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Inverse radiotherapy optimization is based on a cost function that tries to 

minimize the radiation dose to volumes within a patient’s body. This dissertation 

explores the incorporation of electron/physical density information into the cost 

function. This can be termed dose-mass-based (DM) inverse optimization, as 

mass is the product of density and volume. Another approach for incorporating 

density in the optimization objective function is Energy-based optimization, where 

density is utilized to minimize energy deposition in mass (i.e. integral dose). The 

explorations herein included the investigation of sensitivity of mass-based inverse 

optimization with varying intensity modulation delivery parameters. The results of 

the study demonstrated that Energy optimization was significantly more sensitive 

than DM and dose-volume-based (DV) with respect to changes to both maximum 

segments per beam and minimum segment area. The second investigation 

considered the anatomical changes that occur to patients during radiotherapy. The 

dose-mass changes were compared between the planning CT and subsequent 

CTs, obtained mid-treatment and post-treatment. The results demonstrated that 



significant changes to dose-mass only occur for the target volumes and no 

statistically significant changes were observed for the surrounding normal 

anatomical structures. Another comparison was performed among plans 

developed with DV, DM, and Energy. The results showed that the anatomical 

changes yielded comparable differences regardless of the type of optimization 

used. Since density information is included in DM and Energy, plans the results 

suggest that the volumetric changes that occur dominate the density changes 

within the volumes.  

Under a third investigation, software tools were developed in order to calculate 

generalized equivalent uniform dose (gEUDs) and mass-weighted equivalent 

uniform dose (mgEUDs). mgEUD is mathematically more general than gEUD and 

in uniform-density media mgEUD transforms into gEUD. Incorporating physical 

density into the gEUD allows for a mass-weighted value representative of the 

uniform dose given to the mass rather than the volume. To further explore mgEUD 

patient outcome data for xerostomia of parotids and pneumonitis of lungs was used 

to correlate complication to mgEUD and in turn compare it to gEUD. The 

investigation determined that mgEUD values for the parotids did not show 

significant differences with respect to those of gEUD. In turn, lung mgEUD values 

demonstrated higher differences compared to values of gEUD. For radiation-

induced pneumonitis of grade one and greater mgEUD showed lower standard 

deviations than those of gEUD. However, these differences did not translate into 

a better probability model of complication. The observed differences between 



gEUD and mgEUD using the Lyman-Kutcher-Burman normal tissue complication 

model were in the range of 2-3% for doses greater than 10 Gy.  

Incorporating density in inverse optimization plays a role in avoiding higher-

density areas. This dissertation concluded that changes in inverse optimization 

delivery parameters indicated differences between volume-based and mass-

based optimizations, but differences were not observed due to anatomical changes 

during radiotherapy treatment. The introduction of mgEUD demonstrated that 

there are differences in lungs with respect to gEUD and further investigation of 

normal tissue complication models may reveal a valuable correlation with 

treatment-related toxicity. 
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Chapter 1: Introduction 

1.1 Cancer and Radiation Therapy 

This year alone, 1,735,305 new cancer cases are expected to be diagnosed 

in the United States, from which 609,640 are expected to result in death due to the 

disease (Siegel et al., 2018). Cancer is the second leading cause of death in the 

US, exceeded only by heart disease. The two cancers examined in this 

dissertation, non-small cell lung cancer (NSCLC) and head-and-neck squamous 

cell carcinoma (HNSCC), comprise over a quarter of a million new cases per year 

in the United States. The most common treatments for cancer include surgery, 

chemotherapy, radiation therapy, or some combinations of the above. Radiation 

Therapy (RT) provides qualities that are of central importance: it is highly utilized, 

efficacious and cost-effective. RT is received by up to two-thirds of all cancer 

patients in the US, has been estimated to be responsible for 40% of all cancer 

cures yet represents only 5-10% of all cancer-related health expenditures (Barnett 

et al., 2009, Brown and Adler, 2015). Radiation therapy can be used to cure 

cancer, to prevent cancer from recurring, to stop or slow down its growth, and also 

to manage pain.  

1.1.3 Radiation Physics 

 The physics of radiation is the science that studies radiation interaction with 

matter, including the energy absorption and redistribution (scattering) due to these 

interactions. Radiation is broadly classified into two main categories: non-ionizing 
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and ionizing radiation. Ionizing radiation is further divided into directly and indirectly 

ionizing. Directly ionizing radiation is pertinent to charged particles such as 

electrons, protons, alpha particles, and heavy ions. Their interaction with matter is 

direct, producing ionizations by collisions. The energy of the incident particle is lost 

along its track through the medium. If the incident particle is not energetic enough 

to eject an electron, it can be excited by raising electrons to higher energy levels.  

Uncharged particles such as x-rays, gamma rays, and neutrons are indirectly 

ionizing radiation. When they interact with matter they liberate directly ionizing 

particles.  

Electromagnetic radiation consists of electromagnetic waves that propagate 

with their magnetic and electric fields perpendicular to each other. High frequency 

electromagnetic radiation is ionizing as it is capable of interacting with matter. 

Electromagnetic radiation traverse through media as a wave, but interacts with 

media as particle (photon). Photons interact stochastically undergoing a few, one, 

or no interactions as they pass through matter. Photons are indirectly ionizing, as 

they interact with the atoms in the medium they produce high-speed electrons by 

three major processes: photoelectric effect, Compton effect, and pair production. 

Depending on the interaction, secondary electrons may travel a distance before 

interacting. In external beam therapy using megavoltage beams, the dominant 

contribution to the absorbed dose is due to primary photons, which interact with 

electrons set in motion by Compton interactions.  
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 Regardless of the primary source of radiation, charged particles are the 

ones that cause the biological effect (i.e. cell killing). As the charged particles lose 

energy through their track, they deposit dose, which is the mean energy imparted 

by ionizing radiation in matter. A precise knowledge of the spatial distribution of 

the absorbed dose is crucial to radiotherapy treatment planning and delivery. This 

spatial distribution can only be obtained if the transport of the energy by the 

charged particles can be modeled. Dose calculation models will be discussed in 

section 1.2.4.  

1.1.4 Radiobiology 

 Radiobiology is defined as the branch of biology that studies the effects of 

ionizing radiation on organisms and the application in biology of radiological 

techniques. The exposure of biological tissues to ionizing radiation leads to 

ionization and excitation of their atoms. The molecules where these atoms reside 

tend to fall apart, resulting in free radicals. Since water is the most prevalent 

molecule within cells, most free radicals are produced by the radiolysis of water. 

Free radicals are highly unstable and readily react with other nearby molecules 

transferring chemical damage to them. All components of the cell will be damaged, 

but damage to most of them will not impact on the cell’s viability. There is one 

cellular component that is unique and is the key to radiation damage: DNA. DNA 

is a double-helix molecule consisting of repeating sequence of bases, and every 

chromosome has approximately 200 million bases. The information needed for 
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protein instruction and cellular function lies in these base groups. Radiation 

damage to DNA may lead to the loss or modification of some genes and 

subsequently loss of specific functions. Enzymes within the cells are constantly 

monitoring the integrity of DNA and repairing it. A radiation dose of 1 Gy can lead 

to 1000 single-strand breaks and 40 double-strand breaks of the DNA in every cell 

nucleus (Mayles et al., 2007).  

 The main objective in radiation therapy is killing tumor cells while avoiding 

any damage to normal tissues. The spatial dose distribution is imperative, but 

biological effects also depend on the temporal distribution of dose. The speed of 

cellular recovery in normal tissues has been widely studied and the evidence has 

led to the clinical application of fractionation, by dividing the total dose into daily 

fractions to allow for DNA repair. Fractionation is based on the linear-quadratic 

equation 1, where E is the effect of a single radiation dose (d) in n fractions with 

total dose 𝐷𝐷 = 𝑛𝑛𝑛𝑛. The linear-quadratic equation is derived from the cell-survival 

relationship: 𝑆𝑆 =  𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼𝑑𝑑 − 𝛽𝛽𝑑𝑑2). Where S is cell survival,α is the linear 

component, and β is the quadratic component of cell kill. The ratio α/β differentiates 

the type of cell, with high values indicating early-responding cells and low values 

indicating late-responding. Figure 4 illustrates the cell survival curves for early- 

and late-responding normal tissues. 

 

𝐸𝐸 = 𝑛𝑛(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝑑𝑑2) = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽   (1) 
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Figure 1. Cell survival curve representing early- and late-responding 
normal tissues. (Mayles et al., 2007) 

 

 The biological factors that influence the response of tissues to fractionated 

radiotherapy are popularly known as the “5 Rs of Radiotherapy”: repair, 

reassortment, repopulation, reoxygenation, and radiosensitivity. Repair is derived 

from the fact that cellular recovery occurs within hours after exposure. 

Reassortment or redistribution of the cells occurs with each fraction; depending on 

the phase of the cell cycle when the irradiation occurred, cells will respond 

differently. Cells in the mitosis phase will be more sensitive to radiation than cells 

in the S phase. The concept of repopulation is that during 4- to 6-week treatment 

course, tumor cells that survive radiation may proliferate and increase the number 

of cells which must be killed. Also, repopulation is important for early-responding 

normal tissues (i.e. skin, gastrointestinal tract). Tumors that are hypoxic are more 
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radioresistant, therefore allowing for reoxygenation by fractionation sensitizes 

them. Finally, radiosensitivity of the types of cells are important for the fractionation 

schedule, this is true for both - normal and tumor cells. 

1.1.1 Non-Small Cell Lung Cancer  

Lung cancer is the second most common cancer in older men and women 

in the United States, with a predicted incidence for 2018 of 121,680 and 112,350, 

respectively.  It is by far the leading cause of cancer-related deaths with only 19.5% 

of all patients surviving five years after diagnosis (Howlader et al., 2017). The 

prevalent histological types of lung cancer are non-small-cell (NSCLC) and small-

cell (SCLC) lung carcinomas. NSCLCs account for approximately 80-85% of lung 

cancers and are divided into three main types: squamous cell, adenomarcinoma, 

and large-cell undifferentiated carcinoma.  

The primary risk factor for lung cancer and the leading cause of cancer 

deaths worldwide is tobacco smoking (Alberg et al., 2013). Other factors include 

exposure to: secondhand tobacco smoke, occupational lung carcinogens, 

radiation, and indoor and outdoor air pollution. Radon is an inert gas that is 

odorless, tasteless, colorless, and radioactive, a direct decay from radium-226 and 

ultimately of uranium-238 in rocks and soil (National Cancer Institute, 2011). 

Radon can enter homes from the ground and collect indoors. Higher levels can be 

found closer to the ground (i.e. basements). Other sources can be from building 

materials, or from water obtained from wells that contain radon. When radon is 
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inhaled, it emits alpha particles in the lung causing DNA damage (Krewski et al., 

2005). Another factor that has been linked to lung cancer is asbestos, which is a 

mineral used in building materials that breaks into small fibers that can be inhaled. 

Asbestos exposure has been linked to 3-4 % of lung cancers (Ettinger et al., 2014). 

The risk of lung cancer increases with asbestos exposure and in combination with 

smoking the risk is increased even further (Alberg et al., 2013).  

Most lung cancers develop in the cells lining the bronchi and parts of the 

lung such as the bronchioles or alveoli (American Cancer Society, 2016). The 

lungs are two large sponge-like organs with active subunits, called alveoli (Figure 

1). During respiration, the alveoli remove carbon dioxide from the blood and 

transfer oxygen from the air to the blood. As air is inhaled and exhaled, the volume 

of the lungs changes. The density differences due to the distribution of alveoli and 

the air within makes the lungs heterogeneous in density. 
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Figure 2. Lung anatomy (American Cancer Society, 2016) 

 

Treatments for lung cancer include surgery, radiation therapy, 

chemotherapy, radiofrequency ablation, immunotherapy, or a combination of two 

or more of the aforementioned treatment options. The use of radiation for treatment 

includes: (1) definitive therapy for locally advanced disease, (2) definitive therapy 

for early-stage disease with contraindications for surgery, (3) pre- or post-operative 

therapy, (4) salvage therapy for limited recurrences and metastases, and/or (5) 

palliative therapy for incurable disease. The goal of radiotherapy is to maximize 

tumor control and minimize toxicity to surrounding tissues. Advanced imaging such 

as 4D simulation and therapy techniques such as intensity modulated (IMRT), 

volumetric arc (VMAT) and stereotactic body (SBRT) radiation therapies have 
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improved localization of dose to the tumor and reduced toxicity for the healthy 

organs (Ettinger et al., 2014).  

Conventional 3D radiotherapy has been deemed the minimum standard. 

Dose escalation studies have demonstrated that doses in the order of 84 Gy lead 

to tumor control of 30 months or longer (Kong et al., 2005, Martel et al., 1999), yet 

radiation-induced toxicity limits such high levels of dose. Results from phase I 

RTOG 0117 demonstrated that 74 Gy in 2 Gy daily fractions using 3D radiotherapy 

with concurrent chemotherapy are tolerated with low rates of acute and late lung 

toxicities (Bradley et al., 2010). Currently, SBRT has been recommended for early-

stage inoperable disease. SBRT delivers high doses per fraction (6-30 Gy), in a 

hypofractionated regimen of five or fewer fractions. The biologically equivalent 

dose (BED) for SBRT is substantially greater compared to standard fractionation 

treatment. A study (Ricardi et al., 2010) showed that SBRT for NSCLC patients 

had higher local control and survival than conventional RT. 

As previously mentioned, the goal of radiation therapy is tumor control and 

minimization of toxicity to the surrounding healthy tissue. Dose limiting constraints 

have been determined for organs at risk (OARs) depending on the fractionation 

schedule. Table 1 lists the OAR constraints for conventional fractionation, where 

Vxx= % of the whole OAR receiving ≥xx Gy. The total dose prescribed in a RT 

treatment is divided into smaller doses over a period of several days, each 

treatment is also referred to as a fraction. Smaller dose fractions allow healthy cell 
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to recuperate from the radiation damage. The dose constraints for conventionally 

fractionated treatments are lower than those for the hypofractionated treatments.   

Table 1. Normal tissue dose-volume constraints for conventionally 
fractionated radiotherapy.  

Organ-at-risk Constraints in 30-35 Fractions 
Spinal cord Max ≤50 Gy 
Lung V20 ≤35%; V5 ≤65%; MLD ≤20 Gy 
Heart V40 ≤80%; V45 ≤60%; V60 ≤30%; Mean ≤35 Gy 
Esophagus Mean ≤34 Gy; Max ≤105% of prescription dose 
Brachial plexus Max ≤66 Gy 

 

The most important dose-limiting organ in NSCLC radiation therapy are the 

actual lungs. The probability and severity of radiation induced lung injury (RILI) 

correlates with radiation dose, fractionation schedule, and amount of irradiated 

lung. It also may be related to type of systemic therapy, smoking status and pre-

treatment pulmonary function. RILI has two stages: early and late. Early phase 

(radiation pneumonitis) occurs 1-6 months after therapy manifested by cough, 

fever and dyspnea. Late phase (radiation fibrosis) is presented 6-7 months after 

RT with reduced lung capacity, progressive dyspnea and possible mortality (Evans 

et al., 2007). Patients treated for lung cancer present radiologic evidence of injury, 

but only 5-35% have symptoms (Marks et al., 2000). It is well known that lung 

toxicity is correlated with mean lung dose (MLD) greater than 30 Gy and 30% of 

the lung volume receiving 20 Gy or more (V20) (Rodrigues et al., 2004, Graham et 

al., 1999, Kong et al., 2006).  

The relationship between 3D dose distribution and pneumonitis incidence 

is essential to ensure minimal normal tissue toxicity and maximize tumor control 
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(Seppenwoolde et al., 2003). Part of designing the best radiotherapy plan is to 

avoid highly functioning areas. Functional imagining modalities such as functional 

magnetic resonance imaging (fMRI), positron emission tomography (PET) and 

single photon emission computed tomography (SPECT) can all be directly linked 

to local function (Nioutsikou et al., 2005a, Ma et al., 2008, Evans et al., 2007, Bates 

et al., 2009, De Jaeger et al., 2003). The main function of the lungs is the exchange 

of gases with the blood, and its capability can be tested with a pulmonary function 

tests (PTFs) testing the lung volume, capacity, rates of flow, and gas exchange. 

There have been various studies that have tried to establish a relation between 

RILI and lung function, but results have been non-definitive and any dosimetric 

improvement have shown to be marginal for a small subset of patients (Nioutsikou 

et al., 2005a, Evans et al., 2007).  

1.1.2 Head-and-Neck Squamous Cell Carcinoma 

The group of cancers that begin in the squamous cells that line the mucosal 

surfaces inside the head and neck are collectively called head-and-neck cancers 

(National Cancer Institute, 2017). The anatomy of the head and neck is shown in 

Figure 2, where the different regions of this type of cancer occur. HNSCC is a 

common form of cancer, constituting about 4% of all cancers in the United States 

(Howlader et al., 2017). Most of the cases are presented in people between 40 

and 50 years of age, with a 3:1 ratio between men and women (Sanderson and 

Ironside, 2002). The most important risks associated with HN cancer are smoking 
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tobacco and drinking alcohol. Other risks include: chewing betel nut, consumption 

of certain preserved or salted foods, Epstein-Barr virus infection, radiation 

exposure and occupational exposure (National Cancer Institute, 2017). 

 

Figure 3. Head and neck cancer regions. (National Cancer Institute, 2017). 

 

Patients with HNSCC present a challenging group, where the successful 

management of the disease requires a high degree of expertise and careful 

assessment of risk levels. The therapeutic approach is driven by the clinical and 

histopathological features of the disease, host-related factors and the expected 

impact of the patient’s quality of life (Bernier, 2009). In western countries, two-

thirds of the HNSCC patients present with locally advanced disease. They are 

offered multidisciplinary therapies combining surgery, radiotherapy and 

chemotherapy (Bernier, 2009).  
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The current radiation therapy modalities used for HNSCC include 3D-

conventional (3DCRT), IMRT, SBRT and charged particle radiation therapy. IMRT 

has improved the dose sparing of surrounding organs in comparison to 3DCRT 

(Lee et al., 2007). The standard dose prescription for nonsurgical therapy is 70 Gy 

to the primary disease for seven weeks (Sher et al., 2017). Hyperfractionation 

(reduced dose per fraction) and accelerated fractionation (multiple fractions 

administered per day) has been widely studied to enhance the therapeutic ratio by 

improving tumor control without increasing late toxicity (Bernier and Bentzen, 

2003). Also, advances in technology have led to better tumor tracking during 

treatment such as image-guided radiation therapy, which is a technique that 

compliments IMRT. SBRT has been used more effectively in small tumors and 

usually for patients who have already undergone multiple therapeutic interventions 

(Owen et al., 2015).   

 Despite the clinical progress that has occurred in the field, loco-regional 

control for locally advanced HN tumors after 3 years remains between 50-60%, 

and 20% of the patients with stage III-IV disease will experience distant 

progression. Achievement of local control comes with the price of increased acute 

and late toxicity, such as mucositis, xerostomia, dysphagia, and skin toxicity. 

Xerostomia and dysphagia are the most important acute and late complications 

after radiotherapy that reduce quality of life (Wang and Eisbruch, 2016). 

Xerostomia or dry mouth is the most common complication that results from 

damage to the salivary glands. Figure 3 illustrates the anatomy and location of the 



14 

 

 

 

salivary glands. The parotid glands located on either side of the mouth are major 

salivary glands producing 60-65% of saliva.  The parotids have been determined 

to be the major factor for the severity of xerostomia, therefore their preservation 

has been widely studied and taken into account during radiation therapy planning. 

The mean dose to the parotids that reduces xerostomia and preserves part of the 

salivary function is less than 26-30 Gy (Wang and Eisbruch, 2016). Table 2 lists 

the other OAR constraints taken into account during treatment planning.  

 

 

Figure 4. Anatomy of the salivary glands (National Cancer Institute, 2017).  
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Table 2. Head-and-Neck organs-at-risk constraints 

Organ-at-risk Constraints for 2 Gy per fraction 
Braistem Max ≤ 54 Gy 
Optic Nerves Max ≤ 50 Gy 
Optic chiasm Max ≤ 54 Gy 
Spinal cord Max ≤ 45 Gy  
Parotids Mean ≤ 26 Gy 
Oral cavity For non-oral cavity cancers ≤ 30 Gy 

For oral cavity cancers ≤ 50 Gy 
Mandible Max ≤ 66 Gy 
Larynx Mean ≤ 45 Gy 

 

1.2 External Beam Radiation Therapy 

Treatment devices used for radiation production are kilovoltage x-ray units, 

megavoltage linear accelerators, or cobalt-60 machines. Kilovoltage x-ray units 

were historically the first to be used for radiotherapy and they played an important 

role in the early development of radiotherapy, but their use has diminished after 

1950 with the widespread availability of high energy photons and electrons from 

linear accelerators. Their use still persists for some treatments such as contact 

therapy (10-60 kV), superficial therapy (50-150 kV) and orthovoltage therapy (150-

400 kV). Cobalt-60 machines were first used for patient treatment in Canada in 

1951. Co-60 source is manufactured by irradiating Co-59 with neutrons in a 

nuclear reactor. The source decays to the stable isotope Ni-60 with the emission 

of β particles with a maximum energy of 0.32 MeV. The activated nickel nucleus 
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emits two γ-rays with energies of 1.17 MeV and 1.33 MeV, which constitute the 

useful treatment beam.  

This dissertation focuses on treatments delivered with megavoltage linear 

accelerator machines. A linear accelerator is a device that uses high-frequency 

electromagnetic waves to accelerate charged particles (i.e. electrons) to high 

energies through a linear accelerator. The electron beam can be used to treat 

superficial tumors or it can be used to produce x-rays. X-rays are produced by 

high-energy electrons colliding with a tungsten target, from which the photons are 

produced through bremsstrahlung. 

The main components of a linear accelerator are illustrated in Figure 5a. 

The electrons are produced by thermionic emission in the electron gun and 

subsequently are directed into the waveguide. The RF power generator can be a 

klystron or magnetron, which provides pulsed microwaves to the accelerator 

waveguide for electron acceleration. The accelerator waveguide consists of a high 

vacuum copper tube with its interior divided into discs or diaphragms. The 

oscillating electromagnetic field produced by the microwave generator transfers 

energy to the electrons within the waveguide, accelerating them in groups called 

electron bunches. Once the electrons have been accelerated to the desired 

velocity/energy, the electron beam is bent towards the treatment head with an 

angle of 90 o or 270o, depending on the design.  

The electron beam, as it exists the accelerating tube, is narrow with a width 

of about 3 mm. If the electron beam is used directly to treat, then a scattering foil 
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spreads the beam to get a uniform fluence across the treatment field. For x-ray 

treatment, the electron beam is directed to the target in order to produce x-rays by 

bremsstrahlung. The x-ray beam is collimated by a fixed primary collimator and 

then made uniform with a flattening filter. Other components of the treatment head 

are an ion chamber and a secondary collimator and are shown in Figure 5b and 

Figure 5c for treatment with x-ray and electron beam, respectively. The ion 

chamber is used to monitor the dose rate, integrated dose, and field symmetry. 

The secondary collimator is movable and defines the field size. There are also 

tertiary collimators called multileaf collimators (MLCs) that further shape the beam. 

The shaped beam is directed to a point called the isocenter, which is a central 

point around which different linac components (couch, gantry, collimators) rotate.  
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Figure 5. (a) Simple schematic of linac components. (International Atomic 
Energy Agency; Podgorsak, 2005). (b) Treatment head components for 
electron beam treatment. (c) Treatment head components for x-ray beam 
treatment. (Khan, 2014)  

 

(a) 

(b) (c) 
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1.2.1 Three-Dimensional Conformal Radiation Therapy 

Advances in radiation therapy have been ongoing since the discovery of x-

rays in 1895 by Wilhelm Conrad Roentgen. At the very beginning the primary 

property which affected the use of x-rays was their energy, since it determined 

their penetration depth in human tissue. Soon after the therapeutic application of 

x-rays, the minimization of dose to normal tissue became important. In order to 

minimize and prevent damaging effects of radiation, linear accelerators were built 

with collimator jaws providing rectangular fields. In addition to the conventional 

collimator jaws, lead blocks or individually made Cerrobend cut-outs can be 

attached to the treatment head for beam shaping. Three-dimensional conformal 

radiation therapy (3DCRT), developed in the early 1990s, coincided with the 

widespread use of computers, which was a great advance due to the increased 

computational power. 3DCRT allowed tumor targeting from multiple angles, while 

at the same time sparing healthy tissue by shaping the beam and improving tumor 

control. One of the most recent innovations, the multileaf collimator (MLC), was 

conceptually developed in the 1980s, and widely clinically used fifteen years later 

(Figure 6). The MLC is composed of several (80 to 120) individual computer 

controlled tungsten “leaves” that move independently in and out of the beam for 

“shaping” x-ray intensity. MLCs are advantageous over blocks as they are more 

efficient and universal (Arthur Boyer, 2001). 
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Figure 6. Multileaf collimator (MLC)  

 

 The treatment planning process for 3DCRT starts with the acquisition of 

anatomical information from images. Different imaging modalities can be used to 

localize the tumor and surrounding organs, but computed tomography (CT) is the 

imaging modality used for dose calculation, which will be discussed in section 

1.2.2. The process by which the targets and other structures are delimitated is 

called segmentation. After segmentation is done, the fields and beam 

arrangements are designed. The ability to determine the best arrangement of the 

fields is enhanced by the ability to visualize by the beam’s eye view (BEV), which 

is the display of the segmented VOIs in a plane perpendicular to the central axis 

of the beam. 

During 3DCRT planning, the number of fields, beam directions, beam 

weights, and modifiers are defined by the planner. The beam modifiers are 

wedges, blocks, compensators, and dynamic MLCs, which help shape the desired 
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fluences and obtain the desired dose distribution (Figure 7). This type of planning, 

where the parameters are defined and iteratively modified manually is called 

forward planning. Forward panning can be labor-intensive for complex cases 

involving many trial-and-error iterations. The time required to plan a 3DCRT 

treatment depends on the experience of the planner, the speed of the planning 

system and the complexity of the plan. The final plan depends on numerous factors 

such as quality of the images, segmentation, field apertures, dose computation, 

plan evaluation and optimization.  

All the steps mentioned for 3DCRT can be visualized as a chain of 

processes, illustrated in Figure 8. The first and second links are the requirement 

of a high-quality three-dimensional image and the localization of the disease and 

the surrounding tissue. The third and fourth links require adequate choice of the 

treatment parameters. The fifth, sixth and seventh links are part of the treatment 

planning system where the dose is computed and evaluated. The last link, patient 

positioning, is crucial for the correct delivery of the planned treatment. The eight 

individual links need to be strong and reliable in order for the patient treatment to 

be successful. 
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Figure 7. (a) Wedge, (b) partial transmission block, and (c) compensator. 
(Nutting et al., 2000). 

 

 

Figure 8. The chain of processes needed for the delivery of 3DCRT. (Mayles 
et al., 2007) 

 

1.2.2 Computed Tomography (CT)  

As mentioned in section 1.2.1, images are required to accurately delineate 

the volumes of interest (VOIs) for treatment planning. Modern imaging modalities 

for treatment planning include CT, magnetic resonance imaging, ultrasound, single 

photon emission tomography, and positron emission tomography. All imaging 
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modalities offer unique advantages in radiation therapy, but the most important is 

CT as it is used in dose calculation.  

 

Figure 9. Computed tomography scanner schematic (Abdulla, 2018). 

 

A CT image is a collection of transmission measurements obtained from the 

scanner’s detectors, which are opposite to a rotating x-ray beam (Figure 9). The 

transmission measurements collected over the different orientations of the x-ray 

source/detectors determine the distribution of attenuation coefficients across the 

patient. A CT image is obtained from reconstructing a matrix of relative linear 

attenuation coefficients. The normalization of the tissue linear attenuation 

coefficients to the linear attenuation coefficient of water is known as the Hounsfield 

unit (HU) or CT number. The CT numbers range from -1,000 for air to +1,000 for 

bone and the conversion to HU is mathematically shown in equation 2, where μ is 

the linear attenuation coefficient. 
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HU= µtissue-µwater
µwater

 × 1,000    (2) 

 The CT numbers can be correlated to electron or physical density 

(electrons/cm3), which is illustrated in Figure 10. In clinical practice, the CT 

numbers and electron density correlations for various tissues can be established 

by scanning a phantom (a water-like plastic), which contains areas (inserts) of 

different known densities that correspond to tissues such as bone, lung, and 

muscle.  

As previously mentioned, an important feature of 3DCRT is the ability to 

reconstruct the patient anatomical images in planes other than the original 

transverse image. For 3D reconstruction, high resolution, high contrast, and thin 

slice thicknesses CT images are needed. In addition to high image quality, the 

images from simulation CT scans need to mimic the geometry of the therapy 

machine. Therefore, there are a few considerations to be taken into account for a 

CT simulator, these include: (1) a flat tabletop with the same material as the 

treatment couch; (2) a large diameter aperture (i.e. ≥70cm) to accommodate 

patient positions for radiation therapy techniques; (3) use of immobilization devices 

used during therapy; (4) use of external landmarks for positioning; and (5) accurate 

image scale in X and Y directions. 
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Figure 10. Computed tomography (CT) numbers as a measure of electron 
density relative to water (Khan, 2014) 

 

1.2.3 Intensity Modulated Radiation Therapy (IMRT) 

The idea of intensity modulated radiation therapy (IMRT) was first proposed 

by Brahme et al. (1982) and developed in the late 1990s as a refined method of 

3DCRT by allowing beam intensity modulation. Higher intensity modulation allows 

for improved dose allocation of the target and better sparing of the healthy 

surrounding tissue. The IMRT technique is achieved by varying the radiation 

fluence across the beam. The fluence variation can be achieved manually with 
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wedges, partial transmission blocks and compensators (c.f. Figure 7). Dynamic 

MLCs allow for modulation of the beam, by creating subfields or segments with the 

moving leaves, and the desired intensity pattern is obtained from the fractional 

weighted summation of the individual segments (Ezzell et al., 2003). For example, 

combining several modulated beams achieves a conformal concave distribution 

around the target, which in turn avoids the surrounding normal tissue (Figure 11). 

 

 

Figure 11. Dose distribution to treat a concave PTV with three beams with 
varying intensities. (Nutting et al., 2000) 

 

In IMRT planning the user specifies beam directions, dose goals and/or 

constraints to the VOIs, and then an optimization algorithm calculates intensity 

patterns creating the dose distribution (Ezzell et al., 2003, Wu and Mohan, 2000). 

This type of optimization is called inverse optimization, meaning that the desired 
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results are specified by the user, and the solution is obtained afterwards through 

numerical algorithms. Since IMRT divides each beam direction into approximately 

102-103 beamlets to be “modulated” (i.e fluence-adjusted), the solution to such 

large number of variables can only be achieved through inverse optimization 

(Ahnesjö et al., 2006).  

There are two categorical methods in which inverse planning can be 

divided: analytic and iterative. The analytic method is a reverse reconstruction 

algorithm where the desired dose distribution is obtained using mathematical 

techniques. Assuming the dose distribution results from convolutions of point-dose 

kernels and kernel density, the kernel density can be obtained by deconvolving a 

dose kernel from the desired dose distribution. The other method is iterative, by 

which the beam weights are adjusted iteratively to minimize a cost function, which 

represents the deviation from the desired goal. Chapter 2 will expand on the details 

of iterative inverse planning optimization. 

The implementation of IMRT not only involves the computational treatment 

planning system, but also the delivery system. In order to deliver the pre-calculated 

intensity-modulated fluence profiles, the accelerator must be equipped with a 

system that can deliver them. In order to deliver the intensity modulated fluence 

profiles, computer-controlled dynamic MLCs are the most practical and commonly 

used. There are three methods by which IMRT can be delivered with MLCs: fixed 

gantry angles, helical tomotherapy, and volumetric arc therapy (VMAT). Fixed 

gantry angle IMRT delivery is further divided into “step-and-shoot” and “dynamic”. 
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Step-and-shoot IMRT is also called segmental MLC delivery, in which the multiple 

fields used are divided into subfields (segments) to create the desired intensity 

modulation (Bortfeld et al., 1994). An example of a one-dimensional intensity 

profile is shown in Figure 12a, which can be achieved in 10 subfields by two 

techniques: “close-in” (Figure 12b) and “leaf-sweep” (Figure 12c). The close-in 

technique is defined by its name, where the segment openings reduce in size, and 

in the leaf-sweep technique, the leaves move from one end to the other to match 

the desired intensity. In the step-and-shoot method, the beam is turned off between 

segments, which is the difference with the dynamic MLC delivery. In the dynamic 

MLC delivery method, also called sliding window method, the leaves sweep 

simultaneously and unidirectionally, each with different velocity as a function of 

time while the beam is constantly on. Figure 13 illustrates the dynamic MLC 

intensity profile achieved by a pair of leaves with velocities VA(x) and VB(x).  
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Figure 12. (a) One-dimensional fluence profile with respect to the distance from 
the central axis. The step-and-shoot IMRT delivery can be achieved by two 
techniques: (b) “close-in” and (c) “leaf-sweep”. (Khan, 2014) 

(a) 

(b) (c) 
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Figure 13. Dynamic MLC intensity profile. The pair of leaves with leading 
leaf B moving with velocity VB(x) and trailing leaf A with velocity VA(x). 
(Bortfeld, 2006) 

1.2.4 Dose Calculation Algorithms 

Radiation dose is defined as the total amount of radiation energy absorbed 

per unit mass. Dose is calculated by the amount of energy deposited in the media 

at any point where the radiation particles interact with it. The more physical 

processes are accounted for, and the faster the computation is, the better the dose 

calculation algorithm is (Lu, 2013).  

Since the mid-1950s, the computerized dose calculation algorithms have 

been evolving. These can be divided into three broad categories: correction-based, 

model-based, and direct Monte Carlo. The evolution of photon dose calculation 

algorithms is illustrated in terms of accuracy and time in Figure 14.  Any of the 

mentioned methods can be used for 3D treatment planning, but nowadays model-

based and Monte Carlo are prevalent. These models are superior because of their 

ability to simulate radiation transport in three dimensions and more accurately 
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predict dose distribution under heterogeneous tissue interfaces and low-density 

media. 

 

Figure 14. Evolution of photon dose calculation algorithms. (Lu, 2013) 

 

Correction-based algorithm is an empirical dose calculation that 

interpolates or extrapolates dose from basic measurements in water. This 

algorithm works well with homogeneous media, but the accuracy with 

heterogeneous media such as the human body is lacking, as it cannot account for 

the lateral scattering when the beam transports in media. Model-based algorithms 

are based on physical models that simulate the actual radiation transport. Due to 

their ability to model primary photon energy fluence incident on a point and the 

distribution of energy subsequent to primary photon interaction, these models are 

able to simulate the transport of scattered photons and electrons away from the 

interaction site. The physical processes are simplified by using a convolution of the 

primary photon energy fluence with a kernel that describes the contribution from 
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scattering photons and electrons. The convolution-superposition method uses the 

radiological pathlength to describe inhomogeneity in media. This concept was 

adapted in different commercial treatment planning systems with different 

approaches: the pencil beam convolution (PBC), the analytical anisotropic 

algorithm (AAA), and collapsed cone convolution (CCC) algorithms. The difference 

between these is the accuracy by which the dose calculation on heterogeneous 

media is calculated (Lu, 2013). 

The Monte Carlo technique consists of a computer program that simulates 

the transport of millions of photons and particles through matter. It uses physics 

laws to determine the probability distribution of individual interactions of photons 

and particles. The larger the number of simulated particles, the greater the 

accuracy of predicting their distributions, but with the caveat of very long 

computational time. The dose distribution is calculated by accruing ionizing events 

in voxels that give rise to energy deposition in the medium. In order to adequately 

predict the dose, the simulation of about a billion histories is needed. The history 

of a particle is defined by its path from generation until interaction; during its track 

the particle changes direction, loses energy, and can produce secondary particles. 

More recently, Acuros XB, an algorithm similar to Monte Carlo, uses the Boltzman 

transport equation to describe all the physical processes involved in dose 

deposition. These equations are solved using numerical methods, which are much 

faster than Monte Carlo with comparable accuracy. As suggested by Lu (2013), 

the next step in radiation therapy should include biological information of tissue to 



33 

 

 

 

primarily avoid healthy tissues and kill cancer cells directly. The investigation 

performed in this dissertation is in line with this idea by determining how including 

CT density information may improve inverse planning optimization. 
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Chapter 2: Dose Optimization 

2.1 Dose-Volume Histogram 

The most commonly used quantitative result of three dimensional (3D) dose 

distributions is the dose volume histogram (DVH) (Drzymala et al., 1991). The DVH 

may be represented in two forms: the cumulative DVH and the differential DVH. 

The differential DVH is formed for the volume of interest (VOI) by counting the 

number of voxels receiving a certain dose and this is performed over the dose 

range observed for the VOI. The integration of the differential DVH results in the 

so called cumulative DVH, which is one of the most often used tools in modern 

radiation therapy. Figure 15 shows an example of an IMRT lung treatment plan 

with its corresponding differential DVHs, cumulative DVHs, and isodose lines. 

DVHs are used to analyze and compare plans in conjunction with isodose 

distributions displayed on the images used for dosimetric planning. Isodose lines 

show regions of uniform dose, high dose, or low dose, and each region’s anatomic 

location and extent (Drzymala et al., 1991). Cumulative DVHs show the extent of 

dose variation within a given structure. In addition, points on DVHs (also often 

termed dose indices) of a VOI, are used for inverse planning in IMRT. These dose 

indices (DIs) used for inverse planning are usually linked to normal tissue toxicity, 

which is the dose limit of an organ before indicating damage. 
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(c)  

 

Figure 15. Example of IMRT plan of lung patient. (a) Differential DVH, (b) 
cumulative DVH, and   dose distribution on a CT axial slice. The “PTVln” is 
the treated target volume, the organs at risk included: cord (green), both 
lungs (tan), esophagus (magenta) and heart (blue). The isodose lines 
represent the doses of 80, 70, 60 and 50 Gy with corresponding colors of 
white, green, red and yellow.  

(b) 

(a

 



36 

 

 

 

2.2 Inverse Planning Mathematics 

In forward planning optimization, when the number of beams is small, the 

3D dose distribution can be defined by equation 3. In this equation D is the 3D 

dose distribution, M is a matrix containing all the information linking beam-space 

to dose-space and there are i beams. In forward planning an acceptable solution 

D is achieved by trial-and-error process where beam weights wj are adjusted 

 

D=Mwi  (3) 

Conversely in inverse optimization, the algorithm explores a range of 

options for wi, such that 2D intensity maps of variable intensities are created. The 

optimization algorithm deduces the delivered D and accepts or rejects the 

solutions, based on predefined objectives. Figure 16 illustrates the calculation 

workflow in treatment planning. For 3DCRT forward planning the process starts by 

defining the collimator shape by using Cerrobend cut-outs or shaping the MLCs, 

as seen in the upper left of the figure, and ends with the calculated dose. The plan 

can then be manually adjusted by repeating the settings until desired. In IMRT 

inverse planning process starts by defining the objective (lower left of the figure). 

Then, guided by the objective, the planning process is automated through an 

optimization feedback look (upward-directed arrows). According to the gradient of 

the objective with respect to the dose, these are used to find new fluence pattern 

directly (left-directed middle arrow). Another approach is called direct machine 



37 

 

 

 

parameter optimization (DMPO), where the gradients are expressed in terms of 

the leaf positions and segment weights (upper look of hatched arrows).   

  

Figure 16. Treatment planning calculation workflow. 

 

On the subject of the objective function, it is defined in equation 4 as Fk, 

where for maximum dose f(di, dk) = H(di – dk) for and f(di, dk) = H(dk – di) for 

minimum dose; H is the Heaviside step function, 𝐻𝐻 (𝑥𝑥)  =  ∫ 𝛿𝛿 (𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
−∞ . The volume 

of the VOI for which Fk is evaluated is V, di is the dose in voxel i, and dk is the 

desired dose in each voxel. The voxel’s volume is vi, and ∆vi is the voxel volume 

relative to the entire VOI volume (Δvi = v i / Vtotal). The weighting factor wk, is a 

dimensionless number that allows the planner to assign importance to certain 

objective/organ of interest. The weighting factor allows the planner to give 
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preference to certain objectives over others. The composite objective function, is 

mathematically defined in equation 5 as the sum of individual functions Fk, where 

τ is the set of parameters to optimize and n is the number of objectives. As this 

objective cost function is based on voxel volumes, it will be called DV-based (dose-

volume) optimization.  

  

Fk=wk ∑ f(di,dk) �di-dk

dk �
2
∆vii∈V        (4) 

F(τ)=∑ Fkn
k=1         (5) 

 

The DV optimization uses maximum and minimum DV functions in order to 

achieve desired doses on the DVH. For minimum and maximum DV objectives, 

the VOI volume is divided into low VL and high VH dose sub-volumes, which are 

determined by the fraction of the volume to receive the most or least dose 

accordingly. Evaluating equation 5 for minimum and maximum DV, V is substituted 

by VL or VH.  Optimization consists of solving for the minimum F(τ), where τ≥0. The 

quadratic term in equation 5 makes the function always positive, calling for the 

minimum difference between the desired dose and dose the voxel. In order to scale 

all functions uniformly for all VOI to contribute equally to the global objective 

function (equation 4), Fk is normalized with respect to dose by dividing by dk and 

with respect to volume with the term ∆vi=vi/vtotal..  
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2.3 Dose-Mass-Based Optimization   

Dose-mass histogram (DMH) employs tissue mass rather than volume as 

in DVH. By including tissue density information, Equation 4 can be modified to 

obtain dose-mass-based optimization function (equation 6).  The term ∆mi is the 

voxel mass normalized to the total VOI mass and can be expanded as shown in 

equation 6. It can be noted that for constant density voxels, ρ=ρ i=ρk the density 

term may be moved in front of the summation, resulting in equation 5. Therefore, 

dose-mass-based (DM) optimization is mathematically more general form of dose-

volume-based (DV) optimization. As the density in a VOI changes, the solution of 

DV and DM optimization will differ, since DM includes the density variations. 

 

Fk=wk ∑ f�di,dk� �di-dk

dk �
2
∆mi             i∈V (4) 

∆mi= ρi×vi
∑ ρk×vkk∈V

                   (5) 

 

An example of such optimization was demonstrated in a simple model of a 

phantom with three VOIs of different densities by Mihaylov and Moros (2014) as 

shown in Figure 17. The cubes were 10 cm x 10 cm x 10 cm with densities of 0.2 

(yellow), 0.8 (red), and 1.0 (green) g/cm3 as shown. Within the unit density cube 

was a cylindrical target with a diameter of 3 cm and a length of 3 cm. Two beams, 

one anterior-posterior (AP) and one lateral (Lat), were set to have equal weights 
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and an aperture of 2 cm x 2 cm with a goal to deliver a dose of 500 cGy to 95% of 

the target volume. A total of 833 monitor units (MUs) were required to deliver the 

desired prescription. After DM optimization was performed, 474 MUs were 

delivered though the high-density region and 359 MUs through the low-density 

region. Such difference in MUs illustrates the higher absorption by the high-density 

region. 

            

Figure 17. Model phantom with three cubes of different densities irradiated 
with an AP beam and a Lat beam. (Mihaylov and Moros, 2014) 

 

Mihaylov and Moros (2014) conducted a second experiment with the same 

set-up to compare DV and DM optimization, the two regions of 0.8 and 0.2 

densities were combined to form one OAR, to which dose was to be minimized 

during optimization. The target was irradiated with the two beams, AP and Lat, 

both centered on the target’s geometric center. Each beam was only allowed to 

have one IMRT segment. For comparison purposes, two IMRT plans were 
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generated, one according to DV optimization and another with DM optimization. 

The inverse optimization for both were performed by decreasing the OAR dose 

iteratively until the standard deviation of the dose across the target reaches 6% of 

the prescription dose. Figure 18 illustrates the resulting DVHs from the two 

optimization approaches.  

The results showed that dose to the low-density region was higher for DM 

compared to DV optimization and the opposite is observed in the high-density 

region. Table 3 lists the percent of monitor units (MUs) delivered by each beam 

through the corresponding high- or low-density regions. The experiment showed 

that taking into account density (or mass) during optimization in this simple 

scenario results in more dose being delivered through the low-density region (Lat 

beam), therefore “penalizing” more the beams passing through the high-density 

region (AP beam).            

 

Table 3. Percentage of MUs delivered through each high- or low-density 
region. (Mihaylov and Moros, 2014) 

DV DM 

Low-density High-density Low-density High-density 
73.14% 26.86% 79.38% 20.62% 
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Figure 18. Resulting DVH plots from DVH-based optimization and DM 
optimization from plan set up shown in Figure 5. (Mihaylov and Moros, 
2014)  

 

2.3.1. Applying DM Optimization for NSCLC and HNSCC   

 The reasoning behind using DM optimization is that very heterogeneous 

media will yield a different dose distribution as density differences are accounted 

for. Lung density tends to be heterogeneous throughout due to blood, lung tissue 

and air. The proportion of the components changes continuously during 

respiration, changing the lung density (Verschakelen et al., 1993, Nioutsikou et al., 

2005b). Since the change in electron/physical density changes the dose 

distribution, using DM is a more robust way of calculating dose, since the density 

dependency is eliminated.   
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 A good visualization published by Nioutsikou et al. (2005b) shows the 

changes that occur in lung voxels during respiration and how DVH and DMH 

values differ. Figure 19 illustrates two equal-volume voxels at maximum exhale 

(Vo) with different mass. The first voxel (VX1) has a mass of mo and receives a 

dose of 5 and the second voxel (VX2) has a mass of 2mo and receives a dose of 

7. At maximum inhale, VX1 doubles in volume and VX2 triples in volume. The dose 

to VX1 and VX2 change to 6 and 2, respectively. The corresponding cumulative 

DVHs and DMH are shown in Figure 20 for maximum exhale and maximum inhale. 

Volume dependency translates to breathing-phase dependency in the DVHs, 

whereas DMH is independent. 

 

 

 

  

Figure 19. Two voxel representation of lung at maximum exhale (left) and 
maximum inhale (right). The volumes, mass and dose are displayed. 
(Nioutsikou et al., 2005b)  
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Figure 20. Dose volume histograms with volumes normalized to maximum 
inhale and maximum exhale. Dose mass histogram has no dependency on 
breathing phase. (Nioutsikou et al., 2005b) 

 Mihaylov and Moros (2015) demonstrated that for fourteen NSCLC patients 

with minimally moving thoracic lesions the majority of the dose indices taken into 

account for analysis, DM optimized plans resulted in lower dose to OARs 

compared to DV plans. In the study both DV and DM were normalized to 95% of 

the planning target volume (PTV) and the doses to the OARs were iteratively 

lowered until the standard deviation of the dose across the PTV became 

approximately 4% (Aaltonen et al., 1997). Figure 21 illustrates the results of the 

dose indices (DIs), which are dose-volume points that are commonly used to 

analyze plans. The points are the DI values obtained from DM and DV plans, with 
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DV plans used as reference, therefore a larger normalized value means that the 

dose in the DM plan was lower than the DV plan. Results showed a statistically 

significant sparing of the OARs with DM optimization compared to DV optimization 

with case-by-case dependencies.   

 

 

Figure 21. Normalized dose indices and isodose volumes for the fourteen 
patients with respect to the DM plan. The top panel illustrates the indices 
for heart, cord, and esophagus and the bottom panel the lung data. A value 
larger than one means that DM optimization resulted in lower dose. 
(Mihaylov and Moros, 2015)  
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2.4 Energy-Based Optimization  

The definition of dose is energy imparted per unit mass, with units of 

Joules/kilogram or Gray. The amount of total imparted energy is called integral 

dose, I,j, of VOI j composed of x voxels (equation 8). Since voxels are discrete, the 

equation can be represented in a discrete summation of all voxels within the VOI.  

The equation is mathematically described in  equation 9. Di,j, mi,j, ρ i,j, vi,j and Ei,j 

are the dose, mass, density, volume  and imparted energy of the voxel i in the VOI 

j, respectively. By minimizing equation 8, the total energy imparted to the VOI is 

minimized. 

 

𝐼𝐼𝑗𝑗 = ∫𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑 = ∫𝐷𝐷𝐷𝐷𝐷𝐷  𝑑𝑑𝑑𝑑 = ∫ 𝐸𝐸
𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌  𝑑𝑑𝑑𝑑 =  ∫𝐸𝐸 𝑑𝑑𝑑𝑑             (8) 

Ij = ∑ Ei,jn
i=1       (9) 

 

Dose calculations are based on CT derived attenuation coefficients mapped 

to electron density through a calibration procedure. Electron density, which scales 

with the physical density of the material, governs the number of Compton 

interactions. The electrons set in motion due to those Compton interactions, lead 

to ionizations, which affect the biological response in the living cells.  

In order to illustrate the difference between DV and Energy optimization, 

Mihaylov (2014) used the same phantom set-up as in Figure 8 to compare DVH- 

and Energy-based optimizations. The resulting DVH plot is shown in Figure 22, 
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where the dashed and solid lines represent Energy and DV, respectively. The 

results showed that Energy-based plan delivered a higher maximum dose (dose 

to 1% of the volume) to the low-density region (564 cGy) and the combined OAR 

(541 cGy) compared to DV plan with 540 cGy in the low density region and 520 

cGy in the OAR. On the other hand, dose to the high-density region was lower in 

Energy-based plan (216 cGy) versus in DVH-based plan (248 cGy). The average 

dose to the OAR were 45 and 50.2 cGy, respectively. Comparing the integral dose 

delivered the Energy plan imparted less energy for all VOIs with a value of 

0.941815 J compared to DV plan with 1.09977 J. The same trend is observed with 

each region, as expected since the goal of Energy optimization is to reduce the 

energy deposition to the VOIs. 

 

Figure 22. Resulting DVH plots from the two inverse optimization 
approaches: DVH-based optimization and Energy-based optimization. 
(Mihaylov, 2014). 
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2.4.1. Applying Energy-Based Optimization for NSCLC and HNSCC  

 As in DM optimization, the heterogeneous anatomy of NSCLC and HNSCC 

make the density inclusion in optimization an interesting concept to explore. 

Mihaylov (2016) expanded on the integral dose concept to twenty NSCLC patients 

by creating two IMRT plans: DV and Energy. Both plans used the same objectives 

and target dose were set and the optimization stopped once the standard deviation 

across the PTV was 4%. DIs, isovolumes and equivalent uniform dose values were 

used for the comparison. Figure 23 illustrates the comparison of the two plans with 

normalization to the DVH values for the DIs and isovolumes for all OARs for each 

patient. A value larger than unity corresponds to a larger dose or volume for the 

Energy-based plan compared to the DV plan. The majority of the patients showed 

a lower dose to the surrounding organs with the Energy-based plans, but variations 

occurred for each patient, which may be due to the differences in anatomy, 

physiology and tumor location.  

The same concept of integral dose can be applied to HNSCC as the 

surrounding anatomy is heterogeneous and complex. Ultimately, the goal is to 

lower the dose to the surrounding tissues for lesser side effects, which may be 

achieved by minimizing the energy deposited.
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Figure 23. Normalized DIs and isovolumes for all OARs per patient. The top 
panel presents the DIs for spinal cord, heart and esophagus. The bottom 
panel presents the DIs and isovolumes for the lungs. (Mihaylov, 2016). 
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Chapter 3. Mass-Based Optimization Sensitivity to IMRT Optimization Parameters 

Inverse optimization for IMRT planning can be performed in either one- or 

two-step process. In the two-step process, fluence optimization is performed first 

and leaf trajectories are generated afterwards (Hårdemark, 2003, Shepard et al., 

2002). In the more recent one-step approach, the MLC leaf-sequencing step and 

other physical constraint parameters are included in the optimization in order to 

generate deliverable plans. One-step optimization can be performed by direct 

aperture optimization (DAO), which uses simulated annealing algorithm, or direct 

machine parameter optimization (DMPO) using gradient descent algorithm (Li et 

al., 2015). DMPO was illustrated in section 2.2 with Figure 16, where depending 

on the gradient with respect to the dose, the changes to the leaf parameters 

change. This type of optimization reduces the number of segments and monitor 

units. In addition, it improves conformity and homogeneity without compromising 

plan quality (Hårdemark, 2003, Dobler et al., 2009, Ludlum and Xia, 2008). Studies 

have demonstrated that the different  IMRT parameters defined prior to 

optimization, such as the number of segments, segment area, number of intensity 

levels, number of MUs per beam and MLC leaf increment affect plan outcome 

(Mittauer et al., 2013, Derbyshire et al., 2009, Cheong et al., 2013, Worthy and 

Wu, 2009, Jiang et al., 2005) 

It has been reported that large number of segments and small segment 

areas result in more complex plans with higher intensity modulation (Cheong et 

al., 2013). The mentioned study concluded that a range between 80-120 number 
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of segments and 4-8 cm2 for segment area was appropriate for complex HN cases, 

but decreasing the number of segments and increasing segment area for more 

simple cases showed good plan quality. Another study (Mittauer et al., 2013) 

suggested that limiting the minimum segment area to less than 5 cm2 preserves 

the dose to OARs and PTVs within objectives and dose deviations within 4% for 

HN cases. For lung cases, Nioutsikou et al. (2004) demonstrated that with a 

maximum of 40 segments in total with five fields the dose homogeneity would not 

be compromised. 

Given that changes in IMRT parameters alter the optimization solutions, 

part of this dissertation will study the sensitivity of DM and Energy optimization 

modalities to IMRT parameter variations. Such investigations will lead to further 

understanding of density effects on plan optimization. 

3.1 Study on Sensitivity to IMRT Parameter Variation  

The purpose of this study was to compare DM, Energy and DV optimization 

sensitivity to changes in IMRT delivery parameters.  

3.1.1 Methods and Materials 

Twelve NSCLC and twelve HNSCC patients were retrospectively optimized 

using DV, DM and Energy optimization. In a preliminary study the comparison was 

made between DM and DV, including two patients for the NSCLC and two patients 

for HNSCC were used for comparison. For all optimization approaches, changes 
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to two parameters were studied: number of IMRT segments (5 and 10 per beam) 

and the minimum segment area (2 and 6 cm2). Four plans were developed for each 

combination (Table 4) in order to determine the sensitivity of the two parameters. 

Optimization was performed with the treatment planning system (TPS) Pinnacle 

Research version V.8.1y (Philips Radiation Oncology Systems, Fitchburg, WI) with 

DMPO. The dose grid was 3 mm3 for the HNSCC cases and 4 mm3 for the NSCLC 

cases. The number of beams, beam angles, and minimum MUs per segment were 

the same for both optimizations approaches for each patient. During optimization, 

doses to the OARs were iteratively lowered until the standard deviation across the 

PTV was above between 3.0% and 5.0%, since a standard deviation of no more 

than 5% has been recommended to achieve proper tumor control (Aaltonen et al., 

1997). For each patient DV, Energy, and DM plans were normalized such that 95% 

of the PTV received the same dose. Plan quality was evaluated by dose indices 

(DIs), which represent the dose delivered to a certain anatomical structure volume. 

For the NSCLC cases, DIs assessed included: 1% cord (1% of spinal cord 

volume), 33% heart, 20% and 30% both lungs, and 50% esophagus. In the 

HNSCC cases: 1% spinal cord, 1% brainstem, 50% left/right parotids, 50% larynx, 

and 50% esophagus. The comparisons between different plans were made relative 

to the parameter changes, using a paired two-tailed student’s t-test.  The average 

values of the DIs were found to be statistically significant if p value ≤ 0.05.      
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Table 4. Four plans developed involved the combination of 5 segments and 
10 segments with areas 2 cm2 and 6 cm2. Each plan was named according 
to the combination of segments (s) and area (a): 5s_2a, 5s_10s, 10s_2a 
and 10s_6a. 

 

 

 

3.1.2 Results  

For the preliminary study with four patients, the resulting average percent 

change for each DI was not significant in either optimization modality. For most 

cases, DM optimization seemed to be more sensitive to segment area change than 

DV, but such conclusion could not be reached with the small number of cases 

studied. Twenty more cases where included in the cohort, with which Energy-

based plans showed more definitive results. The NSCLC cases resulted in larger 

changes observed with Energy plans compared to DM and DV plans. Figure 24 

shows the average dose for each DI evaluated or each of the three inverse 

optimization approaches. When increasing the segment area and keeping 5 

segments/beam, the Energy plans showed statistically significant increase in dose 

to 1% cord, 30% both lungs and 50% esophagus. The Energy plans also results 

in statistically significant changes to maximum dose to cord with 10 

segments/beam when increasing the segment area and also when the number of 

 5 segments 10 segments 

2 cm2 area 5s_2a 10s_2a 

6 cm2 area 5s_6a 10s_6a 
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segments increased keeping the segment area 6 cm2. DM plans resulted in 

significant difference when the area increased for 50% esophagus with 10 

segments/beam. The DV plans showed significant difference in 20% both lungs 

when the number of segments increased while keeping the segment area 6 cm2. 

Table 5 lists the p-values of the statistical tests, where p ≤ 0.05 was considered to 

be statistically significant. 

Another approach to illustrate the results was to use the closest 

arrangement of parameters clinically used and compare the results for DM and 

Energy. According to DV-based studies 10 segments/beam and a minimum 

segment area of about 5 cm2 are appropriate for lung cases (Nioutsikou et al., 

2004). Figure 25 illustrates the average dose per DI for each parameter 

combination with respect to 10 segments/beam and 6 cm2 segments area for 

comparison purposes due to being the closest clinically used parameters. 

The HN cases showed larger changes with the Energy plans (cf. Figure 

26), with statistically significant differences when increasing the segment area  for 

1% brainstem, 50% left and right parotid and 50% larynx using either number of 

segments per beam (5 and 10 segments/beam). Also, increasing the segment area 

with 10 segments/beam was on average statistically significant for cord 1%. 

Furthermore, increasing the number of segments using 2cm2 segment area, 

resulted in significant decrease for 50% parotids and 50% esophagus. The DV 

plans showed statistically significant increase when increasing the number of 

segments (2 and 6 cm2) for 50% larynx. In addition, esophagus 50% resulted in 
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significant difference when using 6cm2 segment area and increasing the number 

of segments. Finally, the only DI that showed significant difference in the DM plans 

was 50% larynx when increasing the segment area with 10 segments/beam. Table 

6 lists the resulting statistical test p-values due to changing parameters. The same 

approach to illustrate and compare with clinically used parameters as for the 

NSCLC cases is shown in Figure 27. The values shown in the figure are with 

respect to 10 segments/beam and 2 cm2 minimum segment area. 

 

 

Figure 24. Lung cases: Each point represents the average dose index for 
the four different segment parameter combinations: 5 or 10 segments/beam 
and 2 or 6 cm2 segment area. (Legend indicates arrangement - 5s_2a 
denotes 5 segments with minimum area of 2 cm2) 
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Table 5. Lung cases: Statistical test p-values for the change in parameter (i.e. 
change in segment area) per optimization approach. The highlighted values 
represent those with statistical significance. 

  
changing segment area 

 (5 segments/beam) 
changing segment area 
 (10 segments/beam) 

  Energy DM DV Energy DM DV 
cord D1 0.0001 0.6574 0.4690 0.0299 0.2944 0.0576 
heart D33 0.2439 0.9820 0.5871 0.3258 0.7085 0.4397 
bilungs D20 0.6051 0.0531 0.0741 0.4656 0.5939 0.2509 
bilungs D30 0.0188 0.1954 0.5161 0.1491 0.5980 0.7441 
esophagus D50 0.0062 0.3301 0.6213 0.3373 0.3339 0.9615 

  
changing number of 

segments/beam (2cm2) 
changing number of 

segments/beam (6cm2) 
  Energy DM DV Energy DM DV 
cord D1 0.1098 0.5233 0.1283 0.0376 0.2987 0.1786 
heart D33 0.8593 0.9519 0.3240 0.3979 0.3539 0.7971 
bilungs D20 0.2501 0.5730 0.4727 0.2583 0.1398 0.0368 
bilungs D30 0.7009 0.5716 0.4511 0.1208 0.0873 0.0969 
esophagus D50 0.2845 0.3891 0.8366 0.3792 0.0191 0.4598 
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Figure 25. Lung cases: Each point represents the normalized dose of the 
parameter combination (i.e. 5s_6a is 5 segments/beam with 6 cm2 area) 
with respect to 10 segments/beam with 6 cm2 as it is the most closely 
resembling the clinically used DMPO segment parameters in DV 
optimization. It is important to note the differences in the ordinate scale as 
the Energy plans showed significantly larger variation in values with a range 
of [0.69-1.2]. Also, values for bilungs D20 in the Energy plans plot are close 
and almost cannot be differentiated. The same issue occurs for heart D33 
in the DM plans plot. 
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Figure 26. HN cases: Each point represents the average dose index for the 
four different segment parameter combinations: 5 or 10 segments/beam 
and 2 or 6 cm2 segment area. (Legend indicates arrangement - 5s_2a 
denotes 5 segments with minimum area of 2 cm2) 
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Table 6. HN cases: Statistical test p-values for the change in parameter (i.e. 
change in segment area) per optimization approach. The highlighted values 
represent those with statistical significance. 

  
changing segment area  

(5 segments/beam) 
changing segment area  

(10 segments/beam) 
  Energy DM DV Energy DM DV 
cord D1 0.1005 0.4378 0.2124 0.0281 0.2164 0.2584 
brainstem D1 0.0242 0.9088 0.3386 0.0132 0.1617 0.2206 
left parotid D50 0.0169 0.8135 0.2709 0.0157 0.4620 0.3903 
right parotid D50 0.0195 0.3329 0.1816 0.0194 0.5034 0.2780 
larynx D50 0.0415 0.9682 0.3965 0.0213 0.0191 0.3404 
esophagus D50 0.2200 0.7829 0.9903 0.1238 0.8440 0.7586 

  
changing number of 

segments/beam (2cm2) 
changing number of 

segments/beam (6cm2) 
  Energy DM DV Energy DM DV 
cord D1 0.1063 0.2902 0.5726 0.6113 0.2736 0.1712 
brainstem D1 0.7555 0.9917 0.1643 0.5608 0.3199 0.1896 
left parotid D50 0.0471 0.6215 0.7128 0.7400 0.7568 0.0849 
right parotid D50 0.0326 0.8966 0.8255 0.1127 0.9568 0.5292 
larynx D50 0.6792 0.9853 0.0359 0.1971 0.1486 0.0254 
esophagus D50 0.0180 0.9061 0.2466 0.4014 0.6116 0.0354 
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Figure 27. HN cases: Each point represents the normalized dose of the 
parameter combination (i.e. 5s_2a is 5 segments/beam with 2 cm2 area) 
with respect to 10 segments/beam with 2 cm2 as it is the parameters most 
closely resembling the clinically used DMPO segment parameters in DV 
optimization. It is important to note the differences in the ordinate scale as 
the Energy plans showed significantly larger variation in values (range: [1-
1.51]) compared to DM (range: [0.95-1.07]) and DV (range: [0.99-1.15]). 
Some point in the DM plot cannot be differentiated since the values are very 
close. 

 

3.2.3 Discussion and Conclusion on the Sensitivity to IMRT Parameter Variation 

  Accounting for density variations within volumes of interest affects the 

inverse optimization results. Dose-mass inverse optimization increases OAR 
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sparing for NSCLC cases, with some case dependencies (Mihaylov and Moros, 

2015), while Energy-based plans (Mihaylov, 2016) result in lower dose to the 

surrounding OARs in NSCLC cancer, supporting the notion that explicit 

incorporation of density distribution in the optimization functions affects the 

resulting inverse optimization solutions. Mass-based inverse optimization depends 

on IMRT beam parameters, such as minimum segment area and number of 

segments per beam was investigated. In conventional DV optimization, the choice 

of IMRT parameters affects the plan quality. It is important to note that highly 

modulated plans with very small segment areas may not be deliverable due to 

hardware limitations (McNiven et al., 2010, Li et al., 2003). Dosimetric differences 

between planned and measured dose can be attributed to dose calculation errors 

in the treatment planning system, errors by the dosimeter used, and errors of the 

linac (Li et al., 2003). Errors of the linac include errors due to mechanical limitations 

of the MLCs, which typically occur with very complex and highly modulated plans. 

In line with the mentioned DV studies, in the DM and Energy plans the 

segment area smaller than 5 cm2 and number of segments greater than 80 was 

beneficial for HN cases for most DIs. However, the average maximum dose to the 

cord showed better sparing with 5 segments per beam for the DM plans. The 

results for the DV plans were in agreement with previously published studies, 

where the 10s_2a parameter combination showed the lowest average doses for 

all DIs and the doses increased with larger segment area and less segments per 

beam. Similar to those results were the results for the Energy DIs, but the changes 
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were larger as the segment area increased. In somewhat simpler lung anatomy, 

the number of segments can be smaller and the allowed segment area could be 

larger for clinically viable solutions. The results for improving dose sparing with a 

certain combination was not uniform across DIs for the DV plans, but the dose 

changes were small when varying the parameters. The Energy plans showed that 

a segment area of 2 cm2 improved most DIs, regardless of the number of 

segments. The most notable improvement was observed for the maximum dose 

to the cord. This might be due to the relative location of the beams with respect to 

the target as well as the steep density gradient around the spinal cord where soft 

tissue is adjacent to the bones of the vertebrae. The results indicate that with the 

use of a single objective function, as is Energy optimization, any variation of IMRT 

segment parameters changes the plan to larger extent than in multi objective 

optimization approaches such as DV and DM. Therefore, it is important to 

appropriately determine the DMPO parameters for Energy optimization.  

Energy-based optimization showed more sensitivity to IMRT segment 

parameters compared to DV and DM optimization. The sensitivity was more 

notable in the HNSCC cases than NSCLC cases, which may be due to the close 

proximity of many OARs, which is related to the higher necessary beam intensity 

modulation. Furthermore, the Energy plans were more sensitive to the segment 

area than to the number of segments per beam. 
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Chapter 4. Dosimetric Changes due to Changing Patient Anatomy during 
Radiotherapy Treatment 

Anatomical changes during the course of radiotherapy treatment are not 

uncommon. Change in NSCLC cancer patients may include atelectasis, pleural 

effusion, pneumonia/pneumonitis, and tumor regression/progression (Bosmans et 

al., 2006, Britton et al., 2007, Erridge et al., 2003, Fox et al., 2009, Møller et al., 

2014, Kwint et al., 2014). Dosimetric changes due to anatomical alterations have 

been analyzed and found to be significant in some cases (Britton et al., 2009, 

Yamada et al., 2006, Kataria et al., 2014). A study looking at anatomical change, 

respiratory motion, and baseline shifts during radiotherapy found that only 

anatomical changes resulted in large dosimetric changes compared to the other 

two factors (Schmidt et al., 2013). They also mentioned that the large anatomical 

changes that cannot be accounted for by increased margins, lead to large 

dosimetric changes. These kind of changes require plan adaptation. 

Anatomical changes in HNSCC cases are even more pronounced than in 

NSCLC due to weight loss, tumor, and nodal shrinkage (Barker Jr et al., 2004, 

Schwartz and Dong, 2011, Barkley Jr and Fletcher, 1977). Changes in parotid 

volumes in HN cases include shrinkage and displacement during radiation 

treatment, resulting in a 10% increase of mean dose (Lee et al., 2008, O'Daniel et 

al., 2007, Wu et al., 2009). These and other studies have found that target 

coverage was not significantly changed with the use of appropriate margins 

(Ballivy et al., 2006). Many studies have analyzed such changes in order to 
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determine the necessity of adaptive radiotherapy to determine re-planning 

strategies (Barker Jr et al., 2004, Schwartz and Dong, 2011, Castadot et al., 2010). 

As in the case of IMRT beam parameter dependencies discussed in the 

previous chapter, the inclusion of density in DM and Energy inverse optimization 

approaches may be more sensitive to changes during RT than in most commonly 

used DVH optimization.  

4.1 Study on DMH Dependence on HNSCC Patient Anatomy 

Anatomical changes not only mean volumetric changes, but also changes 

to mass. Since the volumetric changes have been well established in the literature, 

this study seeks to determine the sensitivity of DMHs. 

4.1.1 Methods and Materials 

Eight patients undergoing radiotherapy treatment for HNSCC were scanned 

during the third and sixth week of treatment. These second (CT2) and third (CT3) 

CTs were co-registered to the planning CT (CT1). Contours were propagated via 

deformable image registration from CT1 and doses were re-calculated with the 

original treatment plans. DMHs were extracted for each CT image set. DMH 

sensitivity was assessed by dose-mass indices (DMIs), which represent the dose 

delivered to a certain mass of and anatomical structure. DMIs included: dose to 

98%, 95% and 2% of the target masses (PTV1, PTV2, and PTV3) and OARs: cord 

DMI2%, brainstem DMI2%, left_ and right_parotid DMI2% and DMI50%, and 
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mandible DMI2%. A two-tailed paired t-test was used to compare changes to DMIs 

in CT2 and CT3 with respect to CT1 (CT2/CT1 and CT3/CT1). 

4.1.2 Results and Conclusions 

Results showed a significantly lower dose to the DMI98% for the three 

PTVs. For all patients DMI98% to all PTVs were lower for CT2 and CT3 compared 

to CT1, except for one patient case which PTV3 DMI98% was 0.2 Gy higher in 

CT2 compared to CT1. For the three PTVs DMI95% was significantly different 

between CT2 and CT1 (CT2/CT1) for PTV1 and between CT3 and CT1 (CT3/CT1) 

for PTV3, and both (CT2/CT1 and CT3/CT1) for PTV2. Dose reduction to the PTV1 

prescription (DMI95%) was in the range from 0.2 Gy to 4.9 Gy. The lower coverage 

to the three PTVs suggests the need to re-plan about half-way through the 

treatment (CT2). Maximum dose, on the other hand, was significantly higher for 

PTV1 and PTV2 in both CT2/CT1 and CT3/CT1, and only CT2/CT1 for PTV3.  

On the contrary, doses to OARs did not show significant changes. Figure 

28 illustrates the average percent change of CT2/CT1 and CT3/CT1 for DMIs of 

OARs and PTVs. Maximum doses to cord and mandible were higher as RT 

progressed but, for brainstem DMI2% was reduced. Changes were most 

pronounced for the left_parotid DMI50% in CT2/CT1 with an average percent 

change and standard deviation of 22.58% ± 75.95. Right_parotid DMI50% had the 

largest change in CT3/CT1 (14.21% ± 38.21). This large change and variation was 
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due to patient 2, who had substantial variation between CTs compared to the other 

patients.  

It was found that changes in anatomy significantly changed dose-mass 

coverage for the planning targets, making it necessary to re-plan in order to 

maintain the therapeutic goals. Maximum dose to the PTVs increased significantly 

as RT progresses, which may not be problematic as long as the high dose remains 

within the gross tumor volume. Doses to OARs were minimally affected and the 

differences were not significant. 

 

 

Figure 28. Average percent change between CT2 relative to CT1 (CT2/CT1) 
and CT3 relative to CT1 (CT3/CT1) for each DMI. Positive values 
correspond to increased dose for the corresponding DMI. Error bars show 
the standard deviation of the percent change for all patients. 
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4.2 Study on DM Optimization Sensitivity to Anatomical Changes 

The purpose of this study was to compare the sensitivity of DM and DV 

optimization to anatomical changes during radiotherapy. 

4.2.1 Methods and Materials 

Six NSCLC and six HNSCC patients were CT scanned during radiotherapy 

course multiple times. The notation is as follows: CT1 is the pre-planning CT, CT2 

is mid-RT, and CT3 is after completion of the radiotherapy regimen. Scans 2 and 

3 were co-registered to the planning CT1 to deformably propagate the contours. 

Two plans were generated for each patient on CT1: DV and DM. For each case 

Energy and DV plans were generated on the planning CT1 using nine equispaced 

beams using step-and-shoot IMRT. DV plans were used as a benchmark since 

current clinical practice is based predominantly on this type of optimization. During 

optimization, doses to the organs at risk were iteratively lowered until the standard 

deviation across the PTV was ~4.0%. All plans were normalized to 95% of the 

prescription dose to the PTV: 80 Gy in 35 fractions for the NSCLC cases and 70 

Gy to the primary PTV for the HN cases. Subsequently, the plans were transferred 

to CT2 and CT3, and doses were recalculated. This scenario represents the actual 

treatment regimen, where no plan adaptation is employed.  DIs were used in order 

to compare the two plans and the changes occurring with RT progression. DIs 

used for the NSCLC cases were: PTV D95%, cord D2%, both lungs D20% and 



68 

 

 

 

D30%, and heart D33%. For the HN cases, DIs included: PTV1 D95%, cord D2%, 

brainstem D2%, left_ and right_parotid D2% and D50%. 

4.2.2 Results and Conclusions 

The absolute relative (in percent) change between the final CT (CT3) and 

the planning CT (CT1) yielded larger average values for DM plans compared to 

DV plans for most DIs, except PTV D95 for NSCLC cases and left_parotid D50 for 

HNSCC cases. Table 7 lists the average changes for the NSCLC cases and Table 

8 the changes for HNSCC cases. Some DI changes between CT2 and CT1 and 

between CT3 and CT2 were on average larger for DM plans compared to DV 

plans. The observed changes are comparable between DV and DM optimization 

schemes.  

 

Table 7. Average absolute value percent change between CTs for the 
NSCLC cases. 

NSCLC cases  
CT2-CT1 

 
CT3-CT1 

 
CT3-CT2 

Dose Index DV DM DV DM DV DM 

PTV D95 2.07 2.22 6.87 4.98 5.15 3.91 

Cord D2 15.10 34.35 18.71 20.21 17.39 20.78 

Heart D33 29.92 33.02 26.36 37.23 15.32 16.65 

Both lungs D20 11.90 11.25 16.28 17.71 10.01 9.86 

Both lungs D30 11.47 11.38 15.03 16.48 10.67 9.74 
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Table 8. Average absolute value percent change between CTs for the 
HNSCC cases. 

 

4.3 Study on Energy Optimization Sensitivity to Anatomical Changes 

The purpose of this study was to compare the stability of Energy-based 

inverse optimization on changing anatomy in HNSCC. 

4.3.1 Methods and Materials 

Fifteen HNSCC patients were scanned during treatment. As with the 

previous study (section 4.2), the mid-treatment scan (CT2) was rigidly registered 

and all VOIs were deformably propagated from the planning CT (CT1). For each 

case Energy and DV plans were generated on the planning CT1 using nine 

equispaced beams using step-and-shoot IMRT. As in the previous study (section 

4.2), DVH was used as the benchmark for the comparison. During optimization, 

doses to the organs at risk were iteratively lowered until the standard deviation 

HNSCC cases  
CT2-CT1 

 
CT3-CT1 

 
CT3-CT2 

Dose Index DV DM DV DM DV DM 

PTV1hn D95 1.04 0.81 0.78 0.84 1.35 1.24 

Cord D02 14.25 14.71 16.44 18.00 6.19 6.39 

Brainstem D02 7.88 7.91 7.86 8.98 5.46 5.85 

Left_parotid D02 8.27 7.07 6.06 6.31 9.82 8.40 

Left_parotid D50             4.29 4.12 8.19 7.95 6.27 7.11 

Right_parotid D02 6.22 6.61 29.41 30.03 25.47 26.53 

Right_parotid D50 3.79 4.55 8.30 10.08 4.81 5.96 
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across the PTV was ~4.0%. All plans were normalized to 95% of the prescription 

dose to the primary PTV: 70 Gy in 33 fractions. The plans were then transferred to 

the subsequent CTs without any modification/re-optimization. Dose indices (DIs) 

were obtained for plan stability evaluation. DIs used included: PTV1 D95%, cord 

D2%, brainstem D2%, left_ and right_parotid D2% and Dmean, esophagus D50%, 

larynx Dmean and mandible D2%. Absolute percent differences between DIs from 

subsequent CTs were tallied. Furthermore, a two-tailed paired t-test was used to 

compare changes on the absolute dose differences of the DIs.  In addition, the 

clinical plans, used for actual treatment, were also analyzed. 

4.3.2 Results and Conclusions 

Regardless of the optimization modality the changes that occurred were 

small with some exceptions. The average absolute percent change between CT1 

and CT2 for each DI is listed in Table 9, where the values in bold represent the 

higher value between DV and Energy optimized plans. Change for six out of the 

ten DIs was larger for DV plans compared to Energy plans, but there were no 

statistically significant differences between the two optimization modalities for any 

DI when comparing the absolute doses. This result indicates that the DI differences 

are drawn from a distribution with mean zero and some symmetric spread around 

the mean. The high average absolute value percent change for the esophagus 

D50% was due to an outlier where the absolute doses were very low. For this case 

the second CT was difficult to register to the planning CT due to neck tilt and 
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noticeable area shrinkage, leading to higher dose to the volumes of interest. The 

changes observed in the clinical plans were comparable to the tested plans, with 

slightly smaller changes, which was large due again to one outlier. The variability 

of the change for the two modes of optimization is illustrated in Figure 29. The 

outlier is not shown in the figure as it had a 295% change.  

Even though Energy-based inverse optimization depends explicitly (through 

the optimization cost function) on the density distribution within volumes, the 

dosimetric changes that occur during radiation treatment are small and 

comparable to that of DV plans for HNSCCC. With either optimization large 

differences may occur due to noticeable weight loss and/or positioning errors.  

Table 9. Average value percent change between planning CT (CT1) and 
mid-treatment CT (CT2) for each optimization approach: DV and Energy. In 
addition the clinically used results are listed for reference purpose. 

 

 

 

 

 

 

 

 

 

 

 

 Absolute value percent 
change between CT1 & CT2 

 
Dose Index 

 
DV 

 
Energy 

 
Clinical 

PTV D95 0.78 1.06 1.95 

cord D02 13.09 10.12 3.22 

brainstem D02 11.15 10.73 5.35 

esophagus D50 25.26 45.68 56.55 

larynx Dmean 8.23 6.89 5.07 

left parotid D02 9.63 4.94 4.20 

left parotid Dmean 6.14 7.87 15.16 

right parotid D02 11.65 6.45 5.96 

right parotid Dmean 6.08 6.32 4.93 

mandible D02 5.10 4.45 3.40 
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Figure 29. Absolute value percent change of the dose indices (DIs) for each 
of the 15 patients. The top shows the results for the DV optimized plans and 
the bottom shows the Energy optimized plans. 
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4.4 Discussion on Dosimetric Changes due to Changing Anatomy 

 Three separate studies were performed to determine the sensitivity due to 

anatomical changes in the course of radiotherapy treatment. The studies focused 

on looking at mass changes and using density-based inverse optimization 

compared to that of volume-based inverse optimization for NSCLC and HNSCC. It 

was hypothesized that density-based inverse optimization plans: DM and Energy 

would be expected to be more sensitive to changes in anatomy because by going 

through lower density areas, these might be expected to change the most 

compared to higher-density (higher-functioning) areas. 

The first study demonstrated that mass change of the OARs were not 

statistically significant. There were large changes in dose to the parotids for some 

patients as would be expected if there are large changes in anatomy, but the small 

number of patients in the cohort may not have allowed the establishment of 

statistically significant findings. The statistically significant lower dose to the PTV 

mass revealed decreased coverage, which is an undesirable event for 

radiotherapy effectiveness. Understanding that mass is the product of density and 

volume, the changes observed in mass are correlated with volume changes. It may 

have been interesting to look at density changes within the parotids or the tumors 

during treatment and find how much effect the changes had to DMIs. One study 

showed that density changes were highly correlated with parotid deformation 

(Fiorino et al., 2012). The average change in HU was of -7.3 between the last and 
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the first fraction of treatment. Furthermore, these density changes may be 

correlated to functional changes as dose to the parotids affect saliva production.  

The second study focused on how changes in anatomy affected DM 

compared to DV inversely optimized plans. In this study it was hypothesized that 

DM plans would be more sensitive to anatomical changes compared to DVH-base 

plans. The study was performed by analyzing DIs at the time of planning, mid-

treatment, and post-treatment to assess effects during radiotherapy to the target 

and OARs. Only six patients per anatomical site were analyzed and the results 

showed a trend of higher sensitivity with DM plans between the planning CT and 

the post-treatment CT.  

Energy-based inverse optimization was also included in this investigation of 

anatomical changes. The hypothesis was that Energy-based plans would show 

larger differences than DV plans and even DM plans in this time-trending analysis. 

Energy-based inverse optimization only uses one objective function per OAR to 

find a solution to the optimization that depends explicitly on the distribution of 

density within the volumes. Only the mid-treatment CT was used to analyze the 

changes in DIs. The changes of the Energy-based plans were not significantly 

different than DV plans. These suggest that the volume changes correlate to the 

changes in density within the volume, which has been observed in other studies 

mentioned previously.  

 



 

 

75 

 

Chapter 5. Mass-weighted Equivalent Uniform Dose 

5.1 Generalized Equivalent Uniform Dose (gEUD) 

The concept of equivalent uniform dose (EUD) was proposed by Niemierko 

(1997) and states that “for any dose distribution, the corresponding Equivalent 

Uniform Dose (EUD) is the dose (in Gy), which, when distributed uniformly across 

the target volume, causes the survival of the same number of clonogens.” This 

definition was based on the radiobiological concept of surviving fraction at a dose 

of 2 Gy (SF2) (Wang et al., 2008). The simplest form of the formula is given in 

equation 10, where Dref is the reference dose per fraction (2 Gy), Di is the dose 

corresponding to a partial volume i, and N is the number of sub-volumes. 

Niemierko demonstrated that EUD is linearly related to SF and α/β, and therefore 

the knowledge of these biological models and parameters are not crucial to 

estimate EUD, but robust in the underlying definition using them.  

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟
𝑙𝑙𝑙𝑙 [1𝑁𝑁∑ (𝑆𝑆𝑆𝑆2)𝐷𝐷𝑖𝑖/𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑁𝑁

𝑖𝑖=1 ] 

𝑙𝑙𝑙𝑙 (𝑆𝑆𝑆𝑆2)
             (10) 

 

 The concept of EUD was expanded by Niemierko (1999) in order to include 

normal tissues, which came to be defined as the generalized EUD (gEUD) 

(equation 11). Where vi is the fraction of the VOI (vi = Vi / Vorgan) receiving a dose 

Di, and a is a tissue-specific parameter. This equation is very versatile as can be 
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used for both tumors and normal tissues. For normal tissues, gEUD represents the 

amount of uniform dose that will lead to the same probability of injury as a 

heterogeneous dose distribution. On the other hand, it can represent the amount 

of uniform dose to a tumor that will lead to the same probability of local control as 

non-uniform dose (Gay and Niemierko, 2007). The parameter ‘a’ defines the 

model: as its value approaches negative infinity, gEUD approaches the minimum 

dose. Therefore, negative values are useful for target volumes, since tumor control 

is dependent on the fraction of the volume receiving the minimum dose, where 

clonogen survival would be highest.  For an a-parameter approaching positive 

infinity, gEUD approaches maximum dose; a larger value is used for serial organs 

(Allen Li et al., 2012). Serial organs are more affected by maximum doses, as they 

are perceived as “links in a chain”, where if a part of the functional chain is broken, 

it is responsible for its failure (Gay and Niemierko, 2007).  For a=1 and a=0, gEUD 

is equivalent to the arithmetic mean dose and geometric mean dose, respectively. 

Therefore, the a-parameter for parallel organs that exhibit large volume effects 

would be small positive values, Table 10 summarizes this volume parameter. 

 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �∑ 𝑣𝑣𝑖𝑖𝐷𝐷𝑖𝑖𝑎𝑎𝑁𝑁
𝑖𝑖=1 �1/𝑎𝑎  (6) 

 Table 10. Volume parameter ‘a’ 

 
Value of a gEUD Description 

High (a  infinity) Maximum dose Serial organs 

Low (a  - infinity) Minimum dose Target 

a = 1 Mean dose Parallel organs 
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5.2 Mass-Weighted gEUD (mgEUD) 

A study (Mavroidis et al., 2006) studied whether DMHs deviated significantly 

from DVHs regarding lung complications. One of the models used was the Lyman-

Kutcher-Burman model, which is a model that correlates normal tissue 

complication probability to dose. The concept of LKB is further expanded in section 

5.3.  The parameters used in the model in the mentioned study were from 

Seppenwoolde et al. (2003) for radiation pneumonitis. Mavroidis et al. found from 

a theoretical case examined that the tissue response probability using DMHs was 

lower by 30% compared to DVHs, which is closer to clinically observed response 

rate.  

Having discussed that mass is breathing independent and contributes more 

information about the irradiated organ, the incorporation of density into the gEUD 

formulation would provide the equivalent uniform dose to the mass. The mass-

weighted gEUD (mgEUD) formulation is shown in equation 12 with mass (mi). This 

implementation may lead to a more reliable NTCP value.  

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [∑ 𝑚𝑚𝑖𝑖𝐷𝐷𝑖𝑖𝑎𝑎𝑁𝑁
𝑖𝑖=1 ]1/𝑎𝑎               (7) 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �∑ � 𝜌𝜌𝑖𝑖𝑣𝑣𝑖𝑖
∑ 𝜌𝜌𝑘𝑘𝑣𝑣𝑘𝑘𝑘𝑘∈𝑉𝑉

�𝐷𝐷𝑖𝑖𝑎𝑎𝑁𝑁
𝑖𝑖=1 �

1/𝑎𝑎
           (8) 

 

If the mass term is expanded (equation 13), where ρ i is the average density 

in voxel i and k is just an iterator to sum the whole organ’s mass. If the density in 
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all voxels of the VOI is uniform (ρ = ρ i = ρk), equation 12 is simplified to equation 

11. Therefore, mgEUD is mathematically more general approach than gEUD, 

which doesn’t take into account density differences. This might be particularly 

important for lung, where voxels of air exist (low density voxels).  

5.2.1 Development of mgEUD Calculation 

The calculation of mgEUD was developed by incorporating a calculation 

plugin (C++ programming language) in a research version of Pinnacle TPS, which 

is executable from a Pinnacle script. While the plugins are interfaced to the TPS 

through dynamic link libraries the Pinnacle scripts are special scripting language 

characteristic to that particular TPS.   

Two plugins were developed, one for the calculation of gEUD and one for 

mgEUD. The following steps were taken for the calculation. First, the density data 

was obtained from the raw CT data through CT-to-density calibration tables. These 

tables were obtained from the CT scanner calibration and used to convert CT 

numbers or Hounsfield units (HU) to electron density. Then to obtain the mass for 

mgEUD, the corresponding voxel volume was multiplied with the density value 

characteristic for the voxel. The dose data was obtained from the treatment plan 

for each voxel. The ‘a’ parameter was chosen by the user for the VOI. Finally, the 

code called for the calculation of the arithmetic equations of gEUD and mgEUD 

(equation 11 and equation 12). 
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Pinnacle research version provides a calculated gEUD value, but the 

underlying calculation method used in the TPS is not transparent; it is unknown 

how edges of volume contours are defined and how that is accounted for in gEUD 

calculations. This fact can play a major role in the calculation of gEUD, which is 

the reason that a script was written for the calculation of gEUD to accurately 

compare to mgEUD, since they are derived from the same underlying data and the 

same software. Nonetheless, a check needed to be performed to ensure the 

reliable values obtained from the computational algorithm. In order to avoid any 

discrepancy with the volumes, a single CT voxel was contoured as a volume. 

Three calculations were performed: one gEUD calculation by the TPS, one using 

the developed software for gEUD, and one using the software for mgEUD. Table 

11 lists the volume, density and results for the two gEUD and mgEUD calculations. 

As it was expected the gEUD and mgEUD values were equal as the density of the 

voxel was unity, since as mentioned previously, mgEUD simplifies to gEUD when 

the density is equal to one. Moreover, the TPS and script gEUD values were 

equivalent, which validated the calculation software.  

 

Table 11. Values for gEUD and mgEUD script validation 

 

 

 

 

 

Volume 0.001857 cm3 

Density 1.00 g/cm3 

TPS gEUD 3.0767 

Script gEUD 3.0767 

Script mgEUD 3.0767 
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5.3 Normal Tissue Complication Probability Modeling 

Before 1991 when the seminal work by Emami et al. (1991) was published 

including data of partial organ tolerances, physicians relied on experience and 

intuition to select field and doses for treatment plans. The roots of normal tissue 

complication probability (NTCP) modeling lie in attempts to quantify dependence 

of tolerance dose for a certain radiation effect on the size of the treated region 

(Allen Li et al., 2012). NTCP modeling gained more attention with the development 

and the widespread application of 3DCRT, which resulted in rather heterogeneous 

dose distributions in OARs. The complexity of those dose distributions dictated the 

need to simplify them into a single metric that would correlate to radiation injury 

risk.  

The relationship between the NTCP and dose was first proposed by Lyman 

(1985) where it was proposed that the relationship is sigmoidal (integrated normal 

distribution). Equation 14 and equation 15 define Lyman’s NTCP, which is 

essentially an error function of dose and volume. In the equation, parameter TD50 

is the dose for complication rate of 50% and parameter m is the slope parameter 

(steepness of the curve increases with decreasing m). The NTCP for partial organ 

irradiation is based upon clinical estimates of organ tolerance for partial uniform 

irradiation at different doses and volumes. Following Lyman’s publication, Burman 

et al. (1991) applied the model to clinical tolerance data developed by Emami et 

al. (1991). This radiobiological model became known as the Lyman-Kutcher-



81 

 

 

 

Burman (LKB) model, which describes complication probabilities using clinical 

tolerance doses for different irradiated volumes as input data. 

The original LKB model applies to treatment plans with uniform partial 

irradiation, but with multi-field treatment techniques the dose distributions are 

heterogeneous. Therefore, it was necessary to adapt the Lyman model to a more 

general form for inhomogeneous dose. One way was using gEUD as it is a dose 

representative of heterogeneous dose distribution. Equation 16 adapts Lyman’s 

original equation by replacing D with gEUD.  

 

NTCP= 1
√2π

∫ e
-t2

2
t

-∞ dt     (9) 

t= (D-TD50)
m*TD50

                     (10) 

t= (gEUD-TD50)
m*TD50

                     (11) 

 

A recent study (Semenenko and Li, 2008) used LKB NTCP model with 

multi-institutional toxicity data for the lung pneumonitis and xerostomia. The results 

of this study supported the concept of large volume effect for lungs and parotid 

glands, with estimates of the a-parameter close to unity.  

Figure 30 shows the resulting NTCP with respect to mean dose to both 

lungs. The dashed curve in the graph represents the fit of the LKB model for data 

including pneumonitis of lower grades, the dash-dot curve is the model for the data 
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excluding pneumonitis of lower grades, and the solid curve is a fit of the LKB model 

for the combined dataset. The fitting parameters obtained for the combined dataset 

were m= 0.41 and TD50= 29.9 Gy. For xerostomia for the parotid glands, Figure 

31 shows the NTCP LKB model for the obtained datasets. The dashed line is the 

fit for the parotids as separate organ and the solid curve for the parotids as a single 

organ. The fitting parameters calculated were m= 0.53 and TD50= 31.4 Gy for the 

combined organ LKB model.  

  

 

Figure 30.Incidence of radiation pneumonitis as a function of mean dose to 
the lungs. (Semenenko and Li, 2008) 
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Figure 31. Incidence of xerostomia as a function of mean dose to the parotid 
gland. (Semenenko and Li, 2008) 

 

The NTCP model has been incorporated into the clinic for evaluation of 

treatment plans. Although the value is not completely reliable as a standalone 

value, its use in conjunction with isodose and dose-volume information can help 

guide decision making in the clinic (Allen Li et al., 2012). Figure 32 illustrates how 

from a 3D dose distribution the plan information is reduced to 2D as a DVH and 

further to a single value such as DI, isovolume, gEUD and subsequently NTCP 

(Marks et al., 2010).  
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Figure 32. 3D dose distribution is reduced to a 2D DVH, where 
spatial, anatomic and physiologic data are not carried over. The 2D 
graph is further reduced to single values of DIs, isovolumes, gEUD 
and NTCP. (Marks et al., 2010) 

 

 Since gEUD can be linked to NTCP, the inclusion of gEUD into a cost 

function for inverse optimization has been studied. Such studies have shown that 

gEUD-based inverse optimization reduce the dose to OARs while maintaining 

adequate target coverage (Wu et al., 2002, Mihailidis et al., 2010, Choi and Deasy, 

2002, Mihaylov et al., 2009). Wu et al. (2002) incorporated the gEUD calculation 

into an objective function for optimization. They compared a prostate case and a 

head-and-neck case with DVH-based optimization and gEUD-based optimization. 

The results showed that gEUD-based optimization improved OAR sparing with 

only a parameter for each OAR as opposed to multiple DV constraints for DVH-

based optimization. Mihailidis et al. (2010) applied the same comparison for 10 

breast and chest wall IMRT plans and reached the same conclusion. 
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5.4 HNSCC: NTCP model with gEUD and mgEUD 

The purpose of including density and developing mgEUD is to determine if 

its value correlates better with NTCP compared to gEUD. One of the most 

observed complications of radiation therapy of HNSCC is xerostomia (dry mouth). 

Several studies link the mean parotid gland doses to this complication (Chen et 

al., 2013, Brodin et al., 2018). The purpose of the present study is to determine the 

difference in mgEUD to gEUD for the parotid glands in patients treated for HNSCC.  

5.4.1 Methods and Materials   

The treatment plans of fourteen HNSCC patients treated between 2015 and 

2017 were transferred from Eclipse TPS (Varian, Palo Alto, CA) to Pinnacle TPS 

without changes. The target contours were subtracted from the contours of the left 

and right parotid glands in order to calculate gEUD and mgEUD from the non-

target tissue. Using the developed software tools, gEUD and mgEUD were 

calculated using three values for the volume parameter a= 0.47, 1.0 and 1.1, which 

were chosen due to differences in published data.  

In addition, a correction was made for  several treatment plans were not 

prescribed to 2 Gy per fraction according to equation 17 based on the linear-

quadratic cell survival model (Withers et al., 1983). The EUDx represents the 

gEUD or mgEUD for the given fractionation x and EUD2Gy is the equivalent gEUD 

or mgEUD for the fractionation of 2 Gy. The α/β ratio was set to 3 Gy. 
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EUD2Gy=EUDx
α β⁄ +x
α β⁄ +2

  (12) 

 

The fourteen patients had toxicity scoring evaluations post radiation 

therapy. The evaluation included xerostomia grade, which was used to link the 

gEUD values to complication. The grades were scored according to “Common 

Terminology Criteria for Adverse Events (CTCAE)” for the adverse event of dry 

mouth, where grade 0 corresponds to no dry mouth; grade 1 corresponds to 

symptomatic with slight dryness of mouth; grade 2 corresponds to moderate 

dryness of mouth and oral intake alterations; grade 3 corresponds to complete 

dryness of mouth with inability to aliment orally. None of the patients in this study 

showed xerostomia of grade 3. 

5.4.2 Results and Conclusion 

The xerostomia grade and the corresponding gEUD and mgUED calculated 

values are listed in Table 12. As can be noted the differences between gEUD and 

mgEUD for the parotids were very small, regardless of the a-parameter used. 

Some mgEUD values were smaller than gEUD, while others were larger.  

Ultimately, for illustration purposes, a plot for each of the three a-parameters 

for gEUD and mgEUD with respect to xerostomia grade are shown in Figure 33. 

In addition, the mean and standard deviation for both EUD values are listed on 

Table 13, where the highest variability of values tends to be in grade 1. 
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Furthermore, there was a trend of slightly smaller standard deviation for mgEUD 

for grades 1 and 2, but the trend was reversed for grade 0 for all the a-parameters.  

The results of this study show that the inclusion of density for gEUD 

calculation (mgEUD) is not indicative of a significant change in the value. Most 

organs tend to have very small differences in density within, making the average 

density unity. Larger differences are expected from more heterogeneous volumes, 

such as lungs. 

 

Table 12. Values for gEUD and mgEUD and the percent difference between 
the two values for each a-parameter used (0.47, 1.0, and 1.1) 

  
a=0.47 a=1.0 a=1.1 

Pt 
# 

Xerostomia 
Grade gEUD mgEUD 

percent 
difference gEUD mgEUD 

percent 
diff gEUD mgEUD 

percent 
difference 

1 0 2.48 2.51 1.22 3.46 3.51 1.21 3.67 3.72 1.19 

2 0 2.18 2.16 -0.83 4.17 4.13 -0.90 4.57 4.53 -0.89 

3 0 4.26 4.28 0.43 6.14 6.17 0.36 6.54 6.56 0.35 

4 1 9.26 9.29 0.40 9.35 9.39 0.40 9.37 9.41 0.40 

5 1 14.95 14.94 -0.07 16.22 16.21 -0.07 16.49 16.47 -0.07 

6 1 9.68 9.73 0.53 11.98 12.05 0.53 12.42 12.49 0.53 

7 1 18.77 18.76 -0.08 20.64 20.62 -0.08 21.00 20.99 -0.09 

8 1 9.89 9.85 -0.34 11.31 11.27 -0.37 11.63 11.58 -0.38 

9 1 5.76 5.79 0.51 7.95 7.98 0.43 8.34 8.38 0.42 

10 2 15.89 15.79 -0.65 18.73 18.63 -0.54 19.23 19.13 -0.52 

11 2 15.15 15.06 -0.60 17.15 17.04 -0.62 17.56 17.46 -0.62 

12 2 11.08 11.08 -0.04 12.14 12.14 -0.03 12.35 12.34 -0.03 

13 2 16.96 16.89 -0.40 18.59 18.51 -0.40 18.91 18.83 -0.39 

14 2 16.14 16.20 0.36 18.27 18.33 0.33 18.67 18.73 0.31 

 

 



88 

 

 

 

Table 13. Mean and standard deviation of the gEUD and mgEUD values 
divided into xerostomia grade outcomes. 

 
gEUD 

(a=0.47) 
mgEUD 
(a=0.47) 

gEUD 
(a=1.0) 

mgEUD 
(a=1.0) 

gEUD 
(a=1.1) 

mgEUD 
(a=1.1) 

Grade mean SD mean SD mean SD mean SD mean SD mean SD 
0 2.97 1.12 2.98 1.13 4.59 1.39 4.60 1.39 4.93 1.47 4.94 1.46 
1 11.38 4.66 11.39 4.64 12.91 4.72 12.92 4.70 13.21 4.76 13.22 4.74 
2 15.04 2.31 15.00 2.29 16.98 2.77 16.93 2.75 17.34 2.86 17.30 2.84 
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Figure 33. Values of gEUD and mgEUD with respect to xerostomia grade 
for (a) a= 0.47, (b) a= 1.0, and (c) a= 1.1. 
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5.5 NSCLC: NTCP model with gEUD and mgEUD 

The probability of developing radiation pneumonitis after treatment with 

high-dose radiotherapy is important for patients with NSCLC. Severe radiation 

pneumonitis in the first six months after radiation therapy may be life threatening. 

Patients who survive the pneumonitis phase may translate on to the type and 

severity of subsequent late response (Seppenwoolde et al., 2003). It is therefore 

essential to understand the doses that aggravate this complication.  Several 

studies have investigated the correlation of gEUD and incidence of pneumonitis, 

with LKB model being the best fitting NTCP model (Ioannis et al., 2007). 

5.5.1 Methods and Materials 

Treatment plans of twenty-one patients who were treated for NSCLC 

between early 2014 and late 2016 were gathered and transferred from Eclipse 

TPS to Pinnacle TPS. As in section 5.4.1, the treatment plans were transferred 

without changes to contours or doses. The target contours were subtracted from 

both lungs and both EUD values were calculated. The calculation of these values 

was performed with the developed software, the a-parameters used were 1.0, 1.1 

and 1.2, as previously published data has used different values. The best fitting a-

parameter was determined for this data. A paired two-tailed t-test was performed 

to determine if differences between mgEUD and gEUD values were statistical 

significance (p ≤ 0.05).  
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Pneumonitis grading was based on CTCAE with grade 0 meaning no 

symptoms nor clinical observation. Grade 1 corresponded to patients without 

symptoms with diagnostic observation. Grade 2 was for symptomatic patients with 

necessary medical intervention with prescribed steroids. Finally, grade 3 was 

associated with severe symptoms, steroids prescribed and oxygen indicated. 

Grades 4 corresponded to life-threatening symptoms and ventilation support and 

grade 5 to death, respectively. None of the patients in the patient cohort exhibited 

pneumonitis grades 4 or 5.  

In the same way as for the previous study for the parotid glands (section 

5.4.1), gEUD and mgEUD were corrected for fractionation schedule (c.f. equation 

14). Subsequently, the values were divided into subgroups of 2 Gy bins. The 

corresponding probability of developing pneumonitis Grade ≥ 2 was calculated for 

the patient cohort. To perform the curve fitting according to LKB (equation 14) and 

determine the best fitting parameters MATLAB R2017a Curve Fitting Toolbox (The 

MathWorks, Natick, MA) was used. 

5.5.2 Results and Conclusion 

 The calculated values for gEUD and mgEUD with the corresponding 

percent differences are listed in Table 14. The values increased with increasing a-

parameter, as is expected due to the definition. The mgEUD value was always 

higher for pneumonitis grade 0, but this trend was not observed for the higher 

pneumonitis grades. Half of the patients with grade 1 pneumonitis had higher 
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mgEUD values compared to gEUD. Six out of nine patients with outcomes of grade 

2 showed a lower mgEUD value than gEUD. No statistical significant differences 

were found between gEUD and mgEUD.  

 The results are presented in Figure 34, were the ordinate is the pneumonitis 

grade level and the abscissa the dose to both lungs minus the planning target 

volume. From the figure it can be observed the mgEUD values are clustered closer 

for each pneumonitis grade compared to gEUD values. In order to quantify this 

variability of the gEUDs and the mgEUDs, the mean and standard deviation of the 

sample cohort were calculated for each grade (c.f. Table 15) and each tallied 

quantity. Even though the values of gEUD and mgEUD were close, the standard 

deviation for mgEUD for grades ≥ 1 were consistently smaller. 
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Table 14. Values for gEUD and mgEUD and the percent difference between 
the two values for each a-parameter used (1.0, 1.1, and 1.2) 

 a=1.0 a=1.1 a=1.2 
Pneumonitis 

Grade gEUD mgEUD % diff gEUD mgEUD % diff gEUD mgEUD % diff 
0 11.64 11.86 1.96 12.06 12.30 1.95 12.48 12.72 1.92 
0 12.64 12.82 1.40 13.36 13.56 1.50 14.06 14.28 1.59 
0 15.27 16.27 6.54 15.87 16.90 6.44 16.47 17.51 6.34 
0 5.22 5.84 11.92 6.01 6.74 12.01 6.85 7.68 12.02 
1 7.53 8.37 11.13 7.92 8.79 11.03 8.32 9.23 10.88 
1 8.62 8.45 -1.94 9.26 9.11 -1.65 9.91 9.78 -1.39 
1 9.99 10.29 2.99 10.78 11.10 2.98 11.54 11.88 2.95 
1 10.46 10.41 -0.53 11.09 11.06 -0.29 11.73 11.72 -0.09 
2 15.30 12.52 -18.15 16.01 13.30 -16.92 16.70 14.06 -15.78 
2 12.23 11.64 -4.76 12.86 12.26 -4.66 13.48 12.87 -4.54 
2 13.59 12.87 -5.25 14.23 13.52 -4.99 14.87 14.17 -4.74 
2 11.13 12.08 8.57 11.94 12.99 8.79 12.77 13.91 8.93 
2 14.83 14.92 0.66 15.71 15.87 0.97 16.60 16.80 1.22 
2 17.05 15.66 -8.11 17.70 16.34 -7.69 18.35 17.42 -5.08 
2 8.29 9.00 8.53 8.99 9.78 8.83 9.69 10.57 9.05 
2 9.18 8.49 -7.54 9.78 9.11 -6.88 10.38 9.73 -6.29 
2 13.59 13.38 -1.54 14.09 13.89 -1.41 14.57 14.38 -1.30 
3 18.04 18.35 1.70 18.87 19.20 1.74 19.69 20.04 1.77 
3 16.44 14.66 -10.83 17.06 15.34 -10.08 17.66 16.00 -9.40 
3 7.99 8.15 1.97 8.56 8.71 1.77 9.12 9.26 1.60 
3 8.95 9.45 5.59 9.89 10.43 5.46 10.84 11.41 5.30 
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Figure 34. Results for gEUD and mgEUD with respect to pneumonitis grade 
outcome for three a-parameter values: (a) 1=1.0, (b) a=1.1, and (c) a= 1.2. 
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Table 15. Mean and standard deviation of the gEUD and mgEUD values 
divided into pneumonitis grade outcomes. 

  
  
Pneumonitis 
Grade  

a= 1.0 a= 1.1 a= 1.2 

gEUD mgEUD gEUD mgEUD gEUD mgEUD 

Grade 0  
 

mean 11.19 11.70 11.83 12.37 12.46 13.05 
SD 4.26 4.34 4.19 4.23 4.08 4.10 

Grade 1  
 

mean 9.15 9.38 9.76 10.01 10.38 10.65 
SD 1.33 1.12 1.47 1.24 1.59 1.35 

Grade 2  
 

mean 12.80 12.29 13.48 13.01 14.16 13.77 
SD 2.88 2.39 2.89 2.41 2.90 2.51 

Grade 3  
 

mean 12.85 12.65 13.60 13.42 14.33 14.18 
SD 5.12 4.73 5.13 4.77 5.14 4.81 

 

After performing the curve fitting program using LKB NTCP model (c.f. 

equation 13 and equation 15) the best fitting a-parameter was 1.2 for both gEUD 

and mgEUD. Table 16 lists the fitting parameters obtained and the corresponding 

coefficient of determination (R2). This statistical value is the proportion of the 

variance in the dependent variable that is predictable from the independent 

variable. An R2 with a value of 0 means that the dependent variable cannot be 

predicted from the independent variable and a value of 1 means that the 

dependent variable can be predicted without error from the independent variable. 

Therefore, the closer the R2 value is to one, the better the fit. The curve fit is shown 

in Figure 35, where both gEUD and mgEUD are plotted with respect to NTCP 

(pneumonitis Grade ≥ 2) for the three a-parameters. It is also evident from the 

curve and the corresponding probabilities that the parameter a=1.2 resulted in the 

closest fit. Moreover, the plot illustrates that the curves for a-values 1.1 and 1.2 
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were very close, but the obtained probabilities were more closely represented with 

a-parameter of 1.2. It can also be noted that for mgEUD curves with a=1.1 and 

a=1.2 the curves started diverging after about 8 Gy. The differences between 

gEUD and mgEUD for a= 1.2 curves was in the range of 2-3% beyond about 10 

Gy.  In addition, mgEUD a= 1.0 curve differs from the rest and this is due to one 

patient plan who had a dose to both lungs of 16.27 Gy with Grade 0 pneumonitis 

and the only data point for the dose bin, which explains the reason for a worse R2 

value of the curve fit. 

 

Table 16. Results of the best fitting parameters TD50 and m for gEUD and mgEUD 

with three a-parameters. Coefficient of determination (R2) for the three a-

parameter values for both gEUD and mgEUD. 

 gEUD mgEUD 

TD50 m R2 TD50 m R2 

a = 1.0 9.01 0.6486 0.7473 10.70 0.8661 0.2058 

a = 1.1 10.61 0.4753 0.6636 10.71 0.4814 0.6731 

a = 1.2 10.56 0.4724 0.8736 10.37 0.4633 0.8563 
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Figure 35. Curve fitting according to probability of developing pneumonitis 
with Grade 2 or higher with respect to gEUD and mgEUD with three a-
parameters.  

 

5.6 Discussion on mgEUD and NTCP 

 The inclusion of density in the mgEUD formulation (equation 10) represents 

a more general mathematical form of gEUD (equation 9). After developing software 

and implementing it as a plugin to calculate mgEUD and gEUD, the next step was 

to link the value to NTCP in order to find the validity of the new equation. This was 

done by using treatment plans from previously treated patients with HNSCC and 

NSCLC. Two studied dose limiting organs that commonly exhibit complications are 

parotid glands and lungs for HNSCC and NSCLC, respectively.  
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 First the parotid xerostomia outcome data was evaluated. The values for 

mgEUD compared to gEUD were very similar. There were only 14 patient cases 

with documented complications, which might have been insufficient for 

establishing statistical significance. Nonetheless, since there was no trend 

observed, it can be concluded that mgEUD formulation does not contribute further 

information than gEUD formulation for the parotid glands. 

 Lungs are more heterogeneous than the parotids and it was hypothesized 

that the effect might be larger. The differences between gEUD and mgEUD were 

larger, but without statistical significance. At pneumonitis grade ≥ 2, the mgEUD 

values had smaller standard deviation. Smaller variations of mgEUDs suggested 

that mgEUD concept could yield a better predictive model for the observed toxicity. 

There were two approaches to present the data; the first was plotting the values of 

gEUD and mgEUD for each patient according to the pneumonitis grade outcome. 

This is where the tendency for mgEUD values to be clustered closer is observed 

(Figure 37).The second was using the probability that a patient in the cohort would 

develop pneumonitis grade ≥ 2, with which the LKB model was based on. For a 

small patient cohort the first presentation of the data seems more representative 

of the differences between gEUD and mgEUD. Comparing the data obtained in 

this study as with previously published data, illustrated in Figure 32, it is evident 

that a lot of the data is clustered in the lower dose end (≤ 20 Gy). Furthermore, the 

a-parameter that resulted in the best curve fit for both gEUD and mgEUD was 1.2. 

The limitation of this study was the small number of patients. A larger patient cohort 
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would possibly yield a better representation of the probability and may in turn show 

more robust differences between gEUD and mgEUD for the lungs. 
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Chapter 6. Summary 

 This dissertation involved exploring the effects of including density in the 

inverse optimization cost function when changing IMRT delivery parameters and 

when patient anatomy changes during radiotherapy. The two anatomical sites for 

which the studies were conducted were HNSCC and NSCLC. Including density 

information in the cost function gives the optimizer the mass information of the 

volumes rather than just the volume information. Two types of density-based 

optimization which are called DM and Energy were investigated.  

 The effect of changing IMRT segment delivery parameters of number of 

allowed segments per beam and minimum segment area was studied for both DM 

and Energy inverse optimization modalities. In order to better determine the effect 

of the parameter changes, twelve HNSCC and twelve NSCLC patient plans were 

used to retrospectively develop eight plans per patient, four plans per parameter 

combination (number of segments per beam and segment area). For each 

combination, three optimization approaches were used: DV, DM, and Energy. All 

plans were optimized using the same approach, which involved setting the nine 

equidistant beams around the target to deliver the prescription dose. Then, 

iteratively, dose to the surrounding OARs was reduced until the same standard 

deviation of the dose across the target was met. All plans were normalized such 

that the targets received the prescribed doses. The results showed that Energy 

plans were significantly more sensitive to changing delivery parameters compared 

to DM plans and DV plans.  
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 Moreover, for changing anatomy with the progression of radiotherapy, the 

first study looking at the changes in OAR DMIs did not show significant differences 

between CTs (mid-treatment and post-treatment) compared to the planning CT. 

There were statistically significant changes to PTV coverage, which would need to 

be addressed to meet the dose prescription. The subsequent two studies 

determined that sensitivity of DM and Energy optimizations compared to the 

sensitivity of DV for the changing anatomy was not statistically significantly 

different. For DM plans some tendency was observed as the changes for some 

DIs were larger, but no definitive conclusion could be reached. An important factor 

that steered some of the results was the positioning of the patient for the 

subsequent CTs; it was observed that in one case that a small tilt of the head 

position resulted in a dose increase to almost 300% to 50% of the esophagus. In 

conclusion, it was shown that DM and Energy plans have comparable sensitivity 

to DV plans with changing patient anatomy. 

Finally, the effect of density inclusion in the calculation of NTCP was 

investigated.  A plugin in Pinnacle TPS was developed and tested in order to 

calculate gEUD and mgEUD. The gEUDs and the mgEUDs were used in a widely 

employed LKB model for normal tissue toxicity evaluation. The software was used 

to evaluate gEUD and mgEUD for two OARs: parotid glands and lungs. Fourteen 

patients with xerostomia grade outcome were used to calculate the two values for 

both parotids in conjunction. The differences between gEUD and mgEUD were 

very small and it was concluded that the addition of the density term did not affect 
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the gEUD formalism for the parotids. The lung gEUD and mgEUD values displayed 

larger differences, but were not statistically significant. The standard deviation of 

the mgEUD doses for pneumonitis grades 1, 2 and 3 were smaller than for gEUD, 

which may become more significant with a larger patient cohort.  The best fitting 

a-parameter was found to be 1.2. Since the differences EUD values were not 

statistically significant, the fitting was not either but did show some differences.  

Looking forward, the addition of more patients to the NSCLC patient cohort 

for mgEUD analysis may be of interest. The largest drawback of the work 

presented herein is that only 21 patient plans were used. Therefore, in order to 

achieve more robust modelling, more patients need to be included. Upon 

demonstration of mgEUD and its difference with gEUD, it may be valuable to 

include mgEUD into the inverse optimization cost function.  

 



 

 

103 

 

References 

Aaltonen, P., Brahme, A., Lax, I., Levernes, S., Näslund, I., Reitan, J. B. & 
Turesson, I. 1997. Specification of Dose Delivery in Radiation Therapy. 
Recommendations by the Nordic Association of Clinical Physics (NACP). 
Acta Oncologica, 36, 1-32. 

Abdulla, S. 2018. Ct Equipment [Online]. 
Available: https://www.radiologycafe.com/radiology-trainees/frcr-physics-
notes/ct-equipment [Accessed March 16,  2018]. 

Ahnesjö, A., Hårdemark, B., Isacsson, U. & Montelius, A. 2006. The IMRT 
information process—mastering the degrees of freedom in external beam 
therapy. Physics in Medicine and Biology, 51, R381. 

Alberg, A. J., Brock, M. V., Ford, J. G., Samet, J. M. & Spivack, S. D. 2013. 
Epidemiology of Lung Cancer: Diagnosis and Management of Lung Cancer, 
3rd ed: American College of Chest Physicians Evidence-Based Clinical 
Practice Guidelines. Chest, 143, e1S-e29S. 

Allen Li, X., Alber, M., Deasy, J. O., Jackson, A., Ken Jee, K.-W., Marks, L. B., 
Martel, M. K., Mayo, C., Moiseenko, V., Nahum, A. E., Niemierko, A., 
Semenenko, V. A. & Yorke, E. D. 2012. The use and QA of biologically 
related models for treatment planning: Short report of the TG-166 of the 
therapy physics committee of the AAPM a). Medical Physics, 39, 1386-
1409. 

American Cancer Society. 2016. What Is Non-Small Cell Lung Cancer? [Online]. 
American Cancer Society. Available: https://www.cancer.org/cancer/non-
small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html 
[Accessed 9 March 2018 2018]. 

Arthur Boyer, P. B., James Galvin, Eric Klein, Thomas LoSasso, Daniel Low, 
Katherine Mah, Cedric Yu 2001. AAPM TG 72: Basic applications of 
multileaf collimators. Medical Physics. 

Ballivy, O., Parker, W., Vuong, T., Shenouda, G. & Patrocinio, H. 2006. Impact of 
geometric uncertainties on dose distribution during intensity modulated 
radiotherapy of head-and-neck cancer: the need for a planning target 
volume and a planning organ-at-risk volume. Current Oncology, 13, 108-
115. 

 

https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/ct-equipment
https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/ct-equipment
https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html
https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html


104 

 

 

 

Barker Jr, J. L., Garden, A. S., Ang, K. K., O'Daniel, J. C., Wang, H., Court, L. E., 
Morrison, W. H., Rosenthal, D. I., Chao, K. S. C., Tucker, S. L., Mohan, R. 
& Dong, L. 2004. Quantification of volumetric and geometric changes 
occurring during fractionated radiotherapy for head-and-neck cancer using 
an integrated CT/linear accelerator system. International Journal of 
Radiation Oncology*Biology*Physics, 59, 960-970. 

Barkley Jr, H. T. & Fletcher, G. H. 1977. The significance of residual disease after 
external irradiation of squamous cell carcinoma of the oropharynx. 
Radiology, 124, 493-495. 

Barnett, G. C., West, C. M. L., Dunning, A. M., Elliott, R. M., Coles, C. E., Pharoah, 
P. D. P. & Burnet, N. G. 2009. Normal tissue reactions to radiotherapy: 
towards tailoring treatment dose by genotype. Nature reviews. Cancer, 9, 
134-142. 

Bates, E. L., Bragg, C. M., Wild, J. M., Hatton, M. Q. F. & Ireland, R. H. 2009. 
Functional image-based radiotherapy planning for non-small cell lung 
cancer: A simulation study. Radiotherapy and Oncology, 93, 32-36. 

Bernier, J. 2009. Current state-of-the-art for concurrent chemoradiation. Seminars 
in Radiation Oncology, 19, 3-10. 

Bernier, J. & Bentzen, S. M. 2003. Altered fractionation and combined radio-
chemotherapy approaches: Pioneering new opportunities in head and neck 
oncology. European Journal of Cancer, 39, 560-571. 

Bortfeld, T. 2006. IMRT: a review and preview. Physics in Medicine and Biology, 
51, R363. 

Bortfeld, T. R., Kahler, D. L., Waldron, T. J. & Boyer, A. L. 1994. X-ray field 
compensation with multileaf collimators. International Journal of Radiation 
Oncology*Biology*Physics, 28, 723-730. 

Bosmans, G., van Baardwijk, A., Dekker, A., Öllers, M., Boersma, L., Minken, A., 
Lambin, P. & De Ruysscher, D. 2006. Intra-patient variability of tumor 
volume and tumor motion during conventionally fractionated radiotherapy 
for locally advanced non-small-cell lung cancer: A prospective clinical study. 
International Journal of Radiation Oncology*Biology*Physics, 66, 748-753. 

 

 

 



105 

 

 

 

Bradley, J. D., Moughan, J., Graham, M. V., Byhardt, R., Govindan, R., Fowler, J., 
Purdy, J. A., Michalski, J. M., Gore, E. & Choy, H. 2010. A phase I/II 
radiation dose escalation study with concurrent chemotherapy for patients 
with inoperable stages I to III non-small-cell lung cancer: phase I results of 
RTOG 0117. International Journal of Radiation Oncology*Biology*Physics, 
77, 367-72. 

Brahme, A., Roos, J. E. & Lax, I. 1982. Solution of an integral equation 
encountered in rotation therapy. Physics in Medicine and Biology, 27, 1221-
9. 

Britton, K. R., Starkschall, G., Liu, H., Chang, J. Y., Bilton, S., Ezhil, M., John-
Baptiste, S., Kantor, M., Cox, J. D., Komaki, R. & Mohan, R. 2009. 
Consequences of anatomic changes and respiratory motion on radiation 
dose distributions in conformal radiotherapy for locally advanced non–
small-cell lung cancer. International Journal of Radiation 
Oncology*Biology*Physics, 73, 94-102. 

Britton, K. R., Starkschall, G., Tucker, S. L., Pan, T., Nelson, C., Chang, J. Y., Cox, 
J. D., Mohan, R. & Komaki, R. 2007. Assessment of gross tumor volume 
regression and motion changes during radiotherapy for non-small-cell lung 
cancer as measured by four-dimensional computed tomography. 
International Journal of Radiation Oncology*Biology*Physics, 68, 1036-
1046. 

Brodin, N. P., Kabarriti, R., Garg, M. K., Guha, C. & Tome, W. A. 2018. Systematic 
review of normal tissue complication models relevant to standard 
fractionation radiation therapy of the head and neck region published after 
the quantec reports. International Journal of Radiation 
Oncology*Biology*Physics, 100, 391-407. 

Brown, J. M. & Adler, J. R., Jr. 2015. Is equipment development stifling innovation 
in radiation oncology? International Journal of Radiation 
Oncology*Biology*Physics, 92, 713-714. 

Burman, C., Kutcher, G. J., Emami, B. & Goitein, M. 1991. Fitting of normal tissue 
tolerance data to an analytic function. International Journal of Radiation 
Oncology*Biology*Physics, 21, 123-135. 

Castadot, P., Lee, J. A., Geets, X. & Grégoire, V. 2010. Adaptive radiotherapy of 
head and neck cancer. Seminars in Radiation Oncology, 20, 84-93. 

 

 



106 

 

 

 

Chen, W.-C., Lai, C.-H., Lee, T.-F., Hung, C.-H., Liu, K.-C., Tsai, M.-F., Wang, W.-
H., Chen, H., Fang, F.-M. & Chen, M.-F. 2013. Scintigraphic assessment of 
salivary function after intensity-modulated radiotherapy for head and neck 
cancer: Correlations with parotid dose and quality of life. Oral Oncology, 49, 
42-48. 

Cheong, K.-H., Kang, S.-K., Lee, M., Kim, H., Bae, H., Park, S., Hwang, T., Kim, 
K. & Han, T. 2013. Analytic study on the effects of the number of MLC 
segments and the least segment area on step-and-shoot head-and-neck 
IMRT planning using direct machine parameter optimization. Journal of the 
Korean Physical Society, 62, 1330-1339. 

Choi, B. & Deasy, J. O. 2002. The generalized equivalent uniform dose function 
as a basis for intensity-modulated treatment planning. Physics in Medicine 
and Biology, 47, 3579. 

De Jaeger, K., Seppenwoolde, Y., Boersma, L. J., Muller, S. H., Baas, P., 
Belderbos, J. S. & Lebesque, J. V. 2003. Pulmonary function following high-
dose radiotherapy of non-small-cell lung cancer. International Journal of 
Radiation Oncology*Biology*Physics, 55, 1331-40. 

Derbyshire, S. J., Morgan, A. M., Thompson, R. C. A., Henry, A. M. & Thwaites, 
D. I. 2009. Optimal planning parameters for simultaneous boost IMRT 
treatment of prostate cancer using a Beam Modulator™. Reports of 
Practical Oncology and Radiotherapy, 14, 205-213. 

Dobler, B., Koelbl, O., Bogner, L. & Pohl, F. 2009. Direct machine parameter 
optimization for intensity modulated radiation therapy (IMRT) of 
oropharyngeal cancer – a planning study. Journal of Applied Clinical 
Medical Physics, 10, 4-15. 

Drzymala, R. E., Mohan, R., Brewster, L., Chu, J., Goitein, M., Harms, W. & Urie, 
M. 1991. Dose-volume histograms. International Journal of Radiation 
Oncology*Biology*Physics, 21, 71-78. 

Emami, B., Lyman, J., Brown, A., Cola, L., Goitein, M., Munzenrider, J. E., Shank, 
B., Solin, L. J. & Wesson, M. 1991. Tolerance of normal tissue to therapeutic 
irradiation. International Journal of Radiation Oncology*Biology*Physics, 
21, 109-122. 

Erridge, S. C., Seppenwoolde, Y., Muller, S. H., Van Herk, M., De Jaeger, K., 
Belderbos, J. S. A., Boersma, L. J. & Lebesque, J. V. 2003. Portal imaging 
to assess set-up errors, tumor motion and tumor shrinkage during conformal 
radiotherapy of non-small cell lung cancer. Radiotherapy and Oncology, 66, 
75-85. 



107 

 

 

 

Ettinger, D. S., Wood, D. E., Akerley, W., Bazhenova, L. A., Borghaei, H., 
Camidge, D. R., Cheney, R. T., Chirieac, L. R., D'Amico, T. A., Demmy, T. 
L., Dilling, T. J., Govindan, R., Grannis, F. W., Jr., Horn, L., Jahan, T. M., 
Komaki, R., Kris, M. G., Krug, L. M., Lackner, R. P., Lanuti, M., Lilenbaum, 
R., Lin, J., Loo, B. W., Jr., Martins, R., Otterson, G. A., Patel, J. D., Pisters, 
K. M., Reckamp, K., Riely, G. J., Rohren, E., Schild, S., Shapiro, T. A., 
Swanson, S. J., Tauer, K., Yang, S. C., Gregory, K. & Hughes, M. 2014. 
Non-small cell lung cancer, version 1.2015. Journal of the National 
Comprehensive Cancer Network, 12, 1738-61. 

Evans, E. S., Hahn, C. A., Kocak, Z., Zhou, S.-M. & Marks, L. B. 2007. The role of 
functional imaging in the diagnosis and management of late normal tissue 
injury. Seminars in Radiation Oncology, 17, 72-80. 

Ezzell, G. A., Galvin, J. M., Low, D., Palta, J. R., Rosen, I., Sharpe, M. B., Xia, P., 
Xiao, Y., Xing, L. & Yu, C. X. 2003. Guidance document on delivery, 
treatment planning, and clinical implementation of IMRT: Report of the 
IMRT subcommittee of the AAPM radiation therapy committee. Medical 
Physics, 30, 2089-2115. 

Fiorino, C., Rizzo, G., Scalco, E., Broggi, S., Belli, M. L., Dell’Oca, I., Dinapoli, N., 
Ricchetti, F., Rodriguez, A. M., Di Muzio, N., Calandrino, R., Sanguineti, G., 
Valentini, V. & Cattaneo, G. M. 2012. Density variation of parotid glands 
during IMRT for head-and-neck cancer: Correlation with treatment and 
anatomical parameters. Radiotherapy and Oncology, 104, 224-229. 

Fox, J., Ford, E., Redmond, K., Zhou, J., Wong, J. & Song, D. Y. 2009. 
Quantification of tumor volume changes during radiotherapy for non-small-
cell lung cancer. International Journal of Radiation 
Oncology*Biology*Physics, 74, 341-348. 

Gay, H. A. & Niemierko, A. 2007. A free program for calculating EUD-based NTCP 
and TCP in external beam radiotherapy. Physica Medica, 23, 115-125. 

Graham, M. V., Purdy, J. A., Emami, B., Harms, W., Bosch, W., Lockett, M. A. & 
Perez, C. A. 1999. Clinical dose–volume histogram analysis for pneumonitis 
after 3D treatment for non-small cell lung cancer (NSCLC). International 
Journal of Radiation Oncology*Biology*Physics, 45, 323-329. 

Hårdemark, B. L., Anders; Rehbinder,Henrik ;  Löf, Johan 2003. P3IMRT. Direct 
machine parameter optimization. White Paper. Phillips Medical Systems. 

 

 



108 

 

 

 

Howlader, N., Noone, A., Krapcho, M., Miller, D., Bishop, K., Kosary, C., Yu, M., 
Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D., Chen, H., Feuer, E. & Cronin, 
K. 2017. SEER Cancer Statistics Review, 1975-2014 [Online]. Bethesda, 
MD: National Cancer Institute. 
Available: https://seer.cancer.gov/csr/1975_2014/ [Accessed March 9, 
2018]. 

International Atomic Energy Agency; Podgorsak, E. B. 2005. Radiation oncology 
physics: A handbook for teachers and students. 

Ioannis, T., Per, N., Kiki, T., Elisabeth, K., Sven-Börje, E., Olof, J., Bengt, K. L., 
Constantin, K. & Panayiotis, M. 2007. NTCP modelling and pulmonary 
function tests evaluation for the prediction of radiation induced pneumonitis 
in non-small-cell lung cancer radiotherapy. Physics in Medicine and 
Biology, 52, 1055. 

Jiang, Z., Earl, M. A., Zhang, G. W., Yu, C. X. & Shepard, D. M. 2005. An 
examination of the number of required apertures for step-and-shoot IMRT. 
Physics in Medicine and Biology, 50, 5653-63. 

Kataria, T., Gupta, D., Bisht, S. S., Karthikeyan, N., Goyal, S., Pushpan, L., 
Abhishek, A., Govardhan, H. B., Kumar, V., Sharma, K., Jain, S., Basu, T. 
& Srivastava, A. 2014. Adaptive radiotherapy in lung cancer: dosimetric 
benefits and clinical outcome. The British Journal of Radiology, 87, 
20130643. 

Khan, F. M. 2014. The Physics of Radiation Therapy, Philadelphia, PA, Williams 
& Wilkins. 

Kong, F.-M., Hayman, J. A., Griffith, K. A., Kalemkerian, G. P., Arenberg, D., 
Lyons, S., Turrisi, A., Lichter, A., Fraass, B., Eisbruch, A., Lawrence, T. S. 
& Ten Haken, R. K. 2006. Final toxicity results of a radiation-dose escalation 
study in patients with non-small-cell lung cancer (NSCLC): Predictors for 
radiation pneumonitis and fibrosis. International Journal of Radiation 
Oncology*Biology*Physics, 65, 1075-1086. 

Kong, F.-M., Ten Haken, R. K., Schipper, M. J., Sullivan, M. A., Chen, M., Lopez, 
C., Kalemkerian, G. P. & Hayman, J. A. 2005. High-dose radiation improved 
local tumor control and overall survival in patients with 
inoperable/unresectable non–small-cell lung cancer: Long-term results of a 
radiation dose escalation study. International Journal of Radiation 
Oncology*Biology*Physics, 63, 324-333. 

 

 

https://seer.cancer.gov/csr/1975_2014/


109 

 

 

 

Krewski, D., Lubin, J. H., Zielinski, J. M., Alavanja, M., Catalan, V. S., Field, R. W., 
Klotz, J. B., Létourneau, E. G., Lynch, C. F., Lyon, J. I., Sandler, D. P., 
Schoenberg, J. B., Steck, D. J., Stolwijk, J. A., Weinberg, C. & Wilcox, H. 
B. 2005. Residential radon and risk of lung cancer: A combined analysis of 
7 North American case-control studies. Epidemiology, 16, 137-145. 

Kwint, M., Conijn, S., Schaake, E., Knegjens, J., Rossi, M., Remeijer, P., Sonke, 
J.-J. & Belderbos, J. 2014. Intra thoracic anatomical changes in lung cancer 
patients during the course of radiotherapy. Radiotherapy and Oncology, 
113, 392-397. 

Lee, C., Langen, K. M., Lu, W., Haimerl, J., Schnarr, E., Ruchala, K. J., Olivera, G. 
H., Meeks, S. L., Kupelian, P. A., Shellenberger, T. D. & Mañon, R. R. 2008. 
Assessment of parotid gland dose changes during head and neck cancer 
radiotherapy using daily megavoltage computed tomography and 
deformable image registration. International Journal of Radiation 
Oncology*Biology*Physics, 71, 1563-1571. 

Lee, N., Puri, D. R., Blanco, A. I. & Chao, K. S. C. 2007. Intensity-modulated 
radiation therapy in head and neck cancers: An update. Head and Neck, 
29, 387-400. 

Li, J. G., Dempsey, J. F., Ding, L., Liu, C. & Palta, J. R. 2003. Validation of dynamic 
MLC-controller log files using a two-dimensional diode array. Medical 
Physics, 30, 799-805. 

Li, Y., Sun, X., Wang, Q. I., Zhou, Q., Gu, B., Shi, G. & Jiang, D. 2015. A feedback 
constraint optimization method for intensity-modulated radiation therapy of 
nasopharyngeal carcinoma. Oncology Letters, 10, 2043-2050. 

Lu, L. 2013. Dose calculation algorithms in external beam photon radiation 
therapy. International Journal of Cancer Therapy and Oncology, 1. 

Ludlum, E. & Xia, P. 2008. Comparison of IMRT planning with two-step and one-
step optimization: a way to simplify IMRT. Physics in Medicine and Biology, 
53, 807-21. 

Lyman, J. T. 1985. Complication probability as assessed from dose-volume 
histograms. Radiation Research Supplement, 8, S13-S19. 

Ma, J., Zhang, J., Zhou, S., Hubbs, J. L., Foltz, R. J., Hollis, D. R., Light, K. L., 
Wong, T. Z., Kelsey, C. R. & Marks, L. B. 2008. The association between 
RT-induced changes in lung tissue density and global lung function. 
International Journal of Radiation Oncology*Biology*Physics, 72, S456. 



110 

 

 

 

Marks, L. B., Fan, M., Clough, R., Munley, M., Bentel, G., Coleman, R. E., 
Jaszczak, R., Hollis, D. & Anscher, M. 2000. Radiation-induced pulmonary 
injury: Symptomatic versus subclinical endpoints. International Journal of 
Radiation Biology, 76, 469-475. 

Marks, L. B., Yorke, E. D., Jackson, A., Ten Haken, R. K., Constine, L. S., 
Eisbruch, A., Bentzen, S. M., Nam, J. & Deasy, J. O. 2010. Use of normal 
tissue complication probability models in the clinic. International Journal of 
Radiation Oncology*Biology*Physics, 76, S10-S19. 

Martel, M. K., Ten Haken, R. K., Hazuka, M. B., Kessler, M. L., Strawderman, M., 
Turrisi, A. T., Lawrence, T. S., Fraass, B. A. & Lichter, A. S. 1999. 
Estimation of tumor control probability model parameters from 3-D dose 
distributions of non-small cell lung cancer patients. Lung Cancer, 24, 31-37. 

Mavroidis, P., Plataniotis, G. A., Gorka, M. A. & Lind, B. K. 2006. Comments on 
'Reconsidering the definition of a dose-volume histogram'--dose-mass 
histogram (DMH) versus dose-volume histogram (DVH) for predicting 
radiation-induced pneumonitis. Physics in Medicine and Biology, 51, L43-
50. 

Mayles, P., Nahum, A. & Rosenwald, J.-C. 2007. Handbook of Radiotherapy 
Physics: Theory and Practice, Boca Raton, FL, J. C. Taylor & Francis 
Group. 

McNiven, A. L., Sharpe, M. B. & Purdie, T. G. 2010. A new metric for assessing 
IMRT modulation complexity and plan deliverability. Medical Physics, 37, 
505-15. 

Mihailidis, D. N., Plants, B., Farinash, L., Harmon, M., Whaley, L., Raja, P. & 
Tomara, P. 2010. Superiority of equivalent uniform dose (EUD)-based 
optimization for breast and chest wall. Medical Dosimetry, 35, 67-76. 

Mihaylov, I. B. 2014. Mathematical formulation of energy minimization – based 
inverse optimization. Frontiers in Oncology, 4, 181. 

Mihaylov, I. B. 2016. New approach in lung cancer radiotherapy offers better 
normal tissue sparing. Radiotherapy and Oncology. 

Mihaylov, I. B., Lerma, F. A., Bzdusek, K., Penagaricano, J., Gardner, K., 
Ratanatharathorn, V. & Moros, E. G. 2009. Equivalent uniform dose inverse 
treatment planning for dynamic arc radiotherapy of prostate carcinoma. 
International Journal of Radiation Oncology*Biology*Physics, 75, S731-
S732. 



111 

 

 

 

Mihaylov, I. B. & Moros, E. G. 2014. Mathematical formulation of DMH-based 
inverse optimization. Frontiers in Oncology, 4, 331. 

Mihaylov, I. B. & Moros, E. G. 2015. Dose-mass inverse optimization for minimally-
moving thoracic lesions. Physics in Medicine and Biology, 60, 3927-3937. 

Mittauer, K., Lu, B., Yan, G., Kahler, D., Gopal, A., Amdur, R. & Liu, C. 2013. A 
study of IMRT planning parameters on planning efficiency, delivery 
efficiency, and plan quality. Medical Physics, 40, 061704. 

Møller, D. S., Khalil, A. A., Knap, M. M. & Hoffmann, L. 2014. Adaptive radiotherapy 
of lung cancer patients with pleural effusion or atelectasis. Radiotherapy 
and Oncology, 110, 517-522. 

National Cancer Institute. 2011. Radon and Cancer [Online]. 
Available: https://www.cancer.gov/about-cancer/causes-
prevention/risk/substances/radon/radon-fact-sheet [Accessed March 9, 
2018]. 

National Cancer Institute. 2017. Head and Neck Cancers [Online]. 
Available: https://www.cancer.gov/types/head-and-neck/head-neck-fact-
sheet#q1 [Accessed March 10, 2018]. 

Niemierko, A. 1997. Reporting and analyzing dose distributions: A concept of 
equivalent uniform dose. Medical Physics, 24, 103-110. 

Niemierko, A. 1999. A generalized concept of equivalent uniform dose (EUD). 
Medical Physics, 26. 

Nioutsikou, E., Bedford, J. L., Christian, J. A., Brada, M. & Webb, S. 2004. 
Segmentation of IMRT plans for radical lung radiotherapy delivery with the 
step-and-shoot technique. Medical Physics, 31, 892-901. 

Nioutsikou, E., Partridge, M., Bedford, J. L. & Webb, S. 2005a. Prediction of 
radiation-induced normal tissue complications in radiotherapy using 
functional image data. Physics in Medicine and Biology, 50, 1035-46. 

Nioutsikou, E., Webb, S., Panakis, N., Bortfeld, T. & Oelfke, U. 2005b. 
Reconsidering the definition of a dose--volume histogram. Physics in 
Medicine and Biology, 50, L17. 

Nutting, C., Dearnaley, D. P. & Webb, S. 2000. Intensity modulated radiation 
therapy: a clinical review. The British Journal of Radiology, 73, 459-469. 

 

https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/radon/radon-fact-sheet
https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/radon/radon-fact-sheet
https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet#q1
https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet#q1


112 

 

 

 

O'Daniel, J. C., Garden, A. S., Schwartz, D. L., Wang, H., Ang, K. K., Ahamad, A., 
Rosenthal, D. I., Morrison, W. H., Asper, J. A., Zhang, L., Tung, S.-M., 
Mohan, R. & Dong, L. 2007. Parotid gland dose in intensity-modulated 
radiotherapy for head and neck cancer: Is what you plan what you get? 
International Journal of Radiation Oncology*Biology*Physics, 69, 1290-
1296. 

Owen, D., Iqbal, F., Pollock, B. E., Link, M. J., Stien, K., Garces, Y. I., Brown, P. 
D. & Foote, R. L. 2015. Long-term follow-up of stereotactic radiosurgery for 
head and neck malignancies. Head and Neck, 37, 1557-1562. 

Ricardi, U., Filippi, A. R., Guarneri, A., Giglioli, F. R., Ciammella, P., Franco, P., 
Mantovani, C., Borasio, P., Scagliotti, G. V. & Ragona, R. 2010. Stereotactic 
body radiation therapy for early stage non-small cell lung cancer: Results of 
a prospective trial. Lung Cancer, 68, 72-77. 

Rodrigues, G., Lock, M., D'Souza, D., Yu, E. & Van Dyk, J. 2004. Prediction of 
radiation pneumonitis by dose–volume histogram parameters in lung 
cancer—a systematic review. Radiotherapy and Oncology, 71, 127-138. 

Sanderson, R. J. & Ironside, J. A. D. 2002. Squamous cell carcinomas of the head 
and neck. BMJ : British Medical Journal, 325, 822-827. 

Schmidt, M. L., Hoffmann, L., Kandi, M., Møller, D. S. & Poulsen, P. R. 2013. 
Dosimetric impact of respiratory motion, interfraction baseline shifts, and 
anatomical changes in radiotherapy of non-small cell lung cancer. Acta 
Oncologica, 52, 1490-1496. 

Schwartz, D. L. & Dong, L. 2011. Adaptive radiation therapy for head and neck 
cancer--Can an old goal evolve into a new standard? Journal of Oncology, 
2011. 

Semenenko, V. A. & Li, X. A. 2008. Lyman–Kutcher–Burman NTCP model 
parameters for radiation pneumonitis and xerostomia based on combined 
analysis of published clinical data. Physics in Medicine and Biology, 53, 
737. 

Seppenwoolde, Y., Lebesque, J. V., de Jaeger, K., Belderbos, J. S. A., Boersma, 
L. J., Schilstra, C., Henning, G. T., Hayman, J. A., Martel, M. K. & Ten 
Haken, R. K. 2003. Comparing different NTCP models that predict the 
incidence of radiation pneumonitis. International Journal of Radiation 
Oncology*Biology*Physics, 55, 724-735. 

Shepard, D. M., Earl, M. A., Li, X. A., Naqvi, S. & Yu, C. 2002. Direct aperture 
optimization: a turnkey solution for step-and-shoot IMRT. Medical Physics, 
29, 1007-18. 



113 

 

 

 

Sher, D. J., Adelstein, D. J., Bajaj, G. K., Brizel, D. M., Cohen, E. E. W., Halthore, 
A., Harrison, L. B., Lu, C., Moeller, B. J., Quon, H., Rocco, J. W., Sturgis, 
E. M., Tishler, R. B., Trotti, A., Waldron, J. & Eisbruch, A. 2017. Radiation 
therapy for oropharyngeal squamous cell carcinoma: Executive summary of 
an ASTRO Evidence-Based Clinical Practice Guideline. Practical Radiation 
Oncology, 7, 246-253. 

Siegel, R. L., Miller, K. D. & Jemal, A. 2018. Cancer statistics, 2018. CA: A Cancer 
Journal for Clinicians, 68, 7-30. 

Verschakelen, J. A., Van fraeyenhoven, L., Laureys, G., Demedts, M. & Baert, A. 
L. 1993. Differences in CT density between dependent and nondependent 
portions of the lung: influence of lung volume. American Journal of 
Roentgenology, 161, 713-717. 

Wang, J. Z., Mayr, N. A. & Yuh, W. T. C. 2008. Behind EUD. Acta Oncologica, 47, 
971-972. 

Wang, X. & Eisbruch, A. 2016. IMRT for head and neck cancer: reducing 
xerostomia and dysphagia. Journal of Radiation Research, 57, i69-i75. 

Withers, H. R., Thames, H. D., Jr. & Peters, L. J. 1983. A new isoeffect curve for 
change in dose per fraction. Radiotherapy and Oncology, 1, 187-91. 

Worthy, D. & Wu, Q. 2009. Parameter optimization in HN-IMRT for Elekta linacs. 
Journal of Applied Clinical Medical Physics, 10, 43-61. 

Wu, Q., Chi, Y., Chen, P. Y., Krauss, D. J., Yan, D. & Martinez, A. 2009. Adaptive 
Replanning Strategies Accounting for Shrinkage in Head and Neck IMRT. 
International Journal of Radiation Oncology*Biology*Physics, 75, 924-932. 

Wu, Q. & Mohan, R. 2000. Algorithms and functionality of an intensity modulated 
radiotherapy optimization system. Medical Physics, 27, 701-711. 

Wu, Q., Mohan, R., Niemierko, A. & Schmidt-Ullrich, R. 2002. Optimization of 
intensity-modulated radiotherapy plans based on the equivalent uniform 
dose. International Journal of Radiation Oncology*Biology*Physics, 52, 
224-235. 

Yamada, K., Iwai, K., Kawamorita, R., Okuno, Y. & Nakajima, T. 2006. Change in 
dose distribution of three-dimensional conformal radiotherapy during 
treatment for lung tumor. Radiation Medicine, 24, 122-127. 

 


	University of Miami
	Scholarly Repository
	2018-05-09

	Exploring Density Incorporation in Inverse Radiotherapy Optimization
	Maria De La Luz De Ornelas
	Recommended Citation


	Front_ABSTRACT_050218
	UNIVERSITY OF MIAMI
	EXPLORING DENSITY INCORPORATION IN INVERSE RADIOTHERAPY OPTIMIZATION
	By
	Maria De La Luz De Ornelas
	A  DISSERTATION
	Coral Gables, Florida
	May 2018


	DE ORNELAS, MARIA DE LA LUZ              (Ph.D., Biomedical Engineering)
	Abstract of a dissertation at the University of Miami.

	DISSERTATION_FINAL1
	List of Figures vi
	List of Tables x
	Chapter 1: Introduction 1
	Chapter 2: Dose Optimization 34
	Chapter 3. Mass-Based Optimization Sensitivity to IMRT Optimization Parameters 50
	Chapter 4. Dosimetric Changes due to Changing Patient Anatomy during Radiotherapy Treatment 63
	Chapter 5. Mass-weighted Equivalent Uniform Dose 75
	Chapter 6. Summary 100
	References 103
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Cancer and Radiation Therapy
	1.1.3 Radiation Physics
	1.1.4 Radiobiology
	1.1.1 Non-Small Cell Lung Cancer
	1.1.2 Head-and-Neck Squamous Cell Carcinoma

	1.2 External Beam Radiation Therapy
	1.2.1 Three-Dimensional Conformal Radiation Therapy
	1.2.2 Computed Tomography (CT)
	1.2.3 Intensity Modulated Radiation Therapy (IMRT)
	1.2.4 Dose Calculation Algorithms


	Chapter 2: Dose Optimization
	2.1 Dose-Volume Histogram
	2.2 Inverse Planning Mathematics
	2.3 Dose-Mass-Based Optimization
	2.3.1. Applying DM Optimization for NSCLC and HNSCC

	2.4 Energy-Based Optimization
	2.4.1. Applying Energy-Based Optimization for NSCLC and HNSCC


	Chapter 3. Mass-Based Optimization Sensitivity to IMRT Optimization Parameters
	3.1 Study on Sensitivity to IMRT Parameter Variation
	3.1.1 Methods and Materials
	3.1.2 Results
	3.2.3 Discussion and Conclusion on the Sensitivity to IMRT Parameter Variation


	Chapter 4. Dosimetric Changes due to Changing Patient Anatomy during Radiotherapy Treatment
	4.1 Study on DMH Dependence on HNSCC Patient Anatomy
	4.1.1 Methods and Materials
	4.1.2 Results and Conclusions

	4.2 Study on DM Optimization Sensitivity to Anatomical Changes
	4.2.1 Methods and Materials
	4.2.2 Results and Conclusions

	4.3 Study on Energy Optimization Sensitivity to Anatomical Changes
	4.3.1 Methods and Materials
	4.3.2 Results and Conclusions

	4.4 Discussion on Dosimetric Changes due to Changing Anatomy

	Chapter 5. Mass-weighted Equivalent Uniform Dose
	5.1 Generalized Equivalent Uniform Dose (gEUD)
	5.2 Mass-Weighted gEUD (mgEUD)
	5.2.1 Development of mgEUD Calculation
	5.3 Normal Tissue Complication Probability Modeling
	5.4 HNSCC: NTCP model with gEUD and mgEUD
	5.4.1 Methods and Materials
	5.4.2 Results and Conclusion

	5.5 NSCLC: NTCP model with gEUD and mgEUD
	5.5.1 Methods and Materials
	5.5.2 Results and Conclusion

	5.6 Discussion on mgEUD and NTCP

	Chapter 6. Summary
	References


