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This work consists of the study for optimum design of the renewable energy systems. 

Different renewable energy systems including two solar energy systems, one wind 

turbine system and one fuel cell system have been optimized by using different 

optimization or robust techniques.  

The multi-objective optimum designs of flat plate and compound parabolic concentrator 

solar collector systems by using deterministic and probabilistic approaches are 

considered. Three objectives are considered in the optimization problem formulation: 

maximization of the annual average incident solar energy, maximization of the lowest 

month incident solar energy and minimization of the cost. The game theory methodology 

is used for the solution of the three objective constrained optimization problems to find a 

best compromise solution. Sensitivity analyses with respect to different parameters are 

conducted, which are expected to help designers in better understanding and aid in 

creating optimized solar collectors based on specified requirements.  

The robust design of horizontal axis wind turbines, including both parameter and 

tolerance designs, is presented. This work considers multiple design parameters 



(variables), multiple objectives, and multiple constraints simultaneously by using the 

traditional Taguchi method and its extensions; it provides a simple way of designing 

robust horizontal axis wind turbine systems under realistic conditions. The performance 

of these turbines is predicted using the axial momentum theory and the blade element 

momentum theory. In the parameter design stage, the energy output of the turbine is 

maximized using the Taguchi method and a novel extended penalty-based Taguchi 

method which is proposed to solve constrained parameter design problems. The results of 

the unconstrained and constrained parameter design problems, in terms of the objective 

function and constrains are compared. Using an appropriate set of tolerance setting of the 

parameters, the tolerance design problem is formulated so as to yield an economical 

design while ensuring a minimal variability of performance of the wind turbine. The 

resulting objective function is formulated as a multi-objective function and solved by 

traditional Taguchi method.  

In the optimum design of fuel cells, a three-dimensional, single-phase, multi-component 

mathematical model has been used for a liquid-fed direct methanol fuel cell. The genetic 

algorithm coupled with sequential quadratic programming optimization technique is 

applied based on the numerical model for seeking global optimum solution. The 

maximization of the power density and minimization of the cost are considered 

subsequently. The polarization, power density and methanol crossover curves are 

presented and explained to help designers better understand the significance of optimum 

design behind the optimization results.  

This work is expected to help designer improve the performance and quality as well as 

reduce the cost for renewable energy systems.   
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CHAPTER 1   

Introduction 

 

1.1 Current Status of Renewable Energy 

Energy is available in two different alternatives, the non-renewable energy and the 

renewable energy. The non-renewable energies including coal, petroleum, oil and natural 

gas are natural resources which need thousands of years to form and cannot be re-grown, 

regenerated or reused immediately. Nuclear energy, as a special type of energy, is still 

remaining controversial on the feature of environmental friendly and the risk of nuclear 

accidents and failures (Sovacool, 2010). Renewable energy is the energy that derived 

from natural processes and can always be replenished. Solar, wind, ocean, hydropower, 

biomass, geothermal, biofuels, tide and hydrogen are all considered as renewable 

energies. Climate change concerns, coupled with high energy prices, as well as the 

increasing energy demand for the developing world’s economy, many countries have 

shown an increased interest in the utilization of renewable energies. 

Renewable energies are categorized into traditional and modern renewable energies. The 

former mainly includes large hydropower energy and traditional biomass energy which 

usually refers to wood fuels, agricultural by-products and solid waste burned for cooking 

and heating purpose; the latter generally contains solar energy, wind energy, small 

hydropower energy, geothermal energy, ocean energy, modern biomass energy and 
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hydrogen energy. As shown in Fig. 1-1, in 2009, fossil fuel and nuclear energy contribute 

78% and 3% respectively to the world energy consumption and only about 19% of the 

global energy consumption was supplied from renewable energy, with 13% from 

traditional biomass heating and 3% coming from large hydroelectricity. All of the 

modern renewable energies only accounted for the rest 3%, but they are growing very 

fast. Compared to the traditional renewable energies, modern renewable energies not only 

contain the common renewability feature but also have other multiple benefits such as no 

greenhouse emission, no air pollution and low noise pollution. The total solar energy 

absorbed by Earth’s atmosphere, oceans and land masses is approximately 3,850,000 

exajoules (1 EJ = 1018 J) a year. It is estimated that 30 minutes of solar radiation falling 

on earth is equal to the world energy demand for one year (Kalogirou, 2004). Wind 

energy is created by the uneven heat from the sun. The amount of wind energy is 2,250 

exajoules a year (Archer and Jacobson, 2005), even though this number is much less than 

the total energy of solar, it is still the second largest amount of energy resource in the 

world. Compared to the total worldwide energy consumption in 2008 which is 474 

exajoules, either of the two energies would be sufficient to supply all of our energy 

demands.   

Table 1-1 presents the renewable energy status in the recent years from 2005 to 2009. It 

is clearly that modern renewable energies grows much faster than traditional renewable 

energies, particularly two most promising renewable energy sources—photovoltaic solar 

power and wind power—which have an average yearly increase rate of 57% and 28%. 

(REN21, 2007, 2009, 2010).   
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Table 1-1 Renewable energy status in the recent years (2005 ~ 2008) 

Selected Indicators 

Year 

2005 2006 2007 2008 2009 
Average 
yearly 

increase 
Unit 

Wind power  GW 59 74 94 121 159 28% 

Small hydro power GW 66 73 78 85 90 8% 

Biomass power GW 44 45 50 52 54 5% 

Grid-connected 
solar PV 

GW 3.5 5.1 7.5 13 21 57% 

Geothermal GW 9.3 9.5 9.7 10 11 4% 

Ocean wave power GW 0.3 0.3 0.3 0.3 0.3 0% 

Modern renewable 
power 

GW 182 207 240 281 335 17% 

Large hydro power  GW 748 813 830 860 890 4% 

Total renewable 
power 

GW 930 1020 1070 1141 1225 7% 

Solar collector for 
heating 

GWth 87 105 126 145 180 20% 

Geothermal heating GWth 28 33 41 50 60 21% 

Modern renewable 
heating 

GWth 115 138 167 195 240 20% 

Biomass heating  GWth 221 235 242 250 270 5% 

Total renewable 
thermal  

GWth 336 373 409 445 510 11% 

Bio-ethanol 
production 

Billion 
liters 

34 39 53 69 76 23% 

Bio-diesel 
production 

Billion 
liters 

3.9 6 10 15 17 46% 

Total Biofuel 
production 

Billion 
liters 

37.9 45 63 84 93 26% 
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Figure 1-1 World share of renewable energy supply (2009) 

Although the cost of many renewable energies have been declining significantly in the 

recent years, it is still much higher compared to conventional fuels. Typical power 

generation costs from conventional fuels are in the range of 3~8 U.S. cents per kilowatt-

hour (kWh). In contrast, cost of wind energy is in the range of 5~12 U.S. cents per kWh, 

cost of solar photovoltaic modules is as high as 20~80 U.S. cents per kWh. On the one 

hand, many countries and states have implemented incentives including government tax 

subsidies, partial copayment schemes and various rebates over purchase of renewable 

energies to encourage consumers to shift to renewable energy sources. On the other hand, 

engineers should make great effort to optimize the renewable product, make it cheaper 

and more efficient.  

Besides the high cost concern, solar and wind energy are challenged for their 

uncontrollable variability and intermittent availability compared to traditional internal 

combustion engines and conventional batteries. For example, solar energy is only 
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available during the daytime and the intensity of the solar radiation changes all the time 

even for a sunny day.  Wind energy needs a wind speed of at least 3 m/s to start to 

generate electricity and if the wind speed is too high, the turbines will have to be shut 

down to avoid damage. As a result, these two renewable energies are also called 

intermittent energy sources. These shortcomings can be overcome by hydrogen energy 

system, more specifically, hydrogen based fuel cells are considered a leading contender 

to replace internal combustion engines and conventional batteries.  

 

1.2 Solar Collectors 

Solar technology has been developed since the 7th century B.C. In the ancient times, 

people magnified glass to concentrate sun’s ray in order to make fires for various purpose. 

In 1767, Swiss scientist Horace De Saussure built the world’s first solar collector which 

was used for cooking food later in the South Africa expedition in the 1830s. In 1839, the 

French scientist Edmond Becquerel discovers the photovoltaic effect using an experiment 

method. In the following century, many scientist and researchers reported many different 

types of solar collectors and cells, but most of them cannot continuously power 

electronics. In 1954, Daryl Chapin, Calvin Fuller and Gerald Pearson developed the first 

silicon photovoltaic cell at Bell Lab (USA) that was capable of converting enough of the 

sun’s energy into electrical power to run equipment for daily use. The efficiency of this 

photovoltaic cell was about 4%. Now the efficiency of solar cells has significantly been 

improved to over 40%. In 2009, researchers at the Fraunhofer Institute of Solar Energy 
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Systems have set a new record of 41.1% for converting sunlight into electricity (Guter et 

al., 2009).  

The basic theory of any solar system is that the solar collectors absorb the incoming solar 

radiation and transfer the heat to a fluid (solar thermal collectors) or convert into 

electricity directly by using semiconductors (photovoltaic solar collectors). In general, 

there are two types of solar collectors: non-concentrating and concentrating. Non-

concentrating solar collectors usually have the same intercepting area and absorbing area 

while concentrating solar collectors usually have concave reflecting surfaces to intercept 

and focus the sun’s beam radiation to smaller receiving areas in order to get higher 

radiation flux. Various types of solar collectors are listed in Table 1-2 (Kalogirou, 2003).  

Table 1-2 List of Solar Collectors  

 Motion Collector type 
Absorber 

type 
Concentration 

ratio 

Indicative 
temperature 
range (°C) 

Stationary  

Flat plate collector  Flat 1 30-80 

Evacuate tube collector Flat 1 50-200 

Compound parabolic 
collector 

Tubular 1-5 60-240 

Single-
axis 

tracking 

Linear Fresnel reflector Tubular 10-40 60-250 

Parabolic trough collector Tubular 15-45 60-300 

Cylindrical trough 
collector 

Tubular 10-50 60-300 

Double-
axis 

tracking 

Parabolic dish reflector Point 100-1000 100-500 

Heliostat field collector  Point 100-1500 150-2000 
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In this work, two different types of stationary solar collector systems—flat-plate solar 

collectors and compound parabolic solar collectors—are selected as the objectives for 

optimization in the following chapters. Here is a belief introduction of the two types of 

solar collectors. 

Flat-plate collectors were first developed by Hottel and Whillier in 1950s (Whillier, 

1953). As shown in Fig. 1-2, when solar radiation passes through a transparent cover and 

impinges on  the  blackened  absorber  surface  of  high absorptivity, a large portion of 

this energy is absorbed by the plate and then carry away by the liquid fluids inside the 

tubes for  storage  or  use.  The underside of the absorber plate and the side of casing are 

well insulated to reduce conduction losses. The liquid tubes can be welded to the 

absorbing plate, or they can be an integral part of the plate. The liquid tubes are 

connected at both ends by large diameter header tubes.  

The flat plate solar collectors are the most economical and popular among the various 

types of solar collector systems since they are permanently fixed in positions, involve 

simple construction, and require little maintenance. They are used in many different 

thermal applications, such as air conditioning, industrial processes, domestic water 

heating, space-heating. Moreover, the most common design of photovoltaic panels is the 

flat-plate photovoltaic modules. Figure 1-3 presents one typical flat-plate module design 

of photovoltaic panel. It uses a substrate of metal, glass or plastic to provide structural 

support in the back, an encapsulate material to protect the cells and a transparent cover of 

plastic or glass. 
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Figure 1-2 Pictorial View of flat-plate solar collector 

 

 

Figure 1-3 A typical flat plate photovoltaic module or panel 
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Figure 1-4 Geometric  cross section of a symmetrical compound parabolic collector  

Compound parabolic collectors (CPC), first proposed by Winston and Hinterberger 

(1975), have the capability of reflecting to the absorber all the incident radiation within 

wide limits. Figure 1-4 shows a geometric cross section of a symmetrical compound 

parabolic collector.  By using multiple internal reflections, any radiation that is entering 

the aperture, within the collector acceptance angle, finds its way to the absorber surface 

located at the bottom of the collector. The absorber can take a variety of configurations. It 

can be flat as shown in Fig. 1-4 or cylindrical. Since it has both merit of flat plate solar 

collector and concentrating collector, it is an excellent substitute to the corresponding flat 

plate solar collectors. CPC could reach considerably higher temperatures and offer 

superior yearly energy delivery compared to flat plate solar collectors for thermal purpose.  
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1.3 Wind Turbines 

People start to use wind energy as early as 200 B.C. in the sail boats and sail-type 

windmills. The first practical windmillers were built in Sistan, a region between 

Afghanistan and Iran from the 7th century (Al-Hassan and Hill, 1986). They are used for 

grinding corns, drawing up water, grist milling and sugarcane industries (Hill, 1991). In 

the 14th century, Dutch windmills were established to pump water to the drain area of the 

Rhine River. The first automatically operated wind turbine for electricity production was 

built in Cleveland, Ohio (USA) by Charles F. Brush in 1888 (Righter, 1996). It was 18 

meters tall with a diameter of 17 meters, weight of 36 tons and had a 12 kW turbine.  

Nowadays, wind energy conversion devices can be broadly categorized into two types as 

shown Fig. 1-5, the horizontal-axis wind turbines (HAWT) and the vertical-axis wind 

turbines (VAWT).  

 

Figure 1-5 Wind turbine configurations 
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HAWTs need to have a main rotor shaft and electrical generator at the top of a tower, and 

the turbine are pointed into the wind while VAWTs set the main rotor shaft vertically and 

do not need to be pointed into the wind. Although VAWT has its advantages like easy 

install and simple control, it cannot produce as much energy as a HAWT at a given site 

with the same height. Today the majority of commercial turbines and all grid-connected 

commercial wind turbines are HAWTs. All the design and optimization in this thesis are 

referring to HAWT.  

The design a wind turbine system essentially involves determining the diameter of the 

rotor, number of blades, blade size, material and profile, chord length, setting of pitch 

angles, height of the tower, the type of transmission system and gear box.  

Since power is a function of the swept rotor area, which is a function of the diameter 

squared, the rotor has been designed larger and larger. It is evident shown in Table 1-3 

that the size of the wind turbines is growing dramatically in past thirty years. The hub 

height, which is equal to the height of tower, is also increase with the increase of rotor 

diameter.  

Table 1-3 Growth in Wind turbine size in the past thirty years  

Product 1981 1985 1990 1995 2000 2005 2008 

Rotor diameter (m)    15 20 40 50 80 124 126 

Hub height (m) 24 43 54 80 104 114 135 

Capacity (kW) 55 100 225 600 2000 5000 6000 
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The determination of the number of blades depends on many factors including 

aerodynamic efficiency, cost, reliability and noise. In general, two-blade and three-blade 

design are dominating in today’s commercial HAWTs’ market while fewer or more blade 

design is not that popular. The choice of two-blade or three-blade design depends on 

certain factors. The two-blade design has less nacelle weight and is much simpler to 

install. The three-blade design can increase the power coefficient by 5~10%, offer 

smoother power output and more balanced gyroscopic force, and has less chances of 

failure but it also involves 33.3% more weight and cost due to an extra blade. Wood and 

canvas sails were originally used on early windmills due to their low price, availability, 

and easy of manufacture. Nowadays, smaller blades can be made from light metals such 

as aluminum. Carbon fiber has recently been identified as a cost effective material with 

relatively higher stiffness in large HAWTs. The design of other parameters like control 

system, transmission system and gear box varies one case by another, but all the 

designers seek for optimum designs which is high-efficiency with relatively low cost.   

 

1.4 Fuel Cells 

A fuel cell is an energy conversion device that produces electricity directly from a fuel by 

electrochemical combination of the fuel with an oxidant. The fuel cell operating principle 

is discovered by William R. Grove (UK) in 1839 (Grove, 1839). But this discovery has 

not been further researched for a century until another English man Francis T. Bacon, 

who started working on practical fuel cells in 1937 and developed the first hydrogen-

oxygen fuel cell by the end of 1950.  At the beginning, all of the fuel cells are applied in 
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space shuttle, like Gemini and Apollo space program. This situation last until the early 

1990s, fuel cells started to be applied in some other field, like submarine and automobile 

as well as small electronics. But the fuel cells have not been fully commercialized even 

today due to relatively higher cost.  

In general, there are five major types of fuel cells, differentiate by the electrolyte used in 

the cells and they are: proton exchange membrane fuel cell (PEMFC), alkaline fuel cell 

(AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), and solid 

oxide fuel cell (SOFC). Although they are different types of fuel cells, they all work in 

the same general manner. As shown in Fig. 6, any type of fuel cells is made up of three 

segments which are sandwiched together, the anode, the electrolyte and the cathode. Two 

different chemical reactions occur at the interface of the three different components. The 

fuel at the anode side is oxidized and this reaction divides the fuel into a positivity 

charged ion and a negatively charged electron.  The freed electrons travel through a wire 

to create the electricity. The ions pass through the specifically designed electrolyte and 

arrive at cathode side. Once reaching the cathode, the ions are reunited with the electrons 

and the two react with a third chemical, usually oxygen to create water or / and carbon 

dioxide. Therefore the net result of the two reactions is that fuels are consumed, water or / 

and carbon dioxide is created, and electricity is generated which can be used to power 

electrical devices.  
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Figure 1-6 Diagram of a fuel cell 

A typical fuel cell produce an open circuit voltage around 0.6~0.8 V and the voltage 

decreases with the increase of current because of three losses including activation loss, 

ohmic loss and mass transport loss.  Fuel cells can be combined in series and / or parallel, 

namely fuel cell stack, in order for seeking higher voltage and / or current respectively in 

different applications.  

Direct methanol fuel cell (DMFC) is a subcategory of proton exchange membrane fuel 

cells (PEMFCs) in which methanol is used as the fuel. Since methanol is supplied to the 

fuel cell in liquid form, it is easy to store, deliver and recharge compared to hydrogen. 

This type of fuel cell was invented by Dr. Surya Prakash and Dr. George A. Olah in 1990. 

However many researchers later noticed that DMFC was limited in reaction speed and 

power production. This makes this type of fuel cell ill-suited for large power application, 

but ideal for small consumer goods such as mobile phones, digital cameras, laptops and 

some small vehicles such as forklifts and tuggers. Besides the disadvantage of low power 
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output, DMFC is also challenged for the high cost concern since it needs high loading 

platinum as a catalyst for both half reactions.  

 

1.5 Summary of Present Work 

The major concern of all types of renewable energies are the relatively higher cost 

compared to fossil fuels. The present work is expected to help designers to seek optimum 

designs of improving the performance and reducing the cost by using different 

optimization approaches. The design of some typical renewable energy systems including 

flat-plate solar collector, compound parabolic concentrator solar collector, horizontal axis 

wind turbine and direct methanol fuel cell system are chosen as optimum objectives. The 

following chapters of this dissertation are organized as follows.  

Chapter 2 and 3 present multi-objective optimum designs of flat plate and compound 

parabolic concentrator solar collector systems. Sequential Quadratic Programming 

combined with the game theory under determinist and probabilistic optimization 

technique is applied in the examples. The game theory methodology is used for the 

solution of the three objective constrained optimization problems including maximization 

of the annual average incident solar energy, maximization of the lowest month incident 

solar energy and minimization of the cost to find the best compromise solution. Most 

design variables and some other parameters are treated as probabilistic variables 

following normal distribution in order to make the optimization problem more realistic. 

The sensitivity analyses based on optimum design presented in this work are expected to 

help designers in creating optimized solar collectors based on any specified requirements.  
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In Chapter 4, the robust design of horizontal axis wind turbines, including both parameter and 

tolerance designs, is presented. This work considers multiple design parameters (variables), 

multiple objectives, and multiple constraints simultaneously by using the traditional Taguchi 

method and its extensions; it provides a simple way of designing robust horizontal axis wind 

turbine systems under realistic conditions. 

In chapter 5, a three-dimensional DMFC model is established and two optimization 

problems have been formulated. Most geometrical parameters and operating parameters 

are treated as design variables, while power output and cost are two different objective 

functions subject to multiple constraints. A hybrid method base on the genetic algorithm 

(GA) is applied for seeking the global optimization point.   

In Chapter 6, the conclusions and suggestions for further research are summarized. 
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CHAPTER 2 

Optimum Design of Flat-plate Solar 

Collector System 

 

2.1 Introduction and Literature Review 

The design of a flat-plate solar collector embraces many relationships among the 

collector parameters, field parameters and solar radiation data at any given location.  

Figure 2-1 shows multi-row flat-plate solar collectors in a given area. Increasing the 

number of solar collector rows and height of the collector will definitely increase the total 

collector area; however, it also increases the shading area (darker area shown in Figure 2-

1), which will reduce the radiation energy received from the sun.  

 

Figure 2-1 Multi-row flat plate collector in a given area
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Appelbaum and Bany (1979) and Bany and Appelbaum (1987) introduced the 

effect of shading in the analysis and design of a large-area flat-plate solar collector 

system. Gopinathan (1991) developed a method for the evaluation of the effect of shading 

on concentric cylindrical parabolic collectors. Other researchers (Groumpos and Kouzam 

1987, Reise and Kovach 1995, Carlsson, et al. 1998) presented different models 

including the effect of shading on different systems, including buildings. Weinstock and 

Appelbaum (2004, 2007) extended the model and formulated different optimization 

objectives including maximum incident energy on the collector plane, minimum field 

area for given incident energy, maximum energy per unit collector area and minimum 

cost and during a single objective optimization study. Because all objectives are 

important in a practical situation, the present work considers all the objectives 

simultaneously. The solution technique developed in this work is based on the concepts 

of game theory, which was first developed by Von Neumann and advanced by Von 

Neumann and Morgenstern (1947). Many researchers (Rao and Hati 1979, 1986, Hati and 

Rao 2001, Marston 2001, Miyamoto et al. 2008, Di Barba 2008) extended the application 

of game theory to solve problems from different areas of engineering with multiple 

objectives. Rao and Hati used game theory in the two-criteria design of beams (1986), 

and function generating mechanisms (1979), and Hati and Rao applied game theory for 

an air pollution control system related to environmental problems (2001). Marston (2001) 

used a game theory approach for the solution of several types of engineering design 

problems. Di Barba (2006) applied game theory to optimize the design of 

electromechanics. Miyamoto et al. (2008) utilized game theory to select a specific Pareto 

optimal solution among many optimum designs in an electromagnetic apparatus design. 
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Similar to many design problems, the solar collector design problem involves conflicting 

objectives in the form of maximization of average incident solar energy and minimization 

of cost. In the context of game theory, two players are associated with these two 

objectives. However, for achieving a true optimum and robust design of solar collectors, 

we need to consider another objective. It is possible that the annual average incident solar 

energy is maximized so that the collector gets too much energy in the summer; however 

its performance may be deficient in the winter due to the seasonal position of sun which 

results in low average temperatures. Thus in order to make the problem more realistic, a 

third objective, namely the maximization of the average incident solar energy for the 

lowest month (probably in winter) is introduced. More objective functions could be 

introduced into the formulation of the optimization problem, if necessary. It is to be noted 

that in the presence of multiple objectives, these will be no single design which will be 

optimum for all the objectives simultaneously. There will only be compromise solutions, 

known as Pareto-optimal solutions. Since there are multiple Pareto-optimal Solutions for 

any multi-objective problem, additional information or criterion needs to be used to find a 

specific Pareto-optimal (or compromise) solution. In this work, the final compromise 

solution (specific Pareto-optimal solution) is found using additional information based on 

supercriterion.            

In practice, most of the parameters influencing in any design problem are uncertain. For 

example, Datskov et al. (2005) considered the effect of uncertainty by employing eight 

design or control variables—temperature, pressure, thickness of anode, cathode, catalyst 

layer and membrane, diffusivity of methanol, concentration of methanol—on DMFC 

(directs methanol fuel cell) since uncertainty is always associated with chemical reaction 
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process of fuel cells.  Zhao et al. (2006) successfully estimated and optimized the wind 

farm capacity using probabilistic uncertainty analysis because no one can predict the 

wind velocity accurately. In the solar energy system design problem, the incident solar 

radiation measured in terms of the solar constant at any location varies from instant to 

instant. Only for convenience and simplicity, an average value of solar radiation is 

defined not only for each day but also for a typical day of the month/year. Available 

statistical analyses of solar radiation measurements acknowledge this variability / 

uncertainty. Kulkarni et al. (2007) incorporated uncertainty of solar radiation in the 

optimal design of a solar water heating system. Instead of getting a final optimum point, 

an optimum curve corresponding to different levels of solar radiation was determined. 

Different methods like Monte Carlo technique (Crawford and Rao, 1989, Conti and Raiti, 

2007) and fuzzy approach (Kaushika et. al, 2005) has been introduced to solve 

probabilistic optimization problems. In the present work, probabilistic optimization 

problems have been transferred into equivalent deterministic problems by applying the 

chance constrained programming technique.  

In the design and manufacture (or construction) of solar collectors, design parameters 

such as the width and length of a flat plate solar collector, distance between any two rows 

of solar collectors and the inclined angle of solar flat plate collectors are to be specified 

using tolerances, such as �̅ ± ∆� where  �̅ is the mean value and  ∆� is the tolerance 

(∆� = 3�
 if the manufacturing / construction process follows normal distribution) of a 

design parameter. In order to make the optimization problem more realistic, the present 

work treats many of the design variables as well as the solar constant, altitude and typical 
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day of each month as probabilistic variables following normal distribution in the 

probabilistic approach. The results are compared with the deterministic approach.   

As mentioned above, most design parameters are subject to variations due to random 

uncertainties, and manufacturing / installation errors; a sensitivity analysis based on the 

result of optimal design of deterministic approach is conducted and expected to identify 

the most (and least) influential parameters of the design. The result of the sensitivity 

analysis can help in identifying the parameters that need to be controlled tightly. Another 

sensitivity analysis with respect to the changes in the standard deviation of the design 

variables and the satisfaction level of the probabilistic constraints is conducted based on 

the result of optimal design of probabilistic approach. The work of sensitivity analyses 

are expected to help in a more realistic analysis and design of flat plate solar collectors. 

The optimization strategy presented and the results are expected to help designers to 

create optimized solar collectors depending on the specific requirements of the customers.  

 

2.2 Solar Insolation Analysis 

Since the atmospheric condition and air mass always change, the scattering and absorbing 

radiation also vary with time; thus it is difficult to accurately estimate the amount of solar 

radiation. It is therefore necessary to define a standard “clear” sky and calculate the 

hourly radiation that would be received on a horizontal surface under these standard 

conditions at a given location. Hottel (1976) provided a method of estimating the beam 

radiation transmitted through clear atmosphere, which takes into account the zenith angle 

and altitude for a standard atmosphere and for the four climate types (Figure 2-2). 

Accordingly, the atmospheric transmittance for beam radiation τb is given by:  

 )
cos

exp(10

z

b

k
aa

θ
τ

−
+=         (2.1) 
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where the constants a0, a1 and k for the standard atmosphere with 23 km visibility are 

found from the values *

1

*

0 ,aa and *k corresponding to altitudes less than 2.5 km: 

2*

0 )6(00821.04237.0 Aa −−=        (2.2) 

2*

1 )5.6(00595.05055.0 Aa −+=        (2.3) 

2* )5.2(01858.02711.0 Ak −+=        (2.4) 

where A is the altitude at a given location in kilometers  

 

Figure 2-2 Zenith angle, slope, surface azimuth angle and solar azimuth angle for a 

tilted surface 

Table 2-1 Correction factors for different climate types (Hottel, 1976) 

Climate Type  r0 r1 rk 

Tropical 0.95 0.98 1.02 

Midlatitude summer 0.97 0.99 1.02 

Subarctic summer 0.99 0.99 1.01 

Midlatitude winter 1.03 1.01 1 
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For different climate types, Table 2-1 gives the correction factors *

000 / aar = , *

111 / aar =

and */ kkrk = . Thus the transmittance of the standard atmosphere for beam radiation can 

be determined for any zenith angle and any altitude up to 5 km. The clear-sky beam 

radiation is given by: 

boncnb GG τ=  

where )
365

360
cos033.01(

n
GG scon +=        (2.5) 

and Gsc  is the solar constant (a value of 1367 W/m2 (Iqbal, 1983) is used for Gsc  in this 

work). The clear-sky horizontal beam radiation can be determined as  

zbonb GG θτ cos=          (2.6) 

Liu and Jordan (1960) developed an empirical relationship between the transmission 

coefficient for beam and diffuse radiation for clear days:  

bd ττ 294.0271.0 −=          (2.7) 

zdond GG θτ cos=          (2.8) 

The shaded and un-shaded irradiation per unit area is:     

)])(1([ shsh

db db
qqKqqLHS +−++=

      (2.9) 

where the yearly beam irradiation per unit area of an unshade collector (first row), qb, is 

given by:  

∑∑
= =

∆=
12

1

24

1

cos
n T

bb TGq θ         (2.10) 

The yearly diffuse irradiation per unit area of an unshade collector (first row), qd, is given 

by:  
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The average yearly beam irradiation per unit area of a shaded collector ((K-1) rows); ,sh

bq   

is given by: 

∑∑
= =

∆−=
12

1

24

1

)1(cos
n T

sb

sh

b TaGq θ        (2.12) 

and the average yearly diffuse irradiation per unit area of a shade collector ((K-1) rows); 

sh

dq , is given by: 
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24
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dh

sh

d

sh

d TGFq         (2.13) 

where Gb is the direct beam irradiance on the collector perpendicular to solar rays and 

Gdh is the horizontal diffuse irradiance. The angle between the solar beam and the normal 

to the collector (θ) is given by:  

γαβαβθ coscossinsincoscos +=       (2.14) 

The shape factors for un-shaded and shaded solar collectors are given by:   

)2/(cos2 β=dF          (2.15) 

ββ sin])1[(2/1)2/(cos 2/122 ddF sh

d −+−=      (2.16) 

where d is the normalized distance between two rows given by  

βsin/ HDd =          (2.17) 

The relative shaded area as is given by 

sss hla =           (2.18) 

with 
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ls  is the relative shadow length (2.19) 

10deg,90||,0 ≤≤≤≥ ss la γ
      

 

]tan/cos[sincos

cossin
1

αγββ
ββ

+
+

−=
d

hs  is the relative shadow width    (2.20) 

10deg,90||,0 ≤≤≤≥ ss ha γ , and 

βsin/ HLl =  is the normalized collector length.      

 

2.3 Formulation of Single-objective Optimization Problem 

2.3.1 Determinist form 

The flat-plate solar collector optimal design problem consists of several design valuables, 

a set of linear or nonlinear equality or inequality constrains and an objective function. 

Mathematically, it can be stated in the following general form: 

Minimize or maximize f(
→

X ) with respect to 
→

X ,  

subject to:  mjXg j ,....2,1,0)( ==
→

    (2.21) 

   njXh j ,....2,1,0)( =≤
→

    (2.22) 

lkbxa kkk ,....2,1, =≤≤     (2.23) 
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where xk is the kth component of the design vector 
→

X , and ak and bk are the lower and 

upper bounds on the design variable xk, respectively.  

2.3.2 Probabilistic form 

When some of the parameters involved in the objective function and / or constraints 

vary about their respective mean values, the optimization problem needs to be 

formulated as a stochastic programming problem. For simplicity, we assume that all 

the random variables are independent and follow normal distribution. A probabilistic 

nonlinear programming problem can be stated as:  

Find X��� which minimizes f(Y���), subject to mjpgP jj ,...,2,1,]0[ =≥≤
  

(2.24) 

where ��� is the vector of N random variables y1,y2,...,yN that might include the decision 

variables x1,,x2,...,x l . The case when �� is deterministic can be obtained as a special 

case of the present formulation. Equations (2.24) denote that the probability of 

realizing gj(���) less than or equal to zero must be greater than or equal to the specified 

minimum probability p j. The problem stated in (2.24) can be converted into an 

equivalent deterministic programming problem by applying the chance constrained 

programming technique as indicated below.  

1. Objective Function 

The Taylor’s series expansion of the objective function f(���) about the mean values of yi, 

_

iy is given by 
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If the standard deviations of all yi, σyi, are small, f(���) can be approximated by the first 

two terms of Eq.(25): 
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If all yi (i  = 1, 2, … , N) follow normal distribution, ψ(Y), a linear function of Y, also 

follows normal distribution. The mean and the variance of ψ are given by 
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since all yi are independent. For the purpose of optimization, a new objective function 

F(���) can be constructed as 

ψσψ 21)( kkYF +=
→

    (2.29) 

where k1 and k2 indicate the relative importances of ψ  and ψσ  for minimization.  
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2.  Constraints 

If some parameters are random in nature, the constraints will also be probabilistic and 

one would like to have the probability of satisfying a given constraint to be greater 

than a certain value. This is precisely what is stated in Eq.(2.24). The inequality 

constraint of Eq. (2.24) can be written as  

     ∫
∞−

≥
0

)( jjjg pdggf
j

     (2.30) 

where fgj(gj) is the probability density function of the random variable gj whose range 

is assumed to be  -∞ to ∞. The constraint function gj(���) can be expanded around the 

vector of mean values of the random variables, ,Y  in Taylor’s series as 
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From this equation, the mean value, jg , and the standard deviation, σgj, of  g j can be 

obtained as 
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By introducing the new variable 
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and noting that 
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Eq. (2.30) can be expressed as 

∫∫
∞−

−

−

∞−

− ≥
))((

2/

)/(

2/ 22

2

1

2

1
jjjgj p

t

g

dtede

φσ

θ

π
θ

π
   (2.36) 

where Φj(pj) is the value of the standard normal variate corresponding to the probability 

pj. Therefore Eq. (2.37) can be rewritten as Eq. (2.38):  
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(2.38) 

Thus the optimization problem of Eq. (2.24) can be stated in its equivalent deterministic 

form as: minimize F(���) given by Eq. (2.29) subject to the m constraints given by Eq. 

(2.38).   

2.3.3 Maximization of annual average incident solar energy 

The problem of optimization of the solar collector design is to obtain maximum incident 

energy on a given horizontal and fixed flat-plate collector of dimensions L × W (length × 
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width). The solar collector system (Figure 1) includes K rows of solar collectors with 

distance D between two neighboring rows and each collector is of length L and height H 

and inclined at an angle β with respect to the horizontal line. The design vector of the 

problem is:  
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The random variable vector is: 
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where A is the altitude, Gsc is the solar constant and Nd is the typical day of each month. 

These variables vary with the location.   

The average incident solar energy of the field (for maximization) is given by:  

)])(1([ shsh

db db
qqKqqLHQ +−++=     (2.41) 

and the objective function for minimization is taken as:  

)])(1([)(1

shsh

db db
qqKqqLHQYf +−++−=−=

→

  (2.42) 
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The expressions for computing qb, qd,  
sh

b
q , sh

d
q  are given in Appendix A. The constraints 

of the optimization problem can be stated as follows. 

The total width (length) of the collectors must be less than or equal to the maximum 

width (length) of the available land:  

0)1(cos ≤−−+ WDKHK β    (2.43) 

along with 

maxmin LLL ≤≤     (2.44) 

The distance between two adjacent collector rows (spacing) must be larger than the 

minimum distance specified by the relevant standards: 

minDD ≥      (2.45) 

The height of the collector above the ground may have a limitation based on the 

installation and maintenance requirements: 

max
sin hYH ≤β     (2.46) 

The collector tilt angle is required to vary in the range of 0° to 90°:  

oo 900 ≤≤ β      (2.47) 

The number of rows should be less than a specified maximum number, Kmax:  

maxKK ≤      (2.48) 

The dimensions of the solar collector are bounded as: 
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21 b
L

W
b ≤≤      (2.49) 

where b1 and b2 are constants.  

The number of rows should be a positive integer:  

     ∈K {Positive Integers}   (2.50) 

The integer requirement constraint, Eq. 2.50, is handled using the following procedure: 

Step1: Solve the optimization problem by treating all the design variables to be 

continuous. (i.e. by ignoring the constraint of Eq. (2.50)) Let the optimum solution give 

the number of  rows , for example, as 72.2 (non integer).  

Step2: Fix the number of rows at an integer value in the close neighborhood of the value 

found by the continuous variable optimization approach. If the optimal value of number 

of rows found in step1 is 72.2, we use the values of K=71, 72, 73 and 74, one at a time, 

successively and solve the corresponding continuous variable optimization problems (by 

fixing the value of K at a different integer each time).  

Step3: Compare the optimum values of the objective functions obtained for different 

settings of the value of K. Choose the result corresponding to the best objective function 

and the corresponding integral number of rows used as the final (approximate) optimum 

solution of the problem with the constraint of Eqs. (2.50).  

2.3.4 Maximization of average incident solar energy for the lowest month 

In general, the incident solar energy is more in summer than in winter; however, 

consumers need more heat energy in winter. It is therefore necessary to consider the 
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maximization of incident solar energy for the lowest month as the objective function. The 

design variables and constraints will be same as in the case of the optimization problem 

formulated in section 2.2.3. The lowest incident solar energy month from the twelve 

month information can readily be found to evaluate the value of the objective function.  

Then the objective function for minimization is given by  

f2 = - lowest incident monthly solar energy   (2.51)  

 

2.3.5 Minimization of cost 

Another important objective function in the design of a solar collector is to minimize the 

cost. The design variables are same as those indicated in Eq. (2.39). The objective 

function (cost) to be minimized can be expressed as: 

KHLsWLsCostf 213 +==     (2.52)  

where s1 is the unit cost of the land and s2 is the unit cost of the collector. Note that 

additional cost components such as those associated with piping, heat exchanger, pump 

backup energy system as well as maintainess cost could be added to the objective 

function if necessary.   

The following additional constraints are considered while minimizing f3.  

The daily average incident solar energy in any month should be at least 60% of the daily 

optimum value found in the case of the problem described in section 2.3.3:  

0)])(1([%60 ≤+−++×− shsh

db db
qqKqqLHQ     (2.53) 
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The average incident solar energy for the lowest month should be at least 60% of the 

daily optimum value found in the case of the problem describe in section 2.3.4:  

  0)])(1([%60 minmin ≤+−++×− shsh

db db
qqKqqLHQ   (2.54) 

2.3.6 Uncertainty of parameters 

As stated earlier, the design variables, H, L, D and β are random due to the manufacturing 

tolerances used during production / construction of flat plate solar collectors. The altitude 

varies with different cities. Even within a city, different locations may have different 

altitudes. For example, the solar panels installed near a beach and on the roof of a 

skyscraper will correspond to different altitudes. Thus it becomes necessary to treat the 

altitude as a random variable. The solar constant (Gsc) denotes the amount of Sun's 

incoming radiation per unit area, measured on the outer surface of Earth's atmosphere in a 

plane perpendicular to the rays. The solar constant includes all types of solar radiation, 

not just the visible light. In 1884, Langley attempted to estimate the solar constant from 

Mount Whitney in California. By taking readings at different times of the day, he 

attempted to remove the effects due to atmospheric absorption. However, the value he 

obtained, 2903 W/m², was found to be too large. Between 1902 and 1957, measurements 

by Abbot and others at various high-altitude sites found the value of the solar constant to 

lie between 1322 and 1465 W/m². Abbot proved that one of Langley's corrections was 

erroneously applied. His results estimated the value of the solar constant to lie between 

1318 and 1548 W/m², a variation that appeared to be due to the Sun’s and not the Earth's 

atmosphere. At present, the value of the solar constant, as measured by satellites, is found 

to be roughly 1367 watts per square meter (W/m²), although the value fluctuates by about 
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6.9% during the year (from 1412 W/m² in early January to 1321 W/m² in early July) due 

to the variations in the distance between Earth and Sun. In fact, the value of the solar 

constant was found to vary by few parts per thousand from day to day (Frohlich, 2006). 

Thus the solar constant is considered to be a random variable.  

Instead of computing the incident solar energy for each day of the month and then finding 

the average, a typical day of each month is chosen in this work in order to reduce the 

computational effort during optimization. Klein (1977) used both numerical and 

experimental methods to find a typical day which would represent the average radiation 

of each month as indicated in Table 2-1.   

Table 2-2 Recommended Average Days of Months  

Jan. Feb. Mar. Apr. May Jun. 

17 16 16 15 15 11 

Jul. Aug. Sep. Oct. Nov. Dec. 

17 16 15 15 14 10 

 

In this work, the fifteenth day of each month (the mean value of the average days 

indicated in Table 1) as the typical day for calculating value of the incident solar energy 

per day in any month, with 1% ~ 5% of the mean value chosen as the standard deviation 

of the incident solar energy in the formulation of the probabilistic optimization problem.   

The conversion of probabilistic objective and constraint functions to equivalent 

deterministic form requires the partial derivatives of f and gj with respect to the random 

variables yk (k = 1, 2, …, N) as indicated in Eqs. (2.29) and (2.38). These derivatives are 

computed numerically using a finite difference scheme in this work.  
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2.4 Formulation of the multi-objective optimization problem 

The problem of multi-objective optimization of the solar collector design can be stated in 

the following form: 

Minimize the objective functions (A maximization problem can be converted into a 

minimization problem, simply by changing the sign of the objective function):  

     )(),...,(),( 21

→→→

XfXfXf k
    (2.55) 

with respect to the design vector  

     }{ T

lxxxX ...21=
→

    (2.56) 

subject to the constrains 

     mjXg j ,...2,1,0)( ==
→

    (2.57) 

     njXh j ,...2,1,0)( =≤
→

     (2.58) 

     lkbxa kkk ,...,2,1, =≤≤     (2.59) 

In this work, the multi-objective problem stated in Eqs.(2.55)-(2.59) is solved using a 

modified game theory approach. A game is defined by the actions of a set of players who 

act according to their own strategies to maximize their individual gains. If the players act 

independently without cooperating with each other, the game is called a non-cooperative 

game and the resulting solution is called a Nash Equilibrium Solution (NES) [Nash, 

1953]. The Nash equilibrium is a solution concept of a game involving two or more 
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players, in which each player is assumed to know the equilibrium strategies of the other 

players, and no player has anything to gain by changing only his or her own strategy. If 

each player has chosen a strategy and no player can benefit by changing his or her 

strategy while the other players keep their unchanged, then the current set of strategy 

choices and the corresponding payoffs constitute a Nash equilibrium.  

If the players cooperate with each other, all of them could reach an eventual outcome that 

is better than the NES. The measure of success of a cooperative play is embodied in the 

concept of pareto-optimality, which involves a single objective function formed by a 

convex combination of the various objective functions. The effect of a cooperative game 

is represented by a typical pareto-optimal solution (POS).  

2.4.1 Game theory approach  

The concept of game theory can be illustrated with reference to a two objective, two 

design variable optimization problem whose graphical representation is shown in Figure 

2-3. Let f1(x1, x2) and f2(x1, x2) represent two scalar objectives and x1 and x2 two scalar 

design variables. It is assumed that one player is associated with each objective. The first 

player wants to select a design variable x1, which will minimize his/her objective f1 and 

similarly the second player seeks a variable x2, which will minimize his/her own 

objective f2. If f1 and f2 are continuous, then the contours of constant values of f1 and f2 

appear as shown in Figure 3. The dotted lines passing through O1 and O2 represent the 

loci of rational (minimizing) choices for the first and second players for fixed values of x2 

and x1, respectively. The intersection of these two lines, if it exists, is a candidate for the 

two objective minimization problem assuming that the players do not cooperate with each 
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other (non- cooperative game). In Figure 2-3, the point N ( *

2

*

1 , xx ) represents such a point. 

This point, known as a Nash equilibrium solution, represents a stable equilibrium 

condition in the sense that no player can deviate unilaterally from this point for further 

improvement of his own objective. This point has the characteristic that 

),(),( *

211

*

2

*

11 xxfxxf ≤     (2.60)  

and 

),(),( 2

*

11

*

2

*

11 xxfxxf ≤     (2.61) 

where x1 may be to the left or right of *

1x  in Eq. (2.60) and x2 may lie above or below *

2x  

in Eq. (2.61). Extension of the idea to a k-player non-cooperative game gives the 

mathematical definition of a Nash equilibrium solution as [Rao and Hati, 1979, 1986] 
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(2.62) 

So far it has been assumed that there exists only one Nash equilibrium point, i.e. the 

dotted lines in Figure 2-3 intersect only at one point. An interesting situation occurs when 

the two lines intersect at more than one point. In this case, since the values of f1 and f2 are 

different at different Nash equilibrium points, any player can have the advantage of 

declaring his/her move first thereby forcing the other player(s) to play at the equilibrium 

point of his/her own choice.  
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In a cooperative game, the two players agree to cooperate with each other and hence any 

point in the shaded region S of Figure 2-3 will provide both of them with a better solution 

than their respective Nash equilibrium solutions. Since the region S does not provide a 

unique solution, the concept of Pareto-optimal (non-inferior) solutions can be introduced 

to eliminate many solutions from the region S. It can be seen that all points in the region 

S can be eliminated except those on the continuous line O1ACQDBO2 which represents 

the loci of tangent points between the contours of f1 and f2. Every point on this line has 

the property that it is not dominated by any other point in its neighborhood, i.e. 

     )()( 11 PfQf ≤      (2.63) 

and   

     )()( 22 PfQf ≤     (2.64) 

 

Figure 2-3 Cooperative and non-cooperative game solutions 
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where Q is a point lying on the line O1O2 and P is a neighboring point. Thus all points of 

S that do not lie on the line O1O2 need not be considered during cooperative play. The set 

of all points lying on AB is known as a Pareto-optimal set and is denoted by Sp. Since Sp 

represents the solution set to be considered in a cooperative game, the main task in a 

multi-criteria optimization problem is to determine the solution set Sp.  

After determining the Pareto-optimal set, one has to pick up a particular element from the 

set by adopting a systematic procedure. If it is possible to convert all the criteria involved 

in the problem to some common units, then the problem will be greatly simplified. If this 

is not possible, further rules of negotiation in the form of a supercriterion or bargaining 

model should be specified before selecting a particular element from the set Sp. A 

procedure for finding the set Sp, and an element of Sp, based on a supercriterion, similar 

to the one considered by Rao and Freiheit [1991], is presented in the following section. 

2.4.2 Computational procedure 

The cooperative game theory approach of solving the multi-criteria optimization problem 

(MCOP) can be described as follows. The k objective functions are assumed to 

correspond to k players, each player representing one objective function. When playing 

the game, each player tries to develop his/her own strategy. The players will start 

bargaining from their respective reference (a point in the feasible space) values and put a 

joint effort in maximizing a subjective criterion (supercriterion) formed by themselves. It 

is assumed that each player has considered his/her own criterion before starting the game 

to find the maximum possible benefit he/she could achieve. This will also help him/her 

guarantee against the worst value. This analysis is necessary since each player should 
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know the extreme values of his/her own and others so that none of them begin to bargain 

from a reference value which is unrealistic. The following computational procedure has 

been used to implement the cooperative game theory.  

(1) Normalize the objectives so that no objective due to its magnitude will be favored. 

The following normalization procedure gives zero as optimum value and one as the 

worst value of ith objective function:  

)(

)()(
)(

*

*

iiiu

iii

ni
XfF

XfXf
Xf

−

−
=     (2.65) 

where Fiu is the worst value, and )( *

ii Xf  is the optimum value of the ith objective.  

(2) Formulate a supercriterion S as the product of deviations of all objective functions 

from their respective worst values: 

      

)}(1{
1

XfS ni
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−=Π
=     (2.66) 

(3) Formulate a Pareto optimal objective FC using a weighted sum method as: 

      ∑
=

=
n

i

nii XfcFC
1

)(      (2.67) 

 where the sum of the weights ci is equal to one. 

(4) Since FC has to be minimized and S has to be maximized, a new objective is 

constructed as (for minimization): 

      OBJ = FC – S     (2.68) 
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subject to all the constraints. The minimization of OBJ gives the compromise Pareto 

optimal solution of the multi-objective optimization problem. 

 

2.5 Illustrative examples and numerical results 

Numerical examples are considered to illustrate the game theory approach for the multi-

objective optimum design of stationary flat plate collectors using both the deterministic 

and probabilistic approach. The following data are assumed:  

Lmin = 15m, Lmax = 30m, Hmin = 0.5m, Hmax = 2m, Wmin = 15m, Wmax = 30m, Yh max = 2m, 

Dmin = 0.8m, βmin = 50, βmax = 200, Kmin = 50, Kmax = 200, s1 = 100 $/m2, s2 = 100 $/m2. 

The solar collector is assumed to be installed in a specific location, Miami (USA), where 

the latitude is 25.4°N and the altitude is 5m, and the solar collector is assumed to face the 

equator (south). The starting design vector is chosen as:     
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2.5.1 Deterministic optimization 

1. Deterministic optimization result 

For comparison, the single-objective and multi-objective optimization problem are solved 

using a deterministic approach. The initial design and the results of deterministic 

optimization are shown in Table 2-3 and 2-4(a) – (c). It can be seen that the height of the 
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collector (H) reached its upper bound in all single as well as multi-objective 

optimizations. The length of the collector (L) attained its upper bound and the distance 

between the collector rows (D) attained its lower bound in the case of minimizations of f1, 

f2 and multi-objective optimization. The relative weights of the objective functions f1, f2 

and f3 at the compromise solution achieved by the game theory are 0.8, 0.1 and 0.1, 

respectively. This indicates that the first objective function (annual solar energy) 

dominates the compromise solution as per the supercriterion used. The multi-objective 

(compromise) solution corresponds to a value of f1 that is 0.17% worse than the best 

value and 63.14% better than the worst possible value, a value of f2 that is 1.52% worse 

than the best value and 60.34% better than the worst possible value, and a value of f3 that 

is 62.38% worse than the best value and 12.00% better than the worst possible value. 

Table 2-3 Initial Design and deterministic single objective optimization results 

Parameter  H L D β K f1 f2 f3 

Unit m m m Deg # 106×W 106×W 106×$ 

Initial 1.8 27 0.9 40 80 -1.057 -0.8942 0.8786 

Min f1 2 30 0.8 35.3602 83 -1.3689 -1.1004 1.0956 

Min f2 2 30 0.8 53.4313 101 -1.3407 -1.1135 1.2049 

Min f3 2 21.6629 0.8543 30 67 -0.8376 -0.6839 0.6625 

Table 2-4(a) Initial design and deterministic multi-objective optimization result 

Parameter H L D β K 

Unit m m m Deg # 

Initial design 1.8 27 0.9 40 80 

Multi-objective optimization 2 30 0.8 30 79 
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Table 2-4(b) Initial design and deterministic multi-objective optimization results 

(weights of each single objective functions) 

Weights of objectives c1 c2 c3 

Initial Design 0.3333 0.3333 0.3334 

Multi-objective optimization 0.8 0.1 0.1 

 

Table 2-4(c) Initial design and determinist multi-objective optimization results 

(objective function values) 

Item 
f1 w/o 

standard 
deviation 

f2 w/o 
standard 
deviation 

f3 w/o 
standard 
deviation 

FC S 
Obj    

(FC-S) 

Unit 106×W 106×W 106×$ - - - 

Initial Design -1.057 -0.8942 0.8786 0.4986 0.1216 0.377 

Multi-objective optimum -1.3665 -1.0966 1.0758 0.0837 0.2276 -0.1439 

 

2. Sensitivity analysis with respect to the design valuables: Numerical results 

The effect of the five inputs (design valuables) on the performance of the flat plate solar 

collector, in terms of the three objective functions considered, is investigated in this 

section. The multi-objective optimum design (shown in Table 2-4(c)) is considered as the 

reference design and each of the design variables is changed by ±20% (one at a time) 

about its corresponding optimum value while keeping the values of the remaining design 

variables at their respective optimum values. The values of the three objective functions - 

average incident solar energy, average incident solar energy for the lowest month and the 

cost - are computed at different settings of the perturbed design variable (in the range 

±20%). The variations of the composite objective function (or supercriterion) with 

charges in the design variables are also found. The results are shown in Figures 4-8.  As 

expected, the objectives f1, f2 and f3 have conflicting nature. Figures 2-4, 2-5, 2-6 and 2-8 
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indicate that f1and f2 are positively correlated to the design valuables H, L, D and K but f3 

is negatively correlated to these variables. Figure 2-7 denotes that f1and f2 are negatively 

correlated to the design variables, H, L, D and K while f3 is positively correlated to these 

variables. All these figures show that the supercriterion decreases for any change in the 

design variables, unless, possibly, there is a constraint violation at a perturbed value of 

any of the design variable(s). It can also be seen, from Figs 4-8, that the three objectives 

vary by different amounts for any specific variation in any of the design variables. The 

variations in the objective functions can be seen to be almost linear with respective to 

variations in any of the five design variables H, L, D, β and K. In particular, the design 

variables H, L and K have greater influence on the three objectives compared to the other 

two design variables, D and β. This indicates that the solar collector parameters - height, 

length and number of rows - have more influence than the installation factors - tilt angle 

and the distance between two adjacent solar collectors on these objective functions. Thus 

both the manufacturer and customer should concentrate on improving the quality of 

construction of the solar collector.  
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Figure 2-4 Sensitivity analysis with respect to the design valuable H 

 

 

Figure 2-5 Sensitivity analysis with respect to the design valuable L 
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Figure 2-6 Sensitivity analysis with respect to the design valuable D 

 

 

Figure 2-7 Sensitivity analysis with respect to the design valuable ββββ 
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Figure 2-8 Sensitivity analysis with respect to the design valuable K 

 

2.5.2 Probabilistic optimization 

 1. Single objective optimization:  Minimization of (��� + ����: 

Figure 2-9 (a) – (e) present the variation of the mean values of design variables at the 

optimum solutions found by minimizing (��� + ���� with different values of probabilities 

specified for constraint satisfaction. Curves corresponding to different levels of 

uncertainty of the random variables (coefficient of variation ranging from 1% to 5%) are 

also shown in the figures. As can be seen from these figures, when the probability of 

constraint satisfaction is 50%, all the design variables remain the same irrespective of the 

coefficient of variation of the random parameters. The reason is that the probabilistic 

approach degenerates to the determinist optimization for this case.  
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As the probability of constraint satisfaction increases from 50%, the constraints tend to be 

tighter, and hence the optimization problems become more difficult to solve. Some 

design variables—the distance between two neighboring rows and tilt angle—increase 

when the probability of constraint satisfaction increases while the remaining design 

variables—the height of collector, width of collector—decrease when the probability of 

constraint satisfaction increases. Because the number of rows is not a random variable 

and it can only be integral numbers, the optimum values of this design variable result in 

non-smooth curves as shown in Fig. 2-9(e). 

It is observed that the optimum values of some design variables approach the lower 

(upper) bounds at 50% probability of constraint satisfaction; the optimum values tend to  

increase (decrease) gradually with an increase in the probability of constraint satisfaction. 

The reason is that with an increase in the probability of constraint satisfaction, the 

constraint tends to be tighter, which leads to a large deviation of the optimum values from 

their respective upper / lower bounds. 

In all the figures, optimum values of design variables at 50% constraint satisfaction have 

been set as reference values (base values). It can be seen from the figures, that with an 

increase in the value of constraint satisfaction up to 99% (for any specified variability 

(constant coefficient of variation of the random parameters), the change in the optimum 

values of the design variables is gradual and less than or equal to about 10%, whereas at 

99.99997% constraint satisfaction, the optimum values suddenly shoot to larger / higher 

levels. This phenomenon is especially prominent for two design variables, namely, the 

distance between two neighboring rows and tilt angle.  
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Figures 2-10 (a) – (c) present the values of the mean values of the three objective 

functions at the optimum solutions found by minimizing (��� + ���� at different values of 

constraint satisfaction with different levels of uncertainty (different values of coefficient 

of variation of all random variables). Similarly, Figures 9 (d) – (f) give the values of 

(��� + ����, (i = 1, 2, 3) at optimum solutions found by minimizing (��� + ����. It can be 

noticed that the curves in Figs. 2-10 (a), (b) and (c) have almost the same trends exhibited 

by Figs. 2-10 (d), (e) and (f), respectively. This is because the mean ��� of objective i (i = 1, 

2, 3) is much greater than its standard deviation, ��� (i = 1, 2, 3).  

With an increase in the level of constraint satisfaction probability, the absolute values of 

the objective functions decrease because of tighter constraints. It can be seen from Figs. 

2-10 (d) – (f) that with increasing values of the constraint satisfaction level up to 99% (at 

constant standard deviations of random variables), the change in the objective function 

values is gradual and is less than 20%, whereas at the 99.99997% constraint satisfaction 

level, the optimum values suddenly shoot to a newer levels and as a result, the objective 

function values lie far away from the base values. A larger value of the standard deviation 

of all random variables makes the absolute value of each objective function decrease 

rapidly. 

The mean values of the objective functions, ���  and ��� , vary between -10% and 50% of the 

baseline values and exhibit similar characteristics whereas the objective function value, 

��� , has a conflicting characteristic and varies between -40 and 10% of the baseline value.  

 2. Single objective optimization:  Minimization of (��� + ����: 
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In this case, the minimization of (��� + ���� is carried for different values of probabilities 

specified for constraint satisfaction using several values of the coefficient of variation for 

all the random variables. It is observed that the minimizations of (��� + ���� and (��� + ���� 
exhibited similar behaviors. The primary reason for this behavior can be attributed to the 

low altitude of the specific location (Miami) used in the numerical computations. For 

example, the variation in the monthly average temperature between summer months and 

winter months is not as significant (see Table 2-5) as for locations such as Chicago.  

Table 2-5 Monthly average temperature of Miami (Weather Channel, 2010) 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ave 

Average 
High 
(°F) 

76 78 81 84 87 90 91 91 89 85 81 78 84 

Average 
Low 
(°F) 

60 61 64 68 72 75 77 76 76 72 68 62 69 

 

As indicated in Table 2-5, the lowest temperate generally recorded in the month of 

January is between 60 and 76 °F. This is almost 90% of the yearly average temperature. 

Gong et al. (2005) presented the output in winter and the yearly average output of a 

photovoltaic system in Carbondale, Illinois based on different designs. The energy output 

in winter is only 50-70% of the yearly average energy output depending on different 

design. Wei et al. (2007) compared the solar radiation in two cities of China, Kunming 

(latitude 25.04° N) and Beijing (latitude 39.55°N). They concluded that the solar 

collectors in Kunming have much less seasonal fluctuation in yearly energy output 

compared to those in Beijing. Since the winter period for the cities like Chicago or 

Beijing, is relatively long, designers should consider to add maximization of the incident 
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solar energy for the whole winter time as one objective function instead of only the 

lowest month. The present approach and methodology can be applied to any location 

using the corresponding solar data.  

 3. Single objective optimization:  Minimization of (��� + ����: 

Figures 2-11 (a) – (e) present the mean values of design variables at the optimum 

solutions found by minimizing f3 with different values of probabilities specified for 

constraint satisfaction. The minimization of ��� + ���   has been carried by varying the 

probability level of constraint satisfaction for different values of the coefficient of 

variation of the random parameters. The results of this study exhibited some features 

similar to those found in the case of minimizations of (��� + ���� and (��� + ����. For 

example, when the probability of constraint satisfaction is 50%, all the design variables 

remain the same as the determinist optimum solution irrespective of standard deviation 

values of the design variables.  

The number of cases in which the optimum solutions are found is lesser in this case 

compared to the previous two cases because of the two extra constraints, Eq. (53) – (54), 

added in this case. When the standard deviation assumed for the random variables is only 

1% and 2%, the optimum solutions are found for all levels of probabilities of constraint 

satisfaction. But when the standard deviation assumed for all the random variables goes 

up to 3% and then 4%, no feasible solution can be found when the probability of 

constraint satisfaction is 99.99997%. When the standard deviation assumed for all the 

random variables further increases to 5%, optimum solution could only be found when 

the probability of constraint satisfaction is less than or equal to 95%.  
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It is found that the design variables—the width of the collector, tilt angle and number of 

rows—increased by up to nearly 30%, 30% and 10%, respectively, with an increase of 

the probability of constraint satisfaction while the design variable, height of collector, 

decreased up to nearly 10% with an increase of the probability of constraint satisfaction. 

The design variable, distance between two neighboring rows, has experienced nearly ±4% 

fluctuation about the base value.  

Figures 2-12 (a) – (c) present the values of ��� (i = 1, 2, 3) at the optimum solution found 

by minimization of (��� + ���� for different values of probability of constraint satisfaction 

at different values for the coefficient of variation of the random variables. Figures 2-12 (d) 

– (f) present the corresponding values of (��� + ���� (i = 1, 2, 3). It has been observed that 

the curves in Figs.2-12 (a), (b) and (c) and those in Figs.2-12 (d), (e) and (f) exhibit 

similar trends. This is because the mean value is very high compared to the standard 

deviation for any objective function i.  

When the probability of constraint satisfaction is 50%, all the values of ���, (i = 1, 2, 3), 

remain the same irrespective of the standard deviation of the design variables as shown in 

Figs. 2-12 (a) to (c). However, in Figs. 2-12 (d) to (f), at any particular value of constraint 

satisfaction including 50%, curves corresponding to different values of the standard 

deviations of the random variables lead to different values of ���, (i = 1, 2, 3) with larger 

standard deviations resulting in larger values.  

With increasing values of probability of constraint satisfaction, the absolute values of the 

objective functions increase because of tighter constraints. Larger values of standard 
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deviation of the random variables result in a rapid increase in the absolute values of each 

of the objectives.  

The mean values of the objective functions, ���  and ��� , vary between -40% and 0% of the 

respective baseline values and exhibit similar nature whereas the value of ��� , is 

conflicting and varies between 0 and 40% of the baseline value.  

4. Multi-objective optimization using game theory:  

The results of multi-objective optimization (using game theory) obtained with the 

coefficient of variation of the random variables varying from 1% to 5% are given in 

Table 2-6 and with the probability of constraint satisfaction varying from 50% to 

99.99997% are given in Table 2-7.  It is observed that with a coefficient of variation of 

random variables equal to 1%, the optimum values of design variables D (distance 

between two neighboring rows of collectors) attained its lower bound value and the 

design variables H (height of collector) and L (length of solar collector) attained their 

upper bound values when the probability of constraint satisfaction is 50%. As the 

probability of constraint satisfaction increased from 50% to 99.99997%, the optimum 

values of these design variables deviated gradually from their respective bounds. The 

optimum value of the tilt angle of the collector (the design variable β) increased gradually 

from 30º to 34º and the optimum number of rows of collectors (the design variable K) 

essentially remained constant at 79 as the probability of constraint satisfaction increased 

from 50% to 95% and slightly fluctuated from 77 to 80 as the probability of constraint 

satisfaction increased to 99% and finally to 99.99997%.  
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The annual average incident solar energy decreased from 1.3665 × 106 W to 1.1931 × 106 

W and the average incident solar energy for the lowest month also decreased from 1.0966 

× 106 W to 1.0013 × 106 W and the cost of the solar collector decreased from $ 1.0758 × 

106  to $ 0.9694 × 106 as the probability of constraint satisfaction increased from 50% to 

99.99997%. The maximum value of game theory objective, - (FC - S), also decreased 

from 0.1402 to 0.0903 as the probability of constraint satisfaction varied from 50% to 

99.99997%.  

Figures 2-13 (a) - (e) present the mean values of design variables at the optimum solution 

of the multi-objective optimization problem found for different values of probabilities 

specified for constraint satisfaction with different values of the coefficient of variation 

specified for all the random variables. As shown in these figures, when the probability of 

constraint satisfaction is 50%, as expected, all the design variables remain the same 

irrespective of standard deviation values of these design variables. Not only that, the 

probabilistic optimum solution is same as that of the deterministic optimum solution.  

Since game theory approach uses the results of single objective optimizations, it cannot 

be used for cases in which any of the single objective optimization problems result in 

infeasible designs. In the present case, the minimization of f3 considers additional 

constraints and hence yields the least optimum value. Thus the number of multi-objective 

optimization problems solved (for different cases) is same as the number of different 

cases that have feasible solutions during the minimization of f3. It is found that the 

distance between two neighboring rows and the tilt angle increased up to 18% and 30%, 

respectively, while the remaining design variables—the height of collector, width of 

collector—decreased up to 10% when the probability of constraint satisfaction increased 
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from 50% to 99.99997%. The number of rows, as the only one design variable that is not 

random variable, has a small fluctuation (±2.6%) when the probability of constraint 

satisfaction increased from 50% to 99.99997%.  

An observation on the variation of the weights (c1, c2, c3) used in the Pareto optimal 

solutions indicated that f1 is dominant in the multi-objective optimization problems that 

the probability of constraint satisfaction is less than or equal to 95%. In these cases, the 

weight of the objective function of f1 is found to gradually drop from 80% to 65% with 

an increase in either the standard deviation of the random variables or the probability of 

constraint satisfaction. The weights of the second and third objective function are found 

to be slightly increased from 10% to 15%. When the probability of constraint satisfaction 

increases to 99%, the weight of the second objective function suddenly increase to a 

higher level, around 20-40%, and when the probability of constraint satisfaction finally 

increases to 99.99997%,  it shoot to almost 80%. The weight of the third objective 

function never dominates in any case of the Pareto optimal solution.  

Figures 2-14 (a) – (c) present the values of ���, (i = 1, 2, 3) achieved as a result of multi-

objective optimization under probabilistic uncertainty. Figures 2-14 (d) – (f) give the 

values of (��� + ����, (i = 1, 2, 3) at the optimum solutions obtained by multi-objective 

optimization. It can be noticed that the two sets of curves [Figs. 2-14 (d), (e) and (f), and 

Figs. 2-14 (a), (b) and (c)] exhibit similar trends. The reason is that the mean value is 

much larger than the standard deviation for each objective function.  

As expected, in Figs. 2-14 (a) – (c), when the probability of constraint satisfaction is 50%, 

the values of ���  remain the same irrespective of the standard deviation values of the 
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design variables for any i (i = 1, 2, 3). However, in Figs. 2-14 (d) to (f), when the 

probability of satisfaction is 50%, different objective functions have different standard 

deviations and hence the curves start at different points on the vertical axis.  Although a 

50% constraint satisfaction with relatively larger standard deviation can result in superior 

energy output, it may not be suitable for practical applications. With an increase in the 

probability of constraint satisfaction, the absolute values of the objective functions 

decrease because of tighter constraints. The values of ���  and ���  vary between -10% and 

20% of the baseline values and exhibit similar variations whereas the value of ���  varies 

between -20 and 10% of the baseline.  
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Table 2-6 Effect of Variability (C.V.) on Multi-objective Optimization (Probability 

of constraint satisfaction: 95%) 

 

c.v. of 
uncertain 

parameters 

Optimal design parameters (mean values) Optimal 
objective 
function 

(FC-S), at �∗����� 

value† of 

�� = !���������"                    

at �∗����� 
 

H (m) L (m) D (m) β (deg) K 

0.01 1.9676 29.5145 0.8134 31.3127 79 -0.1264 #−1.3184−1.06491.0444 , 

0.02 1.9363 29.0444 0.8272 32.6980 80 -0.1107 #−1.2720−1.03461.0145 , 

0.03 1.9059 28.5891 0.8415 34.1617 80 -0.0998 #−1.2272−1.00550.9861 , 

0.04 1.8765 28.1479 0.8563 35.7100 80 -0.0489 #−1.1836−0.97740.9589 , 

0.05 1.8480 27.7200 0.8717 37.3499 81 -0.0034 #−1.1412−0.95030.9331 , 
†: Units: 106 W for f1, 106 W for f2, 106 $ for f3. 
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Table 2-7 Variation of Constraint Satisfaction Probability on Multi-objective 

Optimization (Coefficient of variation of uncertain parameters: 0.01) 

Probability 
of 

constraint 
satisfaction 

Optimal design parameters (mean values) Optimal 
objective 
function 

(FC-S), at �∗����� 

value† of 

�� = !���������"                    

at �∗����� 
 

H (m) L (m) D (m) β (deg) K 

0.50 2.0000 30.0000 0.8000 30.0000 79 -0.1402 #−1.3665−1.09661.0758 , 

0.80 1.9833 29.7492 0.8068 30.6640 79 -0.1330 #−1.3416−1.08021.0595 , 

0.90 1.9747 29.6203 0.8104 31.0170 79 -0.1294 #−1.3289−1.07181.0512 , 

0.95 1.9676 29.5145 0.8134 31.3127 79 -0.1264 #−1.3184−1.06491.0444 , 

0.99 1.9545 29.3172 0.8191 31.8796 80 -0.1213 #−1.2989−1.05221.0318 , 

0.9999997 1.9048 28.5714 0.9362 34.2212 77 -0.0903 #−1.1931−1.00130.9694 , 
†: Units: 106 W for f1, 106 W for f2, 106 $ for f3. 
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2.6 Conclusions 

The multi-objective optimum design of flat-plate solar collectors is presented with a 

consideration of solar radiation with shading effect. Three objectives, namely, the 

maximization of the annual average incident solar energy, the maximization of the lowest 

month incident solar energy and minimization of the cost, are considered. Most of the 

design variables and the altitude, solar constant and typical day of each month are treated 

as random variables following normal distribution. Game theory methodology with 

probabilistic uncertainty is used for the solution of the three objective constrained 

optimization problems to find a balanced solution. The solution represents the best 

compromise based on the terms of the super-criterion selected. Numerical results are 

obtained at a specific location (Miami, USA). The sensitivity analysis based on the 

results of deterministic approach is conducted at the optimum solution. Since the design 

parameters of the solar collector are subject to manufacturing and installation errors, a 

sensitivity study was conducted to find the influence of the design variables, as they 

change by ±20% about their respective optimal values, on the three objective functions as 

well as the supercriterion. It was observed that the construction parameters—height, 

length and number of rows—have more influence than the installation factors—tilt angle 

and distance between two adjacent panels—on the objective functions.  The standard 

deviation of each of the random parameters is varied from 1% to 5% of the respective 

mean values to find the influence of uncertainty on different objective functions. The 

numerical results are given to show the influence of the level of probability of constraint 

satisfaction and the coefficient of variation of the random variables. It is observed that the 

absolute value of each objective function is decreased with an increase in either the 
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probability of constraint satisfaction or the coefficient of variation of the random 

variables. Better objective function values can be obtained with a lower value of 

probability of constraint satisfaction, but it might not be suitable (safe) for practical 

applications. A relatively higher constraint satisfaction (like 99.9997%) would result in 

worse objective function values. The results of the present study help designers in 

producing optimum solar collectors based on customer requirements. As seen from the 

present results, there is a trade-off between the absolute values of the various objectives 

and the probability of constraint satisfaction. From practical point of view, an increase in 

the overall objective implies improvement in a combination of annual energy output, 

winter energy output and cost of manufacture. With a higher probability of constraint 

satisfaction, the manufacture has to sacrifice the energy values as well as the profit if the 

costs of raw and processed materials are relatively large.  
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CHAPTER 3 

Optimal Design of Compound Parabolic 

Concentrator (CPC) Solar Collector 

System 

 

3.1 Introduction and Literature Review 

The compound parabolic concentrator (CPC), first proposed by Winston and 

Hinterberger (1975), has the capability of reflecting all the insolation to the absorber over 

a relatively wide range of angles. Figure 3-1 presents a typical CPC, in which AB and CD 

are parabolic reflectors, which have the foci at C and B, respectively, and BC is a flat 

plate receiver. Any radiation within the collector acceptance angle enters through the 

aperture and finds its way to absorber surface by multiple internal reflections. Improving 

the efficiency and reducing the cost of these solar collectors is a hot research topic in the 

field of solar collectors. Abdul-Jabbar (1998) concluded through a series of experiments 

in the middle-east that the CPC solar collectors with double axis tracking system can get 

up to 75% more insolation. Kim et al. (2008) used both numerical and experimental 

methods to achieve the thermal efficiency of a CPC solar collector with single-axis 

tracking system is about 14.9% higher than a stationary CPC solar collector. Weinstock 

and Appelbaum (2009) compared the energy outputs of stationary flat plate solar 

collectors and flat plate solar collectors with various tracking systems. They found that 

the East-West horizontal axis multi-row PV panels with a North-South tracking 
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performed 16% better than the stationary PV panels while the North-South horizontal 

axis PV panels with an East-West tracking system could provide 17% extra power 

compared to the stationary PV panels. But from the cost point of view, stationary solar 

collector system is the most economic choice compared to the solar collectors with any 

tracking system. Small concentration ratio truncated CPC solar collectors without a 

tracking system are widely used in practice. Since the higher part of the parabola will 

prevent the radiation during some specific times, it will make the overall performance of 

the CPC solar collectors poor. Truncated CPC solar collectors are usually applied 

because a large portion of the reflector area can be eliminated in order to save the cost 

without seriously reducing the concentration. Many papers (Rabl, 1976, Derrick et 

al.1986, Carvalho et al. 1987 and Suzuki and Kobayashi 1995) discussed and 

recommended that the acceptance angle of CPC solar collectors should lie between 25◦ to 

55◦ depending on the environment. Some researchers (Mills and Giutronich, 1977, 

Trupanagnostopolos et.al, 2000, Mallick, et al. 2004, 2007) designed different 

asymmetric parabolic reflectors in order to attract more insolation. Mills and Giutronich 

(1977) concluded based on a comparative study of symmetrical and asymmetrical 

parabolic concentrators that asymmetrical design could collect higher and more stable 

energy. Trupanagnostopolos et.al (2000) compared the performance of three small CPC 

units and one large CPC unit, with the aperture area of the larger unit equal to three times 

more than that of the smaller units through experiments and confirmed that the three 

smaller units performed better than the large unit. Mallick et al. (2004, 2007) designed, 

constructed and experimentally tested a prototype asymmetric CPC solar collector. For 

the same receiving area, the power output of the CPC collector was found to be 1.62 
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times more than that of a flat plate photovoltaic panel. Other researchers focused on the 

design of different types of receivers. In general, receivers can be designed as flat plates 

(as shown in Fig 3-1), V-type (Fraidenraich et al., 2008) or cylindrical 

(Trupanagnostopolos and Souliotis, 2004).  Other practical designs with multichannels 

(Tripanagnostopoulos and Yianoulis, 1996) and bifacial absorbers (Tripanagnostopoulos 

et al,  2000) have also been used.  

 

Figure 3-1 Geometric cross section of a truncated compound parabolic solar 

collector  

Since a CPC solar collector has the merits of flat plate solar collector and concentrating 

collector, it is an excellent substitute for a flat plate solar collector. The CPC solar 

collectors can offer superior yearly energy delivery at comparable cost and reach 

considerably higher temperatures than most flat-plate collectors in thermal applications. 

Similar to flat plate solar collectors, the CPC solar collectors are also used for increasing 
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the intensity of irradiation in order to improve the performance of photovoltaic solar 

panels. For large area solar panel applications, a multi-row CPC solar (photovoltaic) 

collector system needs to be designed and optimized. As shown in Fig. 3-2, increasing 

the number of solar collector rows and height of the collector will definitely increase the 

total collector area; however, it also increases the shading area which will reduce the 

radiation energy received from the sun. Weinstock and Appelbaum (2004, 2007, 2009), 

Hu and Rao (2009) and Rao and Hu (2010) considered different types of optimum 

designs for large area multi-row flat plate solar collector systems with shading effects. 

However, the shading effect has not been considered in a large area multi-row CPC panel 

design problems until now. The present work is to incorporate the shading effect in a 

large area multi-row optimum design problem. Three objectives, including the 

maximization of the annual average incident solar energy, maximization of the incident 

solar energy for the lowest month and minimization of cost, are considered separately and 

simultaneously under both deterministic and probabilistic uncertainty.  

 

Figure 3-2 Multi-row compound parabolic collector in a given area 
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3.2 Deterministic Single-objective Optimization of CPC solar collector 

system 

The optimal design of a CPC solar collector system involves of several design variables, 

several random variables, a set of linear and nonlinear equality and inequality constraints 

and an objective function. Mathematically, it can be stated in the following general form: 

Minimize or maximize f(X) with respect to X,  

subject to:  mjXg j ,....2,1,0)( ==     (3.1) 

   njXh j ,....2,1,0)( =≤     (3.2) 

lkbxa kkk ,....2,1, =≤≤     (3.3) 

where xk is the kth component of the design vector X, and ak and bk are the lower and 

upper bounds on the design variable xk, respectively.  

3.2.1 Maximization of annual average incident solar energy 

The general aim of a CPC solar collector design is to obtain maximum incident energy on 

a given horizontal land with fixed dimensions L × W (length × width). A CPC solar 

collector system includes K rows of solar collectors with distance D between two 

neighboring rows and each row of collectors consists of N small CPC units. The small 

CPC unit has a receiver of length 12 , an acceptance angle of 	45  and is truncated at a 

height ratio 67  (the height of truncated CPC / the height of full CPC). All the solar 

collectors are inclined at an angle β with respect to the horizontal. The design vector of 

the problem is:  

�� = 812		45		9		:		;		<		=		67>7   (3.4) 
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The objective function is taken as the negative of the average incident solar energy of the 

field (for maximization):  

?� = 12 × 9 × 65A57 × = × BCDE5A5,D + CGE5A5,G + (< − 1�(CDIJE5A5,D + CGIJE5A5,G�K (3.5) 

��L���M = −?�       (3.6) 

where 65A57  can be calculated using Eqs. 3.7~3.14:  

    � = 12(1 + NOP45�     (3.7) 

    1 = 	12/NOP45      (3.8) 

    ℎ = �STN45/NOP�45     (3.9) 

    17 = �IUV(∅XYZ[�IUV�(∅X/�� − 12     (3.10) 

ℎ7 = �5\I(∅XYZ[�IUV�(∅X/��      (3.11) 

67 = ]^_	(∅XYZ[�IUV�(∅X/��IUV�(∅X/��5\IZ[ 	    (3.12) 

65A5�`aa = �IUVZ[ = bbc     (3.13) 

65A57 = bXbc      (3.14) 

The expressions for computing qb, qd,  
sh

b
q , sh

d
q  are given in the section 2.2.  

For the constraints, the total length of each collector plate (H) should be less than or 

equal to a maximum value and the total width (length) of the collectors must be less than 

or equal to the maximum width (length) of the available land:  
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    <=17STN: + (< − 1�; −d ≤ 0   (3.15) 

The side constraints are taken as:   

f = = ∙ 17 ≤ fhb
    (3.16) 

12hUV ≤ 12 ≤ 12hb
    (3.17)  

45hUV ≤ 45 ≤ 45hb
    (3.18) 

0 ≤ : ≤ 90     (3.19) 

9hUV ≤ 9 ≤ 9hb
    (3.20) 

     ;hUV ≤ ;     (3.21) 

     0 ≤ 67 ≤ 1     (3.22) 

     1 ≤ < ≤ <hb
    (3.23)  

1 ≤ = ≤ =hb
    (3.24)  

1 ≤ 65A57 ≤ 2     (3.25) 

along with a positive integer requirement (constraint) for the number of rows N and the 

number of units K:  

    = ∈ 8Positive	Integers>    (3.26) 

    < ∈ 8Positive	Integers>    (3.27)  

The integer requirement constraints, Eqs. (3.26~3.27), are handled using the following 

procedure: 
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Step1: Solve the optimization problem by treating all the design variables to be 

continuous. Let the optimum solution give the non-integer number for the rows K and for 

the units N.  

Step2: Fix the number of rows K and number of units N at integer values in the close 

neighborhood of the respective values found by the continuous variable optimization 

approach. If the optimal values of the number of rows and units found in step1 are K = 

72.2 and N = 15.2, for example, we fix an integer value for K and N out of the values, K= 

71, 72 or 73 and N = 14, 15 or 16, one at a time, successively and solve the 

corresponding continuous variable optimization problems.  

Step3: Compare the optimum values of the objective functions given by the solution of 

the various optimization problems formulated with different settings of the values of K 

and N. Choose the result corresponding to the best objective function and the 

corresponding integer numbers of rows and units used as the final (approximate) 

optimum solution of the problem with the constraint of Eqs. (3.26) ~ (3.27).  

3.2.2 Maximization of average incident solar energy for the lowest month 

In general, the incident solar energy is more in summer than in winter; however, 

consumers need more heat energy in winter. It is therefore necessary to consider the 

maximization of incident solar energy for the lowest month as the objective function: 

f2 = - lowest incident monthly solar energy   (3.28) 

The design variables and constraints will be same as in the case of the optimization 

problem stated in section 3.2.1.  
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3.2.3 Minimization of cost 

Another important objective in the design of a solar collector is the minimization of cost. 

The design variables are same as those indicated earlier. The objective function (cost) to 

be minimized can be expressed as: 

   uTNv = uTNvwx + uTNv2y�ay5z\2 + uTNvabVG   (3.29)  

uTNvwx = {�179    (3.30) 

uTNv2y�ay5z\2 = {�|2y�ay5z\2   (3.31) 

|2y�ay5z\2 = |I(1 + NOP45� } 5\IZ[IUV�Z[ + ~T� � (��IUVZ[�(��5\IZ[�IUVZ[[5\IZ[���(��IUVZ[�]� − √�5\IZ[(��IUVZ[��.�� (3.32) 

     uTNvabVG = {�9d    (3.33)  

where s1 is the unit cost of receiver (photovoltaic solar panel), s2 is the unit cost of 

reflector and s3 is the unit cost of land. Note that additional cost components such as 

those associated with piping, backup energy equipment, maintenance cost could also be 

added to the objective function if necessary.   

The following additional constraints are considered while minimizing f3. The daily 

average incident solar energy in any month should be at least some percentage (P 

between 70%-100%) of the daily optimum value found in the case of the problem 

described in section 3.2.1 (Q*): 

    ?� − (�� × ?�∗ ≤ 0     (3.34) 
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3.2.4 Numerical Example 

The single and multi-objective optimization of CPC solar collectors is illustrated by 

considering a numerical example. The game theory approach is considered for the multi-

objective optimum design problem. The following data are assumed:  

12hUV = 0.10	(��, 12hb
 = 0.30	(��,  45hUV = 25	(����, 45hb
 = 90	(����, Lmin = 15m, 

Lmax = 30m, Hmin = 0.5m, Hmax = 2m, Dmin = 0.8m, Kmax = 150, Nmax = 150, P = 80%, s1 = 

100 $/m2, s2 = 20 $/m2, s3 = 1/20/50 $/m2, 	E5A5,D =	1.0, E5A5,G = 1.0 

The solar collector is assumed to be installed in a specific location, Miami (USA), where 

the latitude is 25.4°N and the altitude is 5m, and the solar collector is assumed to face the 

equator (south). The starting design vector is chosen as:  

�� = 812		45		9		:		;		<		=		67>7 = 80.10	40	25	40	1.0	70	10	0.5>7  (3.35) 

The result of the single-objective optimization problems, along with the initial design, are 

listed in Tables 3-1 (a) and (b). It can be noticed that the optimum value of the truncation 

ratio rT is almost zero for the optimization problems involving the minimizations of f1 

and f2; this indicates that the optimum CPC solar collectors are totally truncated and tend 

to reach flat plate solar collectors in these cases. As a result, the optimum values of the 

design variables L, β, D, and K are very similar to those obtained in the case of flat plate 

solar collectors. One more integer constraint (N must be integer) makes the values of the 

objective functions f1 and f2 slightly less than the corresponding optimum results obtained 

in the case of flat plate solar collectors. In Table 3-2(b), the cost per unit watt ($/W), 

corresponding to the minimizations of f1 and f2 are 0.4516 and 0.5286, respectively, 

while the value reduces to 0.3642 in the case of minimization of f3. The results indicate 
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that the primary (significant) objective in designing CPC solar collector systems is to 

reduce the cost per unit energy instead of getting more solar radiation. Since a reflector 

cannot direct 100% of radiation to the receiver, the theoretical insolation achieved by a 

CPC solar panel will be less than the incident energy received by a flat plate solar panel 

in any given area. However, the compound parabolic concentrator is usually much 

cheaper than the price of solar cells. O’Gallagher (2008) reported that the price of the 

concentrator is approximately 20% of the solar cell. Therefore it is practical to design a 

more economic multi-row solar collector system by using CPC units.  

Table 3-1(a) Initial design and single-objective optimization results (design variables) 

Design variables 

Objectives 
Ar θc W β D 

K N rT 
(m) (deg) (m) (deg) (m) 

Initial 0.20 40.00 25.00 40.00 1.00 70 10 0.5000 

Min f1 0.10 89.90 30.00 35.94 0.80 83 20 0.0010 

Min f2 0.10 89.90 30.00 51.36 0.80 98 20 0.0010 

Min f3 0.10 25.00 29.22 21.20 0.80 70 10 0.2680 

 

Table 3-1(b) Initial design and single-objective optimization results (objective 

functions and other outputs) 

objectives and other outputs 

Objectives cpc ratio 
f1 f2 f3 solar cell land reflector f3/f1 

(106×W) (106×W) (106×$) (106×$) (106×$) (106×$) ($/W) 

Initial  1.4450 -1.2675 -1.0230 0.5517 0.3500 0.1120 0.0897 0.4353 

Min f1 1.0000 -1.3685 -1.0967 0.6180 0.4980 0.1192 0.0000 0.4516 

Min f2 1.0000 -1.3395 -1.1225 0.7080 0.5846 0.1200 0.0000 0.5286 

Min f3 1.8095 -1.0954 -0.8828 0.3989 0.2163 0.1056 0.0770 0.3642 
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3.2.5 Sensitivity Analyses 

In the first single-objective optimization problem, the result provides a flat plate solar 

collectors design which has a maximum average incident solar energy of ?�∗ = 	1.3685 ×
10�	W. The primary objective for the optimum design of CPC solar panel system is 

aiming at reducing overall cost and cost per unit energy of solar energy system. Therefore, 

this section investigates the sensitivity analyses with respect to the energy output 

expectation ratio (P), mathematically formulated as ?/?�∗, in the range of 70% to 100%. 

Sensitivity analyses with respect to lower values of P (less than 70%) have limited 

significance and therefore they are excluded in the current analysis. Since these solar 

panels can be installed in a rural place or in an urban area, the price of land (s3) can be 

variable. Three different levels of land prices—low s3 = 1 $/m2, medium s3 = 20 $/m2 and 

high s3 = 50 $/m2—are incorporated and compared in the sensitivity analyses. This 

section investigates primarily on the effects of the design variables as well as the CPC 

ratio and the cost.  

The variations of the design variables with respect to the change of P under different land 

prices are presented in Fig. 3-3 (a) – (h) respectively. Each figure demonstrates that the 

optimum result of each design variable is singular when P = 100% regardless of the unit 

price of land. Hence, the optimum values corresponding to P = 100% were set as the 

reference values (base lines) in Fig. 3-3 (a) – (h). The horizontal axis presents the value 

of P in the range from 70% to 100% and the vertical axis presents the different values of 

corresponding design variables. The variation of the design variable x1, namely the width 

of receiver, is presented in Fig. 3-3 (a). In this figure, most of the optimum results stay at 

the bottom of the graph, in a range from 0 to 10% above the lower bound except for the 
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optimum results under relatively lower P value (70% and 75%) and medium or high land 

cost (s3 = 20 and 50). The numerical observation matches with the experimental results 

concluded by Trupanagnostopolos et.al (2000) that multiple small CPC units can perform 

better than one large CPC unit.  When the value of P decreases, however, less energy 

output is expected and therefore larger CPCs are recommended due to economic reasons. 

Figure 3-3 (b) shows the variation of the design variable x2, namely half of the 

acceptance angle. The angle remains essentially the same in the lower bound (25 degree) 

when the value of P is less than or equal to 85%. When the values continue increasing to 

90% and 95%, the optimum value increases dramatically and eventually all of the curves 

converged to one point which is the upper bound (90 degree) when the value of P is equal 

to 100%. Fig.3-3 (c) presents the variation of the third design variable, namely the width 

of the CPC solar panel. The results of this design variable remain at the upper limit 

regardless of the energy expectation ratio when the unit price of land is relatively low (s3 

= 1). However, when the unit price of land is medium or high, the optimum results no 

longer reach the upper limit at relatively lower energy expectation ratio. Thus, higher unit 

prices of land lead to lower optimum values in any given energy expectation ratio lower 

than 100%. Figure 3-3 (d) demonstrates the variation of the optimum results for the 

design variable x4. When the energy expectation ratio is between 70% and 95%, the 

optimum values fluctuate in the range of 20 to 27 degrees. In order to bring energy output 

expectation ratio to 100%, the optimum results shifts to flat plate solar collectors design. 

As a result, the optimum values suddenly shoot to 35.9394 degree which is much higher 

than any of the other optimum values. Fig. 3-3 (e) presents the variation of the optimum 

values of the design variable x5, namely the distance between two neighboring rows. It is 
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clear that the optimum results remain essentially in the lower bound when the unit price 

of land is medium or high. In contrast, when the unit price of land is low, the distance 

between two neighboring rows no longer adheres to the lower limit and shading effects 

can be decreased with increase of the value for this design variable. Figures 3-4 (f) and (g) 

show the variation of the optimum values of the design variables, namely, number of 

rows and number of the CPC units in one panel, respectively. The tendency of all the 

curves in the two figures appears to be similar. Under the relatively lower energy output 

expectation ratio, fewer rows and CPC units per row are needed in the optimum design. 

Figure 3-3 (h) provides the variation of the design variable x8, namely truncated ratio of 

CPC. It is clear that the height of the truncated CPC is less than 30% of the height of the 

full CPC. This indicates that all of the optimum CPC units should be truncated by more 

than 70%.   

Figure 3-3 (i) gives the variation of the CPC ratio with respect to the optimum energy 

output expectation ratio under different unit prices of land. The CPC ratio fluctuates in a 

small range between 1.70 and 1.85 when the energy output expectation ratio varies 

between 70% and 85%. With the energy output expectation ratio continuing to increase, 

the CPC ratio decrease dramatically and finally reaches one when the energy output 

expectation ratio hits 100% and the optimum result shifts to flat plate solar collectors. 

Figure 3(j) presents the relationship between the cost per unit energy and the energy 

expectation ratio under different unit prices of land. It is clear that the three curves are 

parallel with each other. For any given unit price of land, the cost per unit energy is 

almost constant when the value of the energy output expectation ratio is lower than 85%. 

When the value of energy output expectation ratio increases to more than 85%, the cost 
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per unit energy starts to increase. The value continuously increases until it reaches a peak 

value, when the energy output expectation ratio arrives 100%.  

 

         (a)                                    (b) 

 

         (c)                                    (d) 
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         (e)                                    (f) 

 

         (g)                                    (h) 

 

(i) (j) 

Figure 3-3 Sensitivity Analysis with respect to P and S2 
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3.3 Optimization of CPC solar collector system Under probabilistic 

uncertainty 

The procedure of solving optimization problems under probabilistic uncertainty is 

provided in the section of 2.3.2 and the procedure of formulating multi-objective 

optimization problem is given in section 2.4. Similar to the example illustrated in the flat-

plate solar collector design, a numerical example of multi-objective optimum design of 

stationary CPC solar panel is considered under probabilistic uncertainty in this section. In 

addition to the parameters assumed in the deterministic numerical example in section 

3.2.4, the following extra conditions are assumed: all of the design variables except 

number of rows (K) and number of the CPC units in each solar panel (N) are assumed to 

have a standard deviation with 1% to the corresponding mean value. Other uncertain 

parameters including altitude, solar constant and typical day of each month are assumed 

to have a standard deviation with 5% of the corresponding mean value.  

3.3.1 Numerical example of single-objective optimization problems under 

probabilistic uncertainty 

Three different single objective functions, namely, maximization of the annual average 

incident solar energy, maximization of the incident solar energy for the lowest month and 

minimization of the cost, were considered. A sensitivity analysis with respect to the 

constraint satisfaction which varies in six different levels—50%, 80%, 90%, 95%, 99%, 

and 99.99997%—is given as part of the numerical example. Figure 3-4 (a) – (p) 

demonstrate the variation of the design variables, objective functions, as well as CPC 

ratio and cost with respect to the probability of constraint satisfaction.  
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Several common features can be found through all the figures. For example, the number 

of cases in which the optimum solutions found in minimization of the cost (f3) is lesser 

compared to maximization of the average incident solar energy (f1) and maximization of 

the incident solar energy of the lowest month (f2) because of the extra constraint, Eq. 

(3.34). No feasible solution can be found when probability of constraint satisfaction is 

99.99997%. When the probability of constraint satisfaction is 50%, all the design 

variables remain exactly the same as the determinist optimum solution.  

Figure 3-4 (a) – (h) presents the variation of the design variables with respect to the 

probability of constraint satisfaction. Most of the design variables, namely, length of 

receiver (Fig. 3-4(a)), half of acceptance angle (Fig. 3-4(b)), width of CPC solar panel 

(Fig. 3-4(c)), number of rows (Fig. 3-4(f)), number of CPCs in one panel (Fig. 3-4(g)), 

behave consistently for the first two objectives and conflict with the third objective 

function. The optimum values of the design variable, namely tilt angle (Fig. 3-4(d)), do 

not affect too much with respect to the increase of the probability of constraint 

satisfaction under a given objective function. The design variable, namely, distance 

between two neighboring rows (Fig. 3-4(e)) increases with the increase of the probability 

of constraint satisfaction irrespective of the objective functions. The optimum value of 

the design variable, namely, truncated ratio (Fig. 3-4(h)), is very close to zero for the first 

two objective functions. It means the CPC collector is almost fully truncated and shift to 

flat plate solar collector. The feature can also be detected in Fig. 3-4 (i), namely, CPC 

ratio. The CPC ratio corresponding to the first two objective functions are almost zero 

irrespective to the variation of the probability of constraint satisfaction. The CPC ratio 

corresponding to the objective function f3 is fluctuated in a small range between 1.72 and 
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1.77. As shown in Fig. 3-4 (j), it is clearly that the cost per unit energy does not affect too 

much with the change of the probability of constraint satisfaction, and the values are 

approximately equal to 0.45, 0.51 and 0.36 $/W corresponding to objective functions f1, 

f2 and f3, respectively.  

Figure 3-4 (k), (m) and (o) presents the variation of deterministic objective functions (fi, i 

= 1, 2, 3), respectively and Fig. 3-4 (l), (n) and (p) presents the variation of probabilistic 

objective functions (��� + ��� , j = 1, 2, 3), respectively, with respect to the change of 

probability of constraint satisfaction. The curves of the deterministic objective functions 

(fi, i = 1, 2, 3) exhibit very similar trend to the corresponding curves of probabilistic 

objective functions (��� + ���, j = 1, 2, 3) for any single-objective optimization problem. 

With increasing values of probability of constraint satisfaction, the value of annual 

average incident solar energy and the incident solar energy for the lowest month is 

always decreasing and the value of cost is always increasing because of tighter 

constraints.  

 

(a) (b) 



87 
 

 
 

 

         (c)                                    (d) 

 

         (e)                                    (f) 

 

         (g)                                    (h) 
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           (k)                                    (l) 

 

           (m)                                    (n) 
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           (o)                                    (p) 

Figure 3-4 Sensitivity Analysis with respect to probability of constraint satisfactions 

 

3.3.2 Numerical example of multi-objective optimization problems under 

probabilistic uncertainty 

Based on the results from the single-objective optimization, multi-objective optimization 

problems are generated and solved by using the game theory approach (Eq. 2-68) under 

probabilistic uncertainty; and the results are listed in Table 3-2 (a)-(b).  

Since game theory approach uses the results of single objective optimizations, it cannot 

be used for cases in which any of the single objective optimization problems result in 

infeasible designs. In the present case, the minimization of f3 considers additional 

constraints and hence yields the least optimum values. Thus the number of multi-

objective optimization problems solved (for different cases) is same as the number of 

different cases that have feasible solutions during the minimization of f3.  

An observation on the variation of the weights (c1, c2, c3) used in the Pareto optimal 

solutions indicated that f3 is dominant in the any of the multi-objective optimization 
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problems. The weights of the first and second objective function are found to lie between 

10% and 11% in all the cases. Hence, the results of multi-objective optimization problem 

are far away from the optimum solutions of the first two single-objective optimization 

problem, which are flat plate solar collector designs.  

The design variables including the length of receiver, width of the solar collector, tilt 

angle, and truncated ratio are fluctuated in a small range (less than ±10%) with increase 

of the probability of constraint satisfaction. The design variables including half of the 

acceptance angle and distance between two neighboring rows are increasing up to 2.38% 

and 3.84% respectively, with the increase of the probability of constraint satisfaction. The 

design variable, namely, number of rows, increases from 67 to 70 and the design variable, 

namely, number of the CPC units in one panel, increases from 9 to 11 with the increase 

of the probability of constraint satisfaction. The CPC ratios corresponding to the results 

of multi-objective optimization are fluctuated in the range between 1.75 and 1.85.  

 

Table 3-2(a) Multi-objective optimization results (design variables) 

Design variables  

Probability  
(P) 

Ar θc W β D 
K N rT 

(m) (deg) (m) (deg) (m) 

50% 0.1102 25.0000 28.1187 20.1543 0.8000 67 9 0.2799 

80% 0.1016 25.2505 28.1392 21.7599 0.8068 68 10 0.2998 

90% 0.1028 25.3247 28.9000 22.6211 0.8168 68 10 0.2874 

95% 0.1076 25.6793 29.1394 25.5123 0.8166 69 10 0.2592 

99% 0.1024 25.5961 27.7827 22.0266 0.8307 70 11 0.2707 
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Table 3-2(b) Multi-objective optimization results (objective functions and other 

outputs) 

Objectives and other outputs 

Probability 
(P) 

cpc ratio 
f1 f2 f3 f1+σf1 f2+σf2 f3+σf3 

Obj 
(106×W) (106×W) (106×$) (106×$) (106×$) (106×$) 

50% 1.8325 -0.9596 -0.7744 0.3503 -1.0109 -0.8160 0.3555 0.1987 

80% 1.8537 -1.0022 -0.8143 0.3676 -1.0614 -0.8577 0.3731 0.1977 

90% 1.8269 -1.0261 -0.8359 0.3770 -1.0807 -0.8804 0.3825 0.1998 

95% 1.7536 -1.0513 -0.8480 0.3879 -1.1077 -0.8931 0.3936 0.2075 

99% 1.7801 -1.0921 -0.8745 0.3984 -1.1504 -0.9210 0.4043 0.1971 

 

3.3.3 Numerical example with a constraint on the CPC ratio 

As observed in the previous sections, the maximization of the annual average incident 

solar energy and maximization of average incident solar energy for the lowest month 

resulted in the flat plate solar collector as the best system. In order to achieve a CPC solar 

collector that is still optimum, the optimization problems are solved by imposing an 

additional constraint that the minimum CPC ratio should be at least 1.2 along with the 

rest of the constraint.  

The results of the single-objective optimization problems, along with the initial design 

used, are summarized in Tables 3-3 (a) and (b). It can be noticed that the optimum values 

of the CPC ratio hit the lower bound value of 1.2 in the minimizations of f1 an f2. As a 

result, the cost corresponding to the minimization of f1 or f2 has been slightly reduced 

compared to the corresponding optimum value without the extra constraint. The result of 

the minimization of f3 remains essentially the same as the result given in Table 3-1 

(without the extra constraint). The cost per unit watt ($/W) of power corresponding to the 

minimum of f3 is still much lower than those of the first two optimizations.  
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Table 3-3(a) Initial design and single-objective optimization results (design variables) 

Design variables 

Objectives 
Ar θc W β D 

K N rT 
(m) (deg) (m) (deg) (m) 

Initial 0.20 40.00 25.00 40 1.00 70 10 0.5000 

Min f1 0.1191 54.9440 30.0000 37.3840 0.80 84 14 0.6663 

Min f2 0.1387 55.4760 30.0000 47.9550 0.80 94 12 0.7281 

Min f3 0.1000 25.0000 29.2210 21.2010 0.80 70 10 0.2680 

 

Table 3-3(b) Initial design and single-objective optimization results (objective 

functions and other outputs) 

objectives and other outputs 

Objectives cpc ratio 
f1 f2 f3 solar cell land reflector f3/f1 

(106×W) (106×W) (106×$) (106×$) (106×$) (106×$) ($/W) 

Initial  1.4450 -1.2675 -1.0230 0.5517 0.3500 0.1120 0.0897 0.4353 

Min f1 1.2000 -1.3430 -1.0877 0.6083 0.4202 0.1200 0.0682 0.4530 

Min f2 1.2000 -1.3324 -1.1091 0.6705 0.4694 0.1201 0.0812 0.4995 

Min f3 1.8095 -1.0954 -0.8828 0.3989 0.2163 0.1056 0.0770 0.3642 

The results of multi-objective optimization with the additional constraint under 

probabilistic uncertainty are listed in Tables 3-4 (a) - (b). The results exhibit similar 

features as those given in Tables 3-2 (a) – (b) without the extra constraint on the CPC 

ratio. The absolute values of the objective functions increase with an increase in the level 

of constraint satisfaction. Since f3 is dominant in the multi-objective optimization 

problem, the values of the CPC ratio at the optimum points flunctated in a small range 

around 1.8 (from 1.7721 to 1.8458). Note that the result corresponding to the probability 

level of 50% for the constraint satisfaction are equivalent to those of the deterministic 

problem.  
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Table 3-4(a) Multi-objective optimization results with an additional constraint that  

CPC ratio should be at least 1.2 (design variables) 

Design variables  

Probability (P) 
Ar θc W β D 

K N rT 
(m) (deg) (m) (deg) (m) 

50% 0.1107 25.0000 28.5462 21.0610 0.8000 67 9 0.2602 

80% 0.1125 25.2505 28.3256 23.6503 0.8068 67 10 0.2753 

90% 0.1089 25.3247 28.4509 21.3337 0.8185 68 10 0.2979 

95% 0.1079 25.6793 28.5236 22.0256 0.8185 68 11 0.2689 

99% 0.1121 25.5961 27.5689 23.8862 0.8307 69 11 0.2986 

 

Table 3-4(a) Multi-objective optimization results with an additional constraint that  

CPC ratio should be at least 1.2 (objective functions and other outputs) 

Objectives and other outputs 

Probability 
(P) 

cpc ratio 
f1 f2 f3 f1+σf1 f2+σf2 f3+σf3 

Obj 
(106×W) (106×W) (106×$) (106×$) (106×$) (106×$) 

50% 1.7941 -0.9648 -0.7815 0.3520 -1.0163 -0.8233 0.3571 0.2356 

80% 1.8088 -1.0683 -0.8483 0.3910 -1.1308 -0.8935 0.3968 0.2256 

90% 1.8458 -1.0804 -0.8688 0.3956 -1.1382 -0.9150 0.4015 0.2168 

95% 1.7721 -1.1395 -0.8993 0.4152 -1.2004 -0.9472 0.4213 0.2365 

99% 1.8307 -1.1756 -0.9235 0.4330 -1.2383 -0.9727 0.4395 0.2109 

 

 

3.4 Conclusions 

The optimum design of CPC solar collectors under deterministic and probabilistic 

uncertainty is presented with a consideration of solar radiation with shading effect. Three 

objectives, namely, the maximization of the annual average incident solar energy, the 

maximization of the lowest month incident solar energy and minimization of the cost, are 

considered. Most of the design variables and the altitude, solar constant and typical day 

of each month are treated as random variables following normal distribution. Game 

theory methodology with probabilistic uncertainty is used for the solution of the three 
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objective constrained optimization problems to find a balanced solution. The solution 

represents the best compromise based on the terms of the super-criterion selected. 

Numerical results are obtained at a specific location (Miami, USA). The maximization of 

the annual average incident solar energy and maximization of average incident solar 

energy for the lowest month resulted in the flat plat solar collector as the best system. 

Since the price of reflector is much cheaper compared to the solar cell, the primary 

objective of the CPC solar panel system design is to reduce the area of solar cell by 

increasing the area of reflectors. Therefore, the minimization of the cost resulted in CPC 

solar collector designs, which had CPC ratios around 1.8. Sensitivity analyses are 

presented with respect to the total energy expectation ratio (compared to flat plate solar 

collectors) and different land price. It is found that the cost per unit energy can be 

significantly reduced by 10% to 23% depending on different land prices if the total 

energy output can be sacrificed by 15% or more compared to the flat-plate solar collector 

system. In the probabilistic approach, most of the design variables vary with 1% of the 

respective mean value and other random variables including altitude, solar constant, and 

typical day of each month vary with 5% of the respective mean value to find the 

influence of uncertainty on different objective functions. The numerical results are given 

to show the influence of the level of probability of constraint satisfaction. It is observed 

that the value of the annual average incident solar energy and the average solar energy for 

the lowest month are decreased with an increase in the probability of constraint 

satisfaction while the cost is increased with an increase in the probability of constraint 

satisfaction. The minimization of the cost is dominant in the multi-objective optimization 

problem. Hence, the compromise solutions resulted in CPC solar collectors which had 
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CPC ratios around 1.8 irrespective of the additional CPC ratio constraint. Better values of 

objective function can be obtained with a lower value of probability of constraint 

satisfaction, but it might not be suitable (safe) for practical applications. The results of the 

present study are expected to help designers in producing a more economic solar panel 

system based on customer requirements. As seen from the present results, there is a trade-

off between the absolute values of the various objectives and the probability of constraint 

satisfaction. From practical point of view, an increase in the overall objective implies 

improvement in a combination of annual energy output, winter energy output and cost of 

manufacture. With a higher probability of constraint satisfaction, the manufacture has to 

sacrifice the energy values as well as the profit if the costs of raw and processed materials 

are relatively large.  
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CHAPTER 4 

Optimum Design of Horizontal Axis 

Wind Turbine System 

 

4.1 Introduction and Literature Review 

In recent years, the growing demand for electricity, environmental issues like global 

warming, and the rising cost of fossil fuels have created an urgent need to seek renewable 

energy sources such as wind energy. At the end of 2009, the worldwide capacity of wind 

power reached 159 gigawatts which accounted for 1.5% of the worldwide electricity 

usage (Ren21, 2010). The horizontal-axis wind turbines (HAWTs) are dominating the 

global wind turbine market due to their high power production capability and better 

efficiency. Since the HAWT industry is still in the emerging stages, the optimization of 

this type of wind turbines becomes important. The focus of this research is to optimize 

the parameters of the turbine such as blade and rotor size, tip speed ratio as well as twist 

and pitch angles to maximize the wind turbine performance and / or minimize the cost. 

Negm and Maalawi (2000) developed different optimization strategies to minimize 

weight and vibration, and to maximize stiffness and stiffness/mass ratio of wind turbine 

towers. Jureczko et al. (2005) implemented a modified genetic algorithm for maximizing 

energy output and minimizing blade vibration and blade material cost. Martin (2006) 

optimized the rotor-to-generator size in order to get maximum annual energy production 

(AEP) under specified wind conditions and budget constraints.  Thumthae and 
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Chitsomboon (2009) used both numerical simulation and experimental methods to find 

different optimum pitch angles of untwisted blades of HAWTs under different wind 

velocities.  Lanzafame and Messina (2009) maximized AEP by optimizing the twist angle 

of a wind turbine blade. It can be seen from the available literature that the Taguchi 

optimization method or its extension to address multiple objective functions and / or 

multiple constraints has not been used in the area of optimal design of wind turbines.   

The Taguchi method of fractional design of experiments was first developed by Genichi 

Taguchi to improve the quality of manufactured goods in 1956. He suggested that the 

quality and robustness of a product should be controlled during the design stage instead 

of checking the products after they were manufactured. Unlike traditional quality control 

methods which include a range for the acceptable quality, the Taguchi method introduces 

a loss function for any product that fails to function at its designed performance level. 

Thus the quality of a product can be made to achieve a desired level instead of making it 

fall within a range of acceptance values (Kackar, 1985, Ross, 1988). The Taguchi method 

utilizes orthogonal arrays to conduct the design of experiments, and this results in a 

minimization of the variation of a quality characteristic in the presence of reasonable 

variations in the design of experiments. Since the method could efficiently seek the 

combination of optimized design parameters, more and more designers and researchers 

have been applying it in many different engineering fields. Ku et al. (1998) extended the 

Taguchi method to handle both positive and negative objective function values in 

engineering optimization problems in the presence of both single and multiple objective 

functions. Lu et al. (2003) successfully improved the quality of solar water heater 

products by exploiting the Taguchi method to find a set of optimum manufacturing 
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factors. Chiang (2006) applied the Taguchi method and the analysis of variance 

(ANOVA) for designing the heat sink module and wind capacity of a fan for computer 

CPUs. Kim et al. (2006) reduced the stress value of the lower control arm in the 

systematic process of vehicle suspension systems by using the Taguchi method. Wu et al. 

(2009) applied the Taguchi method to determine the optimal combination of six primary 

operating parameters of a PEM fuel cell, and simulated the phenomenon and 

electrochemical reactions under the optimal conditions. In all these works, no constraints 

are considered during the process of implementing the Taguchi method. Jung et al. (2009) 

proposed a penalized multi-response Taguchi method in the experimental design of 

finishing hard materials with magnetorheological fluid. They considered a lower bound 

for the maximization problem and an upper bound for the minimization problem as a 

constraint; however, no other behavior constraints are considered in the experimental 

design. In the present work, all geometric parameters, including the blade and rotor sizes, 

tip speed ratio, and twist and pitch angles, the behavior constraints, including the 

maximum stress induced and the minimum power coefficient, as well as the 

manufacturing quality and cost of the unit are all important in achieving a robust HAWT 

design. The work extends the conventional Taguchi method for solving multi-objective 

and constrained optimization problems and obtaining an optimum combination of design 

parameters as well as their tolerances using only limited numbers of experiments.  
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4.2 Aerodynamic theory 

Since the wind turbine blade is an aerodynamic structural component, with an airfoil 

cross section, HAWT design relies heavily on the aerodynamic theories. The blade 

parameters, such as length of blade, chord length, pitch angle, twist distribution, taper and 

blade pre-cone angle should be compatible with the selected airfoil section. Extensive 

aerodynamic calculations are required during the design approach. Wilson and Lissaman 

(1974) analyzed the aerodynamic performance of wind turbines using axial momentum 

theory. This theory assumes the wind to correspond to a one dimensional, incompressible 

non-viscous flow. It is realized that this theory alone is not enough to provide the 

information for an accurate design of wind turbines. The blade element momentum 

theory, originally developed for propellers by Glauert (1935), is combined with the axial 

momentum theory for analyzing wind turbine performance. Numerous of papers 

(Maalawi and Badawy, 2001, Maalawi and Badr, 2003, Duquette and Visser, 2003, Buhl, 

2005, Lanzafame and Messina, 2007) simulated of wind turbine performance by 

combining the two theories.  

4.2.1 Axial momentum theory 

Based on the momentum model, wind turbine blades are replaced by an actuator disk 

which has no thickness. Momentum is imported to the flow that crosses the disk. The 

disk is divided into concentric annuli. The stream lines that pass through the boundary of 

each annulus define a set of concentric annular control volumes. As the theory is based 

on the one-dimensional assumption (Fig. 4-1), the following equations are applicable:  

Continuity equation  
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                                         	�|� = �|7�7 = �|′�′   (4.1) 

Momentum equation 

     � = �|�� − �|′�′�    (4.2) 

Bernoulli equation 

     �� + 0.5��� = �� + 0.5��7�   (4.3) 

     �� + 0.5��′� = �� + 0.5��7�   (4.4) 

Equations (4.3) and (4.4) yield 

     ∆� = �� − �� = 0.5�(�� − �′��  (4.5) 

     �7 = 0.5(� + �′�    (4.6) 

 

Figure 4-1 Axial flow model 

Thus the velocity of the wind stream at the rotor section is the average of the velocities at 

its upsteam and downsteam sides. By introducing the axial induction factor a as 
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     1 = 	xYxXx      (4.7)  

VT and V’ can be expressed in terms of V as 

     �7 = �(1 − 1�    (4.8) 

     �′ = �(1 − 21�    (4.9) 

The power developed by the turbine due to the transfer of kinetic energy is given by 

     �7 = 0.5�|7�7L�� − ���M   (4.10) 

Substitution of Eq. (4.8) into Eq. (4.10) yields 

     �7 = 2�|7��1(1 − 1�   (4.11) 

By defining the power coefficient as 

     uA = wX�.��x��X     (4.12) 

Eq. (4.11) can be substituted into Eq. (4.12) to obtain 

 uA = 41(1 − 1��    (4.13) 

When a = 1/3, Eq. (4.10) has a maximum point equal to 16/27, which is known as the 

Betz limit.    

In order to make the results more realistic, the effect of wake rotation must be considered. 

Two assumptions must be made in order to describe this effect. The upstream flow is 

assumed to be entirely axial while the downstream flow is assumed to have rotation at an 
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angular speed ω. By considering the tangential flow behind the rotor, another factor 

termed the tangential induction factor a’ is introduced: 

     1′ = 	 ��Ω     (4.14) 

where ω is the induced tangential angular velocity of flow and Ω is the angular speed of 

the rotor.  

Equations for the toque and power can be obtained by considering the flow through an 

annulus at radius r with area 

     | = 2�rdr     (4.15) 

Thus, the thrust force and torque experienced by the annular element may be expressed as 

    �� = 41(1 − 1� �����2�6�6    (4.16) 

    �� = 41�(1 − 1� �� ���2�6�6Ω6�   (4.17) 

The power developed by the rotor is equal to the product of this annular elemental torque 

and the angular velocity, integrated over the total blade span. Thus the power is given by 

    � = � Ω � 41�(1 − 1� ����2�6�6Ω6�   (4.18) 

and the power coefficient by 

    uA = ���Xx� � Ω � 41�(1 − 1� ����2�6�6Ω6�  (4.19) 
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4.2.2 Blade element momentum theory 

The blade element momentum (BEM) theory divides the whole rotor blade into a series 

of airfoil sections, calculates the power, thrust, torque, and other features of each airfoil 

section, and sums the results. Two assumptions are made in applying the BEM theory:  

(1) There is no aerodynamic interaction between the elements. 

(2) The force on the blades is determined solely by the lift and drag characteristics of 

the airfoil shape of the blades.  

 

Figure 4-2 A blade element 

Consider a blade element of length dr at distance r from the rotor axis as shown in Fig.4-2. 

The magnitudes of the lift and drag forces developed in this blade element are given by 

(Bhadra et al., 2005).   

                                                            �¡¢ = �� ��|Dd�u¢            (4.20) 

                                                            �¡� = �� ��|Dd�u�    (4.21) 
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Their resultant gives the total aerodynamic force dF, which can be resolved into the axial 

thrust dFT and the moment producing force dFM . The forces are related to dFL and dFD as 

Fig.4-3:  

                                                          �¡7 = 	�¡¢STN£ + �¡�NOP£           (4.22) 

                                                          �¡¤ = 	�¡¢NOP£ − �¡�STN£           (4.23) 

                                                          �� = 	6(�¡¢NOP£ − �¡�STN£�          (4.24) 

 

Figure 4-3 Blade geometry for analysis of a horizontal axis wind turbine 

The relative wind speed W can be expressed as a function of the wind speed and 

rotational speed as: 

     d = x(�Yb�IUV¥      (4.25)  
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     d = Ω2(��b��5\I¥      (4.26) 

Substituting Eqs. (4.20),(4.21),(4.25) and (4.26) into Eqs.(4.22) and (4.24) yields 

 	�¡7 = ��¦��|D x�(�Yb��IUV�¥ (u¢STN£ + u�NOP£�      (4.27) 

   �� = ��¦��|D6 x�(�Yb��IUV�¥ (u¢NOP£ − u�STN£�  (4.28) 

                    	�� = §�� = ��¦��|D x�(�Yb��IUV�¥ Ω6(u¢NOP£ − u�STN£�      (4.29) 

It is evident that the torque and the power depend on the angle φ, which is determined by 

the wind speed and rotational speed. The lift and drag coefficients depend on the angle of 

attack, which is equal to φ minus the sum of the pitch angle (β) and the twisted angle (θ). 

The lift and drag coefficient are tested and reported in the literature (Selig et al., 1995, 

1996, Selig and Mcgranahan, 2004, Lyon et al., 1998). A simulation program XFOIL, 

first developed by Drela in 1986 and modified subsequently (Drela, 2001), is also widely 

used by many designers to find the lift and drag coefficients. In this work, XFOIL version 

6.94 is used for calculating the lift and drag coefficients of wind turbine blades.  

The force, torque, and power of the entire blade are calculated by adding the 

corresponding values of all blade elements.  

4.2.3 Solution procedure and computer codes 

Equations (4.16), (4.18), (4.27) and (4.29) denote the four governing equations for each 

annular control volume. First, divide the blade into several elements and stat to assume an 

initial axial induction factor and an initial tangential induction factor in one element. 
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Then the angle of attack, lift and drag coefficients, thrust and torque distribution along 

the blade can be calculated by the BEM theory. Next the governing equations can be 

solved and axial induction and tangential induction factors can be updated until 

convergence. This process is repeated for other elements to complete the calculation.  

Some researchers [Benini and Toffolo, 2002, Lanzafame and Messina, 2007, Gur and 

Rosen, 2008] developed computer codes based on this logic but for different purposes 

and / or outputs. In this work, the program, WT_Perf from the National Renewable 

Energy Laboratory, is utilized. WT_Perf uses both the axial momentum and BEM 

theories to predict the performance of wind turbines. It is a descendent of the PROP code 

that was originally developed at Oregon State University in 1985 and modified and 

improved by Jim Tangler of Solar Energy Research Institute (SERI) / National 

Renewable Energy Laboratory (NREL) and Buhl, Marshall of NREL in the following 

years (Buhl, 2004).  

 

4.3 Wind Speed Distribution 

4.3.1 Wind speed variation with height 

The wind data available in the literature is reported by meteorological stations by 

collecting the data at a special sensor height. In most cases, the data are logged at 10 m as 

recommended by the World Meteorological Organization. However, designers are more 

concerned about the wind speed at the height of hub center of HAWTs. The most 

common expression used for the wind speed is the power law, expressed as: 
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     � = ��( ¨̈
©�ª     (4.30) 

where V is the wind speed estimated at the desired height z; V0 is the wind speed 

reported at a reference height z0; and α is the ground surface friction coefficient, given in 

Table 4-1.  

Table 4-1 Friction Coefficient α of Various Terrains (Patel, 2006) 

Terrain Type α 

Lake, ocean and smooth, hard ground 0.10 

Foot-high grass on level ground 0.15 

Tall crops, hedges, and shrubs 0.20 

Wooded country with many trees 0.25 

Small town with some trees and shrubs 0.30 

City area with tall buildings 0.40 

 

4.3.2 Probability density function 

HAWTs can be designed to maximize the energy output according to a given wind speed 

distribution function. Weibull distribution is commonly used to describe the frequency 

distribution of wind speed.   

    �(«� = 	 ¬5 (x5�¬Y���­ �− ®x5¯¬�   (4.31) 

where k denotes the shape factor and c indicates the scale factor. Both these factors are 

functions of the mean wind speed �0  and the standard deviation of wind speed	�x , as 

given by (Justus, 1978, Lysen, 1983):  

     ° = 	 ®±²x� ¯Y�.�³�
    (4.32) 
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5x� = (0.568 + �.´��¬ �Y�µ    (4.33) 

4.3.3 Average power in the wind 

For a unit area of the rotor, the power available at a given wind speed v is 

     �x = 0.5���     (4.34) 

The total energy of a unit rotor area contributed by all possible wind speeds can be 

formulated as 

     �¶ = � �x�(����·�      (4.35) 

If f(V) follows Weibull distribution, the average power becomes (Lu et al. 2002) 

     �¶ = ��x�Г(���/¬��(Г(���/¬���      (4.36) 

4.3.4 Optimum wind speed 

The optimum wind speed, uop, is the speed that produces the most energy in a given 

period, like one day, one month or one year. The wind turbine should be chosen with a 

rated wind speed that matches this maximum energy wind speed for the purpose of 

maximizing the energy output. The optimum wind speed can be obtained for any specific 

probability distribution of the wind speed. If the wind speed follows Weibull distribution, 

the optimum wind speed can be expressed as (Johnson, 1985)  

     ¹\A = S(¬��¬ ��/¬    (4.37) 
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Once the optimum wind speed is known at a given site, the optimal rated wind speed of a 

wind turbine can also be found. This will help the designer in maximizing the wind 

energy output based on a relatively simple method.  

 

4.4 Taguchi Method of Design  

Taguchi method uses orthogonal arrays to estimate the effects of factors on the mean and 

variation of the response. Orthogonal arrays allow the investigation of each effect 

independently and reduce the time and cost associated with the experiment. Standard 

orthogonal arrays (Lorenzen and Anderson, 1993) are used in most engineering design 

problems. The purpose of Taguchi-based designs is to reduce the variability in order to 

achieve the mean value closer to the target. The Taguchi method combines the effects of 

individual noise factors and computes a signal-to-noise (S/N) ratio for each experiment. 

There are three commonly used S/N ratios—smaller-the-better, larger-the-better, and 

nominal-the-better—depending on the desired mean square deviation. Mathematically 

they are formulated as follows: 

Smaller-the-better: 

    
º» = −10~T��� ¼�V [∑ (¾U��VU¿� ]À   (4.38) 

Larger-the-better:  

    
º» = −10~T��� }�V �∑ ® �Á�¯�VU¿� ��   (4.39) 
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Nominal-the-better: 

     
º» = −10~T���[{2]    (4.40) 

where yi is the ith experimental value, n is the number of experiments and S2 is the 

variance of the experimental results.  

Taguchi method has been applied mostly for single-objective unconstrained optimization 

problems. However, in many engineering problems, the design variables are to be 

selected to optimize multiple objectives and to satisfy a specified set of functional and 

other requirements (constraints). In this work, a novel extended penalized Taguchi 

method is proposed for the solution of constrained optimization problems. In this method, 

the constrained problem is first transformed into an unconstrained optimization problem 

using the concept of penalty function in nonlinear programming and the resulting 

unconstrained problem is then solved by the traditional Taguchi method.   

Minimize �(��� 
subject to:                  �UL��M ≤ 0, O = 1,2… ,�    (4.41) 

ℎÃL��M = 0, Ä = 1,2… , P    (4.42)  

The equivalent unconstrained optimization problem is formulated as: 

Minimize �L��M + ∑ ÅUÆ ®�UL��M¯ + ∑ ?UÇ ®ℎÃL��M¯	VÃ¿�hU¿� 			O = 1,2, …�; Ä = 1,2, … P   

                  (4.43) 

where Φ and Ψ are the penalty terms defined as 
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     2)( >=<Φ YY      (4.44) 

where      < � > 	 = 	 Ë�			O�	� > 00			O�	� ≤ 0Ì 	   (4.45) 

 

     2)( >=<Ψ ZZ     (4.46) 

where      < Í > 	 = 	 ËÍ			O�	Í > 00			O�	Í ≤ 0Ì 	   (4.47) 

and Ri and Qj are termed the penalty factors.  

 

4.5 Numerical Example of Robust Design of Wind Turbine Using 

Taguchi Method  

The robust design of wind turbines using Taguchi method is considered to illustrate the 

proposed methodology. In this work, the robust design includes both parameter design 

and tolerance design. Parameter design is the process of identifying the optimum settings 

of the design parameters in order to achieve the maximum wind energy. Tolerance design 

is the process of seeking optimum setting of the tolerances of design variables in order to 

control the manufacturing cost and quality.  

4.5.1 Parameter design 

As indicated in section 4.3, Eq. (4.30) – (4.33) can be used to determine the scale factor c 

and the shape factor k of Weibull distribution of wind velocity based on original 
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meteorological data at any specific location. The scale factor c is the mean value of wind 

speed calculated at the hub height and the shape factor k usually ranges between 1.8 and 

2.3 (Bhadra et al. 2005). In this work, k = 1.8 and c = 8 are used. The optimum wind 

speed computed from Eq. (4.37) is given by:  

     ¹\A = S(¬��¬ ��/¬ ≈ 12	�/N   (4.48) 

By using the optimum wind speed as the rated speed, the problem of maximizing the 

annual wind energy production can be converted to the simpler problem of maximizing 

the power output in the optimum wind speed.   

1.  Design parameters and levels 

Based on the aerodynamic theories, ten design variables—the chord length at the blade 

root, twist angles at four locations along the blade, number of blades, rotational speed, 

pitch angle, rotor radius and hub radius—are chosen for the parameter design with three 

different levels for each design variable as indicated in Table 4-2.  

The chord length at the blade root (design variable A), is chosen to determine the shape 

of the blade. In order to make the total blade area at the three different design levels 

competitive, the chord length is assumed to be uniform along the rotor radius at level 1 

and change linearly along the blade in levels 2 and 3 as shown in Fig.4-4. In practice, the 

twist angles (design variables B - E), usually decrease from the tip to the root of a blade, 

and reach a particular value close to zero at the blade root. Based on this fact, three 

different sets of twist angles are considered for each blade element as shown in Table 4-2. 

Numerical values for the various design levels of the rest of design variables are also 
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listed in Table 4-2. A three-blade tapered profile with practical twist and pitch angles 

coupled with a rotor having a relatively lower speed is used for the initial design.  

The lift and drag coefficients are functions of the angle of attack which can be calculated 

using the software Xfoil. The selection of a suitable blade profile depends on the 

performance criterion chosen. More than one airfoil section can be chosen to fit the 

chosen thickness distribution. Usually a thicker section is need closer to the root for 

structural reasons, while a thinner section is used along the outboard region with a 

smooth transition from the root to the tip. Thus, the lift and drag coefficients of different 

types of airfoils should be fed to different airfoil sections to predict the aerodynamic 

performance of any arbitrary blade profile. NACA23018 is chosen to specify the airfoil 

profile along the blade in this study to demonstrate the methodology for simplicity.  

Table 4-2 Design variables and their levels 

Design Variable Unit Level 1 Level 2 Level 3 

A Blade Chord length (Root) m 0.50 0.70 0.90* 

B Twist Angle for Element1 deg 8 12* 16 

C Twist Angle for Element2 deg 4 6* 8 

D Twist Angle for Element3 deg 2 3* 4 

E Twist Angle for Element4 deg 0* 1 2 

F Number of Blade # 2 3* 4 

G Rotational Speed rpm 75* 125 175 

H Pitch Angle deg 0 3* 6 

I Rotor Radius m 4.00 4.25 4.50* 

J Hub Radius m 0.50 0.75 1.00* 

*: Initial design are randomly chosen for comparsion purpose  

 

Other parameters such as the coning angle, tilt angle and yaw angle can also be treated as 

design variables. However, they are not used in the present work for simplicity. The 



114 
 

 
 

coning angle is used for structural reasons rather than for aerodynamic purposes; it is 

assumed as 0 degrees in this work. The tilt angle, the angle between the wind direction 

and the rotor axis of rotation, is used for tower accommodation purpose and is assumed 

as 0 degrees. Finally the yaw angle, which is the misalignment angle between wind and 

turbine pointing directions, is also assumed as 0 degrees in this work.  

 

Figure 4-4 Three different levels of shape profiles 

Table 4-3 Noise factors and levels 

Design Variable Unit Level 1 Level 2 

A Blade Chord length (Root) m -0.005 +0.005 

B Twist Angle for Element1 deg -1 +1 

C Twist Angle for Element2 deg -0.5 +0.5 

D Twist Angle for Element3 deg -0.25 +0.25 

E Twist Angle for Element4 deg -0.125 +0.125 

G Rotational Speed rpm -5 +5 

H Pitch Angle deg -1 +1 

I Rotor Radius m -0.005 +0.005 

J Hub Radius m -0.005 +0.005 
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2.  Noise factors and levels 

In order to understand the sensitivity of the performance characteristic with respect to 

variations in the design parameters, noise experiments must be introduced as outer loops. 

The procedure involves perturbing the design parameters in order to evaluate the effect 

that the noise factors have on the performance characteristic and to make the factor 

combination responsible for the noise factors. As shown in Table 4-3, some realistic 

tolerances have been assumed to all the design variables, except for the number of blade, 

as noise factors in the parameter design. 

3. Parameter design using Taguchi method 

The parameter design using Taguchi method uses two matrices—the design parameter 

matrix and the noise matrix—as shown in Table 4-4. The factional factorial design uses a 

standard L27 (3
10) orthogonal array for the inner loop and a standard L12 (2

9) orthogonal 

array for each outer loop. Table 4 shows both the inner array and a typical outer array 

corresponding to the first run of the inner array. Each inner array has a corresponding 

outer array. There are 27 inner arrays in all with 12 runs in each outer array, which means 

that 27 × 12 = 324 runs are to be carried out in the experiment. The results of the 

numerical simulation (experiments) are used to compute the S/N ratio corresponding to 

larger-the-better performance characteristic as defined in Eq. (39).  
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Table 4-5 Results of the 27 experiments of parameter design 

Chord 
length 
on the 
Root 
of the 
Blade 

Twist Angles (1-4) 
No. of 
Blade

s 

Rotati
onal 

Speed 
Pitch 

Rotor 
Radi

us 

Hub 
Radi

us 
Mean S/N 

(m) (deg)   (rpm) (deg) (m) (m) (kW) (kW) 

0.5 16 8 4 2 2 75 0 4 0.5 12.99 22.27 

0.5 16 8 4 1 3 125 3 4.25 0.75 26.46 28.45 

0.5 16 8 4 0 4 175 6 4.5 1 14.39 23.16 

0.5 12 6 3 2 2 75 3 4.25 0.75 15.36 23.73 

0.5 12 6 3 1 3 125 6 4.5 1 25.24 28.04 

0.5 12 6 3 0 4 175 0 4 0.5 21.48 26.64 

0.5 8 4 2 2 2 75 6 4.5 1 16.69 24.45 

0.5 8 4 2 1 3 125 0 4 0.5 24.4 27.75 

0.5 8 4 2 0 4 175 3 4.25 0.75 26.9 28.59 

0.7 16 6 2 2 3 175 0 4.25 1 26.44 28.45 

0.7 16 6 2 1 4 75 3 4.5 0.5 28.32 29.04 

0.7 16 6 2 0 2 125 6 4 0.75 17.27 24.75 

0.7 12 4 4 2 3 175 3 4.5 0.5 29.86 29.5 

0.7 12 4 4 1 4 75 6 4 0.75 20.41 26.2 

0.7 12 4 4 0 2 125 0 4.25 1 24.02 27.61 

0.7 8 8 3 2 3 175 6 4 0.75 17.26 24.74 

0.7 8 8 3 1 4 75 0 4.25 1 23.8 27.53 

0.7 8 8 3 0 2 125 3 4.5 0.5 25.66 28.19 

0.9 16 4 3 2 4 125 0 4.5 0.75 31.36 29.93 

0.9 16 4 3 1 2 175 3 4 1 18.03 25.12 

0.9 16 4 3 0 3 75 6 4.25 0.5 17.63 24.92 

0.9 12 8 2 2 4 125 3 4 1 22.94 27.21 

0.9 12 8 2 1 2 175 6 4.25 0.5 16.14 24.16 

0.9 12 8 2 0 3 75 0 4.5 0.75 20.47 26.22 

0.9 8 6 4 2 4 125 6 4.25 0.5 22.89 27.19 

0.9 8 6 4 1 2 175 0 4.5 0.75 28.52 29.1 

0.9 8 6 4 0 3 75 3 4 1 15.4 23.75 
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Figure 4-5 Response graphs for the S/N ratio (Parameter design) 
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Table 4-6 Results of analysis of variance (ANOVA) for S/N ratios 

Item 

Degree 
of 

Freedom 
(DF) 

Sum of 
Square 

(SS) 

Mean 
of 

Square 
(MS) 

F P Rank 

A 
Chord length on the Root of the 

Blade 
2 9.553 4.7767 3.95 0.081 5 

B Twist Angle 1 2 1.534 0.7672 0.63 0.563 9 

C Twist Angle 2 2 8.726 4.3628 3.6 0.094 6 

D Twist Angle 3 2 0.631 0.3154 0.26 0.779 10 

E Twist Angle 4 2 7.76 3.8802 3.21 0.113 7 

F Number of Blades 2 15.871 7.9353 6.56 0.031 4 

G Rotational Speed 2 24.578 12.289 10.15 0.012 1 

H Pitch 2 21.444 10.722 8.86 0.016 2 

I Rotor Radius 2 21.014 10.507 8.68 0.017 3 

J Hub Radius 2 2.363 1.1816 0.98 0.429 8 

  Error 6 7.262 1.2104       

  Total 26 120.73         

 

All the 27 simulation results are summarized in Table 4-5. The factor response graphs, 

based on their S/N ratios, of the design variables are shown in Fig.4-5. The results 

indicate the design of HAWT for maximum power (correspond to the larger-the-better 

characteristic of the S/N ratio) and the optimum design correspond to the settings A2, B1, 

C1, D1, E2, F3, G2, H1, I3, and J2. The results of the analysis of variance (ANOVA) of the 

S/N ratios are shown in Table 4-6. The P value is usually used to identify the significance 

of different design variables with a smaller P value indicating that the corresponding 

design value is statistically more important.   

It is evident that the rotational speed (G) has the lowest P-value and hence is statistically 

the most important parameter with respect to S/N ratio among all the design variables and 

G2, a rotational speed of 125 rpm, turns out to be the best choice. The pitch angle (H) 

stands at rank 2 with respect to the S/N ratio and H1 is the best choice. It can be observed 
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that the S/N ratio reduces only a little when the pitch angle changes from 0 to 3 degrees. 

However, when the pitch angle changes from 3 to 6 degrees, the S/N ratio reduces 

dramatically. The rotor radius (I), which has a slightly larger P-value than that of the 

pitch angle, is the third important design parameter with respect to the S/N ratio. It is 

obvious that the larger the radius, the better the performance. Hence, I3 emerges as the 

optimum design. The number of blades (F) is the fourth important design variable in 

terms of the S/N ratio. As indicated in Fig.4-5, a four-blade design (F3) seems to be the 

best choice since it displays the highest S/N ratio. However, it can be detected from the 

plots that the power output of the three-blade wind turbine (F2) is considerably larger than 

that of the two-blade design (F1) but the improvement of the four-blade wind turbine (F3) 

is negligible compared to the three-blade design (F2). Since increasing the number of 

blades by one will significantly increase the cost of the wind turbine system, the three-

blade wind turbine design (F2) is clearly the best choice in this optimization problem. The 

chord length at the blade root ranks fifth, and a tapered shape design (A2) proves to have 

the largest S/N ratio and obviously becomes the best choice. Similarly B1, C1, D1, E2 and 

J2 are the optimum settings for the twist angles at locations 1 to 4 and hub radius 

respectively. It can be noticed that these design parameters rank from 6 to 10 and have 

relatively larger P-values compared to the previous design variables in ANOVA. This 

indicates that these design variables are not statistically as significant as the previously 

discussed design variables with respect to the S/N ratio. As a result, the design 

combination A2, B1, C1, D1, E2, F2, G2, H1, I3, and J2 is chosen as the optimum solution. 

The design variable settings for both the initial design and optimum design are 

summarized in Table 4-7. The power output of the optimum design is 32.76 kW 
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compared to a value of 21.11 kW at the initial design; thus an improvement of 55% has 

been achieved through optimization.   

Table 4-7 Comparison of Initial design and optimum design 

Design Variable Initial Optimum 

Chord length on the Root of the Blade (m) 0.9 0.7 

Twist Angle 1 (deg) 12 8 

Twist Angle 2 (deg) 6 4 

Twist Angle 3 (deg) 3 2 

Twist Angle 4 (deg) 0 1 

No. of Blades   3 3 

Rotational Speed (rpm) 75 125 

Pitch (deg) 3 0 

Rotor Radius (m) 4.50 4.50 

Hub Radius (m) 1.00 0.75 

Power (kW) 21.11 32.76 

 

4. Parameter design with constraints using penalized Taguchi method 

The parameter design using the traditional Taguchi method can be considered as an 

unconstrained optimization method. However, most practical problems involve some 

behavior constraints. In the HAWT design problem, the power coefficient, defined as the 

ratio of the actual power developed by the rotor to the theoretical power available in the 

wind, is an important index that can be used as a measure of the efficiency of a wind 

turbine. Hence a minimum acceptable value of the power coefficient can be specified as a 

constraint (Eq. (4.49)).  

uA − uA,hUV ≥ 0   (4.49) 

The cyclic load acting on the structure of a wind turbine could cause fatigue failure. 

Hence a constraint can be placed either on the maximum stress induced or the maximum 



122 
 

 
 

permissible fractional fatigue damage in the design problem. Since wind turbines are 

usually fixed in position and rotate for many years, a large safety factor must be 

considered in the design stage. The stress at the root of the blade is larger than that at 

other positions along the blade; hence the stress induced at the root of the wing is to be 

constrained to be less than a particular value (depending on the blade material), by 

considering a reasonable factor of safety as: 

     � − ±ÐÑÒÓÔÑÕÖ×Ø ≤ 0    (4.50) 

Additional constraints such as limitations on mass, acoustic and vibration performance as 

well as cost can also be included in the design optimization problem. In this work, only 

the constraints (4.49) and (4.50) are considered.  

The new objective function can be formulated in the format of Eq. (4.43) by applying the 

penalty terms. By using the values of Cpmin = 0.35 and σmax/CSAFTY  = 3.5 MPa with the 

corresponding penalty factors R1 = 20 and R2 = 60, the original constrained optimization 

problem is converted into an equivalent unconstrained optimization problem, and the 

results of the penalized Taguchi approach are shown in Table 4-8. It can be seen from 

Table 4-8, that no constrained is violated in cases 5, 11, 14, 17, 22 and 25; therefore, the 

mean values of the new objective functions remain the same as the values of the original 

objective functions. In other cases, either the constraint of Eq.(4.49) or Eq.(4.50) has 

been violated; therefore the penalty terms have been added in the new objective functions, 

which make the mean values of new objective functions less than the original ones. The 

S/N ratios using the larger-the-better rule (Eq.(4.39)) are calculated using the inner loop 
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with standard L27(3
10) orthogonal array and the outer loops with standard L12(2

9) 

orthogonal array and the results  are presented in Table 4-8.  

Table 4-8 Results of parameter design using penalized Taguchi method  

Outputs 

Power 
(Orginial 
objective 
function) 

Power coefficient stress  Y1 Y2 
New objective 

function 

Unit kW - 
Violate 

constraint 
(Yes/No) 

MPa 
Violate 

constraint 
(Yes/No) 

- - Mean S/N 

1 12.99 0.24 Yes 3.26 No 0.31 0 11.14 20.94 

2 26.46 0.44 No 3.76 Yes 0 0.07 26.14 28.35 

3 18.283 0.27 Yes 2.29 No 0.23 0 17.26 24.74 

4 15.36 0.26 Yes 3.22 No 0.27 0 13.89 22.86 

5 25.24 0.37 No 3.08 No 0 0 25.24 28.04 

6 21.05 0.39 No 4.38 Yes 0 0.25 17.25 24.73 

7 16.69 0.25 Yes 3.03 No 0.29 0 14.96 23.5 

8 24.4 0.46 No 4.41 Yes 0 0.26 20.31 26.15 

9 26.9 0.45 No 3.9 Yes 0 0.11 26.12 28.34 

10 26.44 0.44 No 4.2 Yes 0 0.2 24.07 27.63 

11 28.32 0.42 No 3.42 No 0 0 28.32 29.04 

12 17.27 0.32 Yes 2.31 No 0.07 0 17.16 24.69 

13 29.86 0.44 No 4.64 Yes 0 0.33 23.48 27.41 

14 20.41 0.38 No 1.81 No 0 0 20.41 26.2 

15 24.02 0.4 No 4.36 Yes 0 0.25 20.41 26.2 

16 17.26 0.32 Yes 1.82 No 0.07 0 17.15 24.68 

17 23.8 0.4 No 2.45 No 0 0 23.8 27.53 

18 25.66 0.38 No 5.45 Yes 0 0.56 7.02 16.92 

19 31.36 0.46 No 3.71 Yes 0 0.06 31.15 29.87 

20 18.03 0.34 Yes 2.62 No 0.03 0 18.01 25.11 

21 17.63 0.29 Yes 2.2 No 0.16 0 17.09 24.66 

22 22.94 0.43 No 1.82 No 0 0 22.94 27.21 

23 16.14 0.27 Yes 2.66 No 0.23 0 15.05 23.55 

24 20.47 0.3 Yes 2.96 No 0.13 0 20.11 26.07 

25 22.89 0.38 No 2.11 No 0 0 22.89 27.19 

26 28.52 0.42 No 5.7 Yes 0 0.63 4.92 13.83 

27 15.4 0.29 Yes 1.56 No 0.18 0 14.77 23.39 
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Figure 4-6 Response graph for S/N ratio (Parameter design using Penalized 

Taguchi Method) 
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Table 4-9 Comparison of Initial design and Optimum results by Traditional and 

Penalized Taguchi Methods 

Design 
variable 

Power 
(Original 
objective 
function)   

(kW) 

Constraint 1: Power 
coefficient                

(Minimum requirement 
0.35) 

Constraint 2: Stress 
induced (Maximum 

limit 3.50) 

- 
Violation of 
constraint 
(Yes/No) 

(Mpa) 
Violation of 
constraint 
(Yes/No) 

Initial design 21.11 0.31 Yes 2.36 No 

Optimum 
results of  
traditional 
Taguchi 
method  

32.24    
(+52.7%) 

0.48 No 5.31 Yes 

Optimum 
results of 
penalized 
Taguchi 
method  

25.76 
(+22.0%) 

0.43 No 3.04 No 

Additional 
Experiment 

(Refinement)  

27.79 
(+31.6%) 

0.43 No 3.5 No, but active 

 

The effect of each design variable with respect to the corresponding S/N ratio is shown in 

Figure 4-6. The optimum design variable combination given by the penalty-based 

Taguchi method are A2, B3, C1, D1, E3, F3, G2, H2, I2, J3. Compared to the optimum 

design variables given by the unconstrained problem, the optimum levels of design 

variables B, E, H, I and J changed while the the rest of the design variables A, C, D, F 

and G remained the same with no change. Similar to the adjustment made for the 

optimum level of the design variable F for the purpose of cost in the previous example, 

the design level of F3 is adjusted to F2 for the same reason in the present case. Therefore, 

the optimum design variable combination becomes A2, B3, C1, D1, E3, F2, G2, H2, I2, J3. 
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The initial design, the optimum design given by the traditional Taguchi method and the 

optimum design given by the penalized Taguchi method are summarized in Table 4-9. 

All the constraints are satisfied though the power obtained by the penalized Taguchi 

method is 6.48 kW less compared to the result given by the traditional (unconstrained) 

Taguchi method.  

In the constrained optimization problem, it can be observed that none of the constraints is 

close to zero at the optimum point which implies that the optimum point can be further 

improved. Since the Taguchi optimization method is based on discrete levels of design 

variables, by refining the design variable levels or by using the response surface 

methodology, a better optimum solution can be found. In the present case, some of the 

design variables that have relatively larger influence on the S/N ratio, namely—twist 

angles 1 and 2, rotational speed rotor radius and pitch angle—are used in conducting an 

additional fractional factorial design of experiments by using new design levels (settings). 

The remaining design variables are also incorporated in the additional experimentation by 

using the old design levels. The new experiment still uses a standard L27 (3
10) orthogonal 

array for the inner loop and a standard L12 (2
9) orthogonal array for each outer loop. The 

new design levels (over a smaller range for each variable) are determined based on the 

results shown in Fig. 6. The results of the new design of experiments are summarized in 

Table 8 and Fig. 7. The design level combination A2, B2, C1, D1, E2, F2, G2, H2, I3, and J2 

is chosen as the optimum solution. The power output with this choice is further improved 

by about 9.6%, from 25.76 to 27.79 kW. Although the power is still less than the result 

obtained with the unconstrained optimization example, the stress constraint is active at 

the current design (Table 9).  
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Table 4-10 Refinement of design levels and results by penalized Taguchi method 

Outputs 

Power 
(Original 
objective 
function) 

Power coefficient stress  Y1 Y2 
New 

objective 
function 

Unit kW - 
Violate 

constraint 
(Yes/No) 

Mpa 
Violate 

constraint 
(Yes/No) 

- - Mean S/N 

1 19.988 0.3526 No 4.598549 Yes 0.00 0.31 7.08 17.00 

2 27.071 0.4498 No 3.8409396 Yes 0.00 0.10 25.89 28.26 

3 24.565 0.3852 No 2.5232904 No 0.00 0.00 18.28 25.24 

4 20.365 0.3384 Yes 3.8720529 Yes 0.03 0.11 14.66 23.32 

5 24.391 0.3825 No 2.8982059 No 0.00 0.00 25.24 28.04 

6 24.049 0.4242 No 4.6063273 Yes 0.00 0.32 15.05 23.55 

7 19.026 0.2983 Yes 3.1035539 No 0.15 0.00 16.25 24.22 

8 26.317 0.4642 No 4.8910142 Yes 0.00 0.40 14.92 23.48 

9 27.954 0.4645 No 3.8113819 Yes 0.00 0.09 26.42 28.44 

10 27.11 0.4505 No 4.0120629 Yes 0.00 0.15 25.16 28.01 

11 30.808 0.4831 No 3.6869287 Yes 0.00 0.05 28.14 28.99 

12 18.752 0.3308 Yes 3.0335489 No 0.05 0.00 17.21 24.72 

13 29.038 0.4553 No 4.2889714 Yes 0.00 0.23 26.82 28.57 

14 24.417 0.4307 No 2.1966005 No 0.00 0.00 20.41 26.20 

15 23.993 0.3987 No 4.3792001 Yes 0.00 0.25 20.24 26.12 

16 20.93 0.3692 No 2.2728282 No 0.00 0.00 17.26 24.74 

17 27.708 0.4604 No 2.9697666 No 0.00 0.00 23.80 27.53 

18 24.903 0.3905 No 5.0979178 Yes 0.00 0.46 13.16 22.38 

19 29.353 0.4603 No 3.4037974 No 0.00 0.00 31.36 29.93 

20 19.176 0.3382 Yes 2.804866 No 0.03 0.00 18.01 25.11 

21 21.839 0.3629 No 2.5932954 No 0.00 0.00 17.63 24.92 

22 24.543 0.4329 No 2.0659246 No 0.00 0.00 22.94 27.21 

23 18.124 0.3012 Yes 2.9339863 No 0.14 0.00 15.75 23.95 

24 26.198 0.4108 No 3.4458004 Yes 0.00 0.00 20.47 26.22 

25 23.202 0.3855 No 2.1437079 No 0.00 0.00 22.89 27.19 

26 26.163 0.4102 No 4.8474556 Yes 0.00 0.38 19.63 25.86 

27 21.07 0.3717 No 2.1110389 No 0.00 0.00 15.40 23.75 

 



128 
 

 
 

 

Figure 4-7 Response graph for S/N ratio (Refine Design level in Penalized Taguchi Method) 
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4.5.2 Tolerance design 

In any manufacturing process, it is impractical to achieve the exact values of dimensions. 

Under certain stable fabrication conditions, the dimensions of each machined / 

manufactured component vary within a certain small controlled range, called tolerances. 

The tolerance values are specified for any desired dimensions based on functional 

requirements as well as cost. The purpose of tolerance design of HAWTs is to achieve 

quality, reliability and less fluctuation in power at a reasonable cost. However, there is 

always a conflict between tolerance and the cost of quality control. Smaller tolerances 

require higher costs and hence a small cost may correspond to large tolerances as well as 

lower quality. A typical tolerance-cost relation curve is displayed in Fig. 4-8. As 

tolerance increases, the cost goes down steeply at the beginning, and then the trend 

becomes gradually less. Since both quality and cost of the product are important in 

manufacturing, a combination of these two factors is considered as the objective function 

in the tolerance design process.  

1. Tolerance levels and cost 

In the tolerance design process, each of the design variables used in the parameter design 

stage except one, namely the number of blades, are assumed to have three different levels 

of tolerance as shown in Table 4-11. The relative costs to control each design variable of 

a HAWT used in this work are summarized in Fig. 4-9. The optimum solution achieved 

in the parameter design stage is used as the mean value for tolerance design. In this work, 

the optimum design variables found by the traditional Taguchi method in the parameter 

stage are assumed as the mean values in the tolerance design.  
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The chord length, a linear dimension, is assumed to have three different tolerance levels, 

namely, ±1.0%, ±0.5% and ±0.2%, which correspond to ±7 mm, ±3.5 mm and ±1.4 mm, 

respectively. The cost to control the tolerance of the chord length is relatively cheap as 

shown in Fig. 4-9(a), since it is a small dimension. Four different twist angles have been 

combined into one control (tolerance) factor since one tolerance value is enough to 

control all the four twist angles during the manufacturing process. As twist angle is more 

difficult to control compared to linear dimension during manufacturing, three relatively 

larger tolerance values, namely, ±10%, ±5% and ±2%, are assumed for this factor and the 

cost of controlling the twist angle is assumed to be five times more than the linear 

dimension control and is indicated in Fig. 4-9(b). The rotational speed is assumed to have 

a one side tolerance because a higher rotational speed increases the risk of failure and 

might result in an extra cost that exceeds the material cost of the whole system. The 

variations of -6 rpm, -4 rpm and -2 rpm about the optimum value of 125 rpm are set as 

three different tolerance levels and these levels are not too difficult to achieve in practice. 

Hence the cost is assumed to be slightly higher than that of controlling a linear dimension 

as shown in Fig. 4-9(c). The pitch angle is a parameter that needs to be controlled 

especially for large wind speeds. Any inaccuracy in setting the initial pitch angle may 

affect the performance at large wind speeds. Therefore, ±1.0º, ±0.5 º and ±0.2º are 

considered as the tolerance levels for this parameter. Since pitch angle is an angular 

dimension, the same cost as in the case of controlling the twist angle, is assumed as 

shown in Fig. 4-9(d). The rotor radius is assumed to have three different levels of 

tolerance—±0.5%, ±0.2% and ±0.1%—which correspond to physically ±22.5mm, ±9mm 

and ±4.5mm, respectively. Since this is a large dimension and all three blades must be 
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controlled simultaneously, it is relatively more expensive than other design variables as 

indicated in Fig. 4-9(e). Similarly, the hub radius is assumed to have three tolerances, 

±1.0%, ±0.5% and ±0.2%, which physically imply ±7.5mm, ±3.75mm and ±1.5mm, 

respectively. The cost of controling the tolerance of hub radius is assumed to lie between 

the costs of controlling linear dimensions and angular dimensions and is shown in Fig. 4-

9(f).  

2. Details of tolerance design  

As in the case of parameter design, the tolerance design using Taguchi method involves 

the use of two matrices—a design parameter matrix and a noise matrix—as shown in 

Table 12. The fractional factorial design uses a standard L27 (3
6) orthogonal array for the 

inner loop and a standard L8 (2
5) for each of the outer loops. Table 12 shows both the 

inner loop and a typical outer loop that corresponds to the first run of the inner loop. 

There will be 27 outer arrays in all with 8 runs in each outer array, which implies that 27 

× 8 = 216 runs will be carried out in the experiment. The results from the numerical 

experiments are transformed into the S/N ratios. In this case, the smaller-the-better type 

of performance characteristic is applicable. Mathematically it is formulated as indicated 

by Eq.(4.38) with yi is defined as a combination term including fluctuations of both 

power and cost. It is chosen as the product of the two terms as:  

     ¾U = ∆�U × uTNvU      (4.51) 

where ∆�U	is the difference between actual power and optimum power and uTNvU is the 

total cost of controlling the tolerance of the ith design variable.   
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Table 4-11 Control factors and levels in tolerance design 

Control factor Optimum value Tolerance 

A Chord length 0.70 m 

Level 1 ±1.0% 

Level 2 ±0.5% 

Level 3 ±0.2% 

B Twist angle !8421" deg  

Level 1 ±10.0% 

Level 2 ±5.0% 

Level 3 ±2.0% 

C Rotational Speed 125 rpm 

Level 1 -6 rpm 

Level 2 -4 rpm 

Level 3 -2 rpm 

D Pitch Angle 0 deg 

Level 1 ±1.0 deg 

Level 2 ±0.5 deg 

Level 3 ±0.2 deg 

E Rotor Radius 4.50 m 

Level 1 ±0.5% 

Level 2 ±0.2% 

Level 3 ±0.1% 

F Hub Radius 0.75 m 

Level 1 ±1.0% 

Level 2 ±0.5% 

Level 3 ±0.2% 

 

 

Figure 4-8 Sample tolerance-cost curve 
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Figure 4-9 Relative cost for different tolerance levels 
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Table 4-12 Specific values chosen for the tolerance (Inner Array) and values of noise 

factor (Outer Array) 
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Table 4-13 Results of all 27 runs of tolerance design 

Item 

Chord 
length 
on the 
Root 
of the 
Blade   
(A) 

Twist 
Angle  

(K) 

Rotational 
Speed  

(G) 

Pitch     
(H) 

Rotor 
Radius   

(I) 

Hub 
Radius  

(J) 

Power 
difference 

(∆P2) 
Cost  S/N 

Unit m deg rpm deg m m kW2 $ - 

1 1.00% 10% -6 1 0.50% 1.00% 2.07 2150 -78.85 

2 1.00% 10% -6 1 0.20% 0.50% 1.22 3300 -80.25 

3 1.00% 10% -6 1 0.10% 0.20% 1.19 5550 -84.68 

4 1.00% 5% -4 0.5 0.50% 1.00% 1.26 3250 -80.26 

5 1.00% 5% -4 0.5 0.20% 0.50% 0.39 4400 -77.85 

6 1.00% 5% -4 0.5 0.10% 0.20% 0.27 6650 -79.8 

7 1.00% 2% -2 0.2 0.50% 1.00% 1.08 6550 -85.67 

8 1.00% 2% -2 0.2 0.20% 0.50% 0.24 7700 -80.6 

9 1.00% 2% -2 0.2 0.10% 0.20% 0.08 9950 -78.21 

10 0.50% 10% -4 0.2 0.50% 0.50% 1.11 4600 -82.72 

11 0.50% 10% -4 0.2 0.20% 0.20% 0.32 6250 -79.98 

12 0.50% 10% -4 0.2 0.10% 1.00% 0.2 6750 -78.62 

13 0.50% 5% -2 1 0.50% 0.50% 1.61 3400 -81.73 

14 0.50% 5% -2 1 0.20% 0.20% 0.86 5050 -82.46 

15 0.50% 5% -2 1 0.10% 1.00% 0.74 5550 -82.63 

16 0.50% 2% -6 0.5 0.50% 0.50% 1.26 5000 -84.01 

17 0.50% 2% -6 0.5 0.20% 0.20% 0.49 6650 -82.37 

18 0.50% 2% -6 0.5 0.10% 1.00% 0.37 7150 -81.81 

19 0.20% 10% -2 0.5 0.50% 0.20% 1.23 4450 -82.89 

20 0.20% 10% -2 0.5 0.20% 1.00% 0.37 4350 -77.52 

21 0.20% 10% -2 0.5 0.10% 0.50% 0.25 6100 -78.71 

22 0.20% 5% -6 0.2 0.50% 0.20% 1.24 6050 -85.61 

23 0.20% 5% -6 0.2 0.20% 1.00% 0.39 5950 -80.47 

24 0.20% 5% -6 0.2 0.10% 0.50% 0.26 7700 -80.83 

25 0.20% 2% -4 1 0.50% 0.20% 1.72 5650 -86.43 

26 0.20% 2% -4 1 0.20% 1.00% 0.88 5550 -83.37 

27 0.20% 2% -4 1 0.10% 0.50% 0.76 7300 -85.09 
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3. Results of tolerance design and analysis 

The results of the twenty-seven simulations are summarized in Table 4-13. The factor 

response graphs of design variables, based on the computed S/N ratios are shown in Fig. 

10. According to the smaller-the-better criterion, larger values of S/N ratio correspond to 

smaller values of the product of power fluctuation and cost. Therefore, the optimal design 

variable combination for tolerance design can be identified as A1, B1, C3, D2, E2, and F1 

from Fig. 4-8. Finally, the optimum solution including both the mean values (optimum 

values found in parameter design) and tolerances (optimum values found in tolerance 

design) can be identified for all the design variables as shown in Table 4-14. 

 

 Figure 4-10 Response graphs for the S/N ratio (Tolerance design) 
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Table 4-14 Optimum mean and tolerance values of design variables 

Optimum Values of Design Variable Unit Mean Tolerance 

Chord length on the Root of the Blade m 0.7 ± 0.007 

Twist Angle 1 deg 8 ± 0.8 

Twist Angle 2 deg 4 ± 0.4 

Twist Angle 3 deg 2 ± 0.2 

Twist Angle 4 deg 1 ± 0.1 

No. of Blades # 3 0 

Rotational Speed rpm 125 -2 

Pitch deg 0 ± 0.5 

Rotor Radius m 4.5 ± 0.009 

Hub Radius m 0.75 ± 0.0075 

 

4.6 Conclusions 

The work extends the conventional Taguchi method for solving multi-objective 

constrained optimization problems and obtaining an optimum combination of design 

parameters as well as their tolerances using only a limited number of experiments. It 

provides a simple way of designing robust horizontal axis wind turbine systems under 

realistic conditions. The robust design of HAWT, including both parameter design and 

tolerance design, is presented.  

In the parameter design stage, the energy output of the turbine is maximized by using the 

Taguchi method and the wind energy output is improved by 52.7%. However, from a 

practical point of view, the design of HAWT needs to involve some behavior constraints. 

In this work, two constraints, namely, minimum requirement of power coefficient and 

maximum limit on the stress induced or permissible fractional fatigue damage, are 

considered. An application of a novel extended penalty-based Taguchi method is 

demonstrated through the design of a HAWT example and the energy output is improved 



138 
 

 
 

by 31.6%. Although the improvement in the wind energy output is less in the second 

example, all of the imposed constraints are satisfied.  

Based on the results of the parameter design, an appropriate set of tolerance setting of the 

parameters is established so as to yield an economical design while ensuring a minimal 

variability of performance of the wind turbine. The resulting objective function is 

formulated as a multi-objective function and solved by the traditional Taguchi method. 
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CHAPTER 5 

Optimum Design of Direct Methanol Fuel 

Cell System 

 

5.1 Introduction and Literature Review 

A clean source of energy is becoming greatly needed as conventional fuels such as coal 

and petroleum products have a devastating impact on the environment. When burned, 

these fuels release large quantities of toxics to the atmosphere causing all sorts of 

problems from global warming to ozone depletion.  

Currently, there are many options for clean sources of energy, including solar, wind and 

geothermal power sources. The biggest challenge for these types of sources is portability; 

therefore it becomes necessary to explore power sources for portable applications. 

Hydrogen energy systems, more specifically, hydrogen based fuel cells are considered as 

a leading contender to replace internal combustion engines and conventional batteries. 

Direct Methanol Fuel Cell (DMFC) is a subcategory of proton exchange membrane fuel 

cells (PEMFCs) in which methanol is used as the fuel. Since methanol is supplied to the 

fuel cell in liquid form, it is easy to store, deliver and recharge compared to hydrogen. 

Despite all these advantages, there are several drawbacks that make DMFCs not yet ready 

for commercialization. Some of these hindrances are: slow electro-oxidation of methanol 

at the anode, the undesired methanol crossover from the anode to the cathode and the 

high cost associated with using high platinum catalyst loadings.  
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The optimization of the fuel cell operating conditions and flow field geometry is a hot 

topic in fuel cell research. Unfortunately, the majority of research works have been 

conducted experimentally in a trial and error fashion. This approach is time consuming 

and costly and it does not provide a mechanistic explanation for the results. Therefore, 

the application of numerical optimization techniques becomes necessary in this field. 

PEMFC models with different levels of complexity have been used in some optimization 

studies. Grujicic and Chittajallu (2003) employed a two-dimensional model coupled with 

a nonlinear constrained optimization algorithm to determine an optimum design of the 

fuel cell considering the geometrical parameters as well as the operating parameters as 

design variables. Chen et al. (2006) applied discretization and branch and bound type 

optimization techniques for obtaining a global optimum point of annualized cost for a 

specified power production level based on a one-dimensional model. Secanell et al. (2006) 

used a gradient-based optimization technique to maximize the current density at a given 

electrode voltage based on a two-dimensional single-phase multi-variable model. Ang et 

al. (2010) formulated a multi-objective optimization problem by using the weighting 

method to study the trade-offs between two objectives—the efficiency and the size.  

There are few literatures published in the topic of optimization of DMFC. Xu et al. (2005) 

developed a dynamic DMFC model to decide the optimal methanol feed concentration 

for maximizing the power density output by using a sensitivity analysis based approach. 

Yeh and Chen (2007) obtained an optimum combination of the anode and cathode 

catalyst layers, thickness of membrane, membrane conductivity and methanol 

concentration by using the factorial design method based on a single-phase, one-

dimensional model. Ko et al. (2008) reported in their non-isothermal dynamic 
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optimization model of DMFC that methanol feed concentration had a significant larger 

effect on the methanol crossover, temperature, as well as cell voltage and provided an 

effective optimum operating strategy for the dynamic model. Alotto (2009) applied 

stochastic particle swarm optimization method to optimize multi-objectives including the 

maximization of the cell duration between two consecutive fuel recharges and the 

minimization of the methanol crossover of micro DMFC. Basri et al. (2010) formulated a 

passive DMFC model and used sequential quadratic programming to minimize the cost. 

The geometrical parameters of the anode and cathode such as methanol concentration, 

power density, and catalyst loading were treated as design variables, upper and lower 

bounds of these parameters were considered as inequality constraints and all of the 

governing equations of the fuel cell model were included as equality constraints.  

It can be noticed that most of these DMFC optimization papers were, in general, based on 

simple one-dimensional models. Comprehensive analysis of three-dimensional, one or 

two phase flows were reported (Wang and Wang (2003), Ge and Liu (2005, 2006), Liu et 

al. (2007)). However, optimization techniques have not been carried out so far. In this 

work, a three-dimensional single-phase DMFC model has been used; the genetic 

algorithm (GA), coupled with sequential quadratic programming optimization method, is 

applied to find the global optimum design. 

 

5.2 DMFC model  

A three-dimensional DMFC model consisting of the anode side, the cathode side and the 

membrane is shown in Fig.5-1. The methanol and water were considered in the anode 

side while air was considered in the cathode side. The flow channel is designed for 
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parallel flow. Both the anode side and the cathode side can be sub-divided into the 

gas/liquid channel, the diffusion layer as well as the catalyst layer. In Fig.1, xsc and xland 

represent the length of semi-channel and land in the X direction, respectively, yc 

represents the length of the channel in the Y direction and zc, zd, zca and zm represent the 

width of channel, the thickness of the diffusion layer, the catalyst layer and the thickness 

of membrane in the Z direction, respectively. All the reactants enter the channels from the 

surface at y = 0. All the geometry parameters stated above, catalysts loading as well as 

methanol flow rate and methanol concentration are incorporated in the optimization 

problem as design parameters.  

The design vector of the optimization problem is:  

�� =
ÙÚÚ
ÚÛ
ÚÚÚ
Ü �������´�����Ý�³�Þ���ßÚ

ÚÚà
ÚÚÚ
á
=

ÙÚ
ÚÚ
Û
ÚÚÚ
Ü �I5�abVGâ5âGâ5bâh~5,b~5,5�bS¶ ßÚ

ÚÚ
à
ÚÚÚ
á

    (5.1)  

where  xsc is the semi-channel length width in the x direction (mm); 

xland is the land depth in channel layer (mm); 

zc is the channel region thickness in z direction (mm); 

zd is the diffusive region thickness (mm); 

zca is the catalyst layer thickness (mm); 

zm is the thickness of membrane for both anode and cathode (mm); 

lc,a is the catalyst loading of anode (mg/cm2); 

lc,c is the catalyst loading of cathode (mg/cm2); 
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fa is the methanol volumetric flow rate (cm3/min); 

cw is the methanol concentration by weight; 

 

 

Figure 5-1 Schematic of the modeling domain 

5.2.1 Assumptions made 

In order to reduce the complexity while still capturing the basic process characteristics of 

the numerical model, the following assumptions were employed:  

1) All the fluids are incompressible and the flows are laminar;  

2) All the processes are steady state and isothermal;  

3) The effect of carbon dioxide generated in the anode side is negligible; 

4) The methanol crossed over from the anode to the cathode is completely oxidized 

at the interface between the membrane and the cathode catalyst layer; 

5) The membrane is fully hydrated and is impermeable to gases; 
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6) No limitation on mass transport in the cathode side.  

5.2.2 Governing equations 

The governing equations used in the numerical study include continuity equation (Eq. 5.2) 

momentum equations (Eq. 5.3) and species equations (Eq. 5.4). The continuity equation 

is valid for all components of the fuel cell; mainly, the reactants’ distribution channels, 

the diffuser and the catalyst layers (Zhou and Liu: 2001). 

∇ ∙ ��� = 0      (5.2) 

The momentum equation reduces to the Navier-Stokes equation in the channels. However, 

when applied to the diffuser and the catalyst layers, their porosities need to be considered 

as well as reactants’ permeability and the membrane’s hydraulic and electro-kinetic 

permeabilities. This leads to  

ρ��� ∙ ∆��� = −∇� + 6åæ∇���� + �{U   (5.3) 

The source term in the species equation accounts for the consumption and the creation of 

reactants by electrochemistry, k represents methanol or water in the anode side, and 

oxygen, nitrogen, or water vapor in the cathode side, Xk denotes the mole fraction of 

species k, ;¬y�� indicates the effective diffusion coefficient of the kth component and Sk 

indicates the mass generation rate for species k per unit volume.  

ρ��� ∙ ∇�¬ = �;¬y��∇��¬ + {¬    (5.4) 

with   ∑ �¬ = 1¬       (5.5) 

;¬y�� = ;¬ç�.�      (5.6) 

More details can be found in Zhou and Liu (2001) and Ge and Liu (2006).  
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5.2.3 Electrochemical kinetics 

The anodic and the catholic reaction rates per unit volume can be determined by using the 

Tafel equations(O’Hayre et al.,  2006) 

 Äb = (1O2y��b(èéêèéêcÖÕ�ëÑexp	(ªÑî [7 ïb�    (5.7) 

Ä5 + Äcross = (1O2y��5( èðèðcÖÕ�ë[exp	(− ª[î [7 ï5�   (5.8) 

where the specific reaction surface area (1� is a function of catalyst loading (�Pt� and 

thickness (ñ� as well as catalyst surface area per unit mass of catalyst (|\� (Marr and Li: 

1999) 

1 = hPt�òó      (5.9) 

The value of A^, in Eq. (5.9), depends on percent weight of the platinum in the catalyst 

mixture (Marr and Li, 1999; Secanell et al., 2008).  

The pseudo-current associated with methanol crossover rate (jcross� per unit volume can 

be calculated by 

Ä52\II = �î	»éêÐó      (5.10) 

where =Óöh  is methanol crossover flux and it is caused by diffusion and electro-osmotic 

drag as shown in the following equation 

=Óöh = ÷éêøî − ùh�.�;Óöh GÓéêÐG¨     (5.11) 

in which, ;Óöh  is the diffusion coefficient of methanol in the membrane and λÓö is the 

electro-osmotic drag coefficient for methanol and it is defined as the number of methanol 

molecules dragged by each proton conducted through the membrane.  

λÓö = �Óö|b5/hü¶     (5.12) 
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;Óöh = 4.012 × 10Y��exp	(0.024312 × ��  (5.13) 

The average current density (ý�of the fuel cell is given by 

ý = � Äb�âó�      (5.14) 

The cell voltage is determined by: 

E5yaa = �� − ïb + ï5 − ýÅh    (5.15) 

where the membrane resistance (Åh� is defined by 

Åh = � �±Ð �â = zÐ±ÐzÐ�      (5.16) 

for a fully hydrated membrane with the ionic conductivity (�h�	given by 

�h(�� = �h2y���­ �1268( ���� − �7��   (5.17) 

where T is the operating temperature of the fuel cell, assumed to be 343 K in this work.  

5.2.4 Solution procedure  

1. Determine the velocity of methanol at anode side and the velocity of oxygen (or air);  

2. Assume an over-potential in the anode side and solve for the corresponding species 

concentration and the average current density;   

3. Calculate the flux of methanol crossover and the pseudo current density due to 

methanol crossover; 

4. Solve the over-potential in the cathode side and the cell voltage iteratively until 

convergence;  

5. Repeat steps 2-5 by assuming another over-potential in the anode side until the entire 

polarization curve is obtained.  
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5.2.5 Cost model 

The total cost of DMFC, Ctotal, can be separated into three components, cost of the 

materials, cost of machining and cost of fuel:  

uz\zba = uhbzy2Uba + uhy5JUVUV� + u�`ya   (5.18) 

1. Cost of material 

The cost of material for DMFC can be separated into two parts—cost of the membrane 

electrode assembly and cost of the stack—as:  

uhbzy2Uba = u¤�� + uIzb5¬    (5.19) 

where CMEA is the cost of the membrane electrode assembly, Cstack is the cost of the stack. 

u¤�� = u5bzbaÁIz + uhyhD2bVy + uyay5z2\Gy   (5.20) 

u5bzbaÁIz = (¹wz `·	�wz `·	�(7�	·	�(5�	·	|6b + ¹wz	·	�wz	·	�(8�	·	�(5�	·	|6b�	·	1.2 +
(¹»º	·	|6b	·	(�wz `	·	�(7�	·	�(5� + �wz	·	�(8�	·	�(5���	·	15       (5.21) 

where Ar is the active area the fuel cell, UPtRu and UPt are the unit prices of Pt/Ru and Pt 

respectively, ρPtRu and ρPt are the densities of the Pt/Ru and the Pt, respectively.  

uhyhD2bVy = (−9.1686(�(6��� + 3.3828�(6� + 0.0549�	·	|2	·	1.5 (5.22) 

where the quadric term (−9.1686(�(6��� + 3.3828�(6� + 0.0549� is the unit price of 

Nafion. This cost model is generated based on the price and the thickness of membrane 

(Alfa, 2010). The size of the membrane is assumed to be 50% more the active area.  

uyay5z2\Gy = 2	·	¹�a	·	|2    (5.23) 

where the UEl is the cost of carbon paper. 

uIzb5¬ = 2	·	(¹� 	·	1.5|2� + 2	·	(¹Iz	·	1.5|2� + 2	·	(¹55	·	3	·	|2� (5.24) 

where UG is the cost of gasket, Ust is the cost of the frame and Ccc is the cost of the 

current collector.  
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2. Cost of machining 

The cost of machining depends on the geometry parameters of the fuel cell. Since the 

magnitudes of the parameters are very small, the manufacturing cost is relatively 

expensive since smaller dimensions cost more.  Therefore, the cost of machining is 

assumed as:  

uhb5JUVUV� = °�/�(1� + °�/�(2� + °�/�(3� + °´/�(4� + °�/�(5�  (5.25) 

3. Cost of fuel (methanol) 

The cost of fuel (methanol) for a specified running time can be formulated as 

uhyzJbV\a = (�(9�/60�	·	�(10�	·	32.04/�	·	¹hyzJbV\a	·	f  (5.26) 

where 32.04 (g/mol) is the molar mass of methanol, and ρ is the density of the methanol, 

Umethanol is the  price of methanol and H is the operating time (hours) of the fuel cell.    

 

5.3 Optimization problem 

In general, the optimal design problem can be stated in the general form: 

Minimize f(��)      (5.27) 

subject to  �Ã(��� ≤ 0; j = 1,2,…m    (5.28) 

ℎ¬L��M = 0; k = 1,2,…n    (5.29) 

      	1U ≤ �U ≤ 	U; i = 1,2,…l    (5.30) 

where f is objective function, gj is the jth inequality constraint function, hk is the kth 

equality constraint function, xi is the ith component of the design vector X
r

, and ai and bi 

are the lower and upper bounds on the design variable xi, respectively.  
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5.3.1 Optimization method 

Traditional optimization techniques become inefficient in finding a global optimum point 

for the DMFC model since it is a three-dimensional, multi-component CFD based model. 

The genetic algorithm (GA) method is suited for solving such a problem. Compared to 

the classical gradient-based algorithms, which strongly depend on the initial 

configuration (design) and generally stall in a locate minimum close to the starting point, 

the non-gradient based genetic algorithm (GA) method, which does not require an initial 

point and can locate the global optimum point, has aroused significant interests in 

engineering and industrial applications. In this work, a two-step hybrid method has been 

utilized to determine the optimum solution of DMFC. First, the GA method explores in 

the entire design space and locates the global optimum region. Based on the result of the 

first step, a graduate-based method, the sequential quadratic programming (SQP) method, 

is employed to reach the optimum point accurately. The MATLAB optimization toolbox 

can implement the hybrid method by using the following syntax:  

  T­v = �1T­vO�N�v(′f¾	6O�¡SP�,@��OPSTP�   (5.31) 

 � = �1(�OvP�NN�SP, P«16N, |, 	, |�C, 	�C, 9¦, ¹¦, PTP~STP, T­vOTPN� (5.32) 

where fitnessfcn denotes the objective function corresponding to a multi-dimensional 

design vector x, nvars indicates the number of design variables, A, b, Aeq and beq are the 

linear inequality and equality constraints, LB and UB are lower and upper bounds of the 

design variables and nonlcon is the set of non-linear constraints.  
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5.3.2 Maximization of the power output  

In this section, the objective function is aimed at finding the maximum power density. 

The maximum power of the DMFC is given by: 

 �hb
 = �1�8[(�� − ïb + ï5 − ýÅh� − (ý52\IIÅh�]	ý>  (5.33) 

and the objective function for minimization is taken as:  

�� = −�hb
     (5.34)  

All of the design variables are assumed to have some reasonable upper and lower bounds: 

�UhUV ≤ �� ≤ �Uhb
 , i = 1, 2, … , 10    (5.35)  

5.3.3 Maximization of power output with a minimum operating voltage constraint 

A typical fuel cell produces a voltage from 0.7~0.8 V at open circuit stage which 

decreases with the increase of the current density due to the activation loss, the ohmic 

loss as well as the mass transport loss. For a typical power density curve, the power 

density usually increases with an increase of current density until a particular value and 

then starts to fall down dramatically to zero. Sometimes, the result of optimum voltage 

corresponding to the particular value of current density may be too low, which leads to an 

unexpected low efficiency of the fuel cell system. As a result, in this optimization 

problem, besides all the side constraints, an additional behavior constraint on the 

operating voltage (a lower bound of 0.3) is considered. Thus the problem becomes 

Minimize     �� = −�hb
     (5.36)  

subject to: 

�UhUV ≤ �� ≤ �Uhb
 , i = 1, 2, … , 10    (5.37)  

� ≥ 0.3     (5.38) 



151 
 

 
 

5.3.4 Minimization of cost 

The power density of the DMFC has been maximized in the formulation of the last two 

sections. However, maximization of the performance may result in a relatively high cost, 

which can make DMFCs less competitive. Therefore another important objective 

function—minimization of the cost— is introduced in this section.  The objective 

function (cost) is given in Eq. (5.18). In addition to all the constraints considered in the 

minimizing of f2, the following additional constraints are considered while minimizing f3. 

The maximum power output of the DMFC should be at least 80% of the optimum value 

found in the case of the problem described in section 5.3.2. The optimization problem can 

be stated as: 

�� = uz\zba     (5.39)  

subject to  

�UhUV ≤ �� ≤ �Uhb
 , i = 1, 2, … , 10    (5.40)  

� ≥ 0.3     (5.41) 

     � ≥ 80% × �\Az�    (5.42) 

 

5.4 Numerical Results 

Three numerical examples are considered to illustrate optimization problems of DMFC in 

this section. The physical parameters and basic operating conditions are tabulated in 

Table 5-1.   
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Table 5-1 Physical parameters and basic operation conditions 

Physical parameters and basic operation 
conditions 

Value 

Cell temperature (K) 343 

Water density (kg/m3) 1000 

Air viscosity (kg/(m·s)) 2.05×10-5 

Gas constant (J/(mol·K)) 8.314 

Inlet oxygen mole fraction 0.21 

Methanol reference concentration (mol/m3) 2000 (Ge and Liu, 2006) 

Oxygen reference concentration (mol/m3) 0.472 (Shukla et al., 1999) 

Diffusion coefficient of oxygen in air (m2/s) 1.22×10-10 (Ge and Liu, 2006) 

Diffusion coefficient of methanol in water (m2/s) 2.80×10-9 (Scottel et al., 1999) 

Porosity of diffusion layer 0.6 (Ge and Liu, 2006) 

Porosity of catalyst layer 0.4 (Ge and Liu, 2006) 

Porosity of membrane 0.28 (Bernardy and Verbrugge, 1992) 

Permeability to air in the gas diffuser (m2) 1.76×10-11 (Ge and Liu, 2006) 

Permeability to water in the gas diffuser (m2) 1.00×10-11 (Ge and Liu, 2006) 

Electrokinetic permeability of the membrane 
(m2) 

7.18×10-20 (Bernardy and Verbrugge, 
1992) 

Anode reaction order 1.0 (Shukla et al., 1999) 

Cathode reaction order 1.0 (Shukla et al., 1999) 

Electro-osmotic drag coefficient of water 2.5 (Baxter et al., 1999) 

Charge of fixed (sulfonate) sites -1.0 (Ge and Liu, 2006) 

 

The following upper and lower constraints of design variables are assumed:  

k1 = 200 ; k2 = 400 ; k3 = 400 ; k4 = 20 ; k5 = 5; Ar = 50 cm2; ��hUV = 0.25; ��hb
 = 1.00; 

��hUV = 0.50 ; ��hb
 = 2.00 ; ��hUV = 0.50 ; ��hb
 = 2.00 ; �h́UV = 0.1 ; �h́b
 = 0.2 ; 

��hUV = 0.01 ; ��hb
 = 0.05 ; ��hUV = 0.08 ; ��hb
 = 0.20 ; �ÝhUV = 0.5 ; �Ýhb
 = 2.0 ; 

�³hUV = 0.5; �³hb
 = 6.0; �ÞhUV = 5.0; �Þhb
 = 25.0; ���hUV = 0.5; ���hb
 = 8.0; H = 5000 

The cost parameter used in this work is summarized in Table 5-2.  
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Table 5-2 Cost parameters 

Parameter Value Unit 

Cost of methanol  12 USD/L 

Cost of Pt/Ru 73 USD/g 

Cost of Pt 56 USD/g 

Cost of Nafion solution 1 USD/ml 

Cost of Electrode 417 USD/m2 

Cost of gasket 150 USD/m2 

Cost of graphite plate 800 USD/m2 

Cost of End plate 75 USD/m2 

 

The results of three optimization problems are summarized in Table 5-3. It can be seen 

that the difference in the cost of material of three different optimization problems is very 

similar and the difference in the cost of machining is relatively larger. However, the costs 

of fuel corresponding to different optimization problems are completely different. The 

cost of fuel corresponding to the minimization of f1 is $9760 while the cost of fuel 

corresponding to the minimization of f2 reduces by 40% to $5938 and the cost of fuel 

corresponding to the minimization of f3 further reduces to $2811, which is only 28.80% 

of the corresponding result of the minimization of f1.  

By comparing the total cost and the power density corresponding to the minimizations of 

f1 and f2, the following observation can be made. Although the value of maximum power 

density corresponding to minimization of f3 is 0.0682 W/cm2, which is 65% and 80% of 

the values obtained in the minimizations of f1 and f2, (0.1064 and 0.0852 W/cm2), 

respectively, the total cost is only $4131. This cost is only 35.5% and 53.8% of the total 

costs associated with the minimizations of f1 and f2, respectively. Hence, the price per 

unit energy has been reduced by 45% and 33% compared to the first and second 

problems, respectively, when the third optimization problem is solved.  
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Table 5-3 Results of optimization  

Design variable / 
Outputs 

Unit 

Minimization of f1, 
(Minimization of 
the negative value 
of the performance 
without any voltage 

constraint)  

Minimization of f2, 
(Minimization of 
the negative value 
of the performance 
with an operating 
voltage constraint)  

Minimization 
of f3  

(Minimizing 
the cost) 

x1 mm 0.6692 0.9798 0.5230 

x2 mm 0.5842 0.5201 2.0000 

x3 mm 1.1620 1.7884 2.0000 

x4 mm 0.1198 0.1178 0.1174 

x5 mm 0.5000 0.5000 0.5000 

x6 mm 0.1002 0.1226 0.1335 

x7 mg/cm2 6.0000 5.5800 4.1625 

x8 mg/cm2 1.9985 1.9553 1.6650 

x9 cm3/min 17.0056 14.3904 11.9875 

x10 mol/l 3.9409 2.8332 1.6103 

Cost of material  $ 274 274 267 

Cost of machining $ 1595 1467 1053 

Cost of fuel  $ 9760 5938 2811 

Total Cost $ 11629 7679 4131 

power density W/cm2 0.1064 0.0852 0.0682 

corresponding 
voltage of optimum 

power 
V 0.1846 0.2999 0.3335 
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Figure 5-2 Polarization curves for the optimum designs 

Figure 5-2 shows the polarization curves for the three different optimization problems. In 

the activation loss area (with current density less than 0.15 A/cm2), the curve 

corresponding to the minimization of f1 is slightly lower than the other two curves, but 

the difference is very small. Since the methanol concentration corresponding to the 

minimization of f1 is relatively high, a large amount of methanol is expected to crossover 

from the anode to cathode, and as a result, the corresponding curve with the minimization 

of f1 is expected to be much lower than the other two in the activation loss region. 

However, a relatively higher methanol flow rate (17.0056 cm3/min), coupled with a 

relatively higher catalyst loading (6.0 mg/cm2), can still guarantee enough amount of 

methanol to be electro-oxidized, which results in shifting the curve back to a similar level 

as the other curves.  In contrast, the corresponding values of the methanol flow rate 

(11.9875 cm3/min) and the catalyst loading (4.1625 mg/cm2) are relatively lower when f3 
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is minimized, which means the total amount of methanol that can be electro-oxidized is 

not as much as in the other two cases. However, the value of methanol concentration is 

also low which results in a relatively lower methanol crossover. Therefore, the actual 

amount of electro-oxidized methanol is still remains at a high level and hence the curve 

corresponding to the minimization of f3 also remains at a high level in the activation loss 

area.  

The curves in the ohmic loss region are dominated by one design variable, namely, the 

thickness of membrane. At thicker membrane results in a higher value of resistance and 

therefore the slope of the curve in this region is sharper (Cai et al., 2005).  As indicated in 

Table 5-2, the values of thickness of membrane, design variable x6, for the minimization 

of f1, f2 and f3 are 0.1002, 0.1226 and 0.1335 mm, respectively. Since the thickness of 

membrane corresponding to the minimization of f1 is relatively lower, a curve with 

relatively lower slope is expected. Similarly, since the thickness of the membrane 

corresponding to the minimization of f3 is relatively higher, a curve with a relatively 

higher slope is expected. All the curves have sharp reductions in the mass transport 

region because there is not enough fuel to participate in the electro-chemical reaction. 

Since the value of catalyst loading, methanol flow rate and methanol concentration is 

relatively higher in the minimization of f1, there is still enough amount of methanol that 

can be electro-oxidized even in a high current density such as 0.6 A/cm2. In contrast, the 

value of catalyst loading, methanol flow rate and methanol concentration are relatively 

lower in the minimizations of f2 and f3; therefore the curves starts to drop dramatically 

when the current density is larger than 0.4 A/cm2.  
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Figure 5-3 Power density vs. current density curves of the optimum designs 

 

Figure 5-4 Power destiny vs. voltage curves for the optimum designs 
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Figures 5-3 presents the relationship between current density and power density for three 

different optimization problems while Fig. 5-4 demonstrates the relationship between 

voltage and power density. In Fig. 5-3, as current density increases from 0 to 0.3 A/cm2, 

all of the curves appear to be identical until the power density increases from 0 to 0.075 

W/cm2. As the current density increases from 0.3 to 0.8 A/cm2 continuously, the three 

curves exhibit different behaviors. The curve corresponding to the minimization of f1 

keeps increasing to a peak value at 0.11 W/cm2 until the current density reaches 0.6 

A/cm2 and then it drops to zero dramatically. The curve corresponding to the 

minimization of f2 continuously increases until the current density reaches 0.4 A/cm2 and 

then drops to zero dramatically. The curve corresponding to the minimization of f3 

reaches its peak value when the current density is around 0.3 A/cm2 and afterwards it 

decreases to zero. Figure 5-4 indicates that the highest values of power density for the 

three different optimization problems are 0.1064, 0.0852 and 0.0682 W/cm2, respectively. 

It appears that the optimization of f1 results in a highest power density; however, the 

corresponding value of voltage is very low—only 0.18 V—which is unpractical and 

inefficient in most engineering applications. For most practical voltage values (V ≥ 0.3), 

the power density corresponding to the minimization of f1 appears to be even lower than 

in the case of minimizations of f2 and f3.   
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Figure 5-5 Methanol crossover vs. current density curves for the optimum designs 

The relationship between methanol crossover and current density is presented in Fig. 5-5.  

At zero current density (open circuit voltage), the curve corresponding to the 

minimization of f1 has a relatively high value of methanol crossover while the curve 

corresponding to the minimization of f3 has a relatively low value. The reason for this 

phenomenon can be primarily explained by the corresponding values of methanol 

concentration—3.9409, 2.8332, 1.6103—in the first, second and third optimization 

problems, respectively.  A relatively larger methanol concentration results in a relatively 

larger value of methanol crossover at the open circuit voltage and vice versa. With an 

increase of the current density, more and more of methanol is involved in the electro-

chemical reaction and the gradient of methanol concentration reduces, which results in a 

reduction in the value of methanol crossover. Since the value of methanol concentration 

corresponding to the minimization of f1 is relatively higher, the value of methanol 
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crossover remains at a higher level when the current density increases from 0 to 0.3 

A/cm2. When the value of methanol concentration reduces to 2.8332, which is the 

optimum result corresponding to the minimization of f2, the value of methanol crossover 

remains stable only when the current density is less than 0.2 A/cm2. When the value of 

methanol concentration reduces further to 1.6103, which is the optimum result 

corresponding to the minimization of f3, the value of methanol crossover decreases 

immediately after the zero current density. With an increase in the current density, the 

value of methanol crossover of any of these curves eventually becomes zero because the 

whole amount of methanol is involved in the electro-chemical reaction and there would 

be no more methanol that can cross the membrane from the anode to cathode.  

 

Figure 5-6 Methanol crossover vs. voltage curves for optimum designs  

Figure 5-6 demonstrates the relationship between methanol crossover and voltage. At low 

voltage, the value of methanol crossover corresponding to each optimization problem is 
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almost zero. As the operating voltage increases to more practical values, the value of 

methanol crossover corresponding to the minimization of f1 is much higher than the value 

corresponding to the minimization of f2. The value of methanol crossover corresponding 

to the minimization of f2 is also much higher than the value corresponding to the 

minimization of f3. These results show that large amounts of methanol are wasted instead 

of being involved in the electro-chemical reactions in the minimizations of f1 and f2.    

 

5.5 Conclusions  

A three-dimensional, single-phase, multi-component mathematical model has been used 

for a liquid-fed direct methanol fuel cell (DMFC). The continuity, momentum, and 

species conservation equations coupled with electrochemical kinetics, are treated as the 

governing equations in both the anode and cathode catalyst layers. A finite-volume-based 

CFD technique is applied to develop the numerical program of DMFC. The genetic 

algorithm coupled with sequential quadratic programming optimization technique is 

applied for seeking the global optimization point. Optimization problems with ten design 

variables, three objective functions and a couple of constraints are formulated and solved 

subsequently. The maximization of the power density is considered as the first objective 

function and the solution resulted in a very high power density. However, the operating 

voltage corresponding to the optimum power density is too low. Therefore, in the second 

optimization problem, a minimum operating voltage is set as an additional constraint 

while the maximization of the power density is considered as the objective function. The 

result shows that the maximum power density is higher than first optimization problem. 

The minimization of the cost is considered as the third objective function. Although the 
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value of the maximum power density corresponding to minimization of f3 is only 65% 

and 80% of the corresponding results solved in the minimizations of f1 and f2, 

respectively, the total cost is only 35.5% and 53.8% of the total costs associated with the  

minimizations of f1 and f2, respectively. The polarization, power density and methanol 

crossover curves are presented and explained to help designers better understand the 

performance of optimization of different objective functions.  
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CHAPTER 6 

Conclusions and Future Work 

6.1 Conclusions 

The present work is aiming at helping renewable energy system designers to seek 

optimum designs in order to improve the performance and reduce the cost. Different 

optimization techniques including sequential quadratic programming, game theory 

methodology, genetic algorithm method and robust design methods, namely, Taguchi 

method and its extensions, are implemented in different renewable energy systems 

including solar, wind and hydrogen fuel cell systems under deterministic and 

probabilistic approaches. 

In the optimum design of flat plate solar collector system, a multi-objective optimum 

design is presented with a consideration of solar radiation with shading effect. Three 

objectives, namely, the maximization of the annual average incident solar energy, the 

maximization of the lowest month incident solar energy and minimization of the cost, are 

considered. Most of the design variables and the altitude, solar constant and typical day 

of each month are treated as random variables following normal distribution. Game 

theory methodology with probabilistic uncertainty is used for the solution of the three 

objective constrained optimization problems to find a balanced solution. The solution 

represents the best compromise based on the terms of the super-criterion selected. 

Numerical results are obtained at a specific location (Miami, USA). The sensitivity
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 analysis based on the results of deterministic approach is conducted at the optimum 

solution. Since the design parameters of the solar collector are subject to manufacturing 

and installation errors, a sensitivity study was conducted to find the influence of the 

design variables, as they change by ±20% about their respective optimal values, on the 

three objective functions as well as the supercriterion. It was observed that the 

construction parameters—height, length and number of rows—have more influence than 

the installation factors—tilt angle and distance between two adjacent panels—on the 

objective functions.  The standard deviation of each of the random parameters is varied 

from 1% to 5% of the respective mean values to find the influence of uncertainty on 

different objective functions. The numerical results are given to show the influence of the 

level of probability of constraint satisfaction and the coefficient of variation of the 

random variables. It is observed that the absolute value of each objective function is 

decreased with an increase in either the probability of constraint satisfaction or the 

coefficient of variation of the random variables. Better objective function values can be 

obtained with a lower value of probability of constraint satisfaction, but it might not be 

suitable (safe) for practical applications. A relatively higher constraint satisfaction (like 

99.9997%) would result in worse objective function values. The results of the present 

study help designers in producing optimum solar collectors based on customer 

requirements. As seen from the present results, there is a trade-off between the absolute 

values of the various objectives and the probability of constraint satisfaction. From 

practical point of view, an increase in the overall objective implies improvement in a 

combination of annual energy output, winter energy output and cost of manufacture. With 
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a higher probability of constraint satisfaction, the manufacture has to sacrifice the energy 

values as well as the profit if the costs of raw and processed materials are relatively large.  

Similar to the optimum design of flat plate solar collectors, compound parabolic 

concentrator solar collectors system, which is one alternative solar system of flat plate 

solar collector system, has been optimized by using the same optimization technique 

under both determinist and probabilistic uncertainty. The optimum results of two types of 

solar collectors are compared. Since the price of reflector is much cheaper compared to 

the solar cell, the primary objective of the CPC solar panel system design is to reduce the 

area of solar cell by increasing the area of reflectors. Sensitivity analyses are presented 

with respect to the total energy expectation ratio (compared to flat plate solar collectors) 

and different land price. It is found that the cost per unit energy can be significantly 

reduced by 10% to 23% depending on different land prices if the total energy output can 

be sacrificed by 15% or more compared to the flat-plate solar collector system.  

In the optimum design of wind energy system, horizontal axis wind turbine (HAWT) was 

optimized by using the traditional Taguchi method and its extensions. It provides a 

simple way of designing robust horizontal axis wind turbine systems by considering 

multiple design parameters (variables), multiple objectives, and multiple constraints 

simultaneously. The robust design of HAWT, including both parameter design and 

tolerance design, is presented. The performance of these turbines is predicted using the 

axial momentum theory and the blade element momentum theory. In the parameter 

design stage, the energy output of the turbine is maximized by using the Taguchi method 

and the wind energy output is improved by 52.7%. However, in a practical point of view, 
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the design of HAWT needs to involve some behavior constraints. In this work, two 

constraints, namely, minimum requirement of power coefficient and maximum limit of 

stress induces or permissible fractional fatigue damage, are considered. A novel extended 

penalty-based Taguchi method is demonstrated in the numerical example and the energy 

output is improved by 33.0%. Although the result is less in the latter example, all of the 

imposed constraints are satisfied. Based on the results of parameter design, an appropriate 

set of tolerance setting of the parameters is formulated so as to yield an economical 

design while ensuring a minimal variability of performance of the wind turbine. The 

resulting objective function is formulated as a multi-objective function and solved by 

traditional Taguchi method. 

In the optimum design of fuel cell, a three-dimensional, single-phase, multi-component 

mathematical model has been developed for a liquid-fed direct methanol fuel cell 

(DMFC). The continuity, momentum, and species conservation equations coupled with 

electrochemical kinetics, are treated as the governing equations in both the anode and 

cathode catalyst layer. A finite-volume-based CFD technique is applied to develop the 

numerical program of DMFC. The genetic algorithm coupled with sequential quadratic 

programming optimization technique is applied based on the numerical code for seeking 

global optimization point. Optimization problems with ten design variables, three 

objective functions and a couple of constraints are generated and solved subsequently. 

Maximization of the power density is implemented in the first objective function and a 

very high power density is achieved. However, the operating voltage corresponding to the 

optimum power density is too low. Therefore, in the second optimization problem, a 

minimum operating voltage is set as an additional constraint while the maximization of 
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the power density is still the objective function. The result shows that the maximum 

power density is higher than the result solved in first optimization problem under most 

practical operating voltages. Minimization of the cost is considered as the third objective 

function. Although the value of maximum power density corresponding to minimization 

of f3 is only 65% and 80% of the corresponding results solved in minimization of f1 and f2, 

respectively, however, the total cost is only 35.5% and 53.8% of the total costs of 

minimization of f1 and f2, respectively. Besides, the polarization power density and 

methanol crossover curves are presented and explained to help designers better 

understand the phenomenon of optimum design behind the optimization results.  

 

6.2 Future work 

Optimum design on renewable energy system is a hot and wide topic. The contribution of 

this work to the renewable energy industry is limited due to time sensitiveness. 

Suggestion for future work can be summarized as following:  

1. In this dissertation, two solar collector systems, a wind turbine system and a fuel 

cell system have been optimized. However, there are still numerous types of renewable 

energy systems need to be optimized. For example, other types of solar, wind and fuel 

cell systems like parabolic trough collectors system, cylindrical trough collectors system, 

parabolic dish reflectors system, vertical-axis wind turbine system, phosphoric acid fuel 

cell system, alkaline fuel cell system and solid oxide fuel cell system can be optimized. 

Besides, other types of renewable energy systems including geothermal, ocean wave, and 

biomass resources can be optimally designed.  
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2. In most engineering applications, functions of many variables have a large 

number of local optimum points. However, it is more valuable to find the global optimum 

point though it is more challenging. Besides the genetic algorithm optimization technique, 

which is applied in this work, there is also some other global optimization methods like 

particle swarm optimization technique and ant colony optimization method. In the future, 

researcher or designer can apply these methods or develop new global optimization 

methods to renewable energy systems.  

3. Unexpected weather conditions like a passing cloud, fog or hurricane is a big 

challenge for the renewable energy systems. In order to provide a more stable energy 

system, energy storage devices can be incorporated, besides, different types of renewable 

energy systems can be combined as a hybrid clean energy system, furthermore, 

renewable energy can also be combined with traditional energy system. Real time energy 

management can be proposed to integrated renewable energy system to satisfy different 

energy demands.  
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