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The purpose of this thesis is to study the shock/wave turbulent boundary layer inter-

action by using delayed-detached-eddy simulation (DDES) model with a low diffusion

E-CUSP (LDE) scheme with fifth-order WENO scheme. The results show that DDES sim-

ulation provides improved results for the shock wave/turbulent boundary layer interaction

compared to those of its predecessor the detached-eddy simulation (DES). The computa-

tion of mesh refinement indicates that the grid density has significant effects on the results

of DES, while being resolved by applying DDES simulation.

Spalart in 1997 developed the Detached-Eddy Simulation (DES) model, which is a

hybrid RANS and LES method, to overcome the intensive CPU requirement from LES

models. Near the solid surface within a wall boundary layer, the unsteady RANS model is

realized. Away from the wall surface, the model automatically converts to LES.

The Delayed-Detached-Eddy Simulation (DDES) was suggested by Spalart in 2006 to

improve the DES model previously developed. The transition from the RANS model to

LES in DES is not grid spacing independent, therefore a blending function is introduced to

the recently developed DDES model to make the transition from RANS to LES grid spac-

ing independent. The DDES is validated by computing a 3D subsonic flat plate turbulent

boundary layer.



The first case studied using DDES is a 3D transonic channel with shock/turbulent

boundary layer interaction. It consists of two straight side walls, a straight top wall, and a

varying shape in span-wise direction for a bottom wall. The second case studied consists

of a 3D transonic inlet-diffuser. Both results are compared with experimental data. The

computed results of the transonic channel agree well with experimental data.
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Chapter 1

Introduction

In order to resolve the aerodynamic non-linearity of shock wave/tubulent boundary layer

interaction and flow separation, it is critical to employ advanced turbulence modeling. The

methods based on Reynolds Average Navier-Strokes (RANS) equations are widely used for

the simulation of turbulent flows, although they are not able to simulate the flow separation

in an accurate manner. RANS methods calculate the large scale eddies using a universal

model. Such universal model does not exist for the large scale turbulence that is affected

by flow geometry and boundary conditions.

Large Eddy Simulation (LES) is promising, performing better than the RANS model,

while overcoming its disadvantages. In LES, the governing equations are spatially filtered

on the scale of the numerical grid. This resolves the unsteady large scale turbulent struc-

tures, while modeling the small scale high frequency structures of turbulence. The small

scale eddies, which are generally more homogeneous and universal, are modeled, and the

large energy containing scales are directly simulated. The large eddies are strongly affected

by the flow field geometry boundaries, making the direct computation of the large eddies

by LES more accurate than the modeling of the large eddies by RANS. The effect of the

unresolved small scales of motion is modeled by a sub-grid-scale (SGS) model [3–7] or by

the inherent dissipation in the numerical schemes [8–14]. Given that the statistics of the

1
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small scale turbulence are more isotropic and universal, a general physical model for small

scale eddies is more plausible.

1.1 Detached-Eddy-Simulation

For high Reynolds number flows such as those of turbo-machinery blades and transonic

wings, to resolve the wall boundary layer, LES needs the CPU resource not much less

than the Direct Numerical Simulation(DNS). This makes the LES too expensive for high

Reynolds number flow calculations and therefore it is not hopeful for LES to be rigorously

implemented for another 4 decades in engineering applications [15]. Spalart et al. devel-

oped the so called detached-eddy simulation (DES) strategy [15], which is a hybrid RANS

and LES method, to overcome the intensive CPU requirement for LES. Near the solid sur-

face within the wall boundary layer, the unsteady RANS model is realized. Away from the

wall surface, the model automatically converts to LES. By using the RANS model near the

wall, the fine mesh resolution of LES to resolve the viscous sublayer is avoided and the

CPU time can be tremendously reduced. The motivation of DES is that the LES is power-

ful in regions of massive separation and other free shear flows such as jets, but is much too

costly in the large area of thin wall boundary layers.

In 2001, Spalart gave a grid guidance for DES [16, 17], which divides a flow domain

with solid walls to Euler region, LES region, and RANS region. The LES region is com-

posed of Viscous, Focus and Departure region. In the RANS region, the domain is further

divided to Viscous region and Outer region. Spalart’s DES grid guidance gives sufficient

grid resolution for LES region and the transition to Euler region from RANS region. The

grid size is dramatically reduced compared to the pure LES.

Even though the DES concept is much newer than RANS and LES concept, its appli-

cation for turbulence simulation has already achieved encouraging success as shown in the

work of Wang [18] [19] and Tarvin et al. (1999) [20], Spalart (2001) [16, 17], Forsythe et
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al.(2002) [21], Viswanathan et al. [22], Squires et al. [23, 24], Hsnsen, et al. (2003) [25],

Subbareddy et al. (2005) [26]. These flows calculated using DES include those for air-

foils, cylinders, forbodies, base flows, etc. The results are qualitatively and quantitatively

better than the solutions using RANS. DES appears to be a suitable compromise between

the physical models of turbulence and CPU efficiency. In those DES applications, almost

all the algorithms use 2nd order accuracy except that of Tarvin et al. (1999) [20], which

employs fifth order upwind scheme for the inviscid convective terms in space.

1.2 Delayed-Detached-Eddy Simulation

After the successful DES application was first proposed in 1997, a defect of the first gen-

eration DES model(DES97) [15] has been also exposed, being that the transition from the

RANS model to LES in DES97 may not be grid spacing independent [27]. DES was orig-

inally designed to treat the entire boundary layer using a RANS model and to use LES for

separated flow regions. A fine mesh with grid spacing much smaller than the boundary

layer thickness may exhibit an incorrect behavior in boundary layers and shallow separa-

tion regions due to locating the RANS/LES transition within the boundary layer. The grid

spacing could be fine enough for the DES length scale to follow the LES branch, which

will lower the eddy viscosity below the RANS level. The resolved Reynolds stresses deter-

mined from the velocity fluctuation (LES content) may be lacking because the resolution

is not fine enough to fully support it. The DES limiter then reduces the eddy viscosity, and

therefore the modeled Reynolds stresses. This phenomenon is referred as modeled-stress

depletion (MSD) [27]. This drawback is also considered as one of the possible causes for

the inaccurate prediction of flow separation region size with suction flow control when the

DES is used as indicated by Rumsey [28].

To overcome the MSD problem and make the DES limiter independent of grid spacing,

Spalart suggested a modification to the original DES97 model in 2006 [27], referred to as
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Delayed-Detached-Eddy Simulation (DDES). A blending function similar to the one used

by Menter and Kuntz [29] for the SST model is introduced to limit the DES length scale to

ensure the transition of RANS to LES be independent of grid spacing. The DDES model

has demonstrated excellent agreement with experiment and a significant improvement over

the DES97 for the tested cases, which include a flat plat boundary layer resolved with

mesh spacing significantly smaller than the boundary layer thickness, a circular cylinder,

a single airfoil with weak separation near trailing edge, the backward facing step with

large separation region, and a multi-element airfoil. The predicted separation onset and

separation region length agree well with the experiments.

In this thesis, the DDES of Spalart [27] based on the Spalart-Allmaras one equation

turbulence model will be employed with the recently developed low diffusion E-CUSP

scheme [1] with fifth-order WENO scheme [30, 31] for the inviscid fluxes, in order to

investigate the shock wave/turbulet boundary layer interaction. The first case studied is a

3D Transonic Channel and the second case is a 3D Transonic Inlet-Diffuser.



Chapter 2

Governing Equations

The governing equations for the flow field computation are the spatially filtered 3D general

Navier-Stokes equations in generalized coordinates and can be expressed as follows:

∂Q′

∂ t +
∂E′

∂ξ
+

∂F′

∂η
+

∂G′

∂ζ
=

1
Re

(
∂E′

v
∂ξ

+
∂F′

v
∂η

+
∂G′

v
∂ζ

)
(2.1)

where Re is the Reynolds number defined as

Re =
ρ∞Lu∞

µ∞
(2.2)

and

Q′ =
Q
J (2.3)

E′ =
1
J (ξtQ+ξxE+ξyF+ξzG) (2.4)

F′ =
1
J (ηtQ+ηxE+ηyF+ηzG) (2.5)

5
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G′ =
1
J (ζtQ+ζxE+ζyF+ζzG) (2.6)

E′
v =

1
J (ξxEv +ξyFv +ξzGv) (2.7)

F′
v =

1
J (ηxEv +ηyFv +ηzGv) (2.8)

G′
v =

1
J (ζxEv +ζyFv +ζzGv) (2.9)

where J is the transformation Jacobian. The Navier-Stokes equations noted in Eq.(2.1)

are normalized to bring the numerical round-off error to its minimum, the normalization

procedure is found in [32].

The conservative variable vector Q, the inviscid flux vectors E, F, and G are given as

the following.

Q =




ρ̄

ρ̄ũ

ρ̄ ṽ

ρ̄w̃

ρ̄ ẽ




, E =




ρ̄ ũ

ρ̄ ũ2 + p̄

ρ̄ ũṽ

ρ̄ ũw̃

(ρ̄ ẽ+ p̄)ũ




, F =




ρ̄ ṽ

ρ̄ ṽũ

ρ̄ ṽ2 + p̄

ρ̄ ṽw̃

(ρ̄ ẽ+ p̄)ṽ




, G =




ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + p̄

(ρ̄ ẽ+ p̄)w̃




The inviscid fluxes in generalized coordinate system are expressed as:

E′ =




ρ̄U

ρ̄ ũU + lx p̄

ρ̄ ṽU + ly p̄

ρ̄w̃U + lz p̄

(ρ̄ ẽ+ p̄)U − lt p̄




, F′ =




ρ̄V

ρ̄ ũV +mx p̄

ρ̄ ṽV +my p̄

ρ̄w̃V +mz p̄

(ρ̄ ẽ+ p̄)V −mt p̄




, G′ =




ρ̄W

ρ̄ ũW +nx p̄

ρ̄ ṽW +ny p̄

ρ̄w̃W +nz p̄

(ρ̄ ẽ+ p̄)W −nt p̄




where U , V and W are the contravariant velocities in ξ , η and ζ directions.
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U = lt + l•V = lt + lxũ+ lyṽ+ lzw̃

V = mt +m•V = mt +mxũ+myṽ+mzw̃

W = nt +n•V = nt +nxũ+nyṽ+nzw̃

(2.10)

l, m, n are the normal vectors on ξ ,η,ζ surfaces with their magnitudes equal to the ele-

mental surface area and pointing to the directions of increasing ξ ,η,ζ .

l =
∇ξ
J , m =

∇η
J , n =

∇ζ
J (2.11)

lt =
ξt
J , mt =

ηt
J , nt =

ζt
J (2.12)

Ev =




0

τ̄xx +σxx

τ̄xy +σxy

τ̄xz +σxz

Qx




, Fv =




0

τ̄yx +σyx

τ̄yy +σyy

τ̄yz +σyz

Qy




, Gv =




0

τ̄zx +σzx

τ̄zy +σzy

τ̄zz +σzz

Qz




,

In the above equations, ρ is the density, u,v,w are the Cartesian velocity components in

x,y,z directions, p is the static pressure, and e is the total energy per unit mass. The overbar

denotes a regular filtered variable, and the tilde is used to denote the Favre filtered variable.

The τ̄ is the molecular viscous stress tensor and is estimated as:

τ̄i j =
2
3 µ̃

∂ ũk
∂x k

δi j + µ(
∂ ũi
∂x j

+
∂ ũ j
∂xi

), i, j = 1,2,3 (2.13)

The above equation is in the tensor form, where the subscript 1, 2, 3 represent the

coordinates, x,y,z and the Einstein summation convention is used.

The molecular viscosity µ̃ = µ̃(T̃ ) is determined by Sutherland law.
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The σ is the subgrid scale stress tensor due to the filtering process and is expressed as:

σi j = −ρ̄(ũiu j − ũiũ j) (2.14)

The energy flux Q is expressed as:

Qi = ũ j(τ̄i j +σi j)− q̄i +Φi (2.15)

where Φ is the subscale heat flux:

Φi = −Cpρ̄(ũiT − ũiT̃ ) (2.16)

The q̄i is the molecular heat flux:

q̄i = −Cpµ̃
Pr

∂ T̃
∂xi

(2.17)

ρ̄ ẽ =
p̄

(γ −1)
+

1
2 ρ̄(ũ2 + ṽ2 + w̃2)+ρk (2.18)

where γ is the ratio of specific heats, ρk is the subscale kinetic energy per unit volume.

ρk =
1
2 ρ̄(ũiui − ũiũi) = −1

2σii (2.19)

In the current simulations, the ρk in Eq.(2.18) is omitted based on the assumption that

the effect is small.

2.1 Detached-Eddy-Simulation

DES is a hybrid method which involves both the RANS model and the LES model. This

is done by applying the RANS model near the wall, and the LES model everywhere else
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away from the wall. The Navier-Stokes equations can then be solved using the DES model

suggested by Spalart et al. [15] as the following.

First the sub-grid scale stresses are determined as:

σi j = µDES(
∂ ũi
∂x j

+
∂ ũ j
∂xi

− 2
3

∂ ũk
∂x k

δi j)−
2
3ρkδi j i, j = 1,2,3 (2.20)

The turbulent heat flux will be evaluated by:

Φi = Cp
µDES
Prt

∂ T̃
∂xi

(2.21)

where

µDES = ρνt = ρν̃ fv1 (2.22)

ν̃ is a working variable and is determined by the following Spalart-Allmaras model

[15, 22, 33, 34]:

Dν̃
Dt = cb1S̃ν̃ (1− ft2)− [cw1 fw− cb1

k2 ft2][
ν̃
d ]2 +

1
σ

[∇ · ((ν + ν̃)∇ν̃)+cb2(∇ν̃)2]+ ft1 (∆q)2

(2.23)

In generalized coordinate system, the conservative form of Eq.(2.23) is given as the

following:

∂ 1
J ρν̃
∂ t +

∂ρν̃U
∂ξ

+
∂ρν̃V

∂η
+

∂ρν̃W
∂ζ

=
1

Re

(
∂ ρ

σ (ν + ν̃)(l•∇ν̃)

∂ξ

. +
∂ ρ

σ (ν + ν̃)(m•∇ν̃)

∂η
+

∂ ρ
σ (ν + ν̃)(n•∇ν̃)

∂ζ
+

1
J Sν

)
(2.24)

where
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Sν = ρCb1 (1− ft2) S̃ν̃ + 1
Re

[
−ρ
(

Cw1 fw − Cb1
κ2 ft2

)( ν̃
d
)2

+ ρ
σ Cb2 (∇ν̃)2 − 1

σ (ν + ν̃)∇ν̃ •∇ρ
]
+Re

[
ρ ft1 (∆q)2

] (2.25)

Eq.(2.24) is then coupled with Eq.(2.1) when it is solved.

The eddy viscosity νt is obtained from:

νt = ν̃ fv1 fv1 =
χ3

χ3 + c3
v1

χ =
ν̃
ν

(2.26)

where ν is the molecular viscosity. The resulting term is:

S̃ = S +
ν̃

k2d2 fv2, fv2 = 1− χ
1+ χ fv1

(2.27)

where S is the magnitude of the vorticity. The function fw is given by

fw = g(
1+ c6

w3
g6 + c6

w3
)1/6, g = r + cw2(r6 − r), r =

ν̃
S̃k2d2 (2.28)

The function ft2 is given by

ft2 = Ct3exp
(
−Ct4χ2) (2.29)

and the trip function ft1 is

ft1 = Ct1gtexp
[
−Ct2

ω2
t

∆U2
(
d2 +g2

t d2
t
)]

, gt = min
(

0.1,
∆q

ωt∆xt

)
(2.30)

where, ωt is the wall vorticity at the wall boundary layer trip location, d is the distance to

the closest wall, dt is the distance of the field point to the trip location, ∆q is the difference

of the velocities between the field point and the trip location, and ∆xt is the grid spacing

along the wall at the trip location.

The values of the coefficients are given as:
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Cb1 = 0.1355, Cb2 = 0.622, σ = 2
3 ,

Cw1 = cb1
k2 +(1+ cb2)/σ , Cw2 = 0.3, Cw3 = 2.0,

κ = 0.41, Cv1 = 7.1, Ct1 = 1.0, Ct2 = 2.0, Ct3 = 1.1, Ct4 = 2.0

In DES, ct1 and ct3 are set as zero. The distance to the nearest wall, d, is replaced by d̃

as

d̃ = min(d,CDES∆) (2.31)

where ∆ is the largest spacing of the grid cell in all the directions.

Within the boundary layer close to walls, d̃ = d, hence the turbulence is simulated by

the RANS mode determined by the Spalart-Allmaras model [33]. Away from the boundary

layer, d̃ = CDES∆ is most of the cases. When the production and destruction terms of the

model are balanced, the length scale d̃ will have a Smagorinsky-like eddy viscosity and

the turbulence is simulated by the LES model. Analogous to the classical LES theory,

the length scale ∆ is to cascade the energy to the grid size. The coefficient CDES = 0.65

is used as set in the homogeneous turbulence [35]. The Prt may take the value of 0.9

within the boundary layer for RANS mode and 0.5 for LES mode away from the wall

surface. Eq.(2.23) will be extended to generalized coordinates and will be coupled and

solved together with the filtered Navier-Stokes equations, Eq.(2.1).

2.2 Delayed-Detached-Eddy Simulation

The DDES formulation introduced by Sparlat et al. [27] suggests some modifications to

his previous DES model [15] , given that in wide boundary layers and shallow separation

regions the DES simulation can present an erroneous behavior. This may occur when the

thickness of the boundary layer is greater than the grid spacing parallel to the wall, making

the transition from RANS to LES earlier. With the new modified DDES, the RANS model

is retained longer for thick boundary layers independent of the grid spacing. The DES
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model is adjusted as follows.

The parameter r is modified from the S-A definition to:

rd =
νt +ν

(Ui, jUi, j)0.5k2d2 (2.32)

where Ui, j are the velocity gradients, and the subscript d refers to delayed for DDES. This

parameter is modified in this form so it can be applied to any eddy-viscous model.

rd is applied in the following function

fd = 1− tanh([8rd]
3) (2.33)

The coefficients 8 and 3 are acquired from DDES flat plate boundary layer tests [27] by

matching the solution to the RANS values. In this way the DES d̃ can be modified and be

definied for DDES as follows:

d̃ = d − fdmax(0,d−CDES∆) (2.34)

This modification in d̃ reduces the grey transition area between RANS and LES. The

qualitative change of the new d̃ is very significant, depending now on the eddy-viscosity

field. The DDES model now can refuse the transition to LES if not ready, when the function

fd , using the value of rd , indicates that the point still lies within the boundary layer. The

opposite also occurs, when there is massive separation indicated by fd , the change from

RANS to LES takes place in the simulation.



Chapter 3

The Numerical Method

The DDES of Spalart [27] based on the Spalart-Allmaras one equation turbulence model is

to be employed with the recently developed low diffusion E-CUSP scheme [1] with fifth-

order WENO scheme for the inviscid fluxes and 4th order central differencing scheme for

viscous terms [30, 31]. These schemes that use finite difference methods to discretize the

governing equations are introduced in this chapter.

3.1 The Low Diffusion E-CUSP (LDE) Scheme [1]

The idea behind the LDE scheme is to split the inviscid flux into the convective flux E c

and the pressure flux E p. With the one extra equation from the S-A model for DES and

DDES, the splitting is basically the same as the original scheme for the Euler equation

and is straightforward [36]. This is an advantage over the Roe scheme [37], for which

the eigenvectors need to be derived when any extra equation is added to the governing

equations. In [38], the LDE scheme is shown to be more efficient than the Roe scheme

when the S-A one equation turbulence model is coupled.

In generalized coordinate system, the flux E can be split as follows:

13
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E′ = Ec +E p =




ρU

ρuU

ρvU

ρwU

ρeU

ρν̃U




+




0

lx p

ly p

lz p

pU

0




(3.1)

where, U is the contravariant velocity in ξ direction and is defined as the following:

U = lt + lxu+ lyv+ lzw (3.2)

U is defined as:

U = lxu+ lyv+ lzw (3.3)

The convective term, Ec is evaluated by Edward’s H-CUSP LDFSS scheme [39,40] by,

Ec = ρU




1

u

v

w

e

ν̃




= ρU f c, f c =




1

u

v

w

e

ν̃




(3.4)

let

C = c
(
l2
x + l2

y + l2
z
) 1

2 (3.5)

where c =
√

γRT is the speed of sound. Then the convective flux at interface i + 1
2 is

calculated as:
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Ec
i+ 1

2
= C1

2

[
ρLC+ f c

L +ρRC− f c
R
]

(3.6)

where, the subscripts L and R represent the left and right hand sides of the interface. The

Mach number splitting of Edwards [39, 40] is borrowed to determine c+ and c− as the

following:

C1
2
= 1

2 (CL +CR) , C+ = α+
L (1+βL)ML−βLM+

L −M+
1
2

C− = α−
R (1+βR)MR−βRM−

R +M−
1
2

ML = UL
C1

2
, MR = UR

C1
2

αL,R = 1
2 [1± sign(ML,R)]

βL,R = −max [0,1− int (|ML,R|)]

M+
1
2

= M1
2

CR+CLΦ
CR+CL

, M−
1
2

= M1
2

CL+CRΦ−1

CR+CL
, Φ =

(ρC2)R
(ρC2)L

M1
2
= βLδ+M−

L −βRδ−M+
R

M±
L,R = ±1

4 (ML,R±1)2

δ± = 1
2
{

1± sign
[1

2 (ML +MR)
]}

The pressure flux, E p is evaluated as the following

E p
i+ 1

2
=




0

P+plx

P+ply

P+plz
1
2 p
[
U +C 1

2

]

0




L

+




0

P−plx

P−ply

P−plz
1
2 p
[
U −C 1

2

]

0




R

(3.7)

The contravariant speed of sound C in the pressure vector is consistent with U . It is
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computed based on C as the following,

C = C− lt (3.8)

The use of U and C instead of U and C in the pressure vector is to take into account of

the grid speed so that the flux will transit from subsonic to supersonic smoothly. When the

grid is stationary, lt = 0, C = C, U = U .

The pressure splitting coefficient is:

P
±
L,R =

1
4

(ML,R±1)2 (2∓ML) (3.9)

The LDE scheme is simpler and more CPU efficient than the Roe scheme due to no

matrix operation.

3.2 The Fifth-Order WENO Scheme

The interface flux, Ei+ 1
2

= E(QL,QR), is evaluated by determining the conservative vari-

ables QL and QR using fifth-order WENO scheme [31]. For example,

(QL)i+ 1
2
= ω0q0 +ω1q1 +ω2q2 (3.10)

where

q0 = 1
3Qi−2 − 7

6Qi−1 + 11
6 Qi

q1 = −1
6 Qi−1 + 5

6Qi +
1
3 Qi+1

q2 = 1
3Qi +

5
6 Qi+1 − 1

6Qi+2

(3.11)

ωk =
αk

α0 + . . .+αr−1
(3.12)
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αk = Ck
ε+ISk

, k = 0, . . . ,r−1

C0 = 0.1, C1 = 0.6, C2 = 0.3

IS0 = 13
12 (Qi−2 −2Qi−1 +Qi)

2 + 1
4 (Qi−2 −4Qi−1 +3Qi)

2

IS1 = 13
12 (Qi−1 −2Qi +Qi+1)

2 + 1
4 (Qi−1 −Qi+1)

2

IS2 = 13
12 (Qi −2Qi+1 +Qi+2)

2 + 1
4 (3Qi−4Qi+1 +Qi+2)

2

(3.13)

where, ε is originally introduced to avoid the denominator becoming zero and is supposed

to be a very small number. In [31], it is observed that ISk will oscillate if ε is too small

and also shift the weights away from the optimal values in the smooth region. The higher

the ε values, the closer the weights approach the optimal values, Ck, which will give the

symmetric evaluation of the interface flux with minimum numerical dissipation. When

there are shocks in the flow field, ε can not be too large to maintain the sensitivity to

shocks. In [31], ε = 10−2 is recommended for the transonic flow with shock waves.

The viscous terms are discretized by a conservative fourth-order accurate finite central

differencing scheme developed by Shen et al [31]. This central differencing scheme is

constructed to how the stencil width within the stencil width of the WENO scheme.

∂R
∂ξ

|i = R̃i+1/2 − R̃i−1/2 (3.14)

where

R̃i−1/2 =
1

24∆ξ
(−Ri+1/2 +26Ri−1/2 −Ri−3/2) (3.15)

Ri−1/2 = [(ξxτxx)+(ηyτxy)+(ζzτxz)]i−1/2

(τxx)i−1/2 = µ|i−1/2{4
3

[
(ξx

∂u
∂ξ )|i−1/2 +(ηx

∂u
∂η )|i−1/2 +(ζx

∂u
∂ζ )|i−1/2

]

−2
3 [(ξy

∂v
∂ξ )|i−1/2 +(ηy

∂v
∂η )|i−1/2 +(ζy

∂v
∂ζ )|i−1/2

(ξz
∂w
∂ξ )|i−1/2 +(ηz

∂w
∂η )|i−1/2 +(ζz

∂w
∂ζ )|i−1/2]}

(3.16)

If R in Eq.(3.15) can be approximated with the accuracy order not lower than 4th order,
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the Taylor expansion analysis of (3.14) and (3.15) will give

R̃i+1/2 − R̃i−1/2 = R′
(ξi)+O(∆ξ 4)

Where the 4th order accuracy is achieved.

In order to achieve the highest order accuracy of RI (I = i− 3/2, i− 1/2, i + 1/2) in a

least stencil not wider than the total width of the WENO stencils, for example, the stencil

S = (xi+r,xi+r+1, · · · ,xi+s) for all ∂u
∂η |I, I = i− 3/2, i− 1/2, i + 1/2, we give the following

formulas,

µI =
n
∑
l=m

CI
l µi+l, m = −2,n = 1, (3.17)

∂u
∂ξ

|I =
1

∆ξ

s
∑
l=r

DI
l ui+l, r = −3,s = 2, (3.18)

∂u
∂η

|I =
n
∑
l=m

CI
l

∂u
∂η

|i+l, j, m = −2,n = 1, (3.19)

where
∂u
∂η

|i, j =
1

∆η

q

∑
l=p

Cc
l ui, j+l, p = −2,q = 2, (3.20)

The other terms are determined similarly.

By choosing different ranges for (m,n),(r,s),(p,q) and different coefficients CI
l ,DI

l ,Cc
l ,

one can obtain the different order accuracy of the viscous terms.

One principle of choosing (m,n),(r,s),(p,q) is to ensure the approximation of ∂R
∂ξ |i

(Eq.(3.14))is a central differencing. (m,n) = (−2,1),(r,s) = (−3,2),and (p,q) = (−2,2),

and the coefficients CI
l ,DI

l ,Cc
l are given in Tables 3.1-3.3.



19

Table 3.1: The coefficients of CI
l

I CI
−2 CI

−1 CI
0 CI

1
i−3/2 5/16 15/16 -5/16 1/16
i−1/2 -1/16 9/16 9/16 -1/16
i+1/2 1/16 -5/16 15/16 5/16

Table 3.2: The coefficients of DI
l

I DI
−3 DI

−2 DI
−1 DI

0 DI
1 DI

2
i−3/2 71/1920 -141/128 69/64 1/192 -3/128 3/640
i−1/2 -3/640 25/384 -75/64 75/64 -25/384 3/640
i+1/2 -3/640 3/128 -1/192 -69/64 141/128 -71/1920

3.3 Implicit Time Integration

The time dependent governing equations are solved using dual time stepping method sug-

gested by Jameson [41]. To achieve high convergence rate, the implicit pseudo time march-

ing scheme is used with the unfactored Gauss-Seidel line relaxation. The physical temporal

term is discretized implicitly using a three point, backward differencing as the following

(The prime is omitted hereafter for simplicity):

∂Q
∂ t =

3Qn+1−4Qn +Qn−1

2∆t (3.21)

where n− 1, n and n + 1 are three sequential time levels, which have a time interval of

∆t. The first-order Euler scheme is used to discretize the pseudo temporal term. The semi-

discretized equations of the governing equations are finally given as the following:

[(
1

∆τ
+

1.5
∆t

)
I −
(

∂R
∂Q

)n+1,m
]

δQn+1,m+1 = Rn+1,m − 3Qn+1,m −4Qn +Qn−1

24t
(3.22)

where the ∆τ is the pseudo time step, R is the net flux evaluated on a grid point using the

fifth-order WENO scheme and the fourth-order central differencing scheme [31].
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Table 3.3: The coefficients of Cc
l

Cc
−2 Cc

−1 Cc
0 Cc

1 Cc
2

1/12 -8/12 0 8/12 -1/12



Chapter 4

Delayed-Detached-Eddy Simulation and
Shock/Wave Turbulent Boundary Layer
Interaction

Turbulence is a physical problem that is delineated by its highly chaotic nature and as a

result there is no general solution available. In consequence there are several turbulent

models that have been developed for a close resemblance to this phenomenon. The present

work makes use of the delayed-detached-eddy simulation model and compares it to its pre-

decessors the Sparlat and Allmaras one-equation model and the detached-eddy simulation

model.

4.1 3D Subsonic Flat Plate

The subsonic flat plate is used to validate the performance of the DDES scheme. The mesh

size is 181× 81× 65 . The y+ of the first cell center to the wall is kept less than 1.0. The

mesh can be observed in Fig. 4.1 and Fig. 4.2. The Reynolds number is 4× 106 based on

the length of the plate. The inlet Mach number is 0.5.

As shown in Fig. 4.3, the computational results of the DDES scheme agree well with

the law of the wall. They are slightly better than the results using S-A model alone in the

transition region from the linear viscous sublayer to log layer.

21
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Figure 4.1: 2D view of the mesh for subsonic flat plate

Figure 4.2: 3D view of the mesh for the subsonic flat plate
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Figure 4.3: Law of the wall of a subsonic flat plate



Chapter 5

3D Transonic Channel Flow

5.1 Geometry

In this thesis, the flow in a transonic channel is simulated, using both DES and DDES

models, to study the shock wave/turbulent boundary layer interaction, which is analyzed

experimentally in reference [42]. The channel is made of two straight side walls, a straight

top wall, and a varying shape in span-wise direction for a bottom wall. The section tested

on [2] has an entrance of 100mm in height by 120mm in width. Fig. 5.1 shows the topology

of the duct’s shape.

5.2 Inlet and Boundary Conditions

For the computation, the inlet boundary conditions are set as fixed total pressure, total

temperature and flow angles. At the outlet a fixed static pressure is specified. On the walls,

the boundary conditions are set as no-slip adiabatic wall boundary condition. The flow for

both DES and DDES models is calculated with a Reynolds number of 11.3×106 based on

the throat’s height and an inlet Mach number of 0.502.

24
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Figure 5.1: The computational grid of the transonic channel

5.3 CFD Simulation

5.3.1 Mesh Generation

Two mesh sizes are used for the DES calculation of 91× 61× 61 and 136× 91× 91, and

three mesh sizes are used for the DDES calculation of 91× 61× 61, 136× 91× 91 and

211× 91× 91. The meshes are mostly uniformly distributed in the horizontal direction

except for the bump area, where the mesh is clustered to better observe the shock wave.

In the same way, the clustering also appears near the four walls of the duct to resolve the

boundary layer. Fig. 5.1 shows the 3D mesh of the transonic channel.
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5.3.2 CFD Pre-Processing

A non-dimensional time step of 0.05 was used for the cases. The non-dimensional time is

defined as t̄ = t
D/U∞

, where D is the throat height. The computation begins with a uniform

flow field. The convergence history within a typical physical time step is shown in Fig. 5.2,

which the residual reduced by 2-3 orders of magnitude.
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R
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ua

l
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Figure 5.2: Convergence history within a typical time step for transonic duct

5.4 Results

Fig. 5.3 and Fig. 5.4 show the computed instant shock wave structure shown by Mach con-

tours at 3 span-wise planes for the DES and DDES simulations respectively. Fig. 5.5 shows

the result of the Mach number contours for the experiment [2] which can be compared to

those of Fig. 5.3 and Fig. 5.4. The location of the planes from the back wall are Z = 60mm,

Z = 75mm and Z = 90mm, with the one located at Z = 60mm being the central plane of the

channel. In order to achieve the location of the shock to be the same as in the experiment,
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the value of pout
pt

= 0.59 is used for both DES and DDES. Both the DES and DDES sim-

ulations have results in the shock wave structure very similar to that of the experiment, as

shown in Fig. 5.5.
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Figure 5.3: Transonic duct Mach number contours for DES

Compare the DES and DDES results at the plane Z = 60mm, the boundary layer of

DDES is thinner than that of DES and agrees better with the experiment. The major differ-

ence between the results of DES and DDES simulations can be seen in plane Z = 90mm,

where DES shows a thick layer with an area of separation significantly larger than the ex-

periment. When looking at the DDES results, the separation is substantially reduced and

agrees better with the experiment.
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Figure 5.4: Transonic duct Mach number contours for DDES

The surface shear stress flow are also plotted in this study and are found in Fig. 5.6 and

Fig. 5.7. They show three faces of the channel, the top wall and both of the side walls.

The results agree well with the experiment [2] observed in Fig. 5.8, DDES having a better

agreement which can be observed on side A of the channel on the area close to the top and

bottom walls.

The mesh refinement study with the mesh sizes mentioned above shows that DES is

mesh dependent (grid density), given that the finner the mesh near the walls, the less agree-

ment with the experimental results. This is then resolved with the use of DDES as indicated

by Sparlat [27].
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Figure 5.5: Transonic duct Mach number contours from experiment

Fig 5.9 shows a plot of the computational isentropic Mach numbers on the top wall on

plane Z = 60mm of the transonic channel compared to the experiment [2]. The computed

values are slightly lower than those of the experiment because the strength of the shock

wave is not as strong which could result as a problem of the mesh density near the boundary
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Figure 5.6: Transonic duct surface shear stress lines on walls for DES

layer. The plot also shows that the finner the mesh for the DDES gives more accurate

results, which for DES the opposite occurs and therefore resolved by the implementation

of DDES. The similarity in the DDES solutions for the 136× 91× 91 and 211× 91× 91

meshes show the convergency of the results.
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Figure 5.7: Transonic duct surface shear stress lines on walls for DDES
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Figure 5.8: Transonic duct surface experimental shear stress for top, side A and side B
walls [2]
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Figure 5.9: Isentropic Mach number on top wall of transonic duct at plane Z=60mm, ex-
periment data [2]



Chapter 6

Transonic Inlet-Diffuser

6.1 Geometry

The flow in a transonic inlet-diffuser is simulated, using SA, DES and DDES models, to

study the shock wave/turbulent boundary layer interaction, which is described experimen-

tally in reference [43]. The mesh is a 3D grid, with a straight bottom wall, two converging

straight side walls, and a varying shape in span-wise direction for a top wall. Fig. 6.1 shows

the topology of the inlet-diffuser’s shape.

6.2 Inlet and Boundary Conditions

For the computation, the inlet boundary conditions are set as fixed total pressure, total

temperature and flow angles, the same way as it is defined for the transonic channel flow.

At the outlet a fixed back pressure is specified, which equals to 0.72 times of the inlet total

pressure. On the walls, the boundary conditions are set as no-slip adiabatic wall boundary

condition. The flow for both DES and DDES models is calculated with a Reynolds number

of 8.39645×105 based on the throat’s height and a Mach number of 0.9.
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Figure 6.1: The computational grid of the transonic inlet-diffuser

6.3 CFD Simulation

6.3.1 Mesh Generation

The baseline mesh size is 81×51×51 with a y+ lower than 3. The mesh is refined in both

horizontal and vertical directions to 101×61×51, but the results have little variation. The

mesh is mostly uniformly distributed in the horizontal direction except for the throat area,

where it is finner to better catch the shock wave. The mesh distribution can be observed

in Fig. 6.1. At the end, three different meshes with the dimensions of the baseline are

generated which they differ in the angle in which the side walls converge towards each

other. This is performed because of the way the experimental setup is conducted and the 2D

computational results available. The three angles of convergence at which the simulation

is performed, taking the x-horizontal as reference, are θ = 1.10, θ = 1.31, and θ = 1.67.
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6.3.2 CFD Pre-Processing

A non-dimensional time step of 0.05 was used for all the cases. The computation begins

with a uniform flow field. The convergence history within a typical physical time step is

shown in Fig. 6.2.
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Figure 6.2: Convergence history within a typical time step for transonic inlet-diffuser

6.4 Results

Fig. 6.3, Fig. 6.4 and Fig, 6.5 show the mach contours computed using the SA scheme,

DES scheme, and DDES scheme, respectively. The three different discretization schemes

show discrepancies between each other which denotes how turbulence modeling is a criti-

cal factor for the prediction accuracy of the shock wave/turbulent boundary layer interac-

tion. Observing the figures, the shock location varies across convergence angles, as well as

schemes. The shock wave is less visible, if not inexistent on the DES cases. Given that DES

was designed to treat the entire boundary layer using a RANS model, this incorrect behav-
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ior in this case is caused by a fine mesh which grid spacing much smaller than the boundary

layer thickness locating the RANS/LES transition within the boundary layer itself. Then

comparing the DES model with the DDES model, there is an improvement based on the

only factor that the shock wave that is visible with SA, is visible again when computed with

DDES, because of a better definition of the boundary layer, which is independent from the

mesh definition on the wall.
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Z
SA -5th WENO

3D diffuser angle = 1.10 degrees

Figure 6.3: Mach contours of the transonic inlet-diffuser for SA model

Fig. 6.6, Fig. 6.7 and Fig, 6.8 show the pressure contours computed using the SA

scheme, DES scheme, and DDES scheme, respectively. These contours show again the

same results as presented by the mach countours, although this time for the DDES case for
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Figure 6.4: Mach contours of the transonic inlet-diffuser for DES model

an angle of 1.31, the curved α-shock can almost be captured.

Fig. 6.9, Fig. 6.10 and Fig, 6.11 show the pressure distribution computed on the top

wall compared with experiment using the SA scheme, DES scheme, and DDES scheme,

respectively. The computational results are also compared with those calculated usind the

DDES scheme but on a 2D geometry. The 2D geometry results practically mimic the ex-

perimental ones, assuming that the 3D results would do the same. This is not the case,

given that for all three schemes it can been seen in the figures that the shock wave is not

nearly strong enough to provide the expected results. As a consequence, the angle of con-

vergence is changed and various calculations are performed in search of the experimental
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Figure 6.5: Mach contours of the transonic inlet-diffuser for DDES model

solution. Fig. 6.9, Fig. 6.10 and Fig, 6.11 illustrate that the objective is not reached and that

further investigation needs to be performed to find the ideal conditions of the 3D mesh to

find matching results to the 2D ones.
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Figure 6.6: Pressure contours of the transonic inlet-diffuser for SA model
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Figure 6.7: Pressure contours of the transonic inlet-diffuser for DES model
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Figure 6.8: Pressure contours of the transonic inlet-diffuser for DDES model
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Figure 6.9: Upper wall pressure of the transonic inlet-diffuser for SA model
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Figure 6.10: Upper wall pressure of the transonic inlet-diffuser for DES model
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Figure 6.11: Upper wall pressure of the transonic inlet-diffuser for DDES model



Chapter 7

Conclusions

The shock/wave turbulent boundary layer interaction is studied using a DDES simulation

with a low diffusion E-CUSP scheme [44] and fifth-order WENO scheme. A 4th order

central differencing is used for the viscous terms.

The Delayed-Detached-Eddy Simulation (DDES) was suggested by Spalart in 2006

to fix a problem with the DES model he had previously developed in 1997. The transition

from the RANS model to LES in DES is not grid spacing independent, therefore a blending

function is introduced to the recently developed DDES model to make the transition from

RANS to LES grid spacing independent. The validation of the DDES method is performed

by the simulation of the flow field of a 3D subsonic flat plate turbulent boundary layer.

The computational results of the DDES scheme agree well with the law of the wall, being

slightly better than those of the S-A model.

For a 3D transonic duct with a baseline grid of 136×91×91, the computed shock/wave

structure for three span wise planes agrees better with experiment using DDES compared

to the results of DES near the walls of the channel. The computation of mesh refinement

indicates that the grid density has significant effects on the results of DES, while being

resolved by applying DDES simulation.

For a 3D transonic inlet-diffuser with a baseline grid of 81×51×51, the DES simula-

46
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tion is not able to predict the location and strength of the shock/wave. Although the DDES

simulation does not provide a quite accurate solution, it does give much better results than

the ones provided by its predecessor the DES. In order to find the ideal conditions and ge-

ometry of the 3D mesh, further investigation remains to be done, so the results can agree

as well as the 2D DDES with the experiment.
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