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      Advanced composite materials are known as important engineering materials in 

industry. Unlike structural metals which are homogeneous and isotropic, composites are 

inherently inhomogeneous and anisotropic which leads to further difficulty in damage 

tolerance design. The predictive capabilities of existing models have met with limited 

success because they typically cannot account for multiple damage evolution and their 

coupling. Consequently, current composite design is heavily dependent upon lengthy 

and costly test programs and empirical design methods. There is an urgent need for 

efficient numerical tools that are capable of analyzing the progressive failure caused by 

nonlinearly coupled, multiple damage evolution in composite materials. 

     This thesis presents a new augmented finite element method (A-FEM) that can account 

for multiple, intra-elemental discontinuities with a demonstrated improvement in 

numerical efficiency when compared to the extended finite element method (X-FEM). It 

has been shown that the new formulation enables the derivation of explicit, fully-

condensed elemental equilibrium equations that are mathematically exact within the 

finite element context. More importantly, it allows for repeated elemental augmentation 



 
 

to include multiple interactive cracks within a single element without additional external 

nodes or degrees of freedom (DoFs). 

      A novel algorithm that can rapidly and accurately solve the nonlinear equilibrium 

equations at the elemental level has also been developed for cohesive cracks. This new 

solving algorithm, coupled with mathematically exact elemental equilibrium equations, 

leads to dramatic improvement in numerical accuracy, efficiency, and stability. The A-

FEM’s excellent capability in high-fidelity simulation of interactive cracks in solids has 

been demonstrated through several numerical examples. 
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Chapter	1: Introduction	
 

1.1. 	What	is	a	composite	material?	
 

Nowadays, composites are employed by many industries as structural materials in lieu of 

traditional materials such as metals and metal alloys. The word composite in the term 

composite material indicates the combination of two or more materials on a macroscopic 

scale, in such a way that the constituents are still distinguishable and not fully blended, to 

build a useful third material [1]. Composites are regarded as the materials of the future, 

which revolutionize the industry, help improve environment conditions, provide safer and 

easier use of different machines, and allow for an expanded design space for alternative 

engineering applications [2].   

If composite materials are designed well, they usually retain the best qualities of their 

components or constituents and usually have some qualities that neither constituent 

possesses. This is the main advantage of composites. Some of the properties that can be 

improved by this way are strength, stiffness, corrosion resistance, wear resistance, 

weight, fatigue life, thermal insulation and thermal conductivity [1]. 

Naturally, there is no need to improve all of these properties at the same time and it may 

be impossible. In fact, some of the properties may be in conflict with one another, e.g., 

thermal insulation versus thermal conductivity.  The objective is merely to create a 

material that has only the characteristics needed to perform the design task [1]. There are 

a number of options for matrix and reinforcing materials and they can be mixed in 

different combinations, ratios, and directions to obtain a composite material with desired  
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properties. There are many types of composite materials such as metal matrix composites, 

polymer composites and ceramic matrix composites depending on the type of reinforcing 

and matrix material but generally four commonly accepted types of composite materials 

are: 

(1) Fibrous composite materials that consist of continuous fibers in a matrix 

(2) Laminated composite materials that consist of layers of individual fiber reinforced 

plies 

(3) Particulate composite materials that are composed of particles in a matrix 

(4) Combinations of some or all of the first three types [1] 

1.2. 	History	
 

Composite materials’ usage dates back to thousands of years ago. Their exact beginnings 

are unknown, but all recorded history contains references to some forms of composite 

materials. A good and simple example of composite system is human body. The muscular 

system of the human body is a perfect example of how the arrangement of multiple 

fibrous systems can provide strength, versatility, and efficiency to a mechanical system. 

Indeed, several examples of composite materials are existed in nature of which the most 

obvious and beneficial to human society over the history is wood. Wood is made out of 

an arrangement of cellulose fibers in a matrix of lignin. Tensile strength of the wood is 

provided by fibers while the lignin matrix is responsible for lateral support to the fibers 

and compressive resistance [3]. 

Man-made composite materials appeared first in the beginning of human civilization, 

when bricks were formed by burning straw and mud together for construction purposes. 
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The Israelites used this technique in the Middle East for their Egyptian rulers and was 

described in the Book of Exodus [2].In the same era, ancient Egyptians stripped the stem 

of the papyrus plant into thin but long strips to manufacture papyrus sheets for writing. 

By laying these strips side by side, and laying another layer on the top of these, but with 

the fibers of the plant in a perpendicular direction to the first layer, several layers were 

added afterwards to provide enough strength and durability to the papyrus paper for 

writing. Thus, the first orthotropic laminates were born [2]. 

After the industrial revolution, the growing need for stronger materials, prompted 

engineers to look again at combining different materials to obtain better overall 

mechanical properties. It was in the mid-1800s that the first attempts at creating a new 

building material capable of withstanding greater stresses began to take place. Joseph 

Louis Lambot found that the strength of the concrete could be increased by adding thin 

bars of steel to it in its wet state. This new material quickly achieved high popularity 

since it brought to architecture and civil engineering the possibility to build higher while 

reducing material weight and increasing longevity of the constructions [2]. 

Fiberglass began being manufactured and commercialized first as an insulation material 

in 1930s [4]. But later it began being applied in the fast growing aeronautic industry, first 

in reinforced plastic dies for the manufacture of prototype components, and then in jigs 

and fixtures for forming and holding aircraft sections and assemblies [2]. 

In 1942, the U.S. Navy replaced all the electrical terminal boards on their ships with 

fiberglass- melamine composite boards with improved electrical insulation properties [5]. 
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In World War II, many components made of composite materials had been used in the 

naval and aeronautic industry. A significant knowledge based on polymers reinforced 

with fiberglass, their manufacture processes and applications had been established. After 

the War, a lot of companies converted war-oriented applications of composite to 

commercial applications [4]. 

There is a common agreement that the pent-up demand for automobiles was a good arena 

that composites could prove their capabilities. The first fully composite body automobile 

had been made and tested in 1947. This car was reasonably successful and led to the 

development of the Corvette in 1953, which was made using fiberglass preforms, which 

were impregnated with resin and molded in matched metal dies. Compression molding of 

sheet molding compound (SMC) or bulk molding compound (BMC) was the dominant 

molding method for automobile parts. The Galstic Corporation developed premix 

materials of these types as early as 1948. 

The beginning of the space age in the 1950s was an important factor for the development 

of advanced composite materials. Carbon fibers began being commercially available soon 

after 1961 when the first patent for production of carbon fibers was issued. This allowed 

for even greater stiffness to weight reductions. New, better, lighter, and stronger 

components for the aerospace industry began to appear along with new manufacturing 

processes such as the filament wounding technology. Boron and aramid fibers were 

respectively introduced in the late 1960s and early 1970s [2]. 

Whereas space and aircraft demands had prompted the quest for new high modulus fibers 

in the 1960s, composites made with such expensive fibers had to find civil applications in 
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the 1970s, when space and military demands declined. Thereafter, sport and automobile 

industries became the most important markets. Graphite tennis rackets and golf clubs 

replaced the wooden racket heads and steel club shafts [5]. 

The ceramic matrix composites appeared in the mid-1970s and quickly found many 

applications such as brakes on aircraft due to their excellent heat resistance and 

toughness. 

In the 1990s, both academic and industrial researchers started to extend the composite 

paradigm to smaller and smaller scales which led to hybrid materials and 

nanocomposites. Hybrid materials mix organic and inorganic components at the 

molecular scale and the main target in that is to mimic the nature process. Remarkably, 

strategies of hybridization apply to all families of materials, not only to polymers but also 

to cement and materials for electronics or medical uses. 

Since microsynthesis has been successful in making computer components, material 

scientists have aimed to go beyond the microscale to build up materials atom by atom, 

which is at the nanoscale. This led to nanocomposites which have better characteristics 

than regular composites and specialized applications which the regular ones cannot be 

used [5]. 

Not only the fibrous reinforcements suffered a significant evolution; new polymers 

introduced over past years allow the applications of composites to increase tremendously, 

expanding from aerospace industry to sports equipment, medical apparatus, defense 

systems, thermally and chemically demanding environments, and electrical/electronic 

equipment [2]. This magnifies how important role composites play in modern industries. 
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1.3. 	Area	overview	
 

The use of advanced polymer matrix composites (PMCs) and ceramic matrix composites 

(CMCs) has been considerably expanded over the last decade to overcome problems and 

shortages with metals or other traditional materials. Compared to traditional metals, 

PMCs offer key advantages such as weight savings, better reliability and durability, and 

lower manufacturing and maintenance costs. One of the major justifications for using 

advanced composites is the potential for increased structural durability, which facilitates 

lower maintenance costs. Polymer matrix composites are used in a wide range of 

applications ranging from commercial aircraft to bath tubs [6]. 

The problems associated with the conventional technical ceramics like alumina and 

silicon carbide, such as fracturing easily under mechanical or thermo-mechanical loads 

because of cracks initiated by small defects or scratches, motivated scientists to develop 

CMCs. CMC materials overcome the major disadvantages of conventional technical 

ceramics, namely brittle failure and low fracture toughness, and limited thermal shock 

resistance. Therefore, their applications are in fields requiring reliability at high-

temperatures (beyond the capability of metals) and resistance to corrosion and wear. 

These include: 

 Heat shield systems for space vehicles, which are needed during the re-entry 

phase, where high temperatures, thermal shock conditions and heavy vibration 

loads take place. 

 Components for high-temperature gas turbines such as combustion chambers, 

stator vanes and turbine blades. 
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 Components for burners, flame holders, and hot gas ducts, where the use of oxide 

CMCs has found its way. 

 Brake disks and brake system components, which experience extreme thermal 

shock (greater than throwing a glowing part of any material into water). 

 Components for slide bearings under heavy loads requiring high corrosion and 

wear resistance. 

In addition to the foregoing, using CMCs instead of conventional ceramics or metal 

components which have limited lifetimes due to corrosion or high temperatures is a good 

solution [7]. 

Despite the increasing usage of structural composites, many mechanical and material 

issues remain unresolved. Unlike structural metals which are homogeneous and isotropic, 

composites are inherently inhomogeneous and anisotropic. Microscopic flaws and 

imperfections are inevitably present due to manufacturing processes. Damage tolerance 

design has to be an integral part of composite structural design. 

Currently, such damage tolerance design relies heavily on experimental testing to 

establish design limits/tolerance. A component needs to be manufactured and tested– 

most of the times to complete destruction – in order to determine its elastic and strength 

properties. The burden of testing to establish design allowable is immense: a typical large 

airframe, for example, currently requires about 104 tests of material specimens, along 

with tests of components and structures up to entire tails, wing boxes, and fuselages, to 

achieve safety certification. Such lengthy and costly procedures have been increasingly 

cited as the bottleneck to fast insertion of composites in new engineering applications [8]. 
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Besides costly and lengthy tests for damage tolerance design in composites, another 

crucial and important issue is the accurate assessment of in-service damage. For instance, 

a small flaw in a plane fuselage can grow under several applied mechanical and thermal 

loads and leads to a tragedy. It is very crucial to guarantee the composite structure safety 

by knowing the location of such a crack and making sure it does not grow beyond the 

critical size. 

Damage to composites is often hidden to the eye. While a metal structure will show a 

dent or ding after being damaged. For a composite structure, there may be no visible 

signs of surface damage, even it has delaminated plies or other damages within. Defects 

and damages in composites reduce the strength, stiffness and also the service life of the 

composite structures. Defects may be introduced during manufacture, accidentally in-

service or perhaps unavoidably in design because of the requirement to introduce 

discontinuities such as cutouts, ply drops or structural connections [9]. The defects 

commonly introduced to composite materials during manufacturing and processing are 

inclusions, de-bonding, fiber misalignment, voids and residual stresses, which we will 

have a brief review over them in below: 

a. Inclusions – Accidentally included materials during manufacturing like peel paper can 

have a degrading effect on the mechanical properties. 

b. De-bonds –The failure of the interface between the fibers and the matrix material leads 

to separation between them, called de-bonding. De-bonding can occur because of poor 

consolidation or as a result of an inclusion. 
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c. Fiber misalignment – This damage is especially prevalent in low fiber volume fraction 

materials. 

d. Voids – Voids are due to inclusion of air, solvents or other contamination during 

mixing of resin. 

e. Residual stresses – These stresses are mainly caused by the curing process. These 

affect the mechanical properties and can cause warping, fiber buckling, microcracking of 

the matrix and delamination. The cause of these stresses is mainly the difference in 

thermal expansion of the fiber and matrix material in different directions. 

The most common damages introduced in composite materials during service loading are 

matrix cracking, fiber breakage, fiber pullout, delamination, and fiber-matrix de-bonding. 

As an example, Figure  1-1 shows a composite panel, with 0º plies on the outside and the 

90º plies in the inside, uniaxial loaded to a stress of x . The types of damage incurred in 

the composite laminate due to this uniaxial tensile loading are discussed below.  

 

                      Figure  1-1 Cross ply laminate subjected to uniaxial loading [10] 

 

(a) Fiber-matrix debonding: This failure mode occurs in the composite materials due 

to poor interface bonding between the fibers and the matrix. These debondings 

join together to form large-scale damage called matrix cracking. Figure  1-2 shows 

a matrix crack formed from fiber-matrix debonding. 
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Figure  1-2 Propagation of a matrix cracking due to fiber-matrix debonding [10] 

 

(b) Transverse ply cracking: As described by R. Joffe [10], the cracks are initiated 

from the interface failures. Fiber/matrix debonding cracks often kink into the 

matrix transverse cracks and join with others which lead to a reduction in load 

carrying capacity and stiffness of the structure in the direction normal to the 

cracks. Figure  1-3 shows transverse ply cracking of a cross-ply laminate subjected 

to uniaxial tension. 

 

Figure  1-3 Matrix cracking in cross-ply laminate [10] 

 

(c) Delamination: Delamination is a form of failure that occurs on a plane between 

adjacent layers within a laminate. Multiple stress concentration points are 

introduced by microcracks at the crack tips as the adjacent layers restrain the 

microcracks. These crack tips exist at the interface between plies of a laminated 

composite and thus lead to delamination that is large-scale damage. Delamination 

can increase connectivity of the ply cracks and cause leakage paths to fuel when 

the structure is used as a pressure vessel. 
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(d) Fiber breaking: Microcracks in composites are formed because of the poor 

interfacial bonding when subjected to tensile loading. These microcracks lead to 

delamination, and fiber breaking would be the next mode of failure after 

delamination. Since the adjacent layers with no microcracks tend to bear the 

entire applied load, their fibers tend to crack leading to fiber breakage. 

(e) Fracture: This is the final stage of failure and the material breaks and separates 

out. Fracture might be in the form of complete detachment of the materials or 

constrained ply cracking. Figure  1-4 shows the various types of damage observed 

in a composite material when subjected to uniaxial loading [9].  0 - ply means all 

fibers are along the loading direction, so in the below figure, the loading direction 

is in vertical direction, along the fibers. 

 

                            Figure  1-4 Modes of damage in a composite material [9] 

 

As discussed above, many of damage modes are covert and the evolution of such 

damages imposes a major challenge for damage inspection. Many non-destructive 

inspection methods tried to identify the damage evolution in composites. These methods 

include visual inspection, automated tap test, bondmaster, handheld UT camera, phased 

array UT, thermography and shearography. However, many of these methods are 
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designed for near surface damage detection and have their own limitations. For instance, 

tap test, bondmaster, shearography and thermography have some limitations in detecting 

delamination and disband, but they can detect impact damages very well. Ultrasonic 

inspections can detect delamination and disband but the level of training for qualified 

inspectors is very high and the equipment is very expensive [11]. The highly 

heterogeneous nature of composites leads to large background noises that negate the 

effectiveness of wave-propagation-based detection methods. Furthermore, different 

damage modes (ply cracking, matrix/fiber splitting, delamination, microbuckling) in 

composites exhibit vastly different sensitivities to different inspection methods. Due to 

these difficulties, no established certification procedures have been established by 

governmental regulatory authorities. High-fidelity modeling that can accurately predict 

damage modes and locations is of critical importance [8]. 

Computational solid mechanics provides a powerful tool for designers and engineers to 

model parts, components, assemblies, and structures [2]. By assuming the composite to 

be a homogeneous material with directional material properties, a designer may study 

stress patterns and stress concentration regions in the assumed component. Several failure 

criteria have been proposed throughout the years that can be applied at this level of 

analyses [2]. 

A more detailed study can be performed with mesomechanical analysis. Although still 

consider the lamina as a homogeneous material, at this level, the mechanical behavior of 

a lamina is modeled using constitutive material models. Computational effort is not very 

high and a more profound study of different damage mechanisms can be investigated [2]. 
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Most recent advances in simulation technology and network computing, have led to a 

new level of analysis, named micromechanical analysis. This type of model looks upon 

the behavior of each constituent of the composite, i.e. the composite is seen as a 

heterogeneous material. Although computationally more expensive, it allows the analyst 

to have a good overview on the influence of each constituent in the mechanical behavior 

of the composite. All kinds of damage mechanisms can be recreated at this level of 

analysis [2]. However, the most challenging task is to correlate the microscopic damage 

development with large scale structural performance. 

Prediction becomes problematic after beginning of damage. The fundamental 

difficulty is that damage in structural composites involves extremely complicated 

nonlinear processes acting from the microscale (e.g., microcracking and crazing in 

polymers), to the scale of the structure itself (e.g., large cracks and global buckling). 

These multiple damage modes occur in various scales at different load levels and are 

strongly coupled to each other. This nonlinear coupled damage evolution dominates 

the macroscopic composite behavior [8]. 

Figure  1-5 shows the extensive multiple damage that occurred near through-thickness 

slits or holes in multidirectional laminates [12,13]. 

Dominant splitting cracks appear as sharply defined horizontal lines (in an H 

configuration) and eventually span the specimen, tending to isolate the strip 

containing the slit; wedge-shaped delaminations between the plies appear as areas of 

shadow around the splitting cracks; and myriad microcracks appear between fibers in 

the transverse plies. 
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Figure  1-5 X-ray radiography reveals damage mechanisms viewed through the ply 
stack in a laminated PMC containing aligned (0°) and transverse (90°) fiber 
plies loaded in tension [13] 

 

Many composite damage studies and predictive methods can work for individual modes, 

using either continuum theory based models or micromechanics models. For example, 

continuum damage mechanics (CDM) has been developed to account for the diffuse 

micro-cracks that occur in off-axial plies [14-16]. Linear elastic fracture mechanics 

(LEFM) and its computational form of virtual crack closure technique (VCCT) have been 

used to study delamination cracks in laminated PMCs. However, the requirements of self-

similar delamination growth and of a postulated (large) pre-existing crack limit its 

usefulness to important delamination problems such as free edge crack nucleation and 

propagation, and delamination in composite panels due to low velocity impact [17]. 

Several micromechanics models for fiber rupture and fiber/matrix interface cracking have 

also been developed [17-23]. However, the complex, nonlinear coupling among different 

damage modes has yet to be fully understood. This is the key to resolving the long-

standing question of how to quantify the influence of stacking sequence on the 

mechanical properties of laminated PMCs [8]. 

Therefore, there is a high demand from composite engineering communities for a 

numerical platform that can 1) allow for explicit description of the arbitrary damage 
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initiation and propagation a priori to final failure; 2) account for the multiscale issues in 

all major damage processes; 3) include strong nonlinear coupling among all major 

damage processes that lead to final failure, and 4) offer reliable predictions with high 

fidelity. 

1.4. 	A	review	on	damage	modeling	in	composite		
 

The ultimate goal in the field of applied solid mechanics is to establish the ability to 

design structures or components that are capable of safely withstanding static or dynamic 

service loads for a certain period. In the past, many methods have been developed in an 

effort to solve the crack initiation and propagation problem. Analytical, semi-analytical 

and numerical approaches, such as the boundary integral method, the boundary element 

method, the finite element method and recently a number of meshless methods, have 

been successfully used for modeling crack aspects of such damage modeling in solids 

[24]. 

This is critical in damage tolerance design because to design tolerance, the material or 

structure is considered to contain flaws and one must decide whether to replace the part 

or leave it in service under a more tolerable loading for a certain period of time. Such 

decision making is usually based on the knowledge from fracture mechanics. 

Fracture mechanics deals with the mechanical behavior of solids containing cracks or 

crack-like flaws [25]. The wide range of applicability of the engineering fracture 

mechanics disciplines is shown in Figure 1-6. In atomic scale which nowadays called 

Nano-scale, fracture mechanics can be applied to analyze bond breaking between atoms. 

In experiments such as the tension test for a notched plate, fracture mechanics is needed 
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to model the problem. In real applications such as ships, aerospace and automation, 

application of fracture mechanics is crucial to guarantee the safety. 

 

          Figure  1-6 wide range of applicability of the Engineering Fracture Mechanics [25] 

 

1.4.1. Linear Elastic Fracture Mechanics 
 

The linear elastic fracture mechanics originated from a seminal study of C. E. Inglis on a 

flat plate with an elliptical hole, as shown in Figure  1-7. The plate is of infinite 

dimensions and is loaded far field in tension. He derived that the stress at the tip of the 

major axis equals to
2
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. Note that the geometrical parameter in the parenthesis is 

the stress concentration factor (SCF), when a=b, it is a circular hole, SCF=3. A crack-like 
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Figure  1-7 Elliptical hole in an infinite plate [25] 

 

A. A. Griffith made use of the Inglis solution by calculating the effect of the crack on the 

strain energy stored in an infinitely cracked plate. He proposed that this energy, which is 

a finite quantity, should be taken as a measure for the crack propagation tendency. He 

also did some tests on cracked glass spheres and showed that the simple elastic analysis 

could be applied to describe the propagation of different size cracks at different stress 

levels [25]. 

Dr. G.R. Irwin extended the Griffith approach to metals by including the energy 

dissipated by local plastic flow, and later developed the energy release rate (ERR) 

concept, which was related to the Griffith theory but in a convenient form to solve 

engineering problems [25]. 

Later, he used the Westergaard approach to show that the stresses and displacements near 

the crack tip could be described by a single parameter that was related to the energy 

release rate. This crack tip characterizing parameter later became known as the stress 

intensity factor (SIF). 

In practice, all this work was largely ignored by engineers as it seemed too mathematical 

and it was only in the 1970s that fracture mechanics came to be accepted as a useful and 

even essential tool. Some of the reasons were development of non-destructive 

examination methods which revealed hidden cracks in structures, the demand of space 
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industry for high-strength high integrity pressure vessels, the increasing use of welding 

and the severe conditions of offshore structures, etc.[25]. Hence, most of the practical 

development of fracture mechanics has occurred in the last forty years. 

Generally speaking, there are two types of fracture problems. One is the computation of 

fracture properties of a given, stationary crack. It involves the calculation of fracture 

driving force, such as stress intensity factors, J-integral, and energy release rate, on the 

crack tip, and establish criteria to determine whether crack will propagate or not, and in 

which direction the crack will propagate. The other one is computation of fracture 

properties of a moving or dynamic crack. 

In linear elastic fracture mechanics (LEFM), an idealized traction-free crack is assumed 

and all the material resistance to crack advance (the fracture toughness) is assigned to a 

point process located at the crack tip; the rest of the body is assumed to be linear-elastic. 

The fracture toughness proves to be a material constant for large cracks [26]. 

After calibrating, LEFM can be very useful in predicting the external loads at which the 

crack tip conditions will cause crack propagation for any component geometry. LEFM 

has been remarkably successful in engineering design, including the design of composites 

with sufficiently large cracks. Conservative and therefore safe design can be achieved by 

assuming that a big enough crack, detectable in service inspections, is present, and the 

load that LEFM predicts for crack propagation exceeds service loads. However, creating 

realistic damage simulations requires much more than this. The initiation of damage at 

stress-concentrating sites must be predicted for parts that contain no cracks, and the 

gradual evolution of initiated damage into large cracks must be modeled. The critical 
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conceptual limitation of LEFM is representing all the material nonlinearity during crack 

extension as a point process that will be discussed in more detail later [26]. 

Using the theoretical achievements, lots of singular shape functions have been built to be 

implemented into FEM packages and led to development of computational aspects. 

Parks presented a technique in determining stress intensity factors based on energy 

release rate without introducing special singular crack tip elements [27]. The crack is 

advanced by moving nodal points rather than by removing nodal traction at the crack tip 

[8]. Some other methods were emerged based on LEFM; virtual crack closure is one of 

them. The virtual crack closure technique (VCCT), based on the results from a FE stress 

analysis, has been widely applied to interfacial cracks to compute total and component 

energy release rates. It shows relative insensitivity to the mesh pattern and mesh density 

[28]. 

VCCT was introduced by Rybicki and Kanninen [29] for line cracks and Shivakumar et 

al., [30] extended that for planar cracks. They used Irwin’s assumption to calculate the 

energy release rate, assuming that the energy released in the process of crack extension is 

equal to the work required to close the crack to its original state as the crack extends a 

small amount. 

An overview of the VCCT for interfacial cracks with a fixed (self-similar) crack front is 

provided by Krueger [31].A two-vector algorithm to trace a crack front was proposed by 

Xie and Biggers [32], so that the VCCT can be applied to moving delamination problems 

without using adaptive remeshing. 

Slant cracks under mixed mode loading have been studied extensively. In [33], Ishikawa 

proposed a two-step VCCT approach to separate the strain energy release rate 
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components through the variation of the stiffness matrix of the crack tip elements. 

Combining weight function concept and VCCT, Sha and Yang [34] developed 

procedures to calculate stress intensity factors directly and accurately. Raju [35] 

developed the explicit expressions for strain energy release rate components for higher 

order and singular elements in terms of nodal forces and displacements. Shivakumar and 

Raju [36] presented a general formulation of the equivalent domain integral method for 

mixed-mode fracture problems in cracked solids. For dynamic fracture mechanics, 

Nishioka and Atluri [37] introduced a new path independent integral that has the meaning 

of energy release rate for a propagating crack under mixed mode loading. In [38], 

Nishioka and Atluri analyzed the dynamic propagation of a slant crack under mixed-

mode loading which had been used as a benchmark example in dynamic fracture 

mechanics. 

In crack kinking, the formulations developed for VCCT of a slant crack cannot be used, 

because it relies on self-similar crack growth while in the kinked one, the crack path 

changes direction. However, by adopting a different formulation in conjunction with the 

VCCT, energy release rates can be computed to evaluate the trajectory of kinking cracks 

and kinking crack fronts [28]. Beam theory can be adopted for simple configurations of 

adhesively bonded strips, with similar adherends to obtain energy release rates 

analytically [39]. Procedures to obtain strain energy release rates for planar structures 

analytically, such as plates, were developed by means of solving a series of integral 

equations by Hayashi and Nemat-Nasser [40], Azhdari and Nemat- Nasser [41] and He 

and Hutchinson [42]. Based on Betti’s reciprocal theorem, Palaniswamy and Knauss [43] 

proposed an analytical expression for the total energy release rate, G, which requires a 
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two-step analyses. Becker et al., [44], implemented a two-step VCCT to calculate the 

strain energy release rate for crack kinking in functionally graded materials. In the paper 

by Xie et al., [28], the expression for G given in [43], is partitioned into mode I and mode 

II components and its equivalent approximation is used to develop a new one-step VCCT 

for kinking cracks. 

As mentioned in previous section, delamination is one of the most common and 

destructive failure modes in composite structures. Several researchers tried to deal with 

that by means of different methods [45-47], which VCCT is one of the first ones to 

consider delamination. The remote loadings applied to composite components are 

typically resolved into interlaminar tension and shear stresses at discontinuities that 

create mode I, II and III delaminations. The use of fracture mechanics to characterize the 

onset and growth of these delaminations has become common practice over the past two 

decades [48-50]. Calculation of the total strain energy release rate, the mode I component 

due to interlaminar tension, the mode II component due to interlaminar sliding shear, and 

the mode III component, due to interlaminar scissoring shear would be necessary [31].  

By comparing these calculated energy release rate components to interlaminar fracture 

toughness properties that measured over a range from pure mode I to pure mode II 

loading, delamination onset or growth for 2D problems can be predicted [51-55]. Based 

on results from 2D and 3D finite element analyses, the VCCT [29,35,56] can be used for 

computing energy release rates to supply the mode separation required when using the 

mixed-mode fracture criterion [31]. 

Other than above, the LEFM-based VCCT has been used in conjunction with shell 

elements for delamination analyses with some success. Yet VCCT has met limitations in 
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dealing with real composite structures. The oscillatory nature of the singular crack-tip 

stress field in orthotropic composite laminates introduces numerical instabilities as well 

as mesh-dependency [57]. This leads to a very restrictive rule for the crack-tip structural 

element size, it has to be between 1/4 and 1/2 of individual ply thickness [58,59]. 

Moreover, Glaessgen observed that in shell VCCT models of bonded specimens with 

unequal thicknesses of adherends, the mode mixity did not converge with mesh 

refinement [60]. This phenomenon is similar to the well-known oscillatory behavior of 

the in-plane linear elastic stress field surrounding a bimaterial interfacial crack tip [8]. 

Another shortcoming of the LEFM type methods arises when the crack tip touches an 

elastically mismatched interface, where the J-integral becomes path-dependent and the 

energy-based criterion becomes ineffective. In fact, LEFM becomes ineffective even 

before the crack tip reaches the interface. LEFM predicts that a crack penetrates the 

interface at either zero or an infinite value of the applied load, depending on the relative 

stiffness of the bonded materials [61-63]. This implies that a crack cannot extend to a 

compliant/stiff interface, independent of the material toughness and strength, which is 

obviously wrong. Cracks may cross a compliant/stiff interface if the tensile strength of 

the material ahead of the interface is low enough. In such a case, a secondary crack may 

initiate ahead of the interface before the primary crack reaches the interface. Hence, if 

only the energy criterion is applied, the behavior of a crack near a compliant/stiff 

interface may be incorrectly predicted. Therefore, LEFM sometimes fails to predict 

correctly the behavior of a crack approaching elastically mismatched interface because no 

LEFM parameter can describe the crack driving force when the crack tip touches the 

interface. Another more important reason is that the failure of the material ahead of the 
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interface is not taken into account in LEFM, because it assumes that the failure occurs 

only at the crack tip [64]. 

The stress intensity factors or corresponding energy release rates are the only single 

macroscopic parameters that characterize the details of the local crack tip fields. These 

global parameters are related to the corresponding material parameters typically the 

fracture toughness that determine the critical conditions of initiation of crack growth. 

When the crack tip experiences plastic yielding, the above concepts, based purely on the 

theory of elasticity, are not valid and have led to the introduction of a path independent J- 

Integral [65], which is strictly valid for a nonlinear elastic material. If the energy near the 

crack tip region is converted into significant inelastic energy due to plasticity or when the 

material locally unloads during the propagation process, the property of path 

independence is lost. The fracture mechanics analysis presupposes the existence of an 

infinitely sharp crack leading to the singular crack tip fields. However, in real materials 

neither the sharpness of the crack nor the stress levels near the crack tip region can be 

infinite [66]. Further, for cracks along bimaterial interfaces, the crack tip will no longer 

be embedded in a square-root singular stress field, leading to a condition that stress 

intensity factor may either be zero or infinity [63,67]. To overcome these limitations in 

point-wise methods, other approaches are necessary to have more accurate and realistic 

description of fracture process. This leads to the cohesive zone models. 
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1.4.2. Nonlinear Fracture Mechanics 
 

As an alternative approach to the singularity driven LEFM approach, Barrenblatt [68,69] 

and Dugdale [70] proposed the concept of cohesive zone model (CZM). The evolution of 

CZM as a preferred method to analyze fracture problems in monolithic and composite 

material systems was not only because it avoids the singularity but also because of its 

easy implementation in a numerical method of analysis such as in finite element or 

boundary element method [66].  

Cohesive models are able to represent many damage mechanisms such as delamination of 

plies, large splitting (shear) cracks within plies, multiple matrix cracking within plies, 

fiber rupture or microbuckling (kink band formation), friction acting between 

delaminated plies, process zones at crack tips representing crazing or other nonlinearity, 

and large scale bridging by through-thickness reinforcement or oblique crack-bridging 

fibers [71].  

Cohesive zone models are usually used to model the initiation and propagation of cracks 

along an interface between two solids, and to model adhesion between two contacting 

surfaces, by using constitutive laws between separated surfaces. 

A “cohesive zone law” relates the relative motion of the two solids adjacent to a surface 

to the tractions transmitted across that surface. A large number of such constitutive 

equations have been developed, but there are two general classes:  

(i) Reversible traction-displacement laws, in which the traction is simply a 

function of the relative distance between the two surfaces, and independent of 

the history of loading. These are often used to model nucleation and growth of 

a crack on an interface that is subjected to monotonically increasing loading, 
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where irreversibility plays no role; and are also used to model interaction 

between surfaces of nanoscale structures, whose dimensions can be 

comparable to the distance of action of long-range interatomic forces. 

(ii)  Irreversible traction-displacement laws, which model failure processes that 

lead to the creation of new free surface in the solid. These could include 

separation of atomic planes due to cleavage, or more complex processes such 

as rupture by void nucleation and coalescence, or fatigue [72]. 

Lots of popular CZMs are available in the literature which the main difference between 

them is in shape and model parameters. Needleman was a pioneer in using polynomial 

and exponential types of traction-separation equations to simulate particle debonding in 

metal matrices [73-75]. Xu and Needleman [76,77] further used the above models to 

study the void nucleation at the interface of particle and matrix material, fast crack 

growth in brittle materials under dynamic loading, and dynamic crack growth along the 

interface of bimaterials. Tvergaard and Hutchinson [78] used a trapezoidal shape of the 

traction-separation model to calculate the crack growth resistance in elasto-plastic 

materials. Yang and Toughless [79,80] and Tvergaard [81] used a quadratic traction-

displacement equation to analyze interfaces. Camacho and Ortiz [82] employed a linear 

cohesive fracture model to propagate multiple cracks along arbitrary paths during impact 

damage in brittle materials. Geubelle et al., [83] utilized a bilinear CZM to simulate 

spontaneous initiation and propagation of transverse matrix cracks and delamination 

fronts in thin composite plates subjected to low-velocity impact. 

In all CZMs (except Dugdale’s model and Camacho et al.’s model), the traction-

separation relations for interfaces are such that with increasing interfacial separation, the 
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traction across the interface reaches a maximum, then decreases and eventually vanishes, 

permitting a complete decohesion for a typical variation. It has been well recognized that 

CZMs can be described by two independent parameters which may be two of the three 

parameters, namely the cohesive energy, and either of the cohesive strength, or the 

separation length [84-86]. It should be noted that cohesive energy, surface energy and 

work of fracture are all expressed as energy per unit area and hence are truly rate 

quantities. 

CZMs have been used to simulate the fracture process in a number of material systems 

including polymers [84], metallic materials [87], ceramic materials [82], bimaterial 

systems in polymer matrix composites [76], metal matrix composites [88], and fiber 

reinforced plastic composites [89]. They have been used to simulate fracture under static 

[75,77], dynamic [76,82], and cyclic [90] loading conditions. The success in applying to 

other material systems such as adhesively bonded joints [91,92], and more recently in 

textile and laminated composites [71,93-101], have also been shown.  

A number of different attempts have been made to consider rate effects in a material 

separation model in recent studies. Knauss and Losi [102] combined a viscoelastic 

constitutive model with a damage function. Rahulkumar et al., [103] and Allen and 

Searcy [104] adopted a hereditary integral approach. Bazant and Li [105] formulated a 

rate-dependent cohesive crack model. Xu et al., [106] had also proposed a rate-dependent 

CZM, having both rate-independent and rate-dependent material parameters which are 

determined from experiments and numerical analysis [107]. 

Yang et al., [108] applied cohesive zone model for efficient and accurate modeling and 

simulating crack growth in a thin plate under bending. The genuinely 3D crack front is 
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modeled as a 2D process zone with part-through damage exhibiting residual flexural 

rigidity and residual strength across the crack line. The model is applicable to a crack 

with a relatively long crack front compared to the whole crack as well as to the plate 

thickness. It essentially models the crack growth in two hierarchical steps: (a) through the 

thickness; and (b) in the in-plane direction. It leads to an efficient and accurate solution to 

the genuinely 3D crack growth problem in thin plates. Furthermore, the cohesive zone 

model eliminates the crack-tip singularities appearing in a singularity-based approach 

[107]. 

More importantly, CZMs can be used to represent multiple mechanisms acting to supply 

tractions across delamination, splitting, or other cracks [98,109,110]. The key is that a 

CZM utilizes a complete traction-separation law to describe a fracture process, rather 

than using a single energy based parameter (i.e. fracture toughness) as in traditional 

methods such as in LEFM. This makes CZM very adaptive to any particular fracture 

processes: simply by varying the traction-separation law a host of different fracture 

processes can be represented without changing any numerical aspect of the CZM. This 

attractive feature makes CZMs widely used in composite failure analyses.  

It is even possible to devise a cohesive law that can represent multiple mechanisms that 

are active in a fracture process zone. More recently, cohesive laws with multiple tip 

processes consideration have been proposed and used successfully in modeling many 

engineering fracture problems. For example, a bilinear softening law has been used in 

modeling the fracture process in human cortical bond with distinct mother-daughter 

cracking pattern [111,112]. Davila et al have also studied the procedure for superposing 
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linear cohesive laws to represent multiple damage mechanisms in the fracture of 

composites [97,113]. 

The model by Xu and Needleman induces artificial compliance due to the elasticity of the 

intrinsic cohesive law [107]. To alleviate such problems, Geubelle and Baylor [114] and 

Espinosa and Zavattieri [115] adopted bilinear cohesive zone models to reduce the 

compliance by providing an adjustable initial slope in the cohesive law. 

As discussed above, CZM could alleviate some shortages of point-wise methods such as 

LEFM by considering fracture process zone and traction separation behavior using 

constitutive laws. By changing cohesive law’s shape and parameters, different problems 

can be modeled and solved. The required parameters for constitutive law can be found by 

experiments for different fracture modes. 

Although CZM has been widely used in composite fracture analysis, especially in 

delamination analysis [32,71,98,116-118], the traditional CZM approach carries the 

major shortcoming that it requires the potential crack path be known a priori, so that 

CZM elements can be directly implanted along the path. This greatly limits the 

application of CZM for problems with evolving arbitrary discontinuities and motivates 

scientists to come up with better methods such as X-FEM and A-FEM. 

1.5. 	Advances	of	Numerical	methods	for	Arbitrary	Cracking	in	Solids	
 

Due to complexity of the progressive damage processes in composite materials, 

numerical simulation based tools for full-scale analysis is inevitable. In this regard, finite 

element method (FEM) based simulation techniques have been powerful tools for 

thermo-mechanical analysis in solids. 
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The finite element method (FEM) has become one of the most popular and powerful 

analytical tools for studying the behavior of a wide range of engineering and physical 

problems. Quick development of several general-purpose finite element softwares, which 

were verified and calibrated over the years made them available to almost anyone who 

asks and pays for them [24]. 

In applied mathematics, FEM is a general mathematical tool for obtaining approximate 

solutions to boundary value problems. It uses variational methods (the calculus of 

variations) to minimize an error function and produce a stable solution. Similar to the 

idea of approximating a larger circle by many tiny straight lines, FEM also approximates 

a complex equation on a large domain by many simple equations on smaller subdomains, 

called finite elements [120].  

Although the name of finite element method was given in last few decades, the concept 

dates back to long times ago. For instance, finding a circumference of a circle by 

approximating it by the perimeter of polygon by ancient mathematicians was among first 

FEM applications [120]. The basic ideas of the finite element method as known today 

were presented in the papers of Turner et al., [121] and Argyris et al., [122].  

The name finite element was coined by Clough [123]. The development of FEM traces 

back to the pioneering work by Courant in 1942 who used finite element type of 

procedure in minimizing the potential energy for the torsion stress using grid values as 

the unknown parameters [124]. The application of simple finite elements (pin-jointed bar 

and triangular plate with in plane loads) for the analysis of aircraft structure which is 

presented in [121] and [125] is considered as one of the great steps in the development of 

the finite element method.  
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Several calculations involved in the finite element analysis can be performed in digital 

computers, so keeping the method practically viable. Application of finite element 

method was quickened by superfast development of high-speed digital computers. The 

book by Przemieniecki [126] presents the finite element method as applied to the solution 

of stress analysis problems. Zienkiewich et al., [127] presented the broad interpretation of 

the method and its applicability to any general field problem. 

A brief history of the beginning of the finite element was presented by Gupta et al., [128]. 

With all the progresses, today engineers and applied scientists consider the finite element 

method one of the well-established and convenient analysis tools [120]. 

Currently many powerful general purposed FEM packages are available for researchers, 

students and design engineers (ABAQUS, NASTRAN, ANSYS, ADINA, etc.) While 

these commercial softwares are increasingly widely used for stress analysis of materials 

and structures, their capability in analyzing fracture problems, especially coupled 

multiple cracking problems remains limited [120]. 

However, traditional finite element methods are based on homogenized continuum 

theories and usually assume a continuous displacement field within an element (with 

continuous shape functions). In this section, we briefly review the current state of art in 

numerical methods for damage modeling [8].  

The fundamental difficulty for classic FEM to model fracture problems lies in the fact 

that the interpolation functions (shape functions), used to approximate elemental 

displacements from nodal degrees of freedom (DoFs), are typically continuous. However, 

if an element is cracked, the displacement field in the element becomes discontinuous. 
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The inability of classic FEM in dealing with discontinuities encouraged researchers to 

look for alternative methods [8]. Throughout the years many methods have been 

established to deal with crack or discontinuity in the solid body. Nevertheless, significant 

challenges remain, many of which relate to the difficulty of developing practicable 

formulations for dealing with materials containing complex material heterogeneity such 

as textile composites. Lots of special problems with accurate prediction of local stress 

and strain fields can be posed by heterogeneity, which can vary strongly with local 

material features; and with predicting cracks and localized damage bands, which can 

appear during damage evolution not only on the material boundaries, but also on other 

surfaces that cannot be specified a priori. Such highly heterogeneous materials present 

unique challenges that cannot be resolved by mainstream formulations of conventional 

materials/structures modeling. One issue is that the scale of material heterogeneity is on 

the same scale as that of the features of the structures, which negates the common 

strategy of homogenizing the material properties in simulations. Another unresolved 

challenge that is even more critical to composite structural safety and durability is how to 

accurately account for the damage initiation and propagation and simulate their 

detrimental effects on structural integrity in a quantifiable way. These challenges call for 

advanced numerical analysis platforms that can 1) efficiently deal with arbitrary material 

heterogeneity and the progressive damage/debonding evolution along material interfaces 

and boundaries; and 2) account for multiple cracks merging into interfaces or bifurcating 

away from interfaces in a physically consistent manner, without a priori knowledge of 

the crack paths [129]. In the past decades, there have been rapid developments in 
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advanced numerical methods to cope with such challenges that a brief review over them 

is provided in next sections. 

1.5.1. Continuum Damage Mechanics  
 

The so-called continuum damage mechanics (CDM) is a popular method to seek the use 

of nonlinear material constitutive law to account for at least the load-bearing loss due to 

fracture. A CDM theory considers the degradation of material stiffness matrix in the 

macro-scale by homogenizing the microscopic damage events using the damage 

mechanics concept [8]. 

Murzewski [130,131] proposed damage parameter for the first time, and put forward a 

probabilistic interpretation of the decohesion parameter. Following his work, Kachanov 

[132] and then Rabotnov [133] formulated the famous equation of damage growth under 

creep conditions for the uniaxial state of stress. After formulation of theory in the 1950s, 

Odqvist and Hult [134] published one of the first papers in the Western scientific 

literature in the early 1960s. Since then, a number of theoretical and experimental 

investigations have been performed by Chrzanowski [135], Chaboche [136], Krajcinovic 

[137] and Lemaitre [138]. Damage phenomenon includes different types such as fatigue, 

cracking, fracture, and creep, etc. Separate researches were done in each field [139].  

Dhar et al., [140] proposed a damage mechanics model to study void growth and 

initiation of cracks. A failure curve was presented for the AISI-1090 steel material and a 

large deformation finite element analysis was carried out. Fashang and Kuang 

generalized crack tip stress and strain fields for various plane strain and plane stress 

fracture specimens [141]. These authors used CDM to quantify the constraints of the 
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facture specimens and the effects of specimen configuration on the onset of ductile 

fracture growth [139]. 

Based on CDM, Chung et al., [142] simulated damage and crack propagation and 

meanwhile, they utilized the parallel computing technique for precise analysis with the 

large-scale structural model. Moyer et al., [143] examined an application of uncoupled 

CDM to predict stable crack growth in the 2219-T87 aluminum alloy. They presented a 

formulation of predictive damage methodology and its implementation into a finite 

element code. Mizuno and Honda [144] used double cantilever beam model to perform 

an analysis of cracks’ growth in piezoelectric ceramics. A damage variable based on 

CDM used to represent damage within piezoelectric ceramics and its effect on material 

properties was considered in a constitutive equation of piezoelectric ceramics. 

Tavares and King [145] developed a model based on CDM and the Hertzian contact 

theory to describe fracture by repeated impacts and several tests were done to obtain 

some experimental data to validate this model. In [146], Leski presented a numerical 

analysis of a rotor blade damaged in combat. A finite element model of the blade was 

built and tested and, based on experimental results, four instances of damage were chosen 

for numerical analyses of stress distributions in a damaged rotor blade.  

One of the most important advantages of CDM is that the stress evaluation algorithm is 

usually explicit; therefore, it does not need to find iterative solutions for nonlinear 

equations. 

However, if a major dominant crack emerges, the method becomes problematic because 

the major crack leads to high strain gradient and classic FEM is not efficient in dealing 

with that. More critically for composite materials, because of ill conditioning of the 
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orthotropic elastic stiffness after crack is introduced, premature convergence difficulties 

occur [8]. Numerical stress locking may also occur due to lack of discontinuous 

displacement modes in an element [147]. Introduction of enhanced assumed strain (EAS) 

has been integrated into the formulation at element level to improve modeling accuracy 

[148-150], which was an elemental based and thus fully compatible with standard FE 

program. However, the consistency across boundaries of adjacent elements cannot be 

guaranteed by element based embedded discontinuities. 

Meso-scale averaging along with periodicity assumption is typically used in CDM to 

obtain homogenized constitutive relations. Several research groups attempted direct 

coupling of CDM-based in-plane damage modes with various fracture mechanics models 

for delamination but with only limited success [118,119,151]. Several recent studies have 

revealed that the homogenization process in CDM leads to loss of key information on 

multiple damage coupling at the macroscopic scale and results in inaccurate prediction of 

crack paths [151] and severe stress locking [152]. 

1.5.2 Generalized FEM (G-FEM) and eXtended FEM (X-FEM) 
 

One of the methods that truly enable explicitly consideration of physical discontinuity in 

a FE element comes from the seminal work by Babuska and Melenk [153-155]. With this 

method (which the authors named Generalized Finite Element Method, G-FEM), it has 

been mathematically proven that any known solutions to boundary value problems can be 

superposed onto a classic FEM framework by invoking the partition-of-unity property of 

FE standard shape functions. The Generalized Finite Element Method (G-FEM) uses 

local spaces consisting of functions, not necessarily polynomials, which reflect the 

available information on the unknown solution and thus ensure good local approximation. 
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Then a partition of unity is used to “bond” these spaces together to form the 

approximating subspace.  

A wide variety of shape functions can be used in the G-FEM. This allows the G-FEM to 

approximate non-smooth solutions of BVPs (boundary value problems) on domains 

having corners or multiple cracks, or with mixed type of boundary conditions 

successfully. The G-FEM either does not employ a mesh or uses a mesh only minimally. 

This allows the G-FEM, without re-meshing or with minimal re-meshing, to be used in 

problems involving domains with changing boundaries, or with an unknown boundary, as 

in crack propagation problems or free-boundary problems. 

The effectiveness of G-FEM has been shown when applied to problems with domains 

having complicated boundaries, problems with micro-scales, and problems with 

boundary layers [156]. Quasi-optimal convergence rates of G-FEM approximation for the 

general elliptic boundary value problem have been proved [157].  

The major cost of the G-FEM, when applied to problems with complex domains, is the 

numerical integration. In addition, the success of the G-FEM depends on efficient 

numerical integration based on adaptive procedures. 

X-FEM is a special case of G-FEM, when PoU is used to account for cracks [154]. The 

seminal theory of PoU enables these methods to deal with discrete discontinuities (cracks 

and shear bands) by adding extra nodal DoFs (as in X-FEM) or phantom nodes (as in 

PNM) within the finite element framework [129]. 

The basic ideas and the mathematical foundation of the partition of unity finite element 

method (PUFEM) were discussed by Melenk and Babuska [155] and Duarte and Oden 

[158]. Later Belytschko and Black [159] presented a minimal remeshing finite element 
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method by adding discontinuous enrichment functions to the finite element 

approximation to account for the presence of a crack. The method was then improved by 

Moës et al., [160] and Dolbow [161] and called the eXtended Finite Element Method (X-

FEM). The new methodology allowed the entire crack to be represented independently of 

the mesh and constructed the enriched approximation from the interaction of the crack 

geometry with the mesh. 

More contributions from Dolbow et al., [162-164], Daux et al., [165] and Sukumar et al., 

[166] extended the method for three-dimensional crack modeling and arbitrary branched 

and intersecting cracks. The use of level set methods to represent the crack location was 

studied by Stolarska et al., [167] , Belytschko et al., [168], Sukumar et al., [169], Moës et 

al., [170], Gravouil et al., [171], Ventura et al.,[172], Zi et al., [173], Budyn et al., [174], 

Bordas and Moran [175], and Stolarska and Chopp [176]. 

Besides earlier works that led to progress from LEFM to X-FEM, simulation of 

localization and fracture has been the main target [24]. Jirásek and Zimmermann 

[177,178] successfully combined X-FEM with the damage theory and advocated a new 

concept of a model with transition from a smeared to an embedded discrete crack. 

Sukumar et al.,[179] presented a two-dimensional numerical model of micro-structural 

effects in brittle fracture, while Dumstorff and Meschke [180] and Patzak and Jirásek 

[181] proposed an X-FEM for the analysis of brittle materials in the post-cracking 

regime. In a fundamentally different approach, Ventura et al., [182] proposed a new X-

FEM for accurately modeling the displacement and stress fields produced by a 

dislocation. Simulation of growth of arbitrary cohesive cracks by X-FEM was reported 

by Moës and Belytschko [183]. The method was further advanced by Zi and Belytschko 
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[184], Mariani and Perego [185] and Mergheim et al.,[186]. A proper representation of 

the discrete character of cohesive zone formulations by the so-called cohesive crack 

segments was proposed by de Borst et al., [187-189]. 

In order to develop a methodology for modeling shear bands as strong discontinuities 

within a continuum mechanics context, Samaniego and Belytschko [190] and Areias and 

Belytschko [191] used the enrichment ideas of X-FEM. Later, Song et al., [192] 

presented a new method for modeling of arbitrary dynamic crack and shear band 

propagation by a rearrangement of the X-FEM basis and the nodal degrees of freedom, 

describing the discontinuity superposed elements and the new concept of phantom nodes. 

The idea of elastic-plastic enrichments was also proposed by Elguedj et al., [193] based 

on the Ramberg–Osgood power hardening rule and Hutchinson–Rice–Rosengren 

elastoplastic fields for representing the singularities in elastic plastic fracture mechanics 

[24]. 

Fractures of composite materials are also widely studied by X-FEM. Dolbow and Nadeau 

[194] employed the X-FEM to simulate fracture behavior of micro-structured materials 

with a focus on functionally graded materials. Then, Dolbow and Gosz [195] described a 

new interaction energy integral method for the computation of mixed mode stress 

intensity factors at the tips of arbitrarily oriented cracks in functionally graded materials. 

In a related contribution, Remmers et al., [196] presented a new formulation for the 

simulation of delamination growth in thin-layered composite structures. Study of 

bimaterial interface cracks was performed by Sukumar et al., [197] by developing PoU 

enrichment techniques. Nagashima et al. [198] and Nagashima and Suemasu [199] 

described the application of X-FEM to stress analyses of structures containing interface 
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cracks between dissimilar materials. To include the effects of anisotropy on the 

enrichment functions, Asadpoure et al., [200], and Asadpoure and Mohammadi [201] 

developed three independent sets of orthotropic enrichment functions for X-FEM analysis 

of crack in orthotropic media. 

In both G-FEM and X-FEM, special solutions, or at least the functional forms of the 

solutions, such as crack-tip singular displacement fields and displacement functions, have 

to be known a priori, so that they can be incorporated into G-FEM or X-FEM as 

enrichment functions. In laminated or textile composite materials, due to the highly 

heterogeneous nature, solutions of many cracking systems are not necessarily known [8]. 

Furthermore, in composite materials, different cracking systems often interact with each 

other. An example is given in Figure 1-8. This figure shows a splitting crack in the top 

ply of a laminate and delamination crack induced by the splitting crack. For the location 

far away from the joint front of the two types of cracks, enrichment functions (f1, f2) may 

be used. However, at the joint front when the two cracks interact directly, no known 

solution exists. X-FEM will have difficulty in dealing with this type of problems. 

 

Figure  1-8 A splitting crack and its induced delamination in a composite laminate [8] 

 

Another inconvenience of X-FEM in dealing with arbitrary cracking problems is that it 

enriches elemental displacement field through adding nodal DoFs, which requires 

dynamic adjustment of nodal DoFs according to whether a node is completely cut or not. 

2 ( , )f r 

1 ( , )f r 

What about at the joint front?
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This not only leads to algorithmic changes of standard FEM, but also leads to 

incompatibility of X-FEM elements and traditional elements [168]. For example, for an 

element that encompasses a singular crack-tip, asymptotic displacement functions from 

fracture mechanics are needed as enrichment functions and the enrichment process leads 

to the loss of elemental locality in the sense that the blending elements, i.e., the 

uncracked elements that share the enriched nodes with the crack tip element, have to be 

treated simultaneously [160,170]. Additional ambiguities for the blending elements can 

arise and need special treatment [202]. For these reasons, it is difficult to integrate such 

an element into existing standard finite element programs. 

X-FEM has proved its ability to study the crack merging and bifurcation problems due to 

multiple cracking in homogeneous isotropic or orthotropic materials, wherein the 

arbitrary intra-element crack merging or bifurcation can be facilitated with properly 

designated subdomain integration. However, to reach beyond this work, to heterogeneous 

materials such as laminated or textile composites, accurate modeling of both material 

interfacial debonding and bulk material cracking, and their nonlinear coupling when they 

intersect, becomes critical. For example, in laminated composites, intraply cracks tend to 

spawn local delaminations at interply interfaces and delamination cracks frequently 

branch into neighboring plies (crack jumping). Exactly where and when such events 

occur cannot be known a priori. While it has been demonstrated that X-FEM can model 

interface debonding in composites fairly accurately by treating the interfaces as weak 

discontinuities, the X-FEM will have difficulty in dealing with elements that host both a 

material interface and coalescing or bifurcating bulk cracks due to the facts that: (1) 

accurate functional forms of enrichment functions for interface cracks may not be readily 
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available, especially when the material directions across an interface are not orthogonal; 

and (2) the enrichment level will be unduly high [203]. 

1.5.3 Phantom Node Method (PNM) & Augmented FEM (AFEM) 
 

An alternative numerical method that can also treat the arbitrary cracking problems is the 

phantom node method (PNM), first developed by Belytschko and coworkers [204] based 

on the initial work of Hansbo and Hansbo [205]. The essence of this method is to use 

overlapping paired elements to describe a strong or weak discontinuity in a physical 

element that is bisected by a crack (strong discontinuity) or a material interface (weak 

discontinuity). One of the advantages of this method is that it uses only standard finite 

element (FE) shape functions (i.e. more compatible with existing FE programs) and it can 

conveniently consider both weak and strong discontinuities. Based on this idea, Ling et 

al., [206] proposed an element with one or multiple copies of element nodes, to account 

for an arbitrary intra-element crack but otherwise remain a standard FE. This so-called 

augmented element is fully compatible with existing FE programs and has been 

implemented into a commercial FE program as a user-defined element [207]. Recent 

applications of the phantom node or augmented finite element method (A-FEM) include 

studies on arbitrary cracking in isotropic solids [186,208,209], composite delamination 

[210,211] and coupled delamination and transply cracking in composite laminates 

[110,206,212]. Moreover, Belytschko and coworkers have found that this method has 

some unique advantages in numerical handling of the direction normals associated with 

plate elements and they have successfully employed this method in analyzing large-scale 

plate/shell cracking under static and dynamic loads [204]. Fang et al., [203] proposed a 

new cohesive interface element, named the augmented cohesive zone (A-CZ) element, as 
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a development of the A-FEM.  The new element allows for arbitrary separation of a CZ 

to conform to the cracking configuration of abutting solid elements. It provides 

physically consistent interface deformations and accurate stress transfer when arbitrary 

cracks merge into or branch away from an interface. Ling et al., [99] formulated a model 

of the phenomenon of delamination jumping across transverse plies by using nonlinear 

cohesive fracture models in the A-FEM. The nonlinearity of the fracture process zone and 

the interaction between multiple cracks combine to determine the details of how the 

delamination jump occurs. 

A-FEM and PNM methods are relatively mesh-independent and computationally efficient 

when dealing with individual (i.e. non-interactive) cracks. However, in these methods 

each individual crack requires its own additional copy of DoFs or nodes to describe the 

discontinuous displacement field associated with it. Tracing the evolution of complex 

fracture surfaces of multiple cracks quickly becomes extremely tedious and numerically 

burdensome because, in such cases, there are no universal tracking algorithms that can 

judiciously assign different copies of DoFs or nodes to different cracks for complex crack 

configurations. Furthermore, the dimensions of local and global stiffness matrices must 

be dynamically modified in accordance with crack interaction, which makes it very 

difficult to integrate them into standard FE programs [165,213,214]. 

Therefore, it is beneficial to seek numerical methods that can account for arbitrary 

discontinuities with less numerical burden for tracing complex crack surfaces. In this 

regard, there are mainly two approaches in the literature. One method is the phase-field 

method [215-217], which introduces an additional nodal DoF to approximate a fracture 

surface with a highly concentrated yet continuous phase-field, which smoothes the 
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boundary of the crack over a small region. The major advantage is that the evolution of 

the fracture surfaces follows from the solution of a coupled system of partial differential 

equations. Thus, it does not require the fracture surfaces to be tracked algorithmically. 

This is in contrast to the complexity of many discrete fracture models, and is anticipated 

to be particularly advantageous when multiple branching and merging cracks are 

considered in three dimensions. 

The phase-field model for quasi-static brittle fracture emanated from the work of Bourdin 

and coworkers on the variational formulation for Griffith’s-type fracture models [218]. 

The variational formulation for quasi-static brittle fracture leads to an energy functional 

that closely resembles the potential energy presented by Mumford and Shah [219], which 

is encountered in image segmentation. A phase-field approximation of the Mumford-

Shah potential, based on the theory of  -convergence, was presented by Ambrosio and 

Tortorelli [220]. This approximation was adopted by Bourdin et al., [217] to facilitate the 

numerical solution of their variational formulation. 

Recently, this model has been applied in a dynamic setting by Bourdin et al., [221], 

Larsen et al., [222]; and Larsen [223]. However, application to structures of engineering 

interest has not been considered. An alternative quasi-static formulation of this phase-

field approximation has been presented in the recent works of Miehe et al., [224,225]. In 

this formulation, the phase-field approximation follows from continuum mechanics and 

thermodynamic arguments. Besides the provision of an alternative derivation, Miehe et 

al., [224] also added various features to the model that are keys to its application to 

engineering structures. Independently from the phase-field formulation based on 
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Griffith’s theory, dynamic phase-field fracture models have been developed based on 

Landau- Ginzburg type phase-field evolution equations, e.g., Karma et al., [226]. 

 However, this method is mesh-dependent and it requires an extremely fine mesh to 

resolve the sharp discontinuity associated with an interface or a crack surface. The 

computational cost remains extremely high. There are also serious ambiguities regarding 

the non-zero stresses at crack wake surfaces. 

Another approach that does not need additional DoFs when treating intra-element 

discontinuities is the embedded discontinuity approach. This method follows the earlier 

work in smeared localization models and enhanced strain methods [148,150,227-230] and 

it has been extended to account for discrete discontinuities by several research groups 

[231-238] following Simo and colleagues’ seminal approach in treating plastic strain 

localizations with discrete discontinuous descriptions [239,240]. This approach seeks to 

enrich the elemental strain field by introducing a crack displacement field with assumed 

deformation modes (constant and/or linear mode), in addition to the regular continuous 

displacement field. The intensities associated with the crack deformation modes are 

considered as internal DoFs, which are either assigned to additional nodes (named 

enriched nodes) as global DoFs such as in [236], or fully condensed at elemental level as 

in [234,235,237,239]. It is a common practice to interpolate the discontinuous crack 

displacements within an element with special (or regularized) shape functions and the 

strain field resulted from the crack displacements is often taken as the enhanced strain 

field. The major advantage of this method is that it maintains the standard Galerkin FE 

structure with standard integration quadrature. The special shape functions, though, have 

to be carefully constructed so that the resulted enhanced strain field satisfies the 
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orthogonal principle derived by Simo et al., [240]. Otherwise, spurious deformation 

modes or serious stress locking may occur [238]. However, this method is less 

convenient in treating multiple interactive cracks within an element, which is necessary 

in considering the arbitrary crack coalescence and bifurcation phenomena widely 

observed in heterogeneous materials. 

In any composite material, the issue of material heterogeneity is of paramount 

importance. The above advanced numerical methods can all deal with arbitrary cracking 

in homogeneous materials, but their capability in dealing with material heterogeneity 

remains to be addressed. Because most of them need additional nodes or DoFs, there are 

some limitations in modeling complicated fracture patterns and the ones that can do are 

very costly and tedious. This PhD study is dedicated to the development of the new A-

FEM that can treat arbitrary cracking phenomena in heterogeneous materials. 

1.6. 	Research	Goal	
 

This study is aimed at obtaining a more complete understanding of the multiple damage 

coupling in solids and its effects on macroscopic mechanical behavior. This will be 

enabled by the development of an efficient A-FEM based numerical platform that can 

deal with arbitrary damage evolution and their coupling in homogeneous as well as in 

heterogeneous materials. The new A-FEM will eliminate the need for additional DoFs or 

nodes to account for intra-element cracks and it does not need to assume deformation 

modes a priori for discontinuities because they will be natural outcomes from element 

equilibrium consideration. The anticipated advantages of the new A-FEM over other 

parallel methods are (1) permitting smooth transition from a weak discontinuity to a 

strong one, (2) allowing for repeated elemental augmentation to enable multiple, 
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interactive intra-element discontinuities to account for crack merging (from a bulk 

material domain into a material interface) or crack bifurcation away from the interface 

and 3) offering greatly improved numerical accuracy, efficiency and robustness.  It will 

also be shown that the derived augmented element can be easily implemented into any 

standard FE package, including commercial software package as an add-in to the element 

library. 
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Chapter	2: Two‐Dimensional	A‐FEM–Single	Crack	Formulation 

2.1. Overview 

 

Despite extensive research efforts in recent decades on composite materials, predicting 

the progressive failure of these materials remains a challenging task due to the 

complicated interactions among multiple damage processes. For laminated composites, 

the damage processes include transverse matrix cracking, fiber rupture (in tension) or 

kinking (in compression), splitting between fiber and matrix, and interlaminar 

delamination [71]. Experimentally it has been widely observed in laminated composites 

that the intra-ply and inter-ply damages strongly interact with each other to form complex 

3D crack networks. Two such examples are given in Figure 2-1. 

Figure 2-1 (a) shows the multiple damage modes in a double-notched tension specimen 

with symmetric [0/90]s ply stack. Dominant splitting cracks in the 0°-ply appear as 

sharply defined horizontal lines (in an H configuration) and eventually span the 

specimen. Many transverse cracks in the 90°-ply occur during the load increase. In 

addition, the major splitting cracks are accompanied by wedge-shaped delaminations 

between the plies (areas of shadow around the splitting cracks). Figure 2-1 (b) shows the 

multiple cracking features in a quasi-isotropic laminate ([-45/+45/90/0] s) with a center 

open hole. The splitting cracks are shorter and the delaminations are lobe-shaped and 

transverse cracking occurs predominantly in the ±45°-plies. Note that the intra-ply 

cracks, i.e., the splitting cracks in the 90°-ply and off-axial cracks in +/-45° plies are 

distributed differently in space in different plies, but show evidence of coupling via (dark 

lobed regions) at inter-ply interfaces [207].                                                                                   
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Figure  2-1 X-ray radiography reveals damage mechanisms viewed through the ply stack 
in (a) a double-notch tension specimen with symmetric orthogonal ply stack ([0/90]s) 
[241], and (b) a quasi-isotropic laminate ([-45/+45/90/0]s with a circular open hole under 
tensile loading [12]. (c) Polarized light micrograph shows distributed damage in a fibrous 
stitch that has been sheared by a mode II delamination crack [242]. (d) Scanning electron 
micrograph of an echelon cracking between two fibers in a carbon-epoxy composite 
loaded in off-axis tension [243] 

 

As well as the crack systems visible in Figure  2-1, microscopic examination shows some 

fine-scale shear deformation within individual plies. This deformation arises under shear 

loading. It is continuously distributed, rather than discrete, over spatial scales much 

smaller than the spacing of any of the crack systems shown in Figure  2-1, and is therefore 

a distinct mechanism. While not always examined in full detail, the distributed shear 

deformation is likely to consist at the fiber scale of crazing or arrays of microcracks, 
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whose length typically span the distance between neighboring fibers, i.e., 1 µm to order 

of magnitude. Examples appear in old experimental studies: Figure  2-1(c) shows fine-

scale damage distributed throughout the section of a fibrous reinforcing stitch that has 

been sheared by a mode II delamination crack; Figure  2-1(d) shows an array of 

microcracks between two off-axis fibers in a carbon/epoxy composite loaded in tension. 

In both cases, shear damage arises from µm-scale phenomena. Several authors have 

included that shear nonlinearity of the ply material is necessary to achieve good 

correlation between simulations and experiments, especially for predicting splitting crack 

growth accurately [98,117,119].  

Thus the total damage system in a polymer composite is subject to arbitrary stress states 

and comprises of multiple crack types and possibly fine-scale distributed shear damage. 

How to account for these multiple damage mechanisms that have strong interactions in an 

accurate and computationally efficient scheme remains a difficult task [207]. 

Traditionally, the intra-ply and inter-ply damage processes were treated separately with 

different theories: the delamination problems were extensively analyzed using either 

LEFM methods [59, 60,244] or cohesive interface models [71,100,116,117,241,245]. For 

the intra-ply damage modes, numerous strength based criteria coupled with CDM for 

strength degradation have been used [246-248]. Direct coupling of CDM-based in-plane 

damage modes with various fracture mechanics models for delamination has also been 

attempted by several research groups but with only limited success [118,119,151,249]. 

Moreover, several recent studies have shown that the homogenization process at meso-

scale in CMD leads to loss of key information on multiple-damage coupling at the 

macroscopic scale and may result in inaccurate prediction of the crack path [151,250]. 
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Unexpected severe stress locking, (i.e., significant amount of stresses remain although an 

element has been determined completely failed) may also occur [152].  

The inadequacy of CMD has led to the recent trend to integrate explicit representations of 

all major cracking events into global composite structure models to achieve direct 

coupling [152,241,251]. Two critical capabilities that enable the direct coupling are: 1) 

improved cohesive zone models (CZMs) for bulk and interface crack problems to achieve 

unification of crack initiation and propagation; and 2) improved numerical methods that 

allow for arbitrary crack initiation and propagation in continua.  

Although cohesive zone models (CZMs) have been widely used in composite fracture 

analysis, especially in delamination analyses, this method suffers from a major 

shortcoming: it requires the potential crack path to be known a priori, so that CZM 

elements can be directly implanted along the path. This greatly limits the application of 

CZM for problems with unknown a priori cracking paths as frequently observed in 

composite materials shown in Figure  2-1.  

Recently several novel numerical methods have been developed to allow for arbitrary 

cohesive crack initiation and propagation without continuous remeshing. For example, 

cohesive models have been integrated into the X-FEM framework and successfully been 

used to model the fracture in homogeneous quasi-brittle materials [164,168,183,211]. The 

key feature in X-FEM formulation is the use of enrichment functions for cracked 

elements locally. This is achieved by enhancing the degrees of freedom (DoFs) of all the 

nodes employed by the elements with internal discontinuity. One of the advantages of 

this method is that, for an element that encompasses a singular crack-tip, asymptotic 
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displacement functions from fracture mechanics can be used as enrichment functions and 

reasonable numerical solutions can be obtained. One minor problem is that the long-

range influence of the crack-tip singular field is truncated by the use of local element 

shape functions. As a result, ambiguities arise for those blending elements that connect a 

tip-enriched element to neighboring elements that are not influenced by the crack. These 

elements have to be treated specially and sometimes the treatment leads to loss of 

element locality [202, 252].  

The X-FEM is very effective for treating cracks or even multiple cracks in homogeneous 

isotropic materials, for which the enrichment functions are known. However, for complex 

heterogeneous material systems, such as laminated or textile composites, the enrichment 

functions are not readily available except for some very special cases (such as a 

delamination crack at a symmetric plane in which case the bonded plate/beam can be 

treated as orthotropic materials and the singular stress field is known). Furthermore, in 

the cases that multiple nonlinear cracking systems co-evolve nonlinearly as shown in 

Figure  2-1, X-FEM will have difficulty in dealing with the coupling among the multiple 

cracks.  

An alternative numerical method that can also treat the arbitrary cracking problem is the 

phantom node method (PNM), first developed by Belytschko and coworkers [204] based 

on the initial work of Hansbo and Hansbo [205]. The essence of this method is to use 

overlapping paired elements to describe a strong or weak discontinuity in a physical 

element that is bisected by a crack (strong discontinuity) or a material interface (weak 

discontinuity). Based on this idea, Ling et al., [206] proposed an element with one or 

multiple copies of element nodes, to account for an arbitrary intra-element crack. 
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Otherwise, the element remains a standard FE. This so-called augmented element is fully 

compatible with existing FE programs and has been implemented into a commercial FE 

program as a user-defined element [207]. X-FEM and PNM methods are relatively mesh-

independent and computationally efficient when dealing with individual (i.e. non-

interactive) cracks. However, in these methods each individual crack requires its own 

additional copy of DoFs or nodes to describe the discontinuous displacement field 

associated with it. Tracing the evolution of complex fracture surfaces of multiple cracks 

quickly becomes extremely tedious and numerically burdensome because, in such cases, 

there are no universal tracking algorithms that can judiciously assign different copies of 

DoFs or nodes to different cracks for complex crack configurations. Furthermore, the 

dimensions of local and global stiffness matrices must be dynamically modified in 

accordance with crack interaction, which makes it very difficult to integrate them into 

standard FE programs [165,213,214]. 

A novel augmented finite element method that can treat arbitrary intra-element cracking 

without additional nodes or DoFs overcomes most of the aforementioned limitations. In 

this chapter, this novel idea will be presented. The implementation of the A-FEM into a 

popular commercial code (ABAQUS), as a user subroutine, will also be discussed. 

To understand how to deal with arbitrary intra-element discontinuities without the need 

of additional nodal copies or DoFs, in the next section a simple problem will be used to 

explain the procedure of accounting for an intra-element discontinuity. 
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2.2. 	Fracture	of	A	Longitudinally	Loaded	1D	Bar	
 

2.2.1. Strength of Material Approach 
 

Assuming a one-dimensional bar with bottom end (point 1) fixed and its top end (point 2) 

is under displacement-controlled loading (i.e., the displacement at node 2 is 

monotonically increasing). The bar length dimension is l and has a constant cross-

sectional area of A. The bar material behaves like the description that follows. Initially it 

is elastic with a modulus of E when the stress in the bar (σ) is smaller than a critical stress 

(̂ ) (Figure  2-2(a)); however, if the σ reaches ̂ (i.e., σ =̂ ), a cohesive crack will be 

generated within the element as shown in Figure  2-2(b) but the crack will be bridged by 

the critical stress until the separation between the two crack surface (δ) reaches a critical 

value, c , at which point the stress abruptly drops to zero, indicating complete fracture. 

The stress-separation for the discontinuity is shown in Figure  2-2(c). 

 

Figure  2-2 A bar loaded in longitudinal tension under displacement-controlled manner. 
(a) elastic stage, (b) bridged cohesive cracking stage, (c) rectangular cohesive law 
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The deformation processes can be separated into three stages as below: 

(i) If  *
1 ˆ( / )u u l E  , the bar is in the elastic stage and the displacement is 

continuous, then the reaction force at node 2 is 

2 1 ( / )F F A AE AE u l                                              (2-1)                                                

(ii) If * *
1 2 ˆ( / ) cu u u l E     , the stress in the bar is ˆ  and the bar has 

been separated into two parts due to the cohesive crack with top length l2 and 

lower part length l1. In this case, 

     2 1 ˆF F A               (2-2)                           

 

(iii) If *
2 ˆ( / ) cu u l E    , the stresses in the separated parts are zero both. 

                  2 1 0F F                          (2-3) 

 

 

Figure  2-3 Load- displacement (global response) curve of the bar with cohesive crack 
following the rectangular law in Figure  2-2. 

 

Figure  2-3 depicts the load-displacement curve from the beginning to the complete 

fracture point. By knowing the nodal displacement, reaction forces are known.  
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If the material behavior is slightly more complicated as shown in Figure  2-4 (a), we can 

get the solution similarly as follows. A side note about the trapezoidal cohesive law of  

Figure  2-4 (a) is that, the finite initial slope ( 1ˆ /  ) is often introduced for numerical 

stability purposes. It may cause unwanted additional structural compliance. 

 

Figure  2-4 (a) A trapezoidal cohesive law, (b) Global load-displacement curve of the 1D 
bar resulted from the trapezoidal cohesive law. 

 

In practice, the slope is often set to be as large as possible but not adversely impact 

numerical stability. When dealing with crack initiation in homogeneous materials, 

whenever possible, such finite slope should be avoided. It is straightforward to derive the 

solution for this case as follows: 
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*
1 1

*
2 2

*
3

ˆ /

ˆ /

c

u l E

u l E

u

 

 



 

 



                                                                            (2-5) 

 

Note that in the 1D bar model we assume the displacement at node 1 is fixed (u1=0). This 

does not affect the load solution but does affect the absolute displacement at 1 and 2. In a 

more general case, one can assume displacement at node 1 is u1, and that at node 2 is u2. 

Setting u = u2 - u1 will give exactly the same solution as in Eqn (2-5) which is shown in 

Figure  2-3 and Figure  2-4. 

Clearly, for any material exhibits such a nonlinear behavior, the entire problem becomes 

nonlinear. Except for a few simple problems such as described above, no easy analytical 

solutions can be found for most problems. Nonlinear finite element methods are needed 

to solve such problems. In the following, we shall solve such a problem through standard 

FEM as an introduction. 

2.2.2. Standard FEM Approach for Fracture of 1D Bar 
 

Standard FEM is a displacement based formulation. In other words, an element first 

assumes nodal displacements are known (albeit symbolically).  

Let’s assume the nodal displacements at the two nodes 1 and 2 to be 1u  and 2u  as shown 

in Figure  2-5 (a). We shall again start with the elastic stage (continuous displacement 

field). With the two nodal displacements known, the displacement at any point x (0 < x < 

l) can be obtained through the following shape functions:  
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1
1 2

2

( ) { ( ) ( )}
u

u x N x N x
u

 
  

 
                                                              (2-6)  

Here the 1-D shape functions are: 

     1 2( ) ;  ( )
l x x

N x N x
l l


                                                                                               (2-7) 

The strain in the element is (displacement-strain relation) 

     1

2

( )
( ) { 1/ 1/ }

udu x
x l l

udx


 
    

 
                                                                                  (2-8) 

The elemental stress is thus (making use of constitutive law) 

     1

2

( ) ( ) { / / }
u

x E x E l E l
u

 
 

    
 

                                                                              (2-9) 

It is seen that ( )x  is independent of position x, which means the equilibrium equation (

( ) / 0d x dx  ) is automatically satisfied. Next we need to consider force equilibrium at 

nodes 1 and 2. Denote the external (applied) force at nodes 1 and 2 as 1F  and 2F , 

respectively. Then 

     1
1

2

(0) { / / }
u

F A EA l EA l
u


 

     
 

                                                                      (2-10(a)) 

     1
2

2

( ) { / / }
u

F l A EA l EA l
u


 

    
 

                                                                        (2-10(b)) 

Note that the negative sign ahead of (0) in Eqn (2-10(a)) comes from the fact that the 

assumed positive  direction creates compression (negative signed stress) at node 1. 1F
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Combining Eqns (2-10(a)) and (2-10(b)) into a single matrix form will lead to a standard 

FE elemental formulation: 

     1 1

2 2

/ /

/ /

F uEA l EA l

F uEA l EA l

    
        

                                                                              (2-11(a)) 

Let /ek EA l , then Eqn (2-11(a)) becomes 

     1 1

2 2

1 1

1 1e

F u
k

F u

    
        

                                                                                       (2-11(b)) 

Also, from Eqn (2-9), i.e., 2 1( ) ( / )( )x E l u u   , we know that when 2 1 ˆ( / )u u E l  , the 

stress in the bar reaches the critical value of ˆ  , and the bar will have displacement 

discontinuity as shown in Figure  2-5(b) according to the cohesive law in Figure  2-5(c). 

 

Figure  2-5 Fracture of a 1D bar with a trapezoidal cohesive law (standard FEM 
formulation) 
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Now let’s consider the nonlinear stage as shown in Figure  2-5(b). As one may see 

intuitively, now two elements (element 1 with node 1-1’, and element 2 with node 2’-2), 

will be needed to fully account for the problem. However, the trick for arbitrary cracking 

problems is that one does not know where a crack is going to be before the analysis, 

hence there is no way to assign nodes 1’ and 2’. The X-FEM or PNM resolves this issue 

by assigning additional nodal DoFs (X-FEM) or by addition extra node copies (PNM). In 

this study a new approach will be used. This approach seeks to condense these additional 

DoFs within an element so that the discontinuous displacement can be expressed 

adequately by the DoFs of the regular nodes.  

Consider Figure  2-5(b), since each of the separated domains are elastic, by following the 

standard FEM formulation we can have two equations as follows: 

     11 11' 1 1

11' 1'1' 1' 1 '

k k u F

k k u F

    
    

    
                                                                                        (2-12(a)) 

     2'2' 2'2 2' 2

2'2 22 2 2

'k k u F

k k u F

    
    

    
                                                                                     (2-12(b))   

where  

11 1'1' 1 1 22 2'2' 2 2 11' 1 2'2 2/ = ;  / ; ;  e e e ek k EA l k k k EA l k k k k k       . 

1 21/ 1/ +1/e e ek k k                                                                                             

The crack displacement, i.e., the displacement jump between the two cracked surfaces, is  

(2-12(c)) 
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     2' 1'u u                                                                                                                  (2-13) 

The resultant forces at nodes 1’ and 2’ are from the cohesive stress as follows: 

     
2' 1' 2

1' 2'
2 2' 1'

2

ˆ  

( )
ˆ  c

c
c

A if u u

F F
A if u u

  
       

 

  
        

                                           (2-14) 

Assuming first stage in the cohesive law, where 2' 1' 2u u    , Eqn (2-12) becomes, 

     11 11' 1 1

11' 1'1' 1' ˆ

k k u F

k k u A
    

    
   

                                                                              

     2'2' 2'2 2'

2'2 22 2 2

ˆk k u A

k k u F

    
    

    
                                                                          

Although these two equations can be readily solved, it is beneficial to follow the standard 

matrix manipulation scheme to gain some insights for more complex problems.  

From Eqn (2-15) we have four equations: 

           11 1 11' 1' 1[ ]{ } [ ]{ } { }k u k u F                                                                         

 11' 1 1'1' 1' ˆ[ ]{ } [ ]{ } { }k u k u A                                                                     

 2'2' 2' 2'2 2 ˆ[ ]{ } [ ]{ } { }k u k u A                                                        

 2'2 2' 22 2 2[ ]{ } [ ]{ } { }k u k u F                           

Solving {u1’} and {u2’} from Eqn (2-16) one obtains: 

(2-16(a)) 

(2-16(b)) 

(2-16(c)) 

(2-16(d)) 

(2-15(a)) 

(2-15(b)) 
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           1
1' 11' 1 11 1{ } [ ] { } [ ]{ }u k F k u                                                                    

           1
1' 1'1' 11' 1ˆ{ } [ ] { } [ ]{ }u k A k u                 

           1
2' 2'2' 2'2 2ˆ{ } [ ] { } [ ]{ }u k A k u                 

           1
2' 2'2 2 22 2{ } [ ] { } [ ]{ }u k F k u                           

Canceling {u1’} from Eqns (2-17(a)) and (2-17(b)) leads to 

      1 1
1 11' 1'1' 11 11' 1'1' 11' 1ˆ{ } [ ][ ] { } [ ] [ ][ ] [ ] { }F k k A k k k k u                                                  (2-18(a)) 

Similarly, canceling {u2’} from Eqns (2-17(c)) and (2-17(d)) leads to 

      1 1
2 2'2 2'2' 22 2'2 2'2' 2'2 2ˆ{ } [ ][ ] { } [ ] [ ][ ] [ ] { }F k k A k k k k u                 (2-18(b)) 

Further, subtracting Eqn (2-17(b)) from Eqn (2-17(c)) gives the crack displacement, 

      1 1 1 1
2' 1' 1'1' 2'2' 1'1' 11' 1 2'2' 2'2 2ˆ{ } [ ] [ ] { } [ ] [ ]{ } [ ] [ ]{ }u u k k A k k u k k u                     (2-18(c)) 

     1 1
1' 1'1' 1'1' 11' 1ˆ{ } [ ] { } [ ] [ ]{ }u k A k k u                             (2-18(d)) 

     1 1
2' 2'2' 2'2' 2'2 2ˆ{ } [ ] { } [ ] [ ]{ }u k A k k u                  (2-18(e))  

Thus are solved for all nodal reaction forces ( 1F  and 2F ) and discontinuous displacements 

( 1'u and 2'u ) as functions of regular nodal displacements ( 1u and 2u ), but with the 

assumption that  2' 1' 2u u    . From Eqn (2-18(c)), this condition translates to

 1 1 1 1
1'1' 11' 1 2'2' 2'2 2 2 1'1' 2'2' ˆ[ ] [ ]{ } [ ] [ ]{ } [ ] [ ] { }k k u k k u k k A                                                  (2-19) 

(2-17(a)) 

(2-17(b)) 

(2-17(c)) 

(2-17(d)) 
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Then, assume the softening stage in cohesive law, where 2 2' 1' cu u    , in which case 

(see Eqn (2-14)) 

     
1' 2' 2' 1'

2

ˆ ( )c
c

c

F F A u u
    
 


    

                                                                  (2-20) 

Here 2ˆ /( )c     is the slope of the softening phase of cohesive law (negative). 

Further, substituting Eqn (2-20) into Eqn (2-15), one obtains  

     111 11' 1

2' 1'11' 1'1' 1' ( )c

Fk k u

A u u Ak k u  
   

           
                                                        

     2'2' 2'2 2' 2' 1'

2'2 22 2 2

( )ck k u A u u A

k k u F

      
    

    
                           (2-21(b)) 

Following the same solving procedure, from Eqns (2- (16-18)), one obtains 

     11 1 11' 1' 1[ ]{ } [ ]{ } { }k u k u F                                                                                       (2-22(a)) 

     11' 1 1'1' 1' 2' 1'[ ]{ } [ ]{ } { ( ) }ck u k u A u u A                  (2-22 (b)) 

     2'2' 2' 2'2 2 2' 1'[ ]{ } [ ]{ } { ( ) }ck u k u A u u A                  ( 2-22 (c)) 

     2'2 2' 22 2 2[ ]{ } [ ]{ } { }k u k u F                            (2-22 (d)) 

      1
1' 11' 1 11 1{ } [ ] { } [ ]{ }u k F k u                                                                                   (2-23(a)) 

      1
1' 1'1' 2' 1' 11' 1{ } [ ] { ( ) } [ ]{ }cu k A u u A k u                  (2-23 (b)) 

      1
2' 2'2' 2' 1' 2'2 2{ } [ ] { ( ) } [ ]{ }cu k A u u A k u                                       (2-23 (c)) 

(2-21(a)) 
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      1
2' 2'2 2 22 2{ } [ ] { } [ ]{ }u k F k u                                                 (2-23 (d)) 

Subtracting Eqn (2-23(b)) from Eqn (2-23(c)), the following can be obtained 

   1 1 1 1
2' 1' 1'1' 11' 1 2'2' 2'2 2{ } [ ] [ ] { } [ ] [ ] [ ]{ } [ ] [ ]{ }cu u k k u k k u         I                            (2-24(a)) 

 1 1 1 1 1 1 1 1
1' 1'1' 1'1' 1'1' 11' 1 1'1' 2'2' 2'2 2{ } [ ] [ ] { } [ ] [ ] [ ] [ ] [ ]{ } [ ] [ ] [ ] [ ]{ }cu A k k A k k u A k k k u                 I  

                   (2-24(b)) 

 1 1 1 1 1 1 1 1
2' 2'2' 2'2' 2'2' 2'2 2 2'2' 1'1' 11' 1{ } [ ] [ ] { } [ ] [ ] [ ] [ ] [ ]{ } [ ] [ ] [ ] [ ]{ }cu A k k A k k u A k k k u                I  

                   (2-24(c)) 

  
  1 1 1 1 1

1 11' 1'1' 11 11' 1'1' 1'1' 11' 1

1 1 1
11' 1'1' 2'2' 2'2 2

{ } [ ][ ] [ ] { } [ ] [ ][ ] [ ] [ ] [ ] [ ] { }

[ ][ ] [ ] [ ] [ ]{ }

cF A k k k k k A k k u

A k k k k u

    

 

    

  

    



I
      (2-24(d)) 

    
  1 1 1 1 1

2 2'2 2'2' 22 2'2 2'2' 2'2' 2'2 2

1 1 1
2'2 2'2' 1'1' 11' 1

{ } [ ][ ] [ ] { } [ ] [ ][ ] [ ] [ ] [ ] [ ] { }

[ ][ ] [ ] [ ] [ ]{ }

cF A k k k k k A k k u

A k k k k u

    

 

    

  

   



I
 (2-24(e)) 

With Eqn (2-24(a)), the condition 2 2' 1' cu u     can now be recast in terms of nodal 

displacement:     1 1 1 1
2 1'1' 11' 1 2'2' 2'2 2[ ] [ ] { } [ ] [ ] [ ]{ } [ ] [ ]{ }c ck k u k k u           I  

Full analysis of fracture in a 1D bar shows how to condense the internal nodal 

displacements and loads, so one can obtain the external nodal forces only as functions of 

external nodal displacement. The condensation procedure used above shows the main 

idea behind the new A-FEM method which can be used on other general problems and 

will be discussed in the following sections.  
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2.3 Problem	Statement	
 

Consider a discontinuous physical domain Ω as shown in Figure  2-6. The domain is 

composed of two sub-domains of the same or different materials, i. e.,      . The 

two domains are connected by a discontinuity which could be a cohesive crack or a 

material boundary, c c c
     .1 The prescribed tractions F are imposed on boundary 

F  and the prescribed displacements u  on boundary u . The stress field inside the 

domain, σ, is related to the external loading F. The strong form of the equilibrium 

equation and boundary conditions are:  

      
+

+

0     (in );  0  (in );

   (on );                 (on );

      (on );                     (on );

    (on );     (on );

F F

u u

c c

   

    

    

       

      

     

   

        

σ σ

σ n F σ n F

u u u u

t σ n t t σ n t  

                                       (2-25) 

Where  and  are the stresses in the subdomains   and  ; t and t  are the 

tractions along the discontinuity surfaces c
  and c

 ; n  and n  are the out-normal c
  

and c
 . 

The last two expressions in Eqn (2-25) come from the stress continuity across the 

discontinuity boundary. The traction, t, is a function of the relative displacements,u , 

between +  and c c
  , i.e.,  

                                                 
1 For a weak discontinuity 

c c
     while for a strong discontinuity + and c c

   are separated. 
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      c

c

( ) (on )

            (on ) 

  

   

t t u

u u u
                                                                             (2-26) 

where u and u are the displacement fields in   and  , respectively. Eqn (2-26) 

serves as the constitutive law and kinematic equation of the discontinuity. In this study, 

cohesive zone model with piece-wise linear traction separation law is used to describe 

strong discontinuities. The procedures for piece-wise linearization and setting a proper 

indexing scheme for cohesive segments, that are critical to the new elemental 

condensation procedure here, is given in Appendix A in detail. 

The domain surrounding the discontinuity is assumed to be elastic. We further assume 

small strains and displacement condition. Thus the constitutive law and kinematic 

equations for the two domains can be written as: 

 (in )                                              (in )   

( ) [  ( ) ]/2     (in )     ( ) [  ( ) ]/2     (in )   

       

           

   

           T T

σ C :ε  σ C :ε

ε ε u u u ε ε u u u
 (2-27)                         

where  and  C C being the material stiffness tensors of the two sub-domains traversed 

by the discontinuity, respectively. They can be identical (for homogeneous materials) or 

different (for heterogeneous materials). The superscript () T denotes transposition. 

 

Figure  2-6 Notation for a body with an arbitrary discontinuity 
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t
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 u 0
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c


u
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

t

F 

 u 0

F
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The stated strong form of the problem can be converted into a weak form using the 

principle of virtual work. The displacement fields ( u and u ) must be sub-sets of the 

kinematically admissible displacement fields, U: 

     {    on };      {    on }u u
                u v v  0 u v v  0 U V : U V :           (2-28) 

Applying the principle of virtual work separately to the subdomains, the weak forms can 

be written as:       

 

 

( ) d  d ( )  d ( , )

( ) d  d ( )  d

F c

F c

 

 

       

  

     

  

         

       

  
  

σ : ε v F v t v v v v

σ : ε v F v t v v

U
               (2-29) 

where    v v v  (on c
 ). The left-hand-sides are the internal virtual work and the 

right-hand-sides are the virtual work done by the external forces and the tractions along 

the crack surfaces. Note that, if one of the subdomains further cracks, the principle of 

virtual work can be applied to all three subdomains without any further modifications. 

2.4 A‐FEM	Formulation	with	Single	Intra‐Elemental	Crack	
 

This section describes how to construct an element with only regular nodes or DoFs that 

can correctly account for an intra-elemental cohesive crack. Without the loss of 

generality, consider the 4-node quadratic plane element to illustrate the augmented finite 

element scheme. The physical element with nodes 1, 2, 3 and 4 is severed by a cohesive 

crack where the tractions are continuous but displacements are not as shown in 

Figure  2-7. A common approach is taken by assuming 1) during crack growth, a crack tip 

always resides at an element boundary during its propagation as in the PNM [210,253]  
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and the previous A-FEM [206,207], and 2) the existence of a cohesive zone eliminates 

the crack-tip singularity [71,183]. 

Before any crack traverses the element, it is elastic and the 4-node bi-linear element 

formulation using standard shape functions can be used, as shown in Figure  2-7. As the 

applied load increases, at some stage the element will be seperated by a cohesive crack.  

If the element is cut by a single crack, there are two basic crack configurations: 1) two 

quadrilateral subdomains as shown in Figure  2-7(b), and (2) one triangular subdomain 

and one pentagonal subdomain as shown in Figure  2-7(c). Obviously there is a 

displacement discontinuity across the two separated domains. In such cases, the standard 

shape functions cannot give accurate results because it only treats continious 

displacements. On the other hand, if one can add 4 additional nodes as shown in 

Figure  2-7 by node numbers 5, 6, 6’ and 5’, with regular displacement DoFs so that the 

displacement jumps across the crack are simply the differences in displacements between 

the respective node-pairs 5-5’ and 6-6’, the problem can be solved by replacing the 

original element with three new elements. For example, for the configuration in 

Figure  2-7 (b), two 4-node bilinear elements (1-2-5-6 and 6’-5’-3-4) and one cohesive 

element (6-5-5’-6’) are sufficient. The two solid elements interact with each other 

through the cohesive element. This is the basic idea of all sorts of adaptive meshing 

methods. However, this method is computationally very expensive. In the following 

paragraphs, we explain how to augment the 2D element by condensing the additional 

nodes and their assciated DoFs. 

For each crack, a local coordinate system is defined by the direction along (s) and 

perpendicular to (n) the crack path, from which the normal ( n ) and shear ( s ) crack 
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displacements can be defined as shown in Figure  2-7. These local crack displacements 

are related to the global crack displacements, u  and v , by     1, R ,
T T

n t u v     , 

where   1 1
1

1 1

cos sin

sin cos

 
 

 
   

R  is the rotational matrix between the global and local 

coordinates and 1  is the angle between global x-axis and local s-axis (Figure  2-7). As 

will be seen shortly, introduction of 4 internal nodes allows us to derive accurate 

elemental equilibrium equations without the need to assume crack deformation modes as 

commonly done in literature. More importantly, it offers the advantage of permitting 

multiple, intra-element discontinuities. The DoFs associated with these internal nodes 

will be condensed at an elemental level. The internal nodes also facilitate independent 

displacement interpolation and stiffness integration for each subdomain, which leads to a 

natural consideration of a weak discontinuity if the subdomains are of different materials. 

 

Figure  2-7 Illustration of the element augmentation from (a) a regular element with 
possible different material domains, to (b) an A-FE with two quadrilateral sub-domains, 
or to (c) an A-FE with one triangular sub-domain and one pentagonal sub-domain. 

 

1

1
sn



6

4

3

2

6'

5

5'

1 1,  yF v

1 1,  xF u

2 2,  yF v

2 2,  xF u

3 3,  yF v

3 3,  xF u

4 4,  yF v

4 4,  xF u
4 3

1 2


5

6


5

6

( )n 
n

s

1

1 1,  yF v

1 1,  xF u 2

2 2,  yF v

2 2,  xF u

3

3 3,  yF v

3 3,  xF u4
4 4,  yF v

4 4,  xF u

1
sn

( )s 

x

y

   



68 
 

 
 

First, from Eqn (2-29) the discretized form of element equilibrium equations for the two 

domains can be expressed in general as follows, 

  
 
 

T + T T

T T T

( ) ( )( )]d ( ) dΓ+ ( ) dΓ

( ) ( )( )d ( ) dΓ ( ) dΓ

e F c

e F c

  

  

     

  

      

  

 

  

  

  

B D B u N F N t

B D B u N F N t
                                 (2-30) 

where +B and B  are the strain matrices, +u  and u  are nodal DoFs; N and N are the 

interpolation matrices composed of shape functions; F  and F  are the external force 

arrays, and T  t(δ) = R t (δ )  is the cohesive traction array in the global coordinates (x-o-y). 

The two stiffness matrices can be obtained independently with shape functions and 

material properties pertaining to each domain. This allows the current method to model 

both a strong (discontinuous displacement field) and weak discontinuity (continuous 

displacement but discontinuous strain field). The two cracking possibilities should be 

analyzed separately. Following the standard FEM procedure for each sub-domain, the 

equilibrium equations for each can be written in general form. Because of a large number 

of DoFs, we will have large matrices (8×8) that make it awkward and tedious to write and 

proceed. Therefore, we assign some short terms to the large matrices to make the solution 

and results more convenient to use and modify. The complete equilibrium equation and 

the method of finding it can be seen in Appendix B. 

The displacement field in each subdomain, (   )or    u  can be obtained through 

standard FE shape function interpolation as indicated, 
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       u N d                                                                                                         (2-31) 

where d is the nodal displacement array of the subdomain α (α=+ or ). If the element is 

cut into 2 quadrilateral sub-domains as shown in Figure  2-7 (b),  

 T+
3 3 4 4 6' 6 ' 5' 5'd , , , , , ,| ,u v u v u v u v  and  T

1 1 2 2 6 6 5 5d , , , , , , ,|u v u v u v u v  . N  is the 

interpolation matrix composed of standard bilinear isoparametric shape functions. The 

symbol “|” indicates that the displacements ahead of it are regular nodal displacements 

which are denoted with  T+
ext 3 3 4 4, , ,u v u vd , and those behind it are the internal nodal                        

displacements which are denoted with  T+
int 6 ' 6 ' 5 ' 5 ', , ,u v u vd .  

Similarly,  T

1 1 2 2, , ,ext u v u v d  and  T

int 6 6 5 5, , ,u v u v d . 

If the element is cut into a triangular and a pentagonal subdomain as in Figure  2-7 (c),

   
+

T Text ext+
4 4 6' 6' 5' 5' 1 1 2 2 3 3 6 6 5 5+

int int

then one can obtain

, , , , ,  and , , , , , ,| , , , .|u v u v u v u v u v u v u v u v






            
      

d d
d d

d d

 

The shape functions in the interpolation matrix N are from a polygon FEM with 

optimized quadrature rules recently developed by Mousavi and colleagues [254]. A brief 

summary of the shape functions and stiffness integration schemes regarding this method 

are given in Appendix C. The strain field in each subdomain is: 

T( )L
      ε N d B d                                                                                         (2-32) 
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Where L  is the differentiation operator, i. e.,
/        0        /

0           /     /  L

x y

y x

    
       

, and B is 

the so-called strain matrix. 

Substituting Eqns (2-31) and (2-32) into Eqn (2-30), one obtains the equilibrium equation 

for standard elements as follows, 

     ext int

ext int

   

   

   
 

   

L d F F

L d F F




                                                                                             (2-33) 

 where  

d
e


   



  TL (B ) D B  is the stiffness matrix corresponding to subdomain α; 

T( ) d
F

ext


 


 F N f  is the equivalent external force array on subdomain α ; 

T( ) d
c

int coh


  


 F N t  is the equivalent internal force array integrated from the cohesive 

stresses along the intra-element cohesive crack. 

2

1                0

   1             0
1 ( )

0      0     (1 ) / 2

E




 











 
 

     

D  is the  material stiffness matrix of subdomain α . 

In the interest of developing an efficient A-FE that can deal with multiple interactive 

intra-element cracks, here we adopt the non-conforming approach, which basically 

assumes that the inter-element continuity is enforced only through the regular (or 

external) nodes and their nodal DoFs ( +
extd and -

extd ); while the conformity of the internal 
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DoFs associated with the internal nodes ( +
intd and -

intd ) are not enforced. This 

simplification leads to the conclusion that  ext
F  is a function of regular nodal DoFs ( +

extd

and -
extd ) only, and int

F  is a function of internal DoFs ( +
intd and -

intd ) only, which allows 

us to rewrite Eqn (2-33) as follows, 

    

11

11

ext ext

int int

ext ext

int int

   

  

   

  

     
     

      
     

     
      

12

21 22

12

21 22

L       L d F
  

d FL      L

L       L d F
 

d FL      L

                                                                              (2-34)  

where (i,j 1,2;  , )ij
    L are the sub-matrices of L ,i.e., 11

 


 

 
  
  

12

21 22

L     L
L

L     L
. Note that 

22
L  is the sub-stiffness matrix related to the two internal nodes of subdomain α. 

The condensed elemental equilibrium equations for both of the configurations in 

Figure  2-7 (b) and Figure  2-7 (c) can be derived in a unified formulation. It is noted that 

for both configurations, the internal DoFs and equivalent force arrays are the same, i. e. 

     
   

   

T T+
int 6'5' 6 ' 6 ' 5 ' 5 ' int 65 6 6 5 5

T T+
int 6'5' 6 ' 6 ' 5 ' 5 ' int 65 6 6 5 5

, , , ;                 , , , ;

, , , ;         , , , ;x y x y x y x y

u v u v u v u v

F F F F F F F F





   

   

d d d d

F F F F
          (2-35(a)) 

The external DoFs and force arrays are specific to a particular crack configuration. For 

the two quadrilateral subdomain configurations of Figure  2-7 (b), they are 

     
   

   

T T+
ext 34 3 3 4 4 ext 12 1 1 2 2

T T+
ext 34 3 3 4 4 ext 12 1 1 2 2

, , , ;                , , , ;

, , , ;        , , , ;x y x y x y x y

u v u v u v u v

F F F F F F F F





   

   

d d d d

F F F F
             (2-35(b)) 
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For the triangular-pentagonal subdomain configuration of Figure  2-7(c), 

     
   

   

T T+
ext 4 4 4 ext 123 1 1 2 2 3 3

T T+
ext 4 4 4 ext 123 1 1 2 2 3 3

, ;                , , , , , ;

, ;            , , , , , ;x y x y x y x y

u v u v u v u v

F F F F F F F F





   

   

d d d d

F F F F
            (2-35(c)) 

However, for both configurations, the equilibrium equations can be written as: 

      

11

6'5' 6'5'

11

65 65

ext ext

ext ext

for

for

   


 

   


 

     
      

      
     

      
      

12

21 22

12

21 22

L       L d F
    (  )   

d FL      L

L       L d F
     (  )

d FL      L

                                                       (2-36) 

Also, due to stress continuity across the cohesive crack, 65 6'5'
c

T
coh d


   F F N t . Eqn 

(2-36) is valid for both weak and strong discontinuity problems. In the following, it will 

be demonstrated that the method can handle, in a mathematically rigorous way, the 

smooth evolution from a weak discontinuity such as rigid bi-material interface to a strong 

discontinuity such as a cohesive crack. 

Weak discontinuity:   

If the two subdomains of the element are of two different materials and they are bonded 

by a rigid interface, the problem is called a weak discontinuity problem because across 

the interface the normal and tangential displacements are continuous but the strains are 

not. This type of problems is a bit awkward to handle by the X-FEM or PNM because 

they have to utilize a large penalty factor to enforce the displacement continuity. The new 

A-FEM can handle this type of problems very conveniently. 
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For weak discontinuity problems, 6'5' 65d d . Together with the condition of 6'5' 65 F F , 

Eqn (2-36) further simplifies to  

     
1 1

11

1 1
11

ext ext

ext ext

     

     

     
     

      

- -
12 21 12 21

- -
12 21 12 21

L L L       L LF d

F dL L      L L L

 

 
                                                   (2-37) 

 Where 22 22
  L L . Furthermore, the internal forces are determined as: 

          1 1
65 22

ext

ext


   



 
    

 

- -
21 22 21

d
F I L L     L L

d
                                                      (2-38) 

Thus, for an element containing two material domains with a perfectly bonded interface, 

once the external nodal displacements are given (which is the case for displacement- 

based FEs), the resultant forces acting along the interface are immediately known. This 

solution is mathematically rigorous in the FEM sense. Thus, there is no need to introduce 

a large but finite stiffness for the interfaces as would be needed in PNM and the earlier 

version of the A-FEM formulation. The artificially added initial finite stiffness for 

interfaces may cause problems such as mesh dependence [255] as well as inconsistencies 

in physical problems [111,112]. 

With 65F known, the current tractions acting on the interface are known. For example, 

the normal and shear stresses averaged along the interface, in local coordinates, are  

 
 
 

5 6 1Tint
1

int 5 6 1

/

/

x x e

y y e

F F l

F F l




        
    

R , where 1el  is the interface length (Figure  2-7 (a)). These 

stresses can then be used to determine the initiation of interface debonding, which is the 
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turning point from a weak discontinuity to a strong one. A common initiation criterion 

used here, is 

   2 2

int 1 int 1ˆ ˆ/ / 1                                                                                             (2-39) 

where the MacAulay bracket   , defined as   / 2     , is used to reflect the 

physical observation that compressive normal stresses do not contribute to crack 

initiation. 

If the criterion of Eqn (2-39) is met, the discontinuity becomes a strong one, i. e.,

6'5' 65d d , which is addressed next. 

Strong discontinuity 

If the element is cut by a cohesive crack or the initially rigidly bonded interface crack 

starts to open, the problem becomes a strong discontinuity one. Following the notation 

established in Appendix A, the cohesive stresses between two pairs of internal nodes 5-5’ 

and 6-6’ can be expressed in its local coordinates as  

   
T T( ) ( ) ( ) ( ) ( , , , ) ( , , , )

66 66 55' 55' 0 66' 66' 55' 55', , , , , ,   ( , , , [1,2,3,4])i j k l i j k l i j k l
s n s n i j k l          0σ α  (2-40(a)) 

where 

 T( , , , ) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( ) ( 1)ˆ ˆ ˆ ˆ, , ,i j k l i i i j j j k k k l l l
s s n n s s n n                      0σ (2-40(b))  

is the characteristic stress matrix. The critical stresses, corresponding crack displacements 

and cohesive slopes have been defined in Appendix A (Eqns (A1-A3) and Figure A1). 
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0      0        0

0      0        0     
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s
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ni j k l i j k l

s n s n k
s

l
n




   





 
 
      
 
  

α                       (2-40(c)) 

is the cohesive stiffness matrix (Appendix A). Here Diag [a; b; c; d] means a diagonal 

matrix with non-zero a, b, c and d at the corresponding diagonal places. This notation 

will be used in the rest of this study. 

 T

66' 66' 55' 55', , ,s n s n    is the crack displacement array at internal node-pairs 6’-6 and 5’-5 

measured in the local coordinate system. 

The free indices (i, j, k, and l) can range from 1 to the maximum cohesive segment 

number, indicating in which segments of the cohesive laws the current cohesive stresses 

are located (Appendix A). Note, the characteristic stress and stiffness matrices are 

determined if any particular combination of (i, j, k, and l) is chosen. 

65F  and 6'5'F  are obtained by integrating the cohesive stresses in Eqn (2-40(a)) over the 

crack plane and then converted into global coordinates using the rotation matrix 1R , 

which gives: 

     ( , , , ) ( , , , )
65 6'5' 1 int( )i j k l i j k l

e ol    F F S d                                                        (2-41(a)) 

where 6' 6
int 6'5' 65

5' 5

 
      

d d
d d d

d d
 are the crack displacements at node pairs 6’-6 and 

5’-5 in global coordinates, i. e., 

       T

int 6'5' 65 66' 66' 55' 55'Diag ; , , ,s n s n       1 1d d d R R                                  (2-41 (b)) 
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 0S  and    are related to the characteristic cohesive stress and stiffness matrices in 

Eqn (2-15)  by: 

     
 

T T T ( , , , )
1 1 0

T T T ( , , , )
1 1 0 1 1

Diag ; ( )

Diag ; ( ) Diag ;

i j k l
coh

i j k l
coh coh

   
   

0S R R T σ

α R R T α N R R
                                          (2-41 (c)) 

Here cohT  and cohN  are the integration and interpolation matrices associated with the 

cohesive stress integration and the displacement interpolation along the crack plane, 

respectively. These matrices are given in Appendix D for several popular interpolation 

and integration schemes. For the single crack case, we used the standard Gaussian 

interpolation and integration scheme, i. e., 

   
   

   
   

T1 1
Diag ;     Diag ; Diag ;     Diag ;

; .
2 2Diag ;     Diag ; Diag ;     Diag ;

B B A A B B A Ae e
coh coh coh

A A B B A A B B

l l       

       

   
     
      

N T N  

Where  1 1/ 3 / 2A    and  1 1/ 3 / 2B   . The matrices for several other popular 

interpolation and integration schemes have been summarized in [256]. 

Substituting Eqn (2-41(a)) into second rows in Eqn (2-36), the following equation is 

derived:  

     
   
   

22 1 6'5' 1 65 1 0 21 ext

1 6'5' 22 1 65 1 0 21 ext

e e e

e e e

l l l

l l l

 

 

    

    

+

-

L d d S L d

d L d S L d

 

 
                                                   

From Eqn (2-42), the crack displacements at the internal node pairs, int 6'5' 65  d d d , is 

solved explicitly: 

(2-42) 
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    

     

1 11 1 1 1
int 1 1 22 1 22 0

1 11 1 1 1
1 22 21 1 22 21               +

e e e

e ext e ext

l l A l

l l

      

          

     

  

d A B B S

B A L d B A L d

   

   
         (2-43(a)) 

where  

   1 1

22 22 1 22 22 1 22 1 22 22 1 22e e e el l l l
             2 2L L A = B =              (2-43(b))    

The explicit solution to the crack displacements can also be solved as: 

    

 
 

1 1
1 16'5' 0

1 1
65 01 1

1 1 1
1 12 21

1 1 1
21 1 21

( )

( )

( )

( )

e e

e e

e ext

e ext

l l

l l

l

l

  

  

      

      

              
    

      

22

22

22

22

A I α ψ 0d S

d S0 B I α ψ

A α ψ L A L d
            +

B L B α ψ L d

                      (2-43 (c)) 

The fully condensed equilibrium equation without any internal forces and displacements 

can be obtained by substituting Eqn (2-43) into first rows in Eqn (2-36) and eliminating 

65F  and 6'5'F , i.e., 

      
 

1 1 1
11 12 21 1 12 21

1 1 1
1 12 21 11 12 21

1 1
1 12 1 0

1 1
01 12 1

( )

( )

( )

( )

e ext

e ext

e eext

ext e e

l

l

l l

l l

        

         

  

    

    
      

               

+
22

22

+
22

22

L L B L L B α ψ L d

L A α ψ L L L A L d

L B I α ψ 0 SF

SF 0 L A I α ψ

                  (2-44) 

Eqn (2-44) is highly nonlinear because the matrices 0S , A, B, 22
  and 22

 , are all 

nonlinear functions of crack displacements intd  (through 0  and 0 - see Eqn (2-41(c)) 

and Eqn (2-43(b)), which are not known because at this point the only information is the 
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external displacements -
extd and +

extd . We shall defer the discussion of solution procedure 

to the next section. 

2.5 Elemental	Condensation	Algorithm	
 

In the previous section, the elemental equilibrium equations for a single crack have been 

derived with details. However, these nonlinear equations have yet to be solved. In 

literature, Eqn (2-44) is typically re-formulated into an incremental form and then solved 

with either the direct matrix inversion technique [234, 235,237] or a Newton-Raphson 

type of iterative solver [233, 257,258]. This is known as the static condensation process. 

In this study, the explicit nature of solutions enables a very efficient elemental 

condensation process that is completely different from what have been used in the 

literature. Instead of solving the incremental form of the elemental equilibrium of Eqn (2-

44), here the internal nodal displacements, Eqn (2-43), is first solved analytically through 

a simple consistency checking procedure. It will be shown that once these equations are 

solved, the equilibrium equations, Eqn (2-44), are satisfied with mathematical exactness 

by substituting the related matrices into them. 

It is noted that, once Eqn (2-43(a)) is solved, i.e., 0S , A, B, 22
  and 22

  are established, 

simply substituting these matrices into Eqn (2-44) will guarantee the elemental 

equilibrium. The global crack displacements in Eqn (2-43(a)) can be converted into local 

crack displacements using Eqn (2-41(b)), which gives 
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    
     
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Diag ;
 +
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l l A l

l l






      

          

                
     

   

A B B S
R R

B A L d B A L d

   

   
        (2-45)               

In Eqn (2-45), the superscripts (i, j, k, l) in the right-hand-side are included to emphasize 

that the matrices 0S , A, B, 22
  and 22

  are all functions of the cohesive slope matrix 

( , , , )
0

i j k l  and characteristic stress matrix ( , , , )
0

i j k l  (Eqns (2-41(c)) & (2-43(b))). Thus, for 

any trial cohesive segment combination (i, j, k, l), a set of local crack displacements is 

immediately solved from Eqn (2-45). The solved local crack displacements are then 

subjected to a consistency check, and the true solution is found if the following statement 

is true: ( ) ( ) ( ) ( )
66' 66' 55' 55'& & & & & &i j k l

s s n n s s n n            

where ( ) ( ) ( ) ( ), , ,i j k l
s n s n        are the respective crack displacement ranges of the 

assumed segments (i, j, k, l) (Appendix A). 

This is the core idea behind the solving algorithm used in this study. The mathematical 

exactness (in piece-wise linear sense) of the solution is guaranteed by the unique solution 

of the local problem (the solution uniqueness for linear material with nonlinear 

discontinuities has been discussed in [259]).  

2.6 Numerical	Implementation	
 

The new A-FEM and the solving procedure above can be integrated into any standard FE 

program as a general purposed element because the elemental locality is completely 

retained. This section describes how to implement it into an existing FEM program as an 
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element. For any displacement-based FEM program, the external nodal displacements are 

passed into the element to establish: 1) instantaneous element stiffness matrix or Jacobian 

matrix, and 2) the external force array (also called right-hand-side or RHS). Both 

matrices have been derived and solved explicitly in section 2.4 for single crack case, Eqn 

(2-44). The local crack displacements were saved as solution-dependent variables (or 

state variables) and subjected to constant updates so that their maximum values ever 

experienced were always available for assessing loading or unloading condition (for 

consistency check). Another minor issue is to guarantee the deformation continuity across 

the element edge that is shared by a crack-tip element and the element immediately ahead 

of it, which is a standard continuous element. This was conveniently done in this study by 

enforcing the internal nodal displacements at the edge to be 5 5' A A B B  d d N d N d , 

where 5 and 5’ are the internal nodes at the crack-tip; A and B are the two external nodes 

of the element edge hosting the crack-tip; and AN  and BN are the standard line shape 

functions associated with node A and B. 

One of the advantages of this method is that it does not need a sophisticated global 

tracking algorithm such as the level-set functions typically employed in X-FEM for crack 

propagation. However, it is beneficial to record the crack path so that the inter-element 

continuity of a crack is reinforced. This was done with a common block accessible to all 

user elements, within which the geometric information of a crack was constantly updated 

as it propagated. With this scheme, the global continuity of the crack is ensured with 

minimal tracking efforts. 
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As an example, the flowchart for integrating the aforementioned formulation in 

ABAQUS (V6.10) as a user-defined element is given in Figure  2-8. Integration of the 

element to other FEM programs should be very similar. 

By implementing the 2-D A-FEM formulation into ABAQUS (V6.10), instead of using 

regular finite elements, by using the augmented finite elements, the ability of considering 

intra-element weak and strong discontinuities can be obtained. 

In next section, we shall verify the A-FEM formulation for simple cases such as a single 

element which potentially can be cut by a cohesive crack. After testing several cases and 

comparing to available results for similar problem, the method will be verified for the 

single discontinuity consideration.  
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Figure  2-8 Flow chart of implementation of the present A-FEM into ABAQUS as a user 
defined element 
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2.7 Single	Element	Validation	
 

After formulating the A-FEM and defining solution procedure, the first step should be 

verifying the method by testing the single augmented element under various loading 

conditions. Displacement –based loading is used to have different modes such as mode I, 

II and mixed mode loading conditions. The element is assigned a very large modulus so 

that the responses are mainly from the cohesive law. The element is 2-mm long and 2-

mm high, hosting a center horizontal discontinuity. The cohesive law is a triangular one 

with ncˆ ˆ 1 MPa,   0.1 mmsc       . The initial slopes are 7 3
1 1  10  N/(mm)n s   , 

and the slopes at the softening phases are 3
2 2 -10 N/(mm)n s   . Therefore, the mode 

I and mode II toughness are 2
I II 0.05 N/mm (50 J/m )    . 

In each case, the A-FEM results are compared with responses from an FEM model 

simulated in ABAQUS using a combination of regular elements (CPS4) for top and 

bottom subdomains, and cohesive elements (COH2D4) with zero thickness to allow 

separation between two domains. In some cases the A-FEM results are compared to 

available analytical results. 

2.7.1 Mode I response 
 

The mode I loading response is shown in Figure  2-9. In this case, nodes 3 and 4 are 

displaced just in vertical direction while the other DoFs are fixed, this type of 

displacement leads to mode I displacement loading. By plotting load-displacement curves 

for nodes 3 and 4, it is seen that the peak nodal forces at nodes 3 and 4 are 1.0 N/mm and 

final failure should occur at the critical displacement of 0.1mm. Comparing the results 
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with ABAQUS results with same geometry and material properties, they are exactly 

identical. 

 

Figure  2-9 Single A-FE response under mode I loading conditions 
 

For this problem the exact solution is available. Through a FBD (free body diagram) 

analysis of the top domain such as Figure  2-10, the nodal forces at crack initiation are 

found as 3 4

ˆ.2
1

2y yF F


    which are identical to predicted peak loads of the A-FEM. 

 

Figure  2-10 FBD evaluation of top domain at crack initiation instant 
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Comparison of the deformed shapes from the A-FEM and the ABAQUS is shown in 

Figure  2-11. Both show the same deformation in mode I direction. 

 

Figure  2-11 (a) Deformed shape from A-FEM, (b) from ABAQUS 

 

It is important to note that although the results are identical from A-FEM and ABAQUS, 

ABAQUS needs to use three elements, two regular and one cohesive, to model the 

problem, while the A-FEM solves the problem with only one element.  

2.7.2 Mode II response 
 

By displacing nodes 3 and 4 in the horizontal direction and keeping other DoFs fixed, 

mode II loading condition can be obtained. The nodal force under mode II loading is 

shown in Figure  2-12 which is identical to the ABAQUS response. 

As in the mode I case, considering FBD of top domain in Figure  2-13 and by means of 

load equilibrium, the equivalent nodal forces can be found as 3 4

.̂2
1

2x xF F


   . They 

are identical to the results of the A-FEM and the ABAQUS. The deformed shapes from 
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the A-FEM and from the ABAQUS as shown in Figure  2-14 are identical. Again, 

ABAQUS solved this problem by using three elements while the A-FEM solved it just by 

one element. 

 

Figure  2-12 Single A-FE under mode II loading condition 

 

Figure  2-13 FBD of the top domain at crack initiation instant 

 

Figure  2-14 Deformed shapes from (a) the A-FEM and (b) ABAQUS 
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2.7.3 Mixed- Mode response 
 

After verifying pure mode cases, the mixed mode loading case is obtained by combining 

the previous pure modes as shown in Figure  2-15 which depicts the curves of F3X-U3 and 

F3Y-V3.  

 

            Figure  2-15 Load-displacement plot for node 3 under mixed mode 
 

The curves from ABAQUS and A-FEM look different. Due to the different cohesive law 

used by ABAQUS, which considered equivalent stress so that stress in each direction can 

be smaller than the critical stress. But the cohesive law of this study requires that in each 

direction, the stress state should reach the critical stress before starting to drop. This is the 

reason that the ABAQUS results shows smaller peak load than the A-FEM results. 

However the areas under both curves are equal, which means that energy release rates for 

both methods are identical. This should be always held true because fracture toughness is 

a type of material property, independent of method or loading. In this case, by moment 
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equilibrium equation at crack initiation instant it can be found that F3Y =2 F3X, which is 

held true according to peak loads in these plots. 

Comparison of the deformed shapes from two methods shows that the two methods give 

the identical result. 

 

Figure  2-16 (a) Deformed shape from A-FEM, (b) from ABAQUS 
 

2.7.4 Mode –I wedge opening response 
 

The wedge opening mode is an important elemental test to assess the accuracy in the 

stress state and the energy dissipation in a crack-tip element, where the cohesive stress 

can be very nonlinear and standard integration schemes may give fairly inaccurate 

response [260]. In this case, two right nodes (nodes 2 and 3) are pin-constrained while the 

two left nodes (nodes 1 and 4) are displaced gradually in opposite directions. 

The reaction forces versus the nodal displacements are plotted in Figure  2-17 and 

compared to the ABAQUS results. From Figure  2-17 it is seen that both methods capture 

fairly well the peak load and the responses before it. However, the post-peak responses 

are vastly different. In particular, ABAQUS which uses standard Newton-Cotes 

integration scheme leads to premature failure and energy dissipation is off by 50%. The 
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A-FEM using improved Gaussian integration scheme, gives a result that is almost 

identical to the analytical solution [256]. 

The deformed shapes from two methods are also identical as shown in Figure  2-18. 

 

Figure  2-17 Load-displacement for wedge opening 
 

 

Figure  2-18 Deformed shape from (a) A-FEM, and (b) ABAQUS 
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2.8 Summary	
 

In this chapter, after a brief review on the exact problem statement, the novel A-FEM was 

formulated. The solution procedure includes addition of internal nodes at the beginning 

but using a condensation method, in the final form there were no internal nodes present, 

means that there is no need to know the crack path a priori which is the beauty of the A-

FEM. After formulation, implementation process was explained which states how to use 

this powerful method. At last, some single element validation tests were performed to 

verify the method for basic cases. All the validations showed that the A-FEM method that 

needs only one element without any additional DoFs or nodes, can predict the fracture 

behavior better than FEM in ABAQUS. More elements were needed in ABAQUS to 

simulate the single element fracture. In large problems this would increase the 

computational time or may not converge, in which the A-FEM would overcome these 

limitations.  
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	Chapter	3:	Two‐	Dimensional	A‐FEM‐Multiple	Crack	Formulation	

	3.1.	Overview	

 

The internal DoFs associated with the four internal nodes, together with the regular nodal 

DoFs, allow for stress evaluations in each subdomain, making it possible to further 

augment the element to host more than one cohesive crack. A secondary crack can be 

introduced to a subdomain as long as it has more than one regular (external) node. In 

such a case, there are three basic crack configurations if a second crack was introduced 

and one configuration if third crack was also introduced. The four configurations are 

shown in Figure 3-1 which 1el  is the first crack length, 2el  is the second crack length and 

3el  is the third crack length. 

Consider the two crack (a-c) configurations. The second crack intersects and cuts the first 

crack into two segments with length 1el (left) and 1(1 ) el  (right). To describe the 

discontinuity induced by the second crack, four more internal nodes, 7, 8, 7’ and 8’ are 

introduced and a local coordinate system is defined by the angle between is tangential 

direction ( 2s ) and global x-direction, 2θ .    

 

Figure 3-1 Four possible cut configurations for a secondary crack from a pentagonal 
subdomain 

1el

2el1el
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1el 1el

(a) configuration 1 (b) configuration 2

1el

2el1el

(c) configuration 3

3el

2el

1el

(d) configuration 4

1(1 ) el



92 
 

 
 

With the 8 internal nodes, it is possible to integrate the subdomain stiffness matrix for 

each subdomain. The procedure to condense the internal nodal DoFs for all the four 

configurations will be given in this chapter. 

3.2 Elemental	Augmentation	Formulation	–	Configuration	1	

3.2.1 General Formulation 
 

If the pentagonal subdomain is cut by a second crack of length 2el as shown in Figure 3-1 

(a), the exaggerated deformed status of this element along with the regular nodes (filled 

dots) and internal nodes (open dots), and the active cohesive tractions are illustrated in 

Figure 3-2. For the second crack, four more internal nodes (7, 8, 7’, and 8’) can be 

introduced to account for the discontinuity across the crack surfaces. The three 

subdomains are noted with  , l  and r . 

 

Figure  3-2 Illustration of a secondary crack in a pentagonal subdomain (3 crack segments 
I, II, and III) 

 

2 2,  xF u
1 1,  xF u

4 4,  yF v

4 4,  xF u  r

l

1 1,  yF v 2 2,  yF v

3 3,  xF u

3 3,  yF v

1 2

34

7

7'

8

8'

55'

6

6'

I'

I

II'
II

III

III'
1

1t
1s

2
2t

2s



93 
 

 
 

4 411 2 2 12 2 4

6 '5 ' 6 '5 '21 4 2 22 4 4

3 311 2 2 12 2 6

58 '7 ' 58'7 '21 6 2 22 6 6

11 4 4 12 4 6

21

[ ] [ ]
(for )

[ ] [ ]

[ ] [ ]
            (for )

[ ] [ ]

[ ] [ ]

[ ]

r r
r

r r

l l

l

 
 

 
 

 
 

 
 

 
 



     
     

    
     

     
    

u FL L

u FL L

u FL L

u FL L

L L

L
12 12

786 7866 4 22 6 6

(for )
[ ]

l

l




 

     
     

    

u F

u FL

The equilibrium equation for the three sub-domains can be expressed as: 
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In a more concise form, the above subdomain equilibrium equations can be written as   

 

 

 

The internal forces ( 6'5' 58'7' 786,  ,  F F F ) come from cohesive stress integration from the 

crack planes.  In this case, the crack is composed of three segments, 6’-5’, 7-8-6, and 7’-

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)
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8’-5. Single-point Gaussian integration within each segment (i.e., constant stress within 

each segment but the stress can be different at different segment) will be used.  The 

integration points are indicated in Figure 3-2 by the solid dots labeled by I (I’), II (II’), 

and III (III’). Further, the cohesive stresses at the integration points are denoted as ( ( )
I

m ,

( )
I

n ), ( ( )
II

k , ( )
II

l ), and ( ( )
III

p , ( )
III

q ), respectively. The superscript (m, n, k, l, p, q) are 

all free indices that can range from 1 to the maximum cohesive segment number, 

indicating which segments of the traction-separation laws the current cohesive stresses 

are located. 

The internal forces ( 6'5' 58'7' 786,  ,  F F F ) can be easily integrated from the cohesive stresses 

acting on each crack planes as follows 

 ( ) ( ) ( ) ( )
6'5' I I II II{ } [ ] m n k l    RF T                                                                      (3-7)                       

 ( ) ( ) ( ) ( )
786 I I III III{ } [ ]l m n p q    RF T                                                                   (3-8)   

 ( ) ( ) ( ) ( )
58'7 ' II II III III{ } [ ]r k l p q    RF T                                                                  (3-9)  
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 are the respective integration matrices for 

each crack segment.   1 1
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R  are the two 

rotation matrices defined by the two crack directions as shown in Figure 3-2. 
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The relation between the cohesive stresses and the nodal displacements can be derived as
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       

       
       

σ σ σ . 

Substituting Eqns (3-10)-(3-12) into Eqns (3-7)-(3-9), one can obtain the following 

                 6'5' 1 11 6'5' 12 786 13 58'7'   F S α u α u α u                                        (3-13) 

                 786 2 21 6'5' 22 786 23 58'7'   F S α u α u α u                                       (3-14) 

                 58'7' 3 31 6'5' 32 786 33 58'7'   F S α u α u α u                                      (3-15)  

where  

 
 
 

 
 
 

 
 
 

0 0 0I I II
1 2 3

0 0 0II III III

[ ] , [ ] , [ ]  andl r  
                 
          

R R R

σ σ σ
S T S T S T

σ σ σ
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     
         

           

 

0 1 0 1 0 1 0 1I I I I
11 12

0 1 0 1II II

0 1 0 1I I
13 21

0 1 0 1II II

22

(2 ) [ ] [ ] [ ] [ ]1 1
[ ] ; [ ] ;

(1 ) [ ] (1 ) [ ]2 2

(2 ) [ ] [ ]1 1
[ ] ; [ ] ;

[ ] [ ]2 2

1
[ ]

2

l

l

 
 

 

 

 



    
         

   
        




R R

R R

R

α R α R 0 α R α R
α T α T

α R α R 0 0 0

0 0 0 α R α R
α T α T

α R α R 0 0 0

0 α
α T

   
         

           

     

0 1 0 1I I
23

0 2 0 20 2 0 2 III IIIIII III

0 1 0 1II II
31 32

0 2 0 2III III

0 1 0II I
33

[ ] [ ] 1
; [ ] ;

[ ] [ ][ ] [ ] 2

(1 ) [ ] (1 ) [ ]1 1
[ ] ; [ ] ;

[ ] [ ]2 2

[ ]1
[ ]

2

l

r r

r

 



 



   
        

   
         

 


R

R R

R

0 0 0R α R
α T

0 α R α Rα R α R 0

0 0 0α R α R
α T α T

α R α R 00 0

α R α
α T    

1I

0 2 0 2III III

[ ]

[ ] [ ]

 
 
  

R 0

0 α R α R

 

Substituting Eqns (3-13)-(3-15) into Eqns (3-2), (3-4) & (3-6), and solving for internal 

nodal displacements ( 6'5' 58'7' 786,  ,  u u u ) as functions of regular nodal displacements (

12 3 4,  ,  u u u ), one obtains: 

 
6'5' 7 8 9 1 13 14 15 12

786 4 5 6 2 10 11 12 3

58'7 ' 1 2 3 3 7 8 9 4

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

         
                 
                 

u Y Y Y S X X X u

u Y Y Y S X X X u

u Y Y Y S X X X u

                          (3-16) 

Substituting Eqn (3-16) back into Eqns (3-1), (3-3) & (3-5), the fully condensed 

elemental equilibrium equation can be obtained as follows 

12 12 4 12 5 12 6 1

3 12 1 12 2 12 3 2

12 7 12 8 12 9 3

11 12 10 12 11 12 12

12 7 11

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

[ ] [L ][ ] [ ][ ] [ ][ ]

[ ][ ] [

l l l

r r r

l l l l

r

  

  

  

   



    
        

        




4

F L Y L Y L Y S

F L Y L Y L Y S

F L Y L Y L Y S

L X L X L X

L X L
12

12 8 12 9 3

12 13 12 14 11 12 15 4

] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ] [ ][ ]

r r r  

   

   
      

     

u

L X L X u

L X L X L L X u

                 (3-17) 

The matrices in Eqns (3-16) and (3-17) can all be explicitly derived and they are given in 

the following: 
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         
             

        

1
1 22 11 2 22 22 21 1 12

1 1
3 21 1 13 23 4 31 1 12 32

1 1
5 22 33 31 1 13 6 5 4 2 3

1 1 1
7 6 4 2 21 8 6 21

[ ] [ ] ; [ ] [ ] [ ] ;

[ ] [ ] ; [ ] [ ] ;

[ ] [ ] [ ] ; [ ] [ ] [ ][ ] [ ]

[ ] [ ] [ ][ ] [ ]; [ ] [ ] [ ];      

l

r

l r

  

 

  

    

    

     

    

  

X L α X L α α X α

X α X α α X α X α α

X L α α X α X X X X X

X X X X L X X L

    
 

       
 

1 1 1 1
9 6 4 2 21 1 21 31 1 21

1 1
10 2 3 7 21 11 2 3 8

1 1 1
12 2 3 9 21 1 21 13 1 13 7 12 10

1
14 1 13 8

            

[ ] [ ] [ ][ ] [ ] [L ] [ ] [L ]

[ ] [ ] [ ][ ] [ ] ; [ ] [ ] [ ][ ];

[ ] [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] ;

[ ] [ ] [

l

     

  

   



 

    

    



X X X X α X α X

X X X X L X X X X

X X X X α X L X X α X α X

X X α X        1
12 11 15 1 21 13 9 12 12] [ ] ;[ ] [ ] [ ] [ ] [ ]     α X X X L α X α X

  (3-18)             

and 

 

    

    
    

 

1 1 1 1
1 6 31 1 4 2 21 1

1 1 1
2 6 4 2 3 6

1 1 1
4 2 21 1 3 1 5 2 3 2

1 1
6 2 3 3 7 1 13 1 12 4

1
8 1 13 2

[ ] [ ] [ ] [ ][ ] [ ] ;

[ ] [ ] [ ][ ] ; [ ] [ ]

[ ] [ ] [ ] [ ][ ] ; [ ] [ ] [ ] [ ][ ] ;

[ ] [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] ;

[ ] [ ] [ ]

   

  

  

 



 

  

   

    

 

Y X α X X X α X

Y X X X Y X

Y X α X X Y Y X I X Y

Y X X Y Y X I α Y α Y

Y X α Y α       1
12 5 9 1 13 3 12 6[ ] ; [ ] [ ] [ ] [ ] Y Y X α Y α Y

       (3-19)                   

The above derivations are based on the assumption that the entire cohesive crack 

segments are active, i.e., {Si} and  ij[ ]α  are nonzero so that 1 2 6[ ],  [ ],  and [ ]X X X  are all 

invertible. However, if one or more segments are completely failed, these matrices may 

become singular, because, in such conditions the internal nodal displacements become 

indeterminate. In the following the numerical remedies for such conditions are discussed. 
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3.2.2  Numerical Treatments for Stress-Free Subdomains 
 

(a) Integration points I and II completely failed: 

In this case,  

           1 11 12 13 21 31;  ;  ;  ;  ;       S 0 α 0 α 0 α 0 α 0 α 0 . 

Therefore 9 12 14[ ] ;  [ ] ~ [ ] X 0 X X 0  and 1 4 8 9[ ] ;  [ ] ;  [ ] ;  [ ]   Y 0 Y 0 Y 0 Y 0 . 

 The simplified expressions for the displacement and the equilibrium equations are 

6 '5 ' 1 12

786 5 6 2 10 11 3

58 ' 7 ' 2 3 3 7 4

7

8

150 0 0 0[ ] [ ]

0 [ ] [ ] [ ] [ ] 0

0 [ ] [ ] [ ] [ ] 0

        
                 

                

u S u

u Y Y S X X u

u Y Y S X

Y X

X u

                          (3-20)                        

12 12 5 12 6 1

3 12 2 12 3 2

3

11 12 10 12 11 12

12 7 11 1

12 7

11 12 5

2 8

1

[ ][

0 [ ][ ] [ ][ ]

0 [ ][ ] [ ][ ]

0 0

[ ] [ ][ ] [ ][ ] 0

[ ][ ] [ ] [ ][

]

] 0

0 [ ]0 ] [ [ ]

l l

r r

l l l

r r r



 

 

 

  

  

    
        

        
 
   
   

4

F L Y L Y S

F L Y L Y S

F S

L L X L X u

L X L L X

L Y

L L X
3

4

 
 
 
  

u

u

               (3-21) 

In this case, since 1
1[ ]  X does not exist, 7 15and[ ]  [ ]Y X  are not defined. However, it is 

noted that 1{ } 0S , thus one can simply set 7[ ]Y 0 , 15[ ]X 0 , 12 7[L ][ ] Y 0 , and 

11 12 15[ ] [ ][ ]  L L X 0 . With this numerical treatment, { }4F 0  is guaranteed. { }4u  is 

undetermined within this element but will be determined by neighboring elements that 

share this node. 
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(b) Integration points II and III completely failed: 

In this case,           13 23 31 33323
;  ;  ;  ;  ;       S 0 α 0 α 0 α 0 α 0 α 0 , which leads to 

3 4 7 9 11 14[ ] ~ [ ] ;  [ ] ;  [ ] ;  [ ] ;  [ ]    X X 0 X 0 X 0 X 0 X 0 ,and

1 2 6 9[ ] ~ [ ] ;  [ ] ;  [ ]  Y Y 0 Y 0 Y 0 .  

The simplified expressions for the displacement and the equilibrium equations are:     

6 '5 ' 7 8 1 13 15 12

786 4 5 2 10 12 3

58 '7 ' 3 43 8

[ ] [ ] 0 [ ] 0 [ ]

[ ] [ ] 0 [ ] 0 [ ]

0 0 0 0[ ] [ ]

        
                 

                

u Y Y S X X u

u Y Y S X X u

uY Xu S

           (3-22)

12 12 4 12 5 1

3 2

312 7 12 8

11 12 10 12 12 12

12 13 11 1

12 3

2 15

11 12 8

[ ][ ] [ ][ ] 0

0 0

[ ][ ] [ ][ ] 0

[ ] [ ][ ] 0 [ ][ ]

0 0

[ ][ ] 0 [

[ ][ ]

[ ] [ ][

] [ ][ ]

]

r

r

l l

l l l

r

 

 

 





 







    
        

        
 
 

  




 

4

F L Y L Y S

F S

F SL Y L Y

L L X L X u

u

L

L Y

L L

L

X

X L X

3

4

 
 
 
 
 u

                  (3-23) 

In this case, since 1 1
6 22[L[ ] ]r  X  does not exist, 3[ ]Y  and 8[ ]X  are not defined. 

However, since 3{ }=S 0 , one can simply set the underlined terms, 3[ ]Y 0 , 8[ ]X 0 , 

12 3[ ][ ]r L Y 0 , and 11 12 8[ ] [ ][ ]r r  L L X 0 . In this way, it is guaranteed that 

  but  { }3 3F 0 u  cannot be determined by the element. It has to be determined by 

neighboring elements that share node 3. 

(c) Integration points I and III completely failed: 

In this case,           2 12 21 22 23 320;  0;  0;  0;  0;  0     S α α α α α , which leads to  

3 4 7 11 13[ ] ~ [ ] ;  [ ] ;  [ ] ~ [ ]  X X 0 X 0 X X 0 , and 2 4 6 8[ ] ;  [ ] ;  [ ] ;  [ ]   Y 0 Y 0 Y 0 Y 0 .  
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The simplified expressions for the displacement and the equilibrium equations are: 

6'5' 7 9 1 14 15 12

786 2 10 3

58'7' 3 8

5

9 41 3

[ ] 0 [ ] 0 [ ] [ ]

0 0 [ ] 0 0

0 [

[ ]

] [ ][ ] 0 [ ]

       
                

               

u Y Y S X X u

u S X u

u S XY

Y

X uY
                                         (3-24) 

  

 

12 1

3 12 1 12 3 2

12 7 12 9 3

11 12 10

11 12 8 12 9

12 14 11 1 5

1 5

2 1

20 0

][ ] 0 [ ][ ]

[ ][ ] 0 [ ][ ]

[ ] [ ][ ] 0 0

0 [ ] [ ][ ] [ ][ ]

0

[ ][

[ ][ ] [ ] [ ][ ]

]
r r

l l

r r

l

r

 

 

 

  

  

    
         
    

     
 

 


4

F S

F [L Y [L Y S

F [L Y [L Y S

[L [L X

[L [L X [L X

[L X [L [ X

L Y

L

12

3

4

  
  

  
   

u

u

u

                       (3-25)       

No special treatment is necessary although one can set 5[ ]Y 0 without affecting the final 

solution because 2{ }=S 0 . 

(d) All Integration points I, II, and III failed: 

In this case, 1 2 3{ } { } { } 0;  and [ ] 0 (i, j = 1, 2, 3)ij   S S S α , which leads to  

3 4 7 9 11 14[ ] ~ [ ] ;  [ ] ;   [ ] ;   [ ] ~ [ ]   X X 0 X 0 X 0 X X 0 , and the simplified expressions for the 

displacement and the equilibrium equations are: 

In this case, 3 4an{ } =   { } = dF 0 F 0  but 3 4 an{ } d { }u u  have to be determined by neighboring 

elements. 
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6'5' 12

786 10 3

58'7 '

15

8 4

0 0

[ ] 0 0

0 0

[ ]

[ ]

    
        

        

X

X

u u

u X u

u u

                                                      (3-26)

11 12 8

12 11 12 10 12

3 3

411 12 15

[L ] [L ][ ]

[L ] [

[L ] [L ][

L ][

0 0

0 0

0 0 ]

]
r r

l l 

 

 

             
    

     



4

F X u

F uX

F X u

                 (3-27) 

 In this case, both 1 1
1 6and[ ]  [ ] X X  are not defined because 3 4an{ }  d { }u u  are 

indeterminate from this element. Therefore, we can set 8[ ]X 0 , 15[ ]X 0 , 

11 12 8[ ] [ ][ ]r r  L L X 0  and 11 12 15[ ] [ ][ ]  L L X 0 . 

3.3 Elemental	Augmentation	Formulation	–	Configuration	2	

3.3.1 General Formulation 
 

If the secondary crack cuts the pentagonal subdomain but against the previous case, the 

quadrilateral domain is at left and the pentagonal domain is at right. 

 

Figure  3-3 Illustration of a secondary crack in a pentagonal subdomain, second 
configuration (3 crack segments I, II, and III) 
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The equilibrium equation for the three sub-domains can be expressed as 
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Compared to Eqns (3-1)-(3-6), the only differences in Eqns (3-28)-(3-33) are the array 

definitions of the displacements and forces, as well as the associated stiffness sub-

matrices ij
L and (i, j = 1, 2). Similar to the procedure in section 3.2.1, the internal 

displacements as functions of external displacements, and the condensed equilibrium 

equation can be obtained as follows. 

6'5' 7 8 9 1 13 14 15 1

786 4 5 6 2 10 11 12 23

58'7 ' 1 2 3 3 7 8 9 4

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

         
                 
                 

u Y Y Y S X X X u

u Y Y Y S X X X u

u Y Y Y S X X X u

                           (3-34) 

 

1 12 4 12 5 12 6 1

23 12 1 12 2 12 3 2

12 7 12 8 12 9 3

11 12 10 12 11 12 12

12

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

[ ] [ ][ ] [ ][ ] [ ][ ]

         [

l l l

r r r

l l l l

r

  

  

  

   



    
        

        




4

F L Y L Y L Y S

F L Y L Y L Y S

F L Y L Y L Y S

L L X L X L X

L
1

7 11 12 8 12 9 23

12 13 12 14 11 12 15 4

][ ] [ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ] [ ][ ]

r r r  

   

   
      

     

u

X L L X L X u

L X L X L L X u

                  (3-35) 

where the i[ ]  (i=1, 2 ,15)X   and j[ ] (j = 1, 2, ,9)Y   are identical to those defined in 

Eqns (3-18) and (3-19). 
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3.3.2 Numerical Treatments for Stress-Free Subdomains 
 

(a) Integration points I and II completely failed: 
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             (3-37)  

Similar to the numerical treatment in Eqns (3-20) and (3-21), the underlined terms in 

Eqns (3-36) and (3-37) have to be set to zero because in this case 1
1[ ]X  does not exist 

(hence 7 15and[ ]  [ ]Y X  are not defined). This numerical treatment eliminates numerical 

singularity without changing the solution and this is made possible by noting {S1} = 0.  

(b) Integration points II and III completely failed: 
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In this case both equations are well-defined but one can set 3[ ] Y 0  and 12 3[ ][ ]r L Y 0

without effecting the numerical solution because 2[ ]S  0 . 

(c) Integration points I and III completely failed: 
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In this case, since 1
2[ ]X does not exist and 2{ } = S 0 , the underlined terms in the above 

equations have to be set to zero to avoid numerical singularity.  

(d) All Integration points I, II, and III failed: 
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In this case, since neither 1
1[ ]X  nor 1

2[ ]X exits, the underlined terms in the above 

equations have to be set to zero to avoid numerical singularity.  

3.4 Elemental	Augmentation	Formulation	–	Configuration	3	

3.4.1 General Formulation 
 

If the element is cut into three 4-node quadratic subdomains as shown in Figure 3-4: 

 

Figure  3-4 Illustration of a secondary crack in a rectangular subdomain (3 crack segments 
I, II, and III) 

The equilibrium equation for each of the subdomains can be written as 
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Re-write these equations in a more compact form as the following 

 

 

 

 

Following identical solution procedure described in Section 3.2.1, the displacement and 

equilibrium equations can be derived readily: 
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                 (3-51)

 

Where the i[ ]  (i=1, 2 ,15)X   and j[ ] (j = 1, 2, ,9)Y   are identical to those defined in 

Eqns (3-18) and (3-19). 

3.4.2 Numerical Treatment for Stress-Free Subdomains 
 

(a) Integration points I and II completely failed: 
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                 (3-53) 

In this case both equations are well-defined but one can set 7[ ] Y 0  and 12 7[ ][ ] L Y 0

without effecting the numerical solution because {S1} = 0. 

 

 

 

(3-52) 
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(b) Integration points II and III completely failed 
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                (3-55) 

In this case, since 1
6[ ]X does not exist and we have 3{ } = S 0 , the underlined terms in the 

above equations have to be set to zero to avoid numerical singularity. This numerical 

treatment guarantees 2{ }F 0  but 2{ }u  is indeterminate and has to be decided by 

neighboring elements. 

(c) Integration points I and III completely failed 
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                (3-57) 

In this case, since 1
2[ ]X does not exist and we have 2{ } = S 0 , the underlined terms in the 

above equations must be set to zero to avoid numerical singularity. This numerical 
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treatment guarantees 1{ }F 0 . 1{ }u  is indeterminate and has to be decided by neighboring 

elements. 

(d) all integration points I, II, and III failed 
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In this case, since either 1
2[ ]X  nor 1

6[ ]X exist; the underlined terms in the above 

equations must be set to zero to avoid numerical singularity. This numerical treatment 

guarantees 1 2{ } { } F F 0 . 1 2{ } and { }u u  are indeterminate and have to be decided by 

neighboring elements. 

3.5 Elemental	Augmentation	Formulation	–	Configuration	4	

3.5.1 General Formulation 
 

If another crack cuts the top subdomain in previous configuration, the three cracks cut the 

element into four quadrilateral elements as in Figure 3-5. In this case more additional 

internal nodes are required to consider the third crack behavior and stresses. Denote these 

four nodes as 9, 9’, A and A’, which are added to previous open dots to show internal 

nodes. The additional crack also requires another integration point which is showed by IV 

and its counterpart IV’. 
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Figure  3-5 Illustration of two secondary cracks in cracked quadratic subdomains (4 crack 
segments I, II, III and IV) 

The equilibrium equation for four subdomains can be expressed as 
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5
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 (for )

x

y

x

y r

x

y

x

y

F

F

F

F

F

F

F

F



 
 
 
 
 
   
 
 
 
 
  

 

Rewriting the equations in a more compact form as the following one obtains: 

     11 1 12 786 1[ ]{ } [ ]{ } { }l l  L u L u F                                                                                (3-60) 

      21 1 22 786 786[ ]{ } [ ]{ } { }l l  L u L u F                                                                               (3-61) 

      11 2 12 58'7' 2[ ]{ } [ ]{ } { }r r  L u L u F                                                                                 (3-62) 

      21 2 22 58'7' 58'7 '[ ]{ } [ ]{ } { }r r  L u L u F                                                                            (3-63) 

      11 3 12 9A5' 3[ ]{ } [ ]{ } { }r r  L u L u F                                                                               (3-64) 

      21 3 22 9A5' 9 5'[ ]{ } [ ]{ } { }r r
A

  L u L u F                                                                            (3-65) 

      11 4 12 6'A'9'[ ]{ } [ ]{ } { }l l   4L u L u F                                                                                (3-66) 

      21 4 22 6'A'9' 6 ' '9 '[ ]{ } [ ]{ } { }l l
A

  L u L u F                                                                          (3-67) 
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The internal forces 786 58'7 ' 9 5' 6 ' ' 9 '( ,  ,  ,  and )A AF F F F  can be easily integrated from the 

cohesive stresses acting on each crack planes as follows   

 
 

 

( )
I

2 2 ( )
I

786 1 1 1 2 2 ( )
III

( )1 1
III

1
{ } [ ] [ ] [ ]

2

m
T

e n
l T T

e e p
T

qe

l

l l

l







 



           
  

    

R

0 R

F T S R R

R 0

             (3-68)                        

 
 

 

( )
II

1 1 ( )
II

58 ' 7 ' 2 1 1 2 2 ( )
III

( )2 2
III

(1 )
1

{ } [ ] (1 ) [ ] [ ]
2

k
T

e l
r T T

e e p

T
qe

l

l l

l












             
  

    

R

R 0

F T S R R

0 R

                               (3-69)   

 
 

 

( )
II

3 3 ( )
II

9 5 ' 3 1 1 3 3 ( )
IV

( )1 1
IV

1
{ } [ ] (1 ) [ ] [ ]

2
(1 )

k
T

e l
r T T

A e e r
T

se

l

l l

l







 



             
  

     

R

0 R

F T S R R

R 0

                                  (3-70) 

 
 

 

( )
I

1 1 ( )
I

6 ' ' 9 ' 4 1 1 3 3 ( )
IV

( )3 3
IV

1
{ } [ ] [ ] [ ]

2

m
T

e n
l T T

A e e r
T

se

l

l l

l












             
  

    

R

R 0

F T S R R

0 R

                                       (3-71) 

Where 1R , 2R  and  3R  are the rotation matrices defined by the crack orientation 

defined in Figure 3-5. With the assumed single-point Gaussian integration, the cohesive 

stresses as functions of nodal displacements can be easily established as 

     
( )

6' 6 8'I
0 0 1 0 1( ) I II

6' 6 8'I

1 1 1 1
[ ] [ ]

2 2 2 2

m
A

n
A

u u uu

v v vv




           
                

           
σ α R α R          (3-72) 

     
( )

5' 5 8'AII
0 0 1 0 1( ) II IIII

5 ' 5 8'AII

1 1 1 1
[ ] [ ]

2 2 2 2

k

l

u u uu

v v vv




           
                

            
σ α R α R        (3-73) 
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     
( )

7' 8' 7 8III
0 0 2 0 2( ) III IIIIII

7' 8' 7 8III

1 1 1 1
[ ] [ ]

2 2 2 2

p

q

u u u u

v v v v




            
                

            
σ α R α R     (3-74) 

     
( )

9' 9A' AIV
0 0 3 0 3( ) IV IVIV

9' 9A' AIV

1 1 1 1
[ ] [ ]

2 2 2 2

r

s

u uu u

v vv v




           
                

           
σ α R α R    (3-75) 

Substituting Eqns (3-72) - (3-75) into Eqns (3-68)- (3-71), one has: 

       786 1 11 786 12 58'7' 13 6'A'9'{ } { } { } { }   F S α u α u α u                                            (3-76)    

       58'7 ' 2 21 786 22 58'7' 23 9A5'{ } { } { } { }   F S α u α u α u                                               (3-77)

       9 5' 3 31 58'7' 32 9A5' 33 6'A'9'{ } { } { } { }A    F S α u α u α u                                              (3-78)

       6 ' ' 9 ' 4 41 786 42 9A5' 43 6'A'9'{ } { } { } { }A    F S α u α u α u                                            (3-79) 

where, 

     
         
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(3-80)
 

Using this information and solving internal displacements as functions of external 

displacements gives: 
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786 13 14 15 16 20 21 22 231

58'7' 5 6 7 8 12 13 14 152

9A5' 9 10 11 12 16 17 183

6'A'9' 1 2 3 4 4

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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u

u

u

X X X X u

 (3-81) 

Substituting Eqn (3-81) into Eqns (3-60), (3-62), (3-64) and (3-66), one has 
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  (3-82) 

The matrices in Eqns (3-81) and (3-82) are defined as below. 
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(3-83) 
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          (3-84)  

3.5.2 Numerical Treatments for Stress-Free Subdomains 
 

(a)  Integration points I and II completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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 Both equations are well-defined and there is no need for special treatment in this case. 
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(b) Integration points I and III completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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 (3-88) 

Since in this case 1
1[ ]X  does not exist, 13[ ]Y  and 20[ ]X  are not defined. A simple 

treatment is to set all the underlined terms to be zero. 

(c)  Integration points I and IV completely failed: 

In this case, the displacement and equilibrium equations simplify to     
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Since in this case 1
27

1
2[[ ] ( )]l   LX  does not exist, 4[ ]Y  and 11[ ]X  are not defined. A 

simple treatment is to set all the underlined terms to be zero. 

(d)  Integration points II and III completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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  (3-92)                  

Since in this case 1
23

1
2[[ ] ( )]r   LX  does not exist, 6[ ]Y  and 13[ ]X  are not defined. A 

simple treatment is to set all the underlined terms to be zero. 

(3-90) 
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(e)  Integration points II and IV completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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Since in this case 1
22

1
2[[ ] ( )]r   LX  does not exist, 6[ ]Y  and 13[ ]X  are not defined. A 

simple treatment is to set all the underlined terms to be zero. 

(f)  Integration points III and IV completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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Both equations are well-defined and there is no need for special treatment in this case. 

(g)  Integration points I, II, III completely failed: 

In this case, the displacement and equilibrium equations simplify to 
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Since in this case both 1
21

1
2[[ ] ( )]l   LX  and 1

23
1

2[[ ] ( )]r   LX  do not exist, 6[ ]Y , 13[ ]Y ,

13[ ]X , and  20[ ]X  are not defined. A simple treatment is to set all the underlined terms to 

be zero. 

(3-96) 

(3-97) 

(3-98) 
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(h)  Integration points II, III, IV completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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Since in this case both 1
22

1
2[[ ] ( )]r   LX  and 1

23
1

2[[ ] ( )]r   LX  do not exist, 6[ ]Y , 11[ ]Y ,

13[ ]X , and  18[ ]X  are not defined. A simple treatment is to set all the underlined terms to 

be zero. 

(i)  Integration points III, IV, I completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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Since in this case both 1
21

1
2[[ ] ( )]l   LX  and 1

27
1

2[[ ] ( )]l   LX  do not exist, 4[ ]Y , 13[ ]Y ,

11[ ]X , and  20[ ]X  are not defined. A simple treatment is to set all the underline terms to 

be zero. 

(j)  Integration points IV, I, II completely failed: 

In this case, the displacement and equilibrium equations simplify to  
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Since in this case both 1
22

1
2[[ ] ( )]r   LX  and 1

27
1

2[[ ] ( )]l   LX  do not exist, 4[ ]Y , 11[ ]Y ,

11[ ]X , and  18[ ]X  are not defined. A simple treatment is to set all the underline terms to 

be zero. 

(k)  Integration points I, II, III, IV completely failed: 

In this case, all  i 0 ( 1,2,3,4)i S  are zero and all the external displacements are 

indeterminate at elemental level. The equations reduce to 
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The numerical singularity can be avoided by setting all the underlined terms to be zero. 
 

3.6 Elemental	Condensation	Algorithm	
 

In previous sections, the elemental equilibrium equations for multi-crack configurations 

have been derived in detail. However, as discussed in chapter 2 for single-crack case, 

these nonlinear equations have yet to be solved. Such as the single-crack case, the crack 

displacements as explicit functions of external displacements are not readily available. 

However, the solving procedure presented for single crack case, remains applicable in 

solving the multi-crack problems. For instance, consider Eqn (3-16) which expresses 
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crack displacements in terms of external displacements for configuration 1. The equation 

is repeated below with superscripts added to emphasize the dependence of 

 ( 1, 2,..,15),   ( 1, 2,..,9)p qp q X Y  and ( 1,2,3)r r S  on the cohesive segment 

combination (i, j, k, l, m, n). 

( , , , , , ) ( , , , , , )
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 (3-107) 

For the trial cohesive segment combination (i, j, k, l, m, n) and given external nodal 

displacements, a set of solution to the internal nodal displacements  T

6'5' 6' 5',u u u , 

 T

786 7 8 6= , ,u u u u  and  T

58'7' 5 8' 7 ', ,u u u u , is immediately solved form Eqn (3-107). 

Then, the crack displacements at the integration points of each segment (points I, II and 

III in Figure 3-2) are computed and converted to local coordinates, i. e.,    

        
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                        (3-108) 

The local crack displacements are then subjected to a consistency check similar to the 

single-crack case and the exact solution is found when the following statement is true: 

       
   

( ) ( ) ( ) ( )

( ) ( )

true & & true & & true & & true

& & true & & true

i j k l
sI s nI n sII s nII n

m n
sIII s nIII n

       

   

   

 

    

  
 

Once the solution is found, ( 1, 2,..,15),   ( 1, 2,..,9)p qp q X Y  and  ( 1,2,3)r r S are all 

established with determined (i, j, k, l, m, n). Substituting them into Eqn (3-17), the fully 
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condensed elemental equilibrium is then satisfied with mathematical exactness (in piece-

wise linear sense and within the limit of FE discretization accuracy). 

Following the flowchart in Figure 2-8, the A-FEM and solving procedure for multi-crack 

cases can be integrated into any standard FE programs as a general purposed element 

because the elemental locality is completely retained.  

3.7 	Single	Element	Validation	
 

After formulating the A-FEM method for multi-crack configurations, this section is to 

verify the formulation by testing a single augmented element under various loading 

conditions. Displacement–controlled loading is used here to achieve mode I, II and mixed 

mode loading conditions. The element is assigned a very large modulus so that the 

responses are primarily from the cohesive law. The element is 2-mm long and 2-mm high 

and, based on desired configurations, two or three discontinuities are assigned. The 

cohesive law is triangular with ncˆ ˆ 1 MPa, 0.1 mmsc       . The initial slopes are

7 3
1 1 10  N/(mm)n s   , and the slopes in the softening phases are

3
2 2 -10 N/(mm)n s   . Therefore, the mode I and mode II toughnesses are

2
I II 0.05 N/mm (50 J/m )    . 

In each case, the single A-FEM results are compared with ABAQUS results obtained 

using a combination of regular elements (CPS4) for subdomains, and cohesive elements 

(COH2D4) with zero thickness to consider the cracks between different domains. In 

some cases the predicted peak loads are compared with analytical results to verify the A-

FEM results. 
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3.7.1 Mode I Response (Configurations 1 & 2) 
 

As a first verification test, consider an element which is cut into a triangular, a 

rectangular and a pentagonal domain as shown in Figure 3-6. By displacing node 4 

vertically one can have mode I loading. The load-displacement curve in Figure 3-6 shows 

how the element with two cracks behaves and the results from the A-FEM and ABAQUS 

are identical. Similar to single crack case, the peak load can be obtained by considering 

FBD analysis. The horizontal crack length is 1 mm, so the peak load is 1N, which is 

predicted correctly by the A-FEM and the ABAQUS. The predicted deformed shapes by 

the A-FEM and ABAQUS are shown in Figure  3-7. 

 

Figure  3-6 Single A-FE response with two cracks under mode I loading conditions for 
configurations 1 & 2 
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Figure  3-7 (a) Deformed shape from A-FEM, (b) from ABAQUS 
 

Although the load-displacement curves and the deformed shapes are identical from two 

methods, it should be noticed that ABAQUS used 7 elements to obtain the same results as 

obtained by the single A-FEM. Other than using three cohesive elements, ABAQUS 

computes the stiffness matrix of pentagon by the traditional triangulization method. In the 

A-FEM method, the direct integration method of polygonal FEM as explained in 

Appendix C is used to compute the stiffness matrix for the pentagon.  

3.7.2 Mixed Mode (Configuration 1 & 2) 
 

In the previous configuration, by displacing node 4 vertically, pure mode I can occur 

because displacement is in the opening mode. However, because of the cracking 

geometry, pure mode II is not achievable because by imposing F4X the triangular domain 

rotates, leading to mixed mode loading.  
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Figure 3-8 Single A-FE response with two cracks under mixed mode loading conditions 
for configurations 1& 2 

 

So in this case by displacing node 3 in the horizontal direction, we study the behavior. 

The load-displacement results for displaced node 3 from A-FEM and ABAQUS are 

compared together in Figure  3-8. They show similar behavior initially but ABAQUS 

could not finish the job and stopped before complete failure. Similar to previous case, the 

peak load predicted from ABAQUS and A-FEM are consistent with the analytical results 

of F3X = 3.3 N.  

The deformed shapes from two methods as shown in Figure  3-9 are consistent. 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.02 0.04 0.06 0.08 0.1

Lo
ad

 (
N
)

Dipslacement(mm)

F3x‐u3(A‐FEM)

F3x‐u3(Abaqus)

1

2

3

4

F
3X

 

F
3X
–U

3
(ABAQUS)

F
3X
‐U

3
(A‐FEM)



129 
 

 
 

 

Figure  3-9 (a) Deformed shape from A-FEM, (b) from ABAQUS 
 

Note that in this case, ABAQUS with 7 elements was not able to finish the job but A-

FEM did it with only one element smoothly. The kink in the load-displacement curve is 

due to failure of one of the integration points, after that it continues to complete failure. 

3.7.3 Mode I (configuration 3) 
 

To verify the A-FEM for configuration 3, the numerical model in the inset of Figure  3-10 

was used. Assume that two cracks cut a rectangular element to three rectangular domains. 

By displacing nodes 3 and 4 vertically, mode I loading can be achieved. The load-

displacement in Figure  3-10 shows identical results from the A-FEM and ABAQUS. The 

predicted peak load also agrees well with the FBD analysis.  

The predicted deformed shapes from the two methods agree with each other as shown in 

Figure  3-11.  
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Figure  3-10 Single A-FE response with two cracks under mode I loading for 
configuration 3 

 

Figure  3-11 Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 3, mode I 

Although ABAQUS gives the same results as A-FEM, it requires 7 elements to obtain the 
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3.7.4 Mode II (Configuration 3) 
 

By displacing nodes 3 and 4 in horizontal direction, the mode II response can be 

evaluated. For this configuration, one can plot total load as a function of total 

displacement on the top edge from ABAQUS and A-FEM. It can be seen from 

Figure  3-12 that the A-FEM and ABAQUS results are identical but ABAQUS needs 7 

elements to solve the problem, while the A-FEM needs only one element. The predicted 

deformed shape from the A-FEM and ABAUQS are also similar as seen in Figure  3-13. 

 

Figure  3-12 Single A-FE response with two cracks under mode II loading conditions for 
configuration 3 

 

0

0.4

0.8

1.2

1.6

2

0 0.02 0.04 0.06 0.08 0.1

To
ta
l l
o
ad

 (
N
)

Displacement (mm)

A‐FEM

ABAQUS

  

1 2 

3 4 F
3X

 
F
4X

 



132 
 

 
 

 

Figure  3-13 (a) Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 3, mode II 

 

3.7.5 Wedge Opening (configuration 3) 
 

The last case in verifying two crack configurations can be the wedge opening problem. 

Assume that nodes 3 and 4 are displaced horizontally in opposite directions; the predicted 

load-displacement curves are shown in Figure  3-14. 
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Figure  3-14 Single A-FE response with two cracks under wedge opening loading 
conditions for configuration 3 

 

It can be seen from Figure  3-14 that the A-FEM and ABAQUS results are quite different. 

Both A-FEM and ABAQUS predict the correct peak load, and the results in elastic stage 

are identical. The difference in the post-peak response is due to the difference in cohesive 

stress integration schemes used in A-FEM and in ABAQUS. ABAQUS uses Newton-

Cotes integration scheme, with elemental nodes being the integration points. Thus, nodal 

stresses are used for elemental stress integration. If one node is failed (for instance 15 or 

16 in Figure  3-15(b)) and the other node is never failed (wedge opening as shown in 

Figure  3-15(a)), both nodes have zero stress. This leads to premature failure prediction. In 

the A-FEM, Gaussian quadrature integration scheme is used. Integration points are 

located between nodes so stresses at these integration points are not zero, even if the 

nodal stresses are zero. The Gaussian integration scheme is much more accurate in this 

case [261]. 
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The predicted deformed shapes from A-FEM and ABAQUS are also shown in 

Figure  3-15. These are consistent to each other. 

 

Figure  3-15 (a) Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 3, wedge opening 

 

3.7.6 Mode I (configuration 4) 
 

After verifying configurations with two cracks, this section studies the response of the A-

FEM with three cracks. We start by displacing nodes 2 and 3 in horizontal direction to 

test the configuration. As shown in Figure  3-16, ABAQUS and A-FEM predict similar 

peak loads but different post-peak behavior. ABAQUS predicts that all four crack 

segments are active, leading to a larger energy release rate, which is almost two times 

than that of A-FEM. The A-FEM predicts the opening of two vertical cracks. By simple 

load equilibrium it can be found that the predicted peak load is correct. The opening of 

two horizontal cracks predicted by ABAQUS is due to loading elements rotation. Recall 

that in the ABAQUS model, in addition to the external nodes 2 and 3, there are two more 

external nodes 7 and 11. If these external nodes are also loaded, the deformation and 
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load-displacement curve should conform to the A-FEM results. This is shown in 

Figure  3-18 and Figure  3-19. Consider that the total load on the right edge is plotted.  

 

Figure  3-16 Single A-FE response with three cracks under mode I loading conditions for 
configuration 4 

 

Figure  3-17 (a) Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 4, mode I 
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Figure  3-18 Single A-FE response with three cracks under mode I loading conditions for 
configuration 4 by displacing two middle nodes on the right edge 

 

Figure  3-19 Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 4, mode I by displacing four nodes in ABAQUS 
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displacement curves. The peak loads from both methods are verified by FBD evaluation 

of the failed portion. The deformed shapes from ABAQUS and A-FEM are also seen in 

Figure  3-21.  

 

Figure  3-20 Single A-FE response with three cracks under mode II loading conditions for 
configuration 4 

 

Figure  3-21 Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 4 under mode II displacement 
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3.7.8 Wedge opening (configuration 4) 
 

Such as in one and two crack configurations, wedge opening displacement is an 

important case that needs be tested. Assume nodes 3 and 4 are displaced in horizontal and 

opposite directions, this can lead to wedge opening mode. Load-displacement curves in 

Figure  3-22 show that both methods predict the same elastic stage but ABAQUS predicts 

larger energy release rate. Such as previous cases we can compare the predicted deformed 

shapes from two methods in Figure  3-23. 

 

Figure  3-22 Single A-FE response with three cracks under wedge opening loading 
conditions for configuration 4 
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Figure  3-23 Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 4 under wedge opening displacement 

 

Figure  3-23 shows that in ABAQUS results, horizontal crack will slightly open while in 

reality in wedge opening mode it should not behave in this way, this is the reason why 

ABAUQS predicts larger energy release rate than A-FEM.  

3.7.9 One corner loading (configuration 4) 
 

As the last test, we study the behavior of an element with three cracks under one corner 

loading. By displacing node 3 in vertical direction, the top right domain will be separated 

from the other domains and the load-displacement curves from A-FEM and ABAQUS 

can be seen in Figure  3-24. ABAQUS could not finish the job and aborted shortly after 

the peak load is achieved. The A-FEM can model the problem to the final failure point. 

The peak load predicted from ABAQUS is also smaller than that of A-FEM. However, a 

FBD evaluation of the top right block shows that the A-FEM predicts peak load 

accurately. 
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Figure  3-24 Single A-FE response with three cracks under one corner loading conditions 
for configuration 4 

 

The predicted deformed shapes from ABAQUS and A-FEM also are seen in Figure  3-25. 

 

Figure  3-25 (a) Deformed shape from A-FEM, (b) Deformed shape from ABAQUS for 
configuration 4, one corner loading 
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3.8 Summary	
 

In this chapter, after deriving the formulation and basic concepts of augmenting elements, 

the novel A-FEM has been developed to consider multiple crack cases. Demonstrated by 

the single crack case, the solution procedure includes addition of internal nodes to 

describe the displacement discontinuities. Then a condensation procedure is developed to 

delete the DoFs associated with the internal nodes. There is no need to know the crack 

path a priori. The A-FEM for multiple cracks has been implemented into a standard FEM 

package using the algorithm discussed in chapter 2. Single element validation tests were 

performed to verify the A-FEM for basic cases. All the validations showed that the A-

FEM method with only one element and without any additional DoFs or nodes can 

predict the fracture behavior better than standard FEM performed with ABAQUS. 

Despite ABAQUS using more elements to simulate the single element fracture, in several 

cases it was not able to capture the correct response.  

 



142 
 

	Chapter	4:	Numerical	Examples	

		4.1.	Shear	Test	of	a	Precracked	Short	Beam	

 

In this section, we test the A-FEM’s capability in simulating the crack propagation in a 

widely used shear test, as shown in the below figure: 

 

Figure 4-1 Precracked short beam 
 

The short beam is 2 meters (2000 mm) long and 1 m (1000 mm) high and both ends are 

fixed. Two precarcks, each of length 0.5 m, are located 0.5 m away from the respective 

fixed edges. The specimen is loaded with displacement-controlled transverse load in the 

center region. Due to symmetry, only half of the specimen shown in the dashed box in 

Figure 4-1 is modeled. 
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Maximum principal stress criterion is used for crack initiation. That is, crack initiation 

from a pristine elastic element occurs when the maximum principal stress averaged 

within the element max( ) , reaches the mode I cohesive strength ˆ( ) . The crack path is 

perpendicular to the maximum principal stress direction. The elastic material properties 

are 30 GPa,E  0.3   and the cohesive law is a triangular one with the mode I 

cohesive fracture properties of 2
1 0.1 N/mm (100 J/m ),   and ˆ 3.0 MPa  . These 

properties are typical of concretes. 

4.1.1 Mesh Sensitivity 
 

At first, the mesh sensitivity of the new A-FEM method will be tested. The simulation 

domain of 1000 mm× 1000 mm is discretized into four different meshes (i) 11 × 10=110 

elements (i.e., mesh size h ~ 100 mm); (ii) 21 × 20 =420 elements (h ~ 50 mm); (iii) 51 × 

50 =2550 elements  (h ~ 20 mm); and (iv) 101 × 100=10,100 elements (h ~ 10 mm). 

From mesh (i) to (iv) the mesh size decreases by a factor of 10. 

The simulated load-displacement curves with the four meshes are plotted in Figure  4-2. 

For each case, the load linearly increases with displacement until crack initiation from the 

precrack tip, which occurs at an applied displacement of ~ 0.09 mm. After initiation the 

load-displacement curve becomes increasingly nonlinear due to crack growth. The peak 

load is reached at the displacement of about 0.15 mm. The peak load corresponds to the 

full establishment of the cohesive zone, which is about 150 mm (~ 2
1 ˆ/ 2E  ) in this test. 

A rapid decreasing phase following the peak load is seen for each case, which is due to 

fast crack growth (a near steady-state propagation) after the cohesive zone is fully 
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established. However, as the crack reaches the fixed boundary (left edge), the load 

increases again due to further bending of the severed domain below the crack trajectory. 

The crack trajectories predicted by the four simulations are summarized in Figure 4-3. 

         

            Figure  4-2 Simulated load-displacement curves for precracked short beam 
 

 

         Figure  4-3 Crack trajectories for the shear test with four vastly different meshes 
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It is rather satisfactory that the paths are almost identical despite the fact that they are 

obtained with vastly different mesh sizes. The moderate difference in crack paths is 

largely attributed to the maximum kinking angle limit of +/ ̶ 45 degree permitted by our 

numerical program. This is a standard numerical treatment to avoid the possible crack 

curve back (for example, in ABAQUS it is also set to be +/ ̶ 45 degree). However, it is 

seen that even with this artificial limit, it takes no more than two or three sequential kinks 

for the trajectories to establish a steady kink angle of ~ 69 degree, which agrees 

extremely well with the well-known experimental value of 70 degree.  

The crack trajectory for each mesh size can be seen in Figure 4-4. 

  

    Figure  4-4 Crack trajectory for each mesh size 
 

We emphasize that, despite the difference in mesh size by 10 times, all the predicted 

load-displacement curves and crack trajectories remain extremely consistent with each 
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other. This clearly demonstrates the mesh insensitivity of the new A-FEM. Furthermore, 

we shall mention that the largest mesh used here  (h ~ 100mm) is as large as 70% of the 

cohesive zone size, while the mesh size used in literature for similar problems rarely 

exceeds 10% of the cohesive zone size(e.g., [183,235,236]). This is a direct benefit of the 

improved Gaussian method for elemental cohesive stress integration and the 

mathematical exactness of elemental equilibrium equation. 

4.1.2 Numerical Efficiency and Stability as Compared to X-FEM  
 

In this section, we compare the numerical accuracy, efficiency, and the stability of the 

new A-FEM against the X-FEM available in the commercial code ABAQUS (v6.10). 

ABAQUS CPS4 elements (i.e., four-node bilinear plane stress element with standard 

integration) were used. To compare more objectively with ABAQUS X-FEM results, we 

set the loading parameters to be identical with a maximum prescribed displacement of 0.2 

mm, and suggested maximum incremental size is 910  that is necessary for ABAQUS X-

FEM, but not for the present A-FEM (the minimum incremental size observed with the 

A-FEM simulations among all the cases is 0.0125, while for ABAQUS X-FEM is 6.0×

810 ). All simulations were run on a Dell precision M4600 (×64 bit) movable workstation 

with Intel Core i7-2860 QM central processing unit (CPU) at 2.5 GHz and with 8 GB of 

RAM. 

We first ran the models without any solution enhancement techniques. The new A-FEM 

was able to complete all four cases without any numerical difficulty and results are 

already summarized in Figure 4-2 and Figure 4-3. However, the X-FEM could not 

complete the simulations with mesh (iii) and (iv); the simulations were aborted before the 
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cracks reached the left edge (fixed). Therefore, viscous damping coefficients of 1.0× 410  

and 4.54× 410  were used for mesh (iii) and (iv), respectively. With such aid, the X-FEM 

was able to finish the cases and its predicted trajectories are not very different from the 

A-FEM results shown in Figure 4-3. 

However, the X-FEM results show very severe mesh dependence in the load-

displacement curves, which are shown in Figure 4-5 by the dashed lines with 

corresponding mesh clearly labeled. For comparison purposes, the A-FEM predicted 

curves are redrawn in this figure. For mesh (i) (h ~ 100mm, 110 elements), the X-FEM 

predicts a significantly delayed crack initiation at the displacement of 0.225 mm, and 

overestimates the peak load by more than 70%. The load-displacement response 

improves gradually as the mesh size decreases. Only with finer meshes of h ~ 20mm 

(2550 elements) or h ~ 10mm (10,100 elements), the X-FEM predicted load-

displacement curves become sufficiently close to the A-FEM results. The X-FEM’s 

difficulty in obtaining converged solutions is also evident in the load-displacement curves 

by the severe oscillations during the softening phases, while the A-FEM load-

displacement curves remain very smooth even without the aid of numerical damping. 
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Figure  4-5  X-FEM predicted load-displacement curves compared with the A-FEM 
predictions 

 

Figure 4-6 compares the CPU time (right vertical axis) and numerical discrepancy (left 

vertical axis) as function of the mesh size. For numerical discrepancy measure, the peak 

load (1.05 kN/mm) from the X-FEM converged solution of mesh 101×100, which is also 

in good agreement with all of the A-FEM predicted peak loads, is used as a reference 

(1% error) for comparing the numerical discrepancies of other simulations. All of the A-

FEM predicted peak loads are well within 10 % of this reference peak load. However, the 

numerical discrepancies associated with the X-FEM predictions increase with the mesh 

size and rapidly exceed 10%. 

The computational cost in terms of CPU time of the A-FEM is also greatly reduced as 

compared to X-FEM. From Figure 4-6, for an identical mesh, the A-FEM is typically 5-8 

times faster than the X-FEM. However the numerical discrepancies associated with the 

larger X-FEM meshes (h=50, 100 mm) are not at acceptable levels. If 10% of the 

numerical uncertainty is acceptable, the X- FEM converged solution achieved with mesh 
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size h~20 mm (2550 elements) and a total CPU time of 161 s, can be easily obtained, 

with the same solution accuracy, using the A- FEM with a mesh size of h~ 100 mm (110 

elements) and a CPU time of merely 1.4 s. 

 

Figure  4-6 Comparison of CPU time (right vertical axis) and the numerical error (left 
axis) as function of mesh sizes 

 

Thus, we demonstrated through this shear test that the A-FEM improves numerical 

efficiency by more than two orders of magnitude as compared to the X-FEM. 

4.2 Four	Point	Shear	Beam	Test	
 

In this section, another numerical example is proposed to evaluate the capabilities of the 

new A-FEM by simulating the crack propagation in a 4-point shear beam (4PSB) test 

reported in [262]. The problem has been simulated by Moes and Belytschko in [183] 

using X-FEM with a non-structured triangular mesh. The numerical model setup used in 

[183] is reproduced in Figure 4-7. 
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The geometry dimensions are: 

 1 2200 mm;  / 4;  / 0.2;  / 0.4; 20 mm;  100 mmb l b a b c b l l t        

The concrete material properties are: 

   2 2

1 ˆ28 000 N/ mm ;  0 1;  145  N/mm;  2.4 N/ mmE ,   ν .       . The cohesive law 

used is of triangular type with an initial slope of  34
1 2.0 10  N/ mmn   and a softening 

slope of  3

2 20 N/ mmn   . 

 

                            Figure  4-7 PSB Geometry, boundary and loading 

 

As in [183], the maximum principal stress criterion was used for crack initiation. That is, 

crack initiation from a pristine elastic element occurs when the maximum principal stress 

averaged within an element max( ) , reaches the mode I cohesive strength ˆ( ) . The crack 

path is perpendicular to the maximum principal stress direction.  

To investigate the mesh sensitivity of the present A-FEM, the problem was analyzed by 

five different structured meshes with characteristic mesh sizes of h=2, 4, 8, 13.3, and 20 

mm (the total elements are 10760, 2849, 1094, 640, and 410, respectively), and three 
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unstructured meshes with h= 4, 8, and 13 mm (total elements 4062, 1333, and 463, 

respectively). The two finer meshes (h=2 and 4 mm) are the typical of those used in 

literature [183,235,236,257], while the larger meshes (8, 13.3 and 20 mm) are used in this 

study to explore the mesh limit of the present A-FEM. The unstructured meshes of ~ 4, 8, 

and 13 mm were intended to check the mesh sensitivity and the robustness of the new A-

FEM. Five of the discretized models (structured h= 2, 8, and 20 mm meshes and 

unstructured h~ 8, and 13 mm meshes) under deformed states are shown in Figure 4-8 (a, 

b, c, d, e) with the crack trajectories roughly following the center lines of the white bands. 

 

Figure  4-8 Simulated crack paths for structured 2mm (a), 8mm (b), and 20 mm (c) 
meshes, and unstructured 8mm (d) and 13 mm (e) meshes 
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4.2.1 Mesh sensitivity 
 

The simulated load-displacement curves are plotted in Figure 4-9. The X-FEM prediction 

obtained by Moes and Belytschko [183], which used a triangular mesh of h~ 3 mm, was 

superimposed on this plot for comparison (the dashed line). For each case, the load 

linearly increases with the applied displacement until crack initiation from the pre-crack 

tip, which occurs at an applied displacement of ~ 0.04 mm. After the initiation the load-

displacement curve becomes increasingly nonlinear due to continuous crack growth. The 

peak load is reached at the displacement of about ~ 0.09 mm. After the peak load, all 

curves exhibit a strong snap-back behavior. In this study, the strong snap-back behavior 

was captured using the arc-length method available in ABAQUS (option RIKS). 

 

Figure  4-9 A-FEM simulated load-displacement curves with the five structured meshes as 
compared to the X-FEM results  
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The A-FEM computed load-displacement results are very consistent with the X-FEM 

results obtained in [183]. In particular, the load-displacement curves obtained with 

smaller mesh sizes (i.e., h=2 mm, 4 mm, and 8 mm) are almost identical with the X-FEM 

results. For the larger meshes, i.e., h=13.3 mm and 20 mm, the curves deviate mildly 

from the finer mesh curves due to increases in initial stiffness. The systematic increase of 

initial stiffness with the increase of mesh size is largely due to the inherent numerical 

inaccuracy associated with the 4-node plane elements (it is well-known that larger FE 

elements lead to overestimate of elemental stiffness). If the deviation of initial slope is 

discounted, the load-displacement curves obtained with larger meshes (h= 13.3 mm and 

h= 20 mm) remain very consistent with the X-FEM curve and the finer mesh results. This 

clearly demonstrates the mesh insensitivity of the present A-FEM.  

 

Figure  4-10 Crack trajectories with the five structured meshes as compared to the X-FEM 
results and experimental results 
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Figure 4-10 summarizes the crack trajectories predicted by the five simulations with 

structured meshes. The crack paths are all very consistent and close to the experimental 

curves, despite they were obtained with vastly different mesh sizes. The mild difference 

in crack paths with larger meshes is largely attributed to the maximum kinking angle 

limit of +/ ̶ 45 degree permitted by our numerical program. It is seen that even with this 

artificial limit, it takes no more than 2 to 3 sequential kinks for the trajectories to 

establish a path that is very close to the experimental curve. 

It should be mentioned that the mesh insensitivity in this example is expected because all 

the mesh sizes are considerably smaller than the cohesive zone size (or fracture process 

zone size). The cohesive zone size, estimated by 2
1 ˆ/ 2cohl E   [71,100] is about

350 mmcohl  . This is about twice the beam depth and more than 15 times the largest 

mesh size (20 mm). However, it has been demonstrated in section 4.2.1 that the A-FEM 

remains fairly accurate with mesh sizes up to 70% of the cohesive zone size, in which 

cases the X-FEM (ABAQUS) exhibited serious (unacceptable) mesh dependency [256]. 

4.2.2 Numerical Efficiency and Stability as Compared to X-FEM in ABAQUS  
 

In this section, the numerical accuracy, efficiency, and stability of the new A-FEM are 

compared against the X-FEM results obtained with ABAQUS (v6.10). Comparisons were 

carried out for the structured meshes only because the X-FEM failed to obtain converged 

solutions for any of the unstructured meshes. The meshes and boundary conditions are 

exactly the same as those used in previous section. ABAQUS CPS4 elements (i.e., 4-

node bilinear plane stress element with full integration) were used. To compare more 

objectively with the X-FEM, the loading parameters were to be identical with a 



155 
 

 
 

maximum prescribed displacement of 0.1 mm, and a suggested maximum incremental 

size of 0.002 mm. The minimum increment size was 810  mm, which was necessary for 

the X-FEM but not for the A-FEM. RIKS option (arc-length method) was invoked in 

attempt to capture the snap-back behavior. All simulations were run on a Dell precision 

M4600 (x64 bit) mobile workstation with Intel Core i7-2860 QM CPU @ 2.5 GHz and 

with 8 GB of RAM. 

The X-FEM (ABAQUS) simulated load-displacement curves are plotted in Figure 4-11. 

The X-FEM had enormous difficulty in completing these simulations. For the 2 mm 

mesh, the simulation proceeded with such a small incremental size ( 610 ~ 810  mm) that 

it had to be terminated at the displacement of 0.08 mm after 72 CPU hours of running. 

For the 4 mm mesh, a sudden strong snap back resulted from an incorrectly predicted 

crack path occurred at the displacement of 0.09 mm after the peak (Figure 4-11). For the 

20 mm mesh, the simulation diverged at the displacement of 0.072 mm (after snap back). 

For the other cases (i.e., 8 mm and 13.3 mm mesh), the simulations were able to finish 

and the X-FEM curves captures the peak loads and snap back behavior reasonably well 

able to finish and they are close to the A-FEM results in Figure 4-9. 
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                            Figure  4-11 X-FEM predicted load-displacement curves 

 

 

Figure  4-12 Comparison of the CPU time (right vertical axis), and the numerical error 
(left axis) as function of mesh sizes 

 

Figure 4-12 compares the computational cost in terms of CPU time (in seconds) as 

functions of the mesh size. The CPU time corresponds to the point that when the 
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displacement reached 0.1 mm (after snap back). For the 2 mm, 4 mm, and 20 mm mesh, 

the X-FEM simulations were aborted due to the reasons discussed before. In these cases, 

the CPU times at the aborting points were taken and such data points were indicated by 

the X in Figure 4-12. From Figure 4-12, it is concluded that the present A-FEM 

empowered by the novel condensation procedure, is at least 2 orders of magnitude more 

efficient than the X-FEM. 

4.3 Coupled	Fiber‐	Matrix	Interface	Debonding	and	Kinking	
 

We next demonstrate the capability of the A-FEM in dealing with multiple crack 

interactions. We chose to model a single fiber/matrix domain as shown in Figure 4-13. 

The entire domain is 1 mm × 1 mm and the fiber diameter is 0.5 mm (i.e., fiber volume 

fraction 19.6%). Symmetric, displacement-controlled loading is imposed on both the left 

and right edges, while the top and bottom edges are stress free. 

Two sets of meshes were used to simulate the problem: (a) a fine mesh as shown by the 

top graphs of Figure 4-13 with 2244 elements, and (b) a coarse mesh as shown in the 

bottom graphs of Figure 4-13 with 110 elements. In the fine mesh (a) the elements are 

arranged to conform to the circular fiber/matrix interface. In mesh (b) the coarse mesh is 

structured and not conforming to the fiber/matrix interface (shown by dashed circle in 

Figure 4-13). That is, the fiber-matrix interface is deliberately set to bisect the structured 

elements rather than along element boundaries. The elements traversed by the interface 

are initially augmented to account for intra-element material difference as well as 

possible interface debonding. In both meshes, secondary cracking in the matrix domain is 

also permitted to capture the possible crack kinking from the interface into the matrix 
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domain. Such a coupled cracking phenomenon has been observed experimentally but is 

still waiting for detailed calibration. The modulus and Poisson’s ratio for the fiber and 

matrix are 40 Gpa; 0.33f fE   ; and 4 Gpa; 0.4m mE   . A cohesive model with 

triangular traction-separation laws was used for interface debonding and matrix cracking. 

The cohesive parameters for matrix cracking and interface debonding are set to be 

identical: 2 6
1 1ˆ ˆ 50 Mpa;   1 10  mm;   1 10  mmnc sc n s               

Therefore, the fracture toughnesses for modes I and II are 0.25 N/mmI II    . For 

matrix crack initiation and propagation, the maximum principal stress criterion is 

assumed. 

The predicted curves of nominal stress versus nominal strain are shown in Figure 4-13. In 

both cases, the nominal stress-strain curves can be roughly categorized into three stages. 

The first stage is the elastic stage, wherein the interface remains well bonded and the 

response is linear. In stage 2 the nonlinearity caused by interface debonding starts to 

manifest, and as a result, stiffness is gradually reduced. But the stress continues to rise 

due to further stretching in matrix. The third stage begins immediately after the peak 

nominal stress is reached. The peak stress corresponds to the onset of crack kinking from 

the interface into the matrix. The kinking crack is unstable and accompanied by a sudden 

drop to zero, at which point the domain is completely separated. The entire 

debonding/kinking process is illustrated by the top and bottom maximum-strain contour 

plots in Figure 4-13 for respective meshes. It is seen that, despite the vast difference in 

mesh size and interface conformity, the predicted stress-strain curves remain very similar 

to each other. 
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Figure  4-13 A-FEM Simulated nominal stress versus displacement for a single 
fiber/matrix domain under uniaxial tension. Crack development, including the initial 
fiber-matrix interface (dashed line), debonding crack and final kinking cracks in matrix 
are indicated 

 

1 2 3

   

3 1 2

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50%

N
o
m
in
a
l S
tr
e
ss
, 
M
P
a

Nominal Strain

1

3 

2

Fine conforming mesh 
(top, 2244 elements) 

Coarse, nonconforming 
 mesh (bottom,110 elements) 



160 
 

 
 

More quantitative comparisons of the predicted composite modulus, strength, and energy 

dissipation after complete fracture, are summarized in Table 4-1. The differences in 

predicted composite elastic modulus and energy dissipation are well within 5% (the 

predicted modulus values, 5.2 GPa for mesh (a) or 5.37 GPa for mesh (b), are mildly 

greater than the lower bound estimation of 4.86 GPa based on the rule-of-mixture, which 

is another proof that the current predictions are reasonable). 

Finally, the 10% difference in predicted composite strengths by the two meshes is rather 

impressive given the large difference in mesh size and interface conformity. 

We emphasize here that in above simulations, the tightly coupled cracking development 

processes, including the initiation and propagation of the interface cracks, the location of 

kinking initiation, as well as the kink crack paths, are all determined automatically by the 

program according to the computed local stresses and the predicted initiation and 

propagation criteria. Few existing methods can truly handle this complex fracture process 

with such high fidelity. 

            Table 4-1: Comparisons of predicted composite properties by mesh (a) and (b) 

 

Composite 
Modulus

(Gpa)

Composite 
Strength

(Gpa)

Energy 
Dissipation (N -

mm)

Mesh a (fine & 
conforming)

5.37 44.21 0.290

Mesh b (coarse & 
nonconforming)

5.20 39.63 0.304

Difference 3.2% 10.3% 4.8%
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4.4 Axisymmetric	Tension	Acting	on	a	Fiber‐Matrix	Interface	
 

The A-FEM’s capability in handling intra-element material heterogeneity and the 

progressive debonding along the material interface is demonstrated in this section with a 

typical fiber/matrix unit cell under axisymmetric, displacement-controlled loading as 

shown in the inset of Figure 4-14. The outer radius is 310 10  mmb   and the embedded 

fiber radius is 35 10  mma   . 

The modulus and Poisson’s ratio for the fiber and matrix, respectively, are

300 Gpa;  0.33f fE   , and 4 Gpa;  0.4m mE   . The interface cohesive parameters 

are: 3 3
1 1ˆ ˆ 100 Mpa;   0.12 10  mm;   0.001 10  mmnc sc n s              ;  

Therefore, the fracture toughnesses for mode I and mode II are 0.006 N/mmI II    . 

An exact solution to this problem has been derived in [206] and it is plotted in Figure 4-

14 by the dashed line. The analytical solution contains three distinct deformation stages 

characterized by three different slopes in the load-displacement curve.   

The first stage reflects the deformation stage when the interface remains elastically 

bonded (weak discontinuity). Towards the end of stage one, the cohesive strength of the 

interface is reached. Interface debonding (strong discontinuity) starts after this point. The 

interface cohesive stress decreases linearly with further displacement increase and the 

interface tangential stiffness becomes negative. This leads to a sharp decrease of surface 

traction. Towards the end of this stage, the critical displacement of the cohesive law is 

reached and the matrix is completely separated from the fiber. Therefore, in stage 3 the 

slope is completely determined by the matrix stiffness. 
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Figure  4-14 A-FEM simulated radial surface traction as a function of radial displacement 
for an axial symmetric single-fiber/matrix unit cell (center plot). The two contour 
micrographs to its left show the continuous displacement and discontinuous strain 
(maximum principal) during the elastic stage when the fiber and matrix are rigidly 
bonded (weak discontinuity). The two right contour graphs show that both the 
displacement and strain are discontinuous after interface debonding occurs (strong 
discontinuity) 

 

In the A-FEM modeling, we chose to model one quarter of the domain with symmetrical 

conditions as shown in Figure 4-14. The domain was discretized into 12 × 21= 252 

elements. In order to test the capability of the A-FEM in handling intra-element material 

heterogeneity, the fiber-matrix interface (dashed line) was deliberately set to bisect the 

elements rather than along element boundaries. Since for this particular problem the 

location of the discontinuity is known a priori, we simply defined those elements 

traversed by the interface as augmented elements with intra-element bi-material domains 

and interfaces. 

The numerically obtained radial surface traction as a function of radial displacement is 

plotted in Figure 4-14 (central plot) in direct comparison with the analytical solution. The 
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A-FEM predicted curve closely follows the analytical solution in all three stages. During 

the first elastic stage, as evidenced in contour micrographs of displacement and 

maximum principal strain to the left of the stress-displacement plot, the displacement is 

continuous across the interface but the strain is discontinuous. This demonstrates the 

present A-FEM can account for existing weak discontinuity accurately. The strong 

discontinuity across the fiber/matrix interface during stage 2 is also well captured. The 

two contour micrographs to the right of the load-displacement plot show that both the 

displacement and the strain across the interface are discontinuous. Thus, the A-FEM’s 

capability in capturing the characteristics of a weak discontinuity and its smooth 

transition to a strong discontinuity has been demonstrated. 

4.5 Three	Point	Bending	Beam	Test	
 

In this section, another numerical example is proposed to examine the capabilities of the 

new A-FEM in initiating crack in a system with no initial crack. Three point bending test 

is a widely used method to characterize the fracture of engineering materials. Here the A-

FEM is used to simulate the crack propagation in a concrete beam under 3-point bending. 

The numerical model set up in this chapter is reproduced in Figure 4-15. The geometry 

dimensions are l=600 mm and b= 150 mm. The thickness normal to the plane can be 

considered as 150 mmt  [263]. 

As in previous examples, the maximum principal stress criterion was used for crack 

initiation. The material properties are E 36500 MPa and 0 18.  ν .   

The cohesive law used is of triangular type with the parameters:            

4
1 1ˆ ˆ 3.19 Mpa;   0.0313 mm;   0.0313 10  mm.nc sc n s              
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             Figure  4-15 Three point beam bending specimen, boundary and loading 

 

Abbas et al has simulated this problem using X-FEM method in [263] which in the case 

of high gradient enrichment functions, only the crack-tip element is enriched. The initial 

mesh is a 65 × 29 structured mesh. In the case of adaptive mesh refinement, the mesh is 5 

times refined at the crack-tip in order to capture the high gradients. 

By simulating the problem using the A-FEM with the same initial mesh size as in [263] 

and also with a coarser mesh, 37 × 15, the results can be compared together. The load-

displacement plot is scaled to have a dimensionless axis. As shown in   Figure  4-16, load 

and displacement increase simultaneously in the elastic stage, while there may be a very 

short crack initiating from the midpoint of bottom surface. A sudden drop is due to a 

relatively fast crack growth which led to drop in the load. Although all the results are 

almost identical, X-FEM needs to enrich and refine some cracked elements while the A-

FEM does not need enrichment for crack-tip elements. To obtain better results, the X-

FEM has to refine the mesh near the enriched tip but the A-FEM is able to model the 

problem with uniform mesh within the whole domain. 
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  Figure  4-16 Simulated normalized load displacement plot for 3-point beam bending test 

 

4.6 Multiple	Crack	Interaction	in	a	Plate	
 

In this section, we test the capability of the A-FEM in dealing with multiple initial cracks. 

Two initial cracks within an elastic domain are considered, one of which is parallel to the 

top edge and other is at an angle 47  to the top edge, so then the two initial cracks are not 

parallel. The geometry was a 25.4 mm × 88.9 mm rectangular plate which the location 

and orientation of cracks, boundary conditions and displacement-controlled loading are 

shown in Figure 4-17. 

Both top and bottom edges are under monotonically increasing displacement-controlled 

loading in the vertical direction and fixed in horizontal direction. The material properties 

are E 5000 MPa and 0 3 ν .  . 

The cohesive law used is of triangular type with the parameters:  

6
1 1ˆ ˆ 50 Mpa;   0.07 mm;   7 10  mm.nc sc n s              
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                                                Figure  4-17 Two cracks within the plate 

 

There is no available analytic solution for this problem. The A-FEM predicted the load- 

displacement curve is shown in Figure 4-18. The crack propagation stages are 

demonstrated in Figure  4-19. 

 

        Figure  4-18 Load displacement curve for a plate with two far from edge cracks 
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At the beginning, which is the elastic stage, load and displacement increase and 

according to Figure 4-19, strain concentration is considerable around all crack tips. By 

increasing the displacement, the left tip of the horizontal crack first starts to grow 

immediately after the peak load is reached (point 1). The crack grows in an unstable 

manner until it reaches the left stress-free edge. The load drops from point 1 to point 2. 

After point 2, an increase in further loading is needed to drive the right tip of the 

horizontal crack to propagate to right (point 3), before it finally merges with the slant 

crack (point 4). After the two cracks merge, there is a sudden increase in displacement 

(from 4-5) but no increase in load. This is because the combined crack leads to a quick 

propagation of the top-tip of the slant crack toward the right stress-free edge. Beyond 

that, the specimen fails into two parts and load drops to zero (point 6). 

 

Figure  4-19 Crack propagation stages for a plate with two far from edge cracks 
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4.7 Summary	
 

Throughout the numerical examples, we have demonstrated that the new A-FEM method, 

empowered by the new solving algorithm, achieved a significant improvement in 

numerical accuracy, stability and efficiency. In particular, through a rigorous comparison 

study on the shear test of a precracked short beam, we have demonstrated that the new A-

FEM achieved a substantial improvement in numerical efficiency by two orders of 

magnitude as compared to the X-FEM.   

Through modeling of coupled fiber-matrix interface debonding, the capability of the A-

FEM in correctly accounting for the weak discontinuity, as well as in arbitrary crack 

bifurcation, has been demonstrated.  

By modeling multiple cracks in a plate, crack merging and closing were successfully 

demonstrated by the A-FEM. 

In the 4-point shear beam simulation, it has also been demonstrated that the A-FEM is a 

mesh insensitive method because different mesh sizes and loading schemes did not have 

much influence in final results. 
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Chapter	5:	Conclusions	and	Future	Study	

	5.1.	General	Conclusions	

 

In this thesis, a very capable numerical platform based on Augmented Finite Element 

Method (A-FEM) has been developed. A new elemental augmentation procedure has 

been established to derive augmented finite elements that allows for prediction of crack 

initiation and propagation without need for a priori knowledge of crack path information 

and other traditional limits. This method can accurately account for arbitrary intra-

element cracks and their interaction without the need for additional external DoFs as in 

X-FEM or extra nodes as in PNM (Phantom Node Method). It has been demonstrated 

that this makes it much easier in handling multiple crack interaction including crack 

coalescence or bifurcation because it does not require complex numerical algorithms to 

track the complex crack fronts.  

The new A-FEM formulation does not need to assume deformation modes for elemental 

displacement enrichment as in the embedded discontinuity method either. Instead, it 

introduces internal node-pairs with regular displacements as internal DoFs, which are 

eventually condensed at elemental level. With this new formulation, the crack 

displacements become natural outcomes of the elemental equilibrium consideration. The 

biggest advantage of this new formulation is that it enables explicit derivation of 

elemental equilibrium equations in a mathematically rigorous fashion, which greatly 

improves the numerical stability and efficiency, as demonstrated in the 4-point shear 

beam test and other simulations. 
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Furthermore, we have demonstrated that the new formulation allows for repeated 

augmentation procedure to include multiple intra-element cracks, which is extremely 

powerful in dealing with multiple crack interaction problems, as demonstrated by the 

single fiber/matrix example.  

Another capability proposed by A-FEM is its ability to initiate a new crack in a pristine 

elastic element. Maximum principal stress criterion is used for crack initiation; there is no 

need to define the crack path, the crack path is perpendicular to the maximum principal 

stress direction. This ability has been demonstrated in thee point shear beam test 

simulation. 

Mesh independency is another achievement of the new A-FEM which has been 

demonstrated in several numerical simulations in this thesis. 

A novel companion algorithm that can rapidly solve the nonlinear equilibrium equation at 

elemental level has also been developed for cohesive cracks with piece-wise linear 

traction-separation laws. The novelty in this algorithm is that, instead of assuming trial 

displacements and searching for stiffness for element equilibrium such as in Newton- 

Raphson method, it starts with trial stiffness in the cohesive laws and finds the crack 

displacements through a simple consistency check. For piece-wise linear cohesive laws 

with only a small number of possible stiffness segments, this algorithm is extremely 

efficient. Further, we have proven that the crack displacements obtained in this way are 

mathematically exact. This enables the derivation of the explicit mathematically exact 

expressions for the elemental equilibrium equations. 
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Through the numerical examples, we have demonstrated that the new A-FEM method, 

empowered by the new solving algorithm, achieved drastic improvement in numerical 

accuracy, efficiency, and stability. Finally, the A-FEM’s excellent capability in high 

fidelity simulation of interactive cohesive cracks in heterogeneous solids has been also 

demonstrated through ample numerical examples. 

The A-FEM as a virtual testing tool looks very attractive, which enables partial 

replacement of many experimental tests by high fidelity simulations. The payoff in 

reduced cycle time and costs for designing and certifying different structures, especially 

composites, is very interesting. However, some challenges still remain. In this thesis, 

only 2D elements have been developed so far. To make it a more powerful method for 

more realistic problems, there is an urgent need to develop 3D A-FEM.  

5.2 Future	Study	
 

To have an effective method that can simulate various and real structures under thermo- 

mechanical loadings, there is a need to develop the 3D A-FEs and also add temperature 

DoF to the A-FEM formulations. 

The simplest 3D element is the tetrahedron element which includes four nodes and four 

surfaces. There are two possible configurations if a tetrahedral element is cut by a planar 

crack. Similar to 2D formulations, we can introduce internal nodes and by solving the 

nonlinear system of equations, the instantaneous element stiffness matrix and external 

force array (RHS) can be established in order to implement into an existing FE program. 

Figure 5-1 shows the two possible configurations for a tetrahedral element cut by a crack. 
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Figure  5-1 possible configurations for a tetrahedral element cut by a crack 
 

As shown in Figure 5-1, depending on the crack direction, a tetrahedral element can be 

cut into (a) a tetrahedral and a wedge subdomain, or (b) two wedge subdomains. 

Configurations can be treated in a similar way of the 2D cases, and implemented in a 

FEM package.  

 For each subdomain, the equilibrium equation can be derived. The internal nodal DoFs 

can be condensed similarly as in the 2D problem. 

However, it is expected that the 3D problem is much more complicated than 2D problem. 

The most important factor is that in 2D, a crack is a 1D line which is much easier to deal 
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with than the planar crack surface in 3D. Computing equivalent nodal forces from nodal 

stresses, or Gaussian point stresses, is much more complicated than that in 2D.  

To see a simple 3D single element A-FEM response, assume that a single tetrahedron 

element is under mode I loading. All the DoFs are fixed except the one that shows with 

the arrow. A crack plane is considered a plane parallel to the tetrahedron base. By 

displacing the above node normal to that crack plane, mode I displacement loading can 

be achieved. The load-displacement plot from A-FEM and ABAQUS are shown in 

Figure 5-2. 

 

Figure  5-2 Load-displacement curve from A-FEM and ABAQUS for a tetrahedron 
element 
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As shown in Figure 5-2, the A-FEM result is initially identical to ABAQUS result. The 

post-peak behavior is almost identical but ABAQUS is not able to finish the job to reach 

complete failure. The 3D A-FEM finishes the failure process smoothly. Similar to the 2D 

case, ABAQUS needs to use more than one element to simulate the crack problem. 

Because all the elements are 3D, by increasing number of elements, computational time 

also increases substantially. By using A-FEM, the crack in a tetrahedral element can be 

simulated by just using one element. It is expected that the same order of magnitude 

improvement in numerical efficiency as 2D may be achieved.   

The accomplishment of 2D A-FEM serves a strong base to develop the 3D A-FEM. By 

implementing 3D A-FEs in FEM package, it will be possible to analyze more realistic 3D 

problems. Such capabilities are in high demand in composite and heterogeneous material 

research. 
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Appendix	A:	A	Piece‐Wise	Linear	Constitutive	Law	for	Cohesive	
Cracks 

In this study, a mixed-mode cohesive law with piece-wise linear traction-separation 

relations for normal and shear fracture modes as shown in Figure A1 was used. In this 

figure, nc  and sc are critical normal and shear crack displacements under pure modes 

beyond which the cohesive stresses become zero, indicating complete fracture. (

1 2ˆ ˆ and   ), and ( 1 2ˆ ˆ and   ) are critical normal and shear cohesive stresses at which 

sudden changes of cohesive stiffness occur, respectively. Together with the critical 

normal and shear crack displacements, ( 1n and 2n for mode-I, and 1s and 2s for mode-

II), they dictate the shapes of the traction-separation laws. All these stresses and 

displacements are defined in the local coordinates with s along the crack plane and n 

perpendicular to the crack plan as indicated in Figures 2-7, 3-2 and others.	

 

Figure A1 The piece-wise linear, mixed-mode cohesive zone model used in this study. 
The circled numbers indicate the respective segment numbers. 
 

Any other types of cohesive models can be linearized like the above one. For the piece-

wise linearized models, it is advantageous to index the traction-separation laws by 

cohesive segment numbers as labeled in Figure A1 by the circled numbers. Each segment 

is characterized by a critical stress ( ( )ˆ i or ( )ˆ j ), a corresponding crack displacement (
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( )i
s  or ( )j

n ), and a constant stiffness ( ( )i
s  or ( )j

n ). Here the free superscripts (i) and (j) 

(i, j=1, 2, and 3) are free indices for the cohesive segments. For cohesive model shown in 

Figure A1: 

     (1) (2) (3) (1) (2) (3)
1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;  ;  0;  ;  ;  0.                                                  

     (1) (2) (3) (1) (2) (3)
1 2 1 2ˆ;  ;  ;  ;  ;  .n n n n n nc s s s s s sc                                       

And the constant cohesive slopes for any segments are: 

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( 1)ˆ ˆ ˆ ˆ( ) /( );   ( ) /( )   ( , 1,2,3)i i i i i i j j j j j
s s s n n n i j                       (A3)  

Where (0) (0)ˆ ˆ 0    and (0) (0) 0n s   . Further, the crack displacement ranges 

consistent with the cohesive segments are indexed with: 

      ( ) ( 1) ( ) ( ) ( 1) ( ), ;             ,        ( , 1, 2,3)i i i j j j
s s s n n n i j                                   (A4) 

Thus the linearized relation between the cohesive stresses, ( )n  and ( )s  , and the crack 

displacements, n  and s , for any segments may be written as: 

 
 

*

*

( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

ˆ( ) sgn( )       (for  && )

ˆ( )                    (for  && )

i i i i
s s s s s s s s s

j j j j
n n n n n n n n

          

         

 

 

      

    
                (A5) 

(A1) 

(A2) 
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Where the sign function, sgn (●), is defined as

1      if 0

sgn( ) 0     if 0

1   if 0 

  
     
    

.   denotes taking 

the absolute value of the argument. *s
  and *n

  are two solution-dependent variables 

related to the irreversibility of the cohesive model, as discussed below. 

The irreversibility of the cohesive model was explicitly considered by an additional 

unloading segment in each traction-separation law (segment 4 in Figure A1). In this 

study, the maximum crack displacements ever reached, *n
 for mode I and *s

  for mode II 

as shown in Figure A1, were used as the historical (or, solution-dependent) variables to 

facilitate the distinguishing of loading and unloading path (unloading occurs when the 

current crack displacement is smaller than the respective historical displacements). The 

corresponding historical cohesive stresses, *̂  and *̂ , were computed from these 

historical crack displacements using Eqn (A5). Thus for segment i or j = 4, the cohesive 

stress – crack displacement relation is 

    
(4) (4)

(4) (4)

( ) sgn( ) ;             (for )

( )                            (for )

s s s s s s

n n n n n

      

     

 

 
                                                (A6) 

The cohesive slopes and the displacements ranges are 

    
   * *

* *

(4) (4)
* *

(4) (4)

ˆ ˆ/ ;                  /

[0, ];                  [ , ] 

s ns n

s ns n

     

   

 

    
                                                      (A7) 

For other cohesive laws such cohesive segments may be constructed similarly after piece-

wise linearization. 
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The mixed-mode cohesive model is constructed by recognizing that the total energy 

dissipated during fracture, G ,can be separated into the opening (mode-I) and shear 

(mode-II) components, IG  and IIG , so that,  

      I IIG=G G                                                                                                               (A8) 

The two separate components can be calculated by integration of the mode-I and mode-II 

traction-separation curves (Figure A1): 

      
n s  

I II 0  0
( )d ;           ( )d

 
       G G                                                                (A9) 

    

Note that n  and s are not independent parameters; they evolve together as a natural 

result of the interplay between the deformation of two joined domains and the details of 

the two traction-separation laws.  A failure criterion is required to determine the critical 

values of *
IG  and *

IIG  (shaded areas in Figure A1), at which complete fracture of the 

cohesive zone occurs.  The criterion used in this study is a simple one [264]: 

* *
I I II II/ / 1   G G                                                                                             

where I  and II   are the total areas under the pure opening and pure shear traction-

separation laws. They are the mode-I and mode-II fracture toughnesses in linear elastic 

fracture mechanics (LEFM) context.  

A more detailed account of this mixed-mode cohesive zone model can be found in [71, 

79, 80]. The major advantage of this cohesive law is that there is no need to specify the 

(A10) 
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mode mixture a priori. The mode mixture and the mixed-mode toughness ( * * *
I II=G G G ) 

evolve as numerical outcomes of the local equilibrium of stresses. More importantly, this 

law guarantees correct mode mixedness when LEFM conditions are satisfied [260, 265]. 

Finally it is emphasized here that, to index the cohesive laws by respective cohesive 

segment number is quite novel and it is one of the center pieces of the efficient elemental 

condensation process in this study. It enables one to assume a cohesive segment (i or j) 

(i.e., a linear cohesive stress-crack displacement relation), rather than the cohesive 

displacements, to formulate and solve the nonlinear equations associated with an 

embedded cohesive discontinuity. As seen next, this is of great advantage, because, once 

a cohesive segment is assumed the cohesive traction-displacement relation becomes 

linear. The local equilibrium equation with the embedded cohesive discontinuity becomes 

linear too and can be solved analytically. Whether the obtained solution is true or not is 

then determined by a consistency check: A solution is true if the solved cohesive 

displacements are all consistent with the respective ranges of the assumed segments. 
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Appendix	B:	Equilibrium	Equations	for	First	2D	Configuration 

In the case that the element is cut into two rectangular domains, the equilibrium equation 

can be readily derived from Eqn (2-34). Note that in standard FEM formulation, the 

stiffness matrix follows counterclockwise nodal numbering sequence. But here we have 

to put the nodal displacements in crack in same position for the top and bottom elements 

for easy mathematical manipulation. For instance, if 6v (the opening displacement at node 

6 for the bottom element) is in sixth row for the bottom nodal displacement vector, 6v  

should be at the sixth row of the nodal displacement vector for the top element. This 

needs some rows and column changes in the stiffness matrix. From this point on we 

assume that the stiffness matrices are the new matrices built by shifting rows and 

columns. 

     

+ + + + + + + +
11 12 13 14 15 16 17 18

+ + + + + + + +
12 22 23 24 25 26 27 28

+ +
13 38

+ +
18 28

               

             

     .......                                      

.

.

.

.

     

k k k k k k k k

k k k k k k k k

k k

k k     ......                       

33

33

44

44 +

6 6

6 6

5 5

+
5 588

      ( )

       

x

y

x

y

x

y

x

y

Fu
Fv

Fu

Fv

u F

v F

u F

v Fk

 

 

 

 

    
    
    
    
    
          

    
    
    
    
         
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- - - - - - - -
11 12 13 14 15 16 17 18

- - - - - - - -
12 22 23 24 25 26 27 28

- -
13 38

- -
18 28

               

             

     .......                                  

.

.

.

.

        

k k k k k k k k

k k k k k k k k

k k

k k     ......                       k

11

11

22

22 -

6 6

6 6

5 5

-
5 588

             ( )

x

y

x

y

x

y

x

y

Fu
Fv

Fu

Fv

u F

v F

u F

v F

    
    
    
    
    
          

    
    
    
    
         
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Appendix	C:	Stiffness	Matrix	for	Pentagonal	Subdomains																																						

In the case that an A-FE is cut into a triangular and a pentagonal sub-domain, the 

stiffness matrix for the pentagonal sub-domain cannot be computed with standard FE 

approach. There are two methods in the literature to compute the stiffness matrix: 1) the 

triangulization method used by [168, 183], and 2) the polygon FEM recently developed 

by Mousavi and colleagues [254]. In this study, the polygon FEM was used and it is 

briefly summarized below. 

For a physical convex polygon as shown in Figure C1 (a), a one-to-one mapping between 

the physical polygon and the reference (perfect) pentagon in Figure C1 (b) exists. Denote 

the natural coordinates within the reference element as ξ and η as shown in Figure C1 (b) 

so that the corner nodes are:  

cos(2 / 5),       sin(2 / 5)    (i 1, 2,...,5)  i ii i                                                      (C1) 

 

Figure C1 (a) an arbitrary physical pentagonal element and (b) its reference element 
 

X

Y

Physical element Reference element 

1 2

3

4

5





1

5

4

3

2

(a) (b) 
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According to [254], the shape functions for the pentagonal reference element are defined 

as ( ) ( , ) / ( , )    ( 1,2,...,5)i iN a b i                                                                 

Where 

 2 2( , ) 87.05 12.7004 2.7004b         

1

2

3

( , ) 0.092937(3.23607 4 )( 3.80423 3.80423 2.76393 )

(15.2169 5.81234 17.8885 )

( , ) 0.0790569(3.80423 3.80423 2.76393 )

( 3.80423 3.80423 2.76393 )(15.2169 5.81234 17.8885 )

( , ) 0.07905

a

a

a

    
 

   
   

 

     
 
   

    
 

4 1 1

1

5 1

69(15.2169 5.81234 17.8885 )

(3.80423 3.80423 2.76393 )( 3.80423 3.80423 2.76393 ),

( , ) 0.092937(3.23607 4 )(15.2169 5.81234 17.8885 )

(3.80423 3.80423 2.76393 )

( , ) 0.0232343(3.23607 4 )

a

a

 
   

    
 

  

 
    
   
 
  1

1

(15.2169 5.81234 17.8885 )

(15.2169 5.81234 17.8885 )

 
 

 
 

                       (C3) 

With the shape functions known, the location of any point ( , )x yx  within the pentagon 

and its displacements ( , )u vu  can be interpolated from the nodal coordinates, i.e. , 

   1 5
1 1 5 5

1 5

 0   ...    0
, , ,..., ,

0    ...     0
T N N

x y x y x y T
N N

 
  
 

                                                              (C4)

   1 5
1 1 5 5

1 5

 0   ...    0
, , ,..., ,

0    ...     0
T N N

u v u v u v T
N N

 
  
 

                                                                (C5)                         

Form Eqn (C5) the strain matrix (also called B-matrix) can be derived

1 5

1 5

1 1 5

/         0          ...  /           0            /

        / 0               /    ...         0         /

/ / /    /    ...   /    

x

y

xy

N x N xu x

v y N y N y

u y v x N y N x N y






       
             
                

1

1

55

( 3 10 )
5

/  
B m atrix x

u

v

uN x

v

 
      
  
     
  





            (C6) 

The elements in the B- matrix ( / )iN x   can be obtained explicitly using the chain rule in 

derivation, i. e., 

(C2) 
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1

/ / //     /
J

/ /    / / /
i i i

i i i

N x N Nx x

N y x y N N

  
   

              
                      

-1                                    (C7) 

where the matrix J is the Jacobian matrix, i.e.  

     

5 5

i 1 i 1

5 5

i 1 i 1

       
/        /

/       /    
        

i i
i i

i i
i i

N N
x y

x y

x y N N
x y

   
 

 

 

 

  
                  
   

 

 
J                                           (C8) 

By substituting Eqns (C7) into (C6), the explicit B-matrix can be established. The sub-

domain stiffness matrix is then obtained by numerically integrating

T d d


  


 L J B DB . According to [254], six Gaussian points are needed to integrate 

the stiffness matrix with sufficient numerical accuracy. The quadrature points for the six 

Gaussian points and their weight factors are given in table C1. The integrated elemental 

stiffness matrix for the pentagon can thus be written as  

   
6

T

1

,  , ,  j j j j j j j
j

w      


 L J B DB︵ ︶ ︵ ︶ ︵ ︶                                                       (C9) 

             Table C1: Gaussian Quadrature Points and Corresponding Weight Factors 
Quadrature 

points(j) 
jw  j  j  

1 
0.3888911512256 -0.6384668826471 0.275553846540691

2 
0.3888911512256 0.381135494755148 -0.58575440679964 

3 
0.422990789220551 -0.4373628915568 -0.5193915726330 

4 
0.676403174782686 0.12399251372737 0.136333638364358

5 
0.251029512898982 0.0600583693601523 0.7940563773360 

6 
0.243640520985923 0.779135301079186 0.193675422668734
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Appendix	D:	Integration	and	Interpolation	Matrices	for	Various	
Integration	Schemes	

In local coordinates, the cohesive forces integrated from the cohesive stresses along the 

crack plane can be written in the following general form which we wrote them in the 

expanded form: 

   

6 6 66

6 6 66
0

5 5 55

5 5 55

[ ] { } [ ]

x x

y y

e coh e coh coh
x x

y y

F F u

F F v
l l

F F u

F F v

 

 

 

 

     
                       
         

TT
0T σ T α N                                               (D1)	

D.1 Newton-Cotes Integration (Trapezoidal Integration) Method 

Consider the cohesive law as shown in Figure A1. This integration method assumes 

linear stress distribution between the two node pairs 5-5’ and 6-6’.  

   

6 6 66

6 6 66
0

5 5 55

5 5 55

[ ] { } [ ]

x x

y y

e NC e NC
x x

y y

F F u

F F v
l l

F F u

F F v

 

 

 

 

     
                       
         

TT
0T σ T α                                                 

Where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1/3 0 1/6 0 ˆ 0 0 0

0 1/3 0 1/6 ˆ 0 0 0
[ ] ;{ } ;  [ ]

1/6 0 1/3 0 ˆ 0 0 0

0 1/6 0 1/3 ˆ 0 0 0

m m m m
t t t

n n n n
n n n

NC k k k k
t t t

l l l l
n n n

   
   
   
   

    
                           

0T σ α           (D3)                          

Thus for NC integration method, 

(D2) 
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     [ ] [ ];    [ ] [ ]coh NC coh T T N I                                                                                      (D4) 

This method is effective when the element is very small compared to the cohesive zone. 

However, the numerical accuracy deteriorates very quickly as element size approaches 

about 1/3 of the cohesive zone size. A detailed analysis can be found in [266].  

D.2 Gaussian Integration Method 

Here we adopt the first order (linear) Gaussian integration method. This method uses 

stresses at the two Gaussian points to compute the resultant forces at the two node pair. 

The integration matrix is derived as follows. 

To obtain the Gaussian point stresses, we first need to interpolate the crack displacements 

at Gaussian points. The locations of the Gaussian points are shown in Figure D1. Point 1 

is 1 el  away from 6’ and point 2 is 2 el away from 6’; and  1 1 1/ 3 / 2  

 2 1 1/ 3 / 2   . 

It is straightforward to derive that the crack displacements at Gaussian points:     

66'1

66'1

2 55'

2 55'

[ ]GS

uu

vv

u u

v v

   
             

       

T                                                                                           

where  

2 1

2 1

1 2

1 2

0 0

0 0
[ ]

0 0

0 0

GS

 
 

 
 

 
 
 
 
 
 

T                                                                                    

(D5) 

(D6) 
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               Figure D1 Displacement interpolation with Gaussian Integration method 

 

is the Gaussian interpolation matrix. 

The cohesive stresses at the Gaussian points are: 

     

( )
66'1

( )
66'1

( )
55'2

( )
55'2

m

n

GSk

l

u

v

u

v







   
             
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The resultant node-pair forces can be obtained from equilibrium analysis similar to the 

Newton-Cotes analysis except that the two equivalent forces are now acting at the 

Gaussian points. 
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Thus for Gaussian Integration method, the integration matrices are:   

       ;    coh GS coh GS T
T T N T                                                                                   (D9)

 

 

D.3 Improved Gaussian Integration Method 

The above Gaussian integration is widely used in cohesive element formulation. 

However, the numerical accuracy still deteriorates as the elemental size becomes 

comparable to the cohesive zone size. The reason has been illustrated in [266]. In that 

paper, a mixed Gaussian and subdomain integration method has been proposed and been 

shown very effective even as the elemental size is 1.5 times the cohesive zone size. Here 

we adopted a similar approach, but, instead of using subdomain integration when an 

element is partially cracked, we shall use Gaussian integration. The formulation is given 

in the following: 

Consider the case shown in Figure D-2 where the crack-tip is located within the cohesive 

element le. With a distance (1-) le away from the left node pair (6-6’), i.e., the remaining 

active zone is le. 

 

Figure D2 Displacement interpolation with improved Gaussian Integration method in the 
case the node-pair 66’ is completely failed while node pair 55’ remains active 

 

Now the crack displacements interpolated from node pair 5-5’ and 6-6’ are 
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is the modified integration matrix. It reduces to standard integration matrix Eqn (D6) as 

1. The stresses at these integration points are 
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Equilibrium consideration leads to 

     

( )
6 6 66'1

( )
6 6 66'1

( )
5 5 55'2

( )
5 5 55'2

[ ] [ ] [ ]

m
x x

n
y y

e GSI e GSI e GSI GSIk
x x

l
y y

F F uτ
F F vσ

l l l
F F uτ
F F vσ









       
                                

              

T T T
0 0T T σ T α T         

Therefore in this case,  

       ;    coh GSI coh GSI T
T T N T                                                                          

In case that node pair 55’ is completely failed while node 66’ remains active, as shown in 

Figure D3, the derivation of integration matrix are similarly straightforward. 
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Figure D3 Displacement interpolation with improved Gaussian Integration method in the 
case the node-pair 55’ is completely failed while node pair 66’ remains active 
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 is the integration matrix for this case. 

Following the same procedure, the resultant node pair cohesive forces are: 
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Therefor in this case, 

         ;    coh GSII coh GSII T
T T N T                                                                      
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D.4 Mixed Newton-Cotes and Subdomain Integration (Mixed NCI and 
SDI) 

 

Following the similar procedure to that in the improved Gaussian method, we could 

derive an improved NCI method too. However, we found that this will lead to significant 

underprediction of equivalent nodal forces. Instead, mixed NCI and SDI formulation is 

recommended. This method assumes a constant cohesive stress within the remaining 

bonded area after one of the node-pairs failed, and the cohesive stress is evaluated from 

the midpoint of the bonded area. The interpolation and integration matrix after an element 

is partially cracked is 
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