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Abstract

The AdS/CFT correspondence is a powerful tool that can help shed light on the relationship

between geometry and field theory.

The first part of this thesis will focus on the construction of theories dual to Type IIB

string theory on AdS5 × Y 5, where Y 5 is a toric Sasaki-Einstein manifold. This thesis

will introduce a consistency condition called “proper ordering” and demonstrate that it is

equivalent to several other previously known consistency conditions. It will then give an

efficient algorithm that produces a consistent field theory for any toric Sasaki-Einstein Y 5.

The second part of this thesis will examine the large-N limit of the Kapustin-Willett-

Yaakov matrix model. This model computes the S3 partition function for a CFT dual

to M-theory on AdS4 × Y 7. One of the main results will be a formula that relates the

distribution of eigenvalues in the matrix model to the distribution of holomorphic operators

on the cone over Y 7. A variety of examples are given to support this formula.
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Chapter 1

Introduction

The figures in this chapter originally appeared in refs. [1, 2], written in collaboration with

Christopher Herzog and Silviu Pufu.

1.1 AdS/CFT in string theory and M-theory

The AdS/CFT correspondence [3–5] is a conjectured duality that can help us to understand

the connections between geometry and field theory. It is an example of the holographic

principle, which proposes that in a quantum theory of gravity, all of the information about

a particular region is encoded in the boundary of that region. The original motivation for

the holographic principle is the observation that the entropy of a black hole is proportional

to its surface area rather than its volume. AdS/CFT uses string theory to give specific

examples of a gravity theory in an n + 1-dimensional negatively curved spacetime, and a

field theory on the n-dimensional boundary of the spacetime that is believed to be equivalent

to the gravity theory. In addition to string theory, AdS/CFT has found some applications

in the physics of superconductors and heavy ion collisions.

The AdS/CFT correspondence is so named because the original examples of the duality

were between n-dimensional conformal field theories (CFT) and n+ 1-dimensional gravity

theories on anti de Sitter space (AdS). A conformal field theory is a field theory that is

invariant under the conformal group, i. e. the group of symmetries of n-dimensional space-

time that preserve angles but not necessarily lengths. Anti de sitter space is a homogeneous,
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isotropic negatively curved spacetime. The group of isometries of (n+ 1)-dimensional AdS

space (AdSn+1) is the same as the group of conformal transformations of n-dimensional

Minkowski space.

The most commonly studied objects in string theory are strings and D-branes. Excita-

tions of a closed loop of string give rise to gravity, among other fields. Strings ending on

a D-brane give rise to gauge fields on the D-brane. Consider Type IIB string theory on

10-dimensional Minkowski space. Suppose that we add a stack of N D3-branes. The field

theory on the branes will be an SU(N) gauge theory with N = 4 supersymmetry. This the-

ory is conformal. The D3-branes have mass and charge, so they will warp the surrounding

spacetime. For N large, the geometry of spacetime approaches AdS5 × S5, where S5 is the

five-sphere. Additionally, when N is large, quantum effects in the AdS5×S5 theory become

small, allowing us to treat the theory classically. This is the original example of AdS/CFT.

Chapter 2 of this thesis will explore some related constructions. Rather than starting

with 10-dimensional Minkowski space, we will start with R3,1 × CY 3, where CY 3 is a

Calabi-Yau manifold with a singularity. When we place N D3-branes at the singularity,

the geometry becomes AdS5 × Y 5, where Y 5 is a Sasaki-Einstein manifold. (That Y 5 is

Sasaki-Einstein essentially just means that AdS5 × Y 5 preserves some supersymmetry.)

Chapters 3-4 will focus on a similar construction in M-theory. We start with M-theory

on R2,1 × CY 4, and we can place N M2-branes at a singularity of CY 4. For N large, the

geometry becomes AdS4 × Y 7, where Y 7 is Sasaki-Einstein.

Most of the CFTs that we study will be quiver gauge theories. A quiver gauge theory

is a 3– or 4–dimensional supersymmetric field theory consisting of gauge fields and mat-

ter fields in fundamental, antifundamental, or bifundamental representations of the gauge

groups. Many configurations in string theory and M -theory have low energy limits that

are described by quiver gauge theories. In this thesis, we will only consider quivers with

at least four supercharges; this ensures the existence of a U(1)R symmetry. We will also

avoid fundamental and antifundamental representations in four dimensions; these would

correspond to adding D7-branes to the Type IIB constructions. A Chern-Simons coupling

for the gauge fields is possible in three dimensions, but not in four dimensions. Figure 1.1

gives an example of a quiver gauge theory.
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k2

k1

k3

A31,i

A23,i

A12,i

Figure 1.1: This quiver has three unitary gauge fields B1, B2, B3 (depicted by black dots),
and nine matter fields A31,i, A12,i, A23,i for i ∈ {1, 2, 3} (depicted by arrows). The field
Amn,i transforms in the fundamental of the gauge group Bn and the antifundamental of the
gauge group Bm. Although it is not obvious from the diagram, there is a superpotential
εijkA31,iA12,jA23,k. In three dimensions, we can add Chern-Simons terms ki

4πBi∧dBi to the
Lagrangian.

1.2 Dimer models and D3-branes

Chapter 2 will investigate the problem of constructing a quiver gauge theory dual to Type

IIB string theory on AdS5 × Y 5 for a given Y 5. It appears to be prohibitively difficult to

perform the construction for an arbitary Sasaki-Einstein manifold Y 5, so we will focus on

the case where Y 5 is toric. A 2n− 1 dimensional Sasakian manifold is said to be toric if it

possesses a U(1)n isometry group. This is the largest possible abelian isometry group for a

Sasakian manifold. When Y 5 is toric, we can use a diagram called a dimer model [6–12] or

brane tiling to describe the quiver gauge theory.

Not all dimer models describe Type IIB string theory on AdS5 × Y 5. If a dimer defines

a field theory that does not describe any Y 5, then we call it inconsistent. There have been

several previously proposed criteria for determining that a dimer is inconsistent. If a field

theory is to describe some Y 5, then for N = 1, the Higgs branch of the moduli space should

be isomorphic to the cone over Y 5. Once we have found the Y 5 that might be dual to

the CFT, there are some tests that we can perform. AdS/CFT tells us that the number

of gauge groups in the field theory should be equal to the number of even-dimensional

cycles of Y 5 [13]. So we can reject any dimer that has the wrong number of gauge groups.

Some other indications of inconsistency are the existence of operators with R-charge less

than 2
3 [10, 14, 15], cubic anomalies in the CFT not matching Chern-Simons coefficients in
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kd−1

Ad A1

A2
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B1

B2

B3

Bd

n3

nd−1

nd
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Figure 1.2: A necklace quiver gauge theory. Necklace quivers will be studied in chapters
3–4. The gauge sector consists of d U(N) gauge groups with Chern-Simons coefficients ka.
The matter content consists of the bifundamental fields Aa and Ba, as well as na pairs of
fundamentals and anti-fundamentals transforming under the ath gauge group.

AdS [5, 16], duplicate “corner perfect matchings” [10], and incorrect winding numbers of

“zigzag paths” [10].

However, it was not clear whether there could be inconsistent dimers that these criteria

fail to recognize. This thesis will propose a criterion called “proper ordering” and present

evidence that a dimer is consistent iff it is properly ordered. It will show that proper

ordering is equivalent to the criterion on the number of gauge groups, and is at least as

strong as the criteria for R-charges, cubic anomalies, corner perfect matchings, and zigzag

paths.

Given a toric Y 5, we would like to know how to construct a dimer model for Y 5.

Previous attempts at an algorithm [10–12] suffered from being computationally inefficient,

not being proven to produce a construction, and not being proven to produce only consistent

constructions. This thesis will present an efficient algorithm that produces a properly

ordered dimer for any toric Y 5.
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1.3 Matrix models for M2-branes

Chapters 3–4 will use the matrix model of Kapustin, Willett, and Yaakov [17] to study

various field theories dual to M-theory on AdS4×Y 7. The matrix model uses the localization

procedure of Pestun [18] to compute the partition function ZS3 of the field theory on S3.

One reason for studying the matrix model is that it can help us understand nonperturbative

dualities in three-dimensional field theories. In four dimensions, anomalies can be used to

test nonperturbative dualities. In three dimensions, these anomalies do not exist. We would

like to use the free energy F = ln |ZS3 | as a replacement for the Weyl anomaly coefficient

a. Along renormalization group flows, both a and F decrease monotonically [19–23]. In

four dimensions, one can compute the exact infrared R-symmetry by maximizing a with

respect to a set of trial R-charges [24]. In three dimensions, we can likewise find the infrared

R-symmetry by maximizing F [25, 26].

Ref. [27] determined the large-N limit of the matrix model for certain quivers called

“necklace quivers”. These quivers haveN = 3 supersymmetry. Figure 1.2 shows an example

of a necklace quiver. For such quivers, they find that the saddle point approximation

successfully determines the free energy to leading order. This thesis will use the matrix

model to test S-duality and Seiberg-like duality in necklace quivers. It will also analyze

the large-N matrix model for several other theories, including some that have just N = 2

supersymmetry.

This thesis will also propose a relationship between the eigenvalues of the large-N matrix

model and the density of chiral operators in the field theory. In the theories that we will

consider, the saddle point eigenvalues of the matrix model can be described by the functions

ρ(x) and ya(x). The function ρ(x) gives the density of eigenvalues with real part N1/2x;

it is the same for each gauge group. The function ya(x) gives the imaginary parts of the

eigenvalues with real part N1/2x. Each gauge group has a different ya(x). In the theory

described by figure 1.2, for example, the free energy functional is given by [27]

F [ρ, δya] = πN3/2

∫
ρ(x)dx

[(∑
a

na

)
|x|+ 2x

d∑
a=1

qaδya(x) + ρ(x)
d∑
a=1

f(ya−1(x)− ya(x))

]
,

(1.1)
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where f is a periodic function of period one that satisfies f(x) = 1
4 − x

2 for −1
2 ≤ x ≤ 1

2 .

We can determine ρ, ya(x), and the free energy by extremizing this functional.

All Sasaki-Einstein Y 7 have a U(1)R symmetry, and those that can be described by

quiver gauge theories have an additional magnetic U(1). Let ψ(r,m) be the number of

gauge invariant chiral primary operators with R-charge ≤ r and magnetic charge ≤ m. If

X is a chiral operator that is charged only under the center of the gauge group, then let

ψX(r,m) count gauge invariant chiral operators modulo the relation X = 0. For large r, the

functions ψ and ψX can be approximated by homogeneous, piecewise polynomial funtions.

When we write ψ and ψX , we will sometimes refer to these approximations. The proposed

relationship between matrix eigenvalues and operator counts is

∂3ψ

∂r2∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x) , (1.2)

∂2ψX
∂r∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x)

[
R(X) +

∑
yaqa

]
, (1.3)

where the qa are the gauge charges of X. These formulas are useful because the left-hand

side can be computed directly from the geometry without needing to know anything about

the field theory. In particular, for theories such as chiral theories where we are not yet

sure how to analyze the matrix model, we can formulate a guess as to what the eigenvalue

densities should be.

1.4 Issues and possible future directions

We can now construct a CFT dual to Type IIB string theory on AdS5×Y 5 for toric Y 5, but

many Y 5 of interest are not toric. It would be nice to know if there are efficient methods

of constructing a field theory for more general Y 5.

A related problem is to construct a CFT dual to M-theory on AdS4 × Y 7 for arbitrary

Y 7. Refs. [28–33] have made some progress on this problem. We will see some examples of

these field theories in chapters 3–4, although we will not address the problem of constructing

them. In general, this problem seems to be significantly more difficult than the problem of

constructing a CFT dual to Type IIB string theory on AdS5 × Y 5.

7



One weakness of our methods for analyzing the matrix model is that they appear not to

work for theories with chiral bifundamentals. It is still unknown whether the matrix model

gives the expected N3/2 scaling for the free energy in chiral theories. Our operator counting

formulas offer a prediction of the saddle point eigenvalues, but in the case that we examined,

we were not able to find a free energy functional that had the predicted eigenvalues as a

saddle point. One promising result for chiral theories is the derivation of Seiberg duality

invariance of the matrix model in [34].

Mariño and Putrov [35, 36] have had success in analyzing the matrix model using the

methods of many-body quantum mechanics. They observed that the matrix model can

be expressed as the partition function for a one-dimensional Fermi gas. Furthermore, for

necklace quivers, the fermions do not interact with each other. They were able to find an

estimate for the free energy with an error that decreases exponentially in N . In addition to

the necklace quivers, they analyzed some non-chiral N = 2 theories with long-range forces.

These theories are quiver theories but are not believed to be dual to M-theory on AdS4.

For these theories, they were able to find the free energy to leading order. It is not obvious

how to generalize their methods to other theories, however.

All of the quivers studied in this thesis have only unitary gauge groups, and these

groups all have equal ranks. Ref. [37] examines the matrix model for N = 3 theories with

unitary groups of different ranks, and ref. [38] considers N = 3 theories with orthogonal

and symplectic gauge groups.

There are also many Y 7 that are described by something more exotic than a quiver

gauge theory. We will analyze a few of these in chapters 3 and 4 for necklace quivers with

T (U(N)) couplings. (T (U(N)) is a theory that can couple to two U(N) gauge groups. It

causes operators that are magnetically charged under one of the gauge groups to acquire

electric charge in the other gauge group. Essentially, it causes the two gauge groups to

become S-dual versions of each other.) However, there are many more possibilities that

we haven’t considered. As long as Y 7 has a U(1)R × U(1) isometry and the field theory is

non-chiral, we expect that the operator counting formulas (1.2) and (1.3) will allow us to

determine the correct matrix model eigenvalues. For Y 7 without a U(1)R × U(1), we do

8



not know of a Lagrangian description for the theory, and so it is not clear if it is possible

to write down a matrix model.

We would like to understand better why the matrix model works from a geometric

perspective. Extremizing a free energy functional such as (1.1) gives us equations of motion.

We can use (1.2) and (1.3) to replace ρ and ya with operator counts and thereby rewrite

the equations of motion as purely geometric statements on Y 7, without any reference to the

matrix model. For example, if we take the equation of motion that we obtain by extremizing

(1.1) with respect to ρ and use (1.2) and (1.3) to replace the matrix model quantities with

operator densities, we get ∑
a

ψ
(1,1)
Aa

ψ
(1,1)
Ba

= 2ψ(1,1) (1.4)

where Aa and Ba are bifundamental fields. It is not obvious why such a relation should

be true. It would be interesting to know if there is a nice geometric explanation for this

and similar relations. It would also be interesting to know if there is any deeper connection

between the N = 3 theories whose quivers are Dynkin diagrams and the corresponding Lie

groups.

9



Chapter 2

Properly ordered dimers,

R-charges, and an efficient inverse

algorithm

This chapter is an edited version of ref. [39].

2.1 Introduction

Given a Sasaki-Einstein manifold X5, it is generally difficult to construct a field theory that

describes Type IIB string theory on AdS5 × X5. If the cone over X5 is toric, then the

problem becomes more manageable. In the toric case. dimer models [6–12] are a convenient

way of encoding the field content and superpotential of the CFT. One can try to compute

the geometry from the dimer or vice versa. There are algorithms for solving the former

problem by taking the determinant of the Kasteleyn matrix [6–12] and by counting the

windings of zigzag paths [10–12]. The latter problem can be solved by the “Fast Inverse

Algorithm” [10–12], although the algorithm is computationally infeasible for all but very

simple toric varieties due to the large amount of trial and error required. We resolve this

problem by eliminating the need for trial and error. Our algorithm uses some ideas from the

Fast Inverse Algorithm and the method of partial resolution of the toric singularity [40–43].
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One difficulty in constructing dimers is that not every dimer describes a consistent field

theory. One way of determining that a dimer is not consistent is by counting faces. Each

face represents a gauge group, and a consistent theory should have as many gauge groups

as there are cycles for Type IIB D-branes to wrap in the AdS theory. Previously there was

not a simple, easy to check criterion for determining that a dimer is consistent. We propose

that any dimer that has the correct number of faces and that has no nodes of valence one

is consistent. We will present several pieces of evidence to support our proposal.

If the dimer is consistent, then the cubic anomalies of the CFT should be equal to the

Chern-Simons coefficients of the AdS dual [5, 16]. We show that equality holds in dimers

that meet our two criteria.

In a four-dimensional SCFT the unitarity bound says that each gauge invariant scalar

operator should have dimension at least one [14], and the R-charge of a chiral primary

operator is two-thirds of its dimension [15]. However, when we try to compute the R-charge

of a gauge invariant chiral primary operator in an inconsistent dimer theory, the answer is

sometimes less than two-thirds. We will show that in dimers that meet our two criteria, the

R-charges of chiral primary operators are always at least two-thirds if the number of colors

is sufficiently large.

We also show that dimers that meet our two criteria have the properties that corner

perfect matchings are unique, and that the zigzag path windings agree with the (p, q)-legs

of the toric diagram.

While studying R-charges, we prove that 27N2K
8π2 < a ≤ N2K

2 for toric theories, where a

is the cubic ’t Hooft anomaly 3
32(3 TrR3 − TrR), N is the number of colors of each gauge

group, and K is the area of the toric diagram (which is half the number of gauge groups).

2.2 Definitions

A dimer model [6–12] consists of a graph whose vertices are colored black or white, and

every edge connects a white vertex to a black vertex, i. e. the graph is bipartite. We will

use dimer models embedded on the torus T 2 to describe toric quiver gauge theories.
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A perfect matching of the dimer is a set of edges of the dimer such that each vertex is

an endpoint of exactly one of the edges. The difference of two perfect matchings is the set

of edges that belong to exactly one of the matchings.

The Kasteleyn matrix is a weighted adjacency matrix of the dimer. There is one row

for each white vertex and one column for each black vertex. Let γw and γz be a pair of

curves whose winding numbers generate the homology group H1(T 2). The weight of an

edge is cwazb where c is an arbitrary nonzero complex number1, w and z are variables, a is

the number of times γw crosses the edge with the white edge endpoint on its left minus the

number of times γw crosses the edge with the white endpoint on its right and b is defined

similarly with γw replaced by γz. The determinant of this matrix tells us the geometry of

the field configuration.

The Newton polygon of a multivariate polynomial is the convex hull of the set of expo-

nents of monomials appearing in the polynomial. The Newton polygon of the determinant

is known as the toric diagram. If we choose a different basis for computing the Kasteleyn

matrix, then the toric diagram changes by an affine transformation.

A (p, q)-leg of a toric diagram is a line segment drawn perpendicular to and proportional

in length to a segment joining consecutive boundary lattice points of the diagram.

A zigzag path is a path of the dimer on which edges alternate between being clockwise

adjacent around a vertex and being counterclockwise adjacent around a vertex. A zigzag

path is uniquely determined by a choice of an edge and whether to turn clockwise or

counterclockwise to find the next edge. Therefore each edge belongs to two zigzag paths.

(These paths could turn out to be the same, although it will turn out that we want to work

with models in which they are always different.)

In [10] it is conjectured that in a consistent field theory, the toric diagram can also be

computed by looking at the windings of the zigzag paths: they are in one-to-one correspon-

dence with the (p, q)-legs. The conjecture was proved using mirror symmetry in [11].

1The original definition of the Kasteleyn matrix imposes constraints on c for the purpose of counting
perfect matchings [7–10]. However, these constraints are not necessary for determining the Newton polygon.
We follow the convention of [11], which points out that it is useful for the purposes of mirror symmetry to
allow arbitrary nonzero coefficients.
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The unsigned crossing number of a pair of closed paths on the torus is the number of

times they intersect. The signed crossing number of a pair of oriented closed paths on the

torus is the number of times they intersect with a positive orientation (the tangent vector to

the second path is counterclockwise from the tangent to the first at the point of intersection)

minus the number of times they intersect with a negative orientation. It is a basic fact from

homology theory that the signed crossing number of a path with winding (a, b) and a path

with winding (c, d) is (a, b) ∧ (c, d) = ad− bc.

We will work with the zigzag path diagrams of [10] (referred to there as rhombus loop

diagrams). We obtain a zigzag path diagram from a dimer as follows. For each edge of

the dimer we draw a vertex of the zigzag path diagram at a point on that edge. To avoid

confusion between the vertices of this diagram and the vertices of the dimer we will call the

latter nodes. We connect two vertices of the zigzag path diagram if the dimer edges they

represent are consecutive along a zigzag path. (This is equivalent to them being consecutive

around a node and also to them being consecutive around a face.) We orient the edges of

the zigzag path diagram as follows. If the endpoints lie on dimer edges that meet at a white

(resp. black) node, then the edge should go counterclockwise (resp. clockwise) as seen from

that node. With this definition, each node of the dimer becomes a face of the zigzag path

diagram, with all edges oriented counterclockwise for a white node, or clockwise for a black

node. The other faces of the zigzag path diagram correspond to faces of the dimer, and

the orientations of their edges alternate. Figure 2.17 shows an example of a dimer and its

corresponding zigzag path diagram.

Conversely, we can obtain a dimer from a zigzag path diagram provided that the orien-

tations of the intersections alternate along each path. Around each vertex of such a zigzag

path diagram, there is one face with all counterclockwise oriented edges, one face with all

clockwise oriented edges, and two faces whose edge orientations alternate. Draw a white

node at each counterclockwise oriented face and a black node at each clockwise oriented

face, and connect nodes whose faces share a corner.

13



2.3 Consistency of dimer field theories

2.3.1 Criteria for consistency and inconsistency

One difficulty in dealing with dimer models is that not all of them produce valid field

theories. While there are a number of ways of determining that a dimer produces an invalid

field theory there has not yet been a simple criterion for showing that a dimer theory is

valid.

One way of proving that a dimer produces an invalid field theory is by counting the

number of faces of the dimer, i. e. the number of gauge groups. If the dimer theory is

consistent, then the number of gauge groups should equal the number of 0, 2, and 4-cycles

in the Calabi-Yau around which D3, D5, and D7-branes, respectively, can wrap [13]. The

Euler characteristic of the Calabi-Yau is the number of even dimensional cycles minus the

number of odd dimensional cycles. There are no odd dimensional cycles, so the number of

gauge groups should be equal to the Euler characteristic. The Euler characteristic of a toric

variety equals twice the area of the toric diagram [44].

We propose that a dimer will produce a valid field theory if the dimer has no nodes

of valence one and it has a number of faces equal to twice the area of the lattice polygon

whose (p, q)-legs are the winding numbers of the zigzag paths. (Recall that this polygon is

the same as the Newton polygon of the determinant of the Kasteleyn matrix for consistent

theories.) In this section, we will show that dimers satisfying our two criteria also have the

properties that their cubic anomalies agree with the Chern-Simons coefficients of the AdS

dual, the R-charges of gauge invariant chiral primary operators are greater than or equal

to two-thirds, the windings of the zigzag paths are in one-to-one correspondence with the

(p, q)-legs of the toric diagram, and the corner perfect matchings are unique.

It will be convenient to introduce a property that we call “proper ordering”, which will

turn out to be equivalent to the property of having the correct number of faces and no

valence one nodes. We call a node of the dimer properly ordered if the order of the zigzag

paths around that node is the same as the circular order of the directions of their windings.

(We do not allow two zigzag paths with the same winding to intersect, nor do we allow
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zigzag paths of winding zero, since these scenarios make the ordering ambiguous.) We call

a dimer properly ordered if each of its nodes is properly ordered.

Theorem 2.3.1. A connected dimer is properly ordered iff it has no valence one nodes and

it has a number of faces equal to twice the area of the convex polygon whose (p, q)-legs are

the winding numbers of the zigzag paths of the dimer.

Proof. A properly ordered dimer cannot have a valence one node, since such a node would

be the endpoint of an edge that is an intersection of a zigzag path with itself. Therefore

it suffices to prove that a dimer with no valence one nodes is properly ordered iff it has

a number of faces equal to twice the area of the convex polygon whose (p, q)-legs are the

winding numbers of the zigzag paths of the dimer.

Define the “winding excess” of a node v of the dimer as follows. Let w0,w1, ...,wn−1

be the winding numbers of the zigzag paths passing through v (in the order that the paths

appear around v). Start at w0 and turn counterclockwise to w1, then counterclockwise to

w2, etc., and finally counterclockwise back to w0. Then the winding excess is defined as

the number of revolutions that we have made minus one. (In the special case where wi

and wi+1 are equal or one of them is zero, we count one-half of a revolution.) A node is

properly ordered iff it has winding excess zero and none of the wi are zero and no two

consecutive windings are equal. A node with a wi = 0 or wi = wi+1 can have winding

excess zero only if it has exactly two edges (and hence two zigzag paths passing through

it). There must be some other node that is an endpoint of one of the edges where the two

zigzag paths intersect, and that has more than two edges (since the graph is connected).

This node cannot have winding excess zero. So all nodes are properly ordered iff all nodes

have winding excess zero. A node has negative winding excess iff it has just one edge, and

we have assumed that the dimer has no such nodes. Therefore the dimer is properly ordered

iff the sum of all of the winding excesses is zero.

If we choose a node and draw all of the wedges between the consecutive winding numbers,

then the winding excess is the number of wedges containing any given ray minus one. (We

can think of the special case of consecutive winding numbers being the same as the average

of a full wedge and an empty wedge, and the case of a zero winding number as the average
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of wedges of all angles.) Now consider the sum of the winding excess over all vertices. A

pair of oppositely oriented intersections between two zigzag paths forms two full wedges

and therefore contributes two to the sum. The sum of the contributions from unpaired

intersections can be computed as follows. Label the winding numbers w0,w1, ...,wn−1,

ordered by counterclockwise angle from some ray R. (A zigzag path with zero winding

number has no unpaired intersections, so it is not included.) Then for i < j the unpaired

wedges formed by wi and wj will contain R iff wi ∧wj < 0. There are 2|wi ∧wj | unpaired

wedges (|wi∧wj | unpaired crossings of the zigzag paths, and each appears in two vertices).

So the number of unpaired wedges formed by wi and wj containing R equals max(−2wi ∧

wj , 0) = |wi∧wj |−wi∧wj . Since
∑

i<j |wi∧wj | is the number of unpaired edges, it follows

that the number of wedges containing R is the number of paired edges plus the number of

unpaired edges minus
∑

i<j wi ∧ wj , or E −
∑

i<j wi ∧ wj , where E is the total number

of edges of the dimer. The sum of the winding excesses is E − V −
∑

i<j wi ∧ wj = F −∑
i<j wi∧wj , where V and F are the number of nodes and faces of the dimer, respectively.

We have
∑

i<j wi ∧wj =
∑

i wi ∧
∑

j>i wj . If we lay the winding vectors tip-to-tail, then

wi ∧
∑

j>i wj is twice the area of the triangle formed by the tail of w0 and the tip and tail

of wi. Hence
∑

i wi ∧
∑

j>i wj is twice the area of the convex polygon formed by all the

winding vectors. If we rotate the polygon 90 degrees then we get a polygon whose (p, q)-legs

are the winding numbers. So the sum of the winding deficiencies of the nodes is zero iff F

equals twice the area of the lattice polygon whose (p, q)-legs are the zigzag path winding

numbers.

2.3.2 Some perfect matchings of properly ordered dimers

We will construct some perfect matchings that will turn out to correspond to the corners

of the toric diagram. Our construction of the perfect matchings is similar to Theorem 7.2

of [12]. Let R be any ray whose direction does not coincide with that of the winding number

of any zigzag path. For any node v, consider the zigzag paths passing through v whose

winding numbers make the smallest clockwise and smallest counterclockwise angles with

R. (These paths are unique because the proper ordering condition requires that all paths

through v have different winding numbers.) By proper ordering, these two zigzag paths

16



Figure 2.1: A dimer, two of its corner perfect matchings, and their difference, which is a
zigzag path.

LL

UR

LL

UR

Figure 2.2: Left: The windings of the zigzag paths of the dimer in figure 2.3.2. The dotted
lines labeled UR and LL are rays that yield perfect matchings shown in the upper right
and lower left quadrants of figure 2.3.2, respectively. Right: The windings of the paths
passing through the bottom right black node. For any node and any edge ending at that
node, the proper ordering criterion implies that the two zigzag paths to which the edge
belongs have adjacent winding directions. Therefore in the right diagram, there is a natural
correspondence between edges passing through the node and wedges formed by consecutive
arrows. When constructing a perfect matching M(R), we choose the wedge containing R.
In the left diagram, there is a one-to-one correspondence between wedges and corners of
the toric diagram.
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must be consecutive around v. Therefore they share an edge that has v as an endpoint.

Call this edge e(v). Let v′ be the other endpoint of e(v). The same two zigzag paths must

be consecutive about v′ since they form the edge e. Since v′ is properly ordered it must

then be the case that those two paths make the smallest clockwise and counterclockwise

angles with R among all paths passing through v′. Hence e(v) = e(v′). So the pairing of v

with v′ is a perfect matching. We will call this matching M(R). Figure 2.3.2 depicts the

relationship between rays and perfect matchings.

The following characterization of the boundary perfect matchings containing a given

edge follows immediately from our definition and will be useful later.

Lemma 2.3.2. For any edge e of the dimer, let Zr and Zs be the zigzag paths such that e

is a positively oriented intersection of Zr with Zs. (Equivalently, e is a negatively oriented

intersection of Zs with Zr.) Let wr and ws be the windings of Zr and Zs, respectively. Let

R be a ray. Then e is in M(R) iff R is in the wedge that goes counterclockwise from wr to

ws.

In particular each edge is in at least one corner perfect matching.

2.3.3 Zigzag paths and (p, q)-legs

As we mentioned in Section 2.2, it is known [10, 11] that dimers that produce a consistent

field theory have the property that the (p, q)-legs of the toric diagram are in one-to-one

correspondence with the winding numbers of the zigzag paths.

Theorem 2.3.3. In a dimer with properly ordered nodes, the zigzag paths are in one-to-one

correspondence with the (p, q)-legs of the toric diagram.

Our proof of Theorem 2.3.3 resembles that of Theorem 9.3 of [12].

Lemma 2.3.4. For any zigzag path Z in any dimer, the number of intersections of a perfect

matching with Z is a degree one polynomial function of its coordinates.

Proof. In computing the Kasteleyn matrix we can choose the path γz to follow Z, so that

the number of times γz intersects a perfect matching M is just the number of edges that M

and Z have in common. (See figure 2.3.3.) For this choice of γz, the point corresponding
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w

Z

Figure 2.3: The path γz intersects each edge of the zigzag path Z and no other edges. We
may choose any path γw that completes the basis.

to M has y-coordinate equal to |M ∩Z|. For a different choice of γz, the coordinates differ

by an affine transformation.

Lemma 2.3.5. Let Z be a zigzag path of a properly ordered dimer, and let R1 and R2 be

rays such that the winding direction of Z lies between them and all of the other winding

directions do not. Then there exists a boundary line of the toric diagram passing through

M(R1) and M(R2) such that all perfect matchings on this line intersect Z exactly |Z|2 times,

and all perfect matchings not on the line intersect Z fewer than |Z|2 times.

Proof. Since the winding number of Z is adjacent to R1, M(R1) must choose one of the two

Z-edges of each node that has them. Hence |M(R1)∩Z| = |Z|
2 and similarly |M(R2)∩Z| =

|Z|
2 . No perfect matching can contain more than half of the edges of the path. Therefore

the toric diagram lies in the half plane that, in the coordinate system of Lemma 2.3.4, is

given by the equation y ≤ |Z|2 . M(R1) and M(R2) are both on the boundary.

Proposition 2.3.6. The matchings M(R) lie on the corners of the toric diagram. The

order of the corners around the boundary is the same as the order of the ray directions.

Proof. The intersection of all half planes described in the proof of Lemma 2.3.5 is the

convex hull of all of the M(R)’s. Conversely, each M(R) is in the toric diagram. So the

toric diagram must be the convex hull of the M(R)’s.
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Each M(R) must be at a corner of the toric diagram since it is contained in two different

boundary lines (one for the first counterclockwise zigzag path direction from R and another

for the first clockwise zigzag path direction). Furthermore, if R1 and R2 have only one

winding direction between them, then they share a boundary line and hence M(R1) and

M(R2) lie on consecutive corners.

Proof of Theorem 2.3.3. Let w be the winding number of a zigzag path, and let n be the

number of zigzag paths with that winding. Let R1 and R2 be rays such that w lies between

them and all other winding directions do not. By Proposition 2.3.6, M(R1) and M(R2) lie

on consecutive corners of the toric diagram. An edge belonging to one of the zigzag paths

of winding w will be in either M(R1) or M(R2) but not both, while all other edges are in

neither or both perfect matchings. Therefore the difference of the two perfect matchings

is just the union of the zigzag paths with winding w. Therefore the toric diagram points

corresponding to M(R1) and M(R2) are separated by −nw⊥, where −w⊥ is the 90 degree

clockwise rotation of w. This proves the theorem.

2.3.4 Unique corner perfect matchings

It is generally believed that dimers that have more than one perfect matching at a corner

of the toric diagram are inconsistent [7,10,45]. We show that properly ordered dimers have

unique corner perfect matchings.

Theorem 2.3.7. If a dimer is properly ordered, then each corner of the toric diagram has

just one perfect matching.

Proof. Suppose there exists a perfect matching M ′ that shares a toric diagram point with

M(R) but is not equal to M(R). Consider the set of zigzag paths that contain an edge

that is in M(R) or M ′ but not both. Let Z be one with minimal counterclockwise angle

from R. Let v be a node of the dimer through which Z passes. If v includes a zigzag path

with winding between R and that of Z, then M(R) and M ′ are the same at that vertex.

If not, then M(R) chooses one of the edges of Z at v. Recall that Lemma 2.3.4 says that

the number of intersections with Z depends only on the toric diagram point. Therefore M ′

has the same number of edges in Z as M(R). Since M(R) chooses an edge of Z at every
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node where M(R) and M ′ differ, equality can hold only if M ′ chooses the other edge of Z

at every such node. If we start at an edge of Z that is in M(R) but not M ′ and alternately

follow edges of the M(R) and M ′, then we will traverse a cycle that lies entirely in Z. Since

zigzag paths in properly ordered dimers do not intersect themselves, the cycle must be Z.

Then both M(R) and M ′ contain half the edges of Z. So the winding number of Z is either

the closest or farthest from R in the counterclockwise direction. If Z were the farthest,

then M(R) and M ′ would have to be the same because every edge of the dimer would be

in at least one zigzag path whose winding is closer to R in the counterclockwise direction

than Z’s. So Z must be the closest in the counterclockwise direction.

Now let Z ′ be a zigzag path with minimal clockwise angle from R on which M(R) and

M ′ differ. By the same reasoning as above, we find the winding direction of Z ′ is the closest

to R in the clockwise direction and that M(R) and M ′ have no edges of Z ′ in common.

Since Z and Z ′ represent consecutive sides of the toric diagram, the crossing number of Z

and Z ′ must be nonzero. A node can have two edges belonging to both Z and Z ′ only if

they have opposite orientations, i. e. they contribute zero to the signed crossing number.

Therefore there must be a node with only one Z-Z ′ intersection. M ′ must include this edge

because it includes an edge of Z and Z ′ at every node that has one, but it cannot include

this edge because it does not share any edges of Z with M(R). Therefore our assumption

that there existed a matching M ′ differing from M(R) but sharing the same toric diagram

point must be false.

Once we know that the corner matchings are unique, we can also classify all of the

boundary perfect matchings.

Corollary 2.3.8. Consider a point A on the boundary of the toric diagram such that the

nearest corner B in the counterclockwise direction is p segments away and the nearest corner

C in the clockwise direction is q segments away. Then each perfect matching at A may be

obtained from the perfect matching associated to B by flipping p zigzag paths and from the

perfect matching associated to C by flipping q zigzag paths. The number of perfect matchings

at A is
(
p+q
q

)
.
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Proof. For any boundary perfect matching M there exists a winding w such that M contains

half the edges of each zigzag path of winding w. For any zigzag path Z of winding w, we can

delete the half of the Z-edges that are in M and add the other half. This operation moves

the perfect matching one segment along the boundary of the toric diagram. There can be at

most p zigzag paths for which the operation moves the toric diagram point counterclockwise

and at most q zigzag paths for which the operation moves the point clockwise. But there

are a total of p + q zigzag paths of winding w, so there must be exactly p of the former

and q of the latter. Consequently we see that M can be obtained from a corner perfect

matching by flipping p zigzag paths (or from a different corner perfect matching by flipping

q zigzag paths). The number of ways of choosing the paths to flip is
(
p+q
p

)
.

2.3.5 R-charges and cubic anomalies

The R-charges of the fields may be determined by a-maximization [24]. First, we impose

the constraint that the R-charge of each superpotential term should be two. We also impose

the constraint that the beta function of each gauge group should be zero. These conditions

can be expressed as

∑
e∈v

R(e) = 2 (2.1)∑
e∈f

[1−R(e)] = 2. (2.2)

Among all U(1) symmetries satisfying these constraints, the R-symmetry is the one that

locally maximizes the cubic ’t Hooft anomaly

a =
9N2

32

[
F +

∑
e

(R(e)− 1)3

]
. (2.3)

Butti and Zaffaroni [45] have proposed some techniques for simplifying the computation

of the R-charge. For any perfect matching M we can define a function δM that takes

the value 2 on all edges in the perfect matching and zero on all other edges. Any such

δM automatically satisfies (2.1). Butti and Zaffaroni noted that in some cases the perfect

matchings on the boundary of the toric diagram yield functions that also satisfy (2.2),
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R

Figure 2.4: The contribution of the vertex to the equations (2.4) for the four surrounding
faces.

and these functions span the set of solutions to (2.1) and (2.2). We will show that their

observation is true for properly ordered dimers.

Theorem 2.3.9. In a dimer with properly oriented nodes, the solutions to (2.1) and (2.2)

are precisely the linear combinations of δM , for boundary perfect matchings M .

We first determine the dimension of the solution space of (2.1) and (2.2), so that we will

be able to show that there are not any more solutions beyond the boundary δM .

Lemma 2.3.10. For any dimer in which the zigzag paths have winding numbers that are

prime (i. e. their x and y components are relatively prime, or equivalently, they can each be

sent to (1, 0) by an SL2(Z) transformation) and not all parallel and in which no zigzag path

intersects itself, the set of solutions to (2.1) and (2.2) has dimension equal to the number

of zigzag paths minus one.

Proof. First we will show that the number of solutions depends only on the winding numbers

of the zigzag paths. We will work with the zigzag path diagram. In this diagram, R is a

function on vertices. We can unify (2.1) and (2.2) into a single equation as follows. We

first define the function σv,f (x), where v is a vertex of the zigzag path diagram and f is a

face of the zigzag path diagram having v as a corner. If the two zigzag paths containing v

are similarly oriented around f , then σv,f (x) = x; if they are oppositely oriented around f

then σv,f (x) = 1− x. Then (2.1) and (2.2) can be expressed as

∑
v∈f

σv,f (R(v)) = 2. (2.4)
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Figure 2.5: Combinatorial changes in the zigzag path diagram as a result of deformations.

(See Figure 2.4).

We can deform any zigzag path diagram with non-self-intersecting zigzag paths to any

other zigzag path diagram with non-self-intersecting zigzag paths with the same winding

numbers. As the diagram is deformed, it can change combinatorially in several ways: a

pair of intersections between a pair of zigzag paths can be added or removed, or a zigzag

path can be moved past the crossing of two other zigzag paths. Figure 2.5 illustrates these

possibilities. Note that at intermediate steps, the zigzag path diagram may not correspond

to a dimer, but we can still consider the set of solutions to (2.4).

First consider the case where a pair of intersections between a pair of zigzag paths is

added or removed. If C1 is not the same face as C2, then the values of the two new crossings

are constrained by the equations for C1 and C2 and the dimension of the set of solutions

to (2.1) and (2.2) remains unchanged. If the two zigzag paths have winding numbers that

are not parallel, then they must intersect somewhere else, which implies C1 6= C2. If the

winding numbers are parallel, then there must be some other zigzag path whose winding

number is not parallel to either and hence must intersect both. Again C1 6= C2.
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Now consider the case where a zigzag path is moved past the crossing of two other zigzag

paths. We can check that any solution to (2.4) in the first diagram is also a solution to

(2.4) in the second diagram, and vice versa. So performing the move depicted in the second

diagram does not change the solution set. So we have shown that the dimension of the

solution space to (2.4) depends only on the winding numbers of the zigzag paths.

In Lemma 2.6.2 we will exhibit for any set of winding numbers a dimer for which the

number of independent solutions to (2.1) and (2.2) is the number of zigzag paths minus

one.

Lemma 2.3.10 tells us how to solve (2.1) and (2.2) for a large class of dimers, many

of which are not properly ordered. It is interesting to note that the second move shown

in Figure 2.5 does not change either a or
∑

e(1 − R(e)). The first move also leaves a and∑
e(1 − R(e)) invariant in the case where the two zigzag paths are oppositely oriented

(the charges of the introduced vertices sum to two and (R1− 1)3 + (R2− 1)3 = (R1 +R2−

2)
[
(R1 − 1)2 − (R1 − 1)(R2 − 1) + (R2 − 1)2

]
). When the zigzag path diagram corresponds

to a dimer,
∑

e(1−R(e)) is the number of faces in the dimer.

Proof of Theorem 2.3.9. First we will show that the δM are solutions to (2.2). Suppose a

face f with 2n sides had n of those sides in a boundary perfect matching M . (A side of

a face is an edge of the face along with a normal pointing into the face. If a face borders

itself then the bordering edge is part of two different sides of the face. If a self-border edge

is in a perfect matching, then we count two sides of f in that perfect matching.) From

Corollary 2.3.8, we know that we can get from M to any other boundary perfect matching

by flipping zigzag paths. Note that this operation leaves invariant the number of sides of

each face in the perfect matching. Therefore every boundary perfect matching has n sides

of f . So every node of f selects one of the two adjacent sides of f for all boundary perfect

matchings. By Lemma 2.3.2 we know that every edge is in some corner perfect matching.

So the only edges belonging to any node of f are the adjacent sides of f . Therefore, as we

move along the boundary of the face we are following a zigzag path. But then we have a

zigzag path with zero winding, which violates proper ordering. So the assumption that a

face with 2n sides can have n sides in a boundary perfect matching must be false. Therefore
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a face with 2n sides can have at most n− 1 sides in a boundary perfect matching. Sum this

inequality over all faces:

∑
f

∑
s∈f∩M

1 ≤
∑
f

∑
s∈f

1

2

− 1

 (2.5)

where f runs over faces and s runs over sidess. Now reverse the order of the sums:

∑
s∈M

∑
f3s

1 ≤
∑
s

∑
f3s

1

2
− F (2.6)

V ≤ (2E)

(
1

2

)
− F (2.7)

V ≤ E − F. (2.8)

Since we know V = E − F , equality must have held in each case. So (2.2) is satisfied by

boundary perfect matchings.

The difference between any two boundary perfect matchings is a sum of functions δZ ,

where Z is a zigzag path and the value δZ alternates between 2 and −2 on Z and is zero

outside of Z. The only relation obeyed by the δZ is that they sum to zero. So the dimension

of the space of solutions to (2.1) and (2.2) that we have found equals the number of zigzag

paths minus one. By Lemma 2.3.10, there can be no more solutions.

When some of the boundary points of the toric diagram are not corners, there are

many sets of perfect matchings that form a basis for the solutions to (2.1) and (2.2). We

will construct a basis by associating each segment of the boundary of the toric diagram

with a zigzag path, and choosing one perfect matching at each boundary point so that the

difference between two consecutive perfect matchings is the zigzag path corresponding to

the segment between them. Write R =
∑

i λiδMi , where Mi are the perfect matchings in

the basis and the λi are real numbers.

Butti and Zaffaroni [45] also noted that in many cases each edge that is a positively

oriented intersection of a zigzag path Zr with another zigzag path Zs occurs in the perfect

matchings in cc(r, s), the counterclockwise segment from r to s, while a negatively oriented

intersection of Zr with Zs occurs in the perfect matchings not in cc(r, s). In this case, the
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value of R−1 for a positively oriented intersection of Zr with Zs is 2
(∑

i∈cc(r,s) λi

)
−1. For

a negatively oriented intersection the value of R − 1 is 2
(∑

i/∈cc(r,s) λi

)
− 1, which equals

−
[
2
(∑

i∈cc(r,s) λi

)
− 1
]

since
∑

i λi = 1. So then the total contribution to
∑

e(R − 1)3

from the intersections of Zr with Zs is (wr ∧ws)
[
2
(∑

i∈cc(r,s) λi

)
− 1
]3

. Hence (2.3) can

be rewritten as

a =
9N2

32

F +
∑
r<s

(wr ∧ws)

2

 ∑
i∈cc(r,s)

λi

− 1

3 . (2.9)

Proposition 2.3.11. If a dimer has properly oriented nodes, then it is the case that all

positively (resp. negatively) oriented intersections of Zr with Zs are in precisely the perfect

matchings that are in cc(r, s) (resp. cc(s, r)). Hence 2.9 holds for properly ordered dimers.

Proof. Assume that the dimer has properly ordered nodes. As we go around the toric

diagram, the perfect matching switches from containing an edge e to not containing it only

if we changed the perfect matching by a zigzag path containing e. So each intersection of

Zr with Zs occurs in either the perfect matchings in cc(r, s) or the perfect matchings in its

complement. From Lemma 2.3.2 we know that the positively oriented intersections are in

the corners of cc(r, s) and the negatively oriented intersections are not.

A particularly nice rearrangement of (2.9) that we will find useful is [16, 46]

a =
9N2

4

∑
ijk

area(PiPjPk)λiλjλk. (2.10)

where Pi is the point on the toric diagram corresponding to the ith perfect matching.

This formula tells us that the triangle anomaly of the three symmetries with respective

charges δMi , δMj , and δMk
is N2

2 area(PiPjPk). AdS-CFT predicts that the U(1) symmetries

of the CFT correspond to gauge symmetries in the AdS theory, and that the triangle

anomalies of the CFT should equal the corresponding Chern-Simons coefficients in the AdS

theory [5]. The Chern-Simons coefficients are indeed found to be N2

2 area(PiPjPk) [16].

So the field theory produced by a properly ordered dimer will have precisely the cubic
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anomalies predicted by the AdS theory. This is strong evidence that properly ordered

dimers are consistent.

2.3.6 Unitarity bound

Gauge invariant scalar operators in a four-dimensional CFT must have dimension at least

one [14]. We also have the BPS bound ∆ ≥ 3
2 |R|, where ∆ is the dimension of an operator

and R is its R-charge. Equality is achieved in the case of chiral primary operators [15]. So

in order for the theory to be physically valid it is necessary that the gauge invariant chiral

primary operators have R-charge at least 2
3 .

Theorem 2.3.12. If a can be expressed in the form (2.10), then there exists an N such

that in the dimer theory with N colors, each gauge invariant chiral primary operator has

R-charge at least 2
3 . In particular properly ordered dimers have this property.

Lemma 2.3.13. At the point where a is locally maximized, the weight of each corner perfect

matching is positive, and the weight of the other boundary perfect matchings is zero.

Proof. This follows immediately from equation (4.2) of [45].

Lemma 2.3.14 (A. Kato [47]). If a is given by (2.10), then at the point where a is locally

maximized,

∂a

∂λi
= 3a. (2.11)

Proof. We can use Lagrange multipliers to find the local maximum of a.

∂a

∂λi
= µ

∂

∂λi

∑
j

λj = µ (2.12)

for some constant µ. Since a is homogeneous of degree three,

3a =
∑
i

λi
∂a

∂λi
(2.13)

=
∑
i

λiµ (2.14)

= µ. (2.15)
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Lemma 2.3.15 (A. Kato [47]). At the point where a is locally maximized, each λi is at

most 1
3 .

Proof. By Lemma 2.3.14, 3λia = λi
∂a
∂λi

. Since every term of a is degree zero or one in λi,

the right-hand side is simply the terms of a containing λi. We can see from (2.10) that

the coefficient of each term of a is nonnegative and from Lemma 2.3.13 that each λi is

nonnegative when a is maximized. Hence the sum of the terms of a containing λi is at most

a. Therefore 3λia ≤ a, so λi ≤ 1
3 .

Proof of Theorem 2.3.12. First consider the mesonic operators, which arise as the trace of a

product of of operators corresponding to the edges around a loop of the quiver. The number

of signed crossings between a loop and a perfect matching of the dimer is an affine function

of the perfect matching’s position in the toric diagram. If the loop has nonzero winding,

then the function is not constant, and its zero locus is a line. This line can intersect the

corners of the toric diagram at most twice. Therefore each loop intersects all but at most

two of the corner perfect matchings. The sums of the weights of those two perfect matchings

is at most 2
3 , and from Lemma 2.3.13 we know that the non-corner matchings have weight

zero. The sum of the weights of the perfect matchings that do intersect the loop is then

at least 1
3 . So the loop has R-charge at least 2

3 . The R-charge of a loop with zero winding

is twice the number of intersections it has with any perfect matching. Every edge is in at

least one perfect matching so this number must be positive. So a loop with zero winding

has R-charge at least 2.

The theory also has baryonic operators. If the gauge groups are SU(N) then these

operators are the Nth exterior powers the bifundamental fields. Each edge of the dimer is

contained in at least one corner perfect matching by Lemma 2.3.2, and we know from Lemma

2.3.13 that each corner of the toric diagram has a positive contribution to the R-charge. So

each dimer edge has positive R-charge. For sufficiently large N , the corresponding baryonic

operator will have R-charge at least 2
3 .
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2.4 Bounds on a

2.4.1 Bounds on a for toric theories

We can use (2.10) to establish bounds for a. In this section we let the indices ijk of the

perfect matchings run over the corner perfect matchings only, since we know from Lemma

2.3.13 that the non-corner perfect matchings have weight zero.

Theorem 2.4.1. Let N be the number of colors of each gauge group, and let K be the area

of the toric diagram (which is half the number of gauge groups). Then

27N2K

8π2
< a ≤ N2K

2
. (2.16)

The upper bound is achieved iff the toric diagram is a triangle, and the lower bound is

approached as the toric diagram approaches an ellipse.

Proof of the lower bound of Theorem 2.4.1. The polar bodyX∗R of a convex polygonX with

respect to the point R is defined as the set of points Q satisfying
−−→
RQ ·

−→
RP ≤ 1 for all P ∈ X.

Recall that maximizing a is equivalent to minimizing the volume of a slice of the dual toric

cone [45, 48]. More specifically, if ~r is the three-dimensional Reeb vector, then 9N2

8a is the

volume of the set of points ~x in the dual cone satisfying ~r · ~x ≤ 3. The cross section of

the dual cone in the plane ~r · ~x = 3 is the polar body of the toric diagram with respect to

the Reeb vector (considered as a point in the plane of the toric diagram). If we call the

toric diagram X, then 27N2

8a = infR∈X area(X∗R). Then the statement of the lower bound

is equivalent to area(X) infR∈X area(X∗R) < π2. The result area(X) infR∈X area(X∗R) ≤ π2

was proved by Blaschke [49, 50]; equality occurs in the case of an ellipse. Since the toric

diagram is a polygon, it cannot be perfectly elliptical and hence equality does not hold.

We will need to use the following results for the proof of the upper bound.

Proposition 2.4.2 (A. Kato [47]). The local maximum of a is the overall maximum of a

in the region λi ≥ 0,
∑

i λi = 1.
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Proposition 2.4.3 (A. Butti and A. Zaffaroni [45]). Let R be a point in the interior of the

toric diagram. Define

fi =
area(Pi−1PiPi+1)

area(Pi−1PiR) area(PiPi+1R)
(2.17)

S =
∑
i

fi (2.18)

λi = fi/S. (2.19)

Then the following results hold:

R =
∑
i

λiPi (2.20)

a =
27N2

2S
. (2.21)

Furthermore, when R is the Reeb vector and the λi are given by (2.19), a is locally maximized

(over all choices of λi, not just those of the form (2.19)).

Proof of the upper bound of Theorem 2.4.1. We use induction on the number of corners of

the toric diagram. If the toric diagram is a triangle, then a is maximized when each λi is

1
3 . So a = 9N2

4 K(3!)
(

1
3

)3
= N2K

2 .

Assume the toric diagram has more than three corners. Let λMi be the values of λi for

which a is locally maximized. Choose a particular i and let λDi = 0, λDi+1 = λMi +λMi+1, and

λDj = λMj for all other j. We will define aM = a|λM , aD = a|λD , and ∆a = aD − aM . Since

a has degree one in each individual λj ,

∆a =
∂a

∂λi

∣∣∣∣
λM

(−λMi ) +
∂a

∂λi+1

∣∣∣∣
λM

λMi +
∂2a

∂λi∂λi+1

∣∣∣∣
λM

(−λMi )(λMi ) (2.22)

Recall that since a is initially maximized, ∂a
∂λi
|λM = ∂a

∂λi+1
|λM and hence the first two terms

of (2.22) cancel. Now use (2.10) to expand the last term:

∆a = −27N2

2
(λMi )2

∑
j

λMj area(PiPi+1Pj). (2.23)
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Since all of the Pj are on the same side of the line PiPi+1,

∆a = −27N2

2
(λMi )2 area(PiPi+1R) (2.24)

where R is the weighted center of mass of the Pj with weights λMj . Now apply Proposition

2.4.3. We can write

∆a = −λMi
27N2 area(Pi−1PiPi+1)

2S area(Pi−1PiR)
(2.25)

= −λMi aM
area(Pi−1PiPi+1)

area(Pi−1PiR)
. (2.26)

Since
∑

i λ
M
i = 1 and

∑
i area(Pi−1PiR) = K, there must be some i for which

λMi
area(Pi−1PiR) ≤

1
K . For such an i,

−∆a

aM
≤ area(Pi−1PiPi+1)

K
(2.27)

Note that area(Pi−1PiPi+1) is the amount by which K would decrease if we removed Pi

from the toric diagram. Since λDi = 0, the λDj are a valid choice of weights for the toric

diagram with Pi removed. Then

−∆a

aM
≤ −∆K

K
. (2.28)

Therefore aD

K+∆K ≥
aM

K . By Proposition 2.4.2 the local maximum value of a for the new

toric diagram is at least as large as aD. We want to show that it is strictly larger, or

equivalently, that λDj do not locally maximize a for the new toric diagram. Recall from

Lemma 2.3.14 that a is locally maximized when ∂a
∂λi+1

= 3a. Hence a will continue to be

maximized only if ∆ ∂a
∂λi+1

= 3∆a. Once again we use the fact that a is degree one in each

individual λj :

∆
∂a

∂λi+1
=

∂2a

∂λi∂λi+1

∣∣∣∣
λM

(−λMi ) (2.29)

=
∆a

λMi
. (2.30)

Hence a can continue to be maximized only if λMi = 1
3 . But λMi+1 is positive (since we chose

to let our indices enumerate corner perfect matchings only), so λDi+1 = λMi + λMi+1 >
1
3 . By
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Equation in [51] (x,y,z) (9− n)(αx2 + βy2 + γz2)

(1) (1, 1, 1) 27
(1) (1, 1, 2) 54
(1) (1, 2, 5) 270
(2) (1, 1, 1) 32
(3) (1, 1, 1) 36
(4) (1, 2, 1) 50
(5) (1, 1, 1) 32

(6.1) (1, 1, 1) 27
(6.2) (2, 1, 1) 36
(7.1) (2, 2, 1) 32
(7.2) (2, 1, 1) 32
(7.3) (3, 1, 1) 36
(8.1) (3, 3, 1) 27
(8.2) (4, 2, 1) 32
(8.3) (3, 2, 1) 36
(8.4) (5, 2, 1) 50

Table 2.1: The values of 54N2K
a = (9 − n)(αx2 + βy2 + γz2) for some of the quiver gauge

theories defined in [51]. Note that the equations in [51] have infinitely many solutions (which
can be seen by observing that if we fix one of x, y, z we get a form of Pell’s equation), so

there exist theories with arbitrarily large 54N2K
a .

Lemma 2.3.15, λDj cannot be the local maximum point. By the induction hypothesis, the

new a
K is at most 1

2 , so the old a
K must be smaller than 1

2 .

2.4.2 Comparison to non-toric field theories

Let us consider how we might formulate a similar bound for non-toric CFTs. We need to

decide how to interpret K in the non-toric case. If seems natural to replace 2N2K with the

sum of the squares of the numbers of colors of each gauge group.

Let’s look at the values of a
N2K

for a cone over a del Pezzo surface. Reference [51] lists

some quiver gauge theories that are dual to these Calabi-Yaus. In their notation, the sum

of the squares of the number of colors is αx2 + βy2 + γz2. We can compute a by looking

at the AdS dual theory. References [52, 53] tell us that π3

4a is the volume of the horizon,

and [54] tells us that the volume of the real cone over dPn is π3(9−n)
27 . So a = 27

4(9−n) . So

then 54N2K
a = (9 − n)(αx2 + βy2 + γz2), and the bound (2.16) for toric theories is then

equivalent to 27 ≤ (9 − n)(αx2 + βy2 + γz2) < 4π2. From Table 2.4.2 we see that the

toric upper bound on 54N2K
a is not true for all quiver gauge theories. In fact, N2K

a can be
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arbitrarily large. Equation (1) of [51] is x2 + y2 + z2 = 3xyz. If we set z = 1 then we have

a Pell’s equation in x and y and there are infinitely many solutions. On the other hand,

27 ≤ (9− n)(αx2 + βy2 + γz2) still holds for all of the theories considered in [51]. It would

be interesting to know if the inequality holds more generally.

2.5 Merging zigzag paths

2.5.1 Deleting an edge of the dimer

Theorem 2.3.3 says that, if a dimer is properly ordered, then we can determine its toric

diagram from the windings of its zigzag paths. As we mentioned in section 2.3.3, Hanany

and Vegh [10] and Stienstra [12] have previously made proposals for drawing a dimer with

given zigzag winding numbers, but their procedures are impractical for large dimers because

of the large amount of trial and error required.

Partial resolution [40–43] has previously been suggested as a method of determining the

dimer from the quiver [7, 42, 55]. It involves starting with a toric diagram whose dimer

model is known and introducing Fayet-Iliopoulos terms that Higgs some of the fields and

remove part of the toric diagram to create a new diagram. However, as is the case with the

Fast Inverse Algorithm, the previous proposals involving partial resolution suffered from

being computationally infeasible.

In this section, we will explore how certain operations on the dimer affect its zigzag

paths. These operations can be interpreted as partial resolutions. We will later use these

operations to construct an algorithm for drawing a properly ordered dimer with given

winding numbers that requires no trial and error.

One operation that we can perform is to remove an intersection of two zigzag paths (or

equivalently, delete an edge of the dimer). The operation has the effect of merging the two

paths into a single path. An example is shown in figure 2.5.1. In physical terms, we are

Higgsing away the edge by turning on Fayet-Iliopoulos parameters for the adjacent faces.

This is an example of partial resolution of the toric singularity [40–43]. We will always

merge paths that intersect just once. In the following we will sometimes assume that the

windings of the paths are (1, 0) and (0, 1); any other case is SL2(Z) equivalent to this one.
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Figure 2.6: Top: Merging two zigzag paths by deleting the intersection between them.
Bottom: The effect on the dimer.

2.5.2 Making multiple deletions

Suppose we want to make n > 1 (1, 1) edges from (1, 0) and (0, 1) edges. If we make them

one at a time, then we would violate the proper ordering of nodes because we would have

(1, 1) paths intersecting each other. We should instead delete all n2 edges between the n

(1, 0) edges and the n (0, 1) edges. We will refer to this procedure as Operation I.

2.5.3 Extra crossings

We mentioned in section 2.2 that the number of oriented crossings between a pair of paths

is a function only on their windings. The number of unoriented crossings is greater than

or equal to the absolute value of the number of oriented crossings. If equality does not

hold then we say that the pair of paths has “extra crossings” . We say that a diagram has

extra crossings if any pair of its paths does. There is nothing inherently wrong with extra

crossings, but we may find it desirable to produce diagrams without them.

The edge deletion procedure mentioned in the previous section sometimes introduces

extra crossings. An example of this is shown in Figure 2.5.3. We combine a (1, 0) zigzag

path and a (0, 1) to make a (1, 1) zigzag path, and we also combine (−1, 0) and (0,−1)
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Figure 2.7: Left: An incorrect way of making two (1, 1) paths. They intersect each other,
which implies that the adjacent nodes are not properly ordered. Right: The correct way of
making two (1, 1) paths.

Figure 2.8: The top left diagram has no extra crossings. The top right diagram shows
what happens when some zigzag paths are merged. The two diagonal paths now have extra
crossings with each other. The bottom diagram shows what happens when we move the
two zigzag paths past each other; they no longer intersect.

36



Figure 2.9: Pairs of paths that are positively and negatively oriented, respectively.

Figure 2.10: Making (1, 1) and (−1, 1) paths from horizontal and vertical paths in the zigzag
path picture and the dimer picture.

paths to make a (−1,−1) path. The (1, 1) path and (−1,−1) path have a positively ori-

ented intersection coming from the (0, 1) − (−1, 0) intersection and a negatively oriented

intersection coming from the (1, 0)− (0,−1) intersection. Note that we can get rid of these

crossings by moving the two paths past each other. In terms of the dimer, moving the paths

past each other merges the two vertices adjacent to a valence two node. Physically, we are

integrating out a mass term.

We define a pair of zigzag paths to be an “opposite pair” if they have opposite winding

numbers, they do not intersect, and they bound a region containing no crossings. Also, we

define the orientation of an opposite pair to be positive if the area containing no crossings

is to the left of an observer traveling along one of the paths, and negative if the area is

on the right. (See figure 2.5.3.) We have just seen how to take a pair negatively oriented
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Figure 2.11: Creating two (1, 1) and two (−1,−1) paths from horizontal and vertical paths.
We first merge horizontal and vertical paths to create diagonal paths, then move the diagonal
paths past each other.

horizontal paths and a pair of negatively oriented vertical paths and turn them into a pair

of negatively oriented diagonal paths. Similarly we can turn a pair of positively oriented

horizontal paths and a pair of positively oriented vertical paths into a pair of positively

oriented diagonal paths. In terms of dimers, this operation takes a node of valence four,

deletes two opposite edges, and merges the other endpoints of the two remaining edges.

Figure 2.5.3 shows the operation in terms of both zigzag paths and dimers.

More generally, we can make n (1, 1) paths and n (−1,−1) paths and get rid of their

crossings. An example is given in figure 2.5.3. We have to untangle each (1, 1) path from

each (−1,−1) path. Note that all 2n paths must have the same orientation. We will call

this procedure Operation II.

If we want to create differing numbers of (1, 1) and (−1,−1) paths, then we run into the

problem that we cannot pair them all. We will need to do something more complicated. Let

m be the number of (1, 1) paths we want to make, and let n be the number of (−1,−1) paths
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Figure 2.12: Creating three (1, 1) paths and one (−1, 1) path without introducing extra
crossings. We first make two (1, 1) paths and then add a (1, 1)− (−1,−1) pair that follows
one of those two paths.

  ζ

4

1

4

1

3−ζ

2−ζ

−ζ

−ζ  ζ

3  ζ

2  ζ

Figure 2.13: Left: a dimer with a pair of adjacent opposite zigzag paths. Right: the
dimer with the paths removed. In physical terms, we are introducing performing a partial
resolution by introducing Fayet-Iliopoulos parameters for the faces on either side of the
diamonds [40–43]. (In particular note that the resolution of the double conifold in [43] is
an example of this operation.) For each pair of faces that meet at one of the points in the
middle, their FI parameters should sum to zero. All parameters on the left should have the
same sign.
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Figure 2.14: Some tangent lines to a convex polygon.

we want to make. Assume m > n. We first make m − n (1, 1) paths. Now we completely

remove n pairs of adjacent (1, 0) and (−1, 0) paths and n pairs of adjacent (0, 1) and (0,−1)

paths. Because the pairs are adjacent, the condition that intersection orientations alternate

along a path is preserved. Now we want to insert n pairs of adjacent (1, 1) and (−1, 1) paths,

and we want to make sure that there are no extra crossings. This can be accomplished by

making them follow one of the m− n already existing (1, 1) paths. An example is given in

figure 2.5.3. Figure 2.5.3 shows what removing or adding a pair of zigzag paths does to the

dimer. This procedure will be called Operation III.

2.6 An efficient inverse algorithm

2.6.1 Description of the algorithm

In describing the algorithm we find it useful to draw toric diagrams rotated 90 degrees

counterclockwise from their usual presentation. Our convention will make the algorithm

easier to visualize, because it makes the windings of the zigzag paths equal to, rather than

perpendicular to, the vectors of the toric diagram edges.

Let X be a toric diagram for which we would like to construct a dimer. Let Y be the

smallest rectangle with horizontal and vertical sides that contains X. Since Y represents

an orbifold of the conifold, we know a dimer for Y . We will modify this dimer until we get

a dimer for X.

Before we begin, we need to make the following definition. A tangent line to a convex

polygon P is a line ` such that `∩ P ⊆ ∂P and `∩ P 6= ∅. Note that a convex polygon has

exactly two tangent lines with a given slope.
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Figure 2.15: The Farey tree tells us the order in which to make zigzag paths. For example,
in order to make (3, 4) zigzag paths we first make (1, 1) zigzag paths, then (1, 2) paths, then
(2, 3) paths.

We begin by finding the slope one tangent lines to X and cutting Y along these lines

to produce some (1, 1) and (−1,−1) paths. We use Operation I if the number of (1, 1) or

(−1,−1) paths desired is zero, Operation II if the numbers are equal, and Operation III

if the numbers are both nonzero and unequal. Next we want to cut along the slope 1/2

tangent lines to X to produce (2, 1) and (−2,−1) paths. In fact we already know how to

do this, because SL2(Z) equivalence reduces the problem of making (2, 1) and (−2,−1)

paths from (1, 0), (−1, 0), (1, 1), and (−1,−1) paths to the problem of making (1, 1) and

(−1, 1) paths from (1, 0), (−1, 0), (0, 1) and (0,−1) paths. Hence we can now cut Y along

the slope 1/2 tangent lines to X. Similarly, we can cut Y along the slope 2 tangent lines to

X. After this, we can make (3, 1) paths by combining (1, 0) and (2, 1) paths, (3, 2) paths

by combining (1, 1) and (2, 1) paths, etc. We can eventually make paths of all slopes, with

the order in which we make the paths determined by the Farey tree. (See figure 2.6.1.) We

can then enumerate over all negative slopes, starting with −1. When we are finished, we

will have a dimer for X.

Figure 2.16 shows an example case of the algorithm.

2.6.2 Proof of the algorithm

We need to prove that we have the paths necessary to perform each step, and that the

finished dimer has properly ordered nodes and has no extra crossings.

Theorem 2.6.1. At each step of the algorithm, the following are true:

1. If there are m zigzag paths with winding (a, b) and n zigzag paths with winding

(−a,−b), then there are min(m,n) negatively oriented pairs of (a, b) and (−a,−b)
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Figure 2.16: An example of the algorithm. Note that the cut made in the second diagram
is the same as that of figure 2.5.3, although we have drawn it a little differently to make
the spacings more equal.

Figure 2.17: The dimer corresponding to the final zigzag path diagram in figure 2.16.
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z

w



0 0 z 0 0 0 0 0 −w 0 0 wz
1 0 0 0 0 0 0 0 w −w 0 0
1 0 0 1 0 0 0 0 0 w −w 0
0 1 1 0 0 0 0 0 0 0 w −w
−1 0 z 0 0 0 z 0 0 0 0 0
0 1 −1 0 0 1 1 0 0 0 0 0
1 0 0 −1 0 0 z z 0 0 0 0
0 −1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 z 1 0 0 0
0 0 0 0 1 −1 0 0 1 1 0 0
0 0 0 0 0 1 −1 0 0 1 1 0
0 0 0 0 0 0 1 −1 0 0 1 1


det = (w2 − w)z4 + (−w4 − 37w3 − 137w2 − 35w − 1)z3 + (3w4 − 175w3 + 146w2 − 2w)z2

+(−3w4 − 40w3 − w2)z + w4

Figure 2.18: The dimer corresponding to the final zigzag path diagram in figure 2.16 and its
Kasteleyn matrix. The rows represent white nodes and the columns represent black nodes.
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Figure 2.19: Left: We start out with two negatively oriented pairs of opposite paths. The
shaded regions are free of crossings. Right: The regions formed by the merged pairs are
still free of crossings.

paths. (This condition ensures that we can always perform the next step of the

algorithm.)

2. There are no extra crossings.

3. All nodes are properly ordered.

Proof. It is clear that all of these conditions hold for the initial dimer. Now let’s look

at whether the first condition will be preserved. Operation I will preserve the condition

for the winding of the paths being merged provided that we merge unpaired paths when

possible. It will also satisfy the condition for the windings of the newly created paths since

there are no (−a,−b) paths. Operation II will preserve condition 1 for the windings of the

paths being merged since it only deletes negatively oriented pairs. Figure 2.6.2 illustrates

why Operation II creates negatively oriented pairs of opposite paths. For Operation III we

should again merge unpaired paths when possible. It is clear that the reinserted paths form

pairs, and we can make these pairs negatively oriented if we desire.

Now consider whether extra crossings are introduced. Let the windings of the paths

being merged be (a, b), (−a,−b), (c, d), and (−c,−d), where ad−bc = 1. A path of winding

(e, f) will have extra crossings with the new (a+ c, b+ d) paths if af − be and cf − de have

opposite signs. Equivalently, there will be extra crossings if f/e is between b/a and d/c.

But because of the Farey fraction ordering, there are no windings (e, f) with this property.

So extra crossings are not introduced.
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Finally consider whether proper ordering is preserved. Again let the windings of the

paths being merged be (a, b), (−a,−b), (c, d), and (−c,−d), ad − bc = 1. In Operation I,

some nodes will see an (a, b) path or a (c, d) path become an (a+ c, b+ d) path. Therefore

proper ordering is preserved provided there are no windings between (a, b) and (c, d). This

is always the case because of the Farey fraction ordering. In Operation II, in addition to

deletion we also need to move paths past each other. Some nodes are deleted and the others

remain unchanged, so proper ordering is preserved. In Operation III, the process of making

the lone paths is the same as Operation I, so it preserves proper ordering. Removing pairs

also preserves proper ordering. Inserting pairs of paths preserves proper ordering if each

intersection between a path in the pair and another path has the same sign as their crossing

number, i. e. the paths in the pair do not have extra crossings. Since we are inserting them

along an existing path, they will not have extra crossings if the existing path does not have

any. We have already showed that we never introduce extra crossings.

2.6.3 Allowing extra crossings

If we want to produce diagrams with extra crossings, we can always just skip the steps for

removing the extra crossings. When we want to create (a, b) and (−a,−b) paths, we just

perform Operation I twice. There is one potential issue in that we have always assumed

that the zigzag paths that we join have just one crossing. We always join paths with

oriented crossing number ±1, but now the unoriented crossing number can be larger than

the absolute value of the oriented number. But we recall that the only extra crossings we

create are between paths with windings of the form (a, b) and (−a,−b). We may later merge

these paths with some other paths, but the extra crossings will always be between paths

with oppositely signed x-coordinates and oppositely signed y-coordinates. We never merge

such pairs of paths.

2.6.4 The number of independent solutions to the R-charge equations

We now exhibit the dimers required by Lemma 2.3.10.
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Lemma 2.6.2. The algorithm described in section 2.6.3 produces dimers for which the set

of all solutions to equations (2.1) and (2.2) has dimension equal to the number of zigzag

paths minus one.

Proof. Our proof is by induction. Our algorithm starts with a dimer that is a diamond-

shaped grid. We denote the position of an edge in the grid by (i, j). We can see (e. g. by

Fourier analysis) that the general solution to (2.1) and (2.2) is 1
2 +(−1)if(j)+(−1)jg(i) for

arbitrary functions f, g. The number of independent solutions is the number of rows plus the

number of columns minus one (the minus one come from the fact that f(j) = (−1)j , g(j) =

−(−1)i produces the same solution as f(j) = 0, g(j) = 0), which is the number of zigzag

paths minus one.

Now consider what happens when our algorithm deletes an edge of the toric diagram.

If we have a solution to the equations (2.1) and (2.2) in the new dimer, we can construct a

solution to the equations in the old dimer by assigning a value of zero to the deleted edge.

Conversely, if we have a solution in the old dimer in which the deleted edge has value zero,

then we have solution in the new dimer as well. We know that there exists a solution in the

old dimer where the deleted edge is nonzero, since the deleted edge is contained in some

boundary perfect matching. So deleting the edge reduces the dimension of the solution

space of (2.1) and (2.2) by one, and also reduces the number of zigzag paths by one.

2.7 Conclusions

We showed that dimers that have the number of faces predicted by the AdS dual theory

and that have valence one nodes will have many nice properties: they are “properly or-

dered”, their cubic anomalies are in agreement with the Chern-Simons coefficients of the

AdS dual, gauge-invariant chiral primary operators satisfy the unitarity bound, corner per-

fect matchings are unique, and zigzag path windings are in one-to-one correspondence with

the (p, q)-legs of the toric diagram.

We derived some simple bounds for the cubic anomaly a in terms of the area of the toric

diagram (and hence in terms of the number of gauge groups).
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We provided a precise, computationally feasible algorithm for producing a dimer model

for a given toric diagram based on previous partial resolution techniques and the Fast Inverse

Algorithm.

Much of our work on dimer models is also applicable to the study of M2-branes. Given

a dimer and a four-dimensional CFT dual to Type IIB string theory AdS5 × X5, we can

dimensionally reduce to three dimensions and add Chern-Simons terms to the gauge fields.

The resulting CFT is dual to M-theory on AdS4×X7, whereX7 is a fibration overX5 [29–31].

It would be interesting to see if our results could also apply to the three-dimensional dimers

discussed in [56] and the orientifold dimers discussed in [57].

Since this chapter was originally published as ref. [39], Ishii and Ueda [58] devised a

more general version of the algorithm.
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Chapter 3

From Necklace Quivers to the

F -theorem, Operator Counting,

and T (U(N))

This chapter is an edited version of ref. [1], written in collaboration with Christoper Herzog

and Silviu Pufu.

3.1 Introduction

Exact results in strongly-interacting field theories are generally rare. In supersymmetric

field theories, supersymmetry places strong constraints on various properties of chiral op-

erators, and exact results pertaining to these operators might be possible even at strong

coupling. For three-dimensional superconformal theories, recent progress in finding such

exact results that hold at any coupling was made in [17,25,59], where the partition function

of superconformal theories on S3 with N ≥ 2 supersymmetry, as well as the expectation

values of certain BPS Wilson loops, were reduced from path integrals to finite-dimensional

multi-matrix integrals. This major simplification was achieved through the localization

technique developed in [18] for four-dimensional theories.
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A consequence of this work is the realization that the “free energy” F defined as minus

the logarithm of the path integral on S3,

F = − log |ZS3 | , (3.1)

with appropriate subtractions of power law divergences, might represent a good mea-

sure of the number of degrees of freedom in any field theory, supersymmetric or non-

supersymmetric. One way in which F can be thought of as a measure of the effective

number of degrees of freedom is the theorem first conjectured in [21] and proved in [23]

that F decreases along renormalization group (RG) flows and is stationary at RG fixed

points. This assertion was called the “F -theorem” in [21]. It suggests that F is be a 3-d

analog of the central charge c from two-dimensional field theory, which is known to have the

same monotonicity property along RG flows [60], and it would resemble the Weyl anomaly

coefficient a from 4-d theories, which is also believed to decrease along RG trajectories [19].

Actually, the free energy F also resembles a in another way: just like a, F can be used to

find the exact R-symmetry in the infrared (IR) by computing F as a function of a set of

trial R-charges and then maximizing it [25,26]. The analogous procedure in 4-d theories is

called “a-maximization” [24].

In the context of the AdS/CFT correspondence [3–5], the free energy F can also be

computed holographically from the gravity side of the correspondence. In particular, for a

CFT dual to AdS4 of radius L and effective four-dimensional Newton constant GN , F is

given by [61]

F =
πL2

2GN
. (3.2)

It was shown in [62] that in any CFT F can also be interpreted as an entanglement entropy

between a disk and its complement in the R2,1 theory. In turn, this entanglement entropy

equals the holographic a∗ function defined in [63, 64] that was shown to always decrease

along holographic RG flows.
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If the AdS4 background mentioned above arises as a Freund-Rubin compactification

AdS4 × Y of M-theory, where Y is a seven-dimensional Sasaki-Einstein space threaded by

N units of four-form flux, then the quantization of the AdS4 radius in Planck units implies

that at large N eq. (3.2) becomes [27]

F = N3/2

√
2π6

27 Vol(Y )
+ o(N3/2) . (3.3)

Here, the volume of Y is computed with an Einstein metric that satisfies the normalization

condition Rmn = 6gmn. The Freund-Rubin solution AdS4 × Y arises as the near-horizon

limit of a stack of N M2-branes placed at the tip of the Calabi-Yau cone X over Y . The N3/2

behavior of the number of degrees of freedom had been known for quite some time, as the

same large N dependence appears in other quantities such as the thermal free energy that

was computed in [65] more than ten years ago. A field theory explanation of this peculiar

large N dependence had been lacking until recently, mostly because explicit Lagrangian

descriptions of the field theories living on coincident M2-branes have been discovered only

in the past few years. Starting with ABJM theory [28] that describes N M2-branes sitting

at an orbifold singularity of C4, there are now many Chern-Simons matter U(N) gauge

theories that are proposed to describe the effective dynamics on N M2-branes placed at

the tip of various Calabi-Yau cones (see for example [31–33, 66, 67]). However, only few of

these dualities have been extensively tested. Extensive tests are difficult to perform because

supergravity on AdS4 × Y is supposed to be a good approximation to the dynamics of the

CS-matter gauge theories only as one takes the gauge group ranks to infinity while keeping

the CS levels fixed. In this limit, the ’t Hooft coupling N/k becomes large, and there are

no perturbative computations that one can perform.

That in N ≥ 2 theories one can write F exactly in terms of a matrix integral means

that by evaluating this integral one can test some of these AdS4/CFT3 dualities that have

been put forth in recent years. In particular, one can provide a field theory derivation of the

F ∝ N3/2 large N dependence of the number of degrees of freedom (3.3) on N coincident

M2-branes. Moreover, one can compare the coefficient of N3/2 in (3.3) to the volume of the

internal space Y that one can compute independently by integrating the square root of the
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determinant of the Sasaki-Einstien metric on Y . Such comparisons were made in [68] in the

case of ABJM theory, in [27,69] for a large class of theories with N = 3 supersymmetry, and

in [21,70,71] for many theories with N = 2 supersymmetry. In [68,69] F was computed as a

function of the ’t Hooft coupling, while the other works focused only on the strong coupling

regime and used the method developed in [27] to evaluate the multi-matrix integrals at

large N and fixed CS levels in a saddle point approximation.

In this chapter, we build upon the work in [21, 27] in several ways. Our first main

result consists of an infinite class of RG flows whose IR and ultraviolet (UV) fixed points

preserve N = 3 SUSY. Via the AdS/CFT correspondence, at large N such a flow is dual

to a holographic RG flow between two AdS4 × Y extrema of 11-d supergravity. That

the extrema preserve N = 3 supersymmetry means that the cones over the spaces Y are

hyperkähler and, because of that, the spaces Y are called tri-Sasakian. (We will provide

a more detailed exposition of hyperkähler spaces at the beginning of section 3.2.1.) The

11-d SUGRA solutions that represent M2-branes sitting at the tip of a hyperkähler cone

were constructed in [72], where they were also related through string duality to a brane

construction in type IIB string theory. The type IIB brane construction consists of N

D3-branes filling the 0126 directions, and a sequence of (pa, qa) five-branes,1 1 ≤ a ≤ d,

filling the 012 directions and sitting at fixed angles in the 37-, 48-, and 59-planes. The

(p, q) branes break the D3-brane stack into d segments, and the three-dimensional U(N)d

CS-matter gauge theories then live on the segments. The N = 3 RG flows we want to study

correspond to removing one of the (p, q) branes or to a (p1, q1) brane and a (p2, q2) brane

combining into a (p1 + p2, q1 + q2) brane. We find that the F -theorem is satisfied in these

examples.

Our results for the F -theorem follow most naturally from the gravity side of the

AdS/CFT correspondence which provides an SL(2,R) invariant result for F as a function

of arbitrary (pa, qa). We provide field theory confirmation of the gravity result in the cases

where pa = 0 or pa = 1 for each a. While the 3-d field theory is simplest when pa = 0 or

1, for pa > 1, ref. [73] provides a more complicated field theory description involving an

1We adopt the convention where by a (p, q) five-brane we mean a brane with p units of NS5 charge and
q units of D5 charge.
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interpolating T (U(N)) theory that implements a sort of local S duality. Instead of using

the T (U(N)) theory, we derive the matrix model for pa > 1 by bootstrapping from our

large N results. We check that the matrix model yields the correct answer in the large

N limit, and also that it is invariant under SL(2,Z). As a bonus, we discover the matrix

model of the T (U(N)) theory. This partition function has also been found independently

by [74,75]. The matrix model for arbitrary pa is our second main result.

Along the way we tie several loose ends left off from [27]. In [27] the matrix model

was solved explicitly only for theories on (1, qa) branes with a ≤ 4. We provide a general

solution that holds for any number of (pa, qa) branes. In [27] it was checked numerically in a

few examples that the M-theory prediction for the volume of Y that can be extracted from

(3.3) agrees with the geometric computation performed by Yee [76]. We build on Yee’s work

and prove that in general the two computations of Vol(Y ) agree. In [27] it was conjectured

that the volume Vol(Y ) can be expressed in terms of a certain sum over trees. We provide

a proof of this tree formula.

Our third main result, contained in Section 3.3, is a relationship between the eigenvalues

in the matrix model and the number of chiral operators in the field theory. Define ψ(r)

to be the number of chiral operators with R-charge smaller than r for the N = 1 gauge

theory. The authors of [54,77] demonstrated that there is a relationship between ψ(r) and

the volume of the Sasaki-Einstein space in the large r limit. Given (3.3), there must also be

a relationship between ψ(r) and F . In fact, as we show in this chapter for the necklace the-

ories, more precise relationships can be established between the matrix model and operator

counting problems. The operators in the necklace theories also have a monopole charge m

corresponding to m flux units in a diagonal subgroup of the gauge group. Thus, we may

consider ψ(r,m) to be the number of operators with R-charge less than r and monopole

charge less than m. Let Xab be a hypermultiplet transforming under the fundamental of

the bth gauge group and the antifundamental of the ath gauge group. We can consider

ψXab(r,m) to be defined as above but now with the operator Xab = 0. In the large N limit,

the matrix model is solved by a saddle point approximation for which the eigenvalues are

complex numbers λa = N1/2x+ iya. The eigenvalues can be parametrized by an eigenvalue

density ρ(x), which turns out to be the same for each gauge group, and an imaginary part
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ya(x). Our two results are

∂3ψ

∂r2∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x) , (3.4)

∂2ψXab
∂r∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x)[yb(x)− ya(x) +R(Xab)] , (3.5)

where µ = 3F/4πN3/2. (Here we take the liberty of replacing the operator counts, which

are discrete functions, with continuous approximations.) We believe these relations will

hold more generally.

3.2 Volumes of Toric tri-Sasaki Einstein Spaces

On the gravity side of the AdS/CFT duality, we have M-theory backgrounds generated

by placing a stack of N M2-branes at the tip of a hyperkähler cone, with N large. In

this section our aim is to compute the free energy of the M2-brane theory purely from the

supergravity side of the correspondence. We start by introducing in section 3.2.1 the main

ingredients in constructing the 11-d supergravity solution, namely the toric hyperkähler

spaces. In section 3.2.2 we build upon the results of Yee [76] and express the volume of

these spaces in terms of the volume of a certain polygon for which we will provide a field

theory interpretation later on. In section 3.2.3 we comment on some field theory implications

of this formula, and show explicitly that the free energy decreases along certain RG flows,

in agreement with the F -theorem proposed in [21].

3.2.1 Toric Hyperkähler Cones from a Quotient Construction

We start by introducing the toric hyperkähler cones. The following discussion draws heavily

from [78] and [76].

A hyperkähler manifold possesses 4n real dimensions and has a Riemannian metric g

which is kähler with respect to 3 anti-commuting complex structures J1, J2, and J3. These

Ji furthermore satisfy the quaternionic relations J2
1 = J2

2 = J2
3 = J1J2J3 = −1. The

simplest example of a hyperkähler manifold is the four-dimensional space of quaternions

H ∼= R4, endowed with the standard line element. A single quaternion q ∈ H ∼= R4 can be
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represented as a two-by-two complex matrix

q =

 u v

−v̄ ū

 (3.6)

parametrized in terms of two complex variables u and v. In terms of u and v the metric is

ds2 = |du|2 + |dv|2 and the three kähler forms are

ω3 = − i
2

(du ∧ dū+ dv ∧ dv̄) , (3.7)

(ω1 − iω2) = i(du ∧ dv) . (3.8)

The ωa transform as a triplet under the SU(2) symmetry that acts as left multiplication

on q.

The quaternions H can also be written as a U(1) bundle over R3 where the U(1) fiber

shrinks to zero size at the origin of R3. This description comes from the uplift of the Hopf

fibration from S3 to R4 and makes explicit an SO(3)×U(1) subgroup of the O(4) rotational

symmetry of R4. More explicitly, if one writes

u =
√
r cos (θ/2) e−iφ/2+iψ , v =

√
r sin (θ/2) e−iφ/2−iψ , (3.9)

then the standard line element on H becomes

ds2 = du dū+ dv dv̄ =
1

4

d~r2

r
+ r

(
dψ − 1

2
cos(θ)dφ

)2

, (3.10)

where ~r = (r sin θ cosφ, r sin θ sinφ, r cos θ) is the usual parameterization of R3 in terms of

spherical coordinates. The coordinate ψ ∈ [0, 2π) parameterizes the U(1) Hopf fiber. From

eq. (3.6) we see that rotations in the U(1) fiber correspond to phase rotations of q.

Another example of a hyperkähler manifold is the Cartesian product of d-copies of the

quaternions Hd ∼= R4d, also considered with the flat metric

ds2 =

d∑
a=1

[
1

4

d~r2
a

ra
+ ra

(
dψa −

1

2
cos(θa)dφa

)2
]
. (3.11)
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Starting with Hd, one can construct construct a large number of further examples of toric

hyperkähler spaces using the hyperkähler quotient procedure of Hitchin, Karlhede, Lind-

ström, and Roček [79]. A toric hyperkähler manifold can be defined to be a hyperkähler

quotient of Hd for some integer d by a (d− n)-dimensional subtorus N ⊂ T d. The underly-

ing reason that the quotient continues to be hyperkähler is that the triplet of Kähler forms

(3.7) is invariant under the U(1) action that sends u→ ueiα and v → ve−iα.

The hyperkähler quotient procedure requires the data of how N = T d−n sits inside T d.

The inclusion N ⊂ T d can be described by the short exact sequence of tori

0 −→ T d−n
i−→ T d

π−→ Tn −→ 0 , (3.12)

where we also introduced the quotient Tn ∼= T d/T d−n, as well as the inclusion map i and

the projection map π. Each torus T k in this sequence can be identified with Rk/(2πZk), so

the data of how N sits inside T d can be encoded in how the standard lattice Zd−n ⊂ Rd−n

sits inside Zd ⊂ Rd, or equivalently how Zd ⊂ Rd projects down to Zn ⊂ Rn. Such a

construction can be described by a short exact sequence of vector spaces

0 −→ Rd−n Q−→ Rd β−→ Rn −→ 0 , (3.13)

which restricts to a short exact sequence of free-Z modules (lattices):

0 −→ Zd−n Q−→ Zd β−→ Zn −→ 0 . (3.14)

Since Q and β are linear maps, they can be represented by matrices: Q by a d × (d − n)

matrix and β by an n× d matrix. That the sequence (3.13) is exact means that precisely n

columns of β are linearly independent (i.e. β is surjective), that βQ = 0, and that the d−n

columns of Q are linearly independent (i.e. Q is injective). That (3.13) restricts to (3.14)

further implies that Q and β have integer entries. The torus N = Rd−n/(2πZd−n) as we

defined it has volume (2π)d−n.

55



The hyperkähler quotient of Hd by the torus N is defined to be the zero locus of a set

of moment maps in addition to a quotient by the torus action. The 3(d− n) moment maps

are compactly expressed using the matrix equation

µi =

d∑
a=1

Qai

[
qaσ3q

†
a + ~λa · ~σ

]
(3.15)

=
d∑
a=1

Qai


 ra3 ra1 − ira2

ra1 + ira2 −ra3

+

 λa3 λa1 − iλa2

λa1 + iλa2 −λa3


 , (3.16)

where σ1, σ2, and σ3 are the Pauli spin matrices. The hyperkähler quotient X is then

X ≡ Hd///N = µ−1(0)/N . (3.17)

We are particularly interested in the case where ~λa = 0 and the corresponding hy-

perkähler manifold is a cone. The base of this cone is a 4n−1 real dimensional Riemannian

manifold with positive scalar curvature and a locally free action of SU(2) that descends

from the SU(2) rotating the three complex structures. The base of such a cone is called

a tri-Sasaki manifold. Indeed, a Riemannian manifold (Y, g) is tri-Sasaki if and only if the

Riemannian cone X = (R+ × Y, dr2 + r2 gijdy
idyj) is hyperkähler. The induced metric

on X from Hd is Ricci flat, which in turn implies that the induced metric on Y satisfies

Einstein’s equations with a positive cosmological constant. In other words, Y is also an

Einstein manifold.

3.2.2 The Volume of the tri-Sasaki Einstein Base

Given a toric hyperkähler cone X, we would like to compute the volume of the base Y with

respect to the induced metric from Hd. A brute force approach would be to introduce the

variables ~tj such that

~ra =
∑
j

βaj~tj . (3.18)

These constrained ~ra automatically satisfy the moment map conditions. Plugging this

expression into the line element (3.11) on Hd yields a metric on X × T d−n. Integrating the
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square root of the determinant of the metric up to a finite radial coordinate 1 =
∑

a ra and

dividing by Vol(T d−n) would yield Vol(Y )/4n.

The approach outlined above appears to be difficult. Instead, we will use a result due

to Yee [76], which was proven using an elegant localization argument:

Yee’s Formula. Consider a tri-Sasaki Einstein manifold Y defined via the short exact

sequence (3.14) and hyperkähler quotient construction described above. If the metric is

normalized such that Rij = 2(2n− 1)gij, then the volume is

Vol(Y ) =
2d−n+1π2n

(2n− 1)! Vol (N)

∫ d−n∏
j=1

dφj

 d∏
a=1

1

1 +
(∑d−n

k=1 Q
a
kφ

k
)2 . (3.19)

This volume formula has the forgiving property of being invariant under rescaling the

matrix Q → λQ. Under this rescaling the torus volume changes, Vol(N) → λn−d Vol(N).

The factor λn−d is then canceled by the Jacobian introduced upon rescaling φ→ φ/λ. We

discussed above that the columns of Q can be chosen such they form a Z-basis of the kernel

of β and Vol(N) = (2π)d−n. Note that if we were not so clever in our choice of Q, the

volume formula would still give us the correct answer because of this scaling invariance.

So far we have assumed that N is isomorphic to T d, but we can also choose N to be

isomorphic to NT × T d for some finite abelian group NT . In that case, the image of β is no

longer all of Zn. The cokernel of β is dual to NT . The volume of N for our choice of Q is

therefore (2π)d−n |NT | = (2π)d−n |Cokerβ|.

We now rewrite this volume integral in a more convenient fashion. Let us assume that

we chose the columns Q to form a Z basis of Ker(β). In this case, the volume formula

simplifies:

Vol(Y ) =
2π3n−d

(2n− 1)!

∫ d−n∏
j=1

dφj

 d∏
a=1

1

1 +
(∑

kQ
a
kφ

k
)2 . (3.20)

A well-known result from Fourier analysis is

1

1 + x2
=

1

2

∫ ∞
−∞

dye−|y|+ixy. (3.21)
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Then Vol(Y ) can be rewritten as

Vol(Y ) =
π3n−d

(2n− 1)! · 2d−1

∫ d−n∏
j=1

dφj

( d∏
a=1

e−|ya|dya

)
exp

∑
k,a

iQakφ
kya

 . (3.22)

We are allowed to switch the order of integration, integrating over the φj first.2 We obtain

Vol(Y ) =
π2n

(2n− 1)! · 2n−1

∫ ( d∏
a=1

e−|ya|dya

)
d−n∏
k=1

δ

(∑
a

Qakya

)
. (3.23)

To integrate over the delta functions, note that we can get a basis for Zd by taking the

basis for Ker(β) and pullbacks of the basis for Im(β). The Jacobian for transforming from

the standard basis of Zp to this basis must be one, since both bases generate the same

lattice. In our new coordinates, we have two kinds of variables: si corresponding to the

columns of Q and ti corresponding to the rows of β. The product of delta functions is just

δ(s1)δ(s2) · · · δ(sd−n) and can be performed straightforwardly. If the rows of β span Zn, the

tj can be written

ya =
n∑
j=1

βajtj . (3.24)

The integral reduces to the following useful form:

Vol(Y ) =
π2n

(2n− 1)! · 2n−1

∫ ( n∏
k=1

dtk

)
exp

− d∑
a=1

∣∣∣∣∣∣
n∑
j=1

βajtj

∣∣∣∣∣∣
 . (3.25)

Note that if the rows of β do not span Zn, then the Jacobian will have an extra factor of

|Coker(β)|, which cancels the |Coker(β)| in Vol(N). So (3.25) holds even if the rows of β

do not span Zn. This integral form provides us with a corollary to Yee’s Formula:

Corollary 3.2.1. i) If a column βa is removed from β, Vol(Y ) increases. ii) If two columns

βa and βb of β are combined to form the new column βa + βb of a new β′ with one fewer

2The integral (3.22) is not absolutely convergent. However, if we multiply the inte-
grand by exp

[
−
∑
k εk(φk)2

]
, for some small εk > 0, then the integral does converge abso-

lutely. We can then take the limit εk → 0+. If we integrate out the ya then we get

limεk→0+
2π3n−d

(2n−1)!

∫ (∏d−n
j=1 dφ

j
)∏d

a=1

exp[−
∑
k εk(φ

k)2]
1+(

∑
k Q

a
k
φk)2

= 2π3n−d

(2n−1)!

∫ (∏d−n
j=1 dφ

j
)∏d

a=1
1

1+(
∑
k Q

a
k
φk)2

. If we

integrate out the φj then we get limεk→0+
π2n

(2n−1)!·2n−1

∫ (∏d
a=1 e

−|ya|dya
)∏d−n

k=1

exp−(
∑
a Q

a
kya)

2
/4εk

2
√
πεk

=

π2n

(2n−1)!·2n−1

∫ (∏d
a=1 e

−|ya|dya
)∏d−n

k=1 δ
(∑

aQ
a
kya
)
.
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columns, Vol(Y ) either increases or stays the same. The volume remains the same if and

only if the two columns are proportional, βa = cβb for some c ∈ R+.

Proof. (i) is true because the integrand of (3.25) (which is positive definite) increases when

a column of β is removed. (ii) is true because the absolute value of a sum is less than or

equal to the sum of the absolute values. Equality occurs only when the expressions inside

the absolute values are proportional.

The volume formula (3.25) leads to another useful corollary of Yee’s Formula:

Corollary 3.2.2. Let P ∈ Rn be the polytope

P =

~t ∈ Rn :
d∑
a=1

∣∣∣∣∣∣
n∑
j=1

βajtj

∣∣∣∣∣∣ ≤ 1

 . (3.26)

Let S4n−1 be a (4n− 1)-dimensional sphere with unit radius. The volume of the tri-Sasaki

Einstein manifold satisfies the relation

Vol(Y )

Vol(S4n−1)
=
n!

2n
Vol(P) . (3.27)

Proof. Introduce the notation α =
∑d

a=1

∣∣∣∑n
j=1 βajtj

∣∣∣ with α > 0 if at least one of the tk is

non-zero, and write tk = αbk for some new variables bk. The bk are constrained to live on

the boundary of P. Eq. (3.25) can be rewritten as

Vol(Y ) =
π2n

(2n− 1)! · 2n−1

∫ ( n∏
k=1

dbk

)
δ

 d∑
a=1

∣∣∣∣∣∣
n∑
j=1

βajbj

∣∣∣∣∣∣− 1

∫ ∞
0

dααn−1e−α . (3.28)

The volume of P can be also written in terms of these variables:

Vol(P) =

∫ ( n∏
k=1

dbk

)
δ

 d∑
a=1

∣∣∣∣∣∣
n∑
j=1

βajbj

∣∣∣∣∣∣− 1

∫ 1

0
dααn−1 . (3.29)
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Performing the integrals in α and comparing the last two formulas, we obtain

Vol(Y ) =
π2nn!

(2n− 1)! · 2n−1
Vol(P) , (3.30)

or, using the fact that the volume of the (4n− 1)-sphere is Vol(S4n−1) = 2π2n/(2n− 1)! the

desired result follows.

A final corollary is an explicit result for the volume of the tri-Sasaki Einstein spaces

relevant for the gauge theories we discuss below:

Corollary 3.2.3. In the case n = 2, choose β such that the two-vectors βa lie in the upper

half plane and order them such that βa ∧ βa+1 > 0.3 The volume of the tri-Sasaki Einstein

space Y is

Vol(Y ) =
π4

6

d∑
a=1

γa(a+1)

σaσa+1
(3.31)

where we have defined the quantities γab ≡ |βa ∧ βb|, σa ≡
∑d

b=1 γab, and βd+1 ≡ −β1.

Note that the volume of Y is independent of the sign of the βa and their order inside

β. The order of the βa in the corollary is their order around RP1. (Flipping the sign of any

given column of β does not change the hyperkähler quotient H///N because the torus N

defined by (3.14) is invariant under such a sign flip. Therefore it is natural to identify βa

with −βa and consider the ordering of the βa = (pa, qa)
T to be the ordering of [pa, qa] ∈ RP1

around RP1.)

Proof of Corollary 3.2.3. We split the integral into various regions according to whether∑
j βajtj is positive or negative. There are 2d such regions. Since the integral does not

change if we replace each tk with −tk, we only need to consider d regions. The ordering of

the βa guarantees that any two consecutive columns determine a region boundary.

Now we choose a and compute the integral in a region bounded by the lines u =

−
∑

j βajtj = 0 and v =
∑

j β(a+1)jtj = 0. The prefactor in the integral is π4/12, but

3We define

(
a
b

)
∧
(
c
d

)
≡ ad− bc.
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we need to multiply by two since there are two such regions. We get

π4

6

1

γa(a+1)

∫ ∞
0

du

∫ ∞
0

dv exp

(
−

p∑
b=1

γabv + γ(a+1)bu

γa(a+1)

)

=
π4

6

γa(a+1)

(
∑

b γab)
(∑

b γ(a+1)b

) . (3.32)

Summing the regions yields the volume stated in the corollary.

Given Corollary 3.2.2, there exists an equivalent proof that involves computing the area

of P from the definition (3.26).

The authors of [27] conjectured a formula for the volume of these n = 2 tri-Sasaki

Einstein spaces. Their formula is interesting because it does not rely on an ordering of the

βa and makes the permutation symmetry of the columns of β manifest. We have been able

to promote this conjecture to a theorem. As the techniques for the proof are not typical of

the main arguments in the chapter, we include the proof as Appendix A.1.

Tree Formula. The area of the polytope P described in (3.26) in the case n = 2 can be

written

Area(P) = 2

∑
(V,E)∈T

∏
(a,b)∈E γab∏d

a=1 σa
. (3.33)

where T is the set of all trees (acyclic connected graphs) with nodes V = {1, 2, . . . , p} and

edges E = {(a1, b1), (a2, b2), . . . , (ap−1, bp−1)}.

3.2.3 Brane Constructions and an F -theorem

Consider the following brane construction in type IIB string theory. A stack of N coincident

D3-branes spans the 01236 directions with the 6 direction periodically identified. Let there

be bound states of NS5- and D5-branes. Denote the number of NS5- and D5-branes in

the bound state by pa and qa respectively. These (pa, qa)-branes intersect the D3-branes at

intervals around the circle and span the 012 directions. Each (pa, qa)-brane lies at an angle

θa in the 37, 48, and 59 planes where θa = arg(pa + iqa). These brane constructions are

known to preserve 6 of the 32 supersymmetries of type IIB string theory [80,81].4

4Note that a brane with charges (−pa,−qa) is an anti-(pq, qa)-brane rotated by 180 degrees, which is the
same as a (pa, qa)-brane. The (pa, qa) charge is most naturally defined up to this overall sign.
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x6

(p1, q1) 5-brane

(p2, q2) (p3, q3) (p4, q4) (pd, qd)

N D3’s

Figure 3.1: A schematic picture of the brane construction. The N D3-branes span the 0126
direction, and the (pa, qa) 5-branes span the 012 directions as well as the lines in the 37, 48,
and 59 planes that make angles θa = arg(pa + iqa) with the 3, 4, and 5 axes, respectively.
The three-dimensional N = 3 theories considered in this chapter live on the 012 intersection
of these branes.

This brane construction cannot be described reliably within type IIB supergravity be-

cause the dilaton becomes large. A better description can be obtained after a T-duality

along the 6 direction and a lift to M-theory, where the resulting configuration can be de-

scribed within 11-d supergravity. The geometry depends on N . When N is small, the

geometry is R2,1 ×X where X is the hyperkähler cone discussed above for n = 2 [72]. In

the large N limit, the D3-branes produce a significant back-reaction, and close to them the

geometry is AdS4×Y where Y is a tri-Sasaki Einstein space [66]. In both cases, the charges

(pa, qa) = βTa are the columns of β.

In the case where pa = 0 or 1, this brane construction admits a simple N = 3 supersym-

metric 2+1 dimensional field theory interpretation. The (1, qa)-branes, a = 1, . . . , d, break

the D3-branes up into d segments along the circle. For each segment, we have a U(N)

Chern-Simons theory at level ka = qa+1 − qa. The (0, qi)-branes, i = 1, . . . , nF , also inter-

sect the D3-branes. At each intersection, we have massless strings that join the D3-branes

to the (0, qi)-brane that correspond to flavor fields in the fundamental representation. (See

figure 3.2.) These gauge theories are described in greater detail in [66,82].

As described in the introduction, it has been conjectured that the logarithm F of the

partition function of the Euclidean field theory on S3 serves as a measure of the number

of degrees of freedom in the theory, being an analog of the conformal anomaly coefficient a
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of a 3+1 dimensional field theory. While the a-theorem is a conjecture that the conformal

anomaly a decreases along RG flows, the conjectured F -theorem states that F should de-

crease along RG flows [21]. As given in (3.3), the AdS/CFT correspondence predicts that

in the large N limit, F ∼ 1/
√

Vol(Y ). Thus, along RG flows, Vol(Y ) should increase.

It is remarkable that for the class of theories we consider here, Corollary 3.2.1 confirms

this expectation that Vol(Y ) should increase along RG flows. The UV of the field theory

should correspond to looking at our D3-brane construction from a great distance as only high

energy excitations will be able to get far from the branes, while the IR should correspond to

getting very close to the D3-branes. The simplest realization of such an RG flow is to add a

mass term for flavor fields corresponding to a (0, qi)-brane. Such a mass term corresponds

to introducing a small distance between the (0, qi)-brane and the stack of D3-branes. In the

UV, these flavor fields will contribute to F , while in the IR, the flavors and corresponding

(0, qi)-brane should be absent.

A slightly more complicated realization involves an intersecting (0, q)-brane and a (1, 0)-

brane. We have a U(N) vector multiplet on each side of the (1, 0)-brane. The (0, q)-brane

produces q fundamental flavor fields charged under one U(N) and q anti-fundamentals

charged under the other. Adding real masses of the same sign for each flavor field corre-

sponds to a “web deformation” [81] where close to the D3-branes the (0, q)- and (1, 0)-brane

form a (1, q)-brane bound state. Far from the D3-branes, because we have fixed boundary

conditions for the (0, q)- and (1, 0)-brane by specifying their angles, the two branes will

remain separate. From a large distance, we will not see that the two 5-branes have com-

bined. We will only see their asymptotic regions where they remain separated. Closer up,

we will see that the branes have made a bound state. From the point of view of our volume

formula, combining these two branes increases the volume and thus decreases F .

In fact, Corollary 3.2.1 and our volume formula put no restriction on the type of (p, q)-

brane we remove or the type of (p, q)- and (p′, q′)-brane we combine to form a (p+p′, q+q′)

bound state. In all cases, the volume will increase, corresponding to a decrease in F .

Unfortunately, from the field theory perspective it is not clear in general to what these

more general types of RG flow correspond.
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Figure 3.2: A necklace quiver gauge theory where the gauge sector consists of d U(N) gauge
groups with Chern-Simons coefficients ka. The matter content consists of the bifundamental
fields Aa and Ba, as well as na pairs of fundamentals and anti-fundamentals transforming
under the ath gauge group.

3.3 Field Theory Computation of the Free Energy

3.3.1 N = 3 Matrix Model

Consider the N = 3 supersymmetric 2+1 dimensional Chern-Simons theories corresponding

to the (p, q)-brane constructions described above where p = 0 or 1. Let there be d U(N)

gauge groups at level ka = qa+1 − qa, matter fields Aa and Ba in conjugate bifundamental

representations of the (a−1)st and ath gauge group and na pairs of flavor fields transforming

in fundamental and anti-fundamental representations of the ath gauge group, with a =

1, . . . , d (see figure 3.2). As explained in [17], the partition function for these necklace

quivers localizes on configurations where the scalars σa in the vector multiplets are constant

Hermitian matrices. Denoting the eigenvalues of σa by λa,i, 1 ≤ i ≤ N , the partition

function takes the form of the eigenvalue integral

Z =

∫ ∏
a,i

dλa,i

Lv({λa,i})Lm({λa,i}) (3.34)
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where the vector multiplets contribute

Lv =
1

N !

d∏
a=1

∏
i 6=j

2 sinh[π(λa,i − λa,j)]

 exp

(
iπ
∑
i

kaλ
2
a,i

)
(3.35)

and the bifundamental and fundamental matter fields contribute

Lm =

d∏
a=1

∏
i,j

1

2 cosh[π(λa−1,i − λa,j)]

(∏
i

1

2 coshπλa,i

)na
. (3.36)

We follow the recipe suggested in [27] for analyzing this matrix model in the large N

limit. We write λ = N1/2x+ iy and assume that the density of eigenvalues ρ(x) is the same

for each vector multiplet. To leading order in N , the matrix model for the N = 3 necklace

theories involves extremizing a free energy functional of the type

F [ρ, δya] = πN3/2

∫
ρ(x)dx

[
nF |x|+ 2x

d∑
a=1

qaδya(x) + ρ(x)
d∑
a=1

f(δya(x))

]
, (3.37)

where δya = ya−1 − ya, nF =
∑

a na, and f is a periodic function with period one given by

f(t) =
1

4
− t2 when − 1

2
≤ t ≤ 1

2
. (3.38)

This free energy should be extremized over the set

C =

{
(ρ, δya) :

∫
dx ρ(x) = 1; ρ(x) ≥ 0 and

d∑
a=1

ρ(x)δya(x) = 0 a.e.

}
, (3.39)

where we think of ρ(x) and ρ(x)δya(x) as functions defined almost everywhere (a.e.). To

enforce these constraints, we introduce the Lagrange multipliers µ and ν(x):

F̃ [ρ, δya] = F [ρ, δya]− 2πN3/2

[
µ

(∫
dx ρ(x)− 1

)
+

∫
dx ρ(x)ν(x)

d∑
a=1

δya(x)

]
. (3.40)
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The equations of motion that follow from this action are

d∑
a=1

[f(δya(x))ρ(x) + (qax− ν(x)) δya(x)] = µ− 1

2
nF |x| , (3.41a)

1

2
f ′(δya(x))ρ(x) + qax = ν(x) . (3.41b)

The solution of these equations and the constraint
∑d

a=1 δya = 0 is

ρ(x) = sL(x)− sS(x) , ν(x) = −1

2
[sL(x) + sS(x)] ,

δya(x) =
1

2

|sL(x) + qax| − |sS(x) + qax|
sL(x)− sS(x)

,
(3.42)

where we denoted by sL(x) and sS(x) the two solutions of the equation

1

2
nF |x|+

1

2

d∑
a=1

|s(x) + qax| = µ , (3.43)

with sL(x) ≥ sS(x). Note that the set of s and x satisfying (3.43) defines a polygon. In

fact, it defines the polygon P of (3.26) but rescaled by a factor of 2µ.

We show in Appendix A.2 quite generally that in the continuum limit the extremized

value of the free energy F is proportional to the Lagrange multipler µ:

F =
4πN3/2

3
µ . (3.44)

Thus to determine F , it suffices to find µ.

By definition, the density ρ(x) should integrate to one. The solution (3.42) demonstrates

that the density ρ(x) is proportional to the length of a slice through P at constant x. Thus

integrating ρ(x) over x should yield a quantity proportional to the area of the polygon. We

obtain

1 =

∫
dx ρ(x) = 4µ2 Vol(P) . (3.45)
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Assembling (3.44) and (3.45) yields F = 2πN3/2/3
√

Vol(P). From Corollary 3.2.2 and in

particular (3.30), we recover our AdS/CFT prediction (3.3).

3.3.2 Operator Counting and the Matrix Model

In this section, we relate the matrix model quantities ρ(x) and ρ(x)δya(x) to numbers of

operators in the chiral ring that don’t vanish on the geometric branch of the moduli space

of the N = 3 necklace quiver in the abelian case N = 1. To that end, we first characterize

the chiral ring, defined to be gauge-invariant combinations of the bifundamental fields and

monopole operators modulo superpotential relations. At arbitrary N , the superpotential

for these N = 3 necklace quivers when nF = 0 is

W =
d∑
a=1

1

ka
Tr(Ba+1Aa+1 −AaBa)2 , (3.46)

where ka = qa+1 − qa. When N = 1, this superpotential gives rise to d − 2 linearly

independent relations on the geometric branch of the moduli space

(ka + ka−1)AaBa = ka−1Aa+1Ba+1 + kaAa−1Ba−1 . (3.47)

(As pointed out by [66], these relations are one set of moment map constraints in the

hyperkähler quotient discussed previously.) There also exists a monopole operator T and

anti-monopole operator T̃ that create one and minus one units of flux, respectively, through

each gauge group. These monopole operators satisfy the quantum relation T T̃ = 1 [32,

33]. The Aa and Ba fields have R-charge 1/2, guaranteeing that the R-charge of the

superpotential is two. We will take the monopole operators to have zero R-charge. Gauge

invariance for this U(1)d gauge theory means that the total U(1)d charge of a gauge-invariant

operator constructed from Aa, Ba, and monopole fields will vanish. Let Aa (Ba) have charge

+1(−1) under gauge group a and charge −1(+1) under gauge group a− 1. The monopole

operators have gauge charges ±ka under the ath gauge group. To write a gauge-invariant
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operator in a compact form, it is convenient to define the operators

Cmqa+s
a ≡


Amqa+s
a if mqa + s > 0

B−mqa−sa if mqa + s < 0

; Um ≡


Tm if x > 0

T̃−m if x < 0

. (3.48)

The gauge-invariant operators are

O(m, s, i, j) = UmCmq1+s
1 Cmq2+s

2 · · ·Cmqd+s
d (A1B1)i(A2B2)j . (3.49)

Note we have used the superpotential relations to eliminate all but two of the (AiBi) factors

that could potentially appear in a gauge-invariant operator.

Let us consider the set of operators of the form O(m, s, 0, 0) with R-charge less than r.

The number of these operators is equal to the number of lattice points inside the polygon

Pr =

{
(m, s) ∈ R2 :

1

2

d∑
a=1

|s+ qam| < r

}
. (3.50)

In the large r limit, the number of these lattice points is well approximated by Area(Pr).

The polygon in Section 3.2.2 and this polygon are related via P1/2 = P. Corollary 3.2.2

established that Area(P) and Vol(Y ) are proportional. As Area(Pr)=4r2 Area(P), we have

an additional relation between the number of a certain type of operator and Vol(Y ).

The relation between Area(P) and an operator counting problem reveals an additional

relationship between the eigenvalue density ρ(x) and the chiral ring. We claim that in the

large r limit the number of operators O(m, s, 0, 0) of R-charge less than r and monopole

charge between m = xr/µ and m+ dm = (x+ dx)r/µ is

r2

µ2
ρ(x)dx . (3.51)

From (3.42), the quantity ρ(x)dx in the matrix model corresponds to the area of a constant

x strip of Pµ of height sL(x)−sS(x) and width dx. Roughly speaking, the operator counting

gives ρ(x) a new interpretation as the number of operators O(x, s, 0, 0) of R-charge less than

µ and monopole charge bounded between x and x+ dx. As µ is of order one in the matrix
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model, we should be more careful and consider first Pr for some large r, giving rise to the

factors of r/µ in the claim.

There is a subtle relation between δya and the chiral ring where Aa or Ba is set to zero.

In the large r limit, we claim that

r2

µ2

(
δya(x) +

1

2

)
ρ(x)dx (3.52)

counts the number of operators of the form O(m, s, 0, 0) with R-charge less than r and with

monopole charge between m = xr/µ and m+dm = (x+dx)r/µ and with Ba = 0. Flipping

the sign of δya(x) yields an equivalent expression for operators with Aa = 0. Note that

ρ(x)

(
δya(x) +

1

2

)
=


0 qax < −sL(x) ,

sL(x) + qax −sL(x) < qax < −sS(x) ,

sL(x)− sS(x) −sS(x) < qax .

(3.53)

For simplicity, let us first assume that µ is large and count the operators with R-charge

less than µ. We get the correct counting when qax < −sL(x) and when −sS(x) < qax

because the region qax + sS(x) > 0 corresponds to a portion of the polygon where the

O(x, s, 0, 0) contain no Ba while the region qax + sL(x) < 0 corresponds to operators

that contain no Aa. In the central region, the operators that contain no Ba satisfy the

constraint sL(x) > s > −qax. Because there is one operator per lattice point, the number

of operators that contain no Ba is proportional to the difference sL(x)− (−qax). Similarly

ρ(x)(−δya(x) + 1/2) will count the number of operators with no Aa. Again, since µ is of

order one in the matrix model, we should rescale our results for a polygon Pr in the large

r limit, yielding the extra factors of r/µ in the claim (3.52) for δya.

For a general supersymmetric gauge theory, we will not be able to make a clean separa-

tion between all operators in the chiral ring and operators of this special form O(m, s, 0, 0).

It is thus useful to reformulate these statements about ρ(x) and δya in terms of all chiral

operators. Let us introduce the function ψ(r,m) which counts the number of operators with

69



R-charge less than r and monopole charge less than m. We claim that

∂3ψ

∂r2∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x) . (3.54)

Note that in the large r limit, (∂2ψ/∂r∂m)dr dm can be interpreted as the number of

operators of R-charge between r and r+ dr and monopole charge between m and m+ dm.

Given an operatorO(m, s, 0, 0) ofR-charge 1
2

∑
a |s+qam| = r0 < r, we can form an operator

of R-charge equal to r by multiplying O(m, s, 0, 0) by a factor of (A1B1)j(A2B2)r−r0−j .

There are precisely r− r0 + 1 ways of forming such a factor (assuming r− r0 is an integer).

This multiplicity r − r0 + 1 associated to a lattice point (m, s) of the polygon can be

interpreted as the total number of operators of fixed m and s with R-charge equal to r.

The difference in the number of operators with R-charge r+ 1 and r integrated over a strip

at constant m now has the dual interpretation as rρ(µm/r)/µ or ∂3ψ/∂r2∂m (in the large

r limit).

As for δya(x), let us introduce ψAa(r,m) and ψBa(r,m) as the number of operators

with R-charge less than r and monopole charge less than m, with Aa = 0 and Ba = 0

respectively. We claim that

∂2ψAa
∂r∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x)

(
−δya(x) +

1

2

)
, (3.55)

∂2ψBa
∂r∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x)

(
δya(x) +

1

2

)
. (3.56)

Note that (∂2ψBa/∂r∂m)dr dm can be interpreted as the number of operators of R-charge

between r and r+dr, monopole charge between m and m+dm, and no Ba operators, in the

large r limit. Given an operator O(m, s, 0, 0) of R-charge r0 < r that does not involve the

field Ba, we can form a unique operator of R-charge equal to r by multiplying O(m, s, 0, 0)

by (AbBb)
r−r0 where b 6= a (provided r − r0 is an integer). Thus, eq. (3.52) is counting the

number of operators in the chiral ring with R-charge between r and r+dr, magnetic charge

between m = rx/µ and m + dm = r(x + dx)/µ, and no Ba operators. There is a parallel

argument for ψAa .
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3.3.3 Operator Counting and Volumes

Given the close relation between ρ(x) and Vol(Y ), it is not surprising that there is also

a close connection between ρ(x) and numbers of operators in the chiral ring. Motivated

by Weyl’s Law for eigenfunctions of a Laplacian on a curved manifold, the authors of [54]

noticed that the number of holomorphic functions on a certain class of Calabi-Yau cones

could be related to the volume of the Sasaki-Einstein manifold base. Their result holds for

a Calabi-Yau cone which is a C∗-fibration over a variety in weighted projective space with

a Kähler-Einstein metric. This special case was later generalized to any complex Kähler

cone by Martelli, Sparks, and Yau [77]. Note that the set of holomorphic functions on the

cone is precisely the chiral ring of the N = 1 gauge theory and that the ring has a natural

grading from the R-charge. The relation between the number of holomorphic functions and

the Vol(Y ) is

Vol(Y ) =
πnn

2n−1
lim
r→∞

1

r4
lim
m→∞

ψ(r,m) , (3.57)

where dim(Y ) = 2n − 1. In fact the result (3.57) helps to explain not only the relation

(3.54) between ρ(x) and ψ(r,m) but also the relations (3.55) and (3.56) between δya(x) and

restrictions of the chiral ring to rings where Aa = 0 or Ba = 0. The subspace Aa = 0 of the

Calabi-Yau cone is also a complex cone with Kähler structure. The level surfaces of this

complex cone will be Sasaki manifolds which satisfy (3.57) with n = 3. The identifications

(3.54), (3.55), and (3.56) along with (3.57) imply that

∫
ρ(x)dx =

24µ2

π4
Vol(Y ) , (3.58)∫

ρ(x)

(
−δya(x) +

1

2

)
dx =

4µ2

π3
Vol(YAa) , (3.59)∫

ρ(x)

(
δya(x) +

1

2

)
dx =

4µ2

π3
Vol(YBa) . (3.60)

The relation (3.58) we derived already, but the second two relations are seemingly new.

From the free energy functional (3.37), it is clear that δya(x) is an odd function of x, and

thus for these necklace quivers the integral
∫
ρ(x)δya(x)dx vanishes trivially. The remaining
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integral yields the result

Vol(YAa) = Vol(YBa) =
3

π
Vol(Y ) , (3.61)

a result Yee found by other means [76].

A field theoretic interpretation of these five dimensional cycles was provided by [83,84].

In an AdS4 × Y solution of eleven-dimensional supergravity, an M5-brane wrapping such a

cycle in Y looks like a point particle in AdS4 with a mass proportional to the volume of the

cycle times the tension of the five-brane. The AdS/CFT dictionary provides a relationship

between the mass of the particle and its conformal dimension. As the wrapped five-brane is

supersymmetric, the conformal dimension can be related to the R-charge of the correspond-

ing operator that creates the state. If in the geometry the five-cycle corresponds to setting

Aa = 0, the corresponding baryonic-like operator should involve an anti-symmetric product

of N copies Aa. For our purposes, the essential point is a relation between Vol(YAa) and

the R-charge of Aa:

R(Aa) =
π

6

Vol(YAa)

Vol(Y )
=

1

2
. (3.62)

This point suggests a way of generalizing (3.55) and (3.56) to an arbitrary quiver gauge

theory. We should replace the 1/2 with the R-charge of the corresponding bifundamental

field Xab with charge +1 under gauge group b and charge −1 under gauge group a:

∂2ψXab
∂r∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x) [yb(x)− ya(x) +R(Xab)] . (3.63)

3.4 The Matrix Model for (p, q)-Branes

As discussed in section 3.2.3, the free energy for a system of d (pa, qa) five-branes can be

computed on the gravity side by combining the M-theory prediction (3.3) with the eq. (3.27),

where n = 2 and (pa, qa) = βTa . More explicitly, the polygon P takes the form

P =

{
(x, s) ∈ R2 :

d∑
a=1

|pas+ qax| ≤ 1

}
, (3.64)
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and the volume of P is related to F through F = 2πN3/2/3
√

Vol(P). In the previous

section we were able to reproduce this formula from the field theory side in the cases where

pa = 0 or pa = 1 for each a, as these were the cases where a simple Lagrangian description

of the field theory led [17] to an expression for F in terms of a matrix integral. For pa > 1,

as mentioned in the introduction, a Lagrangian description would involve the coupling to

the T (U(N)) theory described in [73]. We will now use our large N intuition to figure out

the matrix model at finite N .

As a first step towards obtaining such a matrix model, we note that at large N one can

obtain the correct value for F by extremizing the free energy functional:

F [ρ, δya] = πN3/2

∫
ρ(x)dx

[
2x

d∑
a=1

qa
pa
δya(x) + ρ(x)

d∑
a=1

paf(δya(x)/pa)

]
. (3.65)

The saddlepoint is a generalization of the earlier eigenvalue distribution (3.42) for the (1, qa)-

branes:

ρ(x) = sL(x)− sS(x) , ν(x) = −1

2
[sL(x) + sS(x)] ,

δya(x) =
1

2

|pasL(x) + qax| − |pasS(x) + qax|
sL(x)− sS(x)

,
(3.66)

where sL(x) > sS(x) are the two solutions of 1
2

∑d
a=1 |pas+ qax| = µ.

The equation (3.65) seems ill behaved in the limit pa → 0, but in fact it is not. What

happens is that δya(x) will saturate very quickly to ±pa/2 as we move away from x = 0.

Thus the function f(δya/pa) will vanish, and 2xqaδya/pa can be replaced with qa|x|. Before,

we identified the number of flavors with the sum nF =
∑

pa=0 qa, and in this way we see

how a term of the form nF |x| will appear in the free energy (3.65).

To give the reader a better sense of how SL(2,Z) acts on the polygon, we show P for

ABJM theory and some of its SL(2,Z) transforms in figure 3.3. While all three polygons

have the same volume (as they must given Corollary 3.2.3), the eigenvalue distributions can

look quite different. In figure 3.3a, ρ(x) is a constant function for −1/k < x < 1/k. In

figure 3.3b, ρ(x) has two piecewise linear regions for −1 < x < 1. Finally, in figure 3.3c,

ρ(x) has one constant region and two linear regions in the interval −1 + 1/k < x < 1− 1/k.
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ρ

Figure 3.3: a) The polygon for ABJM theory which can be built from a (1, 0) and (1, k)
brane; b) the S-dual configuration involving a (0, 1) and (−k, 1) brane; c) an SL(2,Z)
transform to a (1, 1) and (1− k, 1) brane.

3.4.1 (p, q)-branes at finite N

One can go a little further and conjecture a finite N analog of the matrix integral (3.34)

that reduces to (3.65) in the large N limit. If we move the sinh and N ! factors from (3.35)

to (3.36), then the contribution from a (1, qa)-brane to the partition function is given by

1

N !
exp

[
πiqa

(∑
i

λ2
a−1,i −

∑
i

λ2
a,i

)]

×
∏
i<j 2 sinhπ(λa−1,i − λa−1,j)

∏
i<j 2 sinhπ(λa,i − λa,j)∏

i,j 2 coshπ(λa−1,i − λa,j)
.

(3.67)

We argue that the generalization to (pa, qa) branes is given by

L(pa,qa)(λa−1, λa) ≡
1

N !
|pa|−N exp

[
πi
qa
pa

(∑
i

λ2
a−1,i −

∑
i

λ2
a,i

)]

×
∏
i<j 2 sinh π

pa
(λa−1,i − λa−1,j)

∏
i<j 2 sinh π

pa
(λa,i − λa,j)∏

i,j 2 cosh π
pa

(λa−1,i − λa,j)
,

(3.68)

where this formula is correct only when (pa, qa) are relatively prime. An (npa, nqa) five-

brane, with (pa, qa) relatively prime, should be thought of as n (pa, qa) five-branes. Eq. (3.68)

is based largely on the structure of (3.65). The term involving the hyperbolic cosine in (3.67)

gives rise to the second term in (3.65) in the case pa = 1. As the imaginary parts of the

eigenvalues appear with a factor of pa in (3.65), at finite N , we should divide the eigenvalue

differences λa−1,i− λa,j by pa. The exponential term in (3.67) gives rise to the first term in

(3.65) in the case pa = 1. As a result at finite N we should replace the coefficient qa with
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qa/pa in (3.67). This replacement suggests that the field theory on (pa, qa)-branes in some

sense can be thought of as having Chern-Simons couplings 1
4π (qa+1/pa+1 − qa/pa)

∫
trAa ∧

dAa. (Such an observation was also made in [73,80].) Recall that the factor exp[πi(qa+1 −

qa)
∑

i λ
2
a,i] in the original matrix model comes from the classical contribution of the Chern-

Simons term 1
4π (qa+1 − qa)

∫
trAa ∧ dAa and its supersymmetric completion.

The remaining factors of pa are required for (3.68) to be invariant under S-duality as

we will now see. As an added bonus, by studying the action of S-duality, we will be able to

deduce the partition function for the T (U(N)) theory of [73].

Our (p, q)-brane construction exists in type IIB string theory which is well known to be

invariant under the action of SL(2,Z). One of the generators of SL(2,Z) is S-duality which

we define to map a (p, q)-brane to a (−q, p)-brane. The work of Gaiotto and Witten [73]

suggests that we also should be able to realize S-duality locally, on one (p, q)-brane at a

time. The fact that S-duality squares to minus one suggests that we may be able to realize

it as a Fourier transform acting on (3.68).

For simplicity, we will restrict to the case where the ranks of the gauge groups are equal

to N . Before introducing the Fourier transform, we make use of the identity

∏
i<j sinh(xj − xi)

∏
i<j sinh(yj − yi)∏

i,j cosh(xi − yj)

= det



sech(x1 − y1) sech(x2 − y1) . . . sech(xn − y1)

sech(x1 − y2) sech(x2 − y2) . . . sech(xn − y2)

...
... dots . . .

sech(x1 − yN ) sech(x2 − yN ) . . . sech(xN − yN )


(3.69)

previously considered in [85]. Given this identity, we can write (3.68) as a sum over permu-

tations

L(p,q)(λ, σ) =
1

N !

∑
ρ∈SN

(−1)ρ
1

|p|
∏
j

exp

[
πi
q

p
(λ2
j − σ2

ρ(j))

]
1

2 cosh π
p (λj − σρ(j))

. (3.70)
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We claim that a local S-duality is implemented by the following Fourier transform:

L(−q,p)(µ, ν) =

∫
e2πiµ·λL(p,q)(λ, σ)e−2πiν·σdNλ dNσ . (3.71)

To demonstrate this claim, we isolate the integrals over λj and σρ(j):

I =
1

|p|

∫
dλjdσρ(j)e

πi
(
q
p

(λ2j−σ2
ρ(j)

)+2(µjλj−νρ(j)σρ(j))
)

1

cosh π
p (λj − σρ(j))

. (3.72)

With the change of variables x± = λj ± σρ(j), this integral is straightforward to perform:

I =
1

2|p|

∫
dx+ dx− e

πi
(
q
p
x+x−+x+(µj−νρ(j))+x−(µj+νρ(j))

)
sech

πx−
p

=
1

|p|

∫
dx− δ

(
q

p
x− + µj − νρ(j)

)
eπix−(µj+νρ(j)) sech

πx−
p

(3.73)

=
1

|q|
exp

[
−πip

q
(µ2
j − ν2

ρ(j))

]
1

cosh π
q (µj − νρ(j))

.

Taking the product over the eigenvalues and averaging over permutations yields (3.71).

This local S-duality composes in a nice way. Consider applying similar Fourier trans-

forms to neighboring (p, q)-branes:

∫
L(−q,p)(λ, µ)L(−q′,p′)(µ, ν)dNµ

=

∫
e2πiλ·λ̃L(p,q)(λ̃, µ1)e2πiµ·(µ2−µ1)L(p′,q′)(µ2, ν̃)e−2πiν̃·νdN λ̃ dNµ1 d

NµdNµ2 d
N ν̃

=

∫
e2πiλ·λ̃L(p,q)(λ̃, µ̃)L(p′,q′)(µ̃, ν̃)e−2πiν̃·νdN λ̃ dN ν̃ dN µ̃ . (3.74)

Thus if we apply a local S-duality to each (pa, qa)-brane in the necklace, the factors of

e2πiµ·λ cancel out and the resulting partition function is invariant under a global action of

S-duality.

We would like to give a better interpretation of this group action. Consider acting on a

single (p, q)-brane with this local S-duality:

∫
L(−q,p)(λ, µ)L(p′,q′)(µ, ν)dNµ =

∫
e2πiλ·λ̃L(p,q)(λ̃, µ̃)e−2πiµ·µ̃L(p′,q′)(µ, ν)dN λ̃ dN µ̃ dNµ .

(3.75)
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One way of interpreting the e−2πiµ·µ̃ is to posit that some new object has been inserted

between the (p, q)-brane and the (p′, q′)-brane that implements a local S-duality. This

object contributes to the partition function an amount

LS(µ, µ̃) ≡ e−2πiµ·µ̃ . (3.76)

Similarly, right before the (p, q) brane we introduced another object that undoes the local

S-duality:

LS−1(λ, λ̃) ≡ e2πiλ·λ̃ . (3.77)

Let us see how the T (U(N)) theory arises. So far, we have been thinking of the (p, q)-

branes as the building blocks out of which we construct the partition function. Alternately,

we can decompose the partition function into the contributions from the D3-brane segments

and associated U(N) gauge groups. From the D3-brane point of view, the object LS(µ, µ̃)

implementing S-duality splits a D3-brane segment into two regions, each characterized by

a U(N) gauge theory, one with eigenvalues µ and one with eigenvalues µ̃. The L(p,q) and

L(p′,q′) factors do not have enough factors of hyperbolic sine to describe two U(N) gauge

theories. These factors are simple to recover if we say the new object has a partition function

L̃S(µ, µ̃) = N ! e−2πiµ·µ̃
∏
i<j

1

4 sinhπ(µi − µj) sinhπ(µ̃i − µ̃j)
. (3.78)

This object has a natural interpretation as the partition function of the T (U(N)) theory.5

This partition function has been found independently by [74].

At this point, it is clear that we should be able to realize any element of SL(2,Z) acting

locally on our necklace theories. The group SL(2,Z) has two generators: S, which we

discussed above, and T . We define T to send q → q + p and leave p invariant. If we think

of (p, q) as a two-component column vector on which SL(2,Z) acts in the fundamental

5Actually, the T (U(N)) partition function needs to be antisymmetrized with respect to permuting µ.
But since L(p,q)(µ, λ) is already antisymmetric in µ, we can get away with not antisymmetrizing LS .
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representation, then S and T are the two-by-two matrices

S =

0 −1

1 0

 , T =

1 0

1 1

 . (3.79)

They satisfy S2 = −1 and (ST )3 = 1. To find the action of T on the matrix model, one

can see from (3.70) that

L(p,q+p)(λ, σ) = eπiλ·λ−iθL(p,q)(λ, σ)e−πiσ·σ+iθ , (3.80)

where θ is a phase to be determined. Similarly to LS , one can therefore define

LT (σ) ≡ e−πiσ·σ+iθ , LT−1(λ) ≡ eπiλ·λ−iθ , (3.81)

so one can describe the contribution of a (p, q+p) five-brane to the matrix model integrand

as LT−1(λ)L(p,q)(λ, σ)LT (σ), where the factor of LT (σ) corresponds to the local action of a

T -transformation and LT−1(λ) corresponds to the local action of T−1.

We have defined the effect of the S and T generators on the matrix model so that S

requires us to have two distinct sets of eigenvalues µ and µ̃ in the two regions separated

by an “S-boundary”, while T doesn’t, acting just by multiplication of the eigenvalues σ in

the region containing the “T -boundary” by LT (σ). We could have said, however, that a

T -boundary also requires two distinct sets of eigenvalues σ and σ̃ around it, in which case we

should have described its contribution as LT (σ)δ(σ− σ̃). By the same logic, it follows that

the identity element should be also viewed as a Dirac delta function L1(λ, σ) = δ(λ − σ).

The operator equal to minus the identity is L−1(λ, σ) = δ(λ+σ). We can verify by explicit

computation that

LSS−1(µ, λ) =

∫
e2πiσ·(λ−µ)dNσ = δ(µ− λ) = L1(µ, λ) , (3.82)

and similarly that LTT−1 = L1, LS2 = L−1 and L(ST )3 = L1 provided 3θ = πN/4.
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We should mention that the expressions (3.76), (3.77), and (3.81) can also be justified

by analyzing the case N = 1, where the action of SL(2,Z) on Chern-Simons theories was

described in [73, 86]. Indeed, as explained in [86], the T generator just shifts the CS level

by one unit, so the action changes by − 1
4π

∫
A ∧ dA plus its supersymmetric completion.

The classical contribution to the partition function from the scalar λ in the N = 2 vector

multiplet then gives LT (λ). The action of S on a CS theory with some gauge field Ã consists

of introducing another dynamical gauge field A that couples to the topological current ∗dÃ.

This coupling takes the form of an off-diagonal Chern-Simons term − 1
2π

∫
A ∧ dÃ plus

its supersymmetric completion. If µ and µ̃ are the scalars in the corresponding vector

multiplets, the classical contribution to the partition function from this off-diagonal Chern-

Simons term is precisely given by (3.76).

3.5 Discussion

Our main results are additional evidence presented in Section 3.2.3 for the F -theorem

conjecture, the relations (3.4) and (3.5) between numbers of chiral operators and eigenvalue

distributions, and a conjectured form (3.68) of the matrix model corresponding to a (pa, qa)-

brane construction in type IIB string theory. Each of these results requires some brief

discussion.

We would like to investigate further our proposed matrix model (3.68). In particular,

it would be interesting to see how (3.68) transforms under Seiberg duality. One statement

of the s-rule [87] is that a theory breaks supersymmetry for which there exists a Seiberg

duality that produces a gauge group with a negative rank. Given the matrix model’s status

as a type of supersymmetric index, one expects that the partition function should vanish

for theories that violate the s-rule [88]. Willett and Yaakov [89] have shown that the matrix

model is invariant under Seiberg duality in the case pa = 1.

Regarding the F -theorem, we have not constructed any explicit RG flows, either on the

gauge theory side or, via the AdS/CFT correspondence, on the gravity side. Instead, we

have posited the existence of reasonable seeming flows, and we have examined F at the IR

and UV fixed points. For example, by adding a mass to fundamental flavors, one should
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be able to flow from a theory with a (0, q)-brane in the UV to one without it in the IR.

The corresponding volume of the tri-Sasaki Einstein manifold will increase, leading to a

decrease in F . Similarly, we can consider an RG flow where a (p, q)-brane forms a bound

state with a (p′, q′)-brane. Under such a flow, F will also decrease. Given the result of

refs. [63, 64] described in the introduction, it seems likely that any gravity dual of an RG

flow will obey the F -theorem. One way of interpreting our results, given that our flows

also obey the F -theorem, is that it may be possible to realize these flows as solutions of

eleven-dimensional supergravity.

Given that the operator counting relations (3.4) and (3.5) can be defined for essentially

any KWY matrix model and corresponding superconformal field theory, one wonders if they

hold more generally. In the next chapter, we will investigate the large N limit of the KWY

matrix models for a number of other superconformal field theories, and we will find that

indeed these relations are always satisfied. We will look at necklace quivers with additional

adjoint and fundamental fields. We will look at a couple of non-necklace quivers, for example

a Z2×Z2 orbifold theory. In order to look at theories with N = 2 supersymmetry, we have

to generalize the KWY matrix model to allow for arbitrary R-charges [25]. It turns out

that in the theories we study, relations (3.4) and (3.5) are valid not just for the correct

R-charges but for any R-charges compatible with the marginality of the superpotential.

One constraint in these investigations is that for chiral theories, the KWY matrix model

does not seem to have a large N limit that is compatible with a dual eleven-dimensional

supergravity description [21]. It will be interesting to see if the relations (3.4) and (3.5) can

give any insight into how the matrix model might be modified to allow for such a limit.

After this work appeared as [1], Mariño and Putrov [35] gave an interpretation of the

necklace quiver matrix model as a Fermi gas. It turns out that curves of constant energy

E in the phase space of this gas are approximated by the polygons (3.26) when E is large.
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Chapter 4

Operator Counting and Eigenvalue

Distributions for 3D

Supersymmetric Gauge Theories

This chapter is an edited version of ref. [2], written in collaboration with Christopher Herzog

and Silviu Pufu.

4.1 Introduction

For those interested in superconformal gauge theories in three dimensions, the matrix model

of Kapustin, Willett, and Yaakov [17] provides a powerful tool. Using this matrix model,

one can compute the partition function and the expectation values of supersymmetric Wil-

son loops on a three sphere, even when the gauge theory is strongly interacting. The matrix

model was derived through a localization procedure [18] that obscures the connection be-

tween matrix model quantities and microscopic degrees of freedom in the gauge theory.

Given the success of the matrix model in post-dicting the N3/2 large N scaling of the

free energy1 of maximally supersymmetric SU(N) Yang-Mills theory at its infrared fixed

point [90], it is a worthwhile goal to try to figure out the map between matrix model and

1By “free energy” we mean minus the logarithm of the path integral on S3, with an appropriate subtrac-
tion of UV divergences.
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gauge theory quantities in greater detail. In the previous chapter, we made some progress

in understanding the relation between the eigenvalue distributions in the matrix model and

the chiral ring of the supersymmetric gauge theory for the so-called necklace quivers, and

we conjectured this relation would hold more generally. In this chapter, we work out further

examples of field theories that obey this conjecture.

Let us begin by recalling the relation noticed in the previous chapter between the eigen-

value distribution in the matrix model and the chiral ring for the necklace quiver gauge

theories. These field theories have N = 3 supersymmetry (SUSY), gauge group U(N)d,

and associated Chern-Simons levels ka, a = 1, . . . , d, such that
∑

a ka = 0. The matter

sector consists of the bifundamental fields Xa,a+1 and Xa+1,a that connect the gauge groups

together into a circle (see figure 3.2). The localization procedure [17] reduces the partition

function to an integral over d constant N ×N matrices σa, where σa is the real scalar that

belongs to the same N = 2 multiplet as the gauge connection. In the large N limit, the

matrix integral can be evaluated in the saddle point approximation. As was shown in [27],

at the saddle point, the real parts of the eigenvalues λ
(a)
j of σa grow as N1/2 while their

imaginary parts stay of order one as N is taken to infinity. In addition, to leading order in

N the real parts of the eigenvalues are the same for each gauge group. Therefore, in order

to find the saddle point one can consider the large N expansion

λ
(a)
j = N1/2xj + iya,j + . . . . (4.1)

As one takes N → ∞, the xj and ya,j become dense, and one can pass to a continuum

description by defining the distributions

ρ(x) = lim
N→∞

1

N

N∑
j=1

δ(x− xj) , ρ(x)ya(x) = lim
N→∞

1

N

N∑
j=1

ya,jδ(x− xj) . (4.2)

The saddle point is then found by extremizing a free energy functional F [ρ, ya] under the

assumption that ρ is a density, namely that ρ(x) ≥ 0 and
∫
dx ρ(x) = 1. It is convenient to

enforce the latter constraint with a Lagrange multiplier µ that will appear in the formulae

presented below. In general, F [ρ, ya] may be a non-local functional because the eigenvalues
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could interact with one another through long-range forces, and if this is the case the saddle

point equations are usually hard to solve. The key insight in solving the saddle point

equations in [27] was that, luckily, in the continuum limit (4.2) the ansatz (4.1) leads to

a local expression for F [ρ, ya] due to the cancellation of long-range forces. By solving the

saddle point equations, it was shown in [27] that the distributions ρ(x) and ρ(x)[ya(x) −

yb(x)] can be identified for any a and b with piecewise linear functions with compact support.

While the free energy F can be calculated by evaluating the functional F [ρ, ya] on the saddle

point configuration, it is also possible to calculate F by noticing that F [ρ, ya] satisfies a virial

theorem that gives F = 4πµN3/2/3.

The chiral ring of the necklace quiver gauge theories consists of gauge invariant prod-

ucts of the Xa,a+1 and Xa+1,a fields and monopole operators modulo superpotential and

monopole relations. While one can define monopole operators that turn on any number

of flux units through each U(N) gauge group, at large N the only relevant ones are the

so-called “diagonal monopole operators” that turn on the same number of units of flux

through the diagonal U(1) subgroup of each U(N) gauge group. Operators in the chiral

ring therefore have an associated R-charge r and a (diagonal) monopole charge m. We can

also introduce the the function ψXab(r,m) that counts in the same way operators that don’t

vanish when the bifundamental field Xab is set to zero.2 In the previous chapter, we found

the following relation between the saddle point eigenvalue distribution and the chiral ring:

∂3ψ

∂r2∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x) , (4.3a)

∂2ψXab
∂r∂m

∣∣∣∣
m=rx/µ

=
r

µ
ρ(x)[yb(x)− ya(x) +R(Xab)] . (4.3b)

In other words, the matrix model eigenvalue density ρ(x) and the quantity ρ(x)[yb(x) −

ya(x) +R(Xab)], which as mentioned above are linear functions of x, should be interpreted

as derivatives of numbers of operators whose monopole charge to R-charge ratio is given by

x/µ.

One of the goals of this chapter will be to provide further evidence for the conjectures

(4.3) in superconformal theories with gravity duals that preserve onlyN = 2 supersymmetry

2In our conventions, Xab transforms under the (Na,Nb) representation of U(Na)× U(Nb).
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as opposed to the N = 3 SUSY of the necklace quivers studied in chapter 3. In an N = 2

theory, the U(1) R-symmetry can mix with other Abelian flavor symmetries, so the matter

fields can have R-charges different from the canonical free-field value 1/2. The generalization

of the Kapustin-Willett-Yaakov matrix model to non-canonical R-charges was worked out

in [25,59]. Furthermore, since the U(1)R symmetry can now mix with other Abelian flavor

symmetries, it was conjectured in [25] and proved in [26] that the correct R-symmetry in

the IR can be found by extremizing the free energy F as a function of all trial R-charges

that are consistent with the marginality of the superpotential.3

We find that eqs. (4.3) are satisfied for more general quiver gauge theories where the bi-

fundamental matter multiplets are non-chiral, meaning that they come in pairs of conjugate

representations of the gauge group. In the first half of section 4.4, we examine the necklace

quiver gauge theories, this time with an arbitrary R-charge assignment consistent with the

marginality of the superpotential. In the second half of section 4.4 and appendix B, we

examine theories where we add flavor (meaning N = 2 matter multiplets that transform

in the fundamental or anti-fundamental representation of one of the gauge groups) to the

maximally SUSY N = 8 theory and to the N = 6 ABJM theory of [28]. Lastly, in appendix

B.2, we consider a theory that shares the same quiver with its (3 + 1)-dimensional cousin

that has a C3/Z2×Z2 moduli space (see figure B.1). In all of these examples, eqs. (4.3) are

satisfied for any choice of trial R-charges.

Another goal of this chapter is to relate the conjectures (4.3) to the observation made

in [21,70] that, as checked in a number of examples, the relation (3.3) between the free energy

and the volume of the internal space holds for any trial R-charges, and not just the ones

that extremize F . That this relation4 holds for any trial R-charges is surprising because

only for the critical R-charges does there exist a known 11-d supergravity background

AdS4 × Y . For non-critical R-charges, measured geometrically in terms of the volume of

some corresponding five-cycles of Y , one can still identify a class of Sasakian metrics on Y

and compute their volume. The volume Vol(Y ) is a function of the Reeb vector of Y , which

3It was suggested in [21] that F might be a good measure of the number of degrees of freedom even in
non-supersymmetric field theories. See also [91].

4A similar relation between the anomaly coefficient a computed with a set of trial R-charges and the
volume of a 5-d Sasakian space Y is known to hold in theories with AdS5 duals [92,93].
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parameterizes the way the U(1)R symmetry sits within the isometry group of Y . We show

in section 4.3 that (4.3a) holds for some choice of trial R-charges if and only if eq. (3.3)

holds for the same choice of trial R-charges for the matter fields and a range of R-charges

for the monopole operators. We also show an analogous result that relates (3.5) to the

volumes of five-dimensional sub-manifolds of Y . For a gauge invariant operator constructed

from a closed loop of bifundamental fields Xab, it must be true that
∑

Xab
(ya − yb) = 0.

Given (4.3), there is a geometric version of this sum that must also vanish. The last part

of section 4.3 explains why.

There are previously recognized difficulties, involving cancellation of long-range forces,

in using the matrix model to study the large N limit of theories with chiral bifundamental

fields [21]. We do not surmount these difficulties, but we investigate in section 4.5 what

(4.3a) and (4.3b) predict for a theory with a moduli space that is a fibration over C3/Z3 (see

figure 4.1). We also study a field theory that was conjectured to be dual to AdS4×Q2,2,2/Zk

in appendix B.4 (see figure B.3).

Some additional material relevant to this chapter is collected in the appendices. Ap-

pendix A.3 proves that the critical R-charges maximize F for the necklace quivers. Appendix

B.3 reviews how to count gauge invariant operators for an Abelian gauge theory with a toric

branch of its moduli space.

4.2 Matrix models at non-critical R-charges

4.2.1 Review of the large N limit

To understand what it means to consider non-canonical (or non-critical) R-charges, let us

introduce some of the ideas developed recently in refs. [21, 25, 59]. Building on the work

of [17], refs. [25,59] used localization to reduce the path integral of any N = 2 Chern-Simons

matter on S3 to a matrix integral. By a Chern-Simons-matter theory we mean a theory

constructed from some number d of N = 2 vector multiplets with gauge groups Ga (a =

1, . . . , d) and Chern-Simons kinetic terms iπka
∫

trAa ∧ dAa + supersymmetric completion,

as well as any number of N = 2 chiral superfields transforming in representations Ri of the

total gauge group G =
∏d
a=1Ga. As mentioned in the introduction, one difference between
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theories with N = 2 supersymmetry and theories with more supersymmetry is that the

R-charges ∆i of the chiral fields at the IR superconformal fixed point are not fixed at the

free field values ∆i = 1/2, so the free energy will generically depend on these R-charges.

In fact, it was proposed in [25] that a prescription for finding the correct R-charges in

the IR is to calculate the free energy F as a function of all possible R-charge assignments

consistent with the marginality of the superpotential and to extremize F over the set of all

such assignments.

Let us focus on the case where all gauge groups are U(N) and index the gauge groups

by a = 1, . . . , d. Generalizing the techniques developed in [27], the authors of [21] used

the saddle point approximation to evaluate the path integral on S3 for a class of N = 2

Chern-Simons-matter theories at large N that satisfy the following five conditions:

1. The CS levels sum to zero:
∑d

a=1 ka = 0.

2. Any matter field X transforms either in the Na, or Nb, or (Na,Nb) representation

for some a and b.

3. The total number of fundamental fields equals the total number of anti-fundamental

fields.

4. For any bifundamental field X transforming in (Na,Nb), there exists another bifun-

damental field X̃ transforming in the conjugate representation (Nb,Na).

5. For each gauge group a we have

∑
X in (Na,Nb)

(R[X]− 1) +
∑

X̃ in (Nb,Na)

(
R[X̃]− 1

)
= −2 . (4.4)

This last condition is sufficient to guarantee the vanishing of the long-range forces on the

eigenvalues in the saddle point approximation. Interestingly, this condition has appeared

before in the context of superconformal (3 + 1)-dimensional gauge theories. The condition

(4.4) would imply that the NSVZ beta function of gauge group a vanishes [70]. For quiver

gauge theories with a toric moduli space, bifundamental fields appear in exactly two terms
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in the superpotential. Thus, if we sum (4.4) over a, we find the condition that

(# of gauge groups)− (# of bifundamentals) + (# of superpotential terms) = 0 . (4.5)

In other words the quiver may give a triangulation of a torus where the faces of the trian-

gulation are superpotential terms [8].

If these five conditions are satisfied, one can take the N → ∞ limit as described in

eqs. (4.1) and (4.2) in the introduction. The free energy is the extremum of the free energy

functional

F [ρ(x), ya(x)] = 2πN3/2

∫
dxxρ(x)

(
d∑
a=1

kaya(x) + ∆m

)

+ 2πN3/2

∫
dx |x| ρ(x)

 ∑
X in Na

(
1−R[X]

2
− 1

2
ya(x)

)
+

∑
X in Nb

(
1−R[X]

2
+

1

2
yb(x)

)
+
πN3/2

3

∫
dx ρ(x)2

∑
X in (Na,Nb)

(δyab(x) +R[X])(δyab(x) +R[X]− 1)(δyab(x) +R[X]− 2) ,

(4.6)

where δyab(x) ≡ ya(x)−yb(x). This formula was derived assuming the bifundamental fields

satisfy 0 ≤ R[X] + δyab(x) ≤ 2. Extra care must be taken when R[X] + δyab = 0 or 2

because in these cases the discrete nature of the eigenvalues becomes important, and the

equation of motion derived from varying (4.6) with respect to δyab(x) need not hold.

Generically, the functional 4.6 has many flat directions. The following d of them play

an important role in this thesis because they correspond to changing the R-charges of the

matter fields by linear combinations of the gauge charges with respect to the diagonal
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U(1) ∈ U(N)a:

ya(x): ya(x)→ ya(x)− δ(a) ,

chiral superfield X in Na: R[X]→ R[X] + δ(a) ,

chiral superfield X in Nb: R[X]→ R[X]− δ(b) ,

chiral superfield X in (Na,Nb): R[X]→ R[X] + δ(a) − δ(b) ,

∆m: ∆m → ∆m +
∑
a

kaδ
(a) .

(4.7)

See [21] for a more detailed discussion of these flat directions and their AdS/CFT interpre-

tation.

The ∆m appearing in (4.6) is the bare R-charge of the “diagonal” monopole operator

T (1). A monopole operator T
(qa)
a turns on qa units of trFa flux through a two-sphere

surrounding the insertion point. Diagonal monopole operators T (m) turn on the same

number m of trFa flux units in each gauge group. At large N , only the diagonal monopole

operators are important.

We will usually impose the constraint
∫
dx ρ(x) = 1 by introducing a Lagrange multiplier

µ and defining the functional

F̃ [ρ, ya, µ] = F [ρ, ya]− 2πN3/2µ

(∫
dx ρ(x)− 1

)
. (4.8)

This functional should be extremized with respect to ρ(x), ya(x), and µ.

4.2.2 Flavored theories

In all gauge theories that we examine in this chapter the fundamental and anti-fundamental

fields qα and q̃α appear in the superpotential as

δW =
∑
α

tr [qαOαq̃α] , (4.9)
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where Oα are polynomials in the bifundamental fields. It was conjectured in [32,33] that if

this is case then the diagonal monopole operators T (m) satisfy the following OPE:

T (m)T (−m) =

(∏
α

Oα

)|m|
. (4.10)

This OPE was conjectured in part because a parity anomaly argument shows that the

monopole operators have gauge charges

ga[T
(m)] = mka +

|m|
2

∑
α

ga[Oα] (4.11)

with respect to the diagonal U(1) ⊂ U(N)a, and R-charges

R[T (m)] = m∆m +
|m|
2

∑
α

R[Oα] . (4.12)

Using the fact that each term in (4.9) must be gauge-invariant and have R-charge two, we

have R[qα] + R[q̃α] + R[Oα] = 2 and ga[qα] + ga[q̃α] + ga[Oα] = 0 for any a. One can use

these relations to eliminate the sum over the flavor fields in (4.6):

F [ρ(x), ya(x)] = 2πN3/2

∫
dx |x| ρ(x)

(
R[T (sgnx)] +

d∑
a=1

ya(x)ga[T
(sgnx)]

)

+
πN3/2

3

∫
dx ρ(x)2

∑
X in (Na,Nb)

(δyab(x) +R[X])(δyab(x) +R[X]− 1)(δyab(x) +R[X]− 2) .

(4.13)

4.3 An Equivalent form of our conjecture

4.3.1 Eigenvalue density and volumes of Sasakian spaces

We can relate the conjecture (4.3) to the observation that eq. (3.3) holds for any trial

R-charges. In particular, we prove the following result: In a CS-matter theory dual to

AdS4 × Y fix a set of matter R-charges R[X] and a bare monopole charge ∆m so that

the conformal dimensions of all gauge-invariant operators satisfy the unitarity bound. Let
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ρ(x), µ, and ψ(r,m) be as defined in the introduction, and let’s assume ρ(x) has compact

support. The following two statements are equivalent:

1. The conjecture (4.3a) holds for the given R-charges R[X] and bare monopole charge

∆m.

2. For any δ in a small enough neighborhood of zero, we have

lim
N→∞

2π6N3

27F 2
= Vol(Y, δ) , (4.14)

where the free energy F of the CS-matter theory and the volume Vol(Y, δ) of the

internal space Y are both computed assuming that the matter R-charges are R[X]

and the bare monopole charge is ∆m + δ.

For notational convenience, let’s denote the LHS of eq. (4.14) by Volm(Y, δ) and let’s

introduce the rescaled matrix model quantities:

x̂ =
x

µ
, ρ̂(x̂) =

ρ(x)

µ
, ŷa(x̂) = ya(x) . (4.15)

The equivalence between (1) and (2) follows from the following two equations:

Volm(Y, δ) =
π4

24

∫
dx̂

ρ̂(x̂)

(1 + x̂δ)3 , (4.16)

Vol(Y, δ) =
π4

24

∫
dx̂

limr→∞ ψ
(2,1)(r, rx̂)/r

(1 + x̂δ)3 , (4.17)

which we prove in sections 4.3.2 and 4.3.3, respectively.

Assuming the eqs. (4.16) and (4.17) to be true, it is clear that the statement (1) implies

(2). That (2) implies (1) follows from the fact that knowing Volm(Y, δ) for δ in a small

neighborhood of zero, one can reconstruct ρ̂(x̂), and analogously, from Vol(Y, δ) one can

reconstruct limr→∞ ψ
(2,1)(r, rx̂)/r. Indeed, one can extend Volm(Y, δ) to any complex δ

as an analytic function with singularities. We assume that ρ̂ is supported on [x̂−, x̂+]

for some x̂− < 0 < x̂+. We see from eq. (4.16) that the integral converges absolutely if
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δ ∈ (−1/x̂+,−1/x̂−) or δ 6∈ R, so Volm(Y, δ) can only have singularities on (−∞,−1/x̂+] ∪

[−1/x̂−,∞).

To relate the singularities of Volm(Y, δ) to ρ̂(x̂) we can perform two integrations by parts

in (4.25)

Volm(Y, δ) =
π4

48δ3

∫
dx̂

ρ̂′′(x̂)

x̂+ 1
δ

(4.18)

for any δ ∈ C\ ((−∞,−1/x̂+] ∪ [−1/x̂−,∞)). Generically, eq. (4.18) shows that Volm(Y, δ)

has two branch cuts, one on (−∞,−1/x̂+] and one on [−1/x̂−,∞). From the discontinuities

of Volm(Y, δ) one can read off ρ̂′′(−1/δ). Simple poles of Volm(Y, δ) at δ = −1/x̂′ correspond

to contributions to ρ̂′′(x̂) proportional to δ(x̂ − x̂′); second order poles of Volm(Y, δ) at

δ = −1/x̂′ correspond to δ′(x̂− x̂′), etc. From the singularities of the analytic continuation

of Volm(Y, δ) one can therefore reconstruct uniquely ρ̂′′(x̂), and hence ρ̂(x̂), and similarly

for Vol(Y, δ) and limr→∞ ψ
(2,1)(r, rx̂)/r. If Volm(Y, δ) and Vol(Y, δ) agree on an open set,

then (1) holds.

In our examples, Volm(Y, δ) is a rational function of δ with poles of order at most three,

so ρ̂(x̂) is piecewise linear and it may have delta-functions. From the location and residues

of the poles one can first reconstruct ρ̂′′(x̂), and then ρ̂(x̂) by integrating ρ̂′′(x̂) twice. To

perform this reconstruction starting with Volm(Y, δ), one first decomposes Volm(Y, δ) into

partial fractions, and then identifies the terms in ρ̂′′(x̂) that give those partial fractions: if,

for example,

Volm(Y, δ) =
π4

48δ2

∑
i

ai
1 + x̂iδ

− π4

48δ

∑
i

bi
(1 + x̂iδ)2 (4.19)

for some x̂i, then

ρ̂′′(x̂) =
∑
i

aiδ(x̂− x̂i) +
∑
i

biδ
′(x̂− x̂i) . (4.20)
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4.3.2 Matrix model dependence on δ

In this subsection we prove the result (4.16). As we have seen in the previous section, the

matrix model generally takes the form

F̃ [ρ, ya, µ] =

∫
dx ρ(x)2f(ya(x))−

∫
dx ρ(x)V (x, ya(x))

+ 2πN3/2

∫
dx |x| ρ(x)R[T (sgnx)]− 2πN3/2µ

(∫
dx ρ(x)− 1

)
,

(4.21)

for some functions f and V . While the explicit form of these function is given in (4.13),

their precise form doesn’t matter. The only property of V that we will use is that it is

homogeneous of degree one in x, namely V (λx, ya(x)) = λV (x, ya(x)) for any λ > 0. With

the rescaling (4.15), one can write F̃ as

F̃ [ρ̂, ŷa, µ] = −2πN3/2µ+ µ3

∫
dx̂ x̂2

[
ρ̂(x̂)2

x̂2
f(ŷa(x̂))− ρ̂(x̂)

x̂

V (x̂, ŷa(x̂))

x̂

+2πN3/2 ρ̂(x̂)

|x̂|

(
R[T (sgn x̂)]− 1

|x̂|

)]
.

(4.22)

The rescaling (4.15) is useful because now the equations of motion for ρ̂ and ŷa do not

involve µ. One can first solve these equations, and then µ can be found by integrating ρ̂:

the normalization condition
∫
dx ρ(x) = 1 becomes

∫
dx̂ ρ̂(x̂) =

1

µ2
. (4.23)

We now see that if we extremized (4.22) in the case where the monople R-charges were

R[T (±1)], we could obtain the saddle point when they are R[T (±1)] ± δ(±1) through the

transformation:

ρ̂δ(x̂δ)

x̂δ
=
ρ̂(x̂)

x̂
,

1

x̂δ
=

1

x̂
+ δ(sgn x̂) ,

ŷa,δ(x̂δ) = ŷa(x̂) , R[T
(±1)
δ ] = R[T (±1)]± δ(±1) .

(4.24)

Indeed, the equations of motion for ρ̂ and ŷa are obtained by extremizing the expression

in the square brackets in (4.22), and this expression is invariant under (4.24). Given that
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ρ̂ has compact support, the transformations (4.24) make sense only when δ(±) are small

enough.

For simplicity, from now on let’s restrict ourselves to the case δ(+1) = δ(−1) = δ, even

though one can make similar arguments for the case where δ(+1) and δ(−1) are arbitrary or

satisfy a different relation. In chapter 3, we showed that F = 4πN3/2µ/3, which implies

that

Volm(Y, δ) =
π4

24µ2
δ

=
π4

24

∫
dx̂δ ρ̂δ(x̂δ) =

π4

24

∫
dx̂

ρ̂(x̂)

(1 + x̂δ)3 . (4.25)

4.3.3 Operator counting dependence on δ

We now prove the result (4.17). Let A be the chiral ring associated to the superconformal

field theory dual to AdS4 × Y in the Abelian case N = 1. A is also a vector space over

C that is graded by the R-charge and monopole charge, meaning that one can define a

basis of operators with well-defined R-charge and monopole charge. Let Am,r be the vector

subspace of elements of A with monopole charge m and R-charge r. We introduce the

Hilbert-Poincaré series

f(t, u) =
∑
m,r

dim(Am,r)t
rum . (4.26)

Since the Abelian moduli space of the gauge theory is the Calabi-Yau cone over Y one

can view the operators in the chiral ring as holomorphic functions on this cone. Martelli,

Sparks, and Yau [77] show that

Vol(Y, δ) =
π4

48
lim
t→1

(1− t)4f(t, tδ) . (4.27)

One can compute the Hilbert-Poincaré series for Y in terms of ψ(r,m), the number of

operators with R-charge at most r and monopole charge at most m. Approximating ψ by

a continuous function of homogeneous degree four, the definition (4.26) gives

f(t, u) ≈
∫
dr dmψ(1,1)(r,m)trum . (4.28)
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Since 1− t ≈ − ln t for t ≈ 1, we can use (4.27) and (4.28) to write Vol(Y, δ) as

Vol(Y, δ) ≈ π4

48
(ln t)4

∫
dr dmψ(1,1)(r,m)tr+mδ

= −π
4

48
(ln t)3

∫
dr dmψ(2,1)(r,m)tr+mδ

= −π
4

48
(ln t)3

∫
dr dx̂ rψ(2,1)(r, rx̂)tr(1+x̂δ)

=
π4

24

∫
dx̂

ψ(2,1)(r, rx̂)/r

(1 + x̂δ)3
,

(4.29)

where in the second line we integrated by parts once, and in the third line we defined

m = rx̂.

4.3.4 Matrix model and volumes of five-cycles

For any gauge invariant operator X, we should have [94] R[X] = πVol(ΣX)/6 Vol(Y ),

where by ΣX we denoted the 5-d submanifold of Y defined by the equation X = 0. Using

Vol(Y ) = (π4/24)
∫
dx̂ ρ̂(x̂), one can rewrite this equation as

Vol(ΣX) =
π3

4

∫
dx̂ ρ̂(x̂)R[X] . (4.30)

For an operator X that is not gauge invariant, such as a bifundamental field that transforms

in (Na,Nb), R[X] is not invariant under baryonic symmetries (4.7), but R[X]+ŷa(x̂)−ŷb(x̂)

is. So we suspect that

Vol(ΣX) =
π3

4

∫
dx̂ ρ̂(x̂)(R[X] + ŷa(x̂)− ŷb(x̂)) . (4.31)

We can think of this relation as a conjecture and prove the following result: If X is a chiral

operator transforming in (Na,Nb), then for δ in a neighborhood of zero, let

Volm(ΣX , δ) =
π3

4

∫
dx̂δ ρ̂δ(x̂δ)(R[X] + ŷa,δ(x̂δ)− ŷb,δ(x̂δ)) . (4.32)

The following two statements are equivalent:
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1. The conjecture (3.5) holds for the given R-charges R[X] and bare monopole charge

∆m.

2. For any δ in a small enough neighborhood of zero, we have

Volm(ΣX , δ) = Vol(ΣX , δ) , (4.33)

where the volume Vol(ΣX , δ) is computed with the induced Sasakian metric on Y that

corresponds to the matter R-charges R[X] and the bare monopole charge ∆m + δ.

The proof of this result is similar to that of the equivalence between (1) and (2) we

discussed above, so we skip most of the details. Using (4.24), one can check that

Volm(ΣX , δ) =
π3

4

∫
dx̂

ρ̂(x̂)(R[X] + ŷa(x̂)− ŷb(x̂))

(1 + x̂δ)3 . (4.34)

Defining fX(t, u) to be the Hilbert-Poincaré series for the ring of chiral operators obtained

from the chiral ring by setting X = 0, and using the Martelli, Sparks, and Yau result [77]

Vol(ΣX , δ) =
π3

8
lim
t→1

(1− t)3fX(t, tδ) , (4.35)

one can show as in section 4.3.3 that

Vol(ΣX , δ) =
π3

4

∫
dx̂

limr→∞ ψ
(1,1)
X (r, rx̂)/r

(1 + x̂δ)3
. (4.36)

Here, ψX(r,m) denotes the number of chiral ring operators with X = 0, R-charge at most

r, and monopole charge at most m, and can be approximated by a smooth function of

homogeneous degree three. By an argument analogous to the one in section 4.3.1 it follows

that the statements (1) and (2) are equivalent.

4.3.5 A Consistency condition

Note that gauge invariant operators in the quiver that have no monopole charge are con-

structed from closed paths of bifundamental fields Oα. A consequence of our conjecture
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(4.3b) is then that for a gauge invariant operator X =
∏
αOα with no monopole charge the

following sum vanishes:

∑
α

[
∂2ψOα
∂r∂m

−R[Oα]
∂3ψ

∂r2∂m

]
= 0 . (4.37)

Of course
∑

αR[Oα] = R[X], and we can simplify this expression:

∑
α

∂2ψOα
∂r∂m

= R[X]
∂3ψ

∂r2∂m
. (4.38)

We would like to show why (4.38) must hold from geometric considerations alone.5

The number of gauge invariant operators of fixed R-charge r and monopole charge m

that do not contain the operator X is approximately

ψ
(1,1)
X (r,m) ≈ ψ(1,1)(r,m)− ψ(1,1)(r −R[x],m) ≈ R[X]ψ(2,1)(r,m) (4.39)

when r � R[X] is large.

We can also use (4.35) to express the operator counts in terms of volumes. For coordi-

nates x and y on a compact space, the volume of the set of points xy = 0 is the union of

the set of points where x = 0 with the set of points where y = 0. That the volumes are

additive implies the identity

Vol(ΣX , δ) =
∑
α

Vol(ΣOα , δ) . (4.40)

From this identity at large r and the results in the earlier part of this section, we have

ψ
(1,1)
X (r,m) =

∑
α

ψ
(1,1)
Oα (r,m) . (4.41)

Combining (4.39) with (4.41) yields (4.38).

5For a Calabi-Yau four fold, at large r and m we approximate ψ(r,m) and ψOα(r,m) by homogeneous
polynomials of degree four and three respectively.
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4.4 Theories with non-chiral bifundamental fields

4.4.1 N = 2 deformations of the necklace quivers and matrix model

Our first field theory example consists of deformations of the necklace quiver gauge theories

whose (undeformed) matrix models were also studied in [27] and in chapter 3. In N = 2

notation, the field content of the necklace quiver theories consists of d vector multiplets with

Chern-Simons kinetic terms and coefficients ka, and chiral multiplets Aa and Ba connecting

the gauge groups into a necklace (see figure 3.2). The superpotential

W =
d∑
a=1

1

ka
tr(Ba+1Aa+1 −AaBa)2 (4.42)

preserves N = 3 supersymmetry. For any given ka satisfying
∑d

a=1 ka = 0, the field theory

is dual to AdS4 × Y where Y is a tri-Sasakian space, which is by definition the base of a

hyperkähler cone [66].

While N = 3 SUSY restricts the R-charges of Aa and Ba to be 1/2, in this section

we examine what happens if we make more general R-charge assignments for the Aa and

Ba fields that break N = 3 down to N = 2. These R-charge assignments are required

to preserve the marginality of the superpotential (4.42). This condition implies that for

generic values of the CS levels ka, namely if there are no cancellations between the various

terms in (4.42), we must have R[Ba] = 1−R[Aa]. The matrix model free energy functional

is in this case

F̃ [ρ, ya, µ] = 2πN3/2

∫
dx ρx

d∑
a=1

qaδya + 2π∆mN
3/2

∫
dx ρx

− πN3/2

∫
dx ρ2

d∑
a=1

(δya −R[Aa]) (δya +R[Ba])− 2πN3/2µ

(∫
dx ρ− 1

)
,

(4.43)

where δya = ya−1−ya, ka = qa+1−qa. As per the discussion after eq. (4.6), the equations of

motion for δya following from (4.43) hold only when −R[Ba] < δya < R[Aa]. It is possible

to have δya = R[Aa] or δya = −R[Ba], but in that case we should not impose the equation

of motion for that particular δya.
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Using the rescalings (4.15), one can write the solution of the equations of motion fol-

lowing from (4.43) as

ρ̂(x̂) = sL(x̂)− sS(x̂) , δŷa(x̂) =
R[Aa]−R[Ba]

2
+

1

2

|sL(x̂) + qax̂| − |sS(x̂) + qax̂|
sL(x̂)− sS(x̂)

,

(4.44)

where sL(x̂) ≥ sS(x̂) are the two solutions of the equation

s(x̂)c1 + x̂c2 +
d∑
a=1

|s(x̂) + x̂qa| = 2 , (4.45)

with

c1 ≡
d∑
a=1

(R[Aa]−R[Ba]) , c2 ≡ 2∆m +
d∑
a=1

qa (R[Aa]−R[Ba]) . (4.46)

The constraint imposed by varying F̃ with respect to µ is
∫
dx̂ ρ̂(x̂) = 1/µ2.

We have encountered a solution of this type in chapter 3 in the case where R[Aa] =

R[Ba] = 1/2 and ∆m = 0. As in chapter 3, one can think of eq. (4.45) as defining the

boundary of a polygon

P =

{
(x̂, s) ∈ R2 : sc1 + x̂c2 +

d∑
a=1

|s+ x̂qa| ≤ 2

}
. (4.47)

The quantity ρ̂(x̂) = sL(x̂)− sS(x̂) can then be interpreted as the thickness of a constant x̂

slice Px̂ through this polygon, ρ̂(x̂) = Length(Px̂). Consequently,
∫
dx̂ ρ̂(x̂) = Area(P) and

Volm(Y ) =
π4

24µ2
=
π4

24
Area(P) . (4.48)

See appendix A.3 for a proof that the N = 3 R-charge assignments minimize Volm(Y )

or, equivalently, maximize F . Just like ρ̂(x̂), the quantities ρ̂(x̂)δŷa(x̂) can also be given
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geometrical interpretations:

ρ̂(x̂)(δŷa(x̂) +R[Ba]) = Length (Px̂ ∩ {s+ qax̂ ≥ 0}) ,

ρ̂(x̂)(−δŷa(x̂) +R[Aa]) = Length (Px̂ ∩ {s+ qax̂ ≤ 0}) .
(4.49)

The equations above were written in a way that makes manifest the invariance under the

flat directions exhibited in (4.7). Indeed, while in writing the free energy functional (4.43)

we assumed R[Aa] and ∆m to be independent, we see that the eigenvalue density ρ̂(x̂)

and the quantities appearing on the LHS of (4.49) depend non-trivially only on the linear

combinations c1 and c2 that were defined in (4.46). These are the only linear combinations

of R[Aa] and ∆m that are invariant under all symmetries in (4.7). The reason why we were

able to find two such linear combinations at all is that the spaces Y have generically two

U(1) isometries that commute with U(1)R.

4.4.2 Operator counting for necklace quivers

We now relate the matrix model quantities ρ̂(x̂) and ρ̂(x̂)δŷa from the previous section to

numbers of operators in the chiral ring of the gauge theory when N = 1. In the previous

chapter we provided such a relation in the case R[Aa] = R[Ba] = 1/2 and ∆m = 0, and

the argument holds, with minor modifications, for the more general R-charge assignments

considered in this chapter. As explained in chapter 3, gauge invariant operators can be

constructed out of the bifundamental fields Aa and Ba and the diagonal monopole operators

T (m), and they are

O(m, s, i, j) = T (m)Cmq1+s
1 Cmq2+s

2 · · ·Cmqd+s
d (A1B1)i(A2B2)j ,

Cmqa+s
a ≡


Amqa+s
a if mqa + s > 0

B−mqa−sa if mqa + s < 0

.
(4.50)

The labels m and s run over all integers, while i and j should be nonnegative integers.

Let ψ(r,m) (ψ0(r,m)) be the number of operators O(m, s, i, j) (O(m, s, 0, 0)) with R-

charge at most r and monopole charge at most m. In chapter 3, we showed that at large r

and m we have ψ(2,0)(r,m) ≈ ψ0(r,m). This relation holds for the more general R-charge

99



assignments too because the only assumption needed to prove it was R[A1B1] = R[A2B2] =

1, which we still assume. A simple computation yields

R[O(m, s, 0, 0)] = m∆m +
∑
k

R[Ck] |mqa + s| = 1

2

[
sc1 +mc2 +

d∑
a=1

|s+mqa|

]
, (4.51)

where c1 and c2 are as defined in (4.46). Using this formula one can check, as in chapter

3, that ψ(2,1)(r, rx̂)/r ≈ ψ(0,1)
0 (r, rx̂)/r is indeed given by the length of the slice Px̂ through

P. We have therefore verified explicitly eq. (4.3a) for the necklace quivers at non-critical

R-charges.

Let ψXa(r,m) be the number of chiral operators with R-charge at most r and monopole

charge at most m that are nonzero when Xa = 0. As in chapter 3, we have that ψ
(1,0)
Xa

(r,m)

equals the number of operators of the form O(m, s, 0, 0) with R-charge at most r and

monopole charge at most m with the extra constraint that mqa + s ≤ 0 if Xa = Aa and

mqa + s ≥ 0 if Xa = Ba. As argued in chapter 3, these extra constraints imply that when r

is large ψ
(1,1)
Xa

(r, rx̂)/r is given by the length of the intersection between the slice Px̂ and the

half-plane s+ qax̂ ≥ 0 if Xa = Ba or s+ qax̂ ≤ 0 if Xa = Aa. Comparing with eq. (4.49) we

see that the necklace quivers at arbitrary R-charges also obey our second conjecture (3.5).

4.4.3 Flavored necklace quivers

The discussion in the previous two subsections can be generalized by including flavor fields

that interact with the existing matter fields through the superpotential

δW ∼
d∑
a=1

tr

 na∑
j=1

q̃
(a)
j Aaq

(a)
j +

ma∑
j=1

Q
(a)
j BaQ̃

(a)
j

 . (4.52)

Given that the Aa transform in (Na−1,Na) and the Ba transform in the conjugate repre-

sentation (Na−1,Na), for eq. (4.52) to make sense we must take q
(a)
j , q̃

(a)
j , Q

(a)
j , and Q̃

(a)
j

to transform in Na−1, Na, Na−1, and Na, respectively.

We discussed a superpotential of this form at the end of section 4.2, where we found that

the effect of including the flavor fields was that the CS levels ka and ∆m of the unflavored

model were replaced by (sgnx)ga[T
(sgnx)] and (sgnx)R[T (sgnx)], respectively. Eqs. (4.11)
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and (4.12) applied to our flavored necklace quivers give

ka → (sgnx)ga[T
(sgnx)] = ka +

sgnx

2
(na −ma − na+1 +ma+1) ,

∆m → (sgnx)R[T (sgnx)] = ∆m +
sgnx

2

∑
a

(naR[Aa] +maR[Ba]) .
(4.53)

From ka = qa+1 − qa we further have

qa → qa −
sgnx

2
(na −ma) . (4.54)

We believe that all the formulas presented in the previous two subsections continue to

hold for the flavored theory if one makes the above three replacements. In particular,

the relation between the matrix model quantities and operator counting we conjectured in

eq. (4.3) continues to hold, and the volume of the 7-d space Y is still proportional to the

area of a polygon P of the type (4.47).

4.4.4 Flavored N = 8 theory and its matrix model

We broaden our scope of examples and verify (4.3) for maximally supersymmetric Yang-

Mills theory to which we add flavor. The theory has one gauge group and three adjoint fields

Xi, i = 1, 2, 3 coupled to n1 +n2 +n3 pairs of fundamental fields through the superpotential

W ∼ tr

X1[X2, X3] +

n1∑
j=1

q
(1)
j X1q̃

(1)
j +

n2∑
j=1

q
(2)
j X2q̃

(2)
j +

n3∑
j=1

q
(3)
j X3q̃

(3)
j

 . (4.55)

The corresponding matrix model was solved in [21] in the large N limit. We review their

solution for ρ(x). In the next subsection, we will compare ρ(x) with the distribution of

operators in the chiral ring and show that (4.3a) holds. In this case, eq. (4.10) takes the

form T (1)T (−1) = Xn1
1 Xn2

2 Xn3
3 [32,33]. To keep the notation concise, we define ∆i ≡ R[Xi],

∆ ≡ R[T (1)], and ∆̃ ≡ R[T (−1)]. The matrix model free energy functional is then

F̃ [ρ] = πN3/2

[∫
dxρ

(
∆1∆2∆3ρ+ (∆ + ∆̃) |x|+ (∆− ∆̃)x

)
− 2µ

(∫
dx ρ− 1

)]
.

(4.56)
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As before, we define the hatted quantities (4.15). The eigenvalue density ρ̂(x̂) is

ρ̂(x̂) =



1−x̂∆
∆1∆2∆3

if 0 < x̂ < 1
∆ ,

1+x̂∆̃
∆1∆2∆3

if − 1
∆̃
< x̂ < 0 ,

0 otherwise ,

(4.57)

which agrees with (4.8) of [21].

4.4.5 Operator counting in flavored N = 8 theory

The gauge-invariant operators built out of diagonal monopole operators and adjoint fields

in this theory are tr[T (m)Xa1
1 Xa2

2 Xa3
3 ]. The R-charges of these operators are

R[T (m)Xa1
1 Xa2

2 Xa3
3 ] =


m∆ +

∑3
i=1 ai∆i m ≥ 0 ,

−m∆̃ +
∑3

i=1 ai∆i m < 0 .

(4.58)

Let ψ(r,m) be the number of operators with R-charge smaller than r and monopole

charge smaller than m. To match with ρ(x), we want to calculate ∂3ψ/∂r2∂m at large

r. It is easiest to start by calculating the derivative ∂ψ/∂m which equals the number of

operators with R-charge smaller than r and monopole charge equal to m. For m > 0, at

large r the number of operators tr[T (m)Xa1
1 Xa2

2 Xa3
3 ] is approximately equal to the volume

of a tetrahedron with sides of length (r − m∆)/∆i; similarly, for m < 0, the number of

operators is equal to the volume of a tetrahedron with sides of length (r + m∆̃)/∆i. We

thus have

∂ψ

∂m
=



(r−m∆)3

6∆1∆2∆3
if 0 < m < r

∆ ,

(r+m∆̃)3

6∆1∆2∆3
if − r

∆̃
< m < 0 ,

0 otherwise .

(4.59)

Taking two derivatives with respect to r, we find agreement with (4.57) and confirmation

of the conjecture (4.3a).
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4.4.6 Other examples

We presented flavored N = 8 in the main text because of its simplicity. One disadvantage

of this example is that it possesses a single U(N) factor and so we could not compute

a δy and check (4.3b). To remedy this problem, in appendix B we consider two more

complicated examples. The first of these is ABJM Chern-Simons theory (a theory with

two gauge groups) [28] to which we add flavor. The second example has four gauge groups

(see figure B.1). When a four-dimensional gauge theory has the field content of this second

example, the Abelian moduli space is a Z2 × Z2 orbifold of C3. Thus, with some abuse of

notation, we refer to this second example as the Z2 × Z2 orbifold theory.

The verification of (4.3) requires on the one hand calculating ρ(x) and δy(x) using the

large N limit of the matrix model (4.6) and on the other counting operators in the chiral

ring. We have two methods at our disposal for this counting. One may count the operators

directly as we did above. Because the moduli space is toric for these last three examples,

the direct approach has some generic features which we review in appendix B.3. In section

4.3, we presented an indirect counting method that involved calculating Vol(Y, δ) (4.29) and

Vol(ΣX , δ) (4.36) as a function of ρ(x) and δy(x).

4.5 Theories with chiral bifundamental fields

4.5.1 Noncancellation of long-range forces

As noted in [21], the functional (4.6) does not appear to describe the large N limit of gauge

theories with chiral bifundamental fields. To derive (4.6), it was assumed that the long-

range forces on the eigenvalues cancel. But for theories with chiral bifundamentals, there

is no such cancellation.

The long-range forces at issue come from the interactions between the eigenvalues, both

within a vector multiplet and between vector multiplets connected by a bifundamental field
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Xab [21]:

F
(a)
i,self =

∑
j 6=i

cothπ(λ
(a)
i − λ

(a)
j ) ,

F
(a,b)
i,inter =

∑
j

[
R[Xab]− 1− i(λ(b)

i − λ
(a)
j )

2

]
cothπ

(
λ

(b)
i − λ

(a)
j − i(1−R[Xab])

)
,

F
(b,a)
i,inter =

∑
j

[
R[Xba]− 1 + i(λ

(b)
i − λ

(a)
j )

2

]
cothπ

(
λ

(b)
i − λ

(a)
j + i(1−R[Xba])

)
.

(4.60)

If
∣∣∣λ(a)
i − λ

(b)
j

∣∣∣ � 1, then we may approximate cothx ≈ sgn<x. The long-range forces are

the forces (4.60) with coth replaced by sgn<. For theories with non-chiral bifundamentals

and equal ranks, the long-range forces cancel out when <λ(a)
i = <λ(b)

i for all i, a, b and (4.4)

is satisfied. In general, the long-range forces on λ
(a)
i cancel out only when

∑
b

(R[Xab]− 1 + yb,j) +
∑
b

(R[Xba]− 1− yb,j) = −2 . (4.61)

Thus the free energy functional (4.6) is correct for theories with chiral bifundamentals only

if the ya(x) satisfy some constraints.

4.5.2 Operator counting for the C3/Z3 theory

To investigate what the matrix model for a chiral theory should give in the large N limit, we

study the U(N)3 Chern-Simons theory described by the quiver in figure 4.1. Let the Chern-

Simons coefficients be (k1, k2, k3) such that k1 +k2 +k3 = 0. We will assume k1 > 0, k2 < 0,

k3 < 0. The moduli space is a Kähler quotient of C5 with weights (1
3(k+ + k−), 1

3(k+ +

k−), 1
3(k+ + k−),−k+,−k−), where we define k− = k1 − k2 and k+ = k1 − k3.

There is a superpotential of the form

W ∼ tr [εijkA31,kA23,jA12,i] , (4.62)

and a monopole relation T (1)T (−1) = 1. We let R[Aij,1] = ∆x, R[Aij,2] = ∆y, R[Aij,3] = ∆z,

with ∆x+∆y+∆z = 2 as any other choice of R-charges may be transformed into this choice

by a transformation of the form (4.7). We denote R[T (1)] = −R[T (−1)] = ∆.
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The gauge invariant operators have the form

T (m)
3∏
i=1

3∏
j=1

(Ai(i+1),j)
ni(i+1),j . (4.63)

To be gauge invariant, for m ≥ 0 we must impose
∑

j n12,j = mk1 + s,
∑

j n23,j = mk1 +

mk2 + s and
∑

j n31,j = s and for m < 0 we must impose
∑

j n23,j = mk2 + s,
∑

j n31,j =

mk2 + mk3 + s, and
∑

j n12,j = s. Given the R-charge assignments, it is convenient to

introduce nj =
∑

i ni(i+1),j . Each gauge invariant operator corresponds to a quadruple

(n1, n2, n3,m) such that
∑

j nj = mksgn(m) + 3s and m is bounded between −
∑

j nj/k−

and
∑

j nj/k+.

Given the description of the gauge invariant operators, it is now a straightforward task

to count them by either the direct method described in appendix B.3 or the indirect method

described in section 4.3. For ∆x ≥ ∆y ≥ ∆z a piecewise expression for ρ̂(x̂) is:

ρ̂(x̂) =



0 , x̂ ≤ − 1
k−∆z−∆ ,

1+(k−∆z−∆)x̂
3∆z(∆x−∆z)(∆y−∆z) , − 1

k−∆z−∆ ≤ x̂ ≤ −
1

k−∆y−∆ ,

(∆x−∆y−∆z)(1−∆x̂)−∆y∆zk−x̂
3(∆x−∆y)(∆x−∆z)∆y∆z

, − 1
k−∆y−∆ ≤ x̂ ≤ −

1
k−∆x−∆ ,

1−∆x̂
3∆x∆y∆z

, − 1
k−∆x−∆ ≤ x̂ ≤

1
k+∆x+∆ ,

(∆x−∆y−∆z)(1−∆x̂)+∆y∆zk+x̂
3(∆x−∆y)(∆x−∆z)∆y∆z

, 1
k+∆x+∆ ≤ x̂ ≤

1
k+∆y+∆ ,

1−(k+∆z+∆)x̂
3∆z(∆x−∆z)(∆y−∆z) ,

1
k+∆y+∆ ≤ x̂ ≤

1
k+∆z+∆ ,

0 , 1
k+∆z+∆ ≤ x̂ .

(4.64)

We note three odd things about (4.64): 1) If ∆x = ∆y = ∆z, ρ̂ has a delta function at

− 1
k−∆x−∆ and 1

k+∆x+∆ . 2) In contrast to nonchiral examples, ρ̂(x̂) while still piecewise

linear is no longer a convex function of x̂. 3) The matrix model (4.6) gives the same result

for ρ̂ in the central region despite the fact that the long range forces do not cancel. (In

other regions and for δŷab, the matrix model results are different.)
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k2

k1

k3

A31,i

A23,i

A12,i

Figure 4.1: The quiver for the C3/Z3 theory. When the CS levels are (2k,−k,−k) this field
theory is believed to be dual to AdS4 ×M1,1,1/Zk.

Now we set A23,1 to zero. The nonzero operators are those with no Ai(i+1),1 fields. As

a piecewise function:

ŷ3(x̂)− ŷ2(x̂) =



−∆z , − 1
k−∆z−∆ ≤ x̂ ≤ −

1
k−∆y−∆ ,

∆y∆z(1+(k−∆x−∆)x̂)
(∆x−∆y−∆z)(1−∆x̂)−∆y∆zk−x̂

, − 1
k−∆y−∆ ≤ x̂ ≤ −

1
k−∆x−∆ ,

0 , − 1
k−∆x−∆ ≤ x̂ ≤

1
k+∆x+∆ ,

∆y∆z(1−(k+∆x+∆)x̂)
(∆x−∆y−∆z)(1−∆x̂)+∆y∆zk+x̂

, 1
k+∆x+∆ ≤ x̂ ≤

1
k+∆y+∆ ,

−∆z ,
1

k+∆y+∆ ≤ x̂ ≤
1

k+∆z+∆ .

(4.65)

Finally, we set A31,1 to zero. The nonzero operators are those with no Ai(i+1),1’s, and

those with m ≥ 0, nx + ny + nz = k+m. As a piecewise function:

ŷ1(x̂)− ŷ3(x̂) =



−∆z , − 1
k−∆z−∆ ≤ x̂ ≤ −

1
k−∆y−∆ ,

∆y∆z(1+(k−∆x−∆)x̂)
(∆x−∆y−∆z)(1−∆x̂)−∆y∆zk−x̂

, − 1
k−∆y−∆ ≤ x̂ ≤ −

1
k−∆x−∆ ,

0 , − 1
k−∆x−∆ ≤ x̂ ≤

1
k+∆x+∆ ,

−2
∆y∆z(1−(k+∆x+∆)x̂)

(∆x−∆y−∆z)(1−∆x̂)+∆y∆zk+x̂
, 1

k+∆x+∆ ≤ x̂ ≤
1

k+∆y+∆ ,

2∆z ,
1

k+∆y+∆ ≤ x̂ ≤
1

k+∆z+∆ .

(4.66)

The result for ŷ2(x̂)− ŷ1(x̂) follows by taking the difference of (4.65) and (4.66). We have

checked that the operator counts where we set each of the remaining seven bifundamental

fields to zero in turn yield the same results for the differences in the ŷ’s.
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4.5.3 Particular case: the cone over M1,1,1/Zk

Consider the case where the internal space Y is M1,1,1/Zk. It was proposed in [67, 95, 96]

that the dual field theory is the one in figure 4.1 with CS levels k1 = 2k and k2 = k3 = −k,

so k+ = k− = 3k. As a function of the trial R-charges, the volume of Y is

Vol(Y ) =
π4

24

∫
dx̂ ρ̂(x̂) =

3k3π4
(
∆2 + 9k2(∆x∆y + ∆x∆z + ∆y∆z

)
8 (9k2∆2

x −∆2)
(
9k2∆2

y −∆2
)

(9k2∆2
z −∆2)

. (4.67)

Under the constraint ∆x + ∆y + ∆z = 2, this expression is maximized for ∆x = ∆y = ∆z =

2/3 and ∆ = 0, and the maximum is 9π4/(128k), which is the volume of M1,1,1/Zk [94].

For the critical R-charges, our predicted eigenvalue density is

ρ̂(x̂) =
9

8
θ

(
1

2k
− |x̂|

)
+

9

32k
δ

(
x̂+

1

2k

)
+

9

32k
δ

(
x̂− 1

2k

)
,

ρ̂(x̂) (ŷ3(x̂)− ŷ2(x̂)) = − 3

16k
δ

(
x̂+

1

2k

)
− 3

16k
δ

(
x̂− 1

2k

)
,

ρ̂(x̂) (ŷ2(x̂)− ŷ1(x̂)) = − 3

16k
δ

(
x̂+

1

2k

)
+

3

8k
δ

(
x̂− 1

2k

)
.

(4.68)

The volumes of the five-cycles corresponding to the bifundamental fields are

Vol(ΣA23,a) =
π3

4

∫
dx ρ̂(x̂)

(
ŷ3(x̂)− ŷ2(x̂) +

2

3

)
=

3π3

16k
,

Vol(ΣA12,a) =
π3

4

∫
dx ρ̂(x̂)

(
ŷ2(x̂)− ŷ1(x̂) +

2

3

)
=

21π3

64k
,

Vol(ΣA31,a) =
π3

4

∫
dx ρ̂(x̂)

(
ŷ1(x̂)− ŷ3(x̂) +

2

3

)
=

21π3

64k
.

(4.69)

Let us understand how these volumes are related to the volumes of the divisors com-

puted in [94]. The cone over M1,1,1 is a Kähler quotient of C5 by a U(1) that acts with

weights (2, 2, 2,−3,−3) on the coordinates (u1, u2, u3, v1, v2) parameterizing C5. The Zk

orbifold used to produce the quiver in figure 4.1 acts by the identification (v1, v2) ∼

(v1e
2πi/k, v2e

−2πi/k) leaving the ui coordinates untouched. It is natural to identify A23,a

with ua, A12,a with uav1, and A31,a with uav2. Using the explicit metric on M1,1,1 the

authors of [94] calculated the volumes of the five-cycles corresponding to either ua = 0 or
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vb = 0 in M1,1,1 to be

Vol(Σua) =
3π3

16
, Vol(Σvb) =

9π3

64
. (4.70)

We see that these equations are consistent with (4.69): we have kVol(ΣA23,a) = Vol(Σua) as

well as kVol(ΣA12,a) = Vol(Σua) + Vol(Σv1) and kVol(ΣA31,a) = Vol(Σua) + Vol(Σv2). The

factor of k in these formulas comes from the fact that the cycles whose volumes are given

in (4.69) belong to a Zk orbifold of M1,1,1.

For those interested in another simple example of a theory with chiral bifundamental

fields, we describe our predictions for a theory with the cone over Q2,2,2 as its Abelian

moduli space in appendix B.4.

4.5.4 Missing operators

There is a difference between the matrix model and operator counting that manifests itself

in chiral theories. The matrix model depends explicitly on the bifundamental fields, and a

δy saturates when it reaches minus the R-charge of a bifundamental field. In the absence

of flavors, the saturation of the δy is responsible for all of the corners in ρ and ρδy. In the

C3/Z3 example, ρ has a corner at x̂ = 1
k+∆x+∆ . We might expect that there exists some

bifundamental field Aij,k so that δy+R[Aij,k] becomes zero at x̂ = 1
k+∆x+∆ , or equivalently

that ψ
(1,1)
Aij,k

(r, rx̂) becomes zero at x̂ = 1
k+∆x+∆ . There is no such field. However, if we

consider the density ψ
(1,1)
(A31,1,A31,2,A31,3) of operators when we set A31,1 = A31,2 = A31,3 = 0,

then this density does become zero at x̂ = 1
k+∆x+∆ . So it appears to be important to allow

arbitrary sets of bifundamental fields to be set to zero. A more geometric way of saying this is

that the important objects in the operator counting formula are not the bifundamental fields

but rather five-cycles in the Sasaki-Einstein manifold. In the C3/Z3 theory, there seems

to be no operator constructed from bifundamental fields that corresponds to a five-brane

wrapping the cycle A31,1 = A31,2 = A31,3 = 0.6 We might say that we are missing some

operators. We note that the problem could be resolved if we added an operator A31,1/A23,1,

6Unlike setting A23,1 = A23,2 = A23,3 = 0 where there are no non-vanishing operators, when we set
A31,1 = A31,2 = A31,3 = 0, the number of non-zero operators ψ(A31,1,A31,2,A31,3) scales as r3, indicating the
presence of a 5-cycle in the geometry.
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since the cycle A31,1 = 0 is the sum of the cycles A23,1 = 0 and A31,1 = A31,2 = A31,3 = 0.

The problem never arises in non-chiral non-flavored theories because these theories do have

an operator for every cycle.

The flavored N = 8 and flavored ABJM model also have missing operators. At x = 0,

there is a corner in the solutions that does not correspond to any δyab saturating at the R-

charge of some bifundamental field X. Instead, the corner comes from the q fields. From the

operator counting perspective, this corner can be explained by the fact that ψ
(1,1)
T becomes

zero at x̂ = 0.
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Appendix A

Necklace Quivers

A.1 Proof of the tree formula

We prove the Tree Formula by assuming that the columns βa are ordered in the way de-

scribed in Corollary 3.2.3. Thus, the proof reduces to showing that the following equation

holds
d∑
a=1

γa(a+1)

σaσa+1
= 2

∑
(V,E)∈T

∏
(a,b)∈E γab∏d

a=1 σa
. (A.1)

We have the “Ptolemy relations”

γabγcd = γacγbd + γadγbc if ab//cd. (A.2)

The notation // means a and b separate c and d. We can use the relations to show

γ(a−1)(a+1)σa + 2γ(a−1)aγa(a+1) = γ(a−1)aσa+1 + γa(a+1)σa−1. (A.3)

Our starting point is the Kirchhoff matrix-tree theorem which gives a relation between

the absolute value of a certain determinant and the sum over trees. In particular, consider
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the matrix Q∗ where

Q∗ =



σ2 −γ23 −γ24 . . . −γ2d

−γ32 σ3 −γ34 . . . −γ3d

−γ42 −γ43 σ4 . . . −γ4d

...
...

... dots
...

−γd2 −γd3 −γd4 . . . σd


. (A.4)

The matrix-tree theorem states that

detQ∗ =
∑

(V,E)∈T

∏
(a,b)∈E

γab . (A.5)

We observe that if we take γ(a+1)a times the (a − 2)nd row minus γ(a−1)(a+1) times the

(a − 1)st row plus γa(a−1) times the ath row, then most of the entries will cancel out. So

we have AQ∗ = B where

A =



γ13 + γ23 −γ12 + γ23 γ23 . . . γ23

−γ34 γ24 −γ23 . . . 0

0 −γ45 γ35 . . . 0

...
...

... dots
...

γ(d−1)d γ(d−1)d γ(d−1)d . . . γ(d−1)1 + γ(d−1)d


(A.6)

B =



γ12σ3 + γ23σ1 −γ12σ3 0 . . . 0

−γ34σ2 γ23σ4 + γ34σ2 −γ23σ4 . . . 0

0 −γ45σ3 γ34σ5 + γ45σ3 . . . 0

...
...

... dots
...

0 0 0 . . . γ(d−1)dσ1 + γd1σd−1


(A.7)

In constructing A we used the fact that the missing row of Q is minus the sum of all of the

other rows. We used (A.2) and (A.3) to simplify B. Tri-diagonal matrices satisfy a three
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term recurrence relation. If we let Ba be the matrix consisting of the first a rows of B, then

detBa = (γa(a+1)σa+2 +γ(a+1)(a+2)σa) detBa−1−γ(a+1)(a+2)γ(a−1)aσaσa+1 detBa−2. (A.8)

We can show by induction that

det(Ba) =

(
a∏
b=2

γb(b+1)

)(
a+2∏
b=1

σb

)(
a+1∑
b=1

γb(b+1)

σbσb+1

)
(A.9)

and in particular

det(B) = det(Bd−1) =
σ1

γ12γd1

(
d∏
a=1

σaγa(a+1)

)(
d∑
a=1

γa(a+1)

σaσa+1

)
. (A.10)

Therefore we want to show that det(A) = 2σ1
∏d−1
a=2 γa(a+1).

We let A′ be A with the γ23 in the top row and the γ(d−1)d in the bottom row removed.

Let A′ab be the matrix containing the ath through bth rows and columns of A′. Write the

determinant of A as

det(A) = (A′1 + γ23u) ∧A′2 ∧ . . . ∧A′d−2 ∧ (A′d−1 + γ(d−1)du)

where u = (1, 1, . . . , 1) and A′a are the rows of A′. Expanding out the anti-symmetric

product, we find that

det(A) = det(A′) + γ23u ∧A′2 ∧ . . . ∧A′d−1 + γ(d−1)dA
′
1 ∧ . . . ∧A′d−2 ∧ u

= det(A′) +

d∑
a=1

[
γ23

(
a−1∏
b=1

γ(b+2)(b+3)

)
detA′(a+1)(d−1)

+γd(d−1)

(
d∏

b=a+2

γ(b−1)(b−2)

)
detA′1(a−1)

]
. (A.11)
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Using the three term recurrence relation for the determinant of a tridiagonal matrix, we

can show by induction that

detA′1a = γ1(a+2)

a∏
b=2

γb(b+1) ,

detA′a(d−1) = γ1a

d−2∏
b=a

γ(b+1)(b+2) ,

detA′ = 0 ,

(A.12)

where last equation follows from the second one by setting a = 1 and using γ11 = 0.

Therefore

det(A) = 2

(∑
a

γ1a

)(
d−1∏
a=2

γa(a+1)

)

= 2σ1

d−1∏
a=2

γa(a+1)

(A.13)

as expected.

A.2 A virial theorem for matrix models

To leading order in N , the matrix model for superconformal field theories with M-theory

duals involves extremizing a free energy functional of the type

F [ρ, ya] =

∫
dx ρ(x)2f(ya(x))−

∫
dx ρ(x)V (x, ya(x)) , (A.14)

for some functions f and V . In all examples, V is homogeneous of degree 1 in x, namely it

satisfies

V = x
∂V

∂x
. (A.15)

The free energy functional (A.14) should be extremized under the constraint that ρ is a

density normalized so that
∫
dx ρ(x) = 1. Such a constraint can be implemented with a
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Lagrange multiplier µ by defining a new functional

F̃ [ρ, ya] = F [ρ, ya]− 2πN3/2µ

(∫
dx ρ(x)− 1

)
(A.16)

and varying (A.16) instead of (A.14) with respect to ρ and ya. If we denote by F the

on-shell value of F [ρ, ya] (or of F̃ [ρ, ya]), we will now show that

F =
4πN3/2

3
µ , (A.17)

regardless of which particular matrix model we’re solving provided that eq. (A.15) is obeyed.

A.2.1 A slick proof

The equations of motion following from (A.16) are

2ρ(x)f(ya(x))− V (x, ya(x)) = 2πN3/2µ ,

ρ(x)2∂af(ya(x))− ρ(x)∂aV (x, ya(x)) = 0 ,

(A.18)

Differentiating the first equation with respect to x, multiplying it by ρ(x), and using the

second equation we get

ρ(x)

[
2ρ′(x)f(ya(x)) + ρ(x)2

∑
a

∂af(ya(x))y′a(x)

]
= ρ(x)

∂

∂x
V (x, ya(x)) . (A.19)

To prove (A.17), consider the function

G(x) = xρ(x)2f(ya(x)) . (A.20)

Let’s calculate the derivative of this function with respect to x:

G′(x) = ρ(x)2f(ya(x)) + 2xρ(x)ρ′(x)f(ya(x)) + xρ(x)2
∑
a

∂af(ya(x))y′a(x)

= ρ(x)2f(ya(x)) + xρ(x)
∂

∂x
V (x, ya(x))

= ρ(x)2f(ya(x)) + ρ(x)V (x, ya(x)) ,

(A.21)
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where in the second line we used (A.19) and in the third line we used (A.15). The function

G(x) vanishes at ±∞, so
∫
dxG′(x) = 0, which from (A.21) implies that on-shell we have

∫
dx ρ(x)2f(ya(x)) = −

∫
dx ρ(x)V (x, ya(x)) . (A.22)

From (A.14) we have then that

F = 2

∫
dx ρ(x)2f(ya(x)) . (A.23)

Multiplying the first equation in (A.18) by ρ(x) and integrating in x we get

2πN3/2µ = 3

∫
dx ρ(x)2f(ya(x)) . (A.24)

Taking the ratio of the last two equations one obtains (A.17).

A.2.2 A more enlightening proof

The proof given above is really that of a virial theorem. To put the virial theorem in a

more familiar form, let’s define the cumulative distribution t(x) =
∫ x
−∞ dx

′ρ(x′) ∈ [0, 1] and

express (A.14) as the action

S[x(t), ya(t)] =

∫
dtL , L ≡ f(ya)

ẋ
− V (x, ya) , (A.25)

where x and ya should be thought of as functions of t. To go to a Hamiltonian formulation,

we introduce the momentum conjugate to x:

px ≡
∂L

∂ẋ
= −f(ya)

ẋ2
. (A.26)

The Hamiltonian is

H ≡ pxẋ− L = KE + PE , KE ≡ −2
f(ya)

ẋ
= −2f(ya)

1/2√−px , PE ≡ V (x, ya) .

(A.27)
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In deriving a virial theorem for this Hamiltonian, one can just ignore the dependence on ya

because the ya are non-dynamical. Since the kinetic energy KE is homogeneous of degree

1/2 in px and the potential energy is homogeneous of degree 1 in x, we have

1

2
〈KE〉 = 〈PE〉 , (A.28)

where 〈· · · 〉 means
∫ 1

0 dt (· · · ). From (A.25) one sees that

F ≡ Son-shell = −1

2
〈KE〉 − 〈PE〉 = −〈KE〉 . (A.29)

From the first equation in (A.18) we see that H = −2πN3/2µ, so

N3/2

2π
µ = −〈H〉 = −〈KE〉 − 〈PE〉 = −3

2
〈KE〉 . (A.30)

Taking the ratio of (A.29) and (A.30) one again obtains (A.17).

A.3 F -Maximization for the necklace quivers

We would like to show that to leading order in N the free energy of the necklace quivers

with arbitrary R-charges studied in section 4.4.1 is maximized when R[Aa] = R[Ba] = 1/2

and ∆m = 0. We can only show this if the gauge groups are SU(N). In the U(N)d case,

the symmetries (4.7) imply that the free energy has flat directions, but we can nevertheless

show that the free energy is maximized when the invariant combinations c1 and c2 defined

in eq. (4.46) are set to zero. The critical R-charges correspond to the case where there is

N = 3 supersymmetry as opposed to just N = 2.

The essential ingredient of the proof is the observation that the polygon P, which

depends on ~c, is the polar dual of a polygon Q that does not depend on ~c about the

unit circle centered at (−~c/2). Let ~βa = (1, qa) and ~c = (c1, c2) be vectors in R2. The
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polygon Q is the Minkowski sum

Q =

{
d∑
a=1

ua~βa ∈ R2 : ua ∈ (−1/2, 1/2)

}
(A.31)

of the vectors ~βa. Indeed, one can rewrite P as the intersection of half-planes

P =

{
~t ∈ R2 :

1

2
~t · ~c+

d∑
a=1

~t ·
(
ua~βa

)
≤ 1,∀ua ∈ (−1/2, 1/2)

}
. (A.32)

The boundaries of these half-planes are precisely the polar duals of the points in Q about

the unit circle centered at (−~c/2).

Let ~vi be the vertices of Q ordered so that the line segment between ~vi and ~vi+1 is part

of the boundary of Q. The line passing through ~vi and ~vi+1 is polar dual to a vertex ~wi,i+1

of P. Polar duality implies ~wi,i+1 · (~vi + ~c/2) = ~wi,i+1 · (~vi+1 + ~c/2) = 1, so

~wi,i+1 =
∗(~vi+1 − ~vi)

(∗(~vi+1 + ~c/2)) · (~vi + ~c/2)
, (A.33)

where ∗ denotes the Hodge dual in R2. By splitting P into triangles we can write the area

of P as

Area(P) =
∑
i

Area(~wi−1,i, ~wi,i+1, 0) =
∑
i

1

2
|~wi−1,i · (∗~wi,i+1)| , (A.34)

where we denoted the area of a triangle whose vertices are given by the vectors ~α, ~β, and

~γ by Area(~α, ~β,~γ). Using eq. (A.33), eq. (A.34) becomes

Area(P) =
1

4

∑
i

Area(~vi−1, ~vi, ~vi+1)

Area(~vi, ~vi−1,−~c/2) Area(~vi+1, ~vi,−~c/2)
. (A.35)

As long as −~c/2 belongs to the interior of Q, the Hessian matrix of each term in this

sum, seen as a function of ~c, is positive definite, so Area(P) is a convex function of ~c. (To

compute the Hessian it is easiest to work in a coordinate system where ~c is parametrized

by the distance from two neighboring sides of the polygon to −~c/2.)
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In our case Q is symmetric about the origin as can be easily seen from eq. (A.31).

Consequently, Area(P) is an even function of ~c, and we have just shown that it is also

convex. It follows that Area(P) is minimized for ~c = 0. Equivalently, the free energy

is maximized when ~c = 0. Using the F -maximization conjecture of [25], we have thus

shown that the correct R-charges in the necklace quivers with superpotential (4.42) satisfy

c1 = c2 = 0. That’s all one can say about the U(N)d theory. If the gauge groups are instead

SU(N), the tracelessness constraints
∫
dx ρ(x)δya(x) = 0 imply (when ~c = 0)

∫
dx ρ(x)δya(x) =

R[Ba]−R[Aa]

2
= 0 , (A.36)

so R[Aa] = R[Ba] = 1/2. From c2 = 0 we also get ∆m = 0.
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Appendix B

Further examples of operator

counting

For notational convenience we set T (1) = T and T (−1) = T̃ .

B.1 Flavored ABJM theory

We consider the flavored ABJM model with the superpotential

W ∼ tr

εijεklAiBkAjBl +

na1∑
j=1

q
(1)
j A1q̃

(1)
j +

na2∑
j=1

q
(2)
j A2q̃

(2)
j +

nb1∑
j=1

Q
(1)
j B1Q̃

(1)
j +

nb2∑
j=1

Q
(2)
j B2Q̃

(2)
j

 .
(B.1)

When N = 1, the superpotential is supplemented by the relation (4.10) which in this case is

T T̃ = Ana11 Ana22 Bnb1
1 Bnb2

2 [32, 33]. The corresponding matrix model was solved in the large

N limit in [21]. Our strategy is the same as for the flavored N = 8 theory. In this section,

we will review the solution for ρ(x) and δy ≡ y1 − y2. In the next section, we will compare

these results with the distribution of operators in the chiral ring.

We define R[Ai] ≡ ∆Ai , R[Bi] ≡ ∆Bi , ∆ ≡ R[T ], and ∆̃ ≡ R[T̃ ]. Without loss of

generality, we will assume that ∆A2 < ∆A1 and ∆B2 < ∆B1 . To keep the notation concise,
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we also define

k± ≡ k ±
1

2
(na1 + na2 − nb1 − nb2) ,

∆2 ≡ ∆A1∆A2 −∆B1∆B2 ,

∆3 ≡ ∆A1∆A2(∆B1 + ∆B2) + ∆B1∆B2(∆A1 + ∆A2) .

(B.2)

Taking the marginality constraints on the R-charges into account, in the large N limit,

the matrix model free energy functional is

F̃ [ρ, δy]

2πN3/2
=

∫
dx ρ

[
1

2
(k+ + k−)x δy − ρ

(
(δy)2 + ∆2 δy −

1

2
∆3

)
+

1

2
(∆− ∆̃)x

+
1

2
|x|
(

∆ + ∆̃ + (k+ − k−) δy
)]
− µ

(∫
dx ρ− 1

)
.

(B.3)

The eigenvalue density has four regions:

− 1

R[T̃A
k−
2 ]

< x̂ < − 1

R[T̃A
k−
1 ]

: ρ̂ =
1 + x̂R[T̃A

k−
2 ]

∆3 + 2∆A2∆2 − 2∆2
A2

, δŷ = −∆A2 ; (B.4)

− 1

R[T̃A
k−
1 ]

< x̂ < 0 : ρ̂ =
2 + 2x̂∆̃ + x̂k−∆2

∆2
2 + 2∆3

,

δŷ =
k−x̂∆3 − (1 + x̂∆̃)∆2

2 + 2x̂∆̃ + x̂k−∆2

; (B.5)

0 < x̂ <
1

R[TB
k+
1 ]

: ρ̂ =
2− 2x̂∆ + x̂k+∆2

∆2
2 + 2∆3

,

δŷ =
k+x̂∆3 − (1− x̂∆)∆2

2− 2x̂∆ + x̂k+∆2
; (B.6)

1

R[TB
k+
1 ]

< x̂ <
1

R[TB
k+
2 ]

: ρ̂ =
1− x̂R[TB

k+
2 ]

∆3 − 2∆B2∆2 − 2∆2
B2

, δŷ = ∆B2 ; (B.7)

As in (4.15), we have introduced the rescaled variables x = x̂µ and ρ(x) = ρ̂(x̂)µ.

Operator counting

There are operators containing T̃−m for m < 0 and operators containing Tm for m > 0.

They take the form TmAα1
1 Aα2

2 Bβ1
1 Bβ2

2 and T̃−mAα1
1 Aα2

2 Bβ1
1 Bβ2

2 , where gauge invariance

demands α1 + α2 − β1 − β2 = −mk±. If we wanted to count operators that don’t vanish

when, for example, A1 = 0, then we just set α1 = 0.
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We counted the operators using a slightly modified version of the method outlined in

appendix B.3. Having written the operators in terms of both T and T̃ , it is simpler to use

two different coordinate systems on the cone C, one when m > 0 and one when m < 0.

The coordinate systems are related by (4.10). The operator counts reproduce (B.4), (B.5),

(B.6), and (B.7) via our conjecture (4.3).

Here are some of the details for the calculation of ρ̂(x̂) when m > 0. The density of

operators is given by

∂2ψ

∂r∂m
=

∫
dα1 dα2 dβ1 dβ2 δ(α1 + α2 − β1 − β2 +mk+)

× δ(r −m∆− α1∆A1 − α2∆A2 − β1∆B1 − β2∆B2) .

(B.8)

This integral gives the area of a slice of a tetrahedron. The slice is either a triangle or a

quadrilateral (which may be regarded as a triangle with another triangle cut out). We find

for m ≥ 0

∂2ψ

∂r∂m
=

2∑
j=1

(r −mR[TB
k+
j ])2 θ(r −mR[TB

k+
j ])

2(∆3 − 2∆Bj∆2 − 2∆2
Bj

)
. (B.9)

Taking a derivative of this expression with respect to r yields (B.6) and (B.7).

B.2 C3/(Z2 × Z2) theory

Let’s examine the field theory in figure B.1. It has four gauge groups with CS levels ka,

a = 1, . . . , 4, and twelve bifundamental fields Aab transforming in (Na,Nb), one for every

ordered pair (a, b) with a 6= b. The superpotential is

W = tr

[
4∑

a=1

εabcdAdbAcdAbc

]
. (B.10)

The superpotential relations are supplemented by the monopole OPE (4.10) T T̃ = 1. We

define R[Aab] ≡ Rab and R[T ] = −R[T̃ ] ≡ ∆.

The superpotential contains eight distinct terms that impose the relations Rab +Rbc +

Rca = 2 for any triplet (a, b, c) of pairwise distinct gauge groups. These eight equations
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Figure B.1: The quiver for C3/(Z2 × Z2). There are four U(N) gauge groups with Chern-
Simons coefficients ka. The matter content consists of the 12 bifundamental fields Aab for
a 6= b, transforming under the fundamental of the bth gauge group and the antifundamental
of the ath gauge group.

imply the long-range force cancellation (4.4). Only seven of these equations are linearly

independent, leaving five independent R-charges out of the twelve Rab.

Even though for given ka the matrix model depends on 6 R-charges (∆ and the five

linearly independent Rab), the dependence on three of these parameters is trivial because of

the flat directions (4.7). We can use these symmetries to reduce the number of independent

R-charges to three: ∆x, ∆y and ∆ where we pick

R12 = R21 = R34 = R43 = ∆x ,

R23 = R32 = R41 = R14 = ∆y ,

R13 = R31 = R24 = R42 = 2−∆x −∆y ≡ ∆z .

(B.11)

The matrix model is then

F [ρ, ya] = 2πN3/2

∫
dx ρx

d∑
a=1

kaya + 2π∆N3/2

∫
dx ρx

+
πN3/2

2

∫
dx ρ2

∑
(a,b,c)

(yb − ya +Rab) (yc − yb +Rbc) (ya − yc +Rca) .

(B.12)
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For simplicity, let’s focus on the case k1 = −k2 = k3 = −k4 = k > 0 and take ∆y ≥ ∆x.

The saddle point eigenvalue distribution splits into three regions where ρ is linear:

1

∆− 2k∆x
< x̂ <

1

∆− 2k∆y
: ρ̂(x̂) =

1− x̂(∆− 2k∆x)

4∆x(∆y −∆x)∆z
, ŷ1 − ŷ2 = −∆x ,

1

∆− 2k∆y
< x̂ <

1

∆ + 2k∆y
: ρ̂(x̂) =

1− x̂∆

4∆x∆y∆z
, ŷ1 − ŷ2 =

2kx̂∆x∆y

1− x̂∆
,

1

∆ + 2k∆y
< x̂ <

1

∆ + 2k∆x
: ρ̂(x̂) =

1− x̂(∆ + 2k∆x)

4∆x(∆y −∆x)∆z
, ŷ1 − ŷ2 = ∆x .

(B.13)

In all three regions, ŷ1 = ŷ3 and ŷ2 = ŷ4.

Operator counting

Without the monopole operators, the ring of functions Aab modulo superpotential relations

is the ring of functions on C3/(Z2×Z2). This ring consists of polynomials in x, y, z with the

constraint that the numbers of x, y, z in each term must be either all even or all odd. We call

A12, A21, A34, A43 “x fields”, A14, A41, A23, A32 “y fields”, and A13, A31, A24, A42 “z fields”.

We can get a gauge invariant operator by taking a combination of two x fields (e.g. A12A21),

two y fields (A13A31), two z fields (A14A41), or one of each type of field (A12A23A31). The

gauge invariant operators with m = 0 are those with an even number of each of x, y, z, or

an odd number of each of x, y, z.

Adding back the monopole operators yields a ring of functions on a four-dimensional

cone. An electric charge of (1,−1, 1,−1) from T can be cancelled out by two x’s (A12A34)

or two y’s (A14A32), but not by z’s. So, if we have an operator of the schematic form

Tmxnxynyznz form > 0 and T̃−mxnxynyznz form < 0, then we have the constraint nx+ny ≥

2|m|. The operator density is then

∂2ψ

∂r∂m
=

1

4

∫
dnx dny dnz θ(nx + ny − 2k|m|)δ(r −∆xnx −∆yny −∆znz −∆m) . (B.14)

The factor of 1
4 comes from the constraint that the numbers of x, y, z must be all even or

all odd.

Performing the integral over nz introduces an overall factor of 1/∆z. The remaining

integral reduces to the area of a polygonal region satisfying the constraints ny > 0, nx > 0,
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Figure B.2: The area of the polygonal regions ABC and ABCD is proportional to
∂2ψ/∂r∂m for the C3/Z2×Z2 quiver: a) r−∆m−2k|m|∆y < 0; b) r−∆m−2k|m|∆y > 0

nx + ny > 2k|m|, and ∆xnx + ∆yny < r − ∆m. For small |m|, the polygonal region is a

quadrilateral while for large |m|, the region is a triangle (see figure B.2). Assuming that

∆y > ∆x, we find

∂2ψ

∂r∂m
=


1

8∆z

(r−∆m−2k|m|∆x)2

∆x(∆y−∆x)2
if r −∆m− 2k|m|∆y < 0 ,

1
8∆z

[
(r−∆m)2

∆x∆y
− (2k|m|)2

]
if r −∆m− 2k|m|∆y > 0 .

(B.15)

Taking an additional derivative with respect to r, we can easily check that this formula

agrees with (B.13).

Now, in order to compute ŷ1(x̂) − ŷ4(x̂), we count gauge invariant operators with A14

set to zero. Because of the superpotential relations, all operators with a z are set to zero.

The factor of 1/4 remains the same because now we may only consider operators with even

numbers of x and y fields. The expression for ∂ψ14/∂m is given by the area of the same

polygonal region that governs ∂2ψ/∂r∂m, but we lose the factor of ∆z because we drop the

integral over nz:

∂2ψ14

∂r∂m
= ∆z

∂3ψ

∂r2∂m
. (B.16)

Therefore, we have ρ̂(x̂)(∆z + ŷ1(x̂)− ŷ4(x̂)) = ρ̂(x̂)∆z, and hence ŷ1(x̂) = ŷ4(x̂). A similar

calculation shows ŷ2(x̂) = ŷ3(x̂).

Finally we count the operators with A12 set to zero. Most operators with an x will

become zero. However, fields containing only T , A21, A43, A23, A41, and the z fields are
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not set to zero by the superpotential relations. So the nonzero fields are those with nx = 0

and an even number of y and z fields, or m ≥ 0 and nx + ny = 2km with an even number

of z fields. After a little work, we find

∂2ψ12

∂r∂m
=


0 if m/r < −(2k∆y −∆)−1

r−∆m+2km∆y

4∆y∆z
if − (2k∆y −∆)−1 < m/r < (2k∆y + ∆)−1

r−∆m−2km∆x
2∆z(∆y−∆x) if m/r > (2k∆y + ∆)−1

(B.17)

This result matches ŷ1(x̂)− ŷ2(x̂) computed from (B.13).

B.3 Toric varieties in general

By toric moduli space we mean more specifically that the moduli space for the Abelian

gauge theory is an eight-dimensional toric Calabi-Yau cone V . That V is toric means it is

a T 4 torus fibration over a four-dimensional rational polyhedral cone C. This polyhedral

cone is the set of points satisfying

C = {y ∈ R4 : y · va ≥ 0} , (B.18)

where va ∈ Z4, a = 1, . . . , n, are inward pointing vectors normal to the faces Fa of the cone:

Fa = {y ∈ C : y · va = 0} . (B.19)

The fact that V is Calabi-Yau implies that the end-points of the vectors va lie in a common

hyperplane R3.

One convenient aspect of this construction is that lattice points in C correspond to

operators in the chiral ring of the Chern-Simons theory. The coordinates of a lattice point

are the U(1) global charges of the operator. The vector b that measures the R-charge is

often called the Reeb vector where the R-charge is then r = y ·b. The vectors va correspond

to other global charges, qa = y · va, and we can introduce additional charges as well. In the
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gauge theories considered in this chapter, the monopole charge m played an important role.

Let us introduce t as the vector that measures monopole charge.

We introduced previously the function ψ(r,m) as the number of operators with R-charge

less than r and monopole charge less than m. From the toric perspective, this function in

the large r and m limit is the volume of a four-dimensional polytope:

Cr,m = C ∩ {y · b ≤ r} ∩ {y · t ≤ m} , (B.20)

where ψ(r,m) = Vol(Cr,m).

We would like to understand geometrically how to compute derivatives of ψ(r,m). The

value of ψ(r,m) is a four-dimensional integral we can write as

ψ(r,m) =

∫
Cr,m

d4y . (B.21)

To take a derivative of ψ with respect to r, we can rotate the coordinate system so that one

of the y’s points in the direction of b and replace d4y with d3y dr/|b| where |b| is the Jacobian

factor from the change of variables. The derivative is then related to the three-dimensional

volume of the polyhedron

Dr,m = C ∩ {y · b = r} ∩ {y · t ≤ m} (B.22)

where ∂ψ/∂r = Vol(Dr,m)/|b|.1

Similarly, we can visualize ∂2ψ/∂r∂m as the area of a two-dimensional polygon Pr,m:

Pr,m = C ∩ {y · b = r} ∩ {y · t = m} . (B.23)

1This last expression may seem strange because the right hand side seems to depend on a metric while
the left hand side depends only on a volume form on C. Interpreting Vol(Dr,m) as a three form instead of a
number, we could rewrite this expression in a manifestly metric independent way: (∂ψ/∂r)t = ?Vol(Dr,m).
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Now we rotate our coordinate system so that two of the y’s lie in the plane spanned by b

and t. The Jacobian factor is |t ∧ b| =
√
t2b2 − (t · b)2. Geometrically, the second partial is

∂2ψ

∂r∂m
=

Area(Pr,m)

|t ∧ b|
. (B.24)

The function ψX(r,m) has a toric interpretation as well. In the examples we considered,

X corresponds to an integer linear combination of the va. Let us consider the simple case

where Xa corresponds to a single va. Operators with no Xa are contained in the face

Fa ⊂ C. This fact suggests a relation between ψXa(r,m) and a generalization of ψ(r,m)

involving a third charge qa, ψ(r,m, qa). In particular, it is true that

ψXa(r,m) = ψ(0,0,1)(r,m, 0) . (B.25)

Operators with no Xa and fixed m and r lie along a line La,m,r ⊂ Fa:

La,m,r = Fa ∩ {y · b = r} ∩ {y · t = m} . (B.26)

Generalizing the argument used to derive (B.24) to one more charge, we find

∂ψ2
Xa

∂r∂m
= ψ(1,1,1)(r,m, 0) =

Length(La,m,r)

|t ∧ b ∧ va|
. (B.27)

Eqs. (B.24) and (B.27) provide a convenient starting point for counting chiral operators in

the examples in the text.

B.4 The Cone over Q2,2,2/Zk

As another example with chiral bifundamental fields, we can examine the square quiver in

figure B.3 with CS levels (k, k,−k,−k) and matter fields Ai, Bi, Ci, and Di, with i = 1, 2.

With the superpotential is

W ∼ tr
[
εijεklDiCkBjAl

]
(B.28)
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Figure B.3: Quiver gauge theory believed to be dual to AdS4 ×Q2,2,2/Zk.

this quiver is thought to be dual to AdS4 × Q2,2,2/Zk [67, 97]. The quiver has two flavor

SU(2) symmetries, one under which Ai and Ci transform as doublets, and one under which

Bi and Di transform as doublets, so one expects the R-charges of the fields belonging to the

same edge of the quiver to be equal when F is maximized. Using the flat directions (4.7)

and taking into account the marginality of the superpotential (B.28), one can then set the

R-charges of all the bifundamental fields equal to 1/2 and ∆m = 0. With this choice one

can go through the operator counting exercise in the Abelian theory and predict that

ρ̂(x̂) = θ

(
1

2k
− |x̂|

)
+

1

4k
δ

(
1

2k
+ x̂

)
+

1

4k
δ

(
1

2k
− x̂
)
,

ρ̂(x̂) (ŷ2(x̂)− ŷ1(x̂)) = − 1

8k
δ

(
1

2k
+ x̂

)
− 1

8k
δ

(
1

2k
− x̂
)
,

ρ̂(x̂) (ŷ3(x̂)− ŷ2(x̂)) =
3

8k
δ

(
1

2k
+ x̂

)
− 1

8k
δ

(
1

2k
− x̂
)
,

ρ̂(x̂) (ŷ4(x̂)− ŷ3(x̂)) = − 1

8k
δ

(
1

2k
+ x̂

)
− 1

8k
δ

(
1

2k
− x̂
)
.

(B.29)
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As a consistency check, one can compute the volumes

Vol(Y ) =
π4

24

∫
dx̂ ρ̂(x̂) =

π4

16k
,

Vol(ΣAi) =
π3

4

∫
dx̂ ρ̂(x̂)

(
ŷ2(x̂)− ŷ1(x̂) +

1

2

)
=
π3

8k
,

Vol(ΣBi) =
π3

4

∫
dx̂ ρ̂(x̂)

(
ŷ3(x̂)− ŷ2(x̂) +

1

2

)
=
π3

4k
,

Vol(ΣCi) =
π3

4

∫
dx̂ ρ̂(x̂)

(
ŷ4(x̂)− ŷ3(x̂) +

1

2

)
=
π3

8k
,

Vol(ΣDi) =
π3

4

∫
dx̂ ρ̂(x̂)

(
ŷ1(x̂)− ŷ4(x̂) +

1

2

)
=
π3

4k
.

(B.30)

Since Vol(Q2,2,2) = π4/16 [94], we see that Vol(Y ) matches that of a Zk orbifold of Q2,2,2. As

for M1,1,1, we can relate the volumes of the five-cycles in (B.30) to those computed in [94].

The cone over Q2,2,2 is a U(1)2 Kähler quotient of C6 with weights (1, 1,−1,−1, 0, 0) and

(1, 1, 0, 0,−1,−1), together with a Z2 quotient that flips the sign of (a1, a2). If we denote

the coordinates in C6 by (a1, a2, b1, b2, c1, c2), we have [94]

Vol(Q2,2,2) =
π4

16
, Vol(Σai) = Vol(Σbi) = Vol(Σci) =

π3

8
. (B.31)

One can think of the Zk orbifold as acting on ci with opposite phases, so it is natural to

interpret Ai and Ci as correponding to ai, Bi as corresponding to bic1, and Di as correspond-

ing to bic2. Indeed kVol(ΣAi) = Vol(ΣCi) = Vol(Σai), kVol(ΣBi) = Vol(Σbi) + Vol(Σc1),

and kVol(ΣDi) = Vol(Σbi)+Vol(Σc2), the factor of k appearing because the volumes (B.30)

are computed in a Zk orbifold of Q2,2,2.
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