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Abstract

In this dissertation, we discuss some aspects of theories with extended supersymmetry

that have interesting, exactly calculable holomorphic sectors. The two classes of

theories we consider are d = 4,N = 2 effective supergravities that describe Calabi-

Yau compactifications of a Type IIA superstring, and two-dimensional theories with

N = (0, 2) supersymmetry. In the first case, we study higher-derivative couplings in

the 4d N = 2 superpotential (as well as 2d N = (2, 2) superpotential in the presence

of D4 branes), which is a holomorphic function of chiral superfields. It is described by

the Gopakumar-Vafa formula in terms of BPS spectra of M-theory compactifications

(and Ooguri-Vafa formula for the 2d N = (2, 2) case). In the second class of theories,

we study another holomorphic object known as a chiral algebra, which emerges in

the cohomology of one supercharge of a two-dimensional theory with N = (0, 2)

supersymmetry.

In chapter two, we describe a detailed derivation of the Gopakumar-Vafa formula,

as well as explain the Ooguri-Vafa formula at the end. The main idea of the derivation

is to compute the effective superspace action on a properly chosen background due to

BPS states winding the M-theory circle. A lot of technical and conceptual details, such

as how supersymmetry of the background determines the action for BPS particles,

why and in which limit the computation makes sense, are explained along the way.

In chapter three, we explore chiral algebras of N = (0, 2) theories. We explain

why these objects are invariant along the RG flows and study some of their general

properties. We give more details for theories known as N = (0, 2) Landau-Ginzburg

(LG) models, and later we specialize to N = (2, 2) supersymmetry, for which we

consider some concrete examples, such as LG models which flow to N = 2 minimal

models in the infrared.
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Chapter 1

Introduction

1.1 Supersymmetry

There are two principles in modern theoretical physics, fusion of which leads to the

idea of supersymmetry. One is the fundamental principle of symmetry, which is deeply

rooted in the way we experience and understand the world around us. Another is

a more heuristic idea that whatever is not forbidden by fundamental laws can take

place.

Symmetry has certainly been an extremely fruitful idea in physics since the ear-

liest days of the subject. It arises both as a fundamentel principle in describing

laws of Nature (“symmetries of equations”) and as a simplifying device allowing to

analyze properties of otherwise too complicated systems (“symmetries of solutions”).

Noether’s theorem tells us that “symmetries of equations” often lead to conserved

charges. A specific symmetry called “Lorentz invariance” has been added to the list

of fundamental laws of Nature after the discovery of Relativity – it has replaced

an obsolete “Galilean invariance”. It tells us that all quantities we use in physics

should transform in a specific way under Lorentz transformations, i.e., are classified

by representations of the Lorentz group, which in d dimensions is SO(d−1, 1). In par-
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ticular, conserved charges themselves are classified by representations of this group,

i.e., should be described as scalars, spinors, vectors etc.

We know examples of scalars: electric and color charges. Momentum is an ex-

ample of vector charge, which corresponds to spacetime translations, while angular

momentum provides an example of an anti-symmetric two-tensor charge, which cor-

responds to spacetime rotations. Can we go on and consider theories with charges

transforming in arbitrary representations of the Lorentz group?

There exist no-go theorems in Quantum Field Theory, which provide answers to

this kind of questions. One such theorem was proven by Coleman and Mandula

[1], who demonstrated that in theories with non-trivial S-matrix and mass gap it is

impossible to combine internal and space-time symmetries in a non-trivial way. In

other words, any additional conserved charges should be Lorentz-scalars. In addition

to the obvious fact that massless theories do not obey this theorem and can be

conformal (which is a non-trivial extension of the Lorentz symmetry), this theorem

had another loophole: it assumed that the algebra of symmetries was the usual Lie

algebra. Generalizing to Lie superalgebras, Haag, Lopuszanski and Sohnius proved

their more general result [2]. They found that in fact one can also have charges

transforming in spinor representations. Such charges are fermionic objects referred

to as supercharges. An improved result was that in the massive case, the symmetry

algebra should be the direct sum of the super-Poincare algebra (possibly centrally

extended) and the algebra of internal symmetries. In the massless case, conformal

symmetry is possible, so the maximal symmetry is given by super-conformal algebra.

In other words, all charges that are not in the super-Poincare or super-conformal

algebra, should be scalars.1

So, it is natural to include charges transforming in spinorial representations of the

Lorentz group, and moreover, no known principle forbids this. Such charges, as a
1In fact, this theorem also has loopholes which allow for the existence of theories with higher-spin

symmetries.
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result of spin-statistics relation, are fermionic, or Grassmann-odd objects, which of

course makes them different from bosonic charges (e.g., they cannot have expectation

values in any state). Finally, it is fairly obvious how to construct theories which

actually have such odd charges: for every boson in such a theory there should be

a fermion “superpartner” of the same mass and with the spin shifted by 1/2. Then

the theory becomes invariant under Grassmann-odd rotations between bosons and

fermions, provided that interactions are chosen in a specific way. These rotations are

called supersymmetry, and their charges are fermionic spinorial charges that we were

discussing above.

The algebra obeyed by supercharges is dictated again by representation theory of

the Lorentz group. Since supercharges live in the spinor representation, their anti-

commutator lives in the tensor product of two spinor representations. Decomposing

this tensor product into various irreducible components, we get possible conserved

charges that can appear on the right-hand side of the anticommutation relations. If

we have supercharges Qα and Qα̇ of opposite chirality in 4 dimensions (α, α̇ are spinor

indices), then the simplest algebra is:

{Qα, Qα̇} = γµαα̇Pµ, (1.1)

where Pµ is the momentum generator and γµ are gamma-matrices. In general, and in

general dimension, there can be more terms on the right, such as various scalar and

tensor central charges: Zεαβ, Zµνγµναβ, etc. In some cases, Lorentz generators can also

appear on the right-hand side, for example in various supersymmetric backgrounds.

One example of such deformation of the supersymmetry algebra will be explored in

the next Chapter of this thesis.

Theoretical discovery of supersymmetry dates back to early seventies (see [3–10]).

Since then it has become an area of active research involving directly or indirectly
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a large part of high-energy theory community. A somewhat formal motivation for

supersymmetry that we have just described is of course not the real explanation of

its popularity. The actual reason is that theories with supersymmetry have various

very nice properties which non-supersymmetric theories do not have.

One such property is an improved ultraviolet (UV) behavior. In supersymmet-

ric theories, UV divergences are often either absent or much milder than in non-

supersymmetric theories, and behavior of radiative corrections can therefore be quite

different. This gives a framework for solving the fine-tuning problem of the Standard

Model, that is stabilizing the otherwise short-distance sensitive mass of the Higgs

boson (which was recently found to be at 125 MeV). If supersymmetry, which is

not observed in the spectrum of real-world particles, is spontaneously broken around

the weak scale, it can protect Higgs boson’s mass from high radiative corrections,

therefoe solving fine-tuning. Also, if supersymmetry is broken dynamically by small

instanton effects in the underlying theory [11, 12], then the scale of this breaking is

much smaller than the Planck scale, and this solves another famous problem of the

Standard Model – the hierarchy problem. The symmetry associated to the small

parameter (weak scale)/(Planck scale) naturally becomes the supersymmetry.

All this makes supersymmetry very attractive phenomenologically, and so a lot

of work has been done in constructing realistic supersymmetric extensions of the

Standard Model. Supersymmetry is also naturally incorporated in the String Theory,

the most promising candidate for the “Theory of Everything”.

Another reason for studying supersymmetric theories (which, in a sense, prevails

in HEP-Th community) is that in theoretical physics, we like to have “theoretical lab-

oratories”, that is theories which do not necessarily describe any real-world systems

but are relatively simple and have some characteristic properties of more realistic

systems. Supersymmetric theories are a perfect example of such “theoretical labo-

ratories”: they are simple enough, so that a lot of questions can be addressed, yet
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complex enough to possess rich physical phenomena. For the same reason, supersym-

metry has been a source for numerous connections between physics and math, leading

to further insights into both fields. Such things happen when the subject is simple

enough to be accessible for human mind, yet complex enough to be full of interesting

and non-trivial phenomena.

1.2 Holomorphy and supersymmetry

One useful aspect of supersymmetric theories as “theoretical laboratories” is that

quite often they have exactly solvable sectors. In other words, there exist quantities

which can be computed exactly either to all orders in perturbation theory or even

non-perturbatively. Very often it is related to the fact that certain objects in the

theory are holomorphic (or meromorphic). Let us briefly review some examples of the

usefulness of holomorphy, and more generally complex geometry in supersymmetry.

The most basic result along this lines is, of course, perturbative non-renormalization

of 4d N = 1 superpotential. It is determined by a single holomorphic function of

chiral superfields, which is, in the superspace formalism, integrated only over the half

of superspace. Using the superspace generalization of Feynman diagrams called su-

pergraph formalism, one can see that perturbative corrections come only as integrals

over the full superspace, thus not correcting the superpotential (see e.g., [13]).

Non-perturbative corrections due to instantons are nevertheless possible. How-

ever, their form is severely constrained by holomorphy. The powerful insight of

Seiberg in [14] was to promote coupling constants λi to background fields, which

was motivated by earlier ideas in string theory (there, coupling constant is an ex-

pectation value of the dilaton; its superpartner is an axion, and so Peccei-Quinn

symmetry in combination with holomorphy implies non-renormalization of the super-

potential). Then superpotential becomes holomorphic both in terms of original fields
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φ and couplings λi. From this point of view, one also has more symmetries in the

theory, some of which are broken spontaneously by the background values of λi.

Combination of these additional symmetries and holomorphy allows to constrain

general form of the exact superpotential. Using the perturbation theory input at

λi → 0, this often leads to the complete answer. One simple example where this

works is Wess-Zumino model with Wtree = mφ2 + λφ3 (which does not necessarily

make sense non-perturbatively though, because the theory is not asymptotically free).

In this case, promoting m and λ to background fields, the most general form of effec-

tive superpotential allowed by holomorphy and symmetries is Weff = mφ2f(λφ/m).

Using input from perturbation theory, one then finds Weff = Wtree, i.e., proves the

non-renormalization theorem [14]. Similar considerations provide useful insights into

the dynamics of gauge theories [14,15]. For gauge theories, while perturbatively super-

potential receives no corrections, non-perturbative instanton corrections are possible

and can lift vacua, sometimes causing dynamical supersymmetry breaking [16].

Non-renormalization theorems hold in various dimensions and with various

amounts of supersymmetry. If we stay in 4d but increase the number of super-

charges, the theory becomes more and more restricted. In N = 1 theories with

chiral multiplets, in addition to superpotential, there was also an independent Kahler

potential determining the kinetic energy, which is subject to non-trivial renormaliza-

tion. In gauge theories, there is also a running gauge coupling, which in a low-energy

effective Lagrangian becomes a holomorphic function of chiral superfields.

As we move to N = 2 theories, things become more restricted. Superpotential

(which describes interactions of chiral mutliplets, if the theory is written in terms of

N = 1 superfields) is simply determined by the matter content of the theory. Pertur-

bative beta-function becomes 1-loop exact, with the possibility of non-perturbative

corrections [17]. Kahler geometry of chiral multiplets is now replaced by the hyper-

Kahler geomtery of hypermultiplets in global supersymmetry [18] or by the quater-
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nionic geometry of hypermultiplets in supergravity [19]. Vector multiplets Lagrangian

(with up to two derivatives) is completely determined by a single holomorphic function

(more precisely, a local holomorphic section of a certain bundle) called prepotential.

The geometry of vector multiplets (i.e., target manifold for their scalars) is known as

the special Kahler geometry [20–22] (“rigid” special Kahler geometry in global case

and “local” or “projective” special Kahler geometry in supergravity case).

A class of “rigid” special Kahler geometries can be constructed as certain subspaces

of the moduli spaces of Riemann surfaces (see e.g., [21]). This class of geometries is at

the core of Seiberg-Witten theory, which provides a tool for studying the low-energy

effective action in 4d N = 2 gauge theories [23, 24]. The Seiberg-Witten solution

incorporates all instanton corrections to the moduli space of vacua. A good example

of supersymmetric theories being “theoretical laboratories” was the derivation of the

Seiberg-Witten solution based on a different field-theoretic approach – the instanton

counting [25, 26]. The dynamics of N = 2 gauge theories is a rich area of research

(see [27] for review), but we will not go into more details about it.

Moving to N = 4 4d theories, there is only one globally supersymmetric theory

of this class, N = 4 super Yang-Mills (with gauge group G), which has become a

cornerstone of many theoretical studies over the past two decades. This theory has a

lot of interesting properties: it is exactly finite with vanishing beta-function [17], so

it is superconformal. It has a non-perturbative strong-weak coupling duality called

S-duality, which inspired the discovery of its connection to Geometric Langlands

program [28]. This theory was also the first and most successful example of the

holographic principle, giving an AdS/CFT correspondence between itself and Type

IIB superstring on AdS5×S5 [29–31]. Integrability at large number of colors [32] and

remarkable properties of its amplitudes [33] has also been an active area of research.

In three dimensions, holomorphy and non-renormalization theorems start to ap-

pear in N = 2 theories. In these theories one non-renormalization theorem states
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that superpotential depends only on chiral multiplets and cannot depend on linear

multiplets, hence cannot depend on real masses or Fayet-Iliopoulos terms. Another

theorem states that central charge cannot depend on chiral multiplets and is a linear

combination of linear multiplets, and thus of real masses and FI terms [34].

Two dimensional supersymmetric theories are of particular interest, especially

because of their relation to String Theory. Models with N = (2, 2) supersymmetry,

RG-fixed points of which may serve for compactifications of Type IIA and Type

IIB superstrings, are quite rigid. Their superpotential is exactly not renormalized,

and for theories which flow from N = (2, 2) gauge theories, the only parameter

which undergoes a non-trivial renormalization is an FI term, which receives a one-

loop correction [35]. In 2d theories with N = (0, 2) supersymmetry, perturbative

non-renormalization of their superpotentials still holds, however, non-perturbative

corrections due to instantons may exist, and may even render vacuum unstable [36,37].

This is crucial for constructing heterotic string compactifications and has been a

subject of multiple studies, e.g., [38–43]. There has been some growth of interest

in models with N = (0, 2) supersymmetry recently, especially gauge theories (see

e.g., [44–48]).

1.3 Overview of this thesis

In this thesis, we are going to discuss two quite unrelated projects, which however

have one thing in common – both are about holomorphic sectors in supersymmetric

theories. The first one is on Gopakumar-Vafa and Ooguri-Vafa formulas – results

about certain F-terms in effective supergravity of Calabi-Yau compactifications of

Type IIA superstring. F-terms are couplings that are supersymmetric, but can only

be written as integrals over one half of superspace, as opposed to D-terms that are

written as integrals over the full superspace.
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The second one is about chiral algebra structures in the cohomology of one super-

charge in two-dimensional theories with N = (0, 2) supersymmetry. In this section

we are giving a brief review of the rest of the thesis.

1.3.1 The Gopakumar-Vafa formula

Type IIA superstring theory compactified on a Calabi-Yau threefold Y is described by

d = 4,N = 2 effective supergravity. It has 8 supersymmetries and can be described

in terms of N = 2 superspace, which has four left-handed or negative chirality odd

coordinates θ and four right-handed or positive chirality odd coordinates θ. While

the so-called D-term interactions are written as integrals over the full superspace:∫
d4x d4θ d4θ(. . . ), the F-terms involve integration only over a half of odd directions.

In this theory a series of F-terms are known to be exactly computable. In terms

of N = 2 superspace, the interactions of interest are:

Ig = −i
∫
R4

d4x d4θFg(XΛ)(WABWAB)g. (1.2)

Here Fg is a holomorphic function of N = 2 chiral superfields XΛ = XΛ + . . . which

describe vector multiplets, and WAB = WBA is the so-called Weyl superfield – a

chiral superfield whose bottom component is the anti-selfdual part of the gravipho-

ton field strength (here A,B = 1, 2 are spinor indices of negative chirality). WAB

is related to Wµν with spacetime indices by contraction with gamma-matrices. The

superfields used here naturally appear in the formulation of d = 4,N = 2 supergrav-

ity, in which one first constructs superconformal gravity and then breaks the extra

part of its gauge supergroup (dilatations, special conformal transformations, special

supersymmetries and SU(2)×U(1) R-symmetry) by an explicitly choice of a certain

gauge slice. The N = 2 superspace is of course more subtle than the usual N = 1

construction. In particular, the N = 2 chiral superfields X and W used here, in
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addition to the usual chirality conditions Di

AX = D
i

AW = 0, satisfy an extra con-

straint (εijD
iσabD

j
)2(X )∗ = −96∆X (and the same forW), and so are called reduced

chiral superfields (see [49–51]). Since this constraint is not holomorphic in fields (and

rather looks like a sort of reality condition), one implication of this is that both vector

multiplet scalars X and their conjugates X appear in the component expansion of X .

This ensures, for example, that F0(X ) – the prepotential – generates kinetic terms

for all vector multiplet fields. Some of the relevant concepts will be briefly reviewed

later.

The interactions Fg have been the subject of multiple studies both in physical and

mathematical literature. For each g, Fg receives contributions only from the g-loop

order of superstring perturbation theory. One of the interesting physical applications

of these higher-derivative F-terms is that they encode corrections to the area law

for the macroscopic entropy of supersymmetric black holes [52–56]; such corrections

are crucial for the match with the microscopic counting of states performed in string

theory [57, 58]. The mathematical interest of these objects stems from the fact that

they are identified with the topological string free energies (in the large-volume limit,

to decouple the holomorphic anomaly), which encode the Gromov-Witten invariants.

These interactions were originally discovered from the topological string side [59]

and identified as certain physical superstring amplitudes [60]. Later they were rein-

terpreted by Gopakumar and Vafa [61, 62] using the space-time effective theory and

lifting to M-theory. The latter approach was recently reexamined in [63,64].

Since M-theory at low energies is described by 11-dimensional effective super-

gravity, which upon dimensional reduction on a circle gives Type IIA superstring

theory, one can as well study Calabi-Yau compactifications of M-theory. They give

5-dimensional N = 1 effective supergravity, which after reduction on a circle of course

coincides with the Calabi-Yau compactification of the Type IIA. The S1, reduction on
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which connects M-theory with Type IIA, will always be referred to as “the M-theory

circle”.

The main result – the so-called Gopakumar-Vafa formula – gives an expression

for Fg coefficients in terms of the spectrum of BPS states in M-theory compactified

on Y × S1, where S1 is the M-theory circle. This provides a remarkable bridge

between the topological string and the M-theory, which can serve to transfer ideas

in both directions. Mathematically, it reinterprets the non-integral Gromov-Witten

invariants in terms of integral BPS invariants (for a recent paper discussing it in a

more general context of symplectic geometry see [65]). Physically, it demonstrates

that the BPS spectrum of the M-theory on Calabi-Yau can in principle be determined

from the Gromov-Witten invariants. Direct computation of the BPS spectrum in M-

theory is a hard problem – it involves finding the low-energy spectrum of M2-branes

wrapped on holomorphic curves, which is a simple task only for a single membrane on

a smooth curve, while for more general configurations, the membrane theory becomes

strongly coupled.

The space-time derivation of the GV formula is based on computing the contri-

bution to the Wilsonian effective action due to 5d BPS states winding the M-theory

circle. Moreover, only trajectories with non-zero winding number have to be con-

sidered. Trajectories with zero winding number naively give an ultraviolet-divergent

contribution, but as will be explained later, this contribution should be regarded as

part of the 5d effective action and need not be calculated. Only a few terms in the 5d

effective action are actually relevant to the GV formula, and these terms are known

because of their relation to anomalies.

BPS states that are massive in five dimensions are more naturally treated as par-

ticles in deriving their contribution to the GV formula, while those that are massless

(or anomalously light) in five dimensions are more naturally treated as fields. In this
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thesis we describe both particle and field theory computations, explaining numerous

related subtleties.

The computation involves three basic steps:

1. Understand the proper background.

2. Make sure computation will make sense physically.

3. Compute the effective action.

The background

The particle computation and most of the field theory computation is based on turning

on a constant graviphoton background, as suggested in [61, 62]. This background,

from the 4d perspective, can be described as a flat R4 with a constant anti-selfdual

graviphoton turned on (graviphoton is a U(1) gauge field in the N = 2 supergravity

multiplet) and with the vector multiplet scalars having some constant background

values; all other fields are vanishing. The graviphoton field is particularly important

for us simply because it appears as the lowest component of the superfield WAB in

interactions (1.2). Therefore, for sufficiently large g, the component expansions of

these interactions are always proportional to some powers of the graviphoton. But

there are more reasons to prefer this background.

The graviphoton background, despite its simplicity, has some interesting proper-

ties, which turn out to be crucial for our computation. In contrast to naive expecta-

tions, this background preserves all 8 supercharges, but the supersymmetry algebra

gets deformed, with the deformation proportional to the vev of the graviphoton.

Lifting this background to 5d gives a certain non-tivial solution of 5d N = 1 super-

gravity known in the literature as the “supersymmetric Gödel Universe” [86]. In pure

5d N = 1 supergravity, this background is described by the following metric:

ds2 = −(dt− Vµdxµ)2 +
4∑

µ=1

(dxµ)2, (1.3)
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where Vν = 1
2
T−µνx

µ, with T−µν being the vev of the 5d graviphoton, which is constant,

antisymmetric, and anti-selfdual in the 4d sense. If we add vector multiplets, then

additional gauge fields from vector multiplets should have vevs for their field strengths

proportional to this T−µν .

The fact that background preserves supersymmetry is important for the compu-

tation of F-terms. From a field theory point of view, one can compute the effective

action in an expansion around any background, whether or not the background is a

classical solution and whether or not it is supersymmetric. But one generally can-

not learn anything about F -terms in a supersymmetric effective action by expanding

around a background that is not supersymmetric. In such a background F-terms mix

with D-terms and become hard to distinguish.

In field theory, one could compute F -terms by expanding around a background

that is supersymmetric but is not necessarily a classical solution. However, this may

lead to problems in string/M-theory because it does not have a satisfactory off-shell

formulation. Despite its M-theoretic origin in the UV, our calculation will be simply

a calculation in the low-energy effective field theory. From this point of view, it

seems that whether or not the background solves classical equations of motion is not

relevant for the calculation itself. But it is definitely reassuring to find out that the

background actually is a solution. Also, the 5d massive BPS particles are given by

M2 branes wrapping two-cycles inside of Y , and if we try to derive the worldline

action for these particles starting from the M2-brane action, it is important for the

background to be on-shell.

The graviphoton background is indeed a solution. This relies on two facts.

First, anti-selfdual gauge field Fµν has the vanishing Maxwell stress-energy tensor

Tµν = 1
2

(
FµαF

α
ν − 1

4
ηµνFαβF

αβ
)
. This ensures that it produces no gravitational

back-reaction. Second, the graviphoton is a very special linear combination of

elementary gauge fields entering the 4d action, with coefficients depending on the

13



vector multiplet scalalrs. This linear combination has a property that it does not

produce any backreaction on scalars either. So this is indeed a solution.

The deformed supersymmetry algebra of the graviphoton background allows to

determine the relevant particle or field-theoretic actions of BPS multiplets, which we

then integrate out in order to obtain the GV formula. As we mentioned above, we have

one more technique for determining this action: by studying the world-volume action

of the M2-brane wrapped on a two-cycle inside of Y . However, this only works well if

a single M2-brane wraps a smooth curve. In general, the curve might not be smooth

and there can be multiple M2-branes wrapping it: this leads to a strongly-coupled

world-volume theory that cannot be easily accessed. On the other hand, if we fix the

BPS particle action based on supersymmetry only, this will always work, no matter

how complicated the detailed microscopic theory is. This turns out to be possible: the

relevant superparticle action is quite simple, with the charge and the mass determined

by the corresponding homology two-cycle in Y , while the deformed supersymmetry

algebra of the graviphoton background helps to fix all magnetic moments.

We should note that there is a small subset of cases for which the graviphoton

background is not helpful: to perform the field-theoretic computation of F0 and F1,

we need another background. The reason is that the I0 interaction does not depend

on the graviphoton at all, while for I1, the computation (which works for Ig with

g ≥ 2) becomes divergent, as we will explain later. These two cases were treated

separately in [64], and required special backgrounds. To compute F0, we use, from

the 4d perspective, again the flat R4, but instead of turning on graviphoton, we

turn on a small and slow spacetime-dependent perturbation for the vector multiplet

scalars, and compute effective action for this perturbation. This effective action is

then directly related to F0. To compute F1, we again take the R4 and turn on a small

metric perturbation. The effective action for this perturbation is then proportional

to F1.
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Does the computation make sense?

The computation itself is not that complicated: in the particle case, it is a simple in-

stanton computation in supersymmetric quantum mechanics, while in the field theory

case, it is a supersymmetric version of Schwinger’s famous derivation of the effective

action in the background electromagnetic field. However, its interpretation, and in

particular showing that the procedure makes sense physically, requires some effort.

Let us review the relevant points.

There are two observations we need to make. First, the interactions Fg(X ) that

we are interested in appear at g loops in the superstring perturbation theory, so their

dependence on the four-dimensional string coupling constant gst is known. Second,

they are holomorphic quantities, so we expect that the power of holomorphy should

play a certain role in our computation.

It turns out that the computation makes sense only in a certain limit in the pa-

rameter space, but due to these two observations, the answer in that limit determines

Fg(X ) completely. What is this limit?

In Type IIA string theory, Fg receives contributions from superstring worldsheets

wrapping topologically nontrivial holomorphic curves Σ ⊂ R4 × Y . They lift to M2-

branes wrapping Σ× S1 ⊂ R4 × S1 × Y , where S1 is the M-theory circle. When this

circle is large, an M2-brane on Σ × S1 can be thought of as a point particle with

the worldline S1. One can think of this as a dimensional reduction of the M2-brane

worldvolume theory on Σ. As a result, there is an infinite set of massive particles

(winding S1) organized into multiplets. When Σ ⊂ Y is holomorphic, the lightest of

these multiplets becomes BPS-saturated and shortened. All long multiplets generate

an effective interaction that is an integral over all of superspace, as explained in section

2.2.2. Therefore, if we are interested in F-terms, only BPS multiplets matter, and to

compute the Ig’s, we must understand the contributions of 5d BPS states when the

M-theory circle is large. Therefore, one relevant limit is the limit of the M-theory
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circle being large compared to the 11-dimensional Planck scale and the length scale

of Y .

Another limit we should respect is the one where M-theory can be effectively

described by the 11-dimensional supergravity. This corresponds, in Type IIA super-

string theory, to the limit that the ten-dimensional string coupling constant g10 and

the volume of Y are large. This will be explained in more details later, but the upshot

is that going to the large-volume limit of Y is enough to determine the answer because

of holomorphy, while the large-coupling limit is enough because the dependence on

gst is known and g10 = e3σ/2gst, where eσ is the radius of the M-theory circle in the

5d units. Moreover, this agrees neatly with this radius being very large.

M-theory structure still remains quite obscure, in particular its low energy effective

action is largely unknown, except for a few terms of low dimension. Yet, we want

to determine the interactions Ig by a lift to M-theory, so an important question

is: do we know enough about M-theory? Since the interactions Ig are terms in a

four-dimensional effective action, this question translates into the following question:

what contributions to the Ig can arise by classical dimensional reduction from five

dimensions? Any such contribution is a potential source of a difficulty, because we

do not know how to determine the complete effective action of M-theory in five

dimensions. Luckily, with very limited exceptions, the Ig do not come by classical

dimensional reduction from five dimensions. As we explain in section 2.1.2, only

certain very special terms arise this way (and only for g = 0, 1), and one knows just

enough about the M-theory effective action to determine them.

Another subtlety about interpreting interactions in (1.2) is related to the holomor-

phic anomaly. The interactions written in (1.2) are of course holomorphic. However, it

is known that they are related to topological string partition functions, which are not

quite holomorphic, with the non-holomorphy governed by the holomorphic anomaly

equations [59]. And it is known that the low-energy effective action, or 1PI effec-
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tive action, of Type IIA compactified on Y actually involves those non-holomorphic

quantities and therefore is not quite holomorphic [60]. From the 4d space-time point

of view, non-holomorphy (and actually also non-locality) of the action is caused by

the massless particles propagation; integrating out massless particles is what intro-

duces non-locality and non-holomorphy [60]. However, the quantities written in (1.2)

are terms in the Wilsonian effective action (more precisely, we integrate out all mas-

sive degrees of freedom only and write the resulting action for massless degrees of

freedom), so they are local and holomorphic, and there is no contradiction.

If tI are relevant Kahler moduli, the topological string partition functions are

some non-holomorphic quantities Fg(t, t). In order to extract holomorphic answers,

one should treat tI as an independent complex variable t̃I and fix it at some value t̃I0,

the “base-point”. The resulting function Fg(t, t̃0) is holomorphic in tI . The standard

choice is to take the base-point at infinity, t̃I0 = ∞. This corresponds to the large-

volume limit of the Calabi-Yau Y in Type IIA variables. Incidentally, this is precisely

the regime at which we are doing our computation. So it comes as no surprise that

the holomorphic answers we get match exactly with the topological amplitudes with

the base-point at infinity.

Another question one should worry about is what spectrum of BPS states is rele-

vant for our problem. The way Gopakumar-Vafa formula is derived suggests straight-

forwardly that the relevant BPS states are 5d BPS states. They wind the M-theory

circle and generate effective couplings in 4d. One subtlety, which is not directly rel-

evant for the computation, but was nevertheless discussed in [63], is that those are

not the same as 4d BPS states. In general, 4d BPS states are not given by a simple

Kaluza-Klein reduction of the 5d ones, some short multiplets can recombine into long

multiplets and become non-BPS as the radius of the M-theory circle goes from infinity

to some finite value.
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The computation

The computation itself can be subdivided into several steps. The simplest and the

most basic one is to understand the contribution of a 5d massive hypermultiplet. This

multiplet can be conveniently described in the worldline formalism by a superparticle

action whose non-relativistic limit is given by:

I = M

∫
dt

(
−1 +

1

2
ẋµẋµ +

i

2
εABεijψAi

d

dt
ψBj + T−µνx

µẋν
)
, (1.4)

where ψAi are worldline fermions, with index i = 1, 2 corresponding to N = 2 super-

symmetry and A = 1, 2 a chiral spinor index. It turns out that this non-relativistic

supersymmetric quantum mechanical action is all we really need to know in order to

calculate the hypermultiplet contribution (the answer being exact and of course rela-

tivistic). The reason is that the calculation we are doing is the instanton calculation.

The instanton solution is described by this particle winding the M-theory circle. If

we treat this circle as the “time” direction, then the solution looks like the particle

is simply at rest. We do not need full relativistic formalism to compute the action

of one particle at rest! How about the 1-loop determinant around this instanton so-

lution? It is described by a quadratic action for fluctuations around the instanton

solution, which in our case describes small deviations from the particle being at rest

– exactly the non-relativistic approximation to the action. Is there any other contri-

bution beyond this 1-loop determinant? We will argue later that the answer is no,

and of course, secretly, what stands behind this 1-loop exactness is holomorphy of

the quantity we are computing.

The next step of the computation is to generalize this to a massive BPS multiplet

of an arbitrary spin. This is where the worldline formalism becomes especially useful:

it is easy to consider arbitrary spins in this approach, while had we started with

the field-theoretic (or “second-quantized”) description, we would end up with a lot of
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technical troubles. For this part of the computation, extended supersymmetry of the

graviphoton background also becomes very useful: it allows to fix all relevant terms

of the worldline action. Leaving all the details for later sections, we just mention here

that the only way spin modifies the answer is by introducing an additional factor. It

takes the form of the trace over the spin space and describes the magnetic moment

interaction of the BPS particle with the graviphoton background.

Having computed contributions due to massive BPS states of arbitrary spins, one

could in principle obtain contributions of massless particles of any spin we need by

simply taking the mass to zero limit. This is slightly unsatisfactory because the

description we use for massive particles (non-relativistic limit of the worldline super-

particle action) breaks down for massless states. In order to be more precise, we

should use the field theory description for massless BPS states instead. There are

three types of massless multiplets which appear in the effective 5d N = 1 super-

gravity: hypermultiplets, vectormultiplets and one supergravity multiplet. Simple

considerations explained later in this thesis show that it is enough to do the com-

putation for a hypermultiplet only. The vectormultiplet contribution is simply equal

to minus the hypermultiplet answer, and the supergravity multiplet contribution is

minus twice the hypermultiplet answer. In the field theory description of the hyper-

multiplet, we can also turn on a non-zero mass. This way we can see that the massive

answer agrees with the particle computation, and that the mass → 0 limit actually

exists (since the field theory description makes sense at zero mass).

The field-theoretic computation itself is a supersymmetric version of Schwinger’s

computation of an effective action in a background electromagnetic field. One detail is

that due to supersymmetry, strictly speaking, the effective action on the graviphoton

background is zero. To get a non-zero action, one actually has to perturb the back-

ground and slightly break the SUSY. There are several ways to do that. To compute

Fg for g ≥ 2, it is convenient to perturb the metric by turning on an anti-selfdual

19



curvature background. So for these purposes, we put the 5d theory onM5 = S1×M4,

where M4 is equipped with a hyper-Kahler metric of anti-selfdual curvature (which is

assumed to be small enough). The relevant field-theoretic action is again determined

by supersymmetry.

To find F1 and F0 in the field theory approach, we need to do more work, as it turns

out that the Schwinger-like computation does not cover these two cases. To find F0,

it is more convenient to turn on a small perturbation for the vector multiplet scalars.

Then, by computing the two-point function of these perturbations, we find F0. To

compute F1, it is still useful to turn on the anti-selfdual metric perturbation, but

instead of doing the Schwinger-like computation, we calculate the two-point function

of these perturbations, which boils down to calculating the two-point function of

the stress-energy tensor in flat space. This determines the R2 interaction in the

effective action, where R is the Riemann tensor. Since the effective action has a term

F1(X)(R−)2, where R− is the anti-selfdual part of R, this directly determines the F1

coupling.

The formula

The point of everything written so far in this section is to review the proper derivation

of the Gopakumar-Vafa formula. It would be incomplete to have this discussion

without writing the formula itself. The formula that we will describe shortly gives an

expression for the sum of all interactions Ig at once, namele for:

I =
∑
g≥0

Ig = −i
∫

d4x d4θ
∑
g≥0

Fg(XΛ)(W2)g. (1.5)

To describe the formula, we have to introduce some notions first. Every 5d BPS

state can be characterized by its charges qI with respect to the 5d gauge fields. BPS

states correspond to M2-branes wrapping two-cycles in the Calabi-Yau Y , and there-
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fore these charges are just coordinates in the second homology group H2(Y ;Z). If ωI

is some basis in second cohomology H2(Y ;Z), then for every two-cycle Q ∈ H2(Y ;Z),

we have simply qI =
∫
Q
ωI . We collectively denote charges as ~q = (q1, . . . , qb2), where

b2 is the second Betti number of Y .

Five-dimensional SUSY algebra has a real central charge ζ, and particles of charges

~q carry a non-trivial central charge ζ(~q). In terms of vevs of scalars from the 5d vector

multiplets hI , the central charge is given by ζ(~q) =
∑

I qIh
I .

All BPS multiplets of charge ~q form a reducible representation of the 5d rotation

group SU(2)` × SU(2)r. Together, they are described by a Hilbert space Ĥ~q. The

minimal such Hilbert space describes one hypermultiplet and is denoted by Ĥ0. One

can think of Ĥ0 as the space of wavefunctions L2(R4) (for the spacetime motion of

the particle) taking values in (1/2, 0) ⊕ 2(0, 0), which describes the spin degrees of

freedom of the hypermultiplet. This combination, (1/2, 0)⊕ 2(0, 0), is the most basic

massive BPS multiplet. Any other massive BPS multiplet can be described as a tensor

product [(1/2, 0)⊕ 2(0, 0)]⊗ (j1, j2) with some representation of SU(2)` × SU(2)r.

We then write Ĥ~q = Ĥ0 ⊗ V~q, where V~q is a vector space with an action of

SU(2)` × SU(2)r. This vector space encodes the spin content of BPS multiplets of

charges ~q, and the set of such vector spaces for every ~q describes the BPS spectrum

of the theory. Let the generator of the rotation group acting on V~q be denoted by

Jµν . We also introduce an anti-selfdual rotation generator J~q = W−µνg
EνσJµσ, where gE

stands for the Einstein frame metric in 4d, and W−µν is the 4d constant anti-selfdual

graviphoton vev.

Another object we need to introduce is a superfield ZI = X I/X 0. Now we can

write the Gopakumar-Vafa formula:
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I = −
∫

d4xd4θ

(2π)4

√
gE

∑
~q|ζ(~q)≥0

∞∑
k=1

1

k
TrV~q

[
(−1)F exp(−iπkJ~q/4X 0)

]
× exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2
(
πk
√
W2

8X 0

) . (1.6)

The last two factors describe the hypermultiplet contribution, the trace factor

describes the magnetic moment interaction of the BPS multiplets of arbitrary spin,

the sum over k corresponds to particles winding the M-theory circle multiple times,

and the first sum goes over the BPS spectrum of the theory.

1.3.2 The Ooguri-Vafa formula

In [66], Ooguri and Vafa proposed a generalization of the Gopakumar-Vafa story,

where one can include D4-branes in the Type IIA setup while preserving four super-

symmetries, which is a half of what one has without D4-branes. This was achieved

by wrapping D4-branes on R2 × L, where R2 ⊂ R4 is some plane in R4 and L is

a real three-dimensional submanifold in Y . It is known from the work of [67] that

the condition for this configuration to preserve half of SUSY is that L is a so-called

special Lagrangian submanifold of Y . The submanifold L of a Calabi-Yau manifold

Y is called special Lagrangian if it satisfies two conditions: 1) it is Lagrangian, i.e., it

is an n-dimensional submanifold L of a 2n-dimensional symplectic manifold Y , such

that the symplectic form of Y restricts to zero on L; 2) the holomorphic volume form

Ω of Y has the property that its imaginary part vanishes when pulled-back to L. Nor-

malization of Ω is usually picked in such a way, that its real part, when pulled-back

to L, is equal to the volume form of L. This situation is sometimes referred to by

saying that Re Ω is a calibration on Y , and L is a calibrated submanifold [68].
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In a situation when we do not turn on any fluxes, we could slightly generalize this

configuration by considering several special Lagrangian submanifolds Li and several

parallel planes R2
i ⊂ R4. Then wrappingNi D4-branes on every R2

i×Li would preserve

the same four supercharges. However, in the OV story, we also turn on an anti-selfdual

graviphoton background. As we will learn in Section 2.1.1, the anti-selfdual rotation

J = W−µνJµν then appears in the SUSY algebra, and it should be preserved by the

brane configuration. This imposes additional restrictions. First of all, the planes

R2
i should coincide. Therefore, the most general brane configuration relevant for the

OV story consists of Ni D4-branes supported on each R2 × Li, where the R2 factors

are the same, while Li are in general different special Lagrangian submanifolds of

Y . Another restriction is that in order for it to be a symmetry, the rotation by J

should not mix directions which are parallel to the brane with directions which are

normal to it. For example, if R4 has coordinates x1, x2, x3, x4 and if R2 corresponds

to x3 = x4 = 0, then J should be proportional to J12 − J34. This means that while in

the GV story the anti-selfdual graviphoton had three free parameters (because there

are three anti-selfdual two-forms on R4), in the OV story there is only one parameter.

The graviphoton background W− should be proportional to dx1 ∧ dx2 − dx3 ∧ dx4.

In this situation, the effective action on R4 has two types of terms. First, there

are 4-dimensional terms, which are represented as integrals over the R4 (these are

just the effective action for the Type IIA superstring compactified on Y ). Second,

there are also two-dimensional terms which are supported on R2, i.e., they are written

as integrals over the subspace R2 ⊂ R4 where the brane is supported. These two-

dimensional terms describe degrees of freedom that propagate along the brane, as

well as their interactions with the bulk supergravity. From the two-dimensional point

of view, the bulk theory has N = (4, 4) SUSY, and the effective action supported

on R2 breaks it down to N = (2, 2). The bulk supergravity action still has the

F-terms described by the GV-formula, just as explained in the previous subsection.
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The novelty here is that the two-dimensional action has similar terms, which are also

F-terms from the 2d point of view, and which have a similar structure and a similar

physical origin.

These terms are:

Jn =

∫
R2

d2x d2θRn(XΛ;Uσ)Wn
‖ . n ≥ 0. (1.7)

Here the XΛ are the same chiral superfields that appear in the GV formula, except

that now, since the D4-branes explicitly break half of the supersymmetry, we integrate

over only half as many θ’s (the ones that correspond to the unbroken supersymmetry)

and we restrict XΛ to depend only on those θ’s. Thus the XΛ are now viewed as

chiral superfields in a theory with (2, 2) supersymmetry on R2. For n ≥ 0, Rn

is a holomorphic function of the XΛ. Also, W‖ is the “parallel” component of the

graviphoton superfield WAB that appears in eqn. (1.2) in the following sense. As

explained before, the graviphoton background should be proportional to dx1 ∧ dx2 −

dx3 ∧ dx4 in order to preserve supersymmetry in the presence of D4 branes. The

“parallel” component2 is just the proportionality coefficient: W =
W‖
2

(dx1 ∧ dx2 −

dx3 ∧ dx4). Finally, Uσ, σ = 1, . . . , b1(L), are chiral superfields associated to the

moduli of L. These interactions are only generated by worldsheets with 2g+h−1 = n,

where g is the genus, and h is the number of boundary components.

The idea behind the OV formula is similar to what we had before. The Type IIA

construction is lifted to M-theory on R4×S1×Y . D4-branes on R2×Li become M5-

branes on R2 × S1 × Li, while a string worldsheet Σ with possible boundaries on the

D4-branes becomes an M2-brane worldvolume S1×Σ with possible boundaries on the

M5-branes. We then compute the low energy effective action due to M2-brane states

propagating around S1. The radius of S1 is taken to be large, so that the particle
2One could also define “perpendicular” components W⊥ and define chiral couplings that depend

both on W‖ and W⊥, however the OV formula would not determine these couplings: it works only
at W⊥ = 0, as non-zero vevs for “perpendicular” components break the required SUSY.
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approximation is valid and the actual computation is merely the “square root” of the

computation done in the GV case. The final answer – the OV formula – is written

in terms of the spectrum of BPS states in the three-dimensional theory living on the

S1×R2 part of the M5-brane worldvolume S1×R2×Li. For the purposes of finding

this spectrum, one can think of S1 ×R2 as just R3, as the radius of the circle is very

large.

These BPS states correspond to holomorphic curves in Y with boundaries on Li,

and each such curve represents some class in the second relative homologyH2(Y, L;Z).

This means that charges of such BPS states are parametrized by H2(Y, L;Z), which

of course includes bulk charges in H2(Y ;Z), but also has boundary charges which

depend on the topology of Li and describe how the M2-brane ends on the M5-brane.

This point will be discussed later. Denoting the boundary charges by rρ, we can write

the OV formula describing the contribution of a single 3d BPS multiplet to the sum

J =
∑∞

n=0 Jn of interactions defined above:

i

∫
d2xd2θ

(2π)2

√
gE ·

∞∑
k=1

1

k
exp

(
2πik

(∑
I

qIZI +
∑
ρ

rρUρ
))

× TrV~q,~r
[
(−1)F exp

(
−iπkJ~q,~r/4X 0

)] πW‖/8
sin(πkW‖/8X 0)

. (1.8)

This expression has to be summed over the BPS spectrum of the relevant 3d theory.

Even though everything looks just like the “square root” of the GV story (up to

the presence of new charges rρ and new moduli Uρ), physical interpretation of this

result is more involved, because in three dimensions, the infrared (IR) behavior of

quantum field theories is quite different from that in five dimensions. A variety of IR

problems with the OV formula were described in [63], but only the simplest case of

this formula was studied, when all the IR problems were absent. We are not going

to elaborate that point here. Instead, we will give a sampling of these IR issues here,

and will review the derivation of the formula in the main text.
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One problem appears if Y is compact. Macroscopically, an M5-brane is effectively

supported on R3 ⊂ R5, which has a real codimension 2. It can behave as a vortex,

producing a monodromy for a certain scalar field, resulting in long range effects,

possibly relevant for the OV formula. This issue does not arise in the original example

of Ooguri and Vafa [66], because their Y was non-compact.

Another problem appears if L is compact, even if Y is not, because of the two-form

gauge field on the M5-brane. If b2(L) is positive, there are massless gauge fields living

the R3 part of R3×L. Since we are in three dimensions, these force charged particles

to confine in the IR. This problem can possibly be resolved by considering only BPS

states that exist in the large-volume limit (see [63]). However, in the example of [66],

L was also non-compact, it had two non-compact directions. This means that even

though relevant BPS states propagate in only three dimensions, M5-brane gauge fields

proparate in 5 dimensions, and there is no confinement issue.

For a compact L, even if b2(L) = 0, IR questions still can arise if we attempt to

generalize to the nonabelian case by placing N ≥ 2 M5-branes on R3 × L. At long

distances, these would be described by a quantum field theory on R3, which in general

is not IR-free. Again, this problem was avoided in the example of [66], since their L

was topologically R2 × S1 and provided two more non-compact directions.

Generalizing beyond the example of [66] would require a careful analysis of the IR

behavior of the theory, however, this is neither the subject of [63] nor the subject of

the current thesis. There can exist further subtleties even if the 3d physics is infrared-

free. It may be governed at long distances by a non-trivial topological field theory. In

this case, the BPS states may be anyonic with a long range interaction of statistical

nature. This would affect the contribution of BPS particles winding multiple times

around the M-theory circle. Again, this is just another issue we are not going to

address here. In [63] it was assumed that in the original example of Ooguri and Vafa

this does not happen, though it was not entirely clear for what reasons.
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1.3.3 Chiral algebras in N = (0, 2) theories

Another topic discussed in this thesis is on two-dimensional chiral algebras emerging in

the cohomology of one of the supercharges in two-dimensional theories withN = (0, 2)

supersymmetry.

Two-dimensional theories with N = (0, 2) supersymmetry have been attracting

attention over the last couple of decades. A motivation largely came from their poten-

tial phenomenological relevance for heterotic string compactifications, which require

the internal theory to be an N = (0, 2) SCFT. But these theories are interesting

and rich quantum field theories by themselves, which makes them a good object to

study and apply various physical ideas. Thinking in that direction, gauge theories

are of course of particular importance in theoretical physics and deserve attention in

various dimensions and with various amounts of supersymmetry. But besides that,

N = (0, 2) gauged linear sigma models are known to be a useful tool to construct

N = (0, 2) SCTFs, and hence heterotic string vacua, as infrared (IR) fixed points of

the renormalization group (RG) flow (see [69,70] or just [71] and references therein).

Recently, the dynamics of two-dimensional N = (0, 2) supersymmetric gauge the-

ories, both abelian and non-abelian, have seen an increasing interest, especially due

to developments in [72–74]. At the same time, more basic models of N = (0, 2)

interacting matter without gauge fields, sometimes referred to as N = (0, 2) Landau-

Ginzburg (LG) models, have been studied, some references being [70, 75, 76]. These

models themselves flow to non-trivial SCFTs in the IR, but they also can be thought

of as a step in constructing gauge theories, because one can start from an N = (0, 2)

LG model with global flavor symmetries and then gauging these global symmetries to

obtain an N = (0, 2) gauge theory. It is interesting to study what happens to various

properties of the IR fixed point under gauging.

We only consider theories on flat spacetime here, and they are always assumed to

have a conserved stress-energy tensor. These theories have two supercharges Q+ and
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Q+ obeying:

{Q+, Q+} = 2P++, (1.9)

where we are using the light-cone notations: x±± = x1 ± x0. Since Q2

+ = 0, we

can study the cohomology of Q+. Algebra (1.9) implies immediately the most basic

property of the Q+-cohomology. It says that P++ is a Q+-exact operator, therefore it

annihilates cohomology classes. Since P++ ∝ ∂++, it means that cohomology classes

do not depend on x++, only on x−−. After Wick rotation to Euclidean signature,

this implies that cohomology depends on the spacetime point holomorphically. This

observation was first made in [77] and then in [78] used to elucidate some properties of

N = (2, 2) LG models and their IR fixed points. Then, part of the analysis from [78]

was extended to N = (0, 2) gauge theories in [79].

In the presence of supersymmetry, the stress-energy tensor becomes a part of the

so-called supercurrent multiplet, as discussed in details by Dumitrescu and Seiberg

in [80]. Using the most general such multiplet for N = (0, 2) theories, it is easy to

show that the exact quantum cohomology of Q+ is invariant along the renormalization

group (RG) flow.3 Detailed derivation will be discussed later, but the main idea is that

using a stress-energy tensor, one can construct an operator which acts as a conserved

charge for dilatations in the cohomology, therefore implying scaling symmetry there.

The N = (0, 2) supersymmetry algebra has a U(1) automorphism – the R-

symmetry, under which Q+ and Q+ have opposite charges, while bosonic generators

are neutral. If the theory flows to the N = (0, 2) SCFT in the IR, then R-symmetry

always becomes a physical symmetry in the IR, in particular, it has a conserved

current, which is part of the N = 2 super-Virasoro algebra in the IR.
3In fact, even though the cohomology is invariant along the flow, it can happen that it jumps at

the IR fixed point. This is somewhat related to the question of what space of observables should we
work with. In this thesis we will be only studying observables which are polynomial in the elementary
fields and their derivatives. We could have introduce a notion of convergence for observables and
allow series of even more general observables. Of course, the cohomology and whether it jumps in
the IR would depend on it. But then we would have to grapple with related analytic issues, which
is not part of our plan. So we will not discuss such questions here.
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Along the RG flow, the R-symmetry may or may not be a symmetry of the theory.

In case it is not, it arises as an accidental symmetry in the IR SCFT. But even if it is

a symmetry along the RG flow, it might mix with accidental global symmetries which

show up only at the IR fixed point. Such accidents really occur in (0, 2) theories and

have been studied in the literature [76]. As has been shown in [76], accidents are

very mild in N = (2, 2) theories and essentially can be excluded there. However, in

N = (0, 2) they are more subtle and can really obscure the relation between the UV

and IR theories. Symmetry enhancement at the IR fixed point also means that Q+-

cohomology can jump there, and therefore the cohomology computed in the UV might

in principle have properties that would be impossible if this were the exact answer

for the IR fixed point. We will return to this question later in this introduction.

In case the R-symmetry is an exact symmetry of the theory along the RG-flow, the

most general N = (0, 2) supercurrent multiplet becomes specialized to the so-called

R-multiplet, which includes R-symmetry current as one of its components. In this

case the RG-invariance of the Q+-cohomology can be argued in a more familiar way.

Namely, the presence of the R-symmetry allows to twist the theory. This is done

by shifting a stress-energy tensor of the original theory by a derivative of an R-

current. The new stress-energy tensor has the property that its trace is Q+-exact, so

this implies that trace vanishes at the level of cohomology. This means that there is

actually an emergent conformal invariance present in cohomology. Another fact about

the twisted stress-energy tensor is that its anti-holomorphic component is also Q+-

exact, while the holomorphic component is only Q+-closed. So there is a holomorphic

stress-energy tensor in cohomology.

It is trivial to observe that operator product expansion (OPE) of operators in

the original theory induces a well-defined OPE of cohomology classes. Before we

mentioned that cohomology classes depend on spacetime insertion points holomorphi-

cally (in Euclidean signature). This means that we obtain a well-defined holomorphic
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OPE in the Q+-cohomology. This is the structure of a chiral algebra emerging in

the cohomology. As we explained in the previous paragraph, there is a holomorphic

stress-energy tensor in the cohomology. It acts on other cohomology classes through

the OPE. Therefore there is a full holomorphic Virasoro algebra acting in the coho-

mology. Such chiral algebras are often referred to as W-algebras in the literature.

However, the usual definition of W-algebras assumes that they are generated by the

stress-energy tensor and a set of primaries, while chiral algebras arising in the Q+-

cohomology of N = (0, 2) theories might be of a more general class in principle (we

will see an example later), so we will not call them W-algebras.

Twisting by the R-symmetry of the N = (0, 2) theory is known as half-twisting

in the literature, especially when one treats N = (2, 2) theories as N = (0, 2) mod-

els and only twists by the right-moving R-symmetry. This has been studied both

in LG models and non-linear sigma models (NLSM). Chiral algebras of N = (0, 2)

half-twisted sigma models were studied to some extent in the literature due to their

connection to the theory of chiral differential operators. In particular, the perturba-

tive approach was developed in [81] and [82], and some non-perturbative aspects were

studied in [83] and [84].

If a theory does not have a conserved R-symmetry current along the RG flow,

but nevertheless flows to the N = (0, 2) SCFT in the IR, we cannot tell for sure if

there is a stress-energy tensor in the cohomology along the flow, we only now that

it is there at the IR fixed point. It could be there along the flow, or it could jump

into the cohomology only at the IR fixed point (as was explained in footnote 3, it

depends on the analytic structure of the space of observables that we use and is not

studied here). A simplification we have in theories with a conserved R-symmetry

current present in the UV is that we can always explicitly construct a holomorphic

stress-energy tensor in the cohomology. As we explained, this is done by twisting the

physical stress-energy tensor by the correctly chosen R-symmetry current (correct
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R-symmetry is picked though the c-maximization, or a related principle which will

be explained later). In this thesis, we will concentrate only on theories which have a

conserved R-symmetry current in the UV.

A class of theories we are interested in are Landau-Ginzburg models. They are

constructed only from chiral and Fermi superfields, and the kinetic term is written

in terms of the Euclidean metric (as opposed to more general Kahler metrics in the

NLSM case). Chiral algebras of N = (0, 2) LG models have not received too much

attention in the literature. They were the main topic of [85] and will be discussed in

this thesis.

All relevant technical details about 2d (0, 2) theories, such as the N = (0, 2)

superspace, supefields and Lagrangians will be reviewed at the beginning of Chapter

4. Then we will proceed to discuss the structure of the N = (0, 2) supercurrent

multiplet and use it to prove the RG-invariance of the Q+-cohomology. After that we

will study general properties of chiral algebras in (0, 2) LG models with R-symmetry.

We will also specialize to the N = (2, 2) case and discuss LG models that flow to

diagonal N = 2 minimal models in the IR. After that we will briefly mention how

gauging global symmetries of the LG model acts at the level of chiral algebras, which

is a topic of an ongoing research.

One useful fact about chiral algebras is that the knowledge of the exact chiral

algebra allows to perform some diagnostics of the theory in the IR, in particular

sometimes it can be used to prove spontaneous supersymmetry breaking. When the

chiral algebra that we find in the UV does not admit unitary representations (for

example, if it has a current subalgebra of negative level), it means that something

goes wrong in the IR. If for some complementary reasons we know that the IR CFT

with normalizable vacuum exists, this means one of two things: either an accident

happens, and the cohomology is enhanced in the IR in a way which fixes unitarity,

or supersymmetry is spontaneously broken.
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Accidental U(1) symmetries in the IR can mix with other U(1) symmetries and

with the R-symmetry, thus possibly making all U(1) current algebras consistent with

unitarity (their levels should be non-negative, and currents should be primary opera-

tors). However, if we have non-abelian symmetries of negative levels in the cohomol-

ogy, this cannot be fixed by accidents in the IR, and it really indicates supersymmetry

breaking – for example, it can happen in Gadde-Gukov-Putrov theories [73,74]. An-

other question which has to be addressed is whether the supersymmetry breaking is

complete or partial. It is known that in N = (0, 2) theories, supersymmetry can be

partially broken down to N = (0, 1), and it is diagnosed by the constant “space-filling

brane current” in the SUSY algebra [80]. Such constant term in the SUSY algebra

cannot be generated perturbatively and can come as an instanton effect in NLSMs

or gauge theories. The presence of this term is therefore really determined by the

theory in the UV, and partial breaking of SUSY is not a dynamical question about

the theory at the IR fixed point, but rather about the whole RG flow. We assume

that such a constant does not appear in LG theories we study, simply because they

are topologically trivial in the UV and have no room for instantons (and of course,

classically, they do not have such “space-filling branes”).

Applying chiral algebras to SUSY breaking is complementary to the usual super-

symmetric index approach. Non-vanishing of the index proves that supersymmetry is

unbroken, while non-existence of unitary representation of the chiral algebra proves

that something goes wrong in the IR, which sometimes implies SUSY breaking.

One more possibility for the IR behavior, which we excluded above by assuming

that the IR CFT has a normalizable vacuum, is when such a vacuum is absent.

This means that the spectrum of dimensions is not gapped in the IR but rather

has a continuous branch, like the free boson. Absence of normalizable vacuum also

allows for chiral algebras which do not admit unitary representations. We will see an

N = (2, 2) example with this kind of behavior later.
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Chapter 2

The Gopakumar-Vafa and

Ooguri-Vafa formulas

In this chapter we give a detailed derivation of the Gopakumar-Vafa formula and in the

last section review the Ooguri-Vafa generalization. It is based entirely on papers [63]

and [64], the first of which is a joint work with Edward Witten. The motivation and

the general picture were discussed in the Introduction, so here we start right away

by analyzing the supersymmetric background relevant for the problem. Then we will

describe the worldline and the field theoretic computations of the effective action on

this background.

2.1 The Background And Its Supersymmetry

2.1.1 The Background In Five Dimensions

The Supersymmetric Gödel Solution

The bosonic fields of minimal supergravity in five dimensions are the metric tensor

g and a U(1) gauge field V , whose field strength is the 5d graviphoton T = dV . To

describe the supersymmetric Gödel solution [86], we parametrize R5 with coordinates t

33



and xµ, µ = 1, . . . , 4. The desired solution has the property that T has no component

in the t direction, and its components in the xµ directions are constant and anti-

selfdual. We set Vν = 1
2
T−µνx

µ, where T−µν is constant (independent of t and the xµ),

antisymmetric, and anti-selfdual in the four-dimensional sense. We take the metric

to be

ds2 = −(dt− Vµdxµ)2 +
4∑

µ=1

(dxµ)2. (2.1)

For real T−, this is a real and supersymmetric solution of 5d supergravity in Lorentz

signature. It has the special property that the 5d graviphoton can also be viewed as

the field strength of a “Kaluza-Klein” gauge field.

This is actually not a physically sensible solution, since a large circle in the hy-

perplane t = 0 can be a closed timelike curve. For our purposes, we would like to

compactify the t direction to a circle, and moreover we want this circle to be spacelike,

so that it can be interpreted as the M-theory circle. To make the circle spacelike, we

will set t to be a multiple of −iy, where y will be a real variable of period 2π. To

give the circle an arbitrary circumference 2πeσ, we take the relation between t and y

to be t = −iyeσ. The solution (2.1) can then be written

ds2 = e2σ (dy +Bµdxµ)2 +
∑
µ

(dxµ)2, (2.2)

where we have defined

Bµ = −ie−σVµ. (2.3)

This compactified solution can be generalized in an obvious way to depend on another

real parameter: we give a constant expectation value to Vy, the component in the y

direction of the gauge field V .

Clearly, to make the metric in eqn. (2.2) real, we have to take Vµ and T− to

be imaginary. This is not really troublesome, since a Schwinger-like calculation in
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a constant magnetic field still makes sense if the magnetic field is imaginary. (An

imaginary magnetic field in Euclidean signature is somewhat analogous to a constant

electric field in Lorentz signature, which was one of the original cases studied by

Schwinger.)

The 4d interpretation of the 5d metric (2.2) requires some care. The 4d metric in

Einstein frame is not gµν = δµν , which we would read off from (2.2), but rather is

gEµν = eσδµν . (2.4)

It is also convenient to define

W−µν = 4eσ/2T−µν , (2.5)

which turns out to be the 4d graviphoton. Thus

Bν = −ie
−3σ/2

8
W−µνx

µ, Vν =
1

2
T−µνx

µ. (2.6)

We also write W− as the curvature of a 4d gauge field

W−µν = ∂µUν − ∂νUµ, Uµ = 4eσ/2Vµ. (2.7)

T−, W−, V and U will be imaginary and B real. We define the 5d scalar quantity

(T−)2 = δµµ
′
δνν

′
T−µµ′T

−
νν′ , (2.8)

raising and lowering indices using the 5d metric (2.2). But in defining a corresponding

4d scalar quantity (W−)2, we raise and lower indices using the 4d Einstein frame

metric:

(W−)2 = gEµµ
′
gEνν

′
Wµµ′Wνν′ = 16e−σ(T−)2. (2.9)
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We have described the basic five-dimensional solution that is used in the compu-

tation leading to the GV formula, along with its reduction to four dimensions. This

solution has two properties that are important in deriving the GV formula: (i) it

preserves all of the supersymmetry, not just half of it, as one might expect for a

solution with an anti-selfdual graviphoton; (ii) it generalizes straightforwardly to the

case that an arbitrary number of vector multiplets are included. We describe these

two properties in sections 2.1.1 and 2.1.1.

Extended Supersymmetry

The supersymmetry algebra of the supersymmetric Gödel solution (2.1) can be de-

scribed as follows. In describing spinors, we use the obvious orthonormal frame field

et = dt− Vµdxµ, eµ = dxµ, µ = 1, . . . , 4, (2.10)

or the dual vector fields

vt =
∂

∂t
, vµ =

∂

∂xµ
+ Vµ

∂

∂t
. (2.11)

The spinor representation of SO(1, 4) is four-dimensional and pseudoreal. Since it is

pseudoreal, the supersymmetry generators in minimal 5d supergravity are actually a

pair of spinors, which we denote εαi, where α = 1, . . . , 4 is an SO(1, 4) spinor index

and i = 1, 2 reflects the doubling needed to make the supersymmetry generator real

(note that no symmetry acting on this index is assumed). Indices are raised and

lowered using the SO(1, 4)-invariant antisymmetric tensor Cαβ (sometimes called the

charge conjugation matrix) and a 2× 2 antisymmetric tensor εij. In five-dimensional

Minkowski spacetime, the supersymmetry algebra is

{Qαi, Qβj} = −iΓMαβεijPM + Cαβεijζ, (2.12)
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where PM , M = 0, . . . , 4 are the momentum generators, (ΓM)δβ are Dirac gamma-

matrices, ΓMαβ = (ΓM)δβCδα, and we include the 5d central charge ζ.

Since the graviphoton field breaks SO(1, 4), it is convenient to write everything in

terms of a 4 + 1-dimensional split with coordinates xµ, µ = 1, . . . , 4 and t. For this,

we introduce four-dimensional gamma-matrices γµ with chirality matrix γ5 = −iΓ0,

decompose Qαi in terms of spinors QAi and QȦi, A, Ȧ = 1, 2 of negative and positive

chirality, and we write the momentum generators as H = −P0 and Pµ, µ = 1, . . . , 4.

In 5d Minkowski spacetime, the supersymmetry algebra now reads

{QAi, QBj} = εABεij(H + ζ)

{QȦi, QḂj} = εȦḂεij(H − ζ)

{QAi, QḂj} = −iΓµ
AḂ
εijPµ. (2.13)

Now let us discuss what happens to the supersymmetry algebra when the gravipho-

ton field is turned on. The Killing spinor equation for a supersymmetry generator ε

implies that it is independent of t and obeys the four-dimensional equation

∂µε−
1

4
T−νργ

νργµε = 0. (2.14)

Since γµ reverses the chirality and T−νργ
νρ annihilates spinors of positive chirality, this

equation is trivially satisfied for any constant spinor ηAi of negative chirality by

εAi = ηAi, εȦi = 0. (2.15)

This is enough to maintain half the supersymmetry. But somewhat less trivially, if

ηȦi is a constant spinor of positive chirality, the equation can also be solved by

εȦi = ηȦi, εAi = T−µνx
µγν

AȦ
ηȦi , (2.16)
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so a constant anti-selfdual graviphoton actually preserves all of the supersymmetry.

The extended supersymmetry is certainly surprising, but if one looks more closely,

there is a surprise hidden even in the more trivial-looking supersymmetries (2.15).

In gauge theory, a background with anti-selfdual field strength FAB preserves the

supersymmetries of positive chirality. (Anti-selfduality means that FȦḂ = 0, so the

transformation of the gluino field λ associated to a positive chirality supersymmetry

generator εȦ is δλȦ = FȦḂε
Ḃ = 0.) But the “trivial” supersymmetries in an anti-

selfdual graviphoton background have negative chirality.

Since the anticommutator of two supersymmetries will be a bosonic symmetry, we

have to understand the bosonic symmetries of this spacetime in order to understand

the supersymmetry algebra. The Killing vector fields associated to the generators H

and Pµ of translation symmetries are

h = − ∂

∂t

pµ =
∂

∂xµ
− Vµ

∂

∂t
. (2.17)

Note the contribution to pµ that is proportional to V µ; it reflects the fact that the

graviphoton background is translation-invariant in the xµ directions only up to a time

translation. Because of this contribution, the translation generators do not commute:

[pµ, pν ] = T−µνh

[pµ, h] = 0. (2.18)

(As discussed below, the commutator of the conserved charges Pµ corresponding to

pµ also contains a central term that is not seen in the commutator of the pµ.)

We also must consider rotation symmetries. Without the graviphoton field, we

would have a full action of Spin(4) ∼= SU(2)` × SU(2)r, with SU(2)` rotating spinor
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indices A,B of negative chirality and SU(2)r rotating spinor indices Ȧ, Ḃ of positive

chirality. A constant anti-selfdual graviphoton field breaks SU(2)`×SU(2)r to U(1)`×

SU(2)r. The Killing vector fields that generate the unbroken rotation symmetries are

unchanged from what they would be at T− = 0. The SU(2)r generators do not appear

in the anticommutators of two supersymmetries (or of the other bosonic symmetry

generators). Thus SU(2)r can be viewed as a group of outer automorphisms of the

supersymmetry algebra. However, as we discuss momentarily, the U(1)` generator

does appear on the right hand side of the supersymmetry algebra. The generator of

U(1)` is associated to the Killing vector field

j = 4V µ ∂

∂xµ
. (2.19)

We also express j in terms of standard angular momentum generators jµν :

j = T−µνjµν , jµν = xµ
∂

∂xν
− xν

∂

∂xµ
. (2.20)

It is convenient to write Jµν for the conserved angular momentum corresponding to

jµν , and set

J = T−µνJµν . (2.21)

We also want an analogous quantity for the theory compactified to four dimensions,

but here we should be careful. In more detail J = T−µν
(
δνσxµ ∂

∂xσ
− δµσxν ∂

∂xσ

)
, where

δνσ is the standard flat metric on R4. In four dimensions, we want to make a similar

definition using the 4d graviphoton field W− (eqn. (2.5)) and the Einstein metric gE

(eqn. (2.4)), so we define

J = W−µν

(
gEνσxµ

∂

∂xσ
− gEµσxν ∂

∂xσ

)
, (2.22)
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obeying

J =
eσ/2

4
J. (2.23)

In discussing the supersymmetry algebra, just as at T− = 0, we write QAi and

QȦi for supersymmetries whose generators are parametrized by the negative and

positive chirality spinors ηAi and ηȦi that appear in eqns. (2.15) and (2.16) above.

Turning on the constant anti-selfdual graviphoton field modifies the supersymmetry

algebra in two ways. The most obvious change is that because the generators (2.16)

of positive chirality supersymmetries have a contribution linear in the xµ, the QȦi do

not commute with the Pµ:

[Pµ, QȦi] = T−µνΓ
ν
ȦA
QA
i . (2.24)

Given this, there must be a correction to the anticommutator {QȦi, QḂj}, to avoid a

problem with theQȦi·QḂj ·QAk Jacobi identity. To compute what happens, all one has

to know is that, in five-dimensional notation, if εαi and ε′βj are two Killing spinor fields,

then, up to possible central terms, the anticommutator of the corresponding super-

symmetries is associated to the Killing vector field1 um = εijε′iΓ
mεj. The graviphoton

field produces no correction to the anticommutator {QAi, QBj} of negative chirality

supersymmetries, since eqn. (2.15) asserts that (in the local Lorentz frame (2.10)),

there is no T−-dependent contribution to the generators of these supersymmetries.

In computing {QAi, QȦj}, we do have to take into account the T−-dependent contri-

bution to the generator of QȦj. But this just goes into building up the T−-dependent

part of the Killing vector field pµ (eqn. (2.17)), leaving no T−-dependent correction to

the usual relation {QAi, QȦj} = −iεij
∑4

µ=1 PµΓµ
AȦ
. Where one does find a correction

is in the anticommutator {QȦi, QḂj}, which acquires a term εȦḂεijJ.

1If we use constant gamma-matrices Γm referred to the local Lorentz frame (2.10), this formula
will give the components of the vector field um in the dual basis (2.11).
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The central charge ζ that appears in the {Q,Q} anticommutator (eqn. (2.13))

also appears in [Pµ, Pν ]. This should come as no surprise; it reflects the fact that in

the presence of a constant magnetic field on R4 – in our case the graviphoton field

– translations only commute up to a gauge transformation. To evaluate [Pµ, Pν ], we

use the Pµ ·QAi ·QḂj Jacobi identity. Since

Pν = − i
4

ΓȦAν εij{QAi, QȦj}, (2.25)

the commutator [Pµ, Pν ] can be simply computed using [Pµ, QAi] = 0, eqn. (2.24) for

[Pµ, QȦj], and eqn. (2.13) for {QAi, QBj}. We find that [Pµ, Pν ] is proportional to

H + ζ (and not to H, as one might have supposed from eqn. (2.18) for [pµ, pν ]).

Putting the pieces together, the supersymmetry algebra is

[Pµ, Pν ] = −iT−µν(H + ζ)

[J, Pµ] = 2iT−µνP
ν

[J, QAi] = − i
2
T−µνΓ

µν
ABQ

B
i

[Pµ, QȦi] = T−µνΓ
ν
ȦB
QB
i ,

{QAi, QBj} = εABεij(H + ζ)

{QAi, QȦj} = −iΓµ
AȦ
εijPµ

{QȦi, QḂj} = εȦḂεij(H − ζ + J), (2.26)

with other commutators and anticommutators vanishing.

This 5d supersymmetry algebra will be our starting point in the particle-based

computation in section 2.2. In section 2.3, we will perform a field theory computation

that is conveniently expressed in terms of Kaluza-Klein reduction to four dimensions.

For this, we will want a 4d version of the above algebra that arises after rotation to

Euclidean time and compactifying the time direction on a circle of radius eσ. We
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write the metric as in eqn. (2.2), and use a rescaled graviphoton field W−µν as in eqn.

(2.5). In going to four dimensions, the gamma-matrices are scaled by eσ/2 to refer

them to the Einstein frame because of the eσ in the definition of the 4d Einstein

metric in (2.4), and accordingly to keep the supersymmetry algebra in a standard

form, the supersymmetry generators must be scaled by eσ/4. Thus, we introduce 4d

supersymmetry generators QAi, QȦj, defined by

QAi = e−σ/4QAi, QȦj = e−σ/4QȦj. (2.27)

Rotation to Euclidean time causes H to be accompanied by an extra factor of −i

(assuming one wishes H to remain hermitian). After compactification, H becomes a

central charge in the 4d sense. The full 4d central charge is

Z = e−σ/2(ζ + iH) (2.28)

and the supersymmetry algebra in four dimensions is

[Pµ, Pν ] = − i
4
W−µνZ

[J, Pµ] = 2iW−µνP
ν ,

[J,QAi] = − i
2
W−µνγ

µν
ABQB

i ,

[Pµ,QȦi] =
1

4
W−µνγ

ν
ȦB

QB
i ,

{QAi,QBj} = εABεijZ

{QAi,QȦj} = −iγµ
AȦ
εijPµ

{QȦi,QḂj} = −εȦḂεij(Z−
1

4
J) (2.29)

As always, the moduli of the compactification do not appear explicitly in the algebra,

but they affect the possible values of the central charge. For example, if the 5d gauge
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fields have holonomies around the M-theory circle, this affects the values of H and

therefore of Z.

Generalization To Any b2(Y )

So far, we have considered the supersymmetric Gödel solution in pure supergravity,

but we will need its generalization to include vector multiplets. For this, we could

proceed abstractly, but it is convenient to consider the motivating example of com-

pactification of M-theory to five dimensions on a Calabi-Yau manifold Y with second

Betti number b2. We introduce a basis ωI , I = 1, . . . , b2 of H2(Y,Z), and define

CIJK =
1

6

∫
Y

ωI ∧ ωJ ∧ ωK . (2.30)

The Kahler class ω of Y can be expanded as a linear combination of the ωI :

ω =

b2∑
I=1

vIωI . (2.31)

The vI are interpreted as scalar fields in five dimensions (they take values in a certain

Kahler cone) and their expectation values are moduli of the compactification. It turns

out that only b2 − 1 combinations of the b2 fields vI are in 5d vector multiplets. The

volume of Y , which is

V = CIJKvIvJvK , (2.32)

is part of a hypermultiplet (sometimes called the universal hypermultiplet). The

remaining b2 − 1 combinations of the vI are in vector multiplets. It is convenient to

define these combinations by setting

hI =
vI

v
, v = V1/3, (2.33)
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so that

CIJKhIhJhK = 1. (2.34)

The hI , with this constraint, parametrize the vector multiplet moduli space in five

dimensions.

In five dimensions, a vector multiplet contains a real scalar field and a U(1) gauge

field. To find the gauge fields, we make a Kaluza-Klein expansion of the M-theory

three-form field C:

C =
∑
I

V IωI . (2.35)

The V I are abelian gauge fields in five dimensions, with field strengths F I = dV I .

One linear combination of the V I , namely V =
∑

I hIV
I , with hI = CIJKhJhK , is in

the supergravity multiplet. This is the the 5d graviphoton field. To be more exact,

the graviphoton field strength is T =
∑

I hIdV
I ; dV is not gauge-invariant unless

the hI are constant. The orthogonal linear combinations of the V I are in vector

multiplets, together with the hI . To describe orthogonal linear combinations of the

V I , it is useful to introduce vectors hIx, x = 1, . . . , b2 − 1 tangent to the hypersurface

(2.34), i.e., obeying hIhIx = 0. These can be defined as hIx = ∂hI/∂φx, where φx are

local coordinates on the hypersurface (2.34). The linear combinations of the V I that

are orthogonal to the graviphoton field2 are Vx =
∑

IJK CIJKhIhJxV K . To be more

precise, the gauge-invariant field strengths Fx =
∑

IJK CIJKhIhJxdV K are in vector

multiplets.

The precise meaning of the statement that T =
∑

I hIdV
I is in the supergravity

multiplet is that it appears in the supersymmetry transformation of the spin 3/2

gravitino field:

δΨM = ∇Mε+
i

8
TNP

(
Γ NP
M − 4δNMΓP

)
ε+ . . . , (2.36)

2 This orthogonality is in the natural metric aIJ = 1
4

∫
Y
ωI ∧ ∗ωJ on the Kahler cone. The

hypersurface metric gxy = hIxh
J
yaIJ is induced from this.
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where the ellipsis represents fermionic terms. By contrast, the Vx appear along with

derivatives of scalars in supersymmetry transformations of spin 1/2 fermi fields that

are in vector multiplets. Let λx be fermionic fields related to the φx by supersymmetry.

Then the precise meaning of the statement that Fx is in a vector multiplet is that

δλx =
i

2
∂Mφ

xΓMε+
1

4
F x
MNΓMNε+ . . . , (2.37)

where again the ellipsis represents fermionic terms, and the index x in F x was raised

using the metric defined in footnote 2.

Now it should be clear how to embed the original supersymmetric Gödel solution

(2.1), which corresponds to the case b2 = 1 (no vector multiplets), in the theory with

an arbitrary number of vector multiplets. Using the same V and the same metric

as before, we simply take the hI to be arbitrary constants, the Vx to vanish, and

V I = hIV . This will ensure the vanishing of the right hand side of eqn. (2.37) and

all desired properties are satisfied. Similarly, the compactified version of the solution

is

ds2 = e2σ (dy +Bµdxµ)2 + e−σ
∑
µ

(dxµ)2, Bµ = −ie
−σ

2
T−νµx

ν , V I
µ =

hI

2
T−νµx

ν ,

(2.38)

again with

T−µν =
e−σ/2

4
W−µν . (2.39)

Again we take T−µν and V I
µ to be imaginary and the metric to be real. If y is understood

to be a periodic variable (with period 2π), we can slightly generalize this solution

by giving nonzero constant values to V I
y , the components of the fields V I in the y

direction.

Each gauge field V I , for I = 1, . . . , b2, couples to a conserved charge QI . The QI

are components of the homology class of an M2-brane wrapped in Y . A wrapped
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M2-brane with world volume Σ is an eigenstate of QI with eigenvalue

qI =

∫
Σ

ωI . (2.40)

The central charge in the 5d supersymmetry algebra is ζ =
∑

I h
IQI (see eqn. 2.75).

Its values for a BPS particle with charges QI = qI is ζ(~q) =
∑

I h
IqI . A BPS particle

with those charges couples to the linear combination V (~q) =
∑

J qJV
J of the V I . In

the background (2.38), the field strength of V (~q) is

F {~q}µν =
∑
I

qIh
IT−µν = ζ(~q)T−µν . (2.41)

So for each set of charges ~q = {q1, q2, . . . , qb2}, we will do a Schwinger calculation with

background field F {~q}µν = ζ(~q)T−µν . Part of the reason that a simple answer emerges is

that the mass m(~q) of a BPS particle with charges ~q is also proportional to ζ(~q), so

that the ratio F ~q/m(~q) depends only on T−µν and not on the vector multiplet moduli.

2.1.2 The Background From A 4d Point Of View

Duality-Invariant Formalism

Here, we will describe the same background more fully from a 4d point of view.3

We primarily work in Einstein frame (which is natural in supergravity) rather than

the string frame. As we have already explained, M-theory compactification on a

Calabi-Yau manifold Y gives a theory in five dimensions with b2(Y ) abelian gauge

fields, of which b2 − 1 linear combinations are in vector multiplets and one is the

graviphoton. Upon further compactification on a circle, we get one more vector

multiplet, which comes from Kaluza-Klein reduction of the 5d metric on a circle.
3Some original supergravity references are [20,49–51]. Our conventions are those of [87].
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Thus in four dimensions, there are b2 + 1 abelian gauge fields, of which b2 linear

combinations are in vector multiplets and one linear combination is the graviphoton.

In five dimensions, a vector multiplet contains a real scalar field; we described the

scalars in b2− 1 vector multiplets via b2 scalar fields hI that obey a constraint (2.34).

In four dimensions, a vector multiplet contains a complex scalar field. It is convenient

to describe the scalar fields in b2 vector multiplets via b2 +1 complex scalar fields XΛ,

Λ = 0, . . . , b2 that obey a gauge-invariance

XΛ → λXΛ, λ ∈ U(1), (2.42)

and a constraint

NΛΣX
ΛXΣ = −1, (2.43)

where NΛΣ will be defined later. We will also eventually impose a condition to fix

the U(1) gauge-invariance. Alternatively, to emphasize the complex structure of the

vector multiplet moduli space, one can replace the constraint (2.43) by an inequality

NΛΣX
ΛXΣ < 0 and replace the U(1) gauge-invariance with a C∗ gauge-invariance

XΛ → λXλ, λ ∈ C∗.

The XΛ are the bottom components of superfields XΛ that also contain fermion

fields ΩΛ and the field strengths FΛ
µν of the U(1) gauge fields, which appear in the

combinations:

FΛ,−
µν = FΛ,−

µν −
1

2
X

Λ
W−µν + fermions. (2.44)

Here the 4d graviphoton field strength W−µν will be defined later and the fermionic

terms are not important to us. Here and elsewhere in this paper, if F is a two-form

then F− is its anti-selfdual part. The superfields XΛ have expansions

XΛ = XΛ+θ
i
ΩΛ
i +

1

2
εijθ

i
σµνθjFΛ,−

µν +· · ·− 1

6
(εijθ

i
σµνθj)2∆X

Λ
, Λ = 0, . . . , b2, (2.45)
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where the θ’s are superspace coordinates of negative chirality and ∆ = DµD
µ is

the Laplacian. Under the scaling (2.42), the field strengths FΛ
µν are invariant (Dirac

quantization of magnetic flux gives a natural normalization of these field strengths,

so they should not be rescaled), so the θ’s transform as θ → λ1/2θ and hence the

chiral superspace measure transforms as

d4θ → λ−2d4θ. (2.46)

The reader will note that although the XΛ parametrize a complex manifold, as is

manifest in the description in which they satisfy a C∗ gauge invariance and an in-

equality NΛΣX
ΛX

Σ
< 0, there are non-holomorphic terms in the expansion (2.45).

Part of the reason for this is that the superfields XΛ and their superspace derivatives

obey a linear nonholomorphic constraint.

The kinetic energy of the vector multiplets comes from a holomorphic coupling

I0 = −i
∫

d4xd4θF0(XΛ). (2.47)

For consistency with the scaling (2.42) and (2.46), the function F0, which is called

the prepotential, must be homogeneous in the XΛ of degree 2. The interaction I0 is

in fact the case g = 0 of the interactions Ig (defined in eqn. (1.2)) that are described

by the GV formula.

The vector multiplets can be conveniently described in a T -duality invariant lan-

guage. This makes some formulas we will need more transparent, even though, since

there is no T -duality in M-theory, T -duality is not important in the derivation of the

GV formula. One introduces the fields

F̂Λ =
∂F0

∂XΛ
, (2.48)
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which transform as F̂Λ → λF̂Λ, just like the XΛ. One furthermore introduces the

symplectic form Υ =
∑

Λ dXΛ ∧ dF̂Λ and the group Sp(2b2 + 2,Z) of integer-valued

linear transformations of the whole set of fieldsXΛ

F̂Λ

 (2.49)

that preserve this symplectic form. From this point of view, the equation (2.48) can

be described more symmetrically by saying that the vector multiplets parametrize

(the quotient by C∗ of) a C∗-invariant Lagrangian submanifold of C2b2+2, which we

view as a complex symplectic manifold with holomorphic symplectic form Υ. One

defines

NΛΣ = 2Im F̂ΛΣ, F̂ΛΣ =
∂2F0

∂XΛ∂XΣ

NΛΣ = F̂ΛΣ + i
(NX)Λ(NX)Σ

(X,NX)
. (2.50)

Here (NX)Λ = NΛΣX
Σ and (X,NX) = NΛΣX

ΛXΣ. These objects appear in the

kinetic energy of the fields XΛ after performing θ integrals. The constraint (2.43) can

be written in a manifestly symplectic-invariant way:

i(XΛF̂Λ − F̂ΛX
Λ
) = −1. (2.51)

The action of Sp(2b2 + 2,Z) on the fields XΛ, F̂Λ has to be accompanied by linear

transformations of the field strengths FΛ
µν and their duals. In fact, Sp(2b2 + 2,Z) acts

linearly on  FΛ+
µν

G+
Λµν

 (2.52)
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where the GΛµν are the duals of FΛ
µν which can be defined by4:

G+
Λµν = NΛΣF

Σ+
µν . (2.53)

One advantage of the redundant description via pairs of fields XΛ, F̂Λ and also

FΛ
µν , GΛµν is that this makes it possible to describe the graviphoton field in a man-

ifestly holomorphic and duality-invariant fashion. The anti-selfdual part of the 4d

graviphoton field is

W−µν = 2(XΛG−Λµν − F̂ΛF
Λ−
µν ). (2.54)

In Lorentz signature, the selfdual part of the graviphoton field is the complex conju-

gate of this or

W+
µν = 2(X

Λ
G+

Λµν − F̂ΛF
Λ +
µν ). (2.55)

In Euclidean signature, W+
µν is not the complex conjugate of W−µν , but these formulas

remain valid. Of course, we are interested in an anti-selfdual graviphoton background

in which W+
µν = 0.

It is convenient to describe the anti-selfdual and selfdual parts of the graviphoton

field using spinor indices, defined by

W−AB = γµνABW
−
µν , W+

ȦḂ
= γµν

ȦḂ
W+
µν , γµν =

1

2
[γµ, γν ]. (2.56)

Here A,B = 1, 2 and Ȧ, Ḃ = 1, 2 are respectively spinor indices of negative and

positive chirality. Eqn. (2.54) shows that W−AB scales with degree 1 under the scaling

XΛ → λXΛ. More precisely, W−AB is an anti-selfdual two-form valued in the pullback

to spacetime of a holomorphic line bundle L over the vector multiplet moduli space;

L is characterized by the fact that W−AB transforms with charge 1 under scaling. In

terms of superfields, W−AB is the bottom component of a chiral superfield WAB that

4If L is the Lagrangian density, one can define GΛ by G−µνΛ = 2i ∂L
∂FΛ−

µν
.
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likewise transforms with charge 1 under the equivalence (2.42), and W2 =WABWAB

is similarly a chiral superfield of charge 2. To make the charges balance, in the

interaction Ig

Ig = −i
∫
R4

d4x d4θFg(XΛ)(WABWAB)g (2.57)

that enters the GV formula, the functions Fg must be homogeneous of degree 2− 2g.

Background Gauge Fields In d = 4

Next we explain the 4d analogs of some observations that were made in section 2.1.1

for d = 5.

In the supersymmetric graviphoton background, the linear combinations of field

strengths FΛ
µν defined in (2.44) and appearing as components of the vector superfields

XΛ must vanish. This gives the very important relation

FΛ
µν =

1

2
X

Λ
W−µν , (2.58)

which is the 4d analog of the corresponding 5d statement F I
µν = hIT−µν .

A 4d particle with charges ~q = q0, . . . , qb2 couples to the effective gauge field

given by the linear combination Aµ(~q) = qΛA
Λ
µ . The field strength of Aµ(~q) in the

graviphoton background is

Fµν(~q) =
1

2
qΛX

Λ
W−µν =

1

4
Z(~q)W−µν . (2.59)

Thus, the effective field strength seen by such a particle in the graviphoton back-

ground is proportional to Z(~q), the complex conjugate of the central charge Z(~q) =

2
∑

Λ qΛX
Λ. This statement is the generalization of the fact (eqn. (2.41)) that in

d = 5, the effective field strength is proportional to the 5d central charge ζ.
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Now, the mass of a BPS particle in d = 4 is m(~q) = |Z|. This means that the

dimensionless ratio F (~q)/m(~q)2 that appears in the Schwinger calculation is propor-

tional to 1/Z and in particular is holomorphic. This is part of the mechanism by

which a holomorphic answer emerges from the Schwinger calculation that we perform

in terms of 4d fields in section 2.3, even though the particle masses are certainly not

holomorphic in Z.

Comparison To Perturbation Theory

Now let us explain why in Type IIA superstring perturbation theory, Fg is generated

only in genus g. We practice first with the case g = 0, corresponding to the clas-

sical approximation. We have written the above formulas in 4d Einstein frame, in

which the dilaton (which is in a hypermultiplet) does not couple directly to the Fg’s,

which govern vector multiplets. To compare to string perturbation theory, we must

transform to the string frame, which we do by a Weyl transformation of the metric

gµν → e−2φĝµν , where ĝµν is the metric in string frame, φ is the four-dimensional

dilaton, and the string coupling constant is gst = eφ. The Einstein-Hilbert action

1
2κ2

4

∫
d4x
√
gR becomes

1

2κ2
4

∫
d4x
√
ĝe−2φR(ĝ) (2.60)

and is generated in string theory in genus 0. More generally, any genus g contribution

to the effective action for external fields from the Neveu-Schwarz (NS) sector only is

proportional to g2g−2
st = exp((2g − 2)φ). But a genus g contribution to the effective

action that has in addition k external Ramond-Ramond (RR) gauge field strengths

(normalized in the standard way to satisfy ordinary Dirac quantization and standard

Bianchi identities) is proportional to g2g−2+k
st = exp((2g − 2 + k)φ). Let us see how

this works for F0. Performing the θ integrals in (2.47) gives a variety of terms, among
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them

I0 =

∫
d4x
√
ĝ

(
e−2φ ∂F0

∂XΛ
∆̂X

Λ
+

∂2F0

∂XΛ∂XΣ
FΛ−
µν FΣ−µν + . . .

)
, (2.61)

where ∆̂ = ĝµνD̂µD̂ν is the Laplacian defined with the string metric. Bearing in mind

that XΛ is described by an NS-NS vertex operator and FΛ− = FΛ−− 1
2
X

Λ
W−+. . . is

described by an RR vertex operator, we see that in Type IIA superstring theory, such

interactions can be generated only in genus 0. The analog of this for Fg is immediate.

All we have to know is that W−µνW
−µν = gµµ

′
gνν

′
W−µνW

−
µ′ν′ acquires a factor of e4φ

in transforming to the string frame and that W−µν comes from the Ramond-Ramond

sector. Performing θ integrals in the definition of Ig gives a variety of terms such as

Ig =

∫
d4x
√
ĝ

((
e−2φ ∂Fg

∂XΛ
∆̂X

Λ
+

∂2Fg

∂XΛ∂XΣ
FΛ−
λσ F

Σ−λσ + . . .

)
e4gφ(W−µνW−µν)

g + . . .

)
,

(2.62)

and we see the expected scaling for interactions that in superstring perturbation

theory are generated only in genus g.

Shift Symmetries

The full power of the duality-invariant formalism sketched in section 2.1.2 is not

really needed for our problem. The reason is that reduction on a circle from five

to four dimensions gives a natural duality frame, defined by the fields that arise in

classical dimensional reduction from the classical gauge and gravitational fields in

five dimensions. Moreover, among the U(1) gauge fields in four dimensions, there is

a distinguished one A0
µ = −Bµ, which arises from the components gµ5 of the five-

dimensional metric. The other 4d gauge fields arise in Kaluza-Klein reduction of the
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5d gauge fields V I :

V I =
4∑

µ=1

AIµdxµ + αI (dy +Bµdxµ) , I = 1, . . . , b2. (2.63)

Here the AIµ are gauge fields in four dimensions, and the αI are scalars. The holonomy

of V I around the Kaluza-Klein circle is exp(2πiαI), so we expect a symmetry

αI → αI + nI . (2.64)

This shift in αI is generated by a gauge transformation exp(inIy) of AI together with

a redefinition of the gauge fields

AIµ → AIµ + nIA0
µ = AIµ − nIBµ, nI ∈ Z. (2.65)

Thus although the definition of A0
µ is completely natural, AIµ is only well-defined up

to an integer multiple of A0
µ.

The gauge fields A0
µ and AIµ, or rather their field strengths dA0 and dAI , appear

in the superfields X 0 = X0 + · · · + θ2dA0
µ + . . . and X I = XI + · · · + θ2dAI + . . . .

The symmetries (2.65) extend to symmetries of the superfields

X I → X I + nIX 0, nI ∈ Z. (2.66)

These transformations (accompanied by corresponding transformations of the deriva-

tives ∂F0/∂XΛ) are the only Sp(2b2+2,Z) duality transformations that are important

in the derivation of the GV formula.

The ratios ZI = X I/X 0 are invariant under scaling of the homogeneous coordi-

nates XΛ and parametrize the vector multiplet moduli space. They transform simply
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under (2.66):

ZI → ZI + nI , nI ∈ Z. (2.67)

Of course, these shifts really act only on the bottom components of the ZI , which we

call ZI :

ZI → ZI + nI , nI ∈ Z. (2.68)

The ZI have a simple interpretation. Consider an M2-brane wrapped on p×S1×Σ ⊂

R4 × S1 × Y , where p is a point in R4 and Σ ⊂ Y is a holomorphic curve. Such an

M2-brane is a supersymmetric cycle, and its action must be a holomorphic function

of the vector multiplet moduli. The charges of the wrapped M2-brane are qI =
∫

Σ
ωI

(the ωI were introduced in eqn. (2.30)), and its mass is given5 by the central charge

ζ(~q) =
∑

I v
IqI (which will be positive for a supersymmetric cycle). The real part of

the action is simply the mass times the circumference of the Kaluza-Klein circle. If

we write the metric of R4 × S1 × Y in the M-theory description as

ds2
M = ds2

10 + e2γ(dy +Bµdx
µ)2. (2.69)

then the circumference is 2πeγ, so the real part of the M2-brane action is 2πeγ
∑

I v
IqI .

On the other hand, the imaginary part of the action is just the C-field period

−
∫
p×S1×Σ

C. Recalling the definition (2.35) of the 5d gauge fields V I , we see that

this period is 2παIqI . So the Euclidean action of the wrapped M2-brane is

S(~q) = 2π
∑
I

qI
(
eγvI − iαI

)
. (2.70)

It is convenient to re-express this formula in terms of the circumference of the

M-theory circle defined in 5d supergravity. The reason this is not the same as the

circumference 2πeγ measured in the 11d metric is that compactification from 11 di-
5We work in units in which the M2-brane tension is 1.
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mensions to 5 dimensions on the Calabi-Yau manifold Y gives a 5d gravitational

action
∫

d5x
√
g

M
VR(gM), where V is the volume of Y in the eleven-dimensional de-

scription, gM is the 5d metric in that description, and R(gM) is the Ricci scalar. In 5d

supergravity, it is convenient and usual to make a Weyl transformation to Einstein

frame, replacing gM by a 5d-metric via gM = V−2/3g5d. The relation of eγ to the

radius eσ of the circle in the 5d description is thus eγ = eσ/v, where v = V1/3. Thus

we rewrite (2.70) in 5d terms:

S(~q) = 2π
∑
I

qI
(
eσhI − iαI

)
, hI =

vI

v
. (2.71)

The coefficients eσhI − iαI in S(~q) must be holomorphic functions of the vector

multiplet moduli, or in other words of the ZI . Comparing the transformations (2.64)

and (2.67), we find the relationship

ZI = αI + ieσhI , (2.72)

which describes the background values of the superfield ZI . The action is thus S(~q) =

−2πi
∑

I qIZ
I . However, it is more convenient to introduce a superfield S(~q) whose

bottom component is S(~q):

S(~q) = −2πi
∑
I

qIZI . (2.73)

This is more convenient because when we perform an actual computation in section

2.2, a particle propagating around the circle has fermionic as well as bosonic collective

coordinates. Writing the action as a superfield is an easy way to incorporate the

fermionic collective coordinates.
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In the 5d description, we write the real part of the action as 2πeσm(~q), with m(~q)

the mass of the wrapped M2-brane in that description:

m(~q) =
∑
I

qIh
I . (2.74)

Since the wrapped M2-brane is BPS, this mass also equals the central charge in the

5d description:

ζ(~q) =
∑
I

qIh
I . (2.75)

Eqn. (2.72) states in particular that ImZI = hIeσ. Recalling the constraint

(2.34), this implies the useful relation

CIJKImZI ImZJ ImZK = e3σ. (2.76)

Validity Of The Calculation

In M-theory on R4 × S1 × Y , we will perform a computation involving M2-branes

wrapped on S1 × Σ where Σ is a non-trivial cycle in Y . Our aim here is to describe

the range of validity of the computation, and explain why this suffices to determine

the full answer.

For M-theory to be a reasonable description, we would like Y not to be sub-

Planckian, so we can ask for its volume VM in M-theory units not to be sub-Planckian.

If we are not too close to a boundary of the Kahler cone of Y , then a wrapped M2-

brane has a size of order V1/6
M . To justify a calculation in which wrapped M2-branes

propagating around S1 are treated as elementary particles, we would like the S1 to be

much larger than the size of the M2-branes, which will be generically of order V1/6
M .

So we want

eγ >> V1/6
M & 1, (2.77)
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where as in (2.69), eγ is the radius of the M-theory circle in M-theory units.

When we relate M-theory on R4 × S1 × Y to Type IIA superstring theory on

R4 × Y , the ten-dimensional string coupling constant g10 = eφ is related to γ by [88]

g10 = e3γ/2. (2.78)

Moreover, the metric of R4 × Y in the Type IIA description is

ds2
IIA = eγds2

10. (2.79)

In particular, the volume of Y in the string theory description is (recall that eγ = eσ/v)

VIIA = e3γVM = e3σ. (2.80)

Eqns. (2.77), (2.78), and (2.80) show that in the region in which our computation

is valid, g10 and VIIA are both large. In particular, the fact that g10 is large means

that, as expected, string perturbation theory is not useful in the region in which our

calculation is valid. Moreover, as explained in section ??, the fact that VIIA is large

means that we will not encounter the holomorphic anomaly. Notice from (2.78) and

(2.80) that

g10 = e3σ/2 1√
VM

= e3σ/2gst, (2.81)

where gst is a 4-dimensional string coupling introduced in section 2.1.2.

The interactions Fg(X ), when expressed in string frame with Kahler moduli (and

hence VIIA) held fixed, have a known dependence on gst, as explained in section 2.1.2.

Due to (2.81), they have a known dependence on g10 as well. So a calculation that is

only valid for g10 >> 1 can suffice to determine them.

Because of holomorphy, the same is true of a calculation that is only valid

for large VIIA. To explain this, we use the homogeneity of Fg to write Fg(X ) =
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(X 0)2−2gΦ(Z1, . . . ,Zb2). To avoid clutter, in the following argument, we take b2 = 1,

so there is only one Z. Also we write Z = α + iβ where β is defined in eqn. (2.72).

The shift symmetry Z → Z + n, n ∈ Z, implies that the general form of Φ(Z) is

Φ(Z) =
∑

n∈Z cn exp(2πinZ), with constants cn. (Moreover, these constants vanish

for n < 0, since an exponential blowup for large volume would contradict what

we know from supergravity.) We can write Φ(Z) =
∑∞

n=0 fn(β) exp(2πinα), where

fn(β) = cn exp(−2πnβ). Since each fn(β) has a known dependence on β, if we can

compute these functions for large β, this will suffice to determine the whole function

Φ(Z). But large β is precisely the large volume region in which the Schwinger-like

computation is valid, so that computation can suffice to determine Fg(X ).

Classical Reduction From Five Dimensions

As explained in section ?? of the introduction, it is important to know to what extent

the Ig’s or equivalently the Fg’s can arise by classical dimensional reduction from five

dimensions. We will describe the two contributions that are known and explain why

they are the only ones.

After performing the θ integrals, I0 contributes a term to the effective action with

two derivatives, so a classical contribution to I0 must come from the two-derivative

part of the effective action in five dimension, or in other words from the minimal su-

pergravity action with vector multiplets. This contributes the much-studied classical

prepotential

F cl
0 (X ) = −1

2

∑
IJK

CIJK
X IX JXK

X 0
. (2.82)

With this prepotential, and with the help of eqn. (2.76), one finds that the constraint

(2.43) implies that |X0| = e−3σ/2/2. We choose the phase so that

X0 = − i
2
e−3σ/2. (2.83)
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After performing θ integrals, the four-dimensional action that follows from F cl
0 (X )

includes kinetic terms for the gauge fields:

− i

4π

∫
d4x
√
gNΛΣg

µµ′gνν
′
FΛ+
µν F

Σ+
µ′ν′ + c.c. (2.84)

Using (2.50) for NΛΣ and (2.72) for the ratios XK/X0, we find a parity-violating part

of the kinetic term

I− = − 3

2π

∑
IJK

CIJK
∫
R4

αK(F I − αIF 0) ∧ (F J − αJF 0) (2.85)

and a parity-conserving part

I+ = − 1

2π

∑
IJ

∫
R4

eσaIJ(F I − αIF 0) ∧ ?(F J − αJF 0)− 1

4π

∫
R4

e3σF 0 ∧ ?F 0, (2.86)

where

aIJ = −3CIJKhK +
9

2
hIhJ (2.87)

is the metric on the Kahler cone defined in footnote 2. The parity-violating contri-

bution descends from a Chern-Simons interaction

− 1

(2π)2

∑
IJK

CIJK
∫
V I ∧ dV J ∧ dV K (2.88)

in five dimensions. Notice that although I− is not left fixed by the shift symmetries

αI → αI + nI , it changes only by a topological invariant, so its contribution to the

classical equations of motion does respect the shift symmetries. As is usual in such

problems, at the classical level, the shift symmetries are continuous symmetries with

no restriction for the nI to be integers. (Quantum mechanically, the shift symmetries

are broken to discrete symmetries by M2-brane instanton effects that will be studied

in section 2.2.) The parity-conserving term I+ descends from the gauge theory kinetic
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energy −1
2

∫
aIJdV I∧?dV J in five dimensions, along with the Einstein-Hilbert action,

which contributes to the kinetic energy of A0.

What about I1? This interaction contributes four-derivative terms to the effective

action in four dimensions, so a classical contribution to I1 comes from a term in

the five-dimensional effective action with four derivatives. In eleven-dimensional M-

theory, essentially only one multi-derivative correction to the minimal two-derivative

supergravity action is known. This is a term

∆I =
1

(2π)4

∫
C ∧

[ 1

768
(TrR2)2 − 1

192
TrR4

]
(2.89)

(where R is the Riemann tensor, which is viewed as a matrix-valued two-form in

defining the trace) that was originally found [89] by its role in anomaly cancellation

in the field of an M5-brane.6 In compactification on M5×Y (where for us Y will be a

Calabi-Yau three-fold and M5 = R4×S1), we consider a contribution to ∆I with two

factors of R tangent to Y and the other two tangent to R4 × S1. This contribution

generates a Chern-Simons interaction in five dimensions 1
16·24π2

∑
I c2,I

∫
V I∧TrR∧R,

where

c2,I =
1

16π2

∫
Y

ωITrR ∧R (2.90)

are the coefficients of the second Chern class c2(Y ) in a basis dual to the ωI . Upon

reduction to four dimensions, that Chern-Simons coupling becomes

1

16 · 12π

∑
I

c2,I

∫
αITrR ∧R. (2.91)

6The full supersymmetric completion of this coupling is not known. We normalize the C field so
that the periods of its curvature G = dC differ by integer multiples of 2π. See [90, 91] for detailed
formulas with other conventions.
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Again, this possesses the shift symmetry, modulo a topological invariant. This four-

dimensional interaction can be derived from

F1(X ) = − i

64 · 12π

∑
I

c2,I
X I

X 0
= − i

64 · 12π

∑
I

c2,IZI . (2.92)

Could there be other classical contributions to F1(X ), apart from this known

contribution? Since F1(X ) is invariant under scaling, it is a function of the ratios

ZI = X I/X 0. A term in F1 that is quadratic or higher order in the ZI would violate

the classical shift symmetries. We already know about the linear terms. What about

a constant contribution? Depending on whether the constant is real or imaginary, it

would contribute a parity-violating interaction
∫

TrR∧R or a parity-conserving one∫
TrR ∧ ?R. The parity-violating contribution must be absent, since M-theory con-

serves parity. To generate a parity-conserving R2 interaction by classical dimensional

reduction, we would have to start with
∫

TrR∧ ?R in five dimensions, but reduction

of this to four dimensions gives
∫
eσTrR ∧ ?R, with an unwanted factor of eσ. This

factor is absent in the four-dimensional effective interaction associated to a constant

F1. Thus, there is no way to generate classically a constant contribution to F1.

What about Fg for g > 1? No classical contributions are known and we claim

that there are none. This actually almost follows from the shift symmetries. The

shift symmetries imply that Fg must be independent of the ratios ZI and hence must

be dg(X 0)2−2g, for some constant dg.

To show the vanishing of these constants, one may use a scaling argument similar

to the one used above for F1. For this, one observes that for g > 1, Ig generates

among other things a 4d coupling R2F 2g−2 in which indices are contracted using only

the metric tensor and not the 4d Levi-Civita tensor.7 Such couplings can be lifted

to R2F 2g−2 couplings in five dimensions, but as we found for g = 1, the dimensional

reduction of those couplings to four dimensions does not give the power of eσ that is
7The case g = 1 is exceptional partly because this statement fails for g = 1 if F1 is a real constant.
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needed to match Ig. Alternatively, one may argue as follows using the fact that the

4d couplings derived from Ig with g > 1 also include terms that are of odd order in

the Levi-Civita tensor εµναβ, and depend only on the scalars XΛ, the field strengths

F I , and the Riemann tensor R (and not their derivatives). We can see as follows

that these terms do not arise by reduction of covariant, gauge-invariant couplings in

five dimensions. To get such terms by reduction, the starting point should be 5d

interactions that are local, generally covariant, and gauge-invariant, and odd order

in the 5d Levi-Civita tensor (so that their reduction to d = 4 will be odd order in

the 4d Levi-Civita tensor). A 5d interaction that is covariant and odd order in the

Levi-Civita tensor cannot be the integral of a polynomial in the field strengths F I
µν

and the Riemann tensor Rµναβ; such a polynomial would have an even number of

indices and there would be no way to contract them with the help of any number

of copies of the metric tensor and an odd number of Levi-Civita tensors. We do

not want to use covariant derivatives of F or R, since then we will get covariant

derivatives in d = 4. So we have to start with a 5d interaction that is gauge-invariant

and local (meaning that its variation is a gauge-invariant local function) but is not

the integral of a gauge-invariant local density. The only such interactions are the

standard Chern-Simons interactions.8 We have already analyzed their contributions.

In short, only some very special and known contributions to F0 and F1 can arise

by classical reduction from five dimensions. Everything else can be determined by a

Schwinger-like calculation.
8This fact is widely used but not always explained. Let us say that a generally covariant inter-

action U has weight n if it scales as U → enλU under a global Weyl transformation gµν → eλgµν
(with constant λ). Any generally covariant interaction is a linear combination of interactions of def-
inite weight. If U has non-zero weight n and its variation is a local gauge-invariant functional
of the metric and other fields, then U is the integral of a gauge-invariant local density, since
U = (1/n)

∫
d5x
√
g gµν

δ
δgµν

U . Interactions of weight 0 are very few (in any odd dimension and
in particular in dimension 5, they are all parity-odd and proportional to the Levi-Civita tensor). It
is not hard to see by hand that the standard Chern-Simons functions are the only interactions U
of weight 0 whose variations are local and gauge-invariant but that are not themselves integrals of
locally-defined gauge-invariant densities. One can approach this last question by first classifying the
possible variations of U ; in five dimensions, these must be bilinear in the gauge field strength F or
the Riemann tensor R.
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2.2 The Schwinger Calculation With Particles

2.2.1 Overview

In this section, we come finally to the Schwinger-like calculation for massive BPS

states in five dimensions. We view an M2-brane wrapped on p×S1×Σ ⊂ R4×S1×Y

(where p is a point in R4 and Σ is a holomorphic curve in Y ) as a supersymmetric

instanton. We work in the regime that the radius of S1 is large, so the M2-brane

can be treated as a point particle coupled to 5d supergravity. The particle action is

uniquely determined by supersymmetry modulo irrelevant terms of higher dimension

(once the graviphoton is turned on, this assertion depends on the extended super-

symmetry of the graviphoton background), and this makes our considerations simple.

In appendix B, we show explicitly how the supersymmetric particle action emerges

from an underlying M2-brane action.

In our computation, we consider only the leading order approximation to the

particle action, ignoring all sorts of couplings of higher dimension, and we integrate

over fluctuations around the classical particle orbit in a one-loop approximation. This

computation gives a result with the correct dependence on the radius eσ of the S1

to contribute to the chiral interactions Fg(X ). The terms we neglect all have extra

powers of e−σ and so cannot contribute to those couplings.

In section 2.2.2, we consider the basic example of a massive BPS hypermultiplet

that arises from wrapping an M2-brane on an isolated genus 0 holomorphic curve

in Σ. We evaluate the contribution to the GV formula for the case that (as tacitly

assumed above and in the introduction) the BPS state wraps just once around the S1.

In section 2.2.3, we explain what multiple winding means in this context and thereby

get the full contribution of the hypermultiplet to the GV formula. In section 2.2.4,

we evaluate the contribution of arbitrary massive BPS states to the GV formula.
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This generalization is rather simple because of the extended supersymmetry of the

graviphoton background.

As explained in the introduction, the treatment of BPS states that are massless

in five dimensions requires a different approach, based on fields rather than particles.

This is presented in section 2.3.

A Detail

We perform our calculation in terms of the variables ZI and σ, and use the classical

constraint X0 = −(i/2)e−3σ/2 (eqn. (2.83)) to express the results in a manifestly

supersymmetric fashion in terms of superfields XΛ. But that classical constraint

equation is derived from the classical prepotential F0. Since we will be comput-

ing in particular instanton corrections to F0, the constraint equation actually has

instanton corrections. So supersymmetry actually implies that, when the effective

action is expressed in terms of ZI and σ, it has multi-instanton corrections and also

instanton/anti-instanton corrections (that is, it has terms whose Z-dependence corre-

sponds to effects of multiple BPS particles and/or antiparticles). These terms cannot

be confused with 1-instanton or multi-instanton corrections to the Fg’s, because they

have the wrong dependence on σ (they vanish too rapidly for large σ). But are there

multi-instanton corrections to the Fg’s, as opposed to the 1-instanton contributions

that we will evaluate? One expects the answer to this question to be “no,” because

the interactions among massive BPS particles are irrelevant at long distances, as we

will explain for a related reason in section 2.2.3.

2.2.2 Massive Hypermultiplet

The Free Action

The central charge ζ is real in five dimensions. The mass M of a BPS particle is

M = |ζ|, and there are two types of massive BPS particles, with ζ > 0 or ζ < 0.
65



They arise from M2-branes and their antibranes wrapped on a holomorphic curve

Σ ⊂ Y (equivalently, they arise from M2-branes wrapped on Σ with positive or

negative orientation). We will consider the case ζ > 0, and we define what we mean

by M2-branes (as opposed to antibranes) by saying that this case corresponds to

wrapped M2-branes.

Let us consider a supermultiplet consisting of BPS particles of mass M = ζ at

rest. The supersymmetry algebra reduces to

{QAi, QBj} = 2MεijεAB, {QȦi, QḂj} = 0 = {QAi, QȦj}. (2.93)

In a unitary theory, the vanishing of {QȦi, QḂj} implies that the operators QȦi anni-

hilate the whole supermultiplet. On the other hand, the operators QAi/
√
M generate

a Clifford algebra. The irreducible representation of this Clifford algebra consists

of two bosonic states transforming as (0, 0) under SU(2)` × SU(2)r ∼= Spin(4) and

two fermionic states transforming as (1/2, 0). These four states make up a massive

BPS hypermultiplet (of positive central charge). In M-theory compactified to five

dimensions on Y , such a massive hypermultiplet arises from an M2-brane wrapped

on an isolated genus 0 curve Σ ⊂ Y . If by “supermultiplet,” we mean a set of states

that provide an irreducible representation of the full superalgebra of spacetime sym-

metries (including the rotation group Spin(4) ∼= SU(2)` × SU(2)r), then a general

BPS supermultiplet at rest consists of the tensor product of the states of a massive

hypermultiplet with some representation (j`, jr) of SU(2)` × SU(2)r. We consider a

hypermultiplet here, and analyze the contribution to the GV formula of a general

BPS supermultiplet in section 2.2.4.

We ultimately will perform a one-loop calculation involving small fluctuations

around a particle trajectory of the form p × S1 ⊂ R4 × S1, for some p ∈ R4. In this

one-loop approximation, the BPS particle is nearly at rest, meaning that it can be
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treated nonrelativistically. So we can approximate the Hamiltonian as H = M +H ′,

where H ′ =
∑4

µ=1 P
2
µ/2M is the nonrelativistic Hamiltonian; here Pµ, µ = 1, . . . , 4 is

the momentum. We replace the supersymmetry algebra (2.13) with its nonrelativistic

limit

{QAi, QBj} = 2MεABεij

{QȦi, QḂj} = εȦḂεij
P 2

2M

{QAi, QȦj} = −iΓµ
AȦ
εijPµ. (2.94)

The momentum Pµ commutes with all supersymmetry generators, as does the non-

relativistic Hamiltonian H ′:

[H ′, QAi] = [H ′, QȦj] = [H ′, Pµ] = 0. (2.95)

Eqn. (2.94) tells us that ψAi = QAi/M
√

2 (the normalization will be convenient)

obeys fermion anticommutation relations {ψAi, ψBj} = M−1εABεij. Eqn. (2.95) tells

us further that the ψAi commute with the Hamiltonian and thus obey ψ̇Ai = 0. To

derive this equation of motion along with the anticommutation relations from an

effective action, the action must be
∫

dtM
2
iεABεijψAiψ̇Bj. As for the bosonic coordi-

nates xµ that represent the motion of the center of mass, the fact that the translation

generators Pµ are conserved and that the Hamiltonian is H ′ = P 2/2M tells us that

up to an additive constant, the action is a free particle action M
2

∫
dt ẋ2. In Lorentz

signature, the constant is minus the rest energy or −M and thus the particle action

in this approximation is

I =

∫
dt

(
−M +

M

2
ẋµẋµ +

iM

2
εABεijψAiψ̇Bj

)
. (2.96)
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One can think of the first two terms −M + 1
2
Mẋ2 as a nonrelativistic approximation

to a covariant action

Icov = −M
∫

dτ

√
−gMN

dxM

dτ

dxN

dτ
, (2.97)

where here τ is an arbitrary parameter along the particle path and gMN is the full 5d

metric. This action is valid for any particle orbit with a large radius of curvature.

This action (2.96) satisfies the expected supersymmetry algebra, with

QAi = M
√

2ψAi, QȦi = −i M√
2

dxµ

dt
ΓµAȦψ

A
i , P µ = M

dxµ

dt
, H ′ =

P 2

2M
. (2.98)

What really uniquely determines the action (2.96) is that it gives a minimal realiza-

tion of the translation symmetries and supersymmetries that are spontaneously bro-

ken by the choice of superparticle trajectory. The conserved charges QAi = M
√

2ψAi

and P µ = Mẋµ, being linear in ψAi and ẋµ, generate constant shifts of ψAi and xµ,

which can be viewed as Goldstone fields for spontaneously broken symmetries. As

usual, the low energy action for the Goldstone fields is uniquely determined.

Collective Coordinates

In the instanton calculation, the zero-modes of xµ(τ) and ψAi(τ) will be collective

coordinates that parametrize the choice of the superparticle orbit; we will denote those

collective coordinates as xµ and ψ
(0)
Ai . By integrating over all non-zero modes while

keeping the zero-modes fixed, we will generate an effective action
∫

d4xd4ψ(0)(. . . ).

Up to an elementary factor that is computed shortly, the ψ(0)
Ai can be identified with

the fermionic coordinates θAi that are used in writing superspace effective actions in

four dimensions, so
∫

d4xd4ψ(0)(. . . ) is a chiral effective action
∫

d4xd4θ(. . . ). Such

an interaction is potentially non-trivial in the sense explained in section ??; that is, it

may not be possible to write it as a D-term. A 5d BPS particle with ζ < 0 would have
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fermionic collective coordinates of opposite chirality and could similarly generate an

anti-chiral interaction
∫

d4xd4θ. A superparticle that is not BPS spontaneously breaks

all supersymmetries, so it can be described with eight fermionic collective coordinates

and can only generate D-terms, that is non-chiral interactions
∫

d4x d4θ d4θ (. . . ).

Let us determine the normalization of the measure for integration over the col-

lective coordinates. First of all, this measure is independent of M . In fact, M can

be removed from the action by absorbing a factor of
√
M in both xµ and ψAi, as we

will do later (eqn. (2.114)). Because the bosons xµ and the fermions ψAi both have

four components, this rescaling affects neither the Gaussian integral for the non-zero

modes nor the zero-mode measure d4xd4ψ(0).

However, it is fairly natural to factor the zero-mode measure asM2d4x·M−2d4ψ(0).

This is based on the following observation. With the action being proportional to M ,

the Gaussian integral over any non-zero bosonic mode gives a factor of 1/M1/2, and

the integral over any non-zero fermionic mode gives a factor of M1/2. To compensate

for this, in defining the path integral measure, one includes a factor of M1/2 for every

bosonic mode and a factor M−1/2 for every fermionic mode. So the bosonic and

fermionic zero-mode measures, up to constants, are M2d4x and M−2d4ψ(0).

To find the normalization of the measure for fermion zero-modes, we compare a

matrix element computed by integrating over collective coordinates to the same ma-

trix element computed in a Hamiltonian approach. Quantization of the four fermions

ψAi gives a four-dimensional Hilbert space H, consisting of two spin 0 bosonic states

and two fermionic states of spin (1/2, 0). If (−1)F is the operator that distinguishes

bosons from fermions, then the anticommutation relations can be used to show that

TrH(−1)FψA1ψB1ψC2ψD2 =
1

M2
εABεCD. (2.99)
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Now recall that such a trace can be computed by a path integral on a circle with peri-

odic boundary conditions for the fermions. The integral M−2
∫

d4ψ(0)ψ
(0)
A1ψ

(0)
B1ψ

(0)
C2ψ

(0)
D2

over collective coordinates should reproduce the formula (2.99), so we want

∫
d4ψ(0) ψ

(0)
A1ψ

(0)
B1ψ

(0)
C2ψ

(0)
D2 = εABεCD. (2.100)

Now we can compare the zero-mode measure d4x d4ψ(0) to the usual measure

d4xd4θ
√
gE of a four-dimensional supersymmetric action. This comparison involves

a few steps. First, with QAi = M
√

2ψAi and {ψAi, ψBj} = M−1εABεij, we have

{QAi, ψBj} =
√

2εABεij. So QAi acts on the fermionic collective coordinates as
√

2∂/∂ψ(0)Ai. The 4d supersymmetry generators are QAi = e−σ/4QAi (eqn. (??)) and

the fermionic coordinates θAi of superspace are usually normalized so that QAi acts on

them as ∂/∂θAi. So we should set
√

2∂/∂ψ(0)Ai = eσ/4∂/∂θAi, or ψ(0)
Ai =

√
2e−σ/4θAi.

Hence

d4ψ(0) =
eσ

4
d4θ, (2.101)

where d4θ is defined so that

∫
d4θ θA1θB1θC2θD2 = εABεCD. (2.102)

We further write d4x = d4x
√
gEe−2σ, since

√
gE = e2σ according to eqn. (2.4). So

finally the zero-mode measure is

d4xd4ψ(0) = d4xd4θ
√
gE
e−σ

4
. (2.103)

Although we normalized the fermion zero-mode measure by comparison to a

Hamiltonian calculation, we have not yet done the same for the bosons. This will be

done in section 2.2.2, by comparing to a counting of quantum states.

70



The Action In A Graviphoton Background

Now let us turn on a graviphoton field. A particle of charge q couples to an abelian

gauge field A with a coupling ∫
dτ qAM

dxM

dτ
(2.104)

(and possible non-minimal couplings involving magnetic moments, etc.), where AM

has time component A0 and spatial components Aµ. In the case of a superparticle

coupled with charges ~q to the gauge fields of 5d supergravity, and assuming that the

background gauge field is precisely the graviphoton T−, we found in eqn. (2.41) that

the effective magnetic field is ζ(~q)T−, where ζ(~q) is the central charge. For a BPS

superparticle of M = ζ(~q), this means that we should replace qAµ in eqn. (2.104)

with MVµ, where T−µν = ∂µVν − ∂νVµ. A convenient gauge choice is Vν = 1
2
T−µνx

µ.

There is an important detail here, however. In a 5d covariant form, the action for a

charged point particle coupled to Vµ, on an orbit with a large radius of curvature, is

−M
∫

dτ

√
−gMN

dxM

dτ

dxN

dτ
+

∫
dτ VM

dxM

dτ
. (2.105)

To apply this to the graviphoton background, we have to use the supersymmetric

Gödel metric (2.1), which depends on Vµ. When we expand the square root taking this

into account, the effect is to double the coefficient of the Vµẋµ coupling. The action

of the superparticle in the graviphoton background is thus, in some approximation,

I = M

∫
dt

(
−1 +

1

2
ẋµẋµ +

i

2
εABεijψAi

d

dt
ψBj + T−µνx

µẋν
)
. (2.106)

Are there additional terms that should be included in this action? The sponta-

neously broken supersymmetries QAi remain valid symmetries when the graviphoton

field is turned on. So they commute with the exact Hamiltonian H ′ that describes

the superparticle, and hence the fields ψAi = QAi/M
√

2 are time-independent. Hence
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we should not add to (2.106) a magnetic moment coupling

∫
dtT−ABiε

ijψAiψBj, (2.107)

as this will give a time-dependence to ψAi. (By contrast, we will encounter such

magnetic moment couplings in section 2.2.4 for other fermion fields along the particle

worldline.) Other interactions that might be added to (2.106) are irrelevant in the

limit that the circumference of the circle is large. The precise scaling argument behind

that statement is explained at the end of this section.9

The momentum conjugate to xµ is πµ = δI/δẋµ = M(ẋµ − T−µνx
ν). Of course,

it obeys [πµ, πν ] = 0, [πµ, x
ν ] = −iδνµ. By contrast, the conserved momentum that

generates spatial translations is

P µ = M

(
dxµ

dt
− 2T−µνxν

)
= πµ −MT−µνxν . (2.108)

It obeys [Pµ, x
ν ] = −iδνµ (so it generates spatial translations, just as πµ does) but

satisfies

[Pµ, Pν ] = −2iMT−µν . (2.109)

9 In determining the effective action (2.106) for a BPS hypermultiplet, we have not needed the fact
that the graviphoton background preserves eight supersymmetries; the four conserved supercharges
QAi were enough. In analyzing more general BPS supermultiplets in section 2.2.4, we will need the
full supersymmetry algebra to determine magnetic moments.
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This is part of the supersymmetry algebra. In fact, taking the nonrelativistic limit of

eqn. (2.26), the nonrelativistic limit of the supersymmetry algebra is

[Pµ, Pν ] = −2iMT−µν

[J, Pµ] = 2iT−µνP
ν

[J, QAi] = − i
2
T−µνΓ

µν
ABQ

B
i

[Pµ, QȦi] = T−µνΓ
ν
ȦB
QB
i ,

{QAi, QBj} = 2MεABεij

{QAi, QȦj} = −iΓµ
AȦ
εijPµ

{QȦi, QḂj} = εȦḂεij(H
′ + J). (2.110)

The nonrelativistic conserved Hamiltonian H ′ is not simply P 2/2M , which does

not commute with the Pµ. H ′ can be conveniently written in terms of the conserved

quantities Pµ and T−µνLµν , where Lµν = xµπν − xνπµ:

H ′ =
P 2

2M
− T−µνLµν . (2.111)

What are the conserved supersymmetries? Clearly – because we have not added

the magnetic moment term (2.107) – the charges QAi = M
√

2ψAi are conserved.

To define conserved supercharges QȦj of the opposite chirality, we must modify the

definition in (2.98) by replacing Mẋµ with the conserved charge P µ. Thus the super-

symmetry generators are

QAi = M
√

2ψAi, QȦj = − i√
2
P µΓµAȦψ

A
j . (2.112)

The nonrelativistic supersymmetry algebra (2.110) is satisfied.
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The constant −M in the Lorentz signature action contributes +M to the energy.

So after compactifying the time direction on a (Euclidean signature) circle of cir-

cumference 2πeσ, the constant term in the action contributes to the path integral

a factor exp(−2πeσM) = exp(−2πeσ
∑

I qIh
I). However, after compactifying, the

gauge fields can have constant components αI in the t direction and these give an

imaginary contribution to the Euclidean action. As explained in eqns. (2.71) and

(2.72), the effect of this is to replace eσhI by −iZI , and so to replace exp(−2πeσM)

by exp(2πi
∑

I qIZ
I). To take account of the fermionic collective coordinates of the

particle orbit, we just have to extend the factor exp(2πi
∑

I qIZ
I) to a superfield,

namely

exp

(
2πi
∑
I

qIZI
)
. (2.113)

This factor, of course, must be multiplied by a one-loop determinant computed

using the action (2.106). The product of boson and fermion determinants is inde-

pendent of M , since M can be removed by rescaling xµ and ψAi by a common factor

1/
√
M . (This scaling does not affect the path integral measure, or the zero-mode

measure d4x d4ψ(0).) The one-loop computation can therefore be performed using the

action

I ′ =
1

2

∫
dt

(
ẋµẋµ + iεABεijψAi

d

dt
ψBj + 2T−µνx

µẋν
)
. (2.114)

The particle mass M has disappeared in eqn. (2.114), so the one-loop determi-

nant depends only on the radius eσ of the circle and on T−µν . We can constrain this

dependence using the scaling symmetry

t→ λt, x→ λ1/2x, ψAi → ψAi, T−µν → λ−1T−µν . (2.115)

The measure d4x d4ψ(0) scales as λ2, and the circumference 2πeσ scales as λ, so scale-

invariance implies that the one-loop determinant has the form d4x d4ψ(0) e−2σf(eσT−)

for some function f . The meaning of the factor d4x d4ψ(0) is that we cannot inte-
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grate over the zero-modes or collective coordinates (the integral over the xµ gives ∞

and the integral over ψ(0) gives 0), so we leave them unintegrated and interpret the

result as a measure on the collective coordinate moduli space rather than a number.

Lorentz invariance implies that f is really a function of e2σT−µνT
−µν , so the one-loop

determinant has the form

d4x d4ψ(0)

∞∑
g=0

cge
(2g−2)σ(T−µνT

−µν)g (2.116)

wth some constants cg.

In this derivation, we used the metric ds2 = −(dt − V )2 +
∑

µ(dxµ)2, as in eqn.

(2.1), with a periodicity in imaginary time of 2πeσ. To write the effective action

in conventional 4d variables, we use d4xd4ψ(0) = d4xd4θ
√
gE e−σ

4
(eqn. (2.103)).

Also, to express (2.116) in 4d terms, we should re-express T−µνT
−µν in terms of the

corresponding 4d quantity W−µνW
−µν = 16e−σT−µνT

−µν (eqn. (2.9)). Actually, here

we should replace W− with the chiral superfield W whose bottom component is W−.

Setting W2 =WµνWµν , eqn. (2.116) becomes

1

4
d4xd4θ

√
gE

e(3g−3)σ

16g
(W2)g. (2.117)

Now we recall that X 0 = −ie−3σ/2/2 (eqn. (2.83)). Having generalized the fields to

superfields, we can integrate over the collective coordinates to get a contribution to

the effective action:

−
∫

d4xd4θ
√
gE(−64)−g

(W2)g

(X 0)2g−2
. (2.118)

This – and its generalization with a classical factor exp
(
2πi
∑

I qIZI
)
included – is

a chiral interaction of the sort described in the GV formula and discussed throughout

this paper. It is a non-trivial F -term in the sense explained in section ??; it cannot be

written as
∫

d4xd8θ(. . . ). Suppose on the other hand that we add non-minimal terms
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to the action (2.106). Any translation-invariant and supersymmetric interaction that

we might add that has not already been included in eqn. (2.106) would scale as a

negative power of λ. Hence, a contribution to the superparticle path integral that

depends on such interactions would be similar to (2.116) but with extra powers of

e−σ. Such interactions are trivial F -terms, and it is difficult to learn very much about

them.

The Computation

Having come this far, the actual computation of the one-loop determinant using the

action (2.114) is not difficult.

The one-loop path integral gives a zero-mode integral times
√

det′ DF/ det′ DB,

where DB, DF are the bosonic and fermionic kinetic operators

DB = − d2

dt2
δµν + 2T−µν

d

dt

DF = i
d

dt
εABεij (2.119)

and det′ is a determinant in the space orthogonal to the zero-modes. Moreover,

the real symmetric operator DB can be conveniently factored as a product of two

imaginary, self-adjoint (and skew-symmetric) operators

DB = D1D2, D1 = i
d

dt
δµν , D2 = i

(
d

dt
δµν − 2T−µν

)
. (2.120)

So det′ DB = det′ D1 ·det D2. Since D1 is conjugate to DF , the ratio det′ DF/ det′ DB

actually equals 1/ det D2. This determinant can be evaluated by writing down the

eigenfunctions of D2 (which are simple exponentials) and computing the regularized

product of the corresponding eigenvalues. This is a rather standard computation.

However, we will here take a shortcut. We use the fact that a path integral

on a circle has a Hamiltonian interpretation; the path integral we want equals
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∫
d4x d4ψ(0) Tr′ exp(−2πeσH ′), where Tr′ is a trace with the zero-modes removed.

We can pick coordinates on R4 in which T− is the direct sum of two 2× 2 blocks:

T− =
1

2



0 T

−T 0

0 −T

T 0


. (2.121)

(We reversed the sign in the lower right block to make T− anti-selfdual if the four

coordinates are oriented in the standard way.) A factor of 1/2 was included in eqn.

(2.121) so that

T2 = T−µνT−µν . (2.122)

Let us compute the desired trace in the subspace corresponding to the upper block.

The corresponding Hamiltonian describes a particle moving in two dimensions in a

constant magnetic field T. The energy eigenstates are Landau bands10 with energies(
1
2

+m
)
T, m = 0, 1, 2, . . . . The density of states per unit area in any one Landau

band is d2xT/2π. So for the bosonic variables that describe motion in this plane, the

one-loop path integral equals

d2x

2π
T
∞∑
m=0

exp (−πeσT (1 + 2m)) =
d2x

2π

Te−πe
σT

1− e−2πeσT
=

d2x

4π

T

sinh(πeσT)
. (2.123)

Including an identical factor for the lower block in eqn. (2.121), and including the

fermion zero-modes, the full one-loop path integral gives

d4xd4ψ(0)

(4π)2

T2

sinh2(πeσT)
. (2.124)

10In speaking of Landau bands, we assume that T is real, while in the graviphoton background it is
imaginary. The determinant that we are trying to compute is holomorphic in T, so it is determined
for all T by what happens for T real.
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Including also the classical factor that was described in eqn. (2.113), the contri-

bution of the BPS hypermultiplet to the GV formula is

d4x d4ψ(0)

(4π)2
exp

(
2πi
∑
I

qIZI
)

T2

sinh2(πeσT)
. (2.125)

Though we have derived this formula by a computation in the supersymmetric

Gödel background, it gives part of the effective action in a more general background.

Since the function T/ sinh(πeσT) is regular for real T, this contribution to the effective

action is regular as long as the 5d graviphoton field is real. However, in the super-

symmetric Gödel background, T is imaginary and the effective action has poles if T is

large. This does not really affect our derivation. The GV formula governs couplings

(1.2) that are each perturbative in T, and the computation we have performed can

be understood as a convenient way to evaluate all such perturbative contributions

together.

To express the result (2.123) in four-dimensional terms, we follow the same steps

that led to eqn. (2.118). We write T =
√

T−µνT−µν = eσ/2

4

√
(W−)2, and interpret

W− as the bottom component of a superfield W . We also use e3σ/2 = −i/2X 0, and

d4xd4ψ(0) = 1
4
d4xd4θ

√
gEe−σ (eqn. (2.103)). The resulting contribution to the 4d

effective action is

−
∫

d4xd4θ

(2π)4

√
gE exp

(
2πi
∑
I

qIZI
)

1
64
π2W2

sin2
(
π
√
W2

8X 0

) . (2.126)

2.2.3 Multiple Winding, Bubbling, And Comparison To String

Theory

Following [61, 62], we will now explain the interpretation of this formula in string

theory.
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In perturbative string theory (either physical or topological string theory), we

should distinguish the string worldsheet Σ∗ from its image Σ ⊂ Y . Σ∗ does not

necessarily have the same genus as Σ. The map from Σ∗ to Σ must be holomorphic if it

is to contribute to the amplitudes Fg in topological string theory (or in physical string

theory, given the relation between the two), but is not necessarily an isomorphism.

In general, a non-constant holomorphic map ϕ : Σ∗ → Σ may have any degree

k ≥ 1. The Z-dependence of a contribution from a map of degree k is a factor

exp(2πik
∑

I qIZI). The formula (2.125) evidently corresponds to contributions with

k = 1. This is not surprising, since in deriving the formula, we considered an M2-

brane wrapped just once on Σ and assumed that the superparticle trajectory winds

just once around the M-theory circle.

A string theory map ϕ : Σ∗ → Σ of degree k will correspond in M-theory to a

configuration in which, roughly speaking, an M2-brane worldvolume has a degree k

map to S1 × Σ. There are two distinct effects in M-theory that combine to produce

this result. First, the M2-brane may wrap k1 times over Σ. Since multiple M2-branes

cannot be treated semiclassically, the rigorous meaning of this statement is that a

BPS state in M-theory may have an M2-brane charge that is k1 times the homology

class [Σ] (in other words, k1 times the charge of an M2-brane wrapped once on Σ).

Second, regardless of what BPS state we consider and what its quantum numbers

may be, when we use this BPS state to make an instanton in M-theory compactified

on a circle, this state may wind k2 times around the circle. The relation between the

degree k measured in string theory, the charge k1 of the BPS particle in units of [Σ],

and the number k2 of times that the particle winds around the circle is k = k1k2.

Thus what in string theory is the sum over the degree of the map ϕ is in the

context of the GV formula a combination of two effects: a BPS particle may be

multiply-charged and it may wind any number of times around the M-theory circle.
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In this section, we describe the effect of multiple winding, and in section 2.2.4, we

consider the effects of multiple charge.

It is easier to write down the formula that governs contributions with multiple

winding than to explain properly what it means. So we will first write down the

formula. If a point superparticle wraps k times around the M-theory circle, the

effective circumference of the circle becomes 2πkeσ. The winding also multiplies the

classical action 2πi
∑

I qIZI by k. To evaluate the contribution of a particle orbit of

winding number k, we also have to divide by a factor of k to account for the cyclic

symmetry between the k branches of the particle orbit. So the analog of eqn. (2.126)

with k-fold wrapping is obtained by multiplying
∑

I qIZI and eσ by k, and dividing

the whole formula by k. Summing over k gives the contribution of the given BPS

state with any winding:

−
∫

d4xd4θ

(2π)4

√
gE

∞∑
k=1

1

k
exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2
(
πk
√
W2

8X 0

) . (2.127)

(In the denominator, the factor of k in sin2
(
πk
√
W2

8X 0

)
comes from substituting eσT→

keσT in the denominator in (2.125).)

However, a careful reader may find this formula puzzling. A weakly coupled

elementary point particle could wind k times around a circle, and such a contribution

could be evaluated along the lines of the previous paragraph. Does this make sense for

a wrapped M2-brane, whose self-interactions are not small? A multiply-wound M2-

brane is not a concept that makes sense semiclassically, since a system of k parallel

M2-branes for k > 1 is actually strongly coupled. If parallel M2-branes are separated

in a transverse direction, their interactions remain strong until the separation exceeds

the eleven-dimensional Planck scale %. (Beyond this scale, the long range forces due

to graviton and C-field exchange cancel for nonrelativistic BPS particles.)
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Ignoring the strong interactions between BPS particles in this derivation can be

justified as follows. In nonrelativistic quantum mechanics in D > 2 spatial dimen-

sions, a short-range interaction, no matter how strong, is irrelevant in the renormal-

ization group sense and is unimportant at low energies, except for the possibility that

it may generate a bound state. In explaining this, we take the Hamiltonian of a free

particle to be H ′0 = P 2, where P is the momentum; hence P has dimension E1/2 (en-

ergy to the one-half power). A short-range interaction is equivalent to H ′′ = cδD(x),

for some constant c, modulo less relevant couplings involving derivatives of a delta

function. The constant c has dimension E1−D/2 and so is an irrelevant coupling if

D > 2. For application to the GV formula, we have D = 4, so the interactions are

safely irrelevant except for possibly generating bound states. (Bound states are a

short-range phenomenon that cannot be analyzed by renormalization group scaling.)

Concretely, the irrelevance of a short-range coupling for D > 2 means the following.

If a particle of mass M propagates a Euclidean distance L on a classical orbit (in our

case, the classical orbit is a copy of the M-theory circle and L = 2πeσ is its circumfer-

ence), the fluctuations in its position in the directions normal to the classical orbit are

typically of order
√
L/M . No matter how large M may be,

√
L/M is much greater

than the interaction range % if L is sufficiently large. Thus, at any given time, two

branches of an orbit that wraps k times around the M-theory circle are unlikely to

be within range of the interaction. The condition D > 2 ensures that this is unlikely

to happen at any time along the orbit.

What we learn from this reasoning is that we can ignore the interactions among k

parallel M2-branes except for the possibility that, when they are close together, they

form a bound state. Since the M2-brane states under consideration are BPS states,

such a bound state would be a bound state at threshold – a new BPS state with larger

charges. In fact, a bound state of r BPS states that each have charges qI would have

charges q̃I = rqI .

81



Because M2-branes are strongly coupled, it is not straightforward to determine if

such bound states exist (and if so for what values of r and with what spin). If bound

states exist, they are new BPS states that can themselves be treated as elementary

superparticles, when they wrap around a sufficiently large M-theory circle. Their

contribution can be evaluated by methods similar to what we have already described,

with modifications to account for their spins; see section 2.2.4. The full GV formula

involves a sum over all M-theory BPS states, possibly including bound states.

A further comment is called for. In eqn. (2.126), we consider only k > 0. Ex-

changing k > 0 with k < 0 amounts to a reflection of the M-theory circle. When

combined with a reflection of R4, which reverses the four-dimensional chirality, this

is a symmetry of M-theory. So orbits of k < 0 generate anti-chiral couplings, just as

orbits of k > 0 generate chiral couplings. But what about k = 0? For k = 0, the BPS

state has no net winding, so generically it does not propagate a macroscopic distance,

even if the M-theory circle is large. Since we do not have a microscopic theory of

M2-branes, we cannot make sense of a configuration in which an M2-brane propa-

gates over a non-macroscopic distance. So we have no way to make sense of a k = 0

contribution. But intuitively, what we would want to say about such a contribution

is as follows. In M-theory on R4 × S1 × Y , an M2-brane wrapped on Σ ⊂ Y and

propagating a small distance in R4×S1 is not, in leading order (in the inverse radius

of S1), affected by the compactification from R5 to R4×S1. So whatever contribution

it makes is part of the effective action for M-theory on R5×Y , compactified classically

from R5 to R4 × S1. As we stressed in sections ?? and 2.1.2, an important input to

the GV formula is that one knows the relevant effective action in five dimensions,

before compactification. So there is no need to study the k = 0 contributions.
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Now let us look more closely at what the formula (2.126) means in terms of

perturbative string theory. Since

1

sinx
=

1

x

(
1 +

x2

6
+ . . .

)
, (2.128)

we can expand eqn. (2.127) in a power series in W :

−
∫

d4x d4θ

(2π)4
(X 0)2

∞∑
k=1

1

k3
exp

(
2πik

∑
I

qIZI
)(

1 +
π2k2W2

192(X 0)2
+O(W4)

)
. (2.129)

In perturbative string theory, the contribution proportional toW2g comes from world-

sheets of genus g, as we have explained in section 2.1.2. Thus, the formula (2.129),

even though it reflects a single wrapped M2-brane of genus 0 and degree 1, is inter-

preted in perturbative string theory as a sum of contributions with all values k ≥ 1

and g ≥ 0.

One might expect to compute these contributions in topological string theory (and

therefore also in physical string theory, given their relationship) by counting degree

k maps from a string worldsheet Σ∗ of genus g to a given holomorphic curve Σ ⊂ Y .

However, in general this counting is not straightforward.

Let us look at a few cases. We can specialize to g = 0 by setting W = 0 in eqn.

(2.129). The k = 1 contribution is

−
∫

d4x d4θ

(2π)4
(X 0)2 · exp

(
2πi
∑
I

qIZI
)
· 1. (2.130)

This contribution is not hard to understand. A genus 0 worldsheet Σ∗ with a holo-

morphic map Σ∗ → Σ of degree 1 is unique up to isomorphism; it is isomorphic to Σ,

with the map being the isomorphism. This uniqueness means that the contribution of

genus 0 worldsheets singly wrapped on Σ to the topological string amplitude is pre-

cisely exp
(
2πi
∑

I qIZI
)
·1. The occurrence of this factor in (2.130) is the most basic
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relation between topological string amplitudes and the physical string amplitudes

that are described by the GV formula. The remaining factor −d4x d4θ (X 0)2/(2π)4

in (2.130) represents the embedding of the topological string amplitude in physical

string theory.

Still with g = 0, we see in eqn. (2.129) that if we take k > 1, in addition to the

classical action being multiplied by k, the amplitude acquires a factor of 1/k3. This

is not an integer, so this answer cannot come from a straightforward “counting” of

holomorphic maps. The factor 1/k3 for a k-fold cover of a genus 0 curve was first

discovered using mirror symmetry [92]. Its interpretation in topological string theory

depends on the fact that for k > 1, there is a nontrivial moduli space of degree k

holomorphic maps from a genus 0 worldsheet Σ∗ to Σ; this moduli space has orbifold

singularities, because of which the “counting” does not give an integer. See [93] for a

derivation along these lines. The GV formula has given this rather subtle factor of

1/k3 without much fuss [61,62,94].

One need not look far to find further subtleties that are nicely resolved by the

GV formula. For example, for g > 0, assuming that Σ∗ is smooth, and with Σ of

genus 0, there does not exist a degree 1 holomorphic map Σ∗ → Σ. Thus naively

perturbative string theory does not generate contributions to the chiral interactions

Fg with k = 1 and g > 0. But such contributions are clearly visible in (2.129). As

explained in [61,62], these contributions are interpreted in topological string theory in

terms of contributions in which Σ∗ is not smooth but is a union of various components

Σ∗i that are glued together at singularities. For k = 1, g > 0, one of these components

is of genus 0 and is mapped isomorphically onto Σ by a degree 1 map, and the

others are mapped to Y by maps of degree 0 (thus, they are mapped to points in

Y ). Such a degeneration of Σ∗ and its map to Y is sometimes called “bubbling” (fig.

2.1). By integration over the moduli of such bubbled configurations, one can compute
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topological string amplitudes with k = 1 and g > 0. More generally, such bubbled

configurations contribute to a variety of topological string amplitudes.

  

 

  

 

  

 

  

 

 

Figure 2.1: A Riemann surface Σ∗ splits into several components Σ∗i . In the context of
topological string theory, ordinarily all components except one are mapped to points in Y .
The splitting off from Σ∗ of one or more components that are mapped to points in Y is called
“bubbling.” In the example shown, Σ∗ has genus 3 and from top to bottom the components
have genus 0, 2, and 1.

Thus [61, 62], the GV formula when interpreted in topological string theory de-

scribes a variety of multiply-wrapped and/or bubbled configurations associated to a

given BPS state.

2.2.4 More General Massive BPS States

The General Answer

It takes only a few steps to generalize the hypermultiplet computation of section 2.2.2

to arbitrary massive BPS states. We give here a general description and explain some

explicit formulas in section 2.2.4.

In general, it is inconvenient to describe a nonrelativistic action for an arbitrary

BPS multiplet, but it is straightforward to describe a Hilbert space for this system,
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with an action of a Hamiltonian H ′, conserved momentum and angular momentum

operators P µ and Jµν , and supercharges QAi and QȦj. We already know how to

describe the hypermultiplet in this language. The appropriate Hilbert space11 Ĥ0

is an irreducible representation of the action of free bosons xµ and their canonical

momenta πµ as well as free fermions ψAi = QAi/M
√

2. The conserved momenta are

P µ = πµ, the nonrelativistic Hamiltonian is

H ′ =
P 2

2M
, (2.131)

the rotation generators act in the natural way, and the supercharges were defined

in eqn. (2.112). These modes are needed to realize the spatial translations and

spacetime supersymmetries, but a general set of BPS states may have additional

degrees of freedom. So in general, the Hilbert space that describes BPS states with

charge ~q = (q1, . . . , qb2) and mass M = ζ(~q) is Ĥ~q = Ĥ0⊗V~q, where Ĥ0 is the Hilbert

space for a hypermultiplet and V~q is a vector space with an action12 of the rotation

group SU(2)` × SU(2)r. The action on Ĥ~q of the supercharges, the momentum, and

the Hamiltonian come entirely from their action on Ĥ0, but the rotation group acts

also on V~q.

Now let us turn on the graviphoton field T−µν . We can still define free fermions by

ψAi = QAi/M
√

2. The momentum generators still commute with the Hamiltonian,

but instead of commuting with each other they generate the Weyl algebra [Pµ, Pν ] =

−2iMT−µν . The minimal way to satisfy this is to deform the P µ as in eqn. (2.108):

P µ = πµ −MT−µνxν . (2.132)

11Our notation will be as follows: a Hilbert space like Ĥ0 labeled with a hat describes the bosonic
center of mass motion as well as the quantization of fermion zero-modes; an unhatted Hilbert space
represents the quantized fermion zero-modes only.

12This action is not necessarily irreducible, as there may be several BPS multiplets of charge ~q.
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We may use this formula, since the representation of the canonical commutation rela-

tions [Pµ, Pν ] = −2iMT−µν , [Pµ, x
ν ] = −iδµν , [xµ, xν ] = 0 is unique up to isomorphism,

implying that any further T−-dependent contributions that we might add to P µ that

preserve the commutation relations can be removed by a unitary transformation. So

even for T−µν 6= 0, there is a decomposition of the Hilbert space as Ĥ~q = Ĥ0⊗V~q with

the property that the supercharges QAi = MψAi and momentum generators Pµ act

only on the first factor. The most obvious way to satisfy the supersymmetry algebra

is to take QȦj to similarly act only on Ĥ0 and to be given by the same formula as for

the hypermultiplet:

QȦj = − i√
2
P µΓµAȦψ

A
j . (2.133)

To explain why eqn. (2.133) gives a sufficiently good approximation to QȦj, we use

the scaling symmetry (2.115), which we extend to act on Ĥ~q (and not just Ĥ0) by

saying that V~q is invariant under scaling. To compute the desired effective action in

four dimensions, we have to evaluate the trace Tr′ (−1)F exp(−2πeσH ′) (the symbol

Tr′ means that the trace is defined without an integral over collective coordinates).

To do this computation after scaling the time by a large factor λ, since eσ scales as

λ, we are not interested in terms in H ′ that scale as a power of λ more negative than

λ−1. Since H ′ can be computed from the anticommutator {QAi, QȦj}, this means

that we are not interested in corrections to QȦj that scale as a power more negative

than λ−1/2. In order for QȦj to be conserved, it must be possible to write it with no

explicit dependence on xµ, just in terms of the conserved charges ψAi = QAi/M
√

2

and P µ as well as matrices acting on V~q. (In particular, we cannot make use of

the conserved angular momentum without spoiling the commutator [QȦi, Pµ], which

comes out correctly if we use (2.133).) These requirements mean that no correction to

(2.133) involving T−µν is possible: T−µν scales as λ−1 and the other possible ingredients

in a hypothetical correction to the right hand side of (2.133) scale with nonpositive
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powers of λ (indeed, P µ, ψAi, and a matrix acting on V~q scale respectively as λ−1/2,

1, and 1).

Since the QȦj act only on Ĥ0 and not on V~q, the same is true of

{QȦi, QḂj} = εȦḂεij(H
′ + J). (2.134)

However, J = T−µνJ
µν is the sum of operators J0 and J~q that act on Ĥ0 and V~q,

respectively. For the hypermultiplet, V~q is trivial so J~q = 0 and direct evaluation of

the left hand side of (2.134) using (2.133) leads to the formula for H ′ given in eqn.

(2.111). In general, (2.134) implies that

H ′ =
P 2

2M
− T−µνLµν − J~q. (2.135)

The role of the J~q term is to ensure that H ′ + J~q acts only on Ĥ0 and not on V~q.

Now to evaluate the contribution of the BPS states of charge ~q to the GV formula,

we need to evaluate Tr′Ĥ~q
(−1)F exp(−2πeσH ′). The trace factors as a trace in Ĥ0

times a trace in V~q. The trace in Ĥ0 is the one that we already evaluated in discussing

the hypermultiplet. In acting on V~q, H ′ can be replaced by −J~q, so the trace in V~q

simply gives TrV~q(−1)F exp(2πeσJ~q). Using J~q = eσ/2

4
J~q (eqn. (2.23)) and the usual

formula e3σ/2 = −i/2X 0, this trace is TrV~q(−1)F exp(−iπJ~q/4X 0).

The contribution of BPS states of charges ~q propagating once around the circle

to the GV formula is obtained by just including this trace in (2.126):

−
∫

d4xd4θ

(2π)4

√
gETrV~q

[
(−1)F exp(−iπJ~q/4X 0)

]
exp

(
2πi
∑
I

qIZI
)

1
64
π2W2

sin2
(
π
√
W2

8X 0

) .
(2.136)
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This can be extended as before to include multiple windings:

−
∫

d4xd4θ

(2π)4

√
gE

∞∑
k=1

1

k
TrV~q

[
(−1)F exp(−iπkJ~q/4X 0)

]
× exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2
(
πk
√
W2

8X 0

) . (2.137)

To get the complete GV formula, we need to sum this formula over all possible charges

~q. But states with ζ(~q) < 0 do not contribute to the GV formula since they preserve

the wrong supersymmetry. The complete GV formula is thus

−
∫

d4xd4θ

(2π)4

√
gE

∑
q|ζ(q)≥0

∞∑
k=1

1

k
TrV~q

[
(−1)F exp(−iπkJ~q/4X 0)

]
× exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2
(
πk
√
W2

8X 0

) . (2.138)

Actually, our derivation has assumed that ζ(~q) > 0, not just ζ(~q) ≥ 0, because we

have assumed that the BPS states under discussion have a strictly positive mass in

five dimensions. This means that our analysis does not apply to BPS states with

~q = 0, since such states are always massless in five dimensions. This case requires a

different derivation, but with a suitable interpretation of what is meant by V~q and

with J~q set to 0, the formula (2.138) also gives correctly the contribution of BPS states

with ~q = 0, as we will learn in section 2.3. Our derivation also breaks down for BPS

states with ~q 6= 0 and ζ(~q) = 0, but this case is nongeneric in the sense that it arises

only if the Kahler moduli of Y are varied to approach a boundary of the Kahler cone.

Concrete Formulas

To make the formula (2.138) explicit, we need to know how to compute the space

of BPS states of charge ~q. M-theory in general and M2-branes in particular are not

sufficiently well understood for it to be possible at present, for a given Calabi-Yau
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manifold Y , to give a full answer to this question. Potential complications include

strong coupling of multiply-wrapped M2-branes, singularities in the moduli space

of holomorphic curves in a Calabi-Yau manifold, bubbling, and the interplay of all

of these. Luckily, there are favorable situations in which it is possible to explicitly

determine the space of BPS states with charge ~q and show that the action of the

supersymmetry algebra is as described above. Here, essentially following [62], we will

just summarize a few highlights, leaving some further details for appendix B.

To quantize an M2-brane with worldvolume R×Σ ⊂ R5×Y , we have to quantize

the fermions that live on the M2-brane. These transform as spinors on Σ with values

in (positive chirality) spinors of the normal bundle to the M2-brane worldvolume. As

is usual in Kaluza-Klein reduction, the modes that have to be included in the low

energy description are the zero-modes along the compact manifold (in this case, the

zero-modes of fields propagating on Σ). Half of the M2-brane fermions transform

under SU(2)` × SU(2)r as (1/2, 0) and half transform as (0, 1/2). Zero-modes of the

(0, 1/2) fermions are related by supersymmetry to infinitesimal deformations of the

complex submanifold Σ ⊂ Y . We say that Σ is “rigid” or “isolated” if there are no

such fermion zero-modes, and we consider this case first.

For Σ rigid, the effective quantum mechanics is obtained just by quantizing the

fermion zero-modes that transform as (1/2, 0), along with the center of mass coordi-

nates xµ; there are no other bosonic or fermionic zero-modes. The M2-brane fermions

that transform as (1/2, 0) can be interpreted as differential forms on Σ. If Σ is of

genus 0, its non-zero Betti numbers are b0 = b2 = 1. The corresponding zero-modes

are precisely the fermionic collective coordinates ψAi that we included in studying

the hypermultiplet. However, for g > 0, one has b1 = 2g, leading to additional zero-

modes consisting of 2g copies of the (1/2, 0) representation of the rotation group. In

the effective quantum mechanical problem on R×Σ, where R parametrizes the time,

these zero modes lead to 2g fields ρAσ(t), σ = 1, . . . , g that correspond to (1, 0)-forms
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on Σ and 2g more fields ρ̃Aσ(t), σ = 1, . . . , g that correspond to (0, 1)-forms. The

action for these modes is

Sρ =

∫
dt

g∑
σ=1

(
iρ̃Aσ

d

dt
ρAσ +

i

2
T−ABρ̃

A
σ ρ

B
σ

)
, (2.139)

and the corresponding Hamiltonian is

H ′ρ = −Jρ = −
g∑
σ=1

i

2
T−ABρ̃

A
σ ρ

B
σ . (2.140)

The problem of quantizing the four fermions ρ̃Aσ, ρBσ, for A,B = 1, 2 and

a fixed value of σ, is isomorphic to the problem of quantizing the four fermions

ψAi that appear already in the study of the hypermultiplet. Quantization of this

system gives the familiar spin content 2(0, 0) ⊕ (1/2, 0) of a massive BPS hyper-

multiplet, described by a four-dimensional Hilbert space H. For this set of four

states, Tr (−1)F exp(−iπJ/8X 0) = Tr (−1)F exp(2πeσJ) = −4 sin2(π
√
W 2/8X 0).

The full set of fermions ρ̃Aσ, ρBσ consists of g copies of this spectrum, leading to

Tr (−1)F exp(2πeσJ) = (−1)g(4 sin2(π
√
W 2/8X 0))g. From (2.137), it then follows

that the contribution to the GV formula of BPS states that arise from an M2-brane

wrapped on Σ is

∫
d4xd4θ

(2π)4

∞∑
k=1

1

k
(−1)g−1 exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2−2g(πk
√
W2/8X 0)

. (2.141)

We write Hg for the space obtained by quantizing ρ̃Aσ, ρBσ, σ = 1, . . . , g. Thus, Hg is

the tensor product of g copies of H, that is g copies of 2(0, 0)⊕ (1/2, 0).

This description of Hg makes manifest the action of SU(2)` (and the trivial action

of SU(2)r). However, as preparation for the case that Σ is not rigid, it is helpful to

describe Hg in another way. Here, for each value of A = 1, 2, we combine together

ρAσ, which is a (1, 0)-form on Σ, with ρ̃Aσ, which is a (0, 1)-form on Σ, to make a
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field ρ̂Ay, where y = 1, . . . , 2g labels the choice of a harmonic 1-form on Σ. Let εyz

be the intersection pairing on H1(Σ,Z). The canonical anticommutation relations of

ρ̂Ay are {ρ̂Ay, ρ̂Bz} = εABεyz. To make this look slightly more familiar, let us denote

ρAy as ρ+y or ρ−y, depending on the value of A. We also define ρy− = εyzρ−z. Then

the canonical anticommutators are

{ρy−, ρz−} = {ρ+y, ρ+z} = 0

{ρy−, ρ+z} = δyz . (2.142)

We can regard ρ+z as a set of fermion creation operators and ρy− as the corresponding

annihilation operators. The full space of states is a fermion Fock space, made by

repeatedly acting with ρ+ on a “ground state” that is annihilated by ρ−. Since ρ+

is an element of the first de Rham cohomology group H1(Σ), the one-particle states

are a copy of H1(Σ). The space of k-fermion states is then the antisymmetric tensor

product of k copies of H1(Σ) ; we denote this as ∧kH1(Σ). The space Hg obtained

by quantizing the fermions is obtained by summing this over k:

Hg = ⊕2g
k=0 ∧

k H1(Σ). (2.143)

This description of Hg emphasizes its dependence on Σ, but hides the action of SU(2)`.

As explained in [62], to understand the SU(2)` action, it helps to recognize that Hg

can be interpreted as the cohomology of the Jacobian of Σ. Recall that the Jacobian

of Σ is a Kahler manifold and that there is a natural Lefschetz SU(2) action on

the cohomology of any Kahler manifold (and more generally on the cohomology of

a Kahler manifold with values in a flat vector bundle). The SU(2)` action on Hg

can be understood as the natural Lefschetz SU(2) action on the cohomology of the

Jacobian.
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If Σ is not rigid, then in general there is a moduli space M that parametrizes

the bosonic deformations of Σ. The only case in which it is straightforward to de-

scribe the BPS states that arise from an M2-brane simply-wrapped on the curves

parametrized by M is the case that M is smooth13 and compact and parametrizes

a family of smooth curves Σ ⊂ Y . (It is quite exceptional for all these conditions to

be satisfied.) In this case, the effective quantum mechanics problem that describes

the degrees of freedom parametrized byM and takes into account the zero-modes of

(0, 1/2) fermions is the theory of differential forms onM. However, remembering the

(1/2, 0) fermions, these are differential forms with values in Hg. As Σ varies, H1(Σ)

varies as the fiber of a flat vector bundle overM. (We do not have to worry about Σ

developing singularities because of our assumption that Σ is always smooth.) Since

Hg is constructed from H1(Σ) as in (2.143), it also varies as the fiber of a flat vector

bundle. The space of supersymmetric states in this situation is the de Rham cohomol-

ogy ofM with values in Hg; we denote this as H∗(M;Hg). This is the contribution

of Σ to V~q. The SU(2)r action is the natural Lefschetz SU(2) action on H∗(M;Hg)

(now making use of the fact that M is a Kahler manifold), and the SU(2)` action

comes from the action of SU(2)` on Hg.

It is explained in [62] that H∗(M;Hg) has a natural interpretation in terms of 4d

BPS states in Type IIA superstring theory on Y . To determine the space of 4d BPS

states, one has to quantize a suitable D-brane moduli space. Given the assumption

that Σ is always smooth, one can argue that this quantization gives again H∗(M;Hg).

(The argument involves describing the D-brane moduli space as a fiber bundle over

M and computing its cohomology by a Leray spectral sequence.) Thus, under the

hypothesis that Σ is always smooth, one expects that 4d BPS states always descend

in a simple way from 5d BPS states (recall from section ?? that in general one does
13Technically, by saying that M is “smooth,” we mean that the deformation theory of Σ ⊂ Y is

unobstructed so that in particular the infinitesimal deformations of Σ represent tangent vectors to
M.
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not expect something as simple as this). The hypothesis that Σ is always smooth is

almost never satisfied. However [95], there is a well-developed mathematical theory

in which the hypothesis that Σ is always smooth is replaced with the hypothesis that

Σ varies only in a Fano subvariety W ⊂ Y . Under this hypothesis, it is proved (with

a precise set of mathematical definitions that hopefully match correctly the physics)

that H∗(M,Hg), which is the space of 5d BPS states, agrees with what one would

get in d = 4 by quantizing the D-brane moduli space. Thus this really does seem to

give an interesting and perhaps surprising situation in which 4d BPS states descend

simply from five dimensions.

The GV formula is often written in the following way. If one permits oneself to

take formal sums and differences of vector spaces, then any Z2-graded representation

of SU(2)` can be expanded as ⊕∞g=0Ag ⊗ Hg, where Hg is the SU(2)` representation

defined as the tensor product of g copies of 2(0)⊕ (1/2) and Ag is a Z2-graded vector

space with trivial action of SU(2)`. In particular, the space of BPS states of charge ~q

is formally a sum ⊕∞g=0Ag,~q⊗Hg. Set ag,~q = TrAg,~q(−1)F . (Thus, a rigid curve Σ ⊂ Y

of genus g and homology class ~q contributes 1 to ag,~q, and 0 to ag′,~q for g′ 6= g.) The

complete GV formula can be written

∫
d4xd4θ

(2π)4

∑
~q|ζ(~q)≥0

∞∑
g=0

∞∑
k=1

1

k
(−1)g−1ag,~q exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2−2g(πk
√
W2/8X 0)

.

(2.144)

2.3 The Schwinger Calculation With Fields

2.3.1 Preliminary Reduction

The group of rotations that preserves the momentum vector of a massless particle in

five dimensions is SO(3), a subgroup of the corresponding group SO(4) for a massive

particle at rest. The spin of a five-dimensional massless particle is measured by

94



a representation of the double cover of this SO(3). This double cover is a diagonal

subgroup SU(2)∆ ⊂ SU(2)`×SU(2)r of the group that measures the spin of a massive

particle.

In a five-dimensional theory with minimal supersymmetry (eight supercharges),

the states of a massless particle with specified momentum are annihilated by four

of the supercharges and furnish a representation of the other four supersymmetries

along with SU(2)∆. The minimal such representation transforms under SU(2)∆ as

W = 2(0)⊕ (1/2) (that is, two copies of spin 0 and one copy of spin 1/2). A general

irreducible representation of supersymmetry and SU(2)∆ is simply the tensor product

ofW with the spin j representation of SU(2)∆, for some j ∈ 1
2
Z. We write this tensor

product as Rj = (j)⊗W . In particular, R0 = (0)⊗W ∼= W , since (0) is the trivial

1-dimensional representation of SU(2)∆.

Taking CPT into account, Rj must appear in the spectrum an even number of

times if j is an integer but may appear any integer number of times if j is a half-

integer. The basic massless hypermultiplet H, vector multiplet V , and supergravity

multiplet G are

H = 2R0

V = R1/2

G = R3/2. (2.145)

We expect that a combination of massless supermultiplets that could be deformed

in a supersymmetric fashion to a massive non-BPS multiplet does not contribute to

the GV formula. (We have seen in section 2.2.2 that a massive non-BPS supermulti-

plet does not contribute to the GV formula.) For example, the combinationH⊕V can

be deformed by Higgsing to a massive non-BPS vector multiplet. To see this, notice

that such a supermultiplet must realize eight supercharges, four of which transform
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as (1/2, 0) under SU(2)`×SU(2)r and four as (0, 1/2). The basic such representation

is the massive vector multiplet W` ⊗Wr, where W` admits the action of one set of

four supersymmetries and Wr admits the action of the other set. (W` consists of four

states transforming as 2(0, 0)⊕ (1/2, 0) while Wr consists of four states transforming

as 2(0, 0)⊕ (0, 1/2).) When we restrict to SU(2)∆ ⊂ SU(2)` ⊗ SU(2)r and only four

supersymmetries, we can identify both SU(2)` and SU(2)r with SU(2)∆ and also

ignore the supersymmetries that act on (say) W`. Then the massive non-BPS vector

multiplet becomes W ⊗W = (2(0) ⊕ (1/2)) ⊗W = 2R0 ⊕ R1/2 = H ⊕ V. Accord-

ingly, we expect that the combination H ⊕ V of massless supermultiplets does not

contribute to the GV formula.

Since W ⊗W can be deformed in a supersymmetric fashion to a massive non-BPS

multiplet, the same is true, for any j ∈ 1
2
Z, of (j) ⊗W ⊗W . For j > 0, this is the

same as (j) ⊗ (2(0) ⊕ (1/2)) ⊗W ∼= Rj+1/2 ⊕ 2Rj ⊕ Rj−1/2. So we expect that any

such combination does not contribute to the GV formula. For j = 1 or j = 1/2,

we get the combinations R3/2 ⊕ 2R1 ⊕ R1/2 and R1 ⊕ 2R1/2 ⊕ R0. Taking linear

combinations of these expressions and H⊕V = 2R0⊕R1/2, we are led to expect that

R3/2 ⊕ 4R0 = G⊕ 2H does not contribute to the GV formula.

Granted this, the contribution of nH hypermultiplets, nV vector multiplets, and

nG supergravity multiplets is equivalent to the contribution of nH −nV − 2nG hyper-

multiplets. This combination has an interesting interpretation. The Betti numbers of

a Calabi-Yau three-fold Y obey b0 = 1, b1 = 0, and bi = b6−i. Accordingly, the Euler

characteristic of Y is χ(Y ) = 2+2b2−b3. Generically (as long as one stays away from

boundaries of the Kahler cone of Y ), massless states in M-theory compactification on

Y come entirely from classical dimensional reduction on Y of the eleven-dimensional

supergravity multiplet. With this assumption, the number of vector multiplets is

nV = b2 − 1, the number of hypermultiplets is nH = b3/2 (in six dimensions, b3

is always even), and the number of supergravity multiplets is nG = 1. Therefore,
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nH −nV − 2nG = b3
2
− b2− 1 = −1

2
χ(Y ). So the total contribution to the GV formula

from massless states in five dimensions, away from boundaries of the Kahler cone, is

−1
2
χ(Y ) times the contribution of a single massless hypermultiplet.

In section 2.3.2, we will calculate the contribution to the GV formula of a massless

hypermultiplet. As explained in section ??, this calculation cannot be naturally

performed in the approach via 5d particles. But instead, since there is a natural

field theory for a 5d massless hypermultiplet, there is no problem to perform the

calculation in terms of fields. In fact, it is straightforward to generalize the field theory

computation to a 5d massive BPS hypermultiplet, and we will do so. (As explained

in section ??, near a boundary of the Kahler cone of Y , there can be a massive BPS

hypermultiplet that is light enough so that a description in 5d field theory makes

sense.) Once one formulates the computation in 5d field theory, it is natural to make

a Kaluza-Klein reduction to four dimensions and to write the answer as a sum over

contributions of 4d mass eigenstates. There are some problems with F0 and F1, but

this gives a representation of the answer for Fg, g ≥ 2 in terms of a sum over states of

definite momentum around the M-theory circle, in contrast to the particle approach

of section 2.2 that gives the answer as a sum over configurations of definite winding

number. The two representations are related by a Poisson resummation. The winding

number representation is usually more useful, moreover it holds for Fg, g ≥ 0.

The momentum representation breaks down for F0 and F1, and our field com-

putation of Fg, g ≥ 2 simply does not work for these two cases. The reason why

F0 is special is that it is a prepotential – this interaction simply does not talk to

the graviphoton. At the background with anti-selfdual graviphoton turned on and

supersymmetry slightly broken by the curvature (we will use this background to com-

pute Fg, g ≥ 2), F0 still vanishes. The reason why F1 breaks down is more subtle.

Schwinger calculation actually gives a finite answer for the contribution to F1 of a

state with a given compact momentum. However, the sum over momentum eigen-
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states diverges, and there is no natural way to regularize it from the 4d point of view.

One needs a different computation which would preserve the full 5d symmetry of the

problem, only then it would be possible to obtaine a finite answer for F1. For that

reason, we will treat F0 and F1 separately from Fg, g ≥ 2. Both will be computed

directly in 5d field theory, without performing a KK reduction.

The upshot of the computation is to show that the contribution to the GV formula

of a massless hypermultiplet is the obvious zero mass limit of the contribution of a

massive hypermultiplet, which was computed in section 2.2. When the answer is

stated this way, one may feel that one does not need to actually do the field theory

computation for the hypermultiplet: the computation of section 2.2 is valid for a

hypermultiplet of any non-zero mass, so could not we understand the zero mass case

as a limit from non-zero mass? However, we find it instructive to do the explicit

computation with 4d mass eigenstates. It is particularly illuminating to see how an

answer emerges that is holomorphic in the 4d central charge Z, even though naively a

Schwinger-like calculation depends only on the particle mass |Z|. Moreover, it turns

out that there is a subtlety in the zero mass case, first identified in [56], that is best

understood by performing a computation with 4d mass eigenstates.

We should stress that we consider the argument that was used to express the

contribution of the supergravity multiplet as −2 times the contribution of a massless

hypermultiplet to be somewhat heuristic. In the particle treatment of section 2.2, we

had a very clear argument that a massive non-BPS superparticle cannot contribute

to the GV formula. In general, we do not have an equally clear argument for the

analogous statement in field theory. For the special case of H ⊕ V , there is a clear

argument, since the deformation to a massive non-BPS multiplet can be realized

physically by Higgsing.

To interpret in the language of eqn. (2.138) the statements that H⊕V and 2H⊕G

do not contribute to the GV formula, we have to be slightly formal about what we
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mean by the contribution of a massless vector multiplet V or of the supergravity

multiplet G to the vector space V~q for ~q = 0. To define V~q=0, we are supposed to

write the space of BPS states of given momentum as the tensor product of the space

of states for a hypermultiplet with some vector space V~q=0. Because of the fact that

the hypermultiplet H = 2R0 is two copies of R0, while V and G are not divisible by

2, to define V~q=0 we would have to divide by 2 – an operation that does not make

sense for vector spaces, though it makes sense for the trace that we actually need

in eqn. (2.138). Since H = 2R0 and V = (1/2) ⊗ R0, the contribution of V to

V~q is formally 1
2
(1/2), that is one-half a copy of the spin 1/2 representation. This

answer means that the contribution of V to TrV~q (−1)F = 1
2
Tr(1/2)(−1)F = −1, so

that the contribution of V to the GV formula is the same as the contribution of −H.

Likewise, the contribution of G to V~q is formally 1
2
(3/2), meaning that its contribution

to TrV~q(−1)F is 1
2
Tr(3/2) (−1)F = −2, reproducing the fact that G makes the same

contribution to the GV formula as −2H. It is unappealing that V0 does not exist and

we must formally divide by 2. A possibly more natural approach is to place a factor

of 1/2 in front of the ~q = 0 contribution in (2.138). The intuition in doing this would

be that since BPS states with ζ(~q) > 0 contribute with weight 1 in (2.138) and those

with ζ(~q) < 0 contribute with weight 0, it is fairly natural to say that BPS states

with ~q = 0 and hence ζ(~q) = 0 contribute with weight 1/2. If we do this, we would

say that the contributions of H, V , and G to V~q=0 are respectively 2(0), (1/2) and

(3/2).

2.3.2 Calculation For The Hypermultiplet

Preliminaries

We aim here to compute the one-loop effective action for a 4d BPS hypermultiplet in

the graviphoton background. Actually, in a field theory calculation, it is not difficult

to be more general, as long as the fields are slowly varying on a length scale set by
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the hypermultiplet mass (or by the graviphoton field strength if the hypermultiplet

mass vanishes). There is actually a good reason to be more general. In contrast

to the particle computation of section 2.2.2, it is difficult to do this computation

in a manifestly supersymmetric fashion, because there is no convenient and simple

superfield description of a hypermultiplet. Being able to perturb slightly around the

graviphoton background will help in expressing the answer we get in a supersymmetric

form. A simple perturbation will suffice for our purposes: rather than taking the four-

manifold on which the hypermultiplet propagates to be flat (as in the reduction to

four dimensions of the supersymmetric Gödel solution), we take this metric to be

hyper-Kahler, with anti-selfdual Weyl tensor.

As remarked in footnote 9, the particle computation for a hypermultiplet, as

opposed to a more general BPS multiplet, makes use only of the negative chirality

supersymmetries QAi. The same is true in the field theory computation: the negative

chirality supersymmetries are enough to determine the action we will use. An anti-

selfdual graviphoton preserves the QAi even if its field strength is not constant,14 but

these supersymmetries are broken by anti-selfdual Riemannian curvature.

In our calculation, we will treat the scalars in vector multiplets as constants (so

that the 5d and 4d central charges ζ and Z are constants). This means our calculation

will not determine a contribution to the effective action that does not depend onWAB,

that is a prepotential term −i
∫

d4xd4θF0(XΛ). We will see that our calculation is

also not powerful enough to fully understand F1.

We will assume that the minimal hypermultiplet action is sufficient to determine

the quantum effective action modulo D-terms. For the particle computation, we

proved the analogous statement in section 2.2.2 by a scaling argument.
14This is clear from eqn. (2.14). By contrast, a gauge field in a vector multiplet must be selfdual,

not anti-selfdual, to preserve the QAi. See the remarks following eqn. (2.16).
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The Action

We start with a 5d metric on M5 = S1 ×M4 of the form

ds2 = e2σ(dy +B)2 + e−σgµνdx
µdxν . (2.146)

Here gµν is a hyper-Kahler metric with anti-selfdual Weyl curvature on the four-

manifoldM4, and Bµ is a Kaluza-Klein gauge field. We require that Bµ = −i e−3σ/2

4
Uµ,

where Uµ is the four-dimensional gauge field whose curvature is the 4d anti-selfdual

graviphoton W−µν . It is related to the 5d graviphoton T−µν by the usual equation (2.5).

We also adjust curvatures of the 5d gauge fields to be dV I = hIT−, just like in the

graviphoton background. We will calculate the effective action in a region of M4 in

which the metric is very nearly flat and W−µν is very nearly constant – so that the

background is very close to the standard graviphoton background. And this slightly

curved background exactly preserves one of the useful features of the graviphoton

background – the only nonzero gauge field is the graviphoton.

In general, in supergravity, hypermultiplets parametrize a quaternionic manifold

X . However, for a 1-loop computation, we can approximate X by a flat manifold,

which in the case of a single hypermultiplet is just R4. We consider the general

case that the hypermultiplet has charges qI and hence a bare mass M =
∑

I qIh
I in

five dimensions. The action is not just the obvious minimal coupling of bosons and

fermions to a gravitational background, because in five dimensions, the fermions in

a hypermultiplet have a non-minimal magnetic moment coupling to the graviphoton

field.

We denote the scalars in the hypermultiplet as qX , X = 1, . . . , 4. The fermions

are a pair of spinors ξαp where α = 1, . . . , 4 is a spinor index of SO(1, 4) and p = 1, 2.
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The Lagrangian density is

L = −1

2
DMq

XDMqX − 1

2
M2(qX)2 − 2Mξ

1
ξ2 + ξp /Dξp +

3i

8
hI(dV

I)MNξpΓ
MNξp.

(2.147)

For M = 0, this action can be found in [96] (along with its generalization to an

arbitrary system of hypermultiplets). The mass terms can be generated by a coupling

to a U(1) vector multiplet and giving an expectation value to the scalar in the vector

multiplet. Notice that the fermion mass term explicitly breaks an SU(2) symmetry

of the massless action (acting on the p index) down to U(1).

The explicit magnetic moment term in (2.147) does not actually mean that the

fermions have a magnetic moment. We have to recall that the minimal Dirac La-

grangian for a charged fermion describes a particle with a magnetic moment; one

usually says that the particle has a g-factor of 2. Also, in reduction to d = 4, a con-

tribution to the effective magnetic moment comes from the coupling of fermions to

the 5d spin-connection in the action (2.147), which upon dimensional reduction with

the metric (2.146) generates a magnetic moment coupling to the Kaluza-Klein gauge

field Bµ and hence to the graviphoton. (This shifts the coefficient of the magnetic

moment term in eqn. (2.149).) The net effect for M 6= 0 (the M = 0 case has some

subtleties that will appear later) is that the effective magnetic moment vanishes in

four dimensions. That must be so, at least for M 6= 0, since the particle description

of section 2.2.2 made it clear that the fermions in a BPS hypermultiplet have no

magnetic moment. Vanishing of the effective magnetic moment will be clear in eqn.

(2.152).

The effective action generated by the hypermultiplet is simply the difference of

the logarithms of boson and fermion determinants. A convenient way to calculate

this difference is to reduce to four dimensions, expressing the answer as a sum of

contributions of Kaluza-Klein modes of definite mass. This contrasts with the particle
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computation, where it is easier to consider orbits of definite winding number around

the Kaluza-Klein circle. A Poisson resummation will be needed to convert the answer

obtained as a sum over mass eigenstates to the answer expressed as a sum over orbits

of definite winding.

The Kaluza-Klein mode with −n units of momentum around the circle is a 4d

hypermultiplet with a 4d central charge

Z = e−σ/2(M − ie−σn− ie−σqIαI), (2.148)

where αI are the constants that determine the holonomy around the circle of the gauge

fields V I . The mass of the hypermultiplet is |Z|. It will be convenient to simply think

of the hypermultiplet as a pair of complex scalars φi, i = 1, 2, and a Dirac fermion ψ.

We write ψL and ψR (or ψA and ψȦ) for the components of ψ transforming with spin

(1/2, 0) or (0, 1/2) under SU(2)`× SU(2)r. After Kaluza-Klein reduction, the action

density for the nth mode is

Ln
2π

=−
2∑
i=1

(|∇µφ
i|2 + |Zφi|2) + 2ψ

c

L
/DψR + 2ψ

c

R
/DψL

− 2Zψ
c

LψL − 2Zψ
c

RψR +
i

4
W−µνψ

c

Lγ
µνψL, (2.149)

where

∇µφ
i = ∂µφ

i − iZ
4
Uµφ

i,

Dµψ = ∂µψ +
1

4
ωabµ γabψ − i

Z

4
Uµψ. (2.150)

Here ωabµ is the Levi-Civita connection on M4, and Uµ is the gauge field whose cur-

vature is W−µν . Modulo possible terms of higher dimension, this action is actually
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determined by the 4d supersymmetry algebra (2.29), even if we consider only the QAi

supersymmetries and not QḂj.

The Computation

As long as Z 6= 0, the problem of evaluating the bosons and fermion determinants in

this problem can be simplified by integrating out ψR. (The case Z = 0, which means

that M = qI = 0 and n = 0, needs special care and will be treated separately.) If we

eliminate ψR classically by solving its equation of motion, the action density for ψL

becomes
LψLn
2π

=
2

Z
ψ
c

L

(
/D

2
+
i

8
ZW−µνγ

µν − ZZ

)
ψL. (2.151)

Standard Dirac algebra gives /D
2

+ i
8
ZW−µνγ

µν = DµD
µ, showing the disappearance

of the magnetic moment. Finally, by absorbing a factor of
√

Z in ψL (and the same

factor in ψcL), we eliminate the ugly factor of 1/Z in front of the kinetic enegy of ψL.

After these manipulations the action becomes

LψLn
2π

= 2ψ
c

L

(
DµD

µ − ZZ
)
ψL. (2.152)

We have to be careful to include some constant factors generated by these manip-

ulations. The Gaussian integral over ψR that is used to eliminate ψR generates a

factor of Z for every mode of ψR. The rescaling of ψL multiplies the path integral

measure by a factor of 1/Z for every mode of ψL. Including these factors and also the

determinants coming from functional integrals over φi and ψL, the path integral for

the nth Kaluza-Klein mode gives

(Z)nR−nL
detL(−D2 + |Z|2)

det2(−∇2 + |Z|2)
, (2.153)

104



where detL is the determinant in the space of left-handed fermions. Also, nR − nL is

formally the difference between the number of right- and left-handed fermion modes;

we interpret this difference as the index of the Dirac operator, which we denote as I.

In what follows, we write TrL for a trace in the space of left-handed fermions, and

Tr for a trace in the space of scalar fields. Also, we drop the distinction between D

and ∇ and write simply −D2 = −gµνDµDν for the Laplacian acting on a field of

any spin. The desired contribution to the effective action is minus the logarithm of

(2.153) or

− I ln(Z)− TrL ln(|Z|2 −D2) + 2Tr ln(|Z|2 −D2). (2.154)

With the help of

lnA =

∫ ∞
0

ds

s
(e−s − e−sA), (2.155)

we can rewrite (2.154) in the form

− I ln Z−
∫ ∞

0

ds

s
(2Tr− TrL)

(
e−s(|Z|

2−D2) − e−s
)
. (2.156)

This formula is obtained by using the representation (2.155) of the logarithm for every

mode. When we sum over all modes, the coefficient of e−s in eqn. (2.156) is formally

what we might call nL − 2n0, where n0 is the total number of modes of spin 0. On

a hyper-Kahler manifold M4 with anti-selfdual Weyl curvature, the positive chirality

spin bundle is simply a trivial bundle of rank 2, so nR is the same as 2n0 and hence

nL − 2n0 = −I. So an equivalent formula is

− I ln Z−
∫ ∞

0

ds

s

[
(2Tr− TrL)

(
e−s(|Z|

2−D2)
)
− Ie−s

]
, (2.157)
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Using (2.155) one more time, this is

−
∫ ∞

0

ds

s

[
(2Tr− TrL)

(
e−s(|Z|

2−D2)
)
− Ie−sZ

]
. (2.158)

A Hilbert space H consisting of two states transforming under SU(2)` × SU(2)r

as (0, 0) and two transforming as (1/2, 0) was encountered in section 2.2.2. It arises

upon quantizing a Clifford algebra generated by four fermions ψAi with the familiar

anticommutation relations {ψAi, ψBj} = εABεij. Now we regard H as the fiber of a

vector bundle over M4 and write Ĥ for the space of sections of this bundle. Clearly,

we can rewrite (2.158) in the form

−
∫ ∞

0

ds

s

(
TrĤ(−1)F e−s(|Z|

2−D2) − Ie−sZ
)
. (2.159)

We can interpret the operator exp(−s(|Z|2−D2)) acting on the space Ĥ as exp(−sH)

where H is the Hamiltonian derived by quantizing the following superparticle action:

S =

∫
dt

(
−|Z|2 +

ẋ2

4
+

Z

4
Uµẋ

µ +
i

2
εijεABψAi∇tψBj

)
. (2.160)

Here xµ are local coordinates for a point in M4, so that xµ(t) describes a particle

orbit15 in M4; the ψAi are fermi fields defined along the particle orbit; and ∇t =

∂t + 1
4
ẋµωabµ γab is the pullback of the Levi-Civita connection of M4 to the orbit. To

compute Tr (−1)F exp(−sH), we perform a path integral on a circle of circumference

s, with periodic boundary conditions for fermions, and using the Euclidean version

of the above action:

SE =

∫ β

0

dτ

(
|Z|2 +

ẋ2

4
− iZ

4
Uµẋ

µ +
1

2
εijεABψAi∇τψBj

)
. (2.161)

15We have normalized the kinetic energy of xµ so that the bosonic Hamiltonian is P 2; if the kinetic
energy were 1

2 ẋ
2, the Hamiltonian would be P 2/2.
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Clearly, we have arrived at something very similar to what we had in the particle-

based calculation. However, there are a few key differences. In section 2.2.2, we had

to compute a Euclidean path integral on a circle of definite radius; this circle was

effectively just the M-theory circle. Now the radius of the circle is an integration

variable, the proper time s. Related to this, in section 2.2.2, we were computing

the contribution of an orbit of definite winding number. Now we are computing the

contribution of a particle of definite Kaluza-Klein momentum.

Also, the computation in 2.2.2 was performed in a manifestly supersymmetric

framework. In our present computation, the starting point was not manifestly super-

symmetric (because we lacked a convenient and manifestly supersymmetric descrip-

tion of the hypermultiplet). It is easy to guess from eqn. (2.161) how to express

our present computation in a supersymmetric form. But to be sure, we will per-

turb slightly around the supersymmetric Gödel solution, allowing anti-selfdual Weyl

curvature, and verify that the result can be expressed in terms of superfields in the

expected way.

In doing this computation, we can assume that the radius of curvature is very large

(on a scale set by the particle mass or the graviphoton field), and that the graviphoton

field is nearly constant. This being so, the problem can be analyzed in a standard

way, using the fact that ifM4 were flat and the graviphoton field exactly constant, the

action would be quadratic and the path integral would be simple. The F -terms that

are described by the GV formula have contributions that, when expressed in terms

of ordinary fields (and taking the fermions to vanish and the scalars to be constants),

take the form of R2 times a function of W− only, where Rab
µν is the Riemann tensor.

So in evaluating the path integral, it suffices to work to quadratic order in R, and to

ignore covariant derivatives of R or W−.

We set xµ(τ) = xµ + zµ(τ), where xµ labels a point in M4, and zµ(0) = zµ(s) = 0.

The path integral over xµ(τ) splits as an integral over a field zµ(τ) that vanishes at
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τ = 0 and an ordinary integral over xµ. Near xµ, we use Riemann normal coordi-

nates, which are Euclidean up to second order in zµ. In these coordinates, the spin

connection is

ωabµ (z) =
1

2
zνR ab

νµ +O(z2), (2.162)

where the O(z2) terms can be ignored as they are proportional to the covariant

derivative of the Riemann tensor. Up to terms of order z3, the part of the action that

involves fermions is

1

2
εijεABψAiψ̇Bj −

1

16
żµzνR ab

νµ εijψAiγ
AB
ab ψBj. (2.163)

The fermions ψAi(τ) have four zero-modes ψ(0)
Ai – the modes that are independent of

τ . The action (2.163) contains a coupling Rψ(0)ψ(0), which is the only coupling that

can saturate the fermion zero-modes. Using this coupling to saturate the zero-modes

gives an explicit factor of R2 in the path integral, and as we do not wish to compute

terms of higher order in R, we can drop the coupling of R to other fermion modes.

The action then reduces to

SE =

∫ β

0

dτ

[
ż2

4
− iZ

8

(
W−νµ −

i

2Z
R− abνµ εijψ

(0)
Ai γ

AB
ab ψ

(0)
Bj

)
zν żµ +

1

2
εijεABψAiψ̇Bj + |Z|2

]
.

(2.164)

Now we observe that replacing iRψ(0)ψ(0)/Z by Rψ(0)ψ(0) has the effect of just mul-

tiplying the path integral by −Z
2. If we make this replacement, and also set ψ(0)

Ai =
√

2θAi, and finally set zµ =
√

2yµ, then the action becomes

SE =

∫ s

0

dτ

[
ẏ2

2
− iZ

4
W−µνyν ẏµ +

1

2
εijεABψAiψ̇Bj + |Z|2

]
, (2.165)

where

Wµν(x, θ) = W−µν(x) + · · · −R−µνλρ(x)εijθ
i
σλρθj + . . . (2.166)
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is the superfield whose bottom component is W−µν .

The constant term |Z|2 in the Lagrangian density just multiplies the path integral

by exp(−s|Z|2). So

TrĤ(−1)F exp(−sH) = −e
−s|Z|2

Z
2

∫
d4yd4θ

√
g∫

D′yD′ψ exp

(
−
∫ s

0

dτ

(
ẏ2

2
− iZ

4
W−µνyν ẏµ +

1

2
εijεABψAiψ̇Bj

))
,(2.167)

where D′ represents a path integral over non-zero modes only. Apart from the de-

coupled fermions ψAi, the remaining path integral describes a particle in a constant

magnetic field ZW . This is a very standard path integral, and one way to evaluate

it was described in section 2.2.2. We finally learn that

TrĤ(−1)F exp
(
−s(|Z|2 −D2)

)
= −e

−s|Z|2

(2π)4

∫
d4xd4θ

√
g
π2W2/64

sinh2 sZ
√
W2

8

. (2.168)

(The measure d4θ was defined in eqn. (2.102), and the same derivation applies here.)

When this is inserted in (2.158), we get

∫ ∞
0

ds

s

(
e−s|Z|

2

(2π)4

∫
d4xd4θ

√
g
π2W2/64

sinh2 sZ
√
W2

8

+ Ie−sZ
)
. (2.169)

To see that the integral converges near s = 0, we observe first that expanding the

integrand gives a term proportional to 1/s3, but this term is independent of W and

is annihilated by the d4θ integral. The next term in the expansion is proportional

to 1/s, but the index theorem for the Dirac operator ensures that this contribution

cancels, so the integral converges for small s. In fact, with the help of the index

theorem, (2.169) is equivalent to

∫ ∞
0

ds

s

(
1

(2π)4

∫
d4xd4θ

√
g

(
e−s|Z|

2 π2W2/64

sinh2 sZ
√
W2

8

+
π2W2

3 · 64
e−sZ

))
. (2.170)
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Since Z has non-negative real part, the integral also converges at large s.

To establish holomorphy in Z, we simply rescale s→ s/ZZ, to get:

∫ ∞
0

ds

s

(
1

(2π)4

∫
d4xd4θ

√
g

(
e−s

π2W2/64

sinh2 s
√
W2

8Z

+
π2W2

3 · 64
e−s/Z

))
. (2.171)

It is very satisfying to see holomorphy emerging even though the particle mass is

certainly not holomorphic in Z.

In this calculation, we have taken Z to be a complex constant, rather than a field.

This means that we have not taken into account fluctuations in the scalar fields in

vector multiplets. When such fluctuations are included, Z becomes a chiral superfield,

and the effective action may have an additional contribution,16 not determined in our

computation, that depends only on Z.

The Case Z = 0

We recall that in this derivation, we assumed at the beginning that Z 6= 0. Let us

separately consider the case that Z = 0. This case only arises if M = qI = 0 and

in addition the Kaluza-Klein momentum n vanishes. Looking back to the 4d action

(2.149) with which we started, we see that for Z = n = 0, the scalars φi do not couple

to W−, but the fermions have a magnetic moment coupling. (Thus, the case Z = 0

is the only case in which the fermions have a magnetic moment.) This case is simple

enough that we can get a very general answer, for arbitrary M4.

We recall that a Dirac fermion is equivalent to a pair of Weyl (or Majorana)

fermions. So in a notation slightly different from that in (2.149), we have two right-

handed fermions ψ1
R, ψ

2
R, and two left-handed fermions ψ1

L, ψ
2

L. The fermion kinetic
16Since the action (2.149) depends on the 4d superfields ZI only in the combination

∑
I qIZI

which appears in the central charge, any W-independent function that we have not computed is a
function of Z only. Even without any computation of terms that are independent ofW, eqn. (2.171)
clearly needs some modification when Z is not constant, if only to ensure that it converges for s→ 0.
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energy is ∫
d4x
√
g
(
ψ

1

L
/Dψ1

R + ψ
2

L
/Dψ2

R

)
. (2.172)

Classically, there is a U(1) symmetry under which ψ1
R has charge 1, ψ1

L has charge −1,

and ψ2
R, ψ2

L are neutral. (ψ1

L is just the transpose of ψ1
L, with no complex conjugation

involved, so it has charge −1 just like ψ1
L, ensuring the invariance of the fermion

kinetic energy.) However, this U(1) symmetry is violated in a gravitational field. The

net violation of the symmetry is given by the index I of the Dirac operator. Hence,

on a four-manifold M4 on which I 6= 0, the fermion path integral vanishes when the

graviphoton field vanishes. The graviphoton fieldW− couples to a pair of left fermions

∫
d4x
√
gW−µνψL

2γµνψ
1
L. (2.173)

Thus W− effectively has charge 1 under the symmetry. If I < 0, so that generically

a left fermion has |I| zero-modes and a right fermion has none, then the insertion in

the path integral of |I| = −I copies of this interaction can give a nonzero result. The

path integral is then proportional to (W−)−I . For I > 0, the path integral vanishes,

if the graviphoton is anti-selfdual as assumed in the above formulas for the action. (It

would be inconvenient to restrict our discussion to the case that M4 is hyper-Kahler

with anti-selfdual Weyl curvature, as this forces I > 0, while we have just seen that

the more interesting case is I < 0.)

For some purposes, one can describe this result by saying that the effective action

contains a term −χ
2
I logW−, which in supersymmetric language could be derived

from an F -term
χ

2

∫
d4xd4θW2 log

√
W2. (2.174)

(We recall from section 2.3.1 that the effective number of massless hypermultiplets is

−χ/2.) For the original calculation leading to a result along these lines, see [56].
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However, this interpretation has some limitations. First, technically, the W−I

behavior of the path integral arises only for I < 0, not for I > 0. For I > 0, it is not

possible to get a nonzero path integral by making a negative number of W− insertions.

Moreover, the path integral of the fermions under discussion on a four-manifold of

I > 0 does not blow up as W−I for W− → 0. Rather, it vanishes identically for all

W−.

Furthermore, if one carries out the d4θ integral in (2.174), one gets, in addition to

an I logW “coupling,” a variety of interactions that are singular for W→ 0 and look

difficult to interpret.

Most fundamentally, the problem with trying to describe this effect by a term

in the effective action such as (2.174) is that the effect is fundamentally non-local.

Our derivation has shown that the effect comes entirely from integrating out particles

that are massless in four dimensions, so one should not try to incorporate it into a

4d Wilsonian effective action.

It was observed in [56] that an F -term of the form W2 log
√
W2 is not part of

the relation between the Fg’s and the topological string. Indeed, such an effect is

certainly not seen in the perturbative string theory calculation of [60]. The reason

is clear from a low-energy point of view: perturbation theory with the interaction

(2.173) will never generate a coupling of any number of gravitons to any (positive)

number of graviphotons, since this is prevented by the U(1) symmetry.

Comparison With The Particle-Based Calculation

Since we have taken Z to be constant, we cannot compute the hypermultiplet contri-

bution to F0. But we can compute its contribution to Fg, g ≥ 1.

Using the expansion

(x/2)2

sinh2(x/2)
=
∞∑
n=0

(1− 2n)B2n
x2n

(2n)!
, (2.175)
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where the B2n are Bernoulli numbers (of alternating sign), and integrating over s

term by term, we get

F1 = −i log Z

3(32π)2

Fg = −i 1

(16π)2

B2g

2g(2g− 2)
(4Z)2−2g. (2.176)

Since Re Z ≥ 0, the s integral converges and determines in F1 a definite branch of

log Z, namely the one with |Im log Z| ≤ π/2.

Eqn. (2.176) determines the contribution to Fg of a 4d hypermultiplet of given

Z. To get the contribution of a 5d hypermultiplet of mass M , we have to sum

over the Kaluza-Klein momentum n. This is particularly simple for M = 0, which

only occurs for qI = 0, in which case eqn. (3.82) for the central charge reduces to

Z = −ine3σ/2 = 2nX 0. The sum over n can also be performed for M 6= 0 (see [61]),

but this does not affect the qualitative point that we wish to make.

As discussed in section 2.3.2, forM = 0, we sum only over n 6= 0. The contribution

of a massless 5d hypermultipet to Fg for g ≥ 2 is

FM=0
g = −i

∑
n6=0

1

(16π)2

B2g

2g(2g− 2)
(8nX 0)2−2g = − i

(16π)2

B2g

g(2g− 2)
(8X 0)2−2gζ(2g−2).

(2.177)

For g = 1, the sum over n is divergent. This should be interpreted as follows.

The one-loop effective action in five dimensions is potentially ultraviolet divergent,

but any such divergence is the integral of a gauge-invariant local expression. Such an

integral cannot contribute to F1, as we explained in section 2.1.2. Similarly, although

our knowledge of M-theory does not give us much insight about how to regularize the

one-loop computation in five dimensions, any two regularizations that preserve 5d

covariance will differ only by the integral of a gauge-invariant local expression, and

will therefore give the same result for F1. Consequently, a computation that preserves
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5d symmetry will give a finite and unambiguous answer for F1. The computation that

we have performed was based on an expansion in Kaluza-Klein harmonics and did not

preserve the 5d symmetry. This is why it does not give a satisfactory understanding

of the contribution of a 5d field to F1.

We would like to compare the hypermultiplet contribution to the effective action

as computed in the field-based approach to the earlier particle-based result (2.127).

The field-based calculation involved a sum over states of definite momentum around

the Kaluza-Klein circle, and the particle-based calculation involved a sum over orbits

of definite winding number. As usual (and essentially as in [62]), to convert one to

the other, one should perform a Poisson resummation. In doing this resummation, we

should remember two facts, which turn out to be related. We cannot really compare

the two computations for F1, because our field-based computation was not powerful

enough to determine the sum over Kaluza-Klein momenta in F1. And in the particle-

based computation, we do not want to include a contribution with winding number

zero, because this contribution is not meaningful in the context of the particle-based

computation.

Since we will not try to make a comparison for F1, we will ignore the W2e−s/Z

term in eqn. (2.171), which only contributes to F1. To avoid having to worry about

the potential divergence of the s integral for s → 0, we simply remember that the

result of the Poisson resummation should be expanded in powers of W , keeping only

terms of order ≥ 4. Also, in performing the Poisson resummation, we will discard by

hand the contribution of winding number k = 0; it will be clear that this term only

contributes to F1.

As in eqn. (2.71), we define S(~q) = 2π(eσM − iqIαI) = −2πiqIZ
I , so that the

central charge of a particle of Kaluza-Klein momentum n is Z = e−3σ/2(−in+S(~q)/2π).

We also rescale the Schwinger parameter by s → sZ (this can be accompanied by a

rotation of the integration contour in the complex plane, so that we still integrate
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over the positive s axis). The sum and integral to be performed are then

∫
d4xd4θ

(2π)4

√
g
∑
n∈Z

∫ ∞
0

ds

s
exp

(
−se−3σ/2S(~q)/2π

)
exp(inse−3σ/2)

π2W2/64

sinh2(s
√
W2/8)

.

(2.178)

Upon using
∑

n∈Z e
inθ = 2π

∑
k∈Z δ(θ − 2πk), we get

∫
d4xd4θ

(2π)4

√
g
∑
k∈Z

∫ ∞
0

ds

s
exp

(
−se−3σ/2S(~q)/2π

)
2πδ(se−3σ/2 − 2πk)

π2W2/64

sinh2(s
√
W2/8)

.

(2.179)

We see that, as expected from the particle computation, there is no contribution

from k < 0, while k = 0 formally makes only a contribution to F1, which we discard.

Integrating over s with the help of the delta functions, promoting S(~q) = −2πiqIZ
I

to a superfield S(~q) = −2πiqIZI (to get a formula that is valid even when the ZI are

not taken to be constants), and introducing again X0 = −ie−3σ/2/2, we recover the

familiar result

−
∞∑
k=1

1

k

∫
d4xd4θ

(2π)4

√
g exp

(
2πik

∑
I

qIZI
)

1
64
π2W2

sin2
(
πk
√
W2

8X 0

) (2.180)

for the hypermultiplet contribution.

2.4 Field Theory Computations of F0 and F1

Here we will consider the field theory computations which work for F0 and F1. This

case was omitted in our previous discussion and is required for completeness. First,

we need to elaborate a little more on the 4d N = 2 supergravity and properties of

interactions Fg.
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2.4.1 Additional facts about supergravity

Here we review and recall some facts about N = 2 supergravity in four dimensions,

which are required for the derivation in this section.

The formulation of 4d Poincare supergravity that we rely on is based on embed-

ding in superconformal gravity, which is gauge-equivalent to Poincare supergravity

in the sense that partial gauge fixing of the superconformal theory gives Poincare

supergravity. This naturally comes with an N = 2 superspace. Chiral superfields

of weight 2 under dilations can be considered as possible F-terms in the superspace

action of conformal supergravity. Given some superspace interaction, say an F-term∫
d4xd4θΦ, to find the corresponding terms in the Poincare supergravity action, one

has to not only integrate over Grassmann coordinates θ, but also impose all gauge-

fixing constraints that reduce the superconformal gauge group to the super Poincare.

Two superconformal matter multiplets, the compensators, disappear in this gauge-

fixing. One usually chooses a vector multiplet and a hypermultiplet for this role

(see [20] for details). Thus to build an N = 2 Poincare supergravity coupled to n

vector multiplets, one starts with N = 2 superconformal gravity coupled to n + 1

vector multiplets and 1 hypermultiplet.

As already discussed before, an N = 2 vector multiplet in 4d contains a complex

scalar, a vector and a doublet of spinors. Such multiplets are described by reduced

chiral superfields XΛ, Λ = 0 . . . n (see [49–51]), whose lowest components XΛ are com-

plex scalars, while the highest components are −1
6
(εijθ

i
σµνθj)2DµD

µX
Λ and involve

derivatives of complex conjugate scalars (because of the non-holomorphic constraint

satisfied by reduced chiral superfields). Recall from section 2.1.2 that couplings of vec-

tor multiplets are described by the holomorphic prepotential F0(X ) (see [20]), which

has to be homogeneous of degree 2 to define a term in the Lagrangian of conformal

supergravity:

− i
∫

d4xd4θF0(X ) + c.c. (2.181)
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With the usual notations F̂Λ, F̂ΛΣ etc. for derivatives of F0 (as introduced in Section

2.1.2) and NΛΣ = 2Im F̂ΛΣ, the superspace expression (2.181) implies the kinetic term

for conformal scalars: ∫
d4x
√
gNΛΣDµX

ΛDµX
Σ
, (2.182)

where the derivatives are covariant with respect to the superconformal gauge group.

In order to get the kinetic energy for scalars of Poincare supergravity, one has to use

a gauge condition which fixes dilatational symmetry of conformal supergravity. This

usually has a form of some constraint on the superconformal scalars XΛ. The freedom

to perform local dilatations in conformal supergravity corresponds to the freedom to

Weyl-rescale metric in Poincare supergravity. The standard gauge choice [20], which

guarantees that the Poincare theory emerges written in the Einstein frame and which

was used in Section 2.1.2, is

NΛΣX
ΛX

Σ
= −1. (2.183)

It is usually supplemented by the U(1) R-symmetry gauge, which we picked as iX0 > 0

when the expression (2.83) was written. A convenient choice of independent holomor-

phic scalars was:

ZI =
XI

X0
, I = 1 . . . n. (2.184)

The standard gauge choice (2.183) implies the following expression for |X0|2 in terms

of other fields:

|X0|2 =
1

Y
, Y = −NΛΣZ

ΛZ
Σ
. (2.185)

In this case, the kinetic energy for vector multiplet scalars (of Poincare supergravity)

takes the form:

Y −1MIJ∂µZ
I∂µZ

J
, MIJ = NIJ − (NIΛX

Λ
)(NJΣX

Σ), (2.186)

117



and Y −1MIJ is actually a Kahler metric:

Y −1MIJ =
∂

∂ZI

∂

∂Z
J

lnY. (2.187)

2.4.2 More properties of Fg

Recall that one of the conclusions of the section 2.1.2 was that only F0 and F1 receive

contributions from the classical dimensional reduction of 5d supergravity on a circle.

These classical parts, F cl
0 and F cl

1 , were given by (2.82) and (2.92). Our task in this

section is to compute the quantum corrections Fq
0 and Fq

1 .

In section 2.1.2 we discussed shift symmetries. We can use them to obtain some

restrictions on how the quantum corrections to Fg depend on the scalars ZI . We

note that the only way the 5d BPS miultiplet action depends on αI and hI is through

the linear combinations qIαI and qIhI (as we will see in section 2.4.3). Thus, due to

holomorphy, the quantum correction to Fg should be a function of qIZI . From shift

symmetries, it actually should be a a function of e2πiqIZ
I . Thus we conclude that the

general form of the contribution of one BPS multiplet to Fg, which we will usually

denote by Fq
g , is:

Fq
g =

(
X0
)2−2g

∑
k>0

ck,ge
2πikqIZ

I

, (2.188)

where we did not allow negative values of k, as the contribution ∝ e−2πkM , M =

qIh
I > 0 should decay faster for more massive particles, rather than exponentially

grow (the k < 0 terms would actually have ZI replaced by ZI and would contribute

to the F-terms of the opposite chirality).

Constraints on Fg from parity

M-theory has a discrete symmetry which is often called “parity” and is a combination

of some orientation reversing diffeomorphism in 11d and a sign change of the 3-form
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gauge field C. This symmetry descends in an obvious way to the symmetry of the

5d action, and then to 4 dimensions as well. The fields AIµ and αI , which originate

from the 11d C-field, get an extra minus sign, while the field A0
µ, which is a Kaluza-

Klein gauge field, does not. So, to summarize, the 4d supergravity we obtain should

be invariant under the parity defined as an orientation reversal combined with the

following:

AIµ → −AIµ,

A0
µ → A0

µ,

ReZI ≡ αI → −αI . (2.189)

How does it constrain the form of Fg? Since d = 4, N = 2 supergravity written in

a given metric frame lifts in a unique way to the conformal supergravity, the parity

symmetry also lifts there. It can then be extended to the symmetry of the superspace

action. Since parity switches chiralities, we can conclude that the two terms of the

form:

− i
∫

d4θFg(X )W2g + i

∫
d4θFg(X )W2g (2.190)

are switched by parity, where the second term is the complex conjugate of the first

and θ are superspace coordinates of opposite chirality. This means, in particular,

that for all g ≥ 0, −iFg(X) goes into iFg(X) under parity. We are working in the

gauge where iX0 > 0, and so if we consider the non-homogeneous function F̂g(Z) =

(X0)2g−2Fg(X), we also find that parity complex conjugates iF̂g(Z), i.e., sends F̂g(Z)

to −F̂g(Z).

Since the only effect of parity on scalars ZI is to multiply αI by −1, it means

that all terms F̂g(Z) in the GV formula should go to −F̂g(Z) under αI → −αI . This
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condition implies that F̂g(Z) should be imaginary at αI = 0.17 In particular, ck,g in

(2.188) are imaginary. We will use it soon.

2.4.3 Computation of F0

Now we consider a light massive hypermultiplet coupled to the 5d supergravity which

has enough scalars hI (we will explain this requirement in Section 2.4.3). For the

purposes of one-loop computation, the global geometry of space parametrized by

scalars in the hypermultiplet is irrelevant. So, this multiplet can be described by a

pair of complex scalars zi, i = 1, 2 and a Dirac spinor Ψ in 5d. The quadratic action

on the flat background with no gauge fields turned on is:

Sh =

∫
d5x

(
2∑
i=1

(−|∂zi|2 −M2|zi|2) + Ψ
c
/∂Ψ−MΨ

c
Ψ

)
. (2.191)

We want to determine its contribution to the term F0 in the 4d N = 2 effective

superpotential. Our strategy is to determine first its contribution to the 4d Kahler

metric on the vector multiplets moduli space, and then, since this metric is encoded

in F0, to reconstruct the hypermultiplet contribution to F0.

To find the contribution to the Kahler metric, we need to compute the effective

action governing fluctuations of vector multiplet scalars on the flat background R3,1×

S1, which is the simplest possible background consistent with our problem.

Let us describe the precise setup. Note first that the expected answer has a known

form (2.188), in which we only have to determine the constants ck,g. To do this, we

can choose any convenient values for the background fields. One such field is the

radius of the M-theory circle eσ, and we should choose some value for it. Before,

the computation was done in the large radius limit. This was the case because, in

the particle computation performed earlier, one was integrating out particles that
17For analytic Fg(Z), these two conditions are actually equivalent.
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were not point-like. They were given by wrapped M2-branes and thus had some

internal structure. But the computation was done in the approximation in which

those particles were treated as point-like, which made sense only if the characteristic

size of their trajectories – the radius of the M-theory circle which they wound – was

much larger than the particle size.

In the current situation, we are doing the field theory computation, so the question

of whether the particles are point-like or not becomes hidden behind the question of

applicability of the field theory description. And, as was already noted before, we

assume the field theory description to be valid for the massless or very light multiplets.

Also, we know how the holomorphic answer (2.188) depends on the radius, and we

know that the coefficients ck,g do not depend on it. Therefore, once we have the

action (2.191) and know what to compute, we are free to pick any convenient value

for the radius. For simplicity, we set it equal to 1, that is eσ = 1. We also do not

switch on holonomies, αI = 0. We allow the 5d scalars hI to depend on the point of

R3,1, while they still should be invariant under translations along S1. Since the mass

of the BPS particle in 5d is expressed through its charges qI as:

M =
∑
I

qIh
I , (2.192)

M(x) is allowed to fluctuate around its constant background value M , with fluctua-

tions depending only on the point of R3,1. Now, to determine the Kahler metric defor-

mation, we need to find a term in the effective action which is quadratic in M(x) and

has precisely two derivatives. Since the effective action is Seff = −i ln
∫
DziDΨeiSh ,

and we are looking for
δ2Seff

δM(x)δM(y)

∣∣∣
M=const

, (2.193)
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it is clear that all we need to compute is a connected two-point function of the mass

terms:

− i

〈(
2M

∑
i

|zi|2 + Ψ
c
Ψ

)(
2M

∑
i

|zi|2 + Ψ
c
Ψ

)〉
conn

, (2.194)

and then, in the momentum space representation with an external momentum p, to

extract the p2-part of the answer. This will give the one-loop Kahler metric deforma-

tion due to the light hypermultipet.

After we calculate the Kahler metric deformation, we will have to reconstruct the

prepotential deformation from it. We use notation cl and q to distinguish classical

and one-loop parts, so for example the full prepotential is F0 = F cl
0 + Fq

0 , were the

classical part is given by (2.82). The Kahler metric deformation is written in terms

of the scalars ZI = XI/X0 of Poincare supergravity. However, F0(X) is a function

of conformal scalars XΛ, so to reconstruct it, we should know the expression of X0

in terms of ZI and Z
I . Reconstructing F0 includes some subtleties, which we will

discuss in detail later, after the two-point function computation.

The two-point function computation

In this subsection we compute (2.194). First of all, we need to know the relevant

Green’s functions on R3,1 × S1. Let xµ be coordinates on R3,1 and y ∈ [0, 2π] be a

coordinate on S1. If G0(x, y) and D0(x, y) are the Green’s functions for bosons and

fermions respectively on R4,1, i.e., they satisfy:

(∂2 −M2)G0(x, y) = δ(4)(x)δ(y),

(/∂ −M)D0(x, y) = δ(4)(x)δ(y), (2.195)

122



then the Green’s functions on R3,1 × S1 are just:

G(x, y) =
∑
k∈Z

G0(x, y + 2πk),

D(x, y) =
∑
k∈Z

D0(x, y + 2πk). (2.196)

Then (2.194) gives:

−8iM2G(x1−x2, y1−y2)G(x2−x1, y2−y1)+iTr
[
D(x1−x2, y1−y2)D(x2−x1, y2−y1)

]
,

(2.197)

where (x1, y1) and (x2, y2) are the space-time points where the two mass terms are

inserted. If K(x1, y1;x2, y2) denotes the expression (2.197), then the term in the

effective action is

∫
d4x1dy1d4x2dy2K(x1, y1;x2, y2)M(x1)M(x2). (2.198)

We note that since M(x) is independent of the circle direction y, we can integrate

(2.197) over y1 and y2, or over y ≡ y1− y2 and y2. Another obvious step is to pass to

the momentum representation for the R3,1 directions. Now we have

∫
dy1dy2K(x1, y1;x2, y2) =

∫
d4p

(2π)4
K(p)eip(x1−x2), (2.199)

and this K(p) is given by

K(p) = −2πi

∫ 2π

0

dy

∫
d4q

(2π)4

(
8M2G(q, y)G(q − p,−y)− Tr

[
D(q, y)D(q − p,−y)

])
.

(2.200)
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Figure 2.2: The two-point function of mass terms. Internal lines are labeled by the
4d momentum and the winding number.

If we substitute (2.196), this becomes:

K(p) = −2πi
∑
k1,k2

∫ 2π

0

dy

∫
d4q

(2π)4

(
8M2G0(q, y − 2πk1)G0(q − p,−y − 2πk2)

−Tr
[
D0(q, y − 2πk1)D0(q − p,−y − 2πk2)

])
.

(2.201)

This quantity is represented by the Feynman diagram on Figure 2.4.3, where scalars

and bosons run inside the loop, and we label internal lines of the loop by the corre-

sponding 4d momentum and the winding number k. It is clear from the picture that

k1 + k2 plays the role of the total winding number of the particle as it circles the loop

in the diagram. Another way to see it is to reintroduce non-zero constant holonomies

αI . These would just shift the momentum in the circle direction by w → w + qIα
I

and contribute an overall factor e−iqIαIy both in G0(p, y) and D0(p, y). Then, in the

above expression for K(p), the only effect of holonomies would be to introduce an

overall factor e2πi(k1+k2)qIα
I , thus showing that k1 + k2 is indeed interpreted as the

total winding number of the loop.

We need explicit expressions for G0 and D0 in a “mixed” representation, where

momentum is used for the xµ directions and position coordinate is used for the y
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direction. It is easy to find that:

D0(p, y) =

∫ ∞
−∞

dw

2π
eiwy

M − i/p− iwΓ5

p2 + w2 +M2
=

M − i/p
2
√
p2 +M2

e−|y|
√
p2+M2

+
Sign(y)

2
Γ5e−|y|

√
p2+M2

,

G0(p, y) =

∫ ∞
−∞

dw

2π
eiwy

1

p2 + w2 +M2
=
e−|y|
√
p2+M2

2
√
p2 +M2

.

(2.202)

Substituting this into our expression for K(p), computing traces of gamma matrices

and considering a given fixed k = k1 + k2, we get

− 2πi
∑

k1+k2=k

∫ 2π

0

dy

∫
d4q

(2π)4

(
M2 + q2 − pq√

q2 +M2
√

(q − p)2 +M2

+ Sign(y − 2πk1)Sign(y + 2πk2)

)
e−|y−2πk1|

√
q2+M2−|y+2πk2|

√
(q−p)2+M2

.(2.203)

For this computation and for the computation in the next section, we need the fol-

lowing two formulas:

∫ 2π

0

dy
∑

k1+k2=k

e−|y−2πk1|A−|y+2πk2|B =
e−2π|k|A + e−2π|k|B

A+B
+
e−2π|k|B − e−2π|k|A

A−B
,

(2.204)∫ 2π

0

dy
∑

k1+k2=k

e−|y−2πk1|A−|y+2πk2|BSign(y − 2πk1)Sign(y + 2πk2)

=
e−2π|k|A + e−2π|k|B

A+B
− e−2π|k|B − e−2π|k|A

A−B
.

(2.205)
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Applying them to (2.203), we get:

− 2πi

∫
d4q

(2π)4

[
M2 + q2 − pq√

q2 +M2
√

(q − p)2 +M2
×(

e−2π|k|
√

(q−p)2+M2 − e−2π|k|
√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

)

− e−2π|k|
√

(q−p)2+M2 − e−2π|k|
√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

]
.

(2.206)

This expression is perfectly convergent for k 6= 0 and we are going to compute it

shortly, but first let us say a few words about k = 0.

A digression about k = 0. The case k = 0 corresponds, in the particle language,

to the contribution of closed trajectories that do not have any net winding number.

Such trajectories in R4 × S1 can be lifted to closed trajectories in R5. Thus the

k = 0 term should be understood as a contribution to the 5d effective action. It then

contributes to the 4d effective action through the classical dimensional reduction. As

was explained earlier, only two F-terms can receive contributions from the classical

dimensional reduction. Those are precisely the F0 and F1 that are being studied

in this section. The F1 term will be discussed in the next subsection, while for the

prepotential F0, the only possible contributions from dimensional reduction originate

from the 5d action (for supergravity with vector multiplets) with no more than 2

derivatives. Such an action in 5d is completely fixed by supersymmetry in terms of

the coefficients CIJK (see [97]). Dimensional reduction then gives the prepotential

(2.82) in 4d depending on these coefficients. So the only possibility for the k = 0

contribution to affect the F0 term in 4d is to shift the values of CIJK in the 5d effective

action. This does not happen. One way to see it is to note that the 5d action has a

Chern-Simons term CIJKV
I ∧ dV J ∧ dV K . It gives rise to the term CIJKα

IF J ∧ F J
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in the 4d action, where αI = V I
y are holonomies along the circle. Any quantum

computation will depend on holonomies through the combination e2πiαI , and thus the

term CIJKα
IF J ∧ F J cannot be shifted.18

Back to the computation. Now, for k 6= 0, we want to Taylor expand the inte-

grand in (2.206) and pick out the p2-term in the expansion. Schematically, there will

be two kinds of terms:

∫
d4q

(2π)4

[
f1(q2)p2 + f2(q2)(pq)2

]
. (2.207)

In this type of integral one usually performs a Wick rotation q0 = −iq4, and then

notes that, due to the spherical symmetry, qµqν can be replaced by q2

4
ηµν . After that,

we have:

− i
∫

d4qE
(2π)4

[
f1(q2

E) + f2(q2
E)q2

E/4
]
p2
E. (2.208)

By going to spherical coordinates and recalling that the volume of the unit 3-sphere

is 2π2, one has to compute:

− iπ

(2π)3

∫ ∞
0

q3dq
[
f1(q2) + f2(q2)q2/4

]
p2. (2.209)

18From the string theory side, the values of CIJK are given by the string three-point amplitudes
on a sphere S2 with one insertion of the NS-NS vertex operator corresponding to the scalar αI and
two inservions from the R-R sector corresponding to the field strengths F Iµν (see [98]).
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We apply this to (2.206) (after Taylor expansion) and get the following expression at

the p2-order:

− π

(2π)2
p2

∫ ∞
0

q3dq

[
e−2π|k|

√
M2+q2

q2
(

3 + 4π2k2M2 + 4π2k2q2 + 6π|k|
√
M2 + q2

)
8 (M2 + q2)5/2

−e
−2π|k|

√
M2+q2

(M2 + q2)3/2
− 2π|k|e−2π|k|

√
M2+q2

M2 + q2

]
.

(2.210)

By an obvious change of variables x =
√
M2 + q2, this is transformed into:

− π

(2π)2
p2

∫ ∞
M

dx x(x2 −M2)

[
e−2|k|πx (x2 −M2) (3 + 4π2k2M2 + 6π|k|x+ 4π2k2 (x2 −M2))

8x5

−2π|k|e−2π|k|x

x2
− e−2π|k|x

x3

]
,

(2.211)

which gives:

πe−2π|k|M

(2π)3|k|
p2. (2.212)

We sum this over k 6= 0 (k and −k pair up) and get the corresponding kinetic term

deformation in coordinate space:

− 1

2

∞∑
k=1

e−2πkM

(2π)2k
∂µM(x)∂µM(x) = −1

2

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ . (2.213)

Reconstructing F0

Now we aim to reconstruct the expression for F0 from the Kahler metric deforma-

tion we have computed. An important observation one should make first is that

the one-loop quantum corrections also include contributions to the effective action
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that describe couplings of the vector multiplets scalars ZI to the scalar curvature

R. That is, effective supergravity emerges written in a non-Einstein frame. If we

denote the corresponding one-loop contribution as 1
2
φ(Z,Z)R, then the part of the

Lagrangian density including also kinetic energy of scalars, written at the point with

zero holonomies αI = 0, is:

1

2
(1 + φ(Z,Z))R +

3

2
CIJKhI∂µhJ∂µhK −

1

2

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ . (2.214)

We could find this φ(Z,Z) by computing the two-point function of some scalar ZI

with the metric. This would require, similar to what we did before, a calculation

of the two-point function of the mass term with the stress-energy tensor of the 5d

hypermultiplet on the flat R4 × S1 background. However, there is no need to do

it as the structure of N = 2 supergravity determines this function in terms of the

quantities we have already calculated, as we will see soon.

We want to compare the deformed metric on scalars in (2.214) with the formulas

from the Section 2.4.1, namely with the general expression for the Kahler metric

(2.186) in the Einstein frame. However, since the action (2.214) is written in a non-

Einstein frame, we have to rescale metric first, writing the action in the Einstein

frame:

1

2
R+

3

2
(1 +φ(Z,Z))−1CIJKhI∂µhJ∂µhK−

1

2
(1 +φ(Z,Z))−1

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ .

(2.215)

Keeping only the first order corrections, we find:

− 3

2
φ(Z,Z)CIJKhI∂µhJ∂µhK −

1

2

∞∑
k=1

e−2πkM

(2π)2k
qIqJ∂µh

I∂µhJ , (2.216)

which is the desired Kahler metric deformation. We want to compare it with the

deformation of (2.186) under F0 = F cl
0 + Fq

0 , where F cl
0 is the classical prepotential
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(2.82). Such a prepotential deformation results in NΛΣ = N cl
ΛΣ + Nq

ΛΣ and, through

the gauge condition NΛΣX
ΛX

Σ
= −1, in the deformation of the expression for X0

in terms of other scalars. It is straightforward to find the first order correction of

(2.186) at αI = 0 and eσ = 1:

1

4
Nq
IJ∂µh

I∂µhJ +
1

4
(Nq

IJh
IhJ +Nq

00)
3

2
CIJKhI∂µhJ∂µhK . (2.217)

Recalling the general expression for Fq
0 (2.188) deduced from shift symmetries, one

can further write this as:

− 2π2∂µM∂µM
∑
k>0

k2Im (ck,0)e−2πkM

+

(
2πM

∑
k>0

k Im (ck,0)e−2πkM +
∑
k>0

Im (ck,0)e−2πkM

)
3

2
CIJKhI∂µhJ∂µhK ,

(2.218)

where we used M = qIh
I . We now want to equate this to the result of the one-loop

calculation given in (2.216). Also, it is useful to realize that at αI = 0, the function

φ(Z,Z) is really a function φ(M) of M = qIh
I only, simply because it is a one-loop

effect due to the particle of mass M . Equating (2.216) with (2.218) and slightly

rearranging, we get:

2π2∂µM∂µM
∑
k>0

k2

(
Im (ck,0)− 1

(2π)4k3

)
e−2πkM

=

(
φ(M) + 2πM

∑
k>0

k Im (ck,0)e−2πkM +
∑
k>0

Im (ck,0)e−2πkM

)
3

2
CIJKhI∂µhJ∂µhK ,

(2.219)

which is the equation for the unknown coefficients ck,0 and the unknown function

φ(M). When written in such a way and if there are enough scalars hI in the theory,
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one can show19 that the only possible way to satisfy it is to set both sides to zero.

Recalling that ck,0 are imaginary due to parity, this gives:

ck,0 =
i

(2π)4k3
,

φ(M) = −
∑
k>0

M

(2π)3k2
e−2πkM −

∑
k>0

1

(2π)4k3
e−2πkM . (2.220)

With such values of ck,0, we get:

Fq
0 =

i

(2π)4

(
X0
)2
∞∑
k=1

1

k3
e2πikqIZ

I

, (2.221)

which agrees with the GV formula as claimed earlier in this thesis. It is now also

obvious that for αI 6= 0, the expression for φ(Z,Z) is:

φ(Z,Z) = −Nq
ΛΣX

ΛX
Σ

= −1

4
e−3σNq

ΛΣZ
ΛZ

Σ
. (2.222)

It would be an interesting consistency check to derive this φ(Z,Z) by computing the

two-point function of the mass term with the stress-energy tensor in the 5d hyper-

multiplet theory.
19If there are enough scalars, one can find such a constant (i.e., independent of the space-time

point) infinitesimal variation δhI that CIJKδhI∂µhJ∂µhK is non-zero, while δM = qIδh
I = 0.

Of course, constraint CIJKhIhJhK = 1 defining the hypersurface Mh should be preserved too.
Under such a variation in hI , the equation (2.219) should be preserved. But since δM = 0, the
only term whose variation is non-zero is CIJKhI∂µhJ∂µhK . Thus the expression in parenthesis by
which it is multiplied should be zero for the equation to hold, which immediately implies (2.220).
There are b2(Y ) scalars hI , I = 1 . . . b2(Y ), where b2(Y ) is a second Betti number of Y . To have
“enough scalars”, we can take b2(Y ) ≥ 4. To show this, put ∂µhI = aµδh

I , i.e., assume that
the gradient is parallel to the variation that we are seeking with some proportionality factor aµ
such that aµaµ 6= 0 (we can obviously do that). The fact that CIJKhIhJhK = 1 is preserved
means that δhI is tangent to Mh. Also, as mentioned above, we have qIδhI = 0. Also, we want
CIJKδhI∂µhJ∂µhK = aµa

µCIJKδhIδhJδhK 6= 0. When b2(Y ) ≥ 4, the tangent space to Mh is at
least three-dimensional, and qIδhI = 0 gives a subspace of dimension at least two. In such a space,
we can clearly find such δhI that a single condition CIJKδhIδhJδhK 6= 0 is satisfied, and this is the
variation we need, so b2(Y ) ≥ 4 is enough. However, in Subsection 2.4.3 we will explain that the
answer we get is valid for any b2(Y ).
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The case of arbitrary b2(Y )

In the derivation of (2.220), we used the assumption that there are enough scalars,

namely that b2(Y ) ≥ 4, as explained in the footnote 19. However, there exist Calabi-

Yau spaces with b2(Y ) < 4. For example, the quintic threefold has b2(Y ) = 1, which

is the minimal possible value. In fact, the case of b2(Y ) = 1 seems to be even more

problematic, because the 5d theory obtained by compactification on such a manifold

has no vector multiplets and so no corresponding scalars. But our approach was to

compute the Kahler metric for those scalars, so their existence was essential.

A possible way around is that the formula (2.221), describing the contribution

of a single 5d hypermultiplet to F0, is universal and holds for any b2(Y ). Once we

know that the corresponding 5d BPS multiplet exists, this formula gives the answer

irrespective of how big or small b2(Y ) is. For b2(Y ) ≥ 4, this already follows from our

derivation, but for the cases of small b2(Y ), one has to give a separate argument.

To do this, notice that we could set up a different computation of F0. Namely,

we could use the kinetic energy of gauge fields. It has two good properties. One

is that it is Weyl-invariant, so rescaling the metric into the Einstein frame would

not affect the one-loop deformation of the kinetic term (unlike it was for scalars in

(2.214)-(2.216)). Another is that the matrix of couplings NΛΣ defined in (2.50) does

not depend on the dilatational gauge, i.e., on the expression for X0, so that the gauge

fields kinetic term deformation is directly related to Nq
ΛΣ. So we could just compute

the two-point function of 5d gauge fields (they exist for all b2(Y ), unlike scalars), and

get Fq
0 out of it directly. A disadvantage of such an approach is that it seems to be

much more technically involved than what we have done here, and one would also

need to know how to couple the minimal action (2.191) to gauge fields in a proper

supersymmetric way. That is why we have chosen scalars for the computation. But

such an alternative computation would clearly depend only on the properties of the
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5d hypermultiplet, and not on b2(Y ). Its existence establishes our claim that (2.221)

provides the universal answer.

2.4.4 Computation of F1

In this subsection we consider the same light hypermultiplet as in (2.191), but here we

determine its contribution to F1. The term F1 gives rise to a variety of interactions

in the 4d effective action, and every one of them can potentially be used to set up a

computation of F1. We find the following term:

(ImF1)R2 ≡ (ImF1)RµνλρR
µνλρ (2.223)

to be the most useful for this purpose. This term can be understood as a response to

a small metric perturbation. Thus, it can be computed from the two-point function of

the symmetric stress-energy tensor of the action (2.191). We consider a small metric

perturbation around the flat 4d Minkowski background (the R3,1 part of R3,1 × S1):

gµν = ηµν + hµν , (2.224)

and we assume no metric perturbations in the circle direction. That is, the metric

remains ds2 = gµνdx
µdxν + dy2. With the TT-gauge condition:

hµµ = 0

∂µh
µν = 0, (2.225)

we have: R2 = ∂λ∂σh
µν∂λ∂σhµν+O(h3). So we will compute the following interaction:

8(ImF1)hµν(∂2)2hµν . (2.226)

133



If TMN is the symmetric stress-energy tensor of (2.191), then for small perturbations

hµν of the metric, the leading order contribution to (ImF1)R2 at one loop comes

from:
1

4

∫
d5xd5y〈Tµν(x)Tλρ(y)〉hµν(x)hλρ(y). (2.227)

The useful relation to extract the one-loop answer Fq
1 is:

∫
d5x1d5x2〈Tµν(x1)Tλρ(x2)〉hµν(x1)hλρ(x2) = −64i

∫
d4x(ImFq

1 )hµν(∂2)2hµν + . . . ,

(2.228)

where the ellipsis stands for terms with the wrong number of derivatives.

The two-point function computation

The symmetric stress-energy tensor is

Tµν = −2
∑
i

zi
(←−
∂ (µ

−→
∂ ν)

)
zi +

1

2
Ψ
c
(
γ(µ

−→
∂ ν) − γ(µ

←−
∂ ν)

)
Ψ− ηµνL. (2.229)

Formula (2.228) implies that, due to the tracelessness of hµν , the ηµνL term in the

expression for Tµν is unimportant.

Since the leading contribution to RµνλρR
µνλρ is proportional to (�h)2, we need

to find the (p2)2-order term of the 〈TµνTλρ〉 two-point function. We identify the

contribution of bosons first:

8×2π

∫ 2π

0

dy

∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4
(q−p)µqνqλ(q−p)ρG(q, y)G(q−p,−y).

(2.230)

Because of ∂µhµν = 0, we have pµhµν(p) = 0, and so the important part is:

8× 2π

∫ 2π

0

dy

∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4
qµqνqλqρG(q, y)G(q − p,−y). (2.231)
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The contribution of fermions is:

1

4

∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4

×Tr
{

(γ(µqν) − γ(µ(p− q)ν))D(q, y)(γ(λ(q − p)ρ) + γ(λqρ))D(q − p,−y)
}
, (2.232)

And for the same reason, pµhµν = 0, the relevant part is:

∫
d4p

(2π)4
hµν(−p)hλρ(p)

∫
d4q

(2π)4
Tr {γµqνD(q, y)γλqρD(q − p,−y)} . (2.233)

So, we have to find the (p2)2-term of this expression:

2π

∫ 2π

0

dy

∫
d4q

(2π)4

[
8qµqνqλqρG(q, y)G(q − p,−y) + Tr

{
γ(µqν)D(q, y)γ(λqρ)D(q − p,−y)

}]
.

(2.234)

The following steps are as in the F0 case. We have:

2π
∑
k1,k2

∫ 2π

0

dy

∫
d4q

(2π)4

[
8qµqνqλqρG0(q, y − 2πk1)G0(q − p,−y − 2πk2)

+Tr
{
γ(µqν)D0(q, y − 2πk1)γ(λqρ)D0(q − p,−y − 2πk2)

} ]
, (2.235)

and for given k1 + k2 = k, we get:

2π
∑

k1+k2=k

∫ 2π

0

dy

∫
d4q

(2π)4

[
2qµqνqλqρ√

q2 +M2
√

(q − p)2 +M2

+
M2q(νgµ)(λqρ)√

q2 +M2
√

(q − p)2 +M2
−
qµqν(q − p)(λqρ) + (q − p)(µqν)qλqρ − q(q − p)q(νgµ)(λqρ)√

q2 +M2
√

(q − p)2 +M2

+ q(νgµ)(λqρ)Sign(y − 2πk1)Sign(y + 2πk2)

]
e−|y−2πk1|

√
q2+M2−|y+2πk2|

√
(q−p)2+M2

.(2.236)
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We throw away terms proportional to pµ, pν , pλ or pρ, and get:

2π
∑

k1+k2=k

∫ 2π

0

dy

∫
d4q

(2π)4

[
(M2 + q(q − p))q(νgµ)(λqρ)√
q2 +M2

√
(q − p)2 +M2

+ q(νgµ)(λqρ)Sign(y − 2πk1)Sign(y + 2πk2)

]
e−|y−2πk1|

√
q2+M2−|y+2πk2|

√
(q−p)2+M2

.

(2.237)

Computing the sums and integrating over y using the formulas (2.204) and (2.205),

we find:

2π

∫
d4q

(2π)4

[
(M2 + q(q − p))q(νgµ)(λqρ)√
q2 +M2

√
(q − p)2 +M2

×(
e−2π|k|

√
(q−p)2+M2 − e−2π|k|

√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

)

+ q(νgµ)(λqρ)

(
−e
−2π|k|

√
(q−p)2+M2 − e−2π|k|

√
q2+M2√

q2 +M2 −
√

(q − p)2 +M2
+
e−2π|k|

√
q2+M2

+ e−2π|k|
√

(q−p)2+M2√
q2 +M2 +

√
(q − p)2 +M2

)]
.

(2.238)

Now we have to Taylor expand this to get an O(p4)-order contribution. We then

integrate over d4q at that order. We have to do the same tricks with Wick rotation

and replacing products of qµ by symmetric combinations of ηµν :

∫
d4q

(2π)4

[
f1(q2)qµqρ(p

2)2 + f2(q2)qµqρp
2(qp)2 + f3(q2)qµqρ(qp)

4
]
→

− i
∫

d4qE
(2π)4

[
f1(q2

E)
q2

4
ηµρ(p

2)2 + f2(q2
E)
q4

24
ηµρ(p

2)2 + f3(q2
E)
q6

64
ηµρ(p

2)2

]
+ . . .

(2.239)

where the ellipsis represents terms that vanish upon contractions with hµνhλρ.
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So, after Taylor expansion, we get:

−i(p
2)2

4π

∫ ∞
0

q3dq
[3e−2|k|π

√
M2+q2

M4q2

16 (M2 + q2)9/2
+
e−2|k|π

√
M2+q2

k2M6π2q2

4 (M2 + q2)9/2
+
e−2|k|π

√
M2+q2

M2q4

6 (M2 + q2)9/2

+
5e−2|k|π

√
M2+q2

k2M4π2q4

12 (M2 + q2)9/2
+

73e−2|k|π
√
M2+q2

q6

1536 (M2 + q2)9/2
+

77e−2|k|π
√
M2+q2

k2M2π2q6

384 (M2 + q2)9/2

+
e−2|k|π

√
M2+q2

k4M4π4q6

96 (M2 + q2)9/2
+

13e−2|k|π
√
M2+q2

k2π2q8

384 (M2 + q2)9/2
+
e−2|k|π

√
M2+q2

k4M2π4q8

48 (M2 + q2)9/2

+
e−2|k|π

√
M2+q2

k4π4q10

96 (M2 + q2)9/2
+

3e−2|k|π
√
M2+q2|k|M4πq2

8 (M2 + q2)4 +
e−2|k|π

√
M2+q2|k|M2πq4

3 (M2 + q2)4

−e
−2|k|π

√
M2+q2 |k|3M4π3q4

9 (M2 + q2)4 +
73e−2|k|π

√
M2+q2|k|πq6

768 (M2 + q2)4 − 49e−2|k|π
√
M2+q2|k|3M2π3q6

288 (M2 + q2)4

−17e−2|k|π
√
M2+q2|k|3π3q8

288 (M2 + q2)4

]
.

(2.240)

Doing the same change of variables x =
√
M2 + q2 as before and integrating, we get:

− i(p
2)2

4π

e−2π|k|M

24π|k|
. (2.241)

Summing over k 6= 0 and using (2.228), we obtain:

ImFq
1 =

1

16π2

∞∑
k=1

e−2πkM

64× 3k
, (2.242)

so, using the fact that F1 is imaginary at αI = 0 and then extending by holomorphy:

Fq
1 =

1

16π2

∞∑
k=1

i

64× 3k
e2πikqIZ

I

. (2.243)

This is again compatible with our previous discussion.
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A word about k = 0. Just as in the F0 case, the integral (2.240) is convergent

only for k 6= 0. The k = 0 part is again interpreted as a term in the effective

action in 5d. And this term then can or cannot contribute to F1 by the classical

dimensional reduction. Before we argued that the only possible contribution to F1

from the classical dimensional reduction is of the form cI,2Z
I with real constants cI,2.

So the only remaining question one could ask here is whether the k = 0 part of the

one-loop answer could contribute by shifting the values of these cI,2.

The real part of F1 ∝ cI,2Z
I enters the 4d interaction

∫
cI,2α

ITr(R ∧ R), which

comes from a Chern-Simons interaction in 5d of the form
∫
cI,2V

I ∧ Tr(R ∧R). The

imaginary part of F1 corresponds to the 4d interaction
∫ √

gd4x cI,2h
IR2, which ap-

parently lifts to the 5d interaction of the form ∝
∫ √

Gd5x cI,2h
IR2. While the mean-

ing of the latter term is not entirely clear, the 5d Chern-Simons term was discussed

before. As explained in Section 2.1.2, it can be lifted even further, to the 11d action.

Its 11d origin is an interaction 1
(2π)4

∫
C ∧

[
1

768
(TrR2)2 − 1

192
TrR4

]
(where the powers

of R are with respect to the wedge product). This interaction was discovered in [89]

due to its role in the anomaly cancelation in M-theory. This suggests that cI,2 cannot

be shifted. Another evidence that quantum corrections cannot shift cI,2 appears if we

turn on holonomies αI . We know that they appear in a diagram computation only

through the factors e2πikqIα
I , which means that the term

∫
cI,2α

ITr(R∧R) (which has

to be generated at αI 6= 0 background) cannot be shifted. Thus cI,2 is not actually

shifted by the k = 0 part of the one-loop answer, and it is enough to consider only

k 6= 0 terms.

2.4.5 Some further remarks

We have computed the contribution of a single light hypermultiplet to F0 and F1.

As was explained earlier, to get a contribution from all of the massless multiplets in

the theory (that is, hypermultiplets, vector multiplets and the gravity multiplet), one
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just has to multiply the contribution of a massless hypermultiplet by −χ(Y )/2, where

χ(Y ) is the Euler characteristic of the Calabi-Yau Y . The massless hypermultiplet

contribution is a massless limit of what we have computed here.

Note that the superparticle description, which was advocated in Section 2.2 (and

which is a perfect choice for massive BPS multiplets), does not have a sensible massless

limit, even though in the answer one can formally take mass to zero. That is why

the field theoretic description was essential for the complete picture. For g ≥ 2, the

field-theoretic computation of Fg was described in Section 2.3 of this thesis. The

field-theoretic computation of F0 and F1 was presented in the current Section.

Finally, we note that the results of the one-loop computation are actually exact.

This one-loop exactness follows in the usual way from holomorphy. If we go beyond

quadratic order in the action and thus consider higher-loop corrections, they will be

multiplied by extra powers of the massM = qIh
I , which will not be balanced by extra

powers of holonomies qIαI . This will violate holomorphy and therefore correspond to

D-terms rather than F-terms.

2.5 The Ooguri-Vafa formula

In this section we review the derivation of the Ooguri-Vafa formula. A qualitative

discussion was given in the Introduction, so here we will only discuss the central

charges appearing in the OV formula and describe the computation. More details

can be found in [63].

2.5.1 Central Charges

BPS states that contribute to the OV formula come in the UV from M2-branes

(wrapping oriented curves) that end on the M5-brane supported on R3 × L. Such

M2-branes wrap cycles in the second relative homology H2(Y, L;Z). Just like in the
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GV case H2(Y ;Z) was the lattice of charges of possible BPS states, in the OV case,

H2(Y, L;Z) is the lattice of corresponding charges. In the GV case, in order to write

the action of a BPS particle, we needed the Kahler moduli v1, . . . , vb2 of M-theory on

a Calabi-Yau manifold Y , where b2 = b2(Y ) is the second Betti number of Y , as well

as the corresponding holonomies αI around the M-theory circle. In the OV case, we

need to add moduli wρ, ρ = 1, . . . , b1(L) of the special Lagrangian submanifold L to

the story, as well as holonomies βρ of the gauge fields living on the M5-brane. Let us

describe all these objects in more detail.

An oriented two-dimensional surface Σ ⊂ Y that may have a boundary on L has

a homology class in the relative homology group H2(Y, L;Z). This group is related

to H2(Y ;Z) by an exact sequence that reads in part

. . . H2(L;Z)
α−→ H2(Y ;Z)

β−→ H2(Y, L;Z)
γ−→ H1(L;Z)

α′−→ H1(Y ;Z) . . . (2.244)

The maps α and α′ take a cycle in L and map it to Y using the embedding L ⊂ Y .

The map β is defined using the fact that a cycle Σ ⊂ Y that has no boundary is a

special case of a cycle whose boundary is on L. And the map γ maps a cycle Σ ⊂ Y

whose boundary is in L to its boundary ∂Σ ⊂ L.

The physical meaning of the map α is as follows. Once we introduce an M5-

brane, since an M2-brane can end on an M5-brane, some M2-brane charges might

not be conserved any more. If Σ ⊂ Y is homologous to a cycle in L, then an M2-

brane wrapped on Σ can annihilate and disappear. Hence for the purpose of the

OV formula, H2(Y ;Z) should be replaced by the quotient H2(Y ;Z)/α(H2(L;Z)),

which parametrizes charges that are carried by M2-branes without boundary and are

conserved in the presence of an M5-brane wrapped on R3×L. To keep our terminology

familiar, we will assume in what follows that α = 0. Otherwise, in all statements one
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replaces H2(Y ;Z) by H2(Y ;Z)/α(H2(L;Z)) and replaces b2(Y ) by the rank of that

group, which we might call b′2 = b′2(Y, L).

The interpretation of the map α′ is as follows. If a 1-cycle in L is the boundary

∂Σ of some Σ ⊂ Y that represents a class in H2(Y, L;Z), this means by definition

that ∂Σ, when embedded in Y , is a boundary (of Σ) and so vanishes in H1(Y ;Z). So

the image of H2(Y, L;Z) under γ is not all of H1(L;Z), but only the kernel of α′.

In any event, for a Calabi-Yau manifold Y , H1(Y ;Z) is always a finite group. This

means that we can set α′ = 0 if there is no torsion or we reduce modulo torsion. We

ignore torsion in this thesis and consider only Z-valued charges. At the end of this

chapter we will comment shortly on the case with torsion and refer interested readers

to [63]. With also α assumed to vanish, the long exact sequence (2.244) reduces to a

short exact sequence

0→ H2(Y ;Z)
β−→ H2(Y, L;Z)

γ−→ H1(L;Z)→ 0. (2.245)

This implies that the rank of H2(Y, L;Z) is the sum b2(Y ) + b1(L). That number (or

b′2 + b1(L) if α 6= 0) is the total number of Z-valued charges of a BPS state in this

situation.

By mapping the H2(Y, L;Z)-valued charge of an M2-brane with boundary on L to

H1(L;Z) via γ, we learn that such an M2-brane has a charge valued in H1(L;Z), or

in other words that it carries Z-valued charges r1, . . . , rb1 that are determined by its

boundary. Concretely, these charges are dual to oriented circles `ρ ⊂ L that provide a

basis of H1(L,Z) (modulo possible torsion). An M2-brane wrapped on Σ has charges

rρ, ρ = 1, . . . , b1(L) if its boundary ∂Σ is homologous in H1(L;Z) to
∑

ρ rρ`
ρ.

Since there is no natural map from H2(Y, L;Z) to H2(Y ;Z), there is no equally

natural definition of the “bulk” charges of an M2-brane that is allowed to end on

L. However, modulo torsion, we can always pick a splitting of the exact sequence
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(2.245), and this enables us to define the bulk charges q1, . . . , qb2 . We will pick a fixed

splitting in what follows, though one could proceed more intrinsically. If we use a

different splitting, the qI are shifted by integer linear combinations of the rρ.

A way to fix splitting, using the Splitting Lemma, is by providing a left inverse

for β or a right inverse for γ. We chose to pick a right inverse for γ, which is a map

δ : H1(L;Z)→ H2(Y, L;Z) such that γ◦δ = id. We define this map by saying that for

every oriented circle `ρ ⊂ L from the basis of H1(L;Z), we choose a surface σρ ⊂ Y

to which it is mapped, such that ∂σρ = `ρ (we assume that H1(Y ;Z) is trivial). Then

we say that an M2-brane wrapped on Σ has charges q1, . . . , qb2(Y ), r1, . . . , rb1(L) if Σ is

homologous in H2(Y, L;Z) to
∑

ρ rρσ
ρ +
∑

I qIβ(ωI), where ωI is a basis of H2(Y ;Z)

dual to the basis of H2(Y ;Z) we used before.

In M-theory, if L is compact, then just like the charges qI that entered the GV

formula, the new charges rρ also couple to abelian gauge fields. These are abelian

gauge fields that only propagate along the support R3 × L of the M5-brane, so that

macroscopically, they propagate along R3 ⊂ R5. These abelian gauge fields have a

simple microscopic origin. Along the world-volume of an M5-brane, there propagates

a two-form field (whose curvature is constrained to be selfdual). When we compactify

the M5-brane on R3×L, the Kaluza-Klein expansion of the two-form field gives b1(L)

abelian gauge fields on R3. As we have discussed in the introduction, states that

are charged with respect to these gauge fields are actually confined. The derivation

and interpretation of the OV formula are more straightforward if L does not admit

any square-integrable harmonic 1-forms, either because L is compact with b1(L) = 0

or because L is not compact and its geometry and topology ensure that harmonic

1-forms on L are not square-integrable. In this case, the symmetries associated to

the moduli of L behave as global symmetries and the rρ are global charges that can

contribute to the central charge of a BPS state.
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With our choice of splitting provided by the right inverse of γ, we can also define

a local coordinate system on the moduli space of special Lagrangian submanifold

M(L). If ω is a Kahler form of Y , we define coordinates wρ onM(L) as:

wρ =

∫
σρ
ω. (2.246)

Once we have picked the set of relative homology classes [σ1], . . . , [σb1(L)], these wρ

are well-defined real numbers. To check this, suppose that we replace σρ by some σ̃ρ

homologous to σρ in H2(Y, L;Z). Consider the 2-chain σρ− σ̃ρ. It represents a trivial

class in H2(Y, L;Z), therefore the boundary ∂σρ − ∂σ̃ρ is a trivial class in H1(L;Z).

This means that there exists a two-chain c ⊂ L, such that ∂c = ∂σρ − ∂σ̃ρ. Since L

is Lagrangian, ω|L = 0, so
∫
c
ω = 0. Therefore we can write:

∫
σρ
ω −

∫
σ̃ρ
ω =

∫
σρ
ω −

∫
σ̃ρ
ω −

∫
c

ω =

∫
σρ−σ̃ρ−c

ω. (2.247)

Now, by the definition of c, the 2-chain σρ − σ̃ρ − c is closed, moreover, since σρ and

σ̃ρ are homologous in H2(Y, L;Z) and c is homologous to zero in relative homology,

σρ − σ̃ρ − c is actually a boundary. Therefore, the above integral vanishes and we

prove: ∫
σρ
ω =

∫
σ̃ρ
ω. (2.248)

So wρ are well-defined, they do not change as we vary the representative σρ. However,

they change if we vary L itself – that is why they provide a coordinate system on

M(L). Using a more formal theory of [99], it is not hard to prove that this is indeed

a good coordinate system onM(L).

The area of a holomorphic curve Σ ⊂ Y whose boundary is on L is determined by

its homology class or in other words by the charges q1, . . . , qb2 and r1, . . . , rb1 . This
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area in M-theory units is

A =
∑
I

qIv
I +

∑
ρ

rρw
ρ, (2.249)

where vI are the Kahler moduli of Y and wρ, ρ = 1, . . . , b1(L), are the moduli of L

we have just defined. (If one changes the splitting that was used to define the qI ,

then the wρ are shifted by integer linear combinations of the vI .) To find the mass

of an M2-brane wrapped on Σ measured in the 5d Einstein frame, we make a Weyl

transformation to 5d variables

hI =
vI

v
, kρ =

wρ

v
, (2.250)

as in eqn. (2.33). Generalizing eqn. (2.74), the mass of a BPS particle with charges

~q, ~r (in units in which the M2-brane tension is 1) is then

m(~q, ~r) =
∑
I

qIh
I +

∑
ρ

rρk
ρ. (2.251)

Assuming that Σ has a non-empty boundary on L, and that L is suitably noncompact,

this particle propagates on R3 and is a BPS particle in a 3d theory that has N = 2

supersymmetry (four superchanges). The 3d N = 2 supersymmetry algebra has a

real central charge ζ that equals the mass of a BPS particle, so it is given by the

formula (2.251):

ζ(~q, ~r) =
∑
I

qIh
I +

∑
ρ

rρk
ρ. (2.252)

Now let us compactify from R5×Y to R4×S1×Y , so that the M5-brane worldvol-

ume becomes R2×S1×L. As usual, we suppose that the S1 has circumference 2πeσ.

The real part of the action of a BPS particle of mass m(~q, ~r) propagating around the

S1 is then 2πeσm(~q, ~r) = 2πeσ(
∑

I qIh
I +
∑

ρ rρk
ρ). However, just as in the derivation

of the GV formula, the action also has an imaginary part that arises from the fact that

when we compactify on a circle, the abelian gauge fields may have holonomies around
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the circle. As in our study of the GV formula, we write exp(2πiαI), I = 1, . . . , b2(Y ),

for the holonomies of the gauge fields that arise from M-theory compactification on Y ,

and we similarly write exp(2πiβρ), ρ = 1, . . . , b1(L) for the holonomies of the gauge

fields that live on the M5-brane. (Again the definition of the βρ depends on a choice

of splitting; in a change of splitting, they are shifted by integer linear combinations of

the αI .) Then a particle of charges ~q, ~r propagating around the circle acquires a phase

exp
(

2πi(
∑

I qIα
I +

∑
ρ rρβ

ρ)
)
. As in eqn (2.71), we can interpret this to mean that

the action for such a particle is

S(~q, ~r) = 2π

(∑
I

qI(e
σhI − iαI) +

∑
ρ

rρ(e
σkρ − iβρ)

)
= −2πi

(∑
I

qIZ
I +

∑
ρ

rρU
ρ

)
,

(2.253)

where ZI was defined in eqn. (2.72) and similarly

Uρ = βρ + ieσkρ. (2.254)

Actually, ZI and Uρ are the bottom components of 2d chiral superfields ZI and Uρ.

As in the derivation of the GV formula, a BPS particle propagating around the circle

in R2×S1 has bosonic collective coordinates (its position along R2) and also fermionic

collective coordinates. To take account of the fermionic collective coordinates, it is

better to write the action as a superfield

S(~q, ~r) = −2πi

(∑
I

qIZI +
∑
ρ

rρUρ
)
. (2.255)

As in the derivation of the GV formula, the contribution of a BPS particle to the OV

formula is given by exp(−S) multiplied by a product of one-loop determinants.
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2.5.2 The Computation

The computation that we have to perform is not essentially new; in a sense, it is just

the square root of the very simple computation that was already described in section

2.2.2. It is the interpretation that involves some difficulty.

We will only perform the particle computation. Even though, strictly speaking,

the field theory computation is required to find the contribution of massless BPS

states, we know from our experience with the GV formula that the massive answer

has a well-defined zero mass limit.

As with the GV formula, we consider first a BPS superparticle that has only the

two bosonic and two fermionic zero-modes that follow from supersymmetry. The basic

example is an M2-brane wrapped on a holomorphic disc Σ ⊂ Y whose boundary is

on L. If Σ has no infinitesimal deformations, then the 3d BPS superparticle obtained

by wrapping an M2-brane on Σ has only the minimal set of zero-modes. Ooguri and

Vafa [66] give a useful example20 in which L is topologically S1 × R2. The S1 is the

“equator” in a holomorphically embedded CP1 ⊂ Y , and taking Σ to be the upper

or lower hemisphere of this CP1, one gets an example with only those bosonic or

fermionic zero-modes that follow from the symmetries.

In our problem, this gives a superparticle that propagates on a two-plane R2 ⊂ R4.

We take this to be the two-plane x3 = x4 = 0, parametrized by x1 and x2. The action

that describes such a superparticle in the nonrelativistic limit is a simple truncation

to x3 = x4 = 0 of the one that we used in deriving the GV formula. A way to make

this truncation is to introduce the reflection R that acts by x3 → −x3, x4 → −x4

while leaving x1, x2 fixed. This reflection is a symmetry of the bosonic part of the

action if the graviphoton field is R-invariant, which is actually the case for the choice
20 In their example, Y is the small resolution of the conifold, which can be described via a linear

σ-model with gauge group U(1) and chiral superfields u1, u2 of charge 1 and v1, v2 of charge −1.
Thus Y is the quotient by U(1) of the space |u1|2 + |u2|2−|v1|2−|v2|2 =1. An embedding CP1 ⊂ Y
is defined by v1 = v2 = 0. L is defined by taking all ui and vj to be real. The symmetry U that is
introduced below acts on Y by v2 → −v2, leaving fixed u1, u2, and v1.
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that was already made in eqn. (2.121). We will extend R to a symmetry of the

full action including the fermions, and then the R-invariant part of eqn. (2.106) will

serve as our superparticle action. The extension of R to the fermions is not completely

trivial since on spinors R acts as σ34 = γ3γ4, and its square is −1, not +1. To get an

operation that squares to +1, we have to combine the matrix σ34 acting on the spinor

index A of a fermion field ψAi with a matrix that acts on the additional index21 i and

also squares to −1. Let us call the combined operation R′. Then the R′-invariant part

of the action (2.106) is the basic superparticle action relevant to the OV formula. It

possesses the R′-invariant part of the supersymmetry algebra of the action (2.106),

and this is the appropriate symmetry for our problem.

To perform the path-integral for this problem, we simply proceed as follows. We

have projected out half of the collective coordinates from (2.106), so the zero-mode

measure will be d2xd2ψ(0) rather than d4xd4ψ(0). Also, we have to compute a bosonic

determinant in just one of the 2× 2 blocks in eqn. (2.121). This means that the one-

loop path integral just gives, in a fairly obvious sense, the square root of the result

in eqn. (2.124). Finally, in the classical action, we have to include the charges and

moduli associated to the D4-brane and so replace
∑

I qIZI with
∑

I qIZI +
∑

ρ rρUρ.

Putting these statements together, the result for a BPS superparticle winding once

around the circle is

d2xd2ψ(0)

2π
exp

(
2πi

(∑
I

qIZI +
∑
ρ

rρUρ
))

T

sinh(πeσT)
. (2.256)

To go from this formula to a Type IIA effective action, we follow much the same

steps that were used to go from eqn. (2.125) to eqn. (2.126). We write T = eσ/2

4
W‖,

and interpret W‖ as the bottom component of a chiral superfield W‖. We also write

21Microscopically, the index i = 1, 2 distinguishes supersymmetries that originate from left-movers
on the string worldsheet to those that originate from right-movers. Interaction with a D4-brane
preserves a linear combination of the two types of symmetries. Which linear combination it is
depends on the eigenvalue of σ34, and that is why a reflection must be defined to act on the i index.
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d2xd2ψ(0) = 1
2
d2xd2θ

√
gEe−σ/2 (where now gE is the Einstein metric restricted to the

brane) and use the usual formula e3σ/2 = −i/2X 0. The resulting contribution to the

effective action is

i

∫
d2xd2θ

(2π)2

√
gE exp

(
2πi

(∑
I

qIZI +
∑
ρ

rρUρ
))

πW‖/8
sin(πW‖/8X 0)

. (2.257)

Before discussing the interpretation of this formula, we write its obvious extension,

analogous to (2.127), to the case of a superparticle that wraps any number of times

around the circle:

i

∫
d2xd2θ

(2π)2

√
gE

∞∑
k=1

1

k
exp

(
2πik

(∑
I

qIZI +
∑
ρ

rρUρ
))

πW‖/8
sin(πkW‖/8X 0)

.

(2.258)

In deriving this formula, we have ignored superparticle interactions. It is not im-

mediately obvious that this is right, since in general, as explained in section 2.2.3,

short-range interactions are only irrelevant above D = 2 (short-range interactions in

D = 2 have been studied, for example, in [100]). The justification for ignoring the

interactions, under some assumptions, can be found in appendix C of [63].

The formulas (2.256) and (2.258) have been easy to write down, but it is a little

more vexing to interpret them. Looking more closely at the spectrum of BPS particles

and symmetries of the M-theory construction, it was noted in [63] that “semions”, i.e.,

particles of fractional spin, could be present in the spectrum. This would imply long

range interactions of statistical nature that, among other things, would surely interfere

with the formula (2.258) for multiple windings. This was left as a puzzle there, and so

we just move on to discuss the general case of BPS particles with arbitrary quantum

numbers.

Luckily, we find no further trouble. In the general case, we write the Hilbert

space describing BPS particles of charges ~q, ~r as Ĥ~q,~r = Ĥ0 ⊗ V~q,~r, where Ĥ0 is the
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Hilbert space described above that realizes the supersymmetry algebra in a minimal

way and V~q,~r is some vector space. By arguments similar to those that we gave in

the GV case, we can assume that the supersymmetry and translation generators act

only in Ĥ0, but the rotation generators J12 and J34 and the Hamiltonian H ′ will

also act in V~q,~r. In fact, it is convenient to introduce the anti-selfdual and selfdual

combinations of J12 and J34: J− = J12 − J34 and J+ = J12 + J34. The rotation

generator J = 1
2
T−µνJµν that enters in the supersymmetry algebra is simply J = TJ−.

We write J~q,~r for the matrix by which J acts on V~q,~r. The same argument as in eqn.

(2.134) shows that in acting on V~q,~r, H ′ is equal to −J~q,~r. Now we can repeat the

reasoning that led to eqn. (2.136). Replacing Ĥ0 by Ĥ0 ⊗ V~q,~r has the effect of

multiplying the contribution of states of charges ~q, ~r propagating once around the

circle by TrV~q,~r (−1)F exp (2πeσJ~q,~r). Reasoning as in the derivation of eqn. (2.136),

we can write this trace in two-dimensional terms as TrV~q,~r (−1)F exp (−iπJ~q,~r/4X 0),

where J =W‖J− acts as J~q,~r on V~q,~r.

For k-fold winding, we have to multiply the exponent in this trace by k. The

generalization of eqn. (2.258) is thus simply

i

∫
d2xd2θ

(2π)2

√
gE ·

∞∑
k=1

1

k
exp

(
2πik

(∑
I

qIZI +
∑
ρ

rρUρ
))

TrV~q,~r
[
(−1)F exp

(
−iπkJ~q,~r/4X 0

)] πW‖/8
sin(πkW‖/8X 0)

. (2.259)

J− and J+ are generators of the two factors of SU(2)` × SU(2)r ∼ SO(4), and the

way they enter the OV formula is similar to the way SU(2)` and SU(2)r enter the

GV formula. The OV and GV formulas depend respectively on the detailed J− and

SU(2)` quantum numbers of the BPS states, but J+ and SU(2)r only enter to the

extent that they affect the statistics of the states.
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2.5.3 Further remarks

There are some further details about the OV and GV formulas and their interpretation

that can be found in [63], though they somewhat deviate from the main topic of this

thesis (which is on exactly calculable holomorphic sectors in supersymmetric theories)

and therefore were omitted here.

One detail is related to understanding the role of holonomies αI and βρ. From the

Type IIA point of view, they are periods of the B-field and holonomies of the Chan-

Paton bundle on the D4-brane respectively. They parametrize sheaf cohomology

groups H2(Y ;U(1)) and H1(L;U(1)) respectively, where U(1) is a constant sheaf.

They appear as parameters of the Calabi-Yau compactification.

From the M-theory point of view, they are not parameters of the Calabi-Yau com-

pactification. Rather, they appear as holonomies of gauge fields when we compactify

M-theory on a circle. This reflects the fact that the theory on R5 is a gauge theory

with the gauge group H2(Y ;U(1)), and the theory on R3 – with the gauge group

H1(L;U(1)).

These remarks are related to another point discussed in [63] – inclusion of the tor-

sion. In general, groups H2(Y ;U(1)) and H1(L;U(1)) are not necessarily connected.

They can have a torsion part, i.e., have several connected components. This means

that M-theory compactified on Y has not only usual continuous gauge symmetries,

but also discrete gauge symmetries. Both the GV and the OV formulas can be gen-

eralized to this case if we include an extra factor xk in the trace in these formulas.

This x is an element of the discrete group – the torsion. From the point of view of

4d or 2d effective field theories, this x can be thought of as an additional discrete

parameter of the Calabi-Yau compactification.
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Chapter 3

Chiral Algebras in d = 2,N = (0, 2)

theories

This chapter is based on paper [85].

3.1 N = (0, 2) theories

In this section we discuss some general aspects of two-dimensional (0, 2)-supersymmetric

theories and their chiral algebras.

3.1.1 Conventions and some generalities

The two-dimensional theories with (0, 2) supersymmetry are characterized by the

existence of two conserved supercharges Q+ and Q+ of positive (or right-handed)

chirality acting on the Hilbert space of the theory. They satisfy:

Q2
+ = Q

2

+ = 0,

{Q+, Q+} = 2P++, (3.1)
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where 2P++ = P0 +P1 is a light-cone momentum. The standard geometric realization

of supersymmetry is to consider the superspace R2|2 with bosonic coordinates x0, x1

and fermionic coordinates θ+ and θ+. Superfields are distributions on this superspace

taking values in operators acting on the Hilbert space. The supercharges Q+ and Q+

act on operators (and therefore on superfields) by commutators, and the geometric

realization of this action is through the differential operators:

Q+ =
∂

∂θ+
+ iθ

+ ∂

∂x++
,

Q+ = − ∂

∂θ
+ − iθ

+ ∂

∂x++
, (3.2)

so that for an arbitrary superfield F , we have [Q+, F ]± = Q+F , where [. . . ]± de-

notes a graded commutator. These operators obviously satisfy the required relation

{Q+,Q+} = −2i ∂
∂x+ . We also have another pair of differential operators on R2|2, D+

and D+, given by:

D+ =
∂

∂θ+
− iθ+ ∂

∂x++
,

D+ = − ∂

∂θ
+ + iθ+ ∂

∂x++
, (3.3)

for which the key property is that they anticommute with Q+ and Q+ and hence can

be used in constructing supersymmetric Lagrangians.

We also adopt the convention in which hermitian conjugation reverses the order

of fermions, that is (θ1θ2)† = θ2θ1.

The basic superfields are

1) Chiral superfields satisfying D+Φ = 0. The component expansion contains a

complex scalar φ and a left spinor ψ+:

Φ = φ+ iθ+ψ+ − iθ+θ
+
∂++φ (3.4)
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The antichiral superfield satisfies D+Φ = 0 and is given by:

Φ = φ+ iθ
+
ψ+ + iθ+θ

+
∂++φ. (3.5)

2) Fermi superfields satisfying D+Λ = E(Φ), where E(Φ) is a chiral superfield con-

structed as a holomorphic function of basic chiral superfields. The component

expansion contains a right-handed spinor λ and an auxiliary field G:

Λ = λ+ θ+G− iθ+θ
+
∂++λ− θ

+
E(Φ), (3.6)

where E itself has to be expanded in components. The opposite chirality Fermi

superfield satisfies D+Λ = −E(Φ) and is given by:

Λ = λ+ θ
+
G+ iθ+θ

+
∂++λ− θ+E(Φ). (3.7)

3) Real superfields. These will appear in two contexts. One is in the description

of the N = (0, 2) supercurrent multiplet, which will be studied in details later.

The more familiar one is in gauge theories, the real gauge superfield, which

includes the left-moving component 2v−− = v0 − v1 of the gauge field:

V = v0 − v1 − 2iθ+χ− − 2iθ
+
χ− + 2θ+θ

+
D. (3.8)
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For gauge theories, one also introduces covariant derivatives:

D++ = ∂++ +
i

2
(v0 + v1),

2D−− = ∂0 − ∂1 + iV,

D+ =
∂

∂θ+
− iθ+D++,

D+ = − ∂

∂θ
+ + iθ+D++. (3.9)

All derivatives involved in the definitions of Φ and Λ then become covariant.

The basic gauge covariant field strength is Υ = [D+,D−−], Υ = −[D+,D−−]:

Υ = −χ− + θ+(v−−++ + iD) + iθ+θ
+D++χ−. (3.10)

When we build gauge theories, fields V and Υ take values in the adjoint repre-

sentation of the gauge group G, fields Φ are in the representation Rb, and fields

Λ are in Rf .

If U is a real superfield, it can always be thought of as a real part of some chiral

superfield (not necessarily a local one; also we will allow for superfields which are

chiral only on-shell). We will denote the imaginary part of this chiral superfield by

Ũ . Then U + iŨ is chiral on-shell and U − iŨ is antichiral. The relation between U

and Ũ is:

D+Ũ = iD+U,

D+Ũ = −iD+U, (3.11)
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up to equations of motion. This Ũ is defined up to a term which is constant on-shell.

If the component expansion of U is

U = u+ iθ+χ+ + iθ
+
χ+ + θ+θ

+
∂++v, (3.12)

where we wrote the highest component as a derivative of some function v, then the

component expansion of Ũ is:

Ũ = v + θ+χ+ − θ
+
χ+ − θ+θ

+
∂++u, (3.13)

again up to terms which vanish on equations of motion.

Note that if we want components of U and Ũ to be local operators, then U cannot

be an arbitrary local real superfield. Its highest component, written as ∂++v above,

should be a derivative of a local field. Only in such a case v above is also local and

hence Ũ is also the local superfield.

3.1.2 Supercurrent multiplet and RG invariance

General case

The general N = (0, 2) multiplet containing the stress-energy tensor and the super-

symmetry current was described in [80]. It is referred to as the supercurrent multiplet.

It consists of real superfields S++, T−−−− and a complex superfield W− satisfying1:

∂−−S++ = D+W− −D+W−,

D+T−−−− = ∂−−W−,

D+T−−−− = ∂−−W−,

D+W− = C, (3.14)

1Our conventions are different from [80]
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where C is a complex constant (a space-filling brane current). The component ex-

pansions which solve these constraints are:

S++ = j++ − 2iθ+S+++ − 2iθ
+
S+++ − 2θ+θ

+
T++++,

W− = −S+−− − iθ+

(
T++−− +

i

2
∂−−j++

)
− θ+

C + iθ+θ
+
∂++S+−−,

W− = −S+−− + iθ
+
(
T++−− −

i

2
∂−−j++

)
− θ+C − iθ+θ

+
∂++S+−−,

T−−−− = T−−−− − θ+∂−−S+−− + θ
+
∂−−S+−− +

1

2
θ+θ

+
∂2
−−j++. (3.15)

Applying constraints (3.14) to these expansions implies conservation of S+ (the su-

persymmetry current), conservation of T (the stress-energy tensor) and symmetry of

T :

∂++S+−− + ∂−−S+++ = 0,

∂++T±±−− + ∂−−T±±++ = 0,

T++−− − T−−++ = 0. (3.16)

Quite naturally, constraints (3.14) do not determine the supercurrent multiplet

uniquely. There are two types of ambiguities which preserve both the conservation

laws and the form of equations (3.14). One ambiguity corresponds to improvement

transformations:

S++ → S++ + [D+, D+]U,

W− →W− + ∂−−D+U,

W− →W− + ∂−−D+U,

T−−−− → T−−−− + ∂2
−−U, (3.17)
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where U is an arbitrary real scalar superfield. These transformations do not change

conserved charges.

Another ambiguity corresponds to the possibility of modifying the supercurrent

multiplet by another conserved current (say, corresponding to some flavor symmetry),

satisfying an additional requirement of locality which will be explained in a moment.

If we have another conserved superspace current I±±, that is a pair of real superfields

satisfying:

∂−−I++ + ∂++I−− = 0, (3.18)

then we can use it to shift the supercurrent multiplet, i.e., define a new multiplet:

S++ → S̃++ = S++ + I++,

W− → W̃− =W− +
i

2
D+I−−,

W− → W̃− =W− −
i

2
D+I−−,

T−−−− → T̃−−−− = T−−−− +
1

2
∂−−Ĩ−−. (3.19)

Note that in the last equation we use Ĩ−−, a real superfield related to I−− as in

(3.11). That is, Ĩ−− is such that I−− + iĨ−− is chiral. The new superfields S̃++, W̃−

and T̃−−−− will also satisfy the constraints (3.14). However, most conserved charges

will be shifted by this transformation. Note that for the above transformation to

make sense in a local QFT, both I±± and Ĩ−− have to be local, so there is an extra

requirement on I±± that not only it has to be a conserved local superspace current,

but also Ĩ−− has to be local. In the cases of interest for us, this will actually be the

case.
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One can easily read off the action of Q+ on various components of the supercurrent

multiplet, and we are interested in the following:

{Q+, S+++} = −i
(
T++++ +

i

2
∂++j++

)
,

{Q+, S+−−} = i

(
T++−− −

i

2
∂−−j++

)
,

{Q+, T++++} = ∂++S+++,

{Q+, T++−−} = −∂++S+−−,

{Q+, T−−−−} = −∂−−S+−−. (3.20)

We see that neither component of the stress-energy tensor is annihilated by Q+, so

components of T by itself do not represent any Q+-cohomology classes. However,

certain relations hold in the cohomology, in particular T++−−− i
2
∂−−j++ is Q+-exact.

If we define the “virial current” Vµ as:

V−− = 0, V++ = ij++, (3.21)

then we have:

T µµ = ∂µVµ − {Q+, 4iS+−−}, (3.22)

which looks like condition for an effective scale-invariance [101], with the effective

current for constant dilatations given by dµ = xνTνµ − Vµ. This current is “almost

conserved”:

∂µdµ = {Q+, . . . }. (3.23)

The current dµ itself is not Q+-closed. Even though dµ is not precisely conserved,

only up to Q+-exact terms, we still can try to define a “charge” D corresponding to

this current. If we have a local operator O(0) inserted at the origin, we define the
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action of D on this operator as follows. Pick a contour C enclosing O(0) and define:

[D,O(0)] =

∮
C

?d(x)O(0) =

∮
C

dxµεµνd
ν(x)O(0). (3.24)

This definition is clearly contour-dependent, since dµ(x) is not conserved. As we

deform the contour a bit, [D,O(0)] changes by [∂µdµ(x),O] integrated over the area

swept by the deformation of the contour. But ∂µdµ(x) is Q+-exact, so if O(0) is

Q+-closed, the change in [D,O(0)] under the contour deformation is Q+-exact. This

means that [D,O(0)] is well-defined up to a Q+-exact piece when it acts on Q+-closed

operators. Moreover, one can check that:

[D,Q+] = Q+, (3.25)

which shows that D maps Q+-closed operators into Q+-closed operators. So we

conclude that D is a well-defined operator in the cohomology. It generates scale-

transformations there. Since D is not Q+-closed itself, we can say that scale trans-

formations act as outer automorphisms in the cohomology.

Emergent conformal invariance in the cohomology

In the previous subsection we considered a general N = (0, 2) theory in 2d, which a

priori did not have any R-symmetries. The lowest component j++ of the superfield

S++ did not satisfy any conservation laws and, moreover, was not even accompanied

by j−−. As was noted in [80], if we restrict to the case C = 0 and W− = i
2
D+R−−,

where R−− is another real superfield (and also relabel S++ by R++), we get what is

called an R-multiplet. The equation relating S++ andW− becomes simply ∂−−R++ +

∂++R−− = 0, so the lowest component j−− ofR−− together with j++ form a conserved
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R-current. So we have:

R−− = j−− − 2iθ+S+−− − 2iθ
+
S+−− − 2θ+θ

+
T++−−, (3.26)

with ∂++j−− + ∂−−j++ = 0. In this situation, it becomes possible to define a new

stress-energy tensor:

T̃++++ = T++++ +
i

2
∂++j++,

T̃++−− = T++−− −
i

2
∂−−j++,

T̃−−−− = T−−−− −
i

2
∂−−j−−, (3.27)

which is also symmetric and conserved (by virtue of the conservation of j), but also

it satisfies:

T̃++++ = {Q+, . . . }, T̃++−− = {Q+, . . . },

T̃−−−− 6= {Q+, . . . }, {Q+, T̃−−−−} = 0. (3.28)

This procedure forN = (0, 2) theories is known as a half-twisting. The above relations

demonstrate that when it can be performed, one explicitly has the full 2d conformal

invariance in the cohomology of Q+: the cohomology class represented by T̃−−−−

plays the role of the holomorphic2 stress-energy tensor. It is also consistent with the

fact proven in the previous subsection – that the Q+-cohomology is invariant under

the RG flow. The RG invariance of the chiral algebra implies that it carries a useful

information about the IR fixed point.

Let us also take a closer look at the ambiguities of the supercurrent multiplet

in the presence of R-symmetry. The improvement transformations are determined
2To be more precise, we should Wick rotate to the Euclidean signature in order to have holomor-

phy.
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by a real superfield U though (3.17), which tells us how R++,W− and T−−−− are

improved. On R−− it acts by:

R−− → R−− − 2∂−−Ũ , (3.29)

where the relation between U and Ũ is as in (3.11), that is

U = u+ iθ+χ+ + iθ
+
χ+ + θ+θ

+
∂++v,

Ũ = v + θ+χ+ − θ
+
χ+ − θ+θ

+
∂++u. (3.30)

For an improvement transformation of the R-multiplet to make sense we have to as-

sume that both U and Ũ are local superfields. In view of the comment we made

before, this restricts the class of allowed U . While for a general supercurrent multi-

plet the improvement transformations were parametrized by an arbitrary local real

superfield U , for the R-multiplet they are parametrized by such a local real superfields

U that Ũ is also local. Thus the R-multiplet allows a smaller class of improvements

then a general supercurrent multiplet. This is not surprising after all. For the general

supercurrent multiplet, only the stress-energy tensor and the supersymmetry currents

are conserved, so improvements should only preserve their conservation. In the R-

multiplet, on the other hand, we also have the conserved R-current, so preserving its

conservation (and the R-charge value) restricts the class of allowed improvements.
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In terms of component currents, the improvement transformation is:

j++ → j++ + 2∂++v, j−− → j−− − 2∂−−v,

T++++ → T++++ + ∂2
++u, T++−− → T++−− − ∂++∂−−u, T−−−− → T−−−− + ∂2

−−u,

S+++ → S+++ + i∂++χ+, S+−− → S+−− − i∂−−χ+,

S+++ → S+++ − i∂++χ+, S+−− → S+−− + i∂−−χ+.

(3.31)

As expected, this transformation does not spoil conservation of any of these currents.

It does not shift values of any conserved charges either. Also, it is easy to check that

components T̃++++ and T̃++−− of the half-twisted stress-energy tensor are shifted by

Q+-exact terms. On the other hand, T̃−−−− is shifted by ∂2
−−(u+ iv), which is, being

the lowest component of chiral superfield U + iŨ , is Q+-closed but generally is not

Q+-exact. Therefore, there is a family of possible holomorphic stress tensors in the

Q+-cohomology, corresponding to different improvements.

Another ambiguity, namely shifting by the superspace current I±±, works in a

straightforward way:

R++ → R++ + I++,

R−− → R−− + I−−,

T−−−− → T−−−− +
1

2
∂−−Ĩ−−. (3.32)

If we denote the components of I±± by:

I±± = i±± − 2iθ+I+±± − 2iθ
+
I+±± − 2θ+θ

+
H++±±, (3.33)
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and introduce a local operator h−− such that

∂++h−− = H++−−, (3.34)

then the shifting transformation in components works as:

j±± → j±± + i±±,

S+±± → S+±± + I+±±,

S+±± → S+±± + I+±±,

T++±± → T++±± +H++±±,

T−−−− → T−−−− − ∂−−h−−. (3.35)

This ambiguity will naturally arise in a later discussion.

OPE in the cohomology

If we have two operators O1 and O2 representing nontrivial Q+-cohomology classes,

we can consider their OPE. On very general grounds we have:

O1(x++, x−−)O2(0, 0) =
∑
n,m

(x++)n(x−−)mOn,m(0, 0). (3.36)

Now recall that the operator ∂++ acts trivially in the cohomology, that is if O1 is

Q+-closed, then ∂++O1 is Q+-exact, and thus so is ∂++O1(x++, x−−)O2(0, 0). Acting

with ∂++ on the right-hand side then gives a Q+-exact answer, that is:

∑
n,m

n(x++)n−1(x−−)mOn,m(0, 0) = [Q+, . . . ]. (3.37)
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This implies that all terms except those with n = 0 are Q+-exact. If the cohomology

classes represented by Oi have scaling dimensions hi, we can then write:

O1(x++, x−−)O2(0, 0) =
∑
k

1

(x−−)h1+h2−hk
Ok(0, 0) + [Q+, . . . ]. (3.38)

Note also that, since in the cohomology we have left-movers only, scaling dimensions

and spins coincide.3 This, in particular, implies an obvious conclusion that no dimen-

sionful constants can appear in the OPE of the cohomology classes. Any dimensionful

constant will have non-trivial dimension but trivial spin, and therefore its appearance

will either break scaling or Lorentz-invariance of the OPE. Indeed, if we have some

dimensionful parameter µ, then in the expression:

O1(x++, x−−)O2(0, 0) =
∑
k

µp

(x−−)∆
Ok(0, 0) + [Q+, . . . ], (3.39)

dimensional analysis implies ∆ = h1 + h2 − hk − h(µ)p, where h(µ) is the dimension

of µ, while Lorentz invariance implies ∆ = h1 + h2 − hk. This is possible only for

p = 0, that is µ should not be there.

All dependence on dimensionful coupling constants of the original supersymmetric

theory will therefore be hidden in the Q+-exact term. This simple observation will

be helpful later. It will imply that one can turn off all dimensionful couplings for

the OPE computation. In the models we are going to study this will mean that it is

enough to compute OPE in the free theory.

3.1.3 Chiral algebras of superconformal theories

For superconformal theories, the N = (0, 2), d = 2 super-Poincare algebra of sym-

metries is enhanced to Vir ⊕ S̃Vir, where Vir denotes the left-handed Virasoro al-
3Even if the operator representing the cohomology class in the full theory is not left-moving,

the class it represents is left-moving. Since Lorentz-invariance of the full theory induces Lorentz-
invariance in the cohomology, one indeed can use the argument made in the text.
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gebra (generated by the holomorphic stress-energy tensor) and the S̃Vir denotes the

right-handed N = 2 super-Virasoro algebra (generated by the corresponding anti-

holomorphic currents). The left-handed algebra might be enlarged to the super-

Virasoro as well (or even some larger W-algebra) if we have more symmetries on the

left, but it graded-commutes with the N = 2 Virasoro on the right in any case.

Let us restrict to the NS sector of the S̃Vir. The operators Q+ and Q+ can

be identified as G̃+
−1/2 and G̃−−1/2 respectively – two of the fermionic generators of

S̃Vir (we put tildes on S̃Vir and on its generators to emphasize that this is an anti-

holomorphic algebra). In a conformal case, we have the radial quantization Hilbert

space H, and we assume that it has an inner product, such that G̃−1/2 =
(
G̃+
−1/2

)†
is

a special supersymmetry generator. Part of the super-Virasoro algebra relations are:

{G̃−−1/2, G̃
+
−1/2} = 2L̃−1,

{G̃+
−1/2, (G̃

+
−1/2)†} ≡ {G̃+

−1/2, G̃
−
1/2} = 2L̃0 − J̃0. (3.40)

Recall that in conformal case we have a state-operator correspondence. Therefore,

instead of computing the operator cohomology, we can equivalently ask for the coho-

mology of G̃+
−1/2 acting on the Hilbert space H. The second equation in (3.40) shows

that, by the standard Hodge theory argument, this cohomology can be identified with

the kernel of 2L̃0 − J̃0. Also, in a unitary theory, it shows that 2L̃0 − J̃0 ≥ 0.

Now, every state in the Hilbert space is built by acting with L̃−n, J̃−n, G̃+
−α, G̃

−
−α, n, α >

0 on a superconformal primary state. It is easy to see that all these operators except

G̃+
−1/2 increase the eigenvalue of 2L̃0− J̃0, while G̃+

−1/2 does not change it. Therefore,

if the primary state has 2L̃0− J̃0 > 0, then all states in its superconformal family have

2L̃0 − J̃0 > 0 and thus do not contribute to the cohomology. On the other hand, if

some primary state |∆〉 has zero eigenvalue of 2L̃0− J̃0, then so does G̃+
−1/2|∆〉, while

other states in the same conformal family have 2L̃0 − J̃0 > 0. But (2L̃0 − J̃0)|∆〉 = 0
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and (3.40) imply that G̃+
−1/2|∆〉 = 0. Therefore, in such a case there is only one

non-trivial state in the superconformal family which contributes to the cohomology

– the primary state itself. This way we prove that in the NS sector of a unitary

N = (0, 2) superconformal theory there is an isomorphism:

H(H, G̃+
−1/2) ' {Primaries of S̃Vir with 2L̃0 − J̃0 = 0}

= {|ψ〉 ∈ H : L̃n|ψ〉 = J̃n|ψ〉 = G̃+
α−1|ψ〉 = G̃−α |ψ〉 = (2L̃0 − J̃0)|ψ〉 = 0, n, α > 0}.

(3.41)

Notice that these are what is usually called the chiral primaries with respect to S̃Vir.

In fact, this is essentially the construction of [102] applied to N = (0, 2) theories. In

the N = (2, 2) case, [102] describe the chiral ring of the N = (2, 2) model by studying

the set of (anti)chiral primaries both with respect to the left- and the right-moving

super-Virasoro algebras. For the N = (0, 2) theories, we have in (3.41) only the chiral

primary condition with respect to the right-moving super-Virasoro algebra. For that

reason, the object we get is not just the chiral ring: it involves holomorphic OPEs as

part of its structure and is usually referred to as the W-algebra, or also chiral algebra.

Another remark is that for N = (2, 2) theories, the chiral algebra that we study

encodes the (c, c) and (a, c) rings of [102] as a part of its structure. Indeed, by

considering the subspace of H(H, G̃+
−1/2) annihilated by 2L0 − J0, where L0 and J0

are from the left-moving SVir algebra, we get the space {|ψ〉 ∈ H : (2L0 − J0)|ψ〉 =

(2L̃0 − J̃0)|ψ〉 = 0}, which is the space of chiral primaries with respect to both SVir

and S̃Vir, and therefore gives rise to the (c, c) ring under the OPE. Analogously,

picking the subspace annihilated by L0 + J0, we get the (a, c) ring.

One consequence of this is that in N = (2, 2) theories, the (anti)chiral primaries,

which form the (c, c) or (a, c) rings of the theory, always show up in the chiral algebra
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as primaries of the left-moving S̃Vir. In the simplest cases they will generate the

whole chiral algebra, but as we will see later, there might be other primary operators

in the algebra, which are not simply elements of the (c, c) or (a, c) ring.

3.1.4 The operator cohomology and the superspace

Classical and quantum observables

In the models we are going to study later in this paper, the chiral algebra will turn

out to be tree-level exact. As we will argue, no loop corrections will contribute to the

cohomology. However, despite our usual intuition that “tree level” means “classical”,

it is important to understand that the quantum chiral algebra in the Q+-cohomology

is not the same as the classical one. The distinction comes from the way we multiply

operators.

In classical field theory, to multiply fields we use the usual point-wise multipli-

cation of functions on space-time. In quantum theory, even at the tree level, we

should subtract singularities which appear when different operators collide, which for

example gives the usual notion of normal ordering in CFT.

It might happen (and it will happen in concrete examples) that the classical

composite operator is Q+-closed, but the singular part we need to subtract to define

the quantum operator is not Q+-closed. This subtlety should be taken into account

when computing the chiral algebra of the theory. But still, as a step in this direction,

it is useful to understand the structure of the classical cohomology first.

Classical observables and the cohomology

Let us introduce the space of classical observables F and the space of classical su-

perobservables F̂ . We will sometimes refer to a generic field as φ and to a generic

superfield as Φ. Both of these spaces classically carry the structures of supercommu-

tative algebras.
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Definition 2.1: F is a supercommutative algebra of polynomials of

fields φ and their derivatives ∂n−−∂
m
++φ whose coefficients are analytic func-

tions on a space-time, modulo classical equations of motion. In other words,

F = Cω(M)[. . . , φ, ∂n−−∂
m
++φ, . . . ]/I, where Cω(M) denotes analytic functions on M ,

and I denotes an ideal generated by the equations of motion and all their derivatives.

If the classical equations of motion do not depend on space-time coordinates ex-

plicitly (only through the coordinate-dependence of the generating fields), we can

introduce:

Definition 2.1’: F0 is a subalgebra of F of observables which do not depend on

a space-time point explicitly. In other words, it is generated by the same fields and

their derivatives as F (and also modulo equations of motion), but the coefficients are

taken to be just complex numbers rather than functions.

There are straightforward superspace analogs of these:

Definition 2.2: F̂ is a supercommutative algebra of polynomials of superfields

Φ and their bosonic and super-derivatives ∂n−−∂m++D
p
+D

q

+Φ whose coefficients are an-

alytic functions on superspace, modulo classical superspace equations of motion.

If the superspace equations of motion do not include any explicit dependence on

a superspace point, i.e., if they have the form of a polynomial of generating fields

∂n−−∂
m
++D

p
+D

q

+Φ with complex coefficients, we again can define a subalgebra:

Definition 2.2’: F̂0 is a subalgebra of F̂ of superobservables which do not

depend on a space-time point explicitly. In other words, it is generated by the same

superfields and their derivatives as F̂ (and also modulo superspace equations of mo-

tion), but the coefficients are taken to be just complex numbers rather then functions.

Our goal is to compute the cohomology of Q+ acting on F in the situation when

the equations of motion do not depend on the superspace point explicitly. The first

observation is that the operator Q+ only acts on the generating fields of the algebra

F , it does not act on the c-number functions which can possibly multiply these fields.
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This means that it is enough to compute the cohomology of Q+ acting on F0. To be

more rigorous, we can introduce operators of multiplication by xµ called m(xµ):

∀O ∈ F , m(xµ)O = xµO, (3.42)

and notice that they commute with Q+. Then we can introduce a bigrading on F by

saying that an explicit factor of (x0)n(x1)m has degree (n,m). After this it becomes

obvious that

H(F) '
⊕
n,m≥0

Hn,m(F), (3.43)

where the bar over the right hand side means that we should actually consider a

completion of this space with respect to some norm, because we have to allow infinte

sums (series) to account for the possibility of having analytic functions as coefficients.

As we mentioned, Q+ does not act in any way on xµ, and because of that:

Hn,m(F) ' H(F0). (3.44)

Therefore, from now on we will only study the cohomology in F0, which of course

only makes sense when the equations of motion do not depend on the superspace

point explicitly.

The cohomology of Q+ in F0 and of D+ in F̂0

Take an arbitrary A ∈ F̂0. A is some general superfield, and it can be expanded into

components with respect to the Grassmann coordinates. The most basic property it

satisfies is that the supersymmetry transformations of its components are encoded in

the way differential operators Q+ and Q+ act on it. This follows simply from the

fact that this holds for the generating superfields from which A is constructed and

the fact that we do not allow explicit dependence on the superspace coordinates in
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the algebra F̂0. So we have:

[Q+,A] = Q+A, (3.45)

and the same for Q+. Supersymmetry relates all components of A and it is straight-

forward to see that:

Proposition 2.1: If the lowest component A
∣∣ of the superfield A ∈ F̂0 vanishes,

then A = 0.

The algebras F0 and F̂0 are related in an obvious way: any element of F0 can

be found as a component of some superfield in F̂0. In particular, we can always

find a superfield A which contains a given element a ∈ F0 as its lowest component.

Moreover, supersymmetry defines this A uniquely, so:

Proposition 2.2: For any a ∈ F0 there exists a unique A ∈ F̂0 such that a = A
∣∣.

The problem which we are addressing is to find the cohomology of Q+ in F0. That

is, the classes of fields a ∈ F0 which satisfy [Q+, a] = 0, modulo those a for which

a = [Q+, b], b ∈ F0. Now from the Proposition 2, we know that there exist A,B ∈ F̂0,

such that a = A| and b = B|. The equation [Q+, a] = 0 implies then Q+A| = 0.

There is a small subtlety here which shows why it is correct to look for the coho-

mology of D+ rather than Q+: D+ acts on F̂0 by definition, while Q+ = D+ +2iθ+∂+

does not, as it introduces an explicit dependence on θ (therefore Q+ acts from F̂0 to

a bigger space F̂). However, we can write: D+A| = Q+A| = 0. But D+A ∈ F̂0, so

we can apply Proposition 1 and conclude that D+A = 0. Analogously a = [Q+, b]

implies A = D+B. This proves the

Proposition 2.3: The cohomology of Q+ in F0 (denoted H(F0)) is isomorphic

to the cohomology of D+ in F̂0 (denoted H(F̂0)). The isomorphism H(F̂0)→ H(F0)

is defined by taking the lowest component of the superfield.

This proposition shows why in the rest of the paper we are going to study the

cohomology of D+.
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3.2 Landau-Ginzburg models

TheN = (0, 2) Landau-Ginzburg (LG) model is described by a set of chiral superfields

Φi, i = 1..n and Fermi superfields Λa, a = 1..m. The action is (we assume summation

over repeated indices, even if they both appear upstairs or downstairs; sometimes we

will write the sum sign explicitly to avoid possible confusion):

S =
1

π

∫
d2xd2θ

{
− i

2
Φ
i
∂−−Φi − 1

2
Λ
a
Λa

}
+

1

π

∫
d2xdθ+ΛaJa(Φ)|

θ
+

=0
+ h.c.,

(3.46)

where in general D+Λa = Ea(Φ) and
∑

aE
a(Φ)Ja(Φ) = 0. The classical superspace

equations of motion are:

D+∂−−Φ
i

= iΛ
a∂Ea

∂Φi
− 2iΛa ∂Ja

∂Φi
,

D+∂−−Φi = −iΛa∂E
a

∂Φ
i + 2iΛ

a∂Ja

∂Φ
i ,

D+Λ
a

= −2Ja(Φ),

D+Λa = 2Ja(Φ). (3.47)

The supersymmetry currents of this theory are:

S+++ =
i

2
ψi+∂++φ

i
, S+++ = − i

2
ψ
i

+∂++φ
i,

S+−− =
i

2
λaE

a
(φ)− iλaJa(φ), S+−− = iλaJa(φ)− i

2
λ
a
Ea(φ). (3.48)

It is not hard to find a superfield S++ such that S+++ = i
2
D+S++| and S+++ =

− i
2
D+S++|:

S++ =
1

2
D+ΦiD+Φ

i
. (3.49)
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If we also introduce:

W− =
i

2
Λ
a
Ea − iΛaJa,

T−−−− = ∂−−Φi∂−−Φ
i
+
i

2
Λa∂−−Λ

a − i

2
∂−−ΛaΛ

a
, (3.50)

then we find that:

∂−−S++ = D+W− −D+W−,

D+T−−−− = ∂−−W−,

D+W− = 0. (3.51)

We see that these are precisely the relations (3.14) of the N = (0, 2) d = 2 supercur-

rent, and moreover, the component expansions of S++, W− and T−−−−, written as

in (3.15), include the supersymmetry currents (3.48). Therefore, we have described

the supercurrent multiplet of the theory (3.46). In a generic situation, it is not an

R-multiplet, because there are no R-symmetries.

The algebra F̂0 is a supercommutative algebra freely generated by superfields

Φi,Φ
i
,Λa,Λ

a and their derivatives (with respect to ∂−−, ∂++, D+ and D+ applied

arbitrary number of times) modulo the relations. The relations are: the ones that

follow from {D+, D+} = 2i∂++ and D2
+ = D

2

+ = 0, the chirality conditions D+Φi =

0, D+Λa = Ea(Φ) and the superspace equations of motion as written above. All

differential corollaries of the relations should also be included as relations of course.

It is not too hard to find a set of independent generators G, so that all the relations

will be taken into account and we will have simply F̂0 ' C[G], a polynomial algebra

generated by those generators.

We will now find this G. First of all, due to the chirality conditions, Φi can only

appear with the D+ derivative (moreover, with at most one, because D2
+ = 0), and
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Φ
i – with D+. The chirality condition for Λa allows to replace D+Λa by Ea(Φ), while

the equation of motion D+Λa = −2Ja(Φ) allows to replace D+Λa by an expression

without derivatives. Therefore it is enough to consider only bosonic derivatives acting

on Λa. However the simple relation:

2i∂++Λa = {D+, D+}Λa = D+D+Λa +D+D+Λa = D+E
a(Φ) + 2D+Ja(Φ) (3.52)

shows that ∂++ derivatives acting on Fermi superfields can also be removed. There-

fore, in the generating set G, it is enough to include only ∂n−−Λa and ∂n−−Λ
a, with

n ≥ 0, and the appropriate derivatives of bosonic chiral superfields. By appropriate

derivatives of bosonic chiral superfields we mean the following. First, we need to

include ∂n−−Φi and ∂n−−Φ
i with n ≥ 0. D+Φi and D+Φ

i should also be included,

but there is no need to include expressions like D+∂
n
−−Φi, because, as equations of

motion for Φi show, D+∂−−Φi and D+∂−−Φ
i can be replaced by expressions without

derivatives. Expressions like ∂n++Φi, D+∂
n
++Φi and their complex conjugates have to

be included, they cannot be reduced to expressions without derivatives. Finally, there

is no need to include both ∂++ and ∂−− derivatives because of:

2i∂++∂−−Φ
i

= D+D+∂−−Φ
i

= D+

(
iΛ

a∂Ea

∂Φi
− 2iΛa ∂Ja

∂Φi

)
. (3.53)

So, to summarize, we write the generating set explicitly:

G =
{
∂n−−Φi, ∂n−−Φ

i
, ∂n++Φi, D+∂

n
++Φi, ∂n++Φ

i
, D+∂

n
++Φ

i
, ∂n−−Λa, ∂n−−Λ

a
, n ≥ 0

}
.

(3.54)

To emphasize once again, we claim that:

F̂0 ' C[G]. (3.55)
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Using the relations satisfied by the fields, it is not hard to describe the action of D+

in terms of the generators in G. We have:

D+(∂n−−Φi) = 0,

D+(∂n−−Φ
i
) = ∂n−1

−−

(
iΛ

a∂Ea

∂Φi
− 2iΛa ∂Ja

∂Φi

)
,

D+(∂n++Φi) = 0, D+(D+∂
n
++Φi) = 2i∂n+1

++ Φi,

D+(∂n++Φ
i
) = D+∂

n
++Φ

i
, D+(D+∂

n
++Φ

i
) = 0,

D+(∂n−−Λa) = ∂n−−E
a(Φ),

D+(∂n−−Λ
a
) = −2∂n−−Ja(Φ). (3.56)

From these formulas we can guess that polynomials of ∂n−−Φi should be in the coho-

mology. However, we need some extra assumptions about Ea and Ja in order to move

further.

3.2.1 Quasihomogeneous case

As we have already learned, it is interesting to consider the case when the theory has

an R-symmetry. In such a case, we expect to have an explicit stress-energy tensor in

the cohomology. It is not hard to check that the following transformation:

θ+ → e−iεθ+,

Φi → e−iεαiΦi,

Λa → e−iεα̃aΛa (3.57)
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is a symmetry of the classical action if and only if the following quasihomogeneity

conditions are satisfied:

α̃aJa +
∑
i

αiΦ
i ∂Ja
∂Φi

= Ja,

−α̃aEa +
∑
i

αiΦ
i∂E

a

∂Φi
= Ea, (3.58)

where αi and α̃a are real numbers. It is a matter of a standard calculation to find the

real conserved current j±± for this R-symmetry. It is then straightforward to write a

superfield which has it as the lowest component. The answer is:

R++ = − i
2

∑
i

αi

(
Φi∂++Φ

i − Φ
i
∂++Φi

)
+

1

2

∑
i

(1− αi)D+ΦiD+Φ
i

R−− = − i
2

∑
i

αi

(
Φi∂−−Φ

i − Φ
i
∂−−Φi

)
−
∑
a

α̃aΛ
aΛ

a
. (3.59)

It is not a coincidence that we called it R. In fact, one can check that the equations

of motion imply ∂−−R++ +∂++R−− = 0. Therefore, higher components of R are also

conserved currents. This is the supercurrent multiplet discussed before provided we

can find another real superfield Y−−−− (which has possibly improved stress-energy

tensor T−−−− as its lowest component) satisfying the required constraints. As one

can check from (3.14), the condition4 on Y−−−− is:

D+Y−−−− =
i

2
D+∂−−R−−. (3.60)

Note that D+Y−−−− = − i
2
D+∂−−R−− is then satisfied automatically. This defines

Y−−−− uniquely up to an arbitrary function of x−−, as Y−−−− → Y−−−− + f(x−−)

preserves the above constraints. A simple computation allows to find a real superfield
4The fact that this Y−−−− together with Y++++ = i

4 [D+, D+]J++ and Y++−− = i
4 [D+, D+]J−−

form a conserved superspace current then follows automatically.
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such that it satisfies these constraints:

Y−−−− =
∑
i

[
∂−−Φi∂−−Φ

i − αi
4
∂2
−−(Φ

i
Φi)
]

+
∑
a

[
i

2
Λa∂−−Λ

a − i

2
∂−−ΛaΛ

a
]
.

(3.61)

Therefore, we actually have a supercurrent multiplet described by R++, R−− and

Y−−−−, which is, moreover, an R-multiplet in the terminology of [80], as reviewed

in Section 3.1.2. The Q+-cohomology class represented by the twisted stress-energy

tensor T̃−−−− from (3.27) promotes to the D+-cohomology class represented by the

superfield:

Ỹ = Y−−−− −
i

2
∂−−J−−

=
∑
i

[
∂−−Φi∂−−Φ

i − αi
2
∂−−(Φi∂−−Φ

i
)
]

+
∑
a

[
i

2
Λa∂−−Λ

a − i

2
∂−−ΛaΛ

a
+
iα̃a
2
∂−−(ΛaΛ

a
)

]
. (3.62)

This is precisely the stress-energy tensor in the cohomology as found in [79]. At first

sight, one could think that this is the end of the story. However, there are some

subtleties here, which we will now discuss.

First of all, how is this R-multiplet related to the more general supercurrent

multiplet which we found in (3.51)? The answer is simple. If we also define

V− =
i

2
D+R−−, (3.63)
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then R++, V− and Y−−−− form a supercurrent multiplet related to S++, W− and

T−−−− by the improvement transformation:

R++ = S++ + [D+, D+]U,

V− =W− + ∂−−D+U,

Y−−−− = T−−−− + ∂2
−−U,

U = −
∑
i

αi
4

ΦiΦ
i
. (3.64)

Note that the superfield U cannot be represented as a real part of some local chiral su-

perfield. Therefore this is an example of the improvement transformation allowed for

the general supercurrent multiplet but not allowed for the R-multiplet. As we will see

momentarily, there might exist several R-multiplets which are not equivalent to each

other as R-mulitplets (cannot be related to each other by the R-multiplet improve-

ments), but they all are related to the same supercurrent multiplet S++,W−, T−−−−

by the more general improvement described above.

So now we will discuss the possibility of having several inequivalent R-multiplets.

Note that the quasihomogeneity conditions (3.58) might have more than one solution.

This corresponds to having an extra flavor U(1) symmetry, which can then mix with

the R-symmetry to give another solution of (3.58) (in terms of current, this means

to replace the R-symmetry current jR by jR + jF , where jF is a Flavor symmetry

current).

The flavor symmetry does not rotate the thetas, so it acts just as:

Φi → e−iεqiΦi,

Λa → e−iεq̃aΛa. (3.65)
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The condition that this is a symmetry of the classical action is:

q̃aJa +
∑
i

qiΦ
i ∂Ja
∂Φi

= 0,

−q̃aEa +
∑
i

qiΦ
i∂E

a

∂Φi
= 0. (3.66)

We can see now that if {αi, α̃a} is some solution of (3.58) and {qi, q̃a} is some solution

of (3.66), then {αi + qi, α̃a + q̃a} is another solution of (3.58). This is actually the

ambiguity of the supercurrent multiplet which we were discussing before. In case we

have extra superspace currents, the basic supercurrent mutiplet S++,W−, T−−−− can

be shifted. Let us belabor this point somewhat further.

One can compute the current corresponding to the flavor symmetry (3.65) and

find the real superfield which contains it as the lowest component:

I−− = −
∑
a

q̃aΛ
aΛ

a − i

2

∑
i

qi

(
Φi∂−−Φ

i − Φ
i
∂−−Φi

)
,

I++ = −1

2

∑
i

qiD+ΦiD+Φ
i
+
i

2

∑
i

qi

(
Φ
i
∂++Φi − Φi∂++Φ

i
)
. (3.67)

On shell these are conserved at the level of superfields:

∂++I−− + ∂−−I++ = 0. (3.68)

One can do a small computation to check that the following superfield:

F−− = −
∑
a

q̃aΛ
aΛ

a − i
∑
i

qiΦ
i∂−−Φ

i (3.69)

is chiral on-shell, i.e., it satisfies D+F−− = 0 provided the equations of motion hold.

In particular, it means that this F−− gives rise to the left-moving U(1) current in the
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cohomology. But it is also true that:

ReF−− = I−−. (3.70)

Therefore, there exists a local expression for the superfield Ĩ−−:

Ĩ−− = ImF−− = −1

2

∑
i

qi∂−−(ΦiΦ
i
). (3.71)

So, according to the general discussion from the Section 3.1.2, we can shift the R-

multiplet using this I±±. Recall that the shift is:

R++ → R++ + I++,

R−− → R−− + I−−,

Y−−−− → Y−−−− +
1

2
∂−−Ĩ−−. (3.72)

For the D+-closed element Ỹ−−−− = Y−−−− − i
2
J−−, we have:

Ỹ−−−− → Ỹ−−−− −
i

2
∂−−(I−− + iĨ−−) = Ỹ−−−− −

i

2
∂−−F−−. (3.73)

So the cohomology class [Ỹ−−−−] gets shifted by − i
2
[∂−−F−−].

Let us summarize. We have the family of R-current multiplets generated by shifts

using the superspace current I±±. In the cohomology this corresponds to having an

extra left-moving U(1) current [F−−] generating an ambiguity of the stress-energy

tensor in the cohomology, as we can do shifts of the cohomology class [Ỹ−−−−] by

[∂−−F−−].

But the conformal theory to which our LG model flows in the IR supposedly

should have a unique stress-energy tensor, which thus gives a preferred stress-energy

tensor in the Q+-cohomology. One can ask a natural question: which of the R-current
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multiplets above corresponds to the true stress-energy tensor of the theory in the IR?

The answer is simple: the correct stress-energy tensor is the one, for which the U(1)

current [F−−] is a primary operator in the cohomology, at least when it is possible

to make it primary (we will discuss this point later). It is clear that this corresponds

to extremizing the central charge of the corresponding Virasiro algebra (see the next

subsection). To turn this statement into a criteria for picking the unique solution

(αi, α̃a) of (3.58), we need to understand first how to compute the operator product

expansions (OPE) in the cohomology.

The OPE in the cohomology

The component action of the model that we study is:

S = SD + SF , (3.74)

where the D-term action is:

SD =
1

π

∫
d2x
(
− ∂−−φ

i
∂++φ

i − i

2
ψ
i

+∂−−ψ
i
+ − iλ

a
∂++λ

a − 1

2
GaG

a

+
i

2
∂iE

a(φ)λ
a
ψi+ −

i

2
∂iE

a
(φ)ψ

i

+λ
a +

1

2
Ea(φ)E

a
(φ)
)
, (3.75)

and the F-term is:

SF =
1

π

∫
d2x

(
GaJa(φ) +G

a
Ja(φ)− iλaψi+∂iJa(φ)− iλaψi+∂iJa(φ)

)
. (3.76)

All couplings come from the E and J-type superpotentials. Note that φ is dimension-

less in 2d, (and fermions are of dimension 1/2), therefore both Ea and Ja should have

dimension 1. We will include an explicit coupling µ of dimension 1 in the theory, and

replace Ea → µEa and Ja → µJa in the above action, thinking of Ea(φ) and Ja(φ)

as dimensionless functions of dimensionless fields φi now.
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In Section 3.1.2 we saw that in order to compute the OPE of the cohomology

classes we can turn off all dimensionful couplings in the theory. In particular, we

can tune µ to zero. This will remove all interactions from the above action. Thus to

compute the OPE of the cohomology classes, it is enough to consider the free theory:

S0 =
1

π

∫
d2x
(
− ∂−−φ

i
∂++φ

i − i

2
ψ
i

+∂−−ψ
i
+ − iλ

a
∂++λ

a − 1

2
GaG

a
)
. (3.77)

Its correlators can be conveniently combined into superfield correlators:

〈
Φ
i
(x, θ′)Φj(y, θ)

〉
= δij log

(
r−−r++

)
,〈

Λ
a
(x, θ′)Λb(y, θ)

〉
= δab

i

r−−
,

(3.78)

where

r−− = x−− − y−−, r++ = x++ − y++ + iθ+θ
+

+ iθ′+θ
′+

+ 2iθ
′+
θ+. (3.79)

Now we want to compute the OPE of Ỹ from (3.62) with itself. Ỹ represented a

candidate stress-energy tensor in the cohomology and was given by:

Ỹ =
∑
i

[(
1− αi

2

)
∂−−Φi∂−−Φ

i − αi
2

Φi∂2
−−Φ

i
]

+
∑
a

[
i

2
(1 + α̃a)Λ

a∂−−Λ
a − i

2
(1− α̃a)∂−−ΛaΛ

a
]
. (3.80)

Using the OPE above, we find that:

Ỹ(x)Ỹ(y) ∼ c/2

(x−− − y−−)4
+

2Ỹ(y)

(x−− − y−−)2
+

∂−−Ỹ(y)

x−− − y−−
+ {Q+, . . . }, (3.81)
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where the notation {Q+, . . . } for the unimportant term is slightly inaccurate: what

we actually mean is that the term that we drop becomes Q+-exact after we put

θ+ = θ
+

= 0, but as a shorthand we will denote it as {Q+, . . . }. The central term is:

c =
∑
i

(2− 6αi + 3α2
i ) +

∑
a

(1− 3α̃2
a). (3.82)

This matches the result of [79] and shows that we indeed have the stress-energy tensor

in the cohomology.

Before we found that in case there is a U(1) flavor symmetry, there is another

D+-closed superfield F−−, which gives rise to the left-moving U(1) current in the

cohomology. Recall that:

F−− = −
∑
a

q̃aΛ
aΛ

a − i
∑
i

qiΦ
i∂−−Φ

i
. (3.83)

We can similarly compute its OPE:

F−−(x)F−−(y) ∼
∑

i q
2
i −

∑
a q̃

2
a

(x−− − y−−)2
+ {Q+, . . . }. (3.84)

This current creates ambiguity, as we explained before: we can replace Ỹ by

Ỹ + λ∂−−F−− for any λ ∈ R and get another stress-energy tensor in the cohomology.

The unique one is picked by requiring that the [F−−] cohomology class be primary

with respect to the correct stress-energy tensor, whenever it is possible to impose

such a condition. Equivalently, since shifting by the current shifts the central charge,

one can ask that the value of the central charge (3.82) be extremal with respect to

the shifts (αi, α̃a)→ (αi + λqi, α̃a + λq̃a). Any of these two criteria of course give the

same equation: ∑
i

qi(1− αi) +
∑
a

q̃aα̃a = 0. (3.85)
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In a generic situation, this equation allows to pick a unique solution (αi, α̃a) and

write a correct stress-energy tensor. If the action admits f independent U(1) flavor

symmetries described by charges (qni , q̃
n
a ), n = 1 . . . f , we should write the equation

(3.85) for each of them. Again, generically, one can expect this to give a condition to

pick the unique stress-energy tensor in the cohomology.

However, non-generic situations are possible, when this equation might either not

fix the stress-energy tensor completely, or might have no solutions at all. As we will

see later, this can happen for the N = (2, 2) theories. In such a case, indices a and i

take the same set of values, we have α̃a = αi=a, and flavor symmetries (which should

differ from the N = (2, 2) R-symmetries) have q̃a = qi=a. Therefore the equation

(3.85) reduces to just
∑

i qi = 0, which either holds identically and therefore imposes

no constraints on αi, or does not hold at all. In a former situation, the ambiguity of

choosing the unique stress-energy tensor is not removed and is just present in the IR.

In a latter situation, there is no solution to (3.85), which means that [F−−] cannot

be made primary by choosing the proper stress-energy tensor. There is an unwanted

central term in the ỸF−− OPE, which cannot be removed and signals that there is

an obstruction for the IR CFT to exist. We will see in examples that there is a flat

direction in the potential and the RG flow simply never ends at any fixed point.

One can also note that if we decide to study the gauge theory obtained by gauging

the flavor symmetry with charges (qi, q̃a), then the above equations become related

to anomalies. Namely, the central term in the F−−F−− OPE becomes just the gauge

anomaly (so it is the t’Hooft anomaly in the LG model context): we need
∑

i q
2
i −∑

a q̃
2
a = 0 for the gauge theory to exist [73]. Then equation (3.85) becomes the

condition for the R-symmetry defined by charges (αi, α̃a) to be non-anomalous [79].
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Classical and quantum chiral algebra

When we were discussing the OPE in the cohomology, we argued that, as a conse-

quence of conformal invariance, there should be no dimensionful couplings present in

the OPE. We can generalize that further to say that the chiral algebra should not

depend on any dimensionful couplings at all. Any algebraic relations that involve

dimensionful coupling constants would violate the combination of scale and Lorentz

invariance.

One of the basic facts about theories we study is that they are free in the UV.

In fact, this provides an alternative argument for why the singular part of the OPE

is independent of couplings. Short-distance singularities of operators are simply gov-

erned by the free theory, even before passing to the Q+ cohomology (however, we find

the argument based on Lorentz and scale invariance in the cohomology to be more

transparent in our case).

Independence of chiral algebras on dimensionful couplings implies a useful prop-

erty, which can be thought of as a sort of non-renormalization theorem. The exact

quantum chiral algebra in our theories is “almost determined” by the classical chiral

algebra. All we need to do to find the quantum counterpart is renormalize compos-

ite operators. Composite operators can be thought of as several fundamental fields

brought into one point, and in the process we should subtract short-distance singu-

larities. It might well happen (and will happen in concrete examples later) that even

though the classical operator is in Q+ cohomology, the infinite piece you have to sub-

tract is not annihilated by Q+. In this way, renormalization of composite operators

representing classical cohomology classes can remove part of the classical cohomology.

The claim is that what you obtain using this procedure is the exact answer.

To understand why this is true, we will think of an exact quantum theory as a set

of local operators, which satisfy OPE relations and operator equations of motion. As

we said, short-distance singularities are governed by the free theory, so singular part
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of the OPE does not care about interactions and operator equations of motion. Non-

singular part of the OPE can be thought of as a definition of composite operators, and

this is the point where we should be careful, as already noted before. The remaining

thing we need to care about are operator equations of motion.

If we stare at classical equations (3.47), we can understand that they do not

have any short-distance singularities and can be made into operator equations. The

question one might ask is whether they receive any corrections at the quantum level.

If there were such corrections, they would be a result of interactions and would depend

on the dimensionful coupling5 µ. If this could change the answer for chiral algebra,

it would mean that the algebra depends on a dimensionful constant µ. We know

that this is impossible on general grounds, so we expect that quantum corrections to

operator equations of motion are not important for the chiral algebra computation.

In fact, thinking slightly more general, the situation might be even simpler. Sup-

pose we have some renormalizable field theory, and we define it in the path integral

approach. This means that we choose our favorite regularization to make path integral

finite-dimensional, define the action and the measure in this regularization and add

counterterms, if needed. Or, alternatively, think in terms of bare fields and couplings,

without any counterterms. The standard way to derive equations of motion which

hold under correlators, i.e., operator equations of motion, is through integration by

parts. For renormalizable field theories defined in this way, these equations of motion

hold exactly when written in terms bare fields. If we write them in terms of physical

fields and counterterms, then counterterms of course contribute to equations of mo-

tion, but their role is to renormalize composite operators that appear in equations of

motion. This becomes very clear in the example of the λφ4 theory. The equation of
5In fact, the right hand side of (3.47) is already proportional to µ, so additional terms would be

multiplied by higher powers of µ
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motion of the λφ4 with counterterms is:

(�+m2)φ = λφ3 + δmφ+ δφ�φ+ δλφ
3, (3.86)

and by some simple manipulations with diagrams, one can see that these three terms

on the right are precisely what one needs to define a composite operator λφ3. The

mass counterterm δmφ removes singularity coming from the self-contraction in φ3,

while the other two remove singularities coming from contractions between φ3 and

one insertion of the interaction vertex λφ4/4. It is quite obvious that this continues

to higher orders of perturbation theory, simply because the theory is renormalizable

and has only these three counterterms.

It is not completely clear how general this argument is and whether it holds for

gauge theories, but it definitely works for our LG models. Moreover, it is possible to

show that our models do not need any counterterms at all.

So our conclusion is that equations (3.47) hold exactly once we properly define

composite operators appearing there. This supports our claim that to compute quan-

tum chiral algebra, we need to find the classical one and then check which part of it

survives after the renormalization of composite operators.

All these statements are true in perturbation theory. They might not hold if

non-perturbative corrections become relevant. For example, instantons might lift

cohomology classes [84], and this has to be studied separately. In our case we as-

sume that the worldsheet and the target are topologically trivial, so non-perturbative

corrections are not expected.

Non-abelian global symmetries

In addition to U(1) global symmetries, the action may also have non-abelian linearly

realized global symmetries that commute with SUSY. They generally are of the form
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Φi → AijΦ
j,Λa → Ba

bΛb. The kinetic part of the action implies that A ∈ U(NΦ) and

B ∈ U(NΛ), where NΦ is the number of chiral superfields Φi, i = 1 . . . NΦ, and NΛ is

the number of Fermi superfields Λa, a = 1 . . . NΛ.

It is clear that by a unitary transformation Φi → U i
jΦ

j, Λa → V a
b Λb one can always

bring A and B into the diagonal form, and in such a basis they will describe just the

U(1) global symmetry. Therefore, in order to have something new compared to the

previous discussion, we assume that the action has some U(1) global symmetries

and, on top of that, also has some non-abelian symmetries. Altogether, they close

to a subgroup G ⊂ U(NΦ) × U(NΛ). The free theory has the full U(NΦ) × U(NΛ)

symmetry, which is then broken to the subgroup G by the E and J superpotentials.

Embedding G ⊂ U(NΦ)×U(NΛ) defines an (NΦ +NΛ)-dimensional representation

of G on superfields of our model. This representation is reducible and can be decom-

posed as a direct sum of an NΦ-dimensional representation RΦ on chiral superfields

and an NΛ-dimensional representation RΛ on Fermi superfields. Let the Hermitian

generators of this subgroup in the representation RΦ be called tα, α = 1 . . . |G|, and

in the representation RΛ – τα, α = 1 . . . |G|. The infinitesimal transformation is:

Φi → Φi + iεα(tα)ijΦ
j,

Λa → Λa + iεα(τα)abΛ
b. (3.87)

The condition on J and E for this to be a symmetry is:

(tα)ijΦ
j∂iJa(Φ) + (τα)baJb(Φ) = 0,

(tα)ijΦ
j∂iE

a(Φ)− (τα)abE
b(Φ) = 0. (3.88)
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It is straightforward to repeat what we had done for abelian symmetries and to find

the corresponding element in the D+-cohomology:

Jα = (τα)abΛ
bΛ

a
+ i(tα)ijΦ

j∂−−Φ
i
. (3.89)

If we write [tα, tβ] = ifγαβtγ, then the OPE of these currents is given by:

Jα(x)Jβ(y) ∼ tr(tαtβ)− tr(τατβ)

(x−− − y−−)2
+

fγαβJγ(y)

x−− − y−−
+ {Q+, . . . }. (3.90)

We have tr(tαtβ) = 2xΦδαβ and tr(τατβ) = 2xΛδαβ, where xΦ and xΛ are Dynkin

indices of the representations RΦ and RΛ respectively. Therefore, in the cohomology

we find a current algebra of G at the level r = 2(xΦ − xΛ).

3.3 N = (2, 2) models

If in a general N = (0, 2) LG model as described before we put Ea = 0, take a

to be the same sort of index as i, i.e., just put NΛ = NΦ (recall that everything is

topologically trivial in our discussion) and take Ja(Φ) = ∂W (Φ)
∂Φi=a

for some holomorphic

superpotential W (Φ), we get a general N = (2, 2) LG model. In such a case (0, 2)

superfields are promoted to (2, 2) chiral superfields:

Φi = Φi + i
√

2θ−Λi − iθ−θ−∂−−Φi. (3.91)

With N = (2, 2) supersymmetry, we can go further in the discussion of general

properties of the chiral algebra in the Q+-cohomology. First of all, let us get rid of

the trivially reducible case. Suppose that we can organize superfields Φi into two

nonempty sets: {Φ1,Φ2, . . . ,Φs}, {Φs+1,Φs+2, . . . ,ΦNΦ}, so that the superpotential
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can be written as a sum:

W (Φ) = W (1)(Φ1,Φ2, . . . ,Φs) +W (2)(Φs+1,Φs+2, . . . ,ΦNΦ), (3.92)

This superpotential just describes 2 separate LG models which do not interact with

each other. The space of observables in such a model is just the graded-symmetric

tensor product of the spaces for each of the two models, and the supercharge is the

sum Q+ = Q
(1)

+ +Q
(2)

+ , where each term in the sum acts on the corresponding factor

in the graded-symmetric tensor product. It is a simple algebraic exercise to prove

that the cohomology of such a Q+ is just the graded-symmetric tensor product of the

cohomologies of Q(1)

+ and Q(2)

+ .

Therefore, without any loss of generality, it is enough to study superpotentials

which cannot be decomposed as in (3.92), and can never be brought into such a

decomposable form by a holomorphic change of coordinates on the target. We will

assume this from now on. Note that it was shown in [76] that with such an assumption,

no accidents happen in the IR, which also simplifies life a lot.

Since we put Ea = 0, quasihomogeneity conditions (3.58) now always have at least

one solution, α̃a = 1,∀a, αi = 0, ∀i. Therefore, according to our previous discussion,

there is always a stress-energy tensor in the cohomology. It is interesting, however,

to study the case when W (Φ) is quasi-homogeneous itself:

∑
i

βiΦ
i∂W

∂Φi
= W (Φ). (3.93)

After all, as was noted in [103], this is the case most relevant for studying the IR fixed

point of the LG model. With this property, if we take αi = βi and α̃a = βi=a, we

get another solution of (3.58). In other words, there exists a U(1) flavor symmetry

corresponding to the solution qi = βi, q̃a = βi=a − 1 of (3.66).
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If there is only one such flavor symmetry, we can see that the equation (3.85)

picks αi = βi and α̃a = βi=a as defining the correct stress-energy tensor. Indeed,

these values satisfy (3.85), while another solution, α̃a = 1, αi = 0, inserted in (3.85),

gives
∑

i qi +
∑

a q̃a =
∑

i(2βi− 1), which is generically non-zero. The last sum being

zero corresponds to various degenerate cases, for example if superpotential is just a

quadratic polynomial (which means that all fields are massive, the IR theory is trivial

and the chiral algebra should be trivial too). We will not concentrate on such cases.

On the other hand, there can be more flavor symmetries in the model:

Φi → e−iγiεΦi, (3.94)

if one can find such a system of charges γi that:

∑
i

γiΦ
i∂W

∂Φi
= 0. (3.95)

This gives a solution qi = γi, q̃a = γi=a of (3.66). Note that both the solution qi = βi,

q̃a = βi=a − 1 and the solution qi = γi, q̃a = γi=a describe flavor symmetries from the

N = (0, 2) point of view, since they just satisfy (3.66). However, from the N = (2, 2)

point of view, only the latter one is a flavor symmetry, while the former one becomes

the left-handed R-symmetry of the N = (2, 2) SUSY, which is seen from the fact that

Φ’s and Λ’s charges differ by one.

The action of the LG model in the (2, 2) superspace is:

S =
1

4π

∫
d2d4θΦ

i
Φi +

1

4π

∫
d2xd2θW (Φ) +

1

4π

∫
d2xd2θW (Φ) (3.96)

The superspace equations of motion are simply:

D+D−Φ
i

=
∂W

∂Φi
. (3.97)
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As was first noted in [78], we can find an element in the D+-cohomology represented

by the (2, 2) superfield:

J =
∑
i

(
1− βi

2
D−ΦiD−Φ

i − iβiΦi∂−−Φ
i
)
, (3.98)

which can then be expanded in components with respect to θ− and θ
−: the lowest

component is the left-handed R-current, the top component is the stress-energy tensor

(which, using our earlier N = (0, 2) terminology, corresponds to the solution αi =

βi, α̃a = βi=a of (3.58)), and the fermionic components are the two left-handed

supersymmetries. Therefore, this J generates a left-moving N = 2 superconformal

algebra in the D+-cohomology.

If there exist additional U(1) flavor symmetries characterized by weights γi satis-

fying (3.95), then there is another D+-cohomology class represented by:

Ψ =
1

2

∑
i

γiΦ
iD−Φ

i
, (3.99)

so the derivative:

D−Ψ =
∑
i

γi

(
1

2
D−ΦiD−Φ

i
+ iΦi∂−−Φ

i
)

(3.100)

generates ambiguity, because we can replace J → J + λD−Ψ, ∀λ ∈ R. Of course,

this is still the same ambiguity of the N = (0, 2) stress-tensor multiplet related to

U(1) flavor symmetries that we were discussing before. The only difference is that

by now we have dealt with the U(1) global symmetry which is the left-handed R-

symmetry from the N = (2, 2) point of view (it was described by the charges qi = βi,

q̃a = βi=a−1), and what we are left with in (3.99) corresponds to the actualN = (2, 2)

flavor symmetry. Similar to what we had for a more general N = (0, 2) case, we could

have analyzed this ambiguity using the N = (2, 2) supersurrent multiplet, especially
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since its structure is described in details in the Appendix C of [80]. However, we

chose not to do this, as it would not give us anything essentially new compared to

what we have already understood.

Previous discussion of the OPE in the cohomology being determined by the free

propagators of course still holds. The free propagator of chiral superfields is:

〈
Φ
i
(x1, θ1)Φj(x2, θ2)

〉
= δij log

(
R−−12 R

++
12

)
, (3.101)

where

R−−12 = x−−1 − x−−2 + iθ−1 θ
−
1 + iθ−2 θ

−
2 + 2iθ

−
1 θ
−
2 ,

R++
12 = x++

1 − x++
2 + iθ+

1 θ
+

1 + iθ+
2 θ

+

2 + 2iθ
+

1 θ
+
2 . (3.102)

We can compute the OPEs:

J (x1, θ1)J (x2, θ2) ∼ − c

3(r12)2
− 2θ−12θ

−
12

(r12)2
J (x2, θ2)− iθ−12

r12

D−J (x2, θ2)

−iθ
−
12

r12

D−J (x2, θ2)− 2θ−12θ
−
12

r12

∂−−J (x2, θ2) + {Q+, . . . }, (3.103)

where

θ−12 = θ−1 − θ−2 , θ
−
12 = θ

−
1 − θ

−
2 ,

r12 = x−−1 − x−−2 + iθ
−
1 θ
−
2 − iθ

−
2 θ
−
1 ,

(3.104)

and the central charge is:

c = 3
∑
i

(1− 2βi). (3.105)
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Equation (3.103) encodes the N = 2 superconformal algebra with the central charge

c (this equation, but in slightly different conventions, was present in [78]). Of course

we could have obtained the same value of the central charge using the more general

equation (3.82), which holds for more general N = (0, 2) LG models. One would have

to put αi = βi, α̃a = βi=a there.

Notice that the central charge (3.105) is linear in βi. This means that if we

have U(1) flavor symmetries such that (3.95) holds, we can no longer get rid of the

ambiguity βi → βi + λγi by simply asking the central charge to take the extremal

value. This is related to the fact that the OPE of the cohomology class represented

by (3.99) with itself is regular:

Ψ(x1, θ1)Ψ(x2, θ2) ∼ {Q+, . . . }. (3.106)

So that the OPE of [Ψ] with [J ] is the same as with [J + λD−Ψ], ∀λ ∈ R. The JΨ

OPE is:

J (x1, θ1)Ψ(x2, θ2) ∼ κ
θ−12

(r12)2
− θ−12θ

−
12

(r12)2
Ψ(x2, θ2)− iθ−12

r12

D−Ψ(x2, θ2)

−2θ−12θ
−
12

r12

∂−−Ψ(x2, θ2)− i

r12

Ψ(x2, θ2) + {Q+, . . . }, (3.107)

where κ =
∑

i γi. Compare this with what one expects for the OPE of J with some

superconformal primary superfield P :

J (x1, θ1)P(x2, θ2) ∼ −2θ−12θ
−
12

(r12)2
∆P(x2, θ2)− iθ−12

r12

D−P(x2, θ2)

−iθ
−
12

r12

D−P(x2, θ2)− 2θ−12θ
−
12

r12

∂−−P(x2, θ2)− i

r12

qP(x2, θ2) + {Q+, . . . }, (3.108)

where ∆ is the conformal dimension of P and q is its R-charge. What we see is that

for non-zero values of κ, Ψ is non-primary, and moreover it is not a descendant of any
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primary, as can be seen from unitarity and global superconformal invariance of the

vacuum of the IR theory.6 Therefore, the non-zero κ becomes an obstruction for the

IR CFT to exist. This happens for example in a model with two superfields X and

Y and superpotential W = XY 2.

Notice that since the ΨΨ OPE is regular, so is the D−ΨD−Ψ OPE. The absence of

central term in it means, as we have mentioned in Section 3.2.1, that the corresponding

flavor symmetry can be gauged without encountering gauge anomalies. Possible non-

zero value of κ then becomes the anomaly for the right-handed R-symmetry. This

would be relevant if we were studying gauge theories.

The theory can also have non-abelian flavor symmetries, which lead, as we have

argued before, to the current algebra in the cohomology. In our discussion of general

(0, 2) theories, the level of this current algebra was given by the difference of Dynkin

indices: r = 2xΦ−2xΛ. The first term here corresponded to the way flavor symmetry

acted on Φ’s, and the second – on Λ’s. In the (2, 2)-supersymmetric case, the flavor

symmetry acts in the same way on Φ’s and Λ’s, as they are just components of the

(2, 2) chiral superfields Φi. So xΦ = xΛ. We conclude that the current algebra in the

cohomology corresponding to some flavor symmetry of theN = (2, 2) supersymmetric

LG model always has level zero.
6The argument is as follows. Presence of the central term in (3.107) implies through the operator-

state correspondence that there is a state |ψ〉 in the IR CFT such that G−+1/2|ψ〉 = κ|0〉 + Q+|φ〉,
where G−+1/2 is one of the superconformal generators, |0〉 is the vacuum state and |φ〉 is some
state. Taking the dimension-zero component of this equality, we can assume that ψ has dimensions
(1/2, 0), so that G−+1/2|ψ〉 has dimension zero. Since in a unitary theory there are no operators of
negative dimension, Q+|φ〉 should not be there: G−+1/2|ψ〉 = κ|0〉. Invariance of the vacuum implies
G+
−1/2G

−
+1/2|ψ〉 = 0. Since in a unitary theory (G−+1/2)† = G+

−1/2, by multiplying with 〈ψ|, the last
equality implies G−+1/2|ψ〉 = 0, which gives a contradiction unless κ = 0.

194



3.4 Examples

In this section we will consider a few examples of applications of our machinery to

the N = (2, 2) LG models, where we can say something about the chiral algebra and

therefore draw some conclusions about the theory to which the model flows in the IR.

3.4.1 Degenerate examples

Consider the theory of two chiral superfields X and Y with superpotential

W = XY 2. (3.109)

This theory has a non-trivial flavor symmetry. A possible charge assignment is:

γX = 2, γY = −1, so that

γXX
∂W

∂X
+ γY Y

∂W

∂Y
= 0. (3.110)

As we know from the equation (3.99), there is an extra operator Ψ in the cohomology

as a result of this flavor symmetry. Since γX + γY = 1 6= 0, the OPE (3.107) tells us

that this operator is not primary. Moreover, as we explained in the footnote 6, an

operator satisfying (3.107) cannot be made primary in a unitary CFT with invariant

vacuum. Therefore, its existence indicates that the RG flow does not end at any CFT.

In fact, the superpotential has a flat direction Y = 0, and we can conclude that the

low-energy theory describing propagation along this flat direction, as well as some

other low-energy modes, cannot be conformal. One can get a conformal fixed point

if we add a perturbation εX2n+1 to the superpotential. This will actually correspond

to having the D series of minimal models at the IR fixed point, with the exact choice

of the model depending on n, even for small ε. By sending ε→ 0, the IR fixed point
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will most likely go to infinity, so that the degenerate theory W = XY 2 will not have

an endpoint for its RG flow.

This flavor symmetry could be gauged, however, as we have noted before, this

would make right-handed R-symmetry anomalous because of γX + γY 6= 0.

By considering a slightly different superpotential, namely:

W = X2Y 2, (3.111)

we get again a theory with a flavor symmetry, but the charges now can be chosen to

be γX = 1, γY = −1, so that γX + γY = 0. Therefore, the bad central term does

not appear in (3.107), and the theory in the IR has a chance to be conformal, even

though the superpotential has flat directions. Also, if we gauge this flavor symmetry,

we still get a theory with the right-handed R-symmetry. We are not going to study

this example any further.

3.4.2 N = 2 minimal models

A series of N = (2, 2) LG models are known to flow in the IR to the N = (2, 2)

minimal models. These superconformal theories are relatively simple. The central

charge is given by [104–108]:

c =
3k

k + 2
, k ≥ 1, (3.112)

and there is a known spectrum of possible superconformal primaries. The A-D-E

classification of modular-invariant theories is known [109–112], and the corresponding

LG superpotentials have been identified before. So, we can try to compute the chiral

algebra both for the LG model and for the minimal model which is supposed to arise

in the IR, therefore providing more evidence for this relation, as well as demonstrating

the power of chiral algebras.
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The Ak+1 series

For a given k, the diagonal Ak+1 minimal model is the simplest one. Its set of

primaries has a subset of k + 1 fields which are chiral primary with respect to S̃Vir.

Let us call them Os, s = 0, . . . k, where O0 = 1 is the identity operator and Os has

left-right conformal dimensions (h, h) = ( s
2(k+2)

, s
2(k+2)

) and left-right U(1) charges

(q, q) = ( s
k+2

, s
k+2

). As we see, they all are chiral primaries with respect to both

SVir and S̃Vir. Therefore, together with the N = 2 currents, they generate the chiral

algebra of the theory, as well as the anti-chiral algebra abtained analogously by taking

the cohomology of Q−.

We expect to get the same result from the LG model description. It is obtained

by considering only one chiral superfield Φ with the superpotential:

W (Φ) =
Φk+2

k + 2
. (3.113)

The equations of motion are

D+D−Φ−Φk+1 = 0,

D−D+Φ−Φ
k+1

= 0. (3.114)

Differentiating these equations and multiplying them by arbitrary polynomials of Φ,

Φ and their derivatives, we get a differential ideal I. The algebra F̂0 consists of

arbitrary polynomials of variables ∂n+∂m−Dk
+D

p
−Φ and ∂n+∂m−D

k

+D
p

−Φ for non-negative

integers n,m, k, p, modulo the ideal I:

F̂0 = C[. . . , ∂n+∂
m
−D

k
+D

p
−Φ, ∂n+∂

m
−D

k

+D
p

−Φ, . . . ]/I. (3.115)

It is not hard to find another set of generators, which will generate F̂0 as a super-

commutative polynomial algebra itself. We already explained it in the context of
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general N = (0, 2) LG models. Namely, we can take:

G = {∂n−−Φ, ∂n++Φ, D−∂
n
−−Φ, D+∂

n
++Φ, ∂n−−Φ, ∂n++Φ, D−∂

n
−−Φ, D+∂

n
++Φ, n ≥ 0}.

(3.116)

All other derivatives of elementary superfields Φ and Φ can be expressed, using

equations of motion, as polynomials of these generators, and moreover, there are no

further algebraic relations between these generators. So we have:

F̂0 ' C[G]. (3.117)

We will first compute the classical cohomology of D+ acting on this space. After

that we will check which part of it survives at the quantum level, when we take care

to subtract singular parts from composite operators. It is clear that the cohomology

classes can only be destroyed by this subtraction. Indeed, suppose we define:

: AB : (z) = lim
ε→0

(A(z + ε)B(z)− (singular in ε)) . (3.118)

If AB was classically in the cohomology but the singular part is not D+-closed, the

operator : AB : is no longer in the cohomology. If AB was not in the cohomology

even classically, then neither is : AB :, which is quite obvious. Finally, if AB was

classically D+-exact, then there is no need to consider : AB :. Even if the singular

part represented some non-trivial quantum cohomology class, we would find it by

starting with some other classical cohomology class anyways. So, we will look for

the classical cohomology first, and then check which part of it survives subtraction of

singularities.7

7In fact, computation of the classical cohomology is a hard combinatorial problem, while we are
really only interested in quantum cohomology. So we will not determine the classical cohomology
completely, only partly. As we will see, there is an N = 2 super-Virasoro algebra in cohomology,
so our approach will be to look for those classical cohomology classes which have a chance to be
superconformal primaries at the quantum level.
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To find how D+ acts on F̂0 in terms of the generators, we act with D+ on the

generators from the set G and, using the equations of motion, express the result in

terms of these generators again. To explicitly describe D+, it is convenient to write

it as a sum:

D+ = d0 + d1, (3.119)

where d0 acts as follows:

d0 :∂n−−Φ 7→ 0, ∂n++Φ 7→ 0, D−∂
n
−−Φ 7→ 0, ∂n+1

−− Φ 7→ 0, D+∂
n
++Φ 7→ 0,

D−∂
n
−−Φ 7→ 0, D+∂

n
++Φ 7→ 2i∂n+1

++ Φ, ∂n++Φ 7→ D+∂
n
++Φ,

(3.120)

and d1 acts as:

d1 :∂n−−Φ 7→ 0, ∂n++Φ 7→ 0, D−∂
n
−−Φ 7→ 0, D+∂

n
++Φ 7→ 0, ∂n++Φ 7→ 0,

D+∂
n
++Φ 7→ 0, D−∂

n
−−Φ 7→ ∂n−−(Φk+1), ∂n+1

−− Φ 7→ i

2
D−∂

n
−−(Φk+1).

(3.121)

This explicitly describes how D+ acts on the generators, and then extends to the full

algebra F̂0 by linearity and Leibniz rule. Notice that d0 is just the D+ in the theory

with zero superpotential, while d1 includes corrections due to the superpotential. This

splitting of D+ is motivated by a perturbative computation of the D+-cohommology,

i.e., the spectral sequence, which we are about to perform.

Let us introduce a filtration degree on F̂0 by saying that for generators:

∀x ∈ G, fdeg(x) = 1, (3.122)
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which then extends multiplicatively on the whole F̂0. We then define:

F̂ (p)
0 = {S ∈ F̂0 : fdeg(S) ≥ p}, (3.123)

which gives a filtration:

F̂0
∼= F̂ (0)

0 ⊃ F̂ (1)
0 ⊃ F̂ (2)

0 ⊃ . . . (3.124)

Our differential D+ obviously preserves this filtration. In particular, d0 does not

change the filtration degree, while d1 increases it by k, if k > 0. This allows us to

apply spectral sequences to compute the cohomology of D+. But before that we will

mention a trivial technical lemma we will need later.

Lemma 5.1: Let V be a Z2-graded vector space and S(V ) = ⊕k≥0S
k(V ) be

the graded-symmetric algebra of V . If there is a degree-1 differential d : V → V ,

i.e., d2 = 0, then by the Leibniz rule it extends to a differential acting on the graded-

symmetric algebra d : S(V )→ S(V ), and moreover, its cohomology is:

H(S(V ), d) = S (H(V, d)) . (3.125)

Now, having this Lemma, we will proceed to compute the cohomology of D+.

First let us consider the trivial case k = 0. Then both d0 and d1 do not change

the filtration degree. We can define a vector space spanned by the elements of G:

V = Span(G). Since D+ = d0 + d1 does not change the filtration degree, it acts

as a linear operator on this V . Next we notice that F̂0 ' S(V ), so by the Lemma

H(F̂0, D+) = S
(
H(V,D+)

)
. To compute the cohomology of D+ acting as a linear

operator on V , we notice that all elements of G are either not D+-closed or are D+-

exact as a consequence of the equation of motion D+D−Φ = Φ. So the cohomology

is trivial for k = 0 (stress-energy supercurrent J becomes D+-exact for k = 0 ad
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well). This could be expected because the k = 0 model is massive, and therefore the

IR theory it flows to is empty.

Now, suppose k > 0. Then at the zeroth order of spectral sequence we have:

Ep
0 = F̂ (p)

0 /F̂ (p+1)
0 , E0 ≡ Gr(F̂0) ∼=

⊕
p≥0

Ep
0 , (3.126)

where Gr(F̂0) is the graded space associated with the filtered space F̂0, and the

differential acting on it is just d0, which preserves grading. We note that E1
0 '

Span(G), the vector space spanned by the generators from G (which all have degree

1). Since d0 preserves grading and, as one can easily see, E0 ' S(E1
0), we just apply

Lemma and get H(E0, d0) = S (H(E1
0 , d0)). By inspecting equations (3.120), we

easily find the cohomology of d0 acting on E1
0 . The answer is H(E1

0 , d0) = Span(S0),

where the set S0 is:

S0 = {∂n−−Φ, D−∂
n
−−Φ, ∂n+1

−− Φ, D−∂
n
−−Φ, n ≥ 0}. (3.127)

Therefore, we find the first term of the spectral sequence:

E1 = H(E0, d0) ' C[S0]. (3.128)

Now, if k = 1, then for the first step of spectral sequence, d1 becomes the dif-

ferential acting on E1. If k > 1, then the differential acting on E1 is just zero, and

E2 = H(E1, 0) ' E1. Next, if k > 2, we find that E3 ' E1, and so on. This procedure

goes on until we get to the k-th term of spectral sequence: Ek ' E1. As we know

from spectral sequences, the differential acting on Ek should be the degree-k part of

D+, i.e., d1. So for the next term we have:

Ek+1 ' H(E1, d1). (3.129)
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Since there are no components of D+ of degree higher than k, the spectral sequence

collapses here and we conclude that:

H(F̂0, D+) ' H(E1, d1) ' H(C[S0], d1). (3.130)

So all we need to do now is compute the cohomology of d1 acting on C[S0]. The way

d1 acts on the elements of S0 is:

d1 : ∂n−−Φ 7→ 0, D−∂
n
−−Φ 7→ 0,

∂n+1
−− Φ 7→ i

2
D−∂

n
−−(Φk+1), D−∂

n
−−Φ 7→ ∂n−−(Φk+1). (3.131)

Even though we have considerably simplified the original problem, the direct compu-

tation of the d1 cohomology is still too nasty. We can simplify it more by recalling

that we already have a stress-energy supercurrent in the cohomology, and therefore

it is enough to look for its superconformal primaries only. Our superpotential is of a

quasi-homogeneous class, with β = 1
k+2

, so the stress-energy supercurrent is:

J =
k + 1

2(k + 2)
D−ΦD−Φ− i

k + 2
Φ∂−−Φ (3.132)

and the corresponding central charge is c = 3k
k+2

. Now suppose we found some poly-

nomial P ∈ C[S0] which represents a D+-cohomology class. We have the following

technical Lemma:

Lemma 5.2: Every d1-cohomology class [P ] which is a superconformal primary

with respect to J , can be represented as a polynomial of Φ, D−Φ, D−Φ and ∂−−Φ,

that is P ∈ C[Φ, D−Φ, D−Φ, ∂−−Φ].

The idea is that having higher derivatives of Φ and Φ in the expression for P

will result in higher poles in the J (x, θ)P (0, 0) OPE, which should not be there if
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[P ] is primary. Elegant proof of this statement is not available at the moment, but

calculations seem to show that it is true, so we leave it as a conjecture.

The operators Φ, Φ2, . . . Φk are all in the cohomology and are primaries – we will

write their OPE’s with J later. Φk+1 is exact and so is not in the cohomology, so any

polynomial of Φ is just a linear combination of 1,Φ,Φ2, . . . ,Φk in the cohomology.

Since D−(P (Φ)) = P ′(Φ)D−Φ and (D−Φ)2 = 0, any polynomial of Φ and D−Φ is

A(Φ) + D−B(Φ), where the second term is a descendant. Let us figure out now if

there are any other primaries in the cohomology. We try to construct d1-closed (or

equivalently, D+-closed) polynomials from Φ, D−Φ, D−Φ and ∂−−Φ, which are not

just polynomials of Φ and D−Φ. A simple computation shows that the most general

such combination with even statistics is:

E =
∞∑
n=0

Pn(Φ)(∂−−Φ)n
[

(n+ 1)(k + 1)

2
D−ΦD−Φ− iΦ∂−−Φ

]
, (3.133)

where Pn are arbitrary polynomials, while the most general odd closed element is:

O =
∞∑
n=1

Cn(Φ)(∂−−Φ)nD−Φ, (3.134)

where again Cn are arbitrary polynomials.

To slightly simplify computations, we notice that since the operator d1 increases

the introduced above filtration degree fdeg by k, one can grade the cohomology by

this degree, and it is enough to assume that E has a given fixed degree (i.e., it is a

homogeneous polynomial). Next, we notice that we could introduce another grading

– by the number of derivatives in the expression. If we assign the bosonic derivative

∂−− a “derivative degree” 1 and the fermionic derivatives D− and D− a “derivative

degree” 1/2, we can see that the operator d1 actually lowers the “derivative degree” by

1/2. Therefore, again, we can grade the cohomology by this degree, and it is enough

to study the cohomology within the sector with a given “derivative degree”. Fixing
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values of these two degrees – the filtration degree and the “derivative degree” – we

see that it is enough, without loss of generality, to consider:

Es,n = Φs(∂−−Φ)n
[

(n+ 1)(k + 1)

2
D−ΦD−Φ− iΦ∂−−Φ

]
,

Os,n = Φs(∂−−Φ)nD−Φ. (3.135)

where s and n are non-negative integers. A simple calculation gives:

D−Es,n = −i [s+ 1 + (n+ 1)(k + 1)]Os,n+1. (3.136)

This suggests that any odd element of the above form Os,n+1 that we could have

possibly found in the cohomology would always by a descendant of some even element.

This is also true for Os,0 = ΦsD−Φ = 1
s+1

D−Φs+1. Therefore, it is enough to study

the expression Es,n given above. Can it represent a nontrivial cohomology class, and

can it be a superconformal primary?

Observables Es,n and their lifting

Notice that for s ≥ k:

d1

[
Φs−k(∂−−Φ)n+1D−Φ

]
= iEs,n, (3.137)

so Es,n is exact for s ≥ k. On the other hand, for s < k, Es,n is obviously not exact,

because, as we can see from the equation (3.121), the image of d1 always contains the

field Φ at least k + 1 times, while Es,n contains it s + 1 times. So we conclude that

Es,n for s < k indeed represents a non-trivial classical cohomology class.

Classical observables Es,n satisfy the following multiplication rule:

Es,nE t,m = −iEs+t+1,n+m+1. (3.138)
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They can be combined with the observables Φs, for which we have:

ΦsE t,n = Es+t,n. (3.139)

We see that Φ and Es,n generate a closed sector in the classical cohomology. As we

will find soon, these are not all classical cohomology classes, there exist more. But

all observables that have a chance of being superconformal primaries in the quantum

cohomology are within this sector.

The stress-energy supercurrent J that we identified before is of course among

these observables:

J =
1

k + 2
E0,0. (3.140)

In particular:

J Es,n = − i

k + 2
Es+1,n+1. (3.141)

This equation implies that the only observables which have a chance of being super-

conformal primaries at the quantum level are Es,0 and E0,n. But because of:

Es,0 = (k + 2)JΦs, (3.142)

the former are simply descendants of Φs. So we only have E0,n left.

Can E0,n represent cohomology classes in quantum theory? It turns out that only

for n = 0. The reason is that for n > 0, the infinite piece that one has to subtract in

order to define the composite operator E0,n is not Q+-closed.

Consider the simplest operator E0,1. We call its lowest component e1:

e1 = (k + 1)∂−−φψ−ψ− − iφ(∂−−φ)2. (3.143)
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This is a composite operator whose precise definition requires subtraction of singu-

larities:

e1(x) = lim
ε→0

(
(k + 1)∂−−φ(x)ψ−(x)ψ−(x− ε)− i(∂−−φ(x))2φ(x− ε)− 2ki

ε−−
∂−−φ(x)

)
.

(3.144)

We see that the piece that we subtract is not Q+-closed, which already suggests that

e1(x) is probably not in the cohomology. Careful computation of [Q+, e1], followed

by taking the ε→ 0 limit, shows that:

[Q+, e1] = −(k + 1)

[
(k + 1)φk∂−−ψ− −

1

2
ψ−∂−−φ

k

]
− i(k + 2)[Q+, ∂

2
−−φ]. (3.145)

So indeed, e1 is not in quantum cohomology. We know that classical observables

should be lifted from cohomology in pairs. Therefore, the combination we got on the

right, r1 = (k + 1)φk∂−−ψ− − 1
2
ψ−∂−−φ

k, should be some classical cohomology class

which disappears together with e1. And indeed, it is in the classical cohomology,

as it is easy to check. Before, we found classical cohomology classes which had a

chance of being superconformal primaries, and this r1 was not among them, which

suggests that it should be a descendant. Another computation shows that it is indeed

a descendant. The lowest component of J is:

j = J | = k + 1

2(k + 2)
ψ−ψ− −

i

k + 2
φ∂−−φ, (3.146)

it is a U(1) current in the N = 2 super-Virasoro. A computation shows that:

j−1(φkψ−) =: jφkψ− :=
i

k + 2

(
(k + 1)φk∂−−ψ− − ψ−∂−−φk

)
+ [Q+, . . . ]. (3.147)

So this new operator, r1 = (k+1)φk∂−−ψ−− 1
2
ψ−∂−−φ

k, is actually a superconformal

descendant of φkψ−. One can ask a similar question: what is this φkψ−? Clearly, it
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is in the classical cohomology. But in fact, φkψ− = 1
k+1

[Q−, φ
k+1], and recall that we

have a relation φk+1 = 0 in the classical cohomology. Therefore φkψ− also vanishes

in the classical cohomology. So we have discovered the following: classically, we have

cohomology classes e1 and r1, but quantum-mechanically, we have [Q+, e1] = r1. And

this r1 is a superconformal descendant of φkψ−, which is actually zero in the classical

cohomology.

This might look confusing – how is it possible that superconformal descendant

of zero is not zero? The resolution of this apparent paradox is that, actually, super-

Virasoro algebra does not act in the classical cohomology. It only acts in the quantum

cohomology by the OPE with the stress-energy supercurrent J , while there is no no-

tion of OPE in the classical cohomology. Therefore, there is no contradiction between

the facts that φkψ− vanishes in the classical cohomology, while its superconformal de-

scendant r1 does not vanish classically. The fact that latter is a descendant of the

former is borrowed from the chiral algebra in the quantum cohomology. And in the

quantum cohomology, because of this relation, both of them indeed have to vanish.

This is quite satisfactory, because it also explains why r1 should be lifted from the

classical cohomology – because it vanishes in quantum chiral algebra!

In fact, by taking all possible superconformal descendants of the relation φk = 0,

we will get a lot of (probably, infinitely many) operators which vanish in the quantum

cohomology but represent non-vanishing classical cohomology classes. They all should

be lifted from the cohomology through the mechanism which we have just described.

Also, it is not hard to convince oneself that not only E0,1, but all operators E0,n, n >

0 get lifted from the cohomology at quantum level for the same reasons. Clearly, there

is some interesting (or at least non-trivial) mathematical structure in how classical

cohomology classes get paired and lifted from the cohomology. It is quite possible

that our observables Es,n and superconformal descendants of φk+1 are not the only
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classical cohomology classes involved in this. However, we are not going to study this

question here.

We are only interested in the quantum cohomology here, so the conclusion we

need now is that the only primary operators in the cohomology are 1,Φ,Φ2, . . . ,Φk.

They, together with the stress-energy supercurrent J , generate the full chiral algebra

in the Q+-cohomology. One can find that:

J (x1, θ1)Φs(x2, θ2) ∼ −

(
2θ−12θ

−
12

(r12)2
hs +

iθ−12

r12

D− +
2θ−12θ

−
12

r12

∂−− +
i

r12

qs

)
Φs, (3.148)

where hs = qs
2

= s
2(k+2)

. We see that dimensions and charges match exactly our

expectations for the Ak+1 minimal model.

D and E series of minimal models

We will not go into much details about the chiral algebras of D and E series of minimal

models. Instead we will just look at some of their features, leaving a more detailed

study for the future.

The LG models which are expected to flow to D2n+2 minimal models in the IR

are described by the superpotential:

W = XY 2 +
X2n+1

2n+ 1
. (3.149)

Consider the n = 1 theory. It has W = XY 2 + X3

3
. If we make a change of

variables

V =
X + Y√

2
,

U =
X − Y√

2
, (3.150)
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We will get an LG model with W =
√

2
3
V 3 +

√
2

3
U3. This is just a pair of non-

interacting A2 models. Thus the theory in the IR is expected to be just A2⊗A2, with

the chiral algebra being a tensor product as well. Recall from the previous subsection

that, for the W ∝ V 3, the chiral algebra has only two primaries: the identity 1 and

V , and there is also a stress-energy supercurrent JV . Similarly for the second one:

we have 1 and U as primaries, and we have JU . By taking the tensor product of these

two, we can identify primaries in the chiral algebra of A2 ⊗ A2 as:

1, V, U, V U,JV − JU . (3.151)

Going back to X amd Y , the first four are simply:

1, X, Y,X2 − Y 2. (3.152)

Moreover, since in the cohomology V 2 = U2 = 0, these X and Y satisfy relations in

the chiral algebra:

X2 + Y 2 = 0,

XY = 0, (3.153)

which are just the relations of the chiral ring, so we get the familiar result (explained

in Section 3.1.3) that operators from the chiral ring of the N = (2, 2) theory are

primaries of the chiral algebra. However, we have an extra primary operator of

dimension 1:

P = JV − JU , (3.154)

which is not part of the chiral ring. The existence of this extra primary current

in the cohomology was already noticed in [113], where the author also conjectured
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that every D2n+2 model has, in addition to the generators of the chiral ring, a single

dimension-n primary in the cohomology.

We are not going to study n > 1 cases here. The only thing we want to mention

is that the spectral sequence approach we used for the Ak+1 models can be clearly

generalized to the D2n+2 case. For n > 1, the operator D+ will split as a sum of three

terms:

D+ = d0 + d1 + d2, (3.155)

where d0 corresponds to the zero superpotential, d1 takes into account the effect of

XY 2 term in the superpotential, and d2 encodes the effect of X2n+1 interaction. It

should be possible, though more technical than in the Ak+1 case, to compute the

cohomology using this splitting and check the conjecture made in [113].

Finally, a small remark about the E series. The models E6 and E8 correspond to

superpotentialsX3+Y 4 andX3+Y 5. Therefore, their chiral algebras are immediately

identified as those of A2⊗A3 and A2⊗A4 respectively. Therefore, they will also contain

extra primary operators, in addition to the chiral ring elements. The E7 model has:

W = X3 +XY 3, (3.156)

therefore it has to be studied separately. In this case again we will have:

D+ = d0 + d1 + d2, (3.157)

where d0 is a D+ operator in the theory of two free chiral superfields without any

superpotential, d1 takes into account the X3 term and d2 takes care of XY 3. It is clear

that at the second step of the spectral sequence computation, when we consider the

cohomology of d1, we will essentially get the cohomology of the A2 model multiplied

by the free theory described by the chiral superfield Y . Computing the cohomology
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of d2 at the next step then becomes much simpler, since we already know the answer

for A2.

3.5 Some further remarks

We have only scratched the surface of the subject, demonstrating some general prop-

erties of chiral algebras of N = (0, 2) theories and giving several simple examples.

The most general property was the RG invariance of the answer, which makes chiral

algebras interesting objects to study in the context of dualities.

One obvious extension of this work would be to get a better description of chiral

algebras of N = (2, 2) LG models with quasi-homogeneous (or even general) polyno-

mial superpotentials. Our treatment allowed us to find answers in some cases, but

it would be much nicer to have a more general result, which would associate chiral

algebra to any polynomial superpotential. It would also be useful to find some classes

of N = (0, 2) models in which the chiral algebra could be described completely.

But the most interesting and immediate extension is, of course, the application of

chiral algebras to gauge theories. If the LG model has some flavor symmetry, one can

gauge it by coupling to gauge multiplets. One can argue that perturbatively, the way

this gauging is implemented in the chiral algebra is as follows. If G is the gauge group,

one should first take the G-invariant subalgebra of the ungauged chiral algebra, then

tensor multiply it by the “small” bc-system of dimension (1, 0) (where “small” means

that zero mode of c is excluded from the algebra). The ungauged chiral algebra has

a current in it which corresponds to the flavor symmetry we want to gauge. Using

this current and the bc-ghosts, one can construct a BRST operator. The condition

of its nilpotency is precisely the condition that there is no gauge anomaly, i.e., that

the symmetry we want to gauge really can be gauged. Then we have to compute the

cohomology of this BRST operator. The answer is the gauged chiral algebra.
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This procedure seems to hold in perturbation theory. One way to argue it is

by writing equations of motion of the gauge theory and, similar to what we did in

this paper, computing the cohomology of D+ using perturbation theory (or spectral

sequence) in gauge coupling. This approach is somewhat ugly, but it allows to argue

that the answer is as we claimed above. Another, more conceptual proof would be

to define the gauge theory using the BRST formalism and the holomorphic gauge

v++ = 0. This would give the action:

S = S0 + {QB,Ψ} = S0 +

∫
d2x lAvA++ +

∫
d2x bAD++c

A, (3.158)

where lA is the auxiliary field implementing gauge vA++ = 0, and we added Faddeev-

Popov ghosts. One can extend supersymmetry to act trivially on ghosts. Then the

supercharge Q+ and the BRST charge QB anticommute: {Q+, QB} = 0, and we

really have two commuting complexes. The theory is defined as the cohomology of

QB, and within that cohomology we want to find the chiral algebra in the cohomology

of Q+. Since the complexes commute, we could first find the cohomology of Q+, and

then compute the cohomology of QB. It is quite nice to discover that the gauging

procedure we explained above arises in this way. However, some techical details still

have to be clarified, and this is a part of an ongoing research.

A question of utmost importance is to understand how the gauging procedure

should be modified to account for non-perturbative effects, such as instantons.

Another extension, which is also important for gauge theories, is to study mod-

els without R-symmetry. We can easily find gauge theories with an anomalous R-

symmetry. In case they are constructed by gauging some LG models that have (right-

handed) R-symmetry, it becomes natural to ask what special happens to their chiral

algebra during gauging.
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Appendix A

Supergravity Conventions

Here we describe in detail our supergravity conventions in dimensions 11, 5, and 4,

and also the dimensional reduction relating them. Our conventions are generally

those of [87].

A.1 Gamma-Matrices and Spinors

Euclidean gamma-matrices will always satisfy a Clifford algebra with a plus sign, e.g.,

{ΓI ,ΓJ} = 2δIJ . For a fermion ψ, sometimes we write

ψ ≡ ψTC, (A.1)

where C is usually called the charge-conjugation matrix.

A.1.1 Four Dimensions With Euclidean Signature

The flat space 4d gamma-matrices are denoted γa, while the curved-space matrices

are γµ = eaµγa, where eaµ is the 4d vielbein. Negative chirality (or left-handed) spinor

indices are denoted A,B,C, . . . , while positive chirality (or right-handed) ones are

denoted Ȧ, Ḃ, Ċ, . . . .
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Indices A,B,C, . . . and Ȧ, Ḃ, Ċ, . . . are lowered or raised by antisymmetric tensors

εAB and εȦḂ, where we choose as usual ε12 = ε12 = 1. In lowering/raising indices,

we adhere to the so-called NW-SE (“Northwest-Southeast”) convention, when indices

are always summed in the NW-SE direction: ψA = ψBεBA, ψA = εABψB.

We choose the following representation for the 4d Euclidean gamma-matrices:

γi =

 0 σi

σi 0

 , i = 1, . . . , 3, γ4 =

 0 −i1

i1 0

 , (A.2)

where σi are the usual Pauli matrices. The chirality matrix is:

γ5 = γ1γ2γ3γ4 =

−1 0

0 1

 . (A.3)

With this choice, the “upper” or “lower” components of a 5d spinor ψα are 4d spinors

ψA and ψȦ of negative or positive chirality, respectively. Moreover, gamma-matrices

with both spinor indices lowered behave under complex conjugation as follows:

(γµ
AȦ

)∗ = −εABεȦḂγµ
BḂ
. (A.4)

As usual in even dimensions, there are two possible charge conjugation matrices, which

we will denote as C and C̃ = −Cγ5, satisfying γTµ = CγµC
−1 and γTµ = −C̃γµC̃−1

(note that γTµ = γ∗µ in Euclidean signature):

C = γ2γ4 =

ε 0

0 −ε

 , C̃ = −Cγ5 =

ε 0

0 ε

 , ε =

 0 1

−1 0

 . (A.5)

By saying that we lower/raise both left and right 4d spinor indices by ε, we have

automatically picked C̃ in d = 4.
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In Lorentz signature, fermions always carry a real structure. This is typically not

the case in Euclidean signature (for example, if the Standard Model of particle physics

is formulated in Euclidean signature, the fermions carry no real structure). For our

purposes in this paper, spinors in 4d Euclidean space can be considered to come by

dimensional reduction from 5d Minkowski spacetime, and therefore they carry a real

structure. Since the spinor representation of Spin(4) (or of Spin(4, 1)) is pseudo-real

rather than real, to define a reality condition, one has to add an extra index i = 1, 2

(which can also be lowered/raised by an antisymmetric tensor εij). Then the reality

conditions for left-handed and right-handed spinors ψAi and ψȦi respectively are:

(ψAi)∗ = ψAi,

(ψȦi)∗ = ψȦi. (A.6)

A.1.2 5d Gamma-Matrices and Spinors

We denote 5d gamma-matrices as Γa with flat index a (or ΓM with the curved index

M). In Lorentz signature, we choose the following relation between 5d and 4d gamma-

matrices:

Γa=a = γa, a = 1 . . . 4,

Γ0 = iγ5. (A.7)

In 5d Euclidean signature, we take the fifth gamma-matrix to be Γ5 = γ5.

We denote 5d spinor indices by α, β, γ, . . . . They are lowered/raised by the matrix

Cαβ that was defined in eqn. (A.5) (in d = 5, Lorentz invariance leaves no choice in

this matrix) and again a NW-SE rule is applied. We sometimes write a 5d spinor Ψα

in terms of the 4d chiral basis and think of it as a pair of Weyl spinors ΨA and ΨȦ,

but with indices raised or lowered by the 5d matrix CAB = εAB, CȦḂ = −εȦḂ. In
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particular, that is how we usually treat the 5d supersymmetry algebra, writing it in

terms of the chiral components QAi and QȦi. Of course, such a splitting explicitly

breaks part of the Spin(4, 1) symmetry, but this part is broken by the Kaluza-Klein

reduction anyway.

To define the reality condition satisfied by 5d spinors in Lorentz signature, we first

introduce

B = −iΓ0C =

−ε 0

0 −ε

 , (A.8)

and define

Ψc = B−1Ψ∗. (A.9)

To satisfy a reality condition, a spinor also needs an additional index i = 1, 2, since

the spinor representation of Spin(4, 1) is pseudoreal. Finally, the reality condition on

Ψi is Ψi = εij(Ψj)c. In terms of the chiral components ΨAi and ΨȦi, this condition

is:

(ΨAi)∗ = ΨBjεBAεji ≡ ΨAi,

(ΨȦi)∗ = ΨḂjεḂȦεji ≡ −ΨȦi. (A.10)

The 5d spinor Ψiα in (4+1)d reduces to a pair of 4d spinors ψAi and ψȦi. We

make the identification with the indices raised: ψAi = ΨAi, ψȦi = ΨȦi. It is necessary

to specify this because we have introduced a slightly different convention in raising

and lowering 4d spinor indices.
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A.1.3 6d and 11d Gamma-Matrices

We denote the 6d gamma-matrices along the Calabi-Yau manifold Y as γ̃n, n = 6 . . . 11

(here we do not specify whether the index is “curved” or “flat”). The 6d chirality matrix

is γ̃∗ = iγ̃6 · · · γ̃11. We think about spinors on Y as (0, p)-forms for p = 0 . . . 3. If zi

are local coordinates on Y and Qij is a metric on Y , the gamma-matrices act as:

γ̃zi =
√

2Qijdz
j∧

γ̃
zi

=
√

2ι ∂

∂zi
. (A.11)

We choose chirality in such a way that a covariantly constant spinor λ− of negative

chirality corresponds to an antiholomorphic (0, 3)-form Ω, while a covariantly constant

spinor λ+ of positive chirality corresponds to a constant function 1. We choose the

6d charge conjugation matrix C6 satisfying

γ̃Tn = −C6γ̃nC
−1
6 . (A.12)

The choice of C6 lets us define a bilinear pairing ( , ) on fermions, and we require

that (λ+, λ−) = (λ−, λ+) = 1.

Let us use calligraphic letters for the 11d indices and denote 11d gamma-matrices

by slanted capital gamma. So we write ΓA for 11d gamma-matrices referred to a flat

basis and ΓM for the ones referred to a curved basis. We choose the 11d gamma-

matrices to be related as follows to the 5d and 6d gamma-matrices:

ΓA=a = Γa ⊗ γ̃∗, a = 1 . . . 5

ΓA=n = 14 ⊗ γ̃n, n = 6 . . . 11, (A.13)
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where 14 is the unit 4× 4 matrix. In Lorentz signature (where Γ5 is replaced by Γ0),

we require:

Γ0Γ1 . . . Γ4Γ6Γ7 . . . Γ11 = 1. (A.14)

We will use large lower-case Greek letters to denote 11d spinorial indices: α,β, . . .

With the above choice of the 6d charge conjugation matrix, the 11d charge conjugation

matrix C11 is related to the 5d and 6d matrices in an obvious way:

C11 = C5 ⊗ C6. (A.15)

In Lorentz signature, the supersymmetry generators are an 11d Majorana fermion

η. In compactification on Y , the unbroken supersymmetries are those for which η is

the tensor product of λ+ or λ− with a 5d spinor ε1 or ε2:

η = ε2 ⊗ λ+ + ε1 ⊗ λ−. (A.16)

A.2 5d SUSY Algebra

From (A.4), (A.7) and (A.10), one can find, in 5d Minkowski space, the SUSY algebra

compatible with the 5d reality conditions:

{Qαi, Qβj} = −iεijΓMαβPM + εijCαβζ, (A.17)

where ζ is a real central charge. In a chiral basis, the algebra is

{QAi, QBj} = εABεij(H + ζ)

{QAi, QḂj} = −iεijΓµAḂPµ

{QȦi, QḂj} = εȦḂεij(H − ζ), (A.18)
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where H = P 0 is the 5d Hamiltonian.

A.3 11d Supergravity

Though not explicitly used in the main part of the paper, the following form of the

11d supergravity action is implicitly assumed:

L =
1

2κ2
11

(
ER− E

48
G2 +

1

124
εMNLP1...P4Q1...Q4CMNLGP1...P4GQ1...Q4

−EψMΓMNPDN
[

1

2
(ω + ω̂)

]
ψP

− E

192
(ψQΓ

MNLPQRψR + 12ψ
M
ΓNLψP)(G+ Ĝ)MNLP

)
, (A.19)

where E is the determinant of the 11d vielbein, G is a curvature of the C-field, ψM

is a gravitino field (a Majorana vector-spinor), and hatted quantities include some

extra corrections quadratic in fermions (the exact expressions are not important to

us). The supersymmetry transformations are:

δEAM =
1

2
ηΓAψM,

δψM = DM(ω̂)η + T NPQRM GNPQRη,

δCMNP = −3

2
ηΓ[MNψP], (A.20)

where

T NPQRM =
1

288

(
Γ NPQR
M − 8δ

[N
MΓ

PQR]
)
. (A.21)

In the action above, κ11 is the 11-dimensional gravitational constant. It is actually

related to the M2-brane tension T2 (see for example [90]), the relation being:

2κ2
11(T2)3 = (2π)2. (A.22)
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We will work in units with T2 = 1 and thus:

2κ2
11 = (2π)2. (A.23)

A.4 Reduction from 11d to 5d

We review the dimensional reduction of 11d supergravity on a Calabi-Yau Y (an orig-

inal reference is [114]). We denote the 5-dimensional metric as G (this will hopefully

not be confused with the field strength G of the 11d C-field). We denote the Calabi-

Yau Ricci metric of Y as Q, and the compatible complex structure as I. The Kahler

form of Y is ω = Q(I·, ·). The volume form is:

Vol =
1

6
ω ∧ ω ∧ ω. (A.24)

For arbitrary (1, 1)-forms α and β, we have identities:

β ∧ ω ∧ ω = (β, ω)Vol,

α ∧ β ∧ ω =
1

4
[(α, ω)(β, ω)− 2(α, β)]Vol,

∗α = −2α ∧ ω +
1

2
(α, ω)ω ∧ ω. (A.25)

Here the inner product on 2-forms is defined by (α, β) = αnrβmsQ
nmQrs.

Because Y is Ricci-flat, its Kahler form is harmonic and thus can be expanded in

a basis of harmonic (1, 1)-forms (ωI):

ω =
∑
I

vIωI , (A.26)
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where vI are Kahler moduli. Define also:

CIJK =
1

6

∫
Y

ωI ∧ ωJ ∧ ωK . (A.27)

Now let us reduce the bosonic part of the 11d action. We will be interested in the

Kahler moduli of only. (The complex structure moduli of Y give rise to hypermul-

tiplets, which decouple at low energies from the vector multiplet couplings that are

described by the GV formula.)

One can find the following formula for the 11d Ricci scalar in terms of the 5d Ricci

scalar and the Calabi-Yau metric:

√
QR(11) =

√
QR(5)−∇M(

√
QQmn∂MQmn)−

√
Q

(
1

4
(∂MQ, ∂MQ)− 1

4
(Q, ∂MQ)(Q, ∂MQ)

)
.

(A.28)

Here M is a 5d index, and covariant derivatives are with respect to the 5d metric.

The total derivative part clearly drops out of the action.

Denote the volume of Y by V . Introduce also v = V 1/3 and

hI =
vI

v
. (A.29)

The volume is part of a hypermultiplet, so we are not interested in the action for it

right now. Using (A.25), we can find:

∫
Y

R(11)Vol = V (x)R(5) +

∫
Y

∂Mω ∧ ∂Mω ∧ ω +
1

4

∫
Y

∂Mω ∧ ∗(∂Mω)

= V (x)
(
R(5) + 3CIJKh

I∂Mh
J∂MhK + hypermultiplet part

)
. (A.30)
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Now take a look at the 3-form field. At low energies, we expand

C =
∑
I

V I ∧ ωI ,

G =
∑
I

dV I ∧ ωI , (A.31)

where the V I are abelian gauge fields in five dimensions. Then

(G,G) = 6(dV )IMN(dV )JPQGMPGNQ(ωI , ωJ). (A.32)

The kinetic term for C in 11 dimensions reduces in d = 5 to

− v

4
aIJ(dV I · dV J), (A.33)

where, using (A.25):

aIJ =
1

4

∫
Y

ωI ∧ ∗ωJ = −3CIJKhK +
9

2
(Chh)I(Chh)J . (A.34)

The 11d Chern-Simons term reduces to

− 1

2
CIJKV I ∧ dV J ∧ dV K . (A.35)

So, ignoring hypermultiplets, the bosonic part of the action is (remember that κ2
11 =

2π2):

2π2L5Vol =
[
V (x)

(
1

2
R(5) +

3

2
CIJKhI∂MhJ∂MhK

)
− v

4
aIJ(dV I · dV J)

]
Vol

−1

2
CIJKV I ∧ dV J ∧ dV K . (A.36)
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Now make a Weyl rescaling of the 5d metric GMN → 1
v2 GMN , to bring the 5d action

to the Einstein frame:

2π2L5Vol =
[1

2
R(5) +

3

2
CIJKhI∂MhJ∂MhK −

1

4
aIJ(dV I · dV J)

]
Vol

−1

2
CIJKV I ∧ dV J ∧ dV K + hypermultiplets. (A.37)

Our conventions in this action are slightly different from those often found in the

literature. To get the action in the conventions of [96], one has to rescale by hI →√
3
2
hI and CIJK → 2

√
2

3
√

3
CIJK (and also do appropriate rescalings to get rid of the factor

2π2 coming from the gravitational constant). However, the action normalized as in

(A.37) is more convenient for us.

Some quantities that appeared in section 2.1 are

hI = CIJKhJhK ,

aIJ = −3CIJKhK +
9

2
hIhJ ,

hI =
2

3
aIJh

J . (A.38)

The constraint CIJKhIhJhK = 1 (eqn. (2.34), which implies that hIhI = 1, was used

in the last line.

The scalar kinetic energy in 2π2L5 can be rewritten as:

− 1

2
aIJ∂Mh

I∂MhJ . (A.39)

A.5 Reduction from 5d to 4d

We reduce the N = 1, d = 5 supergravity on a circle and make the field redefinitions

required to relate it to the standard N = 2, d = 4 supergravity in the Einstein frame

metric (a similar procedure was performed in [97]).
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Assume that the fifth direction is a circle parametrized by an angular variable y

(0 ≤ y ≤ 2π). After integrating over y, the overall factor of 1/(2π2) in front of the 5d

action (A.37) will be replaced by an overall 1/π in front of the 4d action. This factor

is sometimes removed by rescalings, but we will find it more convenient not to do so.

Take the following ansatz for the funfbein eaM :

eaM =

e−σ/2eaµ eσBµ

0 eσ

 , eMa =

eσ/2eµa −eσ/2eµaBµ

0 e−σ

 . (A.40)

The 5-dimensional Ricci scalar R(5) takes the following form in terms of the 4-

dimensional Ricci scalar R(4) and other fields present in the funfbein:

R(5) = eσR(4) + eσ�σ − 3

2
eσ(∂σ)2 − 1

4
e4σ(dB)2. (A.41)

Set αI = V I
y . Define the 4-dimensional gauge fields as AΛ,Λ = 0 . . . b2(Y ), where

Λ = I = 1, . . . , b2(Y ) come from reduction of the 5-dimensional vectors, while Λ = 0

corresponds to the Kaluza-Klein (KK) vector:

AIµ = V I
µ − αIBµ

A0
µ = −Bµ,

(A.42)

The scalar kinetic term in 4d originates from the curvature term in 5d, the scalar

kinetic term in 5d and the vector kinetic term in 5d. It takes the form:

− 1

π

(
1

2
e−2σaIJ∂µ(eσhI)∂µ(eσhJ) +

1

2
e−2σaIJ∂µα

I∂µαJ
)
. (A.43)
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If we define a complex scalar

ZI = αI + ieσhI , (A.44)

then the kinetic term becomes

− 1

π
gIJ∂µZ

I∂µZ
J
, (A.45)

where

gLM =
1

2
e−2σaLM =

∂

∂ZL

∂

∂ZM
log
[
CIJK(ZI − ZI)(ZJ − ZJ)(ZK − ZK)

]
. (A.46)

The vector kinetic term takes the standard form:

− i

4π
NΛΣF

Λ+
µν F

Σ+µν + c.c. (A.47)

with coefficients

NIJ = −i(eσaIJ − 3iCIJKαK),

NI0 = i(eσaIJα
J − 3i

2
CIJKαJαK),

N00 = −i(eσaIJαIαJ − iCIJKαIαJαK +
1

2
e3σ). (A.48)

One can check (see (2.50)) that this corresponds to the prepotential:

F cl
0 = −1

2

CIJKXIXJXK

X0
. (A.49)

Another useful relation in KK reduction from d = 5 to d = 4 is the expression for

the 5d Dirac operator

/D = ΓM(∂M +
1

4
ωabM Γab − iqIV

I
M) (A.50)
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in terms of the 4d fields:

/D = eσ/2γµ(∂µ +
1

4
ωabµ γab − iqIV I

µ −Bµ∂y + iqIα
IBµ) + e−σγ5∂y − iqIαIe−σγ5

+
1

8
e2σ(dB)µνγ

µνγ5 −
1

4
eσ/2/∂σ.

(A.51)

Taking σ to be constant, taking V I
µ = hIVµ = hI

4
e−σ/2Uµ, and acting on a field with

the KK mode number −n, this reduces to:

/D = eσ/2γµDµ − ie−σ(n+ qIα
I)γ5 −

i

32
eσ/2W−µνγ

µνγ5,

Dµ = ∂µ +
1

4
ωabµ γab − i

Z

4
Uµ. (A.52)

One can see that the first term in the expression for /D is just a 4d Dirac operator,

the second term corrects the 5d mass term (replacing M by Z or Z depending on

the 4d chirality), and the third term shifts the 5d magnetic moment coupling. This

expression is important in the dimensional reduction of the 5d hypermultiplet action

performed in section 2.3.2.

The fields that we have described can be organized in 4d supermultiplets XΛ and

WAB as described in the main text. General references on these superfields are [49–51].
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Appendix B

M2-brane on a Holomorphic Curve

Here we derive the 5d BPS superparticle action describing an M2-brane wrapped on

a smooth isolated holomorphic curve Σ in a Calabi-Yau manifold Y .

B.1 Membrane in Superspace

An M-theory membrane can be described as a submanifold Ω of dimension 3|0 living

in a superspace M of dimension 11|32. If the background fields are purely bosonic

(as we can assume for our purposes), then M is split, with reduced space some 11-

dimensional spin-manifold Mred and odd directions that parametrize the spin bundle

S(Mred). We consider Ω as an abstract three-manifold with an embedding in M:

X̂ : Ω→M. (B.1)

Since M projects to its reduced space Mred, X̂ can be projected to an embedding

X : Ω→Mred. The additional information in X̂ is a fermionic section of the pull-back

of the spinor bundle:

Θ ∈ ΠΓ (Ω, X∗S(Mred)) . (B.2)
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Here Γ(Ω, ·) represents the space of sections, and the symbol Π tells us that Θ has odd

statistics. X and Θ are the fields that are governed by the membrane world-volume

theory. The κ-symmetric action for these fields was constructed in [115, 116]. Our

main reference for expanding the component action is [117]. Their conventions for 11d

supergravity are slightly different from ours and can be translated by ωabµ → −ωABM ,

R → −R, ψµ → 1
2
ψM, and η → 1

2
η (here η is the 11d supersymmetry generator),

while also reversing the orientations of Mred and Ω and multiplying the action by an

overall constant.

We parametrize Ω by local coordinates ζ0, ζ1, ζ2. We denote the fields on the

membrane as ZM̂(ζ) = (XM(ζ),Θα(ζ)) (an index like M̂ with a hat denotes a

superspace index). Let EÂ
M̂

be the supervielbein, where M̂ is a curved and Â is a flat

superspace index. Let BM̂N̂ P̂ be the superspace three-form gauge superfield. EÂ
M̂

and

BM̂N̂ P̂ encode the target space geometry. The pull-back of the supervielbein to the

membrane is ΠÂi = EÂ
M̂
∂ZM̂/∂ζ i. The induced metric is gij = ΠAi ΠBj ηAB, where ηAB

is the 11-dimensional Minkowski metric. Here A,B are ordinary flat 11-dimensional

indices. Then the membrane action is:

S =

∫
d3ζ

[
−
√
−g +

1

6
εijkΠÂi ΠB̂j ΠĈkBĈB̂Â

]
. (B.3)

Define the matrix:

Γ = − εijk

6
√
−g

ΠAi ΠBj ΠCkΓABC. (B.4)

It satisfies Γ 2 = 1 and enters in defining the κ-symmetry of the membrane action:

δZM̂EAM̂ = 0, δZM̂EαM̂ = (1− Γ )αβκ
β , (B.5)

where κ(ζ) is a local fermionic parameter. The κ-symmetry allows one to gauge away

half of the fermionic degrees of freedom on the membrane. (Instead of saying that
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the membrane has a worldvolume of dimension 3|0 and is governed by a κ-symmetric

action, an equivalent point of view that has some advantages is to say that the mem-

brane worldvolume has dimension 3|8. The 3|8-dimensional membrane worldvolume

in the second point of view is obtained by applying all possible κ transformations to

the 3|0-dimensional membrane worldvolume in the first point of view. This refinement

will not be important for us.)

B.2 Wrapped BPS Membrane

We focus on the case Mred = M × Y , where Y is a Calabi-Yau manifold and M is a

five-manifold with a large radius of curvature. In our application, M will eventually

be either Minkowski spacetime or the supersymmetric Gödel universe (also called the

graviphoton background in this paper). Let Σ ⊂ Y be a 2-cycle inside of Y . Consider

an M2-brane wrapping Σ. It propagates as a 5d particle on M , given that the radius

of curvature of M is large enough. More precisely, a propagating M2-brane wrapped

on Σ generates a whole infinite set of 5d particles corresponding to its different in-

ternal excitations. These excitations may or may not preserve some supersymmetry,

and correspondingly the particles propagating on M form short or long multiplets of

SUSY. We are interested in those particles that preserve as much of the 5d super-

symmetry as possible, namely half of it. These arise from the supersymmetric ground

states of the internal motion. So those are the states that we must understand.

A supersymmetry of the ambient superpace M remains unbroken in the presence

of an M2-brane if in the M2-brane theory the supersymmetry transformation can

be compensated by a κ-transformation [67]. For this to be possible, Σ must be1 a

holomorphic curve in Y [67]. In this appendix, we will consider only the case that Σ

is isolated; in other words, we assume that it has no deformations (even infinitesimal
1In [67], this is shown for a string worldsheet in a superstring theory compactified on Y . Our

case can be reduced to this by considering an M2-brane wrapping Σ and winding the M-theory circle
once.
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ones) as a holomorphic curve in Y . Otherwise, the moduli of Σ, along with fermionic

zero-modes that will be related to them by supersymmetry, must be quantized in

order to determine the supersymmetric states of the M2-brane.

So now we consider a membrane with worldvolume Σ × γ, where γ ⊂ M is a

5d worldline. We parametrize γ by a coordinate t and Σ by a local holomorphic

coordinate z. The membrane worldvolume is parametrized as:

XM(t, z, z) = xM(t), M = 0 . . . 4,

Xm(t, z, z) = Xm(z, z), m = 6 . . . 11, (B.6)

where xM(t) parametrizes γ ⊂ M , and Xm(z, z) parametrizes Σ ⊂ Y . If M is

taken to have Euclidean signature, we replace here X0 by X5 = iX0. We pick local

holomorphic coordinates (z, w1, w2) on Y so that Σ is locally defined by w1 = w2 = 0.

To describe the fermionic fields of the M2-brane, we first note that S(M × Y ) =

S(M) ⊗ S(Y ). Then we recall that on a Calabi-Yau manifold, one has an isomor-

phism S(Y ) ∼= Ω0,•Y , where Ω0,• is the space of (0, q)-forms, q = 0, . . . , 3. In this

isomorphism, the Dirac operator on Y is simply
√

2(∂ + ∂
∗
) (where ∂∗ is the adjoint

of ∂ with respect to the natural L2-scalar product). Thus the field Θα has a 5d spinor

index α and takes values in the (0, p)-forms on Y , restricted to Σ. The fact that Y is

Calabi-Yau implies various isomorphisms between bundles. Let Ω be a holomorphic

3-form on Y , normalized so that the volume form of Y is iΩ ∧ Ω. Let Gzz be the

restriction to Σ of the Kahler metric of Y and let GN
wiwj

be the induced metric on the
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normal bundle NΣ to Σ in Y . We write for various components of Θα:

θαwi = GN
wiwjχ

αwj

θαz wi = Ωz wiwj χ̃
αwj

θαw1w2 = Ωw1w2zGzzθαz

θαz w1w2 = Ωz w1w2 θ̃α. (B.7)

The fields χ and χ̃ are sections of the normal bundle NΣ (tensored with the 5d spin

bundle). They are related by supersymmetry to the normal deformations of Σ inside

of Y . Since we are considering the case of an isolated holomorphic curve, neither

normal deformations nor fermions χ, χ̃ have any zero modes. Thus we can discard

them. Θα then reduces to

Θα = θα + θ̃αz dz + Ωw1w2zGzzθαz dw1 ∧ dw2 + Ωzw1w2 θ̃αdz ∧ dw1 ∧ dw2. (B.8)

Because of our assumption that Σ is rigid, in the quantization of an M2-brane

wrapping Σ, the only bosonic zero-modes are the ones associated to the center of

mass motion along the five-manifold M . Hence those are the only bosonic modes in

the effective action that describes such a superparticle; they parametrize the particle

orbit γ ⊂ M . The fermionic modes in this action arise as the zero-modes of the

internal motion, that is, the zero-modes of the fermionic variables on Σ. We find

these modes by studying the part of the M2-brane action that is of order Θ2, using

formulas in [117]. (Terms in the action of higher order in Θ give only irrelevant

contributions.)

First of all, with bosonic fields taken as in (B.6), one finds

Γ = − i√
−ẋ2
GzzẋMΓMzz +O(Θ2). (B.9)
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This implies that the linearized κ-symmetry is:

δΘ = (1− Γ )κ+O(Θ2)

δXM = (1− Γ )κΓMΘ +O(Θ2). (B.10)

This can be used to gauge-away the Γ = −1 part of Θ (up to higher orders in Θ). So

we may assume that Γ = 1 + O(Θ2) when acting on Θ, that is (Γ − 1)Θ = O(Θ3).

This implies:

(ẋMΓM − iGzzΓzz
√
−ẋ2)Θ = O(Θ3). (B.11)

Using this and taking the ansatz (A.31) for the C-field, we find the action (using

results of [117]):

S =

∫
dt d2z

[
− 2Gzz

√
−ẋ2 − 2iẋMV I

MωIzz + 4iΘΓzz∇tΘ− 4
√
−ẋ2Θ(Γz∇z + Γz∇z)Θ

− 1

2

√
−ẋ2GzzΘΓzzΓMNΘ(dV I)MNωIzz

− 1

2

√
−ẋ2GzzΘΓwiwjΓMNΘ(dV I)MNωIwiwj +O(Θ4)

]
,

(B.12)

where d2z = i
2
dz ∧ dz. Here the covariant derivative ∇t is defined using the pullback

to the membrane worldvolume of the Levi-Civita connection of M .

B.3 Fermionic Zero-Modes

Now we can find the fermionic zero-modes. Expanding around a membrane that

wraps Σ and is at rest in M = R5, so that ẋ2 = −1, the fermionic part of the action
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becomes

∫
dtd2z

[
4iΘΓzz∇tΘ− 4Θ(Γz∇z + Γz∇z)Θ−

1

2
GzzΘΓzzΓMNΘ(dV I)MNωIzz

− 1

2
GzzΘΓwiwjΓMNΘ(dV I)MNωIwiwj

]
.

(B.13)

If the U(1) background fields vanish, i.e., at V I = 0, then only the first two terms in

the action survive, the Hamiltonian becomes simply H = 4Θ(Γz∇z + Γz∇z)Θ, and

thus the fermion zero-modes are characterized by

(Γz∇z + Γz∇z)Θ = 0. (B.14)

Once we find the solutions in this idealized case, we can turn on the curvature of M

and a graviphoton background as small perturbations.

To solve eqn. (B.14), we first note that

(Γz∇z + Γz∇z) = 14 ⊗ GzzD, D = Gzz(γ̃z∇z + γ̃z∇z), (B.15)

where 14 is the identity operator acting on S(R4,1) and D is simply the natural Dirac

operator on Σ acting on spinors with values in the pullback to Σ of S(Y ), the spinors

on Y . If we expand Θ as in (B.8), then the components all obey the most obvious

equations:

∂θ = 0

∂(θ̃zdz) = 0

∂(θzdz) = 0

∂θ̃ = 0. (B.16)
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Because Σ is compact, these equations imply that θ and θ̃ are constant along Σ,

while θzdz and θ̃zdz are holomorphic (1, 0) and antiholomorphic (0, 1)-forms on Σ

respectively. The κ symmetry gauge condition (B.11) implies that all these modes

have left-handed 4d chirality, that is, they transform as (1/2, 0) under the 4d rotation

group SU(2)`× SU(2)r. Thus θ and θ̃ have 2 zero-modes each, and if Σ has genus g,

then θz and θ̃z each have 2g zero-modes.

To match the notation that we used in section 2.2, we write the constant (1/2, 0)

modes of θ and θ̃ as θA = 1
2
ψA1 and θ̃A = 1

2
ψA2 , respectively, where A = 1, 2 is a

left-handed spinor index. The fields ψA1 and ψA2 together make up the field that

in section 2.2 was called ψAi , i, A = 1, 2. Introduce a basis of holomorphic (1, 0)-

forms λσ, σ = 1 . . . g and a complex conjugate basis of antiholomorphic (0, 1)-forms

λσ, σ = 1 . . . g, such that:

i

∫
Σ

λσ ∧ λκ = δσκ. (B.17)

We expand the (1/2, 0) parts of θz and θ̃z in this basis:

θAz dz =
1

2

g∑
σ=1

ρAσλσ,

θ̃Az dz =
1

2

g∑
σ=1

ρ̃Aσλσ.

(B.18)

The fields ρAσ and ρ̃Aσ were introduced in section 2.2.4.

If Σ were not isolated and χ, χ̃ had some zero modes, then the κ gauge-fixing

condition (B.11) would force them to be of positive chirality in the 4d sense; that

is, they would satisfy −iΓ0χ = +χ and would transform as (0, 1/2) under the 4d

rotation group. The possible role of such modes was discussed in section 2.2.4.
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B.4 Superparticle Action

We now give a slow t-dependence to the fermionic zero-modes ψAi and ρAσ , ρ̃Aσ and turn

on the background gauge fields V I
M = hIVM . The mass and charges of the wrapped

M2-brane

M =

∫
Σ

ω =

∫
Σ

d2z2Gzz

qI =

∫
Σ

ωI (B.19)

are related by the usual formula2 M = qIh
I .

Starting from eqn. (B.12), it is not hard to write the action for an arbitrary

spacetime with small and slowly varying curvature and for an arbitrary worldline γ

that has everywhere a large radus of curvature. For an arbitrary worldline, the κ

gauge-fixing conditions look as follows:

ẋMΓM

i
√
−ẋ2

ψi = −ψi,

ẋMΓM

i
√
−ẋ2

ρσ = −ρσ,

ẋMΓM

i
√
−ẋ2

ρ̃σ = −ρ̃σ. (B.20)

These conditions state that the fermions ψi, ρσ, and ρ̃σ all transform as (1/2, 0) under

rotations of the normal plane to the worldline.
2One might recall from eqn. (2.31) that in general ω = vIωI , and so the mass of the BPS particle

in M-theory units is
∑
I qIv

I . The 5d Einstein frame metric is related to the 11d metric by rescaling
by a certain power of the Calabi-Yau volume, and the BPS mass in 5d Einstein frame is instead
M = qIh

I . For simplicity, in this appendix, one can just assume that the volume of Calabi-Yau is 1
from the beginning, so the rescaling is unnecessary. Then ω = hIωI , where CIJKhIhJhK = 1.
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The action takes the form:

S =

∫
dt
[
−M

√
−ẋ2 + qIV

I
M ẋ

M +
i

2
MεABεijψAi∇tψBj −

i

16
M
√
−ẋ2T−ABε

ijψAi ψ
B
j

+

g∑
σ=1

(
iεABρ̃Aσ∇tρBσ +

3i

8

√
−ẋ2T−ABρ̃

A
σ ρ

B
σ

)]
.

(B.21)

Here ∇t is the pull-back to the particle world-line γ of the Levi-Civita connection of

M , projected onto the plane normal to the worldline. And as usual, T−AB = T−µνγ
µν
AB is

the anti-selfdual part of T in the normal plane or equivalently in the local rest frame

of the particle. One interesting thing about this action is that the kappa-symmetry

gauge (B.20) ensures that only the projections of T− and of the Levi-Civita connection

ωabM to the plane normal to γ enter this action, while the components along γ drop

out automatically. If we were writing corresponding equations of motion, we would

have to impose this by hand.

To get the particle action used in section 3, one has to specialize this action to

the graviphoton background and assume that the particle is almost at rest, i.e., do

a non-relativistic expansion. In the graviphoton background, the spin-connection

contribution cancels the magnetic moment coupling of ψi and modifies it for ρ and ρ̃.

In the end, we get just the following familiar result (where we did not perform the

non-relativistic expansion for the bosonic kinetic energy):

S =

∫
dt
[
−M

√
−ẋ2 + qIV

I
M ẋ

M +
i

2
MεABεijψAi

d

dt
ψBj

+

g∑
σ=1

(
iεABρ̃Aσ

d

dt
ρBσ +

i

2
T−ABρ̃

A
σ ρ

B
σ

)]
. (B.22)

All fermions transform as (1/2, 0) under SU(2)` × SU(2)r.
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