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ABSTRACT 

PATHOGENIC ROLE OF PHOSPHODIESTERASE 4 (PDE4) IN THE 
DEVELOPMENT OF ALCOHOL INDUCED HEPATIC STEATOSIS 

 

Diana Veronica Avila 

November 18, 2014 

Background: Alcohol induced hepatic steatosis is a significant risk factor for 

progressive liver disease. Steatotic hepatocytes have increased sensitivity to 

injury produced by inflammatory cytokines, particularly TNF. Cyclic adenosine 

monophosphate (cAMP) has been shown to play a significant role in the 

regulation of both TNF production and lipid metabolism. However, the role of 

altered cAMP homeostasis in alcohol mediated hepatic steatosis and injury has 

not been studied. cAMP levels are tightly regulated by phosphodiesterase family 

of enzymes. Our recent work demonstrated that increased expression of hepatic 

PDE4, which specifically hydrolyzes and decreases cAMP levels, plays a 

pathogenic role in the development of liver injury. Hence, the aim of this study 

was to examine the effect of alcohol on PDE4 expression in the liver and its 

potential role in the development of alcoholic steatosis. 

Methods: C57Bl/6 wild type and Pde4b knockout (Pde4b-/-) mice were pair-fed 

control or ethanol liquid diets for 4 weeks. One group of wild type mice received 

rolipram, a PDE4 specific inhibitor, during alcohol feeding. Wild type mice fed 

alcohol with and without rolipram treatment were sacrificed after 2 and 4 weeks. 
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Liver steatosis was evaluated by Oil-Red-O staining and documented by 

biochemical assessment of hepatic triglycerides and free fatty acids. Expression 

of hepatic PDE4 and the effect of PDE4 inhibition on protein expression and 

activity of key enzymes involved in lipid metabolism were evaluated at both 

mRNA and protein levels. 

Results: We demonstrate for the first time that an early increase in lipogenesis 

mediated by acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) in 

alcohol fed wild type mice coincides with the significant up-regulation of hepatic 

PDE4 expression. Notably, after 4 weeks of alcohol feeding, Pde4b-/- mice and 

mice treated with rolipram had significantly lower hepatic free fatty acid content 

compared to wild type mice. PDE4 inhibition did not affect alcohol metabolism as 

demonstrated by unaltered CYP2E1 expression in bothPde4b-/- mice as well as 

mice treated with rolipram. Importantly, PDE4 inhibition in alcohol fed mice (i) 

prevented the decrease in hepatic sirtuin 1 (SIRT-1) levels, (ii) decreased hepatic 

ACC activity and (iii) increased hepatic CPT1A expression. 

Conclusion: These results demonstrate that alcohol feeding induced increase in 

hepatic PDE4 expression is a significant pathogenic mechanism underlying 

dysregulated lipid metabolism and development of hepatic steatosis. Moreover, 

these data also suggest that hepatic PDE4 is a clinically relevant therapeutic 

target for the treatment of alcohol induced hepatic steatosis. 
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CHAPTER 1 

INTRODUCTION 

Alcoholic liver disease (ALD) is the third leading cause of death in the United 

States. Centers for Disease Control and Prevention (CDC) estimates about 

88,000 deaths per year related to excessive alcohol consumption in the U.S. [1, 

2]. 90% of people consuming alcohol develop hepatic steatosis [3, 4]. Steatosis 

is a condition characterized by the increase of lipid droplets, triglycerides and 

cholesterol in the liver [5, 6]. Hepatic steatosis is the initial stage of alcoholic liver 

disease and the first response to chronic and acute alcohol consumption. 

Although alcohol-induced hepatic steatosis is reversible and considered to be 

benign, it is well-established that it predisposes the liver to more advanced 

pathologies such as alcoholic steatohepatitis (ASH), hepatic fibrosis, cirrhosis 

and even hepatocellular carcinoma [7-9]. Alcohol induced hepatic steatosis is 

mediated by increased de novo lipogenesis and impaired fatty acid beta-

oxidation [10]. Several studies have identified the genes involved in alcohol 

induced dysregulation of lipid metabolism leading to steatosis [11, 12]; however, 

gaps remain in understanding of underlying molecular mechanism(s) that 

contribute to altered expression of genes involved in hepatic lipogenesis.  



2 

 

Alcohol Mediated de novo lipogenesis in the liver: 

Lipid accumulation due to chronic alcohol consumption was first recognized by 

Lieber in 1975 [13, 14]. Hepatic lipid synthesis is accelerated after ethanol 

consumption and is associated with higher expression of lipogenic 

genes/enzymes, including fatty acid synthase (FASN), acetyl-CoA carboxylase 

(ACC), ATP citrate lyase (ACL), stearoyl CoA desaturase (SCD) and malic 

enzyme (ME) [11, 12]. Sterol regulatory element binding protein-1c (SREBP-1c) 

is a transcription factor regulating the expression of all alcohol induced lipogenic 

genes [6].  Alcohol consumption has been shown to increase SREBP-1c 

expression both in vivo and in vitro models [6]. Transcriptionally active SREBP-

1c is formed from 125 kDa precursor protein through a proteolytic processing 

mediated by SREBP cleavage-activating protein (SCAP). SCAP is an ER 

membrane protein that contains eight transmembrane helices, and functions as a 

sensor and transporter for cholesterol. Once cholesterol/sterols levels are low, 

SCAP binds to pre-SREBP and takes it to the Golgi apparatus where proteases 

S1P and S2P, cleave the precursor of SREBP. After the pre-SREBP is cleaved, 

the mature form of SREBP goes to the nucleus and binds to sterol regulatory 

element (SRE) in order to increase of transcription of lipogenic genes [6, 15]. In 

this regard, it has been shown that alcohol metabolites such as acetaldehyde 

trigger increased cleavage of the precursor SREBP-1c to a mature 

transcriptionally active form [6, 16]. Additionally, posttranslational modifications of 

SREBP-1c (phosphorylation, acetylation etc.) have been shown to affect 

transcriptional activity of SREBP-1c [17, 18] 
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Alcohol effect on mitochondrial fatty acid oxidation:  

Along with the up-regulation of fatty acid biosynthesis by ethanol, down-

regulation of fatty acid oxidation is also a critical component in the development 

of alcohol-induced hepatic steatosis. Free fatty acids (FFAs) play an important 

role as a source of energy in humans. There are different types of free fatty acid 

oxidation alpha, beta and omega- oxidation [19]. Beta-oxidation can occur in 

mitochondria as well as peroxisomes [19]. Regarding the changes in β-oxidation 

mediated by alcohol, it has been demonstrated that alcohol significantly impairs 

mitochondrial free fatty acid β-oxidation [19]. In mitochondrial β-oxidation, FFAs 

are activated in the cytosol by acyl-CoA synthase and oxidized in the 

mitochondria. These FFAs are converted into acyl-carnitine by carnitine 

palmitoyltransferase-1 (CPT-1A) and transported to the mitochondrial matrix. 

FFAs are further oxidized into acetyl-coenzyme A (acetyl-CoA), which is reduced 

in the tricarboxylic acid (TCA) cycle, resulting in formation of NADH and FADH 

[20]. CPT-1A is a key enzyme in free fatty acid β-oxidation, which has been 

shown to be decreased by alcohol [21] [22]. Our group has shown that decrease 

in Cpt1a  gene expression by binge alcohol is mediated by increased HDAC3 

levels [21]. Specifically, it has been shown that HDAC3 binding to Cpt1a 

promoter at thyroid response element binding (TRE) region results in increased 

binding of nuclear suppressor N-CoR leading to a suppression of Cpt1a gene[21]. 

In addition to transcriptional suppression of Cpt1a, alcohol has been shown to 

result in decreased activity of this enzyme [23]. Specifically, malonyl-CoA, which 
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is formed from acetyl-CoA in the carboxylase reaction by ACC enzyme, 

allosterically binds CPT-1A and inhibits its activity [24]. 

Expression of Cpt1a gene is critically regulated by a transcription factor 

peroxisome proliferator-activated receptor α (PPARα) [25]. PPARα was first 

identified in the early 1990s, as a genetic sensor for fats. PPAR gamma 

coactivator-1 (PGC1-α) is known to activate PPAR-α, a key regulator of genes 

involved in mitochondrial fatty acid oxidation. In order for PPARα to stimulate 

gene expression, it has to interact with its co-receptor retinoic X receptor (RXR). 

After the complex is formed with the co-receptor, the complex binds to the PPAR 

response element (PPRE) in the nucleus to increase the transcription of genes 

involved in fatty acid oxidation [26] [27] such as Cpt1a, and Cpt2 [28]. Ethanol 

administration decreases the transcriptional activity of PPARα resulting in the 

reduction fatty acid oxidation [29-32]. Notably, induction of PPARα, which, in turn, 

accelerates fatty acid oxidation prevents ethanol induced fatty liver [30].  

Role of AMPK in the regulation of lipogenesis and β-oxidation: 

5’ AMP-activated protein kinase (AMPK) plays a key role in the activation of β-

oxidation and inactivation of lipogenesis [33]. AMPK is a serine/threonine 

heterotrimeric kinase composed of one catalytic alpha-subunit and two regulatory 

beta and gamma subunits [33]. AMPK is activated by the increase in the 

AMP/ADP ratio and phosphorylation of the AMPK threonine 172 residue by 

upstream kinases such as LKB1-STRAD-MO25 [33]. Once AMPK is activated, it 

will inhibit the synthesis of fatty acids by phosphorylating acetyl-CoA carboxylase 

(ACC), which prevents the production of more malonyl-CoA, (a rate-limiting step 



5 

 

in lipid synthesis) preventing β-oxidation from occurring [9, 34, 35]. In addition, it 

has been shown that AMPK can directly phosphorylate peroxisome proliferator-

activated receptor γ co-activator (PGC1α), on Threonine-177 and Serine-538 a 

co-activator for different transcription factors such as PPARα [36, 37]. In the 

context of alcohol, chronic alcohol consumption has been shown to inhibit AMPK 

by inhibiting the phosphorylation of  AMPK through  inactivation of upstream 

kinases such as AMPK kinase (AMPKK) or liver kinase B1 (LKB1) [38]. In the 

case of LKB1, it is suggested that ethanol or acetaldehyde deactivates this 

enzyme [38].   

 

HYPOTHESIS 

Hypothesis of the current study is that alcohol increases cAMP-specific 

PDE4 expression in hepatocytes leading to decreased cAMP signaling and 

dysregulated lipid metabolism. 
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CHAPTER 2 

MATERIALS AND METHODS 

Animal Model: Male C57Bl/6 mice (3 months of age) were obtained from the 

Jackson Laboratory (Bar Harbor, ME). A breeding pair of Pde4b knockout mice 

generated on C57Bl/6 background was a kind gift from Prof. Marco Conti (UCSF). 

Mice were housed in a pathogen-free, temperature-controlled animal facility with 

12- hour light ⁄ 12 hour dark cycles. All experiments were carried out according to 

the criteria outlined in the Guide for Care and Use of Laboratory Animals and 

with approval of the University of Louisville Animal Care and Use Committee. 

C57BL/6 and Pde4b knockout male mice were pair-fed Lieber-DeCarli liquid diet 

(Lieber-DeCarli type, Bioserv, Frenchtown, NJ) containing either alcohol (AF) or 

isocaloric maltose dextrin (PF) for 4 weeks. Alcohol was gradually increased over 

a period of one week and then mice were fed the ethanol diet [5% (v⁄v)] ad 

libitum for 4 weeks (AF). The control pair-fed (PF) mice were given the isocaloric 

liquid diet. Additional groups of AF and PF animals were treated with PDE4 

specific inhibitor, rolipram at 5 mg/kg, 3 times a week for 4 weeks. Rolipram 

(C16H21NO3) (Biomol, Enzo Life Sciences, Farmingdale, NY) was dissolved in 

sterile DMSO and diluted with sterile phosphate buffered saline just before 

injection. Wild type mice without rolipram treatment were sacrificed at 1, 2 and 4 

weeks after starting 5% alcohol. Pdeb4-/- mice and wild type mice treated with 
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rolipram were sacrificed after 4 weeks of feeding. At sacrifice, mice 

wereanesthetized with intraperitoneal injection of Nembutal, 80mg/kg. Whole 

blood was collected from the inferior vena cava in a heparinized syringe and 

centrifuged at 7000g for 7 minutes at 4°C. Plasma aliquots were stored at -800C 

for analysis. Liver tissue was cut into small pieces, snap-frozen in liquid nitrogen 

and stored at -800C. An additional liver piece was fixed in 10% neutral-buffered 

formalin for immunohistochemical analysis.  
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Figure 1. Experimental Design. A) Schematic time line of alcohol feeding and 

rolipram treatment and B) Caloric profile of diet. 
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Western blot analysis: Liver tissue (50 mg) was lysed using RIPA buffer 

containing protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and 

serine/threonine phosphatase inhibitor sodium fluoride and phosphotyrosine 

phosphatase inhibitor sodium orthovanadate. Proteins (25 µg) were analyzed by 

SDS-polyacrylamide gel electrophoresis using a Bio-Rad (Hercules, CA) 

electrophoresis system. Immunoreactive bands were visualized using the 

enhanced chemiluminescence light detection reagents (Amersham, Arlington 

Heights, IL). Detection of GAPDH served as a loading control. Quantification was 

performed with Image LabTMSoftware (BioRad, Life Science Research, 

Hercules, CA). PDE4A, B, D, CPT-1A, GAPDH antibodies were purchased from 

Santa Cruz Biotechnology, Inc. (Dallas, TX), and AMPK antibody was purchased 

from Cell Signaling (Boston, MA). 

RNA isolation and real-time PCR analysis: Total RNA was isolated from 50mg 

liver tissue using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). For RT-

qPCR, the first-strand cDNA was synthesized using qScript cDNA SuperMix 

(Quanta Biosciences, Inc., Gaithersburg, MD). qRT-PCR was performed in 

triplicate with an ABI Prism 7500 sequence detection system and PerfeCTa 

SYBR Green FastMix, Low ROX reagents (Quanta Biosciences). The specific 

primers were purchased from integrated DNA technologies (IDT) (Coralville, 

Iowa). The parameter Ct (threshold cycle) was defined as the fraction cycle 

number at which the fluorescence passed the threshold. The relative gene 

expression was analyzed using 2-ΔΔCt method by normalizing to 18S gene 

expression in all the experiments. 
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Table 1. Primers for quantitative reverse transcriptase-PCR 

 

 

 

 

Mouse Pde4a   

Pde4a_F  5'-CACAGCCTCTGTGGAGAAGTC-3' 

Pde4a_R  5'-GTGATACCAATCCCGGTTGTC-3' 

Mouse Pde4b   

Pde4b_F  5'-GACCGGATACAGGTTCTTCG-3' 

Pde4b_R  5'-CAGTGGATGGACAATGTAGTCA-3' 

Mouse Pde4c   

Pde4c_F 5'-TTTCTCATCAACACCAACTCAGA-3' 

Pde4c_R 5'-CTGCAGGAGCTTGAAGCCTA-3' 

Mouse Pde4d   

Pde4d_F  5'-TGTCCACAGTCAACGCCGGGAG-3' 

Pde4d_R  
5'-CCAAGACCTGAGCAAACGGGGTCA-

3' 

Mouse Acaca   

Acaca_F 5'-GAAATGCATGCGATCTATCC-3' 

Acaca_R 5'-CCAGGCACTGGAACATAGTG-3' 

Mouse Cpt1a   

Cpt1a_F 5'-GCTGCACTCCTGGAAGAAGA-3' 

Cpt1a_R 5'-GGAGGGGTCCACTTTGGTAT-3' 

Mouse Cyp2e1   

Cyp2e1_F 5'-AGGGGACATTCCTGTGTTCC-3' 

Cyp2e1_R 5'-TTACCCTGTTTCCCCATTCC-3' 

Mouse PGC1-α (Ppargc1a)   

Ppargc1a_F 5'-ACAGCTTTCTGGGTGGATTG-3' 

Ppargc1a_R 5'-CGCTAGCAAGTTTGCCTCAT-3' 
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Immunohistochemistry: Commercially available antibody against CPT-1A 

(Proteintech Group Inc.,Chicago, IL) was used for immunohistochemical 

analysis. Assays were performed according to the manufacturers’ protocols. 

Oil Red O staining: Frozen liver sections were washed in phosphate buffered 

saline twice for 5 minutes. Oil-Red-O and 85% propylene glycol were added with 

agitation for 15 minutes, followed by washing in tap water. 

Liver Triglycerides (TAG) Assay: For liver TAG assay, hepatic tissue (100 mg) 

was homogenized in 1 ml 50 mM NaCl. The homogenate (500 μl) was mixed with 

chloroform/methanol (2:1, 4 ml) and incubated overnight at room temperature 

with gentle shaking. Homogenates were vortexed and centrifuged for 5 min at 

3000g. The lower lipid phase was collected and concentrated by vacuum. The 

lipid pellets were dissolved in 1% Triton X100 in phosphate-buffered saline, and 

hepatic TAG content was determined via enzymatic colorimetric method. 

Triglycerides were measured using Infinity Triglycerides kit (Waltham, MA). 

Hepatic Free Fatty Acids: Liver nonesterified-fatty acid (NEFA) were assayed 

using a commercially available kit HR Series NEFA-HR(2) from Wako Chemical 

USA (Richmond,VA). 

Statistical Analysis: Statistical analysis was performed using GraphPad Prism 

Software. Data are presented as the mean ± standard deviation (SD). Statistical 

significance was calculated using one-way ANOVA followed by Bonferroni’s Test 

post-test and the Student t test P<0.05 was considered significant. 
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CHAPTER 3 

RESULTS 

Effect of chronic alcohol feeding on hepatic PDE4 expression: 

Previously, we demonstrated that PDE4 family of enzymes play a significant role 

in the initiation of liver injury and priming of Kupffer cells for increased production 

of TNF in response to endotoxin [39, 40]. To examine whether PDE4 enzymes 

are involved in alcohol induced steatosis, hepatic expression of Pde4a, Pde4b, 

Pde4c and Pde4d, were examined. For all four genes, mRNA levels increase as 

early as in one week after alcohol feeding (Fig. 2A). After 4 weeks all Pde4 

mRNA levels normalized and returned to baseline (PF) levels (Fig. 2B).  
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Figure 2. Significant early up regulation of PDE4 expression in alcohol fed 

mice. Liver mRNA levels of Pde4a, Pde4b, Pde4c, and Pde4d in wild type 

animals after A) 1 week and B) 4 weeks of alcohol feeding. Data are presented 

as mean ± S.D. *P < 0.05 compared to PF. 

B 

A 
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PDE4 inhibition significantly prevents alcohol induced hepatic steatosis:  

To examine whether the observed early increase in PDE4 expression plays a 

causal role in the development of alcohol induced hepatic steatosis, a group of 

alcohol fed mice was treated with the PDE4 specific inhibitor, rolipram (5 mg/kg 

body weight three times a week (AF+Rol) for 4 weeks. Additionally, since 

endotoxemia plays a critical role in the pathogenesis of alcohol induced liver 

injury, and due to the fact that PDE4B is endotoxin responsive, we also used 

mice genetically lacking Pde4b gene. As expected, alcohol feeding of wild type 

mice induced a gradual, time dependent accumulation of lipids demonstrated by 

Oil-red-O staining (Fig. 3A). However, Pde4b knockout and rolipram treated mice 

exhibited significantly less hepatic steatosis (Fig. 3A).  Enzymatic measurement 

of liver triglycerides (TG) and free fatty acids (FFA) also demonstrated a 

significant increase in TG and FFA in alcohol fed wild type mice, which was 

markedly attenuated in Pde4b-/- and rolipram treated mice (Fig. 3B). These 

results demonstrate that PDE4, and particularly PDE4B induction by alcohol 

plays a critical role in the development of alcohol induced hepatic steatosis. 
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Figure 3A. Attenuation of alcohol induced lipid accumulation in the livers of 

Pde4b knockout and rolipram-treated mice. The liver tissue was harvested 

and Oil Red O staining was performed to detect lipid accumulation. Alcohol 

feeding resulted in a gradual accumulation of lipids in wild type mice, whereas 

Pde4b knockout and rolipram treated mice showed significantly fewer lipid 

droplets. Original magnification x20. 
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Figure 3B. Hepatic triglyceride and free fatty acid levels after 4 weeks of 

alcohol feeding. Lipids were extracted from hepatic tissue and triglycerides (TG) 

and free fatty acids (FFA) were measured. Data are presented as the mean ± 

SD, n=8 mice per group. Statistical analysis was performed using GraphPad 

Prism Software using one-way ANOVA followed by Bonferroni post-test.  ** P< 

0.01, ***P<0.001.
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PDE4 inhibition does not affect alcohol metabolism mediated by CYP2E1:   

Alcohol consumption induced an increase in CYP2E1 expression which plays a 

critical role in alcohol-induced steatosis [41]. Hence, it was relevant to evaluate if 

attenuation of alcohol-induced steatosis occurring in response to PDE4 inhibition, 

involved a decrease in CYP2E1 expression. Real time PCR analysis of hepatic 

Cyp2e1 mRNA after 4 weeks of feeding showed an expected rise in AF group 

compared to PF in wild type mice (Fig. 4A). Pde4b knockout mice and mice 

treated with rolipram showed the same level of increase in Cyp2e1 mRNA 

compared to PF wild type group (Fig. 4A). Western blot analysis also confirmed 

that PDE4 inhibition did not affect CYP2E1 protein levels (Fig. 4B). These data 

demonstrate that prevention of alcohol induced fat accumulation by PDE4 

inhibition is not mediated by changes in CYP2E1. 
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Figure 4. Effect of PDE4 inhibition on the expression of CYP2E1. A) hepatic 

Cyp2e1 mRNA expression and B) western blot analysis of hepatic CYP2E1 

protein expression. Data are presented as the mean ± SD. Statistical analysis 

was performed using GraphPad Prism Software using one-way ANOVA followed 

by Bonferroni posttest.  *P<0.05, **P<0.01. 
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PDE4 inhibition does not affect Acetyl-CoA carboxylase expression: 

Acetyl-CoA carboxylase (ACC) plays a critical role in both lipid synthesis and 

fatty acid oxidation by catalyzing carboxylation reaction of acetyl-CoA to malonyl- 

CoA. Hence, we evaluated whether the effect of PDE4 inhibition on fat 

accumulation in the liver was mediated by decreased expression of Acaca in 

Pde4b knockout and rolipram treated mice. Examination of hepatic Acaca mRNA 

levels after 4 weeks of alcohol feeding by real time PCR showed a significant 

increase in alcohol fed wild type mice (Fig. 5). This induction of Acaca mRNA by 

alcohol was not affected in Pde4b-/- or rolipram treated mice (Fig. 5). These 

results suggest that PDE4 inhibition does not affect Acaca gene expression.  
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Figure 5. PDE4 inhibition does not affect Acetyl-CoA carboxylase mRNA 

expression. Liver Acetyl-CoA carboxylase (Acaca) mRNA levels of WT-AF mice 

(-/+) rolipram treatment and Pde4b-/- mice fed alcohol for 4 weeks were quantified 

by real time PCR. Statistical analysis was performed using GraphPad Prism 

Software using ANOVA followed by Bonferroni post-test. Data represent mean ± 

S.D. (n = 8). *P < 0.05. 
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Activation of ACC enzyme is prevented by PDE4 inhibition: 

Alcohol feeding has been shown to increase ACC enzymatic activity [25, 38]. 

Inactive ACC enzyme is phosphorylated on Serine 79 and becomes activated by 

dephosphorylation to catalyze the reaction from acetyl-CoA to malonyl-CoA [42, 

43]. To examine if the PDE4 inhibition affects ACC activity, we isolated protein 

from all treatment groups and performed western blot analysis. Data showed that 

alcohol feeding over 4 weeks decreased pACC levels in wild type mice compared 

to PF mice (Fig. 6); however, pACC levels were maintained in Pde4b-/- and 

rolipram treated mice fed alcohol for 4 weeks (Fig. 6). These results demonstrate 

that PDE4 inhibition prevents activation of ACC by maintaining S79 

phosphorylation. 
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Figure 6. Alcohol induced activation of Acetyl-CoA Carboxylase is 

prevented by PDE4 inhibition. Western blot analysis of liver lysates after 4 

weeks of alcohol feeding showed that inactive state of ACC, as indicated by 

pACC (S79) levels, were maintained in Pde4b-/- mice. 

 

 

 

 

 

 

 

 

 

 

     0.59               0.55                   0.41               0.67  

pACC  

PF AF KO-PF KO+AF 

GAPDH 



23 

 

PDE4 inhibition causes activation of AMPKα: 

AMPKα has been demonstrated to phosphorylate and inactivate ACC and 

prevent alcohol induced steatosis [33, 44]. Hence, we examined if the effect of 

PDE4 inhibition on ACC activation was mediated by its effect on AMPK activation. 

Western blot analysis of active AMPKα (Thr172) in liver lysates demonstrated 

that alcohol feeding led to a modest increase in pAMPKα levels (Fig. 7), however 

alcohol fed Pde4b-/-  and rolipram treated mice had higher pAMPK levels 

compared to wild type mice (Fig. 7). These results demonstrate that PDE4 

inhibition increases phosphorylation of AMPK leading to inactivation of ACC. 
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Figure 7. PDE4 inhibition activates AMPKα. Western blot analysis was 

performed for pAMPKα and AMPK protein levels in liver lysates after 4 weeks of 

alcohol feeding. 
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Effect of PDE4 inhibition on CPT-1A expression:  

Alcohol has been shown to both decrease the activity of CPT-1A enzyme and 

expression [23] Our previous results (Fig. 6) suggest that PDE4 inhibition caused 

prevention of ACC activation, decrease in malonyl-CoA levels and hence 

prevention of CPT-1A inactivation. We further examined the effect of PDE4 

inhibition on Cpt1a mRNA and protein expression. As expected, real time PCR 

showed a significant decrease in Cpt1a mRNA levels in wild type mice fed 

alcohol compared to PF (Fig. 8A), however PDE4 inhibition prevented this 

downregulation of Cpt1a mRNA by alcohol (Fig. 8A). We also performed 

immunostaining of livers with CPT-1A antibody. IHC and western blot analysis of 

CPT-1A also demonstrated decreased CPT-1A levels in alcohol fed wild type 

mice (Fig. 8B, C). Rolipram treated and alcohol fed Pde4b-/- mice showed an 

increased staining of CPT-1A compared to wild type mice (Fig. 8B, C). These 

results show that PDE4 inhibition prevents alcohol effect on CPT-1A and 

decreased β-oxidation. 
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Figure 8A. Effect of PDE4 inhibition on Cpt1a mRNA expression.  Liver 

Cpt1a mRNA levels of WT-AF mice (-/+) rolipram treatment and Pde4b-/- mice 

were measured and compared to WT-PF mice. Statistical analysis was 

performed using GraphPad Prism Software using ANOVA followed by Bonferroni 

post-test. Data are represented as mean ± S.D. (n = 8). *P < 0.05. 
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Figure 8B, 8C. PDE4 inhibition increases CPT-1A protein expression.  

A) Western blot analysis was performed for CPT-1A protein levels on liver lysates 

after 4 weeks of alcohol feeding. B) Imunohistochemical staining with anti-CPT-

1A antibody (×20 final magnification).  
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Effect of PDE4 inhibition on PGC1α expression: 

PGC1α has been shown to play an essential role in PPARα mediated 

transcription of CPT-1A gene [45]. Notably, it has been demonstrated that cAMP 

could induce PGC1-α expression in hepatocytes [46]. Hence, we investigated 

whether the effect of PDE4 inhibition on maintaining CPT-1A expression in 

alcohol fed mice was mediated by its effect on PGC1-α. Real time PCR analysis 

of PGC1-α mRNA levels demonstrated that Pde4b-/- mice had significantly higher 

hepatic PGC1a levels (Fig. 9). Alcohol feeding did not alter PGC1-α levels in wild 

type mice, however rolipram treatment significantly increased expression of 

PGC1α (Fig. 9). Importantly, alcohol fed Pde4b-/- mice had significantly higher 

levels compared to all groups (Fig. 9).  
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Figure 9. PDE4 inhibition increases PGC1-α expression. Liver PGC1-α 

(Ppargc1a) mRNA levels were quantified by real time PCR of WT-AF mice (-/+) 

rolipram treatment and Pde4b-/- mice. Statistical analysis was performed using 

GraphPad Prism Software using ANOVA followed by Bonferroni post-test. Data 

are represented as mean ± S.D. (n = 8). *P < 0.05. 
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DISCUSSION 

Chronic alcohol consumption is strongly associated with the development 

of hepatic steatosis. Fat accumulation in hepatocytes and production of lipid 

peroxidation products makes them susceptible to second hit injury, which 

predisposes the liver to progressive, more severe diseases including fibrosis, 

cirrhosis and hepatocellular carcinoma [20]. The increase of lipogenesis and 

-oxidation contributes to the development of alcohol-

induced hepatic steatosis. cAMP-dependent signaling has been shown to 

regulate the expression of genes involve -oxidation 

[47-52].  In this study, we tested our hypothesis that alcohol mediated increase in 

hepatic PDE4 expression, a major regulator of cellular cAMP levels, is a critical 

underlying mechanism of alcohol induced dysregulation of lipid metabolism and 

steatosis.  

  Intracellular levels of cAMP are tightly regulated by the coordinated control 

of its synthesis via adenylyl cyclases and its degradation via a large family of 

phosphodiesterases (PDEs).  Among three cAMP specific PDEs (PDE3, PDE4 

and PDE7), the PDE4 is the largest and most ubiquitously expressed. PDE4 is 

the current therapeutic target of selective inhibitors for the treatment of 

inflammatory diseases [53, 54]. In last 4 years 2 PDE4-specific inhibitors have 

been approved by FDA to treat COPD (Roflumilast, Takeda) and active psoriatic 

arthritis (Apremilast, Celgene). PDE inhibitors have been shown to be beneficial 

in experimental liver injury [40, 55-61] but there have been no studies examining 

the causal role of PDEs in the pathogenesis of alcoholic liver disease.  
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To test our hypothesis that PDE4 upregulation by alcohol is involved in the 

development of hepatic steatosis, we have used a mouse model of experimental 

alcoholic liver disease. Our results show that alcohol feeding increased hepatic 

PDE4 expression as early as one week compared to pair-fed mice (Fig. 2). This 

rise in PDE4 expression accompanied the early stage of steatosis in alcohol fed 

wild type mice (Fig. 3). Importantly, our results demonstrate that inhibition of 

PDE4, specifically PDE4B prevents alcohol induced steatosis suggesting that the 

early rise in PDE4 expression and compromised cAMP signaling contributes to 

the dysregulation of lipogenesis by alcohol. This result is in agreement with the 

observations that lipid metabolism is critically regulated by cAMP-dependent PKA 

signaling [47-49] .  Specifically, cAMP has been shown to affect the expression of 

genes involved in both lipogenesis e.g. Srebp1c -oxidation e.g. Cpt1a [47-

49] .   

 To understand the underlying mechanisms behind the decrease of lipid 

accumulation via PDE4 inhibition, we first examined whether PDE4 inhibition 

affected the expression of CYP2E1 in the liver. CYP2E1 is one of the two-main 

enzymes responsible for alcohol metabolism [62]. This enzyme also plays a 

predominant role in the production of reactive oxygen species (ROS) and 

oxidative stress in the liver [63] and development of alcoholic hepatosteatosis 

[41]. Quantification of hepatic mRNA levels and Western blot analysis showed 

that CYP2E1 levels were increased in alcohol-fed mice groups compared to pair 

fed (Fig. 4). However, PDE4 inhibition had no effect on CYP2E1 expression (Fig. 

4). These results suggest that PDE4 inhibition prevents alcohol induced hepatic 

steatosis without affecting alcohol metabolism mediated by CYP2E1. 
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Chronic alcohol consumption induces fat accumulation in the liver by 

increasing expression of genes involved in lipogenesis [11, 12]. These genes 

have been shown to be regulated by a transcription factor, SREBP-1c. Indeed, 

we observed a significant increase in SREBP-1c dependent lipogenic gene, ACC, 

in mice fed alcohol for 4 weeks (Fig. 5). However, PDE4B knockout mice and 

mice treated with rolipram showed the same increased levels of Acaca mRNA 

compared to pair-fed mice (Fig. 5).This observation indicates that PDE4 inhibition 

does not influence the mRNA expression of Acaca. In addition to transcriptional 

upregulation of Acaca, alcohol has been shown to increase the catalytic activity 

of this enzyme which is regulated by phosphorylation [38]. Specifically, 

phosphorylation of ACC by AMPK at Ser79 has been demonstrated to inactivate 

this enzyme [42, 43]. In this regard, our data showed that ethanol indeed resulted 

in dephosphorylation of ACC (Fig. 6). Importantly, dephosphorylation of ACC 

protein was completely prevented by PDE4 inhibition (Fig. 6). When we further 

examined the mechanism by which PDE4 inhibition resulted in increased 

phosphorylated levels of ACC, we found that AMPK activity was higher in the 

livers of PDE4B knockout and rolipram treated mice (Fig. 7). Interestingly, we 

found that alcohol also increased AMPK phosphorylation in the liver. There are 

controversial reports regarding AMPK phosphorylation in hepatocytes exposed to 

alcohol: some investigators report decreased levels [38, 64-66], others 

demonstrate that alcohol does increase pAMPK levels [67-69]. Recent work by 

Shearn et al. demonstrates that alcohol feeding of mice for 7.5 weeks increases 

pAMPK levels; however AMPK is inactivated by reactive aldehydes produced by 
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alcohol metabolism in vivo [70]. It is possible that PDE4 inhibition decreases the 

production of reactive aldehydes not allowing inactivation of AMPK, which might 

explain our result that pACC levels are maintained in alcohol fed mice treated 

with rolipram.   

-

oxidation of fatty acids [71]. In the β-oxidation pathway, mitochondrial carnitine 

palmitoyltransferase (CPT) plays an important role as an enhancer of β-oxidation 

signaling. The CPT system consists of CPT 1 and CPT2 [72]. CPT-1A regulates 

the transport of long-chain fatty acids from the cytosol to the mitochrondrion [46]. 

Alcohol has been shown to significantly decrease expression and activity of CPT-

1A [23]. CPT1-A activity is inhibited by malonyl-CoA which is generated by ACC 

from acetyl CoA [73]. Our findings suggest that PDE4 inhibition decreases 

generation of malonyl CoA by inactivating ACC and thus might prevent 

inactivation of CPT1A enzymatic activity. Additionally, our data show that alcohol 

induced significant decrease in CPT-1A expression as expected; however, this 

decrease was prevented in PDE4B knockout and rolipram treated mice (Fig. 8). 

These results are in agreement with previous observations that cAMP/PKA 

induce CPT-1A expression in hepatocytes via increased PGC1- α [46]. Indeed, 

our data also showed that PDE4 inhibition increased the expression levels of 

PGC1- α, which plays a critical role in PPAR-α mediated transcriptional induction 

of Cpt1a gene [45].  

In summary, our data suggest that early upregulation of PDE4 in the liver, 

specifically PDE4B, contributes to impaired lipid metabolism by alcohol. We show 
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for the first time that PDE4 inhibition protects against alcohol induced steatosis 

largely via increased β-oxidation. However, the mechanisms underlying the 

increase of β-oxidation and decrease de novo lipogenesis requires further 

investigation: particularly, the role of PDE4 inhibition on the reactivation of CPT-

1A gene via CPT-1A promoter histone modifications and transcription factor 

binding. PDE4 inhibition may serve as a promising and effective therapeutic 

target against alcoholic liver disease.  
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

Steatosis is the initial, most frequent hepatic manifestation that occurs in 

response to acute as well as chronic alcohol consumption. Although alcohol-

induced hepatic steatosis initially was considered to be a relatively benign state, 

it is now regarded as a significant risk factor for more progressive disease. 

Individuals with alcohol-induced hepatic steatosis are predisposed to develop 

advanced liver pathology, including alcoholic steatohepatitis (ASH), hepatic 

fibrosis, cirrhosis and even hepatocellular carcinoma. The current concept 

involved in this pathogenic process is the “two hit” hypothesis in which the first hit 

is steatosis and the subsequent second “hit” is provided by factors such as 

inflammatory cytokines, mitochondrial dysfunction and/or oxidative stress. In our 

study, we examined the pathogenic role of PDE4 in the contribution of alcoholic 

hepatic steatosis. Our results confirmed our hypothesis, Pde4 gene expression 

levels were upregulated after 1 alcohol feeding the mice and were normalized 

after 4 weeks of alcohol feeding. Alcohol induced PDE4 expression was 

accompanied by an early up-regulation of lipid accumulation. Notably, inhibition 

of PDE4, activity prevented hepatic fat accumulation in alcohol fed mice. In 

addition, important enzymes in the lipogenic pathway and β-oxidation pathway 

were significantly affected by the inhibition of PDE4(B) e.g. pAMPK, pACC, 

SIRT1, PGC-1α and CPT-1A as shown in (Fig 10).  
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In conclusion, PDE4B plays an important pathogenic role in the development of 

hepatic steatosis and therefore PDE4B could serve as a therapeutic target for 

alcoholic liver disease. 
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Figure 10. Summary and Conclusions  
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CLINICAL RELEVANCE 
 
 
Currently there is no FDA approved therapy available for the treatment of ALD.  

Treatment of alcohol-induced pathological changes that act as precursors to the 

development of advanced liver pathologies is highly desirable. Alcohol exposure 

causes an increase in PDE4 expression and activity leading to a decrease in 

cellular cAMP levels; however its role in affecting hepatic steatosis is not yet 

determined. This study used pharmacological and genetic approaches to 

determine the pathogenic role of dysregulated PDE4/cAMP metabolism in the 

alcohol mediated enhancement of hepatic lipogenesis and decline of fatty acid 

oxidation. Our findings suggest that a more directed intervention aimed at 

inhibiting the PDE4 family of enzymes may be significantly more effective than a 

broad PDE inhibitor. In this regard, treatment with PDE4 specific inhibitor, 

rolipram, markedly inhibits hepatic steatosis in alcohol-fed animals. PDE4B 

inhibitor could be used as a therapy for the early stages of alcoholic liver disease. 
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