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Brain-Machine Interfaces (BMIs) have the potential of restoring 

functionality of persons suffering from paralysis and amputations. At present, 

BMIs have been developed to use cortical neural signals and control prosthetic 

devices or to stimulate paralyzed limbs. However, these BMIs rely on an external 

training signal (usually desired kinematics) as a reference to infer an error signal 

to be able to adapt the decoder appropriately and learn the task. For amputees 

and paralyzed persons, a desired kinematic cannot be measured directly. We 

propose to acquire an error or reward signal from the brain itself as a training 

signal for motor decoders. For this, we adopt Actor-Critic Reinforcement Learning 

(RL) paradigm to use as a BMI. There are several challenges associated with 

obtaining an error signal from the brain. One of the challenges is due to the 

unstationary nature of neural signals, the classification of the error being low and 

there being no indication as to the level of accuracy of the signal. If an indication 

can be extracted as to the accuracy of the signal, we propose that such a system 

can maintain performance of the BMI even when the error signal is less than 

perfect. This is done by incorporating a confidence metric in the weight update 

rule, where the confidence metric indicates the accuracy of the signal. We 

propose a synchronous BMI where the forward path is provided by the motor 



cortex and the feedback path is provided by the striatum. Computer simulations 

on synthetic data were performed to test the architecture. The confidence metric 

mentioned above can be obtained by different methods; the distance to the 

boundary and a probabilistic measure were implemented. The confidence arrived 

from the different classification methods (distance/ probability) was thresholded 

to give three output classes indicating rewarding, non-rewarding or ambiguous. 

As the threshold increased from zero, the performance increased and as the 

threshold increased further, the performance dropped. By this we conclude that 

there exists an optimum threshold for the Critic data where even though the Critic 

feedback is noisy, the Actor can maintain its performance. The said system was 

implemented in closed-loop with a monkey using a probabilistic classifier, where 

the probability of the Critic output belonging to one class or the other was used 

as the confidence measure. With using the confidence measure the performance 

of the system was improved.  

 



iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This dissertation is dedicated to  
 

my Lord and Savior, Jesus Christ for the freedom of life and the freedom to 
explore life,  

and my parents, who instilled a sense of curiosity and exploration in me,  
 

both of which inspired me to be the Engineer I am today. 
 
 



iv 
 

Acknowledgements 
 

Acquiring a Ph.D. is an endeavor one does not embark alone. There were 

several people without whose scientific guidance and personal influence, this 

task would not have been completed. First and foremost I want to thank my 

advisor and Principal Investigator of the Neuroprosthetics Research Group 

(NRG) Justin Sanchez, for his continuous support throughout my Ph.D. career. 

His motivation, enthusiasm, wisdom and guidance in directing me assisted not 

only during research and writing, but also to make me the independent 

researcher I am today. I would also like to thank Abhishek Prasad, co-P.I. of 

NRG for his untiring efforts and mentoring throughout my time as a Ph.D. 

student. His counsel and advice and dedication has inspired me. I would like to 

extend my gratitude to the rest of my committee, Ozcan Ozdamar, Jorge 

Bohorquez and Christopher Bennett for their insightful comments and hard 

questions to assure that the dissertation met the scientific rigor, and for keeping 

me on my toes. I believe I have tried their patience on more than one occasion, 

but they have been very enduring.  

I wish to also thank Dr. Daniel Rothen, Veterinarian, the staff of Division of 

Veterinary Resources (DVR) and husbandry staff at University of Miami for the 

assistance with animal surgery and animal care. My gratitude goes to the 

administrative staff of Biomedical Engineering at University of Miami, Angie Del-

Llano, Melissa Dietrick and Vivian Figueredo, for all the assistance given in 



v 
 

matters related to documentation and sending out reminders, which meant I had 

one less thing to worry about every week. 

A word of thanks to the Defense Advanced Research Projects Agency 

(DARPA) for the funding support for the project I was involved in (N66001-10-C-

2008). My thanks is extended to the collaborators at University of Florida 

(Principe Lab), State University New York (Lytton Lab and Francis Lab) and 

others in the, DAPRA Reorganization and Plasticity to Accelerate Injury 

Recovery (REPAIR) program.  

It is good to have living examples of those who are a step ahead of 

oneself, close at hand. My experience in the lab was greatly enhanced by such 

post-doctoral associates at NRG; Eric Pohlmeyer, Babak Mahmoudi and 

Rowshanak Hashemiyoon. I wish to thank them for their mentoring in different 

aspects of my research and their life advice in general which will not be taken 

lightly.  

I want thank my fellow lab mates Katie Gant and Qi Yu. I wish to extend 

my thanks to Shubham Debnath, a fellow Ph.D. student with the help in animal 

experiments. Fellow Ph.D. student and programming wiz in the group, Ziqian Xie 

and Charles Prins for help with C++ and Python coding; both of them spent many 

a night trying to teach a MATLAB programmer to start counting from zero. A very 

special thanks to Shijia Geng, fellow lab mate and friend for the stimulating 

discussions, sleepless nights before deadlines, experimental work and all the fun 

we have had bonding over monkeys. They say the best way to learn is teach, 

http://www.darpa.mil/


vi 
 

whether it be mentoring undergraduates or teaching neurosurgery to other 

graduate students; I wish to thank them for their assistance in lab matters, the 

opportunity to teach, train and mentor them, and their feedback on my 

performance as a mentor.  

A personal note of thanks to my roommates, Sheba Johnson, Saptaparni 

Bandyopadhyay and Vy Vo, for making the last few years a pleasant experience 

at home and putting up with the lifestyle of a Ph.D. student; Anuradha 

Gunathilake, Biology Ph.D. student and my dissertation writing buddy, for not 

making me feel alone during the writing process; the Kalbac family and Cameron 

family for providing “home(s) away from home” and adopting me into their 

families wholeheartedly, their spiritual insights and being available at any time 

day or night as a family would; and my church pastor, Joe Lortie for spiritual 

guidance and the long hours of helping through decision making. Lastly, I wish to 

thank my parents and brother, Charles for the immense patience and the love 

extended daily across 9800 miles and 10 ½ hour time difference. I am truly 

blessed to have such a family. 

Noeline Prins 

University of Miami 

May 2015 

 

“Worthy art thou, our Lord and God, to receive glory and honor and power, 
for thou didst create all things, and by thy will they existed and were 

created.” Revelation 4:11 

https://www.facebook.com/saptaparni.bandyopadhyay?fref=nf
https://www.facebook.com/saptaparni.bandyopadhyay?fref=nf


vii 
 

Contents 
List of Tables ........................................................................................................................x 

List of Figures...................................................................................................................... xi 

Abbreviations .................................................................................................................... xvi 

Chapter 1 Introduction and Background........................................................................ 1 

1.1 Motivation ............................................................................................................. 1 

1.2 Background of BMI Work ..................................................................................... 2 

1.2.1 BMI Classification ......................................................................................... 2 

Sensory, Motor and Cognitive BMIs ........................................................................ 2 

Adaptive Decoders and Static Decoders................................................................. 3 

Supervised, Semi-Supervised and Unsupervised Learning ................................... 3 

Synchronous and Asynchronous Control ................................................................ 4 

1.2.2 Decoders Used in BMIs ................................................................................ 4 

Linear Regression .................................................................................................... 4 

Population Vector Algorithm .................................................................................... 6 

Kalman Filters .......................................................................................................... 7 

1.3 Incorporating Feedback ....................................................................................... 8 

1.3.1 Reinforcement Learning in the Brain ............................................................ 8 

1.3.2 Engineering a Biologically Realistic BMI .................................................... 10 

1.3.3 Reinforcement Learning Decoders ............................................................. 11 

Conventional RL Decoders .................................................................................... 11 

Actor-Critic RL Paradigm ....................................................................................... 13 

1.4 Asynchronous Brain-Machine Interfaces ........................................................... 15 

1.5 Specific Aims ...................................................................................................... 18 

1.5.1 Investigate role of Striatum during a Reaching Task and Test the feasibility 
of Using Striatal Signals as Feedback for a BMI....................................................... 18 

1.5.2 Development of an Synchronous Closed-Loop BMI Control Algorithm..... 18 

1.5.3 Use the Striatum in Conjunction with MI to Control a Closed-Loop BMI ... 19 

1.6 Outline of Dissertation ........................................................................................ 19 

Chapter 2 Experimental Data Analysis ........................................................................ 20 

2.1 Data Acquisition and Surgical Procedure .......................................................... 20 

2.1.1 Animal Model .............................................................................................. 20 



viii 
 

2.1.2 Electrodes ................................................................................................... 21 

2.1.3 Surgical Procedure ..................................................................................... 22 

2.1.4 Signal Processing ....................................................................................... 23 

2.2 Experimental Design .......................................................................................... 25 

2.2.1 Go-No-Go Paradigm ................................................................................... 25 

2.2.2 Two-Target Reach Paradigm...................................................................... 30 

2.2.3 Experiment Variable Summary ................................................................... 32 

2.3 Data Analysis and Results ................................................................................. 33 

2.3.1 Neural Firing Patterns and Histograms ...................................................... 34 

2.3.2 Neural Population Dynamics – Principal Component Analysis (PCA)....... 35 

2.3.3 Unsupervised Clustering............................................................................. 37 

2.3.4 Supervised Classification............................................................................ 42 

Classifiers Used ..................................................................................................... 42 

Data Sets................................................................................................................ 44 

NAcc Data .............................................................................................................. 45 

MI Data ................................................................................................................... 46 

2.4 Trial Initiation from the Striatum ......................................................................... 48 

2.4.1 Filter Design and Preprocessing ................................................................ 48 

2.4.2 Classification ............................................................................................... 49 

2.5 Summary and Conclusions ................................................................................ 51 

Chapter 3 Development of the Control Architecture ................................................... 53 

3.1 Control Architecture for the Actor ...................................................................... 53 

3.1.1 Modifications to the Actor ........................................................................... 55 

3.1.2 Confidence of the Critic  .............................................................................. 57 

3.2 Data Generation for the Actor ............................................................................ 59 

3.3 Dealing with Inherently Slow Adaptation ........................................................... 61 

3.4 Simulations for Dealing with Critic Uncertainty.................................................. 62 

3.5 Can Using the Feedback Intelligently Improve Performance? .......................... 63 

3.5.1 Effect of confidence measure on Actor performance ................................. 64 

3.5.2 Neural Perturbations – Additional Noise in Data........................................ 68 

3.5.3 Simulations using NHP Data ...................................................................... 69 

3.6 Data Generation for the Critic ............................................................................ 71 

3.7 Critic Data Classification by different methods .................................................. 73 



ix 
 

3.7.1 Clusters in the data ..................................................................................... 73 

3.7.2 Misclassification Rates................................................................................ 73 

3.8 Implementing Offline HRL Decoder with Critic Feedback ................................. 76 

3.9 Deciding the Threshold ...................................................................................... 78 

3.10 HRL BMI Simulations ......................................................................................... 81 

3.11 Summary and Conclusions ................................................................................ 87 

Chapter 4 Closed-Loop Experiments .......................................................................... 88 

4.1 Designing of the Closed-Loop Paradigm ........................................................... 88 

4.1.1 Actor Neural Data ....................................................................................... 89 

4.1.2 Critic Classifier ............................................................................................ 90 

4.2 Closed-Loop Experiment.................................................................................... 92 

4.2.1 CL with a 100% accurate (artificial) Critic................................................... 92 

4.2.2 CL with a NAcc Critic – Effect of threshold on Performance ..................... 94 

4.3 Summary and Conclusion .................................................................................. 98 

Chapter 5 Summary and Future Work....................................................................... 100 

5.1 Summary of Work............................................................................................. 100 

5.2 Novel Contributions and Implications .............................................................. 102 

5.2.1 A Confidence Metric can be Attached to the NAcc Neural Signal ........... 102 

5.2.2 Confidence Measure Improves the Overall Performance ........................ 103 

5.2.3 Developed a Paradigm for Real Time Implementation ............................ 103 

5.2.4 A Closed-Loop BMI with Motor Control and Biologic Feedback .............. 103 

5.3 Improvements and Future Work ...................................................................... 104 

References ...................................................................................................................... 109 

Appendix A Adapted from “Prins et al. Representation of Natural Arm and Robotic 
Arm Movement in the Striatum of a Marmoset Engaged in a Two Choice Task” ......... 121 

Introduction to Body Schema and Tool Use ............................................................... 121 

Task and Results......................................................................................................... 123 

Mathematical Representation of the Different Clusters.............................................. 126 

Final Remarks ............................................................................................................. 131 

Summary ..................................................................................................................... 131 

 



x 
 

List of Tables 
 
Table 2-1: Trial Type And Different Actions Of The Monkey. (Success And Failure Trials)

 ................................................................................................................................. 27 

Table 2-2: Robot Action For Different Types Of Trials. (Standard And Catch Trials) ..... 27 

Table 2-3: Summary Chart Of Experiment Variables At The Time Of The Trial Start .... 32 

Table 2-4 Summary Chart Of Experiment Variables At The Time Of Robot Movement . 33 

Table 2-5: Number Of Significant Units For Each Type During Robot Movement (0.7sec 
Of Data) Alpha = 0.1................................................................................................ 35 

Table 2-6: Accuracy Percentages When Aligning The K-Means Clusters With The 
Different Categories (Window 0.2-0.7sec Relative To Robot Movement) Two-
Target Reach Task .................................................................................................. 41 

Table 2-7: Distribution Of Trials In The Data Sets Analyzed ........................................... 44 

Table 2-8: Frequency Bands For Lfps .............................................................................. 48 

Table 2-9: Trial Initiation Classification From SVM .......................................................... 50 

Table 2-10: Trial Initiation Classification From Logistic Regression ................................ 50 

Table 3-1: Confusion Matrix For Different Unsupervised Clustering Methods ................ 74 

Table 3-2: Confusion Matrix For Different Supervised Classifiers And Different % Of 
Training Data. .......................................................................................................... 75 

Table 3-3: Algorithm For The HRL BMI ............................................................................ 78 

Table 4-1: Algorithm For The Closed-Loop HRL BMI ...................................................... 89 

Table 4-2:  Number Of Significant Units For MI Neurons (ANOVA, Alpha = 0.1) ........... 90 

Table 4-3:  Number Of Significant Units For Nacc Neurons (ANOVA, Alpha = 0.1) ....... 91 

Table A-1: Overall Accuracy Of Clustering Using K-Means For Different Window Sizes. 
The Accuracy Of Hold Time Is Given As Baseline (Chance Level) [96] .............. 125 

 



xi 
 

List of Figures 
 
Figure 1.1: (A) Closed-Loop BMI. (B) Block diagram of the Wiener filter .......................... 5 

Figure 1.2: (A) Perception – Action – Reward Cycle (PARC). (B) Different Learning 
Architectures in the Brain: cerebellum for Supervised Learning (guided by the error 
signal), the basal ganglia (BG) for Reinforcement Learning (guided by the reward 
signal) and the cerebral cortex for Unsupervised Learning (guided by the statistical 
properties of the input signal itself) [42]. ................................................................... 9 

Figure 1.3: A more Biologically Realistic Architecture incorporating a reward signal from 
the brain ................................................................................................................... 11 

Figure 1.4: (A) Classical Reinforcement Learning Architecture. (B) Reinforcement 
Learning Architecture as applied to Brain-Machine Interfaces............................... 12 

Figure 1.5: Value Function Estimation (VFE) network. [61] ............................................. 13 

Figure 1.6: (A) Classical Actor Critic Reinforcement Learning Architecture. (B) Block 
diagram of the symbiotic BMI Controller. Actor driven by the MI and Critic driven by 
the NAcc .................................................................................................................. 14 

Figure 2.1: (A) – Microelectrode Arrays. (B) – Target Locations with reference to the 
skull. (C) -Target Depths. (D) – Recording Interface. (a) Filtered Raw Signal for 
each channel. (b) Snippets after threshold for each channel. (c) CAR of each 
channel. (d) Spikes for one channel with two sorts – red and yellow. Background 
activity given no sort is shown in grey. (e) Sorted Spikes and background activity.
 ................................................................................................................................. 24 

Figure 2.2: Experiment Setup with the data acquisition system. ..................................... 28 

Figure 2.3: (A) Experiment Setup. (a) Trial Start – Animal triggers trial (b) Robot moves 
out from opaque shield, target A/B lights up (c) Animal makes arm movement to 
reach sensor for A trials/ keep hand still for B trials (d) Robot moves to correct 
target (standard trials) or incorrect target (catch trials). (B) Time line for the trials. 
TOP: A trials. BOTTOM: B trials ............................................................................. 29 

Figure 2.4: Standard Trials. (A): A trials: (a) Animal triggers trial (b) Robot moves out 
from opaque shield, target A lights up (c) Animal makes arm movement to left 
reach sensor (d) Robot moves to target A. (B): C trials: (a) Animal triggers trial (b) 
Robot moves out from opaque shield, target C lights up (c) Animal makes arm 
movement to right reach sensor (d) Robot moves to target C. (C): ‘Timeline for 



xii 
 

trials in black. Hold time shown in green and RM shown in red. RM = Robot 
Movement ................................................................................................................ 32 

Figure 2.5: Mean Spike Count for standard and catch trials with relative to the Robot 
Movement (RM). ...................................................................................................... 34 

Figure 2.6: Variance of data relative to RM. Red: ‘A’ trials . Green: ‘B’ trials. Window 0.2-
0.7sec (S1+S2+S3) ................................................................................................. 37 

Figure 2.7: Data clustered in PC space using k-means. Blue/ Green: Cluster 1. Yellow: 
Cluster 2. ‘+’: standard. ‘o’: catch and ⊗: cluster centers. Window 0.2-0.7sec...... 40 

Figure 2.8: Data from 1 session. ‘+’ standard trials. ‘o’ catch trials. ................................ 41 

Figure 2.9: Classification accuracy (average accuracy of 100 simulation) for NAcc data 
success vs catch for Duke (A/B) and Don (C/D). 500msec bins (A/C) and 
1000msec bins (B/D). .............................................................................................. 46 

Figure 2.10: Classification accuracy (average accuracy of 100 simulation) for MI data left 
vs right arm movement for Duke (A/B) and Don (C/D). .......................................... 47 

Figure 2.11: Frequency Response of the 5 different filters used in LFP pre processing 49 

Figure 2.12: Session 1 classification Results (Red – actual, Blue – predicted) .............. 50 

Figure 2.13: Session 2 classification Results (Red – actual, Blue – predicted) .............. 51 

Figure 3.1: Architecture for Biological Actor-Critic Reinforcement Learning. .................. 53 

Figure 3.2: Node ‘𝑖’ of the neural network for the Actor ................................................... 54 

Figure 3.3: How the distance is converted to the confidence and reward. thr=threshold 
(A) Confidence Only. (B) Confidence and Reward. At lower confidence values, the 
Critic confidence is low while at higher confidence values, the Critic is 100% 
confident. ................................................................................................................. 56 

Figure 3.4: (A) An Artificial Neural Network for the Critic with the Reward Value and the 
Confidence. (B) An Alternate Method to Obtain the Critic Confidence Level. Data 
points further away from the decision boundary will have higher confidence and 
the points closer to the decision boundary have lower confidence. ....................... 58 

Figure 3.5: Using a probabilistic method to arrive at the confidence. P1+P2=1. abs(P1-
0.5) or abs(P2-0.5) can be used as confidence measure. ..................................... 58 



xiii 
 

Figure 3.6: An Example of Synthetic Data for 2 states (o and x) in PC space. (A) 
Standard stimulation method. The PC space is able to discard the noise and give 
two clear clusters. (B) With Additional Probability Component in the Stimulation. 
The PC space is more overlapped.......................................................................... 59 

Figure 3.7: Performance of the BMI Vs the Critic accuracy during open loop simulations 
(mean ± standard deviation).................................................................................... 62 

Figure 3.8: Modified Actor-Critic RL showing how Reward and Confidence terms were 
incorporated in the architecture............................................................................... 63 

Figure 3.9: (A) Performance of the BMI Vs the Critic accuracy with and without 
confidence inbuilt. (mean ± standard deviation. 1000 simulations. 100 trials per 
simulation). .............................................................................................................. 65 

Figure 3.10: Performance of each decoder during the length of the experiment for one 
simulation starting at random initial conditions. 100 trials. Red: Action 1, Blue: 
Action 2, Black: Critic. ............................................................................................. 67 

Figure 3.11: (A & B) Effect of noise on the overall performance. (C) Results of the 
simulations where the monkey controls the robot arm (offline simulations). Dotted: 
1:1 relationship. ....................................................................................................... 70 

Figure 3.12: (A) Variance accounted for in the first 10 PCs. (B) data in PC space with the 
clusters from k-means. ............................................................................................ 73 

Figure 3.13: How the different training and testing data quatities effect the mislabeled 
trials. Data in PC space with LDA classification ..................................................... 76 

Figure 3.14: Data in PC space with LDA classification. 10% for training and 90% for 
testing. ..................................................................................................................... 79 

Figure 3.15: Data LDA & PCA (10% training). The blue trace for each plot shows the 
results if there was no threshold used and the red traces show how the threshold 
affects the different accuracy levels. ....................................................................... 80 

Figure 3.16: Performance of the system in one simulation and how threshold affects the 
performance. Blue – type of target. Red – system performance +ve-correct, -ve-
wrong). Black – absolute of the critic output with confidence – y axis here shows 
the critic output (for black traces only). (A) No threshold (B) Threshold=0.12. (C) 
Threshold=0.24........................................................................................................ 82 

Figure 3.17: Block Accuracy for the 3 example simulations ............................................ 83 



xiv 
 

Figure 3.18: Weight traces for each of the simulations in the previous figure. The weights 
up to iteration number 550 is for the memory and epoching of the first 10 trials. 
(A/B) No Threshold. (C/D) Threshold=0.12. (E/F) Threshold=0.24. (A/C/E) Hidden 
Weights (B/D/F) Output Weights............................................................................. 84 

Figure 3.19: (A) How the Actor accuracy changes with the threshold. (B) How the 
Convergance (Accuracy of the last x% of trials) changes with the threshold level.
 ................................................................................................................................. 85 

Figure 3.20: Distribution of the simulations for each threshold level. X-axis: accuracy 
percentage. Y-axis: threshold level. The red traces show lower thresholds, green/ 
blue with medium thresholds and purple with higher thresholds. Z-axis: how many 
simulations showed this accuracy........................................................................... 86 

Figure 4.1: Architecture for Biological Actor-Critic Reinforcement Learning. .................. 88 

Figure 4.2: Average classification accuracy (100 iterations) for classifying A trials (left 
arm movement) and C trials (right arm movement) from MI neurons for different 
windows ................................................................................................................... 90 

Figure 4.3: Average classification accuracy (100 iterations) for classifying rewarding 
trials and non-rewarding trials from NAcc neurons for different windows .............. 91 

Figure 4.4: 100% accurate Critic CL experiment, with previous week’s initial conditions. 
(A) Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer 
Weights. ................................................................................................................... 93 

Figure 4.5: 100% accurate Critic CL experiment, with previous week’s initial conditions. 
(A) Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer 
Weights. ................................................................................................................... 93 

Figure 4.6: Accuracy (moving average) for the Perfect Critic CL experiment. Blue – with 
previous week’s weights. Red – with previous session’s weights. Red only up to 50 
trials. ........................................................................................................................ 94 

Figure 4.7: 100% accurate Critic CL experiment – offline simulations – distribution of 
overall accuracy. (A)  with previpous week’s initial conditions. (B) with previous 
session initial conditions. ......................................................................................... 94 

Figure 4.8: NAcc Critic CL experiment, with no threshold. (A) Performance of each trial. 
(B) Hidden Layer Weights. (C) Output Layer Weights. .......................................... 95 

Figure 4.9: NAcc Critic CL experiment, with threshold. (A) Performance of each trial. (B) 
Hidden Layer Weights. (C) Output Layer Weights. ................................................ 96 



xv 
 

Figure 4.10: Accuracy (moving average) for the NAcc Critic CL experiment. Blue – with 
no threshold. Red – with threshold. ........................................................................ 97 

Figure 4.11: 100% accurate Critic CL experiment – offline simulations – distribution of 
overall accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9. .................. 97 

Figure 4.12: Inaccurate Critic CL experiment – offline simulations – distribution of overall 
accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9. .............................. 98 

Figure A.1: Mean Spike count for one neuronal signal showing left (red) and right (blue) 
(Session 1). Bin size 25ms. Top: Natural Arm Movement. Time relative to Go 
Signal. Bottom: Robot Arm Movement. Time relative to the Robot Movement [96].
 ............................................................................................................................... 123 

Figure A.2:  (A) Data in the first and second principal component space during Robot 
Movement. ............................................................................................................. 125 



xvi 
 

Abbreviations  
 

AD :  Alzheimer’s Disease 

ADL  :  Activities of Daily Living 

ALS :  Amyotrophic Lateral Sclerosis 

ANN :  Artificial Neural Network 

AP :  Anterior-Posterior 

BCI :  Brain Computer Interface 

BG :  Basal Ganglia 

BMIs : Brain-Machine Interfaces 

CA :  Computer Agent 

CAR :  Common Average Reference 

CL :  Closed-Loop 

CRI :  Constant Rate Infusion 

DA :  Dopamine 

DBS : Deep Brain Stimulation 

ECoG  : Electrocorticography 

EEG :  Electroencephalography 

FES :  Functional Electrode Stimulation 

FFT :  Fast-Fourier Transform 

HRL :  Hebbian Reinforcement Learning 

IA :  Interaural 

IM :  intramuscular 

k-NN :  k-Nearest Neighbor 

LDA :  Linear Discriminant Analysis 

LFP :  Local Field Potentials 



xvii 
 

LIS :  Locked-In Syndrome 

MI : Primary Motor Cortex 

ML :  Medial-Lateral 

MLP :  Multi-Layer Perceptron 

MSP :  Medium Spiny Projection 

NAcc :  Nucleus Accumbens 

NHP :  Non-Human Primates 

OL :  Open Loop 

PARC :  Perception Action Reward Cycle 

PCA :  Principal Component Analysis 

PCs :  Principal Components 

PE :  Processing Element 

PVA : Population Vector Algorithm 

RL : Reinforcement Learning 

RLBMI : Reinforcement Learning Brain-Machine    

        Interface 

RM :  Robot Movement 

SCI :  Spinal Cord Injury  

SL :  Supervised Learning 

SNR :  Signal to Noise Ratio 

SUA :  Single Unit Activity 

SVM :  Support Vector Machine 

TD :  Temporal Difference 

TDNN :  Time Delay Neural Network 

VFE :  Value Function Estimator 

wrt :  with respect to 



 
 

1   

Chapter 1 Introduction and Background 

 Motivation 1.1

According to 2009 statistics published by Christopher Reeve Foundation, 

paralysis affects 1.9% (5.596 million people) of the U.S. population. Various 

types of accidents (motor vehicle, work place, and falling) accounted for the great 

majority of spinal cord injuries. Additionally, stroke (29%), spinal cord injury (SCI) 

(23%), and multiple sclerosis (17%) were the other causes. 250,000 Americans 

are spinal cord injured with approximately 11,000 new injuries occurring each 

year. The annual health care, living expenses, and estimated lifetime costs that 

are directly attributable to SCI vary greatly according to severity of injury. 

Average lifetime costs for quadriplegics are estimated at $1.35 million (age of 

injury 25). The percentage of SCI individuals unemployed eight years after injury 

is 63%. For amyotrophic lateral sclerosis (ALS) patients, annual incidence rate is 

roughly 2 people per 100,000 [1-3].  

For some kinds of paralysis like locked-in syndrome (LIS), there are 

therapies such as functional neuromuscular stimulation, which may help activate 

some paralyzed muscles. Another approach for treating loss of sensorimotor 

function is bypassing damaged areas with electronics, which is known as Brain-

Machine Interface (BMI). Several research groups have attempted to control 

external devices (computer cursor or robotic arm) or patient’s own limbs using 

functional electrode stimulation (FES) [4-7]. BMI research, including this study, is 
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motivated by the need to help such people with sensorimotor loss. This chapter 

gives an introduction to the work in the field of BMI.  

 Background of BMI Work 1.2

BMIs attempt to link the brain to the external environment. The BrainGate 

neural interface system showed that people with tetraplegia were able to use a 

neural interface system to control a robotic arm to perform three-dimensional 

reach and grasp movements. Subjects were able to control the robotic arm and 

hand over a broad space without explicit training, using signals decoded from a 

small population of motor cortex (MI) neurons recorded from a 96-channel 

microelectrode array [8-10]. While a simple task like this is possible, research 

has not yet been able to give a solution in terms of adapting BMI for activities of 

daily living (ADL). This section will discuss BMI classification and the work done 

in BMI decoders at present. 

1.2.1 BMI Classification 

Sensory, Motor and Cognitive BMIs 

BMIs depending upon the application are broadly divided as sensory, 

motor (neural prosthesis), or cognitive BMIs. Sensory BMIs like cochlear implants 

restore sensory function, while motor BMIs restore motor functions. This takes 

place either by stimulating a person’s own limb, as in the case of FES, or through 

control of an external device (computer cursor, prosthetic device, robotic arm), 

like the BrainGate system in humans [4-8]. Cognitive BMIs restore neural 

interactions within damaged internal networks while incorporating perception. 
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Therapy for Alzheimer’s Disease (AD) by Deep Brain Stimulations (DBS) is an 

example of cognitive BMIs [11]. 

Adaptive Decoders and Static Decoders 

A decoder in BMI is what interprets the neural signals and converts them 

to an executable action(s). Decoders can be divided broadly into static and 

adaptive decoders based on the weight (parameter) update. Adaptive decoders 

change the decoder parameters (weights) to make adjustments to changes in the 

neural input, while static decoder weights are fixed and do not update. In 

research, animals have learned to gain control of static decoders over longer 

periods of time. However, adaptive decoders are more popular as they are able 

to reorganize and update themselves amidst large input perturbations [12-14]. 

Supervised, Semi-Supervised and Unsupervised Learning 

Machine learning techniques are divided based upon the assistance 

needed for learning; supervised, unsupervised, and semi-supervised learning. 

Supervised Learning (SL) infers a function from labeled training data, which in 

BMI applications can either be real or inferred kinematic signals. Supervised 

training requires an explicit training signal, whereas, in cases of severe paralysis 

or amputation of bilateral limbs, it may not be possible to collect these training 

signals. Therefore, there is a need to develop other means of acquiring training 

signals and using them to adapt neural decoders. In contrast, unsupervised 

learning techniques do not rely on external training signals, but only on the 

patterns in the input data. Semi-supervised learning techniques are a 

compromise between supervised and unsupervised learning.  
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Synchronous and Asynchronous Control 

Synchronous control systems are synchronized to an external reference, 

usually a go cue given by the experimenter indicating the beginning of ‘trial’. In 

synchronous BMIs, the decoded neural data is channeled to the actuator only 

during these trial periods. In contrast, asynchronous BMIs can be connected to 

the actuator continuously and the control can be intermittent, starting whenever 

the user wishes to operate the actuator. Most of the work done in these self-

paced controllers is on non-invasive controllers or Brain Computer Interfaces 

(BCI). 

1.2.2 Decoders Used in BMIs 

The initial animal BMIs were open loop (OL), with no feedback provided 

on the accuracy of the decisions made [15]. Subsequent closed-loop (CL) 

experiments were performed where the animal had an audio and/or visual 

feedback (Figure 1.1 A), which changed the brain states related to perception. 

But these brain states were not a part of the BMI [15]. This section explains 

briefly the common decoders used in research at present. The equations in each 

sub-section is independent from other sub-sections. 

Linear Regression 

A robotic arm was controlled in real time by predicting the arm trajectory of 

an owl monkey from neuronal activity of multiple cortical areas using both linear 

regression (Wiener filter – Figure 1.1 B) and artificial neural network (ANN) 

algorithms. This was shown both when the monkey had visual feedback and 

when he did not. The linear model used to predict hand position is; 𝑌 = 𝑋𝑋;  
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where 𝑌 is the vector of kinematic and dynamic variables and 𝑋 is the input 

vector of neuronal firing rates with time lags [15-17]. 

 
Figure 1.1: (A) Closed-Loop BMI. (B) Block diagram of the Wiener filter 

Matrix 𝑋 is solved by 

 𝑨 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 Eq. 1.1 
      

The error 𝜖 used to adapt the weight matrix is the difference between the 

desired signal 𝑑 and the output of the decoder 𝑦 (Figure 1.1 B). 

 ϵi = di − yi Eq. 1.2 

Multiple regression can be used for joint kinematics and end point control 

of computer cursor/ robotic arm for fast and accurate control of cursor/ robotic 

arm, for spatial locations. The estimate of the position 𝑅 at time 𝑡 is given by 

 𝑅(𝑡) =  ��𝑎𝑖,𝑗𝑁(𝑡+ 𝑖 , 𝑗)
𝑗𝑖

 Eq. 1.3 

where 𝑖 is the time index and 𝑗 is the cell number index. 𝑁(𝑖, 𝑗) is the 

activity of cell 𝑗 at time 𝑖 and 𝑎𝑖,𝑗  represents the corresponding ‘weight’ [18-21]. 
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Linear regressions rely heavily on the error signal, require extensive training and 

are confined to familiar movements. 

Population Vector Algorithm 

The population vector algorithm (PVA) assumes a cell’s firing rate is a 

function of the velocity vector associated with the movement performed by the 

individual. This is based on the use of tuning curves (tuning curve relates the 

mean of movement-related cell activity to movement direction), which provides a 

statistical relationship between neural activity and behavior. The tuning (or 

preferred direction) of each cell in the ensemble conveys the average firing of a 

cell given a particular movement direction [6, 11, 22-26]. The PVA model relating 

the tuning to kinematics is given by 

 𝑠𝑛(𝑉) = 𝐵 ∙ 𝑉 = |𝐵||𝑉|𝑐𝑐𝑠 𝜃 Eq. 1.4 

where 𝑠𝑛(𝑉) gives the firing rate for 𝑛P

th neuron with velocity vector 𝑉. The 

preferred direction is given by the weight vector, 𝐵. 𝜃 is the angle between the 

cell’s preferred direction and movement direction. The magnitude of the vector 

contribution of each neuron in the direction of 𝑃 is given by 

 𝑤𝑛(𝑉, 𝑡) =  𝑠𝑛(𝑉)− 𝑏0𝑛 Eq. 1.5 

where 𝑏0 is the mean firing rate for 𝑛P

th neuron. The population vector 𝑃 is 

given by 

 P(V, t) =  � 𝑤𝑛(𝑉, 𝑡)
𝑁

𝑛=1

𝐵𝑛
||𝐵𝑛||

 Eq. 1.6 



 
 
 

7 

 
   

Kalman Filters 

Kalman filter is a special condition of Bayesian recursive filter with the 

assumption of linearity and normal distribution (linearity and normality not 

assumed in the case of extended and unscented kalman filters). Several groups 

have adopted Kalman filter to predict movement trajectories where the system is 

assumed to be a linear dynamical system [27-33]. The Kalman filter estimates 

the next state, �̅�(𝑡), of a linear dynamical system based on the previous state. In 

BMI applications, the states are the hand position, velocity, and/or acceleration. 

The next state is given by 

 �̅�(𝑡) =  𝑋 𝑥(𝑡 − 1) + 𝑢(𝑡)   Eq. 1.7 

and the output mapping (measurement prediction) is given by  

 𝑧̅(𝑡) =  𝐶 �̅�(𝑡) + 𝑣(𝑡) Eq. 1.8 

where 𝑢(𝑡) is zero-mean Gaussian noise, 𝑣(𝑡) is zero-mean Gaussian 

measurement noise and 𝑥(𝑡 − 1) is a vector of neural firing rates. The update 

equation is given by 

 𝑋𝑒𝑒𝑒 =  �̅�(𝑡) + K (𝑧(𝑡)− 𝑧̅(𝑡)) Eq. 1.9 

where 𝑧(𝑡) is the actual measurement and 𝑧(𝑡)− 𝑧̅(𝑡) gives the correction 

term which is the difference between the actual and predicted measurement. 𝐾 is 

the Kalman gain. 

Recalibrated Feedback Intention-Trained Kalman Filter (ReFIT-KF) is a 

modification of the Kalman Filter to include a feedback perspective introducing a 
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causal intervention. The result alters the modeling assumptions and the training 

method [34-36]. 

 Incorporating Feedback 1.3

For decoders used in BMI applications, we need to incorporate more 

biologic realism in order to have a completely autonomous system. The need for 

a more biologically realistic BMI is to have the ability to interact with the human 

brain, not only on a motor level, but also on a cognitive level. A paradigm for 

mutual adaptation (or co-adaptation) between humans and machines is important 

for neural rehabilitation and will open a new window for symbiotic human 

machine research [37]. This section focuses on using reinforcement learning 

(RL) as a way of incorporating motor and cognitive interactions in the BMI 

decoders. 

1.3.1 Reinforcement Learning in the Brain 

The perception–action–reward cycle (PARC) is the circular flow of 

information from the environment to sensory and motor structures and back to 

the environment completing the cycle during the processing of goal-directed 

behavior (Figure 1.2 A). All forms of adaptive behavior require PARC and the 

processing takes place both in series as well as parallel [38, 39]. The control of 

the goal-directed actions relies on the operation of an information-movement 

cycle. Every movement gives rise to a specific flow. This specificity translates 

into the existence of a continuous signal to inform the Actor about the validity of 

the produced movements with respect to the task at hand [40].  
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Different computations hypothesized to be occurring in separate brain 

regions are described in Figure 1.2 B: the cerebellum for SL (guided by the error 

signal), the basal ganglia (BG) for RL (guided by the reward signal) and the 

cerebral cortex for unsupervised learning (guided by the statistical properties of 

the input signal itself) [41, 42]. The principal components of the BG are the 

striatum, the pallidum, the substantia nigra and the subthalamic nucleus. 

Research has shown that the BG is involved in various aspects of psychomotor 

behavior even though it is not a major sensory relay nor a coordinating neuronal 

system [43].  

 
Figure 1.2: (A) Perception – Action – Reward Cycle (PARC). (B) Different Learning Architectures 
in the Brain: cerebellum for Supervised Learning (guided by the error signal), the basal ganglia 
(BG) for Reinforcement Learning (guided by the reward signal) and the cerebral cortex for 
Unsupervised Learning (guided by the statistical properties of the input signal itself) [42]. 

This kind of RL in the brain has motivated researchers to find alternative 

approaches to building BMIs. When mimicking RL in the brain, we need to find a 

structure in the brain that will give us a reward signal. Obtaining reward 

information has a variety of challenges associated with it. Much research has 

gone into identifying reward centers in the brain [44-47]. Of these centers, the 

nucleus accumbens (NAcc) is a main region in the ventral striatum and plays a 
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key role in the linking of reward to motor behavior and has been hypothesized to 

give the error signal for RL based BMIs [48-53]. 

1.3.2 Engineering a Biologically Realistic BMI 

The PARC in goal-directed behavior provides key concepts in developing 

a new framework for BMI. The PARC relies on continuous processing of sensory 

information that adapts behavior and is used to guide goal-directed actions. This 

entire process is regulated by external environmental and internal neural 

feedback, which in turn guides the adaptation of computation and behavior [37, 

38, 40, 54, 55].  The intention is to establish a direct communication channel 

between the user’s brain and the machine with the goal of sharing the PARC with 

the user [37]. However, unlike the PARC that is central to animal interaction with 

the world, the PARC in a co-adaptive BMI will be distributed between the user 

and the computer agent (CA), thus incorporating two intelligent entities [37]. 

External training signals are not needed for the BMI, if the sensorimotor process 

interacts with the movement trajectories. The hypothesis is that the neural activity 

represents some form of evaluative feedback of the actions and can contribute to 

shaping future motor behaviors [38, 40, 54, 55]. To come up with a biologically 

realistic decoder, we need to incorporate both the action and reward as seen in 

Figure 1.3. 
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Figure 1.3: A more Biologically Realistic Architecture incorporating a reward signal from the brain 

1.3.3 Reinforcement Learning Decoders 

Conventional RL Decoders 

RL provides a method of biological and computational learning that does 

not depend on an explicit training signal as in SL [56, 57]. The conventional RL 

paradigm involves an “agent” and an “environment” [58]. The agent is an 

intelligent being (e.g. computer algorithm) and the environment is anything that 

the agent interacts with and is able to influence through its actions (Figure 1.4 A). 

The agent makes an action at time 𝑡, which changes the state of the environment 

from 𝑆𝑒 to 𝑆𝑒+1 and receives the reward 𝑟𝑒+1. The goal of the agent is to maximize 

the cumulative reward (or return) 𝑅𝑒 

 
𝑹𝒕 = � 𝜸𝒏−𝒕+𝟏𝒓𝒏

∞

𝒏=𝒕+𝟏
 

 
Eq. 1.10 

where 𝑟𝑛 is the reward earned at time 𝑛. The future rewards are 

discounted by the discount factor 𝛾 (≤ 1). The agent does not have knowledge if 

the selected action is optimal at the time the decision is made. This is only known 

later. By selecting suboptimal actions, the agent is “exploring”. The agent must 
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“exploit” the situation by making a decision when he thinks it is optimal. There is 

always a dilemma between “exploration” and “exploitation” in RL. 

 
 Figure 1.4: (A) Classical Reinforcement Learning Architecture. (B) Reinforcement Learning 
Architecture as applied to Brain-Machine Interfaces  

The first BMI application of this architecture is shown Figure 1.4 B. The 

Agent is the BMI decoding algorithm and the Environment comprises of the 

user’s brain, robot arm and the targets. The user acts through the BMI to 

accomplish tasks in the environment. The positions of the prosthetic and the 

target are the states of the environment. Since the user cannot move, their 

actions are a high level dialogue (neural modulations) with the BMI. The user 

seeks to learn a value for each action (neural modulation) given the relative 

position of the prosthetic (state) and the goal in order to achieve rewards [59].   

This was experimentally shown to be a success for a rat involved in a 2 

choice decision making task controlling a robot [60]. The value of the action 

selected needed to be estimated, and the value function estimator (VFE) was a 

fully connected multilayer perceptron (MLP) with three layers and hyperbolic 
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tangent as the activation function at the hidden layer nodes (Figure 1.5) [61]. The 

VFE 𝑄𝑘(𝑆𝑒) is given by 

 𝑄𝑘(𝑆𝑒) = � tanh�� 𝑠𝑖𝑤𝑖𝑗
𝑖

�
𝑗

𝑤𝑗𝑘 = �𝑛𝑛𝑡𝑗(𝑠𝑒) ∙ 𝑤𝑗𝑘
𝑗

 Eq. 1.11 

where 𝑆𝑒, the neural state vector is the input to the MLP, and each output 

layer processing element (PE) estimates one action value given 𝑆𝑒 and each PE 

also has a bias input. 

  
Figure 1.5: Value Function Estimation (VFE) network. [61] 

Actor-Critic RL Paradigm  

The next step to the RLBMI is to design a paradigm to incorporate the 

state signals from the brain and translate the reward directly from the user. For 

this we used the traditional Actor-Critic RL BMI architecture as shown in Figure 

1.6 A. In this architecture, the Actor is used to select actions, and the VFE is 

known as the Critic, because it criticizes the actions made by the Actor [58]. After 

each action selection, the Critic evaluates the new state to determine whether the 

action selected led to a better state or worse state. This is given by the temporal-

difference (TD) error 𝛿𝑒 . 
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 δt = rt+1 + γV(St+1)− V(St) Eq. 1.12 

where V(∙) is the value function implemented by the Critic, 𝑟𝑒+1 is the 

expected value of the reward at time 𝑡 + 1 and γ is the discount factor to reduce 

the weight of V(St+1) (i.e. future points). If the TD error is negative it suggests 

that the action led to a worse state [58]. 

 
Figure 1.6: (A) Classical Actor Critic Reinforcement Learning Architecture. (B) Block diagram of 
the symbiotic BMI Controller. Actor driven by the MI and Critic driven by the NAcc 

We adopted this Actor-Critic RL approach to develop a new method of 

decoding for the application in BMI [54, 61, 62].  In this approach, the Actor is 

driven by motor neural inputs and translates them into behavioral actions. The 

role of the Critic is to adapt the Actor based on experience. The only feedback 

the Critic requires is about the appropriateness (correct/ rewarding or incorrect/ 

non-rewarding or penalizing) of the action selected. This feedback signal can be 

obtained from the external environment or from the brain itself. The architecture 

in Figure 1.6 B is adopting the conventional RL in Figure 1.6 A to a biological 

learning paradigm of Figure 1.2 B. This was a first step in integrating robot action 

with biologic perception [60]. 

(A)       (B) 
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The first step in this new Actor-Critic RL paradigm was to have an 

adaptive agent (or “Actor”) that is able to make decisions based on a biological 

source. This was successfully implemented for a two-target choice task where a 

rat operated a robot arm. The adaptive algorithm was a time delay neural 

network (TDNN) with back-propagation [60]. The Critic was a value estimator, 

which used the entire trial labeled as either +1 or –1. The performance of the 

Critic in this case was slightly above chance. Another finding of this was that the 

Actor was able to maintain overall performance up to 10% inaccuracy of Critic, 

but the performance dropped drastically as the Critic accuracy reduced further 

[60]. 

If signals from this structure are to be used to adapt BMI decoders, a first 

step is to determine how to process and extract reward signals from it. The 

second step is, given the characteristics of the information related to reward that 

we can extract, to ascertain how best to use it in a biologically realistic BMI 

architecture. In the chapters to follow, we will present the processing and 

extraction of these reward signals and an engineering solution of how to 

incorporate these in to BMIs. 

 Asynchronous Brain-Machine Interfaces 1.4

Present BMIs, which are time-locked to a trial start time (synchronous 

BMIs), instruct the algorithm output when to be connected to the external device 

or prosthesis. Real life applications for such well-defined tasks are limited. When 

the subject is not engaged in the task, these synchronous BMIs are manually 

disengaged from the actuator. Having an autonomous gating mechanism to know 
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when the person is engaged and disengaged in the task will be helpful to have 

the BMI continuously ready but only active when the person is interested in 

performing the task. This will enable the BMI to be connected to the actuator 

24/7, even when the subject returns home after the initial setup. A BMI that is not 

time-locked is an asynchronous BMI. Furthermore, such asynchronous BMIs can 

be used as a gating mechanism or switch to activate a call button for a nurse or 

helper when the patient requires attention. These asynchronous BMIs have two 

requirements; to be available (onset) to control the actuator at any given time as 

needed by the user and to recognize rest phase (offset) from the movement 

initiation in order for the user to control it effectively. 

The first step in developing an asynchronous BMI is to differentiate 

initiation phase from the rest and movement phases. Several groups have done 

this using beta signals (13-30 Hz) of electroencephalography (EEG) [63, 64] and 

electrocorticography (ECoG) [65-68] signals. One method is to use the phase 

prior to movement onset, perform Fast-Fourier Transform (FFT) of each channel 

and use the averaged signal spectrum to classify states using a support vector 

machine (SVM); this process yielded an accuracy of 71.7% [67]. One of the 

challenges faced during decoding movement onset is the imbalance in positive 

and negative examples. A weighted SVM can been used to overcome this. Using 

an empirically determined threshold value the movement onset has been 

classified with true negative (specificity) rates 73%-94% while the true positive 

(sensitivity) rates are 26%-73% [66]. Another method of analyzing the ECoG is 

using wavelet transform (time-frequency representation of the ECoG signals for 
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each electrode) and predicting the movement onset using a least-square 

regression [65]. Least-squares regression was used with leave-one-out cross 

validation for training the decoder, and overall accuracy levels of 98-99% was 

reported [68]. However, it must be noted that the overall accuracy rates will be 

higher due to the imbalanced trial numbers. The group also reported that the 

false positive states occurred when the animal was resting [68]. 

Few groups have attempted to implement the asynchronous control. 

Linear discriminant analysis (LDA) is used to classify the states of EEG-based 

controllers. In this controller, the output is a posterior probabilistic distribution, 

which will give the probability that each trial belongs to each state (rest or move). 

The average accuracy of this system was 86.7% and 66.7% for 2 subjects [69]. A 

normalized low frequency asynchronous switch has been developed for EEG 

applications which incorporates different classification techniques; k-means, 

learning vector quantization, fuzzy adaptive resonance theory and Karhunen-

Loeve transform. The group reported an overall accuracy level of 97% with 68% 

false positive rate [70]. During self-paced BCI control, the algorithm can classify 3 

states: baseline, plan and go, for the state estimation with accuracies above 80% 

[71]. 

The basal ganglia have been shown to be involved in gating sensory 

information in the motor loop [72-75]. Abnormalities in the ventral striatum have 

been shown to affect limbic regions in sicknesses like the Tourette’s syndrome 

where there is sensorimotor dysfunction [76]. We investigate the NAcc which is a 
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nuclei in the ventral striatum to assess if the gating signal can be obtained to 

control the flow of information in a BMI.  

 Specific Aims 1.5

1.5.1 Investigate role of Striatum during a Reaching Task and Test the 
feasibility of Using Striatal Signals as Feedback for a BMI  

This aim was designed to investigate the feasibility of utilizing striatal 

signals as feedback reward/ error signals for a Reinforcement Learning based 

BMI. Microwire arrays were implanted each into the MI and the NAcc of a 

marmoset monkey. Animals were trained to control a robotic device by reaching 

to targets. Striatal neural activity was analyzed when the animal interacted with a 

robot during the reaching task. Studies were done to investigate reward/error 

representation and how it can be extracted from the striatum. It was also 

examined if movement onset can be extracted from the striatum during the 

reaching task. The results of this aim demonstrate the feasibility of using signals 

from the striatum as reward/ error signals and/or trial onset that can be used to 

design an intelligent closed-loop BMI control architecture.  

1.5.2 Development of an Synchronous Closed-Loop BMI Control Algorithm 

In this study, a biological feedback from the brain was used for a RL 

based BMI. Simulated and surrogate data sets were used to design the control 

architecture and test the feasibility.  
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1.5.3 Use the Striatum in Conjunction with MI to Control a Closed-Loop 
BMI 

Once the closed loop BMI control paradigm was developed, it was tested 

on a marmoset monkey for a two choice robotic arm control task. The system 

was tested for the effects of reliability of feedback. 

 Outline of Dissertation 1.6

The motivation of the current work is to bring research a step closer in to 

adapting BMI for ADL. The current chapter gave the motivation and background 

of the BMI work at present. The second chapter is on experimental work for 

analyzing the striatal data for reward signal and trial onset. The third chapter 

focuses on computer simulations using synthetic data in order to test the 

hypothesis that if a reward signal can be extracted, using this information 

intelligently, can improve performance. In the fourth chapter we implement a 

closed-loop BMI experiment with a marmoset monkey and compare three 

scenarios: perfect Critic feedback, real Critic feedback with and without 

confidence measure. In the fifth and final chapter are the present challenges and 

future work in this area. During the analysis of the striatal data, an interesting 

phenomenon was discovered which is relevant to BMI field. We were able to 

cluster left and right robot movement with opposing natural hand movements. 

These findings are reported in the appendix. 
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Chapter 2 Experimental Data Analysis 

This chapter explains the data acquisition methods including the surgical 

procedure, experimental paradigm and the data analysis of the experiments. 

 Data Acquisition and Surgical Procedure 2.1

In order to acquire signals from the brain required to drive the BMI, 

microelectrode arrays were implanted surgically in a common marmoset 

(Callithrix jacchus). Two neural signals were required to control the Actor-Critic 

RL paradigm; the Actor driven by the cortical structures (MI) and the Critic driven 

by the subcortical structures (NAcc). All surgical and animal care procedures 

were consistent with the National Research Council Guide for the Care and Use 

of Laboratory Animals and were approved by the University of Miami Institutional 

Animal Care and Use Committee.  

2.1.1 Animal Model 

The common marmoset is a small New World primate, native to the 

forests in Brazil. Historically the common marmoset has been used in 

neuroscience, reproductive biology, infectious disease, and behavioral research 

and more recently, in drug development and safety assessment [77]. Their size, 

availability, cost, husbandry, biosafety and unique biological characteristics may 

represent an alternative species to more traditional non-human primates (NHP) 

[77-79]. The average height of an adult marmoset is 20–30 cm and average 

weight is 350 – 400g [78]. Their endocrinological and behavioral similarity to 

humans have in addition drawn a lot of attraction in the field of neuroscience [78].  
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The marmoset has advantages over the macaques in terms of animal 

welfare and practicality. They are available for laboratory use from well-

established captive colonies in national primate research centers, academic 

institutions, and commercial breeding facilities. Unlike macaques, marmosets do 

not carry herpes b virus (Macacine herpesvirus 1) [77], which is beneficial for 

their handlers. Their small relative size can also translate into lower caging and 

feeding costs and reduced floor space [78]. 

In addition, several marmoset brain atlas have been developed for 

neuroscience research [80-87] and extensions for stereotaxic equipment has 

been developed to make referencing easier for surgical procedures. In addition to 

all of these advantages, the smaller size of animal, leads to a more compact 

brain (8g on average) [88], and make it is easier to reach deep brain structures in 

comparison to larger NHP models which is one of the primary reasons we used 

this particular animal model. 

2.1.2 Electrodes  

Two microelectrode arrays were surgically implanted, each being a 16-

channel tungsten microelectrode array as shown in Figure 2.1 A, (Tucker Davis 

Technologies, FL) with a differential reference and a ground wire. Each microwire 

electrode was blunt cut with Polyimide insulation and 50μm in diameter. The 16 

electrodes were arranged in 2x8 configuration with row separation of 500μm and 

electrode separation of 250μm. For the final subject, the NAcc array was a 4x4 

configuration with electrode separation of 250μm. 
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2.1.3 Surgical Procedure 

For acquiring neural signals for arm reach, we targeted the hand and arm 

region of the primary motor cortex (MI). Reward information is represented in 

deep brain structures and therefore we implanted the second array in the 

striatum targeting the NAcc. To get the locations for each of the implants, we 

consulted different marmoset atlas [80-87] and selected the target locations as 

following with reference to the interaural (IA) plane. The implant for the MI was 

9mm AP and 4.5mm ML relative to the IA center with an insertion depth of 1.8-

2.0mm. The NAcc implant was 11.5mm AP and 2.3mm ML relative to IA center 

with a depth of 8.0mm. Figure 2.1 B shows the target locations with reference to 

the skull. Histological results show that in previous monkeys we were in the 

striatum. We will continue to refine targeting to get the best signals that could be 

used for a biological feedback. Since the two implants were close together, we 

used one craniotomy. Six screws were used for supporting the implants while 

one of these was used as the ground and reference point. Figure 2.1 C shows 

the depth for each implant.  

The animal was anesthetized with ketamine (10 mg/kg IM) and aseptically 

prepped for surgery. Constant Rate Infusion (CRI) ketamine was used 

throughout the surgical procedure to maintain anesthesia at a rate of 10-15 

mg/hr. The animal’s head was shaved prior to midline incision, after which the 

skin was retracted to expose the skull and the surface cleaned with hydrogen 

peroxide.  A craniotomy was made on the right hemisphere with the underlying 

dura opened as well. Electrical mapping stimulation was done to identify 
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arm/hand motor regions.  An electrode-recording array targeting the primary 

motor cortex was implanted, with electrophysiology measurements being made 

during the implantation to ascertain placement.  A second array was then 

implanted targeting the nucleus accumbens, again with electrophysiology 

measurements being made to ascertain position.  The craniotomy was then 

sealed and the recording electrode arrays anchored to the skull (leaving the array 

connectors accessible) using genta cement and several anchoring screws. Prior 

to recovery, the animal was given 0.02 ml buprenorphine (0.3 mg/ml) IM. 

2.1.4 Signal Processing 

Neural recordings were collected using a Tucker Davis Technologies RZ2 

system sampling at 24,414Hz and a band-pass filter 300-5000Hz. Local Field 

Potentials (LFPs) acquired with a 1-500Hz band-pass filter. Figure 2.1 D shows 

the spike interface during recording. A common average reference (CAR) was 

used to improve signal quality. The CAR was set up in such a way that if the 

signal to noise ratio (SNR) needed to be further improved, any of the electrodes 

could be removed from the CAR. This was necessary as the SNR varies with the 

electrode longevity and encapsulation [89-91]. Figure 2.1 D(a) is the signal after 

band-pass for one channel while Figure 2.1 D(b) shows the same for 16 

channels. Figure 2.1 D(c) shows the 16 channels after CAR. 
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Figure 2.1: (A) – Microelectrode Arrays. (B) – Target Locations with reference to the skull. (C) -
Target Depths. (D) – Recording Interface. (a) Filtered Raw Signal for each channel. (b) Snippets 
after threshold for each channel. (c) CAR of each channel. (d) Spikes for one channel with two 
sorts – red and yellow. Background activity given no sort is shown in grey. (e) Sorted Spikes and 
background activity. 

Isolating of spikes was done in real-time using standard spike sorting 

methods [92]. These were based on the shape and amplitude of action potential 

waveforms. A manual threshold level was set for each channel through visual 

inspection. Figure 2.1 D(d) and Figure 2.1 D(e) show the spike sorting for one 

channel. There is a larger amplitude waveform given a yellow sort and a smaller 

amplitude waveform given a red sort and background activity given no sort 



 
 
 

25 

 
   

(grey). Both multiunit and single unit neurons were recorded and used 

equivalently in all applications. Multiunit activity and single unit activity (SUA) 

collectively are referred to as neuronal signals. These neuronal signals (RAW or 

CAR) are used as input to the decoders [93, 94]. 

 Experimental Design  2.2

To use the NAcc in BMI context, we needed first gauge how the NAcc 

behaves during a robotic task. Neural data was analyzed when an animal is 

engaged with a robotic task. Two tasks (Go-No-Go and two-target reach tasks) 

were designed and the data analyzed with the intention of extracting the 

reward/error representation. 3 subjects were used for the 2 different experimental 

paradigms. Subject 1 (“Princeton”) was only for Go-No-Go task, while subject 2 

(“Duke”) was trained for both tasks and subject 3 (“Don”) was only trained for the 

two-target reach task. 

2.2.1 Go-No-Go Paradigm 

We designed a two-choice decision making task which included 

perturbations to test if robot incorrect (non-rewarding) actions would create a 

different neural response from the robot correct (rewarding) actions. The task 

was a simple go-no-go as shown in Figure 2.3 (A) and described below. The task 

was designed to investigate the representation of the NAcc during the robot 

movement. The animal was trained to move a robot arm to one of two targets to 

receive a food reward. The experimental timeline is shown in Figure 2.3 (B). The 

animal initiated trials by placing its hand on a touchpad for a random (0.7-1.2 

seconds) hold period. At the onset of the trial, an audio go signal was 
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administered that corresponded to a robot arm moving upwards, out from behind 

an opaque shield, and presenting its gripper. The gripper held either a desirable 

(waxworm or marshmallow, ‘A’ trials) or undesirable (wooden bead, ‘B’ trials) 

object. Simultaneously, the A (red) or B (green) spatial target LED corresponding 

to the type of object in the gripper was illuminated [95].  

Depending on the type of trial, the animal was required to respond within a 

time limit. Each type of trial required a different action; for A trials, the monkey 

had to reach a second sensor within 2 second reach time limit and the robot 

would move to A target; for B trials, it was required to keep its hand motionless 

on the touchpad for 2.5 seconds and the robot would move to B target. It was 

necessary that the time for B trials (no move) were slightly longer than for A trials 

(move) so that the animal was forced to understand the difference between the 

two types of trials and respond accordingly. The robot arm would move to the 

location indicated by the animal’s response. For both A and B trials, if the robot 

moved to the target indicated by the LED, the monkey was given a food reward. 

The actions and the category of trials are given in Table 2-1. Trials where the 

animal either did the wrong action or was not interacting with the task were 

removed from the analysis [95]. 

To create robot perturbations that contrast with reward trials, the robot 

was occasionally overridden and moved in the direction opposite to that of the 

action commanded by the monkey. These trials where the monkey sees an 

undesirable action in the environment (evoking negative response in the brain) 

were considered “catch” trials. From the animal’s perspective, the catch trials are 
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those in which the robot moved in the wrong direction, even though he performed 

the action correctly. The percentage of catch trials varied with the animal’s 

behavior. The trials where the robot moved to the intended target and the animal 

received a food reward were called “standard” trials (Table 2-2).  

Table 2-1: Trial Type And Different Actions Of The Monkey. (Success And Failure Trials) 

Category 
Trial 
Type 

Object on 
Gripper 

Required 
Action 

Time 
Limit 

Monkey’s 
Action 

Robot 
Action 

Reward 

A success 

A 

Desirable 
(waxwor

m or 
marshma

llow) 

Touch & 
trigger 
reach 

sensor 

2 sec 

Reaches & 
triggers 
reach 

sensor 

Move to 
target A 

(left) 

Receive 
Treat on 
Gripper 

A failure 
Does not 

trigger reach 
sensor 

Move to 
target B 
(right) 

No 
Reward 

B success 

B 

Undesira
ble 

(wooden 
Bead) 

Keep 
hand in 

touch pad 

2.5 
sec 

Keeps hand 
in touch pad 

Move to 
target B 
(right) 

Receive 
Food 
Treat 

B failure 
Takes hand 
out of touch 

pad 

Move to 
target A 

(left) 

No 
Reward 

Table 2-2: Robot Action For Different Types Of Trials. (Standard And Catch Trials) 

Category 
Trial 
Type 

Object on 
Gripper 

Required 
Action 

Time 
Limit 

Monkey’s 
Action 

Robot 
Action 

Reward 

A 
standard 

A 
Desirable 

(Food 
Treat) 

Touch & 
trigger 
reach 
sensor 

2 sec 

Reaches & 
triggers 
reach 

sensor 

Move to 
target A 

(left) 

Receive 
Treat on 
Gripper 

A catch 
Move to 
target B 
(right) 

No 
Reward 

B 
standard 

B 

Undesirab
le 

(wooden 
Bead) 

Keep hand 
in touch pad 

2.5 
sec 

Keeps hand 
in touch pad 

Move to 
target B 
(right) 

Receive 
Food 
Treat 

B catch 
Move to 
target A 

(left) 

No 
Reward 
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Figure 2.3: (A) Experiment Setup. (a) Trial Start – Animal triggers trial (b) Robot moves out from 
opaque shield, target A/B lights up (c) Animal makes arm movement to reach sensor for A trials/ 
keep hand still for B trials (d) Robot moves to correct target (standard trials) or incorrect target 
(catch trials). (B) Time line for the trials. TOP: A trials. BOTTOM: B trials 
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2.2.2 Two-Target Reach Paradigm 

The paradigm described in above (go-no-go) had two types of trials with 

two different reach states (reach/non-reach), two time limits (2sec/ 2.5sec), two 

light colors (red/ green) and two things on the robot gripper (desirable and 

undesirable objects). The next experiment was designed to reduce some of 

these variables and focus on the robot movement. A trial was initiated similar to 

the go-no-go experiment when the animal placed his hand on a touchpad for a 

random (0.7-1.2 seconds) hold period, at the end of which the audio go cue was 

given with the robot arm moving upwards from behind an opaque shield and 

presenting its gripper which held a food reward. Since the robot always held a 

food treat (waxworm, mushroom or marshmellow) and it had no informative 

value, thus controlling that variable.   

Simultaneously, to the robot arm moving upwards, a spatial target for the 

robot and an IR reach sensor for the animal were both illuminated. Both of these 

targets were on the animal’s left (‘A’ trials), and the animal had been trained to 

touch the left IR sensor in order to move the robot to the left spatial robot target.  

Similarly, during ‘C’ trials, the animal would move the robot to a spatial robot 

target on its right, by reaching and touching an IR sensor that was also on the 

animal’s right.  For each type of trial, the animal had 2 seconds to make an arm 

movement, and there were additional LEDs mounted on the left and right of the 

robotic gripper which illuminated in parallel with the robot spatial target lights 

(Figure 2.4 A and Figure 2.4 B). If he reached for the IR sensor that was 
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illuminated the robot similarly moved in the correct direction and the animal 

received the food reward at the end of the robot gripper (standard trials). Those 

trials where the animal either did the wrong action or was not interacting with the 

task were removed from the analysis [96]. 

To ensure that the monkey attended to the robot arm movements, 

occasionally (varied between 20%-40%), the robot was overridden to go to the 

wrong target (and thus the monkey received no reward). These “catch” trials, 

controlled for the effects of the monkey’s physical arm movements which may 

have otherwise skewed the results; for example, ‘A’ catch trials corresponded to 

a left physical arm movement, but the robot moved to the right and similarly, ‘C’ 

catch trials had a right arm movement, but the robot moved to the left. During 

catch trials the monkey’s behavior indicated that he was aware of the robot 

moving in the wrong direction. Catch trials resulted in non-rewarding instances 

which the animals did not like. Therefore, the catch trials percentage was kept 

low so as to keep the monkey engaged in the task [96]. 

For analysis, neural data during the hold time, before and during the arm 

movements as well as during the robot movement were considered. The 

experimental timeline for the two-target reach task is given in Figure 2.4 C. 
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Figure 2.4: Standard Trials. (A): A trials: (a) Animal triggers trial (b) Robot moves out from opaque 
shield, target A lights up (c) Animal makes arm movement to left reach sensor (d) Robot moves to 
target A. (B): C trials: (a) Animal triggers trial (b) Robot moves out from opaque shield, target C 
lights up (c) Animal makes arm movement to right reach sensor (d) Robot moves to target C. (C): 
‘Timeline for trials in black. Hold time shown in green and RM shown in red. RM = Robot 
Movement 

2.2.3 Experiment Variable Summary 

The summary of the variables during the animal’s hand reach (time of trial 

start, Table 2-3) and during the time of the robot movement (Table 2-4) are given 

in the tables below. As seen, two confounding variables (treat type and color of 

light) have been controlled in the two-target reach task. 

Table 2-3: Summary Chart Of Experiment Variables At The Time Of The Trial Start 

Experiment Name Go-No-Go Task Two-Target Reach Task 

Trial A B A C 

Treat Food Bead Food Food 

Color Red Green Red Red 
Spatial Target 

Location Left Right Left Right 

Monkey Action Reach Still Reach left Reach Right 

Correct Robot 
Movement Left Right Left Right 
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Table 2-4 Summary Chart Of Experiment Variables At The Time Of Robot Movement 

Experiment Name Go-No-Go Task Two-Target Reach Task 

Type Standard Catch Standard Catch 

Treat Food/ Bead Food/ Bead Food Food 

Color Red/ Green Red/ Green Red Red 

Spatial Target 
Location Left/ Right Left/ Right Left/ Right Left/ Right 

Monkey Action Reach/ Still Reach/ Still Reach Reach 

Robot Movement Correct Wrong Correct Wrong 

Lights Flash Off Flash Off 

 

 Data Analysis and Results 2.3

To use NAcc neuronal activity for closed-loop control of a robotic arm, we 

need to first understand how the NAcc behaves while the animal is engaged in a 

robotic task. This section describes the analysis techniques to understand how 

the NAcc projects to a prosthetic limb or a robotic arm and how to extract reward 

information from the NAcc. We present histograms and data reduction methods 

first. There are many methods we can use to classify our data; both supervised 

and unsupervised methods can be used with advantages and disadvantages for 

both. Results from both experiments (Go-No-Go – red/green and two-target 

reach – red/blue) are presented in this section. The two main questions are: how 

does the animal perceive the robot and how is the neuronal firing affected by 

perturbations in the environment. 
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2.3.1 Neural Firing Patterns and Histograms 

Next how the robot movement was captured in the neural firing pattern 

was studied using histograms. For this, the time window during the robot 

movement was analyzed. There were neurons that showed difference in 

modulation for the movement of robot (either in the correct or incorrect direction). 

Figure 2.5 (A) shows the neural modulation during the time the robot is moving 

for one unit during the Go-No-Go task. For A standard trials (red), the activity 

increases as it approaches 0.5 seconds (see Figure 2.5 (A)), but for A catch 

(black), the activity decreases in the same time period. For B trials, we see the 

opposite effect; the activity increases for B catch (black) trials and decreases for 

B standard (green) trials. 

 
Figure 2.5: Mean Spike Count for standard and catch trials with relative to the Robot Movement 
(RM).  
Window of interest 0.2-0.7sec after the RM. (A) Go-No-Go Task. Standard: A (red), B (green). 
Catch: black. A catch and B standard trials show inhibition. (B) Two-Target Reach Task. 
Standard: A (red), C (blue). Catch: black. A catch and C standard trials show inhibition. 

Table 2-5 gives the number of significant units (t-test, alpha = 0.1) for each 

task broken down by the different categories. There are a larger number of units 

that fire differently for left vs right. The total window length was 0.7 sec which 

was arrived at using the animal’s reach time, robot movement time and the best 

accuracy for the classifying the two different classes. 

(A)       (B) 
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Table 2-5: Number Of Significant Units For Each Type During Robot Movement (0.7sec Of 
Data) Alpha = 0.1 

Go-no-go Task (Trial Type A/B). Total units = 29 
Session S1 S2 S3 S4 S5 S6 

A stand/catch 8 4 9 8 6 9 
B stand/catch 7 6 7 5 12 6 
stand/catch 6 6 5 3 5 6 

left/right 14 8 8 8 10 10 

 2 target Task (Trial Type A/C). Total units = 27 
Session S1 S2 S3 S4 S5 

 A stand/catch 2 5 1 4 6 
 C stand/catch 3 5 6 3 5 
 stand/catch 1 1 4 3 3 
 left/right 5 8 4 5 7 
 

Here we analyzed SUA during the time when the animal is observing the 

robot movement. There is a statistically significant difference during the robot 

movement; high number of units is significantly different (t-test, alpha = 0.1) for 

left and right robot movements. However, there are a few units that are 

significantly different for rewarding vs non-rewarding trials. 

2.3.2 Neural Population Dynamics – Principal Component Analysis (PCA) 

While it is important to study the firing patterns of individual neurons, in the 

context of brain machine interfaces, we need to study populations of neurons. 

There is redundancy in the brain in case a few neurons stop functioning we are 

still able to capture the information by using the population. We are able to 

capture multiple information from a population of neurons that we cannot from 

single neurons. Individual neurons can code single information. However, when 

considering the population of neurons together, the population may code 

something different from the individual neuron. For example, this has been 
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shown in neuronal population coding related to movement [25, 97]. Therefore it is 

important that we study the neural population as a whole. 

When considering the neural population, one of the challenges is to 

extract the appropriate features for the application. A key characteristic in the 

neural modulation is variance. We used principal component analysis (PCA) as 

the method to convert the data into a low-dimensional space for both ranking the 

relative importance of the neurons as well as visualizing the data. PCA has been 

widely used for spike sorting and dimensionality reduction of neural data [98, 99]. 

PCA also gives the direction of maximal variance, which helps in extracting 

relevant features and in dimensionality reduction, which is helpful in BMI 

applications. For all the sessions analyzed, the first 9 principal components (PCs) 

accounted for at least 80% of the variance, while the first 15 PCs accounted for 

at least 90%. The first two PCs contained 48% of the variance and showed best 

separability. Hence, the first 2 PCs were selected as the features for analysis. 

The separability of the data was inspected in two dimensional space with the first 

two PCs. A visual separation between standard (‘+’) and catch (‘o’) trials was 

seen when each type of trial was analyzed. The results from all the sessions 

analyzed concluded that once the trial type information was identified, a 

separation can be seen between standard and catch trials in the PC space. 

Further, when the trial types were combined, a left vs right separation was 

visible. 
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Figure 2.6: Variance of data relative to RM. Red: ‘A’ trials . Green: ‘B’ trials. Window 0.2-0.7sec 
(S1+S2+S3) 

The analysis done was using a 0.5 second sliding window (0.1 second 

overlap to capture any temporal features) with the sum of firing rate within the 

given window of each of the 29 neuronal signals as the feature space. This goal 

was to find the optimal window that correlated with the robot moving to or away 

from the desired target.  

2.3.3 Unsupervised Clustering 

In unsupervised clustering, the data will be separated according to the 

similarity within a cluster and dissimilarity from the other cluster. An advantage in 

our application is that the number of clusters is known to be 2. We can assign 

label +1/-1 for the clusters obtained. In supervised classification, the label must 

be known a priori and the decoder needs to be trained with a sufficient amount of 

examples for good performance and robustness.  

After features were extracted using PCA, we used a simple unsupervised 

methods (k-means) to cluster the data and compared those clusters with the 

class labels we required and calculated the accuracy. k-means is used to classify 
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𝑛 objects of input space  𝐼 {𝑖1𝑖2 … 𝑖𝑛}, each having measurements on p variables 

𝑖𝑗 �𝑥𝑗1𝑥𝑗2 … 𝑥𝑗𝑗�, into k clusters with cluster centroid 𝐶  (𝑐1𝑐2 …𝑐𝑘). In this case, 

𝑛 = 𝑛𝑢𝑛𝑏𝑛𝑟  𝑐𝑜 𝑡𝑟𝑖𝑎𝑡𝑠, 𝑝 = 𝑛𝑢𝑛𝑏𝑛𝑟 𝑐𝑜 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑡 𝑐𝑐𝑛𝑝𝑐𝑛𝑛𝑛𝑡𝑠 𝑎𝑛𝑑 𝑘 = 2. 

The algorithm was set to start by setting C to an initial value (randomly 

picked from 𝐼). The centroid value for cluster 𝑐𝑘  is given by:  

 
𝑐𝑘 =  

1
𝑛𝑘

�𝑖𝑗; 
𝑛𝑘

𝑗=1

∀ 𝑖𝑗�𝑥𝑗1𝑥𝑗2 …𝑥𝑗𝑗�ϵ𝑐𝑘  

 

E
q. 2.1 

where 𝑛𝑘 is the number of objects in 𝑘. 

Next, clustering is done based on minimizing the cost function which is a 

measure of the distance between each data point and the centroid. Three 

different cost functions were used: squared Euclidean distance, sum of absolute 

differences and one minus the cosine of the included angle between points 

(treated as vectors). The results are of squared Euclidean distance are presented 

as the clusters aligned better with this criterion. However, there is much room for 

improvement as shown in figures below.  

For each 𝑖𝑗𝜖 𝐼, the squared Euclidean distance (d) between 𝑖𝑗 and its 

centroid, 𝑐𝑘  was calculated.  

 d�ij , ck� = (ij − ck)2;  ∀ ij �xj1xj2 … xjp � ϵck, j = 1,2 … n E
q. 2.2 

 

The objects of I were moved to the cluster whose centroid was closest, 

until d was minimum [100]. 
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 argmin
𝐶

��𝑑�𝑖𝑗,𝑐𝑘�
𝑘

𝑗=1

� Eq. 
2.3 

 

The two clusters obtained from k-means clustering were assigned labels 

(standard and catch) manually and compared against the class labels standard 

(‘+’) and catch (‘o’) categories in the experiment. The manual labeling of the 

clusters was always done to maximize the resulting classification accuracy. The 

classification accuracy was the number of trials correctly classified (True Positive 

+ True Negative) out of the total number of trials. 

For A trials in the go-no-go task (Figure 2.7A), the clusters given by k-

means (blue/yellow) do not overlap accurately with the ‘+’ and ‘o’ clusters in the 

experiment, however, for B trials (Figure 2.7B), the clusters given by k-means 

coincide better than the A trials. Accuracy can further be improved by better 

clustering as there is one misclassified ‘o’ trial in the blue cluster. For the two-

target reach task, in A trials (Figure 2.7C), the clusters given by k-means are a 

good representation of the ‘+’ and ‘o’ classes; there is one outlier ‘o’ in the yellow 

cluster. For C trials (Figure 2.7D), the clustering accuracy can further be 

improved with better separation of clusters as there is one misclassified ‘o’ trial in 

the green cluster [95].  
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Figure 2.7: Data clustered in PC space using k-means. Blue/ Green: Cluster 1. Yellow: Cluster 2. 
‘+’: standard. ‘o’: catch and ⊗: cluster centers. Window 0.2-0.7sec.  
(A) A trials (go-no-go task). (B) B trials (go-no-go task). (C) A trials (two-target task). (D) C trials 
(two-target task).  

Next we combined the trial types for each experiment and recalculated the 

PC space and clustered using k-means as before. Figure 2.8 shows how the k-

means clustering partitioned the space based on the minimizing the Euclidean 

distance. There are a few outliers (two points in (A) one point in (B)) that may 

have caused the clustering to be skewed from what the ideal situation is.  

In Figure 2.8A, the blue cluster includes both B standard and A catch trials 

while the yellow cluster show A standard and B catch trials. The blue cluster 

represents right robot movement and the yellow cluster represents left robot 

movement. In Figure 2.8B, the green cluster includes both C standard and A 

catch trials while the yellow cluster show A standard and C catch trials. The 
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green cluster represents right robot movement and the yellow cluster represents 

left robot movement. There is one misclassified A standard trial (red ‘+’) in the 

green cluster.  

 
Figure 2.8: Data from 1 session. ‘+’ standard trials. ‘o’ catch trials.  
(A) Blue: Cluster 1. Yellow: Cluster 2 and ⊗: cluster centers. Red – A trials. Green – B trials. The 
blue cluster represents right robot movement and the yellow cluster represents left robot 
movement, with different reward (standard/catch) and natural arm movement. (B) Green: Cluster 
1. Yellow: Cluster 2 and ⊗: cluster centers. Red – A trials. Blue – C trials. The green cluster 
represents right robot movement and the yellow cluster represents left robot movement, with 
different reward (standard/catch) and natural arm movement.  

Table 2-6 shows the clustering accuracy for each experiment when 

clusters were aligned with standard and catch as well as left and right robot 

movement. The clustering accuracy is higher with left vs right, but the accuracy is 

at chance level for standard vs catch.  

Table 2-6: Accuracy Percentages When Aligning The K-Means Clusters With The Different 
Categories (Window 0.2-0.7sec Relative To Robot Movement) Two-Target Reach Task 

Session S1 S2 S3 S4 S5 Average 
Standard vs Catch 59% 54% 60% 50% 57% 56% 

Left Vs Right 85% 90% 56% 89% 89% 82% 

We are able to conclude that robot movement direction (left/right) is well 

represented in the data and can be extracted with simple unsupervised clustering 

techniques for 2 subjects. Subject 1 (“Princeton”) data was only from go-no-go 

task, subject 3 (“Don”) data was only from two-target reach task and subject 2 
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(“Duke”) data were from both tasks. For further mathematical representation of 

the robot movement direction see Appendix A. However, for our application in 

RLBMI, we need a reward/error signal from the brain. The unsupervised methods 

perform at chance and are not suitable for extracting reward information. Since 

the histograms indicate there is some reward information, we move on to 

supervised techniques to extract this reward information. 

2.3.4 Supervised Classification 

In supervised classification techniques, the classifier needs to be trained 

by known data and the corresponding class labels. Traditionally, hundreds of 

data points are required to build a classifier. However, in our application, we only 

have a few trials for the entire session and even combining several sessions 

across days can give us 200+ trials.  

Classifiers Used  

Four methods have been used for the supervised classification in this 

section. These classifiers were based on advantages each method had to offer 

and the data that was collected. First is a Support Vector Machine (SVM). SVM is 

a discriminative classifier formally defined by a separating hyperplane between 

the two classes. The algorithm outputs an optimal hyperplane such that the 

margin of the training data is maximized. For data such as above, it is possible 

that in higher dimensional space, there exists such a hyperplane [101, 102]. 

Next a k-Nearest Neighbor (k-NN) algorithm used is a non-

parametric method where the input consists of the k closest training examples in 
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the feature space. An object is classified by a majority vote of its neighbors, with 

the object being assigned to the class most common among its k nearest 

neighbors (k is a positive integer, typically small). If the data at hand is not 

separable even in higher dimensional space, this method is advantageous since 

it exploits the features of the neighboring data points. However, if this is to be 

used in real time, the computational complexity is a factor that needs 

consideration [103, 104].   

Next method is a naive Bayes classifier, which is a simple probabilistic 

classifier based on Bayes' theorem with strong (naïve) independence assumption 

between the features. This classifier was implemented as it uses the distribution 

of the data classes. The data which was explored had multiple information 

encoded and an added advantage of Naïve Bayes is, it is not sensitive to 

irrelevant features [105, 106]. 

The last classifier is a tree-bagging algorithm, also known as random 

forests. These operate by constructing a multitude of decision trees at training 

time and outputting the class that is the mode of the classes of the individual 

trees. The predicted class is decided by the probabilistic outcome. This classifier 

is similar to k-NN but the decision was made to implement this since the 

predicted class has a probability associated with it [107, 108].  

For each of the classifiers above, training and testing data were balanced. 

This is important so as to not have a biased classifier. 
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Data Sets 

Two marmoset monkeys were used for the two-target reach task: “Duke” 

(subject 2) and “Don” (subject 3). For Duke 11 sessions across 9 days were 

combined for a total of 468 trials (52, 58, 48, 32, 30, 41, 39, 41, 43, 38 and 46 

trials in each session). For Don, 3 data sets across 5 days were combined for a 

total of 220 trials (48, 88 and 84 trials in each session). Table 2-7 shows the 

distribution of trials in both data sets. 

Table 2-7: Distribution Of Trials In The Data Sets Analyzed  

 Duke Don 
Total Sessions 11 3 

Total Trials 468 220 
MI units per day 10 11 

NAcc units per day 27 28 
Type A trials 250 109 
Type C trials 218 111 

Rewarding Trials 360 164 
Non-Rewarding Trials 108 56 

 

Different time windows were analyzed for both NAcc data and MI data. For 

MI data, the time window was with respect to (wrt) the start of the “Go Tone”. 

Both 500 msec and 1000 msec bins were analyzed. For NAcc data, the windows 

were wrt to the start of the robot movement (RM). 90% of data (balanced) were 

used for training and 10% (balanced) for testing. The reason for using balanced 

classes for testing was so that the accuracy given will be a true representation of 

classification, and due to classification of all trials as one type. Hence, randomly 

selected equal number of examples from both classes were given and 100 

simulations were performed. 



 
 
 

45 

 
   

NAcc Data 

This section analyses the success vs catch difference in the monkeys. 

Success trials were given a label ‘+1’ suggesting rewarding action by the robot 

and catch trials were given a label ‘-1’ indicating a non-rewarding action by the 

robot. All trials are synchronized to the start of the robot movement, which is the 

first indication of the correct or incorrect robot movement. However, depending 

on the training level of the animal, the animal may or may not grasp this 

immediately.  

Figure 2.9 shows the accuracy for Duke (A/B) and Don (C/D) data from 

100 simulations in classifying success vs catch trials from NAcc for different 

window sizes and sliding windows, for the four classifier types discussed above. 

Three of the classifiers performed poorly on Don’s data on average (Refer to the 

figure below which show the standard deviation along with the average). 

Subplots (A) and (C) show 500 msec window size and subplots (B) and (D) show 

1000 msec window size. Each colored trace gives a different classifier type. The 

accuracy with Naïve Bayes (green) classifier is low in general for all the windows 

and both sets of data. Similarly Random Forests (blue) tend to do better in 

general for most of the windows analyzed in both monkeys. For Duke, a later 

time window (500 msec or after) gives better results, while for Don, an earlier 

time window (500 msec or before) gives better results. This difference could be 

due to different animals perceiving the task differently. At the time of data 

collection, Don was more trained than Duke, and therefore recognized catch 
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trials at the start of the robot movement, whereas Duke took a few hundreds of 

milliseconds to realize this.  

 
 

Figure 2.9: Classification accuracy (average accuracy of 100 simulation) for NAcc data success 
vs catch for Duke (A/B) and Don (C/D). 500msec bins (A/C) and 1000msec bins (B/D).  
x axis shows the start of the window wrt RM and y axis shows the accuracy percentage. Each 
colored trace shows a different classification method. (blue – RF, red – kNN, green – Naïve 
Bayes, Orange – SVM). Chance 50% 

MI Data 

Next we studied how well supervised classifiers are able to classify left 

and right hand movement of the animals. This was done by giving a class label of 

‘1’ for A trials (left movement) and a class label of ‘2’ for C trials (right 

movement). Analysis was done for both 500msec bins and 1000msec bins. 

Figure 2.10 shows the classification accuracies for classifying left arm movement 

and right arm movement from MI data for Duke (A/B) and Don (C/D). For Duke, 

Random Forests perform better than the other three classifiers, and the SVM 
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performs the lowest (at chance). For Don, none of the classifiers outperform each 

other; all of the traces are between 40%-60%. When comparing the time window 

to use for a BMI, for Duke, a wider window (1000 msec – subplot B) with 

minimum 500 msec delay yields the best results. For Don, this is harder to 

interpret since the overall accuracy is low. However, in the case of Don, the best 

time delay is 500 msec; any longer time delays, reduce the accuracy. The 1000 

msec bin performs slightly better than the 500 msec bin and we conclude to use 

a 1000 msec bin for the BMI experiments for Don. As mentioned before, since 

this animal was more trained than Duke, his reaction times were faster, and the 

reach times were lower. 

 
Figure 2.10: Classification accuracy (average accuracy of 100 simulation) for MI data left vs right 
arm movement for Duke (A/B) and Don (C/D).  
500msec bins (A/C) and 1000msec bins (B/D).  
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x axis shows the start of the window wrt RM and y axis shows the accuracy percentage. Each 
colored trace shows a different classification method. (blue – RF, red – kNN, green – Naïve 
Bayes, Orange – SVM). Chance 50% 

 Trial Initiation from the Striatum 2.4

This section gives results of extracting trial initiation from the striatum 

data. The hypothesis is that the NAcc has trial initiation information. If this 

information can be reliably extracted, an architecture can be built to exploit this 

information in an asynchronous manner. 

2.4.1 Filter Design and Preprocessing 

LFPs from 15 channels were used for one monkey from one session. The 

LFPs were acquired at 2034.5Hz and down sampled to 1017.25Hz before 

preprocessing. Five band-pass filters were designed for the following frequency 

bands shown in Table 2-8. The frequency response of the filters are shown in the 

figure below. Once the signals were filtered for the respective bands, it was 

smoothed with a 100msec window with 50% overlap. 

Table 2-8: Frequency Bands For Lfps 
(1) Delta 1-4 Hz 
(2) Theta 4-8 Hz 
(3) Alpha 8-13 Hz 
(4) Beta 13-30 Hz 
(5) Classical Gamma 30-60 Hz 

The labels for the data were based on the start of the trial, where the 

animal’s hand was stationary inside the touch pad for 0.7-1.2 sec. After this the 

robot came up from behind the shield – which took approximately 0.6 sec to 

complete. The animal’s reaction time/ time of beginning of reach were as early as 

0.5 sec and as late as 1.5 sec (average 0.8 sec). The earliest time was used at 
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0.5 sec. For each trial, 0-0.5 sec from the trial start was given a label of 1 and 

everywhere else was given a label of 0. The labels were also down sampled to 

the same frequency as the data above. With the filtered and smoothened data, 

250 msec was used to predict one label 

 
Figure 2.11: Frequency Response of the 5 different filters used in LFP pre processing 

2.4.2 Classification 

Two classifiers were used for classification. Since the integrity of the data 

depended upon the temporal sequence, the trials were not shuffled; instead the 

first 75% of data points used for training and the remaining 25% used for testing. 

Table 2-9 gives a summary of the results for SVM and Table 2-10 gives the 

summary for logistic-regression. The accuracy is very high since there are more 
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negative examples, but as discussed in the introduction, this is not a metric of 

performance in the field.  

Table 2-9: Trial Initiation Classification From SVM 

Session # Total 
Trials 

Trials in 
Test Data 

Accuracy Recall Precision 

1 88 22 97.13% 0.44% 16.67% 
2 91 34 96.88% 0.29% 2.86% 
3 84 16 98.27% 0.00% 0.00% 
4 105 23 96.74% 0.85% 5.71% 
5 119 24 97.62% 3.29% 28.57% 

Table 2-10: Trial Initiation Classification From Logistic Regression 

Session # Total 
Trials 

Trials in 
Test Data 

Accuracy Recall Precision 

1 88 22 94.80% 10.09% 9.62% 
2 91 34 94.81% 4.93% 5.35% 
3 84 16 96.75% 7.98% 6.50% 
4 105 23 93.23% 9.36% 6.09% 
5 119 24 91.02% 20.16% 5.98% 

The recall (TP/(TP+FN)) and precision (TP/(TP+FP)) are also given in the 

tables. Recall indicates of the number of data points that were trial initiation, how 

many were actually classified as such. Precision indicates of the number of data 

points classified as trial start, how many actually were trial starts. Logistic 

Regression performed better than SVM, but the recall and precision were still 

very low. 

 
Figure 2.12: Session 1 classification Results (Red – actual, Blue – predicted) 
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Figure 2.12 gives the performance of each classifier for the first session 

and Figure 2.13 gives same for the second session. Red * shows the actual and 

blue □ shows the points that were classified. The SVM in both sessions have less 

false positives, while the logistic regression gives a high number of false 

positives.  

 
Figure 2.13: Session 2 classification Results (Red – actual, Blue – predicted) 

The few data points (2 in session 1 and 5 in session 2) classified by the 

SVM as trial starts were also classified the same by logistic regression. These 

few data points are robust to both classifiers. The points classified as trials are 

clustered around the actual trial starts even though only a few are correctly 

classified. The temporal resolution needs to be explored here with the nature of 

the signal causing the predicted positive class to be clustered around the actual 

positive class. If it shows feasibility (i.e. high precision and high recall), it is 

possible to build an asynchronous BMI using the NAcc signal as a gate to initiate 

movement. 

 Summary and Conclusions 2.5

In this chapter, the choice of animal model was discussed and the surgical 

methods were looked at. The experimental paradigm for studying the NAcc 

during a goal-directed task was shown; go-no-go paradigm and the two-target 
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reach paradigm. Next, firing patterns and the histograms were studied to 

understand the behavior of the NAcc during the goal-directed task. It was seen 

that more number of units modulated with the robot movement direction, than 

with the reward, and therefore the information which can be extracted easily from 

unsupervised methods were not suitable for the BMI application. Next, four 

commonly used supervised classification techniques were applied to the data. 

For Don (the monkey that closed-loop was implemented on), the NAcc time 

window for Critic input was identified as starting either at 0 or 250 msec and 

ending at or before 1000 msec. Random Forests Classifier performed better than 

the other three overall and this will be used for the Critic in the closed-loop 

implementation. For the same monkey the motor cortex (MI) data is used for the 

Actor and the best time window is 500 msec after the Go Tone. These 

conclusions were used in designing the closed-loop experiments. The NAcc 

LFPs were studied briefly to test the feasibility of extracting a trial initiation signal 

to build an asynchronous BMI. The precision and recall from classification were 

very low for this signal to be used as expected. 
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Chapter 3 Development of the Control Architecture 

 Control Architecture for the Actor 3.1

In order to use the signals acquired after from Chapter 2, we need an 

architecture that can incorporate these signals in a closed-loop BMI. The findings 

from the previous chapter (reward/ error representation) can only be used if an 

architecture can be developed to handle the Critic uncertainty. 

 
Figure 3.1: Architecture for Biological Actor-Critic Reinforcement Learning.  
The Critic is controlled by the NAcc neural inputs and the Actor is controlled by the MI neural 
inputs. The Critic provides an evaluative feedback to the Actor. 

In the present paradigm, 𝑥𝑖 is the input to the Actor at 𝑖P

th node and 𝜔𝑖𝑗 is 

the weight of the network with input node 𝑖 and output node 𝑗 which is updated 

using the feedback from the Critic. The output state 𝑥𝑗 is computed based on the 

net state (𝑠𝑗) of the node and a tanh non-linear transfer function.  

 𝑆𝑗 = � 𝜔𝑖𝑗𝑥𝑖 
𝑁

𝑖=0
 Eq. 3.1 

 𝑃𝑗 = 𝑡𝑎𝑛ℎ(𝑠𝑗) Eq. 3.2 

Hence the output of the Actor is given by 
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 𝑋𝑗 = 𝑆𝑆𝑁�𝑃𝑗� = �
1,             𝑃𝑗 > 0
0,             𝑃𝑗 = 0
−1, 𝑃𝑗 < 0

 Eq. 3.3 

 
Figure 3.2: Node ‘𝑖 ’ of the neural network for the Actor 
 

The update equation is given by  

 ∆𝜔𝑖𝑗 = 𝜇+𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 + 𝜇−(1−  𝑟)(1− 𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.4 

where the 𝜇+ and 𝜇− are the learning rates for the reward and penalty 

respectively. The reinforcement feedback is given by r. 𝑟 = 1 is a rewarding 

action and 𝑟 = −1  is a non-rewarding action. If 𝑟 = 0, then there is no weight 

update. This is the Hebbian reinforcement Learning (HRL) update equation. The 

first term corresponds to the reward and the second term corresponds to the 

penalty. 

There are two unique cases for this equation. The first case is when 𝑟 = 1, 

there is contribution only from the first term and the weight update equation 

above becomes: 

 ∆𝜔𝑖𝑗 = 𝜇+𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 Eq. 3.5 

 

This means that in rewarding trials (𝑟 = 1), only the positive component 

contributes to the weight update. But in non-rewarding trials (𝑟 = −1), both terms 
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contribute and the system is more sensitive to the negative feedback. The 

second case is when 𝑃𝑗 approaches 𝑥𝑗 there is contribution only from the second 

term, hence the weight update becomes: 

 ∆𝜔𝑖𝑗 = 𝜇−(1−  𝑟)(1 −𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.6 

In this case, the system will only adapt for negative feedback. When both 

the above conditions are achieved, (𝑟 = 1 𝑎𝑛𝑑 𝑃𝑗 → 𝑥𝑗), the weights will not 

update further. During instances where there is no weight update, the system has 

consolidated the functional relationship between input and output. Unless and 

until there is a negative feedback, the system will not update further. 

3.1.1 Modifications to the Actor 

Our previous analysis has shown that the overall system accuracy is 

limited by the Critic accuracy [109]. Hence, we updated the Actor to incorporate 

the Critic confidence level. The Critic determines the appropriateness of the 

action taken by the Actor, the Actor should be able to integrate the feedback 

even if it is not fully reliable (as is the case in many biological signals). The Critic 

will give the feedback along with the confidence it has on this feedback. 

Depending on the confidence given, the Actor weights will be updated only when 

the Critic confidence is high. More noisy data will result in lower levels of 

confidence and the Actor weights will not be updated as frequently. The 

assumption is that by not updating when the Critic feedback is wrong, and thus 

weights remaining same, has less negative effect on the system than when 

updating every time with an inaccurate Critic. The trade-off is that the learning 
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rate is much slower and the system will take much longer to learn the mapping 

between neural states and the output actions. 

 
Figure 3.3: How the distance is converted to the confidence and reward. thr=threshold (A) 
Confidence Only. (B) Confidence and Reward. At lower confidence values, the Critic confidence 
is low while at higher confidence values, the Critic is 100% confident. 

The Critic will give an output of ±1 indicating if it was an action to be 

rewarded or penalized. In addition, the Critic will also give a value of the 

confidence (𝜌) it has on the feedback given. The update equation thus becomes 

 ∆𝜔𝑖𝑗 = 𝜇+𝜌 𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 + 𝜇−(1−𝜌 𝑟)(1−𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.7 

Where 𝜌 is the confidence in the feedback, 𝑟.  If both terms 𝜌 and 𝑟 can be 

determined from a single step, then the terms can be combined. However, the 

advantage of having two different terms ρ and 𝑟 is the ability to acquire them from 

two different methods if the same method does not give both values. If the Critic 

value given was correct, the confidence will be increased and if the value is 

wrong, it will be decreased. There are different methods to derive this ρ value. 
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3.1.2 Confidence of the Critic 

First method of these is to use a neural network. The input to the network 

is the firing rates form the NAcc. The network will be trained with labels +1 

(rewarding) and -1 (non-rewarding/ penalizing) for 𝑥𝑗. During online testing, 𝑥𝑗 will 

give values between -1 and +1. The sign will be given as the feedback r and the 

scalar value of the 𝑜 function will be used as the confidence. If the output of the 

network exceeds ±1, the 𝑜 function ensures that the confidence remains at 

100%. 

 𝑟 = 𝑆𝑆𝑁�𝑋𝑗� Eq. 3.8 
 𝜌 = 𝑎𝑏𝑠 �𝑜�𝑋𝑗�� Eq. 3.9 

where 

 𝑎𝑏𝑠 �𝑜�𝑋𝑗�� = �
1 ;            𝑋𝑗 > 𝑡 𝑐𝑟            𝑋𝑗 < −𝑡
𝑋𝑗;    0 < 𝑋𝑗 < 𝑡 𝑐𝑟 − 𝑡 < 𝑋𝑗 < 0   Eq. 3.10 

𝑡 represents the threshold whose values are to be determined by  the 

nature of the Critic data and simulations.  

Since this method needs extensive training, we used a second method 

(distance to the boundary) as the confidence. In the figure below, there are 

rewarding and non-rewarding training trials marked in black. The red trials are 

the ones classified. If the classified trial is closer to the decision boundary, it will 

give a lower confidence and if the distance is higher, then the confidence in the 

decision is also higher. 𝜌 is the normalized absolute distance from the decision 

boundary. 
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Figure 3.4: (A) An Artificial Neural Network for the Critic with the Reward Value and the 
Confidence. (B) An Alternate Method to Obtain the Critic Confidence Level. Data points further 
away from the decision boundary will have higher confidence and the points closer to the decision 
boundary have lower confidence. 

If a probabilistic classifier is used, the probability of a data point being in 

the particular class can be used converted to the confidence measure. If the 

absolute value of the probability minus 0.5 is closer to 0, the confidence is low 

and if it is closer to 0.5, the confidence is high. Figure 3.4 gives an explanation of 

this. The two curves (red and blue) are the probability distributions for each class. 

For a given data point, if the probability for class 1 is higher it is classified as 

class 1, else class 2. Higher the difference of the probability values, greater the 

confidence. This method is implemented later in Chapter 4.  

 
Figure 3.5: Using a probabilistic method to arrive at the confidence. P1+P2=1. abs(P1-0.5) or 
abs(P2-0.5) can be used as confidence measure. 

(A)             (B) 
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 Data Generation for the Actor 3.2

We generated synthetic data to simulate how the above proposed decoder 

will work with neural signals. Neural data was generated according to the 

Izhikevich model [110, 111] and added an additional probability component for 

the stimulus to make the data more noisy. This component ensured that a certain 

percentage of neurons will be harder to classify. This was verified using the first 

two PCs. Figure 3.6 shows an example of the generated data set. Figure 3.6 A 

shows the neural data generated by the standard method in the first two PCs. 

Even though there is noise inbuilt into the data generation, in the PC space, the 

data is separable easily. For data shown in Figure 3.6 A, the Actor will be able to 

classify with higher accuracy. Since we needed to be able to simulate a noisy 

data set, an additional probability component was added to reduce the stimulus 

in a certain percentage of neurons (varied from 0% to 100%). The PC plot is 

shown in Figure 3.6 B corresponds to 25%. The additional probability component 

was added to the stimulus generation and not to the neural data itself.  

 
Figure 3.6: An Example of Synthetic Data for 2 states (o and x) in PC space. (A) Standard 
stimulation method. The PC space is able to discard the noise and give two clear clusters. (B) 
With Additional Probability Component in the Stimulation. The PC space is more overlapped. 

(A)       (B) 



 
 
 

60 
 

 
 
 

The neural data was generated by the standard method [110] where the 

model is given by 

 𝑣′ = 0.04 𝑣2 + 5𝑣+ 140− 𝑢 + 𝐼 Eq. 3.11 
 𝑢′ = 𝑎(𝑏𝑣 − 𝑢) Eq. 3.12 

with the auxiliary after-spike resetting 

 𝑖𝑜  𝑣 ≥  +30𝑛𝑉,    𝑡ℎ𝑛𝑛�𝑣 ← 𝑐         
𝑢 ← 𝑢 + 𝑑 Eq. 3.13 

Where v was the membrane potential of the neuron and u represents a 

membrane recovery variable, which accounted for the activation/inactivation of 

ionic currents, and it provided negative feedback to v. After the spike reached its 

apex (+30mV), the membrane voltage and the recovery variable were reset. The 

synaptic current is given by the variable, I, which was calculated from the 

stimulus of ‘1’ for spike and ‘0’ at all other times. For excitatory cells, a = 0.02,

b = 0.2, (c, d) = (−65,8) + (15,−6) ∙ e2 where e is a random variable uniformly 

distributed, e ∈ [0,1] [110]. We generated two motor states (motor state 1 and 

motor state 2) using the above model to depict two actions. The neural data was 

generated in 3 ensembles, one ensemble each tuned to one state (activity of the 

particular ensemble correlated with one state) and the third ensemble not tuned 

to either state simulating noise in real neural data.  

While the synthetic data was generated using a biologically realistic 

model, there are dynamic factors, which contribute to forms of noise not 

considered in the model. These are factors such as neurons dropping, electrodes 

deteriorating or breaking and encapsulation. Without making the model more 
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complicated to mimic the noisy physiological system, we introduced additional 

noise to the synthetic data by adding a probability component to the stimulus, 

which generated the I in Eq. 3.11. The actual value of noise in the stimulus was 

decided by a Gaussian distribution instead of the ‘1’ or ‘0’ as before. The number 

of neurons with this additional noise was varied from 0% to 100% in 10% 

increments. This additional probability component resulted in overlapping 

classes; the higher the probability component, more overlapping in the states 

generated. This was verified graphically using the first two PCs and confirmed 

that as the probability component to generate I was increased, the overlapping of 

the two classes also increased [112]. 

 Dealing with Inherently Slow Adaptation 3.3

Real time ‘epoching’ of the data was used to speed the initial adaptation 

from the purely random initialization weights to functionally useful. Each trial used 

all of the past data ten times to rerun through the system. A pseudo-real time 

normalizing of the inputs was performed before feeding to the network. This was 

done by keeping a real time record of the highest firing rate detected for each 

input, and then used to continually update the normalization parameters 

throughout the session [54, 62]. 
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 Simulations for Dealing with Critic Uncertainty 3.4

 
Figure 3.7: Performance of the BMI Vs the Critic accuracy during open loop simulations (mean ± 
standard deviation) 
Duke: black X, 1000 simulations; Princeton: red O, 700 simulations) when the accuracy of the 
Critic feedback was varied (0.5 to 1.0).  dotted lines give 1:1 relationship. The overall 
performance is limited by the accuracy of the Critic [113]. 

In previous closed-loop analysis it was concluded that the overall motor 

control accuracy can be limited by the Critic accuracy [113]. This property is 

illustrated in Figure 3.7; The results of the open loop simulations for one monkey 

(black crosses) as well as a second monkey (red circles), indicate that the overall 

performance of the system is limited by the Critic accuracy [109]. To overcome 

the overall system accuracy being limited by the Critic accuracy, we developed a 

new method to update the Actor weights only when the Critic had high 

confidence (𝜌), in the feedback (𝑟) provided. The Actor-Critic architecture was 

modified as shown in Figure 3.8 to incorporate the confidence term in addition to 

the already existing reward term. 
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Figure 3.8: Modified Actor-Critic RL showing how Reward and Confidence terms were 
incorporated in the architecture.  

 Can Using the Feedback Intelligently Improve Performance? 3.5

As a first step, we tested the hypothesis, using the feedback intelligently 

can improve performance. These results have been adapted from published work 

in Frontiers in Neuroscience [112]. 

We tested the model using 3 different data sets in classification mode. 

Data sets used were: (1) synthetic data generated by an Izhikevich neural spiking 

model, (2) synthetic data with a Gaussian noise distribution, and (3) data 

collected from a non-human primate engaged in a reaching task. We varied the 

Critic accuracy from 50% to 100% and ran two sets of simulations (S1 and S2) 

for each of the three data sets; S1, updated the Actor at every trial and S2 

updated only when the Critic feedback was correct (i.e. confidence high). This 

was performed to compare whether it was better to adapt after each trial or only 

when the Critic feedback was correct. For the purpose of these simulations, we 

used the correct Critic feedback to indicate a high confidence of ‘1’ and an 
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incorrect Critic feedback to indicate a low confidence of ‘0’. This can be 

determined empirically by the Critic data that would require an in-depth 

evaluation, which was not the focus of this study.  Since the decoder started at a 

naïve state, we used a pseudo-real time normalizing of the inputs before feeding 

to the network. This prevented any bias due to the difference in the magnitude of 

the inputs. This was done by keeping a real time record of the highest firing rate 

detected for each input, and then used to continually update the normalization 

parameters throughout the session [109]. 

3.5.1 Effect of confidence measure on Actor performance 

Figure 3.9A shows how the performance level increased as the Critic 

accuracy increased. The Actor which was updated every time is shown in blue. 

The performance was always below the 1:1 curve showing how the Actor 

performance is limited by the Critic accuracy. However, the performance of the 

system where the Actor was updated only when the Critic was confident (shown 

in red) was able to perform above the Critic accuracy level as seen in the figure. 

The performance increased from 50% (±6.6%) to 70% (±8.8%) at Critic accuracy 

of 50% and further improved from 87% (±10.4%) to 92% (±6.9%) at Critic 

accuracy of 90%. A Critic accuracy of 90% means that the Critic gave a correct 

feedback 90% of the trials and wrong feedback 10% of the trials. For example, in 

our simulations each consisting of 100 trials, a 70% accurate Critic gave correct 

feedback in 70 trials and wrong feedback in 30 trials. If there was no confidence 

built-in, the Actor assumes that the value was always correct. In this new system 

with confidence built in, we reduced the confidence of the wrong feedback to 



 
 
 

65 
 

 
 
 

zero. At lower Critic accuracies (50%, 60% and 70%), the system with the 

confidence outperformed the system without the confidence by approximately 

20%. The performance of the two systems showed significant difference for all 

Critic accuracy levels from 50% to 90% (Student's paired t-Test, with a two-tailed 

distribution, alpha 0.001 – shown with * in the figure). By updating weights 

accurately, the system learned optimal mapping and stabilized with time. Given 

that the system began with random initial conditions, there was no guarantee that 

the system would stabilize.  

 
 

Figure 3.9: (A) Performance of the BMI Vs the Critic accuracy with and without confidence inbuilt. 
(mean ± standard deviation. 1000 simulations. 100 trials per simulation).  
Red: New update rule with confidence. Blue: Previous method with no confidence. Black: 1:1 
relationship. Critic accuracy was varied from 50% to 100% with 100% being the best. * shows the 
values which showed statistical significant difference (alpha 0.001). The overall performance of 
the blue curve is limited by the accuracy of the Critic but the overall performance of the red curve 
is able to go beyond the Critic accuracy, decoupling the performance from the Critic accuracy.  
(B) Stability of the system without (green/blue) and with (purple/red) confidence. Plot shows the 
number of simulations that maintained 100% accuracy beyond 50 trials (green/purple) for 
convergence and beyond 70 trials (blue/red) for convergence [112]. 

Figure 3.9B gives a summary of the number of simulations out of 1000 

that stabilized after 50 trials and 70 trials with and without the confidence. The 

convergence or stability was defined as maintaining 100% accuracy (last 50 trials 
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or last 30 trials). The number of simulations that did stabilize at lower Critic 

accuracies was higher for the system with the confidence measure. At higher 

Critic accuracy levels, the overall performance was no longer limited by the Critic 

accuracy but by the data itself. As the Critic confidence increased, the difference 

in performance between the two systems became smaller and converged to a 

single value (94% ±5.8%) since at 100% Critic accuracy, both systems effectively 

have the same update equation. 

Figure 3.10 shows the details of the action selected in each trial and also 

the Critic values for that particular trial. Figure 3.10A has two sets of simulations 

S1 and S2 and Figure 3.10B also has two sets of simulations S1 and S2. Each 

simulation started with random initial conditions. Figure 3.10 (A and B) shows two 

such examples with two different Critic accuracy levels. The Critic accuracy was 

changed randomly based on the percentage given to the decoder. In Figure 

3.10A, the Critic is 60% accurate and the top subplot shows the performance of 

the system if the Actor was updated every time (S1). The overall performance in 

this case is 47%. The first trial was correct, but the Critic gave a wrong feedback 

and the Actor weights were updated with this erroneous feedback causing the 

second trial to be wrong. When the Critic gave a correct feedback during the third 

trial, the system started performing correctly. However, due to the erroneous 

feedback the performance was not stable. Even when the Actor chose the 

correct action, if the Critic provided a wrong feedback, it decreased the 

performance. In contrast, the second subplot shows the performance when the 

Actor was updated with a confidence level (S2). For the same neural data, order 
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of trials and Critic feedback, the performance of the second system is 80%. Even 

though the Critic gave wrong feedback at first, the Actor learned to ignore this 

and was able to have a better outcome.  

 
Figure 3.10: Performance of each decoder during the length of the experiment for one simulation 
starting at random initial conditions. 100 trials. Red: Action 1, Blue: Action 2, Black: Critic.  
(A) Critic accuracy 60%. Both decoders perform correctly in the first trial but the Critic gives a 
wrong feedback. The first system changes the weights causing the second trial to be wrong. 
Again, the Critic gives a wrong feedback causing the third trial also to be wrong. Since the system 
weights are updated every time, wrong Critic feedback causes the system to perform below the 
Critic accuracy. However in contrast even though the second subplot also starts the first trial the 
same way, the erroneous feedback does not affect it and the decoder is able to perform better 
than the first system. (B) Critic accuracy 80%. The first system starts with a correct action, but is 
very sensitive to wrong Critic feedback. The second system starts with a wrong action, but by the 
6th trial is able to achieve good performance and maintain throughout the rest of the session 
[112]. 
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Figure 3.10B shows the performance of the two systems when the Critic 

accuracy was 80%. The top subplot shows when there was no confidence 

measure and the Actor updated every time (S1). The bottom subplot shows the 

Actor updating only when the Critic was correct (S2). The Critic provided a similar 

output at the beginning. For the first system, the system started with random 

weights and continued to do well with correct Critic feedback at the beginning. 

However, an erroneuous Critic feedback at trial 3 caused the system to perform 

wrong in the next trial. In contrast, the second system started with random 

weights which caused the first trial to be wrong but the system received good 

feedback and was able to perform correctly in the subsequent trials. In the first 5 

trials, the first system performed better than the second. However, since the 

second system Actor weights were only updated when the Critic feedback was 

good, it took longer for the second system to learn the ideal mapping. 

3.5.2 Neural Perturbations – Additional Noise in Data 

Figure 3.11A shows how the system with the Critic confidence level still 

performed better than the system which updates the Actor weights every time 

even with the additional noise. The system which updated at every trial 

performed at chance level (50% performance) at lower Critic accuracies, while 

the system with the Critic confidence performed better (at Critic accuracies 80% 

and below the difference in the performance was approximately 10%). However, 

as the Critic accuracy increased (beyond 70%), the system accuracy did not 

increase as expected in both curves (i.e. both systems stayed below the 1:1 

curve). This was due to the limitations in the input data as the data to the 
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decoder was noisy and the states were not as clearly separable. As noted in the 

previous section, the performance of the two systems showed significant 

difference for all Critic accuracy levels from 50% to 90% (Student's paired t-Test, 

with a two-tailed distribution, alpha 0.001 – shown with * in the figure). In Figure 

3.11A, the probability component used to generate 𝐼 was 40%, which was most 

similar to the NHP data shown in the next section. Figure 3.11B shows how 

different noise levels affected the overall performance as the Critic accuracy 

increased. Each colored trace is a different noise level as shown in the legend. 

With low noise levels, the system was still able to perform amidst the Critic 

inaccuracies. However as the noise level increased, the system performed at 

chance (50%) at low Critic accuracy levels and performed marginally above 

chance even at higher Critic accuracy levels.  

3.5.3 Simulations using NHP Data 

These results are shown in Figure 3.11C where the blue trace shows the 

performance of the Actor updating every time and the red trace shows the Actor 

updating only when the Critic is confident. Similar to the results of the synthetic 

data, we can see an improvement (from 50% to 63% at Critic accuracy of 50% 

and from 77% to 83% at Critic accuracy of 90%) in the overall performance by 

adding the confidence measure in the update equation. This is more apparent in 

lower Critic accuracies (At alpha = 0.001 Critic accuracies 50% to 90% showed 

significant difference – shown with * in the figure). At higher Critic accuracies, the 

system which only updates when the Critic is confident is still able to do better 

but the difference in the percentages was smaller.  
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Figure 3.11: (A & B) Effect of noise on the overall performance. (C) Results of the simulations 
where the monkey controls the robot arm (offline simulations). Dotted: 1:1 relationship. 
(A) Performance of the BMI Vs the Critic accuracy with 40% of the neurons receiving a less 
stimuli than the standard (mean ± standard deviation. 1000 simulations. 100 trials per simulation). 
Red: New update rule with confidence. Blue: Previous method with no confidence. Critic accuracy 
was varied from 50% to 100% with 100% being the best. * shows the values which showed 
statistical significant difference (alpha 0.001). The overall performance of the blue curve is limited 
by the accuracy of the Critic but the overall performance of the red curve is able to go beyond the 
Critic accuracy. Hence, decoupling the performance from the Critic accuracy. (B) How the overall 
performance changes with the Critic accuracy (1000 simulations). Each curve gives a different 
noise level of the data set. (C) Results of the simulations where the monkey controls the robot 
arm. Performance of the BMI Vs the Critic accuracy with and without confidence inbuilt for data 
collected from monkey DU. (mean ± standard deviation. 1000 simulations). Red: New update rule 
with confidence. Blue: Previous method with no confidence. Black: 1:1 relationship. Critic 
accuracy was varied from 50% to 100% with 100% being the best. * shows the values which 
showed statistical significant difference (alpha 0.001). At lower Critic accuracies, the new update 
with confidence performs much higher than the one without the confidence measure. As the Critic 
accuracy increase, the plot with the confidence measure is able to outperform the curve without 
the confidence measure. However, the difference in the performance becomes smaller as the 
Critic accuracy increases suggesting as before that the Critic is no longer the limitation, but the 
nature of the input data itself [112]. 
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At lower Critic accuracies (80% and below) the difference in performance 

is approximately 13% and at 90% Critic accuracy the difference in performance is 

approximately 7%. 90% Critic accuracy means that 9 out of 10 feedback given by 

the Critic is correct. When the Critic feedback was always correct, the two 

systems converged to approximately the same performance value. Here we 

observe that the Critic is no longer a limiting factor for overall performance. The 

overall performance is now bound by the Actor/ MI neural data. 

We conclude that our hypothesis is true: updating the Actor weights, only 

when the Critic is confident of the feedback, improves performance. Updating at 

low confidence values will introduce wrong feedback into the reinforcement 

learning trajectory of the Actor. 

 Data Generation for the Critic 3.6

The next step is to incorporate the Critic component; we tested this using 

synthetic NAcc data. Approximately 95% of the NAcc is comprised of medium 

spiny projection (MSP) neurons [114]. We needed a biologically realistic model to 

capture all the neurocomputational properties of MSP neurons but was reduced 

in computational complexity to be more efficient for simulations. Humpries et al. 

reduced neuron model bases the Izhikevich model and we used this with varying 

spike rate and modified spike-event generator to capture rewarding and non-

rewarding trials [115, 116]. The ability of the MSP cells to switch between 

different states and its physiological properties are modulated by dopamine (DA) 

[114]. DA is directly related to rewarding behaviors; higher DA levels with higher 
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firing rates for higher rewards and lower DA levels with lower firing rates for lower 

rewards/ no rewards [107, 115].  

We used 10 neural ensembles with 4 neurons each. 1st ensemble was 

tuned to the reward (higher firing rate during reward, i.e. DA high and random for 

no reward), 2nd ensemble tuned for non-reward (lower firing rate during non-

reward and random for rewarding) and, the remaining ensembles were 

background activity not tuned to either action. The ensembles were chosen such 

that it represented reward modulation in the NAcc which has approximately 10-

20% neurons modulating for reward [117]. 1 sec of data was used to simulate the 

trial. 

The values used to set the Spike Train Parameters were altered for each 

type of trial. For Rewarding trials, the values were drawn from a uniform 

distribution [0.75 1]*10^-3. For non-rewarding trials, these values were selected 

from a uniform distribution [0.65 0.85]*10^-3. For both types of trials, the values 

for the ensemble not tuned, were drawn from a uniform distribution [0.5 

0.85]*10^-3. 



 
 
 

73 
 

 
 
 

 Critic Data Classification by different methods 3.7

3.7.1 Clusters in the data 

 
Figure 3.12: (A) Variance accounted for in the first 10 PCs. (B) data in PC space with the clusters 
from k-means.  

We performed PCA on the data and 9 PCs accounted for 92% of the 

variance. For ease of visualization, we used the first two PCs (variance 

accounted for: 43%) and clustered the data using k-means with the criterion for 

minimization as the squared Euclidean distance. We labeled the clusters as 

rewarding or non-rewarding manually to maximize the classification accuracy. 

Next we cross referenced with the actual data classes and found that k-means 

clustering achieved 97.5% accuracy both false positives and false negatives. 

These false positives and false negatives can affect on the overall performance 

when using as the Critic [112]. It may be possible to reduce the misclassifications 

with more sophisticated classifiers. This is looked at in the next section. 

3.7.2 Misclassification Rates 

The goal of classification is to be able to reduce misclassifications (i.e. 

false positives and false negatives). However, closer to the decision boundary, 
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class overlapping occurs and this region has a higher probability of being 

misclassified by any classifier. Several methods have been developed to address 

this issue, but none of these methods assure zero misclassifications [118]. 

We used several different methods and all of them had at least one 

misclassification. Higher the number of training data used, the better the 

classification, but fewer trials for testing since we wanted to keep the total 

number of trials limited. Pruning the input space by PCA and using only the first 

two PCs for classification rendered better results than using all of the neurons for 

LDA.  

Figure 3.13 shows how the different  quantities of training data affected 

the classification. Higher the number of training data used, the better the 

classification, but fewer trials for testing since we wanted to keep the total 

number of trials limited. Therefore increasing trial number is not a feasible option. 

Table 3-1: Confusion Matrix For Different Unsupervised Clustering Methods  
(*K-Means Function – Squared Euclidean Distance, **GMM – Highest Accuracy Of 10 
Iterations). 

  Predicted Class 
Clustering Algorithm  +1 -1 

k-means* 

Ac
tu

al
 

Cl
as

s 

+1 96 4 
-1 0 100 

GMM** 
+1 74 26 
-1 3 97 

 

When the training data was 5%, the boundary was not as appropriate as 

when the training data was 10% or more. Increasing the training data set in this 

case, only removes the ambiguous trials from the testing data, but doesn’t do 
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anything to the boundary. The confusion matrix for each set of classifications is 

given in Table 3-1 and Table 3-2. When the training data was limited to 10%, the 

LDA with PCA and the SVM both performed similar, but when the training data 

set was increased, LDA with PCA outperformed the SVM. However, even with 

30% of training data, the classifiers still had at least 2 misclassifications out of 

170. Since we are using this data as the feedback into a BMI, we want to reduce 

these misclassifications further. In the next section, we suggest a possible 

method of overcoming limitations of classification due to the data itself. 

Table 3-2: Confusion Matrix For Different Supervised Classifiers And Different % Of 
Training Data.  
Each Row Gives A Different Method Of Classification. Each Column Gives Different 
Percentage Of Data For Training, Eg. 10% Column Means That 10% Data Used For Training 
And 90% For Testing. 

Training Data 5% 10% 15% 20% 25% 30% 

   Predicted Class 

Classifier  +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 

Bayes 

Ac
tu

al
 C

la
ss

 

+1 92 3 88 3 83 4 75 3 71 3 67 2 

-1 13 82 7 82 0 83 2 80 1 75 2 69 

kNN 
+1 88 7 80 11 75 12 73 5 68 6 64 5 

-1 2 93 1 88 1 82 2 80 2 74 1 70 

SVM 
+1 71 24 84 7 80 7 71 7 69 5 67 2 

-1 4 91 4 85 4 79 2 80 1 75 3 68 

Tree 
Bagging 

+1 90 7 86 9 90 2 86 4 86 1 83 2 

-1 47 51 11 84 25 68 6 84 2 86 0 85 

LDA 
+1 

n/a n/a n/a n/a 
62 12 62 7 

-1 5 71 8 63 

PCA & 
LDA 

+1 91 4 87 4 83 4 74 4 70 4 66 3 

-1 1 94 2 87 1 82 2 80 0 76 0 71 
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Figure 3.13: How the different training and testing data quatities effect the mislabeled trials. Data 
in PC space with LDA classification 

 Implementing Offline HRL Decoder with Critic Feedback 3.8

MI data and NAcc data were generated and used as input to our classifier 

which was a RL based BMI to predict the action to be taken. Figure 3.1 shows 

the architecture of the Actor-Critic RL. We used Izhikevich model to generate MI 

data and this was used as input to Actor. The previous MSP model was used to 

generate NAcc data and this was used as input to Critic. Actor was a fully 

connected feed forward neural network. The number of nodes in the input layer 

was the number of neuronal inputs of the MI. The hidden layer had 5 nodes and 

the output layer number of nodes was the number of actions to be selected from. 

Each node calculated the output, 𝑥𝑗 based on the input, 𝑥𝑖 and the weight, 𝑤𝑖𝑗.  
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 𝑥𝑗 = 𝑠𝑠𝑛�𝑃𝑗� = 𝑠𝑠𝑛�𝑜�∑ 𝑤𝑖𝑗𝑥𝑖𝑖 ��                       Eq. 3.14 

Where the transfer function f(∙), was a hyperbolic tangent function. The RL 

operated from a greedy policy, where the node with the highest value was 

selected as the action. The weight update rule for HRL is given by: 

 ∆𝜔𝑖𝑗 = 𝜇+𝜌𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 + 𝜇−(1− 𝜌𝑟)(1−𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.15 

where 𝜌 is the confidence in the feedback, 𝑟 (0 ≤ 𝜌 ≤ 1 and 𝑟 = ±1). 𝜇+ 

and 𝜇− represent the learning rates for the reward and penalty components, 

respectively. In our simulations we used 𝜇+ = 𝜇− but with different values for 

hidden and output layers. For the Critic output driven by the NAcc, we assumed 

that the wrong feedback was due to data points being close to the boundary and 

not due to mislabeling of trials (i.e. wrong feedback with high confidence was not 

considered). 

RL by nature is slower in adapting due to exploration. Once the RL agent 

has enough knowledge about the environment, it proceeds to exploit the 

situation. However, in a BMI setting, we do not have the luxury of long 

exploration; therefore previously, all the trials were replayed (epoching) 10 times 

in the background with keeping all the past data in the memory. However, in real 

time, epoching is not possible since each epoch needs a corresponding Critic 

output. To have a corresponding Critic output, there needs to be a robot 

movement for the NAcc to generate a rewarding/non-rewarding neural state. 

Therefore as a compromise, we used the first 10 trials for exploration. In the first 

10 trials, we use a known Critic feedback and had memory (all the past trials) 
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replaying (epoching) 10 times. From the 11th trial onwards, the memory kept was 

only the most recent trial and there was no replaying/ epoching. The pseudo 

code for the HRL BMI is given in Table 3-3. 

Table 3-3: Algorithm For The HRL BMI 
(1) Initialize weights 𝑤𝑖𝑗 and learning rates, 𝜇+ and 𝜇− 
(2) Generate MI data – simulating animal making a reach (Eq. 3.11,3.12,3.13) 
(3) Calculate the output based on Eq 3.14. 
(4) Execute Action 
(5) If within first 10 trials, set Epoch=10, go to step (6), else go to step (7) 

 
(6) Calculate reward (𝑟) based on trial type. Set confidence =1 (𝜌 = 1).  
 Use all the past trials 
 Update Weights based on Eq 3.15. Epoch++ 
 Calculate the output based on Eq 3.14. 
 If Epoch<10, repeat (6), else go to step (8) 

 
(7) Generate NAcc data – simulating animal’s perception of reward 
 Decode the reward (𝑟) and confidence (𝜌) from NAcc data 
 Update Weights based on Eq 3.15. 

Calculate the output based on Eq 3.14. 
 

(8) Return to step (2) 

 Deciding the Threshold  3.9

One of the measures of the threshold was the normalized distance to the 

boundary. We varied the threshold from zero (no threshold) to 0.5 (half of the 

distance) in 0.05 intervals. Since with PCA, it is easier to visualize the data, LDA 

and PCA combination was used for the results shown in Figure 3.14 and Figure 

3.15. As seen in Figure 3.14, the higher the threshold, the higher the size of the 

ambiguous class. Blue and green dots represent rewarding and non-rewarding 

classes respectively. The red and purple indicate which trials were in the 

ambiguous region.  
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Figure 3.14: Data in PC space with LDA classification. 10% for training and 90% for testing.  
Blue and green dots represent rewarding and non-rewarding classes respectively. The red and 
purple indicate which trials were in the ambiguous region. 

In deciding where to put the threshold, the different metrics of accuracy is 

important. Figure 3.15 gives the different metrics for accuracy. However, at 

higher threshold levels, more data points have lesser confidence and therefore, a 

lesser Critic output. The blue trace for each plot shows the results if there was no 

threshold used and the red traces show how the threshold affects the different 

accuracy levels. Subplot (A) shows how the overall accuracy drops with the 

increase in threshold while subplot (B) shows the new accuracy (i.e. not 

considering the ambiguous class) which increases as expected when the 

threshold increases. Subplot (C) shows the precision drops with the increase in 

threshold. (D) is the size of the ambiguous (“I don’t know”) class. As seen, the 

number of ambiguous data points increases as the threshold is increased. (E) 

through (H) show the different measures of performance. At 0.05 threshold, the 

false positives reduce to zero, but the true positive number also starts to drop 

from 100%. At 0.25 threshold, the false negatives drop to zero (subplot (H)).  
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Even though the false positives dropped as the threshold increased, the 

true positives and true negatives also dropped. Therefore, the threshold cannot 

be increased indefinitely. The purpose of the threshold was to reduce the 

erroneous feedback to the system, but it is unwise to ignore the correct feedback 

within the ambiguous region. Therefore, the threshold should be low enough to 

capture as many of the correct feedback, but also high enough so that wrong 

feedback does not have 100% confidence values. While a hard and fast rule 

cannot be given for the setting of the threshold, we should select it high enough 

that the FP and FN are close to zero and low enough that the accuracy and 

precision are as high as possible. For this particular data set, we selected 

threshold levels from 0 to 0.5 to evaluate how the thresholding affect the 

performance. This data was used as the Critic input in our Actor-Critic RL model. 

 
Figure 3.15: Data LDA & PCA (10% training). The blue trace for each plot shows the results if 
there was no threshold used and the red traces show how the threshold affects the different 
accuracy levels.  
(A) Accuracy calculated from all the data points. (B) Accuracy as calculated from the data points 
outside the threshold (i.e. “I don’t know” class discounted). (C) Precision considering all the data 
points. (D) size of the ambigious/ “I don’t know” class. (E)-(H) the TP,TN,FP and FN rates. 
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 HRL BMI Simulations   3.10

Using the data in the previous section and the algorithm in Table 3-3, we 

used 200 trials, 4 targets and performed multiple simulations with the same data. 

The first 10 trials as explained prior had a perfect Critic, used all past trials in 

memory and replayed (epoch) 10 times per trial. From 11th trial, only the present 

trial was in the memory and no epoching was performed. We used a realistic 

Critic decoded from PCA+LDA with confidence and reward. Figure 3.16 shows 

how the system performed for each trial. Blue shows the type of target (1-4) and 

black shows the Critic confidence output (high or low confidence). Red shows the 

system performance: positive for correct and negative for wrong. (A), (B) and (C) 

subplots show no threshold, 0.12 threshold and 0.24 threshold respectively. For 

comparison, all three systems start with the same initial weights and the order of 

trials are the same. However, each have different Critic feedback. The overall 

accuracy of all three systems are the same and the first 10 trials have very 

similar outcomes. System (A) is susceptible to wrong Critic outcomes as shown 

by the trials following wrong Critic (red bars negative after black * zero). System 

(B) has a few low confidence Critic outputs in comparison to system (C). The 

reason for (C) having many lower confidence Critic outputs was that as the 

threshold increased, the ambiguous region also increased, causing more trials to 

have lesser update than when the Critic confidence was high.  
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Figure 3.17 shows how the accuracy per 20 trials change with time. The 

system without a threshold (blue) and the system with 0.12 threshold (red) start 

off with similar accuracies. The blue trace however, changes rapidly throughout 

the session ending with a low block accuracy. On contrast, the red system has 

less fluctuations and towards the end maintains a higher accuracy. The system 

with a 0.24 threshold (green) has fewer fluctuations than the system with no 

threshold, but is not able to achieve high accuracy levels even by the end of the 

session.  

 
Figure 3.17: Block Accuracy for the 3 example simulations 

Figure 3.18 shows how weights, wij changed during the experiment. The 

weights up to iteration number 550 are for the memory and epoching of the first 

10 trials. Beyond 550, each weight update corresponds to one trial. Subplots (A) 

and (B) show system with no threshold, while (C) and (D) show a threshold of 

0.12 for Critic and (E) and (F) show a threshold of 0.24. Hidden Weights for all 

three systems (A/C/E) are similar with the second system (C) showing less 

variance towards the end of the session. Here we see how the unstable system 

(A/B) can still have higher accuracies, but with introduction of the confidence 

measure, the instability is reduced, and performance increases (C/D) and when 

increasing the threshold even further, the weights are not as smooth (E/F). In the 
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last half of the session (100 trials) the hidden weights with no threshold have a 

change of 57% compared to the whole session, whereas the output weights in 

the last 100 trials have a change of 31% compared to the whole session. 

However, with a 0.12 threshold, for the same section (last 100 trials) the hidden 

weights change by 28% and output weights by 24% in comparison to the whole 

session. When the threshold is increased to 0.24, these values are 42% for 

hidden weights and 56% for output weights. 

 
Figure 3.18: Weight traces for each of the simulations in the previous figure. The weights up to 
iteration number 550 is for the memory and epoching of the first 10 trials. (A/B) No Threshold. 
(C/D) Threshold=0.12. (E/F) Threshold=0.24. (A/C/E) Hidden Weights (B/D/F) Output Weights.  

Figure 3.19 shows a summary of 1000 simulations done for each 

threshold level. Figure 3.19A shows how with the increase in the threshold level, 

the accuracy increases and drops after 0.1. This is expected since, when the 

threshold increases, the Critic feedback is lower within the ambiguous region 
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causing some of the correct Critic feedback also to not be considered. Figure 

3.19B shows how the convergence varies with the threshold level. This explains 

the time varying nature of performance of RL; the latter trials have better 

performance than the beginning. Therefore we define the average accuracy of 

the latter part as convergence. Here, convergence is defined as the number of 

simulations that had more than 80% accuracy in the last x% of trials. Each 

colored bar shows a different x%: green, 10% and orange 40%. As the x% 

increases, the number of simulations converged reduces since at the beginning 

of the session, weights have not converged. The convergence plot findings are 

similar to that of the accuracy plot, where it is seen that the number of 

simulations converged increases with increase of threshold and then drops as 

the threshold is increased further. 

 
Figure 3.19: (A) How the Actor accuracy changes with the threshold. (B) How the Convergance 
(Accuracy of the last x% of trials) changes with the threshold level.  
How many of the simulations showed convergance in the last 10% (green) and 40% (orange) are 
shown here. Weights were decided to be converged if the number of accurate trials in the last x% 
was beyond 80%. 
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It was also seen that the average is a skewed representation of the 

results. Hence Figure 3.20 shows the distribution of the different simulations. The 

red traces show lower thresholds, green/ blue with medium thresholds and purple 

with higher thresholds. It can be observed in the figure that as the threshold 

increases (from red to green), the peak rises and is around 76%. As the 

threshold is increased further (green to blue), the peak drops and the curve shifts 

to the left (lower accuracy). When the threshold is increased further (blue to 

purple), the trend of low performance continues. With this plot, the best threshold 

level can be set in the orange/green region. 

 
Figure 3.20: Distribution of the simulations for each threshold level. X-axis: accuracy percentage. 
Y-axis: threshold level. The red traces show lower thresholds, green/ blue with medium 
thresholds and purple with higher thresholds. Z-axis: how many simulations showed this 
accuracy. 
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 Summary and Conclusions 3.11

In this chapter, Actor architecture was developed and tested with the aid 

of synthetic data. The hypothesis in this chapter was: using the feedback only 

when correct, improves the performance of the system. We tested this first by 

using a Critic which had complete knowledge of the accuracy of its own output 

and concluded that if such a Critic can be developed, the Actor performance can 

be improved. Actor data was generated by the Izhikevich model and tested on 

the system. The system was also tested on NHP data, with similar results to the 

synthetic data with noise. Next, the method of how the Critic can have knowledge 

in its own output, was proposed as a confidence measure. A graphical solution 

was provided to show proof of concept of how this can be implemented and was 

implemented on synthetic NAcc data generated by Humpries modified Izhikevich 

model. Finally, this NAcc synthetic data was provided to a Critic to which gave 

the rewarding feedback a well the confidence it had in its own output. This was 

used to update the Actor in an offline simulation of the BMI experiment. In these 

offline simulations, the confidence measure (via the threshold) was varied and 

the system performance was studied as the threshold varied. It was concluded 

that a very large threshold increased the ambiguous region, thus not providing 

enough feedback for the Actor on most trials. At the same time, having a zero 

threshold caused erroneous feedback to influence the Actor. A threshold of 0.10 

to 0.15 was recommended for the data analyzed in this chapter. It was also seen 

that the average and standard deviation alone were lacking the insights a 

distribution provided. 
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Chapter 4 Closed-Loop Experiments 

Neural signals from the NAcc and MI from two marmoset monkeys were 

shown in Chapter 2. In Chapter 3 a CL architecture to receive signals from the MI 

as Actor inputs and NAcc as Critic inputs was developed. In this chapter, these 

two concepts are combined: MI from a marmoset monkey (Don) is used to drive 

the Actor and the NAcc from the same monkey is used to drive the Critic in CL 

control. Figure 4.1 shows the architecture for biological Actor-Critic RL which was 

implemented. 

 
Figure 4.1: Architecture for Biological Actor-Critic Reinforcement Learning.  
The Critic is controlled by the NAcc neural inputs and the Actor is controlled by the MI neural 
inputs. The Critic provides an evaluative feedback to the Actor. 

 Designing of the Closed-Loop Paradigm  4.1

The experimental setup was the same two-target reach paradigm as was 

presented in section 2.2.2. Instead the robot being controlled by the sensors 

pressed by the animal, it was controlled by the animal’s neural signal via the HRL 

BMI. 1000 msec of data was binned 500 msec after the Go Tone from the MI 

array for the Actor input, as identified previously. Similarly, 1000 msec of data 

was binned at the start of the robot movement from NAcc array for the Critic input 
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and a Random Forests classifier was used as the Critic. The experiments 

were carried out according to the algorithm in Table 4-1. First, the results are 

confirmed by analyzing the data for Actor and Critic offline for the choice of 

window. 

Table 4-1: Algorithm For The Closed-Loop HRL BMI 
(1) Use the past day’s database of NAcc data to build the Critic Classifier 
(2) Initialize weights 𝑤𝑖𝑗 and learning rates, 𝜇+ and 𝜇− 
(3) Collect 1000 msec of MI data following 500 msec after Go Tone 
(4) Calculate the output based on Eq 3.14. 
(5) Execute Action 
(6) If within first 10 trials, set Epoch =0, go to step (7), else go to step (8) 

 
(7) Calculate reward (𝑟) based on trial type. Set confidence =1 (𝜌 = 1).  
 Use all the past trials 
 Update Weights based on Eq 3.15. Epoch++ 
 Calculate the output based on Eq 3.14. 
 If Epoch<10, repeat (7), else go to step (8) 

 
(8) Collect 1000 msec of NAcc data following 500 msec after the start of robot 

movement 
 Decode the reward (𝑟) and confidence (𝜌) based on classifier built in step (1) 
 Update Weights based on Eq 3.15. 

Calculate the output based on Eq 3.14. 
 

(9) Return to step (3) 

4.1.1 Actor Neural Data 

We used the data from the MI array recorded from the same day as that 

for which the Critic decoder was trained. There were 11 MI neuronal units and 

the number of units which showed significant difference for A trials (left hand 

movement) vs C trials (right hand movement) are shown in Table 4-2 for each 

window size analyzed (ANOVA with alpha 0.1). There were a total of 88 trials 

with 44 trials for each direction.  
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Table 4-2:  Number Of Significant Units For MI Neurons (ANOVA, Alpha = 0.1) 
 500 msec window 1000 msec window 

Window starting at 0 250 500 750 1000 0 250 500 750 1000 
# of significant units 1 1 2 2 3 0 1 2 3 1 

Figure 4.2 shows the average classification accuracy for 4 types of 

classifiers for the data shown above. From Table 4-2, we see that the number of 

units which show significant difference for the two classes classified is 2 out of 11 

for the windows starting at 500 msec. Window 750-1750 msec have 3 out of 11 

units significantly different for the two classes, however the accuracy is lower in 

this window. For this particular monkey, the best accuracy in classifying A trials 

(left arm movement) from C trials (right arm movement) is in the window starting 

at 500 msec after the Go Tone. 

 

 
Figure 4.2: Average classification accuracy (100 iterations) for classifying A trials (left arm 
movement) and C trials (right arm movement) from MI neurons for different windows  
(A) 500 msec bin (B) 1000 msec bin. Each colored trace shows a different classification method. 

4.1.2 Critic Classifier 

The Critic was built using data from one day from the NAcc neural signals 

from the animal that the CL experiment was implemented on. There were 28 

NAcc neuronal units and the number of units, which showed significant difference 
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for rewarding trials vs non-rewarding trials are shown in Table 4-3 for each 

window size analyzed (ANOVA with alpha 0.1). 

Table 4-3:  Number Of Significant Units For Nacc Neurons (ANOVA, Alpha = 0.1) 
 500 msec window 1000 msec window 

Window starting at 0 250 500 750 1000 0 250 500 750 1000 
# of significant units 0 0 5 5 1 1 3 0 1 1 

 

The average classification accuracy for classifying rewarding trials and 

non-rewarding trials with 4 different classifiers are shown in Figure 4.3. The best 

accuracy here is shown at the window starting at 500 msec after the start of the 

robot movement. Random Forests classifier gave better accuracies on average 

and this was the classifier selected for the Critic. There were a total of 88 trials 

with 66 rewarding and 22 non-rewarding trials. The classes were balanced prior 

to training the classifier and 100 trees were used. 

 
Figure 4.3: Average classification accuracy (100 iterations) for classifying rewarding trials and 
non-rewarding trials from NAcc neurons for different windows  
(A) 500 msec bin (B) 1000 msec bin. Each colored trace shows a different classification method. 

The test data for the classifier was given online during the experiment. 

The output from the Random Forests classifier (Critic) was the probability of the 
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trial being either a rewarding trial (robot correct action) or a non-rewarding trial 

(robot wrong action).  

 Closed-Loop Experiment 4.2

Three types of experiments were conducted changing the Critic for each 

of them. The first was a 100% accurate Critic given in a supervised manner. The 

purpose was to assess, given a perfect Critic, how well the performance is for 

this particular subject. Second and third experiments were using the NAcc as 

input to the Critic. In the second experiment the Actor used the Critic feedback 

(rewarding/non-rewarding) directly for the weight update, whereas for the third 

experiment, the Critic also gave a confidence value and the Actor took this into 

consideration when updating the weights. For the purpose of controllability, the 

second and third experiments were run in pairs; and each were conducted on the 

same day with the same initial conditions. The results of the experiments are 

shown here.  

4.2.1 CL with a 100% accurate (artificial) Critic 

Shown here are the results from the online CL experiment with 100% 

accurate (artificial) Critic feedback, starting with initial conditions from a previous 

week (Figure 4.4) and initial conditions from the previous session (Figure 4.5). 

We used this as a measure of evaluating if the temporal nature of the inputs 

required the weights to be initialized. The overall accuracy of the first system 

(weights from previous week) is 46% and the second system (weights from 

previous session) is 56%.  
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Figure 4.4: 100% accurate Critic CL experiment, with previous week’s initial conditions. (A) 
Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer Weights. 

In addition, the weights are more stable in the second system. These 

results show the accuracy that can be achieved if the Critic is 100% accurate. 

These are two examples which were implemented in CL, but further analysis was 

done with different initial conditions similar to those done with the synthetic data.   

 
Figure 4.5: 100% accurate Critic CL experiment, with previous week’s initial conditions. (A) 
Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer Weights. 

In Figure 4.6 the moving average per block of 20 trials is plotted (50% 

overlap). The system which started from more recent initial conditions (red) has 

higher accuracy overall. This is due to the unstationary nature of the neural data.  
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Figure 4.6: Accuracy (moving average) for the Perfect Critic CL experiment. Blue – with previous 
week’s weights. Red – with previous session’s weights. Red only up to 50 trials. 

Next, the same data was run offline through an Actor-critc RL decoder 

with the same Critic feedback to arrive at a distribution of the performance. The 

results are shown in Figure 4.7. For the system with previous week’s initial 

conditions overall performance on average was 55.2% (±3.02%) and for the 

system with the previous session initial conditions, the average performance was 

57.9% (±5.75%). As discussed in the section introducing RL, it is seen that the 

system is susceptible to initial conditions and not all initial conditions have 

solutions that converge. 

 
Figure 4.7: 100% accurate Critic CL experiment – offline simulations – distribution of overall 
accuracy. (A)  with previpous week’s initial conditions. (B) with previous session initial conditions. 

4.2.2 CL with a NAcc Critic – Effect of threshold on Performance 

Shown here are the results from the online CL experiment with NAcc as 

Critic input. Two cases are compared; Figure 4.8 (session 1) shows a system 
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with no threshold and Figure 4.9 (session 2) with a 0.1 threshold. The two 

sessions were started with the same initial conditions (initial conditions were 

decided from previous day’s session) and the same Critic decoder for purposes 

of comparison. The Critic in session 1 was performing at 56% accuracy, while 

with a threshold, it increased to 60% in session 2. The 4% increase in Critic 

accuracy coupled with using this information intelligently, gave rise to an overall 

performance increase of 12% from 36% in session 1 to 48% in session 2 (See 

Figure 4.10 for detailed explanation).  Subplot (A) shows the performance in 

each trial; red for Actor (positive – correct, negative – wrong), black for Critic 

(high – correct, low – wrong) and blue for type of trial (high – C trials, low – A 

trials). The trial types were balanced so as to not yield a skewed result. At the 

beginning (first 10 trials), both sessions perform at 50% accuracy, but as the 

session proceeds, session 1, is not able to maintain the performance. In contrast, 

session 2, picks up the performance as the session proceeds, especially after 

trial 35, where more trials are correct in a sequence (from both A and C).  

 
Figure 4.8: NAcc Critic CL experiment, with no threshold. (A) Performance of each trial. (B) 
Hidden Layer Weights. (C) Output Layer Weights. 
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Subplots (B) and (C) give the hidden layer weights and output layer 

weights for the respective sessions. Each vertical line corresponds to the weights 

at the end of the epoching, (i.e. weights corresponding to the particular robot 

movement). The weights of session 1, vary beyond ±0.5 whereas in session 2, 

the hidden layer weights vary between ±0.1 while the output layer weights vary 

between ±0.5. This suggests that session 2 is smoother than session 1. 

However, both systems have not converged to a solution in 50 trials. In session 

1, the wrong Critic feedback is causing the overall performance to be very poor, 

whereas in session 2, the wrong Critic feedback has low confidence and 

therefore updates at a lower rate during these trials, causing the system 

adaptation being much slower and therefore the system will need longer to 

converge. 

 
Figure 4.9: NAcc Critic CL experiment, with threshold. (A) Performance of each trial. (B) Hidden 
Layer Weights. (C) Output Layer Weights. 

 

In Figure 4.10 the moving average is plotted. Here, the accuracy is 

considered in blocks of 20 with a sliding window of 10 (50% overlap). The system 

which had a threshold (session 2 – red) has higher accuracy overall. 
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Figure 4.10: Accuracy (moving average) for the NAcc Critic CL experiment. Blue – with no 
threshold. Red – with threshold. 

Figure 4.11 shows the data from session 1 (A) and session 2 (B) in offline 

simulations, if started with random initial weights, the distribution of the overall 

accuracy, given the Critic was perfect. Both systems range from 40s to 80s (x 

axis), peaking at 75% for session 1 and at 70% for session 2. This suggests that 

given, a perfect Critic, session 1 is able to perform approximately at 75% and 

session 2 at 70%. This does not however, take into account the erroneous nature 

of the Critic which lowers the performance.  

 
Figure 4.11: 100% accurate Critic CL experiment – offline simulations – distribution of overall 
accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9. 

Figure 4.12 shows the data from session 1 (A) and session 2 (B) in offline 

simulations, given the Critic performance at the same performance as the online 

CL experiment and starting with the same initial conditions as the online CL 

experiment. In session 1, it is seen that the distribution peaks at 50%, whereas 
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session 2 peaks at 55%-60%. Session 2 distribution has a lower variance (40.92) 

than session 1 (77.40).  

 
Figure 4.12: Inaccurate Critic CL experiment – offline simulations – distribution of overall 
accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9. 

 Summary and Conclusion 4.3

In this chapter, it was shown how the confidence measure was extracted 

from the NAcc data and the accuracies of the different classifiers. CL 

experiments were designed such that a biological feedback can be used as the 

Critic signal. The Critic provided the confidence it had in the class label in 

addition to the class label. This was tested online with a NHP on a two choice 

decision making task. The first system was a Critic with a perfect feedback, 

which was done to get an idea of sensitivity to initial conditions and the 

performance levels that can be achieved with a perfect Critic. This system if 

initialized with appropriate initial conditions was able to perform 10% better than 

with inappropriate initial conditions. The final set of experiments was with a NAcc 

decoded Critic with no threshold and with 0.1 threshold. The system with a 

threshold performed 12% better than the system without a threshold. In OL 

simulations, the second system had lower variance than the first, and we 
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conclude that by using an appropriate threshold level, with a real Critic, the 

performance can be increased. Further, it was observed that the accuracy 

changes with the length of the session. Having a longer session, it was observed 

that the latter trials are decoded with higher accuracy than the earlier trials in the 

session. Inherently, the RL system performance increases with exploration (i.e. 

addition of experience/ trials). 
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Chapter 5 Summary and Future Work 

 Summary of Work 5.1

BMIs have great potential to alleviate lives of paralyzed individuals by 

electronically by passing the damaged areas and linking the neural signal to an 

actuator or one’s own limbs. Most of the current BMIs are trained in a supervised 

manner with a training signal. A class of decoders, that learn from the 

environment (known as RL decoders) have been adapted to BMI field. Since it 

learns by exploring its environment, it does not need a supervised training signal. 

It has been hypothesized that the NAcc can provide a reward signal which is 

similar to the TD error in RL decoders. Proof of concept had been shown in 

previous work of using this signal as a feedback in RLBMI. An Actor-Critic RL 

paradigm had been proposed and here it was implemented in CL with a monkey 

using a real Critic feedback.  

In this work, the nature of the NAcc signal was studied and a detailed 

analysis of the NAcc neural signals was performed. Different machine learning 

techniques were applied to the NAcc data for classification of rewarding and non-

rewarding trials. The purpose was to build confidence of using this signal as an 

input to the Critic in a Actor-Critic RL paradigm. However, since the classification 

accuracy was less than perfect, and since the Critic feedback limited the overall 

performance, a new paradigm was needed to deal with this. 
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One of the hypotheses of this work was that if the Critic could provide the 

accuracy of its own feedback and it was used intelligently, the overall 

performance can be improved. This was shown to be true by synthetic data 

simulations; using the feedback information intelligently and updating only when 

the feedback is accurate, improved the system performance. This was 

particularly true for lower Critic accuracies since at lower Critic accuracies the 

information provided by the Critic in the old system was wrong most of the time. 

Next it was shown how the Critic can give the accuracy of its own 

feedback. For proof of concept, a graphical solution was utilized, where the 

distance to the boundary was used as a measure of the accuracy. This was 

converted to a confidence metric and given out of the Critic along with the rewar 

signal. The assumption here was that closer to the decision margin, there are 

more misclassifications. This was implemented in an offline experiment with 

synthetically generated MI and NAcc data. 

Other methods can also be used to give a confidence measure. For 

example, most probability based classifiers decide the label of the data point 

based on the probability that it belongs to one class or the other. If the difference 

in probability is high, this suggests that the decision is made with higher 

confidence and vice versa. Random Forests Classification was used for the NAcc 

data and implemented in CL with a marmoset monkey. Three systems were 

compared in CL experiments: 100% accurate artificial Critic, real NAcc Critic with 

and without a confidence. 
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In conclusion, if a feedback signal is to be derived from the brain, due to 

non-stationarity and inherent noise issues, a method needs to be formulated of 

knowing how accurate this feedback is. If such a confidence metric can be 

attached to the feedback, then using this in an Actor-Critic RL can improve 

performance of the system. 

 Novel Contributions and Implications 5.2

The following contributions were made by this work.   

5.2.1 A Confidence Metric can be Attached to the NAcc Neural Signal 

Given that the NAcc neurons have a wealth of information it can be hard 

to extract the right kind of information. Even though only 10-20% of the neurons 

modulated with reward, it was still possible to extract the reward information with 

66% accuracy on average with classifiers which were able to give a confidence 

metric in addition to the class label. For the ease of visualizing, the normalized 

distance to the boundary was used as the confidence measure. A LDA is the 

best example of a classifier where the distance to the boundary can be used. 

Other classifiers with a decision boundary can also utilize this measure. 

However, in probabilistic classifiers such as Bayes and Random Forests, the 

confidence measure is the arrived at from the probability the data belongs to the 

particular class. Both the distance to the boundary and the probabilistic measure 

were shown in this work as methods of extracting the confidence from the data. 



 
 
 

103 
 

 
 
 

5.2.2 Confidence Measure Improves the Overall Performance 

It was confirmed in this work, that using a confidence measure in the 

feedback signal can improve the overall performance. The use of the confidence 

measure in feedback is not only limited to applications of RLBMI. A BMI that uses 

any form of less-than-perfect feedback can utilize this confidence metric. This 

can also be extended on to other machine learning techniques where feedback is 

less-than-perfect. 

5.2.3 Developed a Paradigm for Real Time Implementation 

Showing proof of concept of the confidence measure working is the first 

step. The next step of implementing this in CL, have a series of mini challenges 

in-between. It is important to tackle each of these mini challenges in order to 

have a working CL system. These challenges were addressed and the system 

was implemented in real time. One of them was the implementation of a 

supervised decoder at the beginning of the session to tackle the inherent slow 

learning of the RL system. In this work, a complete paradigm was developed 

where the proposed system was implemented in real time with supervised 

learning at the beginning and RL after the first 10 trials. 

5.2.4 A Closed-Loop BMI with Motor Control and Biologic Feedback 

A closed-loop BMI that uses motor control and biologic reward feedback 

was designed, prototyped and tested on a NHP. The experiment paradigm was 

designed in house with sensors and all components needed for the experiment 

including hardware and software codes. Both the motor control and biological 

reward feedback were tested. 
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 Improvements and Future Work 5.3

SNR in neural signals is very low. There were different techniques that 

were used (grounding, CAR) to increase the SNR. However, despite, all these 

efforts, biological signals are noisy. As neural engineers, it is a challenge to 

design a system robust to noise, most of which are inherently is unpredictable. 

Due to this, extracting the necessary features from data becomes cumbersome, 

and the results can vary depending on the noise level. Another outcome of the 

noise is the misclassification of data, thus the basis for this work. It is because of 

such data that the confidence measure adds value. However, getting the 

confidence from the data itself has different challenges associated with it. In this 

work, two methods (distance to boundary and probability of class) were 

implemented. Other methods of extracting the confidence measure needs to be 

explored and this will differ from application to application. 

Biological signals are inherently non-stationary. In the brain, the statistics 

of the neural signals constantly change over time. This is the biggest challenge 

that neural engineers face. This same challenge, applies to the data that was 

analyzed in this work. Given the nature of the animal model in this work, the 

sessions were of limited time, usually 20-40 min per session. For longer sessions 

it is possible that the statistics of the beginning of the session and the end of the 

session is different. However, one of the advantages of RL is its ability to adapt 

to changes in the environment, which includes the input neural data non-

stationarity.  Therefore, the Actor is able to adapt to changes in the neural input. 
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However, the Critic implemented was a static decoder. There were several 

experimental parameters which needed to be paid attention to in order to do this. 

First is that the number of neuronal units recorded for both from MI and NAcc 

needed to be the same across sessions if they were to be combined. In addition 

to the number of units being the same, it was important to assess if the 

electrodes were picking up the same unit across days. In most cases, it was 

difficult to find a two week period with the same units. Unless this was the case, 

we tried not to combine data sets. 

Combining data sets became a necessity out of the animal model chosen. 

Unlike rhesus macaques, our marmosets, worked less time (<1 hour with 

marmosets as compared to 3 hours with rhesus macaques). Therefore the 

number of trials per day is also low. Particularly due to this, combining data sets 

from different days became a necessity but also needed careful consideration. 

For the CL experiments, we gathered data and implemented on the same week. 

For the data analysis in Chapter 2, we combined several days/ sessions of data. 

This is one of the reasons for the high variance seen in the data.  

As seen in Chapter 4, the RL is sensitive to initial conditions. It is also 

known that certain initial conditions do not have a solution that converges, and 

therefore several Monte Carlo simulations need to be performed to find optimal 

initial conditions (See Figure 3 B in [112] and Figure 7 in [119]). Preliminary tests 

were done to test the initial condition comparison and how much the performance 

was affected due to this. Comparing the statistics of these initial weights showed 

no particular indication as to which weights to choose. Therefore, further studies 
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are needed to be able to decide upon initial conditions that are optimal to be 

used. 

The animal experiments that were conducted assumed that the animal 

always performs the correct action. Although in a few trials per session, it is 

possible that the animal either performs the wrong action or is uninterested or not 

engaged with the task. These trials can be removed from offline analysis and if 

the animal performs the wrong choice too often, the entire session can be 

removed. However, in CL experiments, this cannot be done and the fundamental 

assumption is that the animal is correct. When performed CL experiments with 

low performance for a few days, the animal is confused and its performance 

drops. This was the case in a few of the CL experiments and these sessions 

have not been included in the results. The trial type given did not match the 

animal’s performance. Even though the robot mimicked the animal’s 

performance, the system considers this to be a wrong action when calculating 

performance. This indicates that the animal needs to be re-trained before 

conducting CL experiments again, prolonging experimental time. If a paradigm 

can be designed and controlled such that when the robot matched the aninmal’s 

action, it will always be considered a correct action, even though the trial type did 

not match, this would reduce additional extensive training needed. 

The contribution of electrodes to decoding was not focused in this work. 

However, with earlier animals, we had issues due to design flaws which we 

discussed with suppliers and were able to resolve. Earlier on during the animal’s 

recordings, the signals change a lot. However, as the implant time increased, the 
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signals become more stable than at first, but due to encapsulation, the signal 

quality also reduces. This gives a window of optimal time after implantation which 

needs to be exploited. 

One of the main concerns of this work is for better targeting of MI and 

NAcc implant sites. The animal that the CL experiments were conducted on, has 

not been sacrificed at the time of writing this work and histology reports have not 

been received. We are fairly certain that the electrodes are in the targeted 

locations as the procedure has been modified from previous work, but can be 

further improved with imaging techniques.  

At present the Actor algorithm is a HRL decoder which has its limitations. 

The Actor-Critic RL paradigm is flexible to include any decoder in to the Actor 

and the feedback/ error/ reward can be provided by the Critic. This work was 

limited to testing the system with the HRL Actor, but other avenues can be 

explored for different results. 

One of the challenges that was encountered was the inherent slow 

adaptation of the RL paradigm. This was overcome by adding memory and 

epoching to each trial. This was feasible in offline experiments. However, when 

implementing online, the epoching could not be done due to lack of a matching 

Critic output. Hence, we resolved to use the first 10 trials as a supervised training 

for the system to get stabilized. However, in some cases, the system was not 

converged at the end of 10 trials causing performance to drop. This supervised 

training trial quantity at the beginning can be changed and further analysis can 
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be done. The supervised training at the beginning can be used to build the Critic 

classifier instead of needing a past day’s database of trials. 

The HRL decoder has an inbuilt feature where the adaptation stops when 

the weights are stabilized. However, when the system performs poorly, it takes a 

very long time for the RL to get the weights back on track, given the added slow 

adaptation due to the confidence metric. When the performance of the system is 

dropped below a certain percentage, supervised learning with epoching can be 

introduced to boost the performance.  
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Appendix A Adapted from “Prins et al. Representation of 
Natural Arm and Robotic Arm Movement in the Striatum of a 
Marmoset Engaged in a Two Choice Task” 

One of the findings from the analysis of 0 is that the striatum neural data 

clusters separated out for robot movement left and right very clearly. We 

explored this idea further and found preliminary results to be interesting in the 

subject of body schema and tool use. These findings are interesting for BMIs but 

is not directly relevant to the work described in this dissertation and  therefore we 

include in the appendix. Some of these results have been adapted from 

published work in the IEEE Neural Engineering Conference [96].  

Introduction to Body Schema and Tool Use 

For organisms to access the external environment and make decisions in 

everyday activities, the intent of the brain is often expressed through a physical 

medium (the body by nature), which interacts with the environment. Numerous 

studies have shown that the concept of the brain’s embodiment is dynamic [120]. 

The brain, body, and even tools can become extensions of each other during use 

through reorganization of neural representation evident in single unit activity 

during tool use [121-123]. The concept of ‘body schema’ was highlighted by 

Head and Homes to describe the mapping of proprioception and motor 

commands to body posture and movements as well as mapping of tactile 

sensation from the body surface [124, 125]. These studies showed that the body 
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schema changes with learning, which indicate that the plasticity of the 

brain is also involved [126]. 

The concept of schema has an impact on the field of Brain-Machine 

Interfaces (BMI). The external device control can be thought of as similar to the 

idea of body schema in using mechanical tools [127]. Often, when training 

animals to use BMIs, the animal is initially trained to control the system by 

moving its own limb. Later, even when the animal has stopped moving its limb or 

when the limb is paralyzed, there is activity in the motor cortex that can be used 

for decoding intended arm movement [4] and this can be used to guide a robotic 

device.  Questions arise about how an animal’s intent is remapped or projected 

onto the device that the animal is controlling. Similarly, we are interested in 

studying how neural representations change while an animal is interacting with a 

robot arm. It remains unknown in the BMI context how the body schema 

changes, as better control emerges over time. Since learning may be involved in 

the modification of behavior and the body schema, we have focused our work on 

neural circuits involved in goal-directed motor control: the ventral striatum 

(nucleus accumbens – NAcc) and motor cortex [128, 129]. 

In this section we explore the possibility of the actions of an external 

device being represented in the striatum, which has been known to play a key 

role in reward [51]. We analyzed in this study how the striatal neural signals 

modulate according to the robot movement direction when the monkey reached 

in the same direction as robot or opposite direction.  
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Task and Results 

The task was the two-target reach task described in 2.2.2. Recordings of 4 

sessions within one week were analyzed (S1, S2, S3, S4) with a total of 124 

trials. For each session, the windows analyzed were 0-500ms, 100-600ms and 

200-700ms. Figure A.1 (bottom) shows an example of the mean spike count from 

one neuronal signal from one session with a bin size of 25ms. There is a 

statistically significant difference (t test. p<<0.001) in the firing patterns during the 

time period (0-700ms). The firing rate when the robot moves towards the left is 

higher than when the robot moves to the right. For comparison against the 

natural arm movement Figure A.1 (top) shows the same neuronal unit during the 

monkey’s physical arm movements (window 600-1400ms after go signal). The 

left arm movement shows higher firing than the right arm movement. 

 
Figure A.1: Mean Spike count for one neuronal signal showing left (red) and right (blue) (Session 
1). Bin size 25ms. Top: Natural Arm Movement. Time relative to Go Signal. Bottom: Robot Arm 
Movement. Time relative to the Robot Movement [96].  

Next, the data was converted to PC space and the first two PCs were 

plotted in 2D. k-means was used to partition the PC space into two clusters as 
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shown in (green and yellow Voronoi diagrams). Next the trials were labeled 

manually as left (Figure A.2(A) red data points) and right (Figure A.2(A) blue data 

points) in the PC space. Finally, the labeled trials were compared against the k-

means classes to calculate the resulting clustering accuracy. There is 

separability of the trials that can be observed in the PC space. For comparison 

with natural arm movements we plotted the neural data during the arm reach 

time in Figure A.2(B). The left and right arm movement can be seen in red and 

blue respectively. The time window in Figure A.2(B) is 800-1300ms after the go 

signal, which is during the time of the natural reach whereas Figure A.2(B) shows 

data during the robot movement, i.e. after the natural reach. 

The clustering accuracy for the session shown in Figure A.2(A) is 92.7%. 

The reduced percentage is due to outliers in the PC space and inaccuracies in 

the PC space being separated. The clustering accuracy for each session and the 

different time windows are shown in Table A-1 with the highest accuracy of 

92.7%. The first column in Table-I gives the clustering accuracy during the hold 

time as the baseline for comparison. When the plots of the PC space during the 

hold time are examined further, there is no separation between the clusters as is 

expected since there is no interaction with the robot during this time period (see 

Discussion). Clustering accuracy for the first time-window in sessions S3 and S4 

was further increased to 88.9% and 77.8% with manual clustering suggesting 

that more sophisticated methods can improve the accuracy. However, there was 

no such pattern in the window during the hold time.  
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Figure A.2:  (A) Data in the first and second principal component space during Robot Movement. 
 Session 2 window 100-600ms. Accuracy 92.7%. Red – left robot movement (A standard trials in 
x and C catch trials in o). Blue – right robot movement (C standard trials in x and A catch trials in 
o). Green – cluster 1, Yellow – cluster 2. ⊗ – centroids of each clutser of points. (B)  Data in the 
first and second principal component space during the natural arm movement. Red – left arm 
movement. Blue – right arm movement. (Similar to the robot movements in figure above, 
separation between the left and right physical arm movements is evident) [96]. 

 

Table A-1: Overall Accuracy Of Clustering Using K-Means For Different Window Sizes. The 
Accuracy Of Hold Time Is Given As Baseline (Chance Level) [96] 
 

Session 
Accuracy of Clustering 

Hold Time (Baseline) 0-  500ms 100-600ms 200-700ms 

S1 61.0% 90.2% 92.7% 85.4% 
S2 51.3% 84.6% 89.7% 89.7% 
S3 52.6% 60.5% 89.5% 89.5% 
S4 60.9% 63.0% 69.6% 89.1% 

Average 56.4% 74.6% 85.4% 88.4% 

Figure A.1 shows a statistically significant difference in the firing patterns 

for the two directions within the time window analyzed (0-700ms). This was 

typical of the population of neuronal units recorded. 4, 8, 5 and 6 neuronal units 

out of 27 neuronal units showed a statistical significant difference (t test: p<0.05) 

for sessions S1, S2, S3 and S4 respectively. Even though the variance 

accounted for in the first two PCs is only 47%, we are still able to see clear 
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separability in the data and simple unsupervised clustering techniques show that 

it is possible to extract robot movement direction from the neural data. 

The clustering accuracy during the hold time which was used as the 

baseline was 56.4% on average. Since the manual labeling of the clusters was 

always done to maximize the resulting classification accuracy, chance was by 

default greater than 50%. When the PC space was plotted, there was poor 

separability between the two clusters. This is expected as during this time there 

is no robot movement or arm movement present. It is interesting to note how the 

classification accuracy increases across the time window. The third time window 

gives the best accuracy results (88.4% on average). Higher accuracy obtained in 

later time windows could be explained due to the time the animal required to 

realize and appreciate to which target the robot was moving. The variance in the 

accuracy of clustering was lowest in the third window (0.04%) where the average 

performance is the highest. The variance is 2.26% in the first window and 1.13% 

in the second window. The variance of the results for the baseline (hold time) 

was 0.27%. 

Mathematical Representation of the Different Clusters 

We are interested in determining the mathematical representation of the 

different clusters. This section describes a probabilistic framework for the 

different clusters. We define the variables in the environment during the robot 

movement with the following notation. 
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G tarGet LED 

B roBot LED 

S target Sensor LED 

L target Location 

RM Robot Movement 

E Error 

F Flashing 

The probability of A standard trials is the probability of the target LED (G) 

being left, the robot LED (B) being left, the target sensor (S) being left, the robot 

movement (RM) being left, the error(E) being correct and the lights flashing (F). 

 P(A_standard) = P(G=Left, B=Left, S=Left, L=Left,  
                                            RM=Left, E=Correct, F=Flash) Eq. A.1 

Similarly, the probability of C standard trials is the probability of the target 

LED (G) being right, the robot LED (B) being right, the target sensor (S) being 

right, the robot movement (RM) being right, the error(E) being correct and the 

lights flashing (F). 

 P(C_standard) = P(G=Right, B=Right, S=Right, L=Right,  
                                                           RM=Right, E=Correct, F=Flash) 

 
Eq. A.2 

The C catch trial probability is the probability of the target LED (G) being 

right, the robot LED (B) being right, the target sensor (S) being right, the robot 

movement (RM) being left, the error(E) being wrong and the lights not flashing 

(F). 

 P(C_Catch) = P(G=Right, B=Right, S=Right, L=Right,  
                                                               RM=Left, E=Wrong, F=Off) 

 
Eq. A.3 
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Similarly, the probability of A catch trials can be represented with the 

probability of the target LED (G) being left, the robot LED (B) being left, the target 

sensor (S) being left, the robot movement (RM) being right, the error(E) being 

wrong and the lights not flashing (F). 

 P(A_Catch)  = P(G=Left, B=Left, S=Left L=Left,  
                                                                RM=Right, E=Wrong, F=Off) Eq. A.4 

if we assume that A standard and C catch trials have similar firing 

properties in the NAcc, we can combine Eq. A.1 and Eq. A.3 

 

P(A_standard) + P(C_Catch)  
= P(G=Left, B=Left, S=Left, L=Left, RM=Left, E=Correct, F=Flash)  
+ P(G=Right, B=Right, S=Right, L=Right, RM=Left, E=Wrong, F=Off) 
 
= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or 
Right, RM=Left, E=Correct or Wrong, F=Flash or Off)  
 

 
 
 
Eq. A.5 

The possible choices for G are left and right. Therefore we can 

marginalize over G; 

P(A_standard) + P(C_Catch)   

= ∑
𝑃(𝑆,𝐵 =  𝐿𝑛𝑜𝑡 𝑐𝑟 𝑅𝑖𝑠ℎ𝑡, 𝑆 =  𝐿𝑛𝑜𝑡 𝑐𝑟 𝑅𝑖𝑠ℎ𝑡, 𝐿 = 𝐿𝑛𝑜𝑡 𝑐𝑟 𝑅𝑖𝑠ℎ𝑡,

𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡 𝑐𝑟 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝐹𝑡𝑎𝑠ℎ 𝑐𝑟 𝑂𝑜𝑜)𝐺  

= P(B= Left or Right, S= Left or Right, L=Left or Right,  
                                    RM=Left, E=Correct or Wrong, F=Flash or Off) 

 
 
 
 
 
 
Eq. A.6 

Similarly, since the possible choices for B, S and L are left and right, we 

can marginalize over all three variables. 

 

P(A_standard) + P(C_Catch)   
= 
∑ 𝑃(𝐵,𝑆, 𝐿,𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡 𝑐𝑟 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝐹𝑡𝑎𝑠ℎ 𝑐𝑟 𝑂𝑜𝑜)𝐵,𝑆,𝐿  
 

 
 
 
Eq. A.7 



 
 
 

129 

 
 

= 𝑃(𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡 𝑐𝑟 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝐹𝑡𝑎𝑠ℎ 𝑐𝑟 𝑂𝑜𝑜) 
 

RM has two possible choices, left and right, but in the above equation only 

RM=left is included and therefore we cannot remove this variable.  

The only possible choices for E are correct and wrong and since all the 

possible states are represented inside the probability above, we can marginalize 

over E and remove the variable E. Similarly, since all the possibilities of the 

variable F (flash and off) are included, we are able to marginalize out the variable 

F as well. 

P(A_standard) + P(C_Catch)  = ∑ 𝑃(𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 ,𝐹)𝐸 ,𝐹   
                                                = P(RM=Left) 
 

 
Eq. A.8 

Similarly, if we assume that the firing properties for C standard and A 

catch are similar, we can combine Eq. A.2 and Eq. A.4. Variables G, B, S, L, E 

and F can be marginalized out. 

 

P(C_standard) + P(A_Catch)  
= P(G=Right, B=Right, S=Right, L=Right, RM=Right, E=Correct, 
F=Flash) + P(G=left, B=Left, S=Left, L=Left, RM=Right, E=Wrong, 
F=Off) 
 
= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or 
Right, RM=Right, E=Correct or Wrong, F=Flash or Off)  
 
= ∑ 𝑃(𝑆,𝐵, 𝑆, 𝐿,𝑅𝑅 = 𝑅𝑖𝑠ℎ𝑡,𝐸 ,𝐹)𝐺 ,𝐵,𝑆,𝐿 ,𝐸 ,𝐹  
= P(RM=Right) 
 

 
 
 
 
 
 
 
 
 
E

q. A.9 

In conclusion if A standard and C catch are considered together, the 

results we see are a strong indication of robot movement towards left and 
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similarly when we consider C standard and A catch together the results are an 

indication of the robot moving to the right. 

P(A_standard) + P(C_Catch)  = P(RM=Left) Eq. A.10 
P(C_standard) + P(A_Catch)  = P(RM=Right) Eq. A.11 

Next we consider the results where we see A standard and C standard 
have similar neuronal activity. Therefore we sum Eq. A.1 and Eq. A.2 
P(A_standard) + P(C_standard)  
= P(G=Left, B=Left, S=Left, L=Left, RM=Left, E=Correct, F=Flash) 
+P(G=Right,B=Right, S=Right, L=Right, RM=Right, E=Correct, 
F=Flash) 
 
= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or 
Right, RM=Left or Right, E=Correct, F=Flash)  
 
= ∑ 𝑃(𝑆,𝐵, 𝑆, 𝐿,𝑅𝑅,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡,𝐹 = 𝐹𝑡𝑎𝑠ℎ)𝐺 ,𝐵,𝑆,𝐿 ,𝑅𝑅  
= P(E=Correct, F=Flash) 
 

 
 
 
 
 
 
 
 
 
Eq. A.12 

Similarly, when considering A catch and C catch trials together, we can 

sum Eq. A.3 and Eq. A.4 

P(A_catch) + P(C_catch)  
= P(G=Left, B=Left, S=Left, L=Left, RM=Right, E=Wrong, F=Off)  
+ P(G=Right, B=Right, S=Right, L=Right, RM=Left, E=Wrong, F=off) 
 
= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or 
Right, RM=Left  or Right, E=Wrong, F=Off)  
= ∑ 𝑃(𝑆,𝐵, 𝑆, 𝐿,𝑅𝑅,𝐸 = 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝑂𝑜𝑜)𝐺 ,𝐵,𝑆,𝐿 ,𝑅𝑅  
= P(E=Wrong, F=Off) 

 
 
 
 
 
 
 
Eq. A.13 

In conclusion, when we consider the A and C standard trials together, the 

results indicate both the robot performing a correct action as well as lights 

flashing. When we consider A and C catch trials together, the results indicate the 

robot performing a wrong action and the lights bring off. 

P(A_standard) + P(C_standard)  = P(E=Correct, F=Flash) Eq. A.14 
P(A_catch) + P(C_catch)   = P(E=Wrong, F=Off) Eq. A.15 
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Final Remarks 

Here we examined the neural representation of the movements of an 

external robotic arm in the striatum and compared its neuromodulation during 

natural and robotic arm reaches. We were able to visualize the data in two-

dimensional space and cluster the data according to left and right robot 

movements. We observed the difference in neuronal firing in the striatum during 

both natural arm movement and robot arm movement. We also showed 

mathematical proof that the clustering given by k-means corresponded to left and 

right robot arm movement. 

Summary 

Preliminary results shown in this study provides evidence of 

representation of an external device in a subcortical structure. The results from 

the body schema concept if incorporated into the BMI design may be used in the 

development of future intelligent controllers which can incorporate interactions 

between motor and reward structures for better controller design. However, the 

target space also needs to be expanded in order to test the reliability of 

extraction of direction-specific information. 
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