched with early endosome marker 

proteins but devoid of plasma membrane, late endosome, and endoplasmic 

reticulum candidate proteins. 

The experiments described below reflect my findings during the 

optimization process.  All experiments were performed using HeLa cells, a 

human adenocarcinoma cell line.  HeLa cells express physiologic levels of EGFR 

(~50,000 EGFRs/cell) [66], are amendable to cDNA transfection, adenoviral and 

lentiviral transduction, grow rapidly, and are relatively easy to culture.  The final 

protocol that was developed based upon these data is outlined in the Discussion 

section. 

EGFR associates with EEA1-positive vesicles upon EGF stimulation. 

 I first wanted to determine the extent of EGF-mediated EGFR 

redistribution to early endosomes in HeLa cells.  To monitor EGFR localization, 

HeLa cells were treated with EGF for increasing amounts of time, fixed, and 

subjected to indirect immunofluorescence probing for the EGFR (using a mouse 

monoclonal antibody, Ab-1 that recognizes the amino terminal, extracellular 

domain of the receptor) and Early Endosome Autoantigen 1 (EEA1) (using a 
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rabbit polyclonal antibody) (Figure 4).  Localization of the primary antibodies 

were visualized with Alexa 488-conjugated goat anti-rabbit (EEA1) and Alexa 

586-conjugated goat anti-mouse (EGFR) secondary antibodies.  Cells treated 

without EGF were used as a negative control. 

In the absence of EGF, the EGFR is localized primarily to the plasma 

membrane of cells.  The addition of EGF induces a time-dependent redistribution 

of EGFR that peaks with an accumulation of EGFR co-staining with early 

endosomes at 20 minutes.  These kinetics of endocytic trafficking are consistent 

with previous reports [67, 68].  Importantly, neither the intensity nor the 

distribution of EEA1 changes over time.  After 30 minutes of EGF treatment, 

there is a decrease in EGFR and EEA1 co-staining, which is consistent with 

reports that the EGFR is trafficked out of the early endosome 20-30 minutes after 

EGF stimulation [67, 68].   

DiI fluorescence can be used as a marker for early endosomes. 

Next, I wanted to determine if 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindo-

carbocyanine Perchlorate (DiI) could be used as a marker for early endosomes.  

DiI is a commercially available indocarbocyanine dye that binds to the plasma 

membrane and laterally diffuses into all lipid membranes.  The redistribution of 

the dye can be used as a measure of membrane trafficking.  When membrane 

domains containing the EGF:EGFR internalize, the DiI stained membrane would 

co-localize with the EGFR. 

HeLa cells were equilibrated to 4°C to halt membrane trafficking and 

incubated with 10μM DiI.  After the indicated amount of time, cells were warmed 
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Figure 4.  EGFR co-localization with EEA1-positive vesicles upon EGF 

stimulation.  HeLa cells were serum starved for 2 hours at 37°C and incubated 

with 10ng/mL EGF for 0’, 5’, 10’, 20’, and 30’.  Cells were fixed with 4% 

paraformaldehyde and stained for EGFR (Alexa-568) and EEA1 (Alexa-488) 

using indirect immunofluorescence.  Scale bar=20μm. 
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to 37°C and treated with 10ng/mL EGF for 10’.  The distribution of DiI stained 

membranes relative to EEA1 was determined (Figure 5).  Although there was an 

increase in total fluorescence that was proportional to the incubation time with 

DiI, there was no co-localization of DiI with early endosomes.  It is possible that 

the 4°C incubation may have reduced the ability of DiI to fully incorporate into 

membranes.  Further, the 10’ incubation at 37°C may not have been sufficient to 

re-equilibrate cells to a high enough temperature to re-initiate physiologic 

membrane trafficking. 

 Next, I asked if treating cells with EGF ligand and DiI concomitantly at 

37°C would enhance co-localization of DiI with early endosomes.  HeLa cells 

were incubated with 10μM DiI and 10ng/mL EGF at 37°C for 15’.  Cells were 

fixed and monitored for EGFR localization using indirect immunofluorescence.  

EGFR was monitored rather than EEA1 as I wanted to monitor newly formed 

endocytic internal compartments.  Cells treated without DiI and/or EGF were 

used as a negative control.  EGF treatment induced a redistribution of EGFR into 

punctate intracellular compartments.  DiI fluorescence was also observed in 

punctate intracellular compartments that co-localized with EGFR staining (Figure 

6). 

 Having confirmed that DiI labels compartments containing internalized 

EGFR after 15’ treatment with DiI and EGF at 37°C, I wanted to determine 

whether endosomal DiI labeling was restricted to early endosomes.  Serum-

starved HeLa cells were treated with 10uM DiI and 10ng/mL EGF for 15’.  Cells 

were then harvested using mechanical lysis and the PNS was subjected to a 
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Figure 5.  DiI does not co-localize with early endosomes when incubated at 

4°C.  HeLa cells were serum starved for two hours at 37°C and pre-treated with 

10μM DiI on ice (4°C) for the indicated amount of time, followed by treatment with 

10ng/mL EGF at 37°C for 10’.  Cells were fixed with 4% paraformaldehyde and 

stained for EEA1 (Alexa-488) using indirect immunofluorescence.  Scale 

bar=20μm.  
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Figure 6.  Co-localization of DiI and EGFR fluorescence at 37°C.  HeLa cells 

were serum starved for 2 hours at 37°C and incubated ±10μM DiI, ±10ng/mL 

EGF for 15’.  Cells were fixed with 4% paraformaldehyde and stained for EGFR 

(Alexa-488) using indirect immunofluorescence (DiI fluorescence was measured 

using a 568nm filter).  Scale bar=20μm. 
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17% Percoll gradient in 10mM triethanolamine/1mM EDTA/250mM sucrose 

(TES) buffer.  The gradient was fractionated into ~330μL (10 drop) fractions and 

assayed for DiI fluorescence on a plate reader.  A distinct peak of DiI 

fluorescence was measured at approximately the same Rf value in gradients of 

cells treated EGF (Figure 7).   

EGFR protein concentration peaks with TfnR protein concentration and DiI 

fluorescence in Percoll gradient fractions. 

In order to determine the endosome composition of the DiI peak fractions, 

immunoblotting was used to measure the distribution of early and late endosomal 

markers.  Using the same protocol described above, every other fraction of 

Percoll gradients were subjected to immunoblot for EGFR, TfnR (early/recycling 

endosome marker), and LAMP2 (late endosome/lysosome marker) (Figure 8A).  

In both the –EGF and +EGF samples, EGFR and TfnR peaked in the same 

fractions in which DiI fluorescence also peaked (Figure 8B), and LAMP2 was not 

present in these fractions.  Interestingly, the peak of EGFR was independent of 

EGF treatment.  Since the immunofluorescence data indicated that the 

endosomal accumulation of the EGFR was EGF dependent, this opened the 

possibility of plasma membrane contamination in these fractions. 

EEA1 can be targeted to purify early endosomes. 

In order to further enrich the early endosomes present in the Rf ~0.35-0.58 

Percoll fractions (~1.045g/mL density), I performed immunoisolation of these 

vesicles with various proteins predicted to be in the early endosomes: EEA1, 

EGFR, and TfnR.  Magnetic Dynabeads were utilized because they provide a 
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Figure 7. Relative DiI Fluorescence as a function of Percoll gradient 

fraction Rf Values.  HeLa cells were serum starved for 2 hours at 37°C and 

incubated with 10µM DiI ±10ng/mL EGF for 15’.  Cells were harvested using 

mechanical lysis and the PNS was loaded on a Percoll gradient and fractionated 

as outlined in the Materials and Methods.  DiI fluorescence of each fraction was 

measured on a plate reader (Ex- 530/25, Em-590/35).  Rf values were calculated 

as a function of total drops collected per sample.  Marker beads with known 

densities were also separated with a Percoll gradient and plotted against Rf 

values.  Fractions decrease in density from left to right (1.0-0.0).  Closed circles 

on the x-axis represent density bead migration (Rf ~0.91=1.109g/mL, 

~0.88=1.070g/mL, ~0.84=1.057g/mL, ~0.63=1.049g/mL, ~0.25=1.042g/mL).  

 

 

 



41 

 

Figure 8.  EGFR containing compartments migrate with DiI-positive and 

TfnR-positive compartments in Percoll gradients.   

A. Equivalent volumes from every other fraction of Percoll gradients from HeLa 

cells treated with 10µM DiI, ±10ng/mL EGF were loaded and resolved on a 7.5% 

SDS-PAGE.  Membranes were immunoblotted for EGFR, TfnR, and LAMP2. 

Immunoblots were imaged using enhanced chemiluminescence.  B.  Relative 

intensity of the +EGF immunoblots in A. calculated using Image J Software.  

Shaded region=Rf values where DiI fluorescence peaked in these samples.  

Circles on the x-axis represent density bead migration (Rf ~0.91=1.109g/mL, 

~0.88=1.070g/mL, ~0.84=1.057g/mL, ~0.63=1.049g/mL, ~0.25=1.042g/mL). 
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rapid, gentle, and high-throughput technique for affinity purification that would 

maximize the likelihood of keeping endosomes intact.  As an initial test of the 

efficiency of the antibodies, each was separately conjugated to Protein G 

Dynabeads and incubated with the PNS (from cells harvested by mechanical 

lysis) of HeLa cells treated ±10ng/mL EGF.  Three antibodies were selected 

based on the manufacturer’s rating for its IP capabilities and its protein target’s 

association with early endosomes.  The antibodies tested were targeted to:  the 

C-terminus of EGFR (sc-03, Santa Cruz), TfnR (BD Biosciences), and EEA1 

(Cell Signaling).  The pass through (PT) is defined as the remaining sample that 

did not bind to the beads, and the elution (E) is defined as the sample that bound 

to the beads after incubation (Figure 9).   

The sc-03 and TfnR antibodies did not effectively pull down EGFR, TfnR, 

or LAMP2.  The EEA1 antibody pulled down EGFR in the +EGF treated cells but 

not in cells that were not treated with EGF.  This is consistent with the notion that 

EGF:EGFR complexes are trafficked to the early endosome.  Further, the EEA1 

antibody yielded an approximately 50% pull down of TfnR, and virtually no pull 

down of LAMP2.   

Based on these results, the EEA1 antibody was selected to 

immunoprecipitate early endosomes from Percoll gradient fractions.  I 

hypothesized that affinity purification after density gradient fractionation would 

increase the yield of early endosomes, as they are enriched within the fractions, 

and decrease the amount of plasma membrane and late endosomal markers.   

Serum starved HeLa cells were treated with 10μM DiI ±10ng/mL EGF for  
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Figure 9.  EEA1 mAb conjugated to Protein G Dynabeads precipitates early 

endosome-specific proteins.  HeLa cells were serum starved for 2 hours and 

incubated ±10ng/mL EGF for 15’.  Cells were harvested using mechanical lysis 

and the PNS was incubated at 4°C with rotation for one hour with the specified 

antibody pre-conjugated to Protein G Dynabeads.  The beads were washed in 

buffer and eluted as outlined in the Materials and Methods.  Samples were 

loaded based on percent of the total sample volume (12.5% PT, 1.25% PNS, 

100% E) and proteins were resolved on a 7.5% SDS-PAGE and immunoblotted 

with the indicated primary antibody.  PT=pass through; E=elution. 
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15’.  Cells were then harvested using mechanical lysis and subjected to a 17% 

Percoll gradient.  Gradients were fractionated, and DiI-positive peak fractions 

were pooled and immunoisolated with EEA1-conjugated Protein G Dynabeads.  

Samples were then immunoblotted using the indicated primary antibodies 

(Figure 10). 

Approximately 50% of TfnR was pulled down, EGFR was only pulled down 

in the EGF treated sample, and LAMP2 did not appear to be precipitated.  EEA1 

was almost 100% pulled down in the elution, suggesting that using the EEA1 

antibody for affinity purification is highly effective.   

Plasma membrane and Endoplasmic Reticulum contamination of Percoll 

gradient fractions. 

Although EGFR was precipitated in the EGF treated sample in Figures 9 

and 10, there was still a significant fraction of EGFR remaining in the pass 

through.  To determine if this excess EGFR in the pass through was an artifact of 

contamination from other organelles, particularly plasma membrane and 

endoplasmic reticulum (ER), immunoblot membranes from previous experiments 

were re-probed for both a plasma membrane specific protein (Na/K-ATPase) and 

an ER specific protein (Calnexin) (Figure 11).   

Previously probed membranes from a Percoll gradient experiment (Figure 

8) and an early endosome affinity purification experiment (original data not 

shown) were stripped and re-probed for Na/K-ATPase and Calnexin.  Briefly, 

membranes were stripped of antibodies by rocking in stripping buffer (0.06M Tris, 

0.07M SDS, 0.7% BME, pH 6.8) at 50°C for 30’, followed by extensive washing in 
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Figure 10.  Affinity purification of early endosomes from Percoll gradient 

fractions.  Percoll gradient fractions of HeLa cells treated with 10μM DiI 

±10ng/mL EGF were pooled based on DiI fluorescence peaks.  Affinity 

purification was performed as outlined in the Materials and Methods.  Samples 

were loaded based on percent of total sample volume (5% PT, 50% E, & 2.5% 

WCL) and proteins were resolved on a 7.5% (EEA1 & TfnR) and 12% (EGFR & 

LAMP2) SDS-PAGE.  Membranes were immunoblotted for early and late 

endosomal proteins using the indicated primary antibodies.  WCL=whole cell 

lysates, PT=pass through, E=elution, IP=immunoprecipitation. 
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TBST.  Membranes were blocked overnight in 5% milk at 4°C and immunoblotted 

using the indicated primary antibodies.   

Calnexin was present in similar levels throughout the gradient, suggesting 

that ER contamination was present, but non-specific (Figure 11A).  However, 

Na/K-ATPase protein levels had distinct peaks within the gradient.  These 

fractions corresponded to the same peak fractions of DiI, TfnR, and EGFR from 

this experiment (see Figure 8) and are consistent with the notion that plasma 

membranes are enriched with early endosomes.  Despite the presence of both 

ER and plasma membrane contamination in these peak fractions, Calnexin and 

Na/K-ATPase were not present in the elution after affinity purification of pooled 

Percoll gradient fractions (Figure 11B).  However, since the plasma membrane 

contamination corresponded to the DiI peaks used to pool early endosomes, a 

discontinuous sucrose gradient was used to remove plasma membrane 

contamination from the PNS. 

Discontinuous sucrose gradients separate plasma membrane and 

intracellular vesicles. 

A discontinuous sucrose gradient, commonly referred to as a step 

gradient, was used to remove plasma membrane fragments from harvested cells.  

While Percoll gradients are a type of continuous gradient created during 

centrifugation, a step gradient is prepared prior to centrifugation and yields 

distinct fractions between each layer.  For this particular sucrose gradient, a step 

gradient with 60%, 38%, and 5% sucrose was used to separate intracellular 

vesicles and plasma membrane.   
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Figure 11.  Plasma membrane and ER contamination of Percoll gradient 

fractions.  A. Immunoblot membranes from a previous Percoll gradient were 

stripped and re-probed for Calnexin and Na/K-ATPase (Sigma).  See Figure 8 for 

experimental conditions.  B.  Immunoblot membranes from a previous affinity 

purification experiment were stripped and re-probed for Calnexin and Na/K-

ATPase (Sigma).  Samples from the original immunoblot experiment were 

collected from HeLa cells lysed with mechanical lysis followed by Percoll gradient 

fractionation in Percoll buffer.  Percoll gradient fractions were pooled based on 

DiI fluorescence and subjected to affinity purification with an EEA1 antibody 

conjugated to Protein G Dynabeads.  Samples were loaded based on total 

sample volume (PT=5%, E=50%, WCL=1.25%) and proteins were resolved on a 

10% SDS-PAGE. 
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Serum starved HeLa cells were incubated ±10ng/mL EGF for 15’.  Cells 

were harvested via a form of osmotic lysis and scraping as outlined in the 

Materials and Methods.  Lysates were then loaded on top of the sucrose gradient 

(i.e. on top of the 5% sucrose layer) and centrifuged.  Fractions were collected at 

both the 5%/38% interface, referred to as “vesicles”, and the 38%/60% interface, 

referred to as “membranes”.  The fractions were then immunoblotted for markers 

of early and late endosomes as well as plasma membrane (Figure 12).  

EEA1 was detected exclusively in the vesicles fractions.  EGFR protein 

concentrations were higher in the vesicles fraction compared to the membranes 

fraction in both EGF treated and untreated cells.  There was also an increase in 

EGFR in the vesicles fraction after EGF treatment.  TfnR and LAMP2 were both 

more concentrated in the vesicles fractions of both samples.  Although Na/K-

ATPase was also more concentrated in the vesicles fractions, there was still a 

distinct (albeit reduced) population of the protein within the membranes fraction.  

Discontinuous sucrose gradient followed by continuous Percoll gradient 

fractionation yields discrete early endosome enrichment. 

 Due to the distinct separation of endosomal marker proteins into the 

vesicles fractions and plasma membrane marker proteins into the membranes 

fractions on the sucrose gradient, I wanted to know if loading the vesicles 

fractions onto a Percoll gradient would result in diminished plasma membrane 

contamination in the early endosome fractions.  Serum starved HeLa cells were 

treated with 10ng/mL EGF for 15’ immediately prior to harvest.  Cells treated 

without EGF were used as a negative control.  Cells were harvested and loaded  
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Figure 12.  Discontinuous sucrose gradient separates plasma membrane 

and vesicle marker proteins.  HeLa cells were serum starved for two hours, 

followed by 15’ incubation with ±10ng/mL EGF.  Cells were harvested and 

lysates were loaded on a discontinuous sucrose gradient as outlined in the 

Materials and Methods.  Samples were loaded based on total sample volume 

(13% of V, M, & L) and resolved on a 7.5% SDS-PAGE.  Membranes were 

immunoblotted using the indicated primary antibody.  V=vesicles fraction 

(5%/38% interface), M=membranes fraction (38%/60% interface), L=lysates. 
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onto a pre-formed sucrose step gradient and centrifuged as outlined in the 

Materials and Methods.  Vesicles fractions were collected and loaded onto a 17% 

Percoll gradient adjusted to a final concentration of 0.25M sucrose.  Sucrose 

gradient and Percoll gradient fractions were immunoblotted for markers of early 

endosomes, late endosomes, and plasma membrane, as well as EGFR (Figure 

13). 

 The sucrose gradient separated approximately 55% of plasma membrane 

proteins into the membranes fraction, as evidenced by both Na/K-ATPase and 

EGFR (without EGF treatment) protein levels detected by immunoblot.  

Approximately 100% of EEA1 and LAMP2, positive controls for endosomes, were 

separated into the vesicles fraction.  After loading the vesicles fractions onto 

Percoll gradients, EEA1, EGFR, and Na/K-ATPase protein levels all peaked in 

fractions with an Rf value of approximately 0.15-0.30.  These Rf values 

corresponded with estimated vesicle densities of ~1.040g/mL.  LAMP2 protein 

concentration peaked in fractions with an Rf of approximately 0.87, and was also 

present in low levels in the EGFR, EEA1, and Na/K-ATPase peak fractions. 

Mass spectrometry analysis of purified early endosomes. 

 The ultimate goal of this thesis work is to isolate EGFR-containing early 

endosomes in order to analyze their protein make-up with mass spectrometry.  

Understanding the complete protein composition of early endosomes that contain 

activated EGFR will provide important insights into the influence of EGFR spatial 

regulation on downstream signaling.  Mass spectrometry will provide an unbiased 

platform to determine what proteins—including signaling, trafficking, scaffolding,  
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Figure 13.  Sucrose gradient removal of plasma membrane reduces Percoll 

gradient fraction contamination and improves early endosome enrichment.  

HeLa cells were serum starved at 37°C for 2 hours and incubated with ±10ng/mL 

EGF for 15’ immediately prior to harvest.  The PNS was loaded onto a 

discontinuous sucrose gradient as outlined in the Materials and Methods.  

Collected “vesicles” fractions were subsequently loaded onto an isotonic 17% 

Percoll gradient as outlined in the Materials and Methods.  A.  Immunoblots of 

sucrose gradient fractions from –EGF treated HeLa cells.  Samples were loaded 

2% of total sample volume and resolved on a 7.5% SDS-PAGE, followed by 

immunoblotting with indicated primary antibodies.  V=vesicles fraction, 

M=membranes fraction, L=lysates.  B.  Relative intensity of the immunoblots in 

A, estimated using Image J software.  Measurements were normalized by setting 
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the total band intensity of the V and M fractions equal to one for each 

immunoblot.  C.  Immunoblots of sucrose gradient “vesicles” fractions 

fractionated on a Percoll gradient.  Every other fraction was loaded 

(approximately 25% of the total volume per fraction) and resolved on a 7.5% 

SDS-PAGE and immunoblotted using the indicated primary antibodies.  D.  

Relative intensity of the immunoblots in C, estimated using Image J software.  

Circles on the x-axis represent density bead migration (Rf ~0.92=1.109g/mL, 

~0.90=1.070g/mL, ~0.86=1.057g/mL, ~0.53=1.049g/mL, ~0.28=1.042g/mL). 
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etc.—are associated with early endosomes that do and do not contain EGFR.  In 

order to determine if our affinity purification process is robust and sensitive 

enough for mass spectrometry analysis, I performed an affinity purification using 

EEA1 mAb on PNS extracted from HeLa cells treated with and without EGF.

 Serum starved HeLa cells were treated with or without 10ng/mL EGF for 

15’ immediately prior to harvest.  Cells were harvested using the harvest method 

in the sucrose gradient protocol as outlined in Materials and Methods section 

with minor modifications.  Briefly, a PNS was created by passaging cells through 

a syringe and 22G needle, followed by centrifugation at 800 x g to pellet nuclei 

and debris.  The PNS from each sample was incubated with Protein G 

Dynabeads pre-conjugated with EEA1 mAb as outlined in the Materials and 

Methods.  The beads elution and pass through were resolved on a 12% SDS-

PAGE and the gel was Coomassie stained for protein detection.  The elution, 

pass through, and PNS were also resolved on a separate 7.5% SDS-PAGE and 

immunoblotted for EEA1, LAMP2, Na/K-ATPase, and EGFR (Figure 14). 

 There was strong Coomassie protein staining in the pass through of both 

samples, and greatly reduced staining in the elution of both samples (Figure 

14A).  Although faint, there appears to be distinct protein bands in the +EGF 

elution that are not in the –EGF elution at molecular weights of approximately 

200kD, 110kD, and 60kD.  The majority of EEA1 is present in the elution of both 

–EGF and +EGF samples, and there is virtually no LAMP2 or Na/K-ATPase 

present in the elutions (Figure 14B).  There is also an increase in EGFR in the 

elution of the EGF treated sample compared to the EGF untreated sample. 
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Figure 14.  Affinity purification of early endosomes from HeLa cell PNS.  

Serum starved HeLa cells were treated ±10ng/mL EGF for 15’ and harvested 

with hypotonic lysis in 1mM Tris, 2mM EDTA followed by scraping.  Cells were 

passaged through a 22G needle 20 times and a PNS was created via 

centrifugation at 800 x g for 3’.  The PNS was incubated with EEA1-bound 

Protein G Dynabeads for 1 hour at 4°C with rotation.  The beads elution and pass 

through were collected and diluted in sample buffer for analysis.  A.  Samples 

were loaded by volume (2.5% PT, 50% E) and resolved on a 12% SDS-PAGE.  

The 12% gel was stained with Coomassie and imaged using a Fotodyne imaging 

system.  Molecular weight marker proteins are labeled with their respective 

molecular weight in kilodaltons.  –=no EGF, +=10ng/mL EGF treatment, PT=pass 

through, E=elution.  B.  Samples were loaded by volume (2.5% PT, 50% E, 

1.25% PNS) and resolved on a 7.5% SDS-PAGE, followed by immunoblotting 

with the indicated primary antibodies. 
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The coomassie stained gel in Figure 14A was digested and proteins were 

extracted from both of the elution lanes for liquid chromatography/mass 

spectrometry (LCMS) analysis, as outlined in detail in the Materials and Methods.  

A very brief description of these results is depicted in Table 1.  A total of 269 

proteins were detected in the –EGF sample, and a total of 559 proteins were 

detected in the +EGF sample.  Of the two samples, there was a convergence of 

221 proteins present in both samples.  As such, there were only 48 unique 

proteins in the –EGF sample, and 338 unique proteins in the +EGF sample 

(Table 1).  The most abundant protein detected was TfnR, and the second most 

abundant protein detected was EEA1 in both samples.   

 I performed an initial analysis of the mass spectrometry data by searching 

for EGFR and its known signaling effectors detected within the +EGF sample.  

EGFR was detected in very low levels in this sample, however, none of the major 

effectors (direct interacting proteins as well as downstream effectors) of EGFR 

that have been previously shown to associate with EGFR in endosomes were 

detected in the sample (e.g. Shc, Grb2, mSOS, MEK, Src, etc.) (data not shown).  

However, there were notable differences in the total number of proteins involved 

in important cellular processes including proteasomal degradation, translation, 

signaling, and trafficking (Tables 1 & 2).  Overall, there was an increase in the 

number of proteins detected that are associated with each of these processes in 

the +EGF sample compared to the –EGF sample.  There were also several 

candidate proteins that were detected in the +EGF sample that were not detected 

in the –EGF sample that have been associated with EGFR signaling, including: 
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Table 1.  Number of proteins detected by mass spectrometry of early 

endosomes isolated from HeLa cells treated with and without EGF. 
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Table 2.  RAB proteins detected by mass spectrometry of early endosomes 

isolated from HeLa cells treated with and without EGF. 

Σ#PSMs=the total number of identified peptide sequences for the given protein 

 

 

 

 

 

 



58 

Protein Kinase C-delta (PKCΔ), Rac1, Cdc42, and CSN6 & 7.   

There was an increase in expression of all of the RAB family proteins in 

the +EGF sample compared to the –EGF sample (Table 2).  Several new RAB 

family members were detected in the +EGF sample.  RAB6, RAB7, RAB13, and 

RAB34 were all present in the +EGF but not the –EGF samples, and are involved 

in Golgi to ER transport, late endosome maturation, the assembly of tight 

junctions, and macropinocytosis, respectively [69].  The number of proteins were 

counted in each group by searching for key words within the complete list of 

proteins detected per sample.   
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DISCUSSION 

 The overall purpose of this work was to develop and optimize a protocol 

for enriching and isolating early endosomes in order to study EGFR signaling 

from early endosomes in HeLa cells.  This was achieved by testing and 

combining various subcellular fractionation techniques from published methods.  

To begin, fluorescence microscopy was used to support the biochemical basis of 

the proposed work:  that EGFR internalizes into early endosomes upon ligand 

stimulation (Figure 4).  Our results were consistent with previous reports that 

EGFR traffics into early endosomes 20’ after ligand stimulation, after which the 

receptor traffics into late endosomes [67, 68].  

Next, I wanted to test the ability of a commercially available lipophilic 

tracer dye, DiI, to label early endosomes.  DiI is a fluorescent dye with a high 

affinity for all lipids that laterally diffuses into plasma membranes, and has been 

used as a membrane tracer dye for many years [70-72].  Because the process of 

subcellular fractionation is necessary for isolating endosomes, using a marker for 

the target organelle was highly desirable.  The use of a fluorescent dye would 

provide a non-invasive and qualitative means for measuring the migration of 

early endosomes within a density gradient.  The fluorescence of gradient 

fractions can be quickly measured on a plate reader to determine the 

fluorescence peak.  These fractions could theoretically then be subjected to 
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affinity purification to isolate the DiI-labeled early endosomes.  After determining 

the optimum DiI incubation conditions in HeLa cells (Figures 5 & 6), cells treated 

with DiI and EGF concomitantly were fractionated on a Percoll gradient and the 

fluorescence peak was measured (Figure 7).  Biochemical assays confirmed that 

the DiI fluorescence peak in the gradient fractions co-localized with the peaks of 

EGFR and TfnR protein expression (Figure 8).  These protein peaks likely 

represent early endosomes, as TfnR is constitutively recycled to early 

endosomes from the plasma membrane and EGFR internalizes with EGF 

treatment [46].   

Unfortunately, EGFR also peaks in the same fractions without EGF 

treatment (Figure 8).  This is consistent with the EGFR peak representing EGFR 

from the plasma membrane or other organelles.  However, because the next step 

in organelle isolation is immunoisolation, I supposed that low level contaminants 

could be removed.  Rf values of the EGFR peak fractions were calculated to 

contain vesicles with a density of ~1.045g/mL.  According to Kornilova et al., 

early endosomes have a density of ~1.035-1.042g/mL, and late endosomes have 

a density of ~1.048-1.060g/mL [45].  While the DiI fluorescence/EGFR peak was 

not in the appropriate density range for either early or late endosomes, it was 

presumed possible that the DiI peak represented early endosomes in the 

gradient.   

 As stated, the next step of purifying early endosomes from the Percoll 

gradient peak fractions was to use affinity purification with early endosome 

specific markers.  Three antibodies were tested for their ability to 
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immunoprecipitate early endosomes (Figure 9).  An EEA1 monoclonal antibody 

was selected from this preliminary screen of antibodies, as its use resulted in the 

successful precipitation of TfnR and EGFR (only with EGF treatment), but not 

LAMP2.  This strategy was then utilized to enrich early endosomes from the DiI 

fluorescence peaks of Percoll gradient fractions (Figure 10).  This resulted in the 

immunoprecipitation of TfnR, EEA1, and EGFR (only with EGF treatment), but 

not LAMP2.  However, it was noted that there was a significant amount of EGFR 

remaining in the pass through of both EGF treated and untreated samples.  

Although the affinity purification was effective, the majority of EGFR was not 

eluted with the early endosomes.  This again suggests the presence of other 

organelle contamination within the Percoll gradient peak fractions.   

If the use of DiI is a proper measure of early endosomes within the 

gradient, the pass through/pooled gradient fractions should be enriched in early 

endosomes.  Due to the high efficiency of the affinity purification as measured by 

EEA1 in the elution, it is unlikely that the EGFR remaining in the pass through is 

associated with early endosomes.  Further, there is a significant amount of EGFR 

in the –EGF sample pass through as well.  The majority of EGFR in unstimulated 

cells is localized to the plasma membrane [3, 30, 73].  This suggests that there is 

significant plasma membrane contamination within the Percoll gradient peak 

fractions.  This is also evidenced by the large amount of EGFR in the Percoll 

gradients of EGF untreated samples in Figure 8A.  Because DiI labels all lipid 

membranes, it is also possible that the DiI peak that co-localizes with EGFR 

peaks in the immunoblots are representative of plasma membrane fragments in 
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the gradient, as well as other organelle contamination such as ER, rather than 

early endosomes.  Due to the presence and pull down of early endosome-

specific proteins from these peak fractions (Figure 10), it was concluded that 

early endosomes were present.  However, early endosomes were not 

necessarily enriched in the pooled gradient fractions.  Interestingly, TfnR protein 

levels also peaked in the same fractions as EGFR and DiI fluorescence (Figure 

8B).  However, TfnR is not an ideal early endosome marker as it is constitutively 

recycled to and from the plasma membrane.  As such, the next step was to 

determine the extent of plasma membrane and ER contamination within the 

Percoll gradients, and if it interfered with the use of DiI as a marker of early 

endosomes within these gradients. 

Calnexin was used as a positive control for ER, and Na/K-ATPase was 

used as a positive control for plasma membrane, as both of these proteins are 

specifically localized to those organelles, respectively [74, 75].  Diffuse and non-

specific ER contamination was detected throughout the Percoll gradients, and a 

distinct peak of plasma membrane contamination was detected (Figure 11).  

Fortunately, though these protein markers were present in the pooled Percoll 

gradient fractions, they were not precipitated upon affinity purification.  However, 

the peak of Na/K-ATPase contamination corresponded to the same fractions in 

which EGFR, TfnR, and DiI peaked in all previous experiments.  Due to the 

strong plasma membrane contamination within the peak DiI fractions, the DiI 

staining of the plasma membrane is likely much stronger and masking that of the 

early endosomes in the gradient.  If DiI is to be used as a marker for the fractions 
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containing early endosomes that will be pooled for affinity purification, plasma 

membrane contamination must be removed or at least reduced from the samples 

in order to reveal the true peak of DiI fluorescence from early endosomes. 

A discontinuous sucrose gradient was used as a means to separate 

plasma membrane fragments from intracellular vesicles of HeLa cells.  Although 

not all of the plasma membrane proteins were separated from the vesicles, 

approximately 25% of the Na/K-ATPase protein concentration was measured in 

the membranes fractions (Figure 12).  This suggests that there is in fact 

separation of plasma membrane proteins using this protocol, although it is not a 

100% enrichment.  Further, EEA1 was found exclusively in the vesicles fractions, 

suggesting that there was no early endosome sample loss into the membranes 

fraction with this protocol.  The DiI fluorescence of the vesicles and membranes 

fractions was also measured, and it was determined that the DiI fluorescence 

intensity was more directly correlated to plasma membranes than to early 

endosomes.  As such, DiI was no longer used as a marker of early endosomes. 

The next step was to test the use of the sucrose gradient prior to Percoll 

gradient fractionation to reduce plasma membrane contamination.  The results 

from this experiment revealed a new profile of early endosome and plasma 

membrane proteins within the fractions compared to previous Percoll gradients 

(Figure 13).  The Rf values associated with both plasma membrane and early 

endosome marker proteins were ~0.15-0.30, and the calculated densities of 

these fractions were ~1.040g/mL.  A miscalculation resulted in using sucrose at a 

concentration of ~0.16M.  The proper sucrose concentration of a Percoll gradient 



64 

should be isotonic, or 0.25M.  This discrepancy accounts for the previous density 

calculations of early endosome protein-containing fractions that did not agree 

with the known densities of early endosomes [45].  As such, the use of a sucrose 

step gradient prior to Percoll gradient fractionation yields reduced plasma 

membrane contamination and a distribution of early endosome proteins that 

corresponds with proper early endosome density.  These results also correlate 

with the distribution of EGFR in Percoll gradients within the literature [60, 76]. 

The final test performed in this thesis work was mass spectrometry on 

affinity purified early endosomes.  Before performing mass spectrometry on early 

endosomes isolated using the finalized protocol, we first wanted to test the 

specificity and sensitivity of the affinity purification step.  Post-nuclear 

supernatants collected from HeLa cells treated with and without EGF ligand were 

subjected to affinity purification, followed by LCMS analysis.  While the overall 

goal of this research is to analyze EGFR signaling effectors in early endosomes, 

this initial experiment was a preliminary test of our abilities to analyze isolated 

early endosomes.   

We were able to successfully enrich early endosomes with minimal 

contamination from other organelles (Figure 14).  The most abundant proteins 

detected in both samples of endosomes were TfnR and EEA1, both of which 

were used as positive controls for early endosomes.  Na/K-ATPase, Calnexin, 

and LAMP2 were used as negative controls.  Na/K-ATPase was not detected in 

either sample, however, LAMP2 and Calnexin were detected in the +EGF 

sample, albeit at very low abundance.  This suggests there was no plasma 
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membrane contamination in the enriched samples, however, there was a small 

amount of late endosome and ER contamination in the +EGF sample.  

Encouragingly, EGFR was detected only in the +EGF sample, supporting the fact 

that EGF treatment leads to EGFR endocytosis into early endosomes.  However, 

the amount of EGFR detected was very low, and specific effector and scaffold 

proteins that are known to associate with EGFR in early endosomes upon ligand 

stimulation—Shc, Grb2, mSOS, MEK2, etc.—were not detected in this sample. 

While several specific EGFR effectors that are known to associate with 

EGFR in early endosomes were not detected, several other proteins that are 

involved in EGFR signaling were detected in the +EGF sample.  For example, 

PKCΔ was present in the EGFR-containing early endosomes.  PKC has been 

shown to inhibit EGFR signaling via MAPK [77].  Rac1—a Rho family GTPase 

that is downstream of EGFR—and CDC42—a cell cycle regulator that is also 

downstream of EGFR—were detected in the +EGF sample.  Both Rac1 and 

CDC42 are positive regulators of EGFR signaling that are involved in cell motility 

and cell cycle progression [78].  CSN6 and CSN7 are subunits of the COP9 

signalosome complex, which is involved in the ubiquitin-proteasome pathway.  

Both of these subunits were also detected in the +EGF sample.  CSN6 was 

recently linked to the progression of colorectal cancer via a CSN6-ERK2 

interaction [79].   

We detected in the EGF-treated sample an increase in the number of 

proteins involved in several important cellular processes, including translation, 

proteasomal degradation, and signaling (Table 1).  There was also an increase in 
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the number and type of RAB proteins detected in the +EGF sample compared to 

the untreated sample (Table 2).  Interestingly, there was an increase in the 

number and type of RABs associated with late endosomes in the +EGF sample, 

suggesting that the early endosomes were in the process of maturing into late 

endosomes [80].  This is consistent with EGFR being trafficked into “dynamic” 

early endosomes, which are associated with microtubules and rapidly mature into 

late endosomes [46]. 

In this thesis work, I was able to modify published protocols to enrich early 

endosomes.  We were also able to successfully isolate endosomes from HeLa 

cells treated with and without EGF ligand and use mass spectrometry to analyze 

their protein make-up.  
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SUMMARY AND CONCLUSIONS 

The overarching goal of the work performed in this thesis was to develop 

an early endosome isolation protocol in order study EGFR effector signaling from 

this compartment.  Current methods for endosome isolation in the literature were 

utilized as a starting point for this work.  Several variations of subcellular 

fractionation were tested and optimized to achieve a final protocol that results in 

discrete enrichment of early endosomes with minimal contamination from other 

organelles.  The affinity purification step was also tested and shown to be robust 

and highly specific for the purification of early endosomes.  This step of the 

procedure was also sensitive enough for proteomics analysis via LCMS of the 

purified compartments.  This analysis revealed distinct differences in the protein 

composition of endosomes isolated from cells stimulated with and without EGF.  

In the future, mass spectrometry analysis will be performed on early endosomes 

isolated using the finalized enrichment protocol in order to study the effects of 

EGF treatment on early endosome protein composition and EGFR downstream 

signaling. 

Strengths of This Work 

 A major strength of this work is in its use of HeLa cells.  This cell line 

expresses EGFR at levels similar to what has been measured in normal human 

epithelial tissues (~50,000 EGFRs per cell), allowing us to correlate findings in 

these cells with the physiologic activity of EGFR.  To this same end, physiologic/ 



68 

low levels of EGF ligand were used to stimulate EGFR activation (10ng/mL).  

Further, HeLa cells grow rapidly, permitting the generation of large populations of 

cells, if they are required for subsequent endosome enrichment.   

Another important strength of this work is that we were able to isolate 

early endosomes without introducing exogenous factors into the cells.  While it is 

generally acceptable to use cell lines that have been genetically altered to 

enhance detection and capture of the target protein of interest, we were able to 

enrich early endosomes without the use of epitope tags or transfection reagents.  

As a result of this, the isolated early endosomes are physiologically relevant.  

The proteomics data obtained from these compartments can thus be taken at 

face value, without concerns about non-physiologic changes in their structure or 

function. 

Limitations of This Work 

 One of the few limitations of this thesis work is that it was performed using 

an in vitro cell line.  A major drawback to using tissue culture rather than animals 

is that the results cannot be correlated to the whole organism level.  In vitro cell 

lines lack the complex interplay of signaling that occurs within organisms and 

even tissues.  Tissue culture models are ideal for preliminary studies, however, 

isolating early endosomes from an animal would provide an even more 

physiologically relevant analysis of EGFR signaling from these compartments.   

Future Directions 

 One of the most important experiments to perform moving forward will be 

to affinity purify early endosomes enriched using the finalized protocol with both 
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sucrose and Percoll gradients.  This should provide a more robust precipitation of 

early endosomes and increased sensitivity for the detection of EGFR effectors 

with mass spectrometry.  In order to draw conclusions from the mass 

spectrometry analysis, we would need to repeat these experiments and 

determine if the results obtained are reproducible.  Once this has been 

completed, we will then be able to determine the extent of the effects of EGFR 

spatial regulation on downstream signaling.  Not only will we be able to 

determine what effectors co-localize with EGFR in early endosomes upon ligand 

activation, but we will also use this information to test how the subcellular 

localization of effectors changes downstream signaling.  Using stably transfected 

cell lines, we will be able to change the cellular localization of EGFR effectors 

and determine the physiological role that effector localization plays in EGFR 

signaling outcomes. 
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