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In this dissertation a non-Paris law based unified fatigue cohesive zone model 

(CZM) capable of predicting both fatigue crack initiation and propagation of 

delamination cracks in composites with or without starter cracks or stress concentrators 

has been formulated and validated. The fatigue CZM incorporates normal and shear 

degradation mechanisms for pre-crack-initiation strength degradation, and simple power-

laws for post-crack-initiation fatigue damage accumulation with damage rates computed 

directly from the in situ cohesive traction-separation history. A unique procedure to 

determine the in situ loading profiles and an efficient cycle jump strategy have also been 

developed. It has been demonstrated, through direct comparisons against experimental 

results, that the proposed fatigue CZM can successfully predict the crack initiation and 

the ensuing propagation in pre-cracked as well as in crack-free specimens. Furthermore, 

as the cracks become sufficiently long, and linear elastic fracture mechanics (LEFM) 

conditions are met, the model can correctly predict Paris Laws under pure or mixed mode 

fracture conditions.   

Also, as an initial effort to integrate the unified fatigue CZM into the augmented 

finite element method (A-FEM) and allow arbitrary multiple fatigue crack development. 

A new algorithm has been developed and implemented that facilitates this integration and 



   

 

 

provides analytic solutions to equilibrium equations for cracked A-FEs. This new 

algorithm is based on a consistency check between trial cohesive stiffness and resulting 

displacements to differentiate crack displacements from nodal displacements. Benchmark 

numerical tests demonstrate that the algorithm yields superior numerical accuracy, 

efficiency, and robustness over existing methods. The overall improvement in 

computational efficiency is ~50 times that of the phantom-node based A-FEM in 

modeling a 4-point shear beam test. For mixed mode composite delamination problems, 

the A-FEM with the algorithm is 20-30% faster than the standard CZM method, despite 

the fact that in the CZM method, delamination paths were pre-defined. 

 

 

 
 
 
 
 
 
 
 
 
 
 



   

iii 

 

 
ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to Professor Qingda Yang who has 

taught me through example there is no substitute for working incredibly hard when 

developing cutting edge technology. Thanks to Dr. Antonio Nanni who saw something in 

me long before I did and nurtured my development as a researcher. Thanks to Dr. Bao-

Chan Do for countless discussions on life, philosophy, and science. Thanks to Dr. Reza 

Mohammadizadeh for his friendship and camaraderie. Thanks to Dr. Mehdi Naderi for 

his unrelenting work ethic and drive. Thanks to Dr. Wei Liu for his extraordinary ability 

in programming. Thanks to Dr. Saeed Nojavan at the Boeing Company for seeing the 

potential in this work and providing the necessary funding. As well as the several other 

funding sources that supported my research assistantship: NSF I/UCRC CICI at the 

University of Miami, US Army Research Office (ARO Grant: W911NF‐13‐1‐0211), 

National Hypersonic Science Center (AFOSR/NASA Contract: FA9550-09-1-0477), and 

Florida Space Grant Consortium (FSGC). There are too many other friends and family to 

list, all have been remarkably encouraging throughout my time at the University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................... vi 

LIST OF TABLES ............................................................................................................. ix 

CHAPTER 1: INTRODUCTION ........................................................................................1 

1.1 Motivation .............................................................................................................1 

1.2 A Historical Review on the Finite Element Method, Fatigue, and Fracture 
Mechanics ..........................................................................................................2 

1.3 A Review of Fatigue Delamination analysis ......................................................13 

CHAPTER 2: A CONSISTENCY-CHECK BASED ALGORITHM FOR 
ELEMENT CONDENSATION IN A-FEM AND COHESIVE ZONE 
ELEMENT FORMULATION ..................................................................................23 

2.1 Background .........................................................................................................23 

2.2 Cohesive Zone Element Formulation .................................................................31 

2.3 The Consistency-Check Based Algorithm ..........................................................35 

2.4 Algorithm Verified with a 1-D Fracture Problem...............................................40 

2.5 Further Comments on the Algorithm Applied to 2-D Problems.........................50 

2.6 Numerical Performance evaluation .....................................................................51 

2.7 Concluding remarks ............................................................................................71 

CHAPTER 3: FATIGUE MODEL FORMULATION ......................................................75 

3.1 Background .........................................................................................................75 

3.2 Cohesive Strength Degradation in the Critically Stressed Zone .........................79 

3.3 Strength Degradation due to Normal Stress ........................................................80 

3.4 Strength Degradation due to Shear Stress ...........................................................84 

3.5 Strength Degradation under Mixed Normal and Shear Stresses .........................87 

3.6 Transition from Strength Degradation to Fatigue Cohesive Damage 
Accumulation ...................................................................................................88 



   

v 

 

3.7 Fatigue Damage Accumulation Laws .................................................................90 

3.8 Mode I Fatigue Cohesive Damage Accumulation ..............................................90 

3.9 Mode II Fatigue Cohesive Damage Accumulation .............................................94 

3.10 Mixed Mode Fatigue Cohesive Damage Accumulation ...................................96 

CHAPTER 4: IMPLEMENTATION AND VERIFICATION ..........................................98 

4.1 Background .........................................................................................................98 

4.2 Determining the in situ loading profile ...............................................................98 

4.3 Cycle Jump Strategy ...........................................................................................99 

4.4 SERR Calculations in DCB, ENF, and MMB Tests .........................................102 

4.5 Fatigue Crack Propagation Simulation of a HTA/6376C Composite ...............104 

4.6 Fatigue Crack Propagation Simulation of an E-Glass/M10-Epoxy 
Composite ......................................................................................................111 

4.7 Fatigue Crack Propagation Simulation of  an AS4/PEEK Composite .............114 

4.8 Fatigue Crack Propagation Simulation of  an IM7/8552 Composite ................116 

4.9 Fatigue Crack Initiation and Propagation Simulation of an IM7/8552 
Composite ......................................................................................................121 

4.10 Prediction of Fatigue Crack Initiation and Propagation in an SBS Test .........127 

CHAPTER 5: CONCLUSION AND FUTURE WORK .................................................130 

5.1 Conclusion ........................................................................................................130 

5.2 Future Work ......................................................................................................133 

BIBLIOGRAPHY ............................................................................................................134 

 

 

 

 



   

vi 

 

LIST OF FIGURES 

Figure 1. Special cases for which analytical solutions exist ................................................7 

Figure 2. Fracture modes I, II, and III..................................................................................8 

Figure 3. (a) Dugdale model (b) Barenblatt model ..............................................................8 

Figure 4. Traction-separation laws ......................................................................................9 

Figure 5. X-ray radiograph reveals splitting cracks (sharp horizontal lines), 
delaminations (wedge-shaped shadows), and multiple matrix cracks (fine 
vertical lines) in a 0/90° polymer composite under tension-tension loading [8]. .....14 

Figure 6. Sigmoidal delamination growth rate ..................................................................18 

Figure 7. (a) Experimentally observed damage processes in a DNT specimen, (b) 
predicted damage evolution using A-FEM (quarter model as indicated in the 
red box in (a) due to symmetry in geometry and loading), and (c) direct 
comparison of stress-displacement curves (left plot) and splitting crack growth 
as a function of applied stress (right plot) [55]. ........................................................20 

Figure 8. Illustration of the element augmentation from (a) a regular element with 
possible different material domains, to (b) an A-FE with two quadrilateral 
sub-domains, or to (c) an A-FE with one triangular sub-domain and one 
pentagonal sub-domain [90] .....................................................................................24 

Figure 9. Illustration of a 4-node plane cohesive element from (a) un-deformed 
configuration to (b) deformed configuration. ...........................................................32 

Figure 10. The piece-wise linear, traction-separation laws used in this study, 
numbers in parentheses indicate the respective segment numbers. ..........................34 

Figure 11. Illustration standard Gaussian integration with 2 integration points. ...............35 

Figure 12. Flow chart of the consistency-check based solving algorithm.  The loop 
indices i*, j*, k*, and l* correspond to the maximum segment number the 
respective cohesive stresses ever experienced. Due to the irreversibility of 
cohesive damage, segment numbers smaller than (i*, j*, k*, or l* ) do not need 
to be included in the consistency check loop, which greatly reduces the 
computational cost. ...................................................................................................39 

Figure 13. (a) Illustration of cohesive fracture of a 1-D bar, (b) triangular mode I 
traction-separation law for the cohesive zone model, (c) illustration of how the 
current algorithm solves the nonlinear problem analytically, and (d) 
illustration of an unstable fracture processes with   > 1 exhibiting snap-back 
behavior.....................................................................................................................45 



   

vii 

 

Figure 14. (a) Mode I loading-unloading response, (b) equilibrium iteration number 
(left vertical axis) and applied displacement (right vertical axis) at each load 
increment. Note that load increments 5, 7, 11, 15,17, 19 involve sudden 
stiffness change in the cohesive law and require at least two iterations for X-
FEM while the current algorithm achieves equilibrium with single iteration. .........54 

Figure 15. Comparison of the numerically obtained normalized load-displacement 
curves for an unstable fracture process. ....................................................................57 

Figure 16. (a) Comparison of the simulated load-displacement curves by the 
consistency-check based A-FEM (solid lines) and the PNM-based A-FEM 
(dashed lines), (b) comparison of the CPU times in seconds. ..................................61 

Figure 17. (a) The mixed mode bending (MMB) test specimen and numerical mesh, 
(b) the triangular cohesive law (linear softening) and the trapezoidal cohesive 
law (bi-linear softening). ...........................................................................................67 

Figure 18. Simulated load-deflection curves for the MMB tests using present A-
FEM and the standard CZM as compared to the experimental curves reported 
in [84]. .......................................................................................................................68 

Figure 19. Illustration of the unified continuum damage, initiation and propagation 
fatigue model. ...........................................................................................................78 

Figure 20. Goodman's relation for mean stress ..................................................................79 

Figure 21. (a) Fatigue load characterization, (b) progressive strength degradation 
under varying amplitude loading of an un-cracked element in which the in-situ 
stress exceeds the fatigue threshold. .........................................................................84 

Figure 22. Unified Fatigue Cohesive law for initiation and propagation (a) mode I, 
(b) mode II. ...............................................................................................................89 

Figure 23. Illustration of the cohesive strength and stiffness degradation due to 
cyclic stress in mode I. The same applies to mode II upon replacing mode I 
symbols with mode II symbols. ................................................................................94 

Figure 24. Illustration of global load profile and the corresponding local (in-situ) 
cohesive response. For each cohesive element, the load profile is completely 
determined from the local response, which may or may not be synchronized 
with the global load. ..................................................................................................99 

Figure 25. (a) Mixed mode bending test configuration, (b) the decomposed mode I 
(DCB) mode II (ENF) test. .....................................................................................103 

Figure 26. Specimen geometry and the mixed-mode bending test rig used by [4]. ........106 



   

viii 

 

Figure 27. Fatigue crack growth rate simulated by the fatigue CZM as compared to  
experimental data of Asp, Sjögren et al. [4]. (a) DCB results and mesh 
sensitivity; (b) mode II (ENF) calibrated results and predictions to the MMB 
test with mode mix ratio of / ( ) 0.5II I IIG G G     .............................................108 

Figure 28. Local cohesive stress as functions of local cohesive crack displacements 
for three different number of cycles. The areas encompassed by these curves 
are the local SERRs. The shear stresses were intentionally plotted as negative 
values to differentiate them from the opening stress-displacement curves. ...........110 

Figure 29. Comparison of simulated fatigue crack growth rates (solid lines) and 
experimental data (symbols) for (a) the mode I DCB test, (b) the mode II ELS 
test. ..........................................................................................................................112 

Figure 30. Comparison of simulated fatigue crack growth rates (solid lines) and 
experimental data (symbols) for (c) the MMB test with  = 0.28, and (d) the 
MMB test with  = 0.53. ........................................................................................113 

Figure 31. Comparison of F-CZM predicted and experimentally measured fatigue 
crack growth rates under (a) mode I, (b) mode II loading with two different 
load ratios R = 0.1 and R = 0.5. ..............................................................................115 

Figure 32. Fatigue crack growth simulations and experimental data as reported by 
(Murri 2013) and O'Brien et al. (2010) (a) mode I (DCB) results, (b) mode II 
(ENF) results. ..........................................................................................................119 

Figure 33. Comparison of simulated fatigue crack growth rates (solid lines) and 
experimental data (symbols) for the MMB tests with (a)  = 20%, (b)  = 
50%, and (c)  = 80%. ............................................................................................120 

Figure 34. (a) The TPB specimen, (b) the numerical mesh, and (c) comparison of 
simulated and experimentally measured fatigue crack initiation life as 
functions of load severity. .......................................................................................123 

Figure 35. (a) the DNS specimen of May and Hallett [79], (b) the numerical mesh 
with contours of shear stress distribution along the bond-line showing  non-
negligible stress concentrations at near the notch roots, and (c) comparison of 
simulated and experimentally fatigue life. ..............................................................126 

Figure 36. (a) Numerical model for the short-beam shear test, (b) the predicted 
failure life as compared to the measured fatigue life reported in May and 
Hallett [79]. .............................................................................................................129 

 



   

ix 

 

LIST OF TABLES 

Table 1. Statistics on the numerical performance for the three meshes in the 4-point 
shear beam test, the numbers in “( )” correspond to the respective crack-free, 
elastic calculations. ...................................................................................................59 

Table 2. Properties for AS4/PEEK Unidirectional Composite, from [116, 119]. .............64 

Table 3. Comparison of numerical performance of the A-FEM and the CZM for 
MMB delaminations. ................................................................................................71 

Table 4. Comparison of local and global ERRs for three different cycle numbers. ........110 



1 

 

CHAPTER 1: INTRODUCTION 
 

1.1 Motivation 

Advanced composite materials are now increasingly used as primary load bearing 

components in many military and civilian applications due to their superior structural and 

material properties over metals and metal alloys. However, there are significant concerns 

with the long term durability and safety of such composite structures. There is an urgent 

need to better understand  the fatigue behavior of these materials as composites are now 

being used for commercial airline wing structures[1]. Experimentally reported composite 

fatigue life typically varies by orders of magnitude, and corresponding empirical methods 

often lead to overly conservative design [2-5]. Furthermore, capable high fidelity analysis 

methods that would assure safety in designs while also optimizing efficiency remain 

lacking, resulting in unacceptably high development costs and long certification times. 

New fatigue design strategies are highly desired that minimize the data required for 

qualification, enable optimal design, and reduce unnecessary component retirement after 

positive non-destructive evaluation (NDE) indications. However, despite decades of 

extensive research and development, how to quantify the uncertainty associated with the 

service life of a load-bearing composite structure remains a major unsolved challenge [3, 

6, 7].  Typical composites exhibit complex, multiple fatigue damage events that are 

strongly coupled and develop in a stochastic microstructure [8-11].  In order to accurately 

assess/predict the composite fatigue life, it is necessary to explicitly account for the 

progressive evolution of all major types of discrete damage events with high fidelity [5, 

12, 13]. 
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This dissertation is aimed at developing a numerical formulation that can predict 

the complex fatigue crack initiation and propagation in composites with high fidelity. The 

focus of this study is to develop a working fatigue cohesive zone model (fatigue CZM), 

which upon proper parameter calibration can provide an accurate assessment of 

delamination crack initiation and propagation in composites without obvious stress 

concentration sites or starter cracks. Delamination is one of the primary failure modes in 

laminated composites that can lead to a catastrophic loss in structural integrity [14-16]. 

This chapter gives a brief historical overview on topics that are closely related to the 

current study. It is followed by a detailed review on numerical modeling of fatigue crack 

initiation and propagation.  

 

1.2 A Historical Review on the Finite Element Method, Fatigue, and Fracture 

Mechanics 

   1.2.1 The Finite Element Method 

Solving engineering problems requires making informed approximations. Such 

was the case during the nineteen fifties when engineers were confronted with increasingly 

complex problems in elasticity and structural analysis. The technique which would later 

be coined the “Finite Element Method” most agree had its beginnings under the direction 

of M.J. Turner, who was a leading expert in aeroelasticity and head of the structural 

dynamics group at Boeing. At that time Dr. Clough having recently joined the faculty at 

UC Berkeley had the opportunity to work with Mr. Turner as a member of the summer 

faculty program in 1952. Dr. Clough was tasked with performing a vibration analysis of a 
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delta wing structure. At the end of the summer he had learned what would not work, 

which was approximating the structure with an assemblage of beam and truss members. 

During the following summer Mr. Turner suggested that Dr. Clough might try plane 

stress triangular or rectangular shapes instead of beam and truss members. This turned 

out to be a success and was eventually published [17] and is considered today the first 

publication of the modern displacement based finite element method. The actual term 

“Finite Element Method” was later coined by Dr. Clough in 1960 [18]. Their approach 

built upon previously published work [19-25] and was later championed by many great 

engineers. The reader if interested is directed to a comprehensive historical account 

written by Gupta and Meek [26]. 

   1.2.2 Fatigue 

 In the study of the mechanical behavior of materials, fatigue describes a condition 

in which a material fails after repeated loadings at a stress level below its ultimate 

strength. Fatigue is a phenomenon that most prominently entered the human experience 

at the beginning of the Industrial Revolution. Before this time, machines or devices that 

experienced tens of thousands of cycles were not commonplace.  

 The first reference in literature of a systematic study to investigate the 

phenomenon of failure at sub critical loads was published by Albert [27] in 1837. His 

curiosity about what was causing the failure of the conveyor chains used in his mining 

operation led him to construct a special device to experimentally test chains in their 

working conditions. This first study did not uncover any fundamental mechanisms or 
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design guidelines but does mark the beginning of scientists trying to understand what was 

responsible for these unexplainable material failures.  

 The next reference to fatigue in literature came when Rankine [28] in 1843, better 

known for his work in thermodynamics, provided some commentary based on his 

observations on the failure of railroad axles. His design recommendation was that the 

cross-sectional area change at the hub should be provided by smooth transitions of large 

radii. He had observed that the cracks seemed to emanate from sharp transitions in cross-

sectional area. The use of the word “Fatigue” to describe subcritical failure was coined by 

Braithwaite [29] in 1854. By this time although not published, Wöhler had started a 

systematic study of railroad axle failures. His work represents the first time a large-scale 

and truly ingenious scientific methodology was applied to the problem of fatigue fracture. 

He spent the majority of his career studying this phenomenon and made numerous 

advances that laid the groundwork for future scientists and engineers to begin to solve the 

mysteries of fatigue in metals. Wöhler based on his 20 years of work began publishing 

his data in 1860 [30] and in 1870 presented a final report [31], making numerous 

insightful conclusions and recommendations. The completeness of his work is evidenced 

by the fact that similar data was not published for another 50 years, the next major 

contribution was made by Basquin in 1910 [32] and was to plot Wöhler’s data on a log-

log plot and fit a trend line of the form 

 n
a CR  . (1) 

 This simple expression, which is still used today, very elegantly provides a 

mathematical description of the average behavior of a material subjected to cyclic 



5 

 

 

 

loading. It is plotted as stress (S) against the number of cycles to failure (N) and is 

commonly referred to simply as the SN curve. From this point forward the number of 

publications around the world relating to fatigue and material failure increased 

dramatically. Research groups in Europe and the United States started making valuable 

contributions largely driven by the automobile and airplane industries with an added 

urgency provided by the World Wars. 

 A significant hypothesis was made by Palmgren [33] in 1924  and became the 

basis for the linear damage accumulation theory. It was republished by Miner [34] in 

1945 and has subsequently been called the Palmgren-Miner rule and is expressed as  

 
1

1
M

i

i i

n

N

  (2) 

where in is the number of cycles at a specified load and iN is the number of cycles to 

failure at that specified load.  In subsequent studies by others this damage parameter has 

been found to range from 0.1 to 10 and should not be considered a law but rather an idea 

about how variable amplitude cycles can be accounted for in fatigue failure analysis. 

Since then other counting strategies have been formulated, notably the Rainflow or 

Range-Pair-Range methods developed independently by Matsuishi and Endo [35] in 1968 

and De Jonge [36] in 1969 respectively.  

In 1961 Paris and his colleagues [37] made a major contribution in which for the 

first time, the connection between fatigue crack growth and the emerging theory of 

Linear Elastic Fracture Mechanics by Irwin [38] was made. This would later be regarded 
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as a Law (i.e., the Paris Law), and has been used extensively in nearly every fatigue crack 

study since, either in its original form given below (or a slightly modified one) 

 nda
C K

dN
  , (3) 

where a is the crack length, N the number of cycles, DK the range of stress intensity 

factor, and C and n are fitting parameters. The three simple equations presented thus far 

should be regarded as pragmatic phenomenological solutions to a complex and largely 

unsolved problem to this day. 

   1.2.3 Evolution of Fracture Mechanics 

Fracture mechanics was initially formulated in the 1920s by Griffith [39] and 

applied to brittle materials; his energy balance approach very elegantly described the 

cracking phenomena and built upon the analytical work by Inglis [40] concerning stress 

concentrations. Later during World War II and famously the Liberty Ships, fracture 

mechanics entered the world stage as engineers struggled to explain what could cause a 

large metal ship to fracture into two pieces. This led to the next major advancement in 

fracture mechanics at the Naval Research Laboratory under the direction of Irwin [38], in 

which an energy term was added to Griffith’s original formulation to account for plastic 

dissipation. This increased the scope of fracture mechanics theory to include metals 

where significant plastic deformation takes place at the crack tip. In general all these 

analytical solutions are only applicable to a handful of special cases, such as infinite 

plates that are loaded infinitely far from the crack as shown in Figure 1. Irwin’s advances 

including the invention of the stress intensity factor which is an asymptotic function that 
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measures the available energy to advance the crack tip are considered the birth of Linear 

Elastic Fracture Mechanics (LEFM).  

The three classic modes of fracture are mode I, mode II, and mode III. They are 

commonly called the opening mode (I), the shearing mode (II), and the scissoring shear 

mode (III) shown in Figure 2. Mode III has not been studied experimentally to the extent 

of mode I and II, although the fracture toughness has been measured in excess of mode II 

so if considered mode III toughness is typically set equal to mode II as a conservative 

estimate.  

 

 
 

Figure 1. Special cases for which analytical solutions exist  
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Figure 2. Fracture modes I, II, and III 
 

In the early 1960s, various formulations were proposed to account for yielding at 

the crack tip without the need for an asymptotic stress function. The two notables that 

would pave the way for the modern cohesive zone models were Dugdale [41] in 1960 and 

Barenblatt [42] in 1962. 

 

 
(a)    (b) 

 
Figure 3. (a) Dugdale model (b) Barenblatt model  
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Cohesive zone models (CZMs) are defined by traction-separation laws that 

describe the stress distribution ahead of the crack tip. Various shapes of these traction-

separation curves have been proposed by researchers around the world, since and offer a 

wide flexibility in simulating a myriad of engineering materials. In Figure 4 a commonly 

used triangular law is presented. 

 

 
 

Figure 4. Traction-separation laws 
 

Building upon their work and recognizing that these concepts could be applied to 

concrete which exhibits a large fracture process zone comprised of random micro-

cracking ahead of the crack tip. Hillerborg et al. [43] formulated in 1976 what he would 

call the fictitious crack model and showed it was capable of simulating concrete fracture 

within the finite element framework. Later this approach would be called cohesive zone 

models (CZM) and differentiate themselves from classical fracture mechanics by 

1I 1IIIC IIC

0ˆ t 0ˆII
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introducing a zone ahead of the crack tip of finite stress that captures the local energy 

dissipation without the need for the stress singularity formulated in traditional LEFM. 

This feature makes it well suited for numerical simulations and makes the approach 

applicable to cases with arbitrary boundary conditions.  

Many other methods were developed to simulate material failure in the finite 

element context. One category of methods that gained popularity early on was the so-

called smeared crack methods. They were well suited for early researchers because of 

their lower computational costs. Unfortunately they exhibit considerable drawbacks such 

as “pathological mesh sensitivity” [44] and require specialized treatments to mitigate its 

effects. Despite this they have been used with success in a variety of problems starting 

with Rashid in 1968 [45], more recently these methods have been steadily losing ground 

to the discrete methods where damage is explicitly represented.  

The first implementation of a discrete damage finite element simulation in which 

“cracking” was allowed between element boundaries and nodal separations were 

governed by linear springs (that were activated by a threshold opening force) was 

performed by Ngo and Scordelis in 1967 [46]. In their simulations potential crack paths 

were prescribed based on experimental observations. This led to the natural extension of 

prescribing all element boundaries as possible crack paths and gave rise to the lattice 

methods [47]. Another solution to this problem of simulating arbitrary crack paths was 

proposed by Petersson [48] in 1981 where remeshing was performed after each increment 

in which the crack grew. The major drawback of remeshing methods besides their 

difficulty in implementation and high computational costs is insuring that the crack 
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initiation and propagation would converge to the LEFM solution. Ingraffea solved this 

problem by introducing special cracktip elements with known stress intensity factors to 

correctly resolve the LEFM stress field ahead of and around the crack tip [49]. This 

method was hampered by the need for human interaction to check that the propagation 

remained “reasonable”. Remeshing also introduces serious difficulties in that the mesh 

needs to stay viable between simulation steps (i.e., the feed forward of boundary 

conditions and results from previous steps can lead to serious convergence issues).  

An alternative method to enable concepts of fracture mechanics to be applied 

within the finite element framework is the virtual crack closure technique (VCCT) which 

came from the need to compute strain energy release rates (SERR) based on finite 

element calculations. Originally published by Rybicki and Kanninen in 1977 [50], the 

virtual crack closure technique is based upon Irwin’s crack closure integral [51], in which 

the energy dissipated through the creation of a cracked surface, equivalent to the work 

required to close the crack to its original condition. Following its numerical 

implementation there emerged two approaches that are both commonly referred to as 

VCCT. The first is a two-step analysis method, also called the “crack closure method” 

and performs an explicit “crack closure” finite element calculation where the crack is 

closed by a length equal to one element length with forces applied to the nodes 

immediately behind the crack tip. These forces and associated nodal displacements can 

then be used directly to calculate the energy which is then assumed equal to the energy 

dissipated by the crack advancing one element length. The second method is the 

“modified crack closure method” which is currently the more popular implementation of 
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VCCT because it performs a similar analysis, but in one step by assuming the energy 

required to advance the crack can be approximated by the energy calculated in the 

previous step (i.e., successive crack advances require roughly the same amount of 

energy). Despite being the most popular method for delamination problems, the VCCT 

method has some significant shortcomings beyond those inherent to interface elements 

(e.g., having to be placed along prescribed boundaries). The first deals with non-isotropic 

and bi-material interfaces, where the VCCT in general cannot correctly calculate the 

mode mixity. Second, VCCT can be quite mesh sensitive and require special treatments 

to retain its physicality. For these reasons VCCT has been steadily losing ground to the 

cohesive zone methods which will be highlighted in the next chapter. 

Another popular method was invented by Belytschko after working extensively 

with mesh free methods and in pursuit of arbitrary crack path simulations without the 

need for remeshing. It was originally published by Moës and Belytschko [52], and 

eventually coined the eXtended Finite Element Method (XFEM). Their method works by 

enriching standard finite elements with functions that interact with the traditional finite 

element displacement formulation very similar to how the mesh free methods work. This 

insight lead to a formulation that has the ability to handle displacement discontinuities 

and the ability to introduce known field solutions to the crack tip as it propagates. These 

enrichment functions that are simply added to the standard finite element formulation can 

be activated when certain conditions are met and form a global tracking mechanism for 

the damage as it progresses. Two types of enrichment functions are chosen, one that adds 

the additional displacement needed to bridge a crack and another to describe the stress 



13 

 

 

 

state near the crack tip. There has been a large body of work produced refining this 

method in the past ten years and has been recently implemented in the commercial FEM 

package ABAQUS™. One of the reasons this has such widespread use, is its inherent 

flexibility in defining application specific enrichment functions. 

Yet another approach to model discontinuities has been proposed by Hansbo and 

Hansbo [53] and called the Phantom Node Method (PNM), where discontinuities are 

accounted for by doubling the nodes and elements. This was built upon by Yang and 

colleagues [10, 54, 55] and successfully used to model the complex damage evolution in 

laminated composites. Following this success Yang and colleagues formulated a new 

approach where discontinuities could be modeled without need for extra degrees of 

freedom [56]. This is accomplished through a novel element level condensation 

procedure enabling the simulation of automatic arbitrary cracking without the need for 

remeshing using the physically consistent crack description provided by the cohesive 

zone model. 

 

1.3 A Review of Fatigue Delamination analysis 

   1.3.1 Background 

Casting Fracture Mechanics, Fatigue, and the Finite Element Method into a 

unified simulation framework that can predict fatigue driven delaminations is the focus of 

this work. It is not a wholly new idea as the need to have such a tool is obvious. The 

damage evolution in fiber reinforced polymer matrix composites is highly complex and 

involves the interaction of several distinct failure mechanisms. The challenge in 
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simulating this lies in determining what failure mechanisms dominate and what failure 

mechanisms may be combined in a numerical sense to provide useful results. The 

progressive damage evolution in laminated composites is a combination of strongly 

coupled mechanisms [8-10, 57, 58].  

 

 
 

Figure 5. X-ray radiograph reveals splitting cracks (sharp horizontal lines), delaminations 
(wedge-shaped shadows), and multiple matrix cracks (fine vertical lines) in a 0/90° 
polymer composite under tension-tension loading [8]. 
 

Shown in Figure 5 is an X-ray radiograph from a test performed by Spearing and 

Beaumont [8], in this 0/90° laminated composite when sub-critical cyclic loading was 

applied a complex interplay between transverse ply cracks, splitting cracks, and 

delaminations was observed. One of the major questions in simulating damage in 

composite materials is determining if damage evolution initiates from pre-existing 

damage or from a truly pristine material. The general consensus in the composite 

materials community is that all composite materials are filled with manufacturing defects 

and that fatigue damage is the growth and coalescence of these defects into 

macroscopically observable cracks. However, this assertion cannot be taken as a proven 
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fact since the experimental methods to date have yet to provide such insight. Regardless 

of where the damage initiates preventing micro-cracking as a means to improve material 

performance has shown to greatly increase the cost of manufacturing. Therefore, the 

emphasis has been placed on ensuring these defects do not grow to a critical size through 

damage tolerance analysis. This requires a detailed understanding of how these defects 

grow yet in the numerical context bridging short crack (where SN failure criteria is used) 

and long crack (where LEFM can be applied) due to fatigue loading remains an unsolved 

problem.  

The current state-of-the-art product certification is accomplished with extremely 

large test programs in which the material is tested from the coupon level all the way up to 

the full size article. These tests are extremely expensive and time consuming due to the 

fact that they may involve tens of thousands of tests. To compound matters when testing 

for fatigue life this scale of testing is impossible. Fatigue tests are technically challenging 

and expensive due to their high variability both in data and time required. As a result only 

a few samples are tested compared to the static tests performed. This is especially true in 

initiation studies where the number of cycles to initiation can vary by several orders of 

magnitude [2]. Owing to this, very conservative designs are implemented due to the 

limited and uncertain information about the fatigue behavior. To address this virtual 

testing has long been lauded as a potential tool to further inform composite material 

designers [5], greatly reducing time and cost. This movement has been coined Integrated 

Computational Materials Engineering (IMCE), its realization is the focus of research 

groups around the world. With regards to fatigue delamination which is the focus of this 
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work, there have been several approaches developed in the past 50 years, this review will 

highlight those capable of predicting delamination growth.  

 

   1.3.2 Fracture Mechanics Based Methods 

In the fracture mechanics based approach a correlation is determined between 

stress intensity factors (SIF) or equivalently [38, 59] strain energy release rates (SERR) 

and delamination growth. The major challenge in fiber reinforced composites is 

calculating the stress intensity factor due to material anisotropy. For this reason strain 

energy release rates are typically used and can be calculated analytically based on 

compliance methods, numerically using virtual crack closing technique (VCCT) [50], or 

by performing numerical contour integrals around the crack tip.  These quantities are then 

used to calculate crack growth based on the widely used Paris law. It is worth noting that 

despite Paris’ law largely successful and widespread use, it is a phenomenological based 

relation not representing the true physics of crack or delamination growth. The first 

reference in literature to relate Paris law to fatigue driven delaminations in composite 

materials was published by Roderick et al. [60], the justification provided was simply 

Paris’ law successful application in metals and the fact that the composite material 

system under study was fiber metal laminates. Wang and Wang [61] were the first to 

apply a fracture mechanics approach to fiber reinforced polymer (FRP) composites under 

fatigue. Producing a power law relation between mode I and mode II SIF ranges and 

fatigue crack growth. Others include O’Brien at NASA Langley Research Center (LaRC) 

who built upon Roderick’s approach to correlate fatigue delamination growth and SERRs 
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for an FRP composite system [62]. With this well established connection between SIFs or 

SERRs and fatigue delamination growth, researchers began investigating modifications to 

the relation that could better account for load ratio effects and mode mixity. In Figure 6 

the sigmoidal shape of the delamination growth rate is illustrated. In the fracture 

mechanics approach to predicting fatigue delaminations, functions of SERR (G in the 

figure) or equivalently SIF are formulated and fit to experimental data using the 

parameters C and n. Here the subscripts of G refer to threshold (th) and critical (c), a is 

the crack length and N the number of cycles. The curve can be decomposed into three 

distinct regions from left to right; a threshold region where the delamination growth rate 

decreases exponentially, a log-linear region where the delamination growth rate can be 

described with a simple power law, and an exponentially increasing unstable region 

associated with very fast delamination growth. The Paris law region covers the largest 

proportion of the curve and is very important in understanding the delamination growth 

rate. It should be noted by this curve that the Paris law cannot be used for SERRs outside 

of the log-linear region (i.e., delamination initiation or arrest). 

To correctly account for the load cycle, and hence the load ratio effect, an 

additional parameter is needed. In some cases the load ratio is explicitly included in the 

power law [63-65] or implicitly by using the range of SIF or SERR [66-69]. The 

formulations to account for mode mixity are considerable in their diversity and it is 

beyond the scope of this review to list them. There are at least two very significant 

shortcomings of these methods, first is that they rely on global quantities that are not 

always calculable especially in the case of complex geometries, and second is that these 
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relations only hold for long cracks so they are unable to capture the initiation 

phenomenon. For a recent comprehensive review of the proposed fatigue delamination 

prediction methods the reader is directed to Pascoe et al. [70].  

 

 
Figure 6. Sigmoidal delamination growth rate 

 

   1.3.3 Cohesive Zone Based Methods 

Building upon great success in simulating the response due to monotonic loading, 

cohesive zone based methods are well poised for development to characterize the damage 

evolution due to fatigue loading. For example, recent significant results have been 

produced by Yang and colleagues [54, 56, 71, 72]. In Figure 7(c) experimental results are 

compared to simulations performed using the augmented finite element method (A-FEM) 

which is capable of using embedded cohesive zones formulated for arbitrary damage 

evolution without the need for a priori locations specified. In Figure 7 the comparisons 
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show excellent agreement for the double notched tension (DNT) specimen tested. 

Incredibly the cohesive laws used were calibrated using independent data from literature.  

Owing to this and many other successful simulations using cohesive zone based 

methods, it is a natural extension to develop formulations for a fatigue cohesive zone 

based model. In literature there are a number of groups that have implemented such 

formulations [70, 73-81]. Most of which use experimentally determined Paris law 

relations to calculate damage rates [77-79, 81]. To do this the cohesive zone is used to 

extract a global SERRs that are then used as inputs to the Paris law. This is less than ideal 

as the macroscopic Paris law has underlying assumptions that may not necessarily be 

correct. Namely the assumptions associated with LEFM such as relatively small plastic 

zone and relatively long crack. A common method to deal with these discrepancies is to 

introduce additional fitting parameters. From a modeling perspective however, having 

less parameters is more desirable both from a practical perspective as well as when 

justifying the physical meaning behind the parameters. There have also been non-Paris 

law based methods developed that use the power law form of the Paris law but on the 

micromechanics scale. This is accomplished though analysis at the micromechanics scale 

[73, 82, 83] or by calibrating with experimental data [74-76, 80].  
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(b) 

 

 
(c) 

 
Figure 7. (a) Experimentally observed damage processes in a DNT specimen, (b) 
predicted damage evolution using A-FEM (quarter model as indicated in the red box in 
(a) due to symmetry in geometry and loading), and (c) direct comparison of stress-
displacement curves (left plot) and splitting crack growth as a function of applied stress 
(right plot) [55]. 
 

It can be seen when examining the above methodologies that the one of the major 

shortcomings in these approaches is their inability to predict the mixed mode behavior 

without additional fitting parameters. The cost and difficulty in performing mixed mode 

tests is significant and requires a specialized loading fixture. The most commonly used 

mixed mode fixture was developed by Crews and Reeder [84] at NASA LaRC, the details 
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of which will be presented in Chapter 4. However, the larger issue with the fatigue 

cohesive zone methods in literature is their inability to model initiation. This is in part 

due to the fact that there are very few experimental studies related to initiation because of 

the difficulty in testing and large variability [85]. Most experimental studies used for 

validation is to determine Paris law parameters. To do this specimens are manufactured 

with large starter cracks. 

One of the few published methods that has the ability to initiate a crack from 

pristine material, was formulated by Hallett and colleagues [79]. Their method introduced 

SN curve governed elements embedded a priori that became traction-less upon failure. 

Then their previously developed fatigue cohesive elements [78] that were inserted 

adjacent to the initiation zone would begin propagating according to a macroscopic Paris 

law. A major ambiguity introduced by this method was the selection of both the location 

and size of the initiation zone. Another cohesive zone based method capable of initiation 

has recently been published by Iarve et al. [86]. Their method works by extending their 

previously developed regularized extended finite element method (Rx-FEM) that can 

introduce arbitrary damage through cohesive zones [87, 88]. Their fatigue cohesive zone 

element has one main shortfall. Although, it can initiate from pristine material and 

transition to the Paris law based propagation, when this happens, the fatigue crack length 

is equal to one element length. When using cohesive elements it is important to achieve 

proper resolution of the fracture process zone. To accomplish this the element length 

should be on the order of one third the size of the cohesive length to ensure mesh 
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independence. At this very short crack length, it is not physically justifiable to then apply 

a macroscopically derived Paris law.  

Nonetheless, fatigue based cohesive zone methods show great promise for 

simulating fatigue crack initiation and propagation while retaining their ability to 

simulate energy consistent static failure. The non-Paris law type cohesive zone methods 

in particular appear to capture more fundamentally the damage kinematics at the 

micromechanical scale. Even so, most non-Paris law based cohesive zone methods are 

validated against experiments with large starter cracks. One exception to this is the 

method presented by Khoramishad et al. [80], where the damage kinematic law was 

calibrated against a single-lap joint, and shown to then be able to predict the failure for a 

different cyclic loading profile. This was achieved without differentiating the initiation 

phase from the propagation phase. However this is not in agreement with the 

experimental observations by Hallett and colleagues [78, 79, 89] in which the distinct 

phases were especially apparent at high severity levels. 

In the subsequent chapters a new non-Paris law based cohesive zone method is 

proposed, implemented, and validated that can overcome the deficiencies present in all 

methods that have been developed to date. The goal is to produce a method that uses a 

micromechanical damage law coupled with S-N governed strength reduction while 

maintaining the traditional cohesive zone based static failure criterion. 
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CHAPTER 2: A CONSISTENCY-CHECK BASED ALGORITHM FOR 
ELEMENT CONDENSATION IN A-FEM AND COHESIVE ZONE 
ELEMENT FORMULATION 
 

2.1 Background 

One of the key components needed for the eventual implementation of the 

proposed fatigue cohesive model is a robust and computationally efficient finite element 

framework that enables arbitrary crack initiation in a standard quadrilateral element. As 

mentioned in the previous chapter, recent advances in arbitrary cohesive crack initiation 

have been made by Yang and colleagues [54, 71], but these efforts have been hampered 

by the need to double the degrees of freedom at each node. In the following a new 

solution procedure is presented that is able to condense these degrees of freedom (DoF) at 

the element level at a lower computational cost than all previously published embedded 

discontinuity methods. The finite element selected is a four node quadrilateral element 

with four integration points and two displacement degrees of freedom at each node.  

In embedded methods with strong/weak discontinuities, the nonlinear cohesive 

laws are typically included in the numerical formulation in such way that if a given 

initiation criterion is met an element initiates a cohesive crack. The gradual separation of 

the severed sub-domains in the element are coupled by the cohesive stresses acting on the 

cracked surfaces, such an example is illustrated in Figure 8 [90]. 
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Figure 8. Illustration of the element augmentation from (a) a regular element with 
possible different material domains, to (b) an A-FE with two quadrilateral sub-domains, 
or to (c) an A-FE with one triangular sub-domain and one pentagonal sub-domain [90] 
 
 

Figure 8(a) shows a regular 4-node plane element with regular (or external) nodes 

1, 2, 3, and 4. If the element is cut by a cohesive crack as shown in Figure 8(b) and 8(c), 

the displacement field in the element becomes discontinuous due to the displacement 

jumps across the crack surfaces (i.e., crack displacements). The cohesive stresses are 

continuous across the crack surfaces and are functions of the crack displacements. 

Defining a local coordinate system by the directions along (s) and perpendicular (n) to 

the crack path as shown in Figure 8(b) and 8(c), the normal and shear cohesive stresses

 and c c  , are functions of local opening and shear crack displacements  and n s  , i.e., 

( , ) ; ( , )c c n s c c n s         . The local crack displacements and n s   are related to the 

global displacement u and v, by   , ,
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It is obvious that at least two additional DoFs (in addition to the regular DoFs 

associated with external nodes 1, 2, 3, and 4) are needed to account for the crack 

displacements along the crack path. The simplest case is to assume constant normal and 

shear crack displacements, which requires only two additional DoFs. However, it has 

been shown such constant deformation only modes can cause stress locking [91, 92].  

More commonly, 4 additional DoFs are used to account for both the constant and linear 

deformation modes for the normal and shear crack displacements. These DoFs are 

commonly assigned as internal DoFs to two enriched nodes located at the left and right 

cracked surfaces [93-96].   

In the following, a brief overview is given of the A-FEM formulation with focus 

on the need for a condensation algorithm at the elemental level. For the problem in Figure 

8, the elemental equilibrium can be derived as [90] 

 11 12 int +

21 22 int int

(for )ext ext

ext

    

    

     
   

L d L d F

L d L d F
 (4a-b) 

 11 12 int

21 22 int int

(for )ext ext

ext

    


    

     
   

L d L d F

L d L d F
 (5c-d) 

where int and  (  = + or )ext
   F F are the equivalent external and internal forces. The 

internal forces ( int
F ) are integrated from the cohesive stresses along the cohesive crack 

surfaces and they satisfy the stress continuity condition int int
  F F . Additionally, 

 and  ext ext
 d d are the external nodal DoFs and int intand   d d are the internal nodal DoFs. 

Detailed definitions of int int,  , ,  and ext ext
   d d F F  for the two configurations in Figure 8 can 
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be found in [90].  and  ( ,    1,2)ij ij i j  L L  are stiffness matrices of subdomains +  and 

- , respectively. For elastic materials, they can be computed using subdomain 

integration  [97, 98], or special integration techniques such as polygonal FEM [99, 100]. 

 The internal force arrays, int 65 int 6'5'( ) and ( )  F F F F come from the integration of 

cohesive stresses along the crack surfaces and the stress continuity condition requires 

65 6'5' coh int= ( )  F F Φ d , where 

  T1 1 1 1T T
coh int 1 0 0 0 0

( ) Diag[ ; ] (1 ) , (1 ) , ,e c c c cl d d d d                 Φ d R R (6) 

here 
T

T T

T
Diag[ ; ] stands for 

 
 
 

R 0
R R

0 R
. The cohesive stresses  and c c   are functions 

of the position along the crack ( = s/le1) because the cohesive crack displacements 

 ( ) and ( )n s     are position dependent, T T T
int 6'5' 65 6' 6 5' 5{( ) ,( ) }     d d d d d d d  are 

the crack displacements in global coordinates. The actual functional form of coh int( )Φ d  

depends on the chosen cohesive law and the cohesive integration scheme, but it is in 

general a strong, irreversible nonlinear function of the crack displacements. 

It has been noted that Equations (4a-b) and (5c-d) actually account for the 

mechanical behavior at two scales simultaneously. Equations (4a) and (5c) predominantly 

govern the global (structural scale) responses, while Equations (4b) and (5d) mainly 

control the local (elemental) cohesive fracture behavior [91, 101]. There are in general 

two broad categories of methods to solve Equations (4) and (5). The first is to assemble 

all four equations with both the internal and external DoFs into a global matrix and solve 
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the nodal displacements and the crack displacements simultaneously. This is essentially 

how X-FEM and PNM handle the problem, although the actual implementations of X-

FEM and PNM are different, see comments in [93, 94]. Obviously, these methods require 

dynamically adding DoFs as the cohesive crack propagates through subsequent elements. 

Furthermore, a tracking algorithm (such as the level set method in [102-104]) to project 

and record a propagating crack is needed. Since each individual crack requires its own 

additional copy of the DoFs or nodes to describe its discontinuous displacement field, this 

method is less flexible in dealing with multiple cracks especially when they bifurcate or 

merge [56, 105]. 

An alternative approach is used in the embedded discontinuity method [93-95, 

101, 106] and the present A-FEM [56, 90]. These methods seek to condense the internal 

DoFs at the elemental level so that element locality is retained. For Equations (4) and (5), 

the condensation can be done as follows. Subtracting Equation (5d) from Equation (4b) 

and replacing the internal forces with Equation (6), the crack displacements can be 

related to the external nodal displacements as the following, 

    1 1 1 1
22 21 22 21 ext int 22 22 int( ) ( ) ( ) ( ) ( ) 0               cohL L L L d d L L Φ d  (7) 

where T T T
ext {( ) ,( ) }ext ext

 d d d  are the total displacements at the elemental nodes. 

Substituting Equation (7) back into Equations (4b) and (5d) to solve the internal nodal 

displacements,  TT T
int 6'5' 65( ) ,( )d d d , then substituting it into Equations (4a) and (5c), 

the fully condensed elemental equilibrium equation can be obtained as 
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 (8) 

Equations (7) and (8) form the basis for the embedded discontinuity based 

methods. For any displacement-based FEM, extd  are typically given as trial 

displacements. Then intd  may be solved directly from Equation (7) (the elemental 

condensation process). However, since the cohesive force function ( int( )cohΦ d ) is 

highly nonlinear, Equations (7) and (8) are usually linearized into incremental form as the 

following 

    1 1 1 1 1 1
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 (10) 

where the superscript p is the number of the previously successful load increments, 

1
ext
p d  are the incremental trial displacements for the current load increment, and 

1
int( )p d  are the incremental crack displacements to be solved at elemental level. 

int
int int( ) / ( )

p

p


    coh d

α Φ d d  is the tangential cohesive stiffness matrix evaluated at 

increment p.  int
pr  and p

extr  are the residuals from increment p, i.e.,  

   1 1 1 1
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0 ( ) ( )
p p p

ext

       

       

   
        

coh

L L L L L L
r F d Φ d

L L L L L L
.  
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Equation (9) and (10) are typically solved by a two-step process. A typical solving 

procedure can be summarized as: i) 1
int( )p d  is solved from Equation (9) with 

incremental trial displacement 1
ext( )p d  through either an iterative solver such as 

Newton-Raphson method as in [93, 94, 106, 107] or by direct inversion of the cohesive 

stiffness matrix as in [95, 96, 108, 109],  ii) the solved 1
int( )p d  is then supplied as part 

of the right-hand-side to Equation (10), which is then assembled into the global stiffness 

matrix for the global equilibrium iteration. The process repeats until numerical tolerances 

are achieved at both local and global levels.  

The staggered scheme between global and local equilibrium iteration can have a 

negative impact on numerical accuracy, efficiency, and robustness [107]. This is 

highlighted in the following through the direct solution of 1
int( )p d  from Equation (9). 

     1
1 1 1 1 1 1

int 22 22 int 22 21 22 21( ) ( ) ( ) ( ) ( )p p p p
ext 


                   d L L α I R L L L L d (11) 

where I is the identity matrix. Suppose at the end of the global iteration p a converged 

solution of 1
int and p p

ext
d d  have been found and a trial solution increment 1p

ext d , has been 

established for the current increment. It appears straightforward that 1
int( )p d  can be 

immediately obtained by a simple matrix inversion to obtain as 

  1
1 1

22 22( ) ( ) p


      L L α I from Equation (11). However, note that the cohesive 

stiffness matrix ( pα ) is established by the nodal and crack displacements of the previous 

increment p, i.e., int and p p
ext d d . The solved 1

int( )p d  from Equation (11) can be 
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significantly in error if a sudden change of stiffness in the cohesive law occurs from 

increment p to p+1. Even worse, the error cannot be corrected until a global iteration is 

executed. In addition, numerical drift can occur due to the accumulation of small 

imbalances in int
pR , which has a significant negative impact on the numerical accuracy 

[107]. 

Unfortunately, such sudden changes of stiffness are inevitable in many cohesive 

models. A typical irreversible cohesive law such as the one shown in Figure 10 contains 

at least two sharp corners that involve sudden, drastic change of stiffness; 1) the junction 

point between the elastic stage and the softening stage (i.e., between segment 1 and 2 in 

Figure 10), and 2) the irreversibility induced sudden stiffness change from a loading path 

to an unloading path (i.e., from segment 2 to 4 in Figure 10, or vice versa). Furthermore, 

if the irreversible unloading path is also considered, the elemental condensation becomes 

even more difficult, because for each given 1p
ext d  there is not enough information to 

decide whether it will lead to loading or unloading in the cohesive response. In the past a 

Newton-Raphson type iterative solver or one of its variants have been used to solve the 

nonlinear Equation (9) for each load increment. These methods are known for not being 

able to deal with sudden stiffness changes and can lead to significant error due to 

numerical drift as previously mentioned [107].  

In the recent work of Yang and colleagues [90], the consistency-check based 

algorithm presented here has been used to improve the elemental condensation process, 

because it does not need to solve the incremental form of Equation (9) iteratively. Rather 
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it aims to solve directly the crack displacements intd  in total form from Equation (7) for 

any given trial nodal displacement extd . It has been demonstrated that Equation (7) can 

be solved analytically through piece-wise linearization of any irreversible cohesive law. 

Once Equation (7) is solved analytically, the element equilibrium given by Equation (8) 

is automatically achieved without additional numerical cost. In the subsequent sections, 

the algorithm is implemented and tested in more detail to examine its numerical 

performance in several important applications of interest to the fracture analysis 

community.  

 

2.2 Cohesive Zone Element Formulation 

The cohesive zone element that forms the basis for the proposed fatigue 

formulation is a non-truss like, potential based, zero thickness, four node two 

dimensional element with two integration points. The stress is numerically integrated at 

the integration points which are located along the cohesive crack opening plane as shown 

in Figure 9(b). The formulation follows the standard displacement based finite element 

method. The shear and normal cohesive stresses at each integration point 1 1 2 2{ , , , }T   

are related to the local crack displacements at the integration points 1 1 2 2{ , , , }T
s n s n     by 

the traction-separation law. The local crack displacements are interpolated from the local 

nodal displacements, the integration points are located at Gauss points which lie at 

 1 1 1/ 3 / 2    and  2 1 1/ 3 / 2    along the normalized element length. In order 

to facilitate the calculation of the stresses, the corresponding slopes of the traction-
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separation law need to be determined. In the following equations superscripts with "( )" 

are used to denote the segment in the traction-separation law as shown in Figure 10. 

 

 
 (a)      (b) 

 
Figure 9. Illustration of a 4-node plane cohesive element from (a) un-deformed 
configuration to (b) deformed configuration. 
 

For the bilinear shear traction-separation law used in the current formulation the 

slopes for any segment can be calculated by 

 ( ) ( ) ( 1) ( ) ( 1) (3)
* *ˆ ˆ ˆ( ) / ( )  for   = 1, 2 ;        ( / )i i i i i

s s s s si             (12) 

with each slope being associated with a shear crack sliding displacement range  

 ( ) (3)( 1) ( )
*,   for 1,  2  ;         [0, ]

i i i
s ss s si       

 
 13(13) 

where (0) (1) (2)
1ˆ ˆ ˆ ˆ0;  ;  0      ; (0) (1) (2)

10;  ;  s s s s sc       . s*  is the maximum 

shear crack displacement ever experienced during the fracture process, and *̂  the 

corresponding cohesive shear stress. The maximum historical shear crack displacement 

s*  must be recorded and continuously updated in order to distinguish the correct slope 

for subsequent calculation. Similarly for the bilinear normal traction-separation law, the 

slopes are given by 

1

4

2

3

1

4

2

3

xx

Cohesive integration plane

Integration points
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 ( ) ( ) ( 1) ( ) ( 1) (3)
* *ˆ ˆ ˆ( ) / ( )  for   = 1, 2  ;        ( / )j j j j j

n n n n nj             (14) 

each slope being associated with a normal crack opening displacement range 

 ( ) (3)( 1) ( )
*,   for  1,2  ;        [0, ]

j j j
n nn n nj       
 

 (15) 

where (0) (1) (2)
1ˆ ˆ ˆ ˆ0;  ;  0      ; (0) (1) (2)

10;  ;  n n n n nc       . n*  is the maximum 

historical normal crack displacement that must be continuously updated in order to apply 

the correct slope to the cohesive stress computation. Then the relation between the 

cohesive stresses ( ),  ( )n s    , and crack displacements , n s   at the integration points 

can be explicitly stated for loading i = 1,2 ; j = 1,2 as: 

 
  ( )( 1) ( ) ( 1)

*

( )( 1) ( ) ( 1)
*

ˆ( ) sgn( )  (for  & &  > )

ˆ( ) ( ) (for  & &  >  )

ii i i
ss s s s s s s s

jj j j
nn n n n n n n

          

         

 

 

     

   



  (16) 

and unloading/reloading: 

 

(3)(3)
*

(3)(3)
*

( ) sgn( ) ; (for & &  )

( ) (for & &  )

ss s s s s s s

nn n n n n n

        

       

  

  



  (17) 

where sgn( )x  is the sign function, i.e., 

 1 if 0

sgn( )   0 if 0

1 if 0

x

x x

x

 
   
   

.   

Using the notation introduced thus far the cohesive stresses at the integration points can 

be calculated by  

 

( ) ( ) ( 1)
11

( ) ( ) ( 1)
11

( ) ( ) ( 1)
2 2

( ) ( ) ( 1)
2 2

ˆ [ ( ) ]

ˆ [ ( ) ]

ˆ [ ( ) ]

ˆ [ ( ) ]

i i i
s s s

j j j
n n n

k k k
s s s

l l l
n n n

    
    

     
     









   
          

    
       

 (18) 
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where i, j, k, l are free indices ranging from one to three depending on the loading history 

at the integration point.  

 

 

Figure 10. The piece-wise linear, traction-separation laws used in this study, numbers in 
parentheses indicate the respective segment numbers. 
 

Once the cohesive stresses have been determined they need to be integrated along 

the crack opening plane in order to calculate the nodal forces. 

 

1

0
4 1 1

04 1

1
3 2

0
3 2 1

0

( )(1 )

( )(1 )

( )

( )

e

s s

en n

s s
e

n n

e

l d
F F

l dF F

F F l d
F F

l d

   

   

   

   

                            
          

  






 (19) 

The integrals in Equation (19) are evaluated numerically along the crack opening plane 

which is equal in length to the element length (le) with an integration matrix [ ]T as 

0ˆ t
* *

max( , )I 
0ˆII

1I IC IIC1II

* *
max( , )II 
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1 4 1 1 2 1

1 4 1 1 2 1

2 3 2 1 2 2

2 3 2 1 2 2

(1 ) 0 (1 ) 0

0 (1 ) 0 (1 )
[ ]

0 02

0 0

s s

n n e

s s

n n

F F

F F l

F F

F F

   
   
   
   

           
                                                     

T  (20) 

since standard Gaussian integration is used in the proposed fatigue formulation 

 1 1 1/ 3 / 2    and  2 1 1/ 3 / 2   . For improved integration schemes that may be 

implemented in the future the reader is referred to Do et al. [110]. 

 

 
 

Figure 11. Illustration standard Gaussian integration with 2 integration points. 

 

2.3 The Consistency-Check Based Algorithm 

Following the indexing notation in Section 2.2 and denoting 

1 1 1 2 2 1/  and /e es l s l    as the general coordinates of the two integration points along the 

cohesive crack in Figure 8, the cohesive stresses at these integration points can be written 

as  

(σ1, τ1) (σ2, τ2)

4-1 3-21 2

Fn1 Fn2

Fs2Fs1

le

ξ1le

ξ2le
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( ) ( ) ( 1)
11

( ) ( ) ( 1)
1 1

( ) ( ) ( 1)
2 2

( ) ( ) ( 1)
2 2

ˆ [ ( ) ]( )

ˆ( ) [ ( ) ]

( ) ˆ [ ( ) ]

( ) ˆ [ ( ) ]

i i i
s s sc

j j j
c n n n

k k k
c s s s

l l l
c n n n

     
      
      
      









   
          

    
       

. (21) 

The four free superscripts (i, j, k, l, each ranging from 1 to 4) index independently the two 

separation modes, shear and normal at the two integration points. Substituting Equation 

(21) into Equation (6), the internal forces integrated from the cohesive stresses can be 

written explicitly as  

  65 6'5' int 1 int= ( ) el     coh 0F F Φ d S α d  (22) 

here 

 

 

0

0

( -1) ( ) ( -1) ( -1) ( ) ( -1) ( -1) ( ) ( -1) ( -1) ( ) ( -1)

( ) ( ) ( ) ( )
0

1
Diag[ ; ]( )  

2
1

Diag[ ; ]( ) Diag[ ; ]
2

ˆ ˆ ˆ ˆ- , - , - , -

Diag[ ; ; ; ]

Ti i i j j j k k k l l l
s s n n s s n n

i j k l
s n s n

           

   









T T T
coh 0

T T T
coh coh

0

S R R T σ

α R R T α N R R

σ

α

 (23) 

and coh coh and T N  are the integration and interpolation matrices associated with the 

cohesive stress integration and the displacement interpolation along the crack plane, 

respectively. In the consistency-check validation the improved Gaussian interpolation and 

integration schemes were used, these matrices can be found in [110]. 

Substituting Equations (22) and (23) into Equations (7) and (8) gives 

 
 

   

1 1 1 1 1 1
int 1 1 22 1 22 0

1 1 1 1 1 1
1 22 21 1 22 21

( ) ( )

( ) ( )

e e e

e ext e ext

l l l

l l

       

           

     

   

d A B A α Ψ B α Ψ S

B A α Ψ L d B α Ψ A L d
 (24) 
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  
 

1 1 1
11 12 21 1 12 22 21

1 1 1
1 12 22 21 11 12 21

1 1
1 12 1 22 0

1 1
01 12 1 22

( )

( )

( ) 0

0 ( )

e ext

e ext

e eext

ext e e

l

l

l l

l l

         

         

   

    

    
      

               

L L B L L B α Ψ L d

L A α Ψ L L L A L d

L B I α ΨF S

F SL A I α Ψ

 (25) 

where  

2 1 2 1
22 22 1 22 22 1 22 1 22 22 1 22,  ,  ( ) ,  and ( )e e e el l l l                Ψ L α Ψ L α A Ψ α Ψ α B Ψ α Ψ α . 

Equations (24) and (25) are highly nonlinear because the matrices 

0 22 22, , ,  ,  ,  and  S α A B Ψ Ψ  are all nonlinear functions of the crack displacements intd  

(through 0 and 0 – see Equation (23), which are not known because at this point the 

only available information is the external displacements and ext ext
 d d . The key is to solve 

Equation (24), which explicitly relates the crack displacements to the external nodal 

displacements. Note that once the crack displacements ( intd ) are solved, 

0 22 22, , ,  ,  ,  and  S α A B Ψ Ψ  are all established. Then simply substituting these matrices 

into Equation (25) will guarantee the elemental equilibrium. In the following Equation 

(24) will be solved analytically through the consistency-check based algorithm.  

The procedure is as follows, first convert the global crack displacements in Equation (24) 

into local crack displacements at integration points using 

  T T
1 1 2 2 coh int, , , = Diag[ ; ]s n s n    T

N R R d  giving 
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  
 

( , , , )1 1 1 1
1 1 22

1
1 1

1 22 01
1 1 1

1 22 212

1 1 1
2

1 22 21

( ( ) ...

( ) )
Diag ;

( )  ...

( )

i j k l

e e
s

en
coh

e exts

n
e ext

l l

l

l

l






    

  

     

     

                     
        

T T

A B A α Ψ

B α Ψ S
N R R

B A α Ψ L d

B α Ψ A L d

 (26) 

In Equation (26) the superscripts (i, j, k, l) in the right-hand-side are included to 

emphasize that the matrices 0 22 22, , ,  ,  ,  and  S α A B Ψ Ψ  are all functions of the cohesive 

slope matrix ( , , , )
0

i j k lα  and characteristic stress matrix ( , , , )
0

i j k lσ  defined in Equation (23).  

Thus, for any trial cohesive segment combination (i, j, k, l), a set of local crack 

displacements is immediately solved from Equation (26).  However, whether or not the 

solved displacements are correct must be judged by checking that they are consistent with 

the respective assumed displacement ranges (i.e., 
( )i

s


, 
( )j

n


, 
( )k

s


, and 
( )l

n


).  

A correct solution is found if and only if: 

( ) ( ) ( ) ( )

1 1 2 2( is true) .and. ( is true) .and. ( is true) .and. ( is true)
i j k l

s n s ns n s n          
   

 

This is the core idea behind the consistency-check based solving algorithm. The 

mathematical exactness (in a piece-wise linear sense) of the solution is guaranteed by the 

solution uniqueness of the local problem (see the discussion on the solution uniqueness 

for linear elastic materials with nonlinear discontinuities in [111]). A very simple yet 

effective algorithm based on the consistency check between the trial segments (i.e., given 

0  and  S α ) and the resulting solution of intd  can thus be devised. Figure 12 gives the 

flow-chart of the algorithm. 
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Figure 12. Flow chart of the consistency-check based solving algorithm.  The loop 
indices i*, j*, k*, and l* correspond to the maximum segment number the respective 
cohesive stresses ever experienced. Due to the irreversibility of cohesive damage, 
segment numbers smaller than (i*, j*, k*, or l* ) do not need to be included in the 
consistency check loop, which greatly reduces the computational cost. 

 

Set up cohesive stress,  stiffness segments and 
displacement ranges for the cohesive law
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( , , , )
0

int

1. compute   and   (Eq. 14b)

2. Solve crack displacements   (Eq. 15)

3. Compute local crack displacements at integration points (Eq. 17) 

i j k l

i j k l

i j k l



S α

d

( , , , )( , , , )
0

* * * *

1. compute the stiffness and RHS from Eq. 16 using the

   and  that has passed the consistency check

2. update state variables ( , , , ) if necessary

i j k li j k l

sA nA sB sB   
S α

Return stiffness matrix and RHS to main program

                for global equilibrium iteration

YES

ext

* * * *

Regular nodal displacements { } and state variables

 ( , , ,  and )  from global iterationsA nA sB nB   
d

Eq. 26

Eq. 23

Eq. 24

Eq. 25
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It is noted that the above solving algorithm guarantees a mathematically accurate 

solution to Equation (24) for any given external nodal displacement extd because the 

algorithm exhausts all possible solutions. Furthermore, through the solving procedure the 

correct cohesive segment for each mode at each integration point has also been identified 

(i.e., 0  and  S α  that automatically satisfy the element equilibrium given by Equation (25)).  

 

2.4 Algorithm Verified with a 1-D Fracture Problem 

This section illustrates how the algorithm works to solve the cohesive fracture of 

a one dimensional bar as shown in Figure 13(a). A simple mode I cohesive law with a 

triangular traction–separation relation as shown in Figure 13(b) is used. It has an elastic 

segment (i =1, (1)
1[0,  ]n n 


), a softening segment (i = 2, (2)

1( ,  ]n n nc  


), and an 

unloading segment (i = 3, (3)
* [0,  ]n n 


). For this 1-D problem, it can be shown that 

Eq. (24) reduces to the following 

    1 1 1 1 1 1
int 2 ' 1' 22 22 22 21 22 21( ) ( ) ( ) ( )ev v l                   0d β L L S β L L L L d  (27) 

where T
int int 2' 1' 1 2,  { , }v v v v v    d d , and  1 1

22 22( ) ( )el
     β I L L α . The 

stiffness matrices are given by 

11 22 12 21 11 22 12 21 2 /e eEl h                  L L L L L L L L  

and the ( ) ( ) ( )
0 ,   and i i iS α β matrices for each segment (i = 1, 2 and 3) can be established as   
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(1) (2) (3)
0 0 0 *

(1) (2) (3)
1 1 * *

(1) (2) (3)
1 1 * *

ˆ ˆ0

ˆ ˆ ˆ/ / ( ) /

ˆ ˆ ˆ1 / 1 / ( ) 1 /

n nc n n

e n e nc n e nh E h E h E

 

      

      

  

    

      

S S S

α α α

β β β

 

Introducing two dimensionless parameters that govern the 1-D cohesive fracture 

process; int /n ncv   the normalized opening crack displacement, and 

1ˆ / ( )e nc nh E     the ratio of strain energy in the bar element under peak stress to the 

total cohesive energy that can be dissipated by the cohesive fracture process.  The 

physical interpretation of   can be seen more clearly in its equivalent form 

2

1
ˆ ˆ[( / 2 ) ] / [ ( ) / 2]e e nc n eE h l l      , in which the numerator is the total strain energy in the 

bar under peak load, and the denominator is the maximum energy that can be dissipated 

by the cohesive failure process (i.e., 1  leads to a stable fracture process and 1  an 

unstable fracture process). 

   2.4.1 Stable Cohesive Failure 

Substituting the above expressions for ( ) ( ) ( )
0 ,  , and i i iS α β into Equations (25) and 

(27), and assuming 1 , the solutions of crack displacement and reaction force (F) can 

be explicitly derived for each of the three branches: 

(i)  i = 1, or equivalently assuming (1)
10 < n n  , the normalized solutions are 

 

(1) 1 2 1

1 1

(1) (1)(1)
1 2 2 1

1 1

( )
 

(1 )

( )1
=

ˆ ˆ ˆ (1 )

n
n

n n nc

e e e n n nc

v v

F F v vF

l l l


  

     

   


   
  

 (28) 

(ii) i = 2, or equivalently assuming (2)
1 < 1n n   , the normalized solutions are 
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(2) 2 1 2 1
1 1

(2) (2)(2)
1 2 2 1

1

( ) ( )1 1
(1 )

1 1 1

( )1
1

ˆ ˆ ˆ (1 )(1 )

n n n
nc nc

e e e n nc

v v v v

F F v vF

l l l

  
 

    

   
             


           

 (29) 

(iii) i = 3, or equivalently assuming (3)
* *0 <  and 1n n n    , the normalized solutions 

are 

 

(3) * 2 1

* *

(3) (3)(3)
1 2 2 1

* *

( )
 

(1 )

( )1
=

ˆ ˆ ˆ (1 )

n
n

n n nc

e e e n n nc

v v

F F v vF

l l l


  

     

    


   
   

. (30) 

Illustrated in Figure 13(c) is how the algorithm works to identify a unique solution under 

any given nodal displacement in total form (i.e., 2 1( ) / ncv v  ), without the need of an 

iteration procedure. Without loss of generality one can assume 1 0.1n  ,  

1(1 ) 0.2n   , and a state variable of * 0.6n  . Figure 13(c) is a composite of two 

plots that share the same horizontal axes (i.e., the applied nodal displacement 

2 1( ) / ncv v  ), which is the only known information for solving the 1-D cohesive fracture 

problem. The bottom plot in Figure 13(c) shows the crack displacement as a function of 

the applied displacement, it has three solution branches as indicated by i =1, 2, and 3. For 

each solution branch, the parts that are consistent with the assumed crack displacement 

range are represented with a solid line, and the parts that are inconsistent are depicted as 

dashed lines. The top graph plots the normalized reaction force ˆ( / )eF l as a function of 

the crack displacement int( / )n ncv    given by Equations (28), (29), and (30). 
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Consider a given nodal displacement 2 1( ) / 0.2ncv v    depicted as the vertical 

line labeled with the symbol ○1  in the bottom plot. The three possible solutions are the 

intersecting points of this line and the three branch solution lines as indicated by the 

symbols ○x  and  .  The solution from branch i = 2, (2) 0.029n   , is false because it 

falls outside the valid crack displacement range of (2)0.1 < 1n   and the solution is 

discarded due to its inconsistent crack displacement range. The solution from branch i = 

1, (1) 0.067n  , does fall in the consistent range of (1)0.0 < 0.1n  , however since the 

solved crack displacement (1) 0.067n  , is smaller than the state variable of * 0.6n  , 

the assumed segment (i = 1) is inconsistent with what the solution indicates (unloading 

segment, i = 3), thus this solution is also false and is discarded. 

The solution from branch i = 3, (3) 0.174n  , is consistent with both the 

displacement range of (3)0 < 0.6n   and with the correct (unloading) stiffness segment 

(i = 3). This solution is thus identified as the correct solution to the applied displacement. 

Once the solution is identified, the reaction force is readily computed from the analytical 

solution of the same branch (second expression of Equation (30) for this case). In Figure 

13(c), this is simply done by extending the line ○1  into the top plot and finding the 

intersection point with branch i = 3. To further illustrate consider another load of 

2 1( ) / 0.8ncv v    as indicated by the vertical line labeled as ○2 , again there are three 

possible solutions. However, two of them fall outside of their respective crack 
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displacement ranges (points labeled as ○x ) and can be immediately excluded. The only 

solution that is consistent with its own crack displacement range is located on the branch 

i = 2 as shown by the solid symbol  . At this point, it is also identified that this applied 

nodal displacement leads to a further cohesive opening, (2) 0.74n  , that exceeds the 

state variable * 0.6n  , and the state variable should be updated to the current maximum 

value (i.e., update to * 0.74n  ). 
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Figure 13. (a) Illustration of cohesive fracture of a 1-D bar, (b) triangular mode I traction-
separation law for the cohesive zone model, (c) illustration of how the current algorithm 
solves the nonlinear problem analytically, and (d) illustration of an unstable fracture 
processes with   > 1 exhibiting snap-back behavior. 
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   2.4.2 Unstable Cohesive Failure 

If 1 , the cohesive fracture process becomes unstable (exhibiting snap-back 

behavior) because the elastic energy stored in the two sub-pieces of the bar exceeds the 

energy that can be absorbed by the fracture process [112]. Indicating a dynamic fracture 

process which causes numerical divergence in implicit quasi-static simulations. This is 

manifested in the deformation process when the crack displacement reaches the elastic 

limit (1)
1n n  , the nodal displacement 2 1( ) / 1ncv v   , this can be seen by the first 

expression of Equation (28)  gives 

2 1 1 1 1( ) / (1 ) 1 ( 1)(1 ) 1nc n n nv v                (note that 1n << 1 for realistic 

CZMs).  

Once this condition occurs, it is impossible to achieve a stable solution in branch i 

= 2 without introducing any solution enhancement technique such as viscous damping or 

the arc-length method. This can be seen from a simple reorganization of the first 

expression in Equation (29)  

 (2)2 1

1

( ) 1

1 n
nc n

v v 
 
 

 


. (31) 

Since 1 0   and 11 0n  , if (2)
n  is to monotonically increase which is necessary 

for stable crack opening, the nodal displacement 2 1( ) / ncv v  , has to monotonically 

decrease from 1 1( 1) / (1 ) 1n n     . As a result from the second expression in 
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Equation (29), the normalized reaction force also has to decreases towards zero as 

2 1( ) / 1ncv v   , which leads to 

 
(2) (2)(2)

1 2 2 1

1

( )1
1

ˆ ˆ ˆ (1 )( 1)e e e n nc

F F v vF

l l l    
 

         
 (32) 

An example of this unstable snap-back is given in Figure 13(d) for 1 0.1n   and 

1(1 ) 2n   . The solid lines marked with X are the snap-back solutions to the load-

displacement curve (top plot) and the crack displacement vs. applied nodal displacement 

curve (bottom plot). The requirement for the simultaneous decrease of nodal force and 

nodal displacement is not possible in regular displacement controlled loading unless an 

advanced solution enhancement technique such as the arc-length method is used1. While 

this method is very effective in dealing with global instabilities, it is less effective for 

local instabilities, especially when multiple local instabilities occur simultaneously. 

Another alternative is to use numerical damping. However, this technique leads to the 

solution dependency based on the choice of viscous damping coefficient, as will be 

shown shortly. 

The analytical nature of the consistency-check based algorithm offers a 

convenient numerical treatment to such local instabilities. Note that instability occurs 

when transitioning from solution branch i = 1 to solution branch i = 2, but the solution 

branch i = 1 is always stable. Therefore it is possible to construct a stable solution branch 

                                                 

1 A serious inconvenience with the arc-length method is that the control of the displacement 
loading is lost. 
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i = 2 by introducing a new 0  that is slightly smaller than unity, so that the drop in nodal 

force can be accommodated with small increase in nodal displacement. The idea is 

illustrated in Figure 13(d), and the modified solution branches are given below: 

(i) i = 1, or equivalently assuming (1)
0 10 < ( / )n n    ,  

 

(1) 1 2 1

1 0 1

(1)
0 2 1

1 0 1

( )
 

(1 )

/ ( )
=

ˆ (1 )

n
n

n n nc

e n n nc

v v

v vF

l


  

   

   


  
  

 (33) 

 (ii) i = 2, or equivalently assuming (2)
0 1 0( / ) < /n n     ,  

 

(2) 2 1

0 0

(2)
0 2 1

1 0

( )1

1 1

( )1
1

ˆ (1 )(1 )

n
nc

e n nc

v v

v vF

l




  

      
           

 (34) 

 (iii) i = 3, or equivalently assuming (3)
0 * * 00< ( / )  and /n n n       ,  

 

(3) * 2 1

* * 0

(3)
0 2 1

* * 0

( )
 

(1 )

/ ( )
=

ˆ (1 )

n
n

n n nc

e n n nc

v v

v vF

l


  

   

    


  
   

 (35) 

Using the expression 1ˆ / ( )e nc nh E     , the modification procedure beyond 

the initial elastic response can be achieved by either reducing the magnitude of the 

cohesive slope (2)
1ˆ /( )n nc n      , through a proportional increase of 1 and nc n  , or 

by increasing the element Young’s modulus E, note the third option of reducing ̂  is not 

recommended because it changes the local stress field, which can be a serious problem 
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when considering multiple cohesive crack initiation and interaction. Reducing the 

magnitude of the cohesive slope is equivalent to temporarily increasing the toughness of 

the cohesive fracture process and increasing the element’s Young’s modulus E is 

equivalent to temporarily decreasing the elastic strain energy in the element so that it is 

slightly less than the total cohesive energy. Note that neither of the above solution 

enhancement techniques will alter the local stress field, which makes it more accurate 

than the commonly used viscous damping technique. Once the modified solution paths 

are established, the solving algorithm is similar to that illustrated in Section 2.3. In 

Section 2.6.1 a single element performance analysis is given, the local modification of the 

elemental modulus to achieve a stable solution will be demonstrated.  

However, note that while the above strategy improves the local elemental stability 

(due to large mesh size or overly strong cohesion), it does not address the issue of global 

instability. For example, if the bar in Figure 13(a) is discretized into more than one 

element and only the center element is capable of cohesive failure as discussed above, the 

global snap-back behavior remains regardless of how the cracking element is treated. In 

such a case, an advanced solution method like the arc-length method is necessary. 

Nevertheless, numerical experience indicates that treating the local instability can greatly 

improve the overall numerical robustness. 

Through the above 1-D example, it can be seen that important features of the 

consistency-check based algorithm include: 1) a mathematically exact solution for a 

piece-wise linear irreversible cohesive law can be uniquely identified for any given 

external nodal displacements in total form, 2) once the analytical solution is found (i.e., 
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the correct solution branch (segment) is identified), the reaction force can be determined 

analytically from the respective force-displacement solution and elemental equilibrium is 

automatically satisfied, and 3) the analytical nature of the algorithm enables a new 

solution enhancement technique that guarantees local stability without altering the local 

stress field.  

 

2.5 Further Comments on the Algorithm Applied to 2-D Problems 

For the general 2-D fracture problem there are two integration points along the 

elemental crack path and each has two fracture modes (mode I and mode II). Thus the 

consistency-check based algorithm has to search through combinations of four free 

indices (i, j, k, l) (i.e., there are maximum 256 (44) possible combinations for the cohesive 

laws in Figure 10). However, with the proper use of the state variables, the number of 

possible combinations can be greatly reduced. In Figure 12 the loop indices i*, j*, k*, and 

l* correspond to the maximum historical segment numbers of the respective traction-

separation laws. Due to the irreversibility of cohesive damage, segment numbers smaller 

than (i*, j*, k*, l* ) do not need to be included in the consistency-check loop, which greatly 

reduces the computational cost. It is also worth noting that the consistency-check 

procedure is non-sequential meaning the algorithm lends itself to parallel computing.  

In general for 2-D and 3-D cohesive fracture problems, the local element 

instabilities will be manifested by the existence of near-zero or negative eigenvalues of 

the A and/or B matrices as defined in Equation (25). In such cases, by simply increasing 

the local element modulus similar to that discussed in Section 2.4.2 the algorithm can 
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deal with the numerical stability issues in a very efficient way as compared to the viscous 

damping technique. This will be demonstrated numerically in the subsequent sections.   

The new algorithm was incorporated in the new Augmented finite element 

method framework (A-FEM) which has been implemented in the commercial software 

package ABAQUS™(v6.10) as a user-defined element [56, 90]. In the following, the 

improvement in numerical performance due to the consistency-check based algorithm 

shall be evaluated. 

 

2.6 Numerical Performance evaluation 

In order to provide a fair comparison between the various solution procedures all 

numerical simulations results reported were carried out on a Dell precision M4600 (x64 

bit) mobile workstation with Intel Core i7–2860 QM CPU @ 2.5 GHz and with 8 GB of 

RAM. 

   2.6.1 Single Element Performance 

The numerical performance of the algorithm when applied to a single-element test 

is reported first. The element is 2 mm in length (le1) and 4 mm in height (he). The domain 

was modeled by a single A-FE under mode I as shown in the left inset of Figure 14.  The 

bottom nodes were roller-supported while the top nodes were under displacement 

controlled loading. The A-FE element only needs 4 nodes (1-2-3-4), the potential intra-

element crack path is shown by the dashed line in the left inset of Figure 14.  For 

comparison purposes, the same domain was also modeled with the standard FEM with 2 

quadrilateral plane elements (1-2-6-5, and 7-8-3-4) and a cohesive interface element (5-6-
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7-8) (The cohesive element thickness is exaggerated for illustration purposes– it is 

actually zero thickness). In this case, the standard FEM setup is numerically equivalent to 

the X-FEM. 

For the stable fracture evaluation, the domain is elastic and has an elastic modulus 

of E = 51 10  N/mm2 and Poisson’s ratio of  = 0.0. The cohesive law is triangular with 

2ˆ 100 N/mm  , nc 0.02 mm  , and 6
n1 nc10  . Thus, the initial slope is 

(1) 9 3
n 5 10  N/mm   , and the slope of the softening phase is (2) 3 3

n 5 10  N/mm    . 

Thus the mode I toughness is I 1.0 N/mm  and the dimensionless numbers of 

6
1 1.0  and 0.2n

    verify this is a stable fracture process. Displacement-controlled 

loading was applied at nodes 3 and 4 (v4 = v3).   

The elemental response to a loading profile with 20 prescribed loading increments 

as shown in Figure 14(b) by the dashed line (right vertical axis) is given in Figure 14(a). 

The normalized peak reaction force of 1.0 is reached at a normalized displacement of 0.2 

after 4 increments (1 - 4). After that, the reaction force starts to decrease due to the 

cohesive opening while the displacement continues to increase linearly to 0.3 (increments 

5 - 6). This is followed by two unloading increments, 7 and 8 which bring the nodal 

displacement back to zero. As a result, the reaction force decreases linearly to zero. The 

two reloading increments, 9 and 10 take the nodal displacement back to 0.3 following the 

unloading path. After this, the reaction force continues to decrease (increments 11-14) 

upon further displacement increase to 0.7. This is followed by another unloading 
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(increments 15 and 16), reloading (increments 17 and 18), and continuous loading 

(increments 19 and 20) until the reaction force drops to zero at increment 20.  

The calculated mode I responses using A-FEM and X-FEM both agree well with 

the above analytical solution for this stable case, as shown in Figure 14(a). However, A-

FEM with the consistency-check based algorithm is much more efficient than X-FEM; 

The CPU time needed for completing the prescribed load increments is 0.5 seconds for 

A-FEM with 20 total iterations and 0.9 seconds for X-FEM with 28 total iterations. The 

averaged CPU time per iteration, which is a more objective measure of the numerical 

efficiency because it reflects the averaged numerical cost to solve the global problem 

once (irrespective of if it converges or not) is 0.025 sec/iteration for A-FEM, and 0.032 

sec/iteration for X-FEM. In this regard, the new algorithm outperforms X-FEM by ~30%. 

Another contribution to the improvement in numerical efficiency is from the less 

overall required equilibrium iterations for each load increment. Figure 14(b) compares 

the number of equilibrium iterations at each load increment. For A-FEM (solid bars), 

each load increment needs exactly one iteration, resulting in 20 total iterations. For X-

FEM (hollow bars), at least 2 iterations are needed for those load increments associated 

with sudden stiffness changes in the cohesive law (i.e., load increments 5, 7, 11, 15, 17, 

19). The circled data points in Figure 14(a) correspond to such load increments. The 28 

total iterations required by X-FEM, combined with the reduced numerical efficiency, 

leads to an 80% increase in CPU time as compared to the A-FEM with the current 

algorithm. 
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(a) 

 

 
 (b) 

 
Figure 14. (a) Mode I loading-unloading response, (b) equilibrium iteration number (left 
vertical axis) and applied displacement (right vertical axis) at each load increment. Note 
that load increments 5, 7, 11, 15,17, 19 involve sudden stiffness change in the cohesive 
law and require at least two iterations for X-FEM while the current algorithm achieves 
equilibrium with single iteration. 
 
   

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25

N
o
rm

al
iz
e
d
 R
e
ac
ti
o
n
 f
o
rc
e
, F
/

l e

Normalized displacement, (v4‐v1)/nc

1

4 3

2

New A‐FEM

1

4 3

2

X‐FEM

7

65

8

^

lehe

0

0.01

0.02

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
p
p
lie
d
 d
is
p
la
ce
m
e
n
t,
 m
m

Eq
u
ili
b
ri
u
m
 it
e
ra
ti
o
n
 n
u
m
b
er

Load incremental number

New A‐FEM (CPU time 0.5 sec)

X‐FEM (CPU time 0.9 sec)



55 

 

 

 

For the unstable fracture evaluation, all parameters are the same as in the stable 

case except that the modulus E is reduced from 105 N/mm2 to 1.6 × 104 N/mm2, which 

leads to 1.25  . As discussed in Section 2.4.2, this case experiences snap-back 

behavior, physically corresponding to a dynamic fracture process and is one of the major 

sources for numerical divergence in any quasi-static simulation. Here the “numerical 

treatment” summarized in Section 2.4.2 provides a fast, converged solution, which may 

be “wrong” during the fracture process but can help a simulation through the divergence 

point. For comparison purposes the same problem is also simulated using viscous 

damping.  

Forty load increments were prescribed to capture the sharp load drop associated 

with the unstable process. According to the analytical solution the snap-back will occur at 

a normalized displacement of 4 1( ) / 1.25ncv v   , after which the displacement should 

monotonically decrease from 1.25 to 1.0  and the normalized load should drop from 1.0 

to 0.0 as shown in Figure 15 by the dashed line.  It was confirmed that, without numerical 

damping or the instability treatment of the current consistency-check based algorithm, all 

simulations diverged upon reaching the critical displacement of 4 1( ) / 1.25ncv v   . 

With the help of viscous damping, X-FEM was able to obtain converged solutions after 

significant cutbacks in load increment size. The X-FEM results with two numerical 

damping coefficients, cv = 1.0 × 10-5
 and 1.0 ×10-4, are plotted in Figure 15. Note that the 

solution is mildly dependent on the choice of the damping coefficient. It took a total of 77 

load increments and a CPU time of 2.5 seconds to complete the simulation for cv = 

1.0×10-5. 
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For the present A-FEM with the consistency-check based algorithm, a stable 

solution was achieved by instantaneously increasing the modulus from 41.6 10E    

N/mm2 (i.e., 1.25   ) to a modified value of 42.22 10E   N/mm2, resulting in a 

reduced value of 0 0.9   immediately after the peak load was reached. The solution is 

unconditionally stable as long as the applied displacement does not exceed the critical 

displacement for zero reaction force ( 4 1 0( ) / /ncv v     ). The present A-FEM took 44 

load increments and a CPU time of 1.4 seconds to successfully complete the simulation. 

Note that, if the incremental load size is so large that the reaction force goes 

directly from peak value to zero, the sudden drop in load may still cause a global load 

imbalance. In such a case, cutbacks in the load increment are expected. However, the 

advantage of the current method is that once the load increment size is reduced 

sufficiently a stable solution always exists and can be quickly computed with the 

consistency-check based algorithm.  It should be cautioned that this is a numerical 

treatment for the single purpose of avoiding severe numerical divergence. Similar to the 

popular numerical damping technique wherein a nonphysical viscous damping force is 

introduced to ease the failure process, here the elemental stiffness is artificially increased. 

Once the failure process is completed, the correct elemental stiffness should be restored. 
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Figure 15. Comparison of the numerically obtained normalized load-displacement curves 
for an unstable fracture process. 

 

   2.6.2 Numerical Performance in Fracture Analyses of a 4-point Shear Beam Test 

The next evaluation case of A-FEM in simulating the arbitrary crack propagation 

in a 4-point shear beam test reported in [113] is investigated. The results are compared 

against those obtained from a phantom-node-method (PNM) based augmented finite 

element (PNM-based A-FEM) developed previously by Yang and colleagues [71]. It is 

noted that both consistency-check based A-FEM and the PNM-based A-FEM have been 

implemented in the ABAQUS™(v6.10) package as user-defined elements and they 

employ the same crack tracking algorithm [90] [71]. Thus the numerical performance 

provides an objective comparison. 

The problem has been simulated successfully using X-FEM by Möes and 

Belytschko [52], using a triangular mesh of size ~ 3 mm. The same numerical model 

setup simulated in [52] was adopted. Maximum principal stress criterion was used for 
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crack initiation. The concrete material properties are: 4 22.8 10  N/mmE   , = 0.1;

I 0.145 N/mm;  2ˆ  = 2.4 N/mm . The cohesive law used was a triangular law with an 

initial slope of (1) 4 32.0 10  N/mmn    and a softening slope of (2) 3
n 20 N/mm   .  

The problem was analyzed using three different meshes with characteristic mesh 

size of  le = 2 mm, 4 mm, and 8 mm (the corresponding total elements, are 10760, 2849, 

and 1094 elements respectively). Details of these numerical meshes can be found in [90, 

114] and the predicted crack trajectories by the consistency-check based A-FEM and the 

PNM-based A-FEM are all in close agreement with the X-FEM results reported in [52].   

It has been well documented that this test exhibits a severe global snap-back 

behavior after the peak load is reached [113]. In this study, the arc-length method (Option 

*RIKS in ABAQUS™ v6.10) was used in an effort to capture this behavior. The loading 

parameters were set to a maximum prescribed displacement of ~ 0.1 mm, and a suggested 

maximum incremental size of 0.002 mm for both the PNM-based A-FEM and the 

consistency-check based A-FEM simulations. The actual increment size was determined 

by the *RIKS load scheme in ABAQUS™.  

Comparisons of the predicted load-displacement curves using the consistency-

check based A-FEM and the PNM-based A-FEM are given in Figure 16(a). The X-FEM 

results reported in [52] are also included in this plot for comparison. Both the 

consistency-check based A-FEM and the PNM-based A-FEM completed the simulations 

without any numerical difficulty. The present A-FEM results agree very well with the X-

FEM results of Moes and Belytschko (2002) [52]. The PNM-based A-FEM also did a 
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good job except that the snap-back is slightly sharper than those predicted by the 

consistency-check based A-FEM and by the X-FEM.   

However the consistency-check based A-FEM is considerably more efficient than 

the PNM-based A-FEM. Figure 16(b) compares the CPU time (in seconds) required by 

the two methods in completing the simulations. For an identical mesh the CPU time 

required by the consistency-check based A-FEM is at least 50 times less than that 

required by the PNM-based A-FEM. The detailed numerical performance statistics are 

summarized in Table 1. It is clear that for each case, although the load increment number 

and total iteration number are on the same order, the CPU time per iteration of the PNM-

based A-FEM is on average ~50 times more than that required by the consistency-check 

based A-FEM. 

 
Table 1. Statistics on the numerical performance for the three meshes in the 4-point shear 
beam test, the numbers in “( )” correspond to the respective crack-free, elastic 
calculations. 
 

l
e 
= 2 mm l

e 
= 4 mm l

e 
= 8 mm 

Present 
A-FEM 

PNM- 
A-FEM 

Present 
A-FEM 

PNM- 
A-FEM 

Present 
A-FEM 

PNM- 
A-FEM 

Total 
increments 

61(61) 62 (62) 66 (66) 66 (66) 75 (75) 71 (71) 

Total iterations 202 (61) 270 (62) 175 (66) 234 (66) 193 (75) 205 (71) 

CPU time 
(sec)(a) 158 (68) 10889 (109) 41.8 (18) 2385 (30) 22.4 (9.5) 1328 (12.6)

CPU 
time/iteration 

0.78 (1.11) 40.3 (1.75) 0.24 (0.27) 10.2 (0.45) 0.12 (0.13) 6.48 (0.18)
(a) the CPU time here refers to the “user time” (i.e., total CPU time excluding the system 

time) reported by ABAQUS™ (V6.10). 
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The ~50 times increase in CPU time by the PNM-based A-FEM is not only due to 

the use of double nodes (recall that the total DoFs of a PNM-based A-FEM model is two 

times the DoFs of the corresponding model of the consistency-check based A-FEM). The 

two dashed lines in Figure 16(b) represent the CPU times required by both methods to 

complete an elastic problem with the same mesh and the same load incremental numbers 

with crack initiation and propagation prohibited. In such crack-free, elastic simulations, 

the CPU time required by the PNM-based A-FEM is about 60% more than that required 

by the consistency-check based A-FEM, which is consistent with what was reported in 

[71]. Thus, for the PNM-based A-FEM, the ~100 times increase of CPU time from a 

crack-free elastic simulation to the respective crack propagation simulation is directly due 

to the additional computational cost in treating the propagating crack. The CPU times of 

the consistency-check based A-FEM simulations are on average about twice that of the 

respective elastic calculations. 
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(a) 

 
(b) 

 
Figure 16. (a) Comparison of the simulated load-displacement curves by the 
consistency-check based A-FEM (solid lines) and the PNM-based A-FEM (dashed 
lines), (b) comparison of the CPU times in seconds. 
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A close examination of the two methods shows that the significant increase in 

CPU time by the PNM-based A-FEM is associated with: 1) the ever increasing active 

DoFs as a crack propagates, and 2) the numerical procedure to judicially determine the 

crack configuration and to properly assign the ghost and real nodes to cracked 

subdomains. These two features are critical to any advanced numerical method that 

employs additional external DoFs to account for propagating cracks (e.g. X-FEM2, PNM, 

and G-FEM). However, the consistency-check based A-FEM is an exception, and needs 

neither. It is obvious that the consistency-check based algorithm contributes significantly 

to the improvement in numerical efficiency and accuracy. It would be of interest to 

compare directly the numerical performance of the consistency-check based condensation 

algorithm and a Newton-Raphson type iterative condensation method within the 

consistency-check based A-FEM framework. However, this is currently not possible 

because an iterative condensation algorithm has not been integrated into the consistency-

check based A-FEM. Instead an indirect comparison is performed by applying the 

consistency-check based A-FEM to an interface delamination problem in next section.  

 
 

 

 

                                                 

2 For a comparison of the numerical efficiency between the present A-FEM and X-FEM in 
ABAQUSTM (v6.11) see [114] S. Mohammadizadeh, "A novel augmented finite element 
method for modeling arbitrary cracking in 2-D solids," Ph.D., Mechanical and Aerospace 
Engineering, University of Miami, 2013. where it was reported that the consistency-check based 
A-FEM is 2-3 orders of magnitude more efficient.  
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   2.6.3 Numerical Performance in Mixed-Mode Delamination of a Composite  

In this section, the performance of the consistency-check based A-FEM in 

analyzing a mixed mode delamination problem was compared against the standard 

cohesive zone modeling (CZM) method wherein interfacial cohesive zone (CZ) elements 

were explicitly defined along the delamination plane. The mixed mode bending (MMB) 

tests reported in [84, 115] were chosen for analyses and the simulation results were 

compared directly with the experimental results.  

The MMB test configuration is shown in Figure 17(a). The advantage of this test 

is that different mode mixities can be achieved by simple adjustment of the length of the 

rigid lever (c) as shown in Figure 17(a). In the numerical models, the lever was not 

modeled explicitly. Rather the loading was achieved by imposing a displacement relation 

between the loading-point (P), mid-point (Q), and the end point (R).  

The test specimens were cut from panels of 24-ply unidirectional AS4/PEEK to 
dimensions 102 mm long, 25.4 mm wide, and 2 x 1.56 mm = 3.12 mm thick according to 
[84]. The material properties of the AS4/PEEK are given in  

Table 2 together with the cohesive properties identified and used by Camanho et 

al (2003) [116]. In this study, the MMB specimens with mixed mode ratio of GII
*/ tot = 

20%, 50%, and 80% were analyzed. The initial crack lengths (a) for these specimens 

were reported as 33.7 mm, 34.1 mm, 31.4 mm, in the same order as [84].  

Two types of cohesive laws with identical cohesive strength and toughness, but 

with different traction-separation law shapes as shown in Figure 17(b) were used. The 

triangular law with a single linear softening phase is one of the most widely used in 

literature, as well as in commercial software packages such as ABAQUS™ [116-119]. 
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The trapezoidal cohesive law with a bi-linear softening has also been used in literature, 

especially for materials exhibiting mild ductility [120-126].   

For the triangular cohesive law the cohesive displacements corresponding to the elastic 
limits were set to be sufficiently small, 1 nc=0.01n  and s1 sc0.01  . These values, 

together with the toughness and peak strength values in  

Table 2, yield the following stiffness values: (1) 5
n 3.31 10   , (1) 52.91 10s   , 

(2) 3
n 3.34 10    , and (2) 32.94 10s    , all with units N/mm3.  

For the trapezoidal law with a bi-linear softening phase, the cohesive displacements 
corresponding to the elastic limits were the same as the triangular law (i.e., 1 nc=0.01n 
and s1 sc0.01  ). The cohesive displacements corresponding to the onset of the second 

softening phase were chosen to be 2 20.16  and 0.16n nc s sc     . These values, together 

with the toughness and peak strength values in  

Table 2, lead to the following stiffness values: (1) 5
n 3.83 10   ; (1) 53.38 10s  

; (2) (2)
n s 0.0   ; (3) 34.56 10s   ; and (3) 3

n 4.02 10    , all with units N/mm3 

 
Table 2. Properties for AS4/PEEK Unidirectional Composite, from [116, 119]. 
 

Elastic  
constants 

E11 

(GPa) 
E22 = E33 

(GPa) 
G22 = G33 

(GPa) 
G23 

(GPa) 
v12 = v12 

- 
v23 

- 

122.7 10.1 5.5 3.7 0.25 0.45 

Fracture 
parameters 

I 

(N/mm) 
̂  

(N/mm2) 
II 

(N/mm) 
̂  

(N/mm2) 
  

0.969 80.0 1.719 100.0   

The MMB specimens were modelled with the consistency-check based A-FEM 

and the mesh shown in Figure 17(a). In this model, each of the sub-beams (102 mm x 1.5 

mm) were discretized into 200 x 3 = 600 standard 4-node plane-stress elements (CPS4 in 

ABAQUS™). The two sub-beams were joined by a center strip of 102 mm x 0.12 mm 

(so that the total MMB specimen thickness is consistent with the actual specimen 
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thickness of 3.12 mm), which was modeled with 200 of the present A-FEs. Thus in this 

model the mesh resolution was le = 0.51 mm along the crack propagation direction.  

For each specimen, a certain number of the A-FEs were set to be pre-cracked (complete 

traction-free) to form an initial crack of length corresponding to the experimental value 

reported in [84]. The number of pre-cracked A-FEs for GII
*/ tot = 20%, 50%, and 80% 

were 67, 68, and 63, respectively. The rest were regular A-FEs with no crack information 

specified. Whether they should be augmented to permit an intra-elemental cohesive crack 

was purely determined by the in situ stress condition in the crack-tip element according to 

a crack initiation criterion that will be discussed shortly.   

A trial numerical simulation on a double-cantilever beam specimen with the 

above material and the triangular cohesive law showed that the cohesive zone length 

corresponding to mode-I loading was lch = 1.0 mm. Thus there are only two elements 

within the propagating cohesive zone. A common criterion for mixed mode cohesive 

crack initiation was used for the A-FEs 

 22 12ˆ ˆ/ / 1      (36) 

where 22 12 and    are the normal and shear stress averaged over the volume of a crack-

tip (uncracked) A-FE. Once this criterion is met, a horizontal cohesive crack is inserted 

along the horizontal mid-line of the A-FE and the element is augmented from this point 

on. In the following MMB simulations, the cohesive crack propagation criterion was 

slightly different from Equation (80), because the mixed-mode toughness values reported 

in [115] cannot be fit to a linear curve between mode-I and mode-II so the criterion was 

revised to 
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 * *
I nf II sf tot[ ( ) ( )] / 1   G G  (37) 

where tot  is the mixed-mode toughness from the experiments reported in[115]. Similar 

treatment has been used successfully in [116, 127].  

Note that in the A-FE model, the entire numerical procedure associated with the 

determination of crack initiation, followed by elemental augmentation and condensation, 

and crack path tracking, had to be fully implemented to initiate and propagate the 

delamination crack.  On the contrary, such numerical operations were not necessary in 

the following standard CZM analyses in which case the crack paths were pre-defined as 

CZM elements. 

 

 

 

 

 

 

 

 
(a) 
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(b) 

 
Figure 17. (a) The mixed mode bending (MMB) test specimen and numerical mesh, (b) 
the triangular cohesive law (linear softening) and the trapezoidal cohesive law (bi-linear 
softening). 

 

For comparison purposes the MMBs were also modeled by a standard CZM 

technique using a 2D cohesive element developed by Yang and colleagues previously 

[127]. Using the same cohesive laws and parameters as for the A-FEM model. This 2D 

cohesive element employs the mixed Gaussian and subdomain integration technique and 

has proven to be more accurate and robust than those cohesive elements using standard 

Gaussian or Newton-Cotes integration schemes (such as the one available in 

ABAQUS™) [127]. The element is implemented as a user-defined element in 

ABAQUS™(v6.10).   

The CZM mesh was slightly different from that of the A-FEM mesh: each of the 

two sub-beams of thickness 1.56 mm were discretized into 200 x 3 = 600 standard plane-

stress elements. The two sub-beams were connected by 200 pre-planted CZM elements 
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of zero thickness, some of which were set to be traction free with near-zero cohesive 

strength to serve as the initial crack. Note that the CZM model and the A-FEM model 

have exactly the same number of elements and total DoFs.  

Displacement-controlled loading coupled with arc-length method (*RIKS option 

in ABAQUS™) were used for all simulations in this section. To have a more objective 

comparison, the loading parameters for all cases were set to be identical: a suggested 

initial displacement increment of one-thousandth (0.001) of the specified maximum 

displacement (max = 11 mm, 7 mm, and 6 mm for GII
*/ tot = 20%, 50%, and 80%, 

respectively), and a maximum displacement increment of one-hundredth (0.01) of max. 

Other than that, the displacement increment is decided by the automatic load 

incrementing scheme in ABAQUS™.  

 
 

Figure 18. Simulated load-deflection curves for the MMB tests using present A-FEM and 
the standard CZM as compared to the experimental curves reported in [84]. 
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The numerically predicted load vs. displacement curves for the three mixed mode 

ratios using the present A-FEM and the standard CZM are shown in Figure 18. The 

experimental curves from [84] are plotted for comparison. The present A-FEM results 

obtained with triangular and trapezoidal cohesive laws are very consistent and both agree 

well with the experimental results.  The insensitivity to the numerical load-displacement 

curves to the cohesive law shapes is expected. Since the MMB specimens all have initial 

cracks that are much larger than the cohesive zone size ( a / lcoh > 30 ), the linear elastic 

fracture mechanics (LEFM) conditions are satisfied and the load-displacement curves 

should not be sensitive to the details of the cohesive law (strength and shape), but only to 

the fracture toughness.   

The numerical statistics for all three cases are given in  
Table 3. For all the cases, the present A-FEM, using either the triangular law or the 
trapezoidal law, did not encounter any numerical difficulties. The number of load 
increments, total iterations, and CPU times are all very consistent. However, compared to 
the standard CZM, the total iteration numbers are 20% ~ 50% less and the A-FEM CPU 
times are 10% ~ 30% less. This is somewhat surprising because in the CZM models, the 
interface crack paths were prescribed, while in the A-FEM models the crack paths were 
computed based the initiation criterion of Equation (36), followed by an elemental 
augmentation, condensation process, and a tracking procedure to maintain the continuity 
of the crack path. It would be expected that these additional numerical operations would 
make the A-FEM less efficient than the CZM in such cases. Indeed, the CPU time per 
iteration of the A-FEM simulations are all consistently 20-30% larger than those of the 
CZM simulations. However, it is evident from  

Table 3 that the superior stability and robustness of the current algorithm in the A-

FEM (which leads to much fewer iteration numbers to achieve converged solutions), is 

more than enough to offset the additional numerical costs associated with the elemental 

augmentation and condensation.  

Another unexpected observation is that, it appears the numerical cost of using of the 
trapezoidal cohesive law,  which has 4 stiffness segments (3 loading + 1 unloading 
segment), did not lead to any loss of numerical efficiency as compared to the use of the 
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triangular cohesive law, which has only 3 stiffness segments (2 loading + 1 unloading 
segment).  Given that the consistency-check based algorithm needs to check solution 
consistency through a combination of cohesive segments until a solution is identified (Eq. 
26), and in the worst case scenario a solution is found after 44 = 256 trials for the 
trapezoidal law, but only 34 = 81 trials for the triangular law, it would be reasonable to 
expect that using the trapezoidal law will be numerically more expensive. This 
improvement in numerical efficiency may be due to the combined effects of the 
following: 1) the irreversibility consideration that leads to reduced trial numbers (see the 
caption of Figure 12 and the discussion in Section 2.5), 2) in this MMB problem the 
rigorous consistency-check is needed only in the a few crack-tip elements (typically 2-3) 
within the active cohesive zone, and 3) the plateau segment in the trapezoidal law helps 
to improve the numerical stability (from  

Table 3, the total iteration numbers using the trapezoidal law are consistently 

smaller than those using the triangular law). 

The excellent stability and robustness of the present A-FEM is largely derived from the 
analytical nature of the consistency-check based condensation algorithm. As have been 
discussed in the beginning of this chapter (Equations (16) and (17)) and demonstrated in 
the single element example of Section 2.6.1, the current condensation algorithm can 
handle the numerical imbalance associated with the sudden change in cohesive stiffness, 
especially from a hardening phase (positive slope) to the softening phase (negative 
slope). In this MMB delamination problem, each element along the interface may 
encounter the sudden slope change multiple times as the crack propagates through it. 
Whenever this happens, the CZM analyses will encounter difficulty in achieving 
convergence within a single iteration (i.e., solving the global problem once). This is the 
reason that the total iteration numbers of the CZM analyses are consistently much larger 
than those of the A-FEM analyses in  

Table 3. 

Finally note that although the CZM element used here is less efficient than the A-FEM, it 
still outperforms the CZM element available in ABAQUS™(v6.10). The numerical 
statistics associated with the ABAQUS™ CZM element are given in  
Table 3 in parentheses “( )”. The primary difference between the user defined CZM 
element and the ABAQUS™ CZM element is the cohesive stress integration scheme.  
The ABAQUS™ CZM uses the standard Newton-Cotes integration scheme, while the 
user defined CZM uses a mixed Gaussian and subdomain integration scheme, which 
considers explicitly the crack-tip as it travels within an element [127]. The improved 
Gaussian integration scheme that is integrated in A-FEM is similar to the mixed Gaussian 
and subdomain integration scheme. From  

Table 3 it is obvious the performance of Newton-Cotes integration is much less 

reliable. 
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2.7 Concluding remarks 

The numerical performance of a novel algorithm that can provide an analytical 

solution to the local equilibrium equation in the augmented finite element method (A-

FEM) with embedded piece-wise linear cohesive crack-like discontinuities, has been 

studied in detail and compared with other methods including the PNM-based A-FEM and 

the standard CZM. It has been shown that the algorithm is not of the iterative schemes 

based on the Newton-Raphson method or its modified variants as commonly used in 

literature.  Rather, it is based on a simple, efficient consistency-check between assumed 

cohesive segments and the resulting analytical solutions.  The numerical investigation 

demonstrated that this consistency-check based algorithm can greatly reduce the 

nonlinear iterations and ease the numerical difficulties associated with sudden changes of 

cohesive stiffness inherent in any irreversible cohesive laws.  

 
Table 3. Comparison of numerical performance of the A-FEM and the CZM for MMB 
delaminations. 
 

GII/t Method 
Total No. 
of 
increments 

Total 
No. of 
iterations

Severe 
cutbacks 

Total 
CPU 
time 
[sec] 

CPU time 
per 
iteration 
[sec] 

20% 

Present A-FEM 
(triangular CZ law) 

122 157 0 24 0.15 

Present A-FEM 
(trapezoidal CZ 
law) 

122 154 0 22 0.14 

Standard CZM 
(triangular CZ law) 

134 
(124) 

250 
(790) 

0 
(2) 

31 
(73) 

0.12 
(0.09) 

50% 
Present A-FEM 
(triangular CZ law) 

120 155 0 24 0.15 
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Present A-FEM 
(trapezoidal CZ 
law) 

120 126 0 23 0.18 

Standard CZM 
(linear softening) 

120 
(125) 

187 
(1165) 

0 
(3) 

26 
(100) 

0.14 
(0.09) 

80% 

Present A-FEM 
(Linear softening) 

120 155 0 24 0.15 

Present A-FEM 
(Bi-linear softening) 

120 144 0 23 0.16 

Standard CZM 
(linear softening) 

134 
(127*) 

250 
(1894*) 

0 
(20*) 

32 
(156*) 

0.13 
(0.08*) 

The numbers in “( )” correspond to the statistics from using the CZM available in 
ABAQUS™. 
* in this case the ABAQUS™ CZM analysis aborted due to divergence at the 
displacement of 5.148 mm after 5 consecutive cutbacks. 
 

The basic idea of the algorithm has been further illustrated through a 1-D fracture 

problem to show how it can always find the analytical solution to the local elemental 

equilibrium through the rigorous yet efficient consistency check procedure. Through the 

1D analytical illustration and the single element performance analyses, it has been 

demonstrated that the analytical nature of the consistency-check based algorithm is the 

major contribution to the improved numerical accuracy and efficiency. Compared to the 

widely used, traditional Newton-Raphson method and its variants, the current algorithm 

is much more effective in dealing with sudden local stiffness changes related to damage 

initiation or repeated loading-unloading. It also allows for numerical treatment to avoid 

local elemental instability (due to excessively large cohesion strength), which helps to 

improve the numerical robustness. Although the present algorithm cannot avoid 

numerical difficulties associated with global instabilities, it can work in conjunction with 
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advanced solution techniques such as the arc-length method to solve problems with 

strong snap-back behavior, as demonstrated in the 4-point shear beam fracture problem. 

The numerical performance of the present A-FEM with the current consistency-

check based algorithm in simulating the arbitrary crack propagation in the 4-point shear 

beam test has been compared to the PNM-based A-FEM, which employs additional 

external DoFs to account for crack displacements due to intra-element cracking. It has 

been shown that, with identical meshes and loading parameters, the current algorithm 

leads to a ~50 times (5,000%) overall improvement in numerical efficiency as compared 

to the PNM-based A-FEM. The numerical performance of the present A-FEM and the 

PNM-based A-FEM were also benchmarked against their respective crack-free, elastic 

calculations. For the present A-FEM, the increase of CPU time due to crack propagation 

is 100%~200%, while for the PNM-based A-FEM the increase is ~ 10,000%.  

The numerical performance of the present A-FEM in simulating mixed mode 

delamination problems with different cohesive law shapes has been compared with the 

standard CZM approach. Despite the fact that in the CZM approach the delamination 

planes were pre-planted with interface elements, the numerical results show that the 

present A-FEM still out-performs the CZM by 20~30%. In this problem, the 

improvement is due to the A-FEM’s superior numerical stability and robustness, which 

leads to less overall equilibrium iterations required to achieve a converged solution. 

Finally note that the consistency-check based algorithm is non-sequential. Thus is 

favorable to parallel computing schemes to further improve the numerical efficiency. 

This robust and computationally efficient finite element framework will be used in the 
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eventual implementation of the proposed fatigue cohesive model to enable arbitrary 

fatigue crack initiation and propagation. 
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CHAPTER 3: FATIGUE MODEL FORMULATION 
 

3.1 Background 

 This chapter will provide a general overview of the proposed approach before 

presenting the detailed formulation in the subsequent chapter. As previously mentioned 

the ability to retain the quasi-static failure criterion is one of the major advantages of 

using a cohesive zone based method. To incorporate this feature in the fatigue cohesive 

zone model (FCZM) the static triangular traction-separation laws as depicted in Figure 4 

are incorporated to provide a failure envelope. This ensures that the stress in the cohesive 

region never exceeds the static strength and that the energy dissipation is consistent with 

quasi-static experimental test results. The damage that results from loading below the 

static strength after the cohesive zone has been initiated is accounted for by reducing the 

cohesive strength and the initial slope of the traction-separation laws. Selection of 

triangular traction-separations laws is justified by their widespread successful application 

in simulating fracture problems, evidenced by the fact that the vast majority of the 

cohesive zone methods listed in the previous chapters also use triangular separation laws.  

 The triangular traction-separation laws are characterized by a steep initial slope 

up to the cohesive strength limit (
0ˆ t  for normal or 0ˆII  for shear) at the elastic 

displacement limit ( 1I  for normal or 1II for shear)  followed by a softening stage which 

is used to model the progressive damage that results in an eventual loss of load carrying 

capacity at some critical displacement ( IC  for normal or IIC for shear). In order to 

facilitate the tracking of fatigue damage in the cohesive zone the maximum historical 
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displacement ( *
I  for normal or *

II  for shear) will be used as a monotonically increasing 

damage parameter. If the displacement calculated is below the elastic limit *
1I I   or 

*
1II II   the element is in the “pre-initiation” phase. When an element is in the pre-

initiation phase during cyclic loading a major difference from quasi-static loading needs 

to be accounted for, namely the fact that fatigue damage does indeed occur at this 

subcritical stress level. The pre-initiation damage which occurs during the elastic stage of 

the cohesive zone response is responsible for reducing the cohesive strength but not the 

stiffness, leading to initiation and subsequent propagation.  A unique treatment is 

proposed in the subsequent chapter for this very important feature that enables the 

proposed model to simulate initiation and propagation in a unified manner. Initiation 

takes place when the maximum historical displacement exceeds the elastic limit ( *
1I I   

or *
1II II  ), when this occurs the cohesive strength is degraded. Additionally, once 

initiated, the cohesive strength will continue to decrease due to cyclic loading regardless 

of whether or not the maximum cohesive displacements during the cycle ( Imax or IImax ) 

exceeds the maximum historical cohesive displacements ( *
I  or *

II ) according to the 

proposed damage accumulation law.  

 Having outlined the general strategy one can imagine how the proposed method 

would be able to capture quasi-static failure, subcritical initiation, propagation, and 

delamination arrest. Figure 19 provides a graphical representation to further illustrate the 

approach in with a double cantilever beam (DCB). The plots depicted above the beam 

show cohesive stress versus time and the plots below the beam show the cohesive law 
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response for the three distinct regions ahead of a traction free crack. Far from the traction 

free zone (fully failed) the rightmost region experiences a maximum cohesive stress 

denoted by ( )
max
i or ( )

max
i

II  (where the superscript i denotes the cycle number) and is below 

the threshold strength denoted ˆ th  or t̂h . In this case no damage occurs in the element, 

and the response continues to be governed by the first linear section of the traction-

separation law. This is called the undamaged zone, with respect to the variables used in 

the formulation this condition is described as ( ) *( )
max 1ˆ  and i i

th I I      or 

( ) *( )
max 1ˆ  and i i

II th II II     . In the middle region the threshold strength has been exceeded 

and the strength is reduced to ( )ˆ i
r  or ( )ˆ i

IIr  according to a SN curve (Basquin’s law). The 

number cycles associated with the strength degradation is also calculated and used in the 

cycle jump strategy described in the next chapter. This region is called the critically 

stressed zone, and described by ( ) *( )
max 0 1ˆ ˆ  and i t i

th I I        or 

( ) *( )
max 0 1ˆ ˆ  and i i

th II II II II       . In the third region immediately preceding the traction 

free zone the cohesive zone response deviates from the initial triangular law specified 

according to the fatigue damage law described in the following sections. Here the 

strength and stiffness are reduced when the crack initiates and the cohesive zone is 

formed, this is called the active cohesive zone.  This condition is described by *( )
1

i
I I   

or *( )
1

i
II II   where the cohesive response may or may not continue to be governed 

exclusively by the initial triangular traction-separation law. The traction-separation law 

does however continue to provide an envelope for the cohesive response so that the 

cohesive zone response remains bounded by the static failure criteria.  
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 As will be described in the subsequent sections this novel approach will allow 

accurate calculation of mixed mode response without the need for additional parameters. 

Additionally, the incorporation of SN data allows for a unified formulation that can 

correctly simulate initiation and transition to power law governed propagation. 

 

 
 
Figure 19. Illustration of the unified continuum damage, initiation and propagation 
fatigue model. 
 

An important physically motivated feature of this approach is that any stress 

above the threshold strength results in damage and eventual transition to fatigue crack 

propagation. Another important feature is that the entire process is governed by laws 
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formulated exclusively within the cohesive region without the need for any global 

quantities; which this makes this approach particularly well-suited for modeling multiple 

cracks simultaneously at arbitrary locations. The cycle jump strategy which will be 

described in the next chapter enables computationally efficient simulation of high cycle 

fatigue. Both fatigue damage accumulation laws described are formulated to facilitate 

this. 

 

3.2 Cohesive Strength Degradation in the Critically Stressed Zone 

When the threshold strength is exceeded in an element but before a cohesive 

crack has initiated, the strength reduction is governed by Basquin’s law containing 

parameters calibrated from SN curve data for the specified material system. In the 

following, Goodman’s relation [128] for mean stress is combined with Basquin’s law in 

order to capture the load ratio effect.  

 

 
 

Figure 20. Goodman's relation for mean stress  
 

0ˆ
t

 ˆ fat



80 

 

 

 

Where  a is the stress amplitude,  m is the mean stress, ˆ fat  is the fatigue strength, and 

0ˆ
t is the static strength. In the following equations square brackets “[ ]” are used to 

include arguments for a given function whereas parentheses “( )” and curly brackets “{ }” 

are used for analytical expressions. 

 

3.3 Strength Degradation due to Normal Stress 

For strength degradation due to normal stress (mode I) the formulation begins 

with setting Basquin’s law equal to the Goodman relation. 

 
 
 

0

0

ˆ1 / if 0

ˆ1 / if 0
I

t
I m m

a I c
I m m

C
N

C


  


  

   
 

 (38) 

Here max min and   denote maximum and minimum normal stress respectively, 

max min( ) / 2a     is the stress amplitude, max min( ) / 2m     is the mean stress, 

0ˆ 0t  and 0ˆ 0c  are the tensile and compressive static strengths respectively, and

[ , ]I a mN    is the number of cycles to fatigue crack initiation. In standard high-cycle 

fatigue analysis this quantity is called fatigue life, in the present formulation it is used as 

an indication of fatigue crack initiation. The parameters 0IC   and 0I   are fitting 

constants calibrated from initiation experiments for a given composite material system. 

The load ratio is defined as min max/IR   , rearranging the stress amplitude and 

mean stress can be expressed as max(1 ) / 2a IR    and max(1 ) / 2m IR   . Plugging 

these into Equation (38) gives 
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 

 

1/

max

0 max

1/max

0 0 max

0 max

1
0 1

ˆ (1 )
[ , ]

ˆ ˆ1 ( / )
Otherwise

ˆ (1 )

I

I

I Im
Imt

Im

I Im t c
I Im

t
Im

C R
R

R
N R

C R

R






 


  

 

  
      
  
    

 (39) 

where max max 0ˆ/ t    is the normalized maximum stress and (1 ) / 2Im IR R  . In the 

present formulation, compression failure is not included so this value will range from

1ImR  rather than  is Im ImR R   . Equation (39) gives the number IN  of 

cycles as a function of max  and ImR when the stress threshold is exceed max th   where

0ˆ/ t
th th   , otherwise IN  . 

Although the damage mechanism responsible for the strength reduction remains 

an open research area, its existence is well-established from experimental studies. With a 

properly calibrated Equation (39) the residual strength can be calculated using the 

Palmgren-Miner rule for linear damage accumulation as max/ [1 ] /r Id dn N    . For a 

given constant amplitude loading profile, Equation (39) gives the number of cycles to 

failure IN , if the element experiences less cycles (n) then the residual strength can be 

calculated by 

 
 max

max

1 (1 ) / 1
[ ,  ,  ]

1 otherwise
I Im

r Im

n N R
n R


 

   
 


 (40) 

where max max 0ˆ ˆ[ ,  ,  ] [ ,  ,  ] / t
r Im r Imn R n R      is the normalized residual strength. For 

the first constant amplitude loading block ( (1) (1)
max , mR ) according to the current 

formulation after (1)n  cycles the normalized residual strength will be 
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(1)

(1) (1) (1)
max (1)

[ ] 1 (1 )r
I

n
n

N
 

 
    

 
 (41) 

where (1)
IN  is the number of cycles to failure at the current load level according to the 

SN curve. Defining (1)
_I SND  as the strength reduction rate given by the SN curve 

 (1) (1) (1)
_ max(1 ) /I SN ID N   (42) 

the normalized residual strength can then be expressed by 

 (1) (1) (1) (1)
_[ ] 1r I SNn D n     (43) 

In the subsequent constant amplitude loading block ( (2) (2)
max , mR ) the new 

strength degradation rate is 

 (2) (2) (2)
_ max(1 ) /I SN ID N   (44) 

and new normalized residual strength will be further reduced after (2)n  cycles and given 

by 

 (2) (2) (1) (2) (2)
_[ ]r r I SNn D n     (45) 

here (2) (1) (2)n n n     is the total number of cycles, it is easily seen this expression can 

be generalized for all subsequent constant amplitude loading blocks as 

 ( ) ( ) ( 1) ( 1) ( ) ( )
_[ ] [ ]j j j j j j

r r I SNn n D n       (46) 

Furthermore, following the rationale of the Palmgren-Miner rule, for subsequent 

constant amplitude load cycles defined by ( )
max

i  , ( )i
ImR  and ( )in  the new residual strength 

can be expressed by 
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  ( ) ( ) ( )
max

1

[ ] 1 (1 ) /
M

i i i
r I

i

n n N 


     (47) 

after ( )

1

M
i

i

n n


   cycles. 

As previously mentioned, compression induced damage is not included in the 

present formulation (i.e., compressive cycles where ( ) 1i
ImR   do not influence the residual 

stress calculation in Equation (47)). In Figure 21(b) a graphical depiction of the strength 

reduction and eventual cohesive crack initiation ( ( )
max[ ] M

r initn  ) due to three distant 

constant cyclic loading levels is shown, corresponding to M = 3 in Equation (47). 



84 

 

 

 

 
(a) 

 

 
(b) 

 
Figure 21. (a) Fatigue load characterization, (b) progressive strength degradation under 
varying amplitude loading of an un-cracked element in which the in-situ stress exceeds 
the fatigue threshold. 
 

3.4 Strength Degradation due to Shear Stress 

The strength degradation due to shear stress follows the same formulation as the 

strength degradation due to normal stress presented in the previous section. During shear 

loading setting the Basquin curve and the Goodman relation equal to each other gives 

 0

0

ˆ(1 / ) 0

ˆ(1 / ) 0
II II IIm II IIm

IIa II

II IIm II IIm

C
N

C
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 
 (48) 
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here max min and II II   denote maximum and minimum shear stress, 

max min( ) / 2IIa II II     is the shear stress amplitude, max min( ) / 2II m II II     is the 

mean shear stress,  and II IIC   are material dependent fitting parameters. Defining a load 

ratio for the shear stress ratio as min max/II II IIR    the equation for shear fatigue life for a 

constant amplitude loading can be rewritten as 

 

 

 

1/

max

0 max

max 1/

max

0 max

1
0 1

ˆ (1 )
[ , ]

1
Otherwise

ˆ (1 )
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II IIm II
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C R
R

R
N R

C R

R






 




 

 
     
  
   

 (49) 

where the bar notation denotes normalization by the strength max max 0ˆ/II II II   , and 

(1 ) / 2IIm IIR R  . The linear shear strength degradation is formulated following the 

Palmgren-Miner rule as before 

 [ ] 1 (1 )( / )IIr IIpeak IIn n N      (50) 

here max minmax(| |,| |)IIpeak II II    and 0ˆ ˆ/IIr IIr II   . It then follows that for the first 

constant amplitude loading block defined by (1) (1),IIpeak IImR  according to the current 

formulation after (1)n  cycles the normalized residual strength will be  

 
(1)

(1) (1) (1)
(1)

[ ] 1 (1 )IIr IIpeak
II

n
n

N
 

 
    

 
 (51) 

here (1)
IIN  is the number of cycles to failure at the current load level according to the SN 

curve. Introducing (1)
_II SND  as the strength reduction rate given by the SN curve 
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 (1) (1) (1)
_ (1 ) /II SN IIpeak IID N   (52) 

the normalized residual strength can then be expressed by 

 (1) (1) (1) (1)
_[ ] 1IIr II SNn D n     (53) 

For the subsequent constant amplitude loading block with (2) (2),IIpeak IImR  the new 

strength degradation rate is   

 (2) (2) (2)
_ (1 ) /II SN IIpeak IID N   (54) 

and new normalized residual strength will be further reduced after (2)n  cycles and given 

by 

 (2) (2) (1) (2) (2)
_[ ]IIr IIr II SNn D n     (55) 

here (2) (1) (2)n n n     is the total number of cycles and it is easily seen this expression 

can be generalized for all subsequent constant amplitude loading blocks by  

 ( ) ( ) ( 1) ( 1) ( ) ( )
_[ ] [ ]j j j j j j

IIr IIr II SNn n D n       (56) 

and the residual strength after ( )

1

M
i

i

n n


  cycles defined by ( ) ( ),i i
IIpeak IImR  where (i = 

1,2,3,…) is 

 ( ) ( ) ( )

1

[ ] 1 (1 )( / )
M

i i i
IIr IIpeak II

i

n n N 


     (57) 

during pure shear loading a cohesive crack will initiate when the residual strength equals 

the current peak stress ( )[ ] M
IIr init IIpeakn  . 
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3.5 Strength Degradation under Mixed Normal and Shear Stresses 

For cohesive crack initiation under combined loading it is commonly assumed 

that the shear and normal degradation mechanisms act separately. In this formulation the 

criterion used is that of Khoramishad et al. [80] following their success in predicting the 

initiation and propagation of single lap joint specimens 

 
( ) ( )
max IIpeak

r init IIr init

Max ,  1
[ ] [ ]

M M

n n

 
 

    
  

 (58) 

where the MacAuley bracket is defined as ( | |) / 2x x x    , and the residual strengths 

[ ]r n  and [ ]IIr n  for the varying loading profiles ( ( )
max

i , ( )i
ImR ) and ( ( ) ( )

max ,i i
II IImR ) where i = 

1,2,3…M can be calculated with Equations (47) and (57). Another criterion that may be 

adopted in future work due to its successful application in static failure, is of the Hashin 

[129] type 

 

2 2( ) ( )
max IIpeak

r init IIr init

1
[ ] [ ]

M M

n n

 
 

   
         

 (59) 

but as previously mentioned there are very few studies on fatigue crack initiation in 

polymers so it is not yet clear which criterion may offer better predictive capability. 

When the fatigue cohesive crack is initiated in the model the damage accumulation is 

then governed by the propagation derived laws, before these fatigue cohesive damage 

laws are introduced a strategy needs to be formulated for the transition between the pre-

initiated and initiated states.  
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3.6 Transition from Strength Degradation to Fatigue Cohesive Damage 

Accumulation 

Once the crack initiation criterion is met the cohesive normal and shear strengths 

in the traction-separation law are immediately set to the calculated residual strengths 

0 0ˆ ˆ [ ]t
f r initn     and 0 0ˆ ˆ [ ]IIf II IIr initn    .  To account for the experimentally 

observed immediate stiffness reduction and local load redistribution the initial slope of 

the traction-separation curve is recalculated. Before initiation the initial slopes of the 

traction-separation curves are ( ) *( )ˆ /i i
r I  for normal or ( ) *( )ˆ /i i

IIr II   for shear. Once crack 

initiation occurs the instantaneous reduction in stiffness is achieved by moving along the 

path R S in Figure 22. Note that the area OPS is no longer included in the traction-

separation law to account for the loss in energy dissipative capacity which has been 

observed experimentally [130]. An advantage of the proposed transition strategy is that 

the static traction-separation law is preserved as a failure envelope which is not 

necessarily the case for many of the formulations published in literature. 
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(a) 

 
(b) 

Figure 22. Unified Fatigue Cohesive law for initiation and propagation (a) mode I, (b) 
mode II. 
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3.7 Fatigue Damage Accumulation Laws 

Once a cohesive crack has initiated and transitioned, the propagation or fatigue 

damage accumulation is calculated with a different set of equations. The fatigue damage 

at this stage is calculated based on two possible mechanisms; material failure due to static 

overload governed by the static failure laws, and material degradation due to cyclic 

loading at subcritical loading levels. These calculations are all made at the local element 

level so any influence from neighboring damage zones is purely accounted for by their 

influence on the stress field. The failure process leading to a complete loss of load 

carrying capacity after initiation is inherently different from those governing the 

initiation, so the corresponding damage laws also need to be different. This is easily 

justified by the fact that experimentally there is a large difference between the measured 

fracture toughness in pre-cracked versus non-pre-cracked specimens [131].  

 

3.8 Mode I Fatigue Cohesive Damage Accumulation 

When the cohesive crack initiates the mode I cohesive strength as previously 

mentioned is set equal to 0 0ˆ ˆ [ ]t
f r initn    , then the corresponding historical 

displacement *
I  is set as 

 *
1 0 0 1ˆ ˆ( )(1 / )t

I IC I f I          (60) 

or in its normalized form as 

 *
1 0 0 1ˆ ˆ(1 )(1 / )t

I I f I         (61) 

where  * * /I I IC    and 1 1 /I I IC   , note that because initiation has occurred *
1I I  . 
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As previously discussed the initiation process decreases the cohesive zone’s energy 

dissipative capability. The degree to which this occurs can be quantified by 

 * *
1 1[ ] ( ) / (1 )I I I I ID        (62) 

which is equivalent to *[ ] [ ] / [ ]I ID area OPS area OPQ   in Figure 22(a) and can be 

thought of as the percentage of cohesive energy dissipated that is not available for future 

propagation resistance. This quantity can also be expressed in terms of the cohesive 

strengths as *
0 0ˆ ˆ[ ] 1 / t

I I fD     .  

At this point further cyclic loading of the element will accumulate cohesive 

damage *[ ]I ID  , which will monotonically increase as a function of loading cycles (n) 

resulting from the increase in the normalized historical displacement *
I . The resulting 

strength reduction can be computed by 

  * *
0ˆ ˆ[ ] 1 [ ]t

fr I I ID      (63) 

note that *[ ]I ID   as expressed in Equation (62) is linearly related to the cohesive strength 

reduction as defined in Equation (63), but not necessarily the cohesive energy dissipation 

should complete cohesive failure occur. This is an important feature that will be 

described in more detail in the mixed mode section. To quantify the energy dissipation at 

failure, a historical SERR * *[ ]I IG   is defined based on the normalized historical 

displacement *
I  

 * * * 2
1[ ] {1 (1 )(1 [ ]) }I I IC I I IG D        (64) 
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this quantity provides the mode I contribution to the mixed mode energy failure criterion 

and is equal to the area OPST in Figure 22(a) regardless of the current maximum 

cohesive opening displacement m axI . This strategy affords a direct link to the mixed-

mode quasi-static energy failure criterion developed by Yang and colleagues [10, 132], 

and shown to successfully model quasi-static failure of several engineering materials 

[121, 122, 127, 133, 134]. 

In the present formulation, two sources of fatigue damage are considered and 

depend on the cohesive opening displacement experienced during a cycle. If the cohesive 

opening displacement is less than the historical maximum cohesive opening displacement 

*
maxI I   then fatigue damage will occur. Building on the recent success in modeling 

adhesive joints by Khoramishad et al. [80] the following damage kinematic law is 

adopted 

 *
max

Im

( )
1

I

If Ia
If I I I

dD
D

dn


  


 
    

  (65) 

here IfD is the damage per cycle, I  and I  are two fitting parameters that need to be 

calibrated from experimental tests. Similarly defined as before m max(1 )Ia I IR    is the 

normalized amplitude and m m maxI I IR  is the normalized mean of the mode I cohesive 

opening displacement where m (1 ) / 2I IR R   and min max/I I IR    are again introduced 

to characterize the local cyclic cohesive displacement ratio. For a mode I cohesive crack 

ImR  is bounded due to restrictions on surface interpenetration by  m0.5 1IR   and IR is 

bounded by 0 1IR  . With these additional expressions Equation (65) can be rewritten 
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 m max

m max

(1 )

1

I

If I I
If I

I I

dD R
D

dn R





 
    

 . (66) 

The other possibility for damage accumulation occurs when the cohesive opening 

displacement exceeds the maximum historical cohesive opening displacement *
maxI I 

which is equivalent to the static overload case and the additional damage rate can be 

expressed by  

 *
max / (1 )Is

Is I I I

dD
D

dn
        . (67) 

Equations (66) and (67) can be combined to account for the total damage accumulation as 

 * *m m
max max

m m

(1 )
[ ] / (1 )

1

I

I I I
I I I I I I I

I I

dD R
D H

dn R


     


 
         

  (68) 

where [ ]H x the is the unit step function 
1   if 0

[ ]
0   if 0

x
H x

x


 

. Now with Equation (68) the 

total damage accumulation after n cycles can be calculated by 
0

n

I ID D dn    and used to 

calculate the new historical cohesive displacement *
I  and residual strength ˆ fr  using 

Equations (60) and (63) respectively. During pure mode I loading the cohesive crack fails 

when 1ID   as a result of * 1I   and ˆ 0fr  . In Figure 23 these two possible sources 

of fatigue damage accumulation are illustrated. 
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Figure 23. Illustration of the cohesive strength and stiffness degradation due to cyclic 
stress in mode I. The same applies to mode II upon replacing mode I symbols with mode 
II symbols. 

3.9 Mode II Fatigue Cohesive Damage Accumulation 

Upon cohesive crack initiation according to the mode II strength degradation 

previously formulated, the strength is set to 0 0ˆ ˆ [ ]IIf II IIr initn     and the maximum 

historical displacement to *
1 0 0 1ˆ ˆ(1 )(1 / )II II IIf II II         where  * * /II II IIC    and 

1 1 /II II IIC   . Note that initiation implies *
1II II   and the formulation follows that of 

the mode I case where the first possible source of fatigue damage occurs when the 

cohesive opening displacement exceeds the maximum historical cohesive displacement, 

in this case the damage is defined by 

 * *
1 1[ ] ( ) / (1 )II II II II IID        (69) 

and the cohesive shear strength will decrease linearly 

0ˆ t

IIC*
1[ ]I n



( ) ( )
max Im

in-situ stress

( , )n n 

*
2[ ]I n*

2[ 1]I n 

Static cohesive law

1[ ]I n

accumulated cohesive energy 
loss before cycle n1

energy loss due to fatigue 
damage from cycle n1 to n1+1

energy loss due to static 
overload from cycle n2-1 to n2

O

T

S

P

Area OPST: historical 
ERR after cycle n2

0ˆ f
1ˆ [ ]fr n

1I

2ˆ [ 1]fr n 

R
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  * *
0ˆ ˆ[ ] 1 [ ]IIfr II II II IID     . (70) 

Extending the same formulation from the mode I case, to facilitate an energy 

consistent failure criterion a shear SERR is defined as 

 * * * 2
1[ ] {1 (1 )(1 [ ]) }II II IIC II II IIG D        (71) 

for use in the mixed-mode failure criterion previously mentioned. The primary difference 

in mode II case is the fact that the cohesive shear displacement is not constrained to be 

positive so the maximum cohesive shear displacement needs to be accounted for 

accordingly by max minmax(| |,| |)IIpeak II II   . The second possibility is when the 

cohesive shear displacement is less than the maximum historical shear displacement 

*
IIpeak II   in which case the damage accumulation rate is defined as  

 
m1

II

IIf IIa
IIf II

II

dD
D

dn






 
  
  

  (72) 

where II  and II  are two fitting parameters that need to be calibrated from experiments. 

The normalized cohesive shear displacement is m m(1 )IIa II II axR    and the mean value 

of the cohesive shear displacement is m m mII II II axR  , where max max /II II IIC    and 

min min /II II IIC    are the normalized maximum and minimum shear displacements 

respectively. Introducing m (1 ) / 2II IIR R   and min m/II II II axR     to characterize the 

shear loading profile the damage accumulation rate can be rewritten as 

 m m

m m

(1 )

1

II

IIf II II ax
IIf II

II II ax

dD R
D

dn R






   
  

  (73) 
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in the case of static overload in mode II the damage accumulation is simply 

 *
1/ (1 )IIs

IIs IIpeak II II

dD
D

dn
         (74) 

and the damage accumulation rates for both cases can be combined as 

 * *m m
1

m m

(1 )
[ ] / (1 )

1

II

II II axII
II II II IIpeak IIpeak II II

II II ax

RdD
D H

dn R



     


         
  

  (75) 

and the total damage accumulation can be computed over n cycles by 
0

n

II IID D dn   . The 

cohesive shear crack fails when 1IID   as a result of  * 1II   and ˆ 0fr  .  

 

3.10 Mixed Mode Fatigue Cohesive Damage Accumulation 

The accumulation in the mixed-mode case represents a major departure from what 

has been previously published in literature, and enables the simulation of mixed-mode 

propagation without the need for additional fitting parameters. It begins by summing the 

damage rates for both mode I and II 

 mix I IID D D     (76) 

where 
ID  and 

IID  are defined by 

 
mix

* *m m
mix m m 1

m m

(1 )
[ ] / (1 )

1
I I ax

I I I ax I ax I I
I I ax

R
D H

R


     


 
        

  (77) 

and 

 * *m m
1

m m

(1 )
[ ] / (1 )

1

mix

II II ax
II mix II IIpeak IIpeak II II

II II ax

R
D H

R



     


        
  

  (78) 
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where new interpolated mixed-mode fitting parameters mix  and mix are used, they are 

computed by  

 

* * *

(1 )

(1 )

/ ( )

mix I II

mix I II

II I IIG G G

   
   



  

  

 

 (79) 

* * *[ ]I I IG G   and * * *[ ]II II IIG G   are the historical mode I and II SERRs as defined by 

Equations (64) and (71) respectively. These interpolated values can easily be shown to 

reduce to the pure modes, this approach is similar to the mixed-mode criterion used by 

Yang and colleagues [10, 132] in quasi-static cohesive zone modeling.  

 
* * * *[ ] [ ]

1I I II II

IC IIC

G G 
 

 
 (80) 

and by substituting Equations (64) and (71) into Equation (80) the criterion can be 

alternatively expressed in terms of the accumulated damage ID  and IID . 

 2 2
1 1(1 )(1 ) (1 )(1 ) 1I III IID D        (81) 

As previously stated this proposed formulation differs significantly from 

previously published non-Paris law based fatigue cohesive zone models in that the static 

traction-separation laws are utilized directly and are not adjusted during the simulation 

which provides a physically consistent link between fatigue and static failure. 

Additionally the proposed formulation does not require additional parameters for 

simulating the mixed mode case which is a major advantage by reducing the 

experimental needs for model calibration. The effectiveness of this novel approach is 

demonstrated in the next chapter. 
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CHAPTER 4: IMPLEMENTATION AND VERIFICATION 
 

4.1 Background  

The formulation is implemented as a user subroutine in the commercial software 

package ABAQUS™ (v6.11) with its feature rich pre and post-processing tools. In order 

to successfully use the proposed formulation, two additional features need to be included. 

The first is a procedure to determine the loading profile at the element level and the 

second is the cycle jump strategy previously alluded to that enables high cycle fatigue 

problems to be simulated in a computationally efficient manner. In the following two 

sections these methods are described then followed by a description of the analytical 

expressions used to calculate the global strain energy release rates for the relevant test 

configurations after which the model validations are presented.  

 

4.2 Determining the in situ loading profile 

There are two distinct load cycles, the static load cycle and the fatigue load cycle. 

In a static load cycle such as the first loading in a constant amplitude loading block, the 

damage accumulation is calculated as previously described but is not used for the cycle 

jump calculation which is only calculated during a fatigue load cycle. The cohesive zone 

is able to determine its current state of loading cycle independent of the global loading 

conditions which is important for simulating complex geometries or multiple 

delamination sites, this feature is unique and not present in the current published 

methods. An illustrative example is presented in Figure 24 for the mode I case which is 

identical to the mode II case. During a fatigue cycle N, a sampling frequency is specified 
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in order to resolve the variation in cohesive stress during that individual cycle in order to 

accurately calculate the damage. In the present implementation the number of sampling 

increments is set to Nmax = 20 for the typical fatigue loading cycle 1→2→3→4 in Figure 

24 where the global load is depicted in the left most graph and corresponding in-situ 

cohesive response in the graph on the right. At each integration point the maximum and 

minimum cohesive displacements are recorded and used in the damage calculation which 

is then utilized in the cycle jump strategy. 

 

 
Figure 24. Illustration of global load profile and the corresponding local (in-situ) 
cohesive response. For each cohesive element, the load profile is completely determined 
from the local response, which may or may not be synchronized with the global load. 
 

4.3 Cycle Jump Strategy 

To facilitate the simulation of high cycle fatigue a cycle jump strategy is needed. 

Since the formulation proposed relies on the in-situ cohesive response it is necessary to 

simulate some of the cycles but in high cycle fatigue where the cycles to failure is in 

excess of 1.0e4 and could easily approach 1.0e6 at these large cycle numbers and 
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considering there are 20 simulation increments for each cycle it is easy to see how these 

problems become too computationally expensive. The strategy for creating realistic and 

physically justified cycle jumps is now described. Because there are two possible sources 

of fatigue damage there are also two possible sources for cycle jumps. The first source 

considers the elements in the critically stressed damage in zone (i.e.,

*
1  for ,  k k k I II   ) where the damage is only manifested through strength reduction 

as governed by the SN curve data. The second source considers the damage in the active 

cohesive zone (i.e., *
k 1 for ,  k k I II   ), the elements in this region accumulate 

damage according to the fatigue cohesive damage accumulation relations formulated in 

Sections 3.3 through 3.5.  

To calculate the cycle jump in the critically stressed region the calculation is 

straightforward since the SN curve offers explicit information about number of cycles to 

failure or in this case initiation. So the cycle jump due to elements subjected to strength 

degradation is simply 

 
1 int

( ) ( ) ( ) ( )
max m

jp_SN ( ) ( )1 1
_ _

,
e

ij ij ij ijN N
r IIr II ax

ij iji j
I SN II SN

n
D D

   
 

                
min min min

 
 (82) 

where Ne1 is the total number of strength degrading elements, Nint is the number of 

integration points in each element, ( )ij
r and ( )ij

IIr are the normalized tensile and shear  

residual cohesive strengths at each integration point within each element where strength 

degradation is taking place. ( )
_
ij

I SND  and ( )
_

ij
II SND  are the strength degradation rates decided 
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from the normal and shear S-N curves at each integration point within each element 

where strength degradation is taking place, respectively.  

For the elements experiencing the second source of damage, namely the fatigue 

cohesive damage which occurs after initiation of the cohesive zone, the cycle jump is 

calculated based on an energy criterion; related to the element’s reduction in energy 

dissipative capability by a percentage proportional to the damage induced during a 

fatigue cycle. For cycle jump estimation, 11 1 k  can be assumed because 

1 0 (   )k k I or II   then damage in terms of energy can be calculated based on 

Equations (64) and (71) combined with the calibrated damage rates from Equations (66) 

and (73) and the number of cycles can be expressed by 

 
 

* *

2 (1 ) (1 )
I II

I I II II

G G
n

D D D D

  
 

   
 (83) 

here * * * */  and /I I IC II II IICG G G G         are the percentages of cohesive energy loss 

due to n  cycles of jump in mode I and mode II, respectively. For the implementation 

presented here * *( )I IIG G    is set to be 0.1, (i.e., it takes ~ 10 cycle jumps to fail a 

cohesive element). Then the cycle number for the fatigue damaged elements is calculated 

as 

  2 int
( )

jp_ftg
1 1

eN N
ij

i j
n n

 

    
 

min min  (84) 
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where Ne2 is the total number of the fatigue cohesive elements experiencing fatigue 

damage and Nint is the number of integration points in each element. Then the cycle jump 

number for the entire problem is taken to be the minimum of jp_ftgn  and jp_SNn . 

 jump jp_SN jp_ftg{ ,  }n n n  min  (85) 

In the following sections, validation cases are presented to demonstrate the 

effectiveness of the proposed method. Mesh sensitivity analysis is only performed for the 

first case, additionally most of the experimental studies in literature are either 

propagation or initiation and the propagation studies far outweigh the initiation studies in 

number. Therefore the validation presented for the performance of the combined 

phenomenon is less extensive than the propagation only.  

 

4.4 SERR Calculations in DCB, ENF, and MMB Tests 

Before proceeding to the validation cases the analytic expressions for the strain 

energy release rates following Juntti et al. [135] are presented as they form a basis for the 

for the energy release analysis. For the pure mode I case which in the simulations 

presented here consists of double cantilever beams (DCB) the strain energy release rate 

(SERR) can be computed as 
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        

 (86) 

here PI  is the applied load at crack mouth, a the crack length, b the specimen width, h the 

half specimen thickness. The last term in Equation (86) is the shear correction term, but it 
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is easily seen that for long cracks relative to the beam thickness this term is negligible. 

For the mode II case the SERR for the ENF test can be calculated by  

 
22 2
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II

II
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E b h G a

     
   

 (87) 

where PII is the applied load at the specimen center. Again the second term in Equation 

(87) is the shear correction factor which is negligible when the thickness is small relative 

to the crack length. In the mixed mode case the SERR for the MMB test configuration 

can be computed by determining the mixity ratio and calculating the SERR contributions 

from mode I and mode II then taking the summation due to superposition. The mixity 

ratio depends on the loading geometry as shown in Figure 25. 

 
(a) (b) 

Figure 25. (a) Mixed mode bending test configuration, (b) the decomposed mode I (DCB) 
mode II (ENF) test. 
 

 The load partitioning due to the geometry for the MMB testing rig is given by Reeder 

and Crews [136] who first proposed this loading configuration as 
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then Equations (86) and (87) can be used to calculate the SERRs for both modes 

individually. The mode mixity is commonly defined as a ratio of mode II strain energy 

release to the total strain energy release /( )II I IIG G G   , this is controlled by the 

relative length of the lever arm c in Figure 25 to the half length L. Then  for a given mode 

mixity and neglecting the shear terms in Equations (86) and (87) the ratio for any desired 

mode mixity can be expressed as  

 
2 3(1 ) /

6 3(1 ) /

c

L

 
 

 


 
 (89) 

with this final formality the validation cases can now be presented without any 

ambiguity. 

 

4.5 Fatigue Crack Propagation Simulation of a HTA/6376C Composite 

The first validation case presented is based on experiments performed by Asp et 

al. [4] where they performed mode I (DCB), mode II (ENF), and mixed-mode bending 

(MMB) tests of a HTA/6376C carbon/epoxy prepreg manufactured by Hexcel. The 

specimen geometry and MMB loading rig are shown in Figure 26, this type of MMB rig 

was originally proposed by Reeder [136]. The starter crack ao was 35 mm long and 

created by inserting a thin polyimide film of thickness 7.5 µm. The flexural modulus Ef 

=120 GPa was measured previously by Asp and colleagues [137], the remaining elastic 

constants which are of secondary importance are taken as typical values: E22 = 10.5 GPa, 

G12 = 5.25 GPa, v12 = 0.30, IC = 0.26 N/mm, and IIC = 1.002 N/mm. They did not 

measure a cohesive strength so commonly used values of 0ˆ f  = 60 MPa and 0ˆ f = 60 
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MPa are set. These seemingly low values can be justified by the fact that for simulating 

stable crack growth under LEFM dominated conditions the SERR or the area under the 

traction-separation curve (i.e., toughness) is the most important parameter, and far 

outweighs the influence had by the cohesive strength. Therefore, it is common practice to 

use lower than actual cohesive strengths when using cohesive elements to simulate a 

fracture process where LEFM dominates [78, 81]. One of the important considerations 

when using cohesive elements is their relative size to the cohesive zone length (i.e., 

fracture process zone (FPZ)). In order to achieve mesh independent results and realistic 

behavior this FPZ needs to be adequately resolved by the cohesive elements. A bare 

minimum for this is often set as lel = lcoh / 3, in the current model the cohesive length is 

approximated by considering the assumed cohesive strength, material toughness, and 

elastic modulus by an expression given by Williams and Hadavinia [138] 

 

1

4
coh I

2
1.01

ˆ
l E

t t
   

 
 (90) 

which for the current model yields lcoh = 1.4 mm. To investigate the mesh sensitivity of 

the proposed formulation two meshes were used, a coarse mesh with element length ~ 

0.25lcoh (0.34 mm) and a fine mesh with element length ~ 0.125lcoh (0.17 mm). It is worth 

noting that compared to meshes used in previous studies these would be considered 

coarse where typical meshes are on the order of ~0.05lcoh such as Harper and Hallett [78] 

where they used an element length of lcoh/18 in addition to using a very reduced cohesive 

strength of of 0ˆ f  = 15 and 30 MPa in  order to increase the number of elements in the 

active cohesive zone even further, this is likely due to a shortcoming in their cohesive 
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zone model formulation. Relatively coarse meshes are used in the current model based on 

the extensive study done by Do et al. [110] for the quasi-static case, the proposed fatigue 

formulation builds on their cohesive zone model. Additionally, for this first validation 

case the effect of material orthotropy is also investigated by simulating both the isotropic 

and transversely orthotropic models. The isotropic material properties were chosen to be 

E =120 GPa and v = 0.30. Starting with the mode I case (DCB) the experimental data 

presented by Asp and colleagues were used to calibrate the mode I propagation 

parameters  and I I   by a search method where one parameter was adjusted at a time. 

  

      

(a)         (b) 

Figure 26. Specimen geometry and the mixed-mode bending test rig used by [4]. 
 

Through this process the mode I propagation parameters that yielded the closest 

match to the experimental data for the DCB case were  0.1 and   3.5I I   . The crack 

growth rate (da/dN) versus normalized SERR ( /I ICG  ) for the DCB is shown in Figure 

27(a), excellent agreement can be seen between the simulations and the experimentally 

measured range. Additionally, but not surprisingly, the influence of orthotropic versus 

isotropic as well as the selection of coarse versus fine mesh has little impact on the 

simulation results. The same process was then applied to the mode II case (ENF) and 
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those parameters determined to be  2.0 and   3.5I I   . The results are presented in 

Figure 27(b), only the isotropic coarse mesh was used and again excellent agreement 

between simulation and experiments is achieved. 

Having calibrated the pure mode I and mode II propagation parameters the next 

case is the mixed-mode (MMB) case, it is worth noting that several interpolation schemes 

for the mixed-mode formulation were tested before settling on the current formulation. 

Predicting the mixed-mode behavior represents a major advancement in modeling fatigue 

delaminations. Using the proposed method with a mixed-mode ratio of 

/ ( ) 0.5II I IIG G G     the simulated results can be seen in Figure 27(b) and are in 

excellent agreement with the experimental range measured. 

Having successfully completed the first validation study as well as verifying the 

negligible influence of both mesh size and material orthotropy it is of interest if the 

mode-mixity is preserved at the local level. For quasi-static loading it has been shown 

that non-truss like potential based cohesive models as used in this study will maintain the 

correct mode-mixty within the fracture process zone as well as correctly preserve load 

path independence [54, 127, 139]. Many cohesive zone models used to date for 

simulating fatigue [77, 116, 118] and including the quasi-static cohesive zone element 

available in ABAQUS™ (v6.10) are truss like and load path dependent due to their non-

potential based formulation, and leads to problems with regards to mode-mixity being 

consistent between local and global levels. 
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(a) 

 

 
(b) 

 
Figure 27. Fatigue crack growth rate simulated by the fatigue CZM as compared to  
experimental data of Asp, Sjögren et al. [4]. (a) DCB results and mesh sensitivity; (b) 
mode II (ENF) calibrated results and predictions to the MMB test with mode mix ratio of 

/ ( ) 0.5II I IIG G G     
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Under fatigue loading most researchers have not provided this check, in some 

cases this is justifiable when the energy partitioning is specified a priori [77, 78, 140], but 

for a truly automatic and local method as proposed this is a necessary check. For the 

current test case the mixed mode ratio is 0.5 and the local energy release rates can be 

computed directly from the response of the cohesive zone element as the enclosed area 

under the load displacement curve for the elements with an active cohesive zone. For the 

current mixed-mode loading the global SERR is solely a function of c/L (c/L = 0.874 for 

 = 0.5) where c is the lever length of the fixture and L is the half length of the beam, 

with regards to the energy I IIG G  because / ( ) 0.5II I IIG G G    . This is easily 

verified in the model as the local SERRs can be calculated by the local stress distribution 

at the crack tip by integrating the stress along the cohesive interface. 

 
,

, 0
( ) (  or )

k tip

k loc k k kG d k I II


     (91) 

The simulation was loaded under displacement control for this verification 

because under constant displacement the SERRs decrease as the crack propagates. The 

displacement was set to 2.5 mm and the load ratio to 0.1 the resulting normal stress (22) 

and shear stress (12) distributions along the respective normal and shear crack 

displacements at three different cycle numbers are shown in Figure 28. Numerically 

integrating these curves local SERRs can be calculated and compared to the analytical 

results. In Table 4 a comparison is made between these locally and globally calculated 

SERRs, it can be seen that they agree very well both in maintaining the correct mode-

mixity and in absolute value as compared to the global analytical solution. Having 
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investigated the material orthotropy, mesh size, and mode-mixity effects without 

uncovering any shortcomings, the model validation is continued with other material 

systems and test configurations. 

 

 

Figure 28. Local cohesive stress as functions of local cohesive crack displacements for 
three different number of cycles. The areas encompassed by these curves are the local 
SERRs. The shear stresses were intentionally plotted as negative values to differentiate 
them from the opening stress-displacement curves. 
 

Table 4. Comparison of local and global ERRs for three different cycle numbers. 
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4.6 Fatigue Crack Propagation Simulation of an E-Glass/M10-Epoxy Composite  

For the second validation case a glass/epoxy composite is chosen to test the new 

formulations ability to adjust to systems with different material properties. The 

experiments were performed by Kenane and Benzeggaph et al. [141-143], specimens 

were tested in three loading configurations: Double Cantilever Beam (DCB),  End 

Loaded Split (ELS), and Mixed-Mode Bending (MMB). The fiber volume fraction of the 

cured 6 mm thick panels was 52% but 5% of the fibers were woven perpendicularly. The 

pure mode cases were used to calibrate the mode I (DCB) and II (ELS)  fitting 

parameters. The parameters that give the best fit were  0.01 and   1.5I I   , and 

  100 and   4.5II II   . The results of the pure mode simulations can be seen in 

Figure 29 where the simulated curves pass through the middle of the experimental range.  

Using these parameters the mixed-mode cases are run as attempts to predict the MMB 

crack propagation, the results are show in Figure 30 and shown remarkable agreement 

considering no extra fitting was required.  
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(a)     

 

 
(b) 

 
Figure 29. Comparison of simulated fatigue crack growth rates (solid lines) and 
experimental data (symbols) for (a) the mode I DCB test, (b) the mode II ELS test. 
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(c) 

 

 
 (d) 

 
Figure 30. Comparison of simulated fatigue crack growth rates (solid lines) and 
experimental data (symbols) for (c) the MMB test with  = 0.28, and (d) the MMB test 
with  = 0.53. 
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4.7 Fatigue Crack Propagation Simulation of  an AS4/PEEK Composite  

In this section, a different material system is used to validate the model and 

investigate the load ratio effect. The AS4/PEEK composite material system consists of a 

carbon fiber and thermoplastic matrix. The polyether ether ketone (PEEK) matrix has a 

high toughness which makes it distinct from the previous validation cases. In the 

experimental work performed by Martin and Murri [144] AS4/PEEK specimens were 

tested in DCB and ENF loading fixtures at two different load ratios R = 0.1 and R = 0.5. 

The reported toughness in literature for this material system varies widely, with mode I 

toughness ranging from IC = 1.68 ~ 2.48 N/mm, and mode II toughness from IIC = 2.48 

~ 3.77 N/mm. For the validation study performed here the lower bounds are used as 

conservative estimates (i.e., IC = 1.68 N/mm and IIC = 2.48 N/mm). The propagation 

parameters were fitted using the R = 0.1 experimental data and found to be 

  0.1 ,    3.5I I   , and  30 ,     3.5II II   as can be seen in Figure 31. Then using 

the same propagation parameters, the new load ratio R = 0.5 was simulated and without 

making any adjustments the simulated curve still falls within the experimentally 

measured range. This is due to the incorporation of Goodman’s relation for mean stress, 

and shows it is valid even when applied at the local level. This is significant because 

although in these simple loading cases the global and local load ratios can be assumed 

equal as with the mode-mixity, when the loading configuration becomes more complex 

due to geometry or multiple damages sites, this assumption is no longer valid and having 

a method that works purely on local information is needed for any attempt to simulate 

more complex parts or structures. 
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(a) 

 

 
(b) 

 
Figure 31. Comparison of F-CZM predicted and experimentally measured fatigue crack 
growth rates under (a) mode I, (b) mode II loading with two different load ratios R = 0.1 
and R = 0.5. 
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4.8 Fatigue Crack Propagation Simulation of  an IM7/8552 Composite  

The remaining validation cases presented are all focused on a commonly used 

intermediate modulus carbon fiber reinforced toughened epoxy matrix composite, 

IM7/8552. Fatigue crack growth rates and fracture toughnesses were extracted from three 

separate recent reports, Murri [145] for mode I (DCB), O'Brien et al. [131] for mode II 

(ENF), and Ratcliffe and Johnston Jr  [146] for mixed mode (MMB). The specimens 

tested in all the three reports were produced by the same manufacturer (verified through 

private communication with G. Murri) and cured under identical conditions. Therefore 

the data form a comprehensive experimental fatigue characterization, complete with both 

pure modes and three mode mix ratios, = 20%, 50%, and 80%.  

There are some inherent difficulties in the fatigue MMB testing, which lead to 

some inconsistencies in the experimental data (private communication with Dr. James 

Ratcliffe who carried out MMB tests). One of the major concerns is that under mode I or 

mode I dominated loading, the static fracture toughness exhibits R-curve phenomenon 

due to significant oblique fiber bridging. According to Murri [145], the initiation mode I 

toughness is IC = 0.239 N/mm and the fully developed plateau toughness value 

(propagation toughness) is I = 0.360 N/mm. The mode II fracture toughness does not 

exhibit R-curve phenomenon and is reported to be IIC = 0.739 N/mm by Ratcliffe and 

Johnston Jr [146]. In the following, the simulations of both pure and mixed mode fatigue 

tests were performed using both initiation and propagation mode I toughness. In all cases, 

the tensile and shear cohesive strength values were set to be 60 MPa.  
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If the “initiation” mode I toughness value (IC  = 0.239 N/mm) is used, the fatigue 

damage accumulation parameters calibrated using the experimental data of the pure mode 

I (DCB) and mode II (ENF) tests were determined to be 4 10  and   8.2I I    and 

  10 and   4.5II II   . If the “propagation” mode I toughness value (I = 0.360 

N/mm), the fatigue damage accumulation parameters were determined to be 

4  2 10  and   8.7I I    , and  10 and   4.5II II   . Predictions of the da/dN vs. 

Gk/GkC (k = I, II) curves based on these parameters are shown in Figure 32 together with 

the experimental data. With these parameters, the simulated crack growth curves in mode 

I and mode II are almost identical to the respective Paris laws fitted from the 

experimental data.  

With the calibrated mode I and mode II fatigue-CZM damage parameters, the 

MMB tests were simulated without introducing any new controlling parameters and the 

simulated results are compared against the respective experimental data in Figure 33. The 

predictions are all within or close to the experimental data ranges. They share the correct 

trends, except for the case of  = 20%, in which case inconsistencies exist among the 

experimental data itself. Another noted anomaly among the experimental data is that the 

slopes of the fitted Paris laws for all the mixed mode cases are almost identical to the 

ENF (mode II) slope.  This lack of dependence on the mix mode ratio  is inconsistent 

with other similar studies such as those reported by Konig, Kruger et al. [147], Sjogren 

and Asp [148], and Kenane, Azari et al. [142]. The numerical curves predict the gradual 

transition from mode I slope to the mode II slope. Also, by comparing the predictions 
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with “initiation” mode I toughness and the “propagation” toughness, it may be concluded 

that using the “propagation” toughness gives better predictions for the mixed mode crack 

propagation. As stated previously the ability to correctly predict the mixed-mode 

response based on calibrations from experiments of the pure modes represents a major 

step forward towards reducing the necessary testing for model calibration. 
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(a) 

 

 
(b) 

 
Figure 32. Fatigue crack growth simulations and experimental data as reported by (Murri 
2013) and O'Brien et al. (2010) (a) mode I (DCB) results, (b) mode II (ENF) results. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 33. Comparison of simulated fatigue crack growth rates (solid lines) and 
experimental data (symbols) for the MMB tests with (a)  = 20%, (b)  = 50%, and (c)  
= 80%.  
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4.9 Fatigue Crack Initiation and Propagation Simulation of an IM7/8552 Composite 

As stated previously initiation studies are rare in literature due to the high 

variability in the number of cycles to fatigue crack initiation. The difficulty faced with 

validating the proposed formulation is this lack of available experimental data as well as 

the types of experiments that have been performed. As highlighted there exists a gap in 

the theoretical framework between short and long crack, so studies that are focused on 

initiation do not have crack growth rate explicitly as a function of SERRs. There is no 

way to calculate the global energy release since LEFM does not apply and there is no 

reason to try and fit a Paris law because the underlying assumptions are violated. 

However, there are studies that differentiate initiation and final failure due to an unstable 

catastrophic failure. This type of information can be used to validate the unified nature of 

the proposed formulation since the catastrophic failure is easily modeled and represents 

when the SERR exceeds the dissipative capacity of the cohesive zone. In the following 

three point bending (TPB) experimental data from O’Brien and colleagues [2] will be 

used to fit I I and C  , double notched shear (DNS) experimental data from May and 

Hallett [79] to determine II IIand C  , and then using the comprehensive list of 

parameters for IM7/8552 a prediction for both initiation and propagation can be made for 

a short beam shear (SBS) test also performed by May and Hallett [79].  

The three point bending (TPB) specimens chosen for validation had a span of 50.8 

mm and were cut to a width of 6.35 mm from unidirectional 40-ply panels that had an 

average ply thickness of 0.138 mm, the cuts were made so that the fiber direction was 

transverse to the span direction. Due to symmetry the numerical model consists of only 
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half the beam as shown in Figure 34(b). The mesh along the failure plane has an element 

size of 0.02 mm. The mesh is unstructured to allow for larger elements as the distance 

from the failure plane increases. The model consists of 3998 nodes, 3254 strain plane 

elements (CPE4 in ABAQUS™), and 276 user elements, a roller support is placed at the 

support location, a symmetry condition at the failure plane, and a frictionless contact to 

prevent interpenetration, the load was applied to the top node of the failure plane in load 

control as was done in the experiments. The quasi-static mode I cohesive strength was 

measured by O’Brien et al. [2] to be 0ˆ 124 MPat  , and was used directly in the model. 

It should be noted this is considerably higher than previously used cohesive strength, and 

necessitated the use of a finer mesh at the interface. This is a well-known relation due to 

fracture mechanics considerations. The data for this specimen and loading configuration 

is reproduced in Figure 34(c), there is a wide scatter in the data for the various load levels 

which are given in terms of “severity” which is defined as the fraction of the quasi-static 

tested strength. Due to the load being applied in load control the specimens failed 

catastrophically once the damage initiated which makes this experiment well suited for 

calibrating the initiation parameters and I IC  . The parameters that gave the best fit to the 

average experimentally observed behavior were  96 MPa and 0.05I IC   . The 

simulated curve is depicted in Figure 34(c) and provides a very close match to the 

experimental data. 
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Figure 34. (a) The TPB specimen, (b) the numerical mesh, and (c) comparison of 
simulated and experimentally measured fatigue crack initiation life as functions of load 
severity. 
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The double notched shear (DNS) tests performed by May and Hallett [79] were 

chosen to validate the shear initiation parameters and II IIC  . The geometry is shown in 

Figure 35(a) the model was constructed following the model produced in the original 

study [79] with elements having the length of one ply 0.125 mm, the resulting mesh has 

2008 nodes, 1716 plane strain elements (CPE4 in ABAQUS™), and 51 cohesive user 

elements along the interface. The cohesive strength was set to the strength measured by 

the short beam shear test (SBS) 0ˆ 102 MPaII   because the cohesive strength measured 

by the DNS specimens gives a significantly lower value 0ˆ 82.5 MPaII   due to being 

calculated as an average along the interface and the presence of a stress concentration at 

the corner. The boundary conditions for the model were constructed as follows, the top 

and bottom surfaces of the model were constrained in the vertical direction to represent 

the anti-buckling guides used in the experiments, the cohesive surfaces were given a 

frictionless contact constraint to minimize interpenetration, then the leftmost surface was 

fixed and the rightmost surface was loaded cyclically in load control.  The experimental 

fatigue life as reported is shown in Figure 35(c). As mentioned previously this 

configuration does have stress concentrations at the notch corners so the fitting of the 

initiation parameters  and II IIC   is slightly less straightforward since the cohesive 

strength as measured by the SBS specimen is used, the optimum parameters were found 

to be 103 MPa and 0.1II IIC   . The simulation fatigue life results are plotted in 

Figure 35(c), the initiation is defined as when the first CZM element completely fails, and 
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final failure when the specimen catastrophically loses all load carrying capacity at which 

point the model becomes unstable and fails to converge. The final failure occurs in all 

load cases shortly after initiation which is in agreement with the experimental data. The 

importance of including the initiation phenomenon is also very apparent here, if the 

propagation only damage laws are used the predicted life is vastly over predicted which is 

also in agreement with the modeling studies performed by May and Hallett [79]. 
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Figure 35. (a) the DNS specimen of May and Hallett [79], (b) the numerical mesh with 
contours of shear stress distribution along the bond-line showing  non-negligible stress 
concentrations at near the notch roots, and (c) comparison of simulated and 
experimentally fatigue life. 
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4.10 Prediction of Fatigue Crack Initiation and Propagation in an SBS Test 

Now with the initiation and propagation parameters calibrated from the previous 

validation cases for IM7/8552, a simulation is performed to assess the formulation’s 

predictive capabilities. The experimental specimen chosen is a short beam shear (SBS) 

tested by May and Hallett [79]. The specimens were cut from panels of IM7/8552 with a 

thickness of 2.55 mm, cut to a width of 12.7 mm, and tested on a span of 12.7 mm. The 

model consists of 733 nodes, 913 plane-stress elements (CPS4 in ABAQUS™), and 60 

user elements. The element length along the interface was 0.127 mm following the 

original modeling efforts by May and Hallett, but the height of the elements were 0.254 

mm to reduce the computational size of the model. The boundary conditions were the 

same as the TPB model, symmetric in the horizontal direction along the leftmost 

boundary, supported in the vertical direction at the support at 6.35 mm, the cyclic load 

applied to the leftmost node on the top surface, and the cohesive surfaces were given a 

frictionless contact restraint to minimize interpenetration. The load severity simulated 

was slightly more than what was experimentally measured and ranged from 50%-90% of 

the static capacity which. The cohesive elements were placed along the entire mid-plane 

of the beam to test if the model could reproduce the experimentally observed initiation 

location, since this specimen geometry does not have any obvious stress concentrations.  

The simulated fatigue crack initiation and propagation for the 60% load severity 

case  is shown in Figure 36 at various cycle numbers from initiation to final failure. The 

location of the fatigue crack initiation is in agreement with the experimentally observed 

initiation location. After the fatigue crack initiates a traction free region develops as the 
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fatigue crack grows due to cohesive elements failing until nearly all the cohesive 

elements have failed and the specimen splits along the mid-plane forming two separate 

pieces. The predicted fatigue crack initiation and fatigue life predictions are shown in 

Figure 36 compared to the experimentally reported data by May and Hallett [79]. The 

fatigue crack initiation curve is in close agreement with the experimental data but the 

total life is under predicted. This may be due to the use of the lower bound on the shear 

fracture toughness as well as possible post cracking frictional effects. To investigate this 

a model was simulated using the upper bound of the shear fracture toughness IIC = 1.13 

N/mm and a simple Coulomb frictional coefficient of 0.5 along the entire cohesive 

surface. This improves the simulated fatigue life curve but not to the extent as observed 

in the experiments. Nonetheless the proposed formulation is able to predict an accurate 

fatigue crack initiation location as well as cycles to initiation using parameters calibrated 

from completely different specimens of the same material. This represents a major 

advancement compared to the modeling efforts by May and Hallett [79] where special 

seed elements were placed in the initiation region. Upon initiation these special elements 

immediately became traction free and the subsequent propagation was modeled using 

neighboring propagation elements that used a global Paris law to model the progressive 

damage leading to final failure. 
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Figure 36. (a) Numerical model for the short-beam shear test, (b) the predicted failure life 
as compared to the measured fatigue life reported in May and Hallett [79]. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 
 

5.1 Conclusion 

The fatigue cohesive element formulated, implemented, and validated here has 

been shown to successfully model fatigue crack initiation and propagation in a unified 

manner for multiple composite material systems and loading geometries without the need 

for prescribed initiation locations or starter cracks. The proposed method makes use of 

SN data for both normal and shear modes to model the strength degradation eventually 

leading to a fatigue cohesive zone to form. After which a simple power law strength and 

stiffness degradation law is used to calculate all subsequent damage leading to a complete 

loss in both stiffness and strength. It is noteworthy that the proposed formulation only 

makes use of local stress information and does not require a globally established Paris 

law which represents a significant departure from previously developed models. The 

reliance on a global Paris law precludes these methods from predicting initiation in crack 

free materials as they require the conditions of LEFM to be satisfied.  

The formulation has been presented in its entirety and unique features highlighted 

in a rigorous fashion. The methodology for strength degradation due to mode I, mode II, 

and mixed-mode loading has been explicitly described as well as the distinguishing 

strategy for transitioning from the SN defined strength degradation to the non-Paris like 

strength and stiffness degradation law. The resulting damage accumulation and crack 

propagation due to fatigue loading for both mode I, mode II, and mixed-mode fatigue 

loading has also been unambiguously explained in terms of the local stress states at the 

crack tip.  An important feature of the proposed method is the use of quasi-statically 
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measured traction-separation laws that guarantee the experimentally established link 

between static and fatigue failure (i.e., allows quasi-static failure due to a single overload 

cycle at any point in the simulation). The implementation necessitated the formulation of 

additional strategies to determine the local loading profile and a cycle jump strategy to 

facilitate computationally efficient simulation of high cycle fatigue.  

The validation of the proposed method to correctly simulate the fatigue crack behavior 

across four different material systems has been demonstrated (i.e., a HTA/6376C carbon-

fiber/epoxy composite tested by Asp et al. [4], an E-Glass/M10 glass/epoxy composite 

tested by Kenane and Benzeggaph et al. [141-143], an AS4/PEEK carbon-

fiber/thermoplastic composite tested by Martin and Murri [144], and an IM7/8552 

carbon-fiber/toughened-epoxy composite tested by May and Hallett [79],  Murri [145], 

O'Brien, Johnston Jr et al. [131], and Ratcliffe and Johnston Jr  [146]). 

The first validation case presented demonstrated the formulation’s ability to 

model propagation when LEFM conditions were met, reproducing the global Paris law 

fitted from experimental data using only local damage laws. The lack of mesh sensitivity 

was verified as well as independence from effects due to material orthotropy. Moreover 

the ability provided by the unique treatment of the mixed-mode case to accurately predict 

mixed-mode fatigue crack propagation using only parameters calibrated from the pure 

mode I and mode II tests was demonstrated and represents a major advancement over all 

existing fatigue modeling techniques. The implications for reducing the experimental 

need for mixed-mode fatigue testing are significant due to the complexity in testing and 

analyzing mixed-mode fatigue tests. Furthermore, the preservation of the correct mode-
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mixity and SERRs between global and local levels was verified for the simple cases that 

allow for this type of analysis (i.e., analytical expressions exist for the global quantities). 

This is a direct consequence of the underlying cohesive model used which is potential 

based and non-truss like, differentiating itself from the majority of the cohesive models 

published in literature and removes the need for nonphysical treatments of the cohesive 

parameters that lead to serious deficiencies when either LEFM conditions are not met or 

multiple cracks are considered. Additionally the load ratio effect has been demonstrated 

through the incorporation of Goodman’s relation in the fatigue damage accumulation 

laws.  

To validate the formulation’s ability to model fatigue crack initiation in pristine 

material (i.e., no obvious stress concentrations or starter cracks). Three point bending and 

double notched shear specimens were simulated leading to a truly predictive simulation 

of a short beam shear specimen where the location of the fatigue crack was correctly 

predicted as well as the number of cycles to fatigue crack initiation. This final simulation 

highlighted the formulations predictive capability and demonstrated that propagation 

studies alone cannot be used to characterize the behavior of specimens that do not have 

starter cracks. With the success in simulating fatigue crack behavior across multiple 

material systems and various loading geometries, the proposed formulation provides a 

significant advancement towards the realization of virtual testing in the regime of high 

cycle fatigue.  
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5.2 Future Work 

In spite of the unprecedented success achieved by the proposed formulation there 

is an inherent limitation that will be addressed in future work. Namely the fact that this is 

a zero thickness interface element and must be built into models along prescribed paths. 

This prohibits the simulation of arbitrary cracking which plays an integral part in the 

failure of laminated composites specifically in the form of intra-ply cracks. This 

additional failure mechanism could be simulated if the current proposed fatigue cohesive 

formulation were incorporated into a more advanced finite element framework such as 

the augmented finite element method (A-FEM) [56, 149] which allows for arbitrary intra-

element cohesive cracks, this would enable the simulation of the complete fatigue 

damage evolution in specimens that are not necessarily unidirectional which has been 

recently accomplished for the quasi-static case [90]. This effort is ongoing and will be 

reported in subsequent publications. 
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