
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2015-05-05

Synchronous Control of a Reinforcement Learning
Based Brain-Machine Interface With Biological
Feedback
Noeline Prins
University of Miami, noeline.prins@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Embargoed is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Prins, Noeline, "Synchronous Control of a Reinforcement Learning Based Brain-Machine Interface With Biological Feedback" (2015).
Open Access Dissertations. 1430.
https://scholarlyrepository.miami.edu/oa_dissertations/1430

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/1430?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

 SYNCHRONOUS CONTROL OF A REINFORCEMENT LEARNING BASED
BRAIN-MACHINE INTERFACE WITH BIOLOGICAL FEEDBACK

By

Noeline W. J. A. L. Prins

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida
May 2015

©2015
Noeline W. J. A. L. Prins

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

SYNCHRONOUS CONTROL OF A REINFORCEMENT LEARNING BASED
BRAIN-MACHINE INTERFACE WITH BIOLOGICAL FEEDBACK

Noeline W. J. A. L. Prins

Approved:

Justin C. Sanchez, Ph.D.
Associate Professor of Biomedical

Engineering

Abhishek Prasad, Ph.D.
Assistant Professor of Biomedical

Engineering

Christopher Bennett, Ph.D.
Research Assistant Professor of

Music Engineering Technology

Ozcan Ozdamar, Ph.D.
Professor and Chairman of

Biomedical Engineering

Jorge E. Bohorquez, Ph.D.
Associate Professor in Practice of

Biomedical Engineering

M. Brian Blake, Ph.D.
Dean of the Graduate School

PRINS, NOELINE W. J. A. L. (Ph.D., Biomedical Engineering)
Synchronous Control of a Reinforcement (May 2015)
Learning Based Brain-Machine Interface
with Biological Feedback

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Justin C. Sanchez.
No. of pages in text. (131)

Brain-Machine Interfaces (BMIs) have the potential of restoring

functionality of persons suffering from paralysis and amputations. At present,

BMIs have been developed to use cortical neural signals and control prosthetic

devices or to stimulate paralyzed limbs. However, these BMIs rely on an external

training signal (usually desired kinematics) as a reference to infer an error signal

to be able to adapt the decoder appropriately and learn the task. For amputees

and paralyzed persons, a desired kinematic cannot be measured directly. We

propose to acquire an error or reward signal from the brain itself as a training

signal for motor decoders. For this, we adopt Actor-Critic Reinforcement Learning

(RL) paradigm to use as a BMI. There are several challenges associated with

obtaining an error signal from the brain. One of the challenges is due to the

unstationary nature of neural signals, the classification of the error being low and

there being no indication as to the level of accuracy of the signal. If an indication

can be extracted as to the accuracy of the signal, we propose that such a system

can maintain performance of the BMI even when the error signal is less than

perfect. This is done by incorporating a confidence metric in the weight update

rule, where the confidence metric indicates the accuracy of the signal. We

propose a synchronous BMI where the forward path is provided by the motor

cortex and the feedback path is provided by the striatum. Computer simulations

on synthetic data were performed to test the architecture. The confidence metric

mentioned above can be obtained by different methods; the distance to the

boundary and a probabilistic measure were implemented. The confidence arrived

from the different classification methods (distance/ probability) was thresholded

to give three output classes indicating rewarding, non-rewarding or ambiguous.

As the threshold increased from zero, the performance increased and as the

threshold increased further, the performance dropped. By this we conclude that

there exists an optimum threshold for the Critic data where even though the Critic

feedback is noisy, the Actor can maintain its performance. The said system was

implemented in closed-loop with a monkey using a probabilistic classifier, where

the probability of the Critic output belonging to one class or the other was used

as the confidence measure. With using the confidence measure the performance

of the system was improved.

iii

This dissertation is dedicated to

my Lord and Savior, Jesus Christ for the freedom of life and the freedom to
explore life,

and my parents, who instilled a sense of curiosity and exploration in me,

both of which inspired me to be the Engineer I am today.

iv

Acknowledgements

Acquiring a Ph.D. is an endeavor one does not embark alone. There were

several people without whose scientific guidance and personal influence, this

task would not have been completed. First and foremost I want to thank my

advisor and Principal Investigator of the Neuroprosthetics Research Group

(NRG) Justin Sanchez, for his continuous support throughout my Ph.D. career.

His motivation, enthusiasm, wisdom and guidance in directing me assisted not

only during research and writing, but also to make me the independent

researcher I am today. I would also like to thank Abhishek Prasad, co-P.I. of

NRG for his untiring efforts and mentoring throughout my time as a Ph.D.

student. His counsel and advice and dedication has inspired me. I would like to

extend my gratitude to the rest of my committee, Ozcan Ozdamar, Jorge

Bohorquez and Christopher Bennett for their insightful comments and hard

questions to assure that the dissertation met the scientific rigor, and for keeping

me on my toes. I believe I have tried their patience on more than one occasion,

but they have been very enduring.

I wish to also thank Dr. Daniel Rothen, Veterinarian, the staff of Division of

Veterinary Resources (DVR) and husbandry staff at University of Miami for the

assistance with animal surgery and animal care. My gratitude goes to the

administrative staff of Biomedical Engineering at University of Miami, Angie Del-

Llano, Melissa Dietrick and Vivian Figueredo, for all the assistance given in

v

matters related to documentation and sending out reminders, which meant I had

one less thing to worry about every week.

A word of thanks to the Defense Advanced Research Projects Agency

(DARPA) for the funding support for the project I was involved in (N66001-10-C-

2008). My thanks is extended to the collaborators at University of Florida

(Principe Lab), State University New York (Lytton Lab and Francis Lab) and

others in the, DAPRA Reorganization and Plasticity to Accelerate Injury

Recovery (REPAIR) program.

It is good to have living examples of those who are a step ahead of

oneself, close at hand. My experience in the lab was greatly enhanced by such

post-doctoral associates at NRG; Eric Pohlmeyer, Babak Mahmoudi and

Rowshanak Hashemiyoon. I wish to thank them for their mentoring in different

aspects of my research and their life advice in general which will not be taken

lightly.

I want thank my fellow lab mates Katie Gant and Qi Yu. I wish to extend

my thanks to Shubham Debnath, a fellow Ph.D. student with the help in animal

experiments. Fellow Ph.D. student and programming wiz in the group, Ziqian Xie

and Charles Prins for help with C++ and Python coding; both of them spent many

a night trying to teach a MATLAB programmer to start counting from zero. A very

special thanks to Shijia Geng, fellow lab mate and friend for the stimulating

discussions, sleepless nights before deadlines, experimental work and all the fun

we have had bonding over monkeys. They say the best way to learn is teach,

http://www.darpa.mil/

vi

whether it be mentoring undergraduates or teaching neurosurgery to other

graduate students; I wish to thank them for their assistance in lab matters, the

opportunity to teach, train and mentor them, and their feedback on my

performance as a mentor.

A personal note of thanks to my roommates, Sheba Johnson, Saptaparni

Bandyopadhyay and Vy Vo, for making the last few years a pleasant experience

at home and putting up with the lifestyle of a Ph.D. student; Anuradha

Gunathilake, Biology Ph.D. student and my dissertation writing buddy, for not

making me feel alone during the writing process; the Kalbac family and Cameron

family for providing “home(s) away from home” and adopting me into their

families wholeheartedly, their spiritual insights and being available at any time

day or night as a family would; and my church pastor, Joe Lortie for spiritual

guidance and the long hours of helping through decision making. Lastly, I wish to

thank my parents and brother, Charles for the immense patience and the love

extended daily across 9800 miles and 10 ½ hour time difference. I am truly

blessed to have such a family.

Noeline Prins

University of Miami

May 2015

“Worthy art thou, our Lord and God, to receive glory and honor and power,
for thou didst create all things, and by thy will they existed and were

created.” Revelation 4:11

https://www.facebook.com/saptaparni.bandyopadhyay?fref=nf
https://www.facebook.com/saptaparni.bandyopadhyay?fref=nf

vii

Contents
List of Tables ..x

List of Figures.. xi

Abbreviations .. xvi

Chapter 1 Introduction and Background.. 1

1.1 Motivation ... 1

1.2 Background of BMI Work ... 2

1.2.1 BMI Classification ... 2

Sensory, Motor and Cognitive BMIs .. 2

Adaptive Decoders and Static Decoders... 3

Supervised, Semi-Supervised and Unsupervised Learning 3

Synchronous and Asynchronous Control .. 4

1.2.2 Decoders Used in BMIs .. 4

Linear Regression .. 4

Population Vector Algorithm .. 6

Kalman Filters .. 7

1.3 Incorporating Feedback ... 8

1.3.1 Reinforcement Learning in the Brain .. 8

1.3.2 Engineering a Biologically Realistic BMI .. 10

1.3.3 Reinforcement Learning Decoders ... 11

Conventional RL Decoders .. 11

Actor-Critic RL Paradigm ... 13

1.4 Asynchronous Brain-Machine Interfaces ... 15

1.5 Specific Aims .. 18

1.5.1 Investigate role of Striatum during a Reaching Task and Test the feasibility
of Using Striatal Signals as Feedback for a BMI... 18

1.5.2 Development of an Synchronous Closed-Loop BMI Control Algorithm..... 18

1.5.3 Use the Striatum in Conjunction with MI to Control a Closed-Loop BMI ... 19

1.6 Outline of Dissertation .. 19

Chapter 2 Experimental Data Analysis .. 20

2.1 Data Acquisition and Surgical Procedure .. 20

2.1.1 Animal Model .. 20

viii

2.1.2 Electrodes ... 21

2.1.3 Surgical Procedure ... 22

2.1.4 Signal Processing ... 23

2.2 Experimental Design .. 25

2.2.1 Go-No-Go Paradigm ... 25

2.2.2 Two-Target Reach Paradigm.. 30

2.2.3 Experiment Variable Summary ... 32

2.3 Data Analysis and Results ... 33

2.3.1 Neural Firing Patterns and Histograms .. 34

2.3.2 Neural Population Dynamics – Principal Component Analysis (PCA)....... 35

2.3.3 Unsupervised Clustering... 37

2.3.4 Supervised Classification.. 42

Classifiers Used ... 42

Data Sets.. 44

NAcc Data .. 45

MI Data ... 46

2.4 Trial Initiation from the Striatum ... 48

2.4.1 Filter Design and Preprocessing .. 48

2.4.2 Classification ... 49

2.5 Summary and Conclusions .. 51

Chapter 3 Development of the Control Architecture ... 53

3.1 Control Architecture for the Actor .. 53

3.1.1 Modifications to the Actor ... 55

3.1.2 Confidence of the Critic .. 57

3.2 Data Generation for the Actor .. 59

3.3 Dealing with Inherently Slow Adaptation ... 61

3.4 Simulations for Dealing with Critic Uncertainty.. 62

3.5 Can Using the Feedback Intelligently Improve Performance? 63

3.5.1 Effect of confidence measure on Actor performance 64

3.5.2 Neural Perturbations – Additional Noise in Data.. 68

3.5.3 Simulations using NHP Data .. 69

3.6 Data Generation for the Critic .. 71

3.7 Critic Data Classification by different methods .. 73

ix

3.7.1 Clusters in the data ... 73

3.7.2 Misclassification Rates.. 73

3.8 Implementing Offline HRL Decoder with Critic Feedback 76

3.9 Deciding the Threshold .. 78

3.10 HRL BMI Simulations ... 81

3.11 Summary and Conclusions .. 87

Chapter 4 Closed-Loop Experiments .. 88

4.1 Designing of the Closed-Loop Paradigm ... 88

4.1.1 Actor Neural Data ... 89

4.1.2 Critic Classifier .. 90

4.2 Closed-Loop Experiment.. 92

4.2.1 CL with a 100% accurate (artificial) Critic... 92

4.2.2 CL with a NAcc Critic – Effect of threshold on Performance 94

4.3 Summary and Conclusion .. 98

Chapter 5 Summary and Future Work... 100

5.1 Summary of Work... 100

5.2 Novel Contributions and Implications .. 102

5.2.1 A Confidence Metric can be Attached to the NAcc Neural Signal 102

5.2.2 Confidence Measure Improves the Overall Performance 103

5.2.3 Developed a Paradigm for Real Time Implementation 103

5.2.4 A Closed-Loop BMI with Motor Control and Biologic Feedback 103

5.3 Improvements and Future Work .. 104

References .. 109

Appendix A Adapted from “Prins et al. Representation of Natural Arm and Robotic
Arm Movement in the Striatum of a Marmoset Engaged in a Two Choice Task” 121

Introduction to Body Schema and Tool Use ... 121

Task and Results... 123

Mathematical Representation of the Different Clusters.. 126

Final Remarks ... 131

Summary ... 131

x

List of Tables

Table 2-1: Trial Type And Different Actions Of The Monkey. (Success And Failure Trials)

 ... 27

Table 2-2: Robot Action For Different Types Of Trials. (Standard And Catch Trials) 27

Table 2-3: Summary Chart Of Experiment Variables At The Time Of The Trial Start 32

Table 2-4 Summary Chart Of Experiment Variables At The Time Of Robot Movement . 33

Table 2-5: Number Of Significant Units For Each Type During Robot Movement (0.7sec
Of Data) Alpha = 0.1.. 35

Table 2-6: Accuracy Percentages When Aligning The K-Means Clusters With The
Different Categories (Window 0.2-0.7sec Relative To Robot Movement) Two-
Target Reach Task .. 41

Table 2-7: Distribution Of Trials In The Data Sets Analyzed ... 44

Table 2-8: Frequency Bands For Lfps .. 48

Table 2-9: Trial Initiation Classification From SVM .. 50

Table 2-10: Trial Initiation Classification From Logistic Regression 50

Table 3-1: Confusion Matrix For Different Unsupervised Clustering Methods 74

Table 3-2: Confusion Matrix For Different Supervised Classifiers And Different % Of
Training Data. .. 75

Table 3-3: Algorithm For The HRL BMI .. 78

Table 4-1: Algorithm For The Closed-Loop HRL BMI .. 89

Table 4-2: Number Of Significant Units For MI Neurons (ANOVA, Alpha = 0.1) 90

Table 4-3: Number Of Significant Units For Nacc Neurons (ANOVA, Alpha = 0.1) 91

Table A-1: Overall Accuracy Of Clustering Using K-Means For Different Window Sizes.
The Accuracy Of Hold Time Is Given As Baseline (Chance Level) [96] 125

xi

List of Figures

Figure 1.1: (A) Closed-Loop BMI. (B) Block diagram of the Wiener filter 5

Figure 1.2: (A) Perception – Action – Reward Cycle (PARC). (B) Different Learning
Architectures in the Brain: cerebellum for Supervised Learning (guided by the error
signal), the basal ganglia (BG) for Reinforcement Learning (guided by the reward
signal) and the cerebral cortex for Unsupervised Learning (guided by the statistical
properties of the input signal itself) [42]. ... 9

Figure 1.3: A more Biologically Realistic Architecture incorporating a reward signal from
the brain ... 11

Figure 1.4: (A) Classical Reinforcement Learning Architecture. (B) Reinforcement
Learning Architecture as applied to Brain-Machine Interfaces............................... 12

Figure 1.5: Value Function Estimation (VFE) network. [61] ... 13

Figure 1.6: (A) Classical Actor Critic Reinforcement Learning Architecture. (B) Block
diagram of the symbiotic BMI Controller. Actor driven by the MI and Critic driven by
the NAcc .. 14

Figure 2.1: (A) – Microelectrode Arrays. (B) – Target Locations with reference to the
skull. (C) -Target Depths. (D) – Recording Interface. (a) Filtered Raw Signal for
each channel. (b) Snippets after threshold for each channel. (c) CAR of each
channel. (d) Spikes for one channel with two sorts – red and yellow. Background
activity given no sort is shown in grey. (e) Sorted Spikes and background activity.
 ... 24

Figure 2.2: Experiment Setup with the data acquisition system. 28

Figure 2.3: (A) Experiment Setup. (a) Trial Start – Animal triggers trial (b) Robot moves
out from opaque shield, target A/B lights up (c) Animal makes arm movement to
reach sensor for A trials/ keep hand still for B trials (d) Robot moves to correct
target (standard trials) or incorrect target (catch trials). (B) Time line for the trials.
TOP: A trials. BOTTOM: B trials ... 29

Figure 2.4: Standard Trials. (A): A trials: (a) Animal triggers trial (b) Robot moves out
from opaque shield, target A lights up (c) Animal makes arm movement to left
reach sensor (d) Robot moves to target A. (B): C trials: (a) Animal triggers trial (b)
Robot moves out from opaque shield, target C lights up (c) Animal makes arm
movement to right reach sensor (d) Robot moves to target C. (C): ‘Timeline for

xii

trials in black. Hold time shown in green and RM shown in red. RM = Robot
Movement .. 32

Figure 2.5: Mean Spike Count for standard and catch trials with relative to the Robot
Movement (RM). .. 34

Figure 2.6: Variance of data relative to RM. Red: ‘A’ trials . Green: ‘B’ trials. Window 0.2-
0.7sec (S1+S2+S3) ... 37

Figure 2.7: Data clustered in PC space using k-means. Blue/ Green: Cluster 1. Yellow:
Cluster 2. ‘+’: standard. ‘o’: catch and ⊗: cluster centers. Window 0.2-0.7sec...... 40

Figure 2.8: Data from 1 session. ‘+’ standard trials. ‘o’ catch trials. 41

Figure 2.9: Classification accuracy (average accuracy of 100 simulation) for NAcc data
success vs catch for Duke (A/B) and Don (C/D). 500msec bins (A/C) and
1000msec bins (B/D). .. 46

Figure 2.10: Classification accuracy (average accuracy of 100 simulation) for MI data left
vs right arm movement for Duke (A/B) and Don (C/D). .. 47

Figure 2.11: Frequency Response of the 5 different filters used in LFP pre processing 49

Figure 2.12: Session 1 classification Results (Red – actual, Blue – predicted) 50

Figure 2.13: Session 2 classification Results (Red – actual, Blue – predicted) 51

Figure 3.1: Architecture for Biological Actor-Critic Reinforcement Learning. 53

Figure 3.2: Node ‘𝑖’ of the neural network for the Actor ... 54

Figure 3.3: How the distance is converted to the confidence and reward. thr=threshold
(A) Confidence Only. (B) Confidence and Reward. At lower confidence values, the
Critic confidence is low while at higher confidence values, the Critic is 100%
confident. ... 56

Figure 3.4: (A) An Artificial Neural Network for the Critic with the Reward Value and the
Confidence. (B) An Alternate Method to Obtain the Critic Confidence Level. Data
points further away from the decision boundary will have higher confidence and
the points closer to the decision boundary have lower confidence. 58

Figure 3.5: Using a probabilistic method to arrive at the confidence. P1+P2=1. abs(P1-
0.5) or abs(P2-0.5) can be used as confidence measure. 58

xiii

Figure 3.6: An Example of Synthetic Data for 2 states (o and x) in PC space. (A)
Standard stimulation method. The PC space is able to discard the noise and give
two clear clusters. (B) With Additional Probability Component in the Stimulation.
The PC space is more overlapped.. 59

Figure 3.7: Performance of the BMI Vs the Critic accuracy during open loop simulations
(mean ± standard deviation).. 62

Figure 3.8: Modified Actor-Critic RL showing how Reward and Confidence terms were
incorporated in the architecture... 63

Figure 3.9: (A) Performance of the BMI Vs the Critic accuracy with and without
confidence inbuilt. (mean ± standard deviation. 1000 simulations. 100 trials per
simulation). .. 65

Figure 3.10: Performance of each decoder during the length of the experiment for one
simulation starting at random initial conditions. 100 trials. Red: Action 1, Blue:
Action 2, Black: Critic. ... 67

Figure 3.11: (A & B) Effect of noise on the overall performance. (C) Results of the
simulations where the monkey controls the robot arm (offline simulations). Dotted:
1:1 relationship. ... 70

Figure 3.12: (A) Variance accounted for in the first 10 PCs. (B) data in PC space with the
clusters from k-means. .. 73

Figure 3.13: How the different training and testing data quatities effect the mislabeled
trials. Data in PC space with LDA classification ... 76

Figure 3.14: Data in PC space with LDA classification. 10% for training and 90% for
testing. ... 79

Figure 3.15: Data LDA & PCA (10% training). The blue trace for each plot shows the
results if there was no threshold used and the red traces show how the threshold
affects the different accuracy levels. ... 80

Figure 3.16: Performance of the system in one simulation and how threshold affects the
performance. Blue – type of target. Red – system performance +ve-correct, -ve-
wrong). Black – absolute of the critic output with confidence – y axis here shows
the critic output (for black traces only). (A) No threshold (B) Threshold=0.12. (C)
Threshold=0.24.. 82

Figure 3.17: Block Accuracy for the 3 example simulations .. 83

xiv

Figure 3.18: Weight traces for each of the simulations in the previous figure. The weights
up to iteration number 550 is for the memory and epoching of the first 10 trials.
(A/B) No Threshold. (C/D) Threshold=0.12. (E/F) Threshold=0.24. (A/C/E) Hidden
Weights (B/D/F) Output Weights... 84

Figure 3.19: (A) How the Actor accuracy changes with the threshold. (B) How the
Convergance (Accuracy of the last x% of trials) changes with the threshold level.
 ... 85

Figure 3.20: Distribution of the simulations for each threshold level. X-axis: accuracy
percentage. Y-axis: threshold level. The red traces show lower thresholds, green/
blue with medium thresholds and purple with higher thresholds. Z-axis: how many
simulations showed this accuracy... 86

Figure 4.1: Architecture for Biological Actor-Critic Reinforcement Learning. 88

Figure 4.2: Average classification accuracy (100 iterations) for classifying A trials (left
arm movement) and C trials (right arm movement) from MI neurons for different
windows ... 90

Figure 4.3: Average classification accuracy (100 iterations) for classifying rewarding
trials and non-rewarding trials from NAcc neurons for different windows 91

Figure 4.4: 100% accurate Critic CL experiment, with previous week’s initial conditions.
(A) Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer
Weights. ... 93

Figure 4.5: 100% accurate Critic CL experiment, with previous week’s initial conditions.
(A) Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer
Weights. ... 93

Figure 4.6: Accuracy (moving average) for the Perfect Critic CL experiment. Blue – with
previous week’s weights. Red – with previous session’s weights. Red only up to 50
trials. .. 94

Figure 4.7: 100% accurate Critic CL experiment – offline simulations – distribution of
overall accuracy. (A) with previpous week’s initial conditions. (B) with previous
session initial conditions. ... 94

Figure 4.8: NAcc Critic CL experiment, with no threshold. (A) Performance of each trial.
(B) Hidden Layer Weights. (C) Output Layer Weights. .. 95

Figure 4.9: NAcc Critic CL experiment, with threshold. (A) Performance of each trial. (B)
Hidden Layer Weights. (C) Output Layer Weights. .. 96

xv

Figure 4.10: Accuracy (moving average) for the NAcc Critic CL experiment. Blue – with
no threshold. Red – with threshold. .. 97

Figure 4.11: 100% accurate Critic CL experiment – offline simulations – distribution of
overall accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9. 97

Figure 4.12: Inaccurate Critic CL experiment – offline simulations – distribution of overall
accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9. 98

Figure A.1: Mean Spike count for one neuronal signal showing left (red) and right (blue)
(Session 1). Bin size 25ms. Top: Natural Arm Movement. Time relative to Go
Signal. Bottom: Robot Arm Movement. Time relative to the Robot Movement [96].
 ... 123

Figure A.2: (A) Data in the first and second principal component space during Robot
Movement. ... 125

xvi

Abbreviations

AD : Alzheimer’s Disease

ADL : Activities of Daily Living

ALS : Amyotrophic Lateral Sclerosis

ANN : Artificial Neural Network

AP : Anterior-Posterior

BCI : Brain Computer Interface

BG : Basal Ganglia

BMIs : Brain-Machine Interfaces

CA : Computer Agent

CAR : Common Average Reference

CL : Closed-Loop

CRI : Constant Rate Infusion

DA : Dopamine

DBS : Deep Brain Stimulation

ECoG : Electrocorticography

EEG : Electroencephalography

FES : Functional Electrode Stimulation

FFT : Fast-Fourier Transform

HRL : Hebbian Reinforcement Learning

IA : Interaural

IM : intramuscular

k-NN : k-Nearest Neighbor

LDA : Linear Discriminant Analysis

LFP : Local Field Potentials

xvii

LIS : Locked-In Syndrome

MI : Primary Motor Cortex

ML : Medial-Lateral

MLP : Multi-Layer Perceptron

MSP : Medium Spiny Projection

NAcc : Nucleus Accumbens

NHP : Non-Human Primates

OL : Open Loop

PARC : Perception Action Reward Cycle

PCA : Principal Component Analysis

PCs : Principal Components

PE : Processing Element

PVA : Population Vector Algorithm

RL : Reinforcement Learning

RLBMI : Reinforcement Learning Brain-Machine

 Interface

RM : Robot Movement

SCI : Spinal Cord Injury

SL : Supervised Learning

SNR : Signal to Noise Ratio

SUA : Single Unit Activity

SVM : Support Vector Machine

TD : Temporal Difference

TDNN : Time Delay Neural Network

VFE : Value Function Estimator

wrt : with respect to

1

Chapter 1 Introduction and Background

 Motivation 1.1

According to 2009 statistics published by Christopher Reeve Foundation,

paralysis affects 1.9% (5.596 million people) of the U.S. population. Various

types of accidents (motor vehicle, work place, and falling) accounted for the great

majority of spinal cord injuries. Additionally, stroke (29%), spinal cord injury (SCI)

(23%), and multiple sclerosis (17%) were the other causes. 250,000 Americans

are spinal cord injured with approximately 11,000 new injuries occurring each

year. The annual health care, living expenses, and estimated lifetime costs that

are directly attributable to SCI vary greatly according to severity of injury.

Average lifetime costs for quadriplegics are estimated at $1.35 million (age of

injury 25). The percentage of SCI individuals unemployed eight years after injury

is 63%. For amyotrophic lateral sclerosis (ALS) patients, annual incidence rate is

roughly 2 people per 100,000 [1-3].

For some kinds of paralysis like locked-in syndrome (LIS), there are

therapies such as functional neuromuscular stimulation, which may help activate

some paralyzed muscles. Another approach for treating loss of sensorimotor

function is bypassing damaged areas with electronics, which is known as Brain-

Machine Interface (BMI). Several research groups have attempted to control

external devices (computer cursor or robotic arm) or patient’s own limbs using

functional electrode stimulation (FES) [4-7]. BMI research, including this study, is

2

motivated by the need to help such people with sensorimotor loss. This chapter

gives an introduction to the work in the field of BMI.

 Background of BMI Work 1.2

BMIs attempt to link the brain to the external environment. The BrainGate

neural interface system showed that people with tetraplegia were able to use a

neural interface system to control a robotic arm to perform three-dimensional

reach and grasp movements. Subjects were able to control the robotic arm and

hand over a broad space without explicit training, using signals decoded from a

small population of motor cortex (MI) neurons recorded from a 96-channel

microelectrode array [8-10]. While a simple task like this is possible, research

has not yet been able to give a solution in terms of adapting BMI for activities of

daily living (ADL). This section will discuss BMI classification and the work done

in BMI decoders at present.

1.2.1 BMI Classification

Sensory, Motor and Cognitive BMIs

BMIs depending upon the application are broadly divided as sensory,

motor (neural prosthesis), or cognitive BMIs. Sensory BMIs like cochlear implants

restore sensory function, while motor BMIs restore motor functions. This takes

place either by stimulating a person’s own limb, as in the case of FES, or through

control of an external device (computer cursor, prosthetic device, robotic arm),

like the BrainGate system in humans [4-8]. Cognitive BMIs restore neural

interactions within damaged internal networks while incorporating perception.

3

Therapy for Alzheimer’s Disease (AD) by Deep Brain Stimulations (DBS) is an

example of cognitive BMIs [11].

Adaptive Decoders and Static Decoders

A decoder in BMI is what interprets the neural signals and converts them

to an executable action(s). Decoders can be divided broadly into static and

adaptive decoders based on the weight (parameter) update. Adaptive decoders

change the decoder parameters (weights) to make adjustments to changes in the

neural input, while static decoder weights are fixed and do not update. In

research, animals have learned to gain control of static decoders over longer

periods of time. However, adaptive decoders are more popular as they are able

to reorganize and update themselves amidst large input perturbations [12-14].

Supervised, Semi-Supervised and Unsupervised Learning

Machine learning techniques are divided based upon the assistance

needed for learning; supervised, unsupervised, and semi-supervised learning.

Supervised Learning (SL) infers a function from labeled training data, which in

BMI applications can either be real or inferred kinematic signals. Supervised

training requires an explicit training signal, whereas, in cases of severe paralysis

or amputation of bilateral limbs, it may not be possible to collect these training

signals. Therefore, there is a need to develop other means of acquiring training

signals and using them to adapt neural decoders. In contrast, unsupervised

learning techniques do not rely on external training signals, but only on the

patterns in the input data. Semi-supervised learning techniques are a

compromise between supervised and unsupervised learning.

4

Synchronous and Asynchronous Control

Synchronous control systems are synchronized to an external reference,

usually a go cue given by the experimenter indicating the beginning of ‘trial’. In

synchronous BMIs, the decoded neural data is channeled to the actuator only

during these trial periods. In contrast, asynchronous BMIs can be connected to

the actuator continuously and the control can be intermittent, starting whenever

the user wishes to operate the actuator. Most of the work done in these self-

paced controllers is on non-invasive controllers or Brain Computer Interfaces

(BCI).

1.2.2 Decoders Used in BMIs

The initial animal BMIs were open loop (OL), with no feedback provided

on the accuracy of the decisions made [15]. Subsequent closed-loop (CL)

experiments were performed where the animal had an audio and/or visual

feedback (Figure 1.1 A), which changed the brain states related to perception.

But these brain states were not a part of the BMI [15]. This section explains

briefly the common decoders used in research at present. The equations in each

sub-section is independent from other sub-sections.

Linear Regression

A robotic arm was controlled in real time by predicting the arm trajectory of

an owl monkey from neuronal activity of multiple cortical areas using both linear

regression (Wiener filter – Figure 1.1 B) and artificial neural network (ANN)

algorithms. This was shown both when the monkey had visual feedback and

when he did not. The linear model used to predict hand position is; 𝑌 = 𝑋𝑋;

5

where 𝑌 is the vector of kinematic and dynamic variables and 𝑋 is the input

vector of neuronal firing rates with time lags [15-17].

Figure 1.1: (A) Closed-Loop BMI. (B) Block diagram of the Wiener filter

Matrix 𝑋 is solved by

 𝑨 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 Eq. 1.1

The error 𝜖 used to adapt the weight matrix is the difference between the

desired signal 𝑑 and the output of the decoder 𝑦 (Figure 1.1 B).

 ϵi = di − yi Eq. 1.2

Multiple regression can be used for joint kinematics and end point control

of computer cursor/ robotic arm for fast and accurate control of cursor/ robotic

arm, for spatial locations. The estimate of the position 𝑅 at time 𝑡 is given by

 𝑅(𝑡) = ��𝑎𝑖,𝑗𝑁(𝑡+ 𝑖 , 𝑗)
𝑗𝑖

 Eq. 1.3

where 𝑖 is the time index and 𝑗 is the cell number index. 𝑁(𝑖, 𝑗) is the

activity of cell 𝑗 at time 𝑖 and 𝑎𝑖,𝑗 represents the corresponding ‘weight’ [18-21].

6

Linear regressions rely heavily on the error signal, require extensive training and

are confined to familiar movements.

Population Vector Algorithm

The population vector algorithm (PVA) assumes a cell’s firing rate is a

function of the velocity vector associated with the movement performed by the

individual. This is based on the use of tuning curves (tuning curve relates the

mean of movement-related cell activity to movement direction), which provides a

statistical relationship between neural activity and behavior. The tuning (or

preferred direction) of each cell in the ensemble conveys the average firing of a

cell given a particular movement direction [6, 11, 22-26]. The PVA model relating

the tuning to kinematics is given by

 𝑠𝑛(𝑉) = 𝐵 ∙ 𝑉 = |𝐵||𝑉|𝑐𝑐𝑠 𝜃 Eq. 1.4

where 𝑠𝑛(𝑉) gives the firing rate for 𝑛P

th neuron with velocity vector 𝑉. The

preferred direction is given by the weight vector, 𝐵. 𝜃 is the angle between the

cell’s preferred direction and movement direction. The magnitude of the vector

contribution of each neuron in the direction of 𝑃 is given by

 𝑤𝑛(𝑉, 𝑡) = 𝑠𝑛(𝑉)− 𝑏0𝑛 Eq. 1.5

where 𝑏0 is the mean firing rate for 𝑛P

th neuron. The population vector 𝑃 is

given by

 P(V, t) = � 𝑤𝑛(𝑉, 𝑡)
𝑁

𝑛=1

𝐵𝑛
||𝐵𝑛||

 Eq. 1.6

7

Kalman Filters

Kalman filter is a special condition of Bayesian recursive filter with the

assumption of linearity and normal distribution (linearity and normality not

assumed in the case of extended and unscented kalman filters). Several groups

have adopted Kalman filter to predict movement trajectories where the system is

assumed to be a linear dynamical system [27-33]. The Kalman filter estimates

the next state, �̅�(𝑡), of a linear dynamical system based on the previous state. In

BMI applications, the states are the hand position, velocity, and/or acceleration.

The next state is given by

 �̅�(𝑡) = 𝑋 𝑥(𝑡 − 1) + 𝑢(𝑡) Eq. 1.7

and the output mapping (measurement prediction) is given by

 𝑧̅(𝑡) = 𝐶 �̅�(𝑡) + 𝑣(𝑡) Eq. 1.8

where 𝑢(𝑡) is zero-mean Gaussian noise, 𝑣(𝑡) is zero-mean Gaussian

measurement noise and 𝑥(𝑡 − 1) is a vector of neural firing rates. The update

equation is given by

 𝑋𝑒𝑒𝑒 = �̅�(𝑡) + K (𝑧(𝑡)− 𝑧̅(𝑡)) Eq. 1.9

where 𝑧(𝑡) is the actual measurement and 𝑧(𝑡)− 𝑧̅(𝑡) gives the correction

term which is the difference between the actual and predicted measurement. 𝐾 is

the Kalman gain.

Recalibrated Feedback Intention-Trained Kalman Filter (ReFIT-KF) is a

modification of the Kalman Filter to include a feedback perspective introducing a

8

causal intervention. The result alters the modeling assumptions and the training

method [34-36].

 Incorporating Feedback 1.3

For decoders used in BMI applications, we need to incorporate more

biologic realism in order to have a completely autonomous system. The need for

a more biologically realistic BMI is to have the ability to interact with the human

brain, not only on a motor level, but also on a cognitive level. A paradigm for

mutual adaptation (or co-adaptation) between humans and machines is important

for neural rehabilitation and will open a new window for symbiotic human

machine research [37]. This section focuses on using reinforcement learning

(RL) as a way of incorporating motor and cognitive interactions in the BMI

decoders.

1.3.1 Reinforcement Learning in the Brain

The perception–action–reward cycle (PARC) is the circular flow of

information from the environment to sensory and motor structures and back to

the environment completing the cycle during the processing of goal-directed

behavior (Figure 1.2 A). All forms of adaptive behavior require PARC and the

processing takes place both in series as well as parallel [38, 39]. The control of

the goal-directed actions relies on the operation of an information-movement

cycle. Every movement gives rise to a specific flow. This specificity translates

into the existence of a continuous signal to inform the Actor about the validity of

the produced movements with respect to the task at hand [40].

9

Different computations hypothesized to be occurring in separate brain

regions are described in Figure 1.2 B: the cerebellum for SL (guided by the error

signal), the basal ganglia (BG) for RL (guided by the reward signal) and the

cerebral cortex for unsupervised learning (guided by the statistical properties of

the input signal itself) [41, 42]. The principal components of the BG are the

striatum, the pallidum, the substantia nigra and the subthalamic nucleus.

Research has shown that the BG is involved in various aspects of psychomotor

behavior even though it is not a major sensory relay nor a coordinating neuronal

system [43].

Figure 1.2: (A) Perception – Action – Reward Cycle (PARC). (B) Different Learning Architectures
in the Brain: cerebellum for Supervised Learning (guided by the error signal), the basal ganglia
(BG) for Reinforcement Learning (guided by the reward signal) and the cerebral cortex for
Unsupervised Learning (guided by the statistical properties of the input signal itself) [42].

This kind of RL in the brain has motivated researchers to find alternative

approaches to building BMIs. When mimicking RL in the brain, we need to find a

structure in the brain that will give us a reward signal. Obtaining reward

information has a variety of challenges associated with it. Much research has

gone into identifying reward centers in the brain [44-47]. Of these centers, the

nucleus accumbens (NAcc) is a main region in the ventral striatum and plays a

10

key role in the linking of reward to motor behavior and has been hypothesized to

give the error signal for RL based BMIs [48-53].

1.3.2 Engineering a Biologically Realistic BMI

The PARC in goal-directed behavior provides key concepts in developing

a new framework for BMI. The PARC relies on continuous processing of sensory

information that adapts behavior and is used to guide goal-directed actions. This

entire process is regulated by external environmental and internal neural

feedback, which in turn guides the adaptation of computation and behavior [37,

38, 40, 54, 55]. The intention is to establish a direct communication channel

between the user’s brain and the machine with the goal of sharing the PARC with

the user [37]. However, unlike the PARC that is central to animal interaction with

the world, the PARC in a co-adaptive BMI will be distributed between the user

and the computer agent (CA), thus incorporating two intelligent entities [37].

External training signals are not needed for the BMI, if the sensorimotor process

interacts with the movement trajectories. The hypothesis is that the neural activity

represents some form of evaluative feedback of the actions and can contribute to

shaping future motor behaviors [38, 40, 54, 55]. To come up with a biologically

realistic decoder, we need to incorporate both the action and reward as seen in

Figure 1.3.

11

Figure 1.3: A more Biologically Realistic Architecture incorporating a reward signal from the brain

1.3.3 Reinforcement Learning Decoders

Conventional RL Decoders

RL provides a method of biological and computational learning that does

not depend on an explicit training signal as in SL [56, 57]. The conventional RL

paradigm involves an “agent” and an “environment” [58]. The agent is an

intelligent being (e.g. computer algorithm) and the environment is anything that

the agent interacts with and is able to influence through its actions (Figure 1.4 A).

The agent makes an action at time 𝑡, which changes the state of the environment

from 𝑆𝑒 to 𝑆𝑒+1 and receives the reward 𝑟𝑒+1. The goal of the agent is to maximize

the cumulative reward (or return) 𝑅𝑒

𝑹𝒕 = � 𝜸𝒏−𝒕+𝟏𝒓𝒏

∞

𝒏=𝒕+𝟏

Eq. 1.10

where 𝑟𝑛 is the reward earned at time 𝑛. The future rewards are

discounted by the discount factor 𝛾 (≤ 1). The agent does not have knowledge if

the selected action is optimal at the time the decision is made. This is only known

later. By selecting suboptimal actions, the agent is “exploring”. The agent must

Reward

Motor

Commands
 Action Decoder

Audio-visual Feedback

12

“exploit” the situation by making a decision when he thinks it is optimal. There is

always a dilemma between “exploration” and “exploitation” in RL.

 Figure 1.4: (A) Classical Reinforcement Learning Architecture. (B) Reinforcement Learning
Architecture as applied to Brain-Machine Interfaces

The first BMI application of this architecture is shown Figure 1.4 B. The

Agent is the BMI decoding algorithm and the Environment comprises of the

user’s brain, robot arm and the targets. The user acts through the BMI to

accomplish tasks in the environment. The positions of the prosthetic and the

target are the states of the environment. Since the user cannot move, their

actions are a high level dialogue (neural modulations) with the BMI. The user

seeks to learn a value for each action (neural modulation) given the relative

position of the prosthetic (state) and the goal in order to achieve rewards [59].

This was experimentally shown to be a success for a rat involved in a 2

choice decision making task controlling a robot [60]. The value of the action

selected needed to be estimated, and the value function estimator (VFE) was a

fully connected multilayer perceptron (MLP) with three layers and hyperbolic

Agent

Ac
tio

ns

St
at

es

Re
w

ar
d

 Environment

Targets

 User’s Brain

Robot Arm

𝑎𝑒

𝑆𝑒+1

𝑟𝑒

𝑆𝑒

 BMI Algorithm

𝑟𝑒+1

𝑎𝑒

𝑆𝑒+1

 Environment

𝑟𝑒

𝑆𝑒

Computational

𝑟𝑒+1

(A) (B)

13

tangent as the activation function at the hidden layer nodes (Figure 1.5) [61]. The

VFE 𝑄𝑘(𝑆𝑒) is given by

 𝑄𝑘(𝑆𝑒) = � tanh�� 𝑠𝑖𝑤𝑖𝑗
𝑖

�
𝑗

𝑤𝑗𝑘 = �𝑛𝑛𝑡𝑗(𝑠𝑒) ∙ 𝑤𝑗𝑘
𝑗

 Eq. 1.11

where 𝑆𝑒, the neural state vector is the input to the MLP, and each output

layer processing element (PE) estimates one action value given 𝑆𝑒 and each PE

also has a bias input.

Figure 1.5: Value Function Estimation (VFE) network. [61]

Actor-Critic RL Paradigm

The next step to the RLBMI is to design a paradigm to incorporate the

state signals from the brain and translate the reward directly from the user. For

this we used the traditional Actor-Critic RL BMI architecture as shown in Figure

1.6 A. In this architecture, the Actor is used to select actions, and the VFE is

known as the Critic, because it criticizes the actions made by the Actor [58]. After

each action selection, the Critic evaluates the new state to determine whether the

action selected led to a better state or worse state. This is given by the temporal-

difference (TD) error 𝛿𝑒 .

14

 δt = rt+1 + γV(St+1)− V(St) Eq. 1.12

where V(∙) is the value function implemented by the Critic, 𝑟𝑒+1 is the

expected value of the reward at time 𝑡 + 1 and γ is the discount factor to reduce

the weight of V(St+1) (i.e. future points). If the TD error is negative it suggests

that the action led to a worse state [58].

Figure 1.6: (A) Classical Actor Critic Reinforcement Learning Architecture. (B) Block diagram of
the symbiotic BMI Controller. Actor driven by the MI and Critic driven by the NAcc

We adopted this Actor-Critic RL approach to develop a new method of

decoding for the application in BMI [54, 61, 62]. In this approach, the Actor is

driven by motor neural inputs and translates them into behavioral actions. The

role of the Critic is to adapt the Actor based on experience. The only feedback

the Critic requires is about the appropriateness (correct/ rewarding or incorrect/

non-rewarding or penalizing) of the action selected. This feedback signal can be

obtained from the external environment or from the brain itself. The architecture

in Figure 1.6 B is adopting the conventional RL in Figure 1.6 A to a biological

learning paradigm of Figure 1.2 B. This was a first step in integrating robot action

with biologic perception [60].

(A) (B)

15

The first step in this new Actor-Critic RL paradigm was to have an

adaptive agent (or “Actor”) that is able to make decisions based on a biological

source. This was successfully implemented for a two-target choice task where a

rat operated a robot arm. The adaptive algorithm was a time delay neural

network (TDNN) with back-propagation [60]. The Critic was a value estimator,

which used the entire trial labeled as either +1 or –1. The performance of the

Critic in this case was slightly above chance. Another finding of this was that the

Actor was able to maintain overall performance up to 10% inaccuracy of Critic,

but the performance dropped drastically as the Critic accuracy reduced further

[60].

If signals from this structure are to be used to adapt BMI decoders, a first

step is to determine how to process and extract reward signals from it. The

second step is, given the characteristics of the information related to reward that

we can extract, to ascertain how best to use it in a biologically realistic BMI

architecture. In the chapters to follow, we will present the processing and

extraction of these reward signals and an engineering solution of how to

incorporate these in to BMIs.

 Asynchronous Brain-Machine Interfaces 1.4

Present BMIs, which are time-locked to a trial start time (synchronous

BMIs), instruct the algorithm output when to be connected to the external device

or prosthesis. Real life applications for such well-defined tasks are limited. When

the subject is not engaged in the task, these synchronous BMIs are manually

disengaged from the actuator. Having an autonomous gating mechanism to know

16

when the person is engaged and disengaged in the task will be helpful to have

the BMI continuously ready but only active when the person is interested in

performing the task. This will enable the BMI to be connected to the actuator

24/7, even when the subject returns home after the initial setup. A BMI that is not

time-locked is an asynchronous BMI. Furthermore, such asynchronous BMIs can

be used as a gating mechanism or switch to activate a call button for a nurse or

helper when the patient requires attention. These asynchronous BMIs have two

requirements; to be available (onset) to control the actuator at any given time as

needed by the user and to recognize rest phase (offset) from the movement

initiation in order for the user to control it effectively.

The first step in developing an asynchronous BMI is to differentiate

initiation phase from the rest and movement phases. Several groups have done

this using beta signals (13-30 Hz) of electroencephalography (EEG) [63, 64] and

electrocorticography (ECoG) [65-68] signals. One method is to use the phase

prior to movement onset, perform Fast-Fourier Transform (FFT) of each channel

and use the averaged signal spectrum to classify states using a support vector

machine (SVM); this process yielded an accuracy of 71.7% [67]. One of the

challenges faced during decoding movement onset is the imbalance in positive

and negative examples. A weighted SVM can been used to overcome this. Using

an empirically determined threshold value the movement onset has been

classified with true negative (specificity) rates 73%-94% while the true positive

(sensitivity) rates are 26%-73% [66]. Another method of analyzing the ECoG is

using wavelet transform (time-frequency representation of the ECoG signals for

17

each electrode) and predicting the movement onset using a least-square

regression [65]. Least-squares regression was used with leave-one-out cross

validation for training the decoder, and overall accuracy levels of 98-99% was

reported [68]. However, it must be noted that the overall accuracy rates will be

higher due to the imbalanced trial numbers. The group also reported that the

false positive states occurred when the animal was resting [68].

Few groups have attempted to implement the asynchronous control.

Linear discriminant analysis (LDA) is used to classify the states of EEG-based

controllers. In this controller, the output is a posterior probabilistic distribution,

which will give the probability that each trial belongs to each state (rest or move).

The average accuracy of this system was 86.7% and 66.7% for 2 subjects [69]. A

normalized low frequency asynchronous switch has been developed for EEG

applications which incorporates different classification techniques; k-means,

learning vector quantization, fuzzy adaptive resonance theory and Karhunen-

Loeve transform. The group reported an overall accuracy level of 97% with 68%

false positive rate [70]. During self-paced BCI control, the algorithm can classify 3

states: baseline, plan and go, for the state estimation with accuracies above 80%

[71].

The basal ganglia have been shown to be involved in gating sensory

information in the motor loop [72-75]. Abnormalities in the ventral striatum have

been shown to affect limbic regions in sicknesses like the Tourette’s syndrome

where there is sensorimotor dysfunction [76]. We investigate the NAcc which is a

18

nuclei in the ventral striatum to assess if the gating signal can be obtained to

control the flow of information in a BMI.

 Specific Aims 1.5

1.5.1 Investigate role of Striatum during a Reaching Task and Test the
feasibility of Using Striatal Signals as Feedback for a BMI

This aim was designed to investigate the feasibility of utilizing striatal

signals as feedback reward/ error signals for a Reinforcement Learning based

BMI. Microwire arrays were implanted each into the MI and the NAcc of a

marmoset monkey. Animals were trained to control a robotic device by reaching

to targets. Striatal neural activity was analyzed when the animal interacted with a

robot during the reaching task. Studies were done to investigate reward/error

representation and how it can be extracted from the striatum. It was also

examined if movement onset can be extracted from the striatum during the

reaching task. The results of this aim demonstrate the feasibility of using signals

from the striatum as reward/ error signals and/or trial onset that can be used to

design an intelligent closed-loop BMI control architecture.

1.5.2 Development of an Synchronous Closed-Loop BMI Control Algorithm

In this study, a biological feedback from the brain was used for a RL

based BMI. Simulated and surrogate data sets were used to design the control

architecture and test the feasibility.

19

1.5.3 Use the Striatum in Conjunction with MI to Control a Closed-Loop
BMI

Once the closed loop BMI control paradigm was developed, it was tested

on a marmoset monkey for a two choice robotic arm control task. The system

was tested for the effects of reliability of feedback.

 Outline of Dissertation 1.6

The motivation of the current work is to bring research a step closer in to

adapting BMI for ADL. The current chapter gave the motivation and background

of the BMI work at present. The second chapter is on experimental work for

analyzing the striatal data for reward signal and trial onset. The third chapter

focuses on computer simulations using synthetic data in order to test the

hypothesis that if a reward signal can be extracted, using this information

intelligently, can improve performance. In the fourth chapter we implement a

closed-loop BMI experiment with a marmoset monkey and compare three

scenarios: perfect Critic feedback, real Critic feedback with and without

confidence measure. In the fifth and final chapter are the present challenges and

future work in this area. During the analysis of the striatal data, an interesting

phenomenon was discovered which is relevant to BMI field. We were able to

cluster left and right robot movement with opposing natural hand movements.

These findings are reported in the appendix.

 20

Chapter 2 Experimental Data Analysis

This chapter explains the data acquisition methods including the surgical

procedure, experimental paradigm and the data analysis of the experiments.

 Data Acquisition and Surgical Procedure 2.1

In order to acquire signals from the brain required to drive the BMI,

microelectrode arrays were implanted surgically in a common marmoset

(Callithrix jacchus). Two neural signals were required to control the Actor-Critic

RL paradigm; the Actor driven by the cortical structures (MI) and the Critic driven

by the subcortical structures (NAcc). All surgical and animal care procedures

were consistent with the National Research Council Guide for the Care and Use

of Laboratory Animals and were approved by the University of Miami Institutional

Animal Care and Use Committee.

2.1.1 Animal Model

The common marmoset is a small New World primate, native to the

forests in Brazil. Historically the common marmoset has been used in

neuroscience, reproductive biology, infectious disease, and behavioral research

and more recently, in drug development and safety assessment [77]. Their size,

availability, cost, husbandry, biosafety and unique biological characteristics may

represent an alternative species to more traditional non-human primates (NHP)

[77-79]. The average height of an adult marmoset is 20–30 cm and average

weight is 350 – 400g [78]. Their endocrinological and behavioral similarity to

humans have in addition drawn a lot of attraction in the field of neuroscience [78].

21

The marmoset has advantages over the macaques in terms of animal

welfare and practicality. They are available for laboratory use from well-

established captive colonies in national primate research centers, academic

institutions, and commercial breeding facilities. Unlike macaques, marmosets do

not carry herpes b virus (Macacine herpesvirus 1) [77], which is beneficial for

their handlers. Their small relative size can also translate into lower caging and

feeding costs and reduced floor space [78].

In addition, several marmoset brain atlas have been developed for

neuroscience research [80-87] and extensions for stereotaxic equipment has

been developed to make referencing easier for surgical procedures. In addition to

all of these advantages, the smaller size of animal, leads to a more compact

brain (8g on average) [88], and make it is easier to reach deep brain structures in

comparison to larger NHP models which is one of the primary reasons we used

this particular animal model.

2.1.2 Electrodes

Two microelectrode arrays were surgically implanted, each being a 16-

channel tungsten microelectrode array as shown in Figure 2.1 A, (Tucker Davis

Technologies, FL) with a differential reference and a ground wire. Each microwire

electrode was blunt cut with Polyimide insulation and 50μm in diameter. The 16

electrodes were arranged in 2x8 configuration with row separation of 500μm and

electrode separation of 250μm. For the final subject, the NAcc array was a 4x4

configuration with electrode separation of 250μm.

22

2.1.3 Surgical Procedure

For acquiring neural signals for arm reach, we targeted the hand and arm

region of the primary motor cortex (MI). Reward information is represented in

deep brain structures and therefore we implanted the second array in the

striatum targeting the NAcc. To get the locations for each of the implants, we

consulted different marmoset atlas [80-87] and selected the target locations as

following with reference to the interaural (IA) plane. The implant for the MI was

9mm AP and 4.5mm ML relative to the IA center with an insertion depth of 1.8-

2.0mm. The NAcc implant was 11.5mm AP and 2.3mm ML relative to IA center

with a depth of 8.0mm. Figure 2.1 B shows the target locations with reference to

the skull. Histological results show that in previous monkeys we were in the

striatum. We will continue to refine targeting to get the best signals that could be

used for a biological feedback. Since the two implants were close together, we

used one craniotomy. Six screws were used for supporting the implants while

one of these was used as the ground and reference point. Figure 2.1 C shows

the depth for each implant.

The animal was anesthetized with ketamine (10 mg/kg IM) and aseptically

prepped for surgery. Constant Rate Infusion (CRI) ketamine was used

throughout the surgical procedure to maintain anesthesia at a rate of 10-15

mg/hr. The animal’s head was shaved prior to midline incision, after which the

skin was retracted to expose the skull and the surface cleaned with hydrogen

peroxide. A craniotomy was made on the right hemisphere with the underlying

dura opened as well. Electrical mapping stimulation was done to identify

23

arm/hand motor regions. An electrode-recording array targeting the primary

motor cortex was implanted, with electrophysiology measurements being made

during the implantation to ascertain placement. A second array was then

implanted targeting the nucleus accumbens, again with electrophysiology

measurements being made to ascertain position. The craniotomy was then

sealed and the recording electrode arrays anchored to the skull (leaving the array

connectors accessible) using genta cement and several anchoring screws. Prior

to recovery, the animal was given 0.02 ml buprenorphine (0.3 mg/ml) IM.

2.1.4 Signal Processing

Neural recordings were collected using a Tucker Davis Technologies RZ2

system sampling at 24,414Hz and a band-pass filter 300-5000Hz. Local Field

Potentials (LFPs) acquired with a 1-500Hz band-pass filter. Figure 2.1 D shows

the spike interface during recording. A common average reference (CAR) was

used to improve signal quality. The CAR was set up in such a way that if the

signal to noise ratio (SNR) needed to be further improved, any of the electrodes

could be removed from the CAR. This was necessary as the SNR varies with the

electrode longevity and encapsulation [89-91]. Figure 2.1 D(a) is the signal after

band-pass for one channel while Figure 2.1 D(b) shows the same for 16

channels. Figure 2.1 D(c) shows the 16 channels after CAR.

24

Figure 2.1: (A) – Microelectrode Arrays. (B) – Target Locations with reference to the skull. (C) -
Target Depths. (D) – Recording Interface. (a) Filtered Raw Signal for each channel. (b) Snippets
after threshold for each channel. (c) CAR of each channel. (d) Spikes for one channel with two
sorts – red and yellow. Background activity given no sort is shown in grey. (e) Sorted Spikes and
background activity.

Isolating of spikes was done in real-time using standard spike sorting

methods [92]. These were based on the shape and amplitude of action potential

waveforms. A manual threshold level was set for each channel through visual

inspection. Figure 2.1 D(d) and Figure 2.1 D(e) show the spike sorting for one

channel. There is a larger amplitude waveform given a yellow sort and a smaller

amplitude waveform given a red sort and background activity given no sort

25

(grey). Both multiunit and single unit neurons were recorded and used

equivalently in all applications. Multiunit activity and single unit activity (SUA)

collectively are referred to as neuronal signals. These neuronal signals (RAW or

CAR) are used as input to the decoders [93, 94].

 Experimental Design 2.2

To use the NAcc in BMI context, we needed first gauge how the NAcc

behaves during a robotic task. Neural data was analyzed when an animal is

engaged with a robotic task. Two tasks (Go-No-Go and two-target reach tasks)

were designed and the data analyzed with the intention of extracting the

reward/error representation. 3 subjects were used for the 2 different experimental

paradigms. Subject 1 (“Princeton”) was only for Go-No-Go task, while subject 2

(“Duke”) was trained for both tasks and subject 3 (“Don”) was only trained for the

two-target reach task.

2.2.1 Go-No-Go Paradigm

We designed a two-choice decision making task which included

perturbations to test if robot incorrect (non-rewarding) actions would create a

different neural response from the robot correct (rewarding) actions. The task

was a simple go-no-go as shown in Figure 2.3 (A) and described below. The task

was designed to investigate the representation of the NAcc during the robot

movement. The animal was trained to move a robot arm to one of two targets to

receive a food reward. The experimental timeline is shown in Figure 2.3 (B). The

animal initiated trials by placing its hand on a touchpad for a random (0.7-1.2

seconds) hold period. At the onset of the trial, an audio go signal was

26

administered that corresponded to a robot arm moving upwards, out from behind

an opaque shield, and presenting its gripper. The gripper held either a desirable

(waxworm or marshmallow, ‘A’ trials) or undesirable (wooden bead, ‘B’ trials)

object. Simultaneously, the A (red) or B (green) spatial target LED corresponding

to the type of object in the gripper was illuminated [95].

Depending on the type of trial, the animal was required to respond within a

time limit. Each type of trial required a different action; for A trials, the monkey

had to reach a second sensor within 2 second reach time limit and the robot

would move to A target; for B trials, it was required to keep its hand motionless

on the touchpad for 2.5 seconds and the robot would move to B target. It was

necessary that the time for B trials (no move) were slightly longer than for A trials

(move) so that the animal was forced to understand the difference between the

two types of trials and respond accordingly. The robot arm would move to the

location indicated by the animal’s response. For both A and B trials, if the robot

moved to the target indicated by the LED, the monkey was given a food reward.

The actions and the category of trials are given in Table 2-1. Trials where the

animal either did the wrong action or was not interacting with the task were

removed from the analysis [95].

To create robot perturbations that contrast with reward trials, the robot

was occasionally overridden and moved in the direction opposite to that of the

action commanded by the monkey. These trials where the monkey sees an

undesirable action in the environment (evoking negative response in the brain)

were considered “catch” trials. From the animal’s perspective, the catch trials are

27

those in which the robot moved in the wrong direction, even though he performed

the action correctly. The percentage of catch trials varied with the animal’s

behavior. The trials where the robot moved to the intended target and the animal

received a food reward were called “standard” trials (Table 2-2).

Table 2-1: Trial Type And Different Actions Of The Monkey. (Success And Failure Trials)

Category
Trial
Type

Object on
Gripper

Required
Action

Time
Limit

Monkey’s
Action

Robot
Action

Reward

A success

A

Desirable
(waxwor

m or
marshma

llow)

Touch &
trigger
reach

sensor

2 sec

Reaches &
triggers
reach

sensor

Move to
target A

(left)

Receive
Treat on
Gripper

A failure
Does not

trigger reach
sensor

Move to
target B
(right)

No
Reward

B success

B

Undesira
ble

(wooden
Bead)

Keep
hand in

touch pad

2.5
sec

Keeps hand
in touch pad

Move to
target B
(right)

Receive
Food
Treat

B failure
Takes hand
out of touch

pad

Move to
target A

(left)

No
Reward

Table 2-2: Robot Action For Different Types Of Trials. (Standard And Catch Trials)

Category
Trial
Type

Object on
Gripper

Required
Action

Time
Limit

Monkey’s
Action

Robot
Action

Reward

A
standard

A
Desirable

(Food
Treat)

Touch &
trigger
reach
sensor

2 sec

Reaches &
triggers
reach

sensor

Move to
target A

(left)

Receive
Treat on
Gripper

A catch
Move to
target B
(right)

No
Reward

B
standard

B

Undesirab
le

(wooden
Bead)

Keep hand
in touch pad

2.5
sec

Keeps hand
in touch pad

Move to
target B
(right)

Receive
Food
Treat

B catch
Move to
target A

(left)

No
Reward

28

 Fi
gu

re
 2

.2
: E

xp
er

im
en

t
S

et
up

 w
ith

 t
he

 d
at

a
ac

qu
is

iti
on

 s
ys

te
m

.
B

la
ck

: C
en

tra
l

P
ro

ce
ss

in
g

U
ni

t
an

d
TD

T
S

ys
te

m
 fo

r
da

ta
 p

ro
ce

ss
in

g
an

d
st

re
am

in
g.

 G
re

y:
 R

ob
ot

 C
on

tro
lle

r
an

d
R

ob
ot

 r
el

at
ed

 h
ar

dw
ar

e.

P
ur

pl
e:

 S
en

so
rs

 a
nd

 s
en

so
r r

el
at

ed
 h

ar
dw

ar
e.

 R
ed

:
A

rm
 m

ot
io

n
tra

ck
in

g
sy

st
em

. T
w

o
ci

rc
le

s
on

 r
ig

ht
 to

p
in

di
ca

te
 th

e
ph

ys
ic

al

co
m

m
un

ic
at

io
n

pa
th

w
ay

s
be

tw
ee

n
th

e
tw

o
ro

om
s

29

Figure 2.3: (A) Experiment Setup. (a) Trial Start – Animal triggers trial (b) Robot moves out from
opaque shield, target A/B lights up (c) Animal makes arm movement to reach sensor for A trials/
keep hand still for B trials (d) Robot moves to correct target (standard trials) or incorrect target
(catch trials). (B) Time line for the trials. TOP: A trials. BOTTOM: B trials

30

2.2.2 Two-Target Reach Paradigm

The paradigm described in above (go-no-go) had two types of trials with

two different reach states (reach/non-reach), two time limits (2sec/ 2.5sec), two

light colors (red/ green) and two things on the robot gripper (desirable and

undesirable objects). The next experiment was designed to reduce some of

these variables and focus on the robot movement. A trial was initiated similar to

the go-no-go experiment when the animal placed his hand on a touchpad for a

random (0.7-1.2 seconds) hold period, at the end of which the audio go cue was

given with the robot arm moving upwards from behind an opaque shield and

presenting its gripper which held a food reward. Since the robot always held a

food treat (waxworm, mushroom or marshmellow) and it had no informative

value, thus controlling that variable.

Simultaneously, to the robot arm moving upwards, a spatial target for the

robot and an IR reach sensor for the animal were both illuminated. Both of these

targets were on the animal’s left (‘A’ trials), and the animal had been trained to

touch the left IR sensor in order to move the robot to the left spatial robot target.

Similarly, during ‘C’ trials, the animal would move the robot to a spatial robot

target on its right, by reaching and touching an IR sensor that was also on the

animal’s right. For each type of trial, the animal had 2 seconds to make an arm

movement, and there were additional LEDs mounted on the left and right of the

robotic gripper which illuminated in parallel with the robot spatial target lights

(Figure 2.4 A and Figure 2.4 B). If he reached for the IR sensor that was

31

illuminated the robot similarly moved in the correct direction and the animal

received the food reward at the end of the robot gripper (standard trials). Those

trials where the animal either did the wrong action or was not interacting with the

task were removed from the analysis [96].

To ensure that the monkey attended to the robot arm movements,

occasionally (varied between 20%-40%), the robot was overridden to go to the

wrong target (and thus the monkey received no reward). These “catch” trials,

controlled for the effects of the monkey’s physical arm movements which may

have otherwise skewed the results; for example, ‘A’ catch trials corresponded to

a left physical arm movement, but the robot moved to the right and similarly, ‘C’

catch trials had a right arm movement, but the robot moved to the left. During

catch trials the monkey’s behavior indicated that he was aware of the robot

moving in the wrong direction. Catch trials resulted in non-rewarding instances

which the animals did not like. Therefore, the catch trials percentage was kept

low so as to keep the monkey engaged in the task [96].

For analysis, neural data during the hold time, before and during the arm

movements as well as during the robot movement were considered. The

experimental timeline for the two-target reach task is given in Figure 2.4 C.

32

Figure 2.4: Standard Trials. (A): A trials: (a) Animal triggers trial (b) Robot moves out from opaque
shield, target A lights up (c) Animal makes arm movement to left reach sensor (d) Robot moves to
target A. (B): C trials: (a) Animal triggers trial (b) Robot moves out from opaque shield, target C
lights up (c) Animal makes arm movement to right reach sensor (d) Robot moves to target C. (C):
‘Timeline for trials in black. Hold time shown in green and RM shown in red. RM = Robot
Movement

2.2.3 Experiment Variable Summary

The summary of the variables during the animal’s hand reach (time of trial

start, Table 2-3) and during the time of the robot movement (Table 2-4) are given

in the tables below. As seen, two confounding variables (treat type and color of

light) have been controlled in the two-target reach task.

Table 2-3: Summary Chart Of Experiment Variables At The Time Of The Trial Start

Experiment Name Go-No-Go Task Two-Target Reach Task

Trial A B A C

Treat Food Bead Food Food

Color Red Green Red Red
Spatial Target

Location Left Right Left Right

Monkey Action Reach Still Reach left Reach Right

Correct Robot
Movement Left Right Left Right

33

Table 2-4 Summary Chart Of Experiment Variables At The Time Of Robot Movement

Experiment Name Go-No-Go Task Two-Target Reach Task

Type Standard Catch Standard Catch

Treat Food/ Bead Food/ Bead Food Food

Color Red/ Green Red/ Green Red Red

Spatial Target
Location Left/ Right Left/ Right Left/ Right Left/ Right

Monkey Action Reach/ Still Reach/ Still Reach Reach

Robot Movement Correct Wrong Correct Wrong

Lights Flash Off Flash Off

 Data Analysis and Results 2.3

To use NAcc neuronal activity for closed-loop control of a robotic arm, we

need to first understand how the NAcc behaves while the animal is engaged in a

robotic task. This section describes the analysis techniques to understand how

the NAcc projects to a prosthetic limb or a robotic arm and how to extract reward

information from the NAcc. We present histograms and data reduction methods

first. There are many methods we can use to classify our data; both supervised

and unsupervised methods can be used with advantages and disadvantages for

both. Results from both experiments (Go-No-Go – red/green and two-target

reach – red/blue) are presented in this section. The two main questions are: how

does the animal perceive the robot and how is the neuronal firing affected by

perturbations in the environment.

34

2.3.1 Neural Firing Patterns and Histograms

Next how the robot movement was captured in the neural firing pattern

was studied using histograms. For this, the time window during the robot

movement was analyzed. There were neurons that showed difference in

modulation for the movement of robot (either in the correct or incorrect direction).

Figure 2.5 (A) shows the neural modulation during the time the robot is moving

for one unit during the Go-No-Go task. For A standard trials (red), the activity

increases as it approaches 0.5 seconds (see Figure 2.5 (A)), but for A catch

(black), the activity decreases in the same time period. For B trials, we see the

opposite effect; the activity increases for B catch (black) trials and decreases for

B standard (green) trials.

Figure 2.5: Mean Spike Count for standard and catch trials with relative to the Robot Movement
(RM).
Window of interest 0.2-0.7sec after the RM. (A) Go-No-Go Task. Standard: A (red), B (green).
Catch: black. A catch and B standard trials show inhibition. (B) Two-Target Reach Task.
Standard: A (red), C (blue). Catch: black. A catch and C standard trials show inhibition.

Table 2-5 gives the number of significant units (t-test, alpha = 0.1) for each

task broken down by the different categories. There are a larger number of units

that fire differently for left vs right. The total window length was 0.7 sec which

was arrived at using the animal’s reach time, robot movement time and the best

accuracy for the classifying the two different classes.

(A) (B)

35

Table 2-5: Number Of Significant Units For Each Type During Robot Movement (0.7sec Of
Data) Alpha = 0.1

Go-no-go Task (Trial Type A/B). Total units = 29
Session S1 S2 S3 S4 S5 S6

A stand/catch 8 4 9 8 6 9
B stand/catch 7 6 7 5 12 6
stand/catch 6 6 5 3 5 6

left/right 14 8 8 8 10 10

 2 target Task (Trial Type A/C). Total units = 27
Session S1 S2 S3 S4 S5

 A stand/catch 2 5 1 4 6
 C stand/catch 3 5 6 3 5
 stand/catch 1 1 4 3 3
 left/right 5 8 4 5 7

Here we analyzed SUA during the time when the animal is observing the

robot movement. There is a statistically significant difference during the robot

movement; high number of units is significantly different (t-test, alpha = 0.1) for

left and right robot movements. However, there are a few units that are

significantly different for rewarding vs non-rewarding trials.

2.3.2 Neural Population Dynamics – Principal Component Analysis (PCA)

While it is important to study the firing patterns of individual neurons, in the

context of brain machine interfaces, we need to study populations of neurons.

There is redundancy in the brain in case a few neurons stop functioning we are

still able to capture the information by using the population. We are able to

capture multiple information from a population of neurons that we cannot from

single neurons. Individual neurons can code single information. However, when

considering the population of neurons together, the population may code

something different from the individual neuron. For example, this has been

36

shown in neuronal population coding related to movement [25, 97]. Therefore it is

important that we study the neural population as a whole.

When considering the neural population, one of the challenges is to

extract the appropriate features for the application. A key characteristic in the

neural modulation is variance. We used principal component analysis (PCA) as

the method to convert the data into a low-dimensional space for both ranking the

relative importance of the neurons as well as visualizing the data. PCA has been

widely used for spike sorting and dimensionality reduction of neural data [98, 99].

PCA also gives the direction of maximal variance, which helps in extracting

relevant features and in dimensionality reduction, which is helpful in BMI

applications. For all the sessions analyzed, the first 9 principal components (PCs)

accounted for at least 80% of the variance, while the first 15 PCs accounted for

at least 90%. The first two PCs contained 48% of the variance and showed best

separability. Hence, the first 2 PCs were selected as the features for analysis.

The separability of the data was inspected in two dimensional space with the first

two PCs. A visual separation between standard (‘+’) and catch (‘o’) trials was

seen when each type of trial was analyzed. The results from all the sessions

analyzed concluded that once the trial type information was identified, a

separation can be seen between standard and catch trials in the PC space.

Further, when the trial types were combined, a left vs right separation was

visible.

37

Figure 2.6: Variance of data relative to RM. Red: ‘A’ trials . Green: ‘B’ trials. Window 0.2-0.7sec
(S1+S2+S3)

The analysis done was using a 0.5 second sliding window (0.1 second

overlap to capture any temporal features) with the sum of firing rate within the

given window of each of the 29 neuronal signals as the feature space. This goal

was to find the optimal window that correlated with the robot moving to or away

from the desired target.

2.3.3 Unsupervised Clustering

In unsupervised clustering, the data will be separated according to the

similarity within a cluster and dissimilarity from the other cluster. An advantage in

our application is that the number of clusters is known to be 2. We can assign

label +1/-1 for the clusters obtained. In supervised classification, the label must

be known a priori and the decoder needs to be trained with a sufficient amount of

examples for good performance and robustness.

After features were extracted using PCA, we used a simple unsupervised

methods (k-means) to cluster the data and compared those clusters with the

class labels we required and calculated the accuracy. k-means is used to classify

38

𝑛 objects of input space 𝐼 {𝑖1𝑖2 … 𝑖𝑛}, each having measurements on p variables

𝑖𝑗 �𝑥𝑗1𝑥𝑗2 … 𝑥𝑗𝑗�, into k clusters with cluster centroid 𝐶 (𝑐1𝑐2 …𝑐𝑘). In this case,

𝑛 = 𝑛𝑢𝑛𝑏𝑛𝑟 𝑐𝑜 𝑡𝑟𝑖𝑎𝑡𝑠, 𝑝 = 𝑛𝑢𝑛𝑏𝑛𝑟 𝑐𝑜 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑡 𝑐𝑐𝑛𝑝𝑐𝑛𝑛𝑛𝑡𝑠 𝑎𝑛𝑑 𝑘 = 2.

The algorithm was set to start by setting C to an initial value (randomly

picked from 𝐼). The centroid value for cluster 𝑐𝑘 is given by:

𝑐𝑘 =

1
𝑛𝑘

�𝑖𝑗;
𝑛𝑘

𝑗=1

∀ 𝑖𝑗�𝑥𝑗1𝑥𝑗2 …𝑥𝑗𝑗�ϵ𝑐𝑘

E
q. 2.1

where 𝑛𝑘 is the number of objects in 𝑘.

Next, clustering is done based on minimizing the cost function which is a

measure of the distance between each data point and the centroid. Three

different cost functions were used: squared Euclidean distance, sum of absolute

differences and one minus the cosine of the included angle between points

(treated as vectors). The results are of squared Euclidean distance are presented

as the clusters aligned better with this criterion. However, there is much room for

improvement as shown in figures below.

For each 𝑖𝑗𝜖 𝐼, the squared Euclidean distance (d) between 𝑖𝑗 and its

centroid, 𝑐𝑘 was calculated.

 d�ij , ck� = (ij − ck)2; ∀ ij �xj1xj2 … xjp � ϵck, j = 1,2 … n E
q. 2.2

The objects of I were moved to the cluster whose centroid was closest,

until d was minimum [100].

39

 argmin
𝐶

��𝑑�𝑖𝑗,𝑐𝑘�
𝑘

𝑗=1

� Eq.
2.3

The two clusters obtained from k-means clustering were assigned labels

(standard and catch) manually and compared against the class labels standard

(‘+’) and catch (‘o’) categories in the experiment. The manual labeling of the

clusters was always done to maximize the resulting classification accuracy. The

classification accuracy was the number of trials correctly classified (True Positive

+ True Negative) out of the total number of trials.

For A trials in the go-no-go task (Figure 2.7A), the clusters given by k-

means (blue/yellow) do not overlap accurately with the ‘+’ and ‘o’ clusters in the

experiment, however, for B trials (Figure 2.7B), the clusters given by k-means

coincide better than the A trials. Accuracy can further be improved by better

clustering as there is one misclassified ‘o’ trial in the blue cluster. For the two-

target reach task, in A trials (Figure 2.7C), the clusters given by k-means are a

good representation of the ‘+’ and ‘o’ classes; there is one outlier ‘o’ in the yellow

cluster. For C trials (Figure 2.7D), the clustering accuracy can further be

improved with better separation of clusters as there is one misclassified ‘o’ trial in

the green cluster [95].

40

Figure 2.7: Data clustered in PC space using k-means. Blue/ Green: Cluster 1. Yellow: Cluster 2.
‘+’: standard. ‘o’: catch and ⊗: cluster centers. Window 0.2-0.7sec.
(A) A trials (go-no-go task). (B) B trials (go-no-go task). (C) A trials (two-target task). (D) C trials
(two-target task).

Next we combined the trial types for each experiment and recalculated the

PC space and clustered using k-means as before. Figure 2.8 shows how the k-

means clustering partitioned the space based on the minimizing the Euclidean

distance. There are a few outliers (two points in (A) one point in (B)) that may

have caused the clustering to be skewed from what the ideal situation is.

In Figure 2.8A, the blue cluster includes both B standard and A catch trials

while the yellow cluster show A standard and B catch trials. The blue cluster

represents right robot movement and the yellow cluster represents left robot

movement. In Figure 2.8B, the green cluster includes both C standard and A

catch trials while the yellow cluster show A standard and C catch trials. The

41

green cluster represents right robot movement and the yellow cluster represents

left robot movement. There is one misclassified A standard trial (red ‘+’) in the

green cluster.

Figure 2.8: Data from 1 session. ‘+’ standard trials. ‘o’ catch trials.
(A) Blue: Cluster 1. Yellow: Cluster 2 and ⊗: cluster centers. Red – A trials. Green – B trials. The
blue cluster represents right robot movement and the yellow cluster represents left robot
movement, with different reward (standard/catch) and natural arm movement. (B) Green: Cluster
1. Yellow: Cluster 2 and ⊗: cluster centers. Red – A trials. Blue – C trials. The green cluster
represents right robot movement and the yellow cluster represents left robot movement, with
different reward (standard/catch) and natural arm movement.

Table 2-6 shows the clustering accuracy for each experiment when

clusters were aligned with standard and catch as well as left and right robot

movement. The clustering accuracy is higher with left vs right, but the accuracy is

at chance level for standard vs catch.

Table 2-6: Accuracy Percentages When Aligning The K-Means Clusters With The Different
Categories (Window 0.2-0.7sec Relative To Robot Movement) Two-Target Reach Task

Session S1 S2 S3 S4 S5 Average
Standard vs Catch 59% 54% 60% 50% 57% 56%

Left Vs Right 85% 90% 56% 89% 89% 82%

We are able to conclude that robot movement direction (left/right) is well

represented in the data and can be extracted with simple unsupervised clustering

techniques for 2 subjects. Subject 1 (“Princeton”) data was only from go-no-go

task, subject 3 (“Don”) data was only from two-target reach task and subject 2

42

(“Duke”) data were from both tasks. For further mathematical representation of

the robot movement direction see Appendix A. However, for our application in

RLBMI, we need a reward/error signal from the brain. The unsupervised methods

perform at chance and are not suitable for extracting reward information. Since

the histograms indicate there is some reward information, we move on to

supervised techniques to extract this reward information.

2.3.4 Supervised Classification

In supervised classification techniques, the classifier needs to be trained

by known data and the corresponding class labels. Traditionally, hundreds of

data points are required to build a classifier. However, in our application, we only

have a few trials for the entire session and even combining several sessions

across days can give us 200+ trials.

Classifiers Used

Four methods have been used for the supervised classification in this

section. These classifiers were based on advantages each method had to offer

and the data that was collected. First is a Support Vector Machine (SVM). SVM is

a discriminative classifier formally defined by a separating hyperplane between

the two classes. The algorithm outputs an optimal hyperplane such that the

margin of the training data is maximized. For data such as above, it is possible

that in higher dimensional space, there exists such a hyperplane [101, 102].

Next a k-Nearest Neighbor (k-NN) algorithm used is a non-

parametric method where the input consists of the k closest training examples in

43

the feature space. An object is classified by a majority vote of its neighbors, with

the object being assigned to the class most common among its k nearest

neighbors (k is a positive integer, typically small). If the data at hand is not

separable even in higher dimensional space, this method is advantageous since

it exploits the features of the neighboring data points. However, if this is to be

used in real time, the computational complexity is a factor that needs

consideration [103, 104].

Next method is a naive Bayes classifier, which is a simple probabilistic

classifier based on Bayes' theorem with strong (naïve) independence assumption

between the features. This classifier was implemented as it uses the distribution

of the data classes. The data which was explored had multiple information

encoded and an added advantage of Naïve Bayes is, it is not sensitive to

irrelevant features [105, 106].

The last classifier is a tree-bagging algorithm, also known as random

forests. These operate by constructing a multitude of decision trees at training

time and outputting the class that is the mode of the classes of the individual

trees. The predicted class is decided by the probabilistic outcome. This classifier

is similar to k-NN but the decision was made to implement this since the

predicted class has a probability associated with it [107, 108].

For each of the classifiers above, training and testing data were balanced.

This is important so as to not have a biased classifier.

44

Data Sets

Two marmoset monkeys were used for the two-target reach task: “Duke”

(subject 2) and “Don” (subject 3). For Duke 11 sessions across 9 days were

combined for a total of 468 trials (52, 58, 48, 32, 30, 41, 39, 41, 43, 38 and 46

trials in each session). For Don, 3 data sets across 5 days were combined for a

total of 220 trials (48, 88 and 84 trials in each session). Table 2-7 shows the

distribution of trials in both data sets.

Table 2-7: Distribution Of Trials In The Data Sets Analyzed

 Duke Don
Total Sessions 11 3

Total Trials 468 220
MI units per day 10 11

NAcc units per day 27 28
Type A trials 250 109
Type C trials 218 111

Rewarding Trials 360 164
Non-Rewarding Trials 108 56

Different time windows were analyzed for both NAcc data and MI data. For

MI data, the time window was with respect to (wrt) the start of the “Go Tone”.

Both 500 msec and 1000 msec bins were analyzed. For NAcc data, the windows

were wrt to the start of the robot movement (RM). 90% of data (balanced) were

used for training and 10% (balanced) for testing. The reason for using balanced

classes for testing was so that the accuracy given will be a true representation of

classification, and due to classification of all trials as one type. Hence, randomly

selected equal number of examples from both classes were given and 100

simulations were performed.

45

NAcc Data

This section analyses the success vs catch difference in the monkeys.

Success trials were given a label ‘+1’ suggesting rewarding action by the robot

and catch trials were given a label ‘-1’ indicating a non-rewarding action by the

robot. All trials are synchronized to the start of the robot movement, which is the

first indication of the correct or incorrect robot movement. However, depending

on the training level of the animal, the animal may or may not grasp this

immediately.

Figure 2.9 shows the accuracy for Duke (A/B) and Don (C/D) data from

100 simulations in classifying success vs catch trials from NAcc for different

window sizes and sliding windows, for the four classifier types discussed above.

Three of the classifiers performed poorly on Don’s data on average (Refer to the

figure below which show the standard deviation along with the average).

Subplots (A) and (C) show 500 msec window size and subplots (B) and (D) show

1000 msec window size. Each colored trace gives a different classifier type. The

accuracy with Naïve Bayes (green) classifier is low in general for all the windows

and both sets of data. Similarly Random Forests (blue) tend to do better in

general for most of the windows analyzed in both monkeys. For Duke, a later

time window (500 msec or after) gives better results, while for Don, an earlier

time window (500 msec or before) gives better results. This difference could be

due to different animals perceiving the task differently. At the time of data

collection, Don was more trained than Duke, and therefore recognized catch

46

trials at the start of the robot movement, whereas Duke took a few hundreds of

milliseconds to realize this.

Figure 2.9: Classification accuracy (average accuracy of 100 simulation) for NAcc data success
vs catch for Duke (A/B) and Don (C/D). 500msec bins (A/C) and 1000msec bins (B/D).
x axis shows the start of the window wrt RM and y axis shows the accuracy percentage. Each
colored trace shows a different classification method. (blue – RF, red – kNN, green – Naïve
Bayes, Orange – SVM). Chance 50%

MI Data

Next we studied how well supervised classifiers are able to classify left

and right hand movement of the animals. This was done by giving a class label of

‘1’ for A trials (left movement) and a class label of ‘2’ for C trials (right

movement). Analysis was done for both 500msec bins and 1000msec bins.

Figure 2.10 shows the classification accuracies for classifying left arm movement

and right arm movement from MI data for Duke (A/B) and Don (C/D). For Duke,

Random Forests perform better than the other three classifiers, and the SVM

47

performs the lowest (at chance). For Don, none of the classifiers outperform each

other; all of the traces are between 40%-60%. When comparing the time window

to use for a BMI, for Duke, a wider window (1000 msec – subplot B) with

minimum 500 msec delay yields the best results. For Don, this is harder to

interpret since the overall accuracy is low. However, in the case of Don, the best

time delay is 500 msec; any longer time delays, reduce the accuracy. The 1000

msec bin performs slightly better than the 500 msec bin and we conclude to use

a 1000 msec bin for the BMI experiments for Don. As mentioned before, since

this animal was more trained than Duke, his reaction times were faster, and the

reach times were lower.

Figure 2.10: Classification accuracy (average accuracy of 100 simulation) for MI data left vs right
arm movement for Duke (A/B) and Don (C/D).
500msec bins (A/C) and 1000msec bins (B/D).

48

x axis shows the start of the window wrt RM and y axis shows the accuracy percentage. Each
colored trace shows a different classification method. (blue – RF, red – kNN, green – Naïve
Bayes, Orange – SVM). Chance 50%

 Trial Initiation from the Striatum 2.4

This section gives results of extracting trial initiation from the striatum

data. The hypothesis is that the NAcc has trial initiation information. If this

information can be reliably extracted, an architecture can be built to exploit this

information in an asynchronous manner.

2.4.1 Filter Design and Preprocessing

LFPs from 15 channels were used for one monkey from one session. The

LFPs were acquired at 2034.5Hz and down sampled to 1017.25Hz before

preprocessing. Five band-pass filters were designed for the following frequency

bands shown in Table 2-8. The frequency response of the filters are shown in the

figure below. Once the signals were filtered for the respective bands, it was

smoothed with a 100msec window with 50% overlap.

Table 2-8: Frequency Bands For Lfps
(1) Delta 1-4 Hz
(2) Theta 4-8 Hz
(3) Alpha 8-13 Hz
(4) Beta 13-30 Hz
(5) Classical Gamma 30-60 Hz

The labels for the data were based on the start of the trial, where the

animal’s hand was stationary inside the touch pad for 0.7-1.2 sec. After this the

robot came up from behind the shield – which took approximately 0.6 sec to

complete. The animal’s reaction time/ time of beginning of reach were as early as

0.5 sec and as late as 1.5 sec (average 0.8 sec). The earliest time was used at

49

0.5 sec. For each trial, 0-0.5 sec from the trial start was given a label of 1 and

everywhere else was given a label of 0. The labels were also down sampled to

the same frequency as the data above. With the filtered and smoothened data,

250 msec was used to predict one label

Figure 2.11: Frequency Response of the 5 different filters used in LFP pre processing

2.4.2 Classification

Two classifiers were used for classification. Since the integrity of the data

depended upon the temporal sequence, the trials were not shuffled; instead the

first 75% of data points used for training and the remaining 25% used for testing.

Table 2-9 gives a summary of the results for SVM and Table 2-10 gives the

summary for logistic-regression. The accuracy is very high since there are more

50

negative examples, but as discussed in the introduction, this is not a metric of

performance in the field.

Table 2-9: Trial Initiation Classification From SVM

Session # Total
Trials

Trials in
Test Data

Accuracy Recall Precision

1 88 22 97.13% 0.44% 16.67%
2 91 34 96.88% 0.29% 2.86%
3 84 16 98.27% 0.00% 0.00%
4 105 23 96.74% 0.85% 5.71%
5 119 24 97.62% 3.29% 28.57%

Table 2-10: Trial Initiation Classification From Logistic Regression

Session # Total
Trials

Trials in
Test Data

Accuracy Recall Precision

1 88 22 94.80% 10.09% 9.62%
2 91 34 94.81% 4.93% 5.35%
3 84 16 96.75% 7.98% 6.50%
4 105 23 93.23% 9.36% 6.09%
5 119 24 91.02% 20.16% 5.98%

The recall (TP/(TP+FN)) and precision (TP/(TP+FP)) are also given in the

tables. Recall indicates of the number of data points that were trial initiation, how

many were actually classified as such. Precision indicates of the number of data

points classified as trial start, how many actually were trial starts. Logistic

Regression performed better than SVM, but the recall and precision were still

very low.

Figure 2.12: Session 1 classification Results (Red – actual, Blue – predicted)

51

Figure 2.12 gives the performance of each classifier for the first session

and Figure 2.13 gives same for the second session. Red * shows the actual and

blue □ shows the points that were classified. The SVM in both sessions have less

false positives, while the logistic regression gives a high number of false

positives.

Figure 2.13: Session 2 classification Results (Red – actual, Blue – predicted)

The few data points (2 in session 1 and 5 in session 2) classified by the

SVM as trial starts were also classified the same by logistic regression. These

few data points are robust to both classifiers. The points classified as trials are

clustered around the actual trial starts even though only a few are correctly

classified. The temporal resolution needs to be explored here with the nature of

the signal causing the predicted positive class to be clustered around the actual

positive class. If it shows feasibility (i.e. high precision and high recall), it is

possible to build an asynchronous BMI using the NAcc signal as a gate to initiate

movement.

 Summary and Conclusions 2.5

In this chapter, the choice of animal model was discussed and the surgical

methods were looked at. The experimental paradigm for studying the NAcc

during a goal-directed task was shown; go-no-go paradigm and the two-target

52

reach paradigm. Next, firing patterns and the histograms were studied to

understand the behavior of the NAcc during the goal-directed task. It was seen

that more number of units modulated with the robot movement direction, than

with the reward, and therefore the information which can be extracted easily from

unsupervised methods were not suitable for the BMI application. Next, four

commonly used supervised classification techniques were applied to the data.

For Don (the monkey that closed-loop was implemented on), the NAcc time

window for Critic input was identified as starting either at 0 or 250 msec and

ending at or before 1000 msec. Random Forests Classifier performed better than

the other three overall and this will be used for the Critic in the closed-loop

implementation. For the same monkey the motor cortex (MI) data is used for the

Actor and the best time window is 500 msec after the Go Tone. These

conclusions were used in designing the closed-loop experiments. The NAcc

LFPs were studied briefly to test the feasibility of extracting a trial initiation signal

to build an asynchronous BMI. The precision and recall from classification were

very low for this signal to be used as expected.

53

Chapter 3 Development of the Control Architecture

 Control Architecture for the Actor 3.1

In order to use the signals acquired after from Chapter 2, we need an

architecture that can incorporate these signals in a closed-loop BMI. The findings

from the previous chapter (reward/ error representation) can only be used if an

architecture can be developed to handle the Critic uncertainty.

Figure 3.1: Architecture for Biological Actor-Critic Reinforcement Learning.
The Critic is controlled by the NAcc neural inputs and the Actor is controlled by the MI neural
inputs. The Critic provides an evaluative feedback to the Actor.

In the present paradigm, 𝑥𝑖 is the input to the Actor at 𝑖P

th node and 𝜔𝑖𝑗 is

the weight of the network with input node 𝑖 and output node 𝑗 which is updated

using the feedback from the Critic. The output state 𝑥𝑗 is computed based on the

net state (𝑠𝑗) of the node and a tanh non-linear transfer function.

 𝑆𝑗 = � 𝜔𝑖𝑗𝑥𝑖
𝑁

𝑖=0
 Eq. 3.1

 𝑃𝑗 = 𝑡𝑎𝑛ℎ(𝑠𝑗) Eq. 3.2

Hence the output of the Actor is given by

54

 𝑋𝑗 = 𝑆𝑆𝑁�𝑃𝑗� = �
1, 𝑃𝑗 > 0
0, 𝑃𝑗 = 0
−1, 𝑃𝑗 < 0

 Eq. 3.3

Figure 3.2: Node ‘𝑖 ’ of the neural network for the Actor

The update equation is given by

 ∆𝜔𝑖𝑗 = 𝜇+𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 + 𝜇−(1− 𝑟)(1− 𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.4

where the 𝜇+ and 𝜇− are the learning rates for the reward and penalty

respectively. The reinforcement feedback is given by r. 𝑟 = 1 is a rewarding

action and 𝑟 = −1 is a non-rewarding action. If 𝑟 = 0, then there is no weight

update. This is the Hebbian reinforcement Learning (HRL) update equation. The

first term corresponds to the reward and the second term corresponds to the

penalty.

There are two unique cases for this equation. The first case is when 𝑟 = 1,

there is contribution only from the first term and the weight update equation

above becomes:

 ∆𝜔𝑖𝑗 = 𝜇+𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 Eq. 3.5

This means that in rewarding trials (𝑟 = 1), only the positive component

contributes to the weight update. But in non-rewarding trials (𝑟 = −1), both terms

55

contribute and the system is more sensitive to the negative feedback. The

second case is when 𝑃𝑗 approaches 𝑥𝑗 there is contribution only from the second

term, hence the weight update becomes:

 ∆𝜔𝑖𝑗 = 𝜇−(1− 𝑟)(1 −𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.6

In this case, the system will only adapt for negative feedback. When both

the above conditions are achieved, (𝑟 = 1 𝑎𝑛𝑑 𝑃𝑗 → 𝑥𝑗), the weights will not

update further. During instances where there is no weight update, the system has

consolidated the functional relationship between input and output. Unless and

until there is a negative feedback, the system will not update further.

3.1.1 Modifications to the Actor

Our previous analysis has shown that the overall system accuracy is

limited by the Critic accuracy [109]. Hence, we updated the Actor to incorporate

the Critic confidence level. The Critic determines the appropriateness of the

action taken by the Actor, the Actor should be able to integrate the feedback

even if it is not fully reliable (as is the case in many biological signals). The Critic

will give the feedback along with the confidence it has on this feedback.

Depending on the confidence given, the Actor weights will be updated only when

the Critic confidence is high. More noisy data will result in lower levels of

confidence and the Actor weights will not be updated as frequently. The

assumption is that by not updating when the Critic feedback is wrong, and thus

weights remaining same, has less negative effect on the system than when

updating every time with an inaccurate Critic. The trade-off is that the learning

56

rate is much slower and the system will take much longer to learn the mapping

between neural states and the output actions.

Figure 3.3: How the distance is converted to the confidence and reward. thr=threshold (A)
Confidence Only. (B) Confidence and Reward. At lower confidence values, the Critic confidence
is low while at higher confidence values, the Critic is 100% confident.

The Critic will give an output of ±1 indicating if it was an action to be

rewarded or penalized. In addition, the Critic will also give a value of the

confidence (𝜌) it has on the feedback given. The update equation thus becomes

 ∆𝜔𝑖𝑗 = 𝜇+𝜌 𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 + 𝜇−(1−𝜌 𝑟)(1−𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.7

Where 𝜌 is the confidence in the feedback, 𝑟. If both terms 𝜌 and 𝑟 can be

determined from a single step, then the terms can be combined. However, the

advantage of having two different terms ρ and 𝑟 is the ability to acquire them from

two different methods if the same method does not give both values. If the Critic

value given was correct, the confidence will be increased and if the value is

wrong, it will be decreased. There are different methods to derive this ρ value.

57

3.1.2 Confidence of the Critic

First method of these is to use a neural network. The input to the network

is the firing rates form the NAcc. The network will be trained with labels +1

(rewarding) and -1 (non-rewarding/ penalizing) for 𝑥𝑗. During online testing, 𝑥𝑗 will

give values between -1 and +1. The sign will be given as the feedback r and the

scalar value of the 𝑜 function will be used as the confidence. If the output of the

network exceeds ±1, the 𝑜 function ensures that the confidence remains at

100%.

 𝑟 = 𝑆𝑆𝑁�𝑋𝑗� Eq. 3.8
 𝜌 = 𝑎𝑏𝑠 �𝑜�𝑋𝑗�� Eq. 3.9

where

 𝑎𝑏𝑠 �𝑜�𝑋𝑗�� = �
1 ; 𝑋𝑗 > 𝑡 𝑐𝑟 𝑋𝑗 < −𝑡
𝑋𝑗; 0 < 𝑋𝑗 < 𝑡 𝑐𝑟 − 𝑡 < 𝑋𝑗 < 0 Eq. 3.10

𝑡 represents the threshold whose values are to be determined by the

nature of the Critic data and simulations.

Since this method needs extensive training, we used a second method

(distance to the boundary) as the confidence. In the figure below, there are

rewarding and non-rewarding training trials marked in black. The red trials are

the ones classified. If the classified trial is closer to the decision boundary, it will

give a lower confidence and if the distance is higher, then the confidence in the

decision is also higher. 𝜌 is the normalized absolute distance from the decision

boundary.

58

Figure 3.4: (A) An Artificial Neural Network for the Critic with the Reward Value and the
Confidence. (B) An Alternate Method to Obtain the Critic Confidence Level. Data points further
away from the decision boundary will have higher confidence and the points closer to the decision
boundary have lower confidence.

If a probabilistic classifier is used, the probability of a data point being in

the particular class can be used converted to the confidence measure. If the

absolute value of the probability minus 0.5 is closer to 0, the confidence is low

and if it is closer to 0.5, the confidence is high. Figure 3.4 gives an explanation of

this. The two curves (red and blue) are the probability distributions for each class.

For a given data point, if the probability for class 1 is higher it is classified as

class 1, else class 2. Higher the difference of the probability values, greater the

confidence. This method is implemented later in Chapter 4.

Figure 3.5: Using a probabilistic method to arrive at the confidence. P1+P2=1. abs(P1-0.5) or
abs(P2-0.5) can be used as confidence measure.

(A) (B)

59

 Data Generation for the Actor 3.2

We generated synthetic data to simulate how the above proposed decoder

will work with neural signals. Neural data was generated according to the

Izhikevich model [110, 111] and added an additional probability component for

the stimulus to make the data more noisy. This component ensured that a certain

percentage of neurons will be harder to classify. This was verified using the first

two PCs. Figure 3.6 shows an example of the generated data set. Figure 3.6 A

shows the neural data generated by the standard method in the first two PCs.

Even though there is noise inbuilt into the data generation, in the PC space, the

data is separable easily. For data shown in Figure 3.6 A, the Actor will be able to

classify with higher accuracy. Since we needed to be able to simulate a noisy

data set, an additional probability component was added to reduce the stimulus

in a certain percentage of neurons (varied from 0% to 100%). The PC plot is

shown in Figure 3.6 B corresponds to 25%. The additional probability component

was added to the stimulus generation and not to the neural data itself.

Figure 3.6: An Example of Synthetic Data for 2 states (o and x) in PC space. (A) Standard
stimulation method. The PC space is able to discard the noise and give two clear clusters. (B)
With Additional Probability Component in the Stimulation. The PC space is more overlapped.

(A) (B)

60

The neural data was generated by the standard method [110] where the

model is given by

 𝑣′ = 0.04 𝑣2 + 5𝑣+ 140− 𝑢 + 𝐼 Eq. 3.11
 𝑢′ = 𝑎(𝑏𝑣 − 𝑢) Eq. 3.12

with the auxiliary after-spike resetting

 𝑖𝑜 𝑣 ≥ +30𝑛𝑉, 𝑡ℎ𝑛𝑛�𝑣 ← 𝑐
𝑢 ← 𝑢 + 𝑑 Eq. 3.13

Where v was the membrane potential of the neuron and u represents a

membrane recovery variable, which accounted for the activation/inactivation of

ionic currents, and it provided negative feedback to v. After the spike reached its

apex (+30mV), the membrane voltage and the recovery variable were reset. The

synaptic current is given by the variable, I, which was calculated from the

stimulus of ‘1’ for spike and ‘0’ at all other times. For excitatory cells, a = 0.02,

b = 0.2, (c, d) = (−65,8) + (15,−6) ∙ e2 where e is a random variable uniformly

distributed, e ∈ [0,1] [110]. We generated two motor states (motor state 1 and

motor state 2) using the above model to depict two actions. The neural data was

generated in 3 ensembles, one ensemble each tuned to one state (activity of the

particular ensemble correlated with one state) and the third ensemble not tuned

to either state simulating noise in real neural data.

While the synthetic data was generated using a biologically realistic

model, there are dynamic factors, which contribute to forms of noise not

considered in the model. These are factors such as neurons dropping, electrodes

deteriorating or breaking and encapsulation. Without making the model more

61

complicated to mimic the noisy physiological system, we introduced additional

noise to the synthetic data by adding a probability component to the stimulus,

which generated the I in Eq. 3.11. The actual value of noise in the stimulus was

decided by a Gaussian distribution instead of the ‘1’ or ‘0’ as before. The number

of neurons with this additional noise was varied from 0% to 100% in 10%

increments. This additional probability component resulted in overlapping

classes; the higher the probability component, more overlapping in the states

generated. This was verified graphically using the first two PCs and confirmed

that as the probability component to generate I was increased, the overlapping of

the two classes also increased [112].

 Dealing with Inherently Slow Adaptation 3.3

Real time ‘epoching’ of the data was used to speed the initial adaptation

from the purely random initialization weights to functionally useful. Each trial used

all of the past data ten times to rerun through the system. A pseudo-real time

normalizing of the inputs was performed before feeding to the network. This was

done by keeping a real time record of the highest firing rate detected for each

input, and then used to continually update the normalization parameters

throughout the session [54, 62].

62

 Simulations for Dealing with Critic Uncertainty 3.4

Figure 3.7: Performance of the BMI Vs the Critic accuracy during open loop simulations (mean ±
standard deviation)
Duke: black X, 1000 simulations; Princeton: red O, 700 simulations) when the accuracy of the
Critic feedback was varied (0.5 to 1.0). dotted lines give 1:1 relationship. The overall
performance is limited by the accuracy of the Critic [113].

In previous closed-loop analysis it was concluded that the overall motor

control accuracy can be limited by the Critic accuracy [113]. This property is

illustrated in Figure 3.7; The results of the open loop simulations for one monkey

(black crosses) as well as a second monkey (red circles), indicate that the overall

performance of the system is limited by the Critic accuracy [109]. To overcome

the overall system accuracy being limited by the Critic accuracy, we developed a

new method to update the Actor weights only when the Critic had high

confidence (𝜌), in the feedback (𝑟) provided. The Actor-Critic architecture was

modified as shown in Figure 3.8 to incorporate the confidence term in addition to

the already existing reward term.

63

Figure 3.8: Modified Actor-Critic RL showing how Reward and Confidence terms were
incorporated in the architecture.

 Can Using the Feedback Intelligently Improve Performance? 3.5

As a first step, we tested the hypothesis, using the feedback intelligently

can improve performance. These results have been adapted from published work

in Frontiers in Neuroscience [112].

We tested the model using 3 different data sets in classification mode.

Data sets used were: (1) synthetic data generated by an Izhikevich neural spiking

model, (2) synthetic data with a Gaussian noise distribution, and (3) data

collected from a non-human primate engaged in a reaching task. We varied the

Critic accuracy from 50% to 100% and ran two sets of simulations (S1 and S2)

for each of the three data sets; S1, updated the Actor at every trial and S2

updated only when the Critic feedback was correct (i.e. confidence high). This

was performed to compare whether it was better to adapt after each trial or only

when the Critic feedback was correct. For the purpose of these simulations, we

used the correct Critic feedback to indicate a high confidence of ‘1’ and an

64

incorrect Critic feedback to indicate a low confidence of ‘0’. This can be

determined empirically by the Critic data that would require an in-depth

evaluation, which was not the focus of this study. Since the decoder started at a

naïve state, we used a pseudo-real time normalizing of the inputs before feeding

to the network. This prevented any bias due to the difference in the magnitude of

the inputs. This was done by keeping a real time record of the highest firing rate

detected for each input, and then used to continually update the normalization

parameters throughout the session [109].

3.5.1 Effect of confidence measure on Actor performance

Figure 3.9A shows how the performance level increased as the Critic

accuracy increased. The Actor which was updated every time is shown in blue.

The performance was always below the 1:1 curve showing how the Actor

performance is limited by the Critic accuracy. However, the performance of the

system where the Actor was updated only when the Critic was confident (shown

in red) was able to perform above the Critic accuracy level as seen in the figure.

The performance increased from 50% (±6.6%) to 70% (±8.8%) at Critic accuracy

of 50% and further improved from 87% (±10.4%) to 92% (±6.9%) at Critic

accuracy of 90%. A Critic accuracy of 90% means that the Critic gave a correct

feedback 90% of the trials and wrong feedback 10% of the trials. For example, in

our simulations each consisting of 100 trials, a 70% accurate Critic gave correct

feedback in 70 trials and wrong feedback in 30 trials. If there was no confidence

built-in, the Actor assumes that the value was always correct. In this new system

with confidence built in, we reduced the confidence of the wrong feedback to

65

zero. At lower Critic accuracies (50%, 60% and 70%), the system with the

confidence outperformed the system without the confidence by approximately

20%. The performance of the two systems showed significant difference for all

Critic accuracy levels from 50% to 90% (Student's paired t-Test, with a two-tailed

distribution, alpha 0.001 – shown with * in the figure). By updating weights

accurately, the system learned optimal mapping and stabilized with time. Given

that the system began with random initial conditions, there was no guarantee that

the system would stabilize.

Figure 3.9: (A) Performance of the BMI Vs the Critic accuracy with and without confidence inbuilt.
(mean ± standard deviation. 1000 simulations. 100 trials per simulation).
Red: New update rule with confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50% to 100% with 100% being the best. * shows the
values which showed statistical significant difference (alpha 0.001). The overall performance of
the blue curve is limited by the accuracy of the Critic but the overall performance of the red curve
is able to go beyond the Critic accuracy, decoupling the performance from the Critic accuracy.
(B) Stability of the system without (green/blue) and with (purple/red) confidence. Plot shows the
number of simulations that maintained 100% accuracy beyond 50 trials (green/purple) for
convergence and beyond 70 trials (blue/red) for convergence [112].

Figure 3.9B gives a summary of the number of simulations out of 1000

that stabilized after 50 trials and 70 trials with and without the confidence. The

convergence or stability was defined as maintaining 100% accuracy (last 50 trials

66

or last 30 trials). The number of simulations that did stabilize at lower Critic

accuracies was higher for the system with the confidence measure. At higher

Critic accuracy levels, the overall performance was no longer limited by the Critic

accuracy but by the data itself. As the Critic confidence increased, the difference

in performance between the two systems became smaller and converged to a

single value (94% ±5.8%) since at 100% Critic accuracy, both systems effectively

have the same update equation.

Figure 3.10 shows the details of the action selected in each trial and also

the Critic values for that particular trial. Figure 3.10A has two sets of simulations

S1 and S2 and Figure 3.10B also has two sets of simulations S1 and S2. Each

simulation started with random initial conditions. Figure 3.10 (A and B) shows two

such examples with two different Critic accuracy levels. The Critic accuracy was

changed randomly based on the percentage given to the decoder. In Figure

3.10A, the Critic is 60% accurate and the top subplot shows the performance of

the system if the Actor was updated every time (S1). The overall performance in

this case is 47%. The first trial was correct, but the Critic gave a wrong feedback

and the Actor weights were updated with this erroneous feedback causing the

second trial to be wrong. When the Critic gave a correct feedback during the third

trial, the system started performing correctly. However, due to the erroneous

feedback the performance was not stable. Even when the Actor chose the

correct action, if the Critic provided a wrong feedback, it decreased the

performance. In contrast, the second subplot shows the performance when the

Actor was updated with a confidence level (S2). For the same neural data, order

67

of trials and Critic feedback, the performance of the second system is 80%. Even

though the Critic gave wrong feedback at first, the Actor learned to ignore this

and was able to have a better outcome.

Figure 3.10: Performance of each decoder during the length of the experiment for one simulation
starting at random initial conditions. 100 trials. Red: Action 1, Blue: Action 2, Black: Critic.
(A) Critic accuracy 60%. Both decoders perform correctly in the first trial but the Critic gives a
wrong feedback. The first system changes the weights causing the second trial to be wrong.
Again, the Critic gives a wrong feedback causing the third trial also to be wrong. Since the system
weights are updated every time, wrong Critic feedback causes the system to perform below the
Critic accuracy. However in contrast even though the second subplot also starts the first trial the
same way, the erroneous feedback does not affect it and the decoder is able to perform better
than the first system. (B) Critic accuracy 80%. The first system starts with a correct action, but is
very sensitive to wrong Critic feedback. The second system starts with a wrong action, but by the
6th trial is able to achieve good performance and maintain throughout the rest of the session
[112].

68

Figure 3.10B shows the performance of the two systems when the Critic

accuracy was 80%. The top subplot shows when there was no confidence

measure and the Actor updated every time (S1). The bottom subplot shows the

Actor updating only when the Critic was correct (S2). The Critic provided a similar

output at the beginning. For the first system, the system started with random

weights and continued to do well with correct Critic feedback at the beginning.

However, an erroneuous Critic feedback at trial 3 caused the system to perform

wrong in the next trial. In contrast, the second system started with random

weights which caused the first trial to be wrong but the system received good

feedback and was able to perform correctly in the subsequent trials. In the first 5

trials, the first system performed better than the second. However, since the

second system Actor weights were only updated when the Critic feedback was

good, it took longer for the second system to learn the ideal mapping.

3.5.2 Neural Perturbations – Additional Noise in Data

Figure 3.11A shows how the system with the Critic confidence level still

performed better than the system which updates the Actor weights every time

even with the additional noise. The system which updated at every trial

performed at chance level (50% performance) at lower Critic accuracies, while

the system with the Critic confidence performed better (at Critic accuracies 80%

and below the difference in the performance was approximately 10%). However,

as the Critic accuracy increased (beyond 70%), the system accuracy did not

increase as expected in both curves (i.e. both systems stayed below the 1:1

curve). This was due to the limitations in the input data as the data to the

69

decoder was noisy and the states were not as clearly separable. As noted in the

previous section, the performance of the two systems showed significant

difference for all Critic accuracy levels from 50% to 90% (Student's paired t-Test,

with a two-tailed distribution, alpha 0.001 – shown with * in the figure). In Figure

3.11A, the probability component used to generate 𝐼 was 40%, which was most

similar to the NHP data shown in the next section. Figure 3.11B shows how

different noise levels affected the overall performance as the Critic accuracy

increased. Each colored trace is a different noise level as shown in the legend.

With low noise levels, the system was still able to perform amidst the Critic

inaccuracies. However as the noise level increased, the system performed at

chance (50%) at low Critic accuracy levels and performed marginally above

chance even at higher Critic accuracy levels.

3.5.3 Simulations using NHP Data

These results are shown in Figure 3.11C where the blue trace shows the

performance of the Actor updating every time and the red trace shows the Actor

updating only when the Critic is confident. Similar to the results of the synthetic

data, we can see an improvement (from 50% to 63% at Critic accuracy of 50%

and from 77% to 83% at Critic accuracy of 90%) in the overall performance by

adding the confidence measure in the update equation. This is more apparent in

lower Critic accuracies (At alpha = 0.001 Critic accuracies 50% to 90% showed

significant difference – shown with * in the figure). At higher Critic accuracies, the

system which only updates when the Critic is confident is still able to do better

but the difference in the percentages was smaller.

70

Figure 3.11: (A & B) Effect of noise on the overall performance. (C) Results of the simulations
where the monkey controls the robot arm (offline simulations). Dotted: 1:1 relationship.
(A) Performance of the BMI Vs the Critic accuracy with 40% of the neurons receiving a less
stimuli than the standard (mean ± standard deviation. 1000 simulations. 100 trials per simulation).
Red: New update rule with confidence. Blue: Previous method with no confidence. Critic accuracy
was varied from 50% to 100% with 100% being the best. * shows the values which showed
statistical significant difference (alpha 0.001). The overall performance of the blue curve is limited
by the accuracy of the Critic but the overall performance of the red curve is able to go beyond the
Critic accuracy. Hence, decoupling the performance from the Critic accuracy. (B) How the overall
performance changes with the Critic accuracy (1000 simulations). Each curve gives a different
noise level of the data set. (C) Results of the simulations where the monkey controls the robot
arm. Performance of the BMI Vs the Critic accuracy with and without confidence inbuilt for data
collected from monkey DU. (mean ± standard deviation. 1000 simulations). Red: New update rule
with confidence. Blue: Previous method with no confidence. Black: 1:1 relationship. Critic
accuracy was varied from 50% to 100% with 100% being the best. * shows the values which
showed statistical significant difference (alpha 0.001). At lower Critic accuracies, the new update
with confidence performs much higher than the one without the confidence measure. As the Critic
accuracy increase, the plot with the confidence measure is able to outperform the curve without
the confidence measure. However, the difference in the performance becomes smaller as the
Critic accuracy increases suggesting as before that the Critic is no longer the limitation, but the
nature of the input data itself [112].

71

At lower Critic accuracies (80% and below) the difference in performance

is approximately 13% and at 90% Critic accuracy the difference in performance is

approximately 7%. 90% Critic accuracy means that 9 out of 10 feedback given by

the Critic is correct. When the Critic feedback was always correct, the two

systems converged to approximately the same performance value. Here we

observe that the Critic is no longer a limiting factor for overall performance. The

overall performance is now bound by the Actor/ MI neural data.

We conclude that our hypothesis is true: updating the Actor weights, only

when the Critic is confident of the feedback, improves performance. Updating at

low confidence values will introduce wrong feedback into the reinforcement

learning trajectory of the Actor.

 Data Generation for the Critic 3.6

The next step is to incorporate the Critic component; we tested this using

synthetic NAcc data. Approximately 95% of the NAcc is comprised of medium

spiny projection (MSP) neurons [114]. We needed a biologically realistic model to

capture all the neurocomputational properties of MSP neurons but was reduced

in computational complexity to be more efficient for simulations. Humpries et al.

reduced neuron model bases the Izhikevich model and we used this with varying

spike rate and modified spike-event generator to capture rewarding and non-

rewarding trials [115, 116]. The ability of the MSP cells to switch between

different states and its physiological properties are modulated by dopamine (DA)

[114]. DA is directly related to rewarding behaviors; higher DA levels with higher

72

firing rates for higher rewards and lower DA levels with lower firing rates for lower

rewards/ no rewards [107, 115].

We used 10 neural ensembles with 4 neurons each. 1st ensemble was

tuned to the reward (higher firing rate during reward, i.e. DA high and random for

no reward), 2nd ensemble tuned for non-reward (lower firing rate during non-

reward and random for rewarding) and, the remaining ensembles were

background activity not tuned to either action. The ensembles were chosen such

that it represented reward modulation in the NAcc which has approximately 10-

20% neurons modulating for reward [117]. 1 sec of data was used to simulate the

trial.

The values used to set the Spike Train Parameters were altered for each

type of trial. For Rewarding trials, the values were drawn from a uniform

distribution [0.75 1]*10^-3. For non-rewarding trials, these values were selected

from a uniform distribution [0.65 0.85]*10^-3. For both types of trials, the values

for the ensemble not tuned, were drawn from a uniform distribution [0.5

0.85]*10^-3.

73

 Critic Data Classification by different methods 3.7

3.7.1 Clusters in the data

Figure 3.12: (A) Variance accounted for in the first 10 PCs. (B) data in PC space with the clusters
from k-means.

We performed PCA on the data and 9 PCs accounted for 92% of the

variance. For ease of visualization, we used the first two PCs (variance

accounted for: 43%) and clustered the data using k-means with the criterion for

minimization as the squared Euclidean distance. We labeled the clusters as

rewarding or non-rewarding manually to maximize the classification accuracy.

Next we cross referenced with the actual data classes and found that k-means

clustering achieved 97.5% accuracy both false positives and false negatives.

These false positives and false negatives can affect on the overall performance

when using as the Critic [112]. It may be possible to reduce the misclassifications

with more sophisticated classifiers. This is looked at in the next section.

3.7.2 Misclassification Rates

The goal of classification is to be able to reduce misclassifications (i.e.

false positives and false negatives). However, closer to the decision boundary,

74

class overlapping occurs and this region has a higher probability of being

misclassified by any classifier. Several methods have been developed to address

this issue, but none of these methods assure zero misclassifications [118].

We used several different methods and all of them had at least one

misclassification. Higher the number of training data used, the better the

classification, but fewer trials for testing since we wanted to keep the total

number of trials limited. Pruning the input space by PCA and using only the first

two PCs for classification rendered better results than using all of the neurons for

LDA.

Figure 3.13 shows how the different quantities of training data affected

the classification. Higher the number of training data used, the better the

classification, but fewer trials for testing since we wanted to keep the total

number of trials limited. Therefore increasing trial number is not a feasible option.

Table 3-1: Confusion Matrix For Different Unsupervised Clustering Methods
(*K-Means Function – Squared Euclidean Distance, **GMM – Highest Accuracy Of 10
Iterations).

 Predicted Class
Clustering Algorithm +1 -1

k-means*

Ac
tu

al

Cl
as

s

+1 96 4
-1 0 100

GMM**
+1 74 26
-1 3 97

When the training data was 5%, the boundary was not as appropriate as

when the training data was 10% or more. Increasing the training data set in this

case, only removes the ambiguous trials from the testing data, but doesn’t do

75

anything to the boundary. The confusion matrix for each set of classifications is

given in Table 3-1 and Table 3-2. When the training data was limited to 10%, the

LDA with PCA and the SVM both performed similar, but when the training data

set was increased, LDA with PCA outperformed the SVM. However, even with

30% of training data, the classifiers still had at least 2 misclassifications out of

170. Since we are using this data as the feedback into a BMI, we want to reduce

these misclassifications further. In the next section, we suggest a possible

method of overcoming limitations of classification due to the data itself.

Table 3-2: Confusion Matrix For Different Supervised Classifiers And Different % Of
Training Data.
Each Row Gives A Different Method Of Classification. Each Column Gives Different
Percentage Of Data For Training, Eg. 10% Column Means That 10% Data Used For Training
And 90% For Testing.

Training Data 5% 10% 15% 20% 25% 30%

 Predicted Class

Classifier +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

Bayes

Ac
tu

al
 C

la
ss

+1 92 3 88 3 83 4 75 3 71 3 67 2

-1 13 82 7 82 0 83 2 80 1 75 2 69

kNN
+1 88 7 80 11 75 12 73 5 68 6 64 5

-1 2 93 1 88 1 82 2 80 2 74 1 70

SVM
+1 71 24 84 7 80 7 71 7 69 5 67 2

-1 4 91 4 85 4 79 2 80 1 75 3 68

Tree
Bagging

+1 90 7 86 9 90 2 86 4 86 1 83 2

-1 47 51 11 84 25 68 6 84 2 86 0 85

LDA
+1

n/a n/a n/a n/a
62 12 62 7

-1 5 71 8 63

PCA &
LDA

+1 91 4 87 4 83 4 74 4 70 4 66 3

-1 1 94 2 87 1 82 2 80 0 76 0 71

76

Figure 3.13: How the different training and testing data quatities effect the mislabeled trials. Data
in PC space with LDA classification

 Implementing Offline HRL Decoder with Critic Feedback 3.8

MI data and NAcc data were generated and used as input to our classifier

which was a RL based BMI to predict the action to be taken. Figure 3.1 shows

the architecture of the Actor-Critic RL. We used Izhikevich model to generate MI

data and this was used as input to Actor. The previous MSP model was used to

generate NAcc data and this was used as input to Critic. Actor was a fully

connected feed forward neural network. The number of nodes in the input layer

was the number of neuronal inputs of the MI. The hidden layer had 5 nodes and

the output layer number of nodes was the number of actions to be selected from.

Each node calculated the output, 𝑥𝑗 based on the input, 𝑥𝑖 and the weight, 𝑤𝑖𝑗.

77

 𝑥𝑗 = 𝑠𝑠𝑛�𝑃𝑗� = 𝑠𝑠𝑛�𝑜�∑ 𝑤𝑖𝑗𝑥𝑖𝑖 �� Eq. 3.14

Where the transfer function f(∙), was a hyperbolic tangent function. The RL

operated from a greedy policy, where the node with the highest value was

selected as the action. The weight update rule for HRL is given by:

 ∆𝜔𝑖𝑗 = 𝜇+𝜌𝑟�𝑥𝑗 − 𝑃𝑗�𝑥𝑖 + 𝜇−(1− 𝜌𝑟)(1−𝑥𝑗 − 𝑃𝑗)𝑥𝑖 Eq. 3.15

where 𝜌 is the confidence in the feedback, 𝑟 (0 ≤ 𝜌 ≤ 1 and 𝑟 = ±1). 𝜇+

and 𝜇− represent the learning rates for the reward and penalty components,

respectively. In our simulations we used 𝜇+ = 𝜇− but with different values for

hidden and output layers. For the Critic output driven by the NAcc, we assumed

that the wrong feedback was due to data points being close to the boundary and

not due to mislabeling of trials (i.e. wrong feedback with high confidence was not

considered).

RL by nature is slower in adapting due to exploration. Once the RL agent

has enough knowledge about the environment, it proceeds to exploit the

situation. However, in a BMI setting, we do not have the luxury of long

exploration; therefore previously, all the trials were replayed (epoching) 10 times

in the background with keeping all the past data in the memory. However, in real

time, epoching is not possible since each epoch needs a corresponding Critic

output. To have a corresponding Critic output, there needs to be a robot

movement for the NAcc to generate a rewarding/non-rewarding neural state.

Therefore as a compromise, we used the first 10 trials for exploration. In the first

10 trials, we use a known Critic feedback and had memory (all the past trials)

78

replaying (epoching) 10 times. From the 11th trial onwards, the memory kept was

only the most recent trial and there was no replaying/ epoching. The pseudo

code for the HRL BMI is given in Table 3-3.

Table 3-3: Algorithm For The HRL BMI
(1) Initialize weights 𝑤𝑖𝑗 and learning rates, 𝜇+ and 𝜇−
(2) Generate MI data – simulating animal making a reach (Eq. 3.11,3.12,3.13)
(3) Calculate the output based on Eq 3.14.
(4) Execute Action
(5) If within first 10 trials, set Epoch=10, go to step (6), else go to step (7)

(6) Calculate reward (𝑟) based on trial type. Set confidence =1 (𝜌 = 1).
 Use all the past trials
 Update Weights based on Eq 3.15. Epoch++
 Calculate the output based on Eq 3.14.
 If Epoch<10, repeat (6), else go to step (8)

(7) Generate NAcc data – simulating animal’s perception of reward
 Decode the reward (𝑟) and confidence (𝜌) from NAcc data
 Update Weights based on Eq 3.15.

Calculate the output based on Eq 3.14.

(8) Return to step (2)

 Deciding the Threshold 3.9

One of the measures of the threshold was the normalized distance to the

boundary. We varied the threshold from zero (no threshold) to 0.5 (half of the

distance) in 0.05 intervals. Since with PCA, it is easier to visualize the data, LDA

and PCA combination was used for the results shown in Figure 3.14 and Figure

3.15. As seen in Figure 3.14, the higher the threshold, the higher the size of the

ambiguous class. Blue and green dots represent rewarding and non-rewarding

classes respectively. The red and purple indicate which trials were in the

ambiguous region.

79

Figure 3.14: Data in PC space with LDA classification. 10% for training and 90% for testing.
Blue and green dots represent rewarding and non-rewarding classes respectively. The red and
purple indicate which trials were in the ambiguous region.

In deciding where to put the threshold, the different metrics of accuracy is

important. Figure 3.15 gives the different metrics for accuracy. However, at

higher threshold levels, more data points have lesser confidence and therefore, a

lesser Critic output. The blue trace for each plot shows the results if there was no

threshold used and the red traces show how the threshold affects the different

accuracy levels. Subplot (A) shows how the overall accuracy drops with the

increase in threshold while subplot (B) shows the new accuracy (i.e. not

considering the ambiguous class) which increases as expected when the

threshold increases. Subplot (C) shows the precision drops with the increase in

threshold. (D) is the size of the ambiguous (“I don’t know”) class. As seen, the

number of ambiguous data points increases as the threshold is increased. (E)

through (H) show the different measures of performance. At 0.05 threshold, the

false positives reduce to zero, but the true positive number also starts to drop

from 100%. At 0.25 threshold, the false negatives drop to zero (subplot (H)).

80

Even though the false positives dropped as the threshold increased, the

true positives and true negatives also dropped. Therefore, the threshold cannot

be increased indefinitely. The purpose of the threshold was to reduce the

erroneous feedback to the system, but it is unwise to ignore the correct feedback

within the ambiguous region. Therefore, the threshold should be low enough to

capture as many of the correct feedback, but also high enough so that wrong

feedback does not have 100% confidence values. While a hard and fast rule

cannot be given for the setting of the threshold, we should select it high enough

that the FP and FN are close to zero and low enough that the accuracy and

precision are as high as possible. For this particular data set, we selected

threshold levels from 0 to 0.5 to evaluate how the thresholding affect the

performance. This data was used as the Critic input in our Actor-Critic RL model.

Figure 3.15: Data LDA & PCA (10% training). The blue trace for each plot shows the results if
there was no threshold used and the red traces show how the threshold affects the different
accuracy levels.
(A) Accuracy calculated from all the data points. (B) Accuracy as calculated from the data points
outside the threshold (i.e. “I don’t know” class discounted). (C) Precision considering all the data
points. (D) size of the ambigious/ “I don’t know” class. (E)-(H) the TP,TN,FP and FN rates.

81

 HRL BMI Simulations 3.10

Using the data in the previous section and the algorithm in Table 3-3, we

used 200 trials, 4 targets and performed multiple simulations with the same data.

The first 10 trials as explained prior had a perfect Critic, used all past trials in

memory and replayed (epoch) 10 times per trial. From 11th trial, only the present

trial was in the memory and no epoching was performed. We used a realistic

Critic decoded from PCA+LDA with confidence and reward. Figure 3.16 shows

how the system performed for each trial. Blue shows the type of target (1-4) and

black shows the Critic confidence output (high or low confidence). Red shows the

system performance: positive for correct and negative for wrong. (A), (B) and (C)

subplots show no threshold, 0.12 threshold and 0.24 threshold respectively. For

comparison, all three systems start with the same initial weights and the order of

trials are the same. However, each have different Critic feedback. The overall

accuracy of all three systems are the same and the first 10 trials have very

similar outcomes. System (A) is susceptible to wrong Critic outcomes as shown

by the trials following wrong Critic (red bars negative after black * zero). System

(B) has a few low confidence Critic outputs in comparison to system (C). The

reason for (C) having many lower confidence Critic outputs was that as the

threshold increased, the ambiguous region also increased, causing more trials to

have lesser update than when the Critic confidence was high.

82

Fi
gu

re
 3

.1
6:

 P
er

fo
rm

an
ce

 o
f t

he
 s

ys
te

m
 in

 o
ne

 s
im

ul
at

io
n

an
d

ho
w

 t
hr

es
ho

ld
 a

ffe
ct

s
th

e
pe

rfo
rm

an
ce

.
B

lu
e

–
ty

pe
 o

f t
ar

ge
t.

R
ed

 –
 s

ys
te

m

pe
rfo

rm
an

ce
 +

ve
-c

or
re

ct
,

-v
e-

w
ro

ng
).

B
la

ck
 –

 a
bs

ol
ut

e
of

 t
he

 c
rit

ic
 o

ut
pu

t
w

ith
 c

on
fid

en
ce

 –
 y

 a
xi

s
he

re
 s

ho
w

s
th

e
cr

iti
c

ou
tp

ut
 (f

or
 b

la
ck

 tr
ac

es

on
ly

).
(A

)
N

o
th

re
sh

ol
d

(B
)

Th
re

sh
ol

d=
0.

12
.

(C
)

Th
re

sh
ol

d=
0.

24

83

Figure 3.17 shows how the accuracy per 20 trials change with time. The

system without a threshold (blue) and the system with 0.12 threshold (red) start

off with similar accuracies. The blue trace however, changes rapidly throughout

the session ending with a low block accuracy. On contrast, the red system has

less fluctuations and towards the end maintains a higher accuracy. The system

with a 0.24 threshold (green) has fewer fluctuations than the system with no

threshold, but is not able to achieve high accuracy levels even by the end of the

session.

Figure 3.17: Block Accuracy for the 3 example simulations

Figure 3.18 shows how weights, wij changed during the experiment. The

weights up to iteration number 550 are for the memory and epoching of the first

10 trials. Beyond 550, each weight update corresponds to one trial. Subplots (A)

and (B) show system with no threshold, while (C) and (D) show a threshold of

0.12 for Critic and (E) and (F) show a threshold of 0.24. Hidden Weights for all

three systems (A/C/E) are similar with the second system (C) showing less

variance towards the end of the session. Here we see how the unstable system

(A/B) can still have higher accuracies, but with introduction of the confidence

measure, the instability is reduced, and performance increases (C/D) and when

increasing the threshold even further, the weights are not as smooth (E/F). In the

84

last half of the session (100 trials) the hidden weights with no threshold have a

change of 57% compared to the whole session, whereas the output weights in

the last 100 trials have a change of 31% compared to the whole session.

However, with a 0.12 threshold, for the same section (last 100 trials) the hidden

weights change by 28% and output weights by 24% in comparison to the whole

session. When the threshold is increased to 0.24, these values are 42% for

hidden weights and 56% for output weights.

Figure 3.18: Weight traces for each of the simulations in the previous figure. The weights up to
iteration number 550 is for the memory and epoching of the first 10 trials. (A/B) No Threshold.
(C/D) Threshold=0.12. (E/F) Threshold=0.24. (A/C/E) Hidden Weights (B/D/F) Output Weights.

Figure 3.19 shows a summary of 1000 simulations done for each

threshold level. Figure 3.19A shows how with the increase in the threshold level,

the accuracy increases and drops after 0.1. This is expected since, when the

threshold increases, the Critic feedback is lower within the ambiguous region

85

causing some of the correct Critic feedback also to not be considered. Figure

3.19B shows how the convergence varies with the threshold level. This explains

the time varying nature of performance of RL; the latter trials have better

performance than the beginning. Therefore we define the average accuracy of

the latter part as convergence. Here, convergence is defined as the number of

simulations that had more than 80% accuracy in the last x% of trials. Each

colored bar shows a different x%: green, 10% and orange 40%. As the x%

increases, the number of simulations converged reduces since at the beginning

of the session, weights have not converged. The convergence plot findings are

similar to that of the accuracy plot, where it is seen that the number of

simulations converged increases with increase of threshold and then drops as

the threshold is increased further.

Figure 3.19: (A) How the Actor accuracy changes with the threshold. (B) How the Convergance
(Accuracy of the last x% of trials) changes with the threshold level.
How many of the simulations showed convergance in the last 10% (green) and 40% (orange) are
shown here. Weights were decided to be converged if the number of accurate trials in the last x%
was beyond 80%.

86

It was also seen that the average is a skewed representation of the

results. Hence Figure 3.20 shows the distribution of the different simulations. The

red traces show lower thresholds, green/ blue with medium thresholds and purple

with higher thresholds. It can be observed in the figure that as the threshold

increases (from red to green), the peak rises and is around 76%. As the

threshold is increased further (green to blue), the peak drops and the curve shifts

to the left (lower accuracy). When the threshold is increased further (blue to

purple), the trend of low performance continues. With this plot, the best threshold

level can be set in the orange/green region.

Figure 3.20: Distribution of the simulations for each threshold level. X-axis: accuracy percentage.
Y-axis: threshold level. The red traces show lower thresholds, green/ blue with medium
thresholds and purple with higher thresholds. Z-axis: how many simulations showed this
accuracy.

87

 Summary and Conclusions 3.11

In this chapter, Actor architecture was developed and tested with the aid

of synthetic data. The hypothesis in this chapter was: using the feedback only

when correct, improves the performance of the system. We tested this first by

using a Critic which had complete knowledge of the accuracy of its own output

and concluded that if such a Critic can be developed, the Actor performance can

be improved. Actor data was generated by the Izhikevich model and tested on

the system. The system was also tested on NHP data, with similar results to the

synthetic data with noise. Next, the method of how the Critic can have knowledge

in its own output, was proposed as a confidence measure. A graphical solution

was provided to show proof of concept of how this can be implemented and was

implemented on synthetic NAcc data generated by Humpries modified Izhikevich

model. Finally, this NAcc synthetic data was provided to a Critic to which gave

the rewarding feedback a well the confidence it had in its own output. This was

used to update the Actor in an offline simulation of the BMI experiment. In these

offline simulations, the confidence measure (via the threshold) was varied and

the system performance was studied as the threshold varied. It was concluded

that a very large threshold increased the ambiguous region, thus not providing

enough feedback for the Actor on most trials. At the same time, having a zero

threshold caused erroneous feedback to influence the Actor. A threshold of 0.10

to 0.15 was recommended for the data analyzed in this chapter. It was also seen

that the average and standard deviation alone were lacking the insights a

distribution provided.

88

Chapter 4 Closed-Loop Experiments

Neural signals from the NAcc and MI from two marmoset monkeys were

shown in Chapter 2. In Chapter 3 a CL architecture to receive signals from the MI

as Actor inputs and NAcc as Critic inputs was developed. In this chapter, these

two concepts are combined: MI from a marmoset monkey (Don) is used to drive

the Actor and the NAcc from the same monkey is used to drive the Critic in CL

control. Figure 4.1 shows the architecture for biological Actor-Critic RL which was

implemented.

Figure 4.1: Architecture for Biological Actor-Critic Reinforcement Learning.
The Critic is controlled by the NAcc neural inputs and the Actor is controlled by the MI neural
inputs. The Critic provides an evaluative feedback to the Actor.

 Designing of the Closed-Loop Paradigm 4.1

The experimental setup was the same two-target reach paradigm as was

presented in section 2.2.2. Instead the robot being controlled by the sensors

pressed by the animal, it was controlled by the animal’s neural signal via the HRL

BMI. 1000 msec of data was binned 500 msec after the Go Tone from the MI

array for the Actor input, as identified previously. Similarly, 1000 msec of data

was binned at the start of the robot movement from NAcc array for the Critic input

89

and a Random Forests classifier was used as the Critic. The experiments

were carried out according to the algorithm in Table 4-1. First, the results are

confirmed by analyzing the data for Actor and Critic offline for the choice of

window.

Table 4-1: Algorithm For The Closed-Loop HRL BMI
(1) Use the past day’s database of NAcc data to build the Critic Classifier
(2) Initialize weights 𝑤𝑖𝑗 and learning rates, 𝜇+ and 𝜇−
(3) Collect 1000 msec of MI data following 500 msec after Go Tone
(4) Calculate the output based on Eq 3.14.
(5) Execute Action
(6) If within first 10 trials, set Epoch =0, go to step (7), else go to step (8)

(7) Calculate reward (𝑟) based on trial type. Set confidence =1 (𝜌 = 1).
 Use all the past trials
 Update Weights based on Eq 3.15. Epoch++
 Calculate the output based on Eq 3.14.
 If Epoch<10, repeat (7), else go to step (8)

(8) Collect 1000 msec of NAcc data following 500 msec after the start of robot

movement
 Decode the reward (𝑟) and confidence (𝜌) based on classifier built in step (1)
 Update Weights based on Eq 3.15.

Calculate the output based on Eq 3.14.

(9) Return to step (3)

4.1.1 Actor Neural Data

We used the data from the MI array recorded from the same day as that

for which the Critic decoder was trained. There were 11 MI neuronal units and

the number of units which showed significant difference for A trials (left hand

movement) vs C trials (right hand movement) are shown in Table 4-2 for each

window size analyzed (ANOVA with alpha 0.1). There were a total of 88 trials

with 44 trials for each direction.

90

Table 4-2: Number Of Significant Units For MI Neurons (ANOVA, Alpha = 0.1)
 500 msec window 1000 msec window

Window starting at 0 250 500 750 1000 0 250 500 750 1000
of significant units 1 1 2 2 3 0 1 2 3 1

Figure 4.2 shows the average classification accuracy for 4 types of

classifiers for the data shown above. From Table 4-2, we see that the number of

units which show significant difference for the two classes classified is 2 out of 11

for the windows starting at 500 msec. Window 750-1750 msec have 3 out of 11

units significantly different for the two classes, however the accuracy is lower in

this window. For this particular monkey, the best accuracy in classifying A trials

(left arm movement) from C trials (right arm movement) is in the window starting

at 500 msec after the Go Tone.

Figure 4.2: Average classification accuracy (100 iterations) for classifying A trials (left arm
movement) and C trials (right arm movement) from MI neurons for different windows
(A) 500 msec bin (B) 1000 msec bin. Each colored trace shows a different classification method.

4.1.2 Critic Classifier

The Critic was built using data from one day from the NAcc neural signals

from the animal that the CL experiment was implemented on. There were 28

NAcc neuronal units and the number of units, which showed significant difference

91

for rewarding trials vs non-rewarding trials are shown in Table 4-3 for each

window size analyzed (ANOVA with alpha 0.1).

Table 4-3: Number Of Significant Units For Nacc Neurons (ANOVA, Alpha = 0.1)
 500 msec window 1000 msec window

Window starting at 0 250 500 750 1000 0 250 500 750 1000
of significant units 0 0 5 5 1 1 3 0 1 1

The average classification accuracy for classifying rewarding trials and

non-rewarding trials with 4 different classifiers are shown in Figure 4.3. The best

accuracy here is shown at the window starting at 500 msec after the start of the

robot movement. Random Forests classifier gave better accuracies on average

and this was the classifier selected for the Critic. There were a total of 88 trials

with 66 rewarding and 22 non-rewarding trials. The classes were balanced prior

to training the classifier and 100 trees were used.

Figure 4.3: Average classification accuracy (100 iterations) for classifying rewarding trials and
non-rewarding trials from NAcc neurons for different windows
(A) 500 msec bin (B) 1000 msec bin. Each colored trace shows a different classification method.

The test data for the classifier was given online during the experiment.

The output from the Random Forests classifier (Critic) was the probability of the

92

trial being either a rewarding trial (robot correct action) or a non-rewarding trial

(robot wrong action).

 Closed-Loop Experiment 4.2

Three types of experiments were conducted changing the Critic for each

of them. The first was a 100% accurate Critic given in a supervised manner. The

purpose was to assess, given a perfect Critic, how well the performance is for

this particular subject. Second and third experiments were using the NAcc as

input to the Critic. In the second experiment the Actor used the Critic feedback

(rewarding/non-rewarding) directly for the weight update, whereas for the third

experiment, the Critic also gave a confidence value and the Actor took this into

consideration when updating the weights. For the purpose of controllability, the

second and third experiments were run in pairs; and each were conducted on the

same day with the same initial conditions. The results of the experiments are

shown here.

4.2.1 CL with a 100% accurate (artificial) Critic

Shown here are the results from the online CL experiment with 100%

accurate (artificial) Critic feedback, starting with initial conditions from a previous

week (Figure 4.4) and initial conditions from the previous session (Figure 4.5).

We used this as a measure of evaluating if the temporal nature of the inputs

required the weights to be initialized. The overall accuracy of the first system

(weights from previous week) is 46% and the second system (weights from

previous session) is 56%.

93

Figure 4.4: 100% accurate Critic CL experiment, with previous week’s initial conditions. (A)
Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer Weights.

In addition, the weights are more stable in the second system. These

results show the accuracy that can be achieved if the Critic is 100% accurate.

These are two examples which were implemented in CL, but further analysis was

done with different initial conditions similar to those done with the synthetic data.

Figure 4.5: 100% accurate Critic CL experiment, with previous week’s initial conditions. (A)
Performance of each trial. (B) Hidden Layer Weights. (C) Output Layer Weights.

In Figure 4.6 the moving average per block of 20 trials is plotted (50%

overlap). The system which started from more recent initial conditions (red) has

higher accuracy overall. This is due to the unstationary nature of the neural data.

94

Figure 4.6: Accuracy (moving average) for the Perfect Critic CL experiment. Blue – with previous
week’s weights. Red – with previous session’s weights. Red only up to 50 trials.

Next, the same data was run offline through an Actor-critc RL decoder

with the same Critic feedback to arrive at a distribution of the performance. The

results are shown in Figure 4.7. For the system with previous week’s initial

conditions overall performance on average was 55.2% (±3.02%) and for the

system with the previous session initial conditions, the average performance was

57.9% (±5.75%). As discussed in the section introducing RL, it is seen that the

system is susceptible to initial conditions and not all initial conditions have

solutions that converge.

Figure 4.7: 100% accurate Critic CL experiment – offline simulations – distribution of overall
accuracy. (A) with previpous week’s initial conditions. (B) with previous session initial conditions.

4.2.2 CL with a NAcc Critic – Effect of threshold on Performance

Shown here are the results from the online CL experiment with NAcc as

Critic input. Two cases are compared; Figure 4.8 (session 1) shows a system

95

with no threshold and Figure 4.9 (session 2) with a 0.1 threshold. The two

sessions were started with the same initial conditions (initial conditions were

decided from previous day’s session) and the same Critic decoder for purposes

of comparison. The Critic in session 1 was performing at 56% accuracy, while

with a threshold, it increased to 60% in session 2. The 4% increase in Critic

accuracy coupled with using this information intelligently, gave rise to an overall

performance increase of 12% from 36% in session 1 to 48% in session 2 (See

Figure 4.10 for detailed explanation). Subplot (A) shows the performance in

each trial; red for Actor (positive – correct, negative – wrong), black for Critic

(high – correct, low – wrong) and blue for type of trial (high – C trials, low – A

trials). The trial types were balanced so as to not yield a skewed result. At the

beginning (first 10 trials), both sessions perform at 50% accuracy, but as the

session proceeds, session 1, is not able to maintain the performance. In contrast,

session 2, picks up the performance as the session proceeds, especially after

trial 35, where more trials are correct in a sequence (from both A and C).

Figure 4.8: NAcc Critic CL experiment, with no threshold. (A) Performance of each trial. (B)
Hidden Layer Weights. (C) Output Layer Weights.

96

Subplots (B) and (C) give the hidden layer weights and output layer

weights for the respective sessions. Each vertical line corresponds to the weights

at the end of the epoching, (i.e. weights corresponding to the particular robot

movement). The weights of session 1, vary beyond ±0.5 whereas in session 2,

the hidden layer weights vary between ±0.1 while the output layer weights vary

between ±0.5. This suggests that session 2 is smoother than session 1.

However, both systems have not converged to a solution in 50 trials. In session

1, the wrong Critic feedback is causing the overall performance to be very poor,

whereas in session 2, the wrong Critic feedback has low confidence and

therefore updates at a lower rate during these trials, causing the system

adaptation being much slower and therefore the system will need longer to

converge.

Figure 4.9: NAcc Critic CL experiment, with threshold. (A) Performance of each trial. (B) Hidden
Layer Weights. (C) Output Layer Weights.

In Figure 4.10 the moving average is plotted. Here, the accuracy is

considered in blocks of 20 with a sliding window of 10 (50% overlap). The system

which had a threshold (session 2 – red) has higher accuracy overall.

97

Figure 4.10: Accuracy (moving average) for the NAcc Critic CL experiment. Blue – with no
threshold. Red – with threshold.

Figure 4.11 shows the data from session 1 (A) and session 2 (B) in offline

simulations, if started with random initial weights, the distribution of the overall

accuracy, given the Critic was perfect. Both systems range from 40s to 80s (x

axis), peaking at 75% for session 1 and at 70% for session 2. This suggests that

given, a perfect Critic, session 1 is able to perform approximately at 75% and

session 2 at 70%. This does not however, take into account the erroneous nature

of the Critic which lowers the performance.

Figure 4.11: 100% accurate Critic CL experiment – offline simulations – distribution of overall
accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9.

Figure 4.12 shows the data from session 1 (A) and session 2 (B) in offline

simulations, given the Critic performance at the same performance as the online

CL experiment and starting with the same initial conditions as the online CL

experiment. In session 1, it is seen that the distribution peaks at 50%, whereas

98

session 2 peaks at 55%-60%. Session 2 distribution has a lower variance (40.92)

than session 1 (77.40).

Figure 4.12: Inaccurate Critic CL experiment – offline simulations – distribution of overall
accuracy. (A) for data in Figure 4.8. (B) for data in Figure 4.9.

 Summary and Conclusion 4.3

In this chapter, it was shown how the confidence measure was extracted

from the NAcc data and the accuracies of the different classifiers. CL

experiments were designed such that a biological feedback can be used as the

Critic signal. The Critic provided the confidence it had in the class label in

addition to the class label. This was tested online with a NHP on a two choice

decision making task. The first system was a Critic with a perfect feedback,

which was done to get an idea of sensitivity to initial conditions and the

performance levels that can be achieved with a perfect Critic. This system if

initialized with appropriate initial conditions was able to perform 10% better than

with inappropriate initial conditions. The final set of experiments was with a NAcc

decoded Critic with no threshold and with 0.1 threshold. The system with a

threshold performed 12% better than the system without a threshold. In OL

simulations, the second system had lower variance than the first, and we

99

conclude that by using an appropriate threshold level, with a real Critic, the

performance can be increased. Further, it was observed that the accuracy

changes with the length of the session. Having a longer session, it was observed

that the latter trials are decoded with higher accuracy than the earlier trials in the

session. Inherently, the RL system performance increases with exploration (i.e.

addition of experience/ trials).

100

Chapter 5 Summary and Future Work

 Summary of Work 5.1

BMIs have great potential to alleviate lives of paralyzed individuals by

electronically by passing the damaged areas and linking the neural signal to an

actuator or one’s own limbs. Most of the current BMIs are trained in a supervised

manner with a training signal. A class of decoders, that learn from the

environment (known as RL decoders) have been adapted to BMI field. Since it

learns by exploring its environment, it does not need a supervised training signal.

It has been hypothesized that the NAcc can provide a reward signal which is

similar to the TD error in RL decoders. Proof of concept had been shown in

previous work of using this signal as a feedback in RLBMI. An Actor-Critic RL

paradigm had been proposed and here it was implemented in CL with a monkey

using a real Critic feedback.

In this work, the nature of the NAcc signal was studied and a detailed

analysis of the NAcc neural signals was performed. Different machine learning

techniques were applied to the NAcc data for classification of rewarding and non-

rewarding trials. The purpose was to build confidence of using this signal as an

input to the Critic in a Actor-Critic RL paradigm. However, since the classification

accuracy was less than perfect, and since the Critic feedback limited the overall

performance, a new paradigm was needed to deal with this.

101

One of the hypotheses of this work was that if the Critic could provide the

accuracy of its own feedback and it was used intelligently, the overall

performance can be improved. This was shown to be true by synthetic data

simulations; using the feedback information intelligently and updating only when

the feedback is accurate, improved the system performance. This was

particularly true for lower Critic accuracies since at lower Critic accuracies the

information provided by the Critic in the old system was wrong most of the time.

Next it was shown how the Critic can give the accuracy of its own

feedback. For proof of concept, a graphical solution was utilized, where the

distance to the boundary was used as a measure of the accuracy. This was

converted to a confidence metric and given out of the Critic along with the rewar

signal. The assumption here was that closer to the decision margin, there are

more misclassifications. This was implemented in an offline experiment with

synthetically generated MI and NAcc data.

Other methods can also be used to give a confidence measure. For

example, most probability based classifiers decide the label of the data point

based on the probability that it belongs to one class or the other. If the difference

in probability is high, this suggests that the decision is made with higher

confidence and vice versa. Random Forests Classification was used for the NAcc

data and implemented in CL with a marmoset monkey. Three systems were

compared in CL experiments: 100% accurate artificial Critic, real NAcc Critic with

and without a confidence.

102

In conclusion, if a feedback signal is to be derived from the brain, due to

non-stationarity and inherent noise issues, a method needs to be formulated of

knowing how accurate this feedback is. If such a confidence metric can be

attached to the feedback, then using this in an Actor-Critic RL can improve

performance of the system.

 Novel Contributions and Implications 5.2

The following contributions were made by this work.

5.2.1 A Confidence Metric can be Attached to the NAcc Neural Signal

Given that the NAcc neurons have a wealth of information it can be hard

to extract the right kind of information. Even though only 10-20% of the neurons

modulated with reward, it was still possible to extract the reward information with

66% accuracy on average with classifiers which were able to give a confidence

metric in addition to the class label. For the ease of visualizing, the normalized

distance to the boundary was used as the confidence measure. A LDA is the

best example of a classifier where the distance to the boundary can be used.

Other classifiers with a decision boundary can also utilize this measure.

However, in probabilistic classifiers such as Bayes and Random Forests, the

confidence measure is the arrived at from the probability the data belongs to the

particular class. Both the distance to the boundary and the probabilistic measure

were shown in this work as methods of extracting the confidence from the data.

103

5.2.2 Confidence Measure Improves the Overall Performance

It was confirmed in this work, that using a confidence measure in the

feedback signal can improve the overall performance. The use of the confidence

measure in feedback is not only limited to applications of RLBMI. A BMI that uses

any form of less-than-perfect feedback can utilize this confidence metric. This

can also be extended on to other machine learning techniques where feedback is

less-than-perfect.

5.2.3 Developed a Paradigm for Real Time Implementation

Showing proof of concept of the confidence measure working is the first

step. The next step of implementing this in CL, have a series of mini challenges

in-between. It is important to tackle each of these mini challenges in order to

have a working CL system. These challenges were addressed and the system

was implemented in real time. One of them was the implementation of a

supervised decoder at the beginning of the session to tackle the inherent slow

learning of the RL system. In this work, a complete paradigm was developed

where the proposed system was implemented in real time with supervised

learning at the beginning and RL after the first 10 trials.

5.2.4 A Closed-Loop BMI with Motor Control and Biologic Feedback

A closed-loop BMI that uses motor control and biologic reward feedback

was designed, prototyped and tested on a NHP. The experiment paradigm was

designed in house with sensors and all components needed for the experiment

including hardware and software codes. Both the motor control and biological

reward feedback were tested.

104

 Improvements and Future Work 5.3

SNR in neural signals is very low. There were different techniques that

were used (grounding, CAR) to increase the SNR. However, despite, all these

efforts, biological signals are noisy. As neural engineers, it is a challenge to

design a system robust to noise, most of which are inherently is unpredictable.

Due to this, extracting the necessary features from data becomes cumbersome,

and the results can vary depending on the noise level. Another outcome of the

noise is the misclassification of data, thus the basis for this work. It is because of

such data that the confidence measure adds value. However, getting the

confidence from the data itself has different challenges associated with it. In this

work, two methods (distance to boundary and probability of class) were

implemented. Other methods of extracting the confidence measure needs to be

explored and this will differ from application to application.

Biological signals are inherently non-stationary. In the brain, the statistics

of the neural signals constantly change over time. This is the biggest challenge

that neural engineers face. This same challenge, applies to the data that was

analyzed in this work. Given the nature of the animal model in this work, the

sessions were of limited time, usually 20-40 min per session. For longer sessions

it is possible that the statistics of the beginning of the session and the end of the

session is different. However, one of the advantages of RL is its ability to adapt

to changes in the environment, which includes the input neural data non-

stationarity. Therefore, the Actor is able to adapt to changes in the neural input.

105

However, the Critic implemented was a static decoder. There were several

experimental parameters which needed to be paid attention to in order to do this.

First is that the number of neuronal units recorded for both from MI and NAcc

needed to be the same across sessions if they were to be combined. In addition

to the number of units being the same, it was important to assess if the

electrodes were picking up the same unit across days. In most cases, it was

difficult to find a two week period with the same units. Unless this was the case,

we tried not to combine data sets.

Combining data sets became a necessity out of the animal model chosen.

Unlike rhesus macaques, our marmosets, worked less time (<1 hour with

marmosets as compared to 3 hours with rhesus macaques). Therefore the

number of trials per day is also low. Particularly due to this, combining data sets

from different days became a necessity but also needed careful consideration.

For the CL experiments, we gathered data and implemented on the same week.

For the data analysis in Chapter 2, we combined several days/ sessions of data.

This is one of the reasons for the high variance seen in the data.

As seen in Chapter 4, the RL is sensitive to initial conditions. It is also

known that certain initial conditions do not have a solution that converges, and

therefore several Monte Carlo simulations need to be performed to find optimal

initial conditions (See Figure 3 B in [112] and Figure 7 in [119]). Preliminary tests

were done to test the initial condition comparison and how much the performance

was affected due to this. Comparing the statistics of these initial weights showed

no particular indication as to which weights to choose. Therefore, further studies

106

are needed to be able to decide upon initial conditions that are optimal to be

used.

The animal experiments that were conducted assumed that the animal

always performs the correct action. Although in a few trials per session, it is

possible that the animal either performs the wrong action or is uninterested or not

engaged with the task. These trials can be removed from offline analysis and if

the animal performs the wrong choice too often, the entire session can be

removed. However, in CL experiments, this cannot be done and the fundamental

assumption is that the animal is correct. When performed CL experiments with

low performance for a few days, the animal is confused and its performance

drops. This was the case in a few of the CL experiments and these sessions

have not been included in the results. The trial type given did not match the

animal’s performance. Even though the robot mimicked the animal’s

performance, the system considers this to be a wrong action when calculating

performance. This indicates that the animal needs to be re-trained before

conducting CL experiments again, prolonging experimental time. If a paradigm

can be designed and controlled such that when the robot matched the aninmal’s

action, it will always be considered a correct action, even though the trial type did

not match, this would reduce additional extensive training needed.

The contribution of electrodes to decoding was not focused in this work.

However, with earlier animals, we had issues due to design flaws which we

discussed with suppliers and were able to resolve. Earlier on during the animal’s

recordings, the signals change a lot. However, as the implant time increased, the

107

signals become more stable than at first, but due to encapsulation, the signal

quality also reduces. This gives a window of optimal time after implantation which

needs to be exploited.

One of the main concerns of this work is for better targeting of MI and

NAcc implant sites. The animal that the CL experiments were conducted on, has

not been sacrificed at the time of writing this work and histology reports have not

been received. We are fairly certain that the electrodes are in the targeted

locations as the procedure has been modified from previous work, but can be

further improved with imaging techniques.

At present the Actor algorithm is a HRL decoder which has its limitations.

The Actor-Critic RL paradigm is flexible to include any decoder in to the Actor

and the feedback/ error/ reward can be provided by the Critic. This work was

limited to testing the system with the HRL Actor, but other avenues can be

explored for different results.

One of the challenges that was encountered was the inherent slow

adaptation of the RL paradigm. This was overcome by adding memory and

epoching to each trial. This was feasible in offline experiments. However, when

implementing online, the epoching could not be done due to lack of a matching

Critic output. Hence, we resolved to use the first 10 trials as a supervised training

for the system to get stabilized. However, in some cases, the system was not

converged at the end of 10 trials causing performance to drop. This supervised

training trial quantity at the beginning can be changed and further analysis can

108

be done. The supervised training at the beginning can be used to build the Critic

classifier instead of needing a past day’s database of trials.

The HRL decoder has an inbuilt feature where the adaptation stops when

the weights are stabilized. However, when the system performs poorly, it takes a

very long time for the RL to get the weights back on track, given the added slow

adaptation due to the confidence metric. When the performance of the system is

dropped below a certain percentage, supervised learning with epoching can be

introduced to boost the performance.

109

References

[1] "One degree of separation | Paralysis and spinal cord injury in the United States,"

Christopher & Dana Reeve Foundation2009.

[2] (2012-13, Aug 14). Sci-info-pages. Quadriplegic, Paraplegic & Caregiver
Resources. Available: http://www.sci-info-pages.com/facts.html

[3] K. D. Anderson, "Targeting recovery: priorities of the spinal cord-injured
population," Journal of Neurotrauma, vol. 21, pp. 1371-1383, 2004.

[4] C. T. Moritz, S. I. Perlmutter, and E. E. Fetz, "Direct control of paralysed muscles
by cortical neurons," Nature, vol. 456, pp. 639-642, 2008.

[5] L. A. Farwell and E. Donchin, "Talking off the top of your head: toward a mental
prosthesis utilizing event-related brain potentials," Electroencephalography and
Clinical Neurophysiology, vol. 70, pp. 510-523, 1988.

[6] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, "Cortical
control of a prosthetic arm for self-feeding," Nature, vol. 453, pp. 1098-1101, 2008.

[7] J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement signal
by a noninvasive brain-computer interface in humans," Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, pp. 17849-17854,
2004.

[8] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H.
Caplan, et al., "Neuronal ensemble control of prosthetic devices by a human with
tetraplegia," Nature, vol. 442, pp. 164-171, 2006.

[9] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J.
Weber, et al., "High-performance neuroprosthetic control by an individual with
tetraplegia," The Lancet, 2012.

[10] W. Wang, J. L. Collinger, A. D. Degenhart, E. C. Tyler-Kabara, A. B. Schwartz, D.
W. Moran, et al., "An electrocorticographic brain interface in an individual with
tetraplegia," PloS one, vol. 8, p. e55344, 2013.

[11] J. C. Sanchez and J. C. Principe, Brain-Machine Interaction Engineering vol. 17:
Morgan & Claypool Publishers, 2007.

110

[12] J. M. Carmena, M. A. Lebedev, C. S. Henriquez, and M. A. Nicolelis, "Stable
ensemble performance with single-neuron variability during reaching movements
in primates," The Journal of Neuroscience, vol. 25, pp. 10712-10716, 2005.

[13] R. D. Flint, Z. A. Wright, M. R. Scheid, and M. W. Slutzky, "Long term, stable brain
machine interface performance using local field potentials and multiunit spikes,"
Journal of Neural Engineering, vol. 10, p. 056005, 2013.

[14] K. C. Kowalski, B. D. He, and L. Srinivasan, "Dynamic analysis of naive adaptive
brain-machine interfaces," Neural Computation, vol. 25, pp. 2373-2420, 2013.

[15] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, and et al., "Real-time
prediction of hand trajectory by ensembles of cortical neurons in primates," Nature,
vol. 408, pp. 361-5, 2000.

[16] M. A. Lebedev, J. M. Carmena, J. E. O'Doherty, M. Zacksenhouse, C. S.
Henriquez, J. C. Principe, et al., "Cortical ensemble adaptation to represent
velocity of an artificial actuator controlled by a brain-machine interface," The
Journal of Neuroscience, vol. 25, pp. 4681-4693, 2005.

[17] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O'Doherty, D. M. Santucci, D. F.
Dimitrov, et al., "Learning to control a brain–machine interface for reaching and
grasping by primates," PLoS Biology, vol. 1, p. e42, 2003.

[18] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue,
"Brain-machine interface: Instant neural control of a movement signal," Nature, vol.
416, pp. 141-142, 2002.

[19] J. P. Donoghue, "Connecting cortex to machines: recent advances in brain
interfaces," Nature Neuroscience, vol. 5, pp. 1085-1088, 2002.

[20] M. J. Black, E. Bienenstock, J. P. Donoghue, M. Serruya, W. Wu, and Y. Gao,
"Connecting brains with machines: the neural control of 2d cursor movement," in
Neural Engineering, 2003. Conference Proceedings. First International IEEE
EMBS Conference on, 2003, pp. 580-583.

[21] L. Paninski, M. R. Fellows, N. G. Hatsopoulos, and J. P. Donoghue,
"Spatiotemporal tuning of motor cortical neurons for hand position and velocity,"
Journal of Neurophysiology, vol. 91, pp. 515-532, 2004.

[22] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, "Direct cortical control of 3D
neuroprosthetic devices," Science, vol. 296, pp. 1829-1832, 2002.

111

[23] A. B. Schwartz, X. T. Cui, D. J. Weber, and D. W. Moran, "Brain-controlled
interfaces: movement restoration with neural prosthetics," Neuron, vol. 52, pp.
205-220, 2006.

[24] A. B. Schwartz, "Cortical neural prosthetics," Annu. Rev. Neurosci., vol. 27, pp.
487-507, 2004.

[25] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, "Neuronal population
coding of movement direction," Science, vol. 233, pp. 1416-1419, 1986.

[26] A. P. Georgopoulos, R. E. Kettner, and A. B. Schwartz, "Primate motor cortex and
free arm movements to visual targets in three-dimensional space. II. Coding of the
direction of movement by a neuronal population," The Journal of Neuroscience,
vol. 8, pp. 2928-2937, 1988.

[27] W. Wu, M. Black, Y. Gao, E. Bienenstock, M. Serruya, and J. Donoghue, "Inferring
hand motion from multi-cell recordings in motor cortex using a Kalman filter," in
SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of
Real Brains and Artificial Devices, 2002, pp. 66-73.

[28] W. Wu, M. J. Black, D. Mumford, Y. Gao, E. Bienenstock, and J. P. Donoghue,
"Modeling and decoding motor cortical activity using a switching Kalman filter,"
Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 933-942, 2004.

[29] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black, "Bayesian
population decoding of motor cortical activity using a Kalman filter," Neural
Computation, vol. 18, pp. 80-118, 2006.

[30] M. Y. Byron, C. Kemere, G. Santhanam, A. Afshar, S. I. Ryu, T. H. Meng, et al.,
"Mixture of trajectory models for neural decoding of goal-directed movements,"
Journal of Neurophysiology, vol. 97, pp. 3763-3780, 2007.

[31] J. P. Cunningham, P. Nuyujukian, V. Gilja, C. A. Chestek, S. I. Ryu, and K. V.
Shenoy, "A closed-loop human simulator for investigating the role of feedback
control in brain-machine interfaces," Journal of Neurophysiology, vol. 105, pp.
1932-1949, 2011.

[32] D. Sussillo, P. Nuyujukian, J. M. Fan, J. C. Kao, S. D. Stavisky, S. Ryu, et al., "A
recurrent neural network for closed-loop intracortical brain–machine interface
decoders," Journal of Neural Engineering, vol. 9, p. 026027, 2012.

[33] S. Kim, J. Sanchez, Y. Rao, D. Erdogmus, J. Carmena, M. Lebedev, et al., "A
comparison of optimal MIMO linear and nonlinear models for brain–machine
interfaces," Journal of Neural Engineering, vol. 3, p. 145, 2006.

112

[34] S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, "Neural
control of computer cursor velocity by decoding motor cortical spiking activity in
humans with tetraplegia," Journal of Neural Engineering, vol. 5, p. 455, 2008.

[35] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, et
al., "Reach and grasp by people with tetraplegia using a neurally controlled robotic
arm," Nature, vol. 485, pp. 372-375, 2012.

[36] V. Gilja, P. Nuyujukian, C. A. Chestek, J. P. Cunningham, B. M. Yu, J. M. Fan, et
al., "A brain machine interface control algorithm designed from a feedback control
perspective," in 34th Annual International Conference of the IEEE EMBS, San
Diego, California USA, 2012.

[37] J. C. Sanchez and J. C. Principe, "Prerequesites for symbiotic brain-machine
interfaces," in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, 2009, pp. 1736-1741.

[38] J. M. Fuster, "Upper processing stages of the perception–action cycle," Trends in
Cognitive Sciences, vol. 8, pp. 143-145, 2004.

[39] J. R. Hollerman, L. Tremblay, and W. Schultz, "Involvement of basal ganglia and
orbitofrontal cortex in goal-directed behavior," Progress in Brain Research, vol.
126, pp. 193-215, 2000.

[40] G. Montagne, M. Buekers, C. Camachon, A. De Rugy, and M. Laurent, "The
learning of goal-directed locomotion: A perception-action perspective," The
Quarterly Journal of Experimental Psychology A: Human Experimental
Psychology, 2003.

[41] K. Doya, "What are the computations of the cerebellum, the basal ganglia and the
cerebral cortex?," Neural Networks, vol. 12, pp. 961-974, 1999.

[42] K. Doya, "Complementary roles of basal ganglia and cerebellum in learning and
motor control," Current Opinion in Neurobiology, vol. 10, pp. 732-739, 2000.

[43] A. Parent and L. N. Hazrati, "Functional anatomy of the basal ganglia. I. The
cortico-basal ganglia-thalamo-cortical loop," Brain Research Reviews, vol. 20, pp.
91-127, 1995.

[44] R. A. Wise and P.-P. Rompré, "Brain dopamine and reward," Annual Review of
Psychology, vol. 40, pp. 191-225, 1989.

[45] T. E. Schlaepfer, M. X. Cohen, C. Frick, M. Kosel, D. Brodesser, N. Axmacher, et
al., "Deep brain stimulation to reward circuitry alleviates anhedonia in refractory
major depression," Neuropsychopharmacology, vol. 33, pp. 368-377, 2007.

113

[46] H. Mayberg, "Modulating limbic-cortical circuits in depression: targets of
antidepressant treatments," in Seminars in Clinical Neuropsychiatry, 2002, pp.
255-268.

[47] A. G. Phillips, "Brain reward circuitry: a case for separate systems," Brain
Research Bulletin, vol. 12, pp. 195-201, 1984.

[48] P. Apicella, T. Ljungberg, E. Scarnati, and W. Schultz, "Responses to reward in
monkey dorsal and ventral striatum," Experimental Brain Research, vol. 85, pp.
491-500, 1991.

[49] J. R. Hollerman, L. Tremblay, and W. Schultz, "Influence of reward expectation on
behavior-related neuronal activity in primate striatum," Journal of Neurophysiology,
vol. 80, pp. 947-963, 1998.

[50] S. M. Nicola, "The nucleus accumbens as part of a basal ganglia action selection
circuit," Psychopharmacology, vol. 191, pp. 521-550, 2007.

[51] C. Pennartz, H. J. Groenewegen, and F. Da Silva, "The nucleus accumbens as a
complex of functionally distinct neuronal ensembles: an integration of behavioural,
electrophysiological and anatomical data," Progress in Neurobiology, vol. 42, pp.
719-761, 1994.

[52] E. Rolls, M. Burton, and F. Mora, "Neurophysiological analysis of brain-stimulation
reward in the monkey," Brain Research, vol. 194, pp. 339-357, 1980.

[53] A. G. Barto, "Adaptive critics and the basal ganglia," Models of Information
Processing in the Basal Ganglia, p. 215, 1995.

[54] B. Mahmoudi and J. C. Sanchez, "A symbiotic brain-machine interface through
value-based decision making," PloS One, vol. 6, p. e14760, 2011.

[55] B. Mahmoudi, E. Pohlmeyer, A. Prasad, and J. C. Sanchez, "Brain-machine
interfaces in activities of daily living: innovating a new roadmap for
experimentation," IEEE, 2011.

[56] B. W. Balleine and A. Dickinson, "Goal-directed instrumental action: contingency
and incentive learning and their cortical substrates," Neuropharmacology, vol. 37,
pp. 407-419, 1998.

[57] Y. Niv, "Reinforcement learning in the brain," Journal of Mathematical Psychology,
vol. 53, pp. 139-154, 2009.

[58] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction vol. 1:
Cambridge Univ Press, 1998.

114

[59] J. F. DiGiovanna, "Changing the brain-machine interface paradigm: co-adaptation
based on reinforcement learning," Doctoral Dissertation, Dept. Biomedical Eng,
University of Florida, Gainesville, 2008.

[60] B. Mahmoudi, "Integrating robotic action with biologic perception: a brain-machine
symbiosis theory," Doctoral Dissertation, Dept. Biomedical Eng, University of
Florida, Gainesville, 2010.

[61] J. DiGiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J. C. Sanchez,
"Coadaptive brain–machine interface via reinforcement learning," Biomedical
Engineering, IEEE Transactions on, vol. 56, pp. 54-64, 2009.

[62] E. A. Pohlmeyer, B. Mahmoudi, G. Shijia, N. Prins, and J. C. Sanchez, "Brain-
machine interface control of a robot arm using actor-critic reinforcement learning,"
in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International
Conference of the IEEE, 2012, pp. 4108-4111.

[63] B. A. S. Hasan and J. Q. Gan, "Temporal modeling of EEG during self-paced hand
movement and its application in onset detection," Journal of Neural Engineering,
vol. 8, p. 056015, 2011.

[64] S. G. Mason and G. E. Birch, "A brain-controlled switch for asynchronous control
applications," Biomedical Engineering, IEEE Transactions on, vol. 47, pp. 1297-
1307, 2000.

[65] Z. C. Chao, Y. Nagasaka, and N. Fujii, "Long-term asynchronous decoding of arm
motion using electrocorticographic signals in monkeys," Frontiers in
Neuroengineering, vol. 3, 2010.

[66] Z. Wang, A. Gunduz, P. Brunner, A. L. Ritaccio, Q. Ji, and G. Schalk, "Decoding
onset and direction of movements using Electrocorticographic (ECoG) signals in
humans," Front Neuroeng, vol. 5, p. 15, 2012.

[67] S. H. Lee, K. Choi, S. Jeong, J. S. Kim, and C. K. Chung, "Classifying ECoG
signals prior to voluntary movement onset," in Brain-Computer Interface (BCI),
2013 International Winter Workshop on, 2013, pp. 36-38.

[68] J. J. Williams, A. G. Rouse, S. Thongpang, J. C. Williams, and D. W. Moran,
"Differentiating closed-loop cortical intention from rest: building an asynchronous
electrocorticographic BCI," Journal of neural engineering, vol. 10, p. 046001, 2013.

115

[69] F. Galán, M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips, et al., "A brain-
actuated wheelchair: asynchronous and non-invasive brain–computer interfaces
for continuous control of robots," Clinical Neurophysiology, vol. 119, pp. 2159-
2169, 2008.

[70] J. F. Borisoff, S. G. Mason, A. Bashashati, and G. E. Birch, "Brain-computer
interface design for asynchronous control applications: improvements to the LF-
ASD asynchronous brain switch," Biomedical Engineering, IEEE Transactions on,
vol. 51, pp. 985-992, 2004.

[71] N. Achtman, A. Afshar, G. Santhanam, M. Y. Byron, S. I. Ryu, and K. V. Shenoy,
"Free-paced high-performance brain–computer interfaces," Journal of Neural
Engineering, vol. 4, p. 336, 2007.

[72] A. M. Graybiel, T. Aosaki, A. W. Flaherty, and M. Kimura, "The basal ganglia and
adaptive motor control," Science, vol. 265, pp. 1826-1831, 1994.

[73] E. V. Evarts and J. Tanji, "Gating of motor cortex reflexes by prior instruction,"
Brain Research, vol. 71, pp. 479-494, 1974.

[74] Y. Kobayashi and T. Isa, "Sensory-motor gating and cognitive control by the
brainstem cholinergic system," Neural Networks, vol. 15, pp. 731-741, 2002.

[75] R. Kaji, "Basal ganglia as a sensory gating devise for motor control," Journal of
Medical Investigation, vol. 48, pp. 142-146, 2001.

[76] G. Abbruzzese and A. Berardelli, "Sensorimotor integration in movement
disorders," Movement Disorders, vol. 18, pp. 231-240, 2003.

[77] K. Mansfield, "Marmoset models commonly used in biomedical research,"
Comparative Medicine, vol. 53, pp. 383-392, 2003.

[78] N. Kishi, K. Sato, E. Sasaki, and H. Okano, "Common marmoset as a new model
animal for neuroscience research and genome editing technology," Development,
Growth & Differentiation, vol. 56, pp. 53-62, 2014.

[79] H. Okano, K. Hikishima, A. Iriki, and E. Sasaki, "The common marmoset as a
novel animal model system for biomedical and neuroscience research
applications," in Seminars in Fetal and Neonatal Medicine, 2012, pp. 336-340.

[80] C. D. Hardman and K. W. Ashwell, Stereotaxic and Chemoarchitectural Atlas of
the Brain of the Common Marmoset (Callithrix jacchus): CRC Press, 2012.

116

[81] J. D. Newman, W. M. Kenkel, E. C. Aronoff, N. A. Bock, M. R. Zametkin, and A. C.
Silva, "A combined histological and MRI brain atlas of the common marmoset
monkey, Callithrix jacchus," Brain Research Reviews, vol. 62, pp. 1-18, 2009.

[82] X. Palazzi and N. Bordier, The Marmoset Brain in Stereotaxic Coordinates:
Springer, 2009.

[83] G. Paxinos, C. Watson, M. Petrides, M. Rosa, and H. Tokuno, The Marmoset
Brain in Stereotaxic Coordinates: Academic Press, 2012.

[84] H. Stephan, G. Baron, and W. K. Schwerdtfeger, The Brain of the Common
Marmoset (Callithrix jacchus): A Stereotaxic Atlas: Springer-Verlag Berlin:, 1980.

[85] H. Tokuno, I. Tanaka, Y. Umitsu, T. Akazawa, and Y. Nakamura, "Web-accessible
digital brain atlas of the common marmoset (Callithrix jacchus)," Neuroscience
Research, vol. 64, pp. 128-131, 2009.

[86] H. Tokuno, I. Tanaka, Y. Umitsu, and Y. Nakamura, "Stereo Navi 2.0: Software for
stereotaxic surgery of the common marmoset (Callithrix jacchus)," Neuroscience
Research, vol. 65, pp. 312-315, 2009.

[87] S. Yuasa, K. Nakamura, S. Kohsaka, and K. S. S. Sentā, Stereotaxic Atlas of the
Marmoset Brain: With Immunohistochemical Architecture and MR Images:
National Institute of Neuroscience, National Center of Neurology and Psychiatry,
Japan, 2010.

[88] D. Cyranoski, "Marmosets are stars of Japan's ambitious brain project," Nature,
vol. 514, pp. 151-152, 2014.

[89] K. A. Ludwig, J. D. Uram, J. Yang, D. C. Martin, and D. R. Kipke, "Chronic neural
recordings using silicon microelectrode arrays electrochemically deposited with a
poly (3, 4-ethylenedioxythiophene)(PEDOT) film," Journal of Neural Engineering,
vol. 3, p. 59, 2006.

[90] K. A. Ludwig, R. M. Miriani, N. B. Langhals, M. D. Joseph, D. J. Anderson, and D.
R. Kipke, "Using a common average reference to improve cortical neuron
recordings from microelectrode arrays," Journal of Neurophysiology, vol. 101, pp.
1679-1689, 2009.

[91] A. Prasad and J. C. Sanchez, "Quantifying long-term microelectrode array
functionality using chronic in vivo impedance testing," Journal of Neural
Engineering, vol. 9, p. 026028, 2012.

117

[92] M. S. Lewicki, "A review of methods for spike sorting: the detection and
classification of neural action potentials," Network: Computation in Neural
Systems, vol. 9, pp. R53-R78, 1998.

[93] M. A. Nicolelis, D. Dimitrov, J. M. Carmena, R. Crist, G. Lehew, J. D. Kralik, et al.,
"Chronic, multisite, multielectrode recordings in macaque monkeys," Proceedings
of the National Academy of Sciences, vol. 100, pp. 11041-11046, 2003.

[94] F. Wood, M. J. Black, C. Vargas-Irwin, M. Fellows, and J. P. Donoghue, "On the
variability of manual spike sorting," Biomedical Engineering, IEEE Transactions on,
vol. 51, pp. 912-918, 2004.

[95] O. Bai, P. Lin, D. Huang, D.-Y. Fei, and M. K. Floeter, "Towards a user-friendly
brain–computer interface: Initial tests in ALS and PLS patients," Clinical
Neurophysiology, vol. 121, pp. 1293-1303, 2010.

[96] N. W. Prins, S. Geng, E. A. Pohlmeyer, A. Prasad, and J. C. Sanchez,
"Representation of natural arm and robotic arm movement in the striatum of a
marmoset engaged in a two choice task," in Neural Engineering (NER), 2013 6th
International IEEE/EMBS Conference on, 2013, pp. 399-402.

[97] D. W. Moran and A. B. Schwartz, "Motor cortical representation of speed and
direction during reaching," Journal of Neurophysiology, vol. 82, pp. 2676-2692,
1999.

[98] D. A. Adamos, E. K. Kosmidis, and G. Theophilidis, "Performance evaluation of
PCA-based spike sorting algorithms," Computer Methods and Programs in
Biomedicine, vol. 91, pp. 232-244, 2008.

[99] J. K. Chapin and M. A. Nicolelis, "Principal component analysis of neuronal
ensemble activity reveals multidimensional somatosensory representations,"
Journal of Neuroscience Methods, vol. 94, pp. 121-140, 1999.

[100] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: a k-means clustering
algorithm," Applied Statistics, pp. 100-108, 1979.

[101] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A practical guide to support vector
classification," ed, 2003.

[102] L. Auria and R. A. Moro, "Support vector machines (SVM) as a technique for
solvency analysis," 2008.

[103] P. Cunningham and S. J. Delany, "k-Nearest neighbour classifiers," Mult Classif
Syst, pp. 1-17, 2007.

118

[104] B. L. Smith, B. M. Williams, and R. K. Oswald, "Comparison of parametric and
nonparametric models for traffic flow forecasting," Transportation Research Part C:
Emerging Technologies, vol. 10, pp. 303-321, 2002.

[105] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, "Tackling the poor assumptions
of naive bayes text classifiers," in ICML, 2003, pp. 616-623.

[106] J. Cheng and R. Greiner, "Comparing Bayesian network classifiers," in
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
1999, pp. 101-108.

[107] L. Guo, Y. Ma, B. Cukic, and H. Singh, "Robust prediction of fault-proneness by
random forests," in Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on, 2004, pp. 417-428.

[108] T. G. Dietterich, "An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization," Machine
Learning, vol. 40, pp. 139-157, 2000.

[109] E. A. Pohlmeyer, B. Mahmoudi, S. J. Geng, N. W. Prins, and J. C. Sanchez,
"Using reinforcement learning to provide stable brain-machine interface control
despite neural input reorganization," Plos One, vol. 9, Jan 30 2014.

[110] E. M. Izhikevich, "Simple model of spiking neurons," Neural Networks, IEEE
Transactions on, vol. 14, pp. 1569-1572, 2003.

[111] E. M. Izhikevich, "Which model to use for cortical spiking neurons?," Neural
Networks, IEEE Transactions on, vol. 15, pp. 1063-1070, 2004.

[112] N. Prins, J. Sanchez, and A. Prasad, "A confidence metric for using
neurobiological feedback in actor-critic reinforcement learning based brain-
machine interfaces," Frontiers in Neuroscience, vol. 8, p. 111, 2014.

[113] E. A. Pohlmeyer, B. Mahmoudi, S. Geng, N. W. Prins, and J. C. Sanchez, "Using
reinforcement learning to provide stable brain-machine interface control despite
neural input reorganization," PloS One, vol. 9, p. e87253, 2014.

[114] J. A. Wolf, L. F. Schroeder, D. Contreras, and L. H. Finkel, "Afferent stream
integration in a model of the nucleus accumbens," in Engineering in Medicine and
Biology Society, 2001. Proceedings of the 23rd Annual International Conference of
the IEEE, 2001, pp. 796-801.

[115] M. D. Humphries, N. Lepora, R. Wood, and K. Gurney, "Capturing dopaminergic
modulation and bimodal membrane behaviour of striatal medium spiny neurons in
accurate, reduced models," Frontiers in Computational Neuroscience, vol. 3, 2009.

119

[116] M. D. Humphries, R. Wood, and K. Gurney, "Dopamine-modulated dynamic cell
assemblies generated by the GABAergic striatal microcircuit," Neural Networks,
vol. 22, pp. 1174-1188, 2009.

[117] Y. Goto and A. A. Grace, "Dopaminergic modulation of limbic and cortical drive of
nucleus accumbens in goal-directed behavior," Nature Neuroscience, vol. 8, pp.
805-812, 2005.

[118] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, and J. Kittler,
"A review of instance selection methods," Artificial Intelligence Review, vol. 34, pp.
133-143, 2010.

[119] M. A. Nicolelis and M. A. Lebedev, "Principles of neural ensemble physiology
underlying the operation of brain–machine interfaces," Nature Reviews
Neuroscience, vol. 10, pp. 530-540, 2009.

[120] R. Newport, R. Pearce, and C. Preston, "Fake hands in action: embodiment and
control of supernumerary limbs," Experimental Brain Research, vol. 204, pp. 385-
395, 2010.

[121] A. Berti and F. Frassinetti, "When far becomes near: Remapping of space by tool
use," Journal of Cognitive Neuroscience, vol. 12, pp. 415-420, 2000.

[122] A. Iriki, M. Tanaka, and Y. Iwamura, "Coding of modified body schema during tool
use by macaque postcentral neurones," Neuroreport, vol. 7, p. 2325, 1996.

[123] C. Acosta-Calderon and H. Hu, "Robot imitation: body schema and body percept,"
Applied Bionics and Biomechanics, vol. 2, pp. 131-148, 2005.

[124] H. Head and G. Holmes, "Sensory disturbances from cerebral lesions," Brain, vol.
34, pp. 102-254, 1911.

[125] C. Nabeshima, Y. Kuniyoshi, and M. Lungarella, "Adaptive body schema for
robotic tool-use," Advanced Robotics, vol. 20, pp. 1105-1126, 2006.

[126] A. Maravita and A. Iriki, "Tools for the body (schema)," Trends in Cognitive
Sciences, vol. 8, pp. 79-86, 2004.

[127] M. A. Lebedev, J. M. Carmena, J. E. O'Doherty, M. Zacksenhouse, C. S.
Henriquez, J. C. Principe, et al., "Cortical ensemble adaptation to represent
velocity of an artificial actuator controlled by a brain-machine interface," The
Journal of Neuroscience, vol. 25, pp. 4681-4693, 2005.

120

[128] G. E. Alexander and M. D. Crutcher, "Functional architecture of basal ganglia
circuits: neural substrates of parallel processing," Trends Neurosci, vol. 13, pp.
266-271, 1990.

[129] M. Corbetta and G. L. Shulman, "Control of goal-directed and stimulus-driven
attention in the brain," Nature Reviews Neuroscience, vol. 3, pp. 201-215, 2002.

121

Appendix A Adapted from “Prins et al. Representation of
Natural Arm and Robotic Arm Movement in the Striatum of a
Marmoset Engaged in a Two Choice Task”

One of the findings from the analysis of 0 is that the striatum neural data

clusters separated out for robot movement left and right very clearly. We

explored this idea further and found preliminary results to be interesting in the

subject of body schema and tool use. These findings are interesting for BMIs but

is not directly relevant to the work described in this dissertation and therefore we

include in the appendix. Some of these results have been adapted from

published work in the IEEE Neural Engineering Conference [96].

Introduction to Body Schema and Tool Use

For organisms to access the external environment and make decisions in

everyday activities, the intent of the brain is often expressed through a physical

medium (the body by nature), which interacts with the environment. Numerous

studies have shown that the concept of the brain’s embodiment is dynamic [120].

The brain, body, and even tools can become extensions of each other during use

through reorganization of neural representation evident in single unit activity

during tool use [121-123]. The concept of ‘body schema’ was highlighted by

Head and Homes to describe the mapping of proprioception and motor

commands to body posture and movements as well as mapping of tactile

sensation from the body surface [124, 125]. These studies showed that the body

122

schema changes with learning, which indicate that the plasticity of the

brain is also involved [126].

The concept of schema has an impact on the field of Brain-Machine

Interfaces (BMI). The external device control can be thought of as similar to the

idea of body schema in using mechanical tools [127]. Often, when training

animals to use BMIs, the animal is initially trained to control the system by

moving its own limb. Later, even when the animal has stopped moving its limb or

when the limb is paralyzed, there is activity in the motor cortex that can be used

for decoding intended arm movement [4] and this can be used to guide a robotic

device. Questions arise about how an animal’s intent is remapped or projected

onto the device that the animal is controlling. Similarly, we are interested in

studying how neural representations change while an animal is interacting with a

robot arm. It remains unknown in the BMI context how the body schema

changes, as better control emerges over time. Since learning may be involved in

the modification of behavior and the body schema, we have focused our work on

neural circuits involved in goal-directed motor control: the ventral striatum

(nucleus accumbens – NAcc) and motor cortex [128, 129].

In this section we explore the possibility of the actions of an external

device being represented in the striatum, which has been known to play a key

role in reward [51]. We analyzed in this study how the striatal neural signals

modulate according to the robot movement direction when the monkey reached

in the same direction as robot or opposite direction.

123

Task and Results

The task was the two-target reach task described in 2.2.2. Recordings of 4

sessions within one week were analyzed (S1, S2, S3, S4) with a total of 124

trials. For each session, the windows analyzed were 0-500ms, 100-600ms and

200-700ms. Figure A.1 (bottom) shows an example of the mean spike count from

one neuronal signal from one session with a bin size of 25ms. There is a

statistically significant difference (t test. p<<0.001) in the firing patterns during the

time period (0-700ms). The firing rate when the robot moves towards the left is

higher than when the robot moves to the right. For comparison against the

natural arm movement Figure A.1 (top) shows the same neuronal unit during the

monkey’s physical arm movements (window 600-1400ms after go signal). The

left arm movement shows higher firing than the right arm movement.

Figure A.1: Mean Spike count for one neuronal signal showing left (red) and right (blue) (Session
1). Bin size 25ms. Top: Natural Arm Movement. Time relative to Go Signal. Bottom: Robot Arm
Movement. Time relative to the Robot Movement [96].

Next, the data was converted to PC space and the first two PCs were

plotted in 2D. k-means was used to partition the PC space into two clusters as

124

shown in (green and yellow Voronoi diagrams). Next the trials were labeled

manually as left (Figure A.2(A) red data points) and right (Figure A.2(A) blue data

points) in the PC space. Finally, the labeled trials were compared against the k-

means classes to calculate the resulting clustering accuracy. There is

separability of the trials that can be observed in the PC space. For comparison

with natural arm movements we plotted the neural data during the arm reach

time in Figure A.2(B). The left and right arm movement can be seen in red and

blue respectively. The time window in Figure A.2(B) is 800-1300ms after the go

signal, which is during the time of the natural reach whereas Figure A.2(B) shows

data during the robot movement, i.e. after the natural reach.

The clustering accuracy for the session shown in Figure A.2(A) is 92.7%.

The reduced percentage is due to outliers in the PC space and inaccuracies in

the PC space being separated. The clustering accuracy for each session and the

different time windows are shown in Table A-1 with the highest accuracy of

92.7%. The first column in Table-I gives the clustering accuracy during the hold

time as the baseline for comparison. When the plots of the PC space during the

hold time are examined further, there is no separation between the clusters as is

expected since there is no interaction with the robot during this time period (see

Discussion). Clustering accuracy for the first time-window in sessions S3 and S4

was further increased to 88.9% and 77.8% with manual clustering suggesting

that more sophisticated methods can improve the accuracy. However, there was

no such pattern in the window during the hold time.

125

Figure A.2: (A) Data in the first and second principal component space during Robot Movement.
 Session 2 window 100-600ms. Accuracy 92.7%. Red – left robot movement (A standard trials in
x and C catch trials in o). Blue – right robot movement (C standard trials in x and A catch trials in
o). Green – cluster 1, Yellow – cluster 2. ⊗ – centroids of each clutser of points. (B) Data in the
first and second principal component space during the natural arm movement. Red – left arm
movement. Blue – right arm movement. (Similar to the robot movements in figure above,
separation between the left and right physical arm movements is evident) [96].

Table A-1: Overall Accuracy Of Clustering Using K-Means For Different Window Sizes. The
Accuracy Of Hold Time Is Given As Baseline (Chance Level) [96]

Session
Accuracy of Clustering

Hold Time (Baseline) 0- 500ms 100-600ms 200-700ms

S1 61.0% 90.2% 92.7% 85.4%
S2 51.3% 84.6% 89.7% 89.7%
S3 52.6% 60.5% 89.5% 89.5%
S4 60.9% 63.0% 69.6% 89.1%

Average 56.4% 74.6% 85.4% 88.4%

Figure A.1 shows a statistically significant difference in the firing patterns

for the two directions within the time window analyzed (0-700ms). This was

typical of the population of neuronal units recorded. 4, 8, 5 and 6 neuronal units

out of 27 neuronal units showed a statistical significant difference (t test: p<0.05)

for sessions S1, S2, S3 and S4 respectively. Even though the variance

accounted for in the first two PCs is only 47%, we are still able to see clear

126

separability in the data and simple unsupervised clustering techniques show that

it is possible to extract robot movement direction from the neural data.

The clustering accuracy during the hold time which was used as the

baseline was 56.4% on average. Since the manual labeling of the clusters was

always done to maximize the resulting classification accuracy, chance was by

default greater than 50%. When the PC space was plotted, there was poor

separability between the two clusters. This is expected as during this time there

is no robot movement or arm movement present. It is interesting to note how the

classification accuracy increases across the time window. The third time window

gives the best accuracy results (88.4% on average). Higher accuracy obtained in

later time windows could be explained due to the time the animal required to

realize and appreciate to which target the robot was moving. The variance in the

accuracy of clustering was lowest in the third window (0.04%) where the average

performance is the highest. The variance is 2.26% in the first window and 1.13%

in the second window. The variance of the results for the baseline (hold time)

was 0.27%.

Mathematical Representation of the Different Clusters

We are interested in determining the mathematical representation of the

different clusters. This section describes a probabilistic framework for the

different clusters. We define the variables in the environment during the robot

movement with the following notation.

127

G tarGet LED

B roBot LED

S target Sensor LED

L target Location

RM Robot Movement

E Error

F Flashing

The probability of A standard trials is the probability of the target LED (G)

being left, the robot LED (B) being left, the target sensor (S) being left, the robot

movement (RM) being left, the error(E) being correct and the lights flashing (F).

 P(A_standard) = P(G=Left, B=Left, S=Left, L=Left,
 RM=Left, E=Correct, F=Flash) Eq. A.1

Similarly, the probability of C standard trials is the probability of the target

LED (G) being right, the robot LED (B) being right, the target sensor (S) being

right, the robot movement (RM) being right, the error(E) being correct and the

lights flashing (F).

 P(C_standard) = P(G=Right, B=Right, S=Right, L=Right,
 RM=Right, E=Correct, F=Flash)

Eq. A.2

The C catch trial probability is the probability of the target LED (G) being

right, the robot LED (B) being right, the target sensor (S) being right, the robot

movement (RM) being left, the error(E) being wrong and the lights not flashing

(F).

 P(C_Catch) = P(G=Right, B=Right, S=Right, L=Right,
 RM=Left, E=Wrong, F=Off)

Eq. A.3

128

Similarly, the probability of A catch trials can be represented with the

probability of the target LED (G) being left, the robot LED (B) being left, the target

sensor (S) being left, the robot movement (RM) being right, the error(E) being

wrong and the lights not flashing (F).

 P(A_Catch) = P(G=Left, B=Left, S=Left L=Left,
 RM=Right, E=Wrong, F=Off) Eq. A.4

if we assume that A standard and C catch trials have similar firing

properties in the NAcc, we can combine Eq. A.1 and Eq. A.3

P(A_standard) + P(C_Catch)
= P(G=Left, B=Left, S=Left, L=Left, RM=Left, E=Correct, F=Flash)
+ P(G=Right, B=Right, S=Right, L=Right, RM=Left, E=Wrong, F=Off)

= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or
Right, RM=Left, E=Correct or Wrong, F=Flash or Off)

Eq. A.5

The possible choices for G are left and right. Therefore we can

marginalize over G;

P(A_standard) + P(C_Catch)

= ∑
𝑃(𝑆,𝐵 = 𝐿𝑛𝑜𝑡 𝑐𝑟 𝑅𝑖𝑠ℎ𝑡, 𝑆 = 𝐿𝑛𝑜𝑡 𝑐𝑟 𝑅𝑖𝑠ℎ𝑡, 𝐿 = 𝐿𝑛𝑜𝑡 𝑐𝑟 𝑅𝑖𝑠ℎ𝑡,

𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡 𝑐𝑟 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝐹𝑡𝑎𝑠ℎ 𝑐𝑟 𝑂𝑜𝑜)𝐺

= P(B= Left or Right, S= Left or Right, L=Left or Right,
 RM=Left, E=Correct or Wrong, F=Flash or Off)

Eq. A.6

Similarly, since the possible choices for B, S and L are left and right, we

can marginalize over all three variables.

P(A_standard) + P(C_Catch)
=
∑ 𝑃(𝐵,𝑆, 𝐿,𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡 𝑐𝑟 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝐹𝑡𝑎𝑠ℎ 𝑐𝑟 𝑂𝑜𝑜)𝐵,𝑆,𝐿

Eq. A.7

129

= 𝑃(𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡 𝑐𝑟 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝐹𝑡𝑎𝑠ℎ 𝑐𝑟 𝑂𝑜𝑜)

RM has two possible choices, left and right, but in the above equation only

RM=left is included and therefore we cannot remove this variable.

The only possible choices for E are correct and wrong and since all the

possible states are represented inside the probability above, we can marginalize

over E and remove the variable E. Similarly, since all the possibilities of the

variable F (flash and off) are included, we are able to marginalize out the variable

F as well.

P(A_standard) + P(C_Catch) = ∑ 𝑃(𝑅𝑅 = 𝐿𝑛𝑜𝑡,𝐸 ,𝐹)𝐸 ,𝐹
 = P(RM=Left)

Eq. A.8

Similarly, if we assume that the firing properties for C standard and A

catch are similar, we can combine Eq. A.2 and Eq. A.4. Variables G, B, S, L, E

and F can be marginalized out.

P(C_standard) + P(A_Catch)
= P(G=Right, B=Right, S=Right, L=Right, RM=Right, E=Correct,
F=Flash) + P(G=left, B=Left, S=Left, L=Left, RM=Right, E=Wrong,
F=Off)

= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or
Right, RM=Right, E=Correct or Wrong, F=Flash or Off)

= ∑ 𝑃(𝑆,𝐵, 𝑆, 𝐿,𝑅𝑅 = 𝑅𝑖𝑠ℎ𝑡,𝐸 ,𝐹)𝐺 ,𝐵,𝑆,𝐿 ,𝐸 ,𝐹
= P(RM=Right)

E

q. A.9

In conclusion if A standard and C catch are considered together, the

results we see are a strong indication of robot movement towards left and

130

similarly when we consider C standard and A catch together the results are an

indication of the robot moving to the right.

P(A_standard) + P(C_Catch) = P(RM=Left) Eq. A.10
P(C_standard) + P(A_Catch) = P(RM=Right) Eq. A.11

Next we consider the results where we see A standard and C standard
have similar neuronal activity. Therefore we sum Eq. A.1 and Eq. A.2
P(A_standard) + P(C_standard)
= P(G=Left, B=Left, S=Left, L=Left, RM=Left, E=Correct, F=Flash)
+P(G=Right,B=Right, S=Right, L=Right, RM=Right, E=Correct,
F=Flash)

= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or
Right, RM=Left or Right, E=Correct, F=Flash)

= ∑ 𝑃(𝑆,𝐵, 𝑆, 𝐿,𝑅𝑅,𝐸 = 𝐶𝑐𝑟𝑟𝑛𝑐𝑡,𝐹 = 𝐹𝑡𝑎𝑠ℎ)𝐺 ,𝐵,𝑆,𝐿 ,𝑅𝑅
= P(E=Correct, F=Flash)

Eq. A.12

Similarly, when considering A catch and C catch trials together, we can

sum Eq. A.3 and Eq. A.4

P(A_catch) + P(C_catch)
= P(G=Left, B=Left, S=Left, L=Left, RM=Right, E=Wrong, F=Off)
+ P(G=Right, B=Right, S=Right, L=Right, RM=Left, E=Wrong, F=off)

= P(G= Left or Right, B= Left or Right, S= Left or Right, L=Left or
Right, RM=Left or Right, E=Wrong, F=Off)
= ∑ 𝑃(𝑆,𝐵, 𝑆, 𝐿,𝑅𝑅,𝐸 = 𝑊𝑟𝑐𝑛𝑠,𝐹 = 𝑂𝑜𝑜)𝐺 ,𝐵,𝑆,𝐿 ,𝑅𝑅
= P(E=Wrong, F=Off)

Eq. A.13

In conclusion, when we consider the A and C standard trials together, the

results indicate both the robot performing a correct action as well as lights

flashing. When we consider A and C catch trials together, the results indicate the

robot performing a wrong action and the lights bring off.

P(A_standard) + P(C_standard) = P(E=Correct, F=Flash) Eq. A.14
P(A_catch) + P(C_catch) = P(E=Wrong, F=Off) Eq. A.15

131

Final Remarks

Here we examined the neural representation of the movements of an

external robotic arm in the striatum and compared its neuromodulation during

natural and robotic arm reaches. We were able to visualize the data in two-

dimensional space and cluster the data according to left and right robot

movements. We observed the difference in neuronal firing in the striatum during

both natural arm movement and robot arm movement. We also showed

mathematical proof that the clustering given by k-means corresponded to left and

right robot arm movement.

Summary

Preliminary results shown in this study provides evidence of

representation of an external device in a subcortical structure. The results from

the body schema concept if incorporated into the BMI design may be used in the

development of future intelligent controllers which can incorporate interactions

between motor and reward structures for better controller design. However, the

target space also needs to be expanded in order to test the reliability of

extraction of direction-specific information.

	University of Miami
	Scholarly Repository
	2015-05-05

	Synchronous Control of a Reinforcement Learning Based Brain-Machine Interface With Biological Feedback
	Noeline Prins
	Recommended Citation

	List of Tables
	List of Figures
	Abbreviations
	Chapter 1 Introduction and Background
	1.1 Motivation
	1.2 Background of BMI Work
	1.2.1 BMI Classification
	Sensory, Motor and Cognitive BMIs
	Adaptive Decoders and Static Decoders
	Supervised, Semi-Supervised and Unsupervised Learning
	Synchronous and Asynchronous Control

	1.2.2 Decoders Used in BMIs
	Linear Regression
	Population Vector Algorithm
	Kalman Filters

	1.3 Incorporating Feedback
	1.3.1 Reinforcement Learning in the Brain
	1.3.2 Engineering a Biologically Realistic BMI
	1.3.3 Reinforcement Learning Decoders
	Conventional RL Decoders
	Actor-Critic RL Paradigm

	1.4 Asynchronous Brain-Machine Interfaces
	1.5 Specific Aims
	1.5.1 Investigate role of Striatum during a Reaching Task and Test the feasibility of Using Striatal Signals as Feedback for a BMI
	1.5.2 Development of an Synchronous Closed-Loop BMI Control Algorithm
	1.5.3 Use the Striatum in Conjunction with MI to Control a Closed-Loop BMI

	1.6 Outline of Dissertation

	Chapter 2 Experimental Data Analysis
	2.1 Data Acquisition and Surgical Procedure
	2.1.1 Animal Model
	2.1.2 Electrodes
	2.1.3 Surgical Procedure
	2.1.4 Signal Processing

	2.2 Experimental Design
	2.2.1 Go-No-Go Paradigm
	2.2.2 Two-Target Reach Paradigm
	2.2.3 Experiment Variable Summary

	2.3 Data Analysis and Results
	2.3.1 Neural Firing Patterns and Histograms
	2.3.2 Neural Population Dynamics – Principal Component Analysis (PCA)
	2.3.3 Unsupervised Clustering
	2.3.4 Supervised Classification
	Classifiers Used
	Data Sets
	NAcc Data
	MI Data

	2.4 Trial Initiation from the Striatum
	2.4.1 Filter Design and Preprocessing
	2.4.2 Classification

	2.5 Summary and Conclusions

	Chapter 3 Development of the Control Architecture
	3.1 Control Architecture for the Actor
	3.1.1 Modifications to the Actor
	3.1.2 Confidence of the Critic

	3.2 Data Generation for the Actor
	3.3 Dealing with Inherently Slow Adaptation
	3.4 Simulations for Dealing with Critic Uncertainty
	3.5 Can Using the Feedback Intelligently Improve Performance?
	3.5.1 Effect of confidence measure on Actor performance
	3.5.2 Neural Perturbations – Additional Noise in Data
	3.5.3 Simulations using NHP Data

	3.6 Data Generation for the Critic
	3.7 Critic Data Classification by different methods
	3.7.1 Clusters in the data
	3.7.2 Misclassification Rates

	3.8 Implementing Offline HRL Decoder with Critic Feedback
	3.9 Deciding the Threshold
	3.10 HRL BMI Simulations
	3.11 Summary and Conclusions

	Chapter 4 Closed-Loop Experiments
	4.1 Designing of the Closed-Loop Paradigm
	4.1.1 Actor Neural Data
	4.1.2 Critic Classifier

	4.2 Closed-Loop Experiment
	4.2.1 CL with a 100% accurate (artificial) Critic
	4.2.2 CL with a NAcc Critic – Effect of threshold on Performance

	4.3 Summary and Conclusion

	Chapter 5 Summary and Future Work
	5.1 Summary of Work
	5.2 Novel Contributions and Implications
	5.2.1 A Confidence Metric can be Attached to the NAcc Neural Signal
	5.2.2 Confidence Measure Improves the Overall Performance
	5.2.3 Developed a Paradigm for Real Time Implementation
	5.2.4 A Closed-Loop BMI with Motor Control and Biologic Feedback

	5.3 Improvements and Future Work

	References
	Appendix A Adapted from “Prins et al. Representation of Natural Arm and Robotic Arm Movement in the Striatum of a Marmoset Engaged in a Two Choice Task”
	Introduction to Body Schema and Tool Use
	Task and Results
	Mathematical Representation of the Different Clusters
	Final Remarks
	Summary

