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ABSTRACT 

EVALUATION OF DRUG-LOADED GOLD NANOPARTICLE CYTOTOXICITY AS 

A FUNCTION OF TUMOR TISSUE HETEROGENEITY  

Hunter A. Miller 

July 11, 2018 

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-

medicated drug delivery. This heterogeneity spans from the molecular to the cellular (cell 

types) and to the tissue (vasculature, extra-cellular matrix) scales. Here we employ 

computational modeling to evaluate therapeutic response as a function of vascular-

induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles 

loaded with cisplatin, nanotherapy is simulated with different levels of tissue 

heterogeneity, and the treatment response is measured in terms of tumor regression. The 

results show that tumor vascular density non-trivially influences the nanoparticle uptake 

and washout, and the associated tissue response. The drug strength affects the proportion 

of proliferating, hypoxic, and necrotic tissue fractions, which in turn dynamically affect 

and are affected by the vascular density. This study establishes a first step towards a more 

systematic methodology to assess the effect of vascular-induced tumor tissue 

heterogeneity on the response to nanotherapy.    
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INTRODUCTION 

 

Although nanoparticle-mediated drug delivery offers the promise of more targeted 

and effective treatment of cancer, few of the myriad of formulations evaluated in the 

laboratory have reached clinical application.  Major hurdles have included concerns about 

toxicity, lower than expected efficacy, and off-target effects (Miele, Spinelli et al. 2012).  

In particular, the tumor microenvironment can present a formidable barrier that hinders the 

transport of drug molecules as well as nano-sized vehicles (Primeau, Rendon et al. 2005, 

Hait and Hambley 2009, Warren 2013).  In order to be effective, nanoparticle-mediated 

drug delivery needs to utilize the vascular network to preferentially reach the tumor site 

and penetrate into the cancerous tissue to establish cytotoxic concentrations, avoid uptake 

by the reticulo-endothelial system (RES), diffuse through the extra-cellular matrix (ECM) 

mesh of proteins, remain close or be uptaken by the cancer cells, and efficiently release the 

payload of drug molecules to achieve cytotoxicity.  To address these requirements and 

increase the efficacy of chemotherapy, nanoparticles can be functionalized with various 

compounds to help reduce systemic distribution and avoid intrinsic cellular resistance 

mechanisms (Koziara, Whisman et al. 2006, Bertrand, Wu et al. 2014).  Yet uncoordinated 

angiogenic stimuli by proliferating and hypoxic cancer cells induce a heterogeneous 

vascular response, characterized by tortuous vessels with abnormal structure
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and irregular flow (Izuishi, Kato et al. 2000, Minchinton and Tannock 2006).  The 

inadequacy of the vascular network promotes intra-tumoral tissue regions with 

heterogeneous proliferative, hypoxic, and apoptotic states, while severely impairing the 

transport of and the response to systematically-administered drugs and nanoparticles. 

The efficacy of nanoparticles in cancer treatment is typically evaluated with in vitro 

and in vivo experimental models, which are indispensable for pre-clinical evaluation.  

However, in vitro models lack key features of cancerous tissue found in vivo, including a 

vascular network, while in vivo models present challenges due to systemic interactions 

which may not be necessarily easily teased apart.  As a complement to these experimental 

venues, computational simulation of cancer nanotherapy has aimed to provide the 

capability for system-level analysis (Frieboes, Sinek et al. 2006, Decuzzi, Pasqualini et al. 

2009, Godin, Driessen et al. 2010, Li, Al-Jamal et al. 2010, Li and Reineke 2011, Li, Panagi 

et al. 2012, van de Ven, Wu et al. 2012, Gao, Li et al. 2013, Kaddi, Phan et al. 2013, Li, 

Czyszczon et al. 2013, van de Ven, Abdollahi et al. 2013, Wu, Frieboes et al. 2014).  In 

particular, we have recently studied via mathematical modeling the extravasation, uptake, 

and distribution of nanoparticles subject to heterogeneous tumor tissue and vascular 

conditions (Curtis, England  et al. 2016, Curtis, Rychahou et al. 2016, Reichel, Curtis et al. 

2017). 

The distribution and penetration of 2- and 3-layered gold nanoparticles were 

recently evaluated in vitro  (England, Priest et al. 2013) and in vivo (England 2015).  The 

purpose of these nanoparticles was to increase chemotherapy efficacy (England 2015, 

England, Gobin et al. 2015) via enhanced distribution and penetration into tumor tissue. 

The 3-layer gold nanoparticles were functionalized with phosphatidylcholine, 
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hexadecanethiol and high-density lipoprotein (England, Priest et al. 2013). Computational 

modeling was implemented (Curtis, England  et al. 2016) to simulate the performance of 

these nanoparticles in vivo given measurements in vitro, with the goal to begin bridging 

the gap from the pre-clinical to the clinical setting.  The model parameters were set from 

experimental measurements with 2D and 3D cultures of A549, H358, and PC9 Non-Small 

Cell Lung Cancer (NSCLC) cells (England, Priest et al. 2013, England 2015).  

In this study, computational simulation is employed to evaluate the role of vascular 

density-induced heterogeneity on the distribution of 3-layered gold nanoparticles in tumor 

tissue and the associated drug release.  Small metastatic lesions are simulated in a well 

vascularized organ, such as the lung, and cisplatin is used as the model drug.  The 

nanoparticle effectiveness is analyzed by calculating fractions of control for tumors of 

various blood vessel densities after bolus administration of the drug loaded nanoparticles. 

Tumor therapy is simulated with various drug inhibitory concentrations calibrated to 

achieve a 50% reduction in tumor size (IC50) at four timepoints (24hr, 48hr, 72hr, 96hr) 

post treatment initiation. This work represents a first step towards quantifying tumor 

response to drug-loaded nanoparticles based on vascular-network induced tissue 

heterogeneity. 
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MATERIALS AND METHODS 

 

Nanoparticle Synthesis and Characterization 

Three-layered nanoparticles were previously created in (England, Priest et al. 

2013).  Briefly, citrate-stabilized gold nanoparticles were synthesized by reducing 

chloroauric acid with trisodium citrate (Frens 1973).  The first layer applied was 1-

Hexadecanethiol (TL), followed by phosphatidylcholine (PC), and then HDL.  

Nanoparticles were characterized via extinction spectra using ultraviolet-visible (UV-Vis) 

spectrometry, zeta potential measurements, DLS (dynamic light scattering) to determine 

hydrodynamic size (intensity distribution) in solution, determination of shape and size with 

scanning electron microscopy, and confirmation of presence of lipids on the particle cores 

using a Fourier transform infrared (FTIR) instrument.  Cisplatin (7.5 mg) was then added 

to the nanoparticles in solution and allowed to react for 2 h (England, Priest et al. 2013). 

Experimental Cytotoxicity Data 

As described in (England, Priest et al. 2013), A-549 cells were maintained in 

standard culture conditions, and used to form tumor spheroids.   Cytotoxicity was first 

measured in 3D cell culture with free drug at varying concentrations (1024, 256, 64, 16, 4, 

1, 0.25, 0.0625 µM) for 48 h.  The spheroids were exposed to varying concentrations of 

drug-loaded nanoparticles calculated by considering two parameters: (1) the loading 
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efficiency from HPLC data showing the exact concentration of drug encapsulated onto the 

nanoparticles (England 2015) and (2) the percent of drug released over the 48-hour period. 

Computational Modeling 

1. Tumor Growth 

The tumor growth component is based on (Macklin, McDougall et al. 2009, Wu, 

Frieboes et al. 2013), in which tumor tissue is denoted by and its boundary by . Tumor 

tissue is divided into three regions: a proliferating region where cells have sufficient 

oxygen and nutrients to proliferate, a hypoxic region where cells have sufficient oxygen 

and nutrients to survive but insufficient for proliferation, and a necrotic region where cells 

lack sufficient oxygen and nutrients for survival. The non-dimensionalized tumor growth 

velocity follows Darcy’s Law [48]: 

        [Equation 1] 

where μ is cell-mobility, P is oncotic pressure, χE is haptotaxis, and E is the density of the 

extracellular matrix (ECM). Refer to (Macklin, McDougall et al. 2009) for a more detailed 

description of E and χE. The overall tumor growth can be associated with the rate of volume 

change by assuming that the cell density within the proliferating region remains constant: 

         [Equation 2] 

where  is the non-dimensionalized net proliferation rate (described below). 

2. Angiogenesis 

 

p
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The angiogenesis component is based on (McDougall, Anderson et al. 2006) to 

represent blood flow, vascular leakage and vascular network remodeling resulting from 

wall shear stress and mechanical stress imposed by the tumor tissue as it changes in time. 

Briefly, as the tumor grows within a vascularized environment, the tissue has access to 

oxygen and nutrients diffusing from the vasculature.  The interstitial flow of oxygen and 

nutrients is influenced by tissue pressure and by distance from the nearest vessel. Refer to 

(Macklin, McDougall et al. 2009, Wu, Frieboes et al. 2013) for a more detailed description 

of the angiogenesis model. 

3. Transport of oxygen and nutrients 

Oxygen and nutrients σ are transported to the tumor from the location of extravasation 

from the vasculature. The extravasation rates ev neo

  =  and ev pre

  =  represent the rate 

that σ are supplied from the neo- and pre-existing vasculature, respectively.  These 

substances, which diffuse with a coefficient Dσ, are taken up by both host tissue cells and 

tumor cells with rates tissue

 , tumor

 , and qs and decay with rate N

  in the necrotic region. 

Under steady-state conditions, the formulation of oxygen and nutrient uptake and decay is 

(Macklin, McDougall et al. 2009, van de Ven, Wu et al. 2012, Wu, Frieboes et al. 2014): 

( )0 ( , , , , , ) ( ) 

      =   + −ev vessel iD t p hx 1     [Equation 3] 

where x is position, t is time, 1vessel  is the characteristic function for the vasculature (equals 

1 at vessel locations and 0 otherwise), pi  is interstitial pressure, and h is the hematocrit in 

the vascular network [48]. Extravasation is modulated by the extravascular interstitial 
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pressure pi, scaled by the effective pressure pe with the weight of the convective transport 

component of small molecules, (van de Ven, Wu et al. 2012): 

    [Equation 5] 

 and hmin are constants which represent the normal and minimum hematocrit necessary 

for oxygen extravasation, respectively. ev



  represents the constant transfer rate from pre-

existing and tumor-induced vessels.  

4. Transport of nanoparticles 

Nanoparticle transport s through the tumor tissue is simulated from the point of 

extravasation from the vasculature. The uptake rate of nanoparticles by host and tumor 

cells is 
s

uptake (van de Ven, Wu et al. 2012, Wu, Frieboes et al. 2014): 

( ) ( , , , , )
s

s
uptakes ev vessel i

s
D s t p s s

t
 


=   + −


x 1

   [Equation 6] 

Under the assumption that the transfer rate 
s

ev from both pre-existing and tumor-induced 

vessels is constant, nanoparticle extravasation is: represented by (van de Ven, Wu et al. 

2012, Wu, Frieboes et al. 2014): 

( , )(1 )( )
i

s
s

s i t
evev vessel p s

e

p C
t k s

p C
 = − −1 x

    [Equation 7] 

where diffusion of particles into the tumor tissue is modulated by the interstitial pressure 

(van de Ven, Wu et al. 2012). Particle extravasation is assumed to be 
s

s t

tC C e −= , where 

ipk

( , )( ) (1 )(1 )
i

i
ev minev vessel p

D e

ph
t h k

pH

  += − − −1 x

DH
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s

C  is the initial concentration (van de Ven, Wu et al. 2012). The extravasation of particles 

is concentration dependent, simulating first order kinetics. The decay constant α is 

measured from previous in vivo experiments, in which the particle half-life is estimated to 

be 12 hours (England, Huang et al. 2015). The diffusivity of the particles was calibrated 

from the combination of charge and size properties based on measurements obtained in 

vitro (England, Priest et al. 2013).  

5. Transport of drug 

Drug G is released at the point of extravasated particles and diffuses through the tumor 

tissue with the coefficient DG. The rate 
G

decay  combines the effects of drug uptake by tumor 

and normal cells and the wash-out from the interstitial space, and reflects the half-life of 

the drug (Curtis, England  et al. 2016): 

( ) ( , )
G

G
decayG release

G
D G t s G

t
 


=   + −

      [Equation 8] 

The drug release 
G

release  from the particles is represented by (Curtis, England  et al. 2016):  

G G

release tsC =         [Equation 9] 

G

tC  is the release of drug which is fitted in time to follow the results obtained from in vitro 

experiments in [38]. The drug release rate thus combines the effect of particle concentration 

and drug release profile. All diffusion equations have the boundary condition 
0B

n


=

  

where B is the diffusible substance. 

6. Drug effect on tumor 
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Cisplatin is a cell cycle dependent drug, and thus its cytotoxic effect is only exerted on 

proliferating cells. Drug effect is included into the proliferation term where is the 

rate of drug-induced cell death (Wu, Frieboes et al. 2014): 

M A

0 outside the tumor

(1 ) in proliferating tissue
0 in hypoxic tissue

in necrotic tissue

   





− −
= 

−

effect

p

N

G

G    [Equation 10] 

where λA is the apoptosis rate, λM is the mitosis rate, and GN is the non-dimensional rate of 

volume loss in the necrotic tumor core (it is assumed that cellular debris is constantly 

degraded and the fluid is removed (Wu, Frieboes et al. 2014)). This pharmacodynamic 

model assumes that cell proliferation and apoptosis rates are similar before and after drug 

therapy. Cell death is assumed to be instantaneous.  

7.  Calibration of Rate of Drug-Induced Cell Death 

The model parameters for oxygen, drug effect and tumor growth were calibrated 

using data obtained experimentally with NSCLC tumor spheroids to find an 48hr IC50 for 

simulated avascular spheroids (in vitro simulations) (England, Priest et al. 2013). A 

detailed description of the in vitro experiments used to calibrate the simulations can be 

found in (Curtis, England  et al. 2016), which includes the synthesis, functionalization, 

characterization, drug loading, and drug release of the nanoparticles and cytotoxicity 

experiments in 2D and 3D cell culture. Since the concentration of NP’s and drug were not 

changed among the four IC50’s, the free drug concentration after 48 h of exposure was 

calculated based on the data from our previous study (Curtis, England  et al. 2016). Then, 

the 24hr, 72hr, and 96hr IC50 avascular treatment drug concentrations were scaled by the 

p effect
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same proportion as the change in drug effect. The trapezoid method was used to calculate 

the corresponding AUC’s to quantify the avascular IC50’s.  

8. Tumor Tissue Heterogeneity 

The values for drug-induced cell death used for the avascular IC50’s were 

employed in therapy simulations with vascularized lesions (simulations of in vivo 

condition). To link the differences in drug effect to the effects of heterogeneous 

vascularization density, the in vivo simulations used the same nanoparticle concentration 

in a bolus dose as was needed in the in vitro simulations to achieve the IC50. All tumors 

grown in host tissue with the same pre-existing vessel densities but different oxygen 

thresholds for hypoxia and necrosis were grown to the same initial radius of 0.56mm. In 

vivo simulations were run for a sufficient amount of time to obtain the smallest tumor radii 

following NP bolus injection and were used to compare the efficacy of cisplatin-loaded 

nanoparticles among the various cases. The tumor blood vessel density was calculated by 

dividing vessel surface area (vessel length x vessel cross sectional area) by the tumor area.  

The main tumor, nanoparticle, and drug parameters and their values are summarized in 

Table 1.  

Parameter Value Reference 

Tumor proliferation rate 1 day-1 Measured in (Curtis, 

England  et al. 2016) 

Oxygen diffusivity  1 (*) (Wu, Frieboes et al. 2013) 

Oxygen transfer rate from vasculature 5 (*) (Wu, Frieboes et al. 2013) 



11 
 

Oxygen uptake rate by proliferating 

tumor cells 

1.5 (*) (Wu, Frieboes et al. 2013) 

Oxygen uptake rate by hypoxic tumor 

cells 

1.3 (*) (Wu, Frieboes et al. 2013) 

Oxygen uptake rate by tumor 

microenvironment 

0.12 (*) (Wu, Frieboes et al. 2013) 

Oxygen decay rate 0.35 (*) (Wu, Frieboes et al. 2013) 

NP extravasation from angiogenic vs. 

normal vessels 

10 Estimated 

NP diffusivity 0.3 (*) (England, Priest et al. 2013) 

NP decay 12hr half-life Estimated 

CDDP diffusivity 0.6 (*) Estimated 

CDDP drug effect 27, 9.45, 5.6, 

4.0 

(for 24, 48, 72, 

and 96 h IC50) 

Calibrated to experimental 

data 

CDDP decay rate 0.5hr half-life (Leighl 2012) 

CDDP release profile from NP  Measured in (England 

2015) 
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CDDP in vitro IC50 (48 h) for A549 

cells (spheroid) 

15.9 ± 1.2 μM Measured in (Curtis, 

England  et al. 2016) 

Table 1: Computational model main parameters and associated values.  All other model 

parameters are as in (Wu, Frieboes et al. 2013). (*) Value is rescaled by the square of the 

simulation system characteristic length (1 cm) and divided by the system characteristic 

time (1 sec) multiplied by the oxygen diffusivity (Nugent and Jain 1984) (1 x 10-5 cm2 s-1). 

CDDP: cisplatin; NP: 3-layered gold nanoparticles characterized in (England, Priest et al. 

2013, England 2015, Curtis, England  et al. 2016). 

Four levels of tissue heterogeneity were obtained, respectively labeled “very low,” 

“low,” “medium,” and “high,” by varying the angiogenesis-induced tissue vascularization 

based on the response to tumor angiogenic factors (TAF) that were in proportion to the 

tumor tissue hypoxic and necrotic levels.  The values for these levels are defined in Table 

2. The hypoxic threshold defines the oxygen level at which tissue becomes hypoxic 

(quiescent but still viable) and ceases to proliferate, while the necrotic thresholds defines 

the oxygen level at which the tissue becomes necrotic (dead). 

 

Level of Tissue Heterogeneity Tumor hypoxic threshold Tumor necrotic threshold 

VERY LOW 0.305 0.300 

LOW 0.405 0.400 

MEDIUM 0.485 0.480 

HIGH 0.575 0.570 
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Table 2: Definition of levels of tumor tissue heterogeneity based on the thresholds for 

inducing hypoxia and necrosis.  The values for HIGH are based on the previously calibrated 

tumors simulated in (van de Ven, Wu et al. 2012, Curtis, England  et al. 2016). 
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RESULTS 

 

Experimental data 

The 3-layer gold nanoparticles were previously characterized as having a maximum 

wavelength of 5.35 nm, a hydrodynamic diameter of 80.2 ± 12.4 nm, and a zeta potential 

of -6 mV (Curtis, England  et al. 2016).  The cisplatin loading efficiency was 78.9 ± 0.7%  

(Curtis, England  et al. 2016).  The nanoparticles released 59.1 ± 2.0% of drug within the 

first 3 hours, 76.7 ± 1.84 within 48 h, and 78.9 ± 2.1) by 96 h (England 2015). 

Simulation of heterogeneous tumor growth 

Tumors were first grown under the conditions of VERY LOW, LOW, MEDIUM 

and HIGH heterogeneity as defined in Table 2 to the same radius (0.566 mm) before 

treatment.   The simulated tumors during the initial growth phase are shown in Figure 1.  

Depending on the level of heterogeneity, this growth took varying amounts of time, with 

the HIGH case taking the longest (22.7 simulated days).  The tissue heterogeneity is 

characterized in Figure 2 as a function of the tumor radius.  While the intra-tumoral vessel 

density initially increased for the VERY LOW and LOW cases, it plateaued for radii 

beyond 0.40 mm (Figure 2A).  In contrast, the density for MEDIUM and HIGH conditions 

decreased for radii below 0.31 and 0.28 μm, respectively, before becoming larger.  The 

proliferative tissue fraction corresponding to these vascular densities indicates that for a 
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radius of 0. 566 mm right before start of treatment, these fractions were being maintained 

at 96, 82, 68, and 55% for VERY LOW, LOW, MEDIUM and HIGH conditions, 

respectively (Figure 2B).  At this radius, the hypoxic tissue fractions were correspondingly 

lower, at 2.4, 4.8, 10.0, and 20.2% (Figure 2C), while the necrotic fraction values were 

1.2, 12.6, 21.9, and 25.3%, respectively.  Compared to the more stable values maintained 

for the proliferating and hypoxic as the tumor radius increased, the necrotic fractions 

(Figure 2D) (except for the VERY LOW condition) exhibited an initial steep increase 

followed by a gentle decline past 0.350 μm as the proliferating portion slowly started 

gaining in value. 
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Figure 1.  Simulation of tumor nodules growing in time with different levels of vascular-

induced tissue heterogeneity.  Red color denotes the proliferating region, blue indicates 

hypoxia, and brown means necrosis.   The pre-existing capillary grid is shown as 

rectangular lines along with irregular sprouts growing from them due to the angiogenesis 

process. Bar: 250 μm. 
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Figure 2. Characterization of tumor tissue heterogeneity.  (A) Intra-tumoral vascular 

density; (B) Proliferating fraction; (C) Hypoxic fraction; (D) Necrotic fraction. 

 

Calibration of drug effect  

A simulated tumor growing in the dish in vitro, surrounded by plentiful oxygen and 

nutrients, is shown in Figure 3A.  This tumor was exposed after 30 d to drug in silico for 

48 h to determine the value for the drug effect to achieve a 50% reduction in tumor 

size (the “IC50”) (Figure 3B).  This value was then assigned the units of the drug 

concentration to achieve the same regression with the tumor spheroids in the experiments 

in vitro (Curtis, England  et al. 2016).   A range of area-under-the-curve values were 

obtained, as shown in Table 3. 

effect
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Figure 3.  Simulated tumor growing in avascular conditions in vitro.  Red: proliferating 

tissue; blue: hypoxic tissue; brown: necrotic tissue.  Bar: 250 μm. 

IC50 Range of Time (h) AUC (μM*h) 

24hr IC50 1082 

48hr IC50 760 

72hr IC50 676 

96hr IC50 644 

 

Table 3.  Area-under-curve (AUC) calculated for four different ranges of time for a 

simulated tumor spheroid growing in in vitro conditions. 

 

Simulation of nanoparticle-mediated drug delivery 

Representative simulation images of vascularized tumors at the start of treatment 

with the various levels of heterogeneity are shown in Figure 4.  As the heterogeneity 
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increases from VERY LOW to HIGH, the penetration and spatial distribution of 

nanoparticles and the drug released from them correspondingly becomes more 

heterogeneous.  The deepest nanoparticle penetration is achieved with the VERY LOW 

case, for which the drug release is concentrated in the inner core of the tumor. In contrast, 

in the HIGH case the nanoparticles become stuck in the tumor periphery, unable to 

penetrate into the tissue.  This is consistent with previous modeling work showing that 

tumor tissue heterogeneity leads to inhomogeneous small molecular and nanoparticle 

distribution, with the highest concentrations occurring on the periphery (Frieboes, Wu et 

al. 2013, Curtis, Wu et al. 2015).  Interestingly, although in the LOW case the nanoparticles 

penetrate deeper, their concentration is more heterogeneously distributed than in the 

MEDIUM case, suggesting that the relationship between heterogeneity and nanoparticle 

penetration is not linear (Frieboes, Wu et al. 2013, Curtis, Wu et al. 2015).  
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Figure 4.  Representative simulation images of vascularized tumors with the various levels 

of heterogeneity shown at the start of treatment with cisplatin-loaded nanoparticles.  Red: 

proliferating tissue; blue: hypoxic tissue; brown: necrotic tissue.  Bar: 250 μm. 

 

The nanoparticle concentration within tumor tissue for each value of the drug 

strength (respectively based on 24, 48, 72, and 96 h IC50 values in vitro) is shown in Figure 

5.  In the case of the 24 h IC50 value, the concentrations are similar regardless of level of 

tissue heterogeneity, with an initial sharp peak at 2.5 h post-treatment initiation followed 

by a sharp drop to 35% of initial concentration within 4 h.  The concentration then declines 

slowly afterwards, to 10% of initial by 30 h.  For the other three drug strengths, the LOW 

case exhibits the highest concentration of nanoparticles overall, with 30% still in tissue 

after 30 h.  For the 48h IC50 case, the VERY LOW case retains the second highest 

concentration, while for both 72 and 96 h, it is similar to the MEDIUM and HIGH 

conditions, decreasing to 20% of initial value by 30 h.  Noticeably, the nanoparticle 

concentrations are more heterogeneous in time for the 48 and 72 h cases, while the 24 and 

96 h evince more consistent profiles.  This suggests that the drug strength is also a key 

parameter that influences the nanoparticle concentration as the tissue responds in time to 

the drug, and is consistent with recent findings from an optimization model applied to this 

tumor model system (Chamseddine, Frieboes et al. 2018). 
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Figure 5.  Nanoparticle concentration within tumor tissue for each value of the drug 

strength. 

 

The drug release from the nanoparticles within the first 4 h for the various drug 

strengths is shown in Figure 6.  Consistently, the highest concentrations were achieved for 

HIGH tissue heterogeneity and the lowest for the VERY LOW heterogeneity.  The 24 h 

IC50 strength exhibited the greatest differential between the various levels of 

heterogeneity, at 7 μM for HIGH and 5 μM for VERY LOW, in contrast to the 96 h IC50, 

which evinced 1 μM for HIGH and 0.75 μM for VERY LOW.   
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Figure 6. Drug release from the nanoparticles within the first 4 h for the various drug 

strengths. 

 

The area-under-the-curve (AUC) for the nanoparticles within tumor tissue is shown 

in Figure 7A.  Whereas the AUC for the 24 h IC50 condition declined from the VERY 

LOW to the HIGH heterogeneity levels, ranging from 7 to 6 %initial.h, the other three IC50 

conditions had the highest values for the LOW level.  At this level, the 72 h IC50 

predominated overall at 17.5 %initial.h.  In contrast, the highest AUC at the VERY LOW 

case was attained for the 48 h IC50 at 14 %initial.hr, while the highest values for the 

MEDIUM and HIGH conditions were for the 96 h IC50, at 15 and 13.8 %initial.h, 

respectively.   In spite of these inhomogeneous outcomes for the nanoparticles, the 

intratumoral vascular AUC for the drug released from them had a more consistent pattern 
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across the levels of heterogeneity and drug strength (Figure 7B). The 24 h IC50 evinced 

the highest values overall, increasing from 9.6 μM.h to 13.1 μM.h for the VERY LOW and 

HIGH levels, respectively.  The values for the other drug strengths followed the same trend 

but at lower values, ranging for the VERY LOW to HIGH levels at 3.5, 2.1, and 1.5 μM.h 

to 4.7, 2.8, and 2.0 μM.h for 48, 72, and 96 h IC50 strengths, respectively.  Thus, the 96 h 

IC50 had the lowest drug AUC values. 

 

Figure 7. Intratumoral nanoparticle and intratumoral vascular drug AUC values. 

 

Figure 8 shows the minimum tumor radii achieved at each IC50 drug strength as a 

function of the intratumoral vascular drug AUC for each level of tissue heterogeneity.  In 

all cases, there was a nearly linear relationship between tumor radius and AUC, with radii 

decreasing as the AUC values increased.  The largest radius reduction was achieved by the 

VERY LOW case with the 24 h IC50 drug strength, yielding 52% from the initial tumor 

radius, while the smallest decrease at this drug strength was 41% for the MEDIUM case.  

On the other hand, the 96 h IC50 drug strength was equally ineffective across all levels of 

heterogeneity, achieving at best a 9% reduction in tumor radius.  This information is 

summarized in Figure 10, highlighting the nonlinear decrease in tumor radii for the 
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different drug strengths across the four levels of heterogeneity.  While higher drug 

strengths, as represented by lower IC50 values, yielded higher response, the magnitude of 

this response was dependent on the level of tissue heterogeneity. 

 

Figure 8.  Minimum tumor radii achieved at each IC50 drug strength as a function of the 

intratumoral vascular drug AUC for each level of tissue heterogeneity.  The points along 

each curve represent, from left to right, 96, 72, 48, and 24 IC50-based drug strength values. 

 

Figure 9 shows the minimum tumor radii as a function of drug strength dependent 

on the size of the tumor tissue viable (proliferating and hypoxic) fraction and intratumoral 

vascular density, both calculated at the start of the treatment.  As expected, as the drug 

strength increases (represented by the IC50 values), the tumor regression is 

correspondingly higher.  For the highest strength (24 h IC50), this regression was 



26 
 

maximized by higher values of the viable tumor tissue fraction (Figure 9A) and lower 

values of the intratumoral vascular density, together representing lower tumor 

heterogeneity (Figure 9B).  For the other drug strengths, the regression was generally 

independent of this density. 

 

Figure 9. Minimum tumor radii achieved during treatment as a function of drug strength 

dependent on the size of the tumor tissue viable (proliferating and hypoxic) fraction and 

intratumoral vascular density, both calculated at the start of the treatment. 

 

 

Figure 10.  Minimum tumor radius achieved during therapy as a function of drug strength 

and tissue heterogeneity.
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DISCUSSION 

 

This study builds upon previous experimental (England, Priest et al. 2013, England 

2015) and modeling work (Curtis, England  et al. 2016) to evaluate the effect of vascular 

density-driven tissue heterogeneity on NSCLC tumor response to cisplatin delivered via 3-

layered gold nanoparticles.  As such, this work represents a first step towards the 

development of a principled approach to predict nanotherapy efficacy using patient-tumor-

specific characteristics, such as proliferative index and vascular density.  Tumors with 

different intra-tumoral vascular densities (Figure 1) were first simulated by varying the 

oxygen thresholds for hypoxia and necrosis to yield different proportions of proliferating, 

hypoxic and necrotic tissue (Figure 2).  Next, using experimentally-obtained data with 3-

layered gold nanoparticles loaded with cisplatin (England, Priest et al. 2013, England 

2015), the magnitude of the drug effect in silico was calibrated for inhibitory drug 

concentrations to achieve 50% tumor tissue remission over 24, 48, 72, and 96 h (Figures 

5, 6).  The resulting inhomogeneous intratumoral nanoparticle and drug AUC values 

(Figure 7) yield correspondingly heterogeneous tumor regressions (Figures 8, Figure 10).  

This system was then used to determine the expected tumor size based on the fraction of 

viable tumor tissue and intratumoral vascular density (Figure 9). 

The results show that vascular tumor density coupled with the drug strength non-trivially 

influences the nanoparticle uptake and washout, and the associated tissue response. The 
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drug strength affects the proportion of proliferating, hypoxic and necrotic tissue fractions, 

which in turn dynamically affect and are affected by the vascular density.  A higher drug 

strength may be able to achieve a stronger tumor regression but only if the intra-tumoral 

vascular density is beyond a certain threshold (Figure 9B).  In contrast, drug strengths of 

lower magnitude may yield similar responses regardless of vascular density.  Although 

regression generally correlated with drug strength, the level of vascular density-driven 

tissue heterogeneity is shown to modulate this regression, to the point that the difference 

in drug strength may not matter (Figure 10).  Since drug strength is a key clinical parameter 

underlying both response and systemic toxicity, the overall results support the notion that 

drug strength remains a critical modeling parameter for predictive evaluation.  This is 

consistent with recent modeling work that combined an optimization approach to determine 

optimal nanoparticle sizes for maximum tumor regression (Chamseddine, Frieboes et al. 

2018).  

This study establishes a first step towards a more systematic methodology to assess 

the effect of tumor tissue vascular density on the response to nanotherapy.  With 

experimentally-measurable parameter values, the system could be expanded to evaluate 

other types of nanoparticles and drugs.  Vascular permeability and blood volume could be 

quantified by positron emission tomography (Chen, Tong et al. 2017). In particular for non-

small cell lung cancer (NSCLC), tumor parameters such as vascular density could be 

measured via imaging or histological analysis (Ma, Ren et al. 2016). Additionally, there 

exist numerous methods for detecting tumor hypoxia, including the detection of hypoxia-

induced proteins through the HIF transcription factor (Zhong, De Marzo et al. 1999, 

Brahimi-Horn and Pouyssegur 2005). The concept of manipulating the vascular density to 

achieve improved response (e.g., “vascular normalization” (Jain 2001)), as has been tried 
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for NSCLC with small molecule tyrosine kinase inhibitors or monoclonal antibodies that 

target VEGF (Hall, Le et al. 2015), may find further utility depending on the drug strength.  

Clinically, angiogenesis inhibitors have been shown to lead to improvements in overall 

survival when combined with standard first line and second line therapy (Hall, Le et al. 

2015). In cases where tumor vascular density is determined by the model to be inadequate 

for a desired level of response, angiogenesis inhibitors may be able to change this density 

to augment the nanotherapy efficacy.  

The interaction between vasculature, cells, nanoparticles, and drug molecules is a 

complex kinetic process in need of further consideration not only in experimental work but 

also in future computational modeling and simulation studies. Recently, a vascularized 

tumor model system was proposed that considers the differences in drug kinetics among 

various cellular compartments (Curtis, van Berkel et al. 2018). Further studies could 

combine drug kinetics with a nanoparticle delivery model. The model used herein simulates 

cell death as an instantaneous process. However, cell cycle dependent drugs such as 

cisplatin rely on apoptosis and may take several hours before cytotoxic effects are realized 

(Siddik 2003). Thus, another consideration for future work is to account for the delay in 

the drug cytotoxic action. Additionally, there are several well characterized drug resistance 

mechanisms such as decreased intracellular transport, enzymatic deactivation, and 

alteration in proteins involved in apoptotic pathways (Stewart 2007).These mechanisms 

could be integrated to create more comprehensive pharmacodynamics models.
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