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Each year, more than 10 people per million will incur a spinal cord injury 

(SCI). Of these injuries, one-third is reported to result in tetraplegia. People living 

with tetraplegia rank hand function as the ability they would most like to see 

restored. With decrease use of hand movements, plastic reorganization causes 

secondary damage in the motor cortex. Methods are needed to help restore or 

supplement motor abilities.  

One approach to produce a more comprehensive therapy is to augment 

standard rehabilitation with new developments from the study of Brain-Computer 

Interfaces (BCI). BCI’s record brain activity and translate it into actions in the 

physical world. BCI's do this by decoding electroencephalography (EEG) data 

with a computer system to determine a user's intent. By engaging the user’s 

brain to actively control extremities during rehabilitation, BCI’s combined with 

rehabilitation could offer the unique ability to rehabilitate the motor system as a 

whole, including secondary damage in the motor cortex. Not all EEG signals can 

be directly mapped to desired outputs; however including some of them may 

improve the performance of the BCI. One possible EEG signal to include in a BCI 

is ErrPs. These potentials occur when the subject notices an error has been 



 
 

made. A new BCI architecture that incorporated reinforcement learning and 

ErrPs could better process the EEG signal. 

To validate the reinforcement learning based BCI for rehabilitation a 

closed-loop system was developed. The system presented cues to the user 

instructing them to perform motor imagery thus generating motor potentials. The 

system then provided feedback to the user through a display and functional 

electrical stimulation (FES), which caused the user to generate an ErrP if an error 

occurred. The system was able to use reinforcement learning to determine the 

mapping of motor potentials to intended actions based on user generated ErrPs.  

Choosing an appropriate size for a neural network when using 

reinforcement learning for a BCI application is difficult because of the bias-

variance tradeoff. By starting with a small network and using dynamic feature 

addition to grow the number of inputs to the network over time the performance 

of the BCI can be improved over both small and large networks in both early 

trials and later trials. The order in which features are added during dynamic 

feature addition can affect the performance of the system. By taking into account 

how useful features are for discriminating between different cues and adding 

features that are more useful in early trials, the performance of the system can 

be improved.  

 Various update rules could be used in the rehabilitation system: back 

propagation, scaled back propagation, Hebbian style learning, and scaled 

Hebbian style learning. In simulations Hebbian style learning performed better 

than back propagation. While scaled Hebbian style learning performed better 



 
 

than Hebbian style learning. Scaled Hebbian style learning also takes advantage 

of the online nature of reinforcement learning used in the system. By adjusting 

the learning rate, the algorithm adapted the weights more quickly in areas where 

the slope of the error surface is small and converges on a minimum more quickly 

in areas where the slope is high.
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Chapter 1: INTRODUCTION 

 

 Each year, more than 10 people per million will incur a spinal cord injury 

(SCI). Of these injuries, one-third is reported to result in tetraplegia (Wyndaele 

and Wyndaele 2006).  People living with tetraplegia rank hand function as the 

ability they would most like to see restored (Anderson 2004). With decrease use 

of hand movements, plastic reorganization occurs in the brain (Hoffman and 

Field-Fote 2006). Methods are needed to help restore or supplement motor 

abilities because of these diseases and injuries. To alleviate motor disabilities 

caused by spinal cord injury will require rehabilitation that restores top-down 

(brain activity) control of the motor system. 

 

1.1 REHABILITATION 

 

While individual therapies can be combined to treat the motor system, few 

therapies treat the motor system as a whole or have other drawbacks. For 

example massed practice, repetitive movements for several hours a day over a 

period of weeks, has been shown to cause positive cortical changes (Hoffman 

and Field-Fote 2007). However, massed practice has the limitation that the 

subject must have at least a limited ability to perform the movements before 

therapy. 

 One type of massed practice rehabilitation is constraint-induced 

movement therapy. In constraint-induced movement therapy, the use of
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unaffected hand is limited to force the use of the affected hand (Liepert, Bauder 

et al. 2000). The subject needs to be able to perform movements with the 

affected hand even more effectively than with massed practice, since the 

affected hand will now be the only means to perform daily activity. Constraint-

induced movement therapy also relies on the assumption that subjects have 

been using their unaffected hand and neglecting their affected hand. So, this 

technique will only work on a subject with only one affected hand.  

 Massed practice rehabilitation have the subject perform actions without 

assistance. However, some interventions use external assistance to increase the 

effectiveness of rehabilitation. Electromyography signals can be used to control 

an orthosis that mechanically extends the fingers. The orthosis enables subjects 

to practice moving their affected hands, if they can control their 

electromyography signals (Ochoa, Listenberger et al. 2011). By giving users 

feedback of their electromyography signals, users are also able to increase 

control of their muscle activity. With this intervention, users still need to have 

some control of their affected hands remaining, to control their electromyography 

signals. 

Another rehabilitation approach uses transcranial magnetic stimulation 

(TMS) (Hummel and Cohen 2006). During TMS a coil is placed over the subject’s 

head and a magnetic field is generated within the subject’s cortex. The magnetic 

field generates electrical currents within the cortex, depolarizing neurons. TMS is 

used to excite neurons associated with the affected hand and sometimes inhibit 

neurons of the unaffected hand. Only a component of the motor system, the 
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motor cortex, is targeted during TMS, and the motor system is not rehabilitated 

as a whole. The subject is also a passive participant during the rehabilitation and 

exerts no control over the stimulation. 

One approach to produce a more comprehensive therapy is to augment 

standard rehabilitation with new developments from the study of Brain-Computer 

Interfaces (BCI). BCI’s record brain activity and translate it into actions in the 

physical world (McFarland and Wolpaw 2011). BCI's do this by decoding 

electroencephalography (EEG) data with a computer system to determine a 

user's intent. By engaging the user’s brain to actively control extremities during 

rehabilitation, BCI’s combined with rehabilitation could offer the unique ability to 

rehabilitate the motor system as a whole, including secondary damage in the 

motor cortex (Daly and Wolpaw 2008).  

 

1.2 BRAIN – COMPUTER INTERFACES 

 

Brain control paradigms can broadly be divided into two categories: those 

that record brain activity from intracranial electrodes and those that records brain 

activity from external EEG electrodes. EEG has an advantage of being 

noninvasive, which especially important in human subject research (Millan, 

Renkens et al. 2004). EEG is also portable and has high temporal resolution. 

EEG can be classified into two types of potentials, spontaneous brain 

rhythms and evoked potentials. Evoked potentials occur at a fixed time after a 

stimulus enabling them to be averaged over tens of trials to increase the signal-
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to-noise ratio. Some BCIs use the evoked potential called P300, a positive 

potential that occurs 300msec after the stimulus. The oddball paradigm, rare 

events mixed in with more common events, generates the P300 potential when 

the user notices the rare event. BCI systems based on P300 potentials are 

slower than other BCI systems since all possible choices must be cycled through. 

This drawback limits P300 based system to applications where time is not a 

priority, such as spellers (McFarland and Wolpaw 2011).  

Another evoked potential used in BCIs are steady state visual evoked 

potentials (SSVEP). They were the first EEG signals used in a BCI,  Jacques 

Vidal (Vidal 1977) used the term “brain-computer interface” to describe his 

research with SSVEP in the 1970s. SSVEP are evoked potentials that match the 

frequency of the stimulus. In SSVEP based BCI systems, every choice has a 

unique stimulus frequency associated with it. The system is able to determine 

which choice the user is looking at based off the frequency of the evoked 

potentials. SSVEP based BCIs are also slower than other BCI approaches 

because the evoked potentials do not reach a discernible amplitude quickly 

(Middendorf, McMillan et al. 2000).  

Another spontaneous brain rhythm used as a signal for a BCI is 

sensorimotor rhythms (SMR), potentials related to movement or imagined 

movement. Initiating real hand movement or imagining hand movement causes 

an event-related desynchronization (ERD) in the area of the brain associated 

with hand movement. Initiating real hand movement or imagining hand 

movement also causes an event-related synchronization (ERS) in motor regions 
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not associated with hand movement. Once the hand movement or imagined 

hand movement stops, ERS is detected in the area of the brain associated with 

hand movement (Neuper, Wörtz et al. 2006).  

Wolpaw et al. (McFarland and Wolpaw 2011) were the first to use SMRs 

for cursor control in 1991. SMR based BCIs main drawback is that they are 

susceptible to degradation in performance without frequent training sessions. In 

general, EEG based BCIs were thought to have too slow a bit rate to do 

complicated tasks, however Millan et al. (Millan, Renkens et al. 2004) 

demonstrated asynchronous control of a mobile robot with EEG based BCI. The 

mobile robot had sensors and its own limited intelligence, reducing the required 

bitrate. For rehabilitation of hand function, imagined hand movement would be 

the most appropriate control signal for a BCI system, since imagined hand 

movement is most closely related to the target of the rehabilitation. 

Not all EEG signals can be directly mapped to desired outputs; however 

including some of them may improve the performance of the BCI. One possible 

EEG signal to include in a BCI is error-related potentials (ErrP). These potentials 

occur when the subject notices an error has been made. Different ErrPs have 

been found for different types of error the user observed: response ErrP, 

feedback ErrP, observation ErrP, and interaction ErrP. Response ErrP, when a 

subject makes an error in a choice selection task with a time limit. Feedback or 

reinforcement ErrP, when a subject knows an error was made from feedback. 

Observation ErrP, when a subject watches another person make an error, and 

interaction ErrP, when a subject controlling a device sees it did not follow a 
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command. Components of ErrPs were first described by Hohnsbein and 

Falkenstein in 1989 (Hohnsbein, Falkenstein et al. 1989). They termed the 

components error negativity, Ne, and error positivity, Pe.  A similar potential 

related to errors was found by Gehring et al. (Gehring, Coles et al. 1990) in 1990. 

Gehring termed the potential as error-related negativity, ERN. Recently, the 

various potentials associated with error have been classified under the term 

ErrPs (Ferrez and Millan 2008).  

ErrPs increase in amplitude with the degree of the error made. ErrPs main 

component is a negative potential 250 ms after feedback. ErrPs most likely 

originate in an area of the brain responsible for regulation of emotional 

responses, the anterior cingulate cortex. The EEG signals generated by the ErrP 

have a fronto-central distribution along the midline and are most prominent on 

the FCZ and CZ locations. Since ErrP are relatively slow cortical potentials, they 

can be acquired with a 1-10 Hz bandpass filter. Ferrez et al. (Ferrez and Millan 

2008) describe the successful classification of signals generated shortly after 

feedback as either a correct response or an ErrP. To generate the ErrP, a target 

and cursor were shown on a display. The user then had to press the left or right 

key to move the cursor to the target. 50% of the time, the cursor moved in the 

opposite direction of the button pressed. Classifiers created for each subject to 

detect ErrP from the first day of recordings were able to recognize the ErrP over 

82% of the time for both subjects on the second day.  

ErrPs originating in the anterior cingulate cortex along with the 

mesencephalic dopamine system have been proposed to be part of a 
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reinforcement learning (RL) system in the brain. The anterior cingulate cortex 

acts as a filter that selects between different motor controllers. The 

mesencephalic dopamine system then evaluates outcomes. The mesencephalic 

dopamine system increases dopamine when outcomes are better than 

anticipated and decreases dopamine when outcomes are worse than anticipated.  

When less dopamine is released in the anterior cingulate cortex, an ErrP is 

generated in the anterior cingulate cortex. When more dopamine is available, 

behaviors of the anterior cingulate cortex and certain motor controllers are 

reinforced (Holroyd and Coles 2002).  ErrPs and RL could be incorporated into a 

BCI; however a new BCI architecture is needed. 

 

1.3 NEW ARCHITECTURE WITH REINFORCEMENT LEARNING  

 

 The BCI architecture commonly used today forms one closed-loop: 

modulation in the user's brain activity is detected by EEG, features are extracted 

from these EEG signals, and a classifier uses these extracted features to 

determine the user’s intent, Figure 1.1. Previous attempts to improve BCI 

performance tried to optimize this architecture: better EEG signals, better feature 

extraction, better classifiers, or a combination of these approaches.   

However, the current BCI architecture has several drawbacks. The BCI is 

usually trained through supervised learning (DiGiovanna, Mahmoudi et al. 2009). 

This training requires the users to perform a boring training task that does not 

engage their attention every day. The training must be repeated daily because 
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the BCI is static, a fixed input-to-output mapping, between training sessions. Yet, 

brain activity changes constantly as the user adjusts to the BCI.  

  

 

Figure 1.1 Standard BCI Architecture – static feature extraction and decoding 
during use. 

 

A new BCI architecture that incorporated RL could avoid these drawbacks 

(Mahmoudi, DiGiovanna et al. 2008). In RL an agent maximizes its rewards from 

the environment by critically adapting its behaviors. With experience, the agent 

learns how to maximize rewards for a state of the environment by comparing 

outcomes to expectations.  

There are several RL schemes, however the actor-critic model fits the BCI 

augmented rehabilitation application the best (Mahmoudi and Sanchez 2011). In 

the actor-critic model, the agent is comprised of two parts, an actor and a critic. 

The actor is a policy (π) with parameters (θ ) that maps user’s brain states (st) to 

actions (ai).  
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( ) ( )ssaasa tt === Pr;θπ  

 

The critic provides a reinforcement signal to adapt the actor’s parameters (θ ) by 

estimating reward at each time step to form the reward expectation (ν ).  

 

( ) [ ] AaSsaassrEas tttt ∈∀∈∀=== + ,,,, 1ν
  

 

 

Figure 1.2 Reinforcement Learning BCI Architecture – dynamic decoding of 
motor potentials. 

 

Figure 1.2 shows an architecture based on the actor-critic model that uses 

the information present in ErrPs to better process the EEG signal. The actor 

decodes the action signals, mapping them to desired outputs. The critic decodes 
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the error signals, detecting ErrPs and using them to improve the performance of 

the actor. The new BCI architecture could help rehabilitate the motor system as a 

whole, especially the motor cortex through brain plasticity. 

 

1.4 BRAIN PLASTICITY 

 

By combining a BCI’s ability to bypass the injury and connect the motor 

cortex to the spinal motoneurons that control the affected limbs and RL’s ability 

to increase rehabilitation time during a session, the motor cortex could be 

rehabilitated through brain plasticity for subjects with complete paralysis. In a 

similar way that massed practice techniques rehabilitate the motor cortex for 

subjects with partial paralysis. Donald O. Hebb (Hebb 1949) proposed in the 

1940’s that the brain’s structure can be changed by experiences and the 

environment, a process now called brain plasticity. Rats trained in a task that 

required wrist and digits movement showed an increase in area devoted to the 

wrist and digits in the motor cortex at the expense of area devoted to the elbow 

and shoulder (Kleim, Barbay et al. 1998).  Similar changes have also been seen 

in humans. In violin players, the digits of the left hand have larger cortical area 

than the right hand and are larger than people who do not play violin. The area 

representing the left hand digits also increases with how long the violin has been 

practiced (Elbert, Pantev et al. 1995).  Braille readers show increased cortical 

area devoted to their reading fingers compared to fingers on the non-reading 

hand or to non-braille readers. The cortical area devoted to the reading finger 
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expands at the expense of other fingers (Pascual-Leone, Cammarota et al. 

1993). The brain is also very dynamic and changes during everyday activities. 

While a new task is being learned, cortical area devoted to the task shows a 

temporary increase in size and returns to the original size once the task is 

mastered (Pascual-Leone, Grafman et al. 1994). 

Brain plasticity can also reduce the effects of injuries that destroy brain 

tissue within a cortical area. When cortical areas associated with hand functions 

were damaged by a focal ischemic infarct in squirrel monkeys, they showed a 

dramatic reduction in hand function (Nudo and Milliken 1996). In further studies, 

the monkeys received rehabilitation after the infarct, the cortical areas associated 

with hand function moved into adjacent tissue and hand function was partially 

restored (Nudo, Wise et al. 1996). 

Similar results have been seen in humans. In stroke patients receiving 

constraint-induced movement therapy for hand rehabilitation, the area and 

location of the affected hand’s cortical region was shown to change, as 

measured by TMS. In a six month follow-up, the cortical area of the affected 

hand increased in size to match the unaffected hand’s map, showing long-term 

improvement (Liepert, Bauder et al. 2000). Rehabilitation has also been shown to 

make positive changes in cortical area following a SCI (Hoffman and Field-Fote 

2007; Beekhuizen and Field-Fote 2008; Hoffman and Field-Fote 2010). 

Incorporating a RL BCI into rehabilitation could accelerate and improve the 

positive changes in cortical area.

 
 



 
 

 

Chapter 2: BRAIN-COMPUTER INTERFACE AUGMENTED REHABILITATION 

 

2.1 OVERVIEW 

 

 To validate the RL based BCI for rehabilitation a closed-loop system was 

developed. The system presented cues to the user instructing them to perform 

motor imagery thus generating motor potentials. The system then provided 

feedback to the user through a display and functional electrical stimulation (FES), 

which caused the user to generate an ErrP if an error occurred. The various 

components of the system were tested. An ErrP detector was created and tested 

for each user to ensure ErrPs were detected during the closed-loop experiment. 

A closed-loop experiment with the system starting with no prior knowledge of the 

user’s motor potentials was conducted with each user. We compared the 

decoder characteristics in the closed-loop environment between controls and 

subjects living with SCI. With these tests and experiments, we hope to learn if a 

RL based BCI can learn the motor potentials of a user leading to future work as a 

rehabilitation system. 

 

12 
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2.2 METHODS 

 

Study Participants 

 

 The system design function was demonstrated and compared between a 

control subject and a subject with a chronic SCI. All procedures followed in the 

study were approved by the University of Miami Institutional Review Board. The 

subjects provided written informed consent. The inclusion criteria followed for 

recruiting subjects with SCI included: chronic injury (longer than 1 year), no 

denervation of target muscles, and C5 or C6-level motor complete injury 

classified by the American Spinal Injury Association (ASIA) standards (Marino, 

Barros et al. 2003). Both subjects were 30 years old males. The subject with SCI 

was injured playing football, and his injury (duration = 15 years) was classified by 

ASIA standards as incomplete (ASIA B), with bilateral motor levels of C6. Motor 

scores of 5 (normal function) were attained at the C5-level bilaterally, with scores 

of 5 (right) and 3 (left) at the C6-level. All motor scores below level C6 were zero. 

The subjects had no history of other serious medical issues.  

 

Experimental Task 

 

 Hand grasp/open function was chosen as the experimental task as 

restoration of hand/arm function is the highest priority for people with tetraplegia 

(Anderson 2004). The goal of the task was to enable direct brain actuation of 
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hand closing and opening. In addition to extracting motor potentials, an evoked 

potential from the brain was of interest: ErrP which are generated when an error 

is observed. In this experiment, ErrPs were generated when the user perceived 

the action of the BCI was incorrect. Both motor and error potentials are 

necessary for conducting closed-loop RL in this context.  

 A preliminary session was used to collect representative ErrPs to develop 

an ErrP classifier. During the preliminary session, feedback was random and 

approximately 50% of the 120 trials resulted in a “wrong” outcome. No 

stimulation was delivered to the subjects during the preliminary session. The 

subjects sat facing a display with their right forearm resting on a table (Figure 

2.1A). After a fixation cross was shown on the display for three seconds to 

minimize eye movements, cues of “open” or “close” were presented for one 

second that instructed the person to either open or close his hand. Random 

visual feedback of “correct” or “wrong” was then shown for one second, along 

with a corresponding plot of the unthresholded output of the system (Figure 

2.1B:row 3).     

 Four closed-loop sessions were performed and consisted of 300 trials 

during the 1st session, 450 trials each during the 2nd and 3rd sessions, and 300 

trials during the 4th session. Time between sessions was varied to test the 

adaptation of the network with two days between the 1st and 2nd sessions, four 

days between the 2nd and 3rd sessions, and one day between the 3rd and 4th 

sessions. During closed-looped sessions, ErrPs were collected and used to 

adapt the BCI. The same visual cues were displayed on the screen as in the 
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preliminary session. However, in closed-loop sessions the displayed feedback 

matched the output of the adaptive BCI. When the output of the adaptive BCI 

was determined to be “open,” FES was delivered to the hand muscles of the SCI 

subject. No FES was delivered for trials when the output of the adaptive BCI was 

“close”.  All trials were used in the analysis. 

 

 

Figure 2.1 (A) Experiment setup overview, visible are the EEG headset, display, 
and FES. (B) For each trial during the experimental task, the display showed a 
fixation cross, followed by a cue for “open” or “close” for 1s, and then feedback of 
“correct” or “wrong” for 1s. A magnitude plot also showed the unthresholded 
output of the motor potentials decoder. (C) Actor-critic RL BCI architecture. The 
actor decodes motor potentials and outputs an action. The critic detects an ErrP 
and provides feedback to actor. The actor uses feedback from the critic to adapt 
to the user.  

  

Neural Data Acquisition 

 

 A wireless 9-channel EEG system (256 Hz sampling rate, 16-bits of 

resolution, X10 headset, Advanced Brain Monitoring, Carlsbad, CA) was fitted to 
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the subject’s head (Figure 2.1A). Electrodes (FZ, F3, F4, CZ, C3, C4, POZ, P3, P4) 

were arranged according to the International 10-20 system standards. Foam 

sensors attached to the sensor sites on the headstrips were saturated with 

Synapse (Kustomer Kinetics, Arcadia, CA) conductive electrode paste and the 

corresponding sites on the head were abraded and cleaned before placing the 

sensors on the scalp. Electrode impedances were tested before and after each 

experimental session using the manufacturer provided software.  

 ErrPs were recorded from the CZ electrode and the motor potentials for 

the intent to open or close the hand were recorded from the C3 electrode (Qin, 

Ding et al. 2004; Ferrez and Millan 2008). For ErrPs, EEG generated from 0.15 

to 0.70 seconds after display of feedback (“correct” or “wrong”) was used. For 

motor potentials, EEG generated between 0.15 and 1.0 seconds after the display 

of cues (“open” or “close”) was used. EEG was transformed into the frequency 

domain using the Fast Fourier Transform (FFT) to obtain a power spectral 

density (PSD) of 1 Hz resolution. Frequencies of 1-50 Hz were used for the 

motor potential decoder and frequencies of 1-12 Hz were used for the ErrP 

decoder. The inputs to both decoders were normalized PSD z-scores (LeCun, 

Bottou et al. 1998). The z-scores of the PSD were created by subtracting the 

mean of previous trials at each frequency and dividing by the standard deviation 

(SD) of previous trials for that frequency. 
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Muscle Stimulation  

  

 A neuroprosthetic wrist-hand orthosis (NESS H200, Bioness Inc, Valencia, 

CA) was fitted to the right hand of the subject. FES was delivered to the extensor 

muscles (extensor digitorum communis and extensor pollicis brevis) to produce 

opening movements of the fingers and hand. Stimulation intensity was set by 

holding the pulse duration (300 µs) and frequency (35 Hz) constant, while slowly 

increasing the current amplitude. Once a maximal muscle contraction was 

attained (i.e., increases in current intensity did not produce additional muscle 

contraction), the current amplitude was increased an additional 25% in order to 

maintain consistent muscle contractions throughout the experiment.   

 

Actor-Critic Reinforcement Learning Architecture 

 

 The adaptive BCI is based on an actor-critic RL architecture (Figure 2.1C) 

(Mahmoudi and Sanchez 2011). The actor decodes motor potentials from the 

user to determine the user's intent to open or close the hand. The critic provides 

feedback to the actor by detecting ErrPs generated by the user (Falkenstein, 

Hoormann et al. 2000). The actor-critic RL algorithm is a semi-supervised 

machine learning algorithm that optimizes the actor’s decoding of the user’s 

motor potentials based on feedback from the critic (Sutton and Barto 1998). 

 The actor is parameterized by a 3-layer fully connected feedforward neural 

network. The hidden and output processing elements of the neural network 
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perform a weighted sum on their inputs. The weighted sum at each processing 

element is passed through a hyperbolic tangent function with an output in the 

range of -1 to 1. The weights between the actor’s processing elements are 

initialized randomly and then updated after each trial based on feedback. The 

actor’s weights update can be expressed as: 

 

∆𝒘𝒊𝒋 = 𝛾𝑓 �𝒙𝒊�𝒑𝒋 − 𝒙𝒋�� + 𝛾(1 − 𝑓) �𝒙𝒊�𝟏 − 𝒑𝒋 − 𝒙𝒋��    (2.1) 

 

Here wij is the weight connecting processing elements i and j, γ is the learning 

rate, pj is a sign function of output xj (positive values become +1 and negative 

values become -1) and f is feedback from the critic. The weight update equation 

is based on Hebbian style learning (Mahmoudi and Sanchez 2011; Pohlmeyer, 

Mahmoudi et al. 2012). The critic provides the feedback by decoding the user’s 

EEG to determine if an ErrP was generated. If an ErrP is detected, a feedback of 

-1 is provided to the network for adaptation. If not, a feedback value of 1 is given. 

The functional mapping between neural activity and behavior in the actor is 

constructed using the weight update equation (Equation 2.1).  

 

Adaptive BCI Usage 

 

 Adaptive BCI usage was broken down into several intermediate steps 

(Figure 2.2). Representative ErrPs were collected in the preliminary session and 

used to develop the critic through supervised learning (Prechelt 1998). Once the 
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critic was created, the weights of the actor were initialized to random initial values 

and trained through RL and feedback from the critic. After the first closed-loop 

session, in which the weights are initialized to random values, all subsequent 

closed-loop sessions used the weights from the previous session with no offline 

adjustments. 

 

 

Figure 2.2 Flowchart shows the preliminary steps of the experiment and how the 
final step can be repeated. 

 

Critic as Error Potential Classifier 

 

 The error potential classifier “critic” detects ErrPs in the user’s EEG to 

determine if the user perceived that an error occurred. The critic then provides 

binary feedback, -1 or 1, to the actor. The input to the error potential classifier 

was the normalized PSD from 1-12 Hz in 1 Hz bins computed on the 0.15 to 0.70 

seconds of EEG data after the actor’s output (action) was shown on the display. 

 The error potential classifier in the critic is a 3-layer neural network with 12 

inputs processing elements, for the 1-12 Hz in 1 Hz bins, and 5 hidden 

processing elements. Representative ErrPs were collected in the 120 trials of the 

preliminary session and were randomly assigned to either a training set or test 
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set, approximately 60 trials each. The training set was used to optimize the 

weights of the critic with supervised learning. The weights produced from the 

supervised learning were assessed by applying them to the test set and 

computing the classification accuracy. The weights with the best classification 

accuracy were used for closed-loop sessions. 

 To test the critic training procedure during the preliminary data collection, 

10 training and testing data sets were created by randomly assigning trials to 

either set, a 10-fold cross validation (Table 2.1). The minimum and maximum 

accuracy in the 10-fold cross validation were within 5% of the mean accuracy, 

showing that the critic should have reasonable performance during the closed-

loop sessions. 

 

Table 2.1 10-fold cross validation classification results of the critic for both the 
healthy and SCI subject.  
 

2.3 RESULTS 

 

Closed-Loop Trials 

 

 Figures 2.3 and 2.4 show representative trials from the closed-loop 

experiments and give insight into how the system processes the EEG to create 
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features for the classifiers. The first row of Figure 2.3 shows the filtered (1-50 Hz) 

EEG from the C3 electrode for the 0.15 to 1.0 seconds after the cue is presented. 

The second row shows the PSD computed from the raw EEG. The z-scores of 

the PSD are shown in the third row as inputs to the actor. The first column shows 

the filtered EEG and processing after an "open" cue. Similarly, the second 

column shows the filtered EEG and processing after a cue of "close" was shown. 

The features for the cue of "close" correspond to lower power, in general, than 

the features of the cue for "open”; in the sample trial of the SCI subject, 44 of the 

1 Hz bins have lower power for the “close” cue. 

 

 

Figure 2.3 Sample trials from closed-loop sessions. Columns show samples for 
cues and feedback of “open” and “close” for both the SCI and control subject. 
Rows show filtered EEG (1-50 Hz) from electrode C3, PSD, and motor features. 

 

 A similar process was used for inputs to the critic. The first row of Figure 

2.4 shows the filtered, 1-12 Hz, EEG from the CZ electrode for the 0.15 to 0.70 
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seconds after the feedback was shown. PSD of the raw EEG was computed from 

the CZ electrode, shown in the second row. Finally, the inputs to the critic are 

shown in the third row as z-scores of the PSD from the CZ electrode. The first 

column shows the filtered EEG and processing after the feedback of "correct" 

was presented. The second column shows the filtered EEG and processing for 

feedback of "error." Notice that the error potential has a biphasic shape 

characteristic of this neural oscillation. The features for feedback of "correct” 

correspond to lower power, in general, compared to features of “error;” in the 

sample trial for the SCI subject, all 1 Hz bins except 1, 8, 11, and 12 Hz. Figure 

2.5 shows the ErrPs generated by the users, the average of error trials minus the 

average of correct trials.  The ErrPs collected from the users are similar to 

published results (Ferrez and Millan 2008).  

 

 

Figure 2.4 Sample trials from closed-loop sessions. Columns show samples for 
cues and feedback of “correct” and “error” for both the SCI and control subject. 
Rows show filtered EEG (1-12 Hz) from electrode CZ, PSD, and error features. 
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Performance of the System 

 

 Figure 2.6 shows the overall performance of the actor in classifying motor 

potentials across 4 sessions, for control and SCI subjects. The classification 

accuracy starts below 50% (chance level) for the SCI subject, due to the random 

initial values of the actor’s weights. The performance of the actor improves as the 

actor’s weights adapt to feedback from the critic through RL. Over time, the 

actor’s performance approaches the classification accuracy of the critic. Changes 

in weight values become smaller after the first 2 sessions; however, changes in 

weight values continue throughout the 1500 trials. The actor made fewer 

mistakes during the last session than the first, as the actor adapted and learned 

the user’s motor potentials based on feedback from the critic.  

 

 

Figure 2.5 Average EEG for the difference error–minus–correct trials at channel 
CZ for the SCI and control subjects. Feedback is delivered at time 0 s. 
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Figure 2.6 Actor’s performance across 4 sessions. The first row shows the 
actor’s cumulative classification accuracy and the second row shows the actor’s 
weights adapting for the SCI subject. The third row shows the actor’s cumulative 
classification accuracy and the fourth row shows the actor’s weights adapting for 
the control subject. 
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Comparison of Performance across Subjects  

 

 The overall performance of both subjects across sessions is shown in 

Figure 2.7. The subjects had comparable performance, above chance level 

(50%) starting at the end of the first session. The performance of the control 

subject was slightly higher than that of the SCI subject during the first session. 

This performance difference can be explained by the random initial weight values 

of the actor more closely matching the desired weight values by chance. The 

overall performance of the SCI subject was only slightly lower than the control 

subject, by 0.9%. The system also had lower accuracy for detecting the SCI 

subject’s ErrPs, 64.2%, than for the control subject, 68.8%. This lower 

performance in detecting the SCI subject’s ErrPs could explain the lower overall 

performance of the SCI subject compared to the control subject. Importantly, the 

performance of the critic had a small SD, 3.6% for the SCI subject. 

 

2.4 DISCUSSION 

 

 This study showed a new EEG based BCI system using RL intended for 

application to control of a FES and developed as an experimental test bed for 

augmenting rehabilitation with a BCI.  The system used RL to determine the 

mapping of motor potentials to intended actions based on user generated ErrPs. 

The BCI continued to adapt to the users throughout the experiment and did not 

require any offline training after the first session. Comparable performance levels 

were achieved for the control and SCI subject. The ability to adapt to the user 
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without daily initialization could be beneficial in a rehabilitation setting. Cortical 

reorganization from the rehabilitation could change the user’s motor potentials, 

increasing the need for daily adjustments to the system. 

 

 

Figure 2.7 The first row shows the accuracy of the critic for both the SCI and 
control subjects. The second row shows the accuracy of the actor. Accuracy for 
each day is shown in blue. Mean accuracy across days is shown in red. 
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 After a SCI, the brain experiences measurable maladaptive brain 

reorganization from disuse (Green, Sora et al. 1998; Cramer, Lastra et al. 2005; 

Hoffman and Field-Fote 2006; Kokotilo, Eng et al. 2009). These plastic changes 

can be partially reversed with rehabilitation techniques such as bimanual training 

and somatosensory stimulation (Hoffman and Field-Fote 2007; Hoffman and 

Field-Fote 2010). The motor cortex of chronic SCI subjects also experiences 

changes when they perform motor imagery training (Cramer, Orr et al. 2007). 

The ability to rehabilitate the motor cortex by motor imagery alone is important in 

the context of BCI augmented rehabilitation because motor imagery is often used 

to control BCIs. Notably, motor imagery has been used to control hand grasp 

FES in BCI systems (Pfurtscheller, Müller et al. 2003; Müller-Putz, Scherer et al. 

2005). The combination of motor imagery and BCI controlled FES has been 

shown to rehabilitate finger extension in a stroke subject (Daly, Cheng et al. 

2009). This improvement occurred with only 3 sessions a week over 3 weeks. By 

using an adaptive BCI, the subject could participate in rehabilitation over a longer 

period of time without needing to stop the rehabilitation to recalibrate the system. 

The proof-of-concept presented in this work also opens the possibility for the 

subjects to take the system home and use it continuously. This is due to not only 

the continuous RL that does not require calibration by a scientist but also to the 

design which uses the commercial Bioness H200 and an easy to use wireless 

Advanced Brain Monitoring EEG system. 

 In this study, ErrPs were collected from two users and were similar to 

published results (Figure 2.5) (Ferrez and Millan 2008). A classifier to detect the 
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ErrPs during the closed-loop sessions was created (Table 2.1).  Feedback from 

the ErrP classifier was used to adapt the system to the user using RL (Figure 

2.6). The system was able to classify both single trial ErrPs and motor potentials 

from features created from EEG recordings (Figures 2.3 and 2.4). The 

performance of the system improved over successive sessions until the 

performance reached the accuracy level of the ErrP classifier (Figure 2.7:row 2). 

Maintaining continuity in the performance over time is a critical aspect in the 

rehabilitation process. The user is able to pick up from the last level of progress 

achieved from the previous session.  

 Several additional results are also applicable to the use of the system 

during rehabilitation. The weights’ values during later trials became stable, 

meaning the user would not experience sudden decreases in performance 

(Figure 2.6:row 2). The weights continued to adapt even in later trials, so the 

system can be expected to continue to adapt to the user in future trials, and 

during rehabilitation. The performance of the system increased above chance 

during the first day and continued to show improvement in later trials, both 

factors in maintaining user motivation and engagement (Figure 2.6:row 1). The 

ability of rapidly gaining control and maintaining it over time is an advancement 

over other approaches.  

 
 



 
 

 

Chapter 3: FEATURE ADDITION 

 

3.1 OVERVIEW 

 

 The experiments in chapter 2 suffered from unnecessarily low 

performance in early trials because of the number of inputs to the neural network. 

However, reducing the number of inputs could result in unnecessarily low 

performance in later trials. This dilemma of balancing the number of inputs and 

performance is known as the bias-variance tradeoff (Geman, Bienenstock et al. 

1992). One possible solution to the bias-variance tradeoff in the case of RL and 

neural networks is to change the number of inputs over time. Changing the 

number of inputs could improve the performance and the experience for users in 

future experiments. 

 

Bias-Variance Tradeoff 

 

 A BCI can be broken into several components: EEG recording, 

preprocessing, feature extraction, classifier, and the environment. The classifier 

is based on a model that maps modulation in its input features to the possible 

actions to be controlled in the environment. The model in the classifier is subject 

to a dilemma known as the bias-variance tradeoff (Geman, Bienenstock et al. 

1992; Bishop 1995).
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 Prediction models, using known data to predict the class of new data, 

must manage the bias-variance tradeoff. An error associated with variance is 

caused by overfitting. In overfitting, the model is too closely based on known 

data. Predicting the class of new data causes a large error. The magnitude of the 

error caused by overfitting varies depending on how similar the new dataset is to 

the known dataset used to create the model.  On the other hand, an error caused 

by bias is a result of underfitting the data. In underfitting, the model based on 

known data is too generic. While the error across new datasets has about the 

same magnitude, the error is unnecessarily large. 

 For models built using neural networks, the bias-variance tradeoff 

influences the decision on how large to make the neural network (Geman, 

Bienenstock et al. 1992). When neural networks are trained with supervised 

learning, a rule of thumb is the number of weights in the neural network is equal 

to half the number of trials used to train the network (Masters 1993). Networks 

with too many weights are prone to overfitting and error caused by variance. 

Conversely, networks with too few weights are prone to underfitting and error 

caused by bias. In supervised learning, the number of weights can be adjusted to 

fit the rule of thumb, the number of weights equals half the number of trials, 

because supervised learning uses a known number of trials to train the neural 

network. When using RL to train a neural network the number of trials is 

constantly changing. The data set size starts at zero trials and constantly 

increases with every trial. 
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When a classifier is trained on a fixed sample size, using too many 

features can lower the performance of the classifier. The decrease in 

performance happens most often when the sample size is small. So, the choice 

in the number of features is important, especially when using a small sample size 

(Hua, Xiong et al. 2005). Large neural networks have many degrees of freedom 

and can solve for many functions. However, large neural networks take a long 

time to train and require many examples before they generalize (Abu-Mostafa 

1989; Śmieja 1993). Vapnik and Chervonenkis described the likelihood that a 

network given a set of examples would be able to generalize the information 

contained in the examples to classify future examples (Vapnik and Chervonenkis 

1971). The ability of a network to generalize from a set of examples is expressed 

in the V-C dimension. The V-C dimension increases with network size (Baum 

and Haussler 1989). A large network with many weights trained on a small 

number of examples tends to overfit the data. While, a small network gives good 

generalization, if it converges. Taking into account these considerations, a 

network should be as small as possible, while still being large enough to 

converge (Zhang and Muhlenbein 1993). 

The topology of networks is usually set before training begins. However, 

the topology of a network can greatly affect its performance. While, the 

performance of a network can only be evaluated after training. In offline training 

many different network topologies can be explored with trial and error and the 

best performing topology used (Hirose, Yamashita et al. 1991; Bartlett 1994; 

Weng and Khorasani 1996). However, this does not guarantee that the best 
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topology has been found. The best topology is not known at the beginning of 

training and might even vary during the learning task (Hirose, Yamashita et al. 

1991; Bartlett 1994). By using an algorithm to design the topology of the network, 

time can be saved compared to a human using trial and error. Topologies 

designed by algorithms have been shown to provide comparable performance 

(Gruau, Whitley et al. 1996). A algorithm that adds new hidden processing 

elements can help a network escape a local minimum by changing the shape of 

the weight space (Hirose, Yamashita et al. 1991; Weng and Khorasani 1996). 

Several different algorithms have been developed to adjust the topology of 

neural networks. The upstart algorithm tries to improve the performance of a 

network by adding processing elements. If the network makes a mistake, a 

processing element is added to recognize that pattern. The new processing 

element is connected to the output processing element, so the output is 

influenced when the pattern is presented again (Frean 1990). With evolutionary 

programming different network topologies can be tried. Topologies and weights 

can evolve with the best performing networks remaining after each iterations to 

be evolved further (Jian and Yugeng 1997). Instead of starting with many 

different topologies, topologies of a smaller networks can be used in the 

beginning and new topologies of larger networks can be added later to the 

mutations in the evolutionary program (Stanley and Miikkulainen 2002). Another 

approach called incremental evolution grows networks by adding processing 

elements instead of trying many different topologies and keeping and evolving 

the best performing networks (MacLeod and Maxwell 2001).  
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The approach of growing and adding processing elements does not 

depend on evolutionary programs and can be implemented independently. 

Dynamic Node Creation (DNC) starts with a small network and adds processing 

elements over time. The initial small network is trained until the performance of 

the network reaches a plateau. At this point another processing element is 

added. The network is trained again until the performance reaches another 

plateau and a processing element is added again. This process is repeated until 

the performance of the network reaches the desired level. By starting with a 

small network and adding processing elements over time, the initial small 

network is able to learn the gross parameters of the desired mapping and as new 

processing elements are added the finer parameters of the mapping are learned 

(Ash 1989).  Similar algorithms have been developed: dynamic node architecture 

learning (DNAL), an algorithm that checks if the decrease in total error is below a 

threshold every 100 iterations, and a variation that uses a different update rule, a 

quasi-Newton based method (Hirose, Yamashita et al. 1991; Bartlett 1994; 

Setiono and Hui 1995). Another approach adds modules of small neural 

networks to the existing network (MacLeod, Maxwell et al. 2009) . Instead of 

adding processing elements, current processing elements in the network can be 

split into multiple processing elements. After the network has converged if the 

total error is above a threshold, one of the processing elements is split into 

several new processing elements. The processing element split is the one that 

shows the most fluctuations in its weights (Weng and Khorasani 1996).  
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Figure 3.1 Weight values of two neural networks trained on the same data, a 
network with fixed 5 inputs and a network with fixed 25 inputs. The weights 
values of the 5 input network converge on a local minumum relatively early 
compared to the network with 25 inputs. 

 

Network Size and Reinforcement Learning 

  

 A challenge with using RL with neural networks is choosing a size for the 

neural network to meet the design goals of adequate performance during early 

trials and undiminished performance during later trials. In the case of a BCI, the 
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performance during early trials should be high enough so the user does not 

become discouraged.  Smaller neural networks could provide adequate 

performance during early trials by avoiding error produced by bias. However 

smaller neural networks might have diminished performance during later trials 

because of error caused by variance. Figure 3.1 shows the weight values, during 

training, of a smaller neural network with fixed 5 inputs. The weight values 

converge on a local minumum relatively early. However, with so few weights the 

network over-fits to early trials and experiences error during later trials from 

variance. In the bias-variance tradeoff, the small network is tilted to produce error 

from variance. Using a larger neural network could produce higher performance 

in later trials.  Figure 3.1 also shows the weight values, during training, of a 

neural network with fixed 25 inputs. The weights adapt very slowly during the 

training. The larger network is underfitting during early trials causing error 

produced from bias. 

  
Figure 3.2 In standard feature extraction a fixed number of features are chosen 
before training and given as input to the classifier. The number of features is 
constant which can reduce performance because of the bias-variance tradeoff. 
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 To minimize the problem of the bias-variance tradeoff one approach is to 

combine the ability of a small neural network to adapt quickly and perform well in 

early trials and the ability of a large network to perform well in later trials. A 

neural network that grew from a small number of inputs to many inputs would 

accomplish this goal. To change the number of inputs to a neural network will 

require a change in feature extraction. Figure 3.2 shows standard feature 

extraction, the number and type of features are chosen and all features are 

presented to the classifier, neural network, throughout training. Figure 3.3 shows 

an alternate approach for feature extraction, the number of features is chosen as 

before; however, only a subset of features is presented to the neural network at 

the beginning of training. Additional features are added over time until all the 

chosen features are presented to the neural network. 

 
Figure 3.3 In dynamic feature selection, additional features are given as inputs to 
the classifier while the classifier is being trained. The ability to change the 
number of inputs can increase performance by ameliorating the bias-variance 
tradeoff. 
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 Figure 3.4 shows how inputs and weights are added to the neural network.  

Processing elements and weights that are present throughout the session are 

shown in blue. Processing elements and weights that are added on a fixed 

schedule throughout the session are shown in green. As inputs and weights are 

added they adapt to the feedback given to the neural network. The values of new 

weights follow the same progression of other weights, adapting to feedback until 

they converge on a solution.  

 

 

Figure 3.4 Weight values during training of a neural network with initially 5 
inputs. An additional input is added after every 50 trials, until there are 25 inputs.  
The original 5 inputs are shown in blue and new inputs are shown in green. New 
inputs are able to be added, and the weights associated with the new inputs 
adapt to feedback in the same way as the original inputs. 
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 The values of the initial weights present throughout the session adjust in a 

way similar to the weights in the smaller neural network. The initial weights adapt 

quickly during the beginning of the session until they converge on a solution. The 

values of weights added at later trials adjust in a way similar to weights in the 

large neural network.  The new weights are associated with new inputs that 

provide new information the neural network uses to make a better classification 

of new trials. The new weights do not converge on a solution early in the session 

and some weights show large changes in later trials. 

  

  Small Network Large Network Feature Addition 
At 100 Trials 56.4% SD 5.5% 59.7% SD 11.7% 60.6% SD 9.9% 
Session End 75.8% SD 16.8% 76.4% SD 12.4% 92.0% SD 4.3% 

 

Table 3.1 Performance of simulations for a small and large network and a 
network using feature addition.  

 

 

Figure 3.5 Performance of a neural network classifier with fixed 5 inputs during 5 
Monte Carlo simulations of randomized initial weight values and trials order. 
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 Dynamic feature addition improves performance over both the 

performance of the small and large neural networks.  Figure 3.5 shows the 

performance of 5 Monte Carlo simulations for a small network and Figure 3.6 

shows the performance of 5 Monte Carlo simulations for a large network. Both 

large and small networks had simulations that the classification accuracy did not 

increase across hundreds of trials and the end performance was less than 65%. 

The small network’s simulations had a mean of 56.4% with SD of 5.5% at 100 

trials and mean of 75.8% and SD of 16.8% at the end of the session. The large 

network’s simulations had a mean of 59.7% with SD of 11.7% at 100 trials and 

mean of 76.4% and SD of 12.4% at the end of the session. The dynamic feature 

addition simulations had a mean of 60.6% with SD of 9.9% at 100 trials and 

mean of 92.0% and SD of 4.3% at the end of the session. The mean 

performance of dynamic feature addition simulations exceeded the mean 

performance of both the small and large network at both 100 trials and at the end 

of the session. 

 
Figure 3.6 Performance of a neural network classifier with fixed 25 inputs during 
5 Monte Carlo simulations of randomized initial weight values and trials order. 
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Figure 3.7 Performance of a neural network classifier using dynamic feature 
addition during 5 Monte Carlo simulations of randomized initial weight values and 
trials order. Initially 5 inputs with an input being added after every 50 trials until 
there are 25 inputs. 
 

3.2 DISCUSSION 

  

 Choosing an appropriate size for a neural network when using RL 

for a BCI application is difficult because of the bias-variance tradeoff. A network 

too small will have unnecessarily poor performance during later trials and a 

network too large will have unnecessarily poor performance during early trials. By 

starting with a small network and using dynamic feature addition to grow the 

number of inputs to the network over time the performance of the BCI can be 

improved over both small and large networks in both early trials and later trials. 

Adding features can help the classifier escape local minimums in the error 

surface by increasing the dimension of the error surface. The addition of dynamic 
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feature addition to RL neural networks further improves RL BCIs beyond static 

BCIs.  

Many different stopping conditions for adding features could be designed. 

With knowledge about what features could be useful, the number of features 

could be limited to what features may be useful. For example, features of power 

between 1-50 Hz have been shown to be useful in EEG. So, features could be 

limited to these frequencies. The number of features could be linked to 

performance with the number of features increasing until the performance 

reaches a plateau. If the desired performance has not been met and the 

computation time is too long for an individual trial, features could be pruned and 

other features added.  

There are several limits to this approach. Incrementally adding features 

works best for a neural network being trained with an online algorithm. Offline 

training might be able to train the classifier more quickly by trying many 

combinations of features, instead of adding them incrementally. If the features 

are added too quickly, so the number of weights in the network increases more 

rapidly than the number of examples, the network could constantly under fit the 

data for each trial. Adding features only after enough trials have been recorded to 

train would fix this problem. If the number of possible features is small and all are 

known to be useful, adding them individually might not be helpful, especially if the 

algorithm is trained offline with a large data set. 

To use this approach the initial size of the feature set should be small 

enough so the network can be trained on a small number of trials. Based on the 
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initial number of trials, and the quality of the features, the initial feature set size 

can be chosen. Features should only be added when enough samples exist to 

train them effectively and the features are relevant. Features that are not relevant 

should not be added. Adding a feature that does not help distinguish between the 

classes could slow the algorithm by increasing the number of weights.

 
 



 
 

 

Chapter 4: FEATURE SELECTION 
 

4.1 OVERVIEW 

 

Feature extraction involves the creation of features from measurements. 

Feature selection is a special case of feature extraction that involves the 

selection of certain features and measurements as inputs to the neural network 

(Verikas and Bacauskiene 2002). Only features that contribute significant 

information to the classification should be used. Features that contribute little 

information, irrelevant information, or are correlated or duplicates of other 

features should be excluded as inputs to the network (Brill, Brown et al. 1992; 

Priddy, Rogers et al. 1993; Belue and Bauer Jr 1995; Steppe and Bauer Jr 1996; 

Setiono and Liu 1997; Steppe and Bauer Jr 1997; Yang and Honavar 1998; 

Verikas and Bacauskiene 2002; Sivagaminathan and Ramakrishnan 2007; 

Aghdam, Ghasem-Aghaee et al. 2009; Kabir, Shahjahan et al. 2012).   

Measurements used to determine if a feature contains significant information are 

called saliency measures (Steppe and Bauer Jr 1997; Laine, Bauer et al. 2002; 

Kabir, Shahjahan et al. 2012). By using saliency measures, a subset of the many 

differnet measurements that exist and make up the measurement space can be 

chosen as the feature space (Ruck, Rogers et al. 1990; Brill, Brown et al. 1992; 

Setiono and Liu 1997; Yang and Honavar 1998; Pal, De et al. 2000; 

Sivagaminathan and Ramakrishnan 2007; Aghdam, Ghasem-Aghaee et al. 

2009). 
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 The different features chosen as inputs to the neural network can be 

organized into a vector (Ruck, Rogers et al. 1990; Priddy, Rogers et al. 1993; 

Yang and Honavar 1998). Since many features contain irrelevant information or 

contain information contained in other features, the dimensionality of the feature 

vector can be reduced with little loss of information (Setiono and Liu 1997; Pal, 

De et al. 2000; Verikas and Bacauskiene 2002; Aghdam, Ghasem-Aghaee et al. 

2009). By decreasing the number of features, fewer training examples are 

needed. This is the inverse of “the curse of dimensionality” where increasing the 

number of features means the number of training examples must also be 

increased (Yang and Honavar 1998; Verikas and Bacauskiene 2002). Using 

fewer features can also improve the accuracy of the neural network. By not 

including features composed of irrelevant or redundant information, the network 

does not have to minimize the effects these features have on the output of the 

network (Ruck, Rogers et al. 1990; Brill, Brown et al. 1992; Battiti 1994; Setiono 

and Liu 1997; Yang and Honavar 1998; Bauer Jr, Alsing et al. 2000; Laine, Bauer 

et al. 2002; Verikas and Bacauskiene 2002; Sivagaminathan and Ramakrishnan 

2007; Aghdam, Ghasem-Aghaee et al. 2009; Kabir, Shahjahan et al. 2012). 

Reducing the number of features also reduces the time needed to train the 

network, create features, and classify a feature vector. While time considerations 

might not be very important for offline applications, they can be critical for online 

applications (Ruck, Rogers et al. 1990; Battiti 1994; Setiono and Liu 1997; Yang 

and Honavar 1998; Laine, Bauer et al. 2002; Sivagaminathan and Ramakrishnan 

2007). Depending on the application the cost of collecting data for additional 
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features could be high both financially and because of increased risk (Setiono 

and Liu 1997; Yang and Honavar 1998; Verikas and Bacauskiene 2002; 

Sivagaminathan and Ramakrishnan 2007). All these reasons support the careful 

selection of features. When humans select features they introduce their own 

biases of what will be useful features. The process of selecting features can be 

automated which could improve accuracy by removing human biases and 

increase the speed of feature selection (Brill, Brown et al. 1992). 

Several approaches for finding useful features rely on creating a trained 

neural network from all the available features. One approach varies each feature 

over its range and computes the changes in the error of the output. Features that 

have little effect on the error when varied can be removed (Priddy, Rogers et al. 

1993). Another approach judges the sensitivity of the network’s output to the 

various features by examining the network’s weights. The feature that affects the 

output the least can be removed (Ruck, Rogers et al. 1990).  

A different approach is to add a noise feature to the available features and 

using the same procedure of inspecting weights to compute the features’ effect 

on the trained network’s output, a signal to noise ratio can be computed for each 

feature. Features that do not affect the output much more than the noise feature 

are removed (Bauer Jr, Alsing et al. 2000). By using the signal to noise ratio 

technique the features relevant to mental workload measured by EEG were 

determined to be power in the 31-40 Hz range (Laine, Bauer et al. 2002). Instead 

of using a signal to noise ratio comparison, a confidence interval can be 

constructed for the noise feature. Features that lie outside the confidence interval 
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can be removed (Belue and Bauer Jr 1995). Another variation is to use a 

Bonferroni-type test statistic, features that are less useful compared to the noise 

feature can be excluded (Steppe and Bauer Jr 1996). 

Another way to find which features are most useful is to use a neural 

network and a pruning algorithm. The network is trained on all possible features, 

with a special penalty term included to make small weights even smaller. The 

features are ranked by performance of the network when the feature is set to 

zero. The feature that causes the largest increase in performance when set to 

zero is removed. The whole process is repeated until the performance of the 

network degrades beyond a threshold (Setiono and Liu 1997). Forcing small 

weight to become even smaller makes the output less sensitive to changes in the 

input, which makes finding useful features more difficult. To solve this problem, 

the algorithm can be modified by changing the transfer function to force 

processing elements to work in the saturation regions (Verikas and Bacauskiene 

2002).  

Instead of pruning features, features can be added to the feature set. 

Offline testing can be done on the different features using the “leave-one-out” 

method, N-1 samples are used to train the classifier and the remaining sample is 

used to test the classifier. The feature that shows the greatest classification 

accuracy is added to the previous features already used (Whitney 1971). An 

extension of the this algorithm is the ability to add and remove features called 

“floating search” instead of monotonically adding features (Pudil, Novovičová et 

al. 1994). The degree to which sets of features do not improve classification 
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accuracy over subsets of those features is mutual information. Mutual information 

can be used to determine which features are useful (Battiti 1994).  

Another approach uses a genetic algorithm to find useful features. 

Different sets of features are ranked based on the accuracy of a neural network 

trained on each set of features. Poor performing sets are eliminated, remaining 

sets are mixed to have some of the features of other sets, and random mutations 

of the addition or removal of a feature occur. This process is repeated several 

times, with the best performing set used at the end (Brill, Brown et al. 1992; Yang 

and Honavar 1998).  

Another type of algorithm that can be used is Ant Colony Optimization 

(ACO). An ACO algorithm finds the best path through a graph by simulating ants 

searching for the shortest path to food sources. By organizing the possible sets 

of features into a graph, with each node representing the addition of a feature, an 

ACO algorithm can be used to find the best feature set for classification. When 

the ACO algorithm visits each node of the graph the feature set represented with 

the node is evaluated by training a neural network and computing its accuracy. 

The ACO algorithm learns the path between feature sets that have high accuracy 

to find the set with the highest accuracy (Sivagaminathan and Ramakrishnan 

2007). This approach has been used to find features for text classification 

(Aghdam, Ghasem-Aghaee et al. 2009). Instead of only using the classification 

accuracy of the network other measures can also be used to judge the feature 

sets, such as mutual information (Al-Ani 2006; Kabir, Shahjahan et al. 2012). 
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4.2 FEATURE SELECTION IN DYNAMIC FEATURE ADDITION 

 

The dynamic feature addition in chapter 3 added features in a 

predetermined order. Features were added according to their frequency from 1 to 

50 Hz. Adding features in a different order might improve the performance of the 

dynamic feature addition. 

  

 
Figure 4.1 The performance of a network starting with 5 inputs (1-5 Hz) and 
adding 5 inputs every 150 trials in order of frequency bin, 5 to 50 Hz, during ten 
Monte Carlo simulations of randomized initial weight values and trials order. The 
change in number of inputs ameliorates the bias-variance tradeoff; however, 
adding features in this order reduces the potential performance of the network. 
 

 Using the data from the SCI subject in chapter 2, Figure 4.1 shows the 

performance of a network starting with 5 inputs (1-5 Hz) and adding 5 inputs 
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every 150 trials in order of frequency bin, 5 to 50 Hz, during ten Monte Carlo 

simulations of randomized initial weight values and trials order. The order in 

which features are added in Figure 4.1 does not take into account differences 

between features. These differences could be used to improve the order in which 

features are added. 

  

 
Figure 4.2 The performance of a network starting with 5 inputs and adding 5 
inputs every 150 trials in order of largest difference in features between cues 
during ten Monte Carlo simulations of randomized initial weight values and trials 
order. The change in number of inputs ameliorates the bias-variance tradeoff; 
and, adding features in this order improves the performance of the network 
compared to other addition orders. 
 

 One way to measure the difference between features is to use z-scores to 

quantify the relative difference in average power of frequencies between cues 

during sessions. Large z-scores correspond to large differences between cues 

meaning those frequencies will be more useful for classification than other 
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frequencies. By using information about the relative usefulness of features, the 

order in which features are added can be improved. Figure 4.2 shows 

simulations where features added during a session showed the greatest 

difference between cues in the previous session. The features that showed the 

greatest difference between cues in the preliminary recording session were used 

as the initial features set. After 150 trials in the closed-loop sessions data, 5 

additional features were added that showed the greatest difference between 

cues for the last 150 trials. This process was repeated every 150 trials until all 

the features from 1 to 50 Hz were added. 

 Table 4.1 shows that adding features to try to maximize the difference 

between cues in early trials results in simulations with higher end accuracy, 

mean performance of 81.76%, and smaller variations between simulations, SD of 

1.6%. 

Simulation 
Largest 

Difference First 
Smallest 

Difference First 
By 

Frequency 
Static 

Feature Set 
1 84.03% 71.07% 79.93% 87.85% 
2 83.22% 70.00% 78.93% 86.17% 
3 82.89% 69.87% 78.72% 85.17% 
4 82.81% 69.26% 77.38% 83.09% 
5 82.40% 68.52% 75.10% 79.06% 
6 82.31% 68.46% 75.03% 77.58% 
7 81.14% 68.12% 74.90% 76.51% 
8 80.40% 68.05% 74.09% 76.50% 
9 79.46% 66.91% 71.95% 76.11% 

10 78.98% 64.70% 70.07% 72.21% 
Mean 81.76% 68.50% 75.61% 80.03% 
SD 1.60% 1.69% 3.00% 4.93% 

Table 4.1 Comparison of sorted performance of simulations from different feature 
addition orders and static feature set. Using the data from the SCI subject in 
chapter 2, the performance of a network was simulated during ten Monte Carlo 
simulations of randomized initial weight values and trials order. Adding features 
with the largest difference between cues first produces simulations with the 
highest mean performance and smallest SD between simulations. 
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Figure 4.3 The performance of a network starting with 5 inputs and adding 5 
inputs every 150 trials in order of smallest difference in features between cues 
during ten Monte Carlo simulations of randomized initial weight values and trials 
order. The change in number of inputs ameliorates the bias-variance tradeoff. 
However, this counterexample again shows the importance of addition order as 
adding features in this order results in the lowest performance of all the 
examples. 
 

 If the features are added in a sequence to try to minimize the difference 

between cues in early trials, the performance goes down compared to all other 

techniques.   Features that provide the most information to differentiate between 

the two cues are added in later trials, too late to help develop a classifier. Figure 

4.3 shows the performance of ten Monte Carlo simulations where the initial five 

features where the five 1 Hz frequency bins that showed the smallest difference 

between cues in the preliminary recording session. After the first 150 trials of the 

closed-loop sessions data, the next five cues added were the 1 Hz frequency 

bins that showed the smallest difference between cues in the previous 150 trials. 
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Features were added every 150 trials using the same procedure until all features 

from 1 to 50 Hz were included. The simulations using this method had lower 

performance at the end of the session than all other methods, again showing the 

importance of the order in which features are added. 

 

 

Figure 4.4 The performance of a network with a constant number of inputs, 50, 
during ten Monte Carlo simulations of randomized initial weight values and trials 
order. The constant number of inputs makes the network susceptible to the bias-
variance tradeoff. 

 

4.3 DISCUSSION 

 

The order in which features are added during dynamic feature addition 

can affect the performance of the system. The simple method of adding features 
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by frequency order reduces the potential performance of the system. Adding 

features that behave similarly for each class does not help the classification as 

much as adding features that have distinct behaviors for each class.  By taking 

into account how useful features are for discriminating between different cues 

and adding features that are more useful in early trials, the performance of the 

system can be improved. The features that contribute the most during 

classification would be added first so the weights could be adapted to these 

features first. Features that provided smaller clues to the class of the trial would 

be added later and fine-tune the weights. This approach should generalize to all 

BCIs and all classification problems that use a neural network during online 

learning. Major factors that affect this result are variability in noise that affect 

different features differently, how well the available features differentiate between 

the classes, the ability of the algorithm to determine which features have good 

differentiation, and the pace at which features are added.

 
 



 
 

 

Chapter 5:  VARIABLE LEARNING RATE 
 

5.1 OVERVIEW 

 

The goal of the rehabilitation system is to use RL in a BCI so that the BCI 

adapts to the user over the course of rehabilitation. Using a static learning rate in 

the BCI could reduce the ability of the BCI to adapt to the user. A learning rate 

that adjusts to facilitate the progression of the user during rehabilitation could 

lead to a better rehabilitation system.  

The RL algorithm tries to find the minimum of the error surface. The error 

surface of a neural network describes the relationship between the network’s 

weights and error at the network’s output.  The properties of the error surface for 

real world applications have been studied by several authors (Widrow and Lehr 

1990; Hush, Horne et al. 1992; Yu 1992; Hush and Horne 1993). The error 

surfaces of neural networks are composed of large regions with small gradients 

and long narrow regions with steep gradients. A weights update algorithm that 

uses a fixed learning rate will be inefficient because of these characteristics of 

neural networks’ error surfaces. An algorithm using a large learning rate will 

progress rapidly over the region with a small gradient; however, steep gradients 

will cause the algorithm to over adjust and produce oscillations in the weights. A 

small learning rate will make the algorithm more stable in regions with 

steepgradients; however, the algorithm will move slowly through regions with 

small gradients (Gori and Tesi 1992). Algorithms with a constant learning rate are
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not guaranteed to converge in general (Kuan and Hornik 1991). To alleviate 

these problems an adaptive learning rate can be used instead of a constant 

learning rate. By using an adaptive learning rate, the probability for poor 

performance because of a poor choice for an initial learning rate are reduced (Yu 

and Chen 1997). An adaptive learning rate reduces the need for batch learning 

and improves first-time learning, a important consideration for online learning 

algorithms (Weir 1991). Many different approaches to adjust the learning rate 

have been developed. One approach is to compare the error for learning rates 

slightly higher and slightly lower than the current learning rate, and choose the 

learning rate that produces the lower error (Solomon and Leo van Hemmen 

1996). Another approach replaces the normal cost function used in back 

propagation with the Lyapunov function; with this change, the back propagation 

algorithm converges faster. By substituting in the Lyapunov function, the 

algorithm has the same behavior as back propagation with an adaptive learning 

rate (Behera, Kumar et al. 2006). If the gradient of the error surface is known the 

learning rate can be adjusted appropriately. By using the forward and backward 

procedure during back propagation the derivative of the error surface can be 

calculated and the learning rate adjusted accordingly (Yu, Chen et al. 1995; Yu 

and Chen 1997). Estimates of the gradient can also be used to adjust the 

learning rate. The gradient can be estimated using the direction cosines of the 

steepest descent vector (Hsin, Li et al. 1995), secant equation based quasi-

Newton method (Barzilai and Borwein 1988; Polak 1997; Plagianakos, 

Sotiropoulos et al. 1998), or by estimating the Lipschitz constant, the steepest 
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gradient of a function (Magoulas, Vrahatis et al. 1997). Another approach uses a 

combination of the height of the error surface, the current error, and maximum 

gradient to compute a step length of the quotient height over maximum gradient 

(Weir 1991). These approaches do not apply to online RL with a neural network 

for several reasons: the computation time required to compare different learning 

rates and the dynamic nature of the error surface between trials. During early 

trials, the error surface is especially likely to fluctuate because of the small size of 

the sample set.  A different approach uses the height of the error surface alone to 

increase or decrease the learning rate by a fixed factor (Jacobs 1988). The 

advantages of this approach are the simplicity of measurement and computation.  

The height of the error surface is also less susceptible to the dynamic nature of 

the error surface than the slope of the error surface. 

 

5.2 METHODS 

 

To test the rehabilitation system’s ability to adapt several different update 

rules were investigated. The traditional method to update the weights of a 

multilayer perceptron (MLP) is with back propagation. Back propagation can be 

broken down into several steps. Compute the output of the MLP: 

 

𝑟ℎ =  𝜑 ( 𝑤ℎ ∗  𝑟𝑖)     

𝑟𝑜 =  𝜑 ( 𝑤𝑜 ∗  𝑟ℎ)     
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where  𝑟𝑖  is the input to the MLP, 𝑟ℎ is the output of the hidden layer, 𝑟𝑜 is the 

output of the MLP, 𝜑 is the activation function, 𝑤ℎ are the weights of the hidden 

layer, and 𝑤𝑜 are the weights of the output layer. Compute the error of the MLP: 

 

𝑑𝑜 = �𝑟0(1 − 𝑟0)� ∗  (𝑟𝑑 − 𝑟0)  

𝑑ℎ = �𝑟ℎ(1 − 𝑟ℎ)� ∗  (𝑤𝑜 ∗ 𝑑0)  

 

where 𝑟𝑑 is the desired output of the MLP, 𝑑𝑜 is the error at the output layer, and 

𝑑ℎ is the error at the hidden layer. Then update the weights of the MLP: 

 

∆𝑤ℎ = 𝛾(𝑟𝑖 ∗ 𝑑ℎ)   

∆𝑤𝑜 = 𝛾(𝑟ℎ ∗ 𝑑𝑜)   

 

Where ∆𝑤ℎ is the change of the weights in the hidden layer,  ∆𝑤𝑜 is the change 

of the weights in the output layer, and 𝛾 is the learning rate. While back 

propagation is the most common method, other approaches exist. Another 

update method is based on Hebbian style learning (Mazzoni, Andersen et al. 

1991). Hebbian style learning can be written mathematically as: 

 

∆𝑤𝑖𝑗 = �
    𝛾(𝑥𝑖 �𝑝𝑗 −  𝑥𝑗�), 𝑓𝑡 = 1

−𝛾 �𝑥𝑖 �𝑝𝑗 −  𝑥𝑗�� , 𝑓𝑡 = 0
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Where ∆𝑤𝑖𝑗  is the change of the weight between processing elements i and j, γ 

is the learning rate, 𝑥𝑖  is the input to processing element j from processing 

element i, 𝑝𝑗 is the thresholded output of processing element j, 𝑥𝑗 is the output of 

processing element j, and 𝑓𝑡 is the current feedback of the critic. ∆𝑤𝑖𝑗  is a 

function of the multiplication of the input and the output of processing element j, 

which is Hebbian style learning. Depending on the current feedback of the critic 

the weight 𝑤𝑖𝑗 either increases for positive feedback, 1, or decreases for negative 

feedback, 0. 

The change in weight values can also be scaled as a function of how the 

system is performing. A more biologically plausible way to think of variable 

weight value change is that the weight change scales to how often feedback 

happens. For example, if errors are frequent, negative feedback will not create a 

large weight change but positive feedback will create a large weight change. By 

using this approach when the system is performing well and errors are few the 

system will not make dramatic changes when the output is correct, preserving 

the classification ability of the system. However, when an error occurs the system 

will make large changes to learn from that trial and error. Conversely when the 

system is performing poorly and errors are common, the system will make large 

changes for a correct output to learn from the trial and output. A way to 

implement this mathematically is: 

 

𝑟 = (∑ 𝑓𝑖𝑡
𝑖=1 ) #𝑓⁄       
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Where 𝑟 is the scale factor, 𝑓𝑖 is the feedback at trial 𝑖, and #𝑓 is the number of 

trials. The scale factor 𝑟 can be incorporated into the Hebbian style learning as: 

 

∆𝑤𝑖𝑗 = �
(1 − 𝑟) ∗ 𝛾(𝑥𝑖 �𝑝𝑗 −  𝑥𝑗�), 𝑓𝑡 = 1
   (𝑟) ∗  −𝛾(𝑥𝑖 �𝑝𝑗 −  𝑥𝑗�), 𝑓𝑡 = 0

    

 

The scale factor 𝑟 can also be incorporated into back propagation as: 

 

∆𝑤ℎ = (1 − 𝑟) ∗ 𝛾(𝑟𝑖 ∗ 𝑑ℎ)   

∆𝑤𝑜 = (1 − 𝑟) ∗ 𝛾(𝑟ℎ ∗ 𝑑𝑜)   

 

 

Figure 5.1 One input given to a neural network during testing of the different 
update rules: 1/3 standard deviation noise test data, 1 standard deviation noise 
test data, and real data. 
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Since the data from real recordings has a large amount of noise, 

comparing the performance of the different update rules with real data would be 

challenging. To test the various update rules, test data sets were created. The 

SD of a real recording was used to estimate the amount of noise to include in the 

test data sets. The first test data set has Gaussian noise with a SD equal to 1/3 

the SD of the real recording. The second test data set has Gaussian noise with a 

SD equal to the SD of the real recording. Figure 5.1 shows the two test data sets 

created next to a recording from subject 1. 

 
Figure 5.2 Comparison of a neural network’s performance using back 
propagation, scaled back propagation, Hebbian style learning, and scaled 
Hebbian style learning using 1/3 standard deviation noise test data and 70% 
critic accuracy. Performance of the different update rules is comparable. 
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The accuracy of the critic was set at 70% to approximate the classification 

accuracy of the critic on real error data. Ten simulations were performed with 

each update rule. Performance was judged by cumulative classification accuracy 

of the actor on motor data, with chance equal to 50% for this two class test.  

The results of using a 1/3 SD noise test data set with the various update 

rules is shown in Figure 5.2. Overall the results between the various update rules 

are very similar. The signal to noise ratio is so high that the update rule becomes 

less important. Occasionally back propagation will not be able to advance 

beyond a local minimum, which can be seen in the first graph as the simulation 

marked in black approaches 50% classification accuracy. Hebbian style learning 

does not seem to have this problem. 

The increased noise in the 1 SD noise test data set starts to show the 

difference between the update rules, as seen in Figure 5.3. To quantify these 

results the update rules were compared by the number of simulations to reach 

60% classification accuracy at the end of 120 trials, table 5.1. Hebbian style 

learning had better overall performance compared to back propagation and 

performed better than chance earlier. Similarly, scaling the back propagation or 

scaling the Hebbian style learning increased overall performance and helped the 

system reach a performance better than chance faster. The results of using 

scaled Hebbian style learning with real data are shown in Figure 5.4. The real 

data results are similar to the 1 SD noise test data set. 
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Table 5.1 Number of simulations above 60% classification accuracy for each 
update rule. Scaled Hebbian Style Learning outperforms the other update rules. 

 
 Figure 5.3 Comparison of a neural network’s performance using back 
propagation, scaled back propagation, Hebbian style learning, and scaled 
Hebbian style learning using one standard deviation noise test data and 70% 
critic accuracy. The network performed the best using scaled Hebbian style 
learning. 

Simulations Above 60% Classification Accuracy 

Update Method Simulations (10 Total) 

Back Propagation 3 

Scaled Back Propagation 8 

Hebbian Style Learning 5 

Scaled Hebbian Style Learning 10 
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Figure 5.4 Using real data as input, the actor’s performance when critic is 70% 
accurate with scaled Hebbian style learning update. 

  

 All the techniques of the current and previous chapters can be combined 

to improve the results even further. The scaled Hebbian style learning update 

can be combined with dynamic feature addition and adding features based on 

the largest difference between cues. Figure 5.5 shows the results of combining 

the techniques for ten Monte Carlo simulations using the SCI subject data from 

chapter 2. The simulations of the combined techniques performed better than the 
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other simulations. These results show the techniques can be used together and 

the improvements from the techniques are additive when combined. 

 

 

Figure 5.5 Using the combined techniques (scaled Hebbian style learning 
update, dynamic feature addition, and adding features based on the largest 
difference between cues) and the SCI subject data as input, the actor’s 
performance during ten Monte Carlo simulations of randomized initial weight 
values and trials order. 

 

5.3 DISCUSSION 

 

Various update rules could be used in the rehabilitation system: back 

propagation, scaled back propagation, Hebbian style learning, and scaled 

Hebbian style learning. In simulations Hebbian style learning performed better 

than back propagation. While scaled Hebbian style learning performed better 
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than Hebbian style learning. Scaled Hebbian style learning also takes advantage 

of the online nature of RL used in the system. By adjusting the learning rate, the 

algorithm moves more quickly in areas where the slope of the error surface is 

small and converges on a minimum more quickly in areas where the slope is 

high. The adjustable learning rate also makes the choice of learning rate at the 

beginning of the algorithm have less of a negative effect on the performance of 

the algorithm. This approach should generalize to all classification problems 

using a neural network with an online learning algorithm. 

A weakness of this approach is that it only relies on the height of the error 

surface. The slope of the error surface would give a more direct measure of what 

the learning rate should be set at, however determining the slope of the error 

surface is more computationally expensive and the slope is more likely to change 

between trials than the height. Even though the learning rate is adjustable the 

range of possible learning rates and size of the change in learning rate have to 

be set at the beginning of the experiment. Given the range of the learning rates 

and the size of the adjustments are preset, the learning rate cannot always be 

ideal for the error surface. Other factors that affect this result are how much noise 

is in the recordings and the dimensionality of the error surface. 

This approach is best suited for classification problems using neural 

networks in an online learning algorithm. The range of learning rates should be 

chosen to accommodate reasonable maximum and minimum slopes of the error 

surface. The size of the adjustments to the learning rate can be smaller when the 

range between the maximum and minimum slope of the error surface is smaller 
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and the size of the adjustments to the learning rate can also be smaller when 

more trials are available.

 
 



 

 

Chapter 6: CONCLUSION 

 

 The research presented in this dissertation demonstrated a new EEG 

based BCI system using RL. A classifier was created for each user to detect 

ErrPs during closed-loop sessions. By using RL and detecting the user’s ErrPs, 

the system was able to adapt to the user throughout the experiment without 

offline training. Over the course of the experiment, the classification accuracy for 

motor potentials increased each session until the accuracy reached the 

performance level of the ErrP classifier. The system was able to find motor 

potentials associated with cues using RL and feedback from the user in the form 

of ErrPs. The system adapted to the control and SCI subject and achieved 

comparable performance levels for both. By using the system, the user was able 

to control a FES. The system could be used in future work as a testbed for 

augmenting rehabilitation with a BCI. 

 By adjusting the way the system decodes motor potentials the RL BCI can 

be further improved beyond static BCI’s. Neural networks suffer from a dilemma 

known as the bias-variance tradeoff. Networks too small suffer from poor 

performance in later trials while networks too large have poor performance in 

early trials. Choosing a size for a neural network using RL is difficult because the 

data set is always increasing. However by starting with a small network and 

adding inputs using dynamic feature addition, the performance of a RL BCI can 

be improved. 
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 In addition to adding new features over time, the order in which features 

are added was also investigated. Instead of adding features in a fixed order, 

adding features that showed the greatest difference between cues in earlier trials 

improved performance. This change in the order in which features are added 

further improved the dynamic feature addition and the RL BCI. 

 RL also offers the opportunity to change the learning rate online during the 

experiment.  To test how to best utilize this opportunity various update rules were 

investigated: back propagation, scaled back propagation, Hebbian style learning, 

and scaled Hebbian style learning. Hebbian style learning performed better than 

back propagation; and by taking advantage of the online nature of RL, scaled 

Hebbian style learning performed better than Hebbian style learning.   

 In future work when the system starts to perform at a level that subjects 

would be willing to use it every day for rehabilitation, techniques could be 

introduced to modify the performance of the system to ensure continued 

progress of the rehabilitation. The threshold for an action could be increased or 

the inputs to the actor could be limited to certain frequencies or electrodes, which 

could be helpful in guiding the continued rehabilitation of the subject. The ideal 

brain activity for a subject undergoing rehabilitation could also be investigated 

and might not necessarily match an able-bodied subject.  

 The task used during rehabilitation could also be changed. Tasks that are 

more engaging could be used and standard rehabilitation test like the Jebsen 

hand function test could be integrated into the system. The cues and feedback 

could be switched to auditory signals freeing the subject’s visual attention. 
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Auditory cues and feedback could also be embedded in music making them 

more pleasant for the user. 

 These findings have important implications for BCI’s and rehabilitation. As 

rehabilitation induces positive cortical reorganization in the user, frequent 

adjustments to the system might become necessary because of the user’s 

changing motor potentials. A system that adapted to the user as quickly as their 

motor potentials changed could reduce the need for recalibration enabling longer 

rehabilitation sessions. The system was able to use the weights from the last 

session to decode the user’s motor potentials at the start of a new session. As 

the system learned the user’s motor potentials, changes in the system’s weights 

became smaller meaning the user would experience consistent performance. 

Since the system does not need to be recalibrated by a scientist, the user could 

take the system home and use it continuously.

 



 

REFERENCES  

 

Abu-Mostafa, Y. S. (1989). "The Vapnik-Chervonenkis Dimension: Information 
Versus Complexity in Learning." Neural Computation 1(3): 312. 

Aghdam, M. H., N. Ghasem-Aghaee, et al. (2009). "Text Feature Selection Using 
Ant Colony Optimization." Expert Systems with Applications 36(3): 6843. 

Al-Ani, A. (2006). "Feature Subset Selection Using Ant Colony 
Optimization." International Journal of Computational Intelligence 2(1). 

Anderson, K. D. (2004). "Targeting Recovery: Priorities of the Spinal Cord-Injured 
Population." Journal of Neurotrauma 21(10): 1371. 

Ash, T. (1989). "Dynamic Node Creation in Backpropagation 
Networks." Connection Science 1(4): 365. 

Bartlett, E. B. (1994). "Dynamic Node Architecture Learning: An Information 
Theoretic Approach." Neural Networks 7(1): 129. 

Barzilai, J. and J. M. Borwein (1988). "Two-Point Step Size Gradient 
Methods." IMA Journal of Numerical Analysis 8(1): 141. 

Battiti, R. (1994). "Using Mutual Information for Selecting Features in Supervised 
Neural Net Learning." Neural Networks, IEEE Transactions on 5(4): 537. 

Bauer Jr, K. W., S. G. Alsing, et al. (2000). "Feature Screening Using Signal-to-
Noise Ratios." Neurocomputing 31(1): 29. 

Baum, E. B. and D. Haussler (1989). "What Size Net Gives Valid 
Generalization?" Neural Computation 1(1): 151. 

Beekhuizen, K. S. and E. C. Field-Fote (2008). "Sensory Stimulation Augments 
the Effects of Massed Practice Training in Persons with 
Tetraplegia." Archives of Physical Medicine and Rehabilitation 89(4): 602.

70 
 



71 
 

 

Behera, L., S. Kumar, et al. (2006). "On Adaptive Learning Rate That Guarantees 
Convergence in Feedforward Networks." Neural Networks, IEEE 
Transactions on 17(5): 1116. 

Belue, L. M. and K. W. Bauer Jr (1995). "Determining Input Features for 
Multilayer Perceptrons." Neurocomputing 7(2): 111. 

Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford university 
press. 

Brill, F. Z., D. E. Brown, et al. (1992). "Fast Generic Selection of Features for 
Neural Network Classifiers." Neural Networks, IEEE Transactions on 3(2): 
324. 

Cramer, S., E. Orr, et al. (2007). "Effects of Motor Imagery Training after Chronic, 
Complete Spinal Cord Injury." Experimental Brain Research 177(2): 233. 

Cramer, S. C., L. Lastra, et al. (2005). "Brain Motor System Function after 
Chronic, Complete Spinal Cord Injury." Brain 128(12): 2941. 

Daly, J. J., R. Cheng, et al. (2009). "Feasibility of a New Application of 
Noninvasive Brain Computer Interface (BCI): A Case Study of Training for 
Recovery of Volitional Motor Control after Stroke." Journal of Neurologic 
Physical Therapy 33(4): 203. 

Daly, J. J. and J. R. Wolpaw (2008). "Brain–Computer Interfaces in Neurological 
Rehabilitation." Lancet neurology 7(11): 1032. 

DiGiovanna, J., B. Mahmoudi, et al. (2009). "Coadaptive Brain-Machine Interface 
Via Reinforcement Learning." Biomedical Engineering, IEEE Transactions 
on 56(1): 54. 

Elbert, T., C. Pantev, et al. (1995). "Increased Cortical Representation of the 
Fingers of the Left Hand in String Players." Science 270(5234): 305. 

 



72 
 

Falkenstein, M., J. Hoormann, et al. (2000). "ERP Components on Reaction 
Errors and Their Functional Significance: A Tutorial." Biological 
Psychology 51(2-3): 87. 

Ferrez, P. W. and J. Millan (2008). "Error-Related EEG Potentials Generated 
During Simulated Brain-Computer Interaction." Biomedical Engineering, 
IEEE Transactions on 55(3): 923. 

Frean, M. (1990). "The Upstart Algorithm: A Method for Constructing and 
Training Feedforward Neural Networks." Neural Computation 2(2): 198. 

Gehring, W., M. Coles, et al. (1990). "The Error-Related Negativity: An Event-
Related Brain Potential Accompanying Errors." Psychophysiology 27(4): 
S34. 

Geman, S., E. Bienenstock, et al. (1992). "Neural Networks and the 
Bias/Variance Dilemma." Neural computation 4(1): 1. 

Gori, M. and A. Tesi (1992). "On the Problem of Local Minima in 
Backpropagation." IEEE Transactions on Pattern Analysis and Machine 
Intelligence 14(1): 76. 

Green, J., E. Sora, et al. (1998). "Cortical Sensorimotor Reorganization after 
Spinal Cord Injury an Electroencephalographic Study." Neurology 50(4): 
1115. 

Gruau, F., D. Whitley, et al. (1996). A Comparison between Cellular Encoding 
and Direct Encoding for Genetic Neural Networks. Proceedings of the First 
Annual Conference on Genetic Programming, MIT Press. 

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological 
Theory New York, John Wiley. 

Hirose, Y., K. Yamashita, et al. (1991). "Back-Propagation Algorithm Which 
Varies the Number of Hidden Units." Neural Networks 4(1): 61. 

 

 



73 
 

Hoffman, L. R. and E. C. Field-Fote (2006). "Cortically-Evoked Potentials of 
Muscles Distal to the Lesion Are Posteriorly Shifted and of Lower 
Amplitude in Individuals with Tetraplegia Due to Spinal Cord 
Injury." Journal of Neurologic Physical Therapy 30(4): 202. 

Hoffman, L. R. and E. C. Field-Fote (2007). "Cortical Reorganization Following 
Bimanual Training and Somatosensory Stimulation in Cervical Spinal Cord 
Injury: A Case Report." Physical Therapy 87(2): 208. 

Hoffman, L. R. and E. C. Field-Fote (2010). "Functional and Corticomotor 
Changes in Individuals with Tetraplegia Following Unimanual or Bimanual 
Massed Practice Training with Somatosensory Stimulation: A Pilot 
Study." Journal of Neurologic Physical Therapy 34(4): 193. 

Hohnsbein, J., M. Falkenstein, et al. (1989). "Error Processing in Visual and 
Auditory Choice Reaction Tasks." Journal of Psychophysiology 3: 32. 

Holroyd, C. B. and M. G. H. Coles (2002). "The Neural Basis of Human Error 
Processing: Reinforcement Learning, Dopamine, and the Error-Related 
Negativity." Psychological Review 109(4): 679. 

Hsin, H.-C., C.-C. Li, et al. (1995). "An Adaptive Training Algorithm for Back-
Propagation Neural Networks." Systems, Man and Cybernetics, IEEE 
Transactions on 25(3): 512. 

Hua, J., Z. Xiong, et al. (2005). "Optimal Number of Features as a Function of 
Sample Size for Various Classification Rules." Bioinformatics 21(8): 1509. 

Hummel, F. C. and L. G. Cohen (2006). "Non-Invasive Brain Stimulation: A New 
Strategy to Improve Neurorehabilitation after Stroke?" The Lancet 
Neurology 5(8): 708. 

Hush, D. R., B. Horne, et al. (1992). "Error Surfaces for Multilayer 
Perceptrons." Systems, Man and Cybernetics, IEEE Transactions on 
22(5): 1152. 

Hush, D. R. and B. G. Horne (1993). "Progress in Supervised Neural 
Networks." Signal Processing Magazine, IEEE 10(1): 8. 

 



74 
 

Jacobs, R. A. (1988). "Increased Rates of Convergence through Learning Rate 
Adaptation." Neural Networks 1(4): 295. 

Jian, F. and X. Yugeng (1997). "Neural Network Design Based on Evolutionary 
Programming." Artificial Intelligence in Engineering 11(2): 155. 

Kabir, M. M., M. Shahjahan, et al. (2012). "A New Hybrid Ant Colony 
Optimization Algorithm for Feature Selection." Expert Systems with 
Applications 39(3): 3747. 

Kleim, J. A., S. Barbay, et al. (1998). "Functional Reorganization of the Rat Motor 
Cortex Following Motor Skill Learning." Journal of Neurophysiology 80(6): 
3321. 

Kokotilo, K. J., J. J. Eng, et al. (2009). "Reorganization and Preservation of Motor 
Control of the Brain in Spinal Cord Injury: A Systematic Review." Journal 
of Neurotrauma 26(11): 2113. 

Kuan, C.-M. and K. Hornik (1991). "Convergence of Learning Algorithms with 
Constant Learning Rates." Neural Networks, IEEE Transactions on 2(5): 
484. 

Laine, T. I., K. Bauer, et al. (2002). "Selection of Input Features across Subjects 
for Classifying Crewmember Workload Using Artificial Neural 
Networks." Systems, Man and Cybernetics, Part A: Systems and Humans, 
IEEE Transactions on 32(6): 691. 

LeCun, Y., L. Bottou, et al. (1998). Efficient Backprop. Neural Networks: Tricks of 
the Trade, Springer: 9. 

Liepert, J., H. Bauder, et al. (2000). "Treatment-Induced Cortical Reorganization 
after Stroke in Humans." Stroke 31(6): 1210. 

MacLeod, C., G. Maxwell, et al. (2009). "Incremental Growth in Modular Neural 
Networks." Engineering Applications of Artificial Intelligence 22(4–5): 660. 

MacLeod, C. and G. M. Maxwell (2001). "Incremental Evolution in Anns: Neural 
Nets Which Grow." Artificial Intelligence Review 16(3): 201. 

 



75 
 

Magoulas, G. D., M. N. Vrahatis, et al. (1997). "Effective Backpropagation 
Training with Variable Stepsize." Neural Networks 10(1): 69. 

Mahmoudi, B., J. DiGiovanna, et al. (2008). Neuronal Tuning in a Brain-Machine 
Interface During Reinforcement Learning. International Conference of the 
IEEE Engineering in Medicine and Biology Society 2008, IEEE. 

Mahmoudi, B. and J. C. Sanchez (2011). "A Symbiotic Brain-Machine Interface 
through Value-Based Decision Making." PLoS ONE 6(3): e14760. 

Marino, R., T. Barros, et al. (2003). "International Standards for Neurological 
Classification of Spinal Cord Injury." The Journal of Spinal Cord Medicine 
26: S50. 

Masters, T. (1993). Practical Neural Network Recipes in C++, Morgan Kaufmann. 

Mazzoni, P., R. A. Andersen, et al. (1991). "A More Biologically Plausible 
Learning Rule for Neural Networks." Proceedings of the National Academy 
of Sciences 88(10): 4433. 

McFarland, D. J. and J. R. Wolpaw (2011). "Brain-Computer Interfaces for 
Communication and Control." Communications of the ACM 54(5): 60. 

Middendorf, M., G. McMillan, et al. (2000). "Brain-Computer Interfaces Based on 
the Steady-State Visual-Evoked Response." Rehabilitation Engineering, 
IEEE Transactions on 8(2): 211. 

Millan, J. R., F. Renkens, et al. (2004). "Noninvasive Brain-Actuated Control of a 
Mobile Robot by Human EEG." Biomedical Engineering, IEEE 
Transactions on 51(6): 1026. 

Müller-Putz, G. R., R. Scherer, et al. (2005). "EEG-Based Neuroprosthesis 
Control: A Step Towards Clinical Practice." Neuroscience Letters 382(1–
2): 169. 

Neuper, C., M. Wörtz, et al. (2006). ERD/ERS Patterns Reflecting Sensorimotor 
Activation and Deactivation. Progress in Brain Research. N. Christa and 
K. Wolfgang, Elsevier. Volume 159: 211. 

 



76 
 

Nudo, R. J. and G. W. Milliken (1996). "Reorganization of Movement 
Representations in Primary Motor Cortex Following Focal Ischemic 
Infarcts in Adult Squirrel Monkeys." Journal of Neurophysiology 75(5): 
2144. 

Nudo, R. J., B. M. Wise, et al. (1996). "Neural Substrates for the Effects of 
Rehabilitative Training on Motor Recovery after Ischemic Infarct." Science 
272(5269): 1791. 

Ochoa, J. M., M. Listenberger, et al. (2011). Use of an Electromyographically 
Driven Hand Orthosis for Training after Stroke. International Conference 
on Rehabilitation Robotics 2011, IEEE. 

Pal, S. K., R. K. De, et al. (2000). "Unsupervised Feature Evaluation: A Neuro-
Fuzzy Approach." Neural Networks, IEEE Transactions on 11(2): 366. 

Pascual-Leone, A., A. Cammarota, et al. (1993). "Modulation of Motor Cortical 
Outputs to the Reading Hand of Braille Readers." Annals of Neurology 
34(1): 33. 

Pascual-Leone, A., J. Grafman, et al. (1994). "Modulation of Cortical Motor 
Output Maps During Development of Implicit and Explicit 
Knowledge." Science 263(5151): 1287. 

Pfurtscheller, G., G. R. Müller, et al. (2003). "‘Thought’ – Control of Functional 
Electrical Stimulation to Restore Hand Grasp in a Patient with 
Tetraplegia." Neuroscience Letters 351(1): 33. 

Plagianakos, V., D. Sotiropoulos, et al. (1998). "Automatic Adaptation of Learning 
Rate for Backpropagation Neural Networks." Recent Advances in Circuits 
and Systems: 337. 

Pohlmeyer, E. A., B. Mahmoudi, et al. (2012). Brain-Machine Interface Control of 
a Robot Arm Using Actor-Critic Reinforcement Learning. International 
Conference of the IEEE Engineering in Medicine and Biology Society 
2012, IEEE. 

Polak, E. (1997). Optimization: Algorithms and Consistent Approximations, 
Springer-Verlag New York, Inc. 

 



77 
 

Prechelt, L. (1998). Early Stopping - but When? Neural Networks: Tricks of the 
Trade. G. Orr and K.-R. Müller, Springer Berlin / Heidelberg. 1524: 553. 

Priddy, K. L., S. K. Rogers, et al. (1993). "Bayesian Selection of Important 
Features for Feedforward Neural Networks." Neurocomputing 5(2): 91. 

Pudil, P., J. Novovičová, et al. (1994). "Floating Search Methods in Feature 
Selection." Pattern Recognition Letters 15(11): 1119. 

Qin, L., L. Ding, et al. (2004). "Motor Imagery Classification by Means of Source 
Analysis for Brain–Computer Interface Applications." Journal of Neural 
Engineering 1(3): 135. 

Ruck, D. W., S. K. Rogers, et al. (1990). "Feature Selection Using a Multilayer 
Perceptron." Journal of Neural Network Computing 2(2): 40. 

Setiono, R. and L. C. K. Hui (1995). "Use of a Quasi-Newton Method in a 
Feedforward Neural Network Construction Algorithm." Neural Networks, 
IEEE Transactions on 6(1): 273. 

Setiono, R. and H. Liu (1997). "Neural-Network Feature Selector." Neural 
Networks, IEEE Transactions on 8(3): 654. 

Sivagaminathan, R. K. and S. Ramakrishnan (2007). "A Hybrid Approach for 
Feature Subset Selection Using Neural Networks and Ant Colony 
Optimization." Expert Systems with Applications 33(1): 49. 

Śmieja, F. J. (1993). "Neural Network Constructive Algorithms: Trading 
Generalization for Learning Efficiency?" Circuits, Systems and Signal 
Processing 12(2): 331. 

Solomon, R. and J. Leo van Hemmen (1996). "Accelerating Backpropagation 
through Dynamic Self-Adaptation." Neural Networks 9(4): 589. 

Stanley, K. O. and R. Miikkulainen (2002). Efficient Reinforcement Learning 
through Evolving Neural Network Topologies. In Proceedings of the 
Genetic and Evolutionary Computation Conference 2002, Morgan 
Kaufmann. 

 



78 
 

Steppe, J. and K. Bauer Jr (1997). "Feature Saliency Measures." Computers & 
Mathematics with Applications 33(8): 109. 

Steppe, J. M. and K. W. Bauer Jr (1996). "Improved Feature Screening in 
Feedforward Neural Networks." Neurocomputing 13(1): 47. 

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction, 
Cambridge Univ Press. 

Vapnik, V. N. and A. Y. Chervonenkis (1971). "On the Uniform Convergence of 
Relative Frequencies of Events to Their Probabilities." Theory of 
Probability & Its Applications 16(2): 264. 

Verikas, A. and M. Bacauskiene (2002). "Feature Selection with Neural 
Networks." Pattern Recognition Letters 23(11): 1323. 

Vidal, J. J. (1977). "Real-Time Detection of Brain Events in EEG." Proceedings of 
the IEEE 65(5): 633. 

Weir, M. K. (1991). "A Method for Self-Determination of Adaptive Learning Rates 
in Back Propagation." Neural Networks 4(3): 371. 

Weng, W. and K. Khorasani (1996). "An Adaptive Structure Neural Networks with 
Application to EEG Automatic Seizure Detection." Neural Networks 9(7): 
1223. 

Whitney, A. W. (1971). "A Direct Method of Nonparametric Measurement 
Selection." Computers, IEEE Transactions on 100(9): 1100. 

Widrow, B. and M. A. Lehr (1990). "30 Years of Adaptive Neural Networks: 
Perceptron, Madaline, and Backpropagation." Proceedings of the IEEE 
78(9): 1415. 

Wyndaele, M. and J. J. Wyndaele (2006). "Incidence, Prevalence and 
Epidemiology of Spinal Cord Injury: What Learns a Worldwide Literature 
Survey?" Spinal Cord 44(9): 523. 

 



79 
 

Yang, J. and V. Honavar (1998). Feature Subset Selection Using a Genetic 
Algorithm. Feature Extraction, Construction and Selection, Springer: 117. 

Yu, X.-H. (1992). "Can Backpropagation Error Surface Not Have Local 
Minima." Neural Networks, IEEE Transactions on 3(6): 1019. 

Yu, X.-H. and G.-A. Chen (1997). "Efficient Backpropagation Learning Using 
Optimal Learning Rate and Momentum." Neural Networks 10(3): 517. 

Yu, X.-H., G.-A. Chen, et al. (1995). "Dynamic Learning Rate Optimization of the 
Backpropagation Algorithm." Neural Networks, IEEE Transactions on 6(3): 
669. 

Zhang, B.-T. and H. Muhlenbein (1993). "Evolving Optimal Neural Networks 
Using Genetic Algorithms with Occam's Razor." Complex Systems 7(3): 
199. 

 

  

 


	University of Miami
	Scholarly Repository
	2014-06-25

	Dynamic Feature Selection in a Reinforcement Learning Brain Controlled FES
	Scott A. Roset
	Recommended Citation


	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1:  INTRODUCTION
	1.1 Rehabilitation
	1.2 Brain – Computer Interfaces
	1.3 New Architecture with Reinforcement Learning
	1.4 Brain Plasticity

	Chapter 2:  BRAIN-COMPUTER INTERFACE AUGMENTED Rehabilitation
	2.1 OVERVIEW
	2.2 METHODS
	Study Participants
	Experimental Task
	Neural Data Acquisition
	Muscle Stimulation
	A neuroprosthetic wrist-hand orthosis (NESS H200, Bioness Inc, Valencia, CA) was fitted to the right hand of the subject. FES was delivered to the extensor muscles (extensor digitorum communis and extensor pollicis brevis) to produce opening movement...
	Actor-Critic Reinforcement Learning Architecture
	Adaptive BCI Usage
	Critic as Error Potential Classifier

	2.3 RESULTS
	Closed-Loop Trials
	Performance of the System
	Comparison of Performance across Subjects

	2.4 DISCUSSION

	Chapter 3:  FEATURE ADDITION
	3.1 OVERVIEW
	Bias-Variance Tradeoff
	Network Size and Reinforcement Learning

	3.2 DISCUSSION

	Chapter 4:  FEATURE SELECTION
	4.1 OVERVIEW
	4.2 FEATURE SELECTION IN DYNAMIC FEATURE ADDITION
	4.3 DISCUSSION

	Chapter 5:   VARIABLE LEARNING RATE
	5.1 OVERVIEW
	5.2 METHODS
	5.3 DISCUSSION

	Chapter 6:  CONCLUSION
	REFERENCES

