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Several biological examples show that living organisms cooperate to collectively ac-

complish tasks impossible for single individuals. More importantly, this coordination

is often achieved with a very limited set of information. Inspired by these observa-

tions, research on autonomous systems has focused on the development of distributed

control techniques for control and guidance of groups of autonomous mobile agents,

or robots.

From an engineering perspective, when coordination and cooperation is sought in

large ensembles of robotic vehicles, a reduction in hardware and algorithms’ complex-

ity becomes mandatory from the very early stages of the project design. The research

for solutions capable of lowering power consumption, cost and increasing reliability

are thus worth investigating.

In this work, we studied low-complexity techniques to achieve cohesion and control

on swarms of autonomous robots. Starting from an inspiring example with two-agents,

we introduced effects of neighbors’ relative positions on control of an autonomous

agent. The extension of this intuition addressed the control of large ensembles of

autonomous vehicles, and was applied in the form of a herding-like technique. To

this end, a low-complexity distance-based aggregation protocol was defined. We first

showed that our protocol produced a cohesion aggregation among the agent while



avoiding inter-agent collisions. Then, a feedback leader-follower architecture was

introduced for the control of the swarm. We also described how proximity measures

and probability of collisions with neighbors can also be used as source of information

in highly populated environments.
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CHAPTER 1

Introduction

The concept ofmultiagent mobile robotics refers to systems composed by ensembles

of autonomous vehicles, collaborating to achieve a common goal, while exchanging

information. In the past few decades, an extensive amount of research on multiagent

systems has been developed and practical applications are now emerging in many

fields.

Several examples in nature show the benefit arising from cooperation and orga-

nization among individuals. Flocks of birds are capable of self-organizing their flight

formation, improving efficiency and traveled distance. Schools of fish exploit their

wakes in order to reduce drag and adjust distances from neighbors in order to deceive

predators. Wolves distribute roles among the pack, maximizing foraging success. The

fact that these behaviors are often results of simple interactions with limited infor-

mation is of great interest to the multi-agent research community. This ultimately

highlights the fundamental importance of the communication structure topology when

compared to the information itself. This great coordination in biological systems and

their ability to perform group tasks that are beyond the capabilities of a single agent

is the motivation for the multi-agent robotics.

1
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A particular class of multiagent systems, namely swarm or swarm robotics, has

largely diffused in many contexts related with engineering and computer science.

The term swarm is used in biology to indicate an ensemble of similar individuals

specialized in accomplishing a common task, relying on some degree of collabora-

tion. Although relatively inexpensive sensors and actuators allow the design of ad-

vanced robotic systems at moderate costs, there is still an interest in investigating

low-complexity solutions. In particular, on large production scales, even small reduc-

tions in the complexity results in reduced maintenance and manufacturing costs, lower

power consumption, and higher reliability. In many biological species, for instance,

communication protocols are relatively simple processes and yet very effective; e.g.

chemical communication (release of pheromones), group signal (waggling and dance),

or environment modification.

In this work we embraced the potential benefit of multiagent robotics and we

moved a step forward in the analysis and definition of low-complexity control tech-

niques. In accordance with many other works, we focused our study on control al-

gorithms where relative distance and/or position measurements represents the main

source of information for the agents. The popularity of this choice is due to the fact

that these measurements generally come at a low cost and limited complexity. Here

we consider a somewhat relaxed version of a formation tracking problem which we

refer to as swarming or aggregation behavior. As it will be shown in the next chap-

ter, formations are generally expressed as a set of feasible distances to be maintained

among agents. Conversely, our interest is in the definition of homogeneous distributed

behaviors where inter-agent distances are maintained within the neighborhood of a

reference distance. To this end, our swarming process could be thought as one of the
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possible behaviors a multiagent system can switch to, when particular stages of their

mission do not require an exact formation’s shape (i.e. moving between successive

points of interest, reduction of the swarm’s size, narrow passages). The problem of

controlling the group responding to our aggregation behavior was also investigated.

To this end, we connect to the important problem of the leader selection.

The proposed algorithm presents many advantages over other available solutions.

In particular, our agents are not required to distinguish their neighbors while trying

to reach the stability of the formation. Moreover, as a completely decentralized

algorithm, the complexity of the swarming process proposed does not rise with the

number of individual in the team.

The remaining of this work is structured as follow. In the next chapter we describe

some of the major techniques that have been proposed for the guidance and control of

multiagent systems. Most relevant features connected with our problem are described

together with their shortcomings. In Chapter 3 we introduce a motivating example

for our main contribution. The effect of a distance-based behaviors will be shown

by means of a pair of UAVs whose dynamic is coupled by the presence of a collision

avoidance algorithm. A fundamental correlation between autonomy and neighbors’

distance was introduced, showing trustworthiness and safety issues. In Chapter 4

our swarm aggregation process was described using elements from rigidity theory and

Lyapunov stability. The effect of distance-based reaction introduced in Chapter 3

were extended in Chapter 5 to the control of large swarms. Lastly, in Chapter 6,

the use of binary measurements of proximity with neighbors were used to define a

filtering process useful for the agent self-localization in crowded environments.
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1.1 Preliminaries and Nomenclature

We introduce here main notation and nomenclature assumptions used throughout

this work. Additional details and theories will be introduced in each chapter as

required. We will generally refer to the atomic element composing a swarm either as

agent, node, vehicle or simply robot. We denote vectors and matrices by lower case

and capitol letters respectively. We define R
a×b the set of real valued matrices with

a-rows and b-columns. Also, diag(a), with a ∈ R
n, is the matrix of size n× n having

a as diagonal entries; ‖a‖ is the Euclidean 2-norm of a. We denote 1 the vector of

appropriate size having all entries equal to 1 and In as the identity matrix of size

n× n. A ⊗ B indicates the Kronecker product between matrix A and B; A◦ 1

2 is the

Hadamard root of matrix A.

For an ensemble of n autonomous vehicles, we let xi ∈ R
2, for i ∈ {1, . . . , n},

be the state of agent ith in a two dimensional domain. Where ground vehicles are

considered, a two dimensional domain fully describes the problem. However, un-

der particular scenarios, aerial applications might fit within this assumption as well;

this is, for example, the case of single/multi-rotor flying vehicles whose downstream

aerodynamic wake prevents them from being vertically overlapped. Similarly, given

layered structure of the airspace, aircraft are not allowed to freely change their alti-

tude.

The composite state vector for the whole system is defined as x ∈ R
2n. We assume

the single agent’s dynamic to be modeled by a differential equation of the form:

ẋi = fi(xi, ui) xi ∈ R
2 ui ∈ R

c i = {1, . . . , n}. (1.1)
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where c is the dimension of the control space. We let x = {x1, . . . , xn}
T ∈ R

2n and

u = {u1, . . . , un}T ∈ R
2c represents the composite state and input vectors of the

ensemble of robots.

Similarly, we can express equation (1.1) on a discrete time domain indexed by

k = 1, 2, . . . using the difference equation:

xi[k + 1] = xi[k] + gi(xi[k], ui[k]) (1.2)

Many factors could lead to the choice of one time domain over the other. For example,

if vehicles are allowed to contentiously communicate or the bandwidth is sufficiently

large, a continuous model is used. On the other side, a model similar to (1.2) could

represents scenarios where sharing of information only takes place at discrete instances

of time. In the following chapters, it will be made clear when a discrete time model

is considered. If not stated otherwise, a continuous time domain is assumed.



CHAPTER 2

Control of Multiagent Mobile Systems

In this chapter we provide a brief introduction on multiagent mobile systems,

discussing some of the most relevant results in the field. Given the great amount

of research available on the topic, this is not meant to be an exhaustive review on

the topic but rather to highlight some of the most relevant solutions and relative

shortcomings. More complete survey on the topic have been developed by Parker [1],

Murray [2], Brambilla et al. [3] and Cao et al. [4].

2.1 Group Behavior Studies in Biology and Physics

Early works on group behaviors have been developed by biologist and physicists.

Primary focus was the definition of proper models capable to described frequently ob-

served behaviors in animals such as aggregation, team foraging and herding. Mogilner

and Edelstein-Keshet [5] proposed a integro-differential advection-diffusion equations

model representative of the attraction repulsion forces taking place between organ-

isms. The proposed models describes the evolution of the population density using

different model of diffusion and stability results are discussed. Agent belonging to

swarms have been described in physics literature as self-driven particles. Vicsek et

al. [6] describe a model composed by particles traveling with constant absolute ve-

6
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locity equal to the average of their neighborhood subject to the effect of a uniformly

distributed random perturbation. They show that when high noise are present no

transportation effect takes place in the swarm and as it is reduced transition to co-

herent motion is achieved. Similar results are presented in [7] where self-propelled

particles respond to long-range interactions. In this case, the system presents either

coherent traveling states and incoherent oscillatory state depending on noise intensity.

Shlizerman et al. [8] present a model for directional flight used by migrating monarch

butterflies which is based on a time-compensated sun-compass. As described by

Pratt [9], colonies of ants can choose nesting site and propagate the decision using a

quorum process simply based on frequency of encounters with nest mates.

2.2 Multiagent System in Engineering

Multiagent systems have gathered much attention in the lest decades thanks to

broad field investigation conducted not exclusively by community affiliated with en-

gineering and computer science but also in economic and social studies. The arising

of a large variety of possible applications for multiagent systems has also favorably

contributed to the growing interest in the topic. Scientific explorations and rescue

activities in areas where human life or safety are not guaranteed could be enhanced

by a coordinated team of aerial, ground, marine vehicles or possibly a fusion of them.

Similarly, environmental monitoring, area coverage (i.e. border control, meteorology),

mapping, target tracking and sensor networks represents some of the many applica-

tion where multiagent robotics might generate a positive impact. Appealing features

includes extended autonomy, absence of traditional pilots training and accessibility

to remote/dangerous environments. Group of small autonomous agents can also re-
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place the massive traditional machine used for field cultivation or to realize collective

transportation or manipulation of objects.

Control and estimation, which are the two fundamental problem in automatic

systems, are tightly connected in multiagent based platforms, where the limited ca-

pability of sensors require an actual motion of the robot in the environment. For

instance, let us consider a team of UAV employed for a map exploration task. The

benefit arising from specific maneuvers and trajectories is directly dependent on the

degree of knowledge of the environment (state of the swarm and external conditions).

Conversely, given the limited range of real sensors, the degree of knowledge of the

surrounding environment depends on the number of locations visited and the explo-

ration paths. Nevertheless, in many application separation principle can be assumed

when studying control/planning and estimation/perceptions in distributed system.

The problem of multiagent robotics guidance address the definition of algorithms

capable to realize the routing of agents towards the desired targets, while respecting

possible constraints in the environment. A general autonomous motion problem can

be partitioned in macro tasks, including but not limited to:

• reach destination or way-points;

• avoid collision with static or moving obstacles as well as other with other vehicles

implementing a collision avoidance algorithms;

• platooning and formation control;

• task allocation and scheduling;

The particular mixture of these tasks is peculiar of the problem under consideration.

Often times, due to the complexity of the original problem or given the interest in
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a particular area of research, a separation principle is employed in order to address

these aspects separately. However is important to keep in mind possible coupling

effects in order to produce effective solutions for the problem.

Diversification and classification of multiagent systems, considered as collections

of autonomous and mobile vehicles, have been performed following several different

approaches such as, size of the group, level of heterogeneity, degree of decentralization.

Analysis and models based on both Eulerian and Lagrangian approaches have been

used. Moreover, a group of agents could also be modeled using continuum, discrete

or hybrid formulations and both continuous and discrete time domains models can

be found in literature. Finally, homogeneity or heterogeneity can be used to classify

configurations respectively formed by ensembles of vehicles being all equal to each

other or having different skills and features. An other option is to separate centralized

and decentralized (or distributed) techniques.

2.3 Centralized Solutions for Control of Multia-

gent Systems

In centralized control, a supervisor or leader collects information on the state of

the agents and the surrounding environment; once these inputs have been processed,

appropriate instructions are sent back to each agent. Given the necessary flow of

information between nodes and control unit, these techniques are best suited where a

limited number of agents is involved. In fact, the communication burden arising from

the continuous share of information prevents this approach from being applied to very

large scale applications. Moreover, the continuous communication and the presence of
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single node of failure limit centralized approaches to few field of application. However,

given the usually realistic assumption of full state/objective knowledge, properties

such as efficiency and stability are easier to achieve and prove.

Formation control is one of the most investigated behavior in multiagent robotics.

Aircraft and drones can reduce their radar print when flying in tight formations.

Particular disposition of ground vehicles can increase the probability of detection of

enemies activity or prevent access to restricted areas. The problem is the definition

of required controls to reach and maintain relative positions among agents. Forma-

tion control techniques have been developed in both centralized and decentralized

frameworks.

Trajectory planning for multiagent systems can be formulated as multiple trav-

eler sales man problem. Algorithm to define travel paths the minimize total agents

traveled distance can be formulated. These algorithms can include constraints on

the trajectories, such as collision avoidance, as well as particular agents/location con-

straints.

A large body of research has been directed toward algorithms for air traffic control.

The current air traffic control structure is an example of a centralized control, where

a supervising unit issues dedicated routing instructions to each aircraft. Air traffic

control is a particularity challenging problem due to the high safety standard to be

maintained and its high operative costs.
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2.4 Distributed Solutions for Control of Multi-Agent

Systems

The term distributed (or decentralized) control refers to techniques based on the

assumption that agents accomplish a desired task in a somehow collaborative fashion,

without any kind of external coordinator or leader. This kind of solutions have gath-

ered much attentions in last decades thanks to appealing properties they posses when

compared with centralized counterparts. The original idea of distributed systems take

its inspiration from an abundant number of biological examples observable in nature.

Many species are in fact capable of achieving surprisingly complicate results only re-

lying on a set of local information and limited skills. The synergy and cooperation

among agents make the swarm capable of achieving tasks impossible to the single.

Moreover, as frequently observed in nature, individuals perform much better when

operate collectively compared to solo performances.

A swarm of robots is defined as a group of autonomous agents, that operates in

cooperation relying on limited internal complexity, skills and communication. Limited

cognitive capabilities prevent nodes from perceive the swarm behavior and its large

scale outcome; nonetheless, inputs and decisions are defined at single agents level.

Give the large number of vehicles and the lack of a single point of control, swarm

of robots have higher resilience to loss and failure when compared to centralized

architectures. In addition to that, their natural inclination to operate in parallel,

leads to higher efficiency and flexibility to adapt to changes in the environment or in

their tasks.
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Due to the lack of a global swarm self-observability on its state and performance,

the definition of stable protocols and efficient trajectories is not trivial. This is es-

pecially true when we consider a state dependent time-varying interaction structure

between the individuals. Moreover, when considering systems composed by an high

number of individuals, practical limitations must be accounted for when investigating

physical realizations. For this reason, control algorithms must be scalable, in a way

that complexity is as much independent as possible by the number of members in

the swarm. In these scenarios, even little savings in the realization, maintenance and

operation costs could result in overall great savings. For example, wireless communi-

cations or absolute localization systems (i.e. GPS) might be considered too expensive

and power inefficient for some applications; therefore, there is a great interest in alter-

native solutions. On the other side, distance measurements performed using sonar,

lidar or IR sensors can be significantly cheaper, although their limited range and

cannot distinguish objects when they are very close.

Camera and video devices are commonly used in robotic localization and esti-

mation. In SLAM (Simultaneous Localization and Mapping) techniques, image pro-

cessing and inertial navigation are coupled in order to provide location estimation

and mapping of the environments at once. SLAM techniques are very popular and

increasingly diffused; however, the intensive computational resources and large power

storage they need, makes them unsuitable form some applications.

Relative low power-consumption sensors include optical and tactile sensors that

can be used to read landmarks or detect barriers and obstacles. Finally, actuators and

motors represents in many circumstances more than half of the power consumption.
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For this reason, great interest is in developing control algorithms that require simple

movements at optimized regimes and velocities.

Following these consideration, great interest is devoted to low-complexity solutions,

where agent can achieve complete tasks relying on reduced sensing capabilities while

operating in a distributed fashion. In the remaining of this section we review some

of the most relevant solution proposed for distributed control for multiagent systems,

highlighting relative advantages and shortenings.

2.4.1 Optimal Control Techniques

In Dunbar and Murray [10] a cost function representative of the cumulative for-

mation error and the control efforts is defined as:

L(x, u) =
∑

i = 1, . . . , n
(

f(xi, x−i) + ‖ui‖
2
)

. (2.1)

Distributed optimal solution is found using a receding horizon approach. The model

requires each agent to communicate its optimal control trajectory. Stability can be

achieved if each control do not deviate significantly from the transmitted one and the

receding horizon updates is performed sufficiently fast. This technique has been used

to perform a distributed point tracking while maintaining formation.

2.4.2 Probabilistic Guidance Algorithm

In probabilistic guidance algorithms (PGA), agents follow a random walk over a

partitioned domain in accordance with specific transition probabilities. Transitions

occur in accordance with a Markov chain whose limiting distribution reflects the

desired configuration for the swarm.
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The physical domain R is defined as a disjoint union of m bins Ri, i = 1, 2, . . . , m

such that:R =
⋃m

i=1Ri, Ri ∩Rj = ∅. Let N be the number of agents. Each agent has

position r(t) at time t. The probability that one agent will be at time t in cell Ri is

defined through the probability vector xi(t):

xi(t) := P(r(t) ∈ Ri) and x ∈ R
m (2.2)

therefore x(t) is the swarm distribution. Since each agent acts independently, equation

(2.2) is true for N agents. The ensemble of the all agents position is rk(t)
N

k=1, which

by the law of large numbers has a distribution that approaches x(t) as the number of

agent is increased. Purpose of the guidance algorithm is to guide the agents toward a

specific distribution described by a probability vector π. If we have m bins or vertex,

π[i] is the desired probability of finding an agent in cell Ri:

lim
t→∞

xi(t) = πi for i = 1, . . . , m (2.3)

Nπ(i) is the expected number of agents to be found in νi. As N → ∞, n
N

→ π

(π may be seen as desired average fraction of agents in νi). The entries of Markov

matrix M , where M ∈ Rmxm, are defined as transitional probabilities, in particular:

Mi,j = P(r(t+ 1) ∈ νi|r(t) ∈ νj) (2.4)

The evolution of the probability vector x is defined by the Markov chain:

x(t+ 1) =Mx(t) t = 1, 2, . . . (2.5)

Each agent is provided with a copy of the matrix M and independently propagate its

positions as independent process.

In Akmee and Bayard [11] appropriate Markov chain having the desired configu-

ration as limiting distribution are constructed using the Metropolis-Hastings (M-H)
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algorithm and a Linear Matrix Inequality (LMI) approach. In both cases rate to con-

vergence to the desired distribution can be tuned as desired. The resulting behavior

ensure self-healing properties when a subset of the swarm is removed and can treat

domains with keep-out regions. No estimation of swarm distribution is performed and

transitions are contously performed. In Bandyopadhyay et al. [12] an inhomogeneous

Markov chain is designed such that the number of transitions required by the agent is

minimized. Communication among agents are used to estimate swarm convergence to

desired formation and maintain positions once reached. Example of the result from

application of PGA is represented in Figure 2.1. Although appealing for its highly
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Figure 2.1: Simulation results from PGA with inhomogeneous Markov chain

distributed realization, PGA requires each agent to have exact knowledge of its loca-
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tion. As discussed previously, in some circumstances absolute localization cannot be

performed and generally corresponds to high power consumption and costs.

2.4.3 Consensus

Consensus related problems have been extensively studied in recent years [13],

[14] [15], [16]. The most general consensus algorithm is represented by the following

dynamics:

ẋi = −
n
∑

j=1

wij(t) (xi(t)− xj(t)), i = 1, . . . , n (2.6)

where in the most general case wij is the (i, j) entry of the adjacent matrix associated

with the given network topology. The same dynamics can be represented in matrix

form as:

ẋ = −L(t) x(t) (2.7)

where L(t) ∈ R
n×n is the Laplacian of the graph. Consensus is achieved among agents

if for all xi(0), |xi(t)− xj(t)| → 0 as t→ ∞ for all i, j = 1, . . . , n (Figure 2.2).

Rendezvous Problem In the rendezvous problem a group of vehicles meet at

time or location determined through negotiation. In [17] an algorithm for controlling

multiple UAVs is studied. Each aircraft has to reach the boundary of a radar detection

area at the same time in order maximize the surprise effect.

Formation Stabilization In formation stabilization vehicles must maintain a pre-

defined relative distance one from each other. In distributed realization, each member

must negotiate its position with its peers.
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Formation Maneuvering and Flocking Consensus algorithm can be used to

obtain a moving formation that adapt to changes in the environment or to obsta-

cles. These techniques have been largely applied to computer animations which have

inspired several robotics developments [15].
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Figure 2.2: Consensus on multiagent system centroid.

2.4.4 Artificial Potential Function

Artificial potential fields have been extensively used in distributed control of mul-

tiagent systems, some more relevant examples can be found in [18], [19], [20]. In

artificial potential based control, a function is chosen in such a way that its gradient

corresponds to a suitable control input for the robot. Artificial potential functions

have been originally introduced by Khatib [21] for control of object avoiding robotics

manipulators. The idea has been further developed by Rimon and Koditschek in [22]

where a class of admissible potential function is introduced. The paper also intro-

duces the notion of navigation function defined as a class of potential function with

particular properties.

Algorithms based on collective potentials where introduced by Olfati-Saber in [15]

for distributed flocking. In [23] a combination of navigation function and swirling
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function is designed to realize a stable deconfliction among UAVs and route them to-

wards their goal. The techniques consider constraints in the vehicles turning rate and

cooperativeness among agents, however linear velocities are assumed to be constant.

2.4.5 Game Theory

In recent year, game theory or decision theory has been applied to multiagent

systems. Game theory is a mathematical techniques that can be used to describe

and characterize a decision process when outcome of single actions are not know. In

multi-agent systems, these theory become interesting due to the uncertainty on the

external environment. In [24] each robot is described by traits of personality which

cumulatively describe the robot behavior. A learning process based on game theory is

introduced and complex behaviors can be represented and solved as zero-sum games.



CHAPTER 3

Non-cooperative Trajectory Modification

3.1 Overview

In this chapter we present a motivating case study for the problem that will

be addressed in the following chapters. The example, investigates the extent to

which a collision avoidance algorithm can represent a source of vulnerability for an

autonomous vehicle. The interest in this problem is motivated by the fact that when

distance based behaviors directly affect the dynamics of system, such as in a collision

avoidance framework, the trajectory of one vehicle can be modified by particular

trajectories of its neighbors.

In this chapter we consider a UAV employing a collision avoidance algorithm,

whose objective is to reach its destination while avoiding collisions with other vehi-

cles. On the other side, a team of UAV, without employing any collision avoidance

algorithms, tries to steer the trajectory of the first UAV from its original direction

towards a new target.

19



20

3.1.1 UAV Collision Avoidance Exploitation for Noncooper-

ative Trajectory Modification

Due to the increasing degree of automatization in air traffic managment, cyber-

physical security has become a major topic in ATM research. Along with that, the

combination of fully or partial automated aerial systems give rise to a complicate

hybrid structure whose verification must be deeply investigated before a large scale

implementation can be accomplished. A thorough security analysis must include both

unintentional malfunctions and adversarial attacks. For examples, given the same

working frequency band, possible interference between radar and ADS-B communi-

cation can also take place. Towards this end, a performance optimization technique

for ADS-B interference is proposed by Park and Tomlin [25].

Critical security vulnerabilities subject to malicious attacks can be targeted to

both ground stations and aircraft. Three general classes have been identified by Mc-

Callie et al. [26]: interception of transmission, jamming and injection of messages into

a data link. In addition to these, several other inherent GPS vulnerabilities have been

investigated over the years [27]. For example, spoofing GPS through the transmission

of counterfeit signals can induce a false drift in UAV’s localization which, in turn,

can be used to take control over the vehicle [28]. Jamming of wireless network is

considered a denial-of-service attack caused by the presence of a high power trans-

mitting device which prevent other lower power device connectivity. In ATM this

could be considered a vulnerability mostly affecting ground control station and, in

turn, threatening take off and landing operations [29].

Several mitigation and defense techniques have been proposed against the afore-

mentioned vulnerabilities. For example, cross-verification of ADS-B data through
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sensor fusion techniques seems to improve trustworthiness of broadcast messages and

GPS data disruptions [30] [31] [32].

In autonomous mobile robotics a major class of threats is represented by losses

of minimum separation with surrounding objects (collisions). Conflict detection and

resolution (CDR) techniques have been largely investigated in the last few decades.

Obstacle avoidance in dynamic environment still represents a big challenge, especially

when efficient trajectories and online real time solutions are sought.

Main sources of penalty when designing CDR techniques are 1) chances of col-

lisions and 2) deviation from the original path. Nevertheless, despite the enormous

progresses accomplished in the enhancements of these techniques, there is further

class of vulnerability, to which an agent is exposed when avoiding a collision. In fact,

as introduced in [33], the presence of a collision avoidance layer in the agents’ con-

trol algorithm, introduces a fundamental dependency from the external environment

(Figure. 3.1). Upon detection of collisions, original navigation plans must be revised

and trajectory are modified in accordance with deconfliction rules or shared policies.

In this sense, the event of collision represents an additional constraint on the vehi-

cle’s dynamics. In this chapter we show that when deterministic collision resolution

policies are engaged, avoiding maneuvers can be anticipated. Consequentially, the

dependency from other agents or external environments can be exploited; this results

in partial or total loss of control on the autonomous agent.
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Figure 3.1: Autonomous mobile agent layered structure for motion planning without (a) and with

(b) sense and avoid layer

The resulting threat is emphasized when knowledge of exact location of aircraft

is made available or can be precisely measured. For example, automatic dependent

surveillance broadcast (ADS-B) provides a framework for sharing of navigation in-

formation among aircraft. Main purpose of ADS-B is providing each aircraft with

precise position and velocity of neighbors. The introduction of this system is the

first effort toward an increase of automation in air traffic control (ATC) required to

accommodate larger volume of flights and ease the integration between unmanned

and traditional aircraft. Given the typical distance between aircraft, satellite based

information yield accuracy impossible to obtain otherwise. In circumstances where

agents are allowed to travel at lower distances, range sensors could provide similar

accuracy.

We refer to evader as an autonomous vehicle employing a collision avoidance algo-

rithm whose goal is to sequentially reach a set of fixed destinations or way-points. On

the other side, a pursuer, without adopting any kind of collision avoidance reasoning,

aims to steer the evader towards a predefined set of target poses. We will refer to

this framework as unilater collision avoidance. Purpose of this work is to twofold:
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first, we investigate the constrained dynamics of a vehicle during a collision avoidance

maneuver and then, we define a strategy a pursuer agent can perform in order to steer

the evader towards a predefined target or capture set. A full understanding of the

problem is the first objective of this and following works, having as ultimate goal the

design of avoiding strategies capable of mitigating this and other vulnerabilities.

3.2 Velocity Obstacle Exploitation

3.2.1 Model definition

Planar motions within a two dimensions space are considered. Where a layered

airspace structure does not allow for significant aircraft changes in altitude this as-

sumption reflects a real constraint. In addition to this, aerodynamic wake produced

by rotor-craft such as helicopter or quadcopter prevent these vehicles from being

safely overlapped. Here, this simplification is introduced to limit the complexity and

represents a first step towards a complete understanding of the problem.

A global Cartesian reference system attached to the earth is considered. Vehicles

configurations are denoted as (q, φ)T , where q = (x, y)T ∈ R
2 are coordinates in the

global system and φ ∈ [0, 2π) = S is the agent’s angular orientation (or heading) with

respect to it 1. Given the planar assumption and considering small variation in the

velocity vector, aircraft dynamics can reasonably be approximated using the unicycle

1Note that, for the extension of this chapter only, bold face style is used for vector quantities.
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model ( [34]):

ẋ = v cosφ

ẏ = v sinφ

φ̇ = ω.

(3.1)

Communications delays or interruptions are neglected and the information flow

between agents takes place in real time. The information set at each time for each

agent is represented by the current neighbors configuration. Such a complete infor-

mation pattern can be obtained in different ways: appropriate on-board sensors, a

network based sharing protocol (i.e. ADS-B), an overhead tracking system or, most

likely, a fusion of them.

We also assume non-cooperativeness among agents. That is, final targets and

routes do not belong to the set of shared information. Without a secure and consoli-

dated trustworthiness criteria, neighbors cannot be arbitrarily trusted nor navigation

plans allowed to be freely shared. It is worth noting that the existence of a informa-

tion sharing protocol among neighbors is not in contrast with the hypothesis of non-

cooperativeness. Finally, we assume avoiding maneuvers to be performed as heading

changes maneuver only. This assumption is introduced here in order to simplify the

analysis of the problem. However, for fuel economy, a purely turning maneuver could

in fact be the preferred choice when compared to changes in speed and altitude.

We define T ⊂ R
2 × S to be the set of target poses toward which the purser aims

to steer the evader and qG ∈ R
2 to be the evader’s fixed goal (i.e. final or part of a

set of checkpoint).
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(qe, φe)
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Figure 3.2: The problem studied here is involves two agents; an evader agent (blue in figure) whose

objective is to reach a point qg and a pursuer agent (red in figure) that tries to steer the evader into

a capture set T .

3.2.2 Revised Collision Cone Method

In cooperative navigation frameworks the communication of intents between agents

and the agreement on common rules allows the sharing of the avoiding efforts between

neighbors and long horizon optimization of trajectories. On the other side, in nonco-

operative scenarios, decisions are based on frequently updated measurements; in this

case, online reactive CDR algorithms are best suited. Reactive CDR algorithms rely

on a proper projection of neighbors configurations. Three main different projections

have been proposed in litterature: linear, worst case and probabilistic projection [35].

In this work we build our reactive CDR algorithm based on a revised concept of Ve-

locity Obstacle (VO). The idea behind VO method, first introduced by Fiorini and

Shiller [36] is to define a set of velocity vectors for which, given the current neighbors

poses and assuming no variation in their velocities, a collision will occur for some

time t < ∞. The VO method is closely related to the Collision Cone method intro-

duced by Chakravarthy and Ghose [37], where collision configurations are mapped

into agents absolute velocity space and a set (cone region) of collision headings is

then defined. Both methods assumes linear trajectory projections, which means that
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obstacles are assumed to move at constant velocities between consecutive iterations

of the algorithm.

Assuming identical and circular protected zone with radius Rpz, and denoting ‖·‖

the euclidean norm operator, we introduce the following definition:

Definition 1 A collision is defined as the event of two agents separation being less

then the protected zone radius, therefore, agents E and P experience a collision if and

only if ‖qe − qp‖ < Rpz

It is worth to note that the definition above does not differ from collisions considered

as intersection between two protected zones. In fact, the protected zone radius can

be assumed to be the sum of both agents radii and hence, without loss of generality,

the collision problem can again be reduced to a point-circle collision problem, where

the circle has in this case radius 2Rpz.
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Figure 3.3: Collision avoidance technique geometry and nomenclature.
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With reference to Fig.3.3(a), let us consider the collision between a point E and

a circle with radius Rpz centered in P separated by distance d = ‖qp − qe‖. The

relative velocity (red in Fig. 3.3(b)) is defined as:

vep = ve − vp = vep







cosφep

sinφep






=







ve cos φe − vp cos φp

ve sin φe − vp sin φp






(3.2)

and the two tangents from E to P ’s protected zone, are λf and λr for which the

following expression hold:

∠ℓf,r = λf,r = arctan

(

yp − ye
xp − xe

)

± arcsin

(

Rpz

‖qe − qp‖

)

(3.3)

Theorem 1 At time t0, consider two agents E and P , having fixed velocity and

heading. A collision between E and P occurs at time t0 < t < ∞ if and only if the

relative velocity vector belongs to planar sector (or collision cone) formed by the two

tangents to the protected area of agent P having apex in E, that is if:

λf < arctan
sin φep

cosφep

< λr (3.4)

For a complete proof of this theorem we refer the reader to [38]. We provide a revised

version of the same proof applied to the following result.

Lemma 1 When the relative velocity vector is oriented as λf , that is:

φep = arctan

(

yp − ye
xp − xe

)

+ arcsin

(

Rpz

‖qe − qp‖

)

then:

min‖d(t)‖ = Rpz.

Proof: Given the definition of the relative velocity as defined in (3.2), the

distance between E and P can be expressed as:

d(t) = d0 − vep t
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Minimizing the square of the following quadratic form and setting the result equal to

0:

d

dt

(

1

2
‖d(t)‖2

)

= ‖d(t)‖ = d0 − vep t = 0

and pre-multiplying by vT
ep:

0 = vT
ep d0 − vT

ep vep t

tm =
vT
ep d0

‖vep‖2
(3.5)

we obtain the expression of the time tm at which the two vehicles experience the

minimum separation. With reference to Fig.3.3(b), if we assume φep = λf and using

(3.3):

vT
ep d0 = ‖vep‖ ‖d0‖ cos(∠vep − ∠d0)

= ‖vep‖ ‖d0‖ cos

(

φep − arctan
yp − ye
xp − xe

)

(3.6)

= ‖vep‖ ‖d0‖ cos

(

arcsin
Rpz

‖d0‖

)

.

We can then write the time to the minimum distance defined in (3.5), when φep = λf

as:

tm =
‖vep‖ ‖d0‖

‖vep‖2
cos

(

arcsin
Rpz

‖d0‖

)

=
‖d0‖

‖vep‖
cos

(

arcsin
Rpz

‖d0‖

)

(3.7)

The norm of the distance can be expressed as:

‖d(t)‖ =
√

(d0 − vep t)T (d0 − vep t)

=
√

‖d0‖2 − 2vT
ep d0 t+ vT

ep vept2
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At the time of minimum separation and assuming again φep = λf , we can finally

rearrange the last result substituting (3.5) for vT
ep d0 and then (3.7) for t:

‖dm(t)‖ =
√

‖d0‖2 − 2 ‖vep‖2 t2m + ‖vep‖2t2m

=
√

‖d0‖2 − ‖vep‖2 t2m

=

√

‖d0‖2 −
‖vep‖2 ‖d0‖

‖vep‖
cos2

(

arcsin
Rpz

‖d0‖

)

=

√

‖d0‖2
(

1− cos2
(

arcsin
Rpz

‖d0‖

))

=

√

‖d0‖2
(

sin2

(

arcsin
Rpz

‖d0‖

))

= ‖d0‖
Rpz

‖d0‖
= Rpz

The proof can easily be extended for the case in which φep = λr. This result shows

what should be the direction for the velocity in the relative frame, in order to have

the minimum allowed separation between the vehicles. As we will see, this is relevant

for the avoiding policy that will be introduced in 3.2.3.

From the definition of relative velocity, if we fix vp, when φep is oriented as λf

(or λr), evader’s heading will be equal to βf (or βf). Hence, when φep = λf , using

equation (3.2) we can write:

ve sin βf − vp sinφp

ve cos βf − vp cosφp

=
vep sin λf
vep cosλf

= tanλf . (3.8)

and rearranging:

ve(sin βf − tanλf cos βf ) + vp(tanλf cosφp − sin φp) = 0 (3.9)

Equation (3.9) defines the collisions mapping from the relative velocity space to

the agents heading. Now, letting φep span the whole set of angles between λf and
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λr it is possible to define the complete set of collision headings Bep for the agent E.

At time t, the set of heading angles Bep(t) ⊂ [0, 2π) which will lead E into a loss of

minimum separation with its neighbor P can be defined as:

Bt
ep = { β ∈ [0, 2π) : ‖qe(τ)− qp(τ)‖ < Rpz , t < τ <∞}. (3.10)

In order to ease the reading, we will drop the time superscript on Bep acknowledging

that the set is constantly updated at each time step.

Since the method just introduced is a pairwise method, each neighbor Pi, with

i = 1, . . . , n, is considered separately and all n sets Bepi are overlapped obtaining the

final set of unfeasible headings as:

Bep =
n
⋃

i=1

Bepi = {β1
f , . . . , β

1
r} ∪ · · · ∪ {βn

f , . . . , β
n
r } (3.11)

3.2.3 Deconfliction Policy Definition

In addition to a collision detection algorithm, autonomous navigation requires a

suitable deconfliction policy in order to produce an evading maneuver such that 1)

the minimum separation from obstacles is guaranteed, 2) produces the least deviation

from original trajectory and 3) bring agents to the desired destination.

In a cooperative environment, predefined engagements or rules could distribute the

evading effort among agents, accordingly to some established criteria such as aircraft’s

available fuel, aircraft maneuverability or current phase of flight. On the other side,

under the hypothesis of non-cooperativeness, the agents must assume no avoiding

effort from its neighbors. We introduce here the deconfliction policy employed in

the chapter. With reference to Fig.3.4, we assume the evader originally flying with

heading φe = φ0. When an incoming conflict is detected, the evader sets its desired

heading to a new feasible heading φe /∈ Bep.
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Definition 2 An evading maneuver is an heading maneuver towards a new heading

β̂, such that:

β̂ = argmin
β∈Bep

δ(φe, β) (3.12)

where δ(·, ·) : [0, 2π)× [0, 2π) → R is a proper metric between angles that takes into

account the periodicity of the angular dimension.

We also assume that if Bep 6= ∅, then φe /∈ BEP at all times (Fig.3.4c). This

mean that the agent is never allowed to cross the set of collision headings in order

to resolve an incoming conflict. If we consider smaller UAVs, where size and power

resources are more limited, it might not be possible to have an accurate estimation of

the expected time to impact. For this reason, we do not consider resolution strategies

that bring aircraft on a collision route as part of the evading maneuver.

Figure 3.4: Deconfliction policy outcome examples; whenever the desired heading φ0 belongs to Bep

or Bep is between current and desired heading, the evader switches its heading towards the closest

boundary of Bep aiming for a grazing maneuver.

3.2.4 Complete System

Using the collision avoidance technique defined in the previous section, we can

define a suitable model for the evader. The evading policy just described, can be
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formally included in the dynamic of the agent by adding a switching behavior to

the original model. We index the two possible states of the system using a boolean

variable ν = [0, 1]. We will refer to the state corresponding to ν = 0 as collision

free state and collision state when ν = 1. Transitions from one state to the other

are dependent from the current neighbors’ state and processed online by the collision

detection algorithm. Therefore, (3.1) can be rearranged as :

ẋe =ve cosφe

ẏe =ve sinφe

φ̇e =γp(φ0(1− ν) + β̂ν − φe)

ν =



















1 if φ0 ∈ BEP

0 if φ0 /∈ BEP

(3.13)

where we introduced a simple proportional controller for the heading governed by a

positive gain γP . The set of equation (3.13), reveal the dependency existing between

evader trajectory and its neighbors.

Using the same unicycle model introduced in (3.1), pursuer agent dynamics, which

is not affected by a collision avoidance method can simply be expressed as:

ẋp = vp cosφp

ẏp = vp sinφp

φ̇p = ωp

(3.14)

Including the constraint resulting from the collision avoidance technique intro-

duced in (3.9) and (3.3), the complete model of the system with one pursuer can then
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be represented as follow:

ẋe = ve cosφe

ẏe = ve sinφe

φ̇e = γp(φ0(1− ν) + β̂ν − φe) ν =



















1 if φ0 ∈ Bep

0 if φ0 /∈ Bep

ẋp = vp cosφp

ẏp = vp sinφp (3.15)

φ̇p = ωp

0 = ve

(

tanλ cos β̂ − sin β̂
)

+ vp ( tanλ cos φp + sinφp)

0 = λ− arctan

(

yp − ye
xp − xe

)

∓ arcsin

(

Rpz

‖qp − qe‖2

)

.

where β̂ is the closest boundary of the unfeasible heading set Bep as defined in (3.12).

The switched system defined in (3.15) is a differential-algebraic equation (DAE)

dynamics representing the dynamics of two vehicles E and P coupled by a unilateral

collision avoidance method. The switching behavior of the system is governed by

the variable ν and as we can see, when ν = 1 the original dynamics of the evader is

constrained by the collision avoidance algorithm.

3.2.5 Connection with Game Theory

Beside the nomenclature used for the agents, the problem presented in this section

presents, in fact, game features. In particular, a noticebly similar problem where

studied in [39] where a two vehicles game problem is solved in order to define a collision
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reachability set. In general, a game ( [40]) is defined as an interactive decision-making

problem where each players choose the action in order to maximize a certain gain.

However, in the contest of this paper, given the assumptions and the deconfliction

policy we just introduced, once a collision is detected, the evading action is uniquely

defined. A game theoretic approach could serve the study of this problem if more

relaxed assumptions for the evading maneuver were considered, such as an evader

variable velocity. Further details are presented in the final section on future works.

3.3 Trajectory Modification Design

In the previous section we derived the equations that define the dynamics of a

system composed by of a pair of vehicles employing a unilateral collision avoidance

policy. In this section we describe how appropriate inputs on the system, namely vp

and ωp, can be designed in order to steer a component of the complete system, namely

{qT
e , φe}T from its original trajectory towards a new desired one {qT

T , φT}T ∈ T .

Given the switching behavior of the model described in (3.15) we focus our atten-

tion on the two states corresponding to ν = [0, 1] separately.

As described in section 3.2.3, when ν = 1 the evader switches its original heading

from φ0 towards β̂. Therefore, the evader’s heading can be affected by producing

an appropriate set Bep of collision directions. In this section we present a technique

that can be used to produce desired β̂ and consequently steer the evader towards the

capture set T .
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3.3.1 Switching Guard Conditions

The first step is to define for what conditions the system switches from state ν = 0

to ν = 1. In order to so, let’s introduce an evader’s reference frame centered in qe and

oriented along its heading φe, and define qp′ = {xp′ , yp′}T and φp′ to be the pursuer

pose and heading in this system (figure 3.5).

Since the switching between collision and collision-free states is happens when the

set Bep intersect with φ0, we are interested in finding what is set of pursuer’s states

that lies along the switching surface. In other words, we want to finds the set of

relative states {qT
p′, φp′}T such that in the global system one boundary of the set Bep

coincides with the evader’s heading, that is, φe = β̂.

Without loss of generality we assume the case where β̂ = βf , but a similar argu-

ment is valid when β̂ = βr.

φp′

x

y

xp′

yp′

E

P

ve

vp

Figure 3.5: Relative frame of reference centered with the evader.



36

In the new frame of reference, it is possible to rewrite our collision avoidance

constitutive equations (3.3) and (3.9) as:

λ′ = arctan

(

yp′

xp′

)

+ arcsin

(

Rpz

‖qp′‖

)

(3.16)

0 = tanλ′ (ve − vp cos φp′) + vp sinφp′ (3.17)

Assuming equal linear velocities between the two agents, that is ve = vp it is possible

to rewrite (3.17):

tanλ′ =
sin φp′

cosφp′ − 1
(3.18)

and substituting (3.16):

tan

(

arctan

(

yp′

xp′

)

+ arcsin

(

Rpz

‖qp′‖

))

=
sinφp′

cosφp′ − 1
. (3.19)

Every pose {qTp′, φp′}T that satisfy equation (3.19) represents a relative configura-

tion between evader and pursuer such that φe = βf .

We will refer to the set of conditions satisfying equation (3.19) as Switching Guard

Conditions and we will call this set C:

C = {{qT
p′, φp′}

T ∈ R
2 × S | φe = β̂} (3.20)

Figure 3.6 represents these set of points within an arbitrary hyper-rectangle [xmin, xmax]×

[ymin, ymax]× [φmin, φmax].

Finally, poses from evader’s relative reference frame to global frame can easily be

obtained using a proper rotation matrix:















xp

yp

φp















=















cos φe − sin φe 0

sin φe cos φe 0

0 0 1





























xp′

yp′

φp′















(3.21)
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Figure 3.6: Set of pursuer’s initial poses for the forcing maneuver case, expressed in evader’s frame
of reference.

Agents’ configurations satisfying equation (3.19) represents switching conditions be-

tween the collision and collision-free states of the system. As such, when the relative

state {qTp′, φp′}T ∈ C, it is possible to consider the system switching from ν = 0 to 1.

3.3.2 Collision and Collision-Free State

Assuming the relative state of the system {qTp′, φp′}T ∈ C and considering ν = 1,

the set of equations represented in (3.15) reduces to:

ẋe = ve cosφe

ẏe = ve sinφe

φ̇e = ke(φe − β̂)

ẋp = vp cosφp

ẏp = vp sinφp

φ̇p = ωp

0 = ve

(

tanλ cos β̂ − sin β̂
)

+ vp ( tanλ cosφp + sin φp) (3.22)

0 = λ− arctan

(

yp − ye
xp − xe

)

∓ arcsin

(

Rpz

‖qp − qe‖

)

.

where evader’s heading dynamics is governed by an proportional controller having

gain ke weighting the error between the current heading φe and the desired heading

β̂. In this case, β̂ is defined as in section 3.2. Assuming the state of the system ν = 1,
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our purpose is to define a suitable control inputs for the pursuer, namely vp and ωp,

such that the sub-component {qTe , φe}T of the system is driven towards a point in the

target set {qTT , φT}T ∈ T .

Before describing a solution for the control problem just introduced, we introduce

the set of equations representative of the system where no collisions are detected and

therefore ν = 0. In this case the set of equations (3.15) reduces to:

ẋe = ve cosφe

ẏe = ve sinφe

φ̇e = ωe(φe − β̂)

ẋp = vp cosφp

ẏp = vp sinφp

φ̇p = ωp

(3.23)

3.3.3 Model Predictive Control Formulation

In this section we describe the model predictive control (MPC) strategy used to

steer the evader into the desired capture set. In MPC ( [41]), a dynamic programming

approach is used to minimize a cost function over a given finite number N of steps.

Purpose of the optimization problem is to find a set of control inputs for the

pursuer, namely vp and ωp, such that the distance from the evader’s state and the

target {qTT , φT}T is minimized. Similarily to what described in the previous section,

the complete strategy will be composed once again by two sequential maneuvers which

we will study separately:

1. Approaching maneuver: assuming the system to be in collision free state

ν = 0 at initial time, the pursuer will try to drive the relative state to the point

{qTp′, φp′}T which satisfies equation (3.19);
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2. Forcing maneuver: when the system is in collision state, the pursuer will

drive the evader’s state {qTe , φe}T to the target set, while maintaining ν = 1 at

all times.

3.3.3.1 Approaching Maneuver Predictive Model

In order to realize the control required to perform the set of maneuver just de-

scribed, we first introduce a discrete time domain indexed by time index k and we let

∆t being the constant time step. Given the nature of the control problem defined as

approaching maneuver, a relative state between pursuer and evader must be reached.

For this reason, we introduce the finite difference two vehicles model, where pursuer’s

dynamics is expressed in the evader’s reference frame:

xk+1
p′ = xk+1

p′ + (ωpy
k
p′ − vp + ve cosφ

k
p′)∆t

yk+1
p′ = yk+1

p′ − (ωpx
k
p′ − ve sin φ

k
p′)∆t

φk+1
p′ = φk+1

p′ + (ωe − ωp)∆t

(3.24)

Defining the target relative state as {x̃p′, ỹp′, φ̃p′}T , we can define a measure ya relative

to the approaching maneuver:

ya =















x̃p′

ỹp′

φ̃p′















−















xp′

yp′

φp′















which can be used in the definition of the following cost function:

ca = yTaRya +∆uTpQ∆up (3.25)

where we defined up = {vp, ωp}T and weight control matrices R ∈ R
3×3 and

Q ∈ R
2×2 have been introduced in order to scale the different terms contained in the
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input vector. The resulting nonlinear MPC problem is then formulated as:

min.
ya,up

N
∑

i=1

cia(y
i
a, u

i
p)

s. t. xi+1
p′ = xi+1

p′ + (ωi
py

i
p′ − vip + ve cosφ

i
p′)∆t

yi+1
p′ = yi+1

p′ − (ωi
px

i
p′ − ve sinφ

i
p′)∆t

φi+1
p′ = φi+1

p′ + (ωe − ωi
p)∆t

umin ≤ ui ≤ umax

(3.26)

It is worth to note that, as common practice in MPC problem, the presence of the

term ∆u is introduced in order to bound possible oscillating behavior of u. Moreover,

an appropriate Q has been choose in order to bound the control effort so that explicit

constraints on the inputs are not needed.

3.3.3.2 Forcing Maneuver Predictive Model

Let’s now study the problem relative to ν = 1. In this case, since the final target

is defined in global coordinates, the use of the relative dynamics model does not

represent a simplification. For this reason, the predictive model will be based on the

complete set of equations and constrained contained in (3.22). However, given the

significant nonlinearities introduced by the algebraic constraints, we will transform

the continuous time DAE model into a discrete linear time varying (LTV) model.

We define the set of state variables x and control inputs u defined as follow:

x = {xe, ye, xp, yp, φp}
T u = {λ, φe, vp, φp}

T

from which the complete model in (3.22) can be expressed as ẋ = f(x, u) and g(x, u) =

0. A linear prediction model is obtained using a first order Taylor approximation of
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the complete DAE set around the point {xT0 , u
T
0 }, that is:

ẋk = f(x0, u0) + fx|x0
(xk − x0) + fu|u0

(uk − u0) +O2

g(xk+1, uk+1) = g(xk, uk) + gx|xk(xk+1 − xk) + gu|uk(uk+1 − uk) +O2

= gx|xk(xk+1 − xk) + gu|uk(uk+1 − uk) +O2 = 0

where g(x0, u0) = 0 is imposed for consistency with the constraint. Neglecting the

higher order terms in O2, the approximated model can be expressed in the more

compact form:

ẋk = Ã0 + Ã(xk − x0) + B̃(uk − u0)

E (uk+1 − uk) + F (xk+1 − xk) = 0

(3.27)

where Ã0 ∈ R
5×1,Ã ∈ R

5×5,B̃ ∈ R
5×4, F ∈ R

2×5 and E ∈ R
2×4 are defined as follow:

Ã0 =

[

f(x0, u0)

]

Ã =

[

fx|x0

]

B̃ =

[

fu|u0

]

Ek =

[

gx|xk

]

F k =

[

gu|uk

]

The expressions of the terms contained in the approximation matrices and their

derivation are reported in appendix section 7.2.

In order to use the approximated model in the MPC formulation, the derivatives

in (3.27) must be defined in a discrete time domain. Using a simple forward Euler

approximation we can then write:

xk+1 − xk

∆ t
= Ã0 + Ã(xk − x0) + B̃(uk − u0)

xk+1 = (I −∆ tÃ)xk +∆ tB̃uk +∆ t(Ã0 − Ãx0 − B̃u0)

and rearranging:

xk+1 = Axk +Buk + A0

E (uk+1 − uk) + F (xk+1 − xk) = 0

(3.28)
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The set of equation contained in (3.28) represents a LTV model whose parameters

A, B, A0, E and F must be computed every time the MPC solver is initialized. Given

the sparsity structure or the resulting model such a task can be efficiently carried out

numerically. In addition to this, several optimization toolboxes offer the possibility to

write adaptive model predictive control, in which a single initialization of the optimal

problem is performed. In this way it is possible to exploit the constant structure

of the problem and update the varying parameters without the necessity to write a

different problem at every iterations.

Finally, introducing the following measure for the forcing maneuver yf defined as:

yf = C x+Du−







qT

φT






(3.29)

where C ∈ R
3×5 and D ∈ R

3×4, we can formulate a cost function cf(z, u) defined as:

cf(y, u) = yTf Ryf +∆uT Q∆u.

The final formulation of our MPC problem for the forcing problem has then the

following form:

min.
yf ,u

N
∑

i=1

cif (y
i
f , u

i)

s. t. xi+1 = Axi +Bui + A0

E (ui+1 − ui) + F (xi+1 − xi) = 0

umin ≤ ui ≤ umax

where, similarly to the problem in (3.26), the computed set of inputs u1, . . . , uN are

constrained between the values umin and umax.
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3.4 Example

3.4.1 Approaching Maneuver to Desired Relative State

In the first example we provide results from the approaching maneuver. In fig-

ure 3.7 initial configuration of both evader and pursuer is represented at initial and

switching times. In figure 3.8, we note values of β̂ (in blue) approaching evader’s

heading φE (red) until reaching the switching condition.
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2

(b)

Figure 3.7: Approaching maneuver at initial (a) and final (b) time.
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Figure 3.8: Approaching maneuver results.
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3.4.2 Forcing Maneuver to Desired Heading

Once the system’s state belong to the switching guard, a forcing maneuver can

be initiated. Pursuer target set T is the direction φT = 1.25, while evader’s initial

heading is φE = 0.7 ( Figure 3.9). Figure 3.10 shows that the new heading can be

maintained as the pursuer adjust its input continuously.
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Figure 3.9: Approaching maneuver at initial (a) and final (b) time.

Time [s]
0 2 4 6 8 10 12 14

φ
 [

ra
d

]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

β

φ
e

φ
T

φ
e0

Time [s]
0 2 4 6 8 10 12 14

ω
p
 [

ra
d

/s
]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time [s]
0 2 4 6 8 10 12 14

v
p
 [

m
/s

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 3.10: Result from the forcing maneuver.
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3.5 Navigation Function Exploitation

In this section we briefly introduce a simplified alternative model based on a sin-

gle integrator kinematics and artificial navigation functions. The benefit from this

alternative analysis is twofold. First, we show that result presented in the previous

section are not limited to the Velocity Obstacle method. Second, given the reduced

analytically complexity of the model, it serves as the basis for the extension to sce-

narios involving a large number of agents. Purpose of this section is to anticipate the

connection between the topic of this chapter and results described in the following

ones.

3.5.1 Model Definition

We describe the kinematics of the agents in a discrete time domain as single

integrator located in a two dimensional space, such that q = {x; y} ∈ R
2. Since

all agents are considered to be equal, we drop agent index. Each agent updates its

position in accordance with:

q[k + 1] = q[k] + u[k] ∆t (3.30)

where u = {ux, uy}T ∈ R represent velocities along the coordinate directions x and

y respectively and correspond to the inputs of the system.

Artificial potential fields approach allow the design of each component of the

control separately. A revised approach similar to the one proposed by Tu and Sayed

[42] is considered. Using an evader-pursuer scenario similar to the one proposed in

the first part of the chapter, we introduce a velocity vector defined by the sum of a

term corresponding to the goal attraction and one term corresponding to the neighbor
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collision avoidance. Evader’s velocity is then defined to be equal to:

ue[k] =
kca

‖qe[k]− qp[k]‖2
−

kg
‖qe[k]− qT‖2

(3.31)

where qT once again, represents location of the goal and qp the location of the pursuer;

kg and kca are non-negative weighting factor relative to the collision avoidance and

goal attraction respectively. Pursuer model is simply defined as in equation (3.30) and

control objective is to find up necessary to drive qe to a desired target configuration

qT ∈ T as defined previously.

In Figure 3.11 simulation from a one evader one pursuer case are reported. The

target region T is represented as a circular region in the space and, since we use

point vehicles, a target state is completely defined on the plane. A piece-wise linear

trajectory has been assumed for the pursuer, and the evader is steered into the target

set.

3.5.2 Conclusions

In this chapter we showed that the presence of a predictable deconfliction policy

introduces a dependency from the environment in the trajectory of an autonomous

system. As discussed, from an air traffic management point of view, this is has to be

considered a threat because control of a vehicle will be eventually lost. To this end, a

comprehensive study of the trustworthiness of an autonomous system should include

study of potential abuses of the GNC algorithms used and their dependencies.

In the next chapter we extend the dependency on a collision avoidance algorithm

into a general distance-based behaviors for a large, potentially infinite, number of ve-

hicles. Our starting point will be the results introduced in the last part of this chapter,

where we showed that even with a simplified model similar results can be obtained.
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Figure 3.11: Non-cooperative trajectory modification using navigation function model.

Such simplification will be obtained by the introduction of artificial potential fields

in conjunction with graph theoretic results.



CHAPTER 4

A Low Complexity Distance-Based

Aggregation

4.1 Overview

This chapter investigates a low-complexity aggregation behavior suitable for large

groups of homogeneous mobile robots. In formation control problems it is usually

desired to keep inter-agent distances at predefined values. However, this problem

requires either agents to be distinguishable or some combinatorial optimization to

solve the target-agent assignment. Moreover, in many applications or mission stages,

a specific shape is not required. In these cases, the simplest possible case corresponds

to all agents trying to maintain the same fixed relative distance. However, since

it is not possible to have more than three equally separated points on a plane, we

relax this problem by allowing the inter-agent distance to be as close to desired

distance as possible. To this end, a quadratic potential proportional to the error

from the desired distance is introduced and equilibrium with non-null potentials are

considered. Rigidity theory, which has recently emerged as a powerful tool for the

study multiagent systems, is engaged to describe equilibrium and stability of our

protocol. Finally, the proposed distributed protocol could serve in applications where

48
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the requirement on the formation must satisfy only the connectivity of the swarm

and limited sending capability are available.

4.1.1 Graph Theory

Generally, due to the limited range of sensors and communication devices, each

agent can only see a subset of the entire group. It is natural to represent the exchange

of information occurring between the agents at an higher level using directed or

undirected graphs [43](Fig. 4.1). In this case, it is of primarily interest to point out

to the fact that, in general, the graph induced by the agents will be time varying by

nature. A graph G = (V, E) is defined by a finite set of verteces V = {1, ..., n} and a

set of edges E = {1, . . . , m} connecting them. Therefore, the set E ⊂ N ×N collects

ordered pairs of nodes, where an edge (i, j) ∈ E represents a communication link or

visibility between the couple of nodes i and j. For agent ith, the neighborhood Ni

can be composed by the set of agents within a certain distance or those for which a

communication link exists. The number of neighbors for ith agent is written as |Ni|.

Following the notation introduce in [2],we use the shorthand x−i for the location of

vehicle i’s neighborhood, that is: x−i = {xj1, . . . , x|Ni|} where jk ∈ Ni.

1
2

3

4

5

Figure 4.1: Representation of a sensor range induced graph over a set of mobile agents
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Assuming labeled and arbitrarily oriented edges, the incidence matrix D ∈ R
n×m

has entry dik = 1 if i is head for edge k, dik = −1 if i is tail for edge k and 0

otherwise. Laplacian and edge Laplacian of the graph G are symmetric matrices

defined as L = DDT ∈ R
n×n and Le = DT D ∈ R

m×m.

The distance vector between two nodes can be expressed as zk = xi − xj ,∀k ∈

{1, . . . , m} and ∀(i, j) ∈ E . The corresponding compact form is z = {z1, . . . , zm} ∈

R
2m. Similarly, we can define a unit edge vector bk as the vector of length one along

edge k, where bk = zk/‖zk‖ and b = {b1, . . . , bm} ∈ R
2m (Fig. 4.2). Using the defini-

tion of incidence matrix, it is possible to express the following relationship between

nodes and edges z = DT x.

zk bk

Figure 4.2: Edge vector and normalized edge vector for a complete four-edges graph.

The following definitions are also relevant for the following discussion:

Definition 3 An undirected graph G is connected if there exists a sequence of adjacent

nodes from any two distinct nodes.

4.1.2 Graph Rigidity

In the following, we will make use of results related to graph rigidity theory [44]

[45].
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Definition 4 A framework, sometimes referred to as bar-and-joint framework G(x)

is defined as the embedding of the graph G in an Euclidean space, where x represents

the geometrical location of its nodes.

Let us introduce the following edge functions E : R2n × G → R
m defined as:

E(x,G) = {‖z1‖2, . . . , ‖zm‖2}

Many possible definition of rigidity are available. The following can be found in [46]

and [47].

Definition 5 A framework G(x) and G(y) are equivalent if ‖xi − xj‖ = ‖yi − yj‖ for

all (i, j) ∈ E , and are congruent if ‖xi − xj‖ = ‖yi − yj‖ for all (i, j) ∈ V.

Definition 6 A framework G(x) is globally rigid if every framework which is equiv-

alent to G(x) is also congruent to it.

Along with the definition of global rigidity, there is an other fundamental concept,

which is infinitesimal rigidity. The idea behind infinitesimal rigidity is to allow in-

finitesimal movements in the nodes allowing only second order variation in the func-

tion E(x,G(x)). Assuming δx to be an infinitesimal displacement of the nodes of the

framework, the Taylor series expansion of E(x,G(x)) is:

E(x,G(x+ δx)) = E(x,G(x)) +R(x)δx+O(δx2) (4.1)

where we introduced R(x) to be Jacobian of E(x,G(x)) with respect to x. The edge

function stays constant up to the first order as long as R(x)δx = 0, which happens

when δx ∈ nullR(x). Since at least the three rigid motions in the plane occurs without

changes in the edge function, we conclude that nullR(x) has at least dimension three.



52

Definition 7 A framework G(x) is infinitesimally rigid in the plane if dim(nullR(x)) =

3, or rankR(x) = 2n− 3.

It is possible to show that the rigidity matrix R(x) ∈ R
m×2n defined as ∂E/∂x can

also be expressed as:

R(x) = diag(zk)(D
T ⊗ I2) (4.2)

In a similar way it is possible to compute an other useful operator that will be used

in the following results. We introduce the normalized edge function as:

F (x,G) = {‖z1‖, . . . , ‖zm‖}

From which the normalized rigidity matrix A(x) ∈ R
m×2n is defined as ∂F/∂x. It can

easily be showed that

A(x) = diag(bk)(D
T ⊗ I2). (4.3)

4.1.3 Example

Let us consider a framework composed by four nodes and six edges as in figure

4.3.

1 4

2 3

I

IV

II

III

V

V I

Figure 4.3: Four nodes example framework.
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Given the arbitrarily oriented edges as shown, the incidence matrix will be as

follow:

E =





















1 0 0 −1 1 0

−1 1 0 0 0 1

0 −1 1 0 −1 0

0 0 −1 1 0 −1





















Having defined each edge vector as zk = {∆xk,∆yk}T , we can express the rigidity

matrix as:

R(x) = diag(zTk )(E
T ⊗ I2) =





































zT1 0 0 0 0 0

0 zT2 0 0 0 0

0 0 zT3 0 0 0

0 0 0 zT4 0 0

0 0 0 0 zT5 0

0 0 0 0 0 zT6









































































I2 −I2 0 0

0 I2 −I2 0

0 0 I2 −I2

−I2 0 0 I2

I2 0 −I2 0

0 I2 0 −I2





































=





































zT1 −zT1 0 0

0 zT2 −zT2 0

0 0 zT3 −zT3

−zT4 0 0 zT4

zT5 0 −zT5 0

0 zT6 0 −zT6




































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and in a similar way the corresponding normal rigidity matrix:

A(x) = diag(bTk )(E
T ⊗ I2) =





































bT1 0 0 0 0 0

0 bT2 0 0 0 0

0 0 bT3 0 0 0

0 0 0 bT4 0 0

0 0 0 0 bT5 0

0 0 0 0 0 bT6









































































I2 −I2 0 0

0 I2 −I2 0

0 0 I2 −I2

−I2 0 0 I2

I2 0 −I2 0

0 I2 0 −I2





































=





































bT1 −bT1 0 0

0 bT2 −bT2 0

0 0 bT3 −bT3

−bT4 0 0 bT4

bT5 0 −bT5 0

0 bT6 0 −bT6





































4.2 Swarming and Aggregation Protocol

4.2.1 Model Definition

Assuming a point kinematic model for each vehicle, we can express each dynamic

as a first order differential equation:

ẋi = ui, i ∈ {1, . . . , n} (4.4)

where ui ∈ R
2 is χi’s control input. In order to reduce the mechanical complexity

and power consumption of each robot, we assume the only measurements available

to robots are relative position between neighbors. Such a set of measurements could

be obtained combining information on relative distances (i.e. sonar, lidar, infrared

sensors) with the orientation respect to a global reference (i.e. magnetometer, radio

beacon, light beam). We also assume each agents as indistinguishable to its peers and

no direct communication exists between agents nor with the external world. Based on

the sensing assumptions just introduced and given the limited range of real sensors,
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the graph topology of the underlying network is defined by the s-proximity graph,

where s is the radius of the circular sensing skirt around each robot. We call Ni the

set of ith’s neighboring agents defined as:

Ni = {χj ∈ χ | ‖xi − xj‖ ≤ s}.

As mentioned earlier, each agent’s objective is to maintain a fixed relative distance

r ∈ R from its visible neighbors, where r < s. We introduce the following positive

semi-definite potential existing between two nodes sharing an edge:

ϕ(xi, xj) =
1

2
(‖xi − xj‖ − r)2 (4.5)

which captures the fact that, if no constraints acts on the dynamics of χi and χj , the

zero potential condition corresponds to an inter-agent distance equal to r < s. It is

worth to note, as it will be showed later, that interactions with other agents are in

fact constraints to the group’s dynamics.

A velocity field can be defined as the negative gradient of the potential in (4.5)

and χi’s input control can then be expressed as:

ui = −
∑

j∈Ni

∇xϕ(xi, xj)

= −
∑

j∈Ni

(

‖xi − xj‖ − r

‖xi − xj‖

)

(xi − xj) (4.6)

= −
∑

j∈Ni

wij(xi − xj) i = 1, . . . , N.

The parameter wij can be thought as the nonlinear weight associated with the edge

connecting nodes i and j. To this end, by introducing the real valued diagonal weight

matrix W = diag(wij) ∈ R
m×m, we can express the whole swarm dynamics as:

ẋ = −Lw(x) x (4.7)
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where Lw(x) = DW (x)DT is the weighted Laplacian of the graph G. It is worth to

note that, as result of the potential defined in (4.5), weights wij can be negative real

number and therefore, stability analysis based on the positive semi-definiteness of

the graph Laplacian are not applicable. Moreover, given the non-positiveness of the

weights, the resulting behavior is not a pure agreement process but rather an hybrid

agreement/disagreement process that keeps the agents within a certain distance.

4.2.2 Study of the Equilibrium

Following the negative gradient of the potential field in (4.5), each agent tries to

maintain a desired distance equal to r from all its neighbors. However, assuming an

arbitrarily number of neighbors within the range of any given agent, it is not possible

to have more than three equally separated points in a 2-dimensional space. For this

reason, in general, for a group of n > 3 robots whose dynamics evolves as in equation

(4.6), the total potential at equilibrium is

ϕ∗(G, x) =
∑

(i,j)∈E

ϕ∗(xi, xj) ≥ 0. (4.8)

Note that we introduced the superscript ∗ to express quantities relative to the

equilibrium state. It is possible to give a physical interpretation of this problem

by considering four masses connected by six springs (four along the edges of the

quadrilateral and two along its diagonal) with unitary elastic constant and a pre-

loaded length equal to r. In this case, the potential energy of each spring will have

the form in (4.5) and equilibrium configurations do not corresponds to null forces

on the springs but rather on null resultant forces on each mass. Mechanical and

electromagnetic interpretation of multiagent systems have been largely investigated.

In [48] a Lagrangian approach was applied to study the synchronization stability of
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a multiagent robotic system, while in [49] the concept of graph effective resistance

was introduced to describe the pairwise measurements based control for a network of

autonomous agents.

In Fig. 4.4, different outcomes from the same aggregation process are reported.

Different results are obtained when different sensing radii s are considered. This

observation reflects the obvious fact that a higher sensing radius increases the degree

of a vertex. It is also worth to note that, when assuming the same sensing range,

different equilibrium configurations are possible, from which we conclude the non-

uniqueness of the equilibrium (Fig. 4.4 b) and c)).

m = 7

a)

m = 10

b)

m = 9

c)

m = 15

d)

Figure 4.4: Different equilibrium solutions for the same aggregation dynamics. Result reported for
different values of sensing range s

r
: a) 1.14; b) and c) 1.2; d) 1.51.

Lemma 2 An equilibrium point x∗ exists for the dynamics in (4.7).
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Proof: Considering a k ∈ R, the kth-level set of the total potential ϕ(G, x) is:

Ωk = {x |ϕ(G, x) = k} (4.9)

Also, from the time derivative of the total potential:

ϕ̇(G, x) = ∇x ϕ(G, x))ẋ

= −
n
∑

i=1

ẋTi ẋi = −
n
∑

i=1

xTi Lw(x)
2xi ≤ 0

we see that ϕ̇(G, x) is a negative semi-definite function. Since the systems follows the

negative gradient of the potential, once ϕ̇(G, x) ∈ Ωk any changes in the configuration

of the system will move the potential to a new Ωℓ, with ℓ ≤ k. From this follows that

Ωk is an invariance set for the dynamic of the system defined in (4.7) and therefore,

from the continuity of (4.5), a minimum k∗ must exists, such that:

Ωk∗ = {x∗ |ϕ(G, x∗) = k∗ < k, ∀k ∈ R} (4.10)

Given the result from 2 and the constrain ϕ(G, x) ≥ 0 described earlier, we can also

conclude that ϕ(G, x) is a weak Lyapunov function [50] for the system described in

(4.7).

4.2.3 Connection with Rigidity Theory

We observed that when the number of edges in the graph exceeds a certain thresh-

old, the constraints on the dynamics prevent the swarm from reaching an equilibrium

configuration for which ϕ∗ = 0. As it will be shown later, the presence of these

additional constraints, increase the complexity of the model but do not prevent the

swarm from reaching the desired behavior.
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In order to reduce the ambiguity associated with this observation, we provide here

some results connected with rigidity theory. Many possible definitions of rigidity are

possible; we only provide here some insights, while a more complete description can

be found in [51]. A framework is infinitesimally rigid if the only nodes’ movements

for which the length of every edges is preserved up to first order are rigid translations

and rotation (also known as rigid modes in modal analysis); trivially, a framework is

flexible if it is not rigid. A framework is minimally infinitesimally rigid, if it is rigid

and the removal of any edge results in a flexible framework. Given these definition,

the infinitesimally degree of rigidity is dropped and implicitly assumed.

As it mentioned earlier, given a d-dimensional domain, the maximum number

of equally separated points is d + 1. The corresponding configuration in a planar

domain is the geometrical representation of an equilateral triangle. We define an

ℓ-edge equilateral triangle, a triangle having all edges length equal to ℓ.

Theorem 2 If a framework is composed by ℓ-edge equilateral triangles that share

exactly two nodes is minimally rigid.

Proof: We provide the proof to this theorem by induction. We first prove that

an equilateral triangle is minimally rigid. The proof is trivial, since any triangle is a

rigid framework and the removal of any edge makes the framework flexible.

Now, let us consider a framework T to be composed by t of these triangles,

where each new triangles was created by adding a node and two edges of length ℓ to

an existing edge (Fig. 4.5. Assuming T to be minimally rigid, its only degrees of

freedom (dof) corresponds to the three rigid motions. Now, if a new triangle is added

to an existing edge of T and since an edge is in common, the corresponding three
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Figure 4.5: Minimally rigid framework composition process.

dof added by the new node have to coincide with the dof of the complete T . This

conclude the proof.

Given the framework construction described above (Fig. 4.5), we note that the

resulting graph formed by t triangles has exactly t+ 2 nodes and 2t+ 1 edges. Note

that the notion of framework composed by equally separated neighbors has been

widely studied and corresponds to the α-lattice configuration defined in [15].

Corollary 1 A minimally rigid framework described in theorem 2 having n nodes has

m = 2n− 3 edges.

From this result, knowing the number of nodes in the network, we can compute

the maximum number of edges for which an equal separation by visible neighbors can

exist. It is possible to conclude that when a framework is at most minimally rigid,

it is possible to have equilibrium corresponding to ϕ∗ = 0. However, as mentioned

before, when the graph resulting from the dynamics in (4.6) is not-minimally rigid it

is still possible to have equilibrium.

4.3 Aggregation Behavior Dynamics

In this section we study the dynamic properties of the protocol introduced in the

previous section. We start with a well known results from network dynamics.
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Lemma 3 The centeroid of the connected swarm under the dynamics defined as in

(4.7) is stationary.

Proof: The centeroid of the swarm is defined as x̂ = 1/n
∑n

i=1 xi, its velocity:

1

n
1T ẋ = −

1

n
1T DW (x)DT x

Since, for a connected graph, 1T ∈ NullD, the centeroid x̂ is a fixed point defined by

the swarm initial conditions.

The result in lemma 3 is a very well know results in multiagent networks [43] and it

is relevant for following discussion.

It is possible to rewrite the single agent’s dynamic defined in the second line of

(4.6) as:

ui = −
∑

j∈Ni

(‖xi − xj‖ − r)
(xi − xj)

‖xi − xj‖

= −
∑

k

(‖zk‖ − r) bk, k ∈ E

(4.11)

where we recall bk being the unitary vector along the kth’s edge vector.

Theorem 3 The velocity field (4.11) ensure no collisions occur between agents of the

swarm.

Proof: Considering equation (4.11) for the pair χi and χj, uij = (‖xi−xj‖−r)bk,

where bk is the direction vector along the edge k. Thus, since:

lim
(xi−xj)→0

uij = r (4.12)

a positive finite velocity between the agents exists.
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Rearranging equation (4.11), it is possible to write the entire swarm dynamics in

the compact form:

ẋ = −(I2 ⊗ D) diag(bk)
[

(R(x) x)◦
1

2 − r 1
]

(4.13)

Solution of equation (4.13) represents equilibrium configuration for the dynamic of

the system. The analytic definition of the shape at equilibrium, which is generally

not unique, depends on the number of agents, the initial configuration, the desired

distance d and the sensing radius s. However, recalling the definition of our swarming

behavior problem, the exact geometric realization of our aggregation protocol are not

of primary interest here. Instead, in order to give understand the result contained in

equation (4.15), we proceed as follow. First, acknowledging lemma 3, we note that

decoupling the centeroid dynamics from the remaining dynamics of the system [47],

we can analyze the swarm motion from its edges dynamic. To this end, we introduce

the kth-edge residual vector δk = ‖zk‖ − r for k = 1, . . . , m and the corresponding

composed vector:

δ = {‖z1‖ − r, . . . , ‖zm‖ − r}T ∈ R
m (4.14)

The residual δ represents the error between the edge length and the reference

distance r, and its dynamics can be used to fully describe the aggregation process of

interest. Given the definition in (4.14) it is easy to show that we can rewrite (4.13)

as:

ẋ = −A(x)T δ(x) (4.15)

where A(x) is the normalized rigidity matrix defined in (4.3). The corresponding

solution at equilibrium x∗ can then be written as the matrix equation:

A(x∗)T δ∗ = 0 (4.16)
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from which δ∗ ∈ nullA(x∗)T . Recalling how A(x) was introduced, some ambiguity

was left in regards of its definition. It is possible to see now its close connection with

the rigidity matrix R(x). To this end, we note that we can write the ith row of AT (x),

{aik}Tk=1,...,m as:

aik =



































bk if i is head for k

−bk if i is tail for k

0 if k /∈ Ei

(4.17)

and therefore χi’s velocity is ẋi = Ai(x) δ. Using this expression, the equilibrium for

agent i is:
∑

k∈Ei

aik δk = 0 (4.18)

which describes the null resultant of the forces acting on the agent. We can finally see

that role of matrix A(x) which encodes the geometrical realization of the framework

by means of the edge direction bk contained in it.

What is left to show is that a network dynamics that follows equation (4.6) main-

tains the connectivity of the underlying graph and the resulting equilibrium is stable.

Proving that connectivity of the graph can be maintained when the topology of the

graph is state-dependent is generally a not easy task. In addition, since our system

can in fact switch between agreement/disagreement states, we cannot exploit the

positive semidefiniteness of the weighted Laplacian in (4.7).

In order to provide results on the connectivity properties of our protocol, we can

proceed as follows. Let first assume that no more than one edge can be disappear

at a time and that the swarm configuration corresponds to a connected graph G at

the initial time t = 0. Before being disconnected, the swarm configuration must

necessarily form a bipartite graph with two components G1 and G2 connected by one
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G2

xk

G1

xℓ

Figure 4.6: Representation of the bipartite graph connected by a single edge.

edge a length s. Consider xℓ and xk being the two nodes connecting G1 and G2, such

that ‖xℓ − xk‖ = s (Fig. 4.6). Since no external forces are applied to G1 and G2,

following the negative gradient of the potential the distance between xℓ and xk will

converge to r < s. The graph must therefore maintain its connectivity.

We finally provide the result on the stability of the equilibrium, for which a solution

exists as showed in lemma 2.

Theorem 4 Under the dynamics defined in (4.6), the edge residual at equilibrium δ∗

is a stable point.

Proof: Pre-multiplying both sides of (4.15) by DT ⊗ I2 leads to:

(DT ⊗ I2) ẋ = −(DT ⊗ I2)A(x)
T δ(x) (4.19)

ż = −(DT ⊗ I2)A(z)
T δ(z) (4.20)

From the definition in (4.14) we can compute the derivative of δ as:

δ̇ = −diag(zTk ) ż (4.21)

Substituting (4.20) in (4.21) leads to:

δ̇ = −diag(zTk ) (D
T ⊗ I2)A(z)

T δ(z) (4.22)



65

Recalling the definition of the normalized edge vectors bk, we can write diag(zTk ) =

diag(‖zk‖) diag(bTk ), which can then be substituted in (4.22):

δ̇ = −diag(‖zk‖) diag(b
T
k ) (D

T ⊗ I2)A(z)
T δ(z)

= −diag(‖zk‖)A(z)A(z)
T δ(z) (4.23)

= −diag(‖zk‖)A(z) δ(z)

where A(z) = A(z)A(z)T . Given all entries of diag(‖zk‖) are non-negative and the

positive semi-definiteness of the quadratic form A(z), edge stability at equilibrium

follows.

Following the results in 4, we know the dynamics expressed in (4.15) will produce

a stable aggregation behavior.

4.4 Numerical Results

In Fig.4.7(a) we report the result from a simulation performed considering n = 6

agents with limited sensing radius and assuming random initial condition. Fig. 4.7(c)

shows the corresponding total potential over time. Similarly, in Fig. 4.7(b) and Fig.

4.7(d) are reported results from a swarm of n = 12 agents with the relative potential

progression over time.
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Figure 4.7: Result of the swarming protocol for a team of six and twelve agents with corresponding
total potential over time.



CHAPTER 5

Control of Multiagent Systems

Responding to Aggregation Behaviors

5.1 Overview

In this chapter we turn our attention to the problem of controlling the dynamics

described in the previous chapter. As showed, the dynamics protocol described in the

previous chapter maintains the centroid of the swarm fixed for all times. This fact is

by necessity connected with null space of the incidence matrix of the corresponding

connected graph. In this chapter we investigate the result of the injection of an

exogenous signal into the network. In order to do so we relax the assumption made

in the previous chapter and we allow one agent to communicate with the external

environment. The resulting problem can therefore be described as a leader-follower

problem.

67
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5.2 Leader-Follower Problem in Control of Net-

works

The fundamental question of weather a networked decentralized system can be

controlled has been largely investigated in recent times. Along with networked au-

tonomous systems, the problem is also connected with security issues in cyber-physical

systems. In distributed power-grid systems, safety analysis are performed by charac-

terizing the vulnerability of its nodes. The extent to which the systems performance

can be affected by malicious attack directed to one or multiple nodes can be in practice

formulated as a network controllability problem. To this end, it is not surprising the

connection with the trustworthiness problem we introduced in chapter 3. Assembly

chains can also be conveniently modeled as networks of manufacturing phases. The

minimal number of human operators required to control a process composed by many

phases can be once again studied in terms of networks control. A remote operator

controlling a formation of UAVs is an other example.

The fundamental problem in control of networks has been mostly formulated in

terms of the controllability of the system or as a leader selection process. In [52]

the problem of controlling a networks formed by nearest neighbor rules was initially

studied. The topology of the underlying graph is of fundamental importance when

trying to achieve control on the network. For example, symmetry with respect to the

leader must be avoided in order to have control on the system [53], and the use of

equitable partitions of the graph emerged as a useful tool for the study of control-

lability properties [54]. As the size of the problem increase, deriving results on its

controllability becomes more difficult. In [55] it was showed how the number of leader
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nodes depends on the degree distribution of the network. Based on the composition

of controllable components and using path graphs, a techniques for construct con-

trollable networks was described in [56]. Providing results on the controllability of a

system is usually not enough for practical purposes. In this case, the performance of

the controller designed must be investigated as well [57] [58].

When networked systems is of interest must be controlled on line, a leader selection

process has to be designed. In this case the question concern the choice of which

node(s) should be leaders and how to solve the problem in a distributed fashion.

The problem becomes more complicate when dynamics graph topology and limited

knowledge on the network are available. Recent results on the subject have been

investigated for example in [59] and [60].

5.3 Model Definition

Let us consider the network distributed dynamics described in the previous chap-

ter, which we repeat here for clarity:

ẋ = −A(x)T δ(x) (5.1)

where δ ∈ R
m is the vector of residual respect to the desired inter-agent distance and

A(x) ∈ R
m×2n is the normalized rigidity matrix of the resulting graph.

5.3.1 Open Loop Leader-Follower Control

Under the results from Lemma 3, the dynamics in (5.1) creates no centroid motion.

Now, we allow a random agents χℓ to receive a step control input uℓ ∈ R
2. In this

case the swarm will be partitioned in two subsets L = χℓ and F = χ \ χℓ. As shown
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in Fig.5.3, we also define the set of leader’s neighbors has Nℓ = {χi ∈ F | ‖xl − xi‖ <

s, i = 1, . . . , n, i 6= ℓ}. Two different architectures are generally possible.

Mixed input In one case it is possible to assume the external control signal uℓ as

being added to the leader’s original swarm dynamic, defined in (4.6). In this case the

resulting dynamic is:

ẋ =







ẋf

ẋℓ






= −A(x)T δ +B uℓ (5.2)

where B is a index selector matrix having a vector of ones in correspondence of the

leader’s state. From (5.2) the centroid dynamics can be expressed as:

˙̂x =
1

n
(1T ⊗ I2)

(

−A(x)T δ +B uℓ
)

. (5.3)

Since (1T ⊗ I2)A(x)
T = 0, the resulting centroid velocity is ˙̂x = 1

n
uℓ. From this

expression we see that if the total number of agents composing the swarm is not

known, the input will be reduced by a factor n and tracking of the reference signal is

impossible.

Stubborn leaders Alternatively, it is possible to assume the dynamic of the leaders

to be uniquely driven by the external input signal. This configuration corresponds to

a directed graph. Without loss of generality, we assume a vertex ordering such that:

xi =



















follower if i = 1, . . . , n− 1

leader if i = n

(5.4)

By partitioning the normalized rigidity matrix into follower and leader sub-spaces,

we write:

A(x) =

[

Af(x) Aℓ(x)

]

(5.5)
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where Af (x) andAℓ(x) are composed by the columns of A(x) corresponding to follower

and leader nodes respectively. The swarm dynamics can then be described by:

ẋ =







ẋf

ẋℓ






=







−AT
f (x)

0






δ +B uℓ (5.6)

In this case, the centeroid dynamics has the following expression:

˙̂x =
1

n
(1T ⊗ I2)













−AT
f (x)

0






δ +B uℓ







=
1

n
(AT

ℓ (x)δ + uℓ)

In this case it is possible to note that the residual length on each edge play a role. By

inspection of equation (5.7) we note that in addition to the leader input, the centroid

dynamics is affected by the direction of the leader’s edge set Eℓ and their relative

residuals.

The two architectures just described are represented in Figure 5.1. It is worth to

note, that these results are valid only when connectivity of the network is maintained.

Results from a simulation with 1 stubborn leader and 11 followers are reported in

Figure 5.2(a) and Figure 5.2(b). We observe the velocity of the swarm converged to

the leader velocity uℓ in the first case (Figure 5.2(a)). When higher velocity input is

considered, connectivity of the graph cannot be maintained (Figure 5.2(b)).

ul xl

xf

a)

L

F

ul

xl

xf

b)

L

F

Figure 5.1: Diagram representation for the leader-follower architecture described: stubborn (left),
mixed input (right).
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(a) Simulation results with low velocity input. (b) Simulation results with high velocity in-
put.
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Figure 5.2: Simulation results for a stubborn leader-follower architecture, performed on a swarm
with 11 followers and 1 leader subject to a step input.

5.3.2 Leader to Neighbor Distance Feedback

As shown in the previous section, the results corresponding to the two archi-

tectures just introduced hold only when connectivity of the network is maintained.

Unfortunately, for a nearest neighbor rule based topology, it is not possible to guar-

antee connectivity of the graph for any given inputs. In this section we introduce

a feedback architecture where the leader tries to track a reference velocity while

maintaining the distance from its visible neighbors’ below the sensing radius s. The

problem we address can be introduced as follow.

Problem 1 Given a reference velocity signal uref , find a leader input uℓ such that

connectivity between leader and its visible neighbors is preserved.
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We divide the group of n− 1 followers in those directly connected with the leader

and the remaining agents (Figure 5.3). We denote the group of leader’s neighbors as:

Nℓ = {χi ∈ χ \ χℓ | ‖xℓ − xi‖ ≤ s}. (5.7)

Nl

F

χl = L

Figure 5.3: Leader’s neighborhood set definition.

In order to solve Problem 1, we introduce an heuristic real loss function ψ : R →

R. The loss function will be constructed in such a way that leader’s velocity is

decreased when the distance from its neighbors is more then the aggregation desired

distance r and increased when below. We will also assume that the leader velocity

is zero whenever this distance goes to s. Before introducing ψ we define the leader’s

neighborhood centroid x̂ℓ as the centroid of Nℓ, for which:

x̂ℓ =
1

|Nℓ|

∑

j∈Nℓ

xj (5.8)

˙̂xℓ =
1

|Nℓ|

∑

j∈Nℓ

ẋj =
1

|Nℓ|
1T AT

Nℓ(x) δ (5.9)

where AT
Nℓ(x) is the normalized rigidity matrix for the sub-space corresponding to

Nℓ. Using the quantities defined in equations (5.8) and (5.9), we can now introduce

a leader input defined as follow:

uℓ = uref(1− ψ(xℓ, x̂ℓ)) (5.10)

ψ(xℓ, x̂ℓ) =
1

s− d
(‖xℓ − x̂ℓ)‖ − r). (5.11)
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The complete controlled swarm dynamic can therefore be expressed as:

ẋ =







ẋf

ẋℓ






=







−AT
f (x)

0






δ +B uref(1− ψ(xℓ, x̂ℓ)) (5.12)

y =
1

|Nℓ|
1T AT

Nℓ(x) δ (5.13)

where B is the input selector defined as above and y is the leader’s measure on the

system. In Figure 5.4 simulations results are reported for the same swarm-size and

input considered in the previous example. As it is possible to see, leader’s velocity

is adapted to the distance from its neighbors and connectivity is maintained until

convergence
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(a) Simulation results with low velocity input.
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(c) Simulation results with high velocity in-
put.
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Figure 5.4: Simulation results for the leader-follower feedback architecture, performed on a swarm
with 11 followers and 1 leader subject to a step reference input.



CHAPTER 6

Collision as Information for Robot Self

Localization

6.1 Overview

In this chapter we discuss an estimation problem related to self-localization of

agents in highly populated environments. In this case, measurements of relative

distance (or proximity) from encountered agents are used for localize the robot in a

tessellated environment. Assuming robots with limited size, collisions can be tolerated

and actually used as a source of information. To this end, rate of encounters with

other agents, can be used to obtain information about the robots’ surroundings.

We consider a collection of autonomous agents moving in accordance with a known

transition probability process between sectors or cells of their domain. Each robot is

equipped with a tactile sensors that produces a binary measure, namely collision or

not-collision state, which is captured over time. The estimate on the robot location

is then recursively updated as new measurements are observed.
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6.2 Model Definition

Consistently with what described in the previous chapter, let us consider a set

of agents χ = {χ1, . . . , χn} on a planar domain D, divided into M non-overlapping

partitions such that:

D = ∪M
j=1Dj Dj ∩Di = ∅ for i, j ∈ {1, . . . ,M}

As robots move between cells, the current fraction of robots in cell j at time step

k is denoted as µj[k] and the composite vector over the whole domain as µ[k]. Since

the fraction of agent in each cell varies from cell to cell and over time, the rate of

encounter between robots will vary.

Figure 6.1: Illustration of agent distribution over a partitioned domain.

In order to quantify the probability of a collision, we introduce a mean-field ap-

proximation from which the probability of collision between robots can be expressed

as a single probability. Letting φj [k] be the probability of experiencing a collision in

cell j at time k and xi ∈ D be the position of robot i in the domain, we introduce

the following assumptions:

1. The size of the domain is significantly larger compared to the footprint of a

single agent.
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2. We can approximated the distrbution of robots in the domain as a Poisson

process, having intensity:

λj[k] = µj

N

Dj

. (6.1)

which represents the fraction of robots per unit area in Dj.

3. Assuming a radius r for each robot footprint radius, a collision occurs when the

footprint of the robots overlap, therefore when ‖xi − xj‖ ≤ 2r.

The probability of having n robots in a region π(2r)2 follows a Poisson process for

which:

jPn(k, A) =
(λj[k]A)

ne−λj [k]A

n!

and therefore, the probability of having a collision in cell j will be equal to

φj[k] = 1−j P0(k, A) (6.2)

where

jP0(k, A) = e−λj [k]A

A = 2πr

λj [k] = µj[k]
N

Dj

.

Since the swarm is composed by homogeneous robots, we drop the index i and we

consider a general agent. We can associate a binary variable for the collision a time

k as:

γ[k] =



















1 if a collision is experienced at time k

0 otherwise.

(6.3)

The problem can then be expressed as follow:
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Problem 2 Given a sequence of measure Γ[k] = {γ[k], . . . , γ[1]}, find what cell the

robot occupies at time k.

In the next section we investigate a solution for this problem.

6.3 Hidden Markov Model for Collision Based Lo-

calization

In this section we describe the mathematical model used by the robot to solve

Problem 1. Due to the lack of locational information and detailed sensing, as well

as the constant interaction between robots, the motion of the robots between cells is

stochastic. A Markov model will then be used to model the probability of transition

between cells. We denote by q[k] the cell occupied by the robot at time k, i.e. if the

robot occupies cell Dj at time k, then q[k] = j. The probability of moving from cell

j to cell i will be equal to:

Pij = Prob(q(k + 1) = i | q[k] = j), i, j ∈ {1, . . . ,M} (6.4)

In the following section we will assume a particular choice for the set of probability

transition but for know we assume these values to be known.

Given the mean-field approximation means, the fractions of robots inside a given

cell satisfy the same Markovian properties, i.e., equation (6.4) implies that:

µ[k + 1] = Pµ[k]. (6.5)

It is worth to note that the states of the Markov chain are hidden, since the robots

do not know which cell they are currently occupying. Since robot make observations
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in the form of collision measurements over the set {Γ1,Γ1} = {0, 1}, the observation

probabilities thus becomes:

Glj[k] = Prob(γ[k] = Γl | q[k] = j), l = 1, 2, j ∈ {1, . . . ,M}. (6.6)

Since the robots are homogeneous, the probability of observing a collision in cell Dj

at time k is φj[k] can be expressed as:

G1j[k] = 1− φj [k] G2j [k] = φj[k], j ∈ {1, . . . ,M}. (6.7)

Here, the unusual dependency on time for the observation probabilities, is due to

the fact that even though we are focusing our attention on a single robot, all the other

robots are moving around at the same time; the statistics of this motion ultimately

determines the collision probabilities.

Let us assume δk(i) as the probability of being in cell Di at time k, given the

sequence of observations Γ[k] = {γ[k], . . . , γ[1]}. This is given by the posterior prob-

ability in the context of the hidden Markov model H,

δk(i) = Prob(q[k] = 1 |Γ[k],H). (6.8)

A possible choice, is to estimate the current cell of the robot by simply picking the

state corresponding to the highest posterior probability, thus:

q∗[k] = argmax
j∈{1,...,M}

δk(i). (6.9)

The estimator in (6.9) is commonly referred to as pointwise maximum a-posteriori

probability (PMAP) estimator [61]. The optimal accuracy of this estimator is given

by the fact that it maximizes the expected number of correct estimates. In order to

compute δk(i) for each time instant k, we define a variable αk(i) which denotes the



81

joint probability of obtaining a sequence of observations Γ[k] while being in state Dj

at time k,

αk(i) = Prob(Γ[k], q[k] = i | H).

Thus, the probability of obtaining a given sequence of observations is now simply the

sum of αk(i) over all the cells of the domain:

Prob(Γ[k] | H) =

M
∑

j=1

αk(j).

Lastly, it is possible to rewrite δk(i) as:

δk(i) =
Prob(Γ[k], q[k] = i | H)

Prob(Γ[k]|H)
,

or, more conveniently as:

δk(i) =
αk(i)

∑M

j=0 αk(j)
.

It is now possible to use the recursive forward algorithm [61] to compute values of

δk(i) over time.

6.3.1 Simulation Results

Let us now consider a scenario where n robots are moving around a circular track

comprised of M segments, each of width wi, for i ∈ {1, . . . ,M} ( Figure 6.2). The

transition Markov matrix P is chosen in such a way that at each time step k, the robot

can either remain in the cell they currently occupy or move to the next cell. Forcing

transitions between cells to occur in a single direction (clockwise or counterclockwise),

the width of each segment wi not only affects the collision probabilities but also the

congestion in each cell.
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Figure 6.2: Example of circular track with cell of varying length.

We chose to model this congestion by letting the probability of a robot staying in

the same cell be inversely proportional to the width of the cell, which correspond to

the assumption that the narrower the segment, the lower the probability of changing

cell:

P (i, i) = ǫ 1
wi
, P (i+ 1, i) = 1− P (i, i), i = {1, . . . ,M − 1}

P (M,M) = ǫ 1
wM

, P (1,M) = 1− P (M,M),

where ǫ is chosen so as to forcing the probabilities between 0 and 1. In the circular

track with 10 individual cells of widths [0.2, 0.17, 0.16, 0.11, 0.09, 0.13, 0.15, 0.24, 0.26, 0.28]

and ǫ = 0.07 (Figure 6.2). The simulations were conducted for 300 iterations and

assuming 45 agents. Figure 6.3 shows the real cell occupied by the agent and its

estimates. As can be seen, using only collision measurements, the PMAP estimator

generates estimates which track the real cell occupancy as the robot moves around

the domain.
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Figure 6.3: Numerical results for a ten cells circular track.



CHAPTER 7

Conclusion and Future Work

In this chapter we summarize the results presented in this work to draw possible

trajectories for future research. As described in Chapter 2, a large body of research has

been developed with the intent to describe, design and control multiagent systems.

In this work we focused our attention on control techniques based on the mutual

distance between agents of a group. Besides being rapidly available in many physical

systems, relative distance measurements can also represent an abstraction in more

general scenarios. Examples of this sort are the distance between two ideas in a

group of people or the distance between two thermodynamics states.

Using a motivating example, we noticed that many behaviors in autonomous sys-

tems take into account the distance from a set of visible neighbors. For example, a

behavior of this form is obtained when relative distance measurements are considered

for a collision avoidance protocol (Chapter 3). Similarly, when cohesion is pursued in

large swarms of autonomous agents, the single controllers must be based on relative

distance/position from the nearest neighbors (Chapter 4).

As mentioned earlier, research on low-complexity solutions has also motivated

the definition of appropriate architectures and algorithms when minimal resources

and information are available. Distributed techniques for control of swarms possess

84



85

inviting properties such as high resilience and flexibility in adapting to changes/tasks.

Much remains to be investigated on how to guarantee these properties with limited

complexity and in a distributed fashion. In this work we moved a step in this direction.

Self-assembly behaviors can be used for efficient coordination and the state of the

swarm can be changed even when communications are allowed for few individuals in

the swarm.

We finally showed, in the last chapter, that proximity measurements can also be

used as sources of information. In particular, a string of binary variables representing

encounters with other agents at discrete time, was used to localize an individual in

densely populated environments.

7.1 Future Work on Trustworthiness in Collision

Avoidance Algorithms

As showed in Chapter 3, exact knowledge on the state of an autonomous agent

can introduce vulnerabilities. In particular, when predictable collision avoidance tech-

niques are employed, these information can be exploited to drive the system’s state

towards predefined targets. This problem presents several possible extensions. As

showed, the definition of closed form solutions seem to be intractable. However,

game theory can represent a favorable environment for deriving useful results. More-

over, the definition of those regions where neighbors have the highest effect on the

system’s trajectory can be defined in terms of the reachability set of a predefined

target.
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In addition, computational results could be extended towards the definition of

the whole approaching/forcing problem as a single unified optimization problem. By

considering the binary variable corresponding to collision/collision-free state of the

system as an additional design parameter, a single mixed integer MPC can be con-

structed. Also, assuming an evader’s varying velocity and the problem in a three-

dimensional domain would shorten the distance with real case applications.

Finally, in terms of mitigating countermeasures, several possible avenues can be

considered. For example, the introduction of a stochastic component in the decon-

flicting maneuver seems to be worth investigating.

7.2 Future Work on Aggregation Behaviors and

Control of Networked Systems

Control of a networked systems is a highly investigated subject. Given the inter-

section of this subject with an extraordinary variety of applications and disciplines,

many results have been proved and many challenges are still open. A distance based

aggregation process for autonomous mobile vehicles was proposed in Chapter 4. The

protocol we described requires a minimal set of information on the final swarm con-

figuration, namely a single fixed scalar. Future natural developments of this work

include the ability of the swarm to adapt the desired inter-agent distance to changes

in the environments or presence of faulty agents.

The injection of an input in the swarm by means of a leader was also considered.

The leader was chosen at random and a reference signal directly injected in the system.

To this end, the leader selection process can be integrated with the presence of a duty
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cycle in the communication with the external world. The high power consumption of

communication systems discourage the presence of a continuous link with the external

world; for this reason, we can envision the ability for each agent to decide when to

switch to leader state. This decision should take into consideration the position of

the agent within the networks and its efficacy as leader. An estimation of the agent’s

centrality could serve the purpose.

The great number of opportunities in autonomous mobile robotics and autonomous

systems continues to attract the interest of many communities. Contribution on the

subject are by no means limited to engineering communities but extend to computer

scientist, physicists, economists and sociologist. Future developments of this disci-

plines will certainly be fostered by the fusion and collaboration of these communities.



APPENDIX

First Order Taylor Approximation

In this section we derive the expression for the first order Taylor approximation

relative to the system dynamics and the constraints introduced by the collision avoid-

ance. Considering first the two unicycle dynamics contained in (3.27) we have:

f(x0, u0) =


























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=





























0 0 0 0 0

0 0 0 0 0

0 0 0 0 −vp sinφp
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=


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(7.1)
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The two constraints contained in 3.27 are reported and expanded here for conve-

nience:

gk+1
1 : tanλk+1

(

ve cosφ
k+1
e − vk+1

p cos φk+1
e

)

− ve sin φ
k+1
e + vk+1

p sinφk+1
p = 0 (7.2)

gk+1
2 : λk+1 − arctan

(

yk+1
p − yk+1

e

xk+1
p − xk+1

e

)

− arcsin

(

Rpz

‖qk+1
p − qk+1

e ‖2

)

= 0 (7.3)

Equations (7.2) and (7.3) are now derived respect to their variable, namely λ, vp, φp

and φe. In order to reduce burden from notation, we consider the constraint (7.3)

only for one angle λ1. Similar derivation can be extended for the constraint relative

to λ2. Considering first constraint (7.2), we can easily derive:

g1,λ = sec2 λ(ve cosφe − vp cosφp)

g1,vp = − tanλ cosφp + sin φp

g1,φp
= vp tanλ sinφp + vp cosφp

g1,φe
= −ve tanλ sinφe − cosφe

Considering the constraint (7.3), we first need to extract the dependency from the

control inputs. In order to do so, we introduce the discrete dynamics of the system

into the constraints, that is:

0 = λk+1 − arctan

(

δk+1
y

δk+1
x

)

− arcsin





Rpz
√

(δk+1
x )2 + (δk+1

y )2



 (7.4)

where:

δk+1
x = xkp + vkp cosφ

k
p − xke − ve cosφ

k
e∆t

δk+1
y = ykp + vkp sin φ

k
p − yke − ve sinφ

k
e∆t
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Computing the derivatives of g2 respect with its arguments leads to:

g2,λ = 1

g2,vp = −
1

1 +
δ2y
δ2x

(

sinφp∆t δx − cosφp∆t δy
δ2x

)

−

−
1

√

1− ξ2

(

−
Rpz K1

δ2x + δ2y

)

g2,φp
= −

1

1 +
δ2y
δ2x

(

vp cosφp∆t δx + vp sinφp∆t δy
δ2x

)

−

−
1

√

1− ξ2

(

−
Rpz K2

δ2x + δ2y

)

g2,φe
= −

1

1 +
δ2y
δ2x

(

−ve cosφe∆t δx − ve sinφe∆t δy
δ2x

)

−

−
1

√

1− ξ2

(

−
Rpz K3

δ2x + δ2y

)

where we defined the following quantities:

ξ =
Rpz

√

δ2x + δ2y

K1 =
∂
√

δ2x + δ2y
∂vp

=
1

2

(

δ2x + δ2y
)− 1

2 (2δx cos φp∆t + 2δy sinφp∆t)

K2 =
∂
√

δ2x + δ2y
∂φp

=
1

2

(

δ2x + δ2y
)− 1

2 (−2δxvp sinφp∆t+ 2δyvp cosφp∆t)

K3 =
∂
√

δ2x + δ2y
∂φe

=
1

2

(

δ2x + δ2y
)− 1

2 (2δxve sin φp∆t− 2δyve cosφp∆t)

The quantities just computed can be written in the compact form:

E =







g1,λ g1,φe
g1,vp 0

g2,λ g2,φe
g2,vp 0






F =







0 0 0 0 g1,φp

0 0 0 0 g2,φp






(7.5)
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