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ABSTRACT 

NEURODEGENERATION-ASSOCIATED INSTABILITY OF RIBOSOMAL DNA 

Justin L. Hallgren 

January 16, 2014 

 

Homologous recombination-mediated instability of the repetitively organized 

ribosomal DNA has been proposed as a mediator of cell senescence in yeast triggering 

the DNA damage response. High individual variability in the content of human ribosomal 

DNA suggests that this genomic region remained relatively unstable throughout 

evolution. Therefore, quantitative real time PCR was used to determine the genomic 

content of ribosomal DNA in post mortem samples of parietal cortex from 14 young and 

9 elderly individuals with no diagnosis of a chronic neurodegenerative/neurological 

disease. In addition, ribosomal DNA content in that brain region was compared between 

10 age-matched control individuals and 10 patients with dementia with Lewy bodies 

which involves neurodegeneration of the cerebral cortex. Probing ribosomal RNA-coding 

regions of ribosomal DNA revealed no effects of aging on the ribosomal DNA content. 

Elevated ribosomal DNA content was observed in Dementia with Lewy Bodies. 

Conversely, in the Dementia with Lewy Bodies pathology-free cerebellum, lower 

genomic content of ribosomal DNA was present in the Dementia with Lewy Bodies 

group. In the parietal cortex, such a Dementia with Lewy Bodies-associated instability of 

ribosomal DNA was not accompanied by any major changes of CpG methylation of the 
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ribosomal DNA promoter. As increased cerebro-cortical ribosomal DNA content was 

previously reported in Alzheimer’s diseases, neurodegeneration appears to be associated 

with instability of ribosomal DNA. The hypothetical origins and consequences of this 

phenomenon are discussed including possibilities that the DNA damage-induced 

recombination destabilizes ribosomal DNA and that differential content of ribosomal 

DNA affects heterochromatin formation, gene expression and/or DNA damage response. 
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INTRODUCTION 

 The age related accumulation of DNA damage, and the subsequent genomic 

instability which follows, has been proposed as a mechanism for proliferative senescence, 

cancer, and neurodegeneration, all of which are associated with aging or aging related 

disorders [1-3].  DNA damage is well documented in neurodegeneration and in some 

cases it may be sufficient to cause disease [1, 4].  Moreover, significant increases in 

oxidative DNA damage are known to occur in Alzheimer’s disease, Parkinson’s disease, 

and Dementia with Lewy Bodies [5, 6].  Additionally, multiple congenital diseases 

involving mutations of DNA repair proteins often involve neurodegeneration.  These 

diseases include ataxia with oculomotor apraxia 1, spinocerebellar ataxia with axonal 

neuropathy 1 and xeroderma pigmentosum [1, 4, 7-9].  Moreover, DNA damage is well 

known to induce cell death by a number of mechanisms including inhibition of nucleolar 

transcription and genomic instability [4, 10].   

Homologous recombination is believed to be the preferred DNA damage repair 

mechanism as it produces the highest fidelity, while other repair mechanisms such as 

non-homologous end joining are known to frequently generate single nucleotide 

polymorphism [11].  Homologous recombination utilizes homologous templates, usually 

a sister chromatid, to repair DNA double strand breaks, inter-strand crosslinks, and 

stalled replication forks.  The major limitation is that sister chromatids are only available 

during the late S and G2 phases of the cell cycle [11].  Interestingly in yeast, the 
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mechanisms for increasing ribosomal DNA content have been proposed to be 

homologous recombination with unequal sister chromatid exchange [12]. 

Homologous recombination may potentially act as a double-edged sword in 

regards to genomic stability.  Efficient and accurate DNA repair allows the cells to resist 

replication stress and maintain genomic stability, thus preventing oncogenic 

transformation [13].  Conversely, a growing body of evidence suggests that homologous 

recombination can be a source of genomic instability in response to regulatory failure 

[14-16].  For example, it has been suggested that the Rec Q helicases BLM and WRN, 

whose mutations are linked to Bloom Syndrome and Werner Syndrome respectively, act 

as negative regulators of homologous recombination [17].  Additionally, in Werner 

syndrome, Bloom syndrome, and several subsets of Rothmund-Thomson syndrome, 

which is a third Rec Q linked disease, individuals have a predisposition for cancer [18].  

Moreover in yeast, mutation of the SGS1 helicase creates a hyper recombination 

phenotype which is associated with frequent segmental deletions.  Overexpression of the 

WRN or BLM Rec Q helicases can produce a partial rescue from this hyper 

recombination. [19].  Thus, while homologous recombination is of great importance due 

to its high fidelity DNA repair capabilities, tight regulation is necessary to prevent 

promiscuous potentially oncogenic recombination.   

Recent evidence suggests the dysregulation of homologous recombination in 

neurodegenerative diseases.   The gradual loss of telomeres is a well-documented aspect 

of cellular senescence, but interestingly both expansions and contractions of telomere 

content have been documented in neurodegenerative disease.  Accelerated telomere loss 

has been documented in the leukocytes of patients with Alzheimer’s disease and 
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Dementia with Lewy Bodies [20-23].  Conversely, increased telomere content has been 

documented in the hippocampus of Alzheimer’s disease patients [20].  Moreover, we 

have previously documented an increase in the ribosomal DNA content of parietal- and 

prefrontal- cortex of Alzheimer’s disease donor tissues [24].  Changes in the genomic 

content of highly repetitive sequences, especially those which occur in terminally 

differentiated cells which do not express telomerase, strongly suggest homologous 

recombination as a potential mechanism.   

The tandem repeat arrangement of ribosomal DNA is well known for its relative 

instability compared to other regions of the genome [25-27].  The combination of this 

arrangement and the close physical proximity of all ten arrays inside the nucleolus 

potentially make them hot spots for homologous recombination.  Uneven homologous 

recombination between clusters or within a cluster may lead to expansions or contractions 

of ribosomal DNA content and such a process is common in yeast [12].  In 1972, Bernard 

Strehler proposed the loss of ribosomal DNA copies in post-mitotic cells, such as neurons 

and muscle, as a mechanism of senescence [28].  Strehler proposed that this loss would 

subsequently lead to a deficiency in the ribosomal supply and insufficient levels of 

protein translation.  While his initial results were promising, they were later refuted as 

experimental artifact as subsequent studies could not reproduce these observations [29, 

30].   Moreover, mammalian cell culture based studies of replicative senescence did not 

document changes in ribosomal DNA content [31, 32].   

Cellular growth and maintenance requires enormous amounts of protein synthesis.  

The ribosome is the center of all cellular translation and as such ribosomal quantities are 

linked to the cells protein synthesis capacity [33].  To accommodate the demand for 



4 
 

increased protein synthesis, cells have amplified the ribosomal DNA gene which encodes 

for pre-rRNA, a transcript which is processed into the 18S, 5.8S, and 28S ribosomal 

RNAs (rRNAs).  In eukaryotes, ribosomal DNA content is believed to range from 100-

10,000 copies depending on the species [33].  Humans are estimated to have 

approximately 300 copies per haploid genome, which are organized in clusters of long 

tandem arrays on the terminal ends of chromosomes 13, 14, 15, 21 and 22 [26].  

Interestingly, in mature cells only about half of the ribosomal DNA copies are 

transcriptionally active while the other half is epigenetically silenced [34].  This may 

suggest two possibilities.  First, the cellular demand for protein synthesis may vary 

greatly throughout a lifespan.   For example, such a large amount of copies may be 

essential for rapid proliferative growth and early development, but unnecessary upon 

maturity.  Alternatively, excess ribosomal DNA copies may function to allow cells to 

tolerate the loss of damaged copies.  Such a condition may be of great importance for 

post-mitotic neurons which survive for an organism’s entire life span.  Moreover, these 

excess ribosomal DNA copies have evolved to have functions unrelated to ribosomal 

biogenesis, such as regulating chromatin structure, gene expression, and stress response 

[35-39]. 

Alternatively, in yeast the age related loss of ribosomal DNA is known to occur 

and has been proposed as the mechanism behind replicative senescence.  Originally, it 

was thought that ribosomal DNA instability lead to the production of extra chromosomal 

circles a ribosomal DNA cleavage product composed of 8 ribosomal DNA units [40].  It 

was proposed that these ERCs would titrate out the factors necessary for ribosomal 

biogenesis and genome maintenance.  However, more recent work suggests that ERCs 
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are simply a marker of ribosomal DNA instability and that the loss of ribosomal DNA 

itself triggers the DNA damage response [37, 41].  Kobayashi has proposed that 

ribosomal DNA may act as a sink for DNA damage proteins, and thus release them in 

response to ribosomal DNA copy loss [3].  He went on to propose that such a function 

could monitor genomic integrity in a manner somewhat analogous to telomeres [3].    

Previously our lab has documented an increase in ribosomal DNA copy number in 

the parietal cortex tissue of Alzheimer’s disease positive tissue donors using a qPCR 

based approach [24].   Moreover, the increased copy number was associated with an 

increase in ribosomal DNA promoter methylation, which is a marker of inactive copies.  

Interestingly in a murine cell line, decreased epigenetic silencing correlated with loss of 

ribosomal DNA content [38].  This led to two mutually exclusive possibilities.  First, 

increased ribosomal DNA content could be the result of disease associated amplification 

or second, the increased methylation could be preventing an age associated loss of 

ribosomal DNA.  The latter possibility would suggest that the ribosomal DNA stability 

studies conducted in the 1970s and 1980s which disproved Strehler’s hypothesis of age 

related ribosomal DNA loss may have been inaccurate. 

Despite the negative data generated several decades ago, it should be noted that 

the experimental design of these studies utilized a hybridization based competitive 

binding assay and as such did not allow for a high resolution picture of the ribosomal 

DNA gene.  The human ribosomal DNA gene is fairly large with a length of 43kb, of 

which roughly three fourths is the untranscribed intergenic spacer.  The other one fourth  

is composed of the promoter and 3 exons which include the 18S, 5.8S, and 28S rRNAs 

(Fig.  1). The results created by the prior hybridization based approaches do not 
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necessarily exclude segmental losses inside the ribosomal DNA unit.  In support of  

segmental ribosomal DNA loss a more recent study which used a quantitative PCR 

(qPCR)-based approach documented a modest, but still statistically significant, age 

related decrease in 5.8S and 28S ribosomal DNA content, but not 18S [42].  Moreover, a 

study which utilized in situ hybridization with fluorescent probes for 18s and 28s 

unexpectedly demonstrated that in healthy controls approximately one third of ribosomal 

DNA copies are arranged in a head-to-head or tail-to-tail orientation and not strictly in 

tandem arrays as the canonical model suggests [43].  Additionally, they found significant 

heterogeneity in the length of the intergenic spacer.  In fibroblasts obtained from Werner 

patients the frequency of this non-canonical arrangement increased to approximately 50% 

of total ribosomal DNA copies [43].  As Werner syndrome is known to be caused by a 

Req Q helicase mutation, this may suggest homologous recombination is involved in 

these abnormal rearrangements.  Thus, higher resolution techniques have suggested that 

segmental or directional variation of ribosomal DNA units may not be uncommon.   

Independent of age related ribosomal DNA changes, multiple studies suggest that 

ribosomal DNA is relatively unstable compared to other regions of the genome as its 

tandem repeat arrangement potentially makes them hot spots for homologous 

recombination mediated fluctuations in both yeast and higher organisms, including 

humans.  Meiotic ribosomal DNA recombination rates are believed to be as high as 10% 

and this subsequently causes significant heterogeneity in ribosomal DNA content even 

among closely related individuals [44].  In human cells, mitotic ribosomal DNA 

instability is common in both cancer and congenital diseases linked to impaired DNA 

damage repair.  For example, in human cancers approximately 50% of lung and 
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colorectal solid tumors demonstrate ribosomal DNA restructuring [26].  Moreover, this 

restructuring was also seen in fibroblasts from Ataxia Telangiectasia and Bloom 

syndromes, which are known to be caused by mutations in a DNA double strand break 

repair protein ATM and the BLM Rec Q helicase mentioned above [26, 27].  

Surprisingly, mutations in the Rec Q helicase WRN, which is implicated in Werner 

syndrome, did not alter the length of ribosomal DNA clusters [27].  Furthermore, as 

mentioned previously, the methylation status of the ribosomal DNA promoter and 

subsequent heterochromatin formation was directly linked to ribosomal DNA stability in 

a mammalian cell line [38].  Lastly, amphibian and insect oocytes amplify ribosomal 

DNA as extra chromosomal circles presumably to enable exceptionally high rates of 

rRNA synthesis necessary for early development [45-47].  Taken together these facts 

strongly suggest that ribosomal DNA content is unstable under both physiological and 

pathological circumstances in higher organisms. 

 Given our previously described increase in the 18S ribosomal DNA content in 

Alzheimer’s disease parietal cortex tissue and the increased ribosomal DNA promoter 

methylation which accompanied it, we investigated age related segmental changes in 

parietal cortex ribosomal DNA content.  Thus we acquired parietal cortex samples from 

14 young and 9 elderly brain tissue donors, all of which were free of neurological and 

neurodegenerative conditions and probed all 3 ribosomal DNA exons.  Moreover, to 

determine if our prior findings are exclusively a characteristic of Alzheimer’s disease or 

alternatively a general correlate of neurodegeneration, parietal cortex samples from 10 

Dementia with Lewy Bodies tissue donors and 10 healthy age matched controls were 

probed in an identical manner.  Moreover, we acquired cerebellar tissue from Dementia 
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with Lewy Bodies and control subjects to assess if the documented ribosomal DNA 

increases are confined to areas with pathology. 

 Dementia with Lewy Bodies is an age related neurodegenerative disease and is 

the 2nd most common form of dementia in the elderly after Alzheimer’s disease.  The 

major symptom of Dementia with Lewy Bodies is memory loss, but fluctuations in 

alertness, Parkinsonian motor deficits, and visual hallucinations are also common [48].  It 

is associated with the loss of dopaminergic neurons and frequently contains reactive 

gliosis [49, 50].  Pathologically, Dementia with Lewy Bodies is similar to Parkinson’s 

disease as both are classified as synucleinopathies, diseases which are associated with 

intracellular inclusions of aggregated α-synuclein referred to as Lewy Bodies which 

develop in both neurons and glia [48].  Some have speculated that Dementia with Lewy 

Bodies and Parkinson’s disease may be the same disease as they share significant 

symptomatic and pathological overlap.  For example, the major diagnostic difference 

between Dementia with Lewy Bodies and Parkinson’s disease dementia for clinicians is 

only the rate of dementia onset.  Dementia with Lewy Bodies is associated with the 

widespread accumulation of Lewy Body pathology throughout the cortex, including the 

parietal- and prefrontal cortices which were probed in our prior Alzheimer’s disease 

study [51].  The cerebellum is predominately pathology free in Dementia with Lewy 

Bodies.  Thus, Dementia with Lewy Bodies should serve as an ideal specificity control 

for Alzheimer’s disease.  Moreover, synucleinopathies have been documented to contain 

increased amounts of oxidative stress and in particular increased amounts of oxidative 

DNA damage [5, 52].  Such DNA damage could potently lead to the loss of ribosomal 

DNA copies.
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METHODS AND MATERIALS 

Subjects and sample preparation. For aging studies fresh flash frozen samples of 

parietal cortex (Brodmann areas 39 and 40) were obtained from the NICHD Brain and 

Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD. 

The young donor group consisted of 7 men and 7 women (1-25 years old, median age: 

20); the old donor group consisted of 4 men and 5 women (73-90 years old, median age: 

79). The donors had no prior history of a chronic neurodegenerative- or neurological 

disease. The post mortem intervals were comparable for both groups averaging 7.5 h 

(Post mortem intervals were always less than 14 h). For Dementia with Lewy Bodies 

studies, the donors were participants of the IRB-approved University of Kentucky 

Alzheimer’s Disease Center cohort and were followed for at least 2 years before death 

[53]. The follow up included annual Minimental State Examination as well as 

neurological and physical examinations. The donors had no history of substance abuse, 

head injury, encephalitis, meningitis, epilepsy, or stroke/transient ischemic attack. The 

Minimental State Examination score closest to death was used as an indicator of overall 

cognitive status. During autopsy (usually 5 or less hours after death), tissue samples 

including parietal cortex and cerebellum were processed for neuropathological 

evaluations or flash-frozen in liquid nitrogen and stored at -80°C, as described previously 

[53, 54]. All included Dementia with Lewy Bodies subjects met the clinical and 

histopathological criteria for diagnosis of Dementia with Lewy Bodies [55]. The control 
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subjects received Minimental State Examination scores ≥ 23 with Braak staging at ≤ 2. 

Detailed donor information is presented in Tables 1 and 2.  

 

Analysis of genomic ribosomal DNA content. Genomic qPCR using standard curve 

based analysis was utilized to determine ribosomal DNA content. Amplicons targeting 

18S, 5.8S, and the 28S coding regions of ribosomal DNA were used (Fig 1). For 

normalization, amplicons corresponding to the coding regions of the tRNA
K-CTT gene or 

the albumin gene (ALB) were amplified.  

 

Bisulfite mapping of ribosomal DNA promoter methylation was performed as 

described previously [24]. Briefly, two hundred ng of DNA/sample was treated with 

bisulfite to convert unmethylated cytosines to uracil. The ribosomal DNA promoter 

region was PCR-amplified and cloned into the pGEM-T vector. Following bacterial 

transformation, individual clones were isolated and sequenced. Only clones with unique 

methylation patterns were included in the analysis to avoid potential PCR/cloning 

artifacts. Clones with incomplete bisulfite conversion were also discarded. Thus, twenty 

fully converted, and unique clones were analyzed for each individual.  

 

DNA methylation analysis using the methyl-CpG sensitive restriction enzyme HpaII. 

Methylation of the HpaII site located at position -9 relative to the transcription start site 

(CpG #23 of the human ribosomal DNA promoter) was analyzed with a quantitative real-

time PCR of the HpaII-digested genomic DNA as described previously [24] with 

modifications. Importantly, as a reference, the HpaII-digested DNA was used as template 
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to determine the content of an amplicon adjacent to the one with the HpaII site. Such 

normalization resulted in reproducible methylation values as opposed to using a non-

digested DNA with the HpaII amplicon.  

 

Evaluation of methylation effects on qPCR efficiency. An unmethylated DNA 

template for the 5.8S amplicon was obtained by PCR on genomic DNA (primer 

sequences: forward cccgtggtgtgaaacctt, reverse agctagctgcgttcttcatc). 

The PCR product was then in vitro methylated in a buffer containing 6 ng DNA/µL, 0.16 

mM S-adenosylmethionine and 0.2 units M.SssI/µL (New England Biolabs) at 37°C for 2 

hours followed by M.SssI inactivation at 65°C for 20 minutes. Methylated and 

unmethylated templates were used for qPCR with the 5.8S amplicon primers. To verify 

the extent of methylation, both methylated and unmethylated templates were incubated 

with the methyl sensitive restriction enzyme HpaII. Template resistance to HpaII was 

determined by qPCR.  

 

Statistical analysis was performed using the non-parametric Kruskal-Wallis one way 

ANOVA and linear regression fitting. In addition, comparisons of individual ribosomal 

DNA methylation sites were accomplished using a modified significance analysis of 

microarrays (SAM), as reported previously [24]. 
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Table 1. Young and old donors of the parietal cortex samples that were used for the 

aging studies. 

Group Age (years) PMI (h)1 Sex 
Young 

 
 
 
 
 
 
 

2 10 Male 
15 9 Female 
16 7 Male 
18 8 Female 
19 7 Female 
20 6 Male  
20 5 Male  
21 7 Male 
22 7 Male 
22 10 Female 
24 9 Female 
24 7 Female 
24 9 Male 
25 4 Female 

   Old 
  
  
  
  

73 13 Female 
76 3 Male 
76 3 Female 
77 8 Female 
79 5 Male 
79 10 Male 
88 8 Female 
89 14 Male 
90 4 Female 

1PMI, post mortem interval 
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Table 2. Control and Dementia with Lewy Bodies donors of the parietal cortex and 

the cerebellum samples that were used for the Dementia with Lewy Body studies. 

Group Age (years) PMI (h)1 Sex Parietal cortex Cerebellum 
Control 77 3.5 Male + Unavailable 

81 2 Male + Unavailable 
87 2.4 Male + Unavailable 
82 2.1 Male + Unavailable 
85 2.5 Female + + 
90 2 Female + + 
79 1.8 Female + + 
78 1.2 Male + + 
81 2.8 Male + + 
96 2.1 Female + + 
86 2.5 Female Not included + 
90 3.8 Female Not included + 
80 2.5 Female Not included + 
95 2.8 Female Not included + 

DLB2 78 2.5 Male + + 
78 3.8 Male + + 
81 2.5 Male + + 
72 2.8 Male + + 
65 9.5 Male + + 
87 2 Female + + 
68 3.8 Male + + 
90 2.5 Female + + 
82 2.3 Male + + 
91 10.5 Female + + 

1PMI, post mortem interval, 2DLB, Dementia with Lewy Bodies 

http://www.sciencedirect.com/science/article/pii/S092544391300375X#tf0010
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Table 3.  qPCR primers used for aging, Dementia with Lewy Bodies, and HPAII 

based methylation Studies. 

Primer Set Direction Sequence 5’ to 3’ 
18S Forward agcctgagaaacggctacca 

Reverse ggtcgggagtgggtaatttgc 
5.8S Forward gaggcaaccccctctcctctt 

Reverse gagccgagtgatccaccgcta 
28S Forward gacctcagatcagaggtggcga 

Reverse ttcactcgccgttactgagggaat 
tRNAK-ctt Forward ctagctcagtcggtagagcatg 

Reverse ccaacgtggggctcgaac 
ALB Forward cggcggcgggcggcgcgggctgggcggaaatgctgcacagaatccttg 

Reverse gcccggcccgccgcgcccgtcccgccggaaaagcatggtcgcctgtt 
HPAII Forward gtatatctttcgctccgagtcg 

Reverse acaggtcgccagaggacag 
HPAII 
Reference 

Forward acggacgttcgtggcga 
Reverse ggagaggagagacgagggg 
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RESULTS 

Stability of the cerebro-cortical ribosomal DNA copy number in aging. To assess the 

effects of aging on ribosomal DNA copy number in the brain, genomic DNA was isolated 

from post mortem parietal cortex samples that were collected from two groups of donors. 

The young donor group consisted of 14 individuals with a median age of 201.6 (range 

1-25, Table 1). The old donor group included 9 individuals with a median age of 792.1 

(range 73-90, Table 1). None of the donors were known to suffer from a chronic 

neurodegenerative and/or neurological disease. The genomic content of 18S- and 28S 

rRNA coding regions of ribosomal DNA was analyzed by a qPCR assay (Fig. 1). For 

normalization, a coding region of the multi-copy gene tRNA
K-ctt was used. There are 17 

almost identical copies of this gene in the haploid human genome. However, in contrast 

to ribosomal DNA, they are not clustered together [56] and therefore, are less likely than 

ribosomal DNA to undergo recombination-associated instability.  

As the investigated ribosomal DNA regions are physically linked, a direct correlation 

between their genomic content for each analyzed sample is expected (Fig. 1). Indeed, the 

individual values obtained for the 18S- and the 28S amplicons were strongly correlated 

fitting to a linear model of a direct correlation (Fig. 2A, a=0.7327, R2=0.8103). These 

results support accuracy of the applied qPCR methodology for determination of the 

genomic ribosomal DNA content. 

However, genomic content of 18S- and 28S- regions of ribosomal DNA did not 

significantly differ between the young- and the old subjects (Fig. 2B, C). Usage of a 
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coding region of the albumin gene (ALB) as an alternative genomic reference produced 

similar results (Fig. 2D). Therefore, in the cerebral cortex, genomic content of ribosomal 

DNA appears to be stable throughout the lifespan.  

 

Dementia with Lewy Bodies-associated instability of brain ribosomal DNA. To 

assess whether aging-related neurodegeneration affects genomic ribosomal DNA content 

in the brain, post mortem parietal cortex samples from ten patients who were diagnosed 

with Dementia with Lewy Bodies were analyzed (Table 2). The control group included 

ten age-matched individuals who died of non-neurological diseases and whose brains did 

not display any evidence of neurodegeneration (Table 2). Similar to the midbrain-focused 

Parkinson’s disease, Dementia with Lewy Bodies is a form of a synucleinopathy [57, 58]. 

Their common characteristic is the presence of intracytoplasmic -synuclein-containing 

inclusions, the Lewy Bodies. In addition, Dementia with Lewy Bodies is associated with 

neuronal atrophy, neuronal death and reactive gliosis in the cerebral cortex including the 

parietal region [57]. Oxidative damage of macromolecules including DNA is observed in 

both conditions [5, 59]. Hence, Dementia with Lewy Bodies and Parkinson’s disease may 

represent a similar pathological process that affects different areas of the brain.  

Three ribosomal DNA coding regions were analyzed including probes corresponding 

to the 18S-, 5.8S-, and 28S exons. As expected for a tight physical linkage, the Dementia 

with Lewy Bodies- and the control group-derived individual values obtained with these 

probes correlated with each other fitting a linear model of direct correlation (28S(18S), 

y=1.7416*x-0.6165, R2=0.8495; 5.8S(18S), y=1.4776*x-0.4126, R2=0.8957; 28S(5.8S), 

y=1.1008*x-0.0133, R2=0.8274). Interestingly, genomic content of ribosomal DNA was 
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higher in Dementia with Lewy Bodies. In this group, the 18S-, 5.8S-, and 28S probes 

revealed ribosomal DNA content that was 1.6-, 2.0-, and 2.3 fold controls respectively 

(Kruskal-Wallis  ANOVA, p<0.01, Fig. 3A-C). Similar results were obtained when ALB 

was used as an alternative genomic reference (Fig. 3D). To determine whether this 

Dementia with Lewy Bodies-associated effect on ribosomal DNA content was directly 

related to pathological changes in the cortex, samples from the Dementia with Lewy 

Bodies pathology-free cerebellum were analyzed. In samples from this structure, direct 

correlations between individual values for various ribosomal DNA probes were observed 

confirming accuracy of our determinations (data not shown). Surprisingly, in the 

cerebellum, ribosomal DNA content was lower in the Dementia with Lewy Bodies group. 

Significant decreases of 0.55- and 0.42 fold control were observed for the 5.8S- and 28S 

probes, respectively (Kruskal-Wallis ANOVA, p<0.01, Fig. 4). While the 18S probe did 

not detect significant differences between the two groups, the genomic 18S content also 

showed a downward trend in Dementia with Lewy Bodies (Fig. 4). Therefore, Dementia 

with Lewy Bodies appears to be associated with instability of brain ribosomal DNA.  

 

Effects of Dementia with Lewy Bodies on methylation of the ribosomal DNA 

promoter region. At least in cancer cell lines, amplification of ribosomal DNA may be 

associated with CpG hypermethylation [60]. As CpG methylation of the ribosomal DNA 

is associated with epigenetic silencing of ribosomal DNA copies a combination of 

amplification and hypermethylation may help to keep the number of active ribosomal 

DNA copies constant [34]. Moreover, epigenetic silencing of ribosomal DNA may 

stabilize the inactive genes preventing recombination; conversely, de-silencing may have 
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an opposite effect [3, 38]. Thus, methylation of the ribosomal DNA promoter region was 

analyzed in the parietal cortex of the Dementia with Lewy Bodies- and control groups 

using the CpG methylation-sensitive restriction endonuclease HpaII or bisulfite 

sequencing. Methylation of the ribosomal DNA promoter was similar in the Dementia 

with Lewy Bodies- and the control group (Fig. 5). Therefore, in the Dementia with Lewy 

Bodies pathology-affected cerebral cortex, ribosomal DNA amplification is not 

associated with changes in CpG methylation of the ribosomal DNA promoter.  

 

Effects of template methylation on qPCR efficiency. Methylation of ribosomal DNA is 

observed not only in the promoter region but also in the rRNA-coding exons that have 

been targeted for qPCR-based ribosomal DNA quantification. Therefore a possibility 

exists that the apparent Dementia with Lewy Bodies-associated changes in ribosomal 

DNA content are due to altered methyl-CpG content in those regions if methylation 

affects qPCR amplification efficiency. To exclude such a possibility, non-methylated 

ribosomal DNA fragment containing the 5.8S amplicon template was produced by PCR. 

As the 5.8S amplicon contains 19 CpG sites including 3 in the reverse primer target 

sequence methylated template was generated in vitro using a non-selective CpG DNA 

methyltransferase M.SssI (Fig. 6). As compared to the unmethylated template, 

methylation only slightly increased qPCR efficiency resulting in about 10% 

overestimation of the template content. Therefore, even dramatic changes in CpG 

methylation of the ribosomal DNA templates are unlikely to explain up to 130%- 

increases or decreases of ribosomal DNA content that were observed between control and 

Dementia with Lewy Bodies samples. 
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DISCUSSION AND CONCLUSIONS 

In this study, we probed for changes in ribosomal DNA content in the brain of old 

vs young subjects and Dementia wit Lewy Bodies patients vs. controls using a qPCR 

based approach. No difference was detected in the parietal cortex ribosomal DNA content 

of young and old individuals. Our results are in agreement with a study which attempted 

to address this question using a hybridization based approach. Significant increases in 

ribosomal DNA content were detected in the parietal cortex of Dementia with Lewy 

Bodies individuals compared to age matched controls with increases ranging from 

approximately 1.5 to 2.2 fold. The ribosomal DNA content of the cerebellum, a region 

which does not show pathological changes in Dementia with Lewy Bodies also contained 

altered ribosomal DNA content, however the direction of change was unexpectedly 

opposite that of the parietal cortex with a decrease of approximately 50% in two of the 

three probed regions.  

Our prior Alzheimer’s disease study produced similar results for the parietal 

cortex as both Dementia with Lewy Bodies and Alzheimer’s disease contained elevated 

ribosomal DNA content [24]. Moreover, the magnitude of 18S increase, approximately 

50%, was similar to what has been documented in mild cognitive impairment and late 

stage Alzheimer’s disease which contained increases of 50% and 69%, respectively. In 

contrast, the Dementia with Lewy Bodies’ cerebellum contained a significant decrease in 

ribosomal DNA content, a finding which was not apparent in Alzheimer’s disease. 

However, it is important to note that this decrease was documented in the 5.8S and 28S 
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ribosomal DNA regions which were not probed in our prior Alzheimer’s disease study. 

The 18S region trended down in Dementia with Lewy Bodies but did not reach statistical 

significance. Thus, comparing the Dementia with Lewy Bodies and Alzheimer’s disease 

cerebellum is at least partially inconclusive. Interestingly, a similar trend has been 

documented in the genomic content of another highly repetitive sequence, the telomere. 

In both Alzheimer’s disease and Dementia with Lewy Bodies telomere length was 

decreased in peripheral blood leukocytes, and, at least in the case of Alzheimer’s disease, 

increased in the hippocampus, a brain structure directly affected by Alzheimer’s disease 

pathology [20-22]. 

 It is important to note that all data obtained in this study are based on genomic 

DNA which was extracted from tissue containing a mixed population of cells. Thus, it is 

unclear which cell type or types are contributing to these findings. As homologous 

recombination is believed to be the major mechanism behind ribosomal DNA instability 

and readily occurs during both mitosis and meiosis, this suggests inappropriate activation 

of homologous recombination is occurring in cycling cycles. [44].  Recent literature 

suggests this may not be the only possibility for our findings.   We propose three 

potential explanations.  

 First, this phenomenon could be occurring in cycling cells. This may suggest our 

findings are the result of reactive gliosis, a condition which is involved in both 

Alzheimer’s disease and Dementia with Lewy Bodies [61, 62]. Reactive gliosis involves 

mitosis and the rapid proliferation of glia, thus allowing homologous recombination to 

occur. Theoretically, expansion of ribosomal DNA in reactive glia could aid in their 
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ability to rapidly proliferate. A similar phenomenon is known to occur in amphibian and 

insect oocytes [45-47].  

 A second potential explanation is that homologous recombination occurs in 

response to reactivation of the cell cycle in post-mitotic neurons. Multiple studies have 

documented at least partial cell cycle reactivation in Alzheimer’s disease pathology 

associated areas [63-65]. Proteins from all phases of the cell cycle have been shown to be 

increased in Alzheimer’s disease. Moreover, the frequency of aneuploidy has also been 

shown to be increased in Alzheimer’s disease [66]. Such a condition could potentially be 

sufficient for homologous recombination to occur.  

 Lastly, canonical homologous recombination may not be necessary for 

fluctuations in ribosomal DNA copy number. Interestingly, emerging data have identified 

homologous recombination-like activity in post-mitotic cells [67, 68]. In these cells, UV 

radiation induced double strand breaks which were repaired using a mechanism that 

involved short segmental contact between homologous chromosomes in a transcription- 

and ATM- dependent manner.  Theoretically, such a repair mechanism could be 

sufficient to produce effects similar to canonical homologous recombination. Moreover, 

the unique repetitive nature of the ribosomal DNA and the general structure of the 

nucleolus may allow for recombination in the absence of mitosis. The cell’s 600 copies of 

ribosomal DNA, which are arranged as tandem arrays on 5 separate chromosomes, are all 

in close physical proximity due to their nucleolar localization. Such an atypical 

orientation and the relatively high rates of transcription which occur in this region may 

make the generation of sister chromatids unnecessary for homologous recombination like 

activity. 
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 While the effects of altered ribosomal DNA content in the human brain are 

unclear, findings from lesser species and mammalian cell lines may potentially provide 

insight. Surprisingly, the rate of ribosomal biogenesis may not be subject to large 

alterations under the documented circumstances.  It is known that most multicellular 

species contain a large excess of ribosomal DNA copies of which a large percentage is 

epigenetically silenced [69]. Thus, an expansion of ribosomal DNA copies would most 

likely add to this epigenetically silenced pool and cause little, if any, alterations in the 

rate of ribosomal biogenesis. Moreover, cells appear capable of withstanding limited 

ribosomal DNA loss. Germ line deletions of significant ribosomal DNA quantities in 

both flies and chickens still produced viable organisms [70, 71]. For example in the 

chicken study, embryos with 66% of the normal ribosomal DNA content grew and 

developed as expected [70]. Thus, a portion of the cellular ribosomal DNA content is 

unnecessary for ribosome synthesis even during the organism’s most demanding periods 

of growth. Taken together, these reports suggest that any potentially detrimental effects 

of ribosomal DNA copy loss are potentially related to functions other than ribosomal 

biogenesis. 

 Interestingly, in lower organisms, manipulation of ribosomal DNA content has 

identified several non-coding functions. In the aforementioned fly studies, ribosomal 

DNA variation directly influenced heterochromatin content [35]. Moreover, in a mouse 

cell line, loss of the nucleolar silencing complex component TIP5 lead to a decrease in 

both heterochromatin content at major- and micro- satellite DNA and loss of ribosomal 

DNA content [38]. Taken together, such findings suggest that ribosomal DNA instability 

may affect mammalian heterochromatin content. Moreover in ribosomal DNA deficient 
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flies, changes in euchromatin and gene expression changes were detected [36]. 

Furthermore, clusters of genes linked to both mitochondrial function and lipid 

metabolism were prominent in the population of altered genes [36]. Interestingly, 

alterations in both of these areas are common to both Alzheimer’s disease and Dementia 

with Lewy Bodies [52, 72-74].   

 In yeast it has been proposed that silent ribosomal DNA copies function as a sink 

for mediators of the DNA damage response. Kobayashi proposed a model in which 

ribosomal DNA loss, which is known to be associated with replicative senescence, would 

release DNA damage response mediators in a manner analogous to telomere shortening 

triggering the DNA damage response [3]. Alternatively, increased ribosomal DNA 

content could potentially raise the threshold for DNA damage response activation. In 

support of Kobayashi’s theory, it was demonstrated that yeast with larger ribosomal DNA 

content were more resistant to the DNA damaging agent methyl methanesulfonate than 

those with less ribosomal DNA content. While this possibility has not been addressed in 

mammalian cells, nucleolar sequestration of other stress mediators is known.  Heat Shock 

Protein 70, Murine Double Minute 2, and the Von Hippel Lindau protein have been 

documented to be sequestered in the nucleolus via their affinity for non-coding RNAs 

generated from the intergenic spacer region of the ribosomal DNA unit [39]. Therefore, 

changes in ribosomal DNA content may affect the cellular stress response. 

 While more work needs to be done to identify the consequences of ribosomal 

DNA instability in the human brain, we propose a working model based on the effects of 

altered ribosomal DNA documented in the literature (Fig.7). We propose DNA damage 

induced genomic instability as a general component of the degenerating brain. Under 
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these conditions, ribosomal DNA content would be disproportionally affected due to its 

tandem array arrangement, the high rate of ribosomal DNA transcription, and the 

physical proximately of all 10 ribosomal DNA arrays. In this model homologous 

recombination or “homologous recombination like” activity would produce instability in 

ribosomal DNA content. This would ultimately alter heterochromatin levels, euchromatin 

gene expression, and the DNA damage response. Increases in ribosomal DNA content 

would increase the level of heterochromatin, increase ribosomal DNA’s ability to 

influence euchromatin gene expression, and increase DNA damage response resistance. 

Conversely, loss of ribosomal DNA would produce the opposite effect.  We propose 

that genomic instability is induced by DNA damage.   Additionally, the application of a 

selection pressure, such as the enhanced DNA damage which is common to the Dementia 

with Lewy Bodies and Alzheimer’s disease parietal cortex, would select for increased 

ribosomal DNA content and promote cell survival. Thus in the Dementia with Lewy 

Bodies cortex, which experiences significantly larger levels of oxidative stress and 

synucleinopathy, the magnitude of DNA damage would be large enough to select for 

increased quantities of DNA. In the case of the Dementia with Lewy Bodies cerebellum, 

low level potentially undetectable DNA damage would still induce genomic instability.  

However, no such selection pressure would exist and genomic instability would present 

as a loss of ribosomal DNA. Moreover, neurodegeneration associated cell loss would 

remove less resilient cells thus further enriching the total population with cells containing 

higher ribosomal DNA content.  

 In summary, we have not detected any age related changes in ribosomal DNA 

content. However, we have identified a second neurodegenerative disease, Dementia with 
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Lewy Bodies, with increased ribosomal DNA content in the parietal cortex. Moreover, 

we unexpectedly documented decreased ribosomal DNA content in the pathology free 

cerebellum specifically for the 5.8S and 28S segments. Therefore, we propose that 

genomic instability is present in the degenerating brain.
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Figure 1. The qPCR-based assay to determine the genomic content of ribosomal 

DNA. The ribosomal DNA copies are organized as long tandem repeats located on five 

acrocentric chromosomes. Each copy consists of the ribosomal RNA gene and the 

intergenic spacer. Each ribosomal RNA gene includes a Pol1-dependent promoter and 

exons that correspond to 18S-, 5.8S- and 28S ribosomal RNAs. They are separated by 

introns (5’ETS, ITS1, ITS2 and 3’ETS). The positions of the analyzed ribosomal DNA 

amplicons are indicated by the thick black lines. The schematics are not drawn in scale. 
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Figure 2. Effects of age on the cerebro-cortical content of ribosomal DNA. Genomic 

ribosomal DNA content was quantified in post mortem samples of the parietal cortex 

from young- and old individuals without any neurodegenerative conditions (n=14, 

median age 20, and n=9, median age 79, respectively). The 18S- and 28S- amplicons 

were used for ribosomal DNA content determinations; the reference genes are indicated. 

For each amplicon, the ribosomal DNA content was normalized to average value of 

young individuals. A, Regression analysis of individual values of ribosomal DNA content 

as determined with 18S- or 28S probes. As expected for a close physical linkage between 

these genomic templates, a direct correlation is present supporting validity of the qPCR 

assay. Filled or opened diamonds indicate young or old individuals, respectively. B-D, 

Content of ribosomal DNA is similar in young- and old individuals. Individual values are 

depicted by squares; mean values are indicated by the lines intersecting the error bars 

(SEM); p values of the Kruskal-Wallis ANOVA are shown. 
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Figure 3. Increased ribosomal DNA content in the Dementia with Lewy Bodies 

parietal cortex. Genomic ribosomal DNA content was quantified in post mortem 

samples of the parietal cortex from Dementia with Lewy Bodies- and age-matched 

control individuals without any neurodegenerative conditions (n=10 each). The 18S-, 

5.8S- and 28S amplicons were used for the determinations; the reference genes are 

indicated. Regression analysis of individual values for pairs of ribosomal DNA amplicons 

revealed strong correlations similar to those in Fig. 2A (see the Results section for more 

details).In the Dementia with Lewy Bodies group, significant increases of ribosomal 

DNA content were detected using the 18S/tRNA
K-ctt (A), 5.8S/tRNA

K-ctt (B), 28S/tRNA
K-ctt 

(C) and 18S/ALB 
 (D) ratios. Individual values are depicted by squares; mean values are 

indicated by the lines intersecting the error bars (SEM); p values of the Kruskal-Wallis 

ANOVA are shown.
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Figure 4. Decreased ribosomal DNA content in the Dementia with Lewy Bodies 

cerebellum. Genomic ribosomal DNA content was quantified in post mortem samples of 

the cerebellum from 10 Dementia with Lewy Bodies- and 10 aged-matched control 

individuals. Regression analysis of individual values for pairs of ribosomal DNA 

amplicons revealed strong correlations similar to those in Fig. 2A (data not shown). 

While a downward trend was observed for the 18S amplicon (A), the 5.8S- and the 28S 

probes revealed significant decreases of ribosomal DNA content in Dementia with Lewy 

Bodies samples (B-C). Individual values are depicted by squares; mean values are 

indicated by the lines intersecting the error bars (SEM); p values of the Kruskal-Wallis 

ANOVA are shown
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Figure 5. Similar methyl-cytosine content of the ribosomal DNA promoter region in 

the control- and Dementia with Lewy Bodies parietal cortex. A, Methylation of the 

ribosomal DNA promoter CpG#23 (position -9 from the transcription start site) content 

was determined using a methylation-sensitive enzyme HpaII and qPCR. B-C, 

Methylation of all 26 CpG sites within the human ribosomal DNA promoter region 

(positions -186 to +26) was investigated using bisulfate sequencing. B, Average CpG 

methylation in the ribosomal DNA promoter. C, Effect of Dementia with Lewy Bodies 

on distribution of CpG methylation across the ribosomal DNA promoter. The data 

represent averages ±SEM from 10 Dementia with Lewy Bodies- and 10 control- 

individuals. Individual values are depicted by squares; mean values are indicated by the 

lines intersecting the error bars. In A and B, p values of the Kruskal-Wallis ANOVA are 

shown; in C, *, p<0.05 (SAM statistics). Although CpG#7 and 17 appeared hyper 

methylated in Dementia with Lewy Bodies, the overall trend of CpG methylation across 

the 26 ribosomal DNA promoter CpGs was not significantly affected by Dementia with 

Lewy Bodies (local regression analysis, data not shown).  
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Figure 6. Effects of template methylation on qPCR efficiency. A, PCR on genomic 

DNA was used to produce an unmethylated DNA fragment including a template for the 

5.8S qPCR amplicon that revealed ribosomal DNA instability in Dementia with Lewy 

Bodies (red box, qPCR primers indicated by red arrows, PCR primers indicated by black 

arrows). DNA was then in vitro methylated with M.SssI DNA methyltransferase that 

indiscriminately targets all CpG sites. Note presence of multiple CpGs in the 5.8S 

amplicon (opened and filled circles correspond to CpGs or methyl-CpGs, respectively; 

one of the CpGs is a part of an HpaII site). B, Methylation of a CpG that was part of an 

HpaII site was confirmed using HpaII-qPCR assay. When methylated DNA fragment was 

used as a template for 5.8S qPCR, ribosomal DNA content was overestimated by just 

10% as compared to unmethylated template. Hence, differential methylation of ribosomal 

DNA templates of the qPCR amplicons is unlikely to account for Dementia with Lewy 

Bodies-associated changes in ribosomal DNA content. Data represent two independent 

experiments; error bars are SDs. 
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Figure 7. A hypothetical model summarizing possible causes and consequences of 

ribosomal DNA instability. The DNA damage-stimulated homologous recombination is 

a likely cause of ribosomal DNA instability in the degenerating brain. The moderate 

changes in ribosomal DNA copy number as those reported here are not expected to 

significantly affect ribosomal biogenesis. Instead, ribosomal biogenesis-independent 

functions of ribosomal DNA may be affected including control of the DNA damage 

response, maintenance of heterochromatin, and expression regulation of the non-

ribosomal RNA genes that are located in the euchromatin. One can speculate that higher 

content of ribosomal DNA may support cell survival by suppressing the DNA damage 

response, stabilizing chromatin and stronger regulatory control of the euchromatic genes. 

Conversely, lower ribosomal DNA content may have opposite effects on cell sensitivity 

to DNA damage as well as other forms of stress by enhancing the DNA damage response, 

reducing control over euchromatin gene expression and destabilizing the chromatin 

architecture. Thus, ribosomal DNA amplification in the degenerating regions of the 

Dementia with Lewy Bodies- or Alzheimer’s- disease brain may be a consequence of 

increased genotoxic stress. In turn, cells with the higher genomic content of ribosomal 

DNA may become overrepresented due to lower sensitivity to subsequent injuries.
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LIST OF ABBREVIATIONS 

albumin gene      ALB 

cytosine phosphate guanine    CpG 

Dementia with Lewy Bodies    DLB 

lysine tRNA-ctt gene     tRNA
K-ctt 

quantitative PCR     qPCR 

ribosomal RNA     rRNA 
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