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Objective: Brain machine interface (BMI) or Brain Computer Interface (BCI)

provides a direct pathway between the brain and an external device to help people suf-

fering from severely impaired motor function by decoding brain activities and trans-

lating human intentions into control signals. Conventionally, the decoding pipeline

for BMIs consists of chained different stages of feature extraction, time-frequency

analysis and statistical learning models. Each of these stages uses a different algo-

rithm trained in a sequential manner, which makes the whole system difficult to be

adaptive. Our goal is to create differentiable signal processing modules and plug

them together to build an adaptive online system. The system could be trained with

a single objective function and a single learning algorithm so that each component

can be updated in parallel to increase the performance in a robust manner. We use

deep neural networks to address these needs.

Main Results: We predicted the finger trajectory using Electrocorticography

(ECoG) signals and compared results for the Least Angle Regression (LARS), Con-

volutional Long Short Term Memory Network (Conv-LSTM), Random Forest (RF),

and a pipeline consisting of band-pass filtering, energy extraction, feature selection

and linear regression. The results showed that the deep learning models performed

better than the commonly used linear model. The deep learning models not only



gave smoother and more realistic trajectories but also learned the transition between

movement and rest state. We also estimated the source connectivity of the brain sig-

nals using a Recurrent Neural Network (RNN) and it correctly estimated the order

and sparsity level of the underlying Multivariate Auto-regressive process (MVAR).

The time course of the source connectivity was also recovered.

Significance: We replace the conventional signal processing pipeline with dif-

ferentiable modules so that the whole BMI system is adaptive. The study of the

decoding system demonstrated a model for BMI that involved a convolutional and

recurrent neural network. It integrated the feature extraction pipeline into the convo-

lution and pooling layer and used Long Short Term Memory (LSTM) layer to capture

the state transitions. The decoding network eliminated the need to separately train

the model at each step in the decoding pipeline. The whole system can be jointly

optimized using stochastic gradient descent and is capable of online learning. The

study of the source connectivity estimation demonstrated a generative RNN model

that can estimate the un-mixing matrix and the MVAR coefficients of the source ac-

tivity at the same time. Our method addressed the issue of estimation and inference

of the non-stationary MVAR coefficients and the un-mixing matrix in the presence

of non-gaussian noise. More importantly, this model can be easily plugged into the

BMI decoding system as a differentiable feature extraction module.



Acknowledgements

I would like to thank my advisor Dr. Abhishek Prasad for his continuous support

in the past few years through the research and completion of my degree. His patience

and guidance was an indispensable factor for me to finish this endeavor.
Ziqian Xie

University of Miami

May 2018

iii



Table of Contents

LIST OF FIGURES vi

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Brain Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 DECODING OF FINGER TRAJECTORY FROM ECOG USING

DEEP LEARNING 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



3 ESTIMATE SPARSE SOURCE CONNECTIVITY USING RE-

CURRENT NEURAL NETWORK 43

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 CONCLUSION 54

APPENDIX 57

BIBLIOGRAPHY 68

v



List of Figures

1.1 Structure of a ConvNet, as illustrated in [1, Fig.1] . . . . . . . . . . . 5

1.2 Structure of an LSTM unit, two time steps . . . . . . . . . . . . . . . 8

1.3 Structure of a GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Raw and corrected finger trajectory . . . . . . . . . . . . . . . . . . . 17

2.2 A typical feature extraction and decoding pipeline . . . . . . . . . . . 18

2.3 Schematic overview of the decoding network . . . . . . . . . . . . . . 19

2.4 Schematic of the filter pruning procedure . . . . . . . . . . . . . . . . 27

2.5 Relative change of the spatial filters for subject 1 . . . . . . . . . . . 28

2.6 Relation between decoding performances and number of temporal con-

volutional layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Actual and decoded trajectory for subject 1 . . . . . . . . . . . . . . 33

2.8 Interference from movement of adjacent fingers on the decoding model 40

3.1 Structure of the connectivity estimation model . . . . . . . . . . . . . 48

3.2 Ground truth and estimated MVAR coefficients . . . . . . . . . . . . 50

3.3 A sinusoidal output from the network . . . . . . . . . . . . . . . . . . 51

A.1 Relative change of the spatial filters for subject 2 . . . . . . . . . . . 58

A.2 Relative change of the spatial filters for subject 3 . . . . . . . . . . . 59

vi



A.3 Actual and decoded trajectory for subject 2 . . . . . . . . . . . . . . 60

A.4 Actual and decoded trajectory for subject 3 . . . . . . . . . . . . . . 61

A.5 The importance of each electrode for subject 1 . . . . . . . . . . . . . 62

A.6 The importance of each electrode for subject 2 . . . . . . . . . . . . . 63

A.7 The importance of each electrode for subject 3 . . . . . . . . . . . . . 64

A.8 An RNN model for connectivity estimation but with bad performance 67

vii



List of Tables

2.1 ConvNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The structure of the decoding network . . . . . . . . . . . . . . . . . 25

2.3 Comparison of model performances (correlation coefficient) for each

finger for all subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Comparison of mean quadratic variation and square curvature of the

output of LARS and LSTM . . . . . . . . . . . . . . . . . . . . . . . 35

viii



List of Abbreviations

Adam Adaptive Moment Estimation

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BAND Decoding model reported in [2]

BCI Brain Computer Interface

BMI Brain Machine Interface

CEC Constant Error Carousal

CICAAR Convolutive ICA with an autoregressive model [3]

Conv-LSTM Convolutional Long Short Term Memory Network

ConvNet Convolutional Neural Network

CSP Common Spatial Pattern

CSPVARICA Connectivity estimation method presented in [4]

ECoG Electrocorticography

EEG Electroencephalography

ix



FPGA Field-Programmable Gate Array

GAN Generative Adversarial Network

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

ICA Independent Component Analysis

LARS Least Angle Regression

LassoLars LASSO model fit with Least Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator

LFP Local Field Potential

LINEAR Linear model built on the fine-tuned features

LSTM HC LSTM model trained on the hard-coded features

LSTM Long Short Term Memory

MEG Magnetoencephalography

MVARICA Connectivity estimation method presented in [5]

MVAR Multivariate Auto-regressive process

ReLu Rectified Linear unit

RF Random Forest

x



RNN Recurrent Neural Network

SCI Spinal Cord Injury

SCSA Sparsely Connected Source Analysis [6]

SCS Splitting Conic Solver

xi



CHAPTER 1

Introduction

1.1 Brain Signals

The electric field of the brain is generated by active cellular processes. The influx

and efflux of ions to and from the cell create circular currents and form dipoles,

which result in the potential differences between different part of the brain that can

be measured as time series. There are many ways to measure the electrical activity

of the brain, amongst which two common ones are Electroencephalography (EEG)

and Electrocorticography (ECoG). ECoG is invasive, it has higher spatial resolution

as the measuring procedure involves placing electrode on the surface of the brain,

either epi-dural or sub-dural. It reflects the synchronized activity aggregated over

few tens of cubic millimeters [7]. EEG is non-invasive, it reflects the summation of

post-synaptic potentials from many thousands of neurons that are oriented radially

to the scalp, localized in a few cubic centimeters of brain tissue [7]. EEG has lower

spatial resolution and weaker amplitude because it is measured at a further distance,

the signal is spatially distorted due to volume conduction effect [8], which means that

the signals collected at the electrodes are a linear combination of the source signals.

1
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Useful features for decoding brain activities

We now list a few signal features that can be helpful in decoding brain states.

Stereotyped waveforms : some stereotypical shaped waveforms are generated by

interactions between different regions of the brain, e.g. P300, a positive deflection

which occurs approximately 300ms after a novel stimulus [9]; N400, a negative po-

tential at approximated 400ms elicited by incongruent words in a sentence [10]; error

related potential, a sharp negativity which occurs when subjects commit error [11,12],

etc..

Rhythmic oscillations : the brain activity oscillates in certain frequency bands, it

is hypothesized that the rhythmic oscillations serve as a switching or multiplexing

mechanism of the brain for selective communication [13]. For example, alpha/mu

rhythm is in 8-12 Hz, it can be reduced by eye opening, movement or motor imagery.

Analyzing band power is very useful in building BMI.

Connectivity patterns : for a multi-channel system, we can analyze the relation

between signals collected at different places, be it statistical dependencies or causal

relationships. The former is called functional connectivity and the latter effective

connectivity. Connectivity pattern can be estimated by many different methods, for

example, by measuring phase synchronization, coherence or by fitting MVAR model

to reveal granger causality. It is informative since it undergoes dynamic changes

during different motor or cognitive tasks [14–19].

In chapter 2 and chapter 3 we will show that we can create differentiable modules

that extract these features in a data-driven way.
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1.2 Deep Learning

Deep learning is a set of machine learning models which consists of multiple lay-

ers of computational nodes (artificial neurons) with adjustable connections (artificial

synapses). They have achieved state-of-art performance in different areas such as

image classification [20, 21, 21, 22], video analysis [23, 24], natural language process-

ing [25–27], speech recognition [25, 28], and playing strategic games [29, 30]. The

general theory explaining the empirical success of deep learning models is still under

research but many works show that the expressive power is related to the depth of

the model [31–34]. A notable difference between deep learning and the traditional

methods is that deep learning method is end-to-end: it doesnt require hand crafted

features but instead directly learns the mapping from input to output and forms hi-

erarchical representations of the input data. In simple terms, these models can be

viewed as differentiable mappings with many parameters. In order to train the model,

an objective function needs to be defined so that the gradients or sub-gradients of

the objective function with respect to all the parameters could be computed and the

model could be updated using gradient descent.

Many tools are created to make the model building easy [35–38], current deep

learning libraries combine functionalities like automatic differentiation, runtime par-

allel scheduling and device kernel generation together. In a nutshell, users could

construct the models using operators provided by the library, then the gradients

would be computed, the parallelism in the model would be detected and the com-

putation would be dispatched to the parallel computing devices such as Graphics

Processing Units (GPU), all automated. The automatic differentiation and schedul-

ing are done by analyzing computational graphs. Computational graphs are directed
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acyclic graphs with vertices representing operations or inputs and edges representing

values used in operations, they describe the dependencies between operations and

data in the model. For each operator in the library, there is a reverse operator which

computes the derivative of the operator’s output with respect to the inputs. The

gradients of the model parameters is obtained by connecting these reverse operator

with the original nodes and applying the chain rule. The differentiation is performed

either on the same but reversed graph or an explicitly constructed new backwards

path. Explicit backward path describes the dependency between computations more

clearly and enables more optimizations. In the next few sections some deep learning

models that are used in this work will be introduced.

Convolutional Neural Network

Convolutional neural network (ConvNet) was inspired by tapped delay lines or

time-delay neural networks used in time series processing [22]. It was also inspired

by Hubel and Wiesels finding on simple cells and complex cells in the cats visual

cortex [39,40]. These cells are sensitive to small sub-regions of the visual field, called

receptive fields. Simple cells respond maximally to specific edge-like patterns. Com-

plex cells have larger receptive fields and are locally invariant to the exact position

of the pattern. ConvNet uses convolutional and pooling to mimic these properties.

Convolutional layer uses a set of filters to effectively simulate the receptive fields of

neurons at the same layer instead of letting each neuron have their own synaptic

connections. It effectively divides the neurons into equivalent classes where neurons

in the same class share same properties of their receptive fields. Neurons in lower

convolutional layer have small filters that serve as templates to recognize simple pat-
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terns (analogous to simple cells) whereas neurons in higher convolutional layer have

filters that combine the input from a local region of layers below and recognize more

complex patterns (analogous to complex cells). In ConvNet neurons are placed on

the rectangular grid. The kth group neurons at a given convolutional layer h have

receptive field properties parametrized by filter Wk and bias bk and receives input X

from the previous layer. The activation of neurons are hkij = f((Wk ∗ X)ij + bk),

where f is an element-wise nonlinearity and ∗ denotes two dimensional discrete

convolution:f ∗ g(m,n) =
∑

u,v f(u, v)g(m − u, n − v). The pooling layer neurons

extract local statistics from small patches, typically of size 2 × 2, commonly used

pooling functions include max(x), mean(x) and ‖x‖22. Combining convolution with

pooling function, the network achieves some degree of translational invariance. The

hierarchical convolutional structure enables the network to learn filters that recognize

relevant patterns at different resolution levels from the data.

Figure 1.1: Structure of a ConvNet, as illustrated in [1, Fig.1]
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Long Short Term Memory Unit

Long Short Term Memory (LSTM) network [41] is a special kind of RNN that has

stable and powerful ability to model long-range dependencies in various tasks [25,42].

It was invented to avoid the gradient vanishing/exploding problem. A naive recurrent

neural network can be described by

ht = f(Wxt + Uht−1 + b) (1.1)

where xt is the input, ht is the memory state, W is the weight matrix that con-

nect the input to the hidden state and U is the recurrent connection. During the

back-propagation training phase, the gradient signals end up being multiplied a large

number of times (as many as the number of time steps) by UT . If the leading eigen-

value of the weight matrix is not exactly 1, then the gradient either explodes or

vanishes. This makes the task of learning long-term dependencies in the data difficult

for traditional RNNs. LSTM addresses this issue by introducing a structure called

constant error carousal (CEC). CEC contains neurons which only connect to them-

selves with recurrent connections that are identities. We will see this corresponds to

an additive term in the state equation and it can provide a path to help gradient flow

through without diminishing. LSTM also has three gates to manage the information

content stored in the CEC: an input gate to control the write access, an output gate

to guard the read access and a forget gate to regulate the update. The state equations
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are as follows:

i = σ(Wixt + Uiht−1 + b i) (1.2)

f = σ(Wfxt + Ufht−1 + bf ) (1.3)

o = σ(Woxt + Uoht−1 + bo) (1.4)

c̃ = tanh(Wcxt + Ucht−1 + bc) (1.5)

ct = f � ct−1 + i� c̃ (1.6)

ht = o� ct (1.7)

Where σ(x) = (1 + exp(−x))−1 is the sigmoid function, x,h, i,f ,o, c̃, c represents

the input, output, input gate, forget gate, output gate, candidate cell state and

CEC cell state respectively, � denotes element-wise product, W s and Us represent

input to hidden connections and recurrent connections, as in equation 1.1. The most

important equation is 1.6, for if we set f = 1, then ct = ct−1 + i� c̃, the information

stored in CEC goes directly into the next time step, without any nonlinearity, this

is the key to the success of LSTM, and the same design principle has been used in

Highway Networks [43], Deep Residual Networks [20] and Independently Recurrent

Neural Network [44]. The ability to maintain gradients through time enables LSTM

to keep internal states that record temporal history and encodes huge amount of

contextual information in its weights, makes it well suited for time series prediction

tasks.
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Figure 1.2: Structure of an LSTM unit, two time steps

Gated Recurrent Unit

Gated Recurrent Unit (GRU) [45] is another special type of RNN which is similar

to LSTM in that they both use gating mechanism to control the hidden states of

the network. It has similar performance to the LSTM but with fewer parameters.

GRU doesn’t have output gate, so it directly exposes its internal states. It combines

the input gate and the forget gate into the update gate, and has an additional reset

gate to multiplicatively act on the hidden states to control the amount of interaction

between hidden states and the input. The state equations are as follows:

z = σ(Wzxt + Uzht−1 + bz) (1.8)

r = σ(Wrxt + Urht−1 + br) (1.9)

h̃ = tanh(Whxt + Uh(r � ht−1) + bh) (1.10)

ht = (1− z)� ht−1 + z � h̃ (1.11)
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Where z, r,h, h̃ are update gate, reset gate, hidden state and candidate state, respec-

tively. σ is the sigmoid function as in equation 1.2, W and U are matrices representing

input connections and recurrent connections as before. Similar to LSTM, if z is close

to 1, then information stored in the hidden states goes directly from current time step

to the next time step without loss.

Figure 1.3: Structure of a GRU

Application of deep learning in BMI

With the advancement of the electrode technology, we can measure brain signals

with finer and finer spatial and temporal resolution, however this also pose a challenge

to the data processing method. Efficient processing method should be developed to

discover the patterns in the huge amount of data.

On the one hand, deep learning models have demonstrated their power of learning

patterns from very large dataset in both supervised and unsupervised learning tasks.

Current libraries also make efficient use of the parallel processing hardwares such as
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GPU, specific Field-Programmable Gate Array (FPGA) and Application-Specific In-

tegrated Circuit (ASIC) chips to speed up the computation. These parallel processing

hardwares are available not only in desktop computers and servers but also in mobile

devices, so a deep learning based BMI system could be easily deployed on the mobile

platform. There exist tools like [46, 47] that can take a general deep learning model

(computational graph), optimize and compile it to get a platform specific program.

On the other hand, most common signal processing method could be constructed

using differentiable operators. For example, band power extraction involves convolu-

tion, element-wise power and reduce sum; two class common spatial pattern (CSP)

algorithm involves computation of eigenvectors of symmetric matrices, these opera-

tions are all differentiable. Most common signal processing methods can be made

into differentiable modules to allow the information to percolate through so that all

the parameters of the model could be tuned by gradients, it also makes the integra-

tion between common signal processing methods and deep learning methods such as

recurrent neural network possible. This helps the system learn additional high level

patterns such as temporal dynamics of the tasks.

The following two chapters will be concerned with applying deep learning method

to incorporate temporal information of the motor decoding task (chapter 2) and

estimate hidden connectivity states between brain sources (chapter 3).



CHAPTER 2

Decoding of Finger Trajectory From
ECoG Using Deep Learning

2.1 Background

An injury to the motor system such as spinal cord injury (SCI) or disorders of

the motor system such as amyotrophic lateral sclerosis, stroke and other movement

disorders results in severe impairment of motor functions. BMI provide a direct path-

way between the brain and an external device by decoding neural activities to control

computer cursor [48–52], prosthetic limb [53–56], or a person’s own limb with the

help of functional electrical stimulation [57–64]. ECoG based brain machine inter-

faces have attracted growing interest due to the high spatial and temporal resolution

of the neural signals that reveal details of movement intention [65–67]. ECoG is less

distorted than EEG because it bypasses the skull and the intermediate tissue [68].

Compared to local field potentials (LFP) recorded from penetrating micro-electrode

arrays, it is less invasive and it samples activities from many more neurons at the

superficial layers of the cortex [68]. Although it is invasive, according to the sur-

vey [69], wireless brain implants are more preferred than wired EEG caps by spinal

cord injury patients, suggesting that the convenience and aesthetics of an internalized

11
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system outweighs the concern for surgery. SCI subjects with C6 or higher levels of

injury have limited hand functions. These subjects rank the recovery of arm and

hand function as the highest priority among other motor functions they would like to

be restored [70]. In order to develop a functional neuroprosthesis that can be used in

activities of daily living, the prediction of finger motion is critical for the development

of a practical neuroprosthesis [71]. For example, a BMI neuroprosthesis developed

for restoring hand grasping functions should be able to decode, with high accuracy,

simultaneous movement of multiple fingers involved in fine grasping behavior.

Unlike many studies [72–78] which regard the prediction of finger motion as a

discrete classification problem, we consider it more natural to represent the finger

motions as continuous variables and treat the decoding problem as a regression task

without discarding velocity information. The most common solution to the regression

problem is to use linear regression to model the relationship between input features

(neural signals) and outputs (finger trajectories). Linear regression methods such as

Wiener filter [79, 80], pace regression [81], forward stepwise selection [2], least angle

regression [82], group Least Absolute Shrinkage and Selection Operator (LASSO)

[83] and non-convex regularized linear regression [84, 85] work reasonably well on

BMI tasks. Some of these methods incorporate feature selection procedures and can

produce robust models for BMIs. Other methods such as sparse Gaussian process [86]

can do feature selection as well as giving uncertainty estimation. However, movements

are generated by specific muscle co-activation patterns and can be treated as time

series with specific temporal correlations; some movements have states that can be

clustered and modeled as discrete variables. The aforementioned methods do not take

into account the temporal evolution or the state transition of the movements. Some
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studies include these factors, such as using switching linear models to estimate the

state transitions between movements of different fingers [87], using a 3-layer graphical

model and particle filter to capture the discrete movement states and continuous

temporal correlations [88], using temporal movements priors which encode the prior

knowledge such as degree of smoothness and anatomical constraints [89], and using

logistic-weighted regression to distinguish between the motion state and the rest state

[90]. While these methods exceed the performance of simple linear models, they often

require defining task-specific states and may not be suitable if the decoding task is

changed. Some of them are also computationally expensive at inference time, which

limits the sampling rate of the system and makes it hard to fit into an embedded

device. Therefore, there are still opportunities for further improvement.

Recently, deep neural network approaches have achieved high performance in many

different areas. ConvNets are the current de facto state-of-art architectures for pro-

cessing image and video data [91], primarily due to their deformation stability and

translation invariance guaranteed by their network structures [92–95]. ConvNet also

provides a convenient framework for signal processing since transformations such as

band-pass filtering and energy extraction can be implemented as convolution and

pooling operations, moreover the filters can be tuned in a data-driven way. At the

same time, RNNs are excellent tools for capturing patterns in sequence of data, such

as speech, text, connected hand writing among others [27, 28, 96]. This is because

RNN can maintain internal states that encode temporal history that enables them to

learn the temporal structure of the data. Additionally, the combination of these two

models have been used in image caption generation, video classification and language

modeling [24, 26, 97]. With convolutional and recurrent neural networks showing



14

such success in a variety of areas, they have also been applied to processing brain

signals [89, 98–102]. These models have a significant advantage over conventional

models as they can often be trained with a single end-to-end model using back-

propagation and do not require traditional, task-specific feature engineering. On the

contrary, features used by conventional models are typically extracted from ECoG

signals by time-frequency analysis methods, such as band-power extraction [2], au-

toregressive modeling [86], principal spectral component analysis [103,104], empirical

mode decomposition [104] and spatial filtering such as common average reference or

Independent Component Analysis (ICA) [105]; these features are held fixed and not

allowed to change.

In this study, we show a convolutional recurrent neural network architecture that

is capable of directly learning a mapping between the ECoG signals and finger move-

ments (flexions and extensions) without intermediate processing and is able to capture

the temporal patterns of the finger motion. We also show that the feature extrac-

tion pipeline that typically consists of ICA, band-pass filtering and power extraction

can be implemented as multiple stacked convolution layers and an L2 pooling layer,

which eliminates the need for explicit steps involving feature extraction and prepro-

cessing. These are implicitly achieved via convolutional layers and are involved in the

optimization. The feature extraction pipeline is entirely obtained through learning

with no preprocessing. Our method differs from the aforementioned deep learning

methods applied to brain signals [89,98–102] in that we use à trous convolution (i.e.,

convolution with upsampling of the filters) [106,107] to decompose ECoG signals and

we use a simple way to initialize and prune the model to cope with the small dataset.

We also show that our method gives a prediction with higher correlation coefficient
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than conventional regression methods and is able to distinguish between motion and

rest state. We have published these results in [108].

2.2 Methods

Data Collection

We used BCI Competition IV dataset collected by Kubanek et al. [81] for this

study from datasets of BCI competition IV that is available in the public domain.

The dataset consists of ECoG recordings from three epileptic subjects with sub-dural

electrode grids placed for extended clinical monitoring and localization of seizure foci.

The duration of the training dataset was 400 seconds and that of the testing set was

200 seconds for each subject. Each subject had a 8× 6 or 8× 8 electrode grid placed

over parts of sensorimotor cortex. The channel order was scrambled by the provider

so no information about the spatial location of the electrodes was known. The ECoG

signals from the electrodes were amplified, band-pass filtered between 0.15-200Hz,

digitized at 1kHz and recorded in a general purpose BCI2000 system [109]. The task

consisted of a visual cue provided to the patient while recording their brain signals

as well as flexion and extension of individual fingers of the hand contra-lateral to the

implanted grid, using a data glove sampled at 25 Hz. The subjects typically flexed

the indicated finger 3-5 times during a 1.5-3s time period and then rested for 2s.

Preprocessing

Those channels of ECoG signals (channel 55 of subject 1, channel 21, 38 of subject

2 and channel 49 of subject 3) that contained large bursts of noise were removed and
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the data was normalized for each subject. The finger trajectories from the dataset

contained baseline drift and interference between movements of different fingers. The

baseline was non-stationary; therefore, small fluctuations need to be removed but

the true finger flexions need to be kept intact. The baseline drift was corrected by

estimating the baseline and subtracting it from the trajectory. The baseline b was

estimated by

minimize
b

‖y − b‖+ λ
∑
n

(bn+1 − bn)
2

subject to b ≤ y.

(2.1)

Where y is the finger trajectory and λ was empirically set to be 1e5. The intuition of

this equation is to mimic placing a rope onto a slowly changing 1D landscape filled

with dips and pits and applying tension on the two ends of rope. The first term

is gravitational potential energy and the second term is the potential energy caused

by tension in the rope. The optimization problem was solved using Python package

CVXOPT with Splitting Conic Solver (SCS) [110]. After baseline drift correction, the

finger rest and movement states were distinguished by applying a threshold where the

finger trajectories in the rest states were set to zero. Non-maximum finger positions

at any given time were set to zero to make sure only one finger was moving at a time.

Figure 2.1 shows an example of the raw finger trajectory from the thumb of subject 1

as obtained from the data glove (blue trace: original) and the trajectory after it was

corrected for baseline drift and interference between different finger movements (green

trace: cleaned). The baseline correction was performed to increase the decoding per-

formance, since in our experience baseline correction improved decoding performance

for simple linear regression using band power features. Each peak corresponds to one
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flexion-extension cycle by the finger. Similar preprocessing approach was followed for

every finger for each subject.

Figure 2.1: Raw and corrected finger trajectory. Raw finger trajectory (blue trace) of the thumb as
obtained from the Data Glove is shown from subject 1. The green trace shows the thumb trajectory
after the preprocessing step to remove baseline drift and interference from other fingers. The cleaned
trajectory is normalized to the range [0, 1].

Network Architecture

The architecture is inspired by the typical ECoG feature extraction pipeline which

consists of spatial transformation and time-frequency analysis of the input ECoG

signals (figure 2.2). Typically, in such an architecture for decoding ECoG signals,

the input is transformed using Independent ICA or CSP [111, 112] to obtain spatial

components, which are further decomposed into different frequency bands. Energy is

extracted within these sub-frequency bands and feed into a regression algorithm to

reconstruct the original trajectory. We used this model as the baseline to compare

performances.
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Figure 2.2: A typical feature extraction and decoding pipeline. The input ECoG signal is trans-
formed using ICA or CSP to obtain spatial components, which are further decomposed into different
frequency bands to extract the energy. Power is calculated within these frequency bands and used
as features for the regression model to decode movement trajectories.

Our deep learning model combined a hierarchical feature extractor: a ConvNet

with a RNN that is able to process sequential data and recognize temporal dynamics

in the neural data. The model involved passing segments of ECoG signals from

sliding windows through a feature transformation to produce a fixed-length vector

representation. ECoG signals in 1s sliding windows were used in the model and the

stride was set to 40ms to match the rate at which finger trajectories were obtained

from the data glove (25Hz sampling rate). Then the vector representations were sent

to the RNN for further processing. The schematic overview of our model is shown in

figure 2.3. A detailed descriptions of each layer is presented below.
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Figure 2.3: Schematic overview of the decoding network. (A) Input Layer uses a sliding window to
get the ECoG signals and feed them to (B) spatial convolutional layer to perform spatial filtering and
then (C) temporal convolution layers apply temporal filtering to decompose signals into different
sub-bands. (D) L2 pooling layer extracts the power in different sub-bands and (E) LSTM layer
captures the temporal correlation of signals.

Input Layer (A)

The network uses the past data to predict the current finger position. The input

to the network was a 1 second long ECoG signal segment sampled at 1 kHz. Because

the sampling rate of the data-glove used to obtain finger trajectory was 25 Hz, the

input stride for the ECoG signal was chosen as 40ms (for example, the first input was

from 0-1000ms, the second input was from 40-1040ms, and so on). The stride and the

overlap were determined by the sampling rate of the kinematic data. For a general case

with any other input, the stride and overlap can be changed to match the sampling
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rate of the kinematics. The input signal was a 4D tensor with a shape of (B, 1000, 1,

C), where B was the number of samples in a mini-batch when calculating stochastic

gradient. B was not relevant to the network architecture so it was omitted and the

shape of the input and output of each layer was denoted by a 3-tuple henceforth. C

was the number of channels. 1000 and 1 were fixed in the input signal, and the shape

of the signal was (1000, 1) for every channel. For example, the input shape of subject

1 was (1000, 1, 61) since the number of electrodes for subject 1 was 62 and one noisy

electrode (channel 55) was eliminated.

Spatial Convolution Layer (B)

The purpose of using the spatial convolution layer was to let the network find the

most informative or task-modulated linear subspace of the original channels. The

spatial convolution layer performed spatial filtering on the input ECoG signal. This

layer multiplied the input signal by a C × C un-mixing matrix along the channel

dimension, which can be implemented as a convolution operation [113]. The signal

was then reshaped to (1000, C, 1) for the convenience of doing temporal convolution

afterwards.

Parameter initialization for spatial convolution layer

We found that appropriate parameter initialization can greatly reduce both the

chance of overfitting and the training time. Parameters can be first initialized in

simple ways and then trained using back-propagation. Distinct initialization meth-

ods were used for the spatial and temporal convolution layer and the LSTM layer.

Un-mixing matrix obtained from fastICA [105] applied on the input ECoG signals
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was used to initialize the spatial filter. ICA can identify and separate independent

sources so the task irrelevant sources can be pruned to save computation and reduce

overfitting.

Temporal Convolution Layers (C)

The motivation of using the temporal convolution layer was to let the network

learn the best band partition in a data-driven way. There is a tradeoff between

computational complexity and model performance in selecting the number of temporal

convolution layers in the model. Our choice of the number of temporal layers was

based upon the model performance by using 2, 3, and 4 temporal convolutional layers.

In this layer, the input was passed through 3 consecutive temporal convolution layers,

which recursively divided the signals from the previous layer into low and high sub-

bands to extract the relevant features. The 3 temporal convolution layers respectively

contained 2, 4, 8 filters of size 1 × 17, which is the size of the analysis filters of

biorthogonal wavelet 6.8 [107]. Instead of downsampling the signals at each layer,

we upsampled the filters by interlacing the filter coefficients with zeros. This is

called undecimated wavelet transform, stationary wavelet transform or algorithm à

trous [106,107], and was chosen as it is shift covariant and can preserve the sampling

rate of the signal to make it convenient for the subsequent processing. We padded

the input to each temporal convolution layer to get the signals of same length at the

output. We used scaled tanh as the nonlinearity function for convolutional layers,

which is 1.7156 tanh(2x/3) [114]. It is almost linear with a slope of 1 for small signals

(|f(x)| = 1 when |x| = 1) and saturates for large signals to reject noises with high

amplitude, thus making the system more robust.
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Parameter initialization for temporal convolution layer

The analysis filters of biorthogonal wavelet 6.8 [107] was used to initialize the filter

weights of the 3 temporal convolution layers. Wavelet is a tool for multiresolution

analysis which decomposes the signal to get coarse approximation and incrementally

finer details. Biorthogonal wavelet 6.8 was chosen as it is symmetric and thus, pre-

serves the shape and introduces no phase distortion. Although this study didn’t use

this property, the phase information can be preserved using this wavelet and can

be used for future studies. The analysis filter of biorthogonal wavelet was used to

recursively decompose the input signal into low and high frequency bands. After

initializing the weights of the convolutional layer, feature vectors can be obtained by

passing signals through the convolutional layers. Least angle regression (LassoLars in

scikit-learn package) [82] was used to find the regression weights and the best sparsity

level was chosen by 3-fold cross-validation by solving an L1 regularized least squares

problem. It can force many coefficients to be zero thus effectively only selecting rele-

vant features to make the prediction more robust. Applying LassoLars to the feature

vectors extracted by the network without training is equivalent to the processing

pipeline shown in figure 2.2. The architecture of the convolutional network is shown

in table 2.1. The table describes the input and the output shape of the signal at each

temporal convolution layer and the computation happened at that layer.
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Table 2.1: ConvNet Architecture. The input to each layer is a 4D tensor, with the order (batch,
channel, width, height). Batch is the number of samples in a mini-batch which is omitted. C0 is the
number of the input channels for each subject. Subject 1 had 61 ECoG channels, subject 2 had 46
channels, and subject 3 had 63 channels, respectively. C1 and C4 are the number of selected spatial
and temporal filters. C2 and C3 are the number of active paths in the first and second temporal
layers as described in figure 2.4.

Layer Input shape Output shape Description

Input Layer (C0, 1, 1000) (C0, 1, 1000) 1 second segment of ECoG signal

Conv1 + Reshape (C0, 1, 1000) (1, C1, 1000)

Perform 1× 1 spatial convolution

and spatial filter selection,

then reshape to (1, C1, 1000)

Conv2 (1, C1, 1000) (C2, C1, 1000)
This temporal convolution layer

has C2 filters of size (1, 17)

Conv3 (C2, C1, 1000) (C3, C1, 1000)
C3 filters of size (1, 17),

dilation rate (1, 2)

Conv4 (C3, C1, 1000) (C4, C1, 1000)

C4 filters of size (1, 17),

dilation rate (1, 4).

The output shape is (8, 61, 1000)

Pooling Layer (C4, C1, 1000) (C4×C1×25,)

Calculate the log power

of signals in every 40ms bins,

then flatten the signal

to a 1D vector of length C4× C1× 25

L2 Pooling Layer (D)

The pooling layer was used to extract the modulation of signal energy in each

bands. The L2 norm of every non-overlapping 40ms window was calculated. To

transform the band power features into the same scale, the log(1 + x) nonlinearity

was applied. After pooling, the signals were flattened as the input of the LSTM layer.

The network divided the original signal into 8 sub-bands and extracted the logarithm

of band power within those bands.

LSTM Layer (E)

LSTM is a special recurrent neural network as introduced in chapter 1. It can

be used to capture the temporal correlation in the finger trajectories and acts like

an adaptive filter to incorporate temporal information into the system. The state
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equations of our LSTM are similar to those in chapter 1:

i = σ(Wixt + Uiht−1 + b i) (2.2)

f = σ(Wfxt + Ufht−1 + bf ) (2.3)

o = σ(Woxt + Uoht−1 + bo) (2.4)

c̃ = Wcxt + Ucht−1 + bc (2.5)

ct = f � ct−1 + i� c̃ (2.6)

ht = o� ct (2.7)

The only difference is between equation 2.5 and equation 1.5: here we use identity

activation to make the LSTM behave like a linear model at the beginning. W , U

and b are learnable parameters. The output of the convolutional layer is directly

input into the recurrent layer, and the recurrent layer is responsible for learning all

the state transitions that occur in the signal. The number of units in LSTM was

empirically set to be 10. A fully connected layer with 1 unit and Rectified Linear unit

(ReLu) [115] nonlinearity was connected to LSTM to get the final output. ReLu was

used so that the output was non-negative. Because the neural network library we

used (Theano [38,116]) did not support dynamic computational graph, the length of

the sequence needed to be pre-specified. We used 100-time step (4s each) sequences

as the input to train the LSTM. 100-time step were chosen as it was long enough

to capture the temporal correlation and not too long to be fitted into the graphics

memory. The overall network architecture is shown in table 2.2.
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Table 2.2: The structure of the decoding network. C0, C1 and C4 are the number of channels, the
number of selected spatial and temporal filters, respectively.

Layer Input shape Output shape Description

Input Layer (100, C0, 1, 1000) (100, C0, 1, 1000)

4 second segment

(100 time step)

of ECoG signal

TimeDistributed

(Model)
(100, C0, 1, 1000) (1000, C1×C4×25)

Sliding the ConvNet model

on the input signal

and collecting the sequence

of feature vectors

LSTM (100, C1×C4×25) (100, 10)

A 10 dimensional vector

is produced by LSTM

at every time step

TimeDistributed

(Dense)
(100, 10) (100, 1)

Final output unit,

produces a prediction

at every time step

Parameter initialization for LSTM layer

We initially gave a large bias such as ±3.0 to control the opening and closing of

each gate. Since LSTM layer contains multiple memory cell units, we picked one unit

and initialize it to be oblivious and autistic: it does not interact with past states

and the states of other units. We also initialize the Wc by the coefficients of the

LassoLars so that this hidden unit initially gives the result of least angle regression.

All the other weights were initialized randomly. The network was initialized to have

output identical to that of least angle regression and can be trained to further reduce

mean square error and capture temporal correlation. The mean square error was used

here instead of cross-correlation because in the cleaned trajectory every finger spends

most time at rest and the standard deviation of the resting period doesn’t exist. More

information about different loss functions is discussed in the Discussion section. The

length of input to the network was 4 seconds, which is 100 time steps.
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2.3 Result

We first show the data-driven adaptation of spatial and temporal filters after train-

ing the convolution layers. We also examine how the number of temporal convolution

layers affects the performance of the ConvNet. Once the model is trained, we then

test the performance of the model to decode finger trajectories from the ECoG data

from 3 subjects. Finally, we compare the decoding performance of the LSTM, LARS

with a conventional decoding method based on band-specific spectral information

from the ECoG signals.

For deep learning, we used Theano and Keras to train our model [38, 116, 117].

Theano is a python library for building computational graphs, and Keras is a deep

learning Application Programming Interface (API) running on top of Theano. The

training was carried out by optimizing the mean square loss objective using Adaptive

Moment Estimation (Adam) [118], an adaptive stochastic optimization algorithm,

the learning rate was set to be 1e−5 with a decay rate of 0.005 for each epoch.

Each model was trained for 100 epochs. At the end of each epoch, if the model

performance exceeded the current best performance on the validation set, then the

model was saved. The percentages of the data used for training, validation and testing

was 44%, 22% and 33%, respectively. The final decoding performance of the model

was calculated on the test set using original finger trajectory rather than cleaned

trajectory to compare with different methods.

Filter Pruning

For every element in the feature vector, we could identify the path it went through

and find out the index of the spatial filter and temporal filters that participated in
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the computation of that element. To prune the network, we eliminated all the filters

that did not take part in the computation of the features selected by LassoLars. An

example of temporal filter pruning for the model for subject 1 is shown in figure 2.4.

Figure 2.4: Schematic of the filter pruning procedure. In this example, temporal filter 1, 3, 4, 5, 8
are involved in the computation of elements with non-zero LassoLars coefficients, other filters are
pruned. Dashed lines represent filter coefficients which are initialized as zero. They can be trained
to capture interactions between different bands.

shows the color-coded relative change of weights of the spatial filters in the spatial

convolutional layer for all the fingers for subject 1. Relative change of weights were

the difference between spatial filters before and after training divided by the origi-

nal weights. Y-axis indexes the reduced spatial components. All the other spatial

components which did not contribute to the final output were eliminated from the

model. For example, for the thumb model of subject 1, the number of spatial filters

reduced from 61 to 7 and, for the thumb model of subject 2 and 3, the number of

spatial filters reduce from 46 to 29 and 63 to 32, respectively. We also investigated the

change of weights during the training to see how the features adapt to the task. We

found that the filters in the temporal convolution layers almost remained the same,

the absolute relative differences for temporal filter were all less than 1e-3, whereas

the spatial filters showed large changes. The spatial filters are somewhat sparse such

that the weights of a small portion of channels are significantly different from 0 and

all the other channel weights are close to 0. The large relative changes occur when

the filters learn to include new channels into the linear combination so the weights
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of these newly included channels change from nearly 0 to a relatively large number.

This may be because the information is broadly distributed in the frequency domain

so the network is not sensitive to the parameters of the temporal filter.
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Figure 2.5: This figure shows the relative difference between spatial filters before and after training
for subject 1, the changes are color coded, the contrastive blocks represent large changes. Each row
of the spatial filter matrix represents a spatial filter which linearly combines the original channels.
See Appendix A.1 for the relative change of weights in the spatial convolution layer for subjects 2
and 3.
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Optimizing the number of temporal convolution layers

We compared the decoding performance of the ConvNet quantified by the cor-

relation coefficient between the actual and decoded finger trajectory with different

number of temporal convolution layers (2,3, and 4 layers). ConvNet with 2, 3 and

4 layers respectively decomposed the original signal into 4, 8 and 16 sub-bands and

extracted the power in each band. We built ConvNets by directly connecting a ReLu

unit to the pooling layer to get the prediction, the weights of the new layer were

initialized by LassoLars, the weights of all the previous layers were initialized in the

same way as described before. The LSTM layer was not used because we only wanted

to quantify the information contained in different levels of decomposition without the

integration of the temporal information. The models were trained using Adam for 10

epochs. The performances of the ConvNet with different number of temporal convo-

lution layers are shown in figure 2.6. From these results, we found that the ConvNet

with 3 temporal convolution layers had the highest score in general, it is computa-

tionally cheaper than that with 4 temporal convolution layers and it has higher model

capacity as compared with 2 temporal convolution layers. Therefore, we choose the

number of temporal convolution layers to be 3.
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Figure 2.6: Relation between decoding performances and number of temporal convolutional layers
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Decoding performances

We show the performances of our model before and after training and compare

them with the method described in [2], to show that the training was effective. We

also compare the performance of the linear model, the Random Forest model (RF )

[119, 120] and the LSTM model (LSTM HC, for using hard-coded features) on the

features extracted by the ConvNet before training for comparison. Further, we build

a linear model (referred to as LINEAR) on top of the fine-tuned features after the

training to show that the training is effective and that it improves the quality of

the features. In table 2.3, BAND represents the method in [2], which is a typical

pipeline algorithm similar to the process described in figure 2.2; they extract band

power features and use forward feature selection and linear regression to build the

model. LARS is the linear model built on top of the extracted band power features

from the pooling layer, it represents the model (figure 2.2) before training with the

initialized weights, which is equivalent to a processing pipeline which transforms the

original signal using ICA, decomposes it into different bands, calculates band powers

and fits a LassoLars model. LSTM represents the model (figure 2.3) after training.

RF represents the Random Forest models trained on the features selected by the

LassoLars algorithm. LINEAR represents the linear model built on the fine-tuned

features after the training of LSTM.

For each finger, we repeat the procedure of training LSTM 10 times and calculate

the standard deviation of the performances of LSTM and LINEAR. We show in figure

2.7, 10 second segment of the decoded finger trajectories by LassoLars (LARS ) and

LSTM for subject 1. The true finger trajectory is also presented. Similar 10s segments

of decoded finger trajectories from subject 2 and 3 are shown in the Appendix A.2.
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A comparison of model performances for each subject for all the fingers is shown in

table 2.3. Here we compare the performance of the deep learning approach (LSTM

model) with a linear (LARS ) model, the conventional model (BAND) that utilizes

band power reported in [2], the Random Forest model (RF ), and the LINEAR model.

LARS is deterministic and its performance only depends on how the dataset is split

whereas RF is already an average of multiple random models. Therefore, error bars

are only shown for the LINEAR and LSTM models. The finger trajectories decoded

by LSTM is generally higher than those decoded by LARS in the movement period;

they also show explicit transitions between rest and movement, which suggests that

the LSTM captures additional temporal information.

To show that the output of LSTM is smoother than that of LARS, the mean

quadratic variation
∑

i(yi+1 − yi)
2/(n− 1) and the mean square curvature

∑
i(yi+2 +

yi − 2yi+1)
2/(n − 2) of the output (test set) are calculated (table 2.4), where y is

the output and n is the length of the output. The mean square curvature and the

mean quadratic variation are calculated from the output of the trained LSTM model.

Every output is normalized so that the standard deviation during movement period

is 1. In all but one case, the normalized predictions given by LSTM have lower mean

quadratic variation and lower mean square curvature than those given by LARS.

We performed a one sample t-test to compare the performance of the proposed

LSTM model and the BAND model. We found significant improvement in perfor-

mance of the LSTM model over the BAND model in decoding the finger trajectories

(p=0.004).
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Figure 2.7: Actual and decoded trajectory of all fingers from subject 1. LARS represents the model
before training and LSTM represents the model after training. The trajectory is normalized to the
range [0, 1].
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Table 2.3: Comparison of model performances (correlation coefficient) for each finger for all subjects

Comparison of model performances for subject 1

BAND RF LARS LINEAR LSTM LSTM HC

Thumb .58 .61 .67 .69±.011 .75±.011 .72±.005

Index .71 .53 .77 .77±.005 .79±.005 .79±.003

Middle .14 .06 .11 .13±.002 .17±.002 .13±.001

Ring .53 .33 .62 .55±.001 .60±.004 .61±.002

Little .29 .35 .40 .46±.005 .47±.005 .42±.001

Comparison of model performances for subject 2

BAND RF LARS LINEAR LSTM LSTM HC

Thumb .51 .53 .55 .60±.010 .62±.010 .59±.009

Index .37 .35 .42 .40±.019 .38±.019 .41±.010

Middle .24 .21 .20 .24±.007 .27±.007 .22±.003

Ring .47 .39 .46 .44±.004 .47±.004 .46+.002

Little .35 .26 .27 .28±.010 .30±.010 .29±.005

Comparison of model performances for subject 3

BAND RF LARS LINEAR LSTM LSTM HC

Thumb .59 .67 .72 .74±.001 .74±.001 .74±.001

Index .51 .27 .43 .53±.014 .55±.014 .45±.005

Middle .32 .16 .45 .45±.004 .46±.004 .45±.002

Ring .53 .14 .51 .49±.011 .41±.011 .43±.007

Little .42 .36 .64 .68±.006 .75±.006 .69±.004
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Table 2.4: Comparison of mean quadratic variation and square curvature of the output of LARS
and LSTM

Mean quadratic variation of the output of LARS and LSTM

Subject 1 Subject 2 Subject 3

LARS LSTM LARS LSTM LARS LSTM

Thumb .047 .028±.005 .037 .011±.003 .013 .016±.002

Index .057 .046±.005 .038 .016±.005 .081 .019±.005

Middle .249 .109±.015 .054 .013±.003 .045 .025±.003

Ring .093 .071±.002 .046 .038±.004 .091 .077±.010

Little .066 .015±.001 .025 .016±.001 .035 .011±.001

Mean square curvature of the output of LARS and LSTM

Subject 1 Subject 2 Subject 3

LARS LSTM LARS LSTM LARS LSTM

Thumb .034 .022±.006 .043 .009±.004 .006 .021±.005

Index .060 .053±.006 .050 .012±.007 .012 .023±.003

Middle .377 .118±.019 .069 .008±.002 .007 .035±.005

Ring .094 .078±.003 .060 .043±.005 .043 .092±.014

Little .071 .011±.001 .023 .008±.001 .008 .015±.002
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2.4 Discussion

In this study, we demonstrated a network architecture that combined a hierarchi-

cal feature extractor and a ConvNet with a RNN that was able to process sequential

data and recognize temporal dynamics in the neural data. We showed that the typical

feature extraction pipeline for ECoG decoding task can be integrated into a deep neu-

ral network and can be jointly optimized. Spatial transformation was implemented by

convolution along channel dimension and spectral analysis was performed by passing

signals through 3 consecutive convolutional layers, which recursively divided signals

from the previous layers into high frequency and low frequency parts. We cleaned

the finger trajectories to make the model learn the state transition between rest and

movement, which is vital for the development of self-paced BCI.

We chose a simple network architecture and careful initialization to cope with the

small dataset and noisy signals. We have tried networks with different architectures;

it is possible to train the model using random initialization only if the model has a

very simple architecture or the trajectories were interpolated to have same sampling

frequency as the input signal (from 25Hz to 1000Hz, 40x increase). However, it would

take much longer time for the model to reach the same performance as the current

method. The choice of spatial convolution layer was motivated by the ability of

spatial filter algorithms to find the most task-modulated linear subspace of original

channels due to the lack of electrode location information in the dataset. If the

channel locations were provided, different spatial or spatiotemporal convolutional

architectures could be used to take into account the signal similarities between nearby

electrodes. It is possible to train the model with randomly initialized spatial filters,

but the layer (C) must be initialized by Lasso regression and it also takes longer time.
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Because of the large number of noisy features, linear regression or Ridge regression

[121] would not work as they tend to overfit and have poor performance on the test

dataset.

Currently this method is time-consuming, the experiments were run on a laptop

with i7-4720HQ CPU and GTX 960m GPU. For every finger, it took 5 minutes to

fit the LARS model. Additionally, depending on the number of selected filters, every

training epoch took 15-25 seconds, so the training of network took 25-40 minutes.

For every subject, independent component analysis took roughly 40 minutes, which

means an amortized cost of 8 minutes for each finger. However, there is room for

improvement, because the use of à trous convolution and the fact that the input

stride is equal to the length of time window used in the pooling layer (40ms), if we

slightly change the padding mode for the convolution layer [122], shifted input would

result in shifted pooling layer features. Exploiting this could reduce the redundant

convolution computation and speed up the training process.

During the training phase, the mean square error on the validation set was moni-

tored and the model with the lowest loss on the validation set was saved. However, the

correlation coefficients between actual finger trajectory and the trajectory predicted

by the LSTM were lower than those of LARS in some cases, so a decrease in mean

square error may not lead to an increase in the correlation coefficient. In those cases,

the deep learning approach (LSTM ) did not seem to learn the true state transitions

of the finger movements. We have tried using different loss functions, such as models

trained with mean absolute error and mean absolute percentage error which tended

to give flat output, Huber loss with different slope parameters which provided no

noticeable improvement in performance from models trained with mean square error.
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We also found that models trained by directly increasing cross-correlation cannot use

segments of data in which the fingers are at rest (the standard deviation would be 0

for these segments) and tend to have unstable performances.

We also investigated the change of weights during the fine-tuning process. There

was no noticeable change of the filter weights in the temporal convolution layer; how-

ever, the filter weights in the spatial convolution layer changed significantly. This may

indicate that the information is broadly distributed in the frequency domain and is

not very sensitive to the actual partition in the frequency domain whereas the spatial

information is much more important. This is also reflected in the decoding results

with different number of temporal convolution layers. The decoding performance does

not vary too much for different number of temporal convolution layers, as is shown in

figure 2.6. Also, we observed in our experiments of training networks with one tem-

poral convolution layer that if the filters were randomly initialized and regularized by

spectral L1 norm, then one of the filters would become very low frequency low-pass

filter, others would become broad band filters. This indicates that low frequency

band (<5Hz) is very informative about finger movement, although in [123], Schalk et

al. termed this local motor potential and argued that this is more likely amplitude

modulation than frequency modulation.

Many different time series algorithms have been successfully applied to the brain

signal decoding problems, such as Hidden Markov Model (HMM) [73, 124, 125] and

state space models [126–128]. They can estimate the hidden states and the data

likelihood. HMM can also be used on top of a ConvNet to capture the temporal

correlation [129], apart from the Markov assumption of the HMM model, the main

practical difference is that the system cannot be trained only using back propagation
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since HMM and state space model typically require using forward-backward algorithm

to infer the latent variables and update the parameters. Like Kalman Filter [130],

LSTM can learn temporal correlations and use past information to predict current

position. Also, it is easy to incorporate non-smoothness penalties [131] to the loss of

the LSTM model to make the output smoother. LSTM model gave improvement of

the decoding performance on fingers for which the movement can already be predicted

fairly well by LARS. This suggests that the ECoG signal may contain cleaner move-

ment information for these fingers so that the LSTM can capture additional temporal

correlations. This is also shown by the performance of LSTM HC, LSTM HC only

does regression without fine-tuning the filters, so the improvement in the performance

is solely due to capturing the temporal correlation. The performance of LSTM is gen-

erally better than the LSTM HC, although the performance of LSTM shows larger

variance, in practice we can always train several models and pick the best one.

Because we initialized the bias of the forget gate to be a large negative value to

make it close, the gradients were harder to propagate back to the distant past and the

network was only able to capture short-term correlation. Using random initialization

or adding a bottleneck layer between ConvNet and LSTM can result in models which

give smoother and more realistic output compared to the proposed model, but these

models tend to ignore some finger movements, resulting in both higher mean square

error and lower cross-correlation. Another interesting thing we noticed was that

although we cleaned the finger trajectory in the test set, the model was still able to

decode small movement elicited by adjacent fingers (figure 2.8), so the interference

between movement of adjacent fingers may exist at the cortical level, which may be

a helpful mechanism for more complex movements such as grasping.



40

Figure 2.8: Interference from movement of adjacent fingers on the decoding model. The LSTM was
built to decode the trajectory of subject 1’s little finger but it nevertheless decoded the trajectory
of the ring finger. The trajectory is normalized to the range [0, 1].

We noticed that the decoded finger positions are generally lower than the actual

finger positions, as shown in figure 2.6. We speculate that this may due to the multi-

modality of the finger trajectories. Every finger spends lot of time at rest so the

distributions of the finger positions have a spike at 0, however since we are using

L2 loss, the Gaussian outputs are implicitly assumed, so the peak of the Gaussian

curve will shift toward 0. We tried the mixture density network but it failed to give

meaningful predictions. In a future work, we will investigate the embedding technique

to embed the output trajectory into a latent space and learn the mapping between

features and the embedding. In figure 2.8, we decode the movement intention rather

than the movement itself, so the trajectories were cleaned to make sure that only the

intended movements were in the supervising signal but not the movements elicited by

adjacent fingers. We showed that some of the movement intention of ring and index
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finger cannot be separated by the decoder. The output of decoder has many false

activations, but the decoder is nevertheless able to predict resting state by yielding

consecutive zeros as output, which is not possible by using linear decoder.

In summary, our model achieved comparable or better performance to the methods

described in [2,87,90,104], which all used the same dataset and treat finger positions

as continuous variables. Studies described in [2] is the BAND method, [87] and [90]

are the switching linear model and logistic-weighted regression model, and [104] is the

model which used empirical model decomposition for feature extraction. Compared

to these methods, the main advantage of our model is that it can learn to capture

temporal correlation of the finger movement by explicitly expressing the transition

between rest and finger movement. We built separate models for each finger to avoid

using the task specific side information that only one finger moves at a time. Com-

pared to other methods, our model required some extra computations in the LSTM

layer at every time-step; however, this computational cost is within the processing

capacity of the current hardware, so the Convolutional-LSTM system is applicable to

the general ECoG motor decoding tasks. This model can be applied in a continuous

output in closed loop online experiments where the streaming data can be maintained

in a buffer and fed into the system for training in batches. Since the network archi-

tecture is not very complex, the processing speed of the system can easily surpass the

sampling rate of the data using a reasonable GPU. With enough data, this model can

learn task dependent features and capture temporal patterns in a data-driven way.
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2.5 Conclusions

This study proposes a new method for decoding ECoG signals, which performs

better or similar to the commonly used linear methods and eliminates the need to

separately train the model at each step in the decoding pipeline. The poor perfor-

mance given by the model on some digits indicates that the network did not find the

right representation of the finger movement. This warrants the need to find better

regularization methods for the model, perhaps by combining the data of different

subjects together and training a single model that captures common variations, to

improve the performance of the movement prediction task for BMI applications.



CHAPTER 3

Estimate Sparse Source Connectivity
Using Recurrent Neural Network

3.1 Background

Connectivity analysis plays an important role in many areas of neuroscience, it

uncovers the relationship between time series from different regions of the brain. Com-

monly the connectivity is categorized into anatomical connectivity, functional connec-

tivity and effective connectivity, functional connectivity characterizes the statistical

dependencies between signals and effective connectivity further reveals the directions

of information flows and the causal relationships. Important application of the con-

nectivity analysis includes decoding the brain signals [132–135] and understanding

neurological disorders [136–141]. Connectivity can be estimated by many different

methods, among which one popular framework for causality analysis is multivariate

autoregressive model (MVAR) [142–145] and it is studied in this work. MVAR mea-

sures Granger causality [142] by predicting current value of multichannel time series

using weighted sum of the past values. To put it simply, if past value of one channel

can be used to predict the current value of another channel but not vice versa, then

there may exist a causal link between these two channels.

43
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MVAR is a powerful tool but there are several practical concerns regarding the use

of it. First, electroencephalography (EEG), electrocorticography (ECoG) or magne-

toencephalography (MEG) data collected from electrodes or sensors are a linear com-

bination of the source signals due to the volume conduction [8], direct application of

MVAR onto the raw signals will induce estimation bias. The common practice is to

estimate the brain source activity by either directly computing the inversion of the

physical forward model [146–149] or using statistical assumptions to create a genera-

tive model [4–6,150,151]. ICA has been used extensively in EEG/ECoG/MEG signal

processing applications for blind source separation but the independent assumption

of ICA is violated in the MVAR model. However, if non-gaussian noise is assumed

in the source generating process, the problem of finding both the source connectivity

and the mixing matrix could be transformed to the problem of estimating the in-

dependent components. Instantaneous causality is estimated by ICA in [152] under

the condition that no cyclic interaction between sources exists. MVARICA [5] and

CSPVARICA [4] first transform the data using principle component analysis (PCA)

or common spatial pattern (CSP), then fit MVAR model and apply ICA onto the

residuals of the MVAR models. Convolutive ICA with an auto-regressive model (CI-

CAAR) [3, 150] and Sparsely Connected Source Analysis (SCSA) [6] formulate the

problem as convolutive ICA and find the solution using gradient descent. SCSA ex-

tends CICAAR by adding sparsity constraint and explicitly separating the mixing

matrix and the MVAR coefficients.

Another issue regarding the use of MVAR is that the process may not be station-

ary, connectivity pattern undergoes dynamic changes during different motor or cogni-

tive tasks [15–19,153]. Sliding window approach could be used to estimate the time-
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dependent change but the problem becomes that of choosing the right window length

and the optimal trade-off between temporal and spectral resolution [154]. A more

resolutive approach is to model the change of connectivity via state space models and

estimate the time-dependent parameters by filtering or smoothing [14, 151, 155, 156].

If the state transition noise is non-gaussian, this problem can also be formulated as

non-stationary convolutive ICA and be solved by inference algorithms like particle

filters. However, the re-sampling stage of particle filter is not differentiable so it is

not possible to build a differentiable feature extractor module without some kind of

approximation.

In this paper, we propose to estimate both the unmixing matrix and the time-

dependent MVAR coefficients using a novel RNN model in one step. With the current

development of the cross-platform deep learning framework and automatic differenti-

ation library, the training and the deployment of the model would be straightforward

and efficient. The flexible RNN model integrates sparsity constraints and order se-

lection using group lasso and hierarchical group lasso penalties. It can serve as a

differentiable feature extractor module which provides both the source signals and

the connectivity information to a BMI system. The whole system can then be further

trained and fine-tuned using task labels.

3.2 Method

Data generation

We simulated the data using an MVAR model of order 4,

Xt =
4∑

p=1

ApXt−p + ξ. (3.1)
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Where each Xt is an 8-dimensional vector and ξs follow a standard hyperbolic secant

distribution with density function f(x) = 1
2
sech(π

2
x). The ξs were generated by

inversion sampling. The coefficient matrices As were first generated as random normal

matrices. To simulate sparse connection, a sparse binary mask M was generated

and element-wise multiplied onto each A. M has 1s on the diagonal and it picks

off-diagonal elements according to Bernoulli(0.1). To make the process stable, the

extended state transition matrix was formed to give a first-order system.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xt

Xt−1

Xt−2

Xt−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3 A4

I O O O

O I O O

O O I O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xt−1

Xt−2

Xt−3

Xt−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

The spectral radius ρ of the state transition matrix was calculated and each Ai was

divided by (ρ
c
)i to make the spectral radius of the matrix less than c. In the simulation

we set c to be 0.7. After that we chose 1 non-zero entries in the coefficients and

modulate it with sin(20πt/T ), here T is the length of each simulation, which is 1000.

Model architecture

The model consists of 4 layers: input layer, spatial convolutional layer, gated

recurrent unit layer, output and reshape layer. The structure of the model and the

input output shape of each layer is shown in figure 3.1.

Input Layer

The input signal was a 3D tensor with a shape of (B, 1000, 8), where B was the

number of samples in a mini-batch when calculating stochastic gradient. B was not
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relevant to the network architecture so it was omitted and the shape of the input

and output of each layer was denoted by a 2-tuple henceforth. 8 was the number of

channels. 1000 is the time dimension.

Spatial Convolutional Layer

The spatial convolutional layer performs unmixing transform, the weights of this

layer is an 8 by 8 matrix, denoted by Wsc, the input signal is multiplied by this

matrix in this layer. Wsc was initialized as identity matrix and was constrained to be

orthonormal.

Gated Recurrent Unit layer

GRU was introduced in chapter 1, we use GRU because it directly exposes its

internal states, which could be useful for regularizing its dynamics. The hidden state

size of the GRU is set to be 50 so the output shape of the GRU layer is (1000, 50)

Output and Reshape Layer

The output of GRU is fed into a densely connected layer, we set the maximum

MVAR order that can be estimated by the model to be 12, so the output at each time

step is an 8×8×12 = 768 dimensional vector. Then this vector is reshaped to (8, 8×

12) to represent the time-varying MVAR coefficients, which are the concatenation of

A1 through A4. The total time step of the input is 1000, so the output shape of this

layer is (1000, 8, 96).
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InputLayer
input:

output:

(None, 1000, 8)

(None, 1000, 8)

Conv1D
input:

output:

(None, 1000, 8)

(None, 1000, 8)

GRU
input:

output:

(None, 1000, 8)

(None, 1000, 50)

TimeDistributed(Dense)
input:

output:

(None, 1000, 50)

(None, 1000, 768)

TimeDistributed(Reshape)
input:

output:

(None, 1000, 768)

(None, 1000, 8, 96)

Figure 3.1: Structure of the connectivity estimation model

Loss function and regularization

The output of the network (8 by 96 matrix) is multiplied onto the input from pre-

vious 12 time steps (8 × 12 dimensional vector) to get the estimation of the current

value (8-dimensional vector). Since we assumed that the noises follow hyperbolic

secant distribution, the loss function is logcosh(estimation error). Several regular-

ization terms were added to the loss. Specifically, we required that the unmixing

matrix to be orthonormal, thus the first regularization term is ‖WscW
T
sc− I‖, here we
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use the Frobenius norm. Second regularization term penalizes non-smooth output:

mean(yi+1−yi)
2, where y is the output of the model. Third regularization term pro-

motes sparse MVAR coefficients, it is the group lasso of the off-diagonal terms for all

the 12 small matrices (the output shape is (8, 96), it can be viewed as concatenation

of 12 different 8× 8 matrices). The last regularization term is the hierachical group

lasso that penalizes the MVAR models of large order.

3.3 Result

We first show that without mixing, the network can accurately estimate the spar-

sity level and the model order. figure 3.2 shows the output of the model at the 500th

time step and the ground truth MVAR coefficients at the same time step. The output

of the model is truncated to have the same column as the ground truth matrix. All

the remaining part is of order 1e−4 and can be discarded. From figure 3.2 we can see

that the network correctly estimated the sparsity level and the order of the model.
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Figure 3.2: Ground truth and estimated MVAR coefficients. This figure shows color-coded matrices.
Top panel is the output from the network at a given time step, which is an 8 by 96 matrix, here
only the first 32 columns are shown because the rest of the columns are all close to 0. Bottom panel
is the ground truth MVAR coefficients at the same time step.
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Next, we show that with the unmixing spatial convolutional layer, the time course

of the source connectivity can be recovered. After unmixing process, the channels

are randomly permuted and flipped, so we examine each coefficient to find the chan-

nel that carries sinusoidal modulation. Figure 3.3 shows a sinusoidal output from

the network, so the network correctly estimated the time course of the connectivity

pattern.

Figure 3.3: A sinusoidal output from the network

3.4 Discussion

The current RNN model only gives maximum likelihood point estimation, it lacks

the uncertainty estimation as in Kalman filtering or particle filtering, this could be im-

proved by making the network output both mean and variance of the estimation, as in

the variational autoencoder [157]. There are also methods combining neural network

and particle filters, which uses neural network to generate adaptive proposal distri-
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bution [158]. We will investigate these methods in our future work. Another shortage

of this model is that it only does filtering but not smoothing, however smoothing

could be done by changing the RNN to a bi-directional RNN. The current model

assumes noiseless instantaneous mixing, but this is not the case in the real world.

The performance of the model depends on the signal to noise ratio on the measuring

electrodes. We have also tried other recurrent neural network architectures for this

problem: we have used an RNN to implement a shift register, then we sliced the con-

tent of the shift register to form two matrices A and B to compute the least square

solution lstsq(A,B) as in the windowed MVAR approach, and we use another RNN

to output the sample weights, order weights and shrinkage thresholds to be multi-

plied onto A and the solution to modify the solution and make it more sparse and

accurate. Because least square solution operator is differentiable, the whole model is

differentiable, the detailed model structure is shown in Appendix A.4. However, this

method is not very stable and often quickly gets stuck in local optima and outputs all

zero matrix. The current model, on the contrary, is slower to train but it doesnt get

stuck in the local optima. It is also not sensitive to the sparsity regularizor and the

model order regularizor, it is capable of finding the correct sparsity level and model

order even without these two regularizor, perhaps that the small number of hidden

states in GRU already serves as a good regularizor. However, smoothness regularizor

is very important for its performance, without smoothness regularizor, the output

would be much rugged.
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3.5 Conclusion

This study proposes a new method for estimating the time varying source con-

nectivity, creates a differentiable feature extraction module that can output both the

unmixed components and the connectivity pattern. In the future work we shall in-

vestigate different directions pointed out in section 3.4 and make the method more

robust and efficient.



CHAPTER 4

Conclusion

We only scratch the surface of all possible application of deep learning in brain

machine interface. But we can see the benefit of having a differentiable system. It

can adapt and adjust itself using large amounts of data and discover patterns with-

out human intervention. We can also have different differentiable signal processing

modules that can be plugged or stacked together to form a more powerful and robust

system. For example, the convolutional neural network in chapter 2 only extract

the band power, but if in every layer there are two filters which forms approximate

Hilbert transform pairs, then the phase information could also be extracted. There

is one caveat, the brain signals are fundamentally stochastic, common deep learning

methods are not designed to work in the high-noise regime. Simple linear methods

work well with noise and is still the mainstream. However, it is always possible to

create a differentiable model with flexible parameters that initially works like the

linear system and is able to pick up nonlinearity in a data-driven way, to make the

model have desirable properties, many regularizors have to be added as constraints,

analogous to building dams and guild the water to the place you want it to be. This

strategy doesnt always work, for example, the convolutional neural network in chapter

2 didnt pick up any nonlinearity, the other recurrent neural network model in chapter

54
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3 which tries to mimic windowed MVAR method doesnt work well and often get stuck

in local optima. More careful case studies are needed to find out the problem.

For future researches, one direction is trying to battle with the noise in the system.

Firstly, we could identify the outliers, either by creating generative models of the

signals and find the outliers by calculating the likelihood, or by discriminative models

that can learn to distinguish between real and fake data. Many algorithm can do that,

for example, Generative Adversarial Network (GAN) [159] consists of a generator with

maps a noise vector to the sample space, and a discriminator that tries to distinguish

between real data and generated data. GAN can learn a meaningful embedding where

similar noise vectors are mapped onto similar samples. Given a new sample, we can

use discriminator to judge if it is from signal category, or we can randomly choose

a noise vector, define a loss function and using back-propagation to find the reverse

mapping of the sample in the latent space, then the distance between this sample and

other sample could be measured to determine if the sample is an outlier. Secondly,

outlier can also be detected by monitoring per sample loss during the training. The

weights of each sample could be updated to make the model focus on the normal or

easy samples. This is a technique called self-paced learning [160]. Third method is to

incorporate the head model into the system, so for each component we can determine

if it is generated by a single dipole in the brain, or if it is an artifact. The head model

is a linear transform, and dipole fitting can be easily parallelized, it is well suited to

be integrated into the differentiable system. There are already works on using GPU

to accelerate the boundary element method [161]. If in the worst-case scenario, we

cannot eliminate the noise from the input, it is still possible to build a model for

the output, similar to equipping a speech recognition system with a language model,
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if there is redundancy in the input data, then small error could be corrected. The

LSTM in chapter 2 is an example of the model that learns the temporal dynamics of

the finger movement.

To conclude, in this study we tried to build some differentiable signal processing

modules that can be assembled into a BMI decoding system capable of learning

patterns from the data, and for future researches we think reducing the noise could

be the key to the success of building BMI system.



APPENDIX

A.1

A.1 shows the relative change of the spatial filters for subject 2 and 3 after the

training of the Conv-LSTM model defined in chapter 2.

57
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Thumb Index 
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Figure A.1: Relative change of the spatial filters for subject 2
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Figure A.2: Relative change of the spatial filters for subject 3
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A.2

A.2 shows the actual and decoded trajectory for subject 2 and 3. LARS repre-

sents the model before training and LSTM represents the model after training. The

trajectory is normalized to the range [0, 1].

Thumb Index 

Middle Ring 

Little 

Subject 2 

Figure A.3: Actual and decoded trajectory for subject 2
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Figure A.4: Actual and decoded trajectory for subject 3
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A.3

A.3 shows the importance of each electrode in the trained Conv-LSTM model

in chapter 2. The importance of each electrode is calculated by summing up the

absolute value of the partial derivatives of the output with respect to the inputs of

each electrode. The values are normalized so they sums up to 1.

Figure A.5: The importance of each electrode for subject 1. Subject 1 has 62 electrodes.
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Figure A.6: The importance of each electrode for subject 2. Subject 2 has 48 electrodes.
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Figure A.7: The importance of each electrode for subject 3. Subject 3 has 64 electrodes.
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A.4

A.4 shows an alternative RNN model for connectivity estimation. However this

model doesn’t perform well and the training often get stuck in local optima. This

network tries to mimic the windowed MVAR approach and solve a system of linear

equations at each time step. It uses RNN to capture the temporal context to make

the output smooth.

The input to the model is an 8-dimensional signal of length 1000.

The shift register layer is a RNN implementation of the shift register of capacity

36. So the output shape is 8× 36 = 288.

The gru layer is a GRU that processes the signal at each time step and forms a

task-specific representation.

All the reshaped layers simply reshape the input to a specific shape.

Slicing layers discards the first 35 samples because it takes 36 time steps for shift

register to fill up.

Stack layer takes the signals stored in shift register and applies a sliding window

to stack the signal segments, these segments are used for the least square estimation

of the MVAR coefficients. The RNN model assumes a maximum order of 12, so there

are 24 pieces of segments with length 13 (12 for unknowns and 1 for constant variables

in solving linear equations). The size of the last dimension is 104 because 104 = 13×8

(length of the segments multiply by the channel number).

Least square layers solves the system of linear equations defined in the Stack layer,

there are 24 equations, the dimension of the unknowns is 12 × 8 = 96 and the

dimension of the constant variables is 8. So the output shape is 8 by 96 at each

time step, which is the size of the MVAR coefficients that needs to be estimated.
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Order mask layer and sample mask layer output the order mask and the sample

mask to be multiplied onto the samples of the linear equations at each time step. The

order mask controls the order of the model and the sample mask controls the weights

of each sample. The maximum order of the model is 12 so the length of the order

mask is 12 but it is tiled to form a vector of length 96 at each time step to be applied

onto the samples of the linear equations. The length of the sample mask is 24 at each

time step.

Correction layer adjusts the output from the least square layer by adding small

corrections, so the output shape is identical to the output from the least square layer.
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