
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2014-06-25

Dynamic Feature Selection in a Reinforcement
Learning Brain Controlled FES
Scott A. Roset
University of Miami, scott.roset@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Roset, Scott A., "Dynamic Feature Selection in a Reinforcement Learning Brain Controlled FES" (2014). Open Access Dissertations.
1240.
https://scholarlyrepository.miami.edu/oa_dissertations/1240

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/1240?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

DYNAMIC FEATURE SELECTION IN A
REINFORCEMENT LEARNING BRAIN CONTROLLED FES

By

Scott Roset

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

August 2014

©2014
Scott Roset

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

DYNAMIC FEATURE SELECTION IN A
REINFORCEMENT LEARNING BRAIN CONTROLLED FES

Scott Roset

Approved:

Justin C. Sanchez, Ph.D.
Associate Professor of Biomedical
Engineering

Ozcan Ozdamar, Ph.D.
Professor and Chair of Biomedical
Engineering

Jorge E. Bohorquez, Ph.D.
Assistant Professor of Professional
Practice of Biomedical Engineering

Edelle C. Field-Fote, Ph.D.
Professor and Vice Chair of Physical
Therapy

Chris Bennett, Ph.D.
Research Assistant Professor of Music
Engineering Technology

M. Brian Blake, Ph.D.
Dean of the Graduate School

ROSET, SCOTT (Ph.D., Biomedical Engineering)
Dynamic Feature Selection in a Reinforcement (August 2014)
Learning Brain Controlled FES.

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Justin C. Sanchez.
No. of pages in text. (79)

Each year, more than 10 people per million will incur a spinal cord injury

(SCI). Of these injuries, one-third is reported to result in tetraplegia. People living

with tetraplegia rank hand function as the ability they would most like to see

restored. With decrease use of hand movements, plastic reorganization causes

secondary damage in the motor cortex. Methods are needed to help restore or

supplement motor abilities.

One approach to produce a more comprehensive therapy is to augment

standard rehabilitation with new developments from the study of Brain-Computer

Interfaces (BCI). BCI’s record brain activity and translate it into actions in the

physical world. BCI's do this by decoding electroencephalography (EEG) data

with a computer system to determine a user's intent. By engaging the user’s

brain to actively control extremities during rehabilitation, BCI’s combined with

rehabilitation could offer the unique ability to rehabilitate the motor system as a

whole, including secondary damage in the motor cortex. Not all EEG signals can

be directly mapped to desired outputs; however including some of them may

improve the performance of the BCI. One possible EEG signal to include in a BCI

is ErrPs. These potentials occur when the subject notices an error has been

made. A new BCI architecture that incorporated reinforcement learning and

ErrPs could better process the EEG signal.

To validate the reinforcement learning based BCI for rehabilitation a

closed-loop system was developed. The system presented cues to the user

instructing them to perform motor imagery thus generating motor potentials. The

system then provided feedback to the user through a display and functional

electrical stimulation (FES), which caused the user to generate an ErrP if an error

occurred. The system was able to use reinforcement learning to determine the

mapping of motor potentials to intended actions based on user generated ErrPs.

Choosing an appropriate size for a neural network when using

reinforcement learning for a BCI application is difficult because of the bias-

variance tradeoff. By starting with a small network and using dynamic feature

addition to grow the number of inputs to the network over time the performance

of the BCI can be improved over both small and large networks in both early

trials and later trials. The order in which features are added during dynamic

feature addition can affect the performance of the system. By taking into account

how useful features are for discriminating between different cues and adding

features that are more useful in early trials, the performance of the system can

be improved.

 Various update rules could be used in the rehabilitation system: back

propagation, scaled back propagation, Hebbian style learning, and scaled

Hebbian style learning. In simulations Hebbian style learning performed better

than back propagation. While scaled Hebbian style learning performed better

than Hebbian style learning. Scaled Hebbian style learning also takes advantage

of the online nature of reinforcement learning used in the system. By adjusting

the learning rate, the algorithm adapted the weights more quickly in areas where

the slope of the error surface is small and converges on a minimum more quickly

in areas where the slope is high.

Table of Contents

List of Figures .. v

List of Tables.. viii

List of Abbreviations ... ix

Chapter 1: INTRODUCTION ... 1

1.1 REHABILITATION .. 1

1.2 BRAIN – COMPUTER INTERFACES .. 3

1.3 NEW ARCHITECTURE WITH REINFORCEMENT LEARNING 7

1.4 BRAIN PLASTICITY ... 10

Chapter 2: BRAIN-COMPUTER INTERFACE AUGMENTED REHABILITATION
 .. 12

2.1 OVERVIEW .. 12

2.2 METHODS ... 13

Study Participants ... 13

Experimental Task .. 13

Neural Data Acquisition .. 15

Muscle Stimulation .. 17

Actor-Critic Reinforcement Learning Architecture 17

Adaptive BCI Usage.. 18

Critic as Error Potential Classifier.. 19

2.3 RESULTS .. 20

Closed-Loop Trials .. 20

Performance of the System... 23

Comparison of Performance across Subjects ... 25

2.4 DISCUSSION ... 25

Chapter 3: FEATURE ADDITION .. 29

3.1 OVERVIEW .. 29

Bias-Variance Tradeoff ... 29

Network Size and Reinforcement Learning ... 34

3.2 DISCUSSION ... 40

iii

Chapter 4: FEATURE SELECTION ... 43

4.1 OVERVIEW .. 43

4.2 FEATURE SELECTION IN DYNAMIC FEATURE ADDITION 48

4.3 DISCUSSION ... 52

Chapter 5: VARIABLE LEARNING RATE .. 54

5.1 OVERVIEW .. 54

5.2 METHODS ... 56

5.3 DISCUSSION ... 64

Chapter 6: CONCLUSION ... 67

REFERENCES .. 70

iv

List of Figures

Figure 1.1 Standard BCI Architecture – static feature extraction and decoding
during use. .. 8

Figure 1.2 Reinforcement Learning BCI Architecture – dynamic decoding of
motor potentials. .. 9

Figure 2.1 (A) Experiment setup overview, visible are the EEG headset, display,
and FES. (B) For each trial during the experimental task, the display showed a
fixation cross, followed by a cue for “open” or “close” for 1s, and then feedback of
“correct” or “wrong” for 1s. A magnitude plot also showed the unthresholded
output of the motor potentials decoder. (C) Actor-critic RL BCI architecture. The
actor decodes motor potentials and outputs an action. The critic detects an ErrP
and provides feedback to actor. The actor uses feedback from the critic to adapt
to the user. .. 15

Figure 2.2 Flowchart shows the preliminary steps of the experiment and how the
final step can be repeated. .. 19

Figure 2.3 Sample trials from closed-loop sessions. Columns show samples for
cues and feedback of “open” and “close” for both the SCI and control subject.
Rows show filtered EEG (1-50 Hz) from electrode C3, PSD, and motor features.
 .. 21

Figure 2.4 Sample trials from closed-loop sessions. Columns show samples for
cues and feedback of “correct” and “error” for both the SCI and control subject.
Rows show filtered EEG (1-12 Hz) from electrode CZ, PSD, and error features. 22

Figure 2.5 Average EEG for the difference error–minus–correct trials at channel
CZ for the SCI and control subjects. Feedback is delivered at time 0 s. 23

Figure 2.6 Actor’s performance across 4 sessions. The first row shows the
actor’s cumulative classification accuracy and the second row shows the actor’s
weights adapting for the SCI subject. The third row shows the actor’s cumulative
classification accuracy and the fourth row shows the actor’s weights adapting for
the control subject. .. 24

Figure 2.7 The first row shows the accuracy of the critic for both the SCI and
control subjects. The second row shows the accuracy of the actor. Accuracy for
each day is shown in blue. Mean accuracy across days is shown in red. 26

Figure 3.1 Weight values of two neural networks trained on the same data, a
network with fixed 5 inputs and a network with fixed 25 inputs. The weights
values of the 5 input network converge on a local minumum relatively early
compared to the network with 25 inputs. ... 34

v

Figure 3.2 In standard feature extraction a fixed number of features are chosen
before training and given as input to the classifier. The number of features is
constant which can reduce performance because of the bias-variance tradeoff. 35

Figure 3.3 In dynamic feature selection, additional features are given as inputs to
the classifier while the classifier is being trained. The ability to change the
number of inputs can increase performance by ameliorating the bias-variance
tradeoff. ... 36

Figure 3.4 Weight values during training of a neural network with initially 5 inputs.
An additional input is added after every 50 trials, until there are 25 inputs. The
original 5 inputs are shown in blue and new inputs are shown in green. New
inputs are able to be added, and the weights associated with the new inputs
adapt to feedback in the same way as the original inputs. 37

Figure 3.5 Performance of a neural network classifier with fixed 5 inputs during 5
Monte Carlo simulations of randomized initial weight values and trials order. 38

Figure 3.6 Performance of a neural network classifier with fixed 25 inputs during
5 Monte Carlo simulations of randomized initial weight values and trials order. . 39

Figure 3.7 Performance of a neural network classifier using dynamic feature
addition during 5 Monte Carlo simulations of randomized initial weight values and
trials order. Initially 5 inputs with an input being added after every 50 trials until
there are 25 inputs. ... 40

Figure 4.1 The performance of a network starting with 5 inputs (1-5 Hz) and
adding 5 inputs every 150 trials in order of frequency bin, 5 to 50 Hz, during ten
Monte Carlo simulations of randomized initial weight values and trials order. The
change in number of inputs ameliorates the bias-variance tradeoff; however,
adding features in this order reduces the potential performance of the network. 48

Figure 4.2 The performance of a network starting with 5 inputs and adding 5
inputs every 150 trials in order of largest difference in features between cues
during ten Monte Carlo simulations of randomized initial weight values and trials
order. The change in number of inputs ameliorates the bias-variance tradeoff;
and, adding features in this order improves the performance of the network
compared to other addition orders. .. 49

Figure 4.3 The performance of a network starting with 5 inputs and adding 5
inputs every 150 trials in order of smallest difference in features between cues
during ten Monte Carlo simulations of randomized initial weight values and trials
order. The change in number of inputs ameliorates the bias-variance tradeoff.
However, this counterexample again shows the importance of addition order as
adding features in this order results in the lowest performance of all the
examples. .. 51

vi

Figure 4.4 The performance of a network with a constant number of inputs, 50,
during ten Monte Carlo simulations of randomized initial weight values and trials
order. The constant number of inputs makes the network susceptible to the bias-
variance tradeoff. .. 52

Figure 5.1 One input given to a neural network during testing of the different
update rules: 1/3 standard deviation noise test data, 1 standard deviation noise
test data, and real data. ... 59

Figure 5.2 Comparison of a neural network’s performance using back
propagation, scaled back propagation, Hebbian style learning, and scaled
Hebbian style learning using 1/3 standard deviation noise test data and 70%
critic accuracy. Performance of the different update rules is comparable. 60

Figure 5.3 Comparison of a neural network’s performance using back
propagation, scaled back propagation, Hebbian style learning, and scaled
Hebbian style learning using one standard deviation noise test data and 70%
critic accuracy. The network performed the best using scaled Hebbian style
learning. .. 62

Figure 5.4 Using real data as input, the actor’s performance when critic is 70%
accurate with scaled Hebbian style learning update. ... 63

Figure 5.5 Using the combined techniques (scaled Hebbian style learning
update, dynamic feature addition, and adding features based on the largest
difference between cues) and the SCI subject data as input, the actor’s
performance during ten Monte Carlo simulations of randomized initial weight
values and trials order. .. 64

vii

List of Tables

Table 2.1 10-fold cross validation classification results of the critic for both the
healthy and SCI subject... 20

Table 3.1 Performance of simulations for a small and large network and a
network using feature addition. .. 38

Table 4.1 Comparison of sorted performance of simulations from different feature
addition orders and static feature set. Using the data from the SCI subject in
chapter 2, the performance of a network was simulated during ten Monte Carlo
simulations of randomized initial weight values and trials order. Adding features
with the largest difference between cues first produces simulations with the
highest mean performance and smallest SD between simulations. 50

Table 5.1 Number of simulations above 60% classification accuracy for each
update rule. Scaled Hebbian Style Learning outperforms the other update rules.
 .. 62

viii

List of Abbreviations

ACO Ant Colony Optimization

ASIA American Spinal Injury Association standards

BCI Brain-Computer Interface

DNAL Dynamic Node Architecture Learning

DNC Dynamic Node Creation

EEG Electroencephalography

ERD Event-Related Desynchronization

ERN Error-Related Negativity

ErrP Error-Related Potential

ERS Event-Related Synchronization

FES Functional Electrical Stimulation

FFT Fast Fourier Transform

MLP Multilayer Perceptron

PSD Power Spectral Density

RL Reinforcement Learning

SCI Spinal Cord Injury

SD Standard Deviation

SMR Sensorimotor Rhythms

SSVEP Steady State Visual Evoked Potentials

TMS Transcranial Magnetic Stimulation

ix

Chapter 1: INTRODUCTION

 Each year, more than 10 people per million will incur a spinal cord injury

(SCI). Of these injuries, one-third is reported to result in tetraplegia (Wyndaele

and Wyndaele 2006). People living with tetraplegia rank hand function as the

ability they would most like to see restored (Anderson 2004). With decrease use

of hand movements, plastic reorganization occurs in the brain (Hoffman and

Field-Fote 2006). Methods are needed to help restore or supplement motor

abilities because of these diseases and injuries. To alleviate motor disabilities

caused by spinal cord injury will require rehabilitation that restores top-down

(brain activity) control of the motor system.

1.1 REHABILITATION

While individual therapies can be combined to treat the motor system, few

therapies treat the motor system as a whole or have other drawbacks. For

example massed practice, repetitive movements for several hours a day over a

period of weeks, has been shown to cause positive cortical changes (Hoffman

and Field-Fote 2007). However, massed practice has the limitation that the

subject must have at least a limited ability to perform the movements before

therapy.

 One type of massed practice rehabilitation is constraint-induced

movement therapy. In constraint-induced movement therapy, the use of

1

2

unaffected hand is limited to force the use of the affected hand (Liepert, Bauder

et al. 2000). The subject needs to be able to perform movements with the

affected hand even more effectively than with massed practice, since the

affected hand will now be the only means to perform daily activity. Constraint-

induced movement therapy also relies on the assumption that subjects have

been using their unaffected hand and neglecting their affected hand. So, this

technique will only work on a subject with only one affected hand.

 Massed practice rehabilitation have the subject perform actions without

assistance. However, some interventions use external assistance to increase the

effectiveness of rehabilitation. Electromyography signals can be used to control

an orthosis that mechanically extends the fingers. The orthosis enables subjects

to practice moving their affected hands, if they can control their

electromyography signals (Ochoa, Listenberger et al. 2011). By giving users

feedback of their electromyography signals, users are also able to increase

control of their muscle activity. With this intervention, users still need to have

some control of their affected hands remaining, to control their electromyography

signals.

Another rehabilitation approach uses transcranial magnetic stimulation

(TMS) (Hummel and Cohen 2006). During TMS a coil is placed over the subject’s

head and a magnetic field is generated within the subject’s cortex. The magnetic

field generates electrical currents within the cortex, depolarizing neurons. TMS is

used to excite neurons associated with the affected hand and sometimes inhibit

neurons of the unaffected hand. Only a component of the motor system, the

3

motor cortex, is targeted during TMS, and the motor system is not rehabilitated

as a whole. The subject is also a passive participant during the rehabilitation and

exerts no control over the stimulation.

One approach to produce a more comprehensive therapy is to augment

standard rehabilitation with new developments from the study of Brain-Computer

Interfaces (BCI). BCI’s record brain activity and translate it into actions in the

physical world (McFarland and Wolpaw 2011). BCI's do this by decoding

electroencephalography (EEG) data with a computer system to determine a

user's intent. By engaging the user’s brain to actively control extremities during

rehabilitation, BCI’s combined with rehabilitation could offer the unique ability to

rehabilitate the motor system as a whole, including secondary damage in the

motor cortex (Daly and Wolpaw 2008).

1.2 BRAIN – COMPUTER INTERFACES

Brain control paradigms can broadly be divided into two categories: those

that record brain activity from intracranial electrodes and those that records brain

activity from external EEG electrodes. EEG has an advantage of being

noninvasive, which especially important in human subject research (Millan,

Renkens et al. 2004). EEG is also portable and has high temporal resolution.

EEG can be classified into two types of potentials, spontaneous brain

rhythms and evoked potentials. Evoked potentials occur at a fixed time after a

stimulus enabling them to be averaged over tens of trials to increase the signal-

4

to-noise ratio. Some BCIs use the evoked potential called P300, a positive

potential that occurs 300msec after the stimulus. The oddball paradigm, rare

events mixed in with more common events, generates the P300 potential when

the user notices the rare event. BCI systems based on P300 potentials are

slower than other BCI systems since all possible choices must be cycled through.

This drawback limits P300 based system to applications where time is not a

priority, such as spellers (McFarland and Wolpaw 2011).

Another evoked potential used in BCIs are steady state visual evoked

potentials (SSVEP). They were the first EEG signals used in a BCI, Jacques

Vidal (Vidal 1977) used the term “brain-computer interface” to describe his

research with SSVEP in the 1970s. SSVEP are evoked potentials that match the

frequency of the stimulus. In SSVEP based BCI systems, every choice has a

unique stimulus frequency associated with it. The system is able to determine

which choice the user is looking at based off the frequency of the evoked

potentials. SSVEP based BCIs are also slower than other BCI approaches

because the evoked potentials do not reach a discernible amplitude quickly

(Middendorf, McMillan et al. 2000).

Another spontaneous brain rhythm used as a signal for a BCI is

sensorimotor rhythms (SMR), potentials related to movement or imagined

movement. Initiating real hand movement or imagining hand movement causes

an event-related desynchronization (ERD) in the area of the brain associated

with hand movement. Initiating real hand movement or imagining hand

movement also causes an event-related synchronization (ERS) in motor regions

5

not associated with hand movement. Once the hand movement or imagined

hand movement stops, ERS is detected in the area of the brain associated with

hand movement (Neuper, Wörtz et al. 2006).

Wolpaw et al. (McFarland and Wolpaw 2011) were the first to use SMRs

for cursor control in 1991. SMR based BCIs main drawback is that they are

susceptible to degradation in performance without frequent training sessions. In

general, EEG based BCIs were thought to have too slow a bit rate to do

complicated tasks, however Millan et al. (Millan, Renkens et al. 2004)

demonstrated asynchronous control of a mobile robot with EEG based BCI. The

mobile robot had sensors and its own limited intelligence, reducing the required

bitrate. For rehabilitation of hand function, imagined hand movement would be

the most appropriate control signal for a BCI system, since imagined hand

movement is most closely related to the target of the rehabilitation.

Not all EEG signals can be directly mapped to desired outputs; however

including some of them may improve the performance of the BCI. One possible

EEG signal to include in a BCI is error-related potentials (ErrP). These potentials

occur when the subject notices an error has been made. Different ErrPs have

been found for different types of error the user observed: response ErrP,

feedback ErrP, observation ErrP, and interaction ErrP. Response ErrP, when a

subject makes an error in a choice selection task with a time limit. Feedback or

reinforcement ErrP, when a subject knows an error was made from feedback.

Observation ErrP, when a subject watches another person make an error, and

interaction ErrP, when a subject controlling a device sees it did not follow a

6

command. Components of ErrPs were first described by Hohnsbein and

Falkenstein in 1989 (Hohnsbein, Falkenstein et al. 1989). They termed the

components error negativity, Ne, and error positivity, Pe. A similar potential

related to errors was found by Gehring et al. (Gehring, Coles et al. 1990) in 1990.

Gehring termed the potential as error-related negativity, ERN. Recently, the

various potentials associated with error have been classified under the term

ErrPs (Ferrez and Millan 2008).

ErrPs increase in amplitude with the degree of the error made. ErrPs main

component is a negative potential 250 ms after feedback. ErrPs most likely

originate in an area of the brain responsible for regulation of emotional

responses, the anterior cingulate cortex. The EEG signals generated by the ErrP

have a fronto-central distribution along the midline and are most prominent on

the FCZ and CZ locations. Since ErrP are relatively slow cortical potentials, they

can be acquired with a 1-10 Hz bandpass filter. Ferrez et al. (Ferrez and Millan

2008) describe the successful classification of signals generated shortly after

feedback as either a correct response or an ErrP. To generate the ErrP, a target

and cursor were shown on a display. The user then had to press the left or right

key to move the cursor to the target. 50% of the time, the cursor moved in the

opposite direction of the button pressed. Classifiers created for each subject to

detect ErrP from the first day of recordings were able to recognize the ErrP over

82% of the time for both subjects on the second day.

ErrPs originating in the anterior cingulate cortex along with the

mesencephalic dopamine system have been proposed to be part of a

7

reinforcement learning (RL) system in the brain. The anterior cingulate cortex

acts as a filter that selects between different motor controllers. The

mesencephalic dopamine system then evaluates outcomes. The mesencephalic

dopamine system increases dopamine when outcomes are better than

anticipated and decreases dopamine when outcomes are worse than anticipated.

When less dopamine is released in the anterior cingulate cortex, an ErrP is

generated in the anterior cingulate cortex. When more dopamine is available,

behaviors of the anterior cingulate cortex and certain motor controllers are

reinforced (Holroyd and Coles 2002). ErrPs and RL could be incorporated into a

BCI; however a new BCI architecture is needed.

1.3 NEW ARCHITECTURE WITH REINFORCEMENT LEARNING

 The BCI architecture commonly used today forms one closed-loop:

modulation in the user's brain activity is detected by EEG, features are extracted

from these EEG signals, and a classifier uses these extracted features to

determine the user’s intent, Figure 1.1. Previous attempts to improve BCI

performance tried to optimize this architecture: better EEG signals, better feature

extraction, better classifiers, or a combination of these approaches.

However, the current BCI architecture has several drawbacks. The BCI is

usually trained through supervised learning (DiGiovanna, Mahmoudi et al. 2009).

This training requires the users to perform a boring training task that does not

engage their attention every day. The training must be repeated daily because

8

the BCI is static, a fixed input-to-output mapping, between training sessions. Yet,

brain activity changes constantly as the user adjusts to the BCI.

Figure 1.1 Standard BCI Architecture – static feature extraction and decoding
during use.

A new BCI architecture that incorporated RL could avoid these drawbacks

(Mahmoudi, DiGiovanna et al. 2008). In RL an agent maximizes its rewards from

the environment by critically adapting its behaviors. With experience, the agent

learns how to maximize rewards for a state of the environment by comparing

outcomes to expectations.

There are several RL schemes, however the actor-critic model fits the BCI

augmented rehabilitation application the best (Mahmoudi and Sanchez 2011). In

the actor-critic model, the agent is comprised of two parts, an actor and a critic.

The actor is a policy (π) with parameters (θ) that maps user’s brain states (st) to

actions (ai).

9

() ()ssaasa tt === Pr;θπ

The critic provides a reinforcement signal to adapt the actor’s parameters (θ) by

estimating reward at each time step to form the reward expectation (ν).

() [] AaSsaassrEas tttt ∈∀∈∀=== + ,,,, 1ν

Figure 1.2 Reinforcement Learning BCI Architecture – dynamic decoding of
motor potentials.

Figure 1.2 shows an architecture based on the actor-critic model that uses

the information present in ErrPs to better process the EEG signal. The actor

decodes the action signals, mapping them to desired outputs. The critic decodes

10

the error signals, detecting ErrPs and using them to improve the performance of

the actor. The new BCI architecture could help rehabilitate the motor system as a

whole, especially the motor cortex through brain plasticity.

1.4 BRAIN PLASTICITY

By combining a BCI’s ability to bypass the injury and connect the motor

cortex to the spinal motoneurons that control the affected limbs and RL’s ability

to increase rehabilitation time during a session, the motor cortex could be

rehabilitated through brain plasticity for subjects with complete paralysis. In a

similar way that massed practice techniques rehabilitate the motor cortex for

subjects with partial paralysis. Donald O. Hebb (Hebb 1949) proposed in the

1940’s that the brain’s structure can be changed by experiences and the

environment, a process now called brain plasticity. Rats trained in a task that

required wrist and digits movement showed an increase in area devoted to the

wrist and digits in the motor cortex at the expense of area devoted to the elbow

and shoulder (Kleim, Barbay et al. 1998). Similar changes have also been seen

in humans. In violin players, the digits of the left hand have larger cortical area

than the right hand and are larger than people who do not play violin. The area

representing the left hand digits also increases with how long the violin has been

practiced (Elbert, Pantev et al. 1995). Braille readers show increased cortical

area devoted to their reading fingers compared to fingers on the non-reading

hand or to non-braille readers. The cortical area devoted to the reading finger

11

expands at the expense of other fingers (Pascual-Leone, Cammarota et al.

1993). The brain is also very dynamic and changes during everyday activities.

While a new task is being learned, cortical area devoted to the task shows a

temporary increase in size and returns to the original size once the task is

mastered (Pascual-Leone, Grafman et al. 1994).

Brain plasticity can also reduce the effects of injuries that destroy brain

tissue within a cortical area. When cortical areas associated with hand functions

were damaged by a focal ischemic infarct in squirrel monkeys, they showed a

dramatic reduction in hand function (Nudo and Milliken 1996). In further studies,

the monkeys received rehabilitation after the infarct, the cortical areas associated

with hand function moved into adjacent tissue and hand function was partially

restored (Nudo, Wise et al. 1996).

Similar results have been seen in humans. In stroke patients receiving

constraint-induced movement therapy for hand rehabilitation, the area and

location of the affected hand’s cortical region was shown to change, as

measured by TMS. In a six month follow-up, the cortical area of the affected

hand increased in size to match the unaffected hand’s map, showing long-term

improvement (Liepert, Bauder et al. 2000). Rehabilitation has also been shown to

make positive changes in cortical area following a SCI (Hoffman and Field-Fote

2007; Beekhuizen and Field-Fote 2008; Hoffman and Field-Fote 2010).

Incorporating a RL BCI into rehabilitation could accelerate and improve the

positive changes in cortical area.

Chapter 2: BRAIN-COMPUTER INTERFACE AUGMENTED REHABILITATION

2.1 OVERVIEW

 To validate the RL based BCI for rehabilitation a closed-loop system was

developed. The system presented cues to the user instructing them to perform

motor imagery thus generating motor potentials. The system then provided

feedback to the user through a display and functional electrical stimulation (FES),

which caused the user to generate an ErrP if an error occurred. The various

components of the system were tested. An ErrP detector was created and tested

for each user to ensure ErrPs were detected during the closed-loop experiment.

A closed-loop experiment with the system starting with no prior knowledge of the

user’s motor potentials was conducted with each user. We compared the

decoder characteristics in the closed-loop environment between controls and

subjects living with SCI. With these tests and experiments, we hope to learn if a

RL based BCI can learn the motor potentials of a user leading to future work as a

rehabilitation system.

12

13

2.2 METHODS

Study Participants

 The system design function was demonstrated and compared between a

control subject and a subject with a chronic SCI. All procedures followed in the

study were approved by the University of Miami Institutional Review Board. The

subjects provided written informed consent. The inclusion criteria followed for

recruiting subjects with SCI included: chronic injury (longer than 1 year), no

denervation of target muscles, and C5 or C6-level motor complete injury

classified by the American Spinal Injury Association (ASIA) standards (Marino,

Barros et al. 2003). Both subjects were 30 years old males. The subject with SCI

was injured playing football, and his injury (duration = 15 years) was classified by

ASIA standards as incomplete (ASIA B), with bilateral motor levels of C6. Motor

scores of 5 (normal function) were attained at the C5-level bilaterally, with scores

of 5 (right) and 3 (left) at the C6-level. All motor scores below level C6 were zero.

The subjects had no history of other serious medical issues.

Experimental Task

 Hand grasp/open function was chosen as the experimental task as

restoration of hand/arm function is the highest priority for people with tetraplegia

(Anderson 2004). The goal of the task was to enable direct brain actuation of

14

hand closing and opening. In addition to extracting motor potentials, an evoked

potential from the brain was of interest: ErrP which are generated when an error

is observed. In this experiment, ErrPs were generated when the user perceived

the action of the BCI was incorrect. Both motor and error potentials are

necessary for conducting closed-loop RL in this context.

 A preliminary session was used to collect representative ErrPs to develop

an ErrP classifier. During the preliminary session, feedback was random and

approximately 50% of the 120 trials resulted in a “wrong” outcome. No

stimulation was delivered to the subjects during the preliminary session. The

subjects sat facing a display with their right forearm resting on a table (Figure

2.1A). After a fixation cross was shown on the display for three seconds to

minimize eye movements, cues of “open” or “close” were presented for one

second that instructed the person to either open or close his hand. Random

visual feedback of “correct” or “wrong” was then shown for one second, along

with a corresponding plot of the unthresholded output of the system (Figure

2.1B:row 3).

 Four closed-loop sessions were performed and consisted of 300 trials

during the 1st session, 450 trials each during the 2nd and 3rd sessions, and 300

trials during the 4th session. Time between sessions was varied to test the

adaptation of the network with two days between the 1st and 2nd sessions, four

days between the 2nd and 3rd sessions, and one day between the 3rd and 4th

sessions. During closed-looped sessions, ErrPs were collected and used to

adapt the BCI. The same visual cues were displayed on the screen as in the

15

preliminary session. However, in closed-loop sessions the displayed feedback

matched the output of the adaptive BCI. When the output of the adaptive BCI

was determined to be “open,” FES was delivered to the hand muscles of the SCI

subject. No FES was delivered for trials when the output of the adaptive BCI was

“close”. All trials were used in the analysis.

Figure 2.1 (A) Experiment setup overview, visible are the EEG headset, display,
and FES. (B) For each trial during the experimental task, the display showed a
fixation cross, followed by a cue for “open” or “close” for 1s, and then feedback of
“correct” or “wrong” for 1s. A magnitude plot also showed the unthresholded
output of the motor potentials decoder. (C) Actor-critic RL BCI architecture. The
actor decodes motor potentials and outputs an action. The critic detects an ErrP
and provides feedback to actor. The actor uses feedback from the critic to adapt
to the user.

Neural Data Acquisition

 A wireless 9-channel EEG system (256 Hz sampling rate, 16-bits of

resolution, X10 headset, Advanced Brain Monitoring, Carlsbad, CA) was fitted to

16

the subject’s head (Figure 2.1A). Electrodes (FZ, F3, F4, CZ, C3, C4, POZ, P3, P4)

were arranged according to the International 10-20 system standards. Foam

sensors attached to the sensor sites on the headstrips were saturated with

Synapse (Kustomer Kinetics, Arcadia, CA) conductive electrode paste and the

corresponding sites on the head were abraded and cleaned before placing the

sensors on the scalp. Electrode impedances were tested before and after each

experimental session using the manufacturer provided software.

 ErrPs were recorded from the CZ electrode and the motor potentials for

the intent to open or close the hand were recorded from the C3 electrode (Qin,

Ding et al. 2004; Ferrez and Millan 2008). For ErrPs, EEG generated from 0.15

to 0.70 seconds after display of feedback (“correct” or “wrong”) was used. For

motor potentials, EEG generated between 0.15 and 1.0 seconds after the display

of cues (“open” or “close”) was used. EEG was transformed into the frequency

domain using the Fast Fourier Transform (FFT) to obtain a power spectral

density (PSD) of 1 Hz resolution. Frequencies of 1-50 Hz were used for the

motor potential decoder and frequencies of 1-12 Hz were used for the ErrP

decoder. The inputs to both decoders were normalized PSD z-scores (LeCun,

Bottou et al. 1998). The z-scores of the PSD were created by subtracting the

mean of previous trials at each frequency and dividing by the standard deviation

(SD) of previous trials for that frequency.

17

Muscle Stimulation

 A neuroprosthetic wrist-hand orthosis (NESS H200, Bioness Inc, Valencia,

CA) was fitted to the right hand of the subject. FES was delivered to the extensor

muscles (extensor digitorum communis and extensor pollicis brevis) to produce

opening movements of the fingers and hand. Stimulation intensity was set by

holding the pulse duration (300 µs) and frequency (35 Hz) constant, while slowly

increasing the current amplitude. Once a maximal muscle contraction was

attained (i.e., increases in current intensity did not produce additional muscle

contraction), the current amplitude was increased an additional 25% in order to

maintain consistent muscle contractions throughout the experiment.

Actor-Critic Reinforcement Learning Architecture

 The adaptive BCI is based on an actor-critic RL architecture (Figure 2.1C)

(Mahmoudi and Sanchez 2011). The actor decodes motor potentials from the

user to determine the user's intent to open or close the hand. The critic provides

feedback to the actor by detecting ErrPs generated by the user (Falkenstein,

Hoormann et al. 2000). The actor-critic RL algorithm is a semi-supervised

machine learning algorithm that optimizes the actor’s decoding of the user’s

motor potentials based on feedback from the critic (Sutton and Barto 1998).

 The actor is parameterized by a 3-layer fully connected feedforward neural

network. The hidden and output processing elements of the neural network

18

perform a weighted sum on their inputs. The weighted sum at each processing

element is passed through a hyperbolic tangent function with an output in the

range of -1 to 1. The weights between the actor’s processing elements are

initialized randomly and then updated after each trial based on feedback. The

actor’s weights update can be expressed as:

∆𝒘𝒊𝒋 = 𝛾𝑓 �𝒙𝒊�𝒑𝒋 − 𝒙𝒋�� + 𝛾(1 − 𝑓) �𝒙𝒊�𝟏 − 𝒑𝒋 − 𝒙𝒋�� (2.1)

Here wij is the weight connecting processing elements i and j, γ is the learning

rate, pj is a sign function of output xj (positive values become +1 and negative

values become -1) and f is feedback from the critic. The weight update equation

is based on Hebbian style learning (Mahmoudi and Sanchez 2011; Pohlmeyer,

Mahmoudi et al. 2012). The critic provides the feedback by decoding the user’s

EEG to determine if an ErrP was generated. If an ErrP is detected, a feedback of

-1 is provided to the network for adaptation. If not, a feedback value of 1 is given.

The functional mapping between neural activity and behavior in the actor is

constructed using the weight update equation (Equation 2.1).

Adaptive BCI Usage

 Adaptive BCI usage was broken down into several intermediate steps

(Figure 2.2). Representative ErrPs were collected in the preliminary session and

used to develop the critic through supervised learning (Prechelt 1998). Once the

19

critic was created, the weights of the actor were initialized to random initial values

and trained through RL and feedback from the critic. After the first closed-loop

session, in which the weights are initialized to random values, all subsequent

closed-loop sessions used the weights from the previous session with no offline

adjustments.

Figure 2.2 Flowchart shows the preliminary steps of the experiment and how the
final step can be repeated.

Critic as Error Potential Classifier

 The error potential classifier “critic” detects ErrPs in the user’s EEG to

determine if the user perceived that an error occurred. The critic then provides

binary feedback, -1 or 1, to the actor. The input to the error potential classifier

was the normalized PSD from 1-12 Hz in 1 Hz bins computed on the 0.15 to 0.70

seconds of EEG data after the actor’s output (action) was shown on the display.

 The error potential classifier in the critic is a 3-layer neural network with 12

inputs processing elements, for the 1-12 Hz in 1 Hz bins, and 5 hidden

processing elements. Representative ErrPs were collected in the 120 trials of the

preliminary session and were randomly assigned to either a training set or test

20

set, approximately 60 trials each. The training set was used to optimize the

weights of the critic with supervised learning. The weights produced from the

supervised learning were assessed by applying them to the test set and

computing the classification accuracy. The weights with the best classification

accuracy were used for closed-loop sessions.

 To test the critic training procedure during the preliminary data collection,

10 training and testing data sets were created by randomly assigning trials to

either set, a 10-fold cross validation (Table 2.1). The minimum and maximum

accuracy in the 10-fold cross validation were within 5% of the mean accuracy,

showing that the critic should have reasonable performance during the closed-

loop sessions.

Table 2.1 10-fold cross validation classification results of the critic for both the
healthy and SCI subject.

2.3 RESULTS

Closed-Loop Trials

 Figures 2.3 and 2.4 show representative trials from the closed-loop

experiments and give insight into how the system processes the EEG to create

21

features for the classifiers. The first row of Figure 2.3 shows the filtered (1-50 Hz)

EEG from the C3 electrode for the 0.15 to 1.0 seconds after the cue is presented.

The second row shows the PSD computed from the raw EEG. The z-scores of

the PSD are shown in the third row as inputs to the actor. The first column shows

the filtered EEG and processing after an "open" cue. Similarly, the second

column shows the filtered EEG and processing after a cue of "close" was shown.

The features for the cue of "close" correspond to lower power, in general, than

the features of the cue for "open”; in the sample trial of the SCI subject, 44 of the

1 Hz bins have lower power for the “close” cue.

Figure 2.3 Sample trials from closed-loop sessions. Columns show samples for
cues and feedback of “open” and “close” for both the SCI and control subject.
Rows show filtered EEG (1-50 Hz) from electrode C3, PSD, and motor features.

 A similar process was used for inputs to the critic. The first row of Figure

2.4 shows the filtered, 1-12 Hz, EEG from the CZ electrode for the 0.15 to 0.70

22

seconds after the feedback was shown. PSD of the raw EEG was computed from

the CZ electrode, shown in the second row. Finally, the inputs to the critic are

shown in the third row as z-scores of the PSD from the CZ electrode. The first

column shows the filtered EEG and processing after the feedback of "correct"

was presented. The second column shows the filtered EEG and processing for

feedback of "error." Notice that the error potential has a biphasic shape

characteristic of this neural oscillation. The features for feedback of "correct”

correspond to lower power, in general, compared to features of “error;” in the

sample trial for the SCI subject, all 1 Hz bins except 1, 8, 11, and 12 Hz. Figure

2.5 shows the ErrPs generated by the users, the average of error trials minus the

average of correct trials. The ErrPs collected from the users are similar to

published results (Ferrez and Millan 2008).

Figure 2.4 Sample trials from closed-loop sessions. Columns show samples for
cues and feedback of “correct” and “error” for both the SCI and control subject.
Rows show filtered EEG (1-12 Hz) from electrode CZ, PSD, and error features.

23

Performance of the System

 Figure 2.6 shows the overall performance of the actor in classifying motor

potentials across 4 sessions, for control and SCI subjects. The classification

accuracy starts below 50% (chance level) for the SCI subject, due to the random

initial values of the actor’s weights. The performance of the actor improves as the

actor’s weights adapt to feedback from the critic through RL. Over time, the

actor’s performance approaches the classification accuracy of the critic. Changes

in weight values become smaller after the first 2 sessions; however, changes in

weight values continue throughout the 1500 trials. The actor made fewer

mistakes during the last session than the first, as the actor adapted and learned

the user’s motor potentials based on feedback from the critic.

Figure 2.5 Average EEG for the difference error–minus–correct trials at channel
CZ for the SCI and control subjects. Feedback is delivered at time 0 s.

24

Figure 2.6 Actor’s performance across 4 sessions. The first row shows the
actor’s cumulative classification accuracy and the second row shows the actor’s
weights adapting for the SCI subject. The third row shows the actor’s cumulative
classification accuracy and the fourth row shows the actor’s weights adapting for
the control subject.

25

Comparison of Performance across Subjects

 The overall performance of both subjects across sessions is shown in

Figure 2.7. The subjects had comparable performance, above chance level

(50%) starting at the end of the first session. The performance of the control

subject was slightly higher than that of the SCI subject during the first session.

This performance difference can be explained by the random initial weight values

of the actor more closely matching the desired weight values by chance. The

overall performance of the SCI subject was only slightly lower than the control

subject, by 0.9%. The system also had lower accuracy for detecting the SCI

subject’s ErrPs, 64.2%, than for the control subject, 68.8%. This lower

performance in detecting the SCI subject’s ErrPs could explain the lower overall

performance of the SCI subject compared to the control subject. Importantly, the

performance of the critic had a small SD, 3.6% for the SCI subject.

2.4 DISCUSSION

 This study showed a new EEG based BCI system using RL intended for

application to control of a FES and developed as an experimental test bed for

augmenting rehabilitation with a BCI. The system used RL to determine the

mapping of motor potentials to intended actions based on user generated ErrPs.

The BCI continued to adapt to the users throughout the experiment and did not

require any offline training after the first session. Comparable performance levels

were achieved for the control and SCI subject. The ability to adapt to the user

26

without daily initialization could be beneficial in a rehabilitation setting. Cortical

reorganization from the rehabilitation could change the user’s motor potentials,

increasing the need for daily adjustments to the system.

Figure 2.7 The first row shows the accuracy of the critic for both the SCI and
control subjects. The second row shows the accuracy of the actor. Accuracy for
each day is shown in blue. Mean accuracy across days is shown in red.

27

 After a SCI, the brain experiences measurable maladaptive brain

reorganization from disuse (Green, Sora et al. 1998; Cramer, Lastra et al. 2005;

Hoffman and Field-Fote 2006; Kokotilo, Eng et al. 2009). These plastic changes

can be partially reversed with rehabilitation techniques such as bimanual training

and somatosensory stimulation (Hoffman and Field-Fote 2007; Hoffman and

Field-Fote 2010). The motor cortex of chronic SCI subjects also experiences

changes when they perform motor imagery training (Cramer, Orr et al. 2007).

The ability to rehabilitate the motor cortex by motor imagery alone is important in

the context of BCI augmented rehabilitation because motor imagery is often used

to control BCIs. Notably, motor imagery has been used to control hand grasp

FES in BCI systems (Pfurtscheller, Müller et al. 2003; Müller-Putz, Scherer et al.

2005). The combination of motor imagery and BCI controlled FES has been

shown to rehabilitate finger extension in a stroke subject (Daly, Cheng et al.

2009). This improvement occurred with only 3 sessions a week over 3 weeks. By

using an adaptive BCI, the subject could participate in rehabilitation over a longer

period of time without needing to stop the rehabilitation to recalibrate the system.

The proof-of-concept presented in this work also opens the possibility for the

subjects to take the system home and use it continuously. This is due to not only

the continuous RL that does not require calibration by a scientist but also to the

design which uses the commercial Bioness H200 and an easy to use wireless

Advanced Brain Monitoring EEG system.

 In this study, ErrPs were collected from two users and were similar to

published results (Figure 2.5) (Ferrez and Millan 2008). A classifier to detect the

28

ErrPs during the closed-loop sessions was created (Table 2.1). Feedback from

the ErrP classifier was used to adapt the system to the user using RL (Figure

2.6). The system was able to classify both single trial ErrPs and motor potentials

from features created from EEG recordings (Figures 2.3 and 2.4). The

performance of the system improved over successive sessions until the

performance reached the accuracy level of the ErrP classifier (Figure 2.7:row 2).

Maintaining continuity in the performance over time is a critical aspect in the

rehabilitation process. The user is able to pick up from the last level of progress

achieved from the previous session.

 Several additional results are also applicable to the use of the system

during rehabilitation. The weights’ values during later trials became stable,

meaning the user would not experience sudden decreases in performance

(Figure 2.6:row 2). The weights continued to adapt even in later trials, so the

system can be expected to continue to adapt to the user in future trials, and

during rehabilitation. The performance of the system increased above chance

during the first day and continued to show improvement in later trials, both

factors in maintaining user motivation and engagement (Figure 2.6:row 1). The

ability of rapidly gaining control and maintaining it over time is an advancement

over other approaches.

Chapter 3: FEATURE ADDITION

3.1 OVERVIEW

 The experiments in chapter 2 suffered from unnecessarily low

performance in early trials because of the number of inputs to the neural network.

However, reducing the number of inputs could result in unnecessarily low

performance in later trials. This dilemma of balancing the number of inputs and

performance is known as the bias-variance tradeoff (Geman, Bienenstock et al.

1992). One possible solution to the bias-variance tradeoff in the case of RL and

neural networks is to change the number of inputs over time. Changing the

number of inputs could improve the performance and the experience for users in

future experiments.

Bias-Variance Tradeoff

 A BCI can be broken into several components: EEG recording,

preprocessing, feature extraction, classifier, and the environment. The classifier

is based on a model that maps modulation in its input features to the possible

actions to be controlled in the environment. The model in the classifier is subject

to a dilemma known as the bias-variance tradeoff (Geman, Bienenstock et al.

1992; Bishop 1995).

29

30

 Prediction models, using known data to predict the class of new data,

must manage the bias-variance tradeoff. An error associated with variance is

caused by overfitting. In overfitting, the model is too closely based on known

data. Predicting the class of new data causes a large error. The magnitude of the

error caused by overfitting varies depending on how similar the new dataset is to

the known dataset used to create the model. On the other hand, an error caused

by bias is a result of underfitting the data. In underfitting, the model based on

known data is too generic. While the error across new datasets has about the

same magnitude, the error is unnecessarily large.

 For models built using neural networks, the bias-variance tradeoff

influences the decision on how large to make the neural network (Geman,

Bienenstock et al. 1992). When neural networks are trained with supervised

learning, a rule of thumb is the number of weights in the neural network is equal

to half the number of trials used to train the network (Masters 1993). Networks

with too many weights are prone to overfitting and error caused by variance.

Conversely, networks with too few weights are prone to underfitting and error

caused by bias. In supervised learning, the number of weights can be adjusted to

fit the rule of thumb, the number of weights equals half the number of trials,

because supervised learning uses a known number of trials to train the neural

network. When using RL to train a neural network the number of trials is

constantly changing. The data set size starts at zero trials and constantly

increases with every trial.

31

When a classifier is trained on a fixed sample size, using too many

features can lower the performance of the classifier. The decrease in

performance happens most often when the sample size is small. So, the choice

in the number of features is important, especially when using a small sample size

(Hua, Xiong et al. 2005). Large neural networks have many degrees of freedom

and can solve for many functions. However, large neural networks take a long

time to train and require many examples before they generalize (Abu-Mostafa

1989; Śmieja 1993). Vapnik and Chervonenkis described the likelihood that a

network given a set of examples would be able to generalize the information

contained in the examples to classify future examples (Vapnik and Chervonenkis

1971). The ability of a network to generalize from a set of examples is expressed

in the V-C dimension. The V-C dimension increases with network size (Baum

and Haussler 1989). A large network with many weights trained on a small

number of examples tends to overfit the data. While, a small network gives good

generalization, if it converges. Taking into account these considerations, a

network should be as small as possible, while still being large enough to

converge (Zhang and Muhlenbein 1993).

The topology of networks is usually set before training begins. However,

the topology of a network can greatly affect its performance. While, the

performance of a network can only be evaluated after training. In offline training

many different network topologies can be explored with trial and error and the

best performing topology used (Hirose, Yamashita et al. 1991; Bartlett 1994;

Weng and Khorasani 1996). However, this does not guarantee that the best

32

topology has been found. The best topology is not known at the beginning of

training and might even vary during the learning task (Hirose, Yamashita et al.

1991; Bartlett 1994). By using an algorithm to design the topology of the network,

time can be saved compared to a human using trial and error. Topologies

designed by algorithms have been shown to provide comparable performance

(Gruau, Whitley et al. 1996). A algorithm that adds new hidden processing

elements can help a network escape a local minimum by changing the shape of

the weight space (Hirose, Yamashita et al. 1991; Weng and Khorasani 1996).

Several different algorithms have been developed to adjust the topology of

neural networks. The upstart algorithm tries to improve the performance of a

network by adding processing elements. If the network makes a mistake, a

processing element is added to recognize that pattern. The new processing

element is connected to the output processing element, so the output is

influenced when the pattern is presented again (Frean 1990). With evolutionary

programming different network topologies can be tried. Topologies and weights

can evolve with the best performing networks remaining after each iterations to

be evolved further (Jian and Yugeng 1997). Instead of starting with many

different topologies, topologies of a smaller networks can be used in the

beginning and new topologies of larger networks can be added later to the

mutations in the evolutionary program (Stanley and Miikkulainen 2002). Another

approach called incremental evolution grows networks by adding processing

elements instead of trying many different topologies and keeping and evolving

the best performing networks (MacLeod and Maxwell 2001).

33

The approach of growing and adding processing elements does not

depend on evolutionary programs and can be implemented independently.

Dynamic Node Creation (DNC) starts with a small network and adds processing

elements over time. The initial small network is trained until the performance of

the network reaches a plateau. At this point another processing element is

added. The network is trained again until the performance reaches another

plateau and a processing element is added again. This process is repeated until

the performance of the network reaches the desired level. By starting with a

small network and adding processing elements over time, the initial small

network is able to learn the gross parameters of the desired mapping and as new

processing elements are added the finer parameters of the mapping are learned

(Ash 1989). Similar algorithms have been developed: dynamic node architecture

learning (DNAL), an algorithm that checks if the decrease in total error is below a

threshold every 100 iterations, and a variation that uses a different update rule, a

quasi-Newton based method (Hirose, Yamashita et al. 1991; Bartlett 1994;

Setiono and Hui 1995). Another approach adds modules of small neural

networks to the existing network (MacLeod, Maxwell et al. 2009) . Instead of

adding processing elements, current processing elements in the network can be

split into multiple processing elements. After the network has converged if the

total error is above a threshold, one of the processing elements is split into

several new processing elements. The processing element split is the one that

shows the most fluctuations in its weights (Weng and Khorasani 1996).

34

Figure 3.1 Weight values of two neural networks trained on the same data, a
network with fixed 5 inputs and a network with fixed 25 inputs. The weights
values of the 5 input network converge on a local minumum relatively early
compared to the network with 25 inputs.

Network Size and Reinforcement Learning

 A challenge with using RL with neural networks is choosing a size for the

neural network to meet the design goals of adequate performance during early

trials and undiminished performance during later trials. In the case of a BCI, the

35

performance during early trials should be high enough so the user does not

become discouraged. Smaller neural networks could provide adequate

performance during early trials by avoiding error produced by bias. However

smaller neural networks might have diminished performance during later trials

because of error caused by variance. Figure 3.1 shows the weight values, during

training, of a smaller neural network with fixed 5 inputs. The weight values

converge on a local minumum relatively early. However, with so few weights the

network over-fits to early trials and experiences error during later trials from

variance. In the bias-variance tradeoff, the small network is tilted to produce error

from variance. Using a larger neural network could produce higher performance

in later trials. Figure 3.1 also shows the weight values, during training, of a

neural network with fixed 25 inputs. The weights adapt very slowly during the

training. The larger network is underfitting during early trials causing error

produced from bias.

Figure 3.2 In standard feature extraction a fixed number of features are chosen
before training and given as input to the classifier. The number of features is
constant which can reduce performance because of the bias-variance tradeoff.

36

 To minimize the problem of the bias-variance tradeoff one approach is to

combine the ability of a small neural network to adapt quickly and perform well in

early trials and the ability of a large network to perform well in later trials. A

neural network that grew from a small number of inputs to many inputs would

accomplish this goal. To change the number of inputs to a neural network will

require a change in feature extraction. Figure 3.2 shows standard feature

extraction, the number and type of features are chosen and all features are

presented to the classifier, neural network, throughout training. Figure 3.3 shows

an alternate approach for feature extraction, the number of features is chosen as

before; however, only a subset of features is presented to the neural network at

the beginning of training. Additional features are added over time until all the

chosen features are presented to the neural network.

Figure 3.3 In dynamic feature selection, additional features are given as inputs to
the classifier while the classifier is being trained. The ability to change the
number of inputs can increase performance by ameliorating the bias-variance
tradeoff.

37

 Figure 3.4 shows how inputs and weights are added to the neural network.

Processing elements and weights that are present throughout the session are

shown in blue. Processing elements and weights that are added on a fixed

schedule throughout the session are shown in green. As inputs and weights are

added they adapt to the feedback given to the neural network. The values of new

weights follow the same progression of other weights, adapting to feedback until

they converge on a solution.

Figure 3.4 Weight values during training of a neural network with initially 5
inputs. An additional input is added after every 50 trials, until there are 25 inputs.
The original 5 inputs are shown in blue and new inputs are shown in green. New
inputs are able to be added, and the weights associated with the new inputs
adapt to feedback in the same way as the original inputs.

38

 The values of the initial weights present throughout the session adjust in a

way similar to the weights in the smaller neural network. The initial weights adapt

quickly during the beginning of the session until they converge on a solution. The

values of weights added at later trials adjust in a way similar to weights in the

large neural network. The new weights are associated with new inputs that

provide new information the neural network uses to make a better classification

of new trials. The new weights do not converge on a solution early in the session

and some weights show large changes in later trials.

 Small Network Large Network Feature Addition
At 100 Trials 56.4% SD 5.5% 59.7% SD 11.7% 60.6% SD 9.9%
Session End 75.8% SD 16.8% 76.4% SD 12.4% 92.0% SD 4.3%

Table 3.1 Performance of simulations for a small and large network and a
network using feature addition.

Figure 3.5 Performance of a neural network classifier with fixed 5 inputs during 5
Monte Carlo simulations of randomized initial weight values and trials order.

39

 Dynamic feature addition improves performance over both the

performance of the small and large neural networks. Figure 3.5 shows the

performance of 5 Monte Carlo simulations for a small network and Figure 3.6

shows the performance of 5 Monte Carlo simulations for a large network. Both

large and small networks had simulations that the classification accuracy did not

increase across hundreds of trials and the end performance was less than 65%.

The small network’s simulations had a mean of 56.4% with SD of 5.5% at 100

trials and mean of 75.8% and SD of 16.8% at the end of the session. The large

network’s simulations had a mean of 59.7% with SD of 11.7% at 100 trials and

mean of 76.4% and SD of 12.4% at the end of the session. The dynamic feature

addition simulations had a mean of 60.6% with SD of 9.9% at 100 trials and

mean of 92.0% and SD of 4.3% at the end of the session. The mean

performance of dynamic feature addition simulations exceeded the mean

performance of both the small and large network at both 100 trials and at the end

of the session.

Figure 3.6 Performance of a neural network classifier with fixed 25 inputs during
5 Monte Carlo simulations of randomized initial weight values and trials order.

40

Figure 3.7 Performance of a neural network classifier using dynamic feature
addition during 5 Monte Carlo simulations of randomized initial weight values and
trials order. Initially 5 inputs with an input being added after every 50 trials until
there are 25 inputs.

3.2 DISCUSSION

 Choosing an appropriate size for a neural network when using RL

for a BCI application is difficult because of the bias-variance tradeoff. A network

too small will have unnecessarily poor performance during later trials and a

network too large will have unnecessarily poor performance during early trials. By

starting with a small network and using dynamic feature addition to grow the

number of inputs to the network over time the performance of the BCI can be

improved over both small and large networks in both early trials and later trials.

Adding features can help the classifier escape local minimums in the error

surface by increasing the dimension of the error surface. The addition of dynamic

41

feature addition to RL neural networks further improves RL BCIs beyond static

BCIs.

Many different stopping conditions for adding features could be designed.

With knowledge about what features could be useful, the number of features

could be limited to what features may be useful. For example, features of power

between 1-50 Hz have been shown to be useful in EEG. So, features could be

limited to these frequencies. The number of features could be linked to

performance with the number of features increasing until the performance

reaches a plateau. If the desired performance has not been met and the

computation time is too long for an individual trial, features could be pruned and

other features added.

There are several limits to this approach. Incrementally adding features

works best for a neural network being trained with an online algorithm. Offline

training might be able to train the classifier more quickly by trying many

combinations of features, instead of adding them incrementally. If the features

are added too quickly, so the number of weights in the network increases more

rapidly than the number of examples, the network could constantly under fit the

data for each trial. Adding features only after enough trials have been recorded to

train would fix this problem. If the number of possible features is small and all are

known to be useful, adding them individually might not be helpful, especially if the

algorithm is trained offline with a large data set.

To use this approach the initial size of the feature set should be small

enough so the network can be trained on a small number of trials. Based on the

42

initial number of trials, and the quality of the features, the initial feature set size

can be chosen. Features should only be added when enough samples exist to

train them effectively and the features are relevant. Features that are not relevant

should not be added. Adding a feature that does not help distinguish between the

classes could slow the algorithm by increasing the number of weights.

Chapter 4: FEATURE SELECTION

4.1 OVERVIEW

Feature extraction involves the creation of features from measurements.

Feature selection is a special case of feature extraction that involves the

selection of certain features and measurements as inputs to the neural network

(Verikas and Bacauskiene 2002). Only features that contribute significant

information to the classification should be used. Features that contribute little

information, irrelevant information, or are correlated or duplicates of other

features should be excluded as inputs to the network (Brill, Brown et al. 1992;

Priddy, Rogers et al. 1993; Belue and Bauer Jr 1995; Steppe and Bauer Jr 1996;

Setiono and Liu 1997; Steppe and Bauer Jr 1997; Yang and Honavar 1998;

Verikas and Bacauskiene 2002; Sivagaminathan and Ramakrishnan 2007;

Aghdam, Ghasem-Aghaee et al. 2009; Kabir, Shahjahan et al. 2012).

Measurements used to determine if a feature contains significant information are

called saliency measures (Steppe and Bauer Jr 1997; Laine, Bauer et al. 2002;

Kabir, Shahjahan et al. 2012). By using saliency measures, a subset of the many

differnet measurements that exist and make up the measurement space can be

chosen as the feature space (Ruck, Rogers et al. 1990; Brill, Brown et al. 1992;

Setiono and Liu 1997; Yang and Honavar 1998; Pal, De et al. 2000;

Sivagaminathan and Ramakrishnan 2007; Aghdam, Ghasem-Aghaee et al.

2009).

43

44

 The different features chosen as inputs to the neural network can be

organized into a vector (Ruck, Rogers et al. 1990; Priddy, Rogers et al. 1993;

Yang and Honavar 1998). Since many features contain irrelevant information or

contain information contained in other features, the dimensionality of the feature

vector can be reduced with little loss of information (Setiono and Liu 1997; Pal,

De et al. 2000; Verikas and Bacauskiene 2002; Aghdam, Ghasem-Aghaee et al.

2009). By decreasing the number of features, fewer training examples are

needed. This is the inverse of “the curse of dimensionality” where increasing the

number of features means the number of training examples must also be

increased (Yang and Honavar 1998; Verikas and Bacauskiene 2002). Using

fewer features can also improve the accuracy of the neural network. By not

including features composed of irrelevant or redundant information, the network

does not have to minimize the effects these features have on the output of the

network (Ruck, Rogers et al. 1990; Brill, Brown et al. 1992; Battiti 1994; Setiono

and Liu 1997; Yang and Honavar 1998; Bauer Jr, Alsing et al. 2000; Laine, Bauer

et al. 2002; Verikas and Bacauskiene 2002; Sivagaminathan and Ramakrishnan

2007; Aghdam, Ghasem-Aghaee et al. 2009; Kabir, Shahjahan et al. 2012).

Reducing the number of features also reduces the time needed to train the

network, create features, and classify a feature vector. While time considerations

might not be very important for offline applications, they can be critical for online

applications (Ruck, Rogers et al. 1990; Battiti 1994; Setiono and Liu 1997; Yang

and Honavar 1998; Laine, Bauer et al. 2002; Sivagaminathan and Ramakrishnan

2007). Depending on the application the cost of collecting data for additional

45

features could be high both financially and because of increased risk (Setiono

and Liu 1997; Yang and Honavar 1998; Verikas and Bacauskiene 2002;

Sivagaminathan and Ramakrishnan 2007). All these reasons support the careful

selection of features. When humans select features they introduce their own

biases of what will be useful features. The process of selecting features can be

automated which could improve accuracy by removing human biases and

increase the speed of feature selection (Brill, Brown et al. 1992).

Several approaches for finding useful features rely on creating a trained

neural network from all the available features. One approach varies each feature

over its range and computes the changes in the error of the output. Features that

have little effect on the error when varied can be removed (Priddy, Rogers et al.

1993). Another approach judges the sensitivity of the network’s output to the

various features by examining the network’s weights. The feature that affects the

output the least can be removed (Ruck, Rogers et al. 1990).

A different approach is to add a noise feature to the available features and

using the same procedure of inspecting weights to compute the features’ effect

on the trained network’s output, a signal to noise ratio can be computed for each

feature. Features that do not affect the output much more than the noise feature

are removed (Bauer Jr, Alsing et al. 2000). By using the signal to noise ratio

technique the features relevant to mental workload measured by EEG were

determined to be power in the 31-40 Hz range (Laine, Bauer et al. 2002). Instead

of using a signal to noise ratio comparison, a confidence interval can be

constructed for the noise feature. Features that lie outside the confidence interval

46

can be removed (Belue and Bauer Jr 1995). Another variation is to use a

Bonferroni-type test statistic, features that are less useful compared to the noise

feature can be excluded (Steppe and Bauer Jr 1996).

Another way to find which features are most useful is to use a neural

network and a pruning algorithm. The network is trained on all possible features,

with a special penalty term included to make small weights even smaller. The

features are ranked by performance of the network when the feature is set to

zero. The feature that causes the largest increase in performance when set to

zero is removed. The whole process is repeated until the performance of the

network degrades beyond a threshold (Setiono and Liu 1997). Forcing small

weight to become even smaller makes the output less sensitive to changes in the

input, which makes finding useful features more difficult. To solve this problem,

the algorithm can be modified by changing the transfer function to force

processing elements to work in the saturation regions (Verikas and Bacauskiene

2002).

Instead of pruning features, features can be added to the feature set.

Offline testing can be done on the different features using the “leave-one-out”

method, N-1 samples are used to train the classifier and the remaining sample is

used to test the classifier. The feature that shows the greatest classification

accuracy is added to the previous features already used (Whitney 1971). An

extension of the this algorithm is the ability to add and remove features called

“floating search” instead of monotonically adding features (Pudil, Novovičová et

al. 1994). The degree to which sets of features do not improve classification

47

accuracy over subsets of those features is mutual information. Mutual information

can be used to determine which features are useful (Battiti 1994).

Another approach uses a genetic algorithm to find useful features.

Different sets of features are ranked based on the accuracy of a neural network

trained on each set of features. Poor performing sets are eliminated, remaining

sets are mixed to have some of the features of other sets, and random mutations

of the addition or removal of a feature occur. This process is repeated several

times, with the best performing set used at the end (Brill, Brown et al. 1992; Yang

and Honavar 1998).

Another type of algorithm that can be used is Ant Colony Optimization

(ACO). An ACO algorithm finds the best path through a graph by simulating ants

searching for the shortest path to food sources. By organizing the possible sets

of features into a graph, with each node representing the addition of a feature, an

ACO algorithm can be used to find the best feature set for classification. When

the ACO algorithm visits each node of the graph the feature set represented with

the node is evaluated by training a neural network and computing its accuracy.

The ACO algorithm learns the path between feature sets that have high accuracy

to find the set with the highest accuracy (Sivagaminathan and Ramakrishnan

2007). This approach has been used to find features for text classification

(Aghdam, Ghasem-Aghaee et al. 2009). Instead of only using the classification

accuracy of the network other measures can also be used to judge the feature

sets, such as mutual information (Al-Ani 2006; Kabir, Shahjahan et al. 2012).

48

4.2 FEATURE SELECTION IN DYNAMIC FEATURE ADDITION

The dynamic feature addition in chapter 3 added features in a

predetermined order. Features were added according to their frequency from 1 to

50 Hz. Adding features in a different order might improve the performance of the

dynamic feature addition.

Figure 4.1 The performance of a network starting with 5 inputs (1-5 Hz) and
adding 5 inputs every 150 trials in order of frequency bin, 5 to 50 Hz, during ten
Monte Carlo simulations of randomized initial weight values and trials order. The
change in number of inputs ameliorates the bias-variance tradeoff; however,
adding features in this order reduces the potential performance of the network.

 Using the data from the SCI subject in chapter 2, Figure 4.1 shows the

performance of a network starting with 5 inputs (1-5 Hz) and adding 5 inputs

49

every 150 trials in order of frequency bin, 5 to 50 Hz, during ten Monte Carlo

simulations of randomized initial weight values and trials order. The order in

which features are added in Figure 4.1 does not take into account differences

between features. These differences could be used to improve the order in which

features are added.

Figure 4.2 The performance of a network starting with 5 inputs and adding 5
inputs every 150 trials in order of largest difference in features between cues
during ten Monte Carlo simulations of randomized initial weight values and trials
order. The change in number of inputs ameliorates the bias-variance tradeoff;
and, adding features in this order improves the performance of the network
compared to other addition orders.

 One way to measure the difference between features is to use z-scores to

quantify the relative difference in average power of frequencies between cues

during sessions. Large z-scores correspond to large differences between cues

meaning those frequencies will be more useful for classification than other

50

frequencies. By using information about the relative usefulness of features, the

order in which features are added can be improved. Figure 4.2 shows

simulations where features added during a session showed the greatest

difference between cues in the previous session. The features that showed the

greatest difference between cues in the preliminary recording session were used

as the initial features set. After 150 trials in the closed-loop sessions data, 5

additional features were added that showed the greatest difference between

cues for the last 150 trials. This process was repeated every 150 trials until all

the features from 1 to 50 Hz were added.

 Table 4.1 shows that adding features to try to maximize the difference

between cues in early trials results in simulations with higher end accuracy,

mean performance of 81.76%, and smaller variations between simulations, SD of

1.6%.

Simulation
Largest

Difference First
Smallest

Difference First
By

Frequency
Static

Feature Set
1 84.03% 71.07% 79.93% 87.85%
2 83.22% 70.00% 78.93% 86.17%
3 82.89% 69.87% 78.72% 85.17%
4 82.81% 69.26% 77.38% 83.09%
5 82.40% 68.52% 75.10% 79.06%
6 82.31% 68.46% 75.03% 77.58%
7 81.14% 68.12% 74.90% 76.51%
8 80.40% 68.05% 74.09% 76.50%
9 79.46% 66.91% 71.95% 76.11%

10 78.98% 64.70% 70.07% 72.21%
Mean 81.76% 68.50% 75.61% 80.03%
SD 1.60% 1.69% 3.00% 4.93%

Table 4.1 Comparison of sorted performance of simulations from different feature
addition orders and static feature set. Using the data from the SCI subject in
chapter 2, the performance of a network was simulated during ten Monte Carlo
simulations of randomized initial weight values and trials order. Adding features
with the largest difference between cues first produces simulations with the
highest mean performance and smallest SD between simulations.

51

Figure 4.3 The performance of a network starting with 5 inputs and adding 5
inputs every 150 trials in order of smallest difference in features between cues
during ten Monte Carlo simulations of randomized initial weight values and trials
order. The change in number of inputs ameliorates the bias-variance tradeoff.
However, this counterexample again shows the importance of addition order as
adding features in this order results in the lowest performance of all the
examples.

 If the features are added in a sequence to try to minimize the difference

between cues in early trials, the performance goes down compared to all other

techniques. Features that provide the most information to differentiate between

the two cues are added in later trials, too late to help develop a classifier. Figure

4.3 shows the performance of ten Monte Carlo simulations where the initial five

features where the five 1 Hz frequency bins that showed the smallest difference

between cues in the preliminary recording session. After the first 150 trials of the

closed-loop sessions data, the next five cues added were the 1 Hz frequency

bins that showed the smallest difference between cues in the previous 150 trials.

52

Features were added every 150 trials using the same procedure until all features

from 1 to 50 Hz were included. The simulations using this method had lower

performance at the end of the session than all other methods, again showing the

importance of the order in which features are added.

Figure 4.4 The performance of a network with a constant number of inputs, 50,
during ten Monte Carlo simulations of randomized initial weight values and trials
order. The constant number of inputs makes the network susceptible to the bias-
variance tradeoff.

4.3 DISCUSSION

The order in which features are added during dynamic feature addition

can affect the performance of the system. The simple method of adding features

53

by frequency order reduces the potential performance of the system. Adding

features that behave similarly for each class does not help the classification as

much as adding features that have distinct behaviors for each class. By taking

into account how useful features are for discriminating between different cues

and adding features that are more useful in early trials, the performance of the

system can be improved. The features that contribute the most during

classification would be added first so the weights could be adapted to these

features first. Features that provided smaller clues to the class of the trial would

be added later and fine-tune the weights. This approach should generalize to all

BCIs and all classification problems that use a neural network during online

learning. Major factors that affect this result are variability in noise that affect

different features differently, how well the available features differentiate between

the classes, the ability of the algorithm to determine which features have good

differentiation, and the pace at which features are added.

Chapter 5: VARIABLE LEARNING RATE

5.1 OVERVIEW

The goal of the rehabilitation system is to use RL in a BCI so that the BCI

adapts to the user over the course of rehabilitation. Using a static learning rate in

the BCI could reduce the ability of the BCI to adapt to the user. A learning rate

that adjusts to facilitate the progression of the user during rehabilitation could

lead to a better rehabilitation system.

The RL algorithm tries to find the minimum of the error surface. The error

surface of a neural network describes the relationship between the network’s

weights and error at the network’s output. The properties of the error surface for

real world applications have been studied by several authors (Widrow and Lehr

1990; Hush, Horne et al. 1992; Yu 1992; Hush and Horne 1993). The error

surfaces of neural networks are composed of large regions with small gradients

and long narrow regions with steep gradients. A weights update algorithm that

uses a fixed learning rate will be inefficient because of these characteristics of

neural networks’ error surfaces. An algorithm using a large learning rate will

progress rapidly over the region with a small gradient; however, steep gradients

will cause the algorithm to over adjust and produce oscillations in the weights. A

small learning rate will make the algorithm more stable in regions with

steepgradients; however, the algorithm will move slowly through regions with

small gradients (Gori and Tesi 1992). Algorithms with a constant learning rate are

54

55

not guaranteed to converge in general (Kuan and Hornik 1991). To alleviate

these problems an adaptive learning rate can be used instead of a constant

learning rate. By using an adaptive learning rate, the probability for poor

performance because of a poor choice for an initial learning rate are reduced (Yu

and Chen 1997). An adaptive learning rate reduces the need for batch learning

and improves first-time learning, a important consideration for online learning

algorithms (Weir 1991). Many different approaches to adjust the learning rate

have been developed. One approach is to compare the error for learning rates

slightly higher and slightly lower than the current learning rate, and choose the

learning rate that produces the lower error (Solomon and Leo van Hemmen

1996). Another approach replaces the normal cost function used in back

propagation with the Lyapunov function; with this change, the back propagation

algorithm converges faster. By substituting in the Lyapunov function, the

algorithm has the same behavior as back propagation with an adaptive learning

rate (Behera, Kumar et al. 2006). If the gradient of the error surface is known the

learning rate can be adjusted appropriately. By using the forward and backward

procedure during back propagation the derivative of the error surface can be

calculated and the learning rate adjusted accordingly (Yu, Chen et al. 1995; Yu

and Chen 1997). Estimates of the gradient can also be used to adjust the

learning rate. The gradient can be estimated using the direction cosines of the

steepest descent vector (Hsin, Li et al. 1995), secant equation based quasi-

Newton method (Barzilai and Borwein 1988; Polak 1997; Plagianakos,

Sotiropoulos et al. 1998), or by estimating the Lipschitz constant, the steepest

56

gradient of a function (Magoulas, Vrahatis et al. 1997). Another approach uses a

combination of the height of the error surface, the current error, and maximum

gradient to compute a step length of the quotient height over maximum gradient

(Weir 1991). These approaches do not apply to online RL with a neural network

for several reasons: the computation time required to compare different learning

rates and the dynamic nature of the error surface between trials. During early

trials, the error surface is especially likely to fluctuate because of the small size of

the sample set. A different approach uses the height of the error surface alone to

increase or decrease the learning rate by a fixed factor (Jacobs 1988). The

advantages of this approach are the simplicity of measurement and computation.

The height of the error surface is also less susceptible to the dynamic nature of

the error surface than the slope of the error surface.

5.2 METHODS

To test the rehabilitation system’s ability to adapt several different update

rules were investigated. The traditional method to update the weights of a

multilayer perceptron (MLP) is with back propagation. Back propagation can be

broken down into several steps. Compute the output of the MLP:

𝑟ℎ = 𝜑 (𝑤ℎ ∗ 𝑟𝑖)

𝑟𝑜 = 𝜑 (𝑤𝑜 ∗ 𝑟ℎ)

57

where 𝑟𝑖 is the input to the MLP, 𝑟ℎ is the output of the hidden layer, 𝑟𝑜 is the

output of the MLP, 𝜑 is the activation function, 𝑤ℎ are the weights of the hidden

layer, and 𝑤𝑜 are the weights of the output layer. Compute the error of the MLP:

𝑑𝑜 = �𝑟0(1 − 𝑟0)� ∗ (𝑟𝑑 − 𝑟0)

𝑑ℎ = �𝑟ℎ(1 − 𝑟ℎ)� ∗ (𝑤𝑜 ∗ 𝑑0)

where 𝑟𝑑 is the desired output of the MLP, 𝑑𝑜 is the error at the output layer, and

𝑑ℎ is the error at the hidden layer. Then update the weights of the MLP:

∆𝑤ℎ = 𝛾(𝑟𝑖 ∗ 𝑑ℎ)

∆𝑤𝑜 = 𝛾(𝑟ℎ ∗ 𝑑𝑜)

Where ∆𝑤ℎ is the change of the weights in the hidden layer, ∆𝑤𝑜 is the change

of the weights in the output layer, and 𝛾 is the learning rate. While back

propagation is the most common method, other approaches exist. Another

update method is based on Hebbian style learning (Mazzoni, Andersen et al.

1991). Hebbian style learning can be written mathematically as:

∆𝑤𝑖𝑗 = �
 𝛾(𝑥𝑖 �𝑝𝑗 − 𝑥𝑗�), 𝑓𝑡 = 1

−𝛾 �𝑥𝑖 �𝑝𝑗 − 𝑥𝑗�� , 𝑓𝑡 = 0

58

Where ∆𝑤𝑖𝑗 is the change of the weight between processing elements i and j, γ

is the learning rate, 𝑥𝑖 is the input to processing element j from processing

element i, 𝑝𝑗 is the thresholded output of processing element j, 𝑥𝑗 is the output of

processing element j, and 𝑓𝑡 is the current feedback of the critic. ∆𝑤𝑖𝑗 is a

function of the multiplication of the input and the output of processing element j,

which is Hebbian style learning. Depending on the current feedback of the critic

the weight 𝑤𝑖𝑗 either increases for positive feedback, 1, or decreases for negative

feedback, 0.

The change in weight values can also be scaled as a function of how the

system is performing. A more biologically plausible way to think of variable

weight value change is that the weight change scales to how often feedback

happens. For example, if errors are frequent, negative feedback will not create a

large weight change but positive feedback will create a large weight change. By

using this approach when the system is performing well and errors are few the

system will not make dramatic changes when the output is correct, preserving

the classification ability of the system. However, when an error occurs the system

will make large changes to learn from that trial and error. Conversely when the

system is performing poorly and errors are common, the system will make large

changes for a correct output to learn from the trial and output. A way to

implement this mathematically is:

𝑟 = (∑ 𝑓𝑖𝑡
𝑖=1) #𝑓⁄

59

Where 𝑟 is the scale factor, 𝑓𝑖 is the feedback at trial 𝑖, and #𝑓 is the number of

trials. The scale factor 𝑟 can be incorporated into the Hebbian style learning as:

∆𝑤𝑖𝑗 = �
(1 − 𝑟) ∗ 𝛾(𝑥𝑖 �𝑝𝑗 − 𝑥𝑗�), 𝑓𝑡 = 1
 (𝑟) ∗ −𝛾(𝑥𝑖 �𝑝𝑗 − 𝑥𝑗�), 𝑓𝑡 = 0

The scale factor 𝑟 can also be incorporated into back propagation as:

∆𝑤ℎ = (1 − 𝑟) ∗ 𝛾(𝑟𝑖 ∗ 𝑑ℎ)

∆𝑤𝑜 = (1 − 𝑟) ∗ 𝛾(𝑟ℎ ∗ 𝑑𝑜)

Figure 5.1 One input given to a neural network during testing of the different
update rules: 1/3 standard deviation noise test data, 1 standard deviation noise
test data, and real data.

60

Since the data from real recordings has a large amount of noise,

comparing the performance of the different update rules with real data would be

challenging. To test the various update rules, test data sets were created. The

SD of a real recording was used to estimate the amount of noise to include in the

test data sets. The first test data set has Gaussian noise with a SD equal to 1/3

the SD of the real recording. The second test data set has Gaussian noise with a

SD equal to the SD of the real recording. Figure 5.1 shows the two test data sets

created next to a recording from subject 1.

Figure 5.2 Comparison of a neural network’s performance using back
propagation, scaled back propagation, Hebbian style learning, and scaled
Hebbian style learning using 1/3 standard deviation noise test data and 70%
critic accuracy. Performance of the different update rules is comparable.

61

The accuracy of the critic was set at 70% to approximate the classification

accuracy of the critic on real error data. Ten simulations were performed with

each update rule. Performance was judged by cumulative classification accuracy

of the actor on motor data, with chance equal to 50% for this two class test.

The results of using a 1/3 SD noise test data set with the various update

rules is shown in Figure 5.2. Overall the results between the various update rules

are very similar. The signal to noise ratio is so high that the update rule becomes

less important. Occasionally back propagation will not be able to advance

beyond a local minimum, which can be seen in the first graph as the simulation

marked in black approaches 50% classification accuracy. Hebbian style learning

does not seem to have this problem.

The increased noise in the 1 SD noise test data set starts to show the

difference between the update rules, as seen in Figure 5.3. To quantify these

results the update rules were compared by the number of simulations to reach

60% classification accuracy at the end of 120 trials, table 5.1. Hebbian style

learning had better overall performance compared to back propagation and

performed better than chance earlier. Similarly, scaling the back propagation or

scaling the Hebbian style learning increased overall performance and helped the

system reach a performance better than chance faster. The results of using

scaled Hebbian style learning with real data are shown in Figure 5.4. The real

data results are similar to the 1 SD noise test data set.

62

Table 5.1 Number of simulations above 60% classification accuracy for each
update rule. Scaled Hebbian Style Learning outperforms the other update rules.

 Figure 5.3 Comparison of a neural network’s performance using back
propagation, scaled back propagation, Hebbian style learning, and scaled
Hebbian style learning using one standard deviation noise test data and 70%
critic accuracy. The network performed the best using scaled Hebbian style
learning.

Simulations Above 60% Classification Accuracy

Update Method Simulations (10 Total)

Back Propagation 3

Scaled Back Propagation 8

Hebbian Style Learning 5

Scaled Hebbian Style Learning 10

63

Figure 5.4 Using real data as input, the actor’s performance when critic is 70%
accurate with scaled Hebbian style learning update.

 All the techniques of the current and previous chapters can be combined

to improve the results even further. The scaled Hebbian style learning update

can be combined with dynamic feature addition and adding features based on

the largest difference between cues. Figure 5.5 shows the results of combining

the techniques for ten Monte Carlo simulations using the SCI subject data from

chapter 2. The simulations of the combined techniques performed better than the

64

other simulations. These results show the techniques can be used together and

the improvements from the techniques are additive when combined.

Figure 5.5 Using the combined techniques (scaled Hebbian style learning
update, dynamic feature addition, and adding features based on the largest
difference between cues) and the SCI subject data as input, the actor’s
performance during ten Monte Carlo simulations of randomized initial weight
values and trials order.

5.3 DISCUSSION

Various update rules could be used in the rehabilitation system: back

propagation, scaled back propagation, Hebbian style learning, and scaled

Hebbian style learning. In simulations Hebbian style learning performed better

than back propagation. While scaled Hebbian style learning performed better

65

than Hebbian style learning. Scaled Hebbian style learning also takes advantage

of the online nature of RL used in the system. By adjusting the learning rate, the

algorithm moves more quickly in areas where the slope of the error surface is

small and converges on a minimum more quickly in areas where the slope is

high. The adjustable learning rate also makes the choice of learning rate at the

beginning of the algorithm have less of a negative effect on the performance of

the algorithm. This approach should generalize to all classification problems

using a neural network with an online learning algorithm.

A weakness of this approach is that it only relies on the height of the error

surface. The slope of the error surface would give a more direct measure of what

the learning rate should be set at, however determining the slope of the error

surface is more computationally expensive and the slope is more likely to change

between trials than the height. Even though the learning rate is adjustable the

range of possible learning rates and size of the change in learning rate have to

be set at the beginning of the experiment. Given the range of the learning rates

and the size of the adjustments are preset, the learning rate cannot always be

ideal for the error surface. Other factors that affect this result are how much noise

is in the recordings and the dimensionality of the error surface.

This approach is best suited for classification problems using neural

networks in an online learning algorithm. The range of learning rates should be

chosen to accommodate reasonable maximum and minimum slopes of the error

surface. The size of the adjustments to the learning rate can be smaller when the

range between the maximum and minimum slope of the error surface is smaller

66

and the size of the adjustments to the learning rate can also be smaller when

more trials are available.

Chapter 6: CONCLUSION

 The research presented in this dissertation demonstrated a new EEG

based BCI system using RL. A classifier was created for each user to detect

ErrPs during closed-loop sessions. By using RL and detecting the user’s ErrPs,

the system was able to adapt to the user throughout the experiment without

offline training. Over the course of the experiment, the classification accuracy for

motor potentials increased each session until the accuracy reached the

performance level of the ErrP classifier. The system was able to find motor

potentials associated with cues using RL and feedback from the user in the form

of ErrPs. The system adapted to the control and SCI subject and achieved

comparable performance levels for both. By using the system, the user was able

to control a FES. The system could be used in future work as a testbed for

augmenting rehabilitation with a BCI.

 By adjusting the way the system decodes motor potentials the RL BCI can

be further improved beyond static BCI’s. Neural networks suffer from a dilemma

known as the bias-variance tradeoff. Networks too small suffer from poor

performance in later trials while networks too large have poor performance in

early trials. Choosing a size for a neural network using RL is difficult because the

data set is always increasing. However by starting with a small network and

adding inputs using dynamic feature addition, the performance of a RL BCI can

be improved.

67

68

 In addition to adding new features over time, the order in which features

are added was also investigated. Instead of adding features in a fixed order,

adding features that showed the greatest difference between cues in earlier trials

improved performance. This change in the order in which features are added

further improved the dynamic feature addition and the RL BCI.

 RL also offers the opportunity to change the learning rate online during the

experiment. To test how to best utilize this opportunity various update rules were

investigated: back propagation, scaled back propagation, Hebbian style learning,

and scaled Hebbian style learning. Hebbian style learning performed better than

back propagation; and by taking advantage of the online nature of RL, scaled

Hebbian style learning performed better than Hebbian style learning.

 In future work when the system starts to perform at a level that subjects

would be willing to use it every day for rehabilitation, techniques could be

introduced to modify the performance of the system to ensure continued

progress of the rehabilitation. The threshold for an action could be increased or

the inputs to the actor could be limited to certain frequencies or electrodes, which

could be helpful in guiding the continued rehabilitation of the subject. The ideal

brain activity for a subject undergoing rehabilitation could also be investigated

and might not necessarily match an able-bodied subject.

 The task used during rehabilitation could also be changed. Tasks that are

more engaging could be used and standard rehabilitation test like the Jebsen

hand function test could be integrated into the system. The cues and feedback

could be switched to auditory signals freeing the subject’s visual attention.

69

Auditory cues and feedback could also be embedded in music making them

more pleasant for the user.

 These findings have important implications for BCI’s and rehabilitation. As

rehabilitation induces positive cortical reorganization in the user, frequent

adjustments to the system might become necessary because of the user’s

changing motor potentials. A system that adapted to the user as quickly as their

motor potentials changed could reduce the need for recalibration enabling longer

rehabilitation sessions. The system was able to use the weights from the last

session to decode the user’s motor potentials at the start of a new session. As

the system learned the user’s motor potentials, changes in the system’s weights

became smaller meaning the user would experience consistent performance.

Since the system does not need to be recalibrated by a scientist, the user could

take the system home and use it continuously.

REFERENCES

Abu-Mostafa, Y. S. (1989). "The Vapnik-Chervonenkis Dimension: Information
Versus Complexity in Learning." Neural Computation 1(3): 312.

Aghdam, M. H., N. Ghasem-Aghaee, et al. (2009). "Text Feature Selection Using
Ant Colony Optimization." Expert Systems with Applications 36(3): 6843.

Al-Ani, A. (2006). "Feature Subset Selection Using Ant Colony
Optimization." International Journal of Computational Intelligence 2(1).

Anderson, K. D. (2004). "Targeting Recovery: Priorities of the Spinal Cord-Injured
Population." Journal of Neurotrauma 21(10): 1371.

Ash, T. (1989). "Dynamic Node Creation in Backpropagation
Networks." Connection Science 1(4): 365.

Bartlett, E. B. (1994). "Dynamic Node Architecture Learning: An Information
Theoretic Approach." Neural Networks 7(1): 129.

Barzilai, J. and J. M. Borwein (1988). "Two-Point Step Size Gradient
Methods." IMA Journal of Numerical Analysis 8(1): 141.

Battiti, R. (1994). "Using Mutual Information for Selecting Features in Supervised
Neural Net Learning." Neural Networks, IEEE Transactions on 5(4): 537.

Bauer Jr, K. W., S. G. Alsing, et al. (2000). "Feature Screening Using Signal-to-
Noise Ratios." Neurocomputing 31(1): 29.

Baum, E. B. and D. Haussler (1989). "What Size Net Gives Valid
Generalization?" Neural Computation 1(1): 151.

Beekhuizen, K. S. and E. C. Field-Fote (2008). "Sensory Stimulation Augments
the Effects of Massed Practice Training in Persons with
Tetraplegia." Archives of Physical Medicine and Rehabilitation 89(4): 602.

70

71

Behera, L., S. Kumar, et al. (2006). "On Adaptive Learning Rate That Guarantees
Convergence in Feedforward Networks." Neural Networks, IEEE
Transactions on 17(5): 1116.

Belue, L. M. and K. W. Bauer Jr (1995). "Determining Input Features for
Multilayer Perceptrons." Neurocomputing 7(2): 111.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford university
press.

Brill, F. Z., D. E. Brown, et al. (1992). "Fast Generic Selection of Features for
Neural Network Classifiers." Neural Networks, IEEE Transactions on 3(2):
324.

Cramer, S., E. Orr, et al. (2007). "Effects of Motor Imagery Training after Chronic,
Complete Spinal Cord Injury." Experimental Brain Research 177(2): 233.

Cramer, S. C., L. Lastra, et al. (2005). "Brain Motor System Function after
Chronic, Complete Spinal Cord Injury." Brain 128(12): 2941.

Daly, J. J., R. Cheng, et al. (2009). "Feasibility of a New Application of
Noninvasive Brain Computer Interface (BCI): A Case Study of Training for
Recovery of Volitional Motor Control after Stroke." Journal of Neurologic
Physical Therapy 33(4): 203.

Daly, J. J. and J. R. Wolpaw (2008). "Brain–Computer Interfaces in Neurological
Rehabilitation." Lancet neurology 7(11): 1032.

DiGiovanna, J., B. Mahmoudi, et al. (2009). "Coadaptive Brain-Machine Interface
Via Reinforcement Learning." Biomedical Engineering, IEEE Transactions
on 56(1): 54.

Elbert, T., C. Pantev, et al. (1995). "Increased Cortical Representation of the
Fingers of the Left Hand in String Players." Science 270(5234): 305.

72

Falkenstein, M., J. Hoormann, et al. (2000). "ERP Components on Reaction
Errors and Their Functional Significance: A Tutorial." Biological
Psychology 51(2-3): 87.

Ferrez, P. W. and J. Millan (2008). "Error-Related EEG Potentials Generated
During Simulated Brain-Computer Interaction." Biomedical Engineering,
IEEE Transactions on 55(3): 923.

Frean, M. (1990). "The Upstart Algorithm: A Method for Constructing and
Training Feedforward Neural Networks." Neural Computation 2(2): 198.

Gehring, W., M. Coles, et al. (1990). "The Error-Related Negativity: An Event-
Related Brain Potential Accompanying Errors." Psychophysiology 27(4):
S34.

Geman, S., E. Bienenstock, et al. (1992). "Neural Networks and the
Bias/Variance Dilemma." Neural computation 4(1): 1.

Gori, M. and A. Tesi (1992). "On the Problem of Local Minima in
Backpropagation." IEEE Transactions on Pattern Analysis and Machine
Intelligence 14(1): 76.

Green, J., E. Sora, et al. (1998). "Cortical Sensorimotor Reorganization after
Spinal Cord Injury an Electroencephalographic Study." Neurology 50(4):
1115.

Gruau, F., D. Whitley, et al. (1996). A Comparison between Cellular Encoding
and Direct Encoding for Genetic Neural Networks. Proceedings of the First
Annual Conference on Genetic Programming, MIT Press.

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological
Theory New York, John Wiley.

Hirose, Y., K. Yamashita, et al. (1991). "Back-Propagation Algorithm Which
Varies the Number of Hidden Units." Neural Networks 4(1): 61.

73

Hoffman, L. R. and E. C. Field-Fote (2006). "Cortically-Evoked Potentials of
Muscles Distal to the Lesion Are Posteriorly Shifted and of Lower
Amplitude in Individuals with Tetraplegia Due to Spinal Cord
Injury." Journal of Neurologic Physical Therapy 30(4): 202.

Hoffman, L. R. and E. C. Field-Fote (2007). "Cortical Reorganization Following
Bimanual Training and Somatosensory Stimulation in Cervical Spinal Cord
Injury: A Case Report." Physical Therapy 87(2): 208.

Hoffman, L. R. and E. C. Field-Fote (2010). "Functional and Corticomotor
Changes in Individuals with Tetraplegia Following Unimanual or Bimanual
Massed Practice Training with Somatosensory Stimulation: A Pilot
Study." Journal of Neurologic Physical Therapy 34(4): 193.

Hohnsbein, J., M. Falkenstein, et al. (1989). "Error Processing in Visual and
Auditory Choice Reaction Tasks." Journal of Psychophysiology 3: 32.

Holroyd, C. B. and M. G. H. Coles (2002). "The Neural Basis of Human Error
Processing: Reinforcement Learning, Dopamine, and the Error-Related
Negativity." Psychological Review 109(4): 679.

Hsin, H.-C., C.-C. Li, et al. (1995). "An Adaptive Training Algorithm for Back-
Propagation Neural Networks." Systems, Man and Cybernetics, IEEE
Transactions on 25(3): 512.

Hua, J., Z. Xiong, et al. (2005). "Optimal Number of Features as a Function of
Sample Size for Various Classification Rules." Bioinformatics 21(8): 1509.

Hummel, F. C. and L. G. Cohen (2006). "Non-Invasive Brain Stimulation: A New
Strategy to Improve Neurorehabilitation after Stroke?" The Lancet
Neurology 5(8): 708.

Hush, D. R., B. Horne, et al. (1992). "Error Surfaces for Multilayer
Perceptrons." Systems, Man and Cybernetics, IEEE Transactions on
22(5): 1152.

Hush, D. R. and B. G. Horne (1993). "Progress in Supervised Neural
Networks." Signal Processing Magazine, IEEE 10(1): 8.

74

Jacobs, R. A. (1988). "Increased Rates of Convergence through Learning Rate
Adaptation." Neural Networks 1(4): 295.

Jian, F. and X. Yugeng (1997). "Neural Network Design Based on Evolutionary
Programming." Artificial Intelligence in Engineering 11(2): 155.

Kabir, M. M., M. Shahjahan, et al. (2012). "A New Hybrid Ant Colony
Optimization Algorithm for Feature Selection." Expert Systems with
Applications 39(3): 3747.

Kleim, J. A., S. Barbay, et al. (1998). "Functional Reorganization of the Rat Motor
Cortex Following Motor Skill Learning." Journal of Neurophysiology 80(6):
3321.

Kokotilo, K. J., J. J. Eng, et al. (2009). "Reorganization and Preservation of Motor
Control of the Brain in Spinal Cord Injury: A Systematic Review." Journal
of Neurotrauma 26(11): 2113.

Kuan, C.-M. and K. Hornik (1991). "Convergence of Learning Algorithms with
Constant Learning Rates." Neural Networks, IEEE Transactions on 2(5):
484.

Laine, T. I., K. Bauer, et al. (2002). "Selection of Input Features across Subjects
for Classifying Crewmember Workload Using Artificial Neural
Networks." Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on 32(6): 691.

LeCun, Y., L. Bottou, et al. (1998). Efficient Backprop. Neural Networks: Tricks of
the Trade, Springer: 9.

Liepert, J., H. Bauder, et al. (2000). "Treatment-Induced Cortical Reorganization
after Stroke in Humans." Stroke 31(6): 1210.

MacLeod, C., G. Maxwell, et al. (2009). "Incremental Growth in Modular Neural
Networks." Engineering Applications of Artificial Intelligence 22(4–5): 660.

MacLeod, C. and G. M. Maxwell (2001). "Incremental Evolution in Anns: Neural
Nets Which Grow." Artificial Intelligence Review 16(3): 201.

75

Magoulas, G. D., M. N. Vrahatis, et al. (1997). "Effective Backpropagation
Training with Variable Stepsize." Neural Networks 10(1): 69.

Mahmoudi, B., J. DiGiovanna, et al. (2008). Neuronal Tuning in a Brain-Machine
Interface During Reinforcement Learning. International Conference of the
IEEE Engineering in Medicine and Biology Society 2008, IEEE.

Mahmoudi, B. and J. C. Sanchez (2011). "A Symbiotic Brain-Machine Interface
through Value-Based Decision Making." PLoS ONE 6(3): e14760.

Marino, R., T. Barros, et al. (2003). "International Standards for Neurological
Classification of Spinal Cord Injury." The Journal of Spinal Cord Medicine
26: S50.

Masters, T. (1993). Practical Neural Network Recipes in C++, Morgan Kaufmann.

Mazzoni, P., R. A. Andersen, et al. (1991). "A More Biologically Plausible
Learning Rule for Neural Networks." Proceedings of the National Academy
of Sciences 88(10): 4433.

McFarland, D. J. and J. R. Wolpaw (2011). "Brain-Computer Interfaces for
Communication and Control." Communications of the ACM 54(5): 60.

Middendorf, M., G. McMillan, et al. (2000). "Brain-Computer Interfaces Based on
the Steady-State Visual-Evoked Response." Rehabilitation Engineering,
IEEE Transactions on 8(2): 211.

Millan, J. R., F. Renkens, et al. (2004). "Noninvasive Brain-Actuated Control of a
Mobile Robot by Human EEG." Biomedical Engineering, IEEE
Transactions on 51(6): 1026.

Müller-Putz, G. R., R. Scherer, et al. (2005). "EEG-Based Neuroprosthesis
Control: A Step Towards Clinical Practice." Neuroscience Letters 382(1–
2): 169.

Neuper, C., M. Wörtz, et al. (2006). ERD/ERS Patterns Reflecting Sensorimotor
Activation and Deactivation. Progress in Brain Research. N. Christa and
K. Wolfgang, Elsevier. Volume 159: 211.

76

Nudo, R. J. and G. W. Milliken (1996). "Reorganization of Movement
Representations in Primary Motor Cortex Following Focal Ischemic
Infarcts in Adult Squirrel Monkeys." Journal of Neurophysiology 75(5):
2144.

Nudo, R. J., B. M. Wise, et al. (1996). "Neural Substrates for the Effects of
Rehabilitative Training on Motor Recovery after Ischemic Infarct." Science
272(5269): 1791.

Ochoa, J. M., M. Listenberger, et al. (2011). Use of an Electromyographically
Driven Hand Orthosis for Training after Stroke. International Conference
on Rehabilitation Robotics 2011, IEEE.

Pal, S. K., R. K. De, et al. (2000). "Unsupervised Feature Evaluation: A Neuro-
Fuzzy Approach." Neural Networks, IEEE Transactions on 11(2): 366.

Pascual-Leone, A., A. Cammarota, et al. (1993). "Modulation of Motor Cortical
Outputs to the Reading Hand of Braille Readers." Annals of Neurology
34(1): 33.

Pascual-Leone, A., J. Grafman, et al. (1994). "Modulation of Cortical Motor
Output Maps During Development of Implicit and Explicit
Knowledge." Science 263(5151): 1287.

Pfurtscheller, G., G. R. Müller, et al. (2003). "‘Thought’ – Control of Functional
Electrical Stimulation to Restore Hand Grasp in a Patient with
Tetraplegia." Neuroscience Letters 351(1): 33.

Plagianakos, V., D. Sotiropoulos, et al. (1998). "Automatic Adaptation of Learning
Rate for Backpropagation Neural Networks." Recent Advances in Circuits
and Systems: 337.

Pohlmeyer, E. A., B. Mahmoudi, et al. (2012). Brain-Machine Interface Control of
a Robot Arm Using Actor-Critic Reinforcement Learning. International
Conference of the IEEE Engineering in Medicine and Biology Society
2012, IEEE.

Polak, E. (1997). Optimization: Algorithms and Consistent Approximations,
Springer-Verlag New York, Inc.

77

Prechelt, L. (1998). Early Stopping - but When? Neural Networks: Tricks of the
Trade. G. Orr and K.-R. Müller, Springer Berlin / Heidelberg. 1524: 553.

Priddy, K. L., S. K. Rogers, et al. (1993). "Bayesian Selection of Important
Features for Feedforward Neural Networks." Neurocomputing 5(2): 91.

Pudil, P., J. Novovičová, et al. (1994). "Floating Search Methods in Feature
Selection." Pattern Recognition Letters 15(11): 1119.

Qin, L., L. Ding, et al. (2004). "Motor Imagery Classification by Means of Source
Analysis for Brain–Computer Interface Applications." Journal of Neural
Engineering 1(3): 135.

Ruck, D. W., S. K. Rogers, et al. (1990). "Feature Selection Using a Multilayer
Perceptron." Journal of Neural Network Computing 2(2): 40.

Setiono, R. and L. C. K. Hui (1995). "Use of a Quasi-Newton Method in a
Feedforward Neural Network Construction Algorithm." Neural Networks,
IEEE Transactions on 6(1): 273.

Setiono, R. and H. Liu (1997). "Neural-Network Feature Selector." Neural
Networks, IEEE Transactions on 8(3): 654.

Sivagaminathan, R. K. and S. Ramakrishnan (2007). "A Hybrid Approach for
Feature Subset Selection Using Neural Networks and Ant Colony
Optimization." Expert Systems with Applications 33(1): 49.

Śmieja, F. J. (1993). "Neural Network Constructive Algorithms: Trading
Generalization for Learning Efficiency?" Circuits, Systems and Signal
Processing 12(2): 331.

Solomon, R. and J. Leo van Hemmen (1996). "Accelerating Backpropagation
through Dynamic Self-Adaptation." Neural Networks 9(4): 589.

Stanley, K. O. and R. Miikkulainen (2002). Efficient Reinforcement Learning
through Evolving Neural Network Topologies. In Proceedings of the
Genetic and Evolutionary Computation Conference 2002, Morgan
Kaufmann.

78

Steppe, J. and K. Bauer Jr (1997). "Feature Saliency Measures." Computers &
Mathematics with Applications 33(8): 109.

Steppe, J. M. and K. W. Bauer Jr (1996). "Improved Feature Screening in
Feedforward Neural Networks." Neurocomputing 13(1): 47.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction,
Cambridge Univ Press.

Vapnik, V. N. and A. Y. Chervonenkis (1971). "On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities." Theory of
Probability & Its Applications 16(2): 264.

Verikas, A. and M. Bacauskiene (2002). "Feature Selection with Neural
Networks." Pattern Recognition Letters 23(11): 1323.

Vidal, J. J. (1977). "Real-Time Detection of Brain Events in EEG." Proceedings of
the IEEE 65(5): 633.

Weir, M. K. (1991). "A Method for Self-Determination of Adaptive Learning Rates
in Back Propagation." Neural Networks 4(3): 371.

Weng, W. and K. Khorasani (1996). "An Adaptive Structure Neural Networks with
Application to EEG Automatic Seizure Detection." Neural Networks 9(7):
1223.

Whitney, A. W. (1971). "A Direct Method of Nonparametric Measurement
Selection." Computers, IEEE Transactions on 100(9): 1100.

Widrow, B. and M. A. Lehr (1990). "30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation." Proceedings of the IEEE
78(9): 1415.

Wyndaele, M. and J. J. Wyndaele (2006). "Incidence, Prevalence and
Epidemiology of Spinal Cord Injury: What Learns a Worldwide Literature
Survey?" Spinal Cord 44(9): 523.

79

Yang, J. and V. Honavar (1998). Feature Subset Selection Using a Genetic
Algorithm. Feature Extraction, Construction and Selection, Springer: 117.

Yu, X.-H. (1992). "Can Backpropagation Error Surface Not Have Local
Minima." Neural Networks, IEEE Transactions on 3(6): 1019.

Yu, X.-H. and G.-A. Chen (1997). "Efficient Backpropagation Learning Using
Optimal Learning Rate and Momentum." Neural Networks 10(3): 517.

Yu, X.-H., G.-A. Chen, et al. (1995). "Dynamic Learning Rate Optimization of the
Backpropagation Algorithm." Neural Networks, IEEE Transactions on 6(3):
669.

Zhang, B.-T. and H. Muhlenbein (1993). "Evolving Optimal Neural Networks
Using Genetic Algorithms with Occam's Razor." Complex Systems 7(3):
199.

	University of Miami
	Scholarly Repository
	2014-06-25

	Dynamic Feature Selection in a Reinforcement Learning Brain Controlled FES
	Scott A. Roset
	Recommended Citation

	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1: INTRODUCTION
	1.1 Rehabilitation
	1.2 Brain – Computer Interfaces
	1.3 New Architecture with Reinforcement Learning
	1.4 Brain Plasticity

	Chapter 2: BRAIN-COMPUTER INTERFACE AUGMENTED Rehabilitation
	2.1 OVERVIEW
	2.2 METHODS
	Study Participants
	Experimental Task
	Neural Data Acquisition
	Muscle Stimulation
	A neuroprosthetic wrist-hand orthosis (NESS H200, Bioness Inc, Valencia, CA) was fitted to the right hand of the subject. FES was delivered to the extensor muscles (extensor digitorum communis and extensor pollicis brevis) to produce opening movement...
	Actor-Critic Reinforcement Learning Architecture
	Adaptive BCI Usage
	Critic as Error Potential Classifier

	2.3 RESULTS
	Closed-Loop Trials
	Performance of the System
	Comparison of Performance across Subjects

	2.4 DISCUSSION

	Chapter 3: FEATURE ADDITION
	3.1 OVERVIEW
	Bias-Variance Tradeoff
	Network Size and Reinforcement Learning

	3.2 DISCUSSION

	Chapter 4: FEATURE SELECTION
	4.1 OVERVIEW
	4.2 FEATURE SELECTION IN DYNAMIC FEATURE ADDITION
	4.3 DISCUSSION

	Chapter 5: VARIABLE LEARNING RATE
	5.1 OVERVIEW
	5.2 METHODS
	5.3 DISCUSSION

	Chapter 6: CONCLUSION
	REFERENCES

