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Abstract

The concept of renormalization group (RG) flow is one of the most novel and broad-

reaching aspects of quantum field theory (QFT). The RG flow is implemented by constructing

effective descriptions of a QFT at decreasing energy scales. One reason that RG flow is useful

is that often one is interested in low-energy properties of theories with complicated short-

distance structures. RG flows are subject to C theorems in relativistic QFT. The C theorems

order the space of Lorentz-invariant QFTs. RG flows generically begin at scale-invariant

fixed points known as conformal field theories (CFTs) and end in trivial massive theories.

With tuning, the RG flows may end at non-trivial CFTs. Each CFT has an associated

dimensionless C value. The C theorem states that under RG flow from a UV to an IR fixed

point, the C value decreases.

In this Dissertation I present the F -theorem, which is a C theorem in three spacetime

dimensions. I show that the correct quantity to consider is the Euclidean free energy of

the CFT conformally mapped to the three-sphere, known as the F value. After motivating

the F -theorem, I develop tools for calculating the F value in a variety of CFTs, with and

without supersymmetry, including free field theories and gauge theories with large numbers

of flavors. I also show that the F value is itself a useful quantity for probing the gauge/gravity

duality and understanding other aspects of CFT, such as the scaling dimensions of monopole

operators. The F theorem is closely related to quantum entanglement entropy. At conformal

fixed points, the F value is equal to minus the renormalized entanglement entropy (REE) in

flat Minkowski space across a circle. Away from the fixed points, the REE is a monotonically

decreasing function along the RG flow. I compute the REE in a variety of holographic and

non-holographic theories. I conclude the Dissertation by discussing a somewhat surprising

result: the REE is not stationary at conformal fixed points.
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Chapter 1

Introduction

Degrees of freedom decrease with energy.

Consider a crystal of table salt. The effective number of degrees of freedom of this

system increases with the energy of my probe. At low energies, I can excite vibrational

modes within the lattice, but I cannot resolve the individual lattice sites. If I probe the

system at higher energies, the complexity increases. I can irradiate the material and knock

out inner-shell electrons within the constituent atoms. At even higher energies, I can resolve

the atomic nuclei, for example, by exciting nuclear transitions. As I keep increasing the

energy of my probe, I don’t even see individual nuclei. Eventually, I don’t even see protons

and neutrons. Instead, I see the quarks and gluons buried inside.

It is intuitive that the number of degrees of freedom should decrease with energy; if I

have less energy, I have fewer options. This is something we all experience in our lives. But

sometimes physics qualitatively changes between different energy scales. In these cases, it

may not be straightforward to even have a common definition of ‘degrees of freedom’ that is

valid at high and low energies. After all, the physics of quarks and gluons sure looks different

from crystals of salt. It even looks quite different from the physics of neutrons and protons.

What do we mean by degrees of freedom? Is there really a universal quantity that always
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decreases with energy, even when the systems undergo drastic transitions as we lower the

energy? These are, at a high-level, the motivations for the work in this Dissertation.

I address these questions within the framework of relativistic, unitary quantum field

theory (QFT). Many interesting, real world systems are described by such theories. Within

this context, quantities C that may be calculated uniquely in all QFTs and that decrease

with energy in all circumstances are said to obey a C-theorem. It is instructive to think of

the C values as roughly measuring the degrees of freedom, with the analogy above in mind.

However, in other ways – as I mention below – the C values are notably different from the

normal notions of degrees of freedom.

C-theorems constrain how systems evolve with energy.

In four (spacetime) dimensional relativistic QFT, a proposal for a C theorem was given by

Cardy in the 1980’s [1]. Only recently, in 2011, was his proposal – called the a-theorem

– finally proven [2]. Over the past 20 years, the a-theorem has been a useful tool for

understanding aspects of four-dimensional QFT. QFT is four spacetime dimensions is

interesting because it has direct application to particle physics.

Cardy’s a-theorem is based on Zamolodchikov’s c-theorem [3]. The c-theorem gives

an appropriate measure of degrees of freedom in two spacetime-dimensional QFTs. The

c-theorem is not directly useful for particle physics, since real spacetime is four dimensional.

However, it still had and continues to have many interesting applications. This is for two

reasons; (i) many condensed matter and statistical systems, under the right conditions, are

described by two-dimensional QFTs, and (ii) the world-sheet of string theory is described

by a two-dimensional QFT. QFT is a commonly used tool in multiple subfields of physics,

and so understanding the basic structure of QFT tends to have impacts across the field.

Odd dimensions are different.
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Historically, the c-theorem was proposed the year I was born – 1986 – and Cardy’s a-

theorem paper came 2 years later. With that said, for nearly twenty five years there was no

known measure for the degrees of freedom in three-dimensional QFT. That’s not to say that

people didn’t try, but no conjecture withstood further scrutiny. And that’s also not to say

that people didn’t care. Many real-world systems are described, under certain conditions, by

three-dimensional QFTs. For instance, the critical point of the water-vapor phase diagram

is described by one of the simplest (to formulate) three-dimensional QFTs – the 3-D Ising

model. In field theory language, this is the critical point obtained by perturbing a free scalar

field theory by a φ4 deformation, while keeping the mass of the field tuned to zero. This

field theory is extremely hard to solve in practice, and one often must resort to numerical

tools in order to make predictions. Other physical systems described by non-trivial three-

dimensional QFTs include critical points found in insulating antiferromagnets and d-wave

superconductors and between quantum Hall states, among many other examples.

Why are odd-dimensional field theories different from even dimensional field theories?

A crucial difference – the one that is important here – is that odd-dimensional field theories

do not, for the most part, have quantum anomalies, while even-dimensional QFTs do. A

quantum anomaly occurs when a symmetry of the classical theory is not respected quantum

mechanically. In even dimensions there exists a conformal anomaly; theories that classically

are scale invariant acquire a scale dependence at the quantum level. The quantum breaking

of scale invariance is associated with a coefficient, and it is this coefficient (a in 4-D, c in

2-D) that satisfies a C-theorem in two and four spacetime dimensions. In three dimensions,

this term simply does not exists, since the conformal symmetry is not anomalous. We must

try something else.

C-Theorems Order the Landscape of RG Flows

13



It is useful to be more precise about the idea of ‘degrees of freedom decreasing with

energy.’ In QFT, decreasing the energy-scale of a system is called renormalization group

(RG) flow. The word ‘flow’ is meant to imply that the RG only goes one direction. RG flows

generally begin and end at conformal fixed points. At conformal fixed points, the QFTs

are called conformal field theories (CFTs). These theories – at least classically – have no

dependence on scale. In particular, this means that they are invariant under the RG flow,

since the RG is associated with a change of scale. The high-energy fixed point is called the

UV fixed point, while the low-energy one is called the IR fixed point.

C-theorems provide an ordering on the space of QFTs. These concepts are nicely visu-

alized with the help of the following analogy. We can imagine the landscape of QFTs as the

physical landscape of a mountainside. RG flow is the action of going down the mountain,

just like a river. And, like a river, we are not allowed to go back up the mountain.

Suppose I point to two points on this mountain and ask “is it possible for a river to flow

between these two points?” If the first point is higher than the second, then the answer is

“possibly yes.” But if the first point is lower, then the answer is “definitely no.”

The C-theorems give us a concept of height. In particular, they give us a quantity C that

always decreases under RG flow. That is, CUV > CIR, just like the quantity called ‘height’

in our analogy. In this analogy, the conformal fixed points may be visualized as basins, or

lakes. These are places where the RG flow ends.

Just like rivers, RG flows only go down to lower energies. The flow down a mountainside

takes place along a unique path. Contrast this to going up the mountain. If I am standing at

a lake – a conformal fixed point – I may go back up the mountain in many different directions.

Going down is more unique than going up. The concepts are illustrated in Fig. 1.1.

The analogy here is meant to be intuitive, but there are important differences as well

between RG flow and the flow of water down a mountainside. The latter phenomena obeys a

gradient flow; that is, rivers always take the path of steepest descent. This is not necessarily

true with RG flows.

14



CFTUV

CFTIR

CIRCUV >

Friday, May 9, 14

Figure 1.1: RG flows may be visualized as the paths of rivers down mountains. These flows
begin and end at places where there is no gradient (CFTs). The C-theorem tells us that
CUV > CIR; that is, C decreases under RG flow. This is analogous to the decrease in height,
or gravitational potential energy, along the flow of the river.

I introduced the concept of RG flow in the context of decreasing the energy of my

probe. Since energy and length are inversely proportional, I may also think of RG flow

as increasing the minimum length scale in my system. For example, suppose I have a

lattice with lattice-spacing ε. At each lattice site, I have a fundamental degree of freedom,

perhaps an atom. If I clump together the behavior of nearby atoms, I can rewrite my

theory in terms of an effective theory with lattice spacing, say, 2ε. By repeating this

exercise, I flow between the fundamental UV theory with lattice spacing ε to the low-energy

(IR) effective theory, with some large effective lattice spacing. If the low-energy theory is

a conformal fixed point, then, in fact, the theory does not depend on the lattice spacing at all.

What about thermal entropy?
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It is important to distinguish ‘C’ from the normal counting of free-field degrees of freedom.

In four dimensional field theory, we normally say that the real scalar field has one degree of

freedom, while the photon has two degrees of freedom, corresponding to the two physical

polarization states. On the contrary, the a coefficient of the photon is 62 times that of the

real scalar. The C-coefficients do not necessarily match our intuition. These coefficients

should simply be thought of as ordering coefficients on the space of QFTs.

The standard counting of free-field degrees of freedom may be recovered from the thermal

entropy Stherm of a system. More precisely, in a relativistic theory Ftherm ∝ ctherm T
d, where

T is the temperature, Ftherm is the Helmholtz free energy, and d is the spacetime dimension.

The quantity ctherm is a dimensionless quantity that, in four spacetime dimensions, is twice

as big for the photon as it is for the real scalar field. It is a characteristic of the underlying

theory. But does it satisfy a C-theorem? That is, does ctherm always decrease under RG

flow? It turns out that in two spacetime dimensions, ctherm does satisfy a C-theorem, but in

higher dimensions it does not. It is non-trivial that thermal entropy does not order QFTs

in three and four spacetime dimensions [4–7]. In practice, though, it is often the case that

ctherm does decrease under RG flow, even though it does not do so in all cases [4, 5].

Thermal entropy → quantum entanglement entropy in QFT

Just a few years ago, C-theorems were mysterious. Over the past few years, a much

clearer picture has emerged. It is this picture that I will describe in this Dissertation.

In 2011 we proposed the F -theorem [8, 9]. The F -theorem is the conjecture that the

ground-state Euclidean free energy on the three-sphere satisfies a C-theorem in three dimen-

sions. Around the same time that we proposed the F -theorem, an independent group of

researchers proposed another seemingly independent C-theorem in three dimensions [10,11].

They proposed that the entanglement entropy of the ground state decreases under RG flow.
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The entanglement entropy is a uniquely quantum entropy that may be computed even at

zero temperature. There is an important qualitative difference between theories at zero tem-

perature and finite temperature. When T > 0, one has contributions from all of the excited

states of the theory, while at zero temperature we are only sensitive to the ground state.

Entanglement entropy measures the quantum entanglement across a spatial surface. The

entanglement C-theorem proposal took that surface to be a circle. The RG flow is easily

implemented by simply increasing the radius of the circle.

Shortly after our independent proposals, it was realized that the F -theorem and the

entanglement C-theorem were actually the same. The reason is that at conformal fixed

points, the Euclidean free energy of the CFT on the three-sphere is equal to the ground-

state entanglement entropy in flat spacetime across a circle [11].

Casini and Huerta proved the F -theorem in 2012 [12]. They did so by using the relation to

entanglement entropy and explicitly constructing a function that is monotonically decreasing

as the radius of the circle increases. Their proof holds for all unitary relativistic QFTs in

three spacetime dimensions.

These ideas also led to a unified understanding of C-theorems in two, three, and four

dimensions. In D dimensions, the appropriate quantity to consider at the conformal fixed

points is the Euclidean free energy of the theory on the D-sphere. Equivalently, this is

equal to the ground-state entanglement entropy of the theory in flat spacetime across the

(D−2)-sphere. In even dimensions, the appropriately regularized versions of these quantities

are dominated by a conformal anomaly term. The coefficient of this term gives us exactly c

in D = 2 and a in D = 4. In odd dimensions, there is no conformal anomaly term. However,

there is still a finite contribution to the free energy, which in D = 3 we call F . Just like a

and c decrease monotonically under RG flow, F also satisfies a C-theorem. However, only

in D = 2 is the zero-temperature quantum entanglement entropy directly related to the

finite temperature thermal entropy. We have conjectured that entanglement entropy pro-

vides a C-theorem in all dimensions, but so far this has only been proven for D = 2, 3, and 4.
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This Dissertation

In this Dissertation I introduce the F -theorem. Chapter 2 is a slightly modified ver-

sion of the paper [9], which is where we first explained the F -theorem in generality. This

chapter gives simple examples of RG flows where we may compute F in the UV and the

IR and see explicitly see that it decreases. This chapter also begins to develop tools for

computing F on the three-sphere.

Chapters 3 and 4 are modified versions of the papers [13] and [14], respectively. I include

these chapters because they develop tools for calculating F in more non-trivial field theories.

Chapter 3 discusses three-dimensional gauge theories with large numbers of flavors. Chap-

ter 4 is closely related; here I consider higher-spin gauge theories instead of just spin-1 gauge

theory. These chapters also show that F is useful as a general probe of field theory. For

example, I show that we may use F to provide non-trivial tests the gauge-gravity duality.

These tests arise from computing F on both sides of the duality.

Chapters 5 and 6, which are based on the papers [15] and [16], respectively, focus on the

RG flow instead of the conformal fixed points. Away from the conformal fixed points, one

should calculate the entanglement entropy instead of the three-sphere free energy. Chapter 5

shows how to do this holographically, while in chapter 6 I show how to numerically calculate

the free-field massive entanglement entropy using lattice techniques. This dissertation ends

in chapter 6 with an open question concerning the stationarity of entanglement entropy.

I have chosen to base this Dissertation on the papers [9,13–16] because they tell a cohesive

story. However, due to space constraints I must leave out many other works of mine that

are also related to this story, namely [8, 17–21].

The remainder of this Introduction reviews some of the basic results and concepts needed

to understand the later chapters.
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1.1 C-Theorems in QFT

In this subsection we review the D = 2 c-theorem and the D = 4 a-theorem. We then

introduce the F -theorem and its connection to entanglement entropy.

C-theorems in D = 2 and 4

The first example of a C-theorem in QFT was given in two-dimensions by Zamolodchikov [3],

who used the two-point functions of the stress-energy tensor to define the Zamolodchikov

c-function that had the desired properties. The Zamolodchikov c-function has the additional

property that at the RG fixed points it coincides with the Weyl anomaly coefficient c, which is

given by the expectation value of the trace of the stress-energy tensor on a curved (Euclidean

signature) manifold:

〈T aa〉 = − c

12
R . (1.1)

Here R is the curvature scalar, and we normalize c so that it equals unity for a real conformal

scalar field.

In four dimensions there are two Weyl anomaly coefficients, a and c, such that

〈T aa〉 =
c

16π2
WabcdW

abcd − 2aE4 −
a′

16π2
∇2R , (1.2)

where Wabcd is the Weyl tensor and E4 is the Euler density, which has the normalization∫
S4 d

4x
√
gE4 = 2. Cardy has conjectured [1] that it should be the a-coefficient that de-

creases under RG flow. He was led to this conjecture by the observation that, since in

two-dimensions we can isolate c by considering
∫
S2 d

2x
√
g〈T aa〉, we can naturally single out

a in four dimensions by considering the analogous integral on S4. This follows because the

Weyl tensor vanishes on the four-sphere. Cardy’s conjecture that the quantity a obeys a

C-theorem is called the a-theorem.
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Recently a general proof of the a-theorem was constructed in [2], where the authors ex-

plicitly constructed a function that is monotonically decreasing along RG-flow, stationary

at conformal fixed points, and equal to the a-anomaly coefficient at those fixed points. This

work was preceded by more than 20 years of evidence towards the a-theorem. Considerable

evidence came from studying 4-D supersymmetric field theories, where a is determined by

the U(1)R charges [22]. The prescription for determining the superconformal R-charges is

called a-maximization [23], which states that at superconformal fixed points the correct R-

symmetry locally maximizes a. This has passed many consistency checks that rely both on

field theoretic methods and on the AdS/CFT correspondence [24–26]. For large N supercon-

formal gauge theories dual to type IIB string theory on AdS5×Y5, Y5 being a Sasaki-Einstein

space, a-maximization is equivalent to the statement that the Sasaki-Einstein metric on Y5 is

a volume minimizer within the set of all Sasakian metrics on this space [27]. This equivalence

was proved in [28,29].

The F -theorem

As already mentioned, a long-standing problem in QFT is to find a three-dimensional C-

theorem. This is of particular interest since there are an abundance of fixed points in three

dimensions with relevance to real world systems. However, since there is no conformal

anomaly in 3-D, the trace of the stress-energy tensor simply vanishes at conformal fixed

points. Over the years there have been a number of attempts at constructing a C-theorem

in 3-D. One such proposal was to consider the free energy at finite temperature T [4, 5]:

FT = −Γ(D/2)ζ(D)

πD/2
cThermVD−1T

D , (1.3)

where D is the dimension of space-time, VD−1 is the spatial volume, and cTherm is a dimen-

sionless number normalized so that a massless scalar field gives cTherm = 1. However, it was

recognized right away that cTherm may increase under RG flow if the UV is not asymptotically
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free [4,5]. For example, cTherm increases under RG flow from the critical D = 3 O(N) model

to the Goldstone phase described by N−1 free fields [6,7]. This rules out the possibility of a

cTherm-theorem. The quantity cTherm also violates another requirement for a good c-function:

it varies along lines of fixed points. This may be seen, for example, in the four-dimensional

N = 4 supersymmetric Yang-Mills theory [30].

The F -theorem is a C-theorem in D = 3 [8, 9]. A general proof of the theorem was

proposed in [12]. In fact, the F -theorem naturally extends to all spacetime dimensions D.

At the conformal fixed points, one is instructed to conformally map the CFT to the D-sphere

and compute the Euclidean free-energy

F = − log |ZSD | , (1.4)

where ZSD is the partition function. Since CFTs have no scale-dependence by definition,

the regularized free energy should have no dependence on the radius R of the SD. However,

in even dimensions D there is a conformal anomaly, and scale-invariance is not respected

quantum mechanically. We may explicitly compute the dependence of F on R, and we find

∂F

∂ log(R)
= −D

∫
dDx
√
g〈T aa〉 . (1.5)

In even dimensions, we may integrate this equation so that F ∼ aD logR, where aD is the

a-type Weyl anomaly coefficient (c in D = 2, and a in D = 4). In even-dimensions, Cardy

has conjectured that the a-type anomaly satisfies a C-theorem [9].

In odd-dimensions D, the right-hand side of (1.5) vanished identically. F has no depen-

dence on R since there is no conformally anomaly. Integrating (1.5) we find that F ∼ F0,

where F0 is a dimensionless number, called the F -value, that characterizes the CFT. The

F -theorem proposes that in odd-dimensions, F0 satisfies a C-theorem.

Jafferis [31] conjectured that the 3-D analogue of a-maximization is that the R-symmetry

ofN = 2 superconformal theories in three dimensions extremizes F , and in [8] this was sharp-
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ened into the principle of F -maximization, which proposes that the F -value of the IR CFT

is locally maximized by the trial R-charge. The principle of F -maximization passed many

theoretical tests [31–41] before being proven in [42]. Also, for large N theories with AdS4×Y7

dual descriptions in M-theory, F -maximization is correctly mapped to the minimization of

the volume of the Sasaki-Einstein spaces Y7 [8, 43].

The principle of F -maximization was part of our original motivation for conjecturing the

F -theorem [8]. In that paper, we considered various RG flows between CFTs with N ≥ 2

supersymmetry, and in all examples we found that FUV > FIR. Moreover, we found that F

remained constant for exactly marginal deformations. F -maximization naturally leads to the

F -theorem in the context of N ≥ 2 RG flows induced by superpotential deformations of the

UV theory. At the level of the localized partition function, the superpotential deformations

have the effect of constraining the R-symmetry. In the IR, we are instructed to maximize

F over the appropriately constrained R-symmetry, while in the UV the same functional is

maximized but without the constraints. Naturally, this then implies that FUV ≥ FIR for

these RG flows.

Connections to entanglement entropy

The D-sphere free energy F at conformal fixed points is related to entanglement entropy

(EE). We will review EE and its connection to F in detail in the following subsections. Here,

we summarize the relationship.

In D-dimensions, the EE S(R) in flat Minkowski spacetime across a spatial (D − 2)-

sphere of radius R is dominated by the area-law term: S(R) ∝ (R/ε)D−2, where ε is the

short-distance cut-off. At conformal fixed points, we should remove the power-like divergent

terms in ε to construct a renormalized EE. In D odd, the renormalized EE has no dependence

on R, while in D even there is a logarithmic dependence on R because of the conformal

anomaly. A direct calculation, which we review below, shows that in both D even and odd,
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S(R) = −F at conformal fixed points [10,11]. That is, the renormalized EE is exactly equal

to minus the renormalized D-sphere free energy.

Casini and Huerta used the EE to construct an entropic proof of the c-theorem in D =

2 [44]. Their proof of the F -theorem in D = 3 is similar [12]. Away from the conformal fixed

points, one is instructed to compute the renormalized EE across the circle of radius R [45]

F(R) = −S(R) +RS ′(R) . (1.6)

This is a finite function for theories that are conformal in the UV. For a CFT this function

takes the constant value F0. An important property of F(R) is that in the limit of large R

it approaches the IR F -value FIR [45]. Furthermore, F ′(R) = RS ′′(R). It was shown in [12]

that for any Lorentz invariant field theory S ′′(R) ≤ 0. This demonstrates that F(R) is a

non-increasing function and therefore proves the F -theorem.

1.2 Entanglement entropy in quantum mechanics

In this subsection I briefly reviewing the concepts of quantum entanglement, entanglement

entropy, and Rényi entropy. Suppose the Hilbert space H of a quantum system has a basis

of orthonormal states {|ψs〉}. A general normalized state |ψ〉 in the Hilbert space may be

written as a superposition of the basis vectors:

|ψ〉 =
∑
s

cs|ψs〉 ,
∑
s

|cs|2 = 1 . (1.7)

The state |ψ〉 is called a pure state. The expectation value of an observable operator O in a

pure state |ψ〉 is given by 〈O〉 = 〈ψ|O|ψ〉. We may also define the density matrix ρψ = |ψ〉〈ψ|

and write 〈ψ|O|ψ〉 = tr(ρψO), where the trace is over the Hilbert space H.

Quantum mechanical systems may also be in mixed states. Mixed states are defined as

quantum states where the density matrix cannot be written in the form ρ = |ψ〉〈ψ| for some
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pure state |ψ〉. However, the density matrix ρ may still be used to compute the expectation

value of an observable operator O in a mixed state: 〈O〉 = tr(ρO). The most general density

matrix is given by

ρ =
∑
s

ps|ψs〉〈ψs| ,
∑
s

ps = 1 . (1.8)

This says that the probability the mixed state is found to be in the pure state |ψs〉 is ps.

The von Neumann entropy S of some quantum mechanical state with density matrix ρ

is defined by

S ≡ − tr(ρ log ρ) . (1.9)

Using the expansion for |ψ〉 in eq. (1.8) we may write

S = −
∑
s

ps log(ps) . (1.10)

From this equation it clear that only when ρ describes a pure state does S = 0. If ρ describes

a mixed state then S > 0.

A natural generalization of the von Neumann entropy is the Rényi entropy Sq [46, 47]:

Sq ≡
1

1− q
log(tr ρq) =

1

1− q
log

(∑
s

pqs

)
, q ≥ 0 , q 6= 1 . (1.11)

It is clear that the Rényi entropies are also strictly positive for mixed states and zero for

pure states. Note that limq→1 Sq = S, so a computation of the Rényi entropies also gives the

von Neumann entropy.

Now suppose the Hilbert space H may be written as a direct product H = HA ⊗ HB,

and let the system be in a pure state with density matrix ρ. We define the reduced density
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matrix of ρ in HA to be

ρ
A

= trB ρ , (1.12)

where trB is defined to be a trace over HB. The entanglement entropy is then the Von

Neumann entropy of the reduced density matrix ρA [48]:

SA ≡ − tr(ρA log ρA) = − tr(ρB log ρB) . (1.13)

The state |ψ〉 is said to be entangled between HA and HB if SA > 0.

1.2.1 Example: two-spin system

We illustrate the above points with a simple example: two spin-1
2

degrees of freedom, with

Hilbert space H = HA ⊗HB. We take the basis of HA to be {| ↑〉A , | ↓〉A} and the basis of

HB to be {| ↑〉B , | ↓〉B}. Consider the pure state in H

|ψ〉 = cos θ| ↑〉A| ↓〉B + sin θ| ↓〉A| ↑〉B , 0 ≤ θ ≤ π

2
. (1.14)

Before calculating the entanglement entropy, let us think intuitively about the entanglement

of this state. Suppose we have two observers Adam and Bob who measure the spin states

of A and B, respectively. Suppose Adam performs his measurement first. When θ = 0,

Adam will always measure spin-up, and Bob will always measure spin-down. The opposite

happens when θ = π/2. These states are not entangled because Adam’s measurement does

not effect Bob’s subsequent measurement. On the contrary, when θ 6= 0, π/2 sometimes

Adam will measure spin-up and sometimes he will measure spin-down. When he measures

spin-up Bob will measure spin-down and vice versa. These states are entangled because

Adam’s measurement determines Bob’s. When θ = π/4 by symmetry we know that half of

the time Adam will measure spin-up and half of the time he will measure spin-down. This
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case seems to the one of maximal entanglement. Now let us confirm our intuition with a

calculation of the entanglement entropy.

The density matrix for this state is simply ρ = |ψ〉〈ψ|. The reduced density matrix in

HA is easily calculated to be

ρA = cos2 θ| ↑〉A〈↑ |A + sin2 θ| ↓〉A〈↓ |A , (1.15)

which gives the entanglement entropy

SA = −(cos2 θ log cos2 θ + sin2 θ log sin2 θ) . (1.16)

In fig. 1.2 we plot the entanglement entropy SA as a function of θ. The entanglement entropy

0
Π

4

Π

2

Θ

logH2L
SA

Figure 1.2: The entanglement entropy SA of the state |ψ〉 between the sub-spaces HA and
HB. Notice that the maximum is at θ = π/4.

is maximal at θ = π/4, where SA = log 2. As expected, the entanglement entropy vanishes

at θ = 0, π/2.
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1.3 Entanglement entropy in QFT

We would like to generalize the ideas of Rényi and entanglement entropy to quantum field

theory. Consider a field theory in D = d+ 1 dimensions on flat Minkowski space-time Rd,1.

Let the vacuum |0〉 of the theory have density matrix ρ = |0〉〈0|. We introduce a space-like

‘entangling surface’ Σ, which separates Rd into two spaces A and B such that A ∪ B = Rd

and A ∩ B = 0. We will be especially interested in the case where Σ is a (d − 1)-sphere

in the spatial dimensions of radius R. We call this entangling surfaces ΣSd−1 , and we let A

be the space inside of the sphere and B be the space outside. The reduced density matrix

ρΣ = trB |0〉〈0| is given by integrating out the degrees of freedom outside of the sphere.

We can then calculate the entanglement entropy and the Rényi entropies using eqs. (1.13)

and (1.11), respectively, for ρΣ.

1.3.1 Example: System of weakly interacting spins

Before embarking in earnest on a calculation in QFT, it is useful to consider a toy example

that will demonstrate some of the main structure of entanglement entropy in field theory.

We consider a simple lattice model in 2 spatial dimensions of very weakly interacting spins.

Each spin is paired up with one of its nearest neighbors, so that if there are N spins then

there are N/2 pairs. A pair of spins does not interact with any other pair. The spins are

arranged on a square lattice of length ε. We illustrate this setup in figure 1.3. The form

of the interaction is to put the ground-state of each pair in the maximally entangled state

1√
2
(| ↑〉| ↓〉 + | ↓〉| ↑〉). This example may seem contrived, but it is designed to illustrate an

important point about the nature of entanglement entropy.

We want to calculate the entanglement entropy of the ground-state across a circular

entangling surface S1 of radius R. Label the region inside of the circle by A and region

outside by B. The only pairs which contribute to the entanglement entropy are those which

have one spin in A and one spin in B. Each such pair has entanglement entropy equal
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✏

A B

Figure 1.3: A simple dimer state, where the red circles denote the pairs of spins, which
are arranged on a square lattice of spacing ε. The spins will always be measured to be in
opposite spin states. The pairs of spins do not interact with each other. The dotted black
circle is the entangling surface of radius R, the region A is the interior of the circle, and B
is the region outside of the circle. We really want to consider the limit R/ε� 1.

to log 2. For large R, the number of such pairs scales like the circumference of the circle

divided by the lattice spacing ε. Thus we find that the entanglement entropy of this system

is approximately

SA ∼ α
2πR

ε
log 2 , (1.17)

where α is some un-important, order one numerical constant that counts more precisely

how many spin pairs are intersected by the circle.

Our simple example illustrates what is know as the area law for the entanglement entropy

in quantum field theory (see, for example, ref. [49]):

SA = gd−1 Vol(Σ)εd−1 + · · ·+ g1 Vol(Σ)1/(d−1)ε−1 + g0 log

(
εd−1

Vol(Σ)

)
+ S0 , (1.18)
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where ε is the short distance cut-off of the theory. The constants gd−1 through g1 depend on

the UV behavior of the theory. The constant g0 is expected to be universal. If we rescale

ε, the coefficient g0 remains unchanged, though the ε-independent term S0 will receive a

shift. Thus, when g0 6= 0 we conclude that S0 is also not physical. However, when g0 equals

zero then it appears that S0 has a well defined meaning independent of the UV cut-off. At

conformal fixed points we will see that when d is odd g0 is non-vanishing and when d is even

g0 vanishes. This is because g0 is proportional to the anomaly coefficient that multiplies the

Euler density, and there are no anomalies when D = d + 1 is odd. Also note that while it

must be true that SA ≥ 0, there are no obvious positivity requirements for g0 and S0.

Heuristically, the ε-dependent terms in eq. (1.18) come from quantum fluctuations across

Σ. These fluctuations take place at the UV length scale ε. The ‘number’ of fluctuations that

occur across Σ is then schematically given by Vol(Σ)εd−1, which gives the leading term in

eq. (1.18). In fact, our quantum mechanical dimer model can be thought of as a toy model

for vacuum fluctuations, where each pair of spins is thought of as a particle anti-particle

pair.

We will be especially interested in the entanglement and Rényi entropies of QFTs at

conformal fixed points. A (d + 1)-dimensional relativistic CFT on Rd,1 is a field theory

which is invariant under conformal transformations (see, for example, ref. [50]). The group

of conformal transformations includes, in addition to the usual Poincaré symmetries, scale

transformations and special conformal transformations. Relativistic theories that are in-

variant under scale transformations are expected to be invariant under the full conformal

group.

One reason we are interested in CFTs is the following. Consider a D-dimensional many-

body quantum system with Hamiltonian H(g), where g is some parameter of the theory.

Suppose there is a special value of g, which we call gc, where the system undergoes a con-

tinuous phase transition. When g = gc we say that g is at a quantum critical point (QCP).

For g near gc the correlation length ζ scales as ζ ∼ |g − gc|−ν � ε, where ν > 0 is a critical
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exponent and ε is the lattice spacing. This implies that it is not necessary to know the details

of the UV theory in order to describe the properties of the low-energy degrees of freedom

near a QCP. If the low-energy degrees of freedom have linear dispersion relations, then the

theory is well approximated by a relativistic CFT.

1.4 Methods for calculating entanglement entropy

We would like to calculate the EE across the entangling surface ΣSd−1 introduced in the

previous section. This section summarizes the methods introduced in [10,11] and references

therein. Let us use a Cartesian chart, with metric

ds2 = ηµνdx
µdxν = −(dx0)2 +

d∑
i=1

(dxi)2 . (1.19)

At x0 = 0, the surface Sd−1 of radius R is described by the equation r ≤ R, where

r ≡
√

(x1)2 + · · ·+ (xd)2 and R is the radius of the sphere. The causal development of

this region, which we call D, is the region in space-time such that any time-like or null curve

which passes through D must necessarily intersect the Sd−1 at x0 = 0. This implies that D

is given by the intersection of two cones in space-time:

D = {r + x0 ≤ R} ∩ {r − x0 ≤ R} , −R ≤ x0 ≤ R . (1.20)

In general there is no simple expression for the reduced density matrix on D. However, when

we have a CFT it is possible to conformally map the region D to the Rindler wedge R of

Minkowski space. In the Rindler wedge the density matrix describes a thermal state with

respect to boosts about the origin. This is the Unruh effect [51], but we are getting ahead

of ourselves. First let us illustrate the conformal map between D and R explicitly.

Consider Minkowski space with coordinates Xµ and metric ds2 = ηµνdX
µdXν . The

Rindler wedge of Minkowski space is the causal development of the X0 = 0 slice correspond-
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ing to the right-half plane X1 ≥ 0 for all X i, i ≥ 2:

R = {X1 +X0 ≥ 0} ∩ {X1 −X0 ≥ 0} , −∞ < X i, X0 <∞ , i ≥ 2 . (1.21)

An explicit conformal mapping of R to D is given by

xµ =
Xµ − (X ·X)Cµ

1− 2(X · C) + (X ·X)(C · C)
+ 2R2Cµ , (1.22)

where we take Cµ = (0, 1/(2R), 0, . . . , 0). This is a combination of a special conformal trans-

formation plus a translation, so the metric can only change by an overall conformal factor.

Indeed, it is straightforward to verify that this is the case. Since we are studying CFTs, this

overall conformal factor is irrelevant. It is also easy to see that that the coordinates xµ given

in (1.22) exactly cover D.

The vacuum |0〉 of the entire Minkowski space is a pure state with density matrix ρ =

|0〉〈0|. We want to obtain the non-trivial reduced density matrix inside of D. If our theory

is conformally invariant, we may equivalently consider the reduced density matrix inside

the Rindler wedge R. The Unruh effect states that if one takes the vacuum of a QFT

in Minkowski space and reduces to the Rindler wedge, the resulting state is thermal with

respect to translations along the directions of boosts. Let us make this more precise. We

define new coordinates t and z such that

X1 ±X0 = ze±t/R , z > 0 , ∀ t ∈ R , (1.23)

so that the metric is the Rindler metric:

ds2 = − z
2

R2
dt2 + dz2 +

d∑
i=2

(dX i)2 . (1.24)
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Notice that the Rindler coordinates naturally cover only the Rindler wedge of Minkowski

space. The parameter R is arbitrary and is put in so that t has dimension of length. The

precise statement of the Unruh effect is that the vacuum of Minkowski space restricted to

the Rindler wedge is described by a thermal state at inverse temperature β = 2πR, with the

Hamiltonian Ĥt being the operator that generates translations in the Rindler time t. From

the point of view of the Cartesian chart, Ĥt generates boosts around the origin. The density

matrix of a thermal state at inverse temperature β is given by

ρ =
e−βĤt

Z
, Z = tr(e−βĤt) . (1.25)

Note that Z is simply the thermal partition function. With this definition we can calculate

thermal expectation values:

〈O〉 = tr(ρO) =
1

Z

∑
n

e−βEn〈n|O|n〉 , (1.26)

where the states {|n〉} are the eigenstates of Ĥt with eigenvalues {En}.

The thermal partition function of a QFT in Lorentz signature is equivalent to the Eu-

clidean path integral, where we analytically continue to imaginary time by defining τ = it

and compactify τ on a circle of radius equal to the inverse temperature β (see, for exam-

ple, [50]). Now let us calculate the Rényi entropies Sq given in eq. (1.11). We see that the

first step is to compute the quantity tr ρq, which in turn requires us to compute the thermal

partition function

Zq = tr exp(−2πqRĤt) = e−Fq , Fq =
1

2πRq
Fq , (1.27)
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where the inverse temperature is β = (2πqR). The quantity Zq is equal to the Euclidean

partition function of the QFT on the space

ds2 =
z2

R2
dτ 2 + dz2 +

d∑
i=2

dX2
i , (1.28)

where now 0 ≤ τ < 2πqR. If we define the angle θ = τ/R, then it is clear that the metric in

eq. (1.28) describes flat space where, for q 6= 1, there is a line of conical singularities at z = 0.

When q = 1 there is no conical singularity. Before moving on, notice that Fq = − log |Zq|

is the Euclidean free energy. The thermal free energy Fq is by convention taken to be this

quantity times the temperature.

We are now in a position to given an expression for the Rényi entropies across ΣSd−1 in

terms of Euclidean path integrals:

Sq =
1

1− q
log

tr e−2πRqHt

(tr e−2πRHt)q
=
qF1 −Fq

1− q
=

2πRq (F1 − Fq)
1− q

. (1.29)

Let us think about how to calculate the entanglement entropy S1. Taking the limit q → 1

in (1.29), one obtains

S1 =
dF (T )

dT

∣∣∣∣
T=1/(2πR)

= −Stherm(1/(2πR)) , (1.30)

where Stherm(T ) is the thermal entropy at temperature T . In general, the definition of the

Helmholtz free energy is

F (T ) = E(T )− TStherm(T ) , (1.31)

where E(T ) = tr(ρqĤt) is the total energy. It follows immediately from (1.30) and (1.31)

that S1 = −2πR[F1 − E(1/2πR)] = −F1 + F ′1.
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In D odd, E(1/(2πR)) = 0 since the trace of the stress-energy tensor vanishes. In D

even, E(1/(2πR)) does not vanish, and it is proportional to the a-type anomaly coefficient.

However, the energy only gives a finite shift to S1, and S1 ∼ logR. Thus, in both D even

and odd we may write S1 = −F1, where it is understood that both sides of the relation refer

to the properly renormalized, universal quantities.

1.4.1 Mapping to R×Hd

Notice that the metric in eq. (1.28) may be written as

ds2 = Ω2

(
dτ 2 +

R2

z2

[
dz2 +

d∑
i=2

dX2
i

])
, (1.32)

with Ω = z/R. This implies that by applying a conformal transformation we can map the

theory from the Rindler wedge to the space S1 × Hd, where Hd is the hyperbolic space of

radius R. We subsequently refer to this space simply as H
(d+1)
q . The metric on H

(d+1)
q may

be written in slightly more convenient coordinates:

ds2
H = R2(dτ 2 + dη2 + sinh2 η dΩ2

d−1) , (1.33)

where 0 ≤ τ < 2πq, 0 ≤ η <∞, and dΩ2
d−1 is the volume element on the unit Sd−2.

The spaces Hd are non-compact, which implies their volumes are infinite and require

regularization. The proper regularization of these volumes uses a hard cutoff at some value

η = η0 [11]:

Vol(Hd) =
dπd/2Rd

Γ
(
d
2

+ 1
) ∫ η0

0

dη sinhd−1 η . (1.34)
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The case of most interest is when d = 2, which gives

Vol(H2) = 2πR2

[
eη0

2
− 1 +

e−η0

2

]
. (1.35)

Taking the finite part of this expression as η0 goes to infinity gives us the regularized volume

Vol(H2) = −2πR2. When d is odd the regularized volume picks up a logarithmic divergence.

For example, in d = 3 we find the regularized volume Vol(H3) = −2πR3 log(R/ε), where we

have redefined the UV regulator to be the short distance regulator ε.

1.4.2 Mapping to the q-fold branched covering of Sd

The metric in eq. (1.33) may be conformally mapped to the metric on the q-fold branched

covering of Sd:

ds2
C = R2

[
cos2 θdτ 2 + dθ2 + sin2 θdΩ2

d−1

]
, (1.36)

where the ranges of the coordinates are 0 ≤ τ < 2πq, 0 ≤ φ < 2π, and 0 ≤ θ < π/2. This

space is referred to as C
(d+1)
q [52]. The conformal equivalence of the metrics on H

(d+1)
q and

C
(d+1)
q is made explicit by identifying sinh η = cos θ, which implies ds2

C = cos2 θds2
H . Note

that when q = 1 the space C
(d+1)
q is simply the round sphere S(d+1). Thus we have shown

that the entanglement entropy of a CFT across the entangling surface ΣSd−1 is equivalent to

minus the free energy of the CFT conformally coupled to curvature on the sphere Sd+1.
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Chapter 2

The F -Theorem

This chapter is a lightly-modified version of the paper [9].

2.1 Introduction

In this chapter I will introduce the F theorem. In particular, I will subject the F -theorem to

tests that do not rely on supersymmetry. Supersymmetric tests of the F theorem were first

performed in [8]. Our approach here is similar to Cardy’s [1] who, in the absence of a proof

of the a-theorem, presented some evidence for it in the context of a CFT on S4 perturbed

by weakly relevant operators. (His work generalizes similar calculations in d = 2 [3,53].) In

sections 2.2 and 2.3 we use the perturbed conformal field theory on S3 to present evidence

for the F -theorem. We also discuss other odd-dimensional Euclidean theories on Sd where

similar perturbative calculations provide evidence that (−1)(d−1)/2 log |Z| decreases along RG

flow. In the particular case d = 1 these calculations were carried out in [54, 55] providing

evidence for the g-theorem.1 In section 2.4 we review the calculations of F for theories

involving free massless boson, fermion, and vector fields. We show that these values are

consistent with the F -theorem for some RG flows. In section 2.5 we consider another class

1The d = 1 dynamics is often assumed to take place on the boundary of a d = 2 conformal field theory.
A proof of the g-theorem in this context was given in [56].
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of examples which involve RG flows in large N field theories perturbed by relevant double-

trace operators. In these cases, the theories flow to IR fixed points, and FIR − FUV can be

calculated even when the double-trace operator is not weakly relevant [57–59]. The results

are consistent with the F -theorem. An explicit example of this kind is the critical O(N)

model. In particular, we show that the flow from the critical O(N) model to the Goldstone

phase, which was earlier found to violate the cTherm-theorem [6, 7], does not violate the

F -theorem.

2.2 Perturbed Conformal Field Theory

In this section we discuss Euclidean conformal field theories perturbed by a slightly relevant

scalar operator of dimension ∆ = d − ε, where 0 < ε � 1. Our approach follows closely

that in [1, 3, 53–55]. To keep the discussion fairly general, we will work in an arbitrary odd

dimension d throughout most of the following calculation, though the case of most interest

to us is d = 3. Our calculations generalize those carried out for d = 1 to provide evidence

for the g-theorem [54,55,60]. We take the action of the perturbed field theory to be

S = S0 + λ0

∫
ddx
√
GO(x) , (2.1)

where S0 is the action of the field theory at the UV fixed point, λ0 is the UV bare coupling

defined at some UV scale µ0, G is the determinant of the background metric, and O(x) the

bare operator of dimension ∆.

2.2.1 Beta function and the running coupling

For the purposes of finding the beta function it is sufficient to work in the flat Rd. For the

CFT on Rd, conformal invariance fixes the functional form of the connected two-point and

37



three-point functions [61], and we choose the normalization of O to be such that

〈O(x)O(y)〉0 =
1

|x− y|2(d−ε) ,

〈O(x)O(y)O(z)〉0 =
C

|x− y|d−ε |y − z|d−ε |z − x|d−ε
,

(2.2)

for some constant C. These correlators correspond to the OPE

O(x)O(y) =
1

|x− y|2(d−ε) +
CO(x)

|x− y|d−ε
+ . . . as x→ y . (2.3)

In the perturbed theory, the coupling runs. The beta function is [1, 50]2

β(g) = µ
dg

dµ
= −εg +

πd/2

Γ
(
d
2

)Cg2 +O(g3) , (2.4)

where µ is the renormalization scale, and g = λµ−ε is the dimensionless renormalized cou-

pling. Integrating this equation with the boundary condition g(µ0) = g0 � 1, where µ0 is a

UV cutoff, we obtain the running coupling

g(µ) = g0

(
µ0

µ

)ε
− πd/2

Γ
(
d
2

)Cg2
0

2ε

[(
µ0

µ

)2ε

−
(
µ0

µ

)ε]
+O(g3

0) . (2.5)

One can understand the two equations above from the following RG argument. Correlation

functions in the interacting theory differ from the ones in the free theory by an extra insertion

of

e−λ0

∫
ddxO(x) = 1− λ0

∫
ddxO(x) +

λ2
0

2

∫
ddx

∫
|x−y|> 1

µ0

ddy O(x)O(y) + . . . , (2.6)

where the condition |x− y| > 1
µ0

comes from imposing the UV cutoff µ0. In obtaining an

effective action at some scale µ, one simply isolates the contribution from modes between

2This equation differs from eq. (9) in [1] by the sign of the second term because our coupling g differs
from the one in [1] by a minus sign.
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energy scales µ0 and µ: for example, we write the last integral in (2.6) as

∫
|x−y|> 1

µ0

ddy O(x)O(y) =

∫
|x−y|> 1

µ

ddy O(x)O(y) +

∫
1
µ0
<|x−y|< 1

µ

ddy CO(x)

|x− y|d−ε
+ . . . (2.7)

where in the region 1
µ0
< |x− y| < 1

µ
we only exhibited the contribution from the second

term in the OPE (2.3). The first term in eq. (2.7) should be thought of as arising from the

effective action at scale µ, while the second term should be interpreted as a renormalization

of the coupling. Combining (2.7) with (2.6), one can deduce that the effective coupling λ(µ)

is:

λ(µ) = λ0 −
Cλ2

0

2

∫
1
µ0
<|x−y|< 1

µ

ddy

|x− y|d−ε
+ . . . = λ0 −

Cλ2
0

2ε
Vol(Sd−1)

[
1

µε
− 1

µε0

]
. (2.8)

Using Vol(Sd−1) = 2πd/2/Γ(d/2), one can further check that this expression agrees with (2.5)

provided g0 = λ0µ
−ε
0 and g(µ) = λ(µ)µ−ε.

If C < 0 then both terms in the beta function (2.4) are positive; thus, g grows along the

flow, and the fate of the IR theory depends on the coefficients of the g3 and higher order

terms. However, if C > 0 then there exists a robust IR fixed point at

g∗ =
Γ
(
d
2

)
ε

πd/2C
+O(ε2) , (2.9)

whose position depends on the coefficient of the g3 term only through the terms of order ε2.

2.2.2 Free energy on Sd

From now on, let us consider the field theory on a d-dimensional sphere Sd of radius a.

Putting the field theory on Sd effectively sets the RG scale µ to be of order 1/a. For

convenience we will set µ = 1/(2a) and express our answers in terms of the renormalized

coupling g at this scale. In the following computations we will also send the UV cutoff

µ0 →∞ after appropriately subtracting any UV divergences.
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The metric on Sd is most conveniently described through stereographic projection to Rd

because in these coordinates the metric is manifestly conformally flat:

ds2 =
4a2(

1 + |x|2
)2

d∑
i=1

(dxi)
2 , |x|2 ≡

d∑
i=1

(xi)
2 . (2.10)

In the unperturbed theory, the connected correlation functions of O on Sd can be obtained

from those in flat space given in eq. (2.2) by conformal transformation:

〈O(x)O(y)〉0 =
1

s(x, y)2(d−ε) ,

〈O(x)O(y)O(z)〉0 =
C

s(x, y)d−εs(y, z)d−εs(z, x)d−ε
,

(2.11)

where

s(x, y) = 2a
|x− y|(

1 + |x|2
)1/2 (

1 + |y|2
)1/2 (2.12)

is the “chordal distance” between points x and y.

The path integral on S3 has UV divergences that should be subtracted away. After

this regularization, which we will perform through analytic continuation, one can essentially

remove the UV cutoff µ0 by sending it to infinity. The resulting regularized path integral

Z0(λ0) depends on the bare coupling λ0. As is standard in perturbative field theory, one can

write down the following series expansion for log |Z(λ0)| in terms of the connected correlators

of the unperturbed theory:

log

∣∣∣∣Z(λ0)

Z(0)

∣∣∣∣ =
∞∑
n=1

(−λ0)n

n!

∫
ddx1

√
G · · ·

∫
ddxn
√
G〈O(x1) · · ·O(xn)〉0 . (2.13)
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We have 〈O(x)〉0 = 0 because the unperturbed theory is a CFT. Using the definition F ≡

− logZ, we can write the first few terms in the above expression as

δF (λ0) ≡ F (λ0)− F (0) = −λ
2
0

2
I2 +

λ3
0

6
I3 +O(λ4

0) , (2.14)

where

I2 =

∫
ddx
√
G

∫
ddy
√
G 〈O(x)O(y)〉0 =

(2a)2επd+1/2

2d−1

Γ
(
−d

2
+ ε
)

Γ
(
d+1

2

)
Γ(ε)

,

I3 =

∫
ddx
√
G

∫
ddy
√
G

∫
ddz
√
G 〈O(x)O(y)O(z)〉0 =

8π3(d+1)/2a3ε

Γ(d)

Γ
(
−d

2
+ 3ε

2

)
Γ
(

1+ε
2

)3 C .

(2.15)

These integrals were evaluated through analytic continuation in ε from a region where they

are absolutely convergent [1].

One can simplify equation (2.14) by expressing it in terms of the renormalized coupling

g instead of the bare coupling λ0 and performing a series expansion in ε. Solving eq. (2.8)

for λ0 (with µ0 →∞ and µ = 1/(2a)), one obtains

λ0(2a)ε = g +
Cπd/2

εΓ
(
d
2

)g2 +O(g3) . (2.16)

Substituting this expression together with the expressions for I2 and I3 from eq. (2.15) into

eq. (2.14) gives

δF (g) = (−1)
d+1

2
2πd+1

d!

[
−1

2
εg2 +

1

3

πd/2

Γ
(
d
2

)Cg3 +O(g4)

]
, (2.17)

where we expanded each coefficient of gn to the first nonvanishing order in ε. By comparing

this formula with the beta function (2.4), we observe that, to the third order in g, the
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derivative of the free energy is proportional to the beta function:

dF

dg
= (−1)

d+1
2

2πd+1

d!
β(g) +O(g2) . (2.18)

The proportionality between dF/dg and β(g) to this order in perturbation theory is not

unexpected: one can show that dF (g)/dg equals the integrated one-point function of the

renormalized operator O,

dF

dg
= µε

∫
ddx
√
G〈Oren(x)〉λ . (2.19)

This one point function is required by conformal invariance to vanish at the RG fixed points.

To the order in g we have been working at, both the beta function and the one point function

of O are quadratic functions, so the fact that conformal invariance forces them to have the

same zeroes implies that they must be proportional. To higher orders in perturbation theory,

we expect that dF/dg will equal β(g) times a nonvanishing function of g.

One can also note that for both signs of C the beta function β(g) is negative to second

order in perturbation theory. Eq. (2.18) then tells us that the quantity F̃ = (−1)
d+1

2 F is

a monotonically decreasing function of the radius of the sphere in all odd dimensions. We

interpret this behavior as a monotonic decrease in F̃ along RG flow between the UV and IR

fixed points. F̃ is stationary at conformal fixed points, supporting the F -theorem in three

dimensions and the g-theorem in one dimension.

Recall that when C > 0 there is a perturbative fixed point at the value of the coupling

g∗ given in (2.9). Eq. (2.17) tells us that the difference between the free energy at this

perturbative fixed point and that at the UV fixed point g = 0 is

δF̃ (g∗) = − (d− 2)!!

2d−1d(d− 1)!!

π2ε3

3C2
. (2.20)
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The case of most interest is d = 3, where

δF (g∗)|d=3 = − π2ε3

72C2
. (2.21)

We will be able to reproduce this expression in a specific example in section 2.5.1.

The arguments above relied heavily on O(x) being a scalar operator. If instead O(x) is

a pseudo-scalar, then the relation

〈O(−x1)O(−x2) . . . O(−xn)〉0 = (−1)n〈O(x1)O(x2) . . . O(xn)〉0 . (2.22)

implies that the integrated n-point functions of O(x) vanish if n is odd. In particular I3 = 0

in equation (2.15), and so the first non-linear correction to the beta function is of order

g3; it comes from integrating the four-point function of O(x) as opposed to the three-point

function as was the case for a scalar operator. Because the form of the four-point function is

not fixed by conformal invariance but rather depends on the details of the theory, it is hard

to say anything general in this case. A specific example of a slightly relevant pseudo-scalar

deformation is discussed in section 2.5.3, with the deformation coming from a fermionic

double trace operator.

2.3 Towards a more general proof of the F-theorem

Let us consider a CFT on Sd perturbed by multiple operators,

S = S0 + λi0

∫
ddx
√
GOi(x) , (2.23)

where the bare operators Oi have dimensions ∆i = d−εi with εi > 0, and S0 is a conformally-

invariant action. In section 2.2 we studied the special case where there was only one such

perturbing operator.
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In terms of the dimensionless running couplings gi, which we will denote collectively by

g, a simple application of the chain rule gives

dF

d log µ
= βi(g)

∂F

∂gi
, βi(g) ≡ dgi

d log µ
, (2.24)

where we introduced the beta functions βi(g). Differentiating the partition function with

respect to gi, one can see that the gradients ∂F/∂gi are given by the general relation:

∂F

∂gi
= µεi

∫
ddx
√
G 〈Oreni(x)〉λ

= (−1)
d+1

2
2πd+1

d!
hij(g)βj .

(2.25)

In the last line of this eq. (2.25) we have defined the matrix hij(g), which can be thought of

as a metric on the space of coupling constants. Consequently, introducing F̃ = (−1)
d+1

2 F as

in the previous section, we have3

dF̃

d log µ
= βihijβ

j . (2.26)

In principle, the entries of the matrix hij(g) could be singular for certain values of the

coupling. A sufficient condition for the F -theorem to hold is that hij(g) is strictly positive

definite for all g. We will see that this is the case at least perturbatively in small g.

The perturbative construction of βi(g) and hij(g) generalizes the computation in sec-

tion 2.2. We can choose our operators Oi(x) so that in flat space the two and three-point

functions at the UV fixed point are

〈Oi(x)Oj(y)〉0 =
δij

|x− y|2∆i
,

〈Oi(x)Oj(y)Ok(z)〉0 =
Cijk

|x− y|∆i+∆j−∆k |y − z|∆j+∆k−∆i |z − x|∆i+∆k−∆j
,

(2.27)

3This equation is analogous to that derived for the c-function in two dimensional field theory [3], where
it contains a metric on the space of coupling constants well-known as the Zamolodchikov metric.
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for some structure constants Cijk. The corresponding OPE is

Oi(x)Oj(y) =
δij

|x− y|2∆i
+

Ck
ijOk(x)

|x− y|∆i+∆j−∆k
+ . . . as x→ y , (2.28)

where Ck
ij = δklClij. These correlators yield the beta functions

βi(g) = µ
dgi

dµ
= −εigi +

πd/2

Γ
(
d
2

)∑
j,k

Ci
jkg

jgk +O(g3) , (2.29)

and the free energy

δF = (−1)
d+1

2
2πd+1

d!

[
−1

2

∑
i

εi(g
i)2 +

πd/2

3Γ
(
d
2

)∑
i,j,k

Cijkg
igjgk +O(g4)

]
. (2.30)

We see that (2.25) is satisfied with

hij(g) = δij +O(g) , (2.31)

so the matrix hij(g) is positive definite to first nonvanishing order in g. Of course, as

long as the perturbative expansion converges, hij(g) will continue to be positive definite at

the very least in a small neighborhood of g = 0. A potential route towards proving the

F -theorem is to construct the metric hij(g) non-perturbatively and demonstrate that it is

positive definite. Such an approach was undertaken in [56] for one-dimensional field theories

that can be realized as boundaries of two-dimensional field theories.

2.4 F -values for free conformal fields

2.4.1 Free conformal scalar field

In this section we calculate the free energy of a free scalar field conformally coupled to the

round Sd. Similar results have appeared in [62,63].
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In d-dimensions the action of a free scalar field conformally coupled to Sd is given by

SS =
1

2

∫
ddx
√
G

[
(∇φ)2 +

d− 2

4(d− 1)
Rφ2

]
. (2.32)

We take the radius of the round Sd to be a, so that the Ricci scalar is R = d(d− 1)/a2. Up

to a constant additive term,

FS = − log |ZS| =
1

2
log det

[
µ−2

0 OS
]
, OS ≡ −∇2 +

d− 2

4(d− 1)
R . (2.33)

where µ0 is the UV cutoff needed to properly define the path integral. At the end of the day

FS will not depend on µ0 or a in odd dimensions. When d ≥ 2, the eigenvalues of OS are

λn =
1

a2

(
n+

d

2

)(
n− 1 +

d

2

)
, n ≥ 0 , (2.34)

and each has multiplicity

mn =
(2n+ d− 1)(n+ d− 2)!

(d− 1)!n!
. (2.35)

The free energy is therefore

FS =
1

2

∞∑
n=0

mn

[
−2 log(µ0a) + log

(
n+

d

2

)
+ log

(
n− 1 +

d

2

)]
. (2.36)

This sum clearly diverges at large n, but it can be regulated using zeta-function regulariza-

tion. By explicit computation, one can see that, unlike in even dimensions, in odd dimensions

we have

∞∑
n=0

mn = 0 , (2.37)
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d FS

3 1
24

(
2 log 2− 3ζ(3)

π2

)
≈ 0.0638

5 −1
28

(
2 log 2 + 2ζ(3)

π2 − 15ζ(5)
π4

)
≈ −5.74× 10−3

7 1
212

(
4 log 2 + 82ζ(3)

15π2 − 10ζ(5)
π4 − 63ζ(7)

π6

)
≈ 7.97× 10−4

9 −1
216

(
10 log 2 + 1588ζ(3)

105π2 − 2ζ(5)
π4 − 126ζ(7)

π6 − 255ζ(9)
π8

)
≈ −1.31× 10−4

11 1
220

(
28 log 2 + 7794ζ(3)

175π2 + 1940ζ(5)
63π4 − 1218ζ(7)

5π6 − 850ζ(9)
π8 − 1023ζ(11)

π10

)
≈ 2.37× 10−5

Table 2.1: The F -value for a free conformal scalar field on Sd.

so there is no logarithmic dependence on µ0a. This is in agreement with the fact that there is

no conformal anomaly in this case. The remaining contribution to this sum can be computed

from the function

−1

2

∞∑
n=0

[
mn(

n+ d
2

)s +
mn(

n− 1 + d
2

)s
]

= −1

2

∞∑
n=0

mn +mn−1(
n− 1 + d

2

)s , (2.38)

whose derivative at s = 0 formally gives (2.36). One can check thatmn+mn−1 is a polynomial

of degree d− 1 in n− 1 + d
2
, so the sum in (2.38) converges absolutely for s > d and can be

evaluated in terms of ζ(s − k, d
2
− 1), with k ranging over all even integers between 0 and

d− 1. In d = 3, for example, we have mn = (n+ 1)2 and mn +mn−1 = 2
(
n+ 1

2

)2
+ 1

2
, so

FS = −1

2

d

ds

[
2ζ

(
s− 2,

1

2

)
+

1

2
ζ

(
s,

1

2

)] ∣∣∣∣
s=0

=
1

16

(
2 log 2− 3ζ(3)

π2

)
≈ 0.0638 . (2.39)

For other values of d, see table 2.1. These results agree with earlier work [62–64]. For all

odd d we note that the the free energy on Sd equals minus the entanglement entropy across

Sd−2 calculated in [65].
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2.4.2 Free massless fermion field

In this section we calculate the free energy of a free massless complex Dirac fermion on the

round Sd. We begin with the free fermion action

SD =

∫
ddx
√
Gψ†(i /D)ψ . (2.40)

Unlike in the case of the free conformal scalar action, the conformal fermion action does not

contain a coupling between the fermion fields and curvature. The free energy is given by

FD = − log |ZD| = − log det
[
µ−1

0 OD
]
, OD ≡ i /D . (2.41)

The eigenvalues of OD are

±1

a

(
n+

d

2

)
, n ≥ 0 , (2.42)

each with multiplicity

m̂n = dim γ

n+ d− 1

n

 . (2.43)

Here, dim γ is the dimension of the gamma matrices in d dimensions. For odd d, dim γ = 2
d−1

2

in the fundamental representation.

One can then write (2.41) as

FD = −2
∞∑
n=0

m̂n

[
− log(µ0a) + log

(
n+

d

2

)]
, (2.44)

and again one can check that
∑∞

n=0 m̂n = 0 in odd dimensions using zeta-function regular-

ization, so there is no logarithmic dependence on µ0a. To compute FD, one can write it

48



d FD/ dim γ

3 1
24

(
2 log 2 + 3ζ(3)

π2

)
≈ 0.110

5 −1
28

(
6 log 2 + 10ζ(3)

π2 + 15ζ(5)
π4

)
≈ −2.16× 10−2

7 1
212

(
20 log 2 + 518ζ(3)

15π2 + 70ζ(5)
π4 + 63ζ(7)

π6

)
≈ 4.61× 10−3

9 −1
216

(
70 log 2 + 12916ζ(3)

105π2 + 282ζ(5)
π4 + 378ζ(7)

π6 + 255ζ(9)
π8

)
≈ −1.02× 10−3

11 1
220

(
252 log 2 + 234938ζ(3)

525π2 + 69124ζ(5)
63π4 + 8778ζ(7)

5π6 + 1870ζ(9)
π8 + 1023ζ(11)

π10

)
≈ 2.32× 10−4

Table 2.2: The F -value for a free massless Dirac fermion field on Sd. Here, dim γ is the
dimension of the gamma matrices on Sd and is equal to 2

d−1
2 in odd dimensions d.

formally as the derivative at s = 0 of the function

2
∞∑
n=0

m̂n(
n+ d

2

)s . (2.45)

One can check that m̂n is a polynomial of degree d−1 in n+ d
2
, so the sum in (2.45) converges

absolutely for s > d and can be expressed in terms of ζ(s − k, d
2
), with k ranging over the

even integers between 0 and d− 1.

For d = 3, m̂n = (n+ 2)(n+ 1), and the F -value of a massless Dirac fermion is

FD = 2ζ ′(−2, 3/2)− 1

2
ζ ′(0, 3/2) =

log 2

4
+

3ζ(3)

8π2
≈ 0.219 . (2.46)

This result agrees with earlier work [64]. 4 For other values of d, see table 2.2. The F -value

of a Majorana fermion is one half the result in table 2.2.

4We note that FD/FS is not a rational number and is quite large, ≈ 3.43. For comparison, we note that
the contribution of a d = 3 massless Dirac fermion to the thermal free energy is 3/2 times that of a massless
real scalar. In d = 4 the a-coefficient of a massless Dirac fermion is 11 times that of a conformal scalar,
while its contribution to the thermal free energy is 7/2 times that of a massless scalar. Only in d = 2 does
the c-coefficient of a massless Dirac fermion equal that of a massless scalar.

49



2.4.3 Chern-Simons Theory

In three dimensions U(N) Yang-Mills theory does not have a UV fixed point. Instead, we

will consider U(N) Chern-Simons gauge theory with level k. The F -value for N = 1 is

1
2

log k, while for N > 1 it was found to be [66]

FCS(k,N) =
N

2
log(k +N)−

N−1∑
j=1

(N − j) log

(
2 sin

πj

k +N

)
. (2.47)

In the weak coupling limit k � N , and for sufficiently large N , this expression may be

approximated by 1
2
N2
(
log k

2πN
+ 3

2

)
. Thus, somewhat surprisingly, the CS theory has a

large F -value, even though it has no propagating degrees of freedom.

In four dimensions, one of the first tests of the a-theorem was provided by the SU(N)

gauge theory coupled to Nf massless Dirac fermions in the fundamental representation [1].

This theory is asymptotically free for Nf < 11N/2. If this is the case, then in the UV the

a-coefficient receives contributions from the N2
c −1 gauge bosons and the NfN free fermions.

In the IR, it is believed that chiral symmetry breaking produces N2
f − 1 Goldstone bosons,

which are the only degrees of freedom that contribute to aIR. The asymptotic freedom

condition Nf < 11N/2 imposes an upper bound on the IR value of a that is restrictive

enough to not violate the a-theorem [1].

In three dimensions we cannot construct similar tests involving U(N) Yang-Mills theory

coupled to fundamental fermions because the UV theory is not conformal. Instead we con-

sider Chern-Simons gauge theories. As a first example take the U(1) Chern-Simons gauge

theory coupled to Nf massless Dirac fermions of charge 1. For k � 1 this theory is weakly

coupled, so the F -value is

FUV ≈
1

2
log k +Nf

(
log 2

4
+

3ζ(3)

8π2

)
+O(Nf/k) . (2.48)
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Now, let us add a mass for the fermion. The IR fixed point is then described by the

U(1) Chern-Simons gauge theory with CS level k ± Nf/2 generated through the parity

anomaly [67, 68], where the sign is determined by the sign of the fermion mass. Therefore,

the IR free energy is 1
2

log(k±Nf/2). It is not hard to check that this is smaller than (5.43).

Now we consider U(N)k Chern-Simons gauge theory coupled to Nf massless fundamental

Dirac fermions. For k � N this is a weakly coupled conformal field theory whose F -value is

FUV ≈
1

2
N2

(
log

k

2πN
+

3

2

)
+NNf

(
log 2

4
+

3ζ(3)

8π2

)
+O(NfN

2/k) . (2.49)

Now, let us add a U(Nf ) symmetric mass for the fermions. The IR fixed point is then

described by the U(N) Chern-Simons gauge theory with CS level k ± Nf/2. Therefore,

FIR = FCS(k ±Nf/2, N). It is not hard to check that FUV > FIR for any Nf if k � N . The

comparison is the simplest if, in addition, we assume k � Nf . Then

FIR ≈
1

2
N2

(
log

k

2πN
+

3

2

)
± NfN

2

4k
+ . . . , (2.50)

making it obvious that FUV > FIR.

2.5 Double trace deformations

In this section we study the change in free energy under a relevant double trace deformation

in a d-dimensional large N field theory, starting from a UV fixed point and flowing to an IR

fixed point. Some of this section is a review of the earlier work [57–59].

2.5.1 Bosonic double trace deformation

Consider a bosonic single trace operator Φ within the UV conformal field theory. Let the

dimension of this operator, ∆, lie inside the range (d/2 − 1, d/2). The lower limit on the

dimension is the unitarity bound. We impose the upper limit on the dimension because we
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will be adding the operator Φ2 to the lagrangian and we want this to be a relevant operator.

There are general arguments [57, 69] that this deformation will cause an RG flow to an IR

fixed point where Φ has dimension d−∆.

We begin with the partition function

Z =

∫
Dφ exp

(
−S0 −

λ0

2

∫
ddx
√
GΦ2

)
= Z0

〈
exp

(
−λ0

2

∫
ddx
√
GΦ2

)〉
0

, (2.51)

where, as in section 2.2, λ0 is the bare coupling defined at the UV scale µ0, Φ is the bare

operator, and expectation values 〈· · · 〉0 are taken with respect to the conformal action S0.

The measure Dφ is schematic for integration over all degrees of freedom in the theory. We

are interested in calculating the difference δF∆ between the free energies of the IR and UV

fixed points,

δF∆ = − log

∣∣∣∣ ZZ0

∣∣∣∣ . (2.52)

We explicitly write δF∆ as a function of the UV scaling dimension ∆ to emphasize the

dependence of the IR free energy on the UV scaling dimension of the single trace operator

Φ.

As in [57] we proceed through a Hubbard-Stratonovich transformation. That is, we

introduce an auxiliary field σ so that

Z

Z0

=
1∫

Dσ exp( 1
2λ0

∫
ddx
√
Gσ2)

∫
Dσ

〈
exp

[∫
ddx
√
G

(
1

2λ0

σ2 + σΦ

)]〉
0

. (2.53)

In this context, large N implies that the higher point functions of Φ are suppressed relative

to the two-point function by factors of 1/N , where we take N large. This allows us to write

〈
exp

(∫
ddx
√
Gσ(x)Φ(x)

)〉
0

= exp

[
1

2

〈(∫
ddx
√
Gσ(x)Φ(x)

)2
〉

0

+O(1/N)

]
. (2.54)
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The integral in equation (2.53) is then simply a gaussian integral, which integrates to give

δF∆ =
1

2
tr log(K) , (2.55)

where

K(x, y) =
1√
G(x)

δ(x− y) + λ0a
d 〈Φ(x)Φ(y)〉0 . (2.56)

We choose to normalize the operator Φ so that the perturbing operator Φ2 has the same

normalization as the operator O in section 2.2. Specifically we take the two-point function

of Φ on the round Sd to be given by

〈Φ(x)Φ(y)〉0 =
1√
2

1

s(x, y)2∆
. (2.57)

We then proceed by expanding the right hand side of equation (2.57) in Sd spherical har-

monics using

1

s(x, y)2∆
=

1

a2∆

∑
n,m

gnY
∗
nm(x)Ynm(y) , (2.58)

where we normalize the Ynm(x) to be orthonormal with respect to the standard inner product

on the unit Sd. The gn coefficients in equation (2.58) can be found in [57], where they are

shown to be

gn = πd/22d−∆ Γ(d
2
−∆)

Γ(∆)

Γ(n+ ∆)

Γ(d+ n−∆)
, n ≥ 0 . (2.59)

The expression for δF∆ (2.55) was evaluated using dimensional regularization in [58] .

Here we briefly review their argument. The eigenvalues of the operator K only depend on

the angular momentum n through the gn coefficients of equation (2.59). States on the sphere
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Sd with angular momentum n have the degeneracy mn given in equation (2.35). One can

therefore write the change in free energy as

δF∆ =
1

2

∞∑
n=0

mn log
[
1 + λ0a

d−2∆gn
]
. (2.60)

Because d− 2∆ > 0, in the IR limit ad−2∆ goes to infinity. Continuing to dimension d < 0,

the sum in equation (2.60) converges and δF∆ becomes

δF∆ =
1

2

∞∑
n=0

mn log

(
Γ(n+ ∆)

Γ(d+ n−∆)

)
, (2.61)

where in simplifying equation (2.60) one uses
∑

nmn = 0 as in eq. (2.37).

The sum in equation (2.61) is evaluated exactly in [58]. In odd dimensions they find

d (δF∆)

d∆
=

(−1)(d+1)/2π2(d− 2∆)

2Γ(1 + d)

sec
[
π
(
∆− d

2

)]
tan
[
π
(
∆− d

2

)]
Γ(1−∆)Γ(1− d+ ∆)

. (2.62)

The result agrees exactly with the dual calculation in AdSd+1 [58]. In the case of most

interest, where d = 3, it reduces to the following simple expression:

d (δF∆)

d∆
= −π

6
(∆− 1)(∆− 3

2
)(∆− 2) cot(π∆) . (2.63)

As a last step, we integrate eq. (2.63) with respect to ∆ to get the final expression for δF∆,

δF∆ = −π
6

∫ 3/2

∆

dx(x− 1)(x− 3

2
)(x− 2) cot(πx) . (2.64)

The upper limit of integration in eq. (2.64) is chosen to be 3/2 because we know that

δF∆=3/2 = 0, as can be seen directly in eq. (2.61), where each term in the sum vanishes when

∆ = d/2. The reason why δF∆=3/2 = 0 is that when ∆ = d/2 the operator Φ2 is marginal.

In figure 2.1 we plot δF∆ over the allowed range of ∆ when d = 3 (solid curve). There

54



0.0 0.5 1.0 1.5 2.0 2.5

-0.06

-0.04

-0.02

0.00

0.02

D

∆
F

D

Figure 2.1: The change in free energy δF between the UV theory and the IR theory when
the UV theory is perturbed by a double trace operator O2, where O has dimension ∆.
The allowed range of ∆ corresponds to the solid section of the curve. The UV theory is
non unitary when ∆ < 1/2 (dotted), and the double-trace deformation is irrelevant when
∆ > 3/2 (dashed).

are two cases of special interest. The first is when ∆ = 1, which corresponds to the O(N)

models we discuss in section 2.5.2. The numerical value for the difference in the free energy

between the IR and UV fixed points in this case is

δF∆=1 = −ζ(3)

8π2
≈ −0.0152 . (2.65)

The second case of interest is when ∆ = 1/2, so that the operator Φ2 corresponds to adding

a mass term for the free scalar field Φ. In this case δF evaluates to

δF∆=1/2 = − 1

16

(
2 log 2− 3ζ(3)

π2

)
≈ −0.0638 . (2.66)

The change in free energy in equation (2.66) is simply minus the free energy of a massive

real scalar field in equation (2.39). This makes sense since in this case we simply integrated

out the real free scalar field Φ. This result can be thought of as a check of our procedure.
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There is one further consistency check we can easily perform. If we take ∆ = (3− ε)/2,

then the IR fixed point is the perturbative fixed point of section 2.2. The coefficient of the

three point function C is easily calculated to be C = 4/
√

2 in this case. Equation (2.21)

predicts that the difference in free energy between the IR and UV fixed points is

δF∆=(3−ε)/2 = −π
2ε3

576
+ o(ε3) . (2.67)

Indeed, expanding the integral in equation (2.64) for ∆ = (3− ε)/2 with ε small reproduces

exactly equation (2.67). This provides another consistency check between the double trace

calculation and the perturbative calculation.

In Fig. 2.1 we also show δF∆ for ∆ > 3/2 (dashed) and ∆ < 1/2 (dotted). In the former

case, the UV double-trace deformation is irrelevant, and so it is not surprising that δF∆ is

positive; we are exchanging the UV and IR fixed points. When ∆ < 1/2, the UV fixed point

is non-unitary and the F -theorem is not required to hold. Indeed, for ∆ less than ≈ 0.2658

there is a region where δF∆ is positive.5

2.5.2 RG flows in O(N) vector models

In this section we discuss RG flows in the O(N) vector models and compare the free en-

ergies of the various fixed points. We begin with the classical O(N) model action in flat

3-dimensional Euclidean space,

S[~Φ] =
1

2

∫
d3x

[
∂~Φ · ∂~Φ +m2

0
~Φ2 +

λ0

2N

(
~Φ · ~Φ

)2
]
, (2.68)

where ~Φ is an N -component vector of real scalar fields. The F -value of the UV fixed point of

this theory is of course just that of N massless free scalar fields: F bos
UV = N

16

(
2 log 2− 3 ζ(3)

π2

)
.

If we take m2 > 0, then all N scalar fields become massive in the IR and we end up with the

5Similarly, the Zamolodchikov c-theorem [3] is not applicable to non-unitarity theories. For explicit
violations of the c-theorem in non-unitary theories see, for example, [70, 71].
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trivial empty theory whose F -value vanishes. The critical model comes from maintaining the

vanishing renormalized mass. This theory has a non-trivial IR fixed point. The difference

between the IR and UV F -values is given in equation (2.65). Therefore for large N the

F -value of the IR fixed point in the critical O(N) model is

F bos
crit =

N

16

(
2 log 2− 3

ζ(3)

π2

)
− ζ(3)

8π2
+O(1/N). (2.69)

The free and critical O(N) vector models have been conjectured [72] to be dual to the min-

imal Vasiliev higher-spin gauge theory in AdS4 [73–75], with different boundary conditions.

Recently, this conjecture has been subjected to some non-trivial tests [76–78], and new ideas

have appeared on how to prove it [79, 80]. It would be very interesting to match our field

theory results for F bos
UV and F bos

crit using the higher spin theory in Euclidean AdS4.

Now consider perturbing the critical O(N) model by the scalar mass term with m2
0 < 0.

As the theory flows to the IR the potential breaks the symmetry from O(N) to O(N − 1),

and so by Goldstone’s theorem we pick up N − 1 flat directions in field space. In the far IR

these Goldstone modes simply become N − 1 free massless scalar fields, with F -value

FGoldstone =
N − 1

16

(
2 log 2− 3

ζ(3)

π2

)
. (2.70)

Thus,

FGoldstone − F bos
crit = − 1

16

(
2 log 2− 5

ζ(3)

π2

)
≈ −0.0486 (2.71)

in agreement with the conjectured F -theorem.

This conclusion should be contrasted with the evolution of the thermal free energy coef-

ficient cTherm. In the critical O(N) model cTherm = 4N/5+O(1) [6,7], while in the Goldstone

phase cTherm = N − 1. Thus, for large enough N the flow from the critical O(N) model to

the Goldstone phase rules out the possibility of a cTherm theorem. On the other hand, the
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coefficient of the stress-energy tensor 2-point function cT decreases when the O(N) model

flows from the critical to the Goldstone phase [81]. Thus, such a flow does not rule out the

possibility of a cT theorem.

Another interesting O(N) model to consider is the d = 3 Gross-Neveu model with N

massless Majorana fermions ψi and the interaction term (ψ̄iψi)2. This model has an inter-

acting UV fixed point where the pseudoscalar operator ψ̄iψi has dimension 1+O(1/N). The

IR fixed point is described simply by N free fermions. Thus, we find that

F ferm
UV =

N

16

(
2 log 2 + 3

ζ(3)

π2

)
+
ζ(3)

8π2
+O(1/N) ,

F ferm
IR =

N

16

(
2 log 2 + 3

ζ(3)

π2

)
.

(2.72)

The higher-spin duals of these theories in AdS4 were conjectured in [82, 83], and recently

these conjectures were subjected to non-trivial tests [76,77]. It would be interesting to derive

the results (2.72) using the higher-spin gauge theory in Euclidean AdS4.

2.5.3 Fermionic double trace deformation

In this section we study the change in free energy under a fermionic double trace deformation

in a large N field theory on Sd. The calculation proceeds analogously to that in section 2.5.1,

where we deformed the UV fixed point by a bosonic double trace deformation. The difference

is that we replace the bosonic operator Φ(x) by a fermionic, single-trace operator χ(x). In

this section we will assume that χ is a complex Grassmann-valued spinor field. In order to

obtain the difference in free energy between the IR and UV fixed points when χ is Majorana,

all one has to do is divide the final result by two.

Let the dimension of the operator χ be ∆, with ∆ inside the range [(d− 1)/2, d/2]. The

lower limit on the dimension is the unitarity bound on spinor operators. The upper limit

on the dimension comes from requiring the operator χ̄χ to be relevant. Just as in the case

of the bosonic double trace deformation, one can argue that the double-trace deformation
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will induce an RG flow that takes the theory to an IR fixed point where χ has dimension

d−∆ [59].

We want to compute the F -value of the IR fixed point, so we need to calculate the free

energy of the theory on the round Sd. The partition function on Sd is given by

Z = Z0

〈
exp

(
−λ0

∫
ddx
√
Gχ̄χ

)〉
0

, (2.73)

where λ0 is the coupling of dimension d − 2∆. The calculation of the expectation value in

equation (2.73) was presented in [59], and here we summarize their derivation. First, we

introduce a complex auxiliary spinor field η and write

Z

Z0

=
1∫

DηDη̄ exp(
∫
ddx
√
Gη̄η)

∫
DηDη̄

〈
exp

[∫
ddx
√
G
(
η̄η +

√
λ0(η̄χ+ χ̄η)

)]〉
0

.

(2.74)

Just as in the bosonic case, the assumption of large N comes into play by taking the expec-

tation value inside of the exponential, giving

〈
exp

[∫
ddx
√
G
√
λ0(η̄χ+ χ̄η)

]〉
0

= exp

[
λ0

∫
ddx
√
G

∫
ddy
√
Gη̄(x) 〈χ(x)χ̄(y)〉0 η(y) + o(1/N0)

]
.

(2.75)

We assume that n-point functions, with n > 2, are suppressed by inverse power of N . The

integral in equation (2.74) is then Gaussian. Exponentiating the result to give the change

in free energy δF∆ we find

δF∆ = − tr log(K̂) , (2.76)
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where

K̂(x, y) =
1√
G(x)

δ(x− y) + λ0a
d 〈χ(x)χ̄(y)〉0 . (2.77)

In flat space we choose the fermion two-point function to have the normalization

Ĝ(x, y) = 〈χ(x)χ̄(y)〉0 =
γ · (x− y)

|x− y|2∆+1
. (2.78)

We need to find the eigenvalues and degeneracies of the operator Ĝ on the sphere. This

problem is solved in [59] and here we simply quote the result.6 The eigenvalues

ĝn ∝ ±i
Γ(n+ ∆ + 1/2)

Γ(n+ d−∆ + 1/2)
, n ≥ 0 (2.79)

come in conjugate pairs and are indexed by the integer n that runs from zero to infinity. In

equation (2.79) we leave off any n independent proportionality factors, because as we will

see below these factors do not contribute to the free energy in the IR limit. At each level n

there is a degeneracy m̂n given in equation (2.43).

Analytically continuing to the region of the complex plane where Re(d) < 1, the trace in

equation (2.76) converges and in the IR limit we can write

δF∆ = −2
∞∑
n=0

m̂n log
Γ(n+ ∆ + 1/2)

Γ(n+ d−∆ + 1/2)
. (2.80)

The sum in equation (2.80) is easily evaluated using the methods in [58]. After a simple

calculation one finds the result (specifying to three-dimensions)

δF∆ = −2π

3

∫ 3/2

∆

dx

(
x− 1

2

)(
x− 3

2

)(
x− 5

2

)
tan(πx) , ∆ ∈

(
1,

3

2

)
. (2.81)

6See section 5.3 of that paper.
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In figure 2.2 we plot the change in free energy δF over this range of ∆.

1.1 1.2 1.3 1.4 1.5
D

-0.20

-0.15

-0.10

-0.05

∆FD

Figure 2.2: The change in free energy δF between the IR theory and the UV theory when
the UV theory is perturbed by a a double trace operator χ̄χ, where χ is a fermionic operator
of dimension ∆.

Just as in the bosonic case, we can check this procedure by evaluating δF when χ has

the dimensionality ∆ = 1 of a free spinor field. The integral in equation (2.81) evaluates to

δF∆=1 = −1

8

(
2 log 2 + 3

ζ(3)

π2

)
≈ −.219 . (2.82)

Comparing to equation (2.46), we see that this is the F -value of a massless complex spinor

field. Intuitively this makes sense, because in this case all we have done is to integrate out

a massive free complex spinor.

We note that, as in section 2.5.1, δF vanishes for ∆ = 3/2 where the double-trace

operator is marginal. One might be tempted to expand equation (2.81) for ∆ near 3/2 and

attempt to compare with the perturbative result in equation (2.21). One would quickly find

that this does not work. Indeed, letting ∆ = (3− ε)/2 we see that

δF∆=(3−ε)/2 = − ε
3

+O(ε3) . (2.83)
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The leading change in the free energy is order ε while in the perturbative calculation of

section 2.2 the change in free energy is order ε3.

The resolution is that the perturbing operator O = χ̄χ is a pseudo-scalar, as can be seen,

for example, from the fact that the correlation functions of an odd number of O(xi) change

sign under xi → −xi. From eq. (2.78), one can compute explicitly the connected correlation

functions in flat space:

〈O(x)O(y)〉 =
dim(γ)

|x− y|4∆
,

〈O(x)O(y)O(z)〉0 = 2i dim(γ)
εijk(x− y)i(y − z)j(z − x)k
(|x− y||y − z||z − x|)2∆+1

,

〈O(x)O(y)O(z)O(w)〉0 = − dim(γ)

(
2XxzywXxwyz + 2XxyzwXxzyw + 2XxyzwXxwyz

+XxyyzXxwzw +XxyxwXyzzw

)
,

(2.84)

where we have defined

Xabcd ≡
(a− b) · (c− d)

|a− b|2∆+1 |c− d|2∆+1
. (2.85)

That the n-point functions change sign under reflection implies that only odd powers of the

coupling appear in the beta function, and also that only even powers of the coupling appear

in an expansion of the free energy as in eq. (2.14). We believe that all coefficients in the

expansions of the beta function and δF as power series in the coupling constant are O(ε),

as can be checked explicitly for the case of the four-point function in (2.84). It follows that

the IR fixed point does not occur when the coupling g is small. One would therefore need

to calculate all the terms in eq. (2.14) in order to find the change in the F -value along the

RG flow.

62



Chapter 3

Entanglement Entropy of 3-d

Conformal Gauge Theories with

Many Flavors

This chapter is a lightly-modified version of the paper [13].

3.1 Introduction

Many interesting quantum critical points of condensed matter systems in two spatial dimen-

sions [84–97] are described by conformal field theories (CFT) in three spacetime dimensions

where massless fermionic and/or bosonic matter interacts with deconfined gauge fields. These

include critical points found in insulating antiferromagnets and d-wave superconductors and

between quantum Hall states. Such CFTs can be naturally analyzed by an expansion in

1/NF , where NF is the number of ‘flavors’ of matter. This large NF limit is taken at fixed

Nc, where Nc is a measure of the size of the gauge group e.g. the non-abelian gauge group

U(Nc). Classic examples of such CFTs include three-dimensional U(1) gauge theory coupled

to a large number of massless charged scalars [98] or Dirac fermions [99,100]. These theories

are conformal to all orders in the 1/NF expansion, and they are widely believed to be confor-
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mal for NF > Ncrit, where Ncrit is a conjectured critical number of flavors dependent on the

choice of the gauge group [99,100]. The 3-dimensional CFTs may also contain Chern-Simons

terms whose coefficients k may be taken to be large.

In any 3-dimensional field theory with N ≥ 2 supersymmetry, the S3 free energy F may

be calculated using the method of localization [31, 101–103]. It has also been calculated in

some simple non-supersymmetric CFTs, such as free field theories [9, 65, 104, 105] and the

Wilson-Fisher fixed point of the O(N) model for large N [9], which has been conjectured [72]

to be dual to Vasiliev’s higher-spin gauge theory in AdS4 [74]. In this chapter we present the

calculation of F in certain 3-d gauge theories coupled to a large number of massless flavors,

to the first subleading order in 1/NF . We will find that this subleading term is of order

logNF .

The CFTs we study have the following general structure. The matter sector has Dirac

fermions ψα, α = 1 . . . Nf , and complex scalars, za, a = 1 . . . Nb. We will always take the

large Nf limit with Nb/Nf fixed, and use the symbol NF to refer generically to either Nf or

Nb. These matter fields are coupled to each other and a gauge field Aµ by a Lagrangian of

the form

Lm =

Nf∑
α=1

ψαγ
µDµψα +

Nb∑
a=1

(
|Dµza|2 + s|za|2 +

u

2

(
|za|2

)2
)

+ . . . , (3.1)

where Dµ = ∂µ − iAµ is the gauge covariant derivative, and the ellipses represent additional

possible contact-couplings between the fermions and bosons, such as a Yukawa coupling.

The scalar “mass” s generally has to be tuned to reach the quantum critical point at the

renormalization group (RG) fixed point, which is described by a three dimensional CFT;

however, this is the only relevant perturbation at the CFT fixed point, and so only a single

parameter has to be tuned to access the fixed point. In some cases, such scalar mass terms

are forbidden, and then the CFT describes a quantum critical phase. All other couplings,
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such as u and the Yukawa coupling, reach values associated with the RG fixed point, and so

their values are immaterial for the universal properties of interest in the present chapter.

The gauge sector of the CFT has a traditional Maxwell term, along with a possible

Chern-Simons term

LA =
1

2e2
TrF 2 +

ik

2π
Tr

(
F ∧ A− 1

3
A ∧ A ∧ A

)
. (3.2)

The gauge coupling e2 has dimension of mass in three spacetime dimensions. It flows to an

RG fixed point value, and so its value is also immaterial; indeed, we can safely take the limit

e2 →∞ at the outset. However, our results will depend upon the value of the Chern-Simons

coupling k, which is RG invariant. We will typically take the large NF limit with k/NF fixed

at fixed Nc, and in most of this chapter we set Nc = 1 for simplicity. (This is to be contrasted

with the ‘t Hooft type limit of large Nc where k/Nc is held fixed; see, for example, recent

work [36, 106, 107].) One of our principal results, established in section 3.3, is that for the

U(1) gauge theory with Chern-Simons level k, coupled to Nf massless Dirac fermions and

Nb massless complex scalars of charge 1 as in (3.1) with s = u = 0,

F =
log 2

4
(Nf +Nb) +

3ζ(3)

8π2
(Nf −Nb) +

1

2
log

π
√(

Nf +Nb

8

)2

+

(
k

π

)2
+ . . . . (3.3)

This formula shows that the entanglement entropy is not simply the sum of the topological

contribution −1
2

log k and the contribution of the gapless bulk modes, unlike in the models

of [108]. For CFTs with interacting scalars relevant for condensed matter applications,

we have to consider the u → ∞ limit, and this yields a correction of order unity, with

F → F − ζ(3)/(8π2) at this order [9]. All higher order corrections to (3.3) are expected to

be suppressed by integer powers of 1/NF , whose coefficients do not contain any factors of

logNF .
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In section 3.4 we will examine similar N = 2 supersymmetric CFTs on S3 using the local-

ization approach. We consider theories with chiral and non-chiral flavorings. The partition

function Z on S3 is given by a finite-dimensional integral, which has to be locally minimized

with respect to the scaling dimensions of the matter fields [31]. For a theory with N charged

superfields we develop 1/N expansions for the scaling dimensions and for the entanglement

entropy. As for the non-supersymmetric case, the subleading term in F is of order logN .

The coefficient of this term computed via localization agrees with the direct perturbative

calculation (3.3).

In the supersymmetric case it is possible to develop the 1/N expansions to a rather

high order, and we compare them with precise numerical results. This comparison yields

an unprecedented test of the validity and accuracy of the 1/N expansion. At least for

supersymmetric CFTs, we find the 1/N expansion is accurate down to rather small values

of N . We also note a recent numerical study [109], which found reasonable accuracy in the

1/Nb expansion for a non-supersymmetric CFT.

3.2 Mapping to S3 and large NF expansion

Let us start by examining the case of a U(1) gauge field. After sending e2 →∞, the combined

Lagrangian Lm +LA obtained from (3.1) and (3.2) contains two relevant couplings s and u,

and we should first understand to what values we need to tune them in order to describe an

RG fixed point. Let’s ignore for the moment the fermions and the gauge field and focus on

the complex scalar fields. The path integral on a space with arbitrary metric is

Z =

∫
Dza exp

[
−
∫
d3r
√
g
(
|∂µza|2 + s|za|2 +

u

2

(
|za|2

)2
)]

. (3.4)
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With the help of an extra field λ, this path integral can be equivalently written as

Z = C
∫
DzaDλ exp

[
−
∫
d3r
√
g

(
|∂µza|2 + s|za|2 − iλ|za|2 +

1

2u
λ2

)]
, (3.5)

where the normalization factor C defined through C
∫
Dλ exp

[
−
∫
d3r
√
g
(

1
2u
λ2
)]

= 1 was

introduced so that the value of the path integral stays unchanged.

In flat three-dimensional space, we can tune s = u = 0 and describe a non-interacting

CFT of Nb complex scalars. If instead we tune s = 0 and send u → ∞, the path integrals

(3.4) and (3.5) describe the interacting fixed point that we will primarily be interested in

in this chapter. We can also send both s and u to infinity, in which case the path integrals

above describe the empty field theory. Using conformal symmetry, we can map each of these

fixed points to S3 by simply mapping all the correlators in the theory. Indeed, since the

metric on S3 is equal to that on R3 up to a conformal transformation,

ds2
S3 =

4(
1 + |~r|2

)2ds
2
R3 , (3.6)

the mapping of correlators to S3 is achieved by replacing

~r − ~r′ → 2(~r − ~r′)(
1 + |~r|2

)1/2 (
1 + |~r′|2

)1/2 (3.7)

in all the flat-space expressions.1 While the theory on S3 defined this way certainly has

the correlators of a CFT, it may be a priori not clear which action, and in particular which

values of s and u, one should choose in order to reproduce these correlators.

In order to study the free theory on S3 one should tune s = 3/4 and u = 0. This result

holds to all orders in Nb and one can understand it as follows. The two-point connected

1This replacement certainly works for correlators of scalar operators. In the case of vector operators it
is still true that one can use (3.7) provided that the S3 correlators are expressed in a frame basis, as in the
following section.
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correlator of za on R3 is

〈z̄a(r)zb(r′)〉R
3

free =
δab

4π
∣∣∣~r − ~r′∣∣∣ , (3.8)

because it is the unique solution to the equation of motion following from (3.4) with a delta-

function source, −∇2
R3〈z̄a(r)zb(r′)〉R

3

free = δabδ
(3)(~r − ~r′). Using the mapping (3.7) we infer

that the corresponding two-point correlator on S3 should be

〈z̄a(r)zb(r′)〉S
3

free =
δab
(
1 + |~r|2

)1/2 (
1 + |~r′|2

)1/2

8π
∣∣∣~r − ~r′∣∣∣ . (3.9)

An explicit computation shows that
(
−∇2

S3 + 3/4
)
〈za(r)zb(r′)〉S

3

free = δabδ
(3)(~r − ~r′)/

√
g(r),

which is indeed the equation of motion that would follow from (3.4) with s = 3/4 and

u = 0. This result was of course to be expected because a mass squared given by s = 3/4

corresponds to a conformally coupled scalar.

A more subtle issue is how to map to S3 the interacting fixed point, which in flat space

had s = 0 and u = ∞. As explained for example in [57], the generating functional of

connected correlation functions of the singlet operator |za|2 in the theory with u =∞ equals

the Legendre transform of the corresponding generating functional in the theory with u = 0,

to leading order in a large Nb expansion. This result holds on any manifold, and in particular

on both R3 and S3, and it assumes the other couplings in the theory are held fixed. If we

set s = 0 on R3 and s = 3/4 on S3, the Legendre transform assures us, for example, that to

leading order in Nb the two-point correlators in the theory with u =∞ are

〈|za(r)|2|zb(r′)|2〉R
3

critical =
cNb

|~r − ~r′|4
,

〈|za(r)|2|zb(r′)|2〉S
3

critical =
cNb

(
1 + |~r|2

)2 (
1 + |~r′|2

)2

16 |~r − ~r′|4
,

(3.10)
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with the same normalization constant c, which is consistent with the conformal mapping

of correlators realized through eq. (3.7). While in the free theory za is a free field and the

operator |za|2 therefore has dimension 1, in the interacting theory |za|2 is a dimension 2

operator. To study the interacting fixed point on S3 we therefore should set s = 3/4 +

O(1/Nb) and take u→∞ in (3.5).

Reintroducing the fermionic and gauge fields, we can write down the action as

S =

∫
d3r
√
g

[
ψαγ

µDµψα + |Dµza|2 + (s− iλ) |za|2 +
1

2u
λ2

]
+
ik

4π

∫
A ∧ dA . (3.11)

This action is of course invariant under gauge transformations, and therefore a correct defi-

nition of the path integral requires gauge fixing:

Z =
1

Vol(G)

∫
DADX e−S[A,X] , (3.12)

where Vol(G) is the volume of the group of gauge transformations, and X denotes generically

all fields besides the gauge field. One justification for this normalization of the path integral

is that for a pure Chern-Simons gauge theory on S3 it yields the expected answer [66]

Z = 1/
√
k, as will emerge from our computations below. Because the first cohomology of

S3 is trivial, we can write uniquely any gauge field configuration A as A = B + dφ, where

d∗B = 0 and φ is defined only up to constant shifts. One should think of B as the gauge-fixed

version of A and of dφ as the possible gauge transformations of A. Since the action S[A,X]

is gauge-invariant, it is independent of φ and only depends on B: S[A,X] = S[B,X].

We claim that

DA = DBD(dφ) = DBD′φ
√

det ′ (−∇2) , (3.13)

where D′φ means that we’re not integrating over configurations with φ = constant, and det′

denotes the determinant with the zero modes removed from the spectrum. To understand
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this relation, first note that the space Ωp(S3) of p-forms on S3 is a metric space with the

distance function D(ω, ω + δω) =
(∫
|δω|2

)1/2
. Then D(dφ, dφ + dδφ) =

(∫
|dδφ|2

)1/2
=(∫

δφ (−∇2) δφ
)1/2

after integration by parts, and also D(φ, φ+ δφ) =
(∫
|δφ|2

)1/2
. In other

words, for each component of φ in a basis of eigenfunctions of the Laplacian, the distance

between dφ and dφ+dδφ is larger than the distance between φ and φ+ δφ by a factor of the

square root of the eigenvalue with respect to −∇2. Eq. (3.13) follows as a straightforward

change of variables.

The gauge transformations are maps from S3 into the Lie algebra of the gauge group.

The volume of the group of gauge transformations Vol(G) can be expressed as

Vol(G) = Vol(H)

∫
D′φ , (3.14)

where H is the group of constant gauge transformations, and
∫
D′φ is an integral over

the non-constant gauge transformations with the measure given by the metric function D

introduced in the previous paragraph. In the case of a compact U(1) with Vol(U(1)) = 2π,

a constant gauge transformation φ = c has c ∈ [0, 2π). Therefore

Vol(H) =

∫ 2π

0

dc
D(c, c+ δc)

δc
=

∫ 2π

0

dc

√∫
1 = 2π

√
Vol(S3) . (3.15)

Combining (3.12)–(3.15) we obtain

Z =
C
√

det ′ (−∇2)

2π
√

Vol(S3)

∫
DψαDzaDBDλe−S[ψα,za,B,λ] . (3.16)

In this chapter we will use the partition function in eq. (3.16) to compute F = − log |Z| in

the limit where Nf , Nb, and k are taken to be large and of the same order.

To leading order in the number of flavors we can ignore the gauge field and the Lagrange

multiplier field λ. Setting s = 3/4 as discussed above, we can write down the resulting path
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integral as

Z0 =

∫
DψαDza exp

[
−
∫
d3r
√
g

(
ψαγ

µ∇µψα + |∂µza|2 +
3

4
|za|2

)]
. (3.17)

In this approximation we have a theory of free Nf Dirac fermions and Nb complex scalars

with the free energy [9]

F0 =
log 2

4
(Nf +Nb) +

3ζ(3)

8π2
(Nf −Nb) . (3.18)

To find the corrections to F0 we write (3.16) approximately as

Z ≈ e−F0
C
√

det ′ (−∇2)

2π
√

Vol(S3)

∫
DBDλe−Seff[λ]−Svec

eff [B] , (3.19)

with

Seff[λ] =

∫
d3r
√
g(r)

1

2u
λ(r)2 − 1

2

∫
d3r
√
g(r)

∫
d3r′

√
g(r′)λ(r)λ(r′)

〈
|za(r)|2|zb(r′)|2

〉S3

free

Svec
eff [B] =

ik

4π

∫
B ∧ dB − 1

2

∫
d3r
√
g(r)

∫
d3r′

√
g(r′)Bµ(r)Bν(r

′) 〈Jµ(r)Jν(r′)〉S
3

free ,

(3.20)

where

Jµ(r) = ψ̄α(r)γµψα(r) + iz̄a(r)∂
µza(r)− iza(r)∂µz̄a(r) . (3.21)

In writing the effective action (3.20) we used 〈|za(r)|2〉S
3

free = 0, which follows from the fact

that the free theory (3.17) is a CFT.
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Defining

δFλ = − log

∣∣∣∣C ∫ Dλe−Seff[λ]

∣∣∣∣ ,
δFA = − log

∣∣∣∣∣
√

det ′(−∆)

2π
√

Vol(S3)

∫
DB e−S

vec
eff [B]

∣∣∣∣∣ ,
(3.22)

we can then write F = F0 + δFλ + δFA + o(N0). The quantity δFλ was computed in [9]:

δFλ = −ζ(3)

8π2
. (3.23)

We devote the next section of this chapter to calculating δFA.

3.3 Gauge field contribution to the free energy

3.3.1 Performing the Gaussian integrals

Let’s denote by Kµν the integration kernel appearing in SAeff, namely

Kµν(r, r′) = −〈Jµ(r)Jν(r′)〉S3

free +
ik

2π

δ3(r − r′)√
g(r)

1√
g(r′)

εµνρ∂′ρ . (3.24)

As discussed above, when one writes A = dφ + B the action should be independent of φ,

so pure gauge configurations Aν(r
′) = ∂′νφ(r′) are exact zero modes of the kernel Kµν(r, r′).

Since we should integrate over the gauge-fixed field B only, the Gaussian integration of the

effective theory Svec
eff [B] yields 1/

√
det ′(Kµν/(2π)). Again, the prime means that we remove

the zero modes from the spectrum when we calculate the determinant.

Reinstating the radius R of the sphere measured in units of some fixed UV cutoff, the

discussion in the previous two paragraphs can be summarized as

δFA =
1

2
tr′ log

[
Kµν

2πR

]
− 1

2
tr′ log

[
−∇

2

R2

]
+ log

(
2π
√
R3 Vol(S3)

)
, (3.25)
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where all the operators are defined on an S3 of unit radius. Out of the first two terms in

this expression, the second one is the easier one to calculate (see also [64]). The spectrum of

the Laplacian on a unit-radius S3 consists of eigenvalues n(n+ 2) with multiplicity (n+ 1)2

for any n ≥ 0. One first rearranges the terms in the sum as

1

2
tr′ log

(
−∇

2

R2

)
=

1

2

∞∑
n=1

(n+ 1)2 log
n(n+ 2)

R2
=
∞∑
n=1

(n2 + 1) log
n

R
− log(2/R)

2
. (3.26)

Then, using zeta-function regularization one writes

1

2
tr′ log

(
−∇

2

R2

)
= − log(2/R)

2
− d

ds

∞∑
n=1

n2 + 1

(n/R)s

∣∣∣∣∣
s=0

=
ζ(3)

4π2
+

log(πR2)

2
. (3.27)

Combining this expression with eq. (3.25) and using Vol(S3) = 2π2, we obtain

δFA =
1

2
tr′ log

[
Kµν

2πR

]
− ζ(3)

4π2
+

log (8π3R)

2
. (3.28)

The only remaining task is the computation of the first term in this equation that we perform

in the next subsection by explicit diagonalization of Kµν .

3.3.2 Diagonalizing the kernel Kµν(r, r′)

Ultimately we would like to diagonalize the kernel Kµν on S3. However, as a warm up it is

instructive to consider the same diagonalization problem in flat space first.

Warm-up: Diagonalization on R3

The first step is to calculate the two-point function of current 〈Jµ(r)Jν(0)〉R3

free, where we use

the superscript R3 to emphasize that we are in flat space. If we normalize the two-point
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functions of za and ψα to be

〈z̄a(r)zb(0)〉R3

free =

∫
d3p

(2π)3

δab

|p|2
eip·r =

δab
4π |r|

〈ψα(r)ψ̄β(0)〉R3

free =

∫
d3p

(2π)3

δαβγ
µpµ

|p|2
eip·r =

i

4π

δαβγ
µrµ

|r|3
,

(3.29)

then the two-point function of the current may be straightforwardly calculated to be

〈Jµ(r)Jν(0)〉R3

free =
Nf +Nb

8π2

|r|2 δµν − 2rµrν

|r|6
. (3.30)

It is simple to check that eq. (3.30) is of the right form. This correlator is fixed up to an

overall constant by the requirements that it should be homogeneous of degree −4 in r (Jµ is

a dimension 2 operator) and that away from r = 0 it should satisfy the conservation equation

∂µ〈Jµ(r)Jν(0)〉R3 = 0. Using

∫
d3r

eip·r

|r|4
= −π2 |p| ,

∫
d3r

eip·r

|r|6
=
π2

12
|p|3 , (3.31)

and introducing the Fourier space representation of the kernel Kµν via

Kµν(r, r
′) =

∫
d3p

(2π)3
Kµν(p)e

ip·(r−r′) , (3.32)

one obtains [96]

Kµν(p) =
Nf +Nb

16
|p|
(
δµν −

pµpν

|p|2

)
+

k

2π
εµν

ρpρ . (3.33)

For fixed p, the eigenvalues of this matrix are

0 ,
|p|
2

(
Nf +Nb

8
± ik

π

)
. (3.34)
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The eigenvector associated with the zero eigenvalue is as expected ipνe
ip·r′ , corresponding to

a gauge configuration Aν = ∂νφ. We will now see that on S3, while the diagonalization of

Kµν is significantly more complicated, the answer is equally simple: the magnitude of the

momentum p appearing in (3.34) should be replaced by a positive integer label n.

Diagonalization on S3

When we work with vector fields on S3 it is convenient to introduce the dreibein

ei(r) =
2

1 + |r|2
dri (3.35)

and work only with frame indices. For example,

〈J i(r)J j(r′)〉S3

free = eiµ(r)ejν(r
′)〈Jµ(r)Jν(r′)〉S3

free . (3.36)

The frame indices i and j are raised and lowered with the flat metric, so there is no distinction

between lower and upper frame indices in Euclidean signature.

Using the transformation of correlators under Weyl rescalings in eq. (3.7), one can im-

mediately write down the current two-point function on S3:

〈J i(r)J j(0)〉S3

free =
Nf +Nb

8π2

(
1 + |r|2

)2

2

|r|2 δij − 2rirj

|r|6
. (3.37)

As in flat space, the form of this correlator is fixed by the requirement that away from r = 0

we must have ∇i〈J i(r)J j(0)〉 = 0.

To understand the diagonalization of Kij on S3 we need to know that the space of square-

integrable one-forms on S3, being a vector space acted on by the SO(4) ∼= SU(2)L×SU(2)R

isometry group, decomposes into irreducible representations of SO(4) as follows. Any one-

form ω can be written as a sum of a closed one-form and a co-closed one-form. The closed

one-forms on S3 are of course cohomologous to zero, so they’re also exact. A basis for
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them therefore consists of the gradients of the usual spherical harmonics. Like the spherical

harmonics, they transform in irreps with jL = jR. On the other hand, the co-closed one-forms

transform in irreps with jL = jR ± 1. So an arbitrary one-form can be written as

ωi(r) =
∑
n,`,m

[
ωSn`mSn`mi (r) + ωLn`mVn`m

L,i (r) + ωRn`mVn`m
R,i (r)

]
, (3.38)

where we denoted by Sn`mi the closed component transforming in the irrep with jL = jR =

(n − 1)/2 and by Vn`m
L,i and Vn`m

R,i the co-closed components transforming in the irreps with

jR = jL + 1 = n/2 and jL = jR + 1 = n/2, respectively. All the harmonics appearing in

(3.38) have n ≥ 2. For Sn`mi there are n2 states in each irrep indexed by the integers ` and

m satisfying 0 ≤ ` < n and −` ≤ m ≤ `. For the other two classes of vector harmonics, we

have the same bounds on m but now 0 < ` < n, giving a total dimension of n2 − 1 for each

irrep.

The SO(4) generators commute with the kernel Kij, so the eigenvectors of this kernel

can be taken to be Sn`mi , Vn`m
L,i , and Vn`m

R,i . The spectral decomposition of Kij is therefore

Kij(r, r
′) =

∑
n,`,m

[
snSn`mi (r)Sn`mj (r′)∗ + vLnVn`m

L,i (r)Vn`m
L,j (r′)∗ + vRnVn`m

R,i (r)Vn`m
R,j (r′)∗

]
, (3.39)

where sn, vLn , and vRn are the corresponding eigenvalues. These eigenvalues are independent

of ` and m because for fixed n one can change ` and m by acting with the SO(4) generators,

which commute with Kij. The degeneracy of sn is n2 and that of vLn and vRn is n2 − 1, with

n ≥ 2.

Given Kij one can find its eigenvalues by taking inner products with the eigenvectors.

Using rotational invariance, one can actually set r′ = 0 after summing over ` and m. For

example,

sn =
Vol(S3)

n2

n−1∑
`=0

∑̀
m=−`

∫
S3

d3r Sn`mi (r)∗Kij(r, 0)Sn`mj (0) , (3.40)
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where the n2 in the denominator is the dimension of the SO(4) irrep to which Sn`mi belong.

We notice that only the harmonics with ` = 1 contribute, so

sn =
Vol(S3)

n2

1∑
m=−1

∫
S3

d3r Sn1m
i (r)∗Kij(r, 0)Sn1m

j (0) , (3.41)

with similar expressions for vLn and vRn , the only difference being that n2 should be replaced

by n2 − 1.

Using explicit formulae for the harmonics (see Appendix A of [13]), one obtains

sn =
Nf +Nb

64πn(n2 − 1)

∫ π

0

dχ csc6 χ

2
sinχ

[
−2n cos(nχ) sinχ+

(
1− n2 + cosχ(n2 + 1)

)
sin(nχ)

]
(3.42)

and

vL,Rn =
Nf +Nb

64πn(n2 − 1)

∫ π

0

dχ csc6 χ

2
sinχ

[
n sinχ cos(nχ) +

(
n2 − n2 cosχ− 1

)
sinnχ

]
± ikn

2π
.

(3.43)

The integration variable χ appearing here is related to r through |r| = cot(χ/2).

We expect sn = 0 because of gauge invariance. Both (3.43) and (3.42) are divergent at

χ = 0, and need to be regulated. A way of regulating them that doesn’t preserve gauge

invariance is to replace csc6 χ
2

by cscα χ
2
, compute these integrals for values of α for which

they are convergent, and then formally set α = 6. Another way would be to assume s2 = 0,

and calculate sn − s2 and vn − s2, which are now convergent integrals. Both of these ways

of regulating (3.42) and (3.43) give

sn = 0 , vLn =
n(Nf +Nb)

16
+
ikn

2π
, vRn =

n(Nf +Nb)

16
− ikn

2π
. (3.44)

Note the similarity between these expressions and the corresponding flat-space ones in

eq. (3.34).
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3.3.3 Contribution to the free energy

We can now evaluate the first term in (3.28):

1

2
tr′ log

(
Kµν

2πR

)
=
∞∑
n=2

(n2 − 1) log

∣∣∣∣ vLn2πR

∣∣∣∣
=

1

2
log

 1

8π2

√(
Nf +Nb

8

)2

+

(
k

π

)2
+

ζ(3)

4π2
− logR

2
,

(3.45)

where the second line was obtained with the help of zeta-function regularization. Combining

this expression with (3.28) yields

δFA =
1

2
log

π
√(

Nf +Nb

8

)2

+

(
k

π

)2
 . (3.46)

Note that all of the logR terms cancel in the final answer, as they should since we are

describing a conformal fixed point, for which the path integral should be independent of R.

Another check of this result is that when Nf = Nb = 0 we recover the standard result for

the free energy of U(1) CS theory on S3 [66], δFA = 1
2

log k.

As an aside, we note that if we included the Maxwell term in (3.2), eq. (3.45) would be

modified to

1

2
tr′ log

(
Kµν

2πR

)
=
∞∑
n=2

(n2 − 1) log

∣∣∣∣ 1

2πR

(
vLn +

n2

e2R

)∣∣∣∣ , (3.47)

with vLn still defined as in (3.44). Of course, e2 flows to infinity in the IR, so as long

as we have a non-zero CS level or non-zero numbers of flavors one can safely ignore the

contribution from the Maxwell term in (3.47). If however one studies pure Maxwell theory
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with k = Nf = Nb = 0 so that vLn = 0 in (3.47), the S3 free energy becomes2

FMaxwell = − log(e2R)

2
+
ζ(3)

4π2
. (3.48)

The logarithmic dependence on R is consistent with the fact that the free Maxwell theory

is not conformal in three spacetime dimensions. FMaxwell decreases monotonically from the

UV (small R) to the IR (large R).

Of course, since the Maxwell theory is not a conformal theory in three spacetime dimen-

sions, it is not immediately obvious whether the entanglement entropy should have the same

dependence on log(e2R) at the three-sphere free energy. However, recently it has been shown

that the renormalized entanglement entropy across the circle of radius R of the Maxwell the-

ory with compact U(1) gauge group behaves like − log(e2R)/2 in the UV (e2R � 1) and

approaches the F -value of a real conformal scalar field in the IR (e2R� 1) [110]. This work

used the duality between the gauge theory and the free compact scalar field. In the UV,

the theory is well-described by the non-compact Maxwell theory, while in the IR the theory

approaches that of the non-compact real scalar field. The entanglement entropy calculation

was performed directly using the replica trick.

3.3.4 Generalization to U(Nc) theory

Eq. (3.28) generalizes straightforwardly to the case of U(Nc) gauge theory with Nf Dirac

fermions and Nb complex bosons transforming in the fundamental representation of the gauge

group. At large k the contribution of the TrA3 term in the Chern-Simons Lagrangian (3.2)

to the S3 partition function is suppressed by 1/
√
k, and the quadratic term proportional to

TrA∧ dA is the same as that of N2
c U(1) gauge fields with Chern-Simons coupling k. There

are Nf Dirac fermions and Nb complex bosons charged under each of these U(1) gauge fields.

2We thank D. Jafferis and Z. Komargodski for very useful discussions of the free Maxwell field on S3.
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One then just has to multiply the U(1) answer (3.46) by a factor of N2
c :

δFA =
N2
c

2
log

π
√(

Nf +Nb

8

)2

+

(
k

π

)2
+ log

Vol(U(Nc))

Vol(U(1))N2
c
. (3.49)

The second term in this expression comes from the different gauge fixing of the U(Nc) gauge

theory compared to a theory of N2
c U(1) gauge fields. As explained in section 3.2, the gauge

fixing procedure involves dividing the partition function by the volume of the gauge group, so

the partition function for the U(Nc) theory has a prefactor of 1/Vol(U(Nc)) while the U(1)N
2
c

theory obtained by multiplying (3.46) by N2
c would have a prefactor of 1/Vol(U(1))N

2
c . We

have (see for example [64])

Vol(U(Nc))

Vol(U(1))N2
c

=
(2π)−Nc(Nc−1)/2

1! · 2! · · · (Nc − 1)!
. (3.50)

Thus, for U(Nc) gauge theory with Nf fundamental fermions and Nb fundamental bosons

we have

F =
Nc log 2

4
(Nf +Nb) +

3ζ(3)

8π2
Nc(Nf −Nb) +

N2
c

2
log

π
√(

Nf +Nb

8

)2

+

(
k

π

)2


−1

2
Nc(Nc − 1) log(2π)− log (1! · 2! · · · (Nc − 1)!) + . . . ,

(3.51)

with corrections expected to vanish in the limit of large NF . In writing (3.51) we kept Nc of

order one while scaling Nf , Nb, and k to infinity with their ratios fixed. Generalizing (3.51)

to different gauge groups proceeds in a similar way.
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3.4 SUSY gauge theory with flavors

In this section we compute the free energy of U(1) Chern-Simons matter theories with N ≥ 2

supersymmetry coupled to a large number of flavors. These computations allow us to check

the first sub-leading correction to the non-SUSY result in the equation (3.46) in a different

way. The computations in this section have as starting point the results of refs. [31, 101],

which used the technique of supersymmetric localization to rewrite the S3 partition function

of theories with N ≥ 2 SUSY as finite-dimensional integrals. Our computations also involve

finding the scaling dimensions of the gauge-invariant operators.

3.4.1 N = 4 theory

As a warmup to the N = 2 calculations, consider the N = 4 parity-preserving supersym-

metric U(1) theory consisting of N N = 4 hypermultiplets coupled to an N = 4 vector

multiplet. In N = 2 notation, the N = 4 vector multiplet consists of an N = 2 vector and

a neutral chiral superfield Φ of dimension 1. The N = 4 supersymmetry does not allow a

Chern-Simons term. The hypermultiplets can be rewritten as N pairs of oppositely charged

chiral-multiplets Qa of U(1) charge +1 and Q̃a with U(1) charge −1. The N = 4 SUSY

requires a superpotential interaction W ∼ Q̃aΦQa. The superpotential has R-charge equal

to 2. Then the SU(2) subgroup of the SO(4)R R-symmetry, under which Q̃a and Q̄a trans-

form as a doublet, fixes the R-charge of the matter chiral multiplets to have the canonical

free-field value: ∆Q = ∆Q̃ = 1/2. The partition function is then given by [101]

Z =
1

2N

∫ ∞
−∞

dλ

coshN(πλ)
=

2−NΓ
(
N
2

)
√
πΓ
(
N+1

2

) . (3.52)

Expanding this at large N we find

F = − logZ = N log 2 +
1

2
log

(
Nπ

2

)
− 1

4N
+

1

24N3
+ . . . . (3.53)
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This large N expansion is asymptotic, but it provides a very good approximation of the

exact answer (3.52) down to N = 1—see Figure 3.1. Including more terms in (3.53) makes

the approximation worse at N = 1.

2 4 6 8 10
N

2

4

6

8

F

Figure 3.1: The exact free energy of the N = 4 theory obtained from eq. (3.52) (solid orange)
and the analytical approximation (3.53) (dashed black).

With N pairs of hyper-multiplets we have a total of 2N physical complex bosons and

2N Dirac fermions. We then see perfect agreement of the first two terms in (3.53) with

eqs. (3.18) and (3.46).

3.4.2 N = 3 theory

Let us add the Chern-Simons term for the N = 2 abelian vector multiplet; it breaks N = 4

down to N = 3 supersymmetry. The field content is the same as that of an N = 4 vector

multiplet and N hypermultiplets, namely an N = 2 vector, a neutral chiral Φ, and N pairs

of chiral multiplets Qa and Q̃a charged under the N = 2 vector. The superpotential required

by N = 3 SUSY is

W = − k

4π
Φ2 + Q̃aΦQa . (3.54)

82



After integrating out the massive field Φ, the superpotential can be rewritten as [111]

W =
2π

k
(Q̃aQa)

2 . (3.55)

The conformal dimensions of Qa and Q̃a are still equal to 1/2, as is required by the marginal-

ity of W and by the Z2 symmetry under which Qa and Q̃a are interchanged and all the fields

in the vector multiplet change sign. The partition function is [101]

Z =
1

2N

∫
dλ

eiπkλ
2

coshN(πλ)
. (3.56)

While this expression cannot be evaluated analytically, one can evaluate it using a saddle

point approximation in the limit where both k and N are taken to be large. Let us define

κ = 2k/(Nπ) and take N to infinity while keeping κ fixed. The saddle point is at λ = 0,

and in order to obtain a systematic expansion, one should write

Z =
1

2N

∫
dλ e−Nπ

2λ2(1−iκ)/2

[
1 +

Nπ4λ4

12
− Nπ6λ6

45
+
N(68 + 35N)π8λ8

10080
+ . . .

]
, (3.57)

where the parenthesis contains the small λ expansion of the function eNπ
2λ2/2 cosh−N(πλ).

Order by order in this expansion one can perform the integrals in (3.57) analytically. The

result is

Z =
1

2N

√
2

Nπ(1− iκ)

[
1 +

1

4N(1− iκ)2
− 1

3N2(1− iκ)3
+

68 + 35N

96N3(1− iκ)4
+ . . .

]
. (3.58)

Calculating F = − log |Z| and expanding in N , we obtain

F = N log 2 +
1

2
log

(
Nπ

2

√
1 + κ2

)
+

κ2 − 1

4(κ2 + 1)2N
− 4κ2(κ2 − 1)

3(1 + κ2)4N2
+O(N−3) . (3.59)
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We note that in order to calculate the O(N−α) term in F we need the expansion in (3.57) to

be up to order O(λ4α). The expression (3.59) is also in agreement with eqs. (3.18) and (3.46)

given that the N = 3 theory has Nb = Nf = 2N .

Let us extend our discussion to the non-abelian theory with gauge group U(Nc). The field

content now consists of an N = 4 vector multiplet in the adjoint representation of the gauge

group and N pairs of chiral multiplets Qa and Q̃a, in the fundamental and anti-fundamental

representations of the gauge group, respectively. After localization the partition function for

this theory is given by [101]

Z =
2Nc(Nc−1)

2NNcNc!

∫ ( Nc∏
i=1

dλi

)(
Nc∏
i<j

sinh2[π(λi − λj)]

)
exp

(
iπk

Nc∑
i=1

λ2
i

)
Nc∏
i=1

cosh−N(πλi) .

(3.60)

In the limit where Nc/N � 1, the integral has a saddle point at λi = O
[
(Nc/N)1/2

]
.

Through next to leading order the partition function of the non-abelian theory reduces to

Z =
(2π)Nc(Nc−1)

2NNcNc!N
N2
c

2

(∫ Nc∏
i=1

dλ̃i

)(
Nc∏
i<j

(λ̃i − λ̃j)2

)
exp

(
−π

2 (1− iκ)

2

Nc∑
i=1

λ̃2
i

)
+ . . . , (3.61)

where κ is defined as in the abelian theory and λ̃i =
√
Nλi. We have rescaled the integration

variables so that the remaining integrals in eq. (3.61) produce numbers independent of N .

Taking the log of eq. (3.61) we then see immediately that

F = NcN log 2 +
N2
c

2
log(N) +O(N0) . (3.62)

Given that the non-abelian theory has Nb = Nf = 2N , the equation above is in agreement

with eq. (3.51).
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3.4.3 Non-chiral N = 2 theory

Moving up one notch in complexity, we now consider theN = 2 Chern-Simons theory coupled

to the chiral fields Qa and Q̃a introduced above, this time without the superpotential (3.55).

The absence of the superpotential leaves the R-charges of Qa and Q̃a a priori unrestricted. It

was proposed in [31] that one way of finding the correct IR R-charges in anN = 2 theory is by

calculating the partition function on S3 for any choice of trial R-charges consistent with the

marginality of the superpotential and then extremizing over all such R-charge assignments.

The R-charges of Qa and Q̃a can be taken to be equal to some common value ∆ because of

the following symmetries: the action is invariant under two U(N) symmetries under which

the Qa and Q̃a transform as fundamental vectors, as well as under a charge conjugation

symmetry that flips the sign of all the fields in the vector multiplet and at the same time

interchanges Qa and Q̃a.

As a function of ∆, the partition function is [31]

Z =

∫ ∞
−∞

dλ eiπkλ
2

eN
(
`(1−∆+iλ)+`(1−∆−iλ)

)
, (3.63)

where the function `(z) is given by

`(z) = −z log
(
1− e2πiz

)
+
i

2

(
πz2 +

1

π
Li2
(
e2πiz

))
− iπ

12
. (3.64)

This function can be found by solving the differential equation ∂z`(z) = −πz cot(πz) with

the boundary condition `(0) = 0. It is a real function when z is real.

We again take N to infinity while keeping κ = 2k/(Nπ) fixed. In this limit one can use

the saddle point approximation to calculate the partition function (3.63) as in the previous

section. The exponent in (3.63) is an even function of λ, so there is a saddle point at λ = 0,
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and we will assume this is the only relevant saddle. To leading order in N we therefore have

F (∆) = −2N`(1−∆) +O(logN) . (3.65)

This function is maximized when dF/d∆ = 2π(∆ − 1) cot(π∆) = 0, which implies ∆ =

1/2 +O(N−1). We will find that this anomalous dimension affects F only at order 1/N , i.e.

the first two leading orders in the large N expansion of F are the same for the N = 2 theory

and the N = 3 theory studied in the previous section.

One can develop a systematic expansion to study 1/N corrections in a similar way to

what was done at the end of the previous section for the N = 3 theory. The fact that now

∆ depends on N introduces an extra complication. We expand ∆ as

∆ =
1

2
+

∆1

N
+

∆2

N2
+ . . . , (3.66)

and we rescale λ = λ̃/
√
N . One can then write

Z =
1

2N
√
N

∫ ∞
−∞

dλ̃ e−π
2λ̃2(1−iκ)/2

[
1 +

6π2∆2
1 + 24∆1λ̃

2 + λ̃4

12N
+ . . .

]
, (3.67)

where the expansion in parenthesis is in powers of 1/N while holding λ̃ fixed. Term by term

in this expansion, these integrals can be evaluated analytically. The free energy is

F (∆) = N log 2 +
1

2
log

(
Nπ

2

√
1 + κ2

)
−
(
π2∆2

1

2
+

2∆1

1 + κ2
+

1− κ2

4(1 + κ2)2

)
1

N
+ . . . .

(3.68)

Maximizing this expression with respect to ∆1 we obtain

∆1 = − 2

π2(1 + κ2)
. (3.69)
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For k � N � 1 this result agrees with section 6.3 of [31]. Repeating this procedure two

more orders in F we find

∆ =
1

2
− 2

π2(1 + κ2)

1

N
− 2 [π2 − 12 + κ2(4− 2π2) + π2κ4]

π4(1 + κ2)3

1

N2
+O(N−3) . (3.70)

This series appears to be perfectly convergent. In fig. 3.2 we plot ∆(N) for a few values of

κ using both the precise numerical result and the approximation (3.70).
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Figure 3.2: The R-charge ∆ plotted as a function of N for κ = 0, 4/π, 8/π, with darker
plots corresponding to larger κ. The solid lines are calculated using the approximation in
eq. (3.70). The circles are computed by numerically maximizing the free energy with respect
to ∆. Note that the two computations match well even for small N .

Using eqs. (3.68) and (3.69) we find that the free energy is

F = N log 2 +
1

2
log

(
Nπ

2

√
1 + κ2

)
+

(
κ2 − 1

4(1 + κ2)2
+

2

π2(1 + κ2)2

)
1

N
+O(N−2) . (3.71)

Using Nb = Nf = 2N , we see that this expression agrees with eqs. (3.18) and (3.46) that were

derived directly from a large N expansion without the use of supersymmetric localization.

Let us perturb the N = 2 theory discussed above by the quartic superpotential

W = g(QaQ̃a)
2 . (3.72)
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Since, as can be seen from (3.69), the dimension of Qa and Q̃a is slightly smaller than 1/2,

the perturbation (3.72) is a slightly relevant perturbation of the UV N = 2 theory. This

theory should flow to an IR fixed point where the superpotential is exactly marginal, i.e.

the IR R-charges of Qa and Q̃a are 1/2. The calculation of FIR is thus exactly the same as

for the N = 3 superconformal U(1) theory discussed in section 4.2. The infrared theory is

conformal for any g, and for the special value g = 2π/k it is the N = 3 theory in eq. (3.55).

Eqs. (3.59) and (3.71) imply that the change in free energy between the UV and IR fixed

points is

FUV − FIR =
2

π2(1 + κ2)2N
+O(N−2) , (3.73)

which can be explicitly seen to be positive, in agreement with the conjectured F -theorem [8].

Since the superpotential deformation (3.72) is only slightly relevant, one may wonder

how the result (3.73) compares with the perturbative computation performed in [9]. In [9]

it was shown that if the Lagrangian is perturbed by a slightly relevant scalar operator of

dimension 3− ε, then there is a perturbative IR fixed point and FUV − FIR ∝ ε3. If however

the Lagrangian is perturbed by a pseudoscalar operator of dimension 3− ε, then there is no

perturbative fixed point; it was seen in an example that if a fixed point exists then one might

expect FUV − FIR ∝ ε. In our case, the superpotential deformation (3.72) translates into

perturbations of the Lagrangian by both a scalar operator O1 and a pseudoscalar operator

O2. Indeed, denoting

Qa = φa +
√

2θψa + θ2Fa , Q̃a = φ̃a +
√

2θψ̃a + θ2F̃a , (3.74)
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we have

δL = g2O1 + gO2 ,

O1 = −8
∣∣∣φaφ̃aφb∣∣∣2 − 8

∣∣∣φaφ̃aφ̃b∣∣∣2 ,
O2 = −2ψaψ̃aφbφ̃b − ψaψbφ̃aφ̃b − ψ̃aψ̃bφaφb − 2ψaψ̃bφ̃aφb + c.c .

(3.75)

The scaling dimensions of these operators are

∆(O1) = 3 + 6
∆1

N
+O(N−2) , ∆(O2) = 3 + 4

∆1

N
+O(N−2) , (3.76)

so the pseudoscalar operator O2 is the more relevant one. One might expect the IR fixed

point should be non-perturbative and that FUV − FIR ∝ −∆1/N times a function of order

one. That the IR fixed point is non-perturbative can be seen after writing g = ĝ/N so that

ĝ stays of order 1 as we take N to infinity. The IR coupling gIR = 2π/k corresponds to

ĝIR = 4/κ, which is of order one in the large N limit, meaning that the IR fixed point is non-

perturbative. That FUV − FIR ∝ −∆1/N times a function of order one can be immediately

seen from eqs. (3.73) and (3.69).

3.4.4 Chiral N = 2 theory

We now consider a natural generalization of the non-chiral N = 2 theory discussed in the

previous section—the chiral N = 2 theory. This theory is given by N = 2 Chern-Simons

theory coupled to N chiral fields Qa and Ñ anti-chiral fields Q̃a with no superpotential.

When N = Ñ this theory reduces to the non-chiral theory discussed in the previous section.

Without loss of generality, we now assume that N > Ñ . Instead of dealing with N and Ñ

it is convenient to define the following quantities,

N̄ ≡ N + Ñ

2
, µ ≡ N − Ñ

N + Ñ
, 0 < µ ≤ 1 . (3.77)
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The R-charges of Qa and Q̃a, which we denote by ∆ and ∆̃, are not gauge-invariant

observables. Gauge invariant operators may be constructed from combinations of Qa, Q̃a,

and the monopole operators Tm, which create m units of magnetic flux through 2-spheres

surrounding their insertion points. The R-charge of Tm is given by [112,113]

R[Tm] = γ|m| +mδ , (3.78)

where γ|m| is determined in terms of ∆ and ∆̃, while δ is so far arbitrary. In the F -

maximization procedure one finds that in the space of δ, ∆, and ∆̃ there is exactly one

flat direction: F remains unchanged if we send simultaneously ∆ → ∆ + r, ∆̃ → ∆̃ − r,

and δ → δ + kr for any r [8]. The R-charges of the gauge-invariant operators are of course

independent of r. As long as k 6= 0, we can set δ = 0 as a gauge choice and work only with

∆ and ∆̃, which are not necessarily equal when µ 6= 0.

As a function of the R-charges ∆ and ∆̃, the partition function we need to consider is

then

Z =

∫ ∞
−∞

dλ eiπkλ
2

eN`(1−∆+iλ)+Ñ`(1−∆̃−iλ) . (3.79)

We want to calculate the partition function in the limit where N̄ goes to infinity and κ =

2k/(N̄π) and µ are held fixed. In the large N̄ limit we again find a saddle point at λ = 0.

The saddle point equation requires ∆ = 1/2 +O(1/N̄) and ∆̃ = 1/2 +O(1/N̄). In order to

study 1/N̄ corrections, we expand the R-charges as

∆ =
1

2
+

∆1

N̄
+

∆2

N̄2
+ . . . , ∆̃ =

1

2
+

∆̃1

N̄
+

∆̃2

N̄2
+ . . . . (3.80)

Using the methods developed in the previous sections, we can calculate the free energy

perturbatively in the 1/N̄ expansion and maximize the resulting expression term by term

with respect to the ∆i and ∆̃i. Going through the procedure we find the following results
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for the free energy and the R-charges:

∆ =
1

2
− 2(1 + µ)

π2(1 + κ2)N̄
+O(N̄−2) , ∆̃ =

1

2
− 2(1− µ)

π2(1 + κ2)N̄
+O(N̄−2) ,

F = N̄ log 2 +
1

2
log

(
N̄π

2

√
1 + κ2

)
+

[
κ2 − 1

4(1 + κ2)2
+

2

π2(1 + κ2)2

−4µ2

π2

(
1

(1 + κ2)2
− 4

3(1 + κ2)3

)]
1

N̄
+O(N̄−2) .

(3.81)

Using Nb = Nf = 2N̄ , we see that the expression for F agrees with eqs. (3.18) and (3.46)

that were derived without the use of supersymmetric localization. The combination ∆ + ∆̃,

which gives the R-charge of the the gauge invariant meson operators QaQ̃b, is in agreement

with the pertrubative calculations in [37,114].

We can perturb this theory by adding in the superpotential3

W ∼
∑
a,b

(QaQ̃b)
2 . (3.82)

Since ∆ + ∆̃ < 1 in the UV N = 2 CFT, this superpotential deformation is relevant and

causes an RG flow to the fixed point where the superpotential is exactly marginal. At the

IR N = 2 fixed point we have the constraint ∆ + ∆̃ = 1. To determine the free energy at

the IR fixed point we simply have to repeat the F -maximization procedure above subject

to this constraint. That in the UV one has to maximize F without any constraints while in

the IR one has to maximize F under the constraint ∆ + ∆̃ = 1 means that the free energy

of the IR fixed point is necessarily at most equal to the free energy of the UV fixed point.

Indeed, we find that

FUV − FIR =
2(1− µ2)

π2(1 + κ2)2

1

N̄
+O(N̄−2) , (3.83)

3Changing the relative coefficients of the terms in (3.82) is an exactly marginal deformation [115] and
does not change F .
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which is manifestly positive when µ2 < 1. When µ = 1 there are no Q̃a fields, and so we are

not allowed to add in the superpotential deformation. The R-charges at the IR fixed point

are given by

∆ =
1

2
− 4µ

π2(1 + κ2)

1

N̄
+O(N̄−2) , ∆̃ = 1−∆ . (3.84)

3.5 Discussion

In this chapter we studied certain 3-dimensional gauge theories coupled to a large number

NF of massless charged fields. Such theories are conformal for a sufficiently large NF , and

a good tool for studying them is the 1/NF expansion. In this chapter we used such an

expansion to study the disk entanglement entropy, which is related to the free energy F on

the 3-sphere.

For the U(Nc) gauge theory coupled toNf massless Dirac fermions andNb massless scalars

we found the first subleading term in the expansion, (3.51). We have also studied the N = 2

supersymmetric abelian gauge theory coupled to N positively charged chiral superfields Q

and N negatively charged chiral superfields Q̃. In this case, F can be calculated numerically

for any N using the methods of localization. We compared these numerical results with their

1/N expansion and found excellent agreement down to small N .

An important question concerning such CFTs is whether there is a breakdown of confor-

mal invariance for sufficiently small NF . In the N = 2 supersymmetric U(1) gauge theory,

even for a single non-chiral flavor the theory is conformal and unitary. This is indicated by

the mirror symmetry arguments [116] and confirmed by explicit calculation of the localized

path integral in [31], which indicates that the dimension of Q and Q̃ is exactly 1/3. However,

in the non-supersymmetric U(1) theories there typically is a lower bound for the conformal

window. For example, in the extreme limit NF = 0 we find the free Maxwell theory, which
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is not conformally invariant. We studied it on the S3 of radius R in section 3 and found that

FMaxwell varies logarithmically with R, eq. (3.48), indicating the lack of conformal invariance.

One possible phenomenon for small NF is the chiral symmetry breaking in 3-dimensional

QED coupled to massless fermions [99,100]. The numerical studies of lattice antiferromagnets

[117] suggest the QED theory with Nf = 8 Dirac fermions is a stable CFT, while the Nf = 4

theory is unstable to symmetry breaking towards a non-conformal ground state [93]. More

generally, one of the signs of crossing the lower edge of the conformal window could be that

the assumption of conformality leads to certain gauge invariant operators having scaling

dimensions that violate the 3-dimensional unitarity bound ∆ > 1/2.

In [8, 9] it was conjectured that F must be positive in a unitary CFT. Since as NF

decreases so does F , it is possible that F may become negative for sufficiently small NF .

This could serve as another criterion for theories outside the conformal window. It would be

interesting to explore the different criteria above and to see if they are related.
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Chapter 4

AdS Description of Induced

Higher-Spin Gauge Theory

This chapter is a lightly-modified version of the paper [14].

4.1 Introduction and summary

A Conformal Field Theory (CFT) in d dimensions is dual to a gravitational theory in AdSd+1

endowed with a particular choice of boundary conditions [24–26]. For example, a local scalar

operator O(xµ) with dimension ∆ is dual to a scalar field Φ(z, xµ) that behaves as z∆ near

the AdS boundary. The possible values of ∆ are determined by the mass of the scalar field

in the bulk:

∆± =
d

2
±

√(
d

2

)2

+m2 , (4.1)

where the AdS radius has been set to 1. The dimension ∆− is allowed only in the range

−(d/2)2 < m2 < −(d/2)2+1 [118,119]; using it for greater values of m2 results in an operator

dimension that violates the unitarity bound. An RG flow from a large N CFT where the

operator O has dimension ∆− to another CFT where it has dimension ∆+ takes place when
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the double-trace operator O2 is added to the action [57, 69]. The effect of this flow on the

partition function of the Euclidean CFT on the d-dimensional sphere has been studied in a

number of papers [9, 57,58,120,121].

These results have interesting applications to AdS4/CFT3 dualities involving Vasiliev’s

interacting higher-spin gauge theories in AdS4 [73–75, 122]. These theories have been con-

jectured to be dual to 3-d CFTs such as the critical O(N) model [72], or the Gross-Neveu

model [82,83], or various large N Chern-Simons theories coupled to conformal matter in the

fundamental representation of the gauge group [106,107]. Such AdS/CFT dualities are often

called “vectorial” because the dynamical fields in the CFT are N -vectors rather than N ×N

matrices. In particular, the scalar O(N) model has been conjectured [72] to be dual to the

minimal type-A Vasiliev theory containing gauge fields of all even spin in AdS4, while the

Gross-Neveu model has been conjectured [82, 83] to be dual to the minimal type-B Vasiliev

theory.1 Considerable evidence has been accumulated in favor of the vectorial AdS4/CFT3

dualities [76–78,123–128], and we will make further use of them in this chapter.

The possibility of two different conformally invariant AdS boundary conditions extends

in an interesting way to fields of spin s > 0. For example, to a spin 1 conserved U(1) current

Jµ in a 3-dimensional CFT there corresponds a massless gauge field Aµ in AdS4 with the

boundary condition that the magnetic field Fij vanishes at the AdS boundary z = 0. If

instead the electric field Fiz is required to vanish at the boundary, then the U(1) symmetry

of the CFT becomes gauged [129]. These facts have applications to the versions of Vasiliev

theory that contain gauge fields of all integer spin in AdS4. The type A such model is dual

to the U(N) symmetric 3-d CFT of N complex scalar fields [72], while the type B model

is dual to the theory of N Dirac fermions [82, 83]. The ability to change the boundary

conditions for the spin 1 field makes it plausible [130] that the type A or B Vasiliev theory

in AdS4 with the electric boundary condition on the spin 1 field is dual to 3-dimensional

CFTs where the U(1) gauge field is coupled to a large number N of conformally invariant

1An important distinction between the type A and B parity invariant Vasiliev theories is that in the
former the scalar field has positive parity, while in the latter it has negative parity [73,83].
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complex scalar or fermion fields, i.e. the 3-dimensional “induced” QED [98] restricted to the

SU(N) singlet sector. A more general, mixed boundary condition on the U(1) gauge field

in AdS4 results in addition of the Chern-Simons term for the dynamical U(1) gauge field

in QED3 [129]. There is an SL(2,Z) action on the resulting set of 3-d CFTs [129]. The

possibility of imposing modified boundary conditions on spins s ≤ 1 in Vasiliev’s theory was

also used in [131] in constructing higher-spin duals of various supersymmetric Chern-Simons

matter theories. Besides considering the U(1) symmetries Ref. [131] also considered gauging

non-abelian symmetries. Non-abelian gauge fields can appear in supergravity as well as in

Vasiliev theory; with standard boundary conditions they correspond to non-abelian global

symmetries in the dual field theory. Changing the boundary conditions in AdSd+1 is expected

to lead to a non-abelian induced gauge theory in d dimensions.

Another very interesting special case is s = 2. Modifying the boundary condition for the

graviton in AdS4 makes the metric fluctuating also in the dual boundary theory [132, 133].

The resulting 3-d theory then describes a Weyl invariant gravity induced by coupling to

conformal matter. The effective action for this theory was explored at the quadratic order

for gravitons in [132]. A further study of the modified boundary conditions in AdS4 indicated

that the correspondence with 3-d induced gravity works at the full non-linear level [133].

Furthermore, the conformal graviton spectrum around flat space was found in [133] to be

free of ghost-like modes for all odd d, suggesting that these induced theories are unitary at

least in perturbation theory (on the other hand, in even d there are ghosts, as familiar in

the case of d = 4 Weyl gravity [134]). Using these ideas, we will conjecture, for example,

that modifying the graviton boundary conditions in Vasiliev’s minimal type A theory makes

it dual to the O(N) singlet sector of the Weyl invariant 3-d gravity coupled to N conformal

scalar fields φi, i = 1, . . . , N . The path integral for this theory is

Z3-d gravity =

∫
[Dgµν ][Dφ

i]

Vol(Diff)Vol(Weyl)
e−S , (4.2)

S =

∫
d3x
√
g

(
gµν∂µφ

i∂νφ
i +

1

8
R(φi)2

)
. (4.3)
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Similarly, it is plausible that the minimal type B Vasiliev theory with modified graviton

boundary conditions is dual to the O(N) singlet sector of the Weyl invariant 3-d gravity

coupled to N massless fermions. As for the s = 1 case, for s = 2 there is a possibility of

mixed parity-violating boundary conditions in AdS4 [132,133,135,136], which correspond to

adding to the 3-d action the gravitational Chern-Simons term iκ
∫

tr(ω∧dω+ 2
3
ω3) [137,138].

Similarly, the N = 8 superconformal gravity coupled to the BLG/ABJM theory was studied

in [139–141]. The crucial role of alternate boundary conditions in AdS4 was noted there as

well.

In analogy with the above discussions, it is possible to modify the AdS4 boundary condi-

tions for higher-spin fields with s > 2. This modification results in gauging the corresponding

higher-spin symmetries in the 3-d boundary theory,2 as was proposed some time ago at the

level of the linearized approximation [132] (see also [143]) and studied more recently in the

context of the fully non-linear Vasiliev higher-spin theory [142]. The non-linearities have

the important effect that, when an s > 2 current is gauged, one may need to gauge all

remaining currents too.3 In that case, the 3-d dual of a minimal Vasiliev theory in AdS4

is expected to be a Weyl invariant theory of gauge fields of all even spins induced by the

coupling to N conformal scalar or fermion fields. On the other hand, the gauged s = 1 and

s = 2 examples discussed above do not require gauging higher-spin symmetries, because the

non-linear gauge transformations for spin s ≤ 2 form a closed subalgebra of the higher-spin

algebra. The 3-d theory where currents of all spin are gauged is clearly more complicated

than either 3-dimensional QED or the induced gravity theory in (4.2). Such an induced

higher-spin gauge theory was studied in [144], and some progress has been recently made

2 One motivation for studying the theories where some of the currents are gauged, which was stressed
in [142], is that they do not obey the theorem of [123]. This theorem requires theories with exactly conserved
higher spin currents to be free. However, when some of the currents are gauged the remaining ones are not
conserved; therefore, the theorem of [123] does not apply. For example, the 3-d QED coupled to N flavors
is obviously not a free theory, even when N is large. The theory obtained by gauging the whole set of HS
currents also does not obey the theorem of [123], being a higher spin gauge theory (in particular including
gravity), while [123] assumes a CFT with global HS symmetries and corresponding exactly conserved currents.

3 We thank M. Vasiliev for stressing this to us.
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using twistor space techniques in the unfolded formulation [142]. It is also interesting to ask

if a truncation of this 3-d theory to a finite number of higher-spins is possible.

In this chapter we will subject these Anti-de Sitter/Induced Gauge Theory (AdS/IGT)

correspondences to some new tests in the regime where N is very large; in this limit the

Vasiliev theories in AdS4 become weakly coupled while the path integrals in the 3-d theory

can be studied semi-classically. We will calculate the change in the 3-sphere free energy

F = − log |ZS3| produced by the gauging of a symmetry with s ≥ 1. We will then show that

this change agrees with the corresponding calculation in Euclidean AdS4, which uses modified

boundary conditions for a spin s gauge field. In fact, in QED3 coupled to N conformal scalar

or fermion fields the 3-sphere free energy was studied in the previous chapter with the result

FQED − Ffree = 1
2

logN + O(N0). We will show that for the gauging of spin s current this

expression generalizes to

F
(s)
gauged − F

(s)
free =

(4s2 − 1)s

6
logN +O(N0) . (4.4)

As we will discuss in section 4.4, the coefficient of 1
2

logN is the number of spin s−1 conformal

Killing tensors (equivalently, these are the conformal higher-spin currents which were found

in [145] following [146]). Each such tensor corresponds to a missing gauge invariance (a

zero mode of the operator Og defined in (4.47) that takes a rank s− 1 traceless symmetric

tensor to a pure gauge mode of a spin s gauge field) in the 3-dimensional theory of the spin

s gauge field. These tensors transform in the [s− 1, s− 1] irreducible representation of the

conformal group SO(4, 1) (its Young tableaux has two rows of length s− 1) [147,148]. The

AdS/CFT correspondence relates a conformal Killing tensor in d dimensions to a traceless

Killing tensor in AdSd+1 [149]. In section 4.7 we will study this relation in detail with special

emphasis on the AdS boundary behavior of the Killing tensors.

In addition to studying the gauging of conserved higher-spin currents, we will study the

closely related problem of deforming a 3-d CFT by a double-trace operator Jµ1µ2...µsJ
µ1µ2...µs ,
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where the spin s single-trace operator Jµ1µ2...µs has dimension ∆. If ∆ > 3/2, then the double-

trace operator is irrelevant; such irrelevant deformations were discussed for s ≥ 1 in [132].

For large N it is possible to show that the deformed theory possesses a UV fixed point where

the spin s operator has dimension ∆− = 3 − ∆ + O(1/N). In this case, we will find using

both the 3-d field theory and AdS4 calculations that

δF
(s)
∆ ≡ F

(s)
UV − F

(s)
IR =

(2 s+ 1)π

6

∫ ∆

3/2

(
x− 3

2

)
(x+ s− 1)(x− s− 2) cot(πx) . (4.5)

For spin s ≥ 1, ∆− cannot satisfy the unitarity bound ∆(s) ≥ s + 1. The only cases where

unitarity appears to be restored is when the spin s current is conserved and has ∆ = s+ 1;

then ∆− is the dimension of the dual spin s gauge field, which is not a gauge invariant

operator, so there is no obvious issue with unitarity.

While in odd dimensions d the parity invariant conformal higher-spin gauge theories have

induced non-local actions, in even d there are theories that are local and Weyl invariant for

any spin s (these local actions are the coefficients of the induced logarithmically divergent

terms [133, 150–152]). For example, in d = 4 they are the free Maxwell theory (s = 1), the

conformal gravity (s = 2) [153], and their Fradkin-Tseytlin higher-spin generalizations [134].

These conformal higher-spin theories have actions involving more than two derivatives in

contrast with the two-derivative quadratic Fronsdal actions [154]. This is evident already

for the s = 2 conformal theory whose action is the square of the Weyl tensor. The role

of the Weyl-squared gravity in the AdS/CFT correspondence has been explored for some

time [133, 150]. A relation between conformal d = 4 higher-spin theories and massless

higher-spin theories in AdS5 was proposed in [151, 152]. Our approach of using alternate

boundary conditions for massless spin s gauge fields in Euclidean AdSd+1 indeed relates

them to conformal spin s gauge fields on Sd. As an application of these ideas, in section

4.9 we will demonstrate that the massless spin s fields in AdSd+1 endowed with alternate

boundary conditions provide an efficient way for calculating the Weyl anomaly a-coefficients
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of conformal spin s theories in even d. In particular, we will reproduce the Weyl anomaly

a-coefficient of the d = 4 conformal gravity [134, 153] and conjecture a formula generalizing

it to all conformal 4-d gauge theories of integer spin s > 0:

as =
s2

180
(1 + s)2[3 + 14s(1 + s)] . (4.6)

Similarly, we may consider higher-spin theories in AdS3 [155–157] whose dual d = 2 CFTs

have W symmetries [158–163]. Changing the boundary conditions in the bulk corresponds

to gauging these symmetries. From the one-loop determinants of graviton and higher-spin

gauge fields with alternate boundary conditions in AdS3, we reproduce the well-known central

charge c = −26 of the bc ghosts in 2-d gravity [164], as well as its higher-spin generalization

[165]: cs = −2(1 + 6s(s− 1)) .

4.2 Double-trace deformations with higher-spin oper-

ators

We start by analyzing the double-trace deformations with s ≥ 1 in the case where the single-

trace spin s operator has dimension ∆ 6= s + 1. As remarked in the introduction, these

deformations are somewhat less desirable than those with ∆ = s+ 1 due to the appearance

of operators that violate the unitarity bound. Nevertheless, the theories with ∆ 6= s+ 1 are

still interesting conceptually, and they are somewhat simpler computationally because we

do not have to worry about gauge invariance. As a consequence of this fact—and we will

show this in detail in the following sections—the difference in free energies δF
(s)
∆ is order N0

when ∆ 6= s + 1, while it is order logN when ∆ = s + 1, as advertised in (4.5) and (4.4).

In this section we begin with the cases ∆ 6= s + 1 and use field theoretic arguments to

demonstrate (4.5) for small values of s. In section 4.4 we then discuss the implications of

gauge invariance when ∆ = s+ 1.
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Before turning to the calculation, however, we mention two interesting features of the

result in (4.5). The first observation is that δF
(s)
∆ is positive for 3/2 < ∆ < 2 for all s.

When s = 0 this is required by the F -theorem [8–12]—in fact, in that case δF must be

positive when 3/2 < ∆ < 5/2, as discussed previously. But when s ≥ 1 one of the fixed

s = 1

s = 2

s = 3

1.5 1.6 1.7 1.8 1.9 2.0
0

1

2

3

4

5

D

∆
F

s = 1, 2, and 3

Figure 4.1: δF
(s)
∆ plotted as a function of ∆ for s = 1 , 2, and 3. When s = 0 this quantity

is plotted in Fig. 2.1. The F -theorem does not apply to the s ≥ 1 theories since one or both
of the fixed points is non-unitary. The exception is when ∆ = s + 1, since in this case the
naive unitarity arguments are not valid.

points is always non-unitary, and so the F -theorem does not require δF to be positive. It

is therefore interesting that δF
(s)
∆ is always positive for 3/2 < ∆ < 2, but the significance of

this observation is unclear.

The second observation, which is also illustrated in figure 4.1, is that δF
(s)
∆ diverges

logarithmically as ∆→ 2 when s ≥ 1. Furthermore, if we take ∆ = s+ 1− ε, where ε� 1,

and concentrate on the contribution of the upper integration limit in (4.5), then we find

δF
(s)
∆ = −(4s2 − 1)s

6
log ε+O(ε0) . (4.7)

This result shows, in some sense, how the result in (4.4), which is valid strictly when ∆ = 1+s,

emerges from the case of more general double-trace deformation. The conclusion is that

gauging a symmetry in a large N CFT makes δF logarithmically large.
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4.2.1 General strategy

The RG flow we are considering may be constructed explicitly as follows. Let S0 be the

action of a large N CFT defined on a conformally flat background with metric gµν . We

perturb S0 by the irrelevant deformation proportional to the double-trace operator J2 to

obtain the action

S = S0 +
λ0

2

∫
d3x
√
gJµ1µ2...µs(x)Jµ1µ2...µs(x) , (4.8)

where Jµ1µ2...µs is a symmetric traceless tensor. This theory has a UV fixed point where

Jµ1µ2...µs has dimension ∆− = 3−∆ + O(1/N). To demonstrate this, we use the Hubbard-

Stratonovich transformation to write the action with the help of a spin s auxiliary field

hµ1µ2...µs :

S = S0 −
∫
d3x

√
g(x)

[
hµ1...µs(x)Jµ1...µs(x) +

1

2λ0

hµ1...µsh
µ1...µs

]
. (4.9)

A study of the induced action for hµ1µ2...µs shows that the last term is negligible at the

UV fixed point [132]. When the current Jµ1µ2...µs is conserved, the auxiliary field hµ1µ2...µs

assumes the role of a spin s gauge field.

One can evaluate the ratio Z/Z0 of the partition functions corresponding to S and S0

perturbatively in 1/N as follows. Integrating out the fields that appear in the undeformed

action S0, one can write the partition function of the deformed theory (4.9) as

Z/Z0 =

∫
Dhµ1...µs

〈
exp

(∫
d3x

√
g(x)hµ1...µs(x)Jµ1...µs(x)

)〉
0

, (4.10)

where on the right-hand side the expectation value is computed with the measure exp[−S0].

Expanding the exponential and using the fact that 〈Jµ1...µs(x)〉0 = 0, as appropriate for a
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CFT on a conformally flat space, one obtains

Z = Z0

∫
Dhµ1...µse

−Seff[hµ1...µs ] , (4.11)

where the effective action for the auxiliary field is to quadratic order given by

Seff = −1

2

∫
d3x d3y

√
g(x)

√
g(y)hµ1...µs(x)hν1...νs(y)〈Jµ1...µs(x)Jν1...νs(y)〉conn

0 + . . . . (4.12)

The expansion in (4.12) is given in terms of connected correlators of the spin s operator, which

are all assumed to be O(N). At large N the typical fluctuations of hµ1...µs are O(N−1/2),

and therefore the contributions to the partition function of the higher order terms in hµ1...µs ,

that were not exhibited in (4.12), become negligible. The functional integral (4.11) can then

be evaluated in the saddle-point approximation:

Z ≈ Z0(detK)−1/2 , (4.13)

where the operator K given as an integration kernel can be expressed as

Kµ1...µs;ν1...νs(x, y) = −〈Jµ1...µs(x)Jν1...νs(y)〉conn
0 . (4.14)

The expression (4.13) is valid on any conformally flat space.

Specializing to the case where the background metric is that of the unit S3, (4.13) implies

δF
(s)
∆ = − log

∣∣∣∣ ZZ0

∣∣∣∣ =
1

2
tr logK +O(1/N) . (4.15)

To calculate δF
(s)
∆ one would therefore need to sum the logarithms of the eigenvalues of the

kernel K on S3 weighted by their multiplicities.
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An explicit formula for K can be written down most easily if we parameterize S3 through

the stereographic projection from R3. In other words, let us introduce the metric

ds2
S3 =

4(
1 + |x|2

)2

[
(dx1)2 + (dx2)2 + (dx3)2

]
, (4.16)

as well as the frame

ei =
2

1 + |x|2
dxi . (4.17)

In this frame, the kernel (4.14) is constrained by conformal invariance to be4

Ki1...is
j1...js(x, y) = N C

((
1 + |x|2

) (
1 + |y|2

)
4 |x− y|2

)∆

I(i1
(j1Ii2

j2 · · · Iis)js) , (4.18)

where C is an N -independent normalization constant, and

I ij ≡ δij − 2
(xi − yi)(xj − yj)

|x− y|2
. (4.19)

In (4.18), the symmetrizations are performed with total weight one and include the removal

of all the traces. Importantly, the kernel K is linear in N .

4.3 Explicit field theory calculations

4.3.1 Symmetric traceless tensor harmonics on S3

The eigenvalues of K can be found with the help of rotational symmetry on S3; the eigen-

functions of K must be symmetric traceless tensor harmonics on S3. For spin 0, these

harmonics are the usual spherical harmonics on S3 which transform as the (n,n) irreps5 of

4Frame indices are raised and lowered with the flat metric.
5We write the spin j representation of SU(2) as 2j + 1.
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the isometry group SU(2)L×SU(2)R—they are just traceless symmetric polynomials in the

standard embedding coordinates of S3 into R4. The space of normalizable functions on S3

therefore decomposes under SO(4) as

∞⊕
n=1

(n,n) . (4.20)

For every positive integer n, there are n2 scalar harmonics, which we denote by Yn`m(x), with

0 ≤ ` < n and |m| ≤ `. Explicit expressions for these scalar harmonics are given in [14].

For spin s, the space of rank s symmetric traceless tensors on S3 decomposes under SO(4)

as

∞⊕
n=s+1

s⊕
s′=−s

(n + s′,n− s′) . (4.21)

In other words, there are 2s + 1 towers of modes indexed by s′, where there are n2 − s′2

modes in each tower, with n > s. We denote these harmonics by Hs′,n`m
µ1...µs

(x), with s′ ≤ ` < n

and −` ≤ m ≤ `. Explicit expressions for s ≤ 3 are given in [14].

The reason for the decomposition (4.21) is easy to state. Starting with the three SU(2)L

Killing vectors (or the corresponding one-forms obtained by lowering indices with the met-

ric), one can construct rank-s traceless symmetric tensors by taking traceless symmetric

tensor products of these Killing vectors. Angular momentum addition guarantees that these

tensors transform as (2s + 1,1) under SU(2)L×SU(2)R. The most general rank-s traceless

symmetric tensor on S3 is a linear combination of these (2s + 1,1) tensors with coefficients

that depend on position. These coefficients are functions on S3, so they can be expanded in

the basis of scalar spherical harmonics, which as mentioned above transform as (n,n) under

SO(4). The traceless symmetric tensors therefore transform as the tensor sum of products

(n,n)⊗ (2s + 1,1) over all n ≥ 1. This description yields (4.21) after a shift in n.

All the harmonics in a given irreducible representation of SO(4) are eigenfunctions of

K corresponding to the same eigenvalue. Let kn,s′ be the eigenvalue corresponding to each
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term in (4.21):

∫
d3y

√
g(y)Kµ1...µs

ν1...νs(x, y)Hs′,n`m
ν1...νs

(y) = kn,s′Hs′,n`m
µ1...µs

(x) . (4.22)

Then

δF
(s)
∆ =

1

2

∞∑
n=s+1

s∑
s′=−s

(n2 − s′2) log kn,s′ . (4.23)

Because the kernel (4.18) is invariant under the Z2 reflection symmetry that exchanges

SU(2)L with SU(2)R, we must have kn,s′ = kn,−s′ . Since the eigenvalue kn,s′ doesn’t depend

on the quantum numbers ` and m, we can write

kn,s′ =
1

n2 − s′2
∑
`,m

∫
d3x d3y

√
g(x)

√
g(y)Hs′,n`m

µ1...µs
(x)∗Kµ1...µs;ν1...νs(x, y)Hs′,n`m

ν1...νs
(y) . (4.24)

The average over all the states in a given irreducible representation of SO(4) makes the

product H(x)∗K(x, y)H(y) depend only on the relative angle between x and y. One can

then perform five of the six integrals in (4.24), which gives

kn,s′ =
64π3

n2 − s′2

∫
dr

r2

(1 + r2)3 Z
s′,n
µ1...µs;ν1...νs

(rv̂)Kµ1...µs;ν1...νs(rv̂, 0) , (4.25)

where v̂ is an arbitrary unit vector, say v̂ = (0, 0, 1), and Z is a tensor “zonal” harmonic

defined as

Zs′,nµ1...µs;ν1...νs
(x) ≡

∑
`,m

Hs′,n`m
µ1...µs

(x)∗Hs′,n`m
ν1...νs

(0) . (4.26)

We can thus find kn,s′ by performing only a one-dimensional integral. All that remains to

do is to find explicit expressions for the tensor zonal harmonics Zs′,n and the kernel K. We

will do so in specific examples.
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Before discussing the order N0 corrections to δF
(s)
∆ , however, we are already in position

to show that the logN correction vanishes when ∆ 6= s+ 1. From (4.25) and (4.18), we see

that each kn,s′ is proportional to N and the normalization factor C. The logN correction to

δF
(s)
∆ is then found by evaluating the divergent sum

δF
(s)
∆ =

(
1

2

∞∑
n=s+1

s∑
s′=−s

(n2 − s′2)

)
logN +O(N0)

=

(
s+

1

2

)[
ζ(−2, s+ 1)− s(s+ 1)

3
ζ(0, s+ 1)

]
logN +O(N0)

= O(N0)

(4.27)

through zeta function regularization. In simplifying the second line above we have used

a standard identity for the Hurwitz zeta-function. We may use the same computation to

show that (i) the O(N0) term does not depend on the normalization factor C, and (ii) if

we reinstate the radius R of the S3, the potential logR term vanishes. This latter point is

important; since there is no anomaly in 3-d, the quantity δF
(s)
∆ must not have any dependence

on the radius R through terms that cannot be removed by the addition of local counter-terms.

A logR term is an example of such a term that cannot be removed.

4.3.2 Particular cases

We now calculate the order N0 term in δF
(s)
∆ explicitly for s = 0, 1, and 2, and we show that

the results are consistent with (4.5). The s = 0 calculation was performed in Sec. 2.5. As

a warmup we begin by reviewing that computation in the current notation. We have also

performed the s = 3 calculation explicitly. Some of the details may be found in the original

paper [14].
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Spin 0

For s = 0 we have only one type of eigenvalue, kn,0. Using (4.18) we see that the kernel is

given simply by

K(rv̂, 0) =
N C

(2 sin(χ/2))2∆
, (4.28)

where we have defined

r ≡ tan
χ

2
. (4.29)

To compute the zonal harmonics we use the definition in (4.26) along with the explicit

expressions for the spherical harmonics, given in [14], and we find

Z0,n(rv̂) =
∑
`,m

Yn`m(χ, θ, φ)Yn`m(χ = 0)

= Yn00(χ, θ, φ)Yn00(χ = 0) =
n cscχ sin(nχ)

2π2
.

(4.30)

The integral in (4.25) may then be performed explicitly:

kn,0 =
N C 22(1−∆)π

n

∫ π

0

dχ
sinχ sinnχ(

sin χ
2

)2∆

= 4π N C sin(π∆)
Γ(2− 2∆)Γ(n− 1 + ∆)

Γ(2 + n−∆)
.

(4.31)

The change in the free energy may be evaluated using (4.23), which leads to the expression

δF
(0)
∆ =

1

2

∞∑
n=1

n2 log
Γ(n− 1 + ∆)

Γ(2 + n−∆)
. (4.32)

When ∆ = 3/2 the operator J2 is marginal, and so in that case we expect δF
(0)
3/2 = 0. Indeed,

taking ∆ = 3/2 in (4.32), we see that each of the terms in the sum vanishes independently.
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The sum in (4.32) was evaluated explicitly for general ∆ in [58], and their regularized result

is a particular case of (4.5). Below we give a more simple, though perhaps slightly less

rigorous, derivation that will be useful when going on to the more complicated, higher-spin

theories. First we take a derivative of (4.32) with respect to ∆, and then we insert a factor

of exp[−ε n], ε > 0, into the sum to make it convergent:

∂∆δF
(0)
∆ =

1

2

∂2

∂ε2

[
∞∑
n=1

[
ψ(2 + n−∆) + ψ(n− 1 + ∆)

]
e−ε n

]

=
3− 2γ − 2 log ε

ε3
− 13 + 6∆(∆− 3)

12 ε

+
π

6
(∆− 1)

(
∆− 3

2

)
(∆− 2) cot(π∆) +O(ε) .

(4.33)

Subtracting the divergent terms from (4.33) and using the relation δF
(0)
∆ =

∫ ∆

3/2
dx (∂xδF

(0)
x ),

which follows from the fact that δF
(0)
3/2 = 0, we arrive at the result in (4.5) with s = 0.

Spin 1

When s = 1, a similar computation—using the Appendices of [14]—gives

kn,0 = N C
4π(2−∆)Γ(2− 2∆) sin(π∆)

∆

Γ(n− 1 + ∆)

Γ(n+ 2−∆)
,

kn,±1 =
∆− 1

2−∆
kn,0 .

(4.34)

This allows us to write δF
(1)
∆ as the sum

δF
(1)
∆ =

1

2

∞∑
n=2

[
n2 log kn,0 + 2(n2 − 1) log kn,1

]
, (4.35)

which simplifies to

δF
(1)
∆ =

1

2
log

∣∣∣∣∆− 1

2−∆

∣∣∣∣+
∞∑
n=2

(
3

2
n2 − 1

)
log

∣∣∣∣Γ(n− 1 + ∆)

Γ(n+ 2−∆)

∣∣∣∣ . (4.36)
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As a first check of (4.36), we should verify that this expression vanishes when ∆ = 3/2.

Indeed, in this case each of the terms in the sum vanishes independently. To evaluate (4.36)

for more general ∆, it is again convenient to take a derivative with respect to ∆ and to insert

a factor of e−ε n into the sum to make it convergent. The identity

lim
ε→0+

[
3

2
∂2
ε − 1

] ∞∑
n=2

[ψ(n+ 2−∆) + ψ(n− 1 + ∆)] e−ε n

=
1

2

(
1

2− 3∆ + ∆2

)
+
π

2
∆(∆− 3)

(
∆− 3

2

)
cot(π∆)

(4.37)

then allows us to conclude that

∂∆δF
(1)
∆ =

π

2
∆(∆− 3)

(
∆− 3

2

)
cot(π∆) , (4.38)

which is consistent with (4.5).

Spin 2

The calculation of the eigenvalues is again straightforward when s = 2, and it leads to

kn,0 = c(∆)
Γ(n− 1 + ∆)

Γ(n+ 2−∆)
, kn,1 =

∆− 1

2−∆
kn,0 ,

kn,2 =
∆(∆− 1)

(∆− 2)(∆− 3)
kn,0 ,

(4.39)

where the common factor

c(∆) = N C
8π(∆− 3)(∆− 2)(2∆− 1)Γ(−2∆) sin(π∆)

∆ + 1
(4.40)

is independent of n. We then find that δF
(2)
∆ may be written as the sum

δF
(2)
∆ =

∞∑
n=3

(
5

2
n2 − 5

)
log

∣∣∣∣Γ(n− 1 + ∆)

Γ(n+ 2−∆)

∣∣∣∣+
5

2
log

∣∣∣∣ 2∆2(∆− 1)

(∆− 2)(∆− 3)2

∣∣∣∣ . (4.41)
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When ∆ = 3/2, each of the terms in the sum vanishes identically, leading to the expected

result δF
(2)
3/2 = 0. To evaluate this sum for more general ∆, we follow the by now familiar

procedure of taking a derivative with respect to ∆ and inserting a factor e−ε n into the sum

to make it convergent. Using an identity analogous to (4.37), we find the result

∂∆δF
(2)
∆ =

5π

6
(∆− 4)

(
∆− 3

2

)
(∆ + 1) cot(π∆) , (4.42)

which is consistent with (4.5).

4.3.3 A conjecture for arbitrary spin

The spin 3 calculation is worked out explicitly in [14]. From these examples with s ≤ 3 we

conjecture that at arbitrary integer spin s the eigenvalues are related to each other by

kn,0 = cs(∆)
Γ(n− 1 + ∆)

Γ(n+ 2−∆)
, kn,i =

Γ(2−∆)

Γ(∆− 1)

Γ(−1 + i+ ∆)

Γ(2 + i−∆)
kn,0 . (4.43)

Importantly, the common factor cs(∆) is n-independent. The calculation in (4.27) that

showed that δF
(s)
∆ does not depend on the radius R and N then also shows that δF

(s)
∆ is

independent of cs(∆). Moreover, when ∆ = 3/2 we find that kn,i = kn,0, which immediately

implies that δF
(s)
3/2 = 0. To test the eigenvalue conjecture for more general ∆, we may

calculate ∂∆δF
(s)
∆ using the identity

lim
ε→0+

[
(1 + 2s)∂2

ε −
s(1 + s)(1 + 2s)

3

] ∞∑
n=1+s

[ψ(n+ 2−∆) + ψ(n− 1 + ∆)] e−ε n

+
(1 + 2s)

3

s∑
i=1

(
s(s+ 1)− 3 i2

) [
ψ(2−∆) + ψ(∆− 1)− ψ(2 + i−∆)− ψ(−1 + i+ ∆)

]
=

(2 s+ 1)π

3

(
∆− 3

2

)
(∆ + s− 1)(∆− s− 2) cot(π∆) ,

(4.44)
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and we find the desired formula (4.5) at arbitrary integer spin. In section 4.6.2 we prove (4.5)

for arbitrary spin s from a much simpler calculation in the bulk.

4.4 Conserved Currents and Gauge Symmetries

Let us now return to the case where ∆ = s + 1 and the operator Jµ1µ2...µs is a conserved

current of spin s. Specifically, we will consider the theories of N free conformal complex

scalars or Dirac fermion fields, which possess such currents of all s > 0. The conformal

theory in this case is the gauge theory for the spin s gauge field hµ1µ2...µs with quadratic

and higher-order terms induced by the one-loop diagram with conformal matter propagating

around the loop. We will derive the result advertised in (4.4), and we will also show explicitly

that δF is independent of the radius R of the three-sphere. This independence of R is crucial

for the interpretation of the induced theory as a conformal theory.

For more generality, we work in d dimensions, with d odd. The restriction to odd dimen-

sions is put in to avoid the Weyl anomaly, which occurs when d is even. We return to the

even dimensional case in later sections. Note that in all d the scaling dimension of the spin

s gauge field is ∆− = 2− s.

The expression (4.4), as well as its generalization to arbitrary odd d, follows from a careful

treatment of the gauge symmetry in the path integral. At the linearized level, the induced

conformal higher-spin theory has the following local symmetries6

δhµ1...µs = ∇(µ1vµ2...µs) + g(µ1µ2λµ3...µs) , (4.45)

where the rank s − 1 symmetric traceless gauge parameter vs−1 is the generalization of

the familiar diffeomorphisms for spin 2, and the rank s − 2 parameter λs−2 generalizes the

local Weyl invariance of conformal gravity [134]. We may use this symmetry to gauge away

completely the trace of hµ1...µs , and the remaining gauge symmetry is then obtained by

6We symmetrize with total weight one. In other words v(µ1µ2...µs) = 1
s!

∑
σ∈Ss vσµ1 ...σµs .
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restricting to the traceless part of (4.45)

δhµ1µ2...µs =
(
Ogv

)
µ1µ2...µs

, (4.46)

where the operator Og takes the rank s− 1 traceless symmetric tensor vµ1...µs−1 to a rank s

traceless symmetric tensor, namely:

(
Ogv

)
µ1µ2...µs

= ∇(µ1vµ2µ3...µs) −
s− 1

d+ 2(s− 2)
g(µ1µ2∇νvµ3µ4...µs)ν . (4.47)

One can then decompose the gauge field hµ1...µs as

hµ1...µs = tµ1...µs +
(
Ogv

)
µ1µ2...µs

, ∇µ1tµ1...µs = 0 . (4.48)

The first term in (4.48) represents the physical modes, while the second term represents the

pure gauge modes. The requirement ∇µ1tµ1...µs = 0 on the physical modes is a gauge fixing

condition.

After integrating out the conformally invariant matter fields, the partition function at

the conformal fixed point takes the form

Z =
1

Vol(G)

∫
Dhe−Seff[h] , (4.49)

where G is the group of gauge transformations, and the effective action for the spin s gauge

field h is given explicitly in the quadratic approximation by

Seff[h] =
1

2

∫
ddx
√
g(x)

∫
ddy
√
g(y)hi1...is(x)Ki1...is

j1...js(x, y)hj1...js(y) , (4.50)

for some kernel K as in (4.18) for d = 3. It is important that K ∝ N , where N is the number

of conformally coupled matter fields; when N is large, the quadratic approximation (4.50) to
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the effective action becomes arbitrarily accurate. The action Seff[h] is of course independent

of the pure-gauge modes, so Seff[h] = Seff[t]. Performing the split (4.48) and writing the

volume of the group of gauge transformations as an integral over gauge parameters, we have

Z ≈
∫
D(Ogv)∫
Dv

∫
Dt e−Seff[t] . (4.51)

We are interested in studying the dependence on the Sd radius R and on the number N of

conformally coupled matter fields. While only the last factor in (4.51) depends on N , the

R-dependence of each of the two factors in (4.51) is more subtle. The absence of a Weyl

anomaly guarantees, however, that Z is independent of R, as we now explain.

On general grounds, the absence of a Weyl anomaly in odd dimensions means that the

integration measure in the path integral is invariant under constant rescalings of the inte-

gration variables. For instance, for a rank s traceless symmetric tensor hµ1...µs , this means

that Dh = D(λh) for any constant λ. We checked this fact explicitly in (4.27) in d = 3: the

Jacobian D(λh)/Dh equals λ raised to the sum of the degeneracies of all symmetric traceless

tensor modes, and we checked that this sum vanishes in zeta-function regularization in d = 3.

Similar checks are straightforward to perform for other odd d.

The action in (4.49) remains unchanged if we send gµν → λ̃2gµν and hi1...is →

λ̃s−2+d/2hi1...is (where i1, i2, . . . are frame indices). Since the integration measure also

remains unchanged (because all the modes are rescaled by the same factor), it follows

that the partition function does not change either. One then concludes that the partition

function on Sd is independent of R, because we can compute Z for a sphere of unit radius,

and then reinstate R by performing a scale transformation.

In order to understand the dependence of (4.51) on N , we should first examine the zero

modes of the operator Og. These zero modes are important because in the numerator of the

first factor in (4.51) we should not integrate over these modes, while in the denominator we
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should. The zero modes of Og are solutions to the conformal Killing tensor equation

∇(µ1vµ2µ3...µs) =
s− 1

d+ 2(s− 2)
g(µ1µ2∇νvµ3µ4...µs)ν . (4.52)

As shown in [148], see also [145, 146], the symmetric traceless conformal Killing tensors of

rank s− 1 form an irreducible representation of SO(d+ 1, 1) of dimension

ns−1 =
(d+ 2s− 4)(d+ 2s− 3)(d+ 2s− 2)(d+ s− 4)!(d+ s− 3)!

s!(s− 1)!d!(d− 2)!
. (4.53)

This is the representation of corresponding to the Young diagram

· · ·
· · ·

,︸ ︷︷ ︸
s− 1

(4.54)

which has two rows of length s−1.7 The representation may be labelled by the set of integers

with m1 = m2 = s − 1 and m3 = . . . = 0 corresponding to the length of each row, and we

conventionally denote it as [s− 1, s− 1].

Note that when s = 2, (4.52) reduces to the more familiar conformal Killing vector

equation

∇µvν +∇νvµ =
2gµν

3
∇ · v , (4.55)

and it is well-known that there are n1 = (d + 1)(d + 2)/2 linearly independent conformal

Killing vectors; they transform in the adjoint (antisymmetric two-index tensor) represen-

tation of SO(d + 1, 1). An equivalent counting of conformal Killing tensors is in terms of

representations of SO(d+ 1), where the solutions of (4.52) transform as irreps whose Young

7The same rectangular two-row representation appears naturally in the frame-like description of higher-
spin gauge fields in AdSd+1 [147].
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diagrams have two rows: s− 1 boxes in the first row and any number of boxes in the second

row.

We can now have a more detailed understanding of how each factor in (4.51) depends

on R. Let us start with the denominator of the first factor, Vol(G) =
∫
Dv. This quantity

by itself is R-independent, as guaranteed by the absence of a Weyl anomaly and by the fact

that we are integrating over all the modes of a rank s − 1 traceless symmetric tensor. We

can split, however, the integral over all gauge parameters into an integral over the kernel of

Og, which is the stabilizer of the gauge orbits, and an integral over the transverse space:

Vol(G) = Vol(H)

∫
D′v , Vol(H) =

∫
KerOg

Dv . (4.56)

The discussion above implies that gµν ∝ R2, ti1...is ∝ Rs−2+d/2, and vi1...is−1 ∝ Rs−1+d/2.

Since Vol(H) contains ns−1 integrals and each integral contributes a factor of R2−1+d/2, we

have

Vol(H) ∝ Rns−1(s−1+d/2) ,

∫
D′v ∝ R−ns−1(s−1+d/2) , (4.57)

where the R-dependence of
∫
D′v is such that Vol(G) is R-independent.8 The number of

integration variables in
∫
D′v is therefore equal to −ns−1 in zeta-function regularization.

The R-dependence of the two other ingredients of (4.51) is

∫
D(Ogv) ∝ R−ns−1(s−2+d/2) ,

∫
Dt e−Seff[t] ∝ Rns−1(s−2+d/2) . (4.58)

The first expression follows because that the number of integration variables equals −ns−1

in zeta function regularization—for they’re the same integration variables as in the
∫
D′v

integral—and because by dimensional analysis each integral contributes one fewer power

8The factor Vol(H) is also proportional to the volume of the gauge group. While for s = 1 the gauge
group is compact, an extra complication that arises when s > 1 is that the gauge group is now non-compact
and its volume is formally infinite.
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of R than each of the
∫
D′v integrals. The second expression in (4.58) is such that the

R-dependence cancels when integrating over all rank-s traceless symmetric tensor modes.

The number of integration variables equals +ns−1 in zeta-function regularization, and each

integral contributes a factor of Rs−2+d/2.

The dependence on N in (4.51) comes entirely from the integrand of the second factor

where K ∝ N . As a consequence of there not being a Weyl anomaly, we can write

Z ≈
∫
D(
√
NOgv)∫

D(
√
Nv)

∫
D(
√
Nt) e−Seff[

√
Nt] . (4.59)

The second factor is now N -independent, while the first factor is proportional to(
1/
√
N
)ns−1

, simply because the denominator contains ns−1 more integrals than the

numerator. Therefore

δF =
ns−1

2
logN +O(N0) , (4.60)

In d = 3, this expression reduces to (4.4). This result was obtained in the leading large N

approximation where only the terms quadratic in the spin s gauge field needed to be included

in the induced action. In this approximation we could simultaneously gauge the currents

with spins s1, s2, . . . , sk. In such a theory,

δF =
1

2
logN

k∑
i=1

nsi−1 +O(N0) . (4.61)

When non-linear effects are included in the induced gauge theory for higher-spin gauge fields,

or equivalently in the dual Vasiliev theory in AdSd+1 space, it may be necessary to gauge all

the higher-spin symmetries simultaneously [142].
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4.5 The calculation in AdS: general setup

Let us consider a free massive spin s field propagating in Euclidean AdSd+1, i.e. the hyperbolic

space Hd+1. This can be described by a totally symmetric tensor9 hµ1···µs satisfying the Fierz-

Pauli equations

(
∇2 − κ2

)
hµ1···µs = 0 ,

κ2 = m2 − 2 + (s− 2)(s+ d− 3) ,

∇µhµµ2···µs = 0 , gµνhµνµ3···µs = 0 . (4.62)

The mass term in the wave equation above is defined so that m2 correspond to the physical

mass of the field,10 while the extra spin-dependent shift arises from the coupling to the

curvature of AdS (here and throughout we will set the AdS radius to one). These equations

of motion and constraints may be derived from a Lagrangian, but we will not need the details

of the general construction here. As a simple example, the s = 1 case can be described by

the Proca action

S =

∫
dd+1x

√
g

(
1

4
FµνF

µν +
m2

2
AµA

µ

)
. (4.63)

The equations of motion coming from this action, ∇µFµν = m2Aν , can be shown to be

equivalent to (4.62) as long as m2 6= 0. For massive fields, the equations (4.62) describe the

propagation of g(s) = (2s+d−2)(s+d−3)!
(d−2)!s!

on-shell degrees of freedom.

In the massless case m2 = 0, the spin s ≥ 1 fields become gauge fields, with linearized

gauge invariance

δhµ1···µs = ∇(µ1εµ2···µs), (4.64)

9For d = 3 a totally symmetric traceless tensor is the only possibility for a spin s field. In higher
dimensions, more general mixed symmetry fields are possible, but we will not consider them in this chapter.

10Except for s = 0, where in this normalization m = 0 gives a scalar with mass-squared equal to 4 − 2d.
For d = 3, this is a conformally coupled scalar field.
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where the gauge parameter is a rank s− 1 symmetric traceless tensor. The gauge invariant

equations of motion and action are known [154], but we will not need their explicit form.

The simple equations (4.62) may be still used to describe the propagation of on-shell degrees

of freedom. In this case, however, the second line of (4.62) does not follow from the equations

of motion but can be imposed as a consistent on-shell gauge condition (see e.g. [149]). Due

to the usual counting of gauge symmetries, the number of propagating degrees of freedom

in this case is

g(s)− g(s− 1) =
(2s+ d− 3)(s+ d− 4)!

(d− 3)!s!
. (4.65)

In d + 1 = 4, this number gives 2 degrees of freedom for all non-zero spins, corresponding

to helicities ±s. In d + 1 = 3 dimensions, there are no propagating degrees of freedom for

s > 1, and one for s = 1.

The conformal dimension of the spin s field theory operator dual to hµ1···µs can be obtained

by studying the near-boundary behavior of a solution to the equations of motion. To be

concrete, if we use Poincaré coordinates for AdSd+1

ds2 =
dz2 +

∑d
i=1 dx

2
i

z2
, (4.66)

a solution to (4.62) behaves as z → 0 as (see e.g. [76]) hi1···is ∼ z∆−s, where ∆ is a root of

the equation (∆ + s− 2)(∆ + 2− d− s) = m2. The solutions to this equation are

∆± =
d

2
± ν , ν =

√
m2 +

(
d

2
+ s− 2

)2

. (4.67)

The same bulk theory describes two different CFTs depending on the boundary conditions

for the field hµ1···µs , and these CFTs are exactly the endpoints of the RG flow obtained from

the action in (4.8). The boundary condition h(s) ∼ z∆−−s corresponds to the UV CFT, with

Js having dimension ∆−, and the boundary condition h(s) ∼ z∆+−s describes the IR fixed
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point, with Js of dimension ∆ ≡ ∆+. In the massless case, ∆+ = s+ d− 2 is the dimension

of the spin s conserved current in the free theory, while ∆− = 2− s is the dimension of the

spin s auxiliary field that becomes a dynamical gauge field in the induced theory.

The contribution of h to the free energy is given by evaluating the one-loop determinant

F
(s)
∆±

= − log

∫
Dhe−sh

∣∣∣∣
∆±

, (4.68)

where the symbol |∆± indicates which boundary conditions we are to impose at small z.

Thus, the change in free energy between the UV and IR fixed points is given by

δF
(s)
∆ = F

(s)
∆−
− F (s)

∆+
=

1

2

[
tr

(s)
− log(−∇2 + κ2)− tr

(s)
+ log(−∇2 + κ2)

]
, (4.69)

where the operator ∇2 = gµν∇µ∇ν acts on symmetric transverse-traceless (STT) tensors of

rank s. Using the approach of [58, 120] and taking a derivative with respect to ∆ gives the

more convenient expression

∂∆δF
(s)
∆ = (2∆− d)

∂δF
(s)
∆

∂m2
=

2∆− d
2

∫
volHd+1

(
TrG

(s)
∆−

(x, x)− TrG
(s)
∆+

(x, x)
)

(4.70)

in terms of the Green’s functions G
(s)
∆±

(x, y) for the spin s field with the respective boundary

conditions. Here TrG(s)(x, x) denotes the Green’s function at coincident points traced over

the space-time indices, namely TrG(s)(x, x) = limy→x g
µ1ν1 · · · gµsνsGµ1...µsν1...νs(x, y). Of

course, the Green’s function at coincident points is divergent, but the divergence is just the

usual short-distance singularity of flat space propagators, which cancels when taking the

difference between the two boundary conditions in (4.70) [120].
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4.6 Massive spin s fields in AdS

4.6.1 Some lower spin examples

As a warm-up we begin by considering a scalar field in d = 3. In this case the Green’s

functions may be written down simply in terms of the chordal distance u.11 Using the

Poincaré coordinates (4.66), let us denote two points on AdS4 by xµ = (z, xi) and yµ =

(w, yi). Then the chordal distance is given by

u(x, y) ≡ (z − w)2 + (xi − yi)(xi − yi)
2zw

. (4.71)

We then use the standard result for the Green’s function of the massive scalar field on AdSd+1

(see, for example, [166]),

G∆(x, y) = G∆(u) = C̃∆(2u−1)∆F
(
∆,∆− d

2
+

1

2
; 2∆− d+ 1;−2u−1

)
,

C̃∆ =
Γ(∆)Γ(∆− d

2
+ 1

2
)

(4π)(d+1)/2Γ(2∆− d+ 1)
.

(4.72)

Taking d = 3, in the short-distance limit u→ 0 we find

G∆(u) =
1

8π2u
+O(log u) , (4.73)

and

G3−∆(u)−G∆(u) =
1

8π
(∆− 1)(∆− 2) cot(π∆) +O(u) . (4.74)

The only other ingredient needed to complete the computation is the regularized volume of

H4, which is 4π2/3 (see (4.82)). Combining this fact with (4.74) and (4.70) then allows us

to reproduce (4.5) with s = 0.

11The chordal distance u is related to the geodesic distance r by u = cosh r − 1.
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The spin 1 calculation may be carried out in an analogous fashion to the spin 0 calculation

presented above. The massive bulk-to-bulk vector field propagator was worked out explicitly

in [167]:12

(G(1)
µν )∆(u) = −

[
G∆(u) + L∆(u)

]
Tµν − L′∆(u)Sµν , (4.75)

where G∆(u) is the scalar propagator defined in (4.72) and

L∆(u) = − 1

(∆− 1)(∆− 2)

[
2G∆(u) + (1 + u)G′∆(u)

]
,

Tµν = ∂µ∂νu , Sµν = ∂µu∂νu .

(4.76)

Using the explicit definition of u in (4.71), we may work out that in the limit u → 0 the

trace T µµ → −4 while Sµµ → 0. A straightforward calculation using the results above then

leads to equation (4.38). One may perform an analogous computation using the massive

spin 2 propagator derived in [167]. Following the same steps as above, one can evaluate the

trace of the Green’s function at coincident points. Taking the difference of the two boundary

conditions readily allows one to reproduce the CFT result (4.42).

4.6.2 Arbitrary spin

In principle one may proceed to arbitrary spin by generalizing the method presented above

for the spin 0 and 1 cases to general spin s. Thankfully, however, there is a shortcut which

saves us from having to solve for the massive bulk-to-bulk propagator at arbitrary spin.

Moreover, we may keep arbitrary the boundary spacetime dimension d ≥ 2 in the following

calculation without adding much complexity. We begin by considering the integer spin cases,

and we comment on the generalization to half-integer spin in Section 4.8.

12The propagator we use, (4.75), differs by an overall minus sign compared to the one in [167]. In these
conventions the propagator reduces in the flat space limit to the Fourier transform of (gµν−kµkν/m2)/(k2 +
m2).
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Let us start by recalling the familiar definition of the heat kernel for the operator −∇2+κ2

acting on transverse symmetric traceless spin s tensors. The heat kernel Kµ1···µs
ν1···νs(x, x′, t)

on Hd+1 is a solution to the equations

(
∂

∂t
−∇2 + κ2

)
Kµ1···µs

ν1···νs(x, y, t) = 0 ,

Kµ1···µs
ν1···νs(x, y, 0) = δ(µ1···µs)

(ν1···νs)(x, y) ,

(4.77)

where δ(µ1···µs)
(ν1···νs)(x, x′) is the STT δ-function on Hd+1. An explicit expression for the heat

kernel may be written down in terms of the STT eigenfunctions ĥλ,uµ1···µs , which are taken to

be orthonormal with respect to the standard inner product on Hd+1 and which satisfy the

equation

−∇2 ĥλ,uµ1···µs(x) =

(
λ2 +

d2

4
+ s

)
ĥλ,uµ1···µs(x) (4.78)

as well as transversality and tracelessness. Here u is a multi-index labeling different eigen-

functions with the same eigenvalue under −∇2, and it corresponds to the set of integers

which specify the spherical harmonics on the Sd boundary. Additionally, the eigenvalue in

(4.78) has been shifted in such a way that λ ≥ 0. In terms of these eigenfunctions, the heat

kernel may be written formally as

Kµ1···µs
ν1···νs(x, y, t) =

∑
u

∫ ∞
0

dλ ĥλ,uµ1···µs(x)ĥλ,u ν1···νs(x′)∗

exp

[
−
(
λ2 +

d2

4
+ s+ κ2

)
t

]
.

(4.79)

Note that using (4.62) and (4.67) we can write

λ2 +
d2

4
+ s+ κ2 = λ2 +

(
∆− d

2

)2

, (4.80)
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where ∆ is the dimension of the dual operator. The spectral zeta function ζH(z;x) is defined

by evaluating the trace of the heat kernel at coincident points x = y, inserting a factor of

tz−1, and integrating over t:

ζH(z;x) ≡ 1

Γ(z)

∫ ∞
0

dt tz−1Kµ1···µs
µ1···µs(x, x, t)

=
∑
u

∫ ∞
0

dλ
ĥλ,uµ1···µs(x)ĥλ,u ν1···νs(x)∗

(λ2 + (∆− d/2)2)z
.

(4.81)

Since the space Hd+1 is homogeneous, the zeta function does not depend on the position

x. We may define the integrated zeta function ζH(z) to be the integral of ζH(z, x) over

the whole space, but for the reason just given this only has the effect of multiplying the

expression in (4.81) by a factor of the regularized volume of Hd+1. This regularized volume

may be found by writing the metric as dρ2 + sinh2 ρ dΩ2
Sd

and imposing a cut-off on ρ at a

large value ρc. In even and odd dimensions this then gives [11, 58,104]

∫
volHd+1 =


πd/2Γ

(
−d

2

)
, d odd ,

2(−π)d/2

Γ(1+ d
2)

logR , d even ,
(4.82)

where R is the radius of Sd located at ρ = ρc.
13 Since the integral over proper time t of the

heat kernel gives the Green’s function, it is clear from the definition (4.81) that the spectral

zeta function is related to the trace of the Green’s function at coincident points by

ζH(z = 1) =

∫
volHd+1TrG

(s)
∆ (x, x) . (4.83)

The boundary conditions for the Green’s function are determined by the boundary condi-

tions we take for the eigenfunctions hλ,uµ1···µs(x). The authors of [168, 169] calculated ζH(z)

for arbitrary spin and in arbitrary dimension d, assuming certain regularity conditions on

the eigenfunctions that correspond to imposing the ∆+ boundary condition on the Green’s

13Only the logarithmic divergence was retained in the even d case. One may, for example, work in
dimensional regularization with d→ d− ε, and identify the 1/ε pole with the logR divergence.
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function. To obtain the result for the ∆− boundary condition, we will analytically continue

their final result to arbitrary ∆, as explained below.

Assuming for the moment ∆ = ∆+, the zeta function (4.81) may be written in terms of

the integral over λ

ζH(z) =

(∫
volHd+1∫
volSd

)
2d−1

π
g(s)

∫ ∞
0

dλ
µ(λ)[

λ2 +
(
∆+ − d

2

)2
]z , (4.84)

with g(s) the spin factor, which in d = 2 is given by g(0) = 1 and g(s) = 2 for s ≥ 1, and in

d > 2 by

g(s) =
(2s+ d− 2)(s+ d− 3)!

(d− 2)!s!
, d ≥ 3 . (4.85)

This spin factor is the number of propagating degrees of freedom of a massive spin s field in

d+ 1 dimensions. In 3 + 1 dimensions, these are the familiar 2s+ 1 degrees of freedom of a

massive spin s field.

The function µ(λ) is known as the spectral function, and it is obtained from (4.81) by

summing over all discrete indices of the eigenfunctions. The result of [169] gives

µ(λ) =
π
[
λ2 +

(
s+ d−2

2

)2
]

(
2d−1Γ

(
d+1

2

))2

∣∣∣∣∣Γ
(
iλ+ d−2

2

)
Γ(iλ)

∣∣∣∣∣
2

. (4.86)

We now turn to the evaluation of the integral in (4.84), beginning with the case of most

interest, d = 3. The spectral function in d = 3 may be simplified to

µ(λ) =
πλ

16

[
λ2 +

(
s+

1

2

)2
]

tanhπλ , (4.87)

and from this we see that to evaluate ζH(z) we need to compute the integral

I3(z) =

∫ ∞
0

dλ λ

[
λ2 +

(
s+

1

2

)2
]

tanhπλ

[λ2 + ν2]z
, ν ≡ ∆+ −

d

2
. (4.88)
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The integral only converges for Re(z) > 2, and so we proceed by assuming Re(z) > 2,

evaluating I3(z) explicitly, and then analytically continuing to the other values of z. One

way to evaluate I3(z) is to use the identity tanh(πλ) = 1− 2(1 + e2πλ)−1 to write

I3(z) =
ν2(1−z)

2(2− z)(1− z)

[
ν2 + (z − 2)

(
s+

1

2

)2
]

− 2

∫ ∞
0

dλ λ

[
λ2 +

(
s+

1

2

)2
]

1

(1 + e2πλ) [λ2 + ν2]z
.

(4.89)

The integral appearing above is now perfectly convergent for all z, and it may be evaluated

explicitly for specific z using, for example, the identities in [170]. The analytic continuation

necessary to extract the result for ∆ = ∆− can be done as follows. We first compute the

integral (4.89) assuming ∆ = ∆+, so that ν ≥ 0. We then interpret the final result as an

analytic function of ν (for instance, by replacing |ν| → ν) and obtain the ∆− = d − ∆+

boundary condition by sending ν → −ν.

An example of particular interest is z = 1, and in this case we find

I3(z ≈ 1) =

[(
s+

1

2

)2

− ν2

]
1

2(z − 1)
+

[
ν2 −

(
s+

1

2

)2
]
ψ

(
ν +

1

2

)
− 1

24
− ν2

2
+O(z − 1) .

(4.90)

Substituting the result above into (4.84), we obtain an expression for ζH(z ≈ 1) with the

∆+ boundary condition. The pole at z = 1 is just the expected short-distance singularity

of the propagator, which will cancel when we compute the difference of the two boundary

conditions ζH(z ≈ 1)−ζH− (z ≈ 1), where the minus subscript refers to the ∆− boundary con-

dition. As explained above, we find that a shortcut to obtaining ζH− (z ≈ 1) is to analytically
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continue the result in (4.90) letting ν → −ν.14 Then, making use of the identity

ψ

(
1

2
+ ν

)
− ψ

(
1

2
− ν
)

= π tan νπ , (4.91)

we obtain

ζH(z)− ζH− (z)
∣∣
z=1

= −π
3

(
s+

1

2

)
(∆+ − s− 2)(∆+ + s− 1) cotπ∆+ , (4.92)

which, together with (4.70), immediately confirms the result for δF
(s)
∆ in (4.5).

The method used to derive (4.92) becomes more cumbersome when generalizing to arbi-

trary space-time dimensions. There is however a slightly more formal shortcut to evaluat-

ing (4.84) based on extending the region of integration in λ to (−∞,+∞) and closing the

contour of integration in the complex plane. One may then argue that

ζH(z)− ζH− (z)
∣∣
z=1

= 2d
(∫

volHd+1∫
volSd

)
g(s)

µ
[
i
(
∆+ − d

2

)]
2∆+ − d

. (4.93)

When d is odd we then find (even d will be discussed in section 4.9)

∂∆δF
(s)
∆ = (−1)(d−1)/2g(s)

Γ
(
−d

2

)
2d
√
πΓ
(
d+1

2

) (∆− d

2

)
(∆ + s− 1)(∆− s− d+ 1)

Γ(∆− 1)Γ(d− 1−∆) cos(π∆) .

(4.94)

Note that when s = 0 this agrees with the result in [9, 58]. In d = 3, it leads to the result

quoted in eq. (4.5).

Moreover, we conjecture the identity

ζH(z)− ζH− (z)
∣∣
z=0

= 2d
(∫

volHd+1∫
volSd

)
g(s) i

(
Res

λ=i(∆+−d/2)
µ(λ)

)
, (4.95)

14This analytic continuation becomes more subtle when ∆+ = s+ 1, and so we treat this case separately
later.
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which is useful when ∆+ = d+ s− 2, corresponding to a conserved current at the boundary.

Note that this expression vanishes in even d for all ∆+ and vanishes in odd d when ∆+ 6=

d+ s− 2. However, when ∆+ = d+ s− 2 and d is odd, we find

ζH(z)− ζH− (z)
∣∣
z=0

= −ns−1 , (4.96)

with ns−1 defined in (4.53). We will explain the significance of these results in the next

section.

4.7 Massless higher-spin fields in AdS and gauge sym-

metries

In this section we discuss directly the case of massless higher-spin fields, the corresponding

gauge fixing and the bulk interpretation of the coefficient of logN associated to the ∆−

boundary conditions. As usual, in computing the one-loop partition function for a higher-

spin gauge field, we must properly gauge fix the local symmetry (4.64). Using a covariant

gauge fixing procedure and introducing the corresponding ghosts,15 the end result is that the

one-loop partition function in AdSd+1 may be written as the ratio of determinants (see for

example [171–174] for the spin 2 case, and [160, 175, 176] for the generalization to arbitrary

spin)

Z(s) =

[
detSTTs−1 (−∇2 + (s− 1)(d+ s− 2))

] 1
2[

detSTTs (−∇2 + (s− 2)(d+ s− 3)− 2)
] 1

2

, (4.97)

where each determinant is computed on the space of symmetric traceless transverse tensors.

The numerator corresponds essentially to the spin s − 1 ghost contribution. The struc-

ture of the associated kinetic operator may be obtained basically by “squaring” the gauge

15Alternatively, one may use a procedure similar to the one discussed in Section 4 by explicitly decomposing
the higher-spin gauge field into its transverse, trace and pure gauge parts.
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transformation ∫
dd+1x

√
g∇(µ1ξµ2...µs)∇(µ1ξµ2...µs)

=

∫
dd+1x

√
gξµ1...µs−1

(
−∇2 + (s− 1)(d+ s− 2)

)
ξµ1...µs−1 ,

(4.98)

where we have integrated by parts, restricted to transverse ξs−1, and related commutators

of covariant derivatives to the curvature of AdS (we set the AdS radius to one).

Recall that we are interested in computing the ratio of the partition functions with

∆+ = d+ s− 2 and ∆− = 2− s boundary conditions imposed on the physical spin s gauge

fields. However, when computing the ghost determinant in (4.97), we also have in principle

two choices of boundary behavior for the Green’s function associated to the kinetic operator

−∇2 + (s− 1)(d+ s− 2). Working in Poincare coordinates and using (4.67), one finds that

the two boundary conditions on the spin s−1 transverse field with such kinetic operator are

ξi1...is−1(z, xi) ∼ zδ±ci1...is−1(xi), δ+ = d, δ− = 2− 2s , (4.99)

where i1, . . . , is−1 are indices along the flat d-dimensional boundary. As we now explain, the

choice of δ± ghost behavior is correlated with the choice ∆± on the physical gauge field. To

see this, we can look at the structure of the allowed gauge transformations on the spin s

gauge field

δhµ1...µs = ∇(µ1ξµ2...µs) . (4.100)

The boundary behavior of the gauge field is

hi1...is(z, xi) ∼ z∆±−sαi1...is(xi) , ∆+ = s+ d− 2 , ∆− = 2− s . (4.101)

In the case of the ordinary ∆+ boundary condition, we see that in order for the gauge

transformation to preserve the boundary behavior of the spin s gauge field, we must choose

in (4.99) the ξs−1 ∼ zd behavior for the ghost. The bulk gauge transformations then fall

129



off fast enough at the boundary so that the bulk spin s field is dual to a gauge invariant

conserved current. On the other hand, with the alternate ∆− boundary condition, h(s) is dual

to a gauge field at the boundary. In this case, we expect that the bulk gauge transformations

should reproduce in the z → 0 limit the gauge transformations in the boundary theory. From

(4.99), we see that the δ− = 2− 2s behavior for the ghost is precisely what we need for this

to happen, since in this case the spin s gauge field (4.101) and the ghost have the same

scaling in the boundary limit.

In section 4.4 we explained that the coefficient of logN in the free energy can be under-

stood as counting the numbers of missing gauge transformations, or equivalently ghost zero

modes. We thus expect that an analogous interpretation should hold in the bulk. Indeed,

the quadratic action for the bulk spin s fields has the schematic form

S ∼ N

∫
dd+1x

√
gh(s)D(s)h(s) , (4.102)

where N plays the role of the (inverse of the) coupling constant. The ghost action does not

carry N dependence. However, by general arguments (see e.g. [177] for a related discussion),

the Gaussian path integral on the spin s field gives a coupling dependence in the partition

function (
1√
N

)ds−(ds−1−ns−1)

, (4.103)

where ds is the dimension of the space of unconstrained spin s fields, ds−1 the dimension of

the spin (s− 1) gauge parameter space, and ns−1 the number of gauge transformations that

act trivially on the gauge field. Using a regularization such that ds = ds−1 = 0 (such as the

ζ-function regularization we used in the boundary), the N dependence of the one-loop free

energy will then be F = 1
2
ns−1 logN . To prove agreement with the boundary calculation, we

just have to show that we have the same number ns−1 of trivial gauge transformations (or

ghost zero modes) in the bulk as we do in the boundary, and also, importantly, that such

zero modes of the gauge transformation are only present with the ∆− boundary condition.
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The trivial bulk gauge transformations that we should count are the solutions to

∇(µ1ξµ2...µs) = 0, ξµµµ3...µs−1
= 0 ; (4.104)

namely, they are the traceless spin s− 1 Killing tensors of the AdS background. Note that

due to (4.98) these are also zero modes of the ghost kinetic operator. The traceless Killing

tensors of AdSd+1 are expected to be in one-to-one correspondence with the conformal Killing

tensors in the boundary CFT [149]. So we anticipate that solutions to (4.104) should fall into

the [s− 1, s− 1] representation of SO(d+ 1, 1), and hence we should have the same number

of zero modes in the bulk and in the boundary. However, since the boundary behavior of

these modes is crucial in our analysis, it is important to analyze explicitly the solutions to

(4.104).

Let us first look at the simplest s = 1 case. Here we are just counting solutions to

∇µξ = 0 . (4.105)

Clearly the only solution is ξ = constant over the whole AdS. If the gauge field is quantized

with the ∆+ boundary condition, then, as we have argued above, the analysis of allowed

gauge transformations requires ξ ∼ zd near the boundary. Therefore, as expected, this

constant mode should not be counted as a trivial gauge transformation in the ∆+ theory.

On the other hand, with the ∆− boundary condition the scalar ghost should have precisely

the behavior ξ ∼ z0 at small z (see (4.99)), and so the constant mode solving (4.105) should

indeed be intepreted as a trivial gauge transformation of the ∆− theory. Of course, the

projection of this mode to the boundary (trivially) coincides with the single constant gauge

transformation on S3, leading to δFs=1 = 1/2 logN +O(N0).

For s = 2, we should look for solutions to

∇µξν +∇νξµ = 0 . (4.106)
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These are just the Killing vectors generating the isometries of AdSd+1, and the solution is well

known. There are (d+ 1)(d+ 2)/2 Killing vectors transforming in the adjoint representation

of SO(d+ 1, 1). We may describe (Euclidean) AdSd+1 as the hyperboloid in Rd+1,1

ηABX
AXB = −1 A,B = 0, 1, . . . d+ 1 , (4.107)

where ηAB = (−1,+1, . . . ,+1). Choosing an explicit parameterization XA(xµ), where xµ

are coordinates on AdSd+1, the Killing vectors are given by

ξABµ = XA∂µX
B −XB∂µX

A . (4.108)

For instance, in the Poincare coordinates

XA =

(
z

2

[
1 +

1

z2
(1 + z2 + xixi)

]
,
xi

z
,
z

2

[
1 +

1

z2
(1− z2 − xixi)

])
, i = 1, . . . , d .

(4.109)

A simple calculation shows that the Killing vectors behave at small z as

ξABi = z−2vABi (xi) +O(z0), ξABz = z−1fAB(xi) . (4.110)

From (4.99) and the discussion thereafter, we conclude that these are truly zero modes of

the bulk gauge transformations only when the graviton is quantized with the alternate ∆−

boundary condition. Therefore, we reproduce the result F
(2)
∆−
− F (2)

∆+
= 5 logN in d = 3. As

a remark, note that the boundary limit of the AdS Killing vectors yields as expected the

conformal Killing vectors on the boundary, as one can explicitly check16

lim
z→0

z2ξABi = vABi (xi), ∇iv
AB
j +∇jv

AB
i − 2

d
gij∇kvABk = 0 . (4.111)

16We have used Poincaré coordinates for simplicity in discussing the boundary behavior. However this
result is general. For instance, using the metric dρ2 + sinh2 ρ dΩ2

Sd one can reproduce the conformal Killing
vectors on Sd from the ρ→∞ limit of the AdS Killing vectors.
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To proceed with the higher-spin cases, we can use the result [178] that in spaces of

constant curvature (such as AdS) all Killing tensors of rank greater than or equal to two

are reducible; i.e. they can be constructed from symmetrized tensor products of the Killing

vectors. It is clear that when we take the tensor product of s − 1 Killing vectors, which

transform in the [1, 1] representation, we get a sum of irreducible representations including

in particular [s−1, s−1]. In fact, after imposing that the resulting Killing tensor is traceless

in the spacetime indices, all representations except [s − 1, s − 1] are projected out. Let us

see this more explicitly. At rank s− 1, we construct the symmetric tensor

ξµ1...µs−1 = CA1B1,A2B2,...,As−1Bs−1

[
ξA1B1
µ1

ξA2B2
µ2

· · · ξAs−1Bs−1
µs + . . .

]
, (4.112)

where the term in the square brackets is completely symmetrized in the spacetime indices,

and CA1B1,...,As−1Bs−1 is a constant tensor, which, by construction, is antisymmetric in each

pair of indices and symmetric under exchange of any pair. It is easy to see that this solves the

Killing tensor equation, and the theorem guarantees that there are no additional non-trivial

solutions in AdS. To impose the tracelessness condition, we note that the Killing vectors

satisfy an indentity of the form

gµνξABµ ξCDν =
1

d

[
ηACξEBµ ξµ D

E ± 3 terms− 1

d− 1
(ηACηBD − ηADηBC)ξEBµ ξµEB

]
. (4.113)

Therefore, as long as all traces are removed from the coefficient tensor CA1B1,...,As−1Bs−1 ,

we obtain a traceless Killing tensor. Finally, we note that if CA1B1,...,As−1Bs−1 were to-

tally antisymmetric in 3 or more indices, (4.112) would vanish identically. To summarize,

CA1B1,...,As−1Bs−1 is constrained to be antisymmetric in each pair of indices, completely trace-

less, and such that the antisymmetrization over any 3 indices gives zero. Indeed, this can

be seen to be a realization of the [s− 1, s− 1] representation of SO(d+ 1, 1). As a familiar

example, at s = 3 we see that CA1B1,A2B2 is constrained to have the symmetries of the Weyl

tensor (in d+ 2 dimensions), which correspond to the [2, 2] representation. From the explicit
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tensor product construction, it is clear that the boundary behavior of these traceless Killing

tensors is ξi1...is−1 ∼ z2−2s. From (4.99), we see that this is precisely the behavior we should

impose on the ghosts when the spin s field is quantized with the ∆− boundary condition.

Therefore, we find the expected ns−1 = dim([s − 1, s − 1]) “missing” gauge transformation

in the ∆− theory and reproduce from the bulk the result

F
(s)
∆−
− F (s)

∆+
=

1

2
ns−1 logN +O(N0) . (4.114)

To conclude this section, let us observe that it appears to be possible to reproduce the

correct coefficient of logN also by some formal manipulations on the spectral ζ-function,

as discussed in Section 4.6.2. Because the overall coupling in front of the bulk higher-spin

action is proportional to N , the coefficient of 1
2

logN can be understood (see (4.103)) as

counting the dimension of the space of the physical spin s field. Therefore, we may try to

formally compute

δF
(s)
∆ =

logN

2

(
tr

(s)
− − tr

(s)
+

)
= − logN

2

[
ζH(z)− ζH− (z)

]∣∣∣∣
z=0

. (4.115)

From the discussion of the previous section we see that this expression vanishes unless ∆ =

d + s − 2 and d is odd. In that case, we may use the result in (4.96) to calculate δF
(s)
d+s−2,

and one can see that this indeed leads to the expected result.

4.8 Comments on half-integer spins

So far our discussion has been restricted to the case where Js is a bosonic single-trace operator

of integer spin s. Of course, it is also possible to consider cases where Js is a fermionic single-

trace operator of half-odd-integer spin; the double-trace operator is still bosonic and can be

added to the action. The simplest case of s = 1/2 in d = 3 has already been studied in the

literature [9, 59]. In this section we briefly consider generalizations of this result to higher

134



half-integer spin. As we have seen, the dual AdS4 calculations tend to be simpler than the

field theory calculations on S3. In this section we list some results obtained in the bulk,

leaving comparisons with the explicit field theory calculations for future work.

Following [179] we see that in the half-integer spin case the spectral function is modified

to

µ(λ) =
πλ

16

[
λ2 +

(
s+

1

2

)2
]

cothπλ . (4.116)

With the operator Js a real fermion, the change δF
(s)
∆ acquires an additional minus sign

compared to (4.69) because of the closed fermion loop. We then find that for half-integer

spin

δF
(s)
∆ =

(2 s+ 1)π

6

∫ ∆

3/2

(
x− 3

2

)
(x+ s− 1)(x− s− 2) tan(πx) , (4.117)

so that for arbitrary integer or half-integer spin we have the general formula

δF
(s)
∆ =

(2 s+ 1)π

6
(−1)2s

∫ ∆

3/2

(
x− 3

2

)
(x+ s− 1)(x− s− 2) cot

(
π(x+ s)

)
. (4.118)

Note that for spin 1/2 this agrees with the result in [9, 59].

We note that for ∆ = s+ 1− ε we find a logarithmic divergence of the form

δF (s) = −s(4s
2 − 1)

6
log ε . (4.119)

This again suggests that for ε = 0, δF (s) = 1
2
nd=3
s−1 logN , where for d = 3

nd=3
s−1 =

s(4s2 − 1)

3
=

(2s+ 1)!

3!(2s− 2)!
. (4.120)
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This formula is the restriction to d = 3 of (4.53).17 As we have discussed, the logarithmic

divergence in δF (s) appears for s ≥ 1 and is associated with gauge transformations that act

trivially on the spin s gauge field. For example, for s = 3/2 such gauge transformations

are simply the 4 Killing spinors in AdS4. More generally, for half-integer s, the Killing

tensors transform in the m1 = m2 = s − 1 spinor representation of SO(4, 1). The counting

of degeneracies of such representations is particularly simple because they are symmetric

tensors of rank 2s− 2 with spinor indices. Indeed, the formula (4.120) is simply the number

of such tensors where each index takes 4 values. We note that this applies to integer s as

well. Note also that (4.120) precisely vanishes at s = 0 and s = 1/2, which correspond to

the only cases in which we do not have gauge symmetries.

4.9 Calculation of Weyl anomalies in even d

In this section we discuss an interesting application of alternate boundary conditions in

AdSd+1: we will show that they provide an efficient method for finding the Weyl anomaly

coefficients of conformal higher-spin field theories in even dimensions d. In the d = 4 case

such theories were introduced in [134]; an interacting conformal higher-spin theory including

each spin once was proposed in [152].

For all d the alternate boundary conditions in AdSd+1 correspond to a theory where the

dynamics of the spin s gauge field is “induced” by its coupling to the conserved current

Jµ1µ2...µs . However, some properties of the theory depend significantly on whether d is even

or odd. In odd d the induced conformally invariant action is necessarily non-local as, for

example, in 3-dimensional QED. In even d we instead find a local conformally invariant

term multiplied by log(q2/Λ2). Well-known examples of this in d = 4 include FµνF
µν for

17For d > 3 the formula (4.53) does not apply to half-integer s because that formula was calculated with
m3 = . . . = 0, which does not make sense for spinors. It is plausible that we should instead consider the
representations m1 = m2 = s − 1 and m3 = . . . = 1/2. For example, for d = 5 the dimension of the

representation with m1 = m2 = s − 1 and m3 = 1/2 is
(2s+3)(2s+2)(2s+1)(s− 1

2 )(s+
1
2 )(s+

3
2 )(s+

5
2 )

3×5! . It would be
interesting to check by a direct calculation that this gives the correct number of fermionic Killing tensors.
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s = 1 and the Weyl tensor squared, CµνκσC
µνκσ, for s = 2. Their appearance is due to the

structure of 2-point functions; for example,

〈Jµ(q)Jν(−q)〉 ∼ (qµqν − δµνq2) log(q2/Λ2) . (4.121)

The logarithmic term is due to the fact that in QED4, the quantum effects of the charged

fields lead to a logarithmic flow of the charge. Far in the IR the dynamics reduces to that

of the free Maxwell field decoupled from the charged field. This is a conformal field theory,

and we will show how considering a massless gauge field in AdS5 with alternate boundary

conditions gives the familiar anomaly coefficient a1 = 31/45.18 Similarly, for s = 2 we

will obtain a2 = 87/5 in agreement with the direct calculation [134, 153] in the conformal

Weyl-squared gravity.19

First, let us calculate the change in the Weyl anomaly coefficient produced by the double-

trace flows with operators Jµ1µ2...µsJ
µ1µ2...µs , where Jµ1µ2...µs is a spin s single-trace operator

of dimension ∆, extending the earlier work of [57, 58, 120]. When d is even, the logR term

in the free energy on Sd is identified with the anomaly a-coefficient. Using (4.93) we then

find

δa
(s)
∆ = −2g(s)

π d!

∫ ∆

d
2

dx

(
x− d

2

)
(x+ s− 1)(x− s− d+ 1)Γ(x− 1)Γ(d− 1− x) sin(πx) .

(4.122)

For s = 0 this expression agrees with the results in [57, 58, 120]. With s = 0,∆ = d
2

+ 1

this formula agrees with the coefficient of the logarithmic divergence in the Sd free energy

for a conformally coupled scalar field [104]. For instance, δa(0) = −1
3
, 1

90
,− 1

756
, 23

113400
in

18We recall that a conventionally denotes the coefficient of the Euler density term in the Weyl anomaly.
By our methods we do not have access to the c coefficient, which is the one associated with the square of
the Weyl tensor.

19 The relation to the notation for anomaly coefficients used in [153] is a = 2β2 − 4β1; see also [134].
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d = 2, 4, 6, 8 respectively. This is because in this case the Hubbard-Stratonovich field has

the dimension of a free conformal scalar.

An interesting special case is d = 4. Integrating (4.122) over ∆ we obtain the change in

the a-anomaly coefficient:

δa(s) = a
(s)
UV − a

(s)
IR =

(s+ 1)2

180
(∆− 2)3

[
5(1 + s)2 − 3(∆− 2)2

]
, (4.123)

where a is normalized such that a = 1/90 for a real conformal scalar field.

The higher-spin conformal gauge theories are obtained by taking ∆ = 2 + s with s ≥ 1,

but in this case we must be careful to also include the contribution of the spin s− 1 ghosts

with alternate boundary conditions. Since the ghost determinant appears in the numerator

of (4.97), the contribution of the ghosts to the anomaly a-coefficient of the induced theory

may be computed from (4.123) with ∆ = 3 + s (recall that for the spin s− 1 ghosts we have

∆± = δ±+s−1, where δ± is given in (4.99)). More explicitly, defining as = agauged
s −aungauged

s

so that as is the anomaly a-coefficient for the conformal spin s field, we have

as = aphys
s − aghost

s−1 , (4.124)

with aphys
s the contribution from the physical modes and aghost

s−1 that from the ghosts. We find

aphys
s =

s3

180
(1 + s)2

[
5 + 2 s (5 + s)

]
,

aghost
s−1 = − s2

180
(1 + s)3

[
3 + 2 s (3− s)

]
,

(4.125)

which leads to the result quoted in (4.6). Using this result, we can calculate the Weyl

anomaly of the 4-d conformal gauge theory including the fields of each positive integer spin

once. One way to try constructing such an induced gauge theory is to start with N conformal

charged scalars or fermions in d = 4 and gauge all the currents with s ≥ 1. Using (4.6) and
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the zeta-function regularization, we find that the sum of all Weyl anomaly coefficients

∞∑
s=1

as =
1

90

[
10ζ(−3) + 21ζ(−5)

]
= 0 , (4.126)

where we have used the fact that ζ(−2n) = 0 for n > 1. Thus, the theory with such a field

content has no a-type Weyl anomaly. This provides partial evidence for the consistency of

such a conformal higher-spin theory, but the c anomaly coefficient remains to be determined.

Since the a-type Weyl anomaly cancels in the conformal higher-spin theory, the lead-

ing term in the S4 free energy of the induced theory is the logN type term that comes

from (4.114). When the a-type anomaly does not cancel in an even dimensional induced

gauge theory, this term is subdominant compared to the logR term. The sum over all of the

logN contributions in zeta-function regularization gives

F =
1

2

∞∑
s=1

ns−1 logN =
logN

24

(
ζ(−2) + 4ζ(−3) + 5ζ(−4) + 2ζ(−5)

)
=

logN

945
, (4.127)

where we have used (4.53) to calculate ns−1 in d = 4.

A similar calculation may be carried out in other even dimensions; for example, in d = 2

we find that for generic ∆ the change in central charge is given by

cUV − cIR = g(s)(∆− 1)
[
(∆− 1)2 − 3s2

]
(4.128)

in units where c = 1 for a real scalar field. When the dimension ∆ equals the spin so that

we are dealing with a spin s gauge theory, we may include the contribution of the ghosts to

calculate cs = cgauged
s − cungauged

s . We find that

c1 = −1 , cs = −2
[
1 + 6 s (s− 1)

]
(s ≥ 2) . (4.129)
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The central charges cs with s ≥ 2 agree with those in the W -gravity theories [165]; they are

the central charges of the higher-spin bc ghost system with weights (s, 1− s). In particular,

for s = 2 we find the well-known result c2 = −26 for the central charge of the ghost system

in the 2-d gravity [164]. Thus, we have found a dual AdS3 approach to the critical dimension

of the bosonic string. We note that the result for s = 2 does not include the contribution

of the conformal factor, the Liouville mode. This mode is frozen because in the dual AdS3

calculation the trace of the graviton at the boundary is kept fixed to zero. Similarly, in the

calculation of the Weyl anomaly for 4-d conformal gravity the conformal factor is frozen.

The result a2 = 87/5 of [134,153] is obtained in a “quantum Weyl gauge,” where the trace of

the graviton is set to zero off-shell, and so a2 receives contributions only from the traceless

gravitons and ghosts.20

As noted in [165], in zeta function regularization

∞∑
s=2

cs = 2
[
1 + 6ζ(−1)− ζ(0)

]
= 2 . (4.130)

Thus, a conformal 2-d theory with s ≥ 2 fields does not have a vanishing Weyl anomaly.

However, as observed in [165], it is possible to cancel the total anomaly by adding a suitable

matter sector with cmat = −2. A well-known example is the “topological” ηξ theory with

weights (1, 0); it is the s = 1 case of the bc ghost systems with weights (s, 1− s).

20Of course, in the presence of a net non-zero anomaly, the conformal factor does not really decouple and
becomes dynamical, as in the quantum Liouville theory [164]. But the result a2 = 87/5 does not include the
contribution of this trace mode.
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Chapter 5

On Shape Dependence and RG Flow

of Entanglement Entropy

This chapter is a lightly-modified version of the paper [15].

5.1 Introduction

The ground state entanglement entropies have emerged as a useful set of quantities for

probing quantum entanglement and the degrees of freedom of many-body ground states

(see [180–185] for reviews and references to earlier work). If we consider the entanglement

entropy (EE) of a d-dimensional spatial region and its complement, then the leading term is

typically proportional to the area of the (d− 1)-dimensional boundary in units of the lattice

spacing ε. The useful information is then encoded in the sub-leading terms which depend on

the shape of the boundary. For example, in (3+1)-dimensional CFT, it has been found [186]

that the expansion of the entanglement entropy (EE) for a smooth closed entangling surface

Σ has the simple geometrical structure,

S = α
AΣ

ε2
+ log ε

(
a

720π

∫
Σ

RΣ +
c

240π

∫
Σ

(kµνa k
a
νµ −

1

2
kµµa kaνν)

)
, (5.1)
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where kaµν = −γρµγσν∇ρn
a
σ is the second fundamental form, γµν = gµν − naµnaν is the induced

metric (first fundamental form) on Σ, and RΣ is the Ricci scalar of Σ, which equals twice its

Gaussian curvature. The Weyl anomaly coefficients a and c are normalized above in such a

way that (a, c) = (n0 + 11n1/2, n0 + 6n1/2), where n0 and n1/2 are the numbers of real scalar

and Dirac fields, respectively.

In (2 + 1)-dimensional CFT the structure of the entanglement entropy for a smooth

contour Σ in a plane is

S = α
`Σ

ε
− F , (5.2)

where `Σ is the length of the contour. There is no known expression for F in terms of

the curvature of the boundary. However, if the boundary contains a cusp of length rmax and

opening angle Ω, then S contains an additional singular term−fcusp(Ω) log(rmax/ε) [187–189].

In both field theoretic [187] and holographic [188,189] calculations, fcusp(Ω) turns out to be

a smooth convex function that interpolates monotonically between ∼ 1/Ω behavior at small

angles and zero at Ω = π. However, the details of the function are not universal—the

holographic, free scalar, and free fermion calculations produce different functions fcusp(Ω).

In this chapter we present new results on the shape dependence of entanglement entropy in

two and three spatial dimensions, studying both smooth and singular boundary geometries.

Many of our calculations rely on the geometrical approach to the calculation of entanglement

entropy [190–193] based on the gauge/gravity duality [24–26], but we also present some

purely field theoretic arguments. In three spatial dimensions we will consider EE for a conical

entangling surface with opening angle Ω and show that the calculation in AdS5 produces a

term ∼ cos2 Ω
sin Ω

log2(rmax/ε). For a wedge of length L and opening angle Ω, we will show that

EE contains a divergent term ∼ fwedge(Ω)L/ε. Surprisingly, we find fwedge(Ω) = fcusp(Ω)

both in the free scalar field theory and in the holographic calculations.

We also present new calculations of the renormalized entanglement entropy. In [45,194],

some holographic calculations of the renormalized entanglement entropy F(R) were pre-

sented. Similarly, we will calculate F(R) for the smooth Cvetič-Gibbons-Lu-Pope (CGLP)
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solution [195] of 11-dimensional supergravity, which is a warped product of R2,1 and 8-

dimensional Stenzel space [196],
∑5

i=1 z
2
i = ε2. This smooth warped throat is similar to the

KS background of type IIB string theory [197]. The CGLP background describes RG flow

from the CFT3 dual to AdS4 × V5,2 in the UV (for its different field theoretic descriptions,

see [113, 198]), to a gapped theory in the IR. The masses of some of the bound states in

the CGLP theory were calculated in [199]. Using the holographic approach to the entangle-

ment entropy, we will confirm that F(R) for the CGLP background is a monotonic function

that approaches zero as ∼ 1/R for large R. This function exhibits an interesting second-

order phase transition at a special value of R, where the bulk surface reaches the bottom of

the throat and its topology changes. Transitions of this type have been observed in earlier

holographic calculations [45, 200] (see also [192,193,201–203]).

Generally, for theories with a mass gap of order m, the large R expansion of the disk

entanglement entropy is expected to have the form [183,204–206]

S(R) = α
2πR

ε
+ β m (2πR)− γ + 2π

∞∑
n=0

c−1−2n

(mR)2n+1
, (5.3)

where γ is the topological entangelement entropy [207, 208] (in the simple cases we will

consider, γ vanishes). Following [183,204,206] we will show that the terms ∼ (mR)−2n−1 are

related to the anomaly terms in 2n+ 3 spatial dimensions.

In order to gain better insight into the structure of entanglement entropy for gapped

theories, we will generalize from a circle of radius R to an arbitrary smooth contour Σ. In

this case, the general structure of the EE in gapped (2 + 1)-dimensional theories is

SΣ = α
`Σ

ε
+ β m`Σ − γ +

∞∑
n=0

c̃Σ
−1−2n

m2n+1
, (5.4)

where the coefficients c̃Σ
−1−2n are integrals of functions of the extrinsic curvature and its

derivatives [205]. The expansion of SΣ has only odd power of 1/m because on dimensional

grounds these terms are multiplied by even powers of the extrinsic curvature and its deriva-
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tives. Since in any pure state, and in particular in the vacuum, the EE of a region is equal to

that of its complement, we have the symmetry κ → −κ [205]. Generalizing the arguments

of [183, 204, 206], we give a prescription for calculating the c̃Σ
−1−2n for massive free scalar

and Dirac fields. Using a holographic description of large N theories with a mass gap, we

calculate the coefficients c̃Σ
−1 and c̃Σ

−3 explicitly. We check the infrared expansion for the

specific case of CGLP background.

5.2 The (2 + 1)-dimensional entanglement entropy in

free massive theories

In this section we show how to calculate the 1/m expansion of the entanglement entropy

for massive free scalar and fermion fields in (2 + 1)-dimensions. We will take the entangling

surface to be a smooth, closed curve Σ1 of length `Σ1 and extrinsic curvature κ in the t = 0

slice of flat R2,1.

More generally, one could consider the case where the (2 + 1)-dimensional spacetime is

described by a general manifoldM. Using the replica trick one is then able to show that the

entanglement entropy has the large mass expansion of the form given in (5.4) with β = −(n0+

n1/2)/12 (see, for example, [184, 209, 210]). The integers n0 and n1/2 denote the numbers of

real scalar and Dirac fields, respectively, in (2 + 1)-dimensions. The coefficients c̃Σ1
−1−2n are

known explicitly in the case where Σ1 has vanishing extrinsic curvature [184, 209, 210]. We

will henceforth take M = R2,1 and allow the surface Σ1, which is taken to lie in the t = 0

plane, to have a non-trivial extrinsic curvature. We want to determine the coefficients c̃Σ1
−1−2n

in terms of integrals of functions of the extrinsic curvature and its derivatives. Our approach

to the computation follows that of Casini and Huerta [183, 204, 206], who showed how to

compute the coefficients c̃Σ1
−1 = c−1/R in the special case where Σ1 is a circle of radius R.

The calculation proceeds by considering a higher, even dimensional QFT consisting of

free fields in R2,1 × T k, with k ≥ 1 odd and T k the symmetric k-torus of a large volume
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Vol(T k) = Lk. In the following argument one can replace T k by an arbitrary scalable k-

dimensional smooth manifold. We give the free fields a small mass M , which will act as

an infrared regulator for the conformal anomaly. We want to calculate the entanglement

entropy in this theory across the (1 + k)-dimensional surface Σ1+k = Σ1×T k, which fills the

k-torus and is described by the smooth curve Σ1 in the t = 0 plane of R2,1. We may Fourier

decompose the field modes in the compact directions to obtain an infinite tower of massive

(2 + 1)-dimensional fields, with masses

m2
n1,··· ,nk = M2 +

(
2π

L

)2 k∑
i=1

n2
i , ni ∈ Z . (5.5)

The entanglement entropy in the (2 + k + 1)-dimensional theory then becomes equal to the

sum over (2 + 1)-dimensional entanglement entropies for massive fields across the curve Σ1.

Taking the large L limit, the spectrum of masses becomes continuous and we find

S
(2+k+1)
Σ1+k

(M) =
kVol(T k)

2kπk/2Γ(k
2

+ 1)

∫ 1/ε

0

dp pk−1S
(2+1)
Σ1

(
√
M2 + p2) , (5.6)

where ε is the UV cut-off. We now substitute the expansion of S
(2+1)
Σ1

(m) given in (5.4) into

(5.6). We see that the term in the expansion of S
(2+1)
Σ1

(m) which goes as 1/mk determines

the logarithmic conformal anomaly term in S
(2+k+1)
Σ1+k

(M). Turning this argument around,

suppose the entropy of the (2n+ 4)-dimensional theory has the anomaly term

S
(2n+4)
Σ2n+2

(M)
∣∣∣
log

= s
(2n+4)
Σ2n+2

log(Mε) , (5.7)

then we can immediately read off the coefficient c̃Σ1
−1−2n:

c̃Σ1
−1−2n = −π(2π)n(2n− 1)!!

Vol(T 2n+1)
s

(2n+4)
Σ2n+2

. (5.8)
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The above formula is slightly modified for fermions. Dirac fermions in (2n + 4) dimensions

are in a 2n+2-dimensional representation, which after dimensional reduction reduces to 2n+1

(2 + 1)-dimensional Dirac fermions. Thus, the right hand side of (5.8) should be divided by

2n+1 for Dirac fermions. As a corollary to this argument, we see that the absence of the log ε

terms in odd dimensional CFTs implies that the IR expansion of S
(2+1)
Σ1

(m) contains only

odd powers of 1/m, in agreement with the arguments in [205].

Let’s see how this works explicitly when n = 0. The expression for s
(3+1)
Σ2

is given in

(5.1). The Euler number χ(Σ2) vanishes for Σ2 = Σ1 × S1. The two normal vectors to Σ2

are within R2,1, which we write with coordinates

ds2
(2+1) = −dt2 + dr2 + r2dθ2 , (5.9)

where θ has period 2π. One of the normal vectors to Σ2 is timelike, n1
µ = (1, 0, 0, 0), where

the fourth component is in the direction of the S1 of length L, and its second fundamental

form vanishes. Suppose Σ1 is defined by a curve r = R(θ). Then, the other normal vector

is spacelike, n2
µ = (0, r,−rR′(θ), 0)/

√
r2 +R′2(θ), and this gives a second fundamental form

with non-vanishing component

k2 θ
θ =

R2(θ) + 2R′2(θ)−R(θ)R′′(θ)

(R2(θ) + (R′(θ))2)3/2
≡ κ(θ) , (5.10)

where κ(θ) is the extrinsic curvature of the surface Σ1 in the R2 plane. It follows that both

kaµνk
µν
a and kµµa kaνν in (5.1) become κ2(θ). This leads to

c̃Σ1
−1 = − 1

480
(n0 + 3n1/2)

∮
ds κ2 (5.11)

and

S
(2+1)
Σ1

(m) = α
`Σ1

ε
−
m(n0 + n1/2)`Σ1

12
−
n0 + 3n1/2

480m

∮
ds κ2 +O(1/m3) , (5.12)
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where we stress that n1/2 the number of (2 + 1)-dimensional Dirac fermions.

In principle the calculation of the higher order corrections to the entanglement entropy

in powers of 1/m would proceed analogously. For example, to calculate the coefficient c̃Σ1
−3,

which gives the order 1/m3 correction to the entropy, we would need to first calculate s
(5+1)
Σ4

,

with Σ4 = Σ1 × T 3. We then expect

s
(5+1)
Σ4

= Vol(T 3)

[
(A0 n0 + A1/2 n

(6)
1/2)

∮
ds κ4 + (B0 n0 +B1/2 n

(6)
1/2)

∮
ds

(
dκ

ds

)2
]
, (5.13)

for some coefficients (A0, A1/2) and (B0, B1/2), which should be functions of the 6-dimensional

anomaly coefficients. We use the notation n
(6)
1/2 to stress that this counts the number of

(5 + 1)-dimensional Dirac fermions. This then leads to

c̃Σ1
−3 = −2π2

[(
A0 n0 +

A1/2

4
n1/2

)∮
ds κ4 +

(
B0 n0 +

B1/2

4
n1/2

)∮
ds

(
dκ

ds

)2
]
. (5.14)

This formula is consistent with the general arguments in [205].

5.3 Holographic computation of the (2+1)-dimensional

entanglement entropy in gapped backgrounds

The (renormalized) entanglement entropy may be calculated holographically by following

the usual procedure for holographic entanglement entropy [190–193]. Consider a (d + 1)-

dimensional large N field theory with a D-dimensional gravitational dual. While we will

ultimately be interested in (2 + 1)-dimensional QFT, for now we keep the dimension d

general. As in [193], let the gravitational background have the Einstein-frame metric

ds2
D = α(u)[du2 + β(u)dxµdxµ] + gijdy

idyj , dxµdxµ = −dt2 + dr2 + r2dΩ2
d−1 , (5.15)
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with α(u) > 0 and β(u) > 0 and i, j = d + 3, · · · , D. The compact, internal (D − d − 2)-

dimensional manifold is taken to have a volume

V (u) ≡
∫ D∏

i=d+3

dyi
√

det g , (5.16)

which is a function of the holographic radial coordinate u. We assume that u has a minimal

value u0 where a p-sphere in the internal manifold shrinks to zero size, resulting in V (u0) = 0.

At u0 we assume that all supergravity fields are regular, which implies α(u0) and β(u0) are

finite. The coordinate u ranges from infinity in the far UV to u0 in the far IR. Such geometries

typically describe confining gauge theories.

We further assume that the gravitational theory approaches a conformal fixed point in

the UV (u =∞), and we work in coordinates where

lim
u→∞

α(u) = αUV , lim
u→∞

V (u) = VUV , β(u) = exp

(
2u
√
αUV

LUV

)
+ . . . , (5.17)

where αUV and VUV are constants, and LUV is the radius of AdSd+2.

We want to calculate the entanglement entropy in the QFT across a codimension two

spacelike surface Σd−1. The entanglement entropy [190–193] is calculated holographically by

finding the (D − 2)-dimensional surface ΣD−2, which approaches Σd−1 at the boundary of

the bulk manifold, is extended in the rest of the spatial dimensions, and minimizes the area

functional

SΣ =
1

4G
(D)
N

∫
ΣD−2

dD−2σ

√
G

(D−2)
ind , (5.18)

where G
(D−2)
ind is the induced metric on ΣD−2. The entanglement entropy is then given by

the functional SΣ evaluated at the extremum.

A case of particular interest is when the region Σd−1 is the (d − 1)-sphere of radius R.

Writing the radial coordinate r as a function of the holographic coordinate u, the induced
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metric on ΣD−2 is

ds2
Σ = α(u)[(1 + β(u)(∂ur)

2)du2 + β(u)r2(u)dΩ2
d−1] + gijdy

idyj , (5.19)

which gives the following expression for the area functional in terms of the unknown function

r(u):

S(R) =
Vol(Sd−1)

4G
(D)
N

∫ ∞
u0

du rd−1(u)g(u)
√

1 + β(u)(∂ur)2 ,

g(u) = αd/2(u)β(d−1)/2(u)V (u) .

(5.20)

In general we need to first solve the Euler-Lagrange equation,

(d− 1)rd−2(u)g(u)
√

1 + β(u)(∂ur)2 =
d

du

[
rd−1(u)g(u)β(u)(∂ur)√

1 + β(u)(∂ur)2

]
, (5.21)

for the function r(u), then evaluate the area functional in (5.20) on the solution with a UV

cut-off u < uUV, then use (1.6) to construct the finite renormalized entanglement entropy.

For non-trivial backgrounds this must be done numerically. To solve the equation of motion

(5.21), we also need to specify the boundary conditions. There are two types of solutions

with different topologies.

One of them, which we will call the cylinder-type solution, terminates at u = u0 where

the volume of the internal space becomes zero: V (u0) = 0. One can find the form of the

solutions r(u) for u near u0 by expanding (5.21) around u = u0:

r(u) = r0 +
d− 1

4r0β(u0)
(u− u0)2 +O((u− u0)3) , r0 > 0 . (5.22)

The other type of solution, which we call the disk-type solution, has a tip at u = umin >

u0, where the radius of the sphere becomes zero: r(umin) = 0. For u near umin, the solutions
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behave like

r(u) = 2

√
dg(umin)

2β(umin)g′(umin) + g(umin)β′(umin)
(u− umin)1/2 +O((u− umin)3/2) . (5.23)

5.3.1 IR behavior of the EE for a circle

We may obtain the IR asymptotic behavior of the entanglement entropy for Σ1 = S1 through

an analytic procedure, and in doing so we show that the renormalized entanglement entropy

approaches zero in the IR from above like 1/R, where R is the radius of the S1. Note that

in this section we restrict to the physical dimension d = 2. In the following section we

generalize the computation by allowing for a general entangling surface Σ1.

For now, we take Σ1 = S1 of radius R. We assume that at large R the solutions to the

Euler-Lagrange equations will be of the form r(u) = R + δ(u)/R, with δ(u) independent of

R. Expanding the Euler-Lagrange equation in powers of 1/R, we find the equation

d

du
[g(u)β(u)δ′(u)] = g(u) , (5.24)

which may be integrated to obtain

δ(u) = −
∫ ∞
u

du′
1

g(u′)β(u′)

∫ u′

u0

du′′ g(u′′) . (5.25)

Expanding the area functional in (5.20) and using the equation of motion in (5.24) gives

S(R) =
2π

4G
(D)
N

[
R
VUVLUV

ε
+R

(∫ u∞

u0

dug(u)− VUVLUV

ε

)
− 1

2R

∫ ∞
u0

du g(u)β(u)[δ′(u)]2 +O(R−3)

]
,

(5.26)
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where we used the boundary conditions δ(u∞) = 0 and δ′(u0) = 0 for the solution, which

make the surface term vanish. The UV cut-off ε defined by

1

ε2
= αUV exp

(
2u∞
√
αUV

LUV

)
. (5.27)

To compare with (5.4), we set the mass m to unity and use the dimensionless radius R

for convenience. We then see that we can make the identifications

α =
VUVLUV

4G
(D)
N

, β =
1

4G
(D)
N

(∫ u∞

u0

dug(u)− VUVLUV

ε

)
,

c̃Σ
−1 =

−1

8G
(D)
N

∫ ∞
u0

du

g(u)β(u)

(∫ ∞
u0

du′g(u′)

)2 ∮
ds κ2 .

(5.28)

Notice that the coefficient β is finite and independent of the UV cut-off ε. To calculate

the coefficients c̃Σ
−3 we must consider a more general entangling surface. This is because

dκ/ds = 0 for the circle. In the following section we generalize the above calculation to allow

for a general, smooth entangling surface, and in doing so we calculate c̃Σ
−3.

5.3.2 IR behavior of the EE for a general entangling surface

We would like to repeat the calculation in the previous section allowing for a general spacelike

entangling surface Σ1. While we believe that the computation can be carried out in full

generality, it is enough to restrict ourselves to a closed curve Σ1 that is a boundary of a star-

shaped domain.1 Such a curve can be parameterized using polar coordinates by a function

RΛ(θ). We write the entangling surface as RΛ(θ) = ΛR(θ), with R(θ) a smooth function

and Λ ≥ 1. The IR limit corresponds to Λ large enough such that the extrinsic curvature is

small, κΛ(θ) = Λ−1κ(θ)� 1, along the entire curve.

1A star-shaped domain is a set S ⊂ Rn with the property that there exists a point x0 ∈ S such that the
line segments joining x0 to all other points in S are contained in S.
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The induced metric on the bulk surface ΣD−2 is now

ds2
Σ = α(u)

[
(1 + β(u)(∂ur)

2)du2 + β(u)(r2(u, θ) +
(
∂θr)

2
)
dθ2

+ 2β(u)(∂θr)(∂ur)dθ du] + gijdy
idyj ,

(5.29)

where the radial coordinate r(u, θ) is taken to be a function of the holographic coordinate u

and the angular coordinate θ. We require that limu→∞ r(u, θ) = RΛ(θ). The area functional

for the entanglement entropy may be written as

SΣ =
1

4G
(D)
N

∫ 2π

0

dθ

∫ ∞
u0

du g(u)
√

(r2(u, θ) + (∂θr)2) (1 + β(u)(∂ur)2)− β(u)(∂θr)2(∂ur)2 ,

(5.30)

with g(u) and β(u) defined as before.

We assume that in the IR the solutions to the Euler-Lagrange equation give

r(u, θ) = ΛR(θ) +
δ(u, θ)

Λ
+O(1/Λ3) , (5.31)

with δ(u, θ) order Λ0. We Substitute the ansatz in (5.31) into the area functional in (5.30)

and expand in inverse powers of Λ up to and including terms of order 1/Λ:

SΣ =
1

4G
(D)
N

∫ 2π

0

dθ

∫ ∞
u0

du
[
Λg(u)

√
R(θ)2 +R′(θ)2

+
g(u)R(θ)

Λ

(
R(θ)β(u)√

R2(θ) +R′(θ)2
(∂uδ)

2 + 2κ(θ)δ(u, θ)

)]
+O(1/Λ3) ,

(5.32)

where the extrinsic curvature of the entangling surface, κ(θ), is given explicitly in (5.10).

Applying the variational principle to find the Euler-Lagrange equation for δ(u, θ) gives

d

du
[g(u)β(u)∂uδ(u, θ)] =

κ(θ)
√
R(θ)2 +R′(θ)2

R(θ)
g(u) , (5.33)
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which may be integrated to give

δ(u, θ) = −
κ(θ)

√
R(θ)2 +R′(θ)2

R(θ)

∫ ∞
u

du′
1

g(u′)β(u′)

∫ u′

u0

du′′ g(u′′) . (5.34)

We want to calculate the terms in the expansion of SΣ of order 1/Λ3. These terms are

completely determined by the expansion of r(u, θ) in (5.31) through order 1/Λ. Expanding

the area function in (5.30) through order 1/Λ3 and evaluating on the solution for δ(u, θ)

given in (5.34) allows us to determine the c̃Σ
−3 coefficients in (5.4):

c̃Σ
−3 = a

(1)
−3

(
1

2

∮
ds κ4 −

∮
ds

(
dκ

ds

)2
)

+ a
(2)
−3

∮
ds κ4 , (5.35)

with

a
(1)
−3 = − 1

4G
(D)
N

∫ ∞
u0

du

g(u)β(u)

[∫ u

u0

du′g(u′)

]2 ∫ ∞
u

du′

g(u′)β(u′)

∫ u′

u0

du′′ g(u′′) ,

a
(2)
−3 = − 1

32G
(D)
N

(∮
ds κ4

)∫ ∞
u0

du

g(u)3β(u)2

(∫ u

u0

du′ g(u′)

)4

.

(5.36)

5.4 An example: CGLP background of M-theory

The CGLP background [195] of M-theory is the gravitational dual of a gapped (2 + 1)-

dimensional field theory, which nicely illustrates the general features discussed in the previous

section. The supergravity background is a warped product of R2,1 and an eight-dimensional

Stenzel space [196]

5∑
i=1

z2
i = ε2 , (5.37)

where ε is a real deformation parameter. When ε = 0 this equation describes an eight-

dimensional cone whose base is the Stiefel manifold V5,2.
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As explained in [195, 211], the Stenzel space (5.37) can be parameterized by a radial

coordinate τ ranging from 0 to ∞ and the seven angles in V5,2. At τ = 0 a 3-sphere shrinks

to zero size, and the τ = 0 section is a round S4.

The 11-dimensional metric is of the form of the metric in (5.15) if we identify the holo-

graphic coordinate u with τ , where τ0 = 0, and2

α(τ) =
H1/3(τ)c2(τ)

4
, β(τ) =

4

c2(τ)H(τ)
,

V (τ) =
9

2
31/8π4H7/6(τ)(2 + cosh τ)3/8 sinh3/2

(τ
2

)
sinh3/2(τ) .

(5.38)

The functions H(τ) and c(τ) are defined by

H(τ) =
(2π`P )6N

81π4
23/2311/4

∫ ∞
(2+cosh τ)1/4

dt

(t4 − 1)5/2
, c2(τ) =

37/4

2

cosh3 τ
2

(2 + cosh τ)3/4
,

(5.39)

where N is the number of units of asymptotic G4 flux. In particular, notice that V (τ = 0) =

0, which is a result of the vanishing 3-sphere. For more details on the CGLP background

see, for example, [195,211].

We begin by studying the entanglement entropy and renormalized entanglement entropy

in the simpler case where the entangling region Σ1 is taken to be a circle of radius R. In this

case the Euler-Lagrange equation for the function r(τ) in (5.21) may be solved numerically

with the boundary condition r(τ = ∞) = R. In practice, we cut the space off at some

large τUV. For each R > 0 there exists a value τmin(R), which is the smallest value of τ

for which the function r(τ) is defined. There exists a critical value Rcrit ≈ .73 for which

r(τmin = 0) = 0. For R < Rcrit the solutions to the equation of motion describe surfaces of

disk type that behave as in (5.23) for τ near τmin. The topology of these surfaces is that of

a disk times V5,2. The solutions for R > Rcrit are surfaces of cylindrical type that stretch to

2We follow the conventions of [211] and work in units where ε = 1.
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the bottom of the Stenzel space and behave as in (5.22) for τ near τ0 = 0. The topology of

these surfaces is that of a circle times the Stenzel space.

In Figure 5.1 (a) we plot the numerical solutions to the equation of motion for a range

(a) 0 2 4 6 8 10
Τ0.0

0.5

1.0

1.5

rHΤL

(b) 2 4 6 8 10
Τ0.0

0.2

0.4

0.6

0.8
rHΤL

(c) 0 2 4 6 8 10
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0.4
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1.4

1.6
rHΤL

Figure 5.1: (a) Numerical solutions to the equation of motion for the holographic entangling
surface, given by r(τ), in the CGLP theory. The dotted red line indicates the critical value
Rcrit, where the solutions change from disk-type to cylinder-type. (b) A zoomed-in plot of
the UV region, with disk-type solutions, where we plot the AdS approximation in (5.40) in
dotted black. (c) A zoomed-in plot of the IR region, with cylinder-type solutions, with the
analytic approximation given by δ(τ) in (5.25) plotted in dotted black.

of R < Rcrit and R > Rcrit. In the far UV the solution for r(τ) should approach the AdS

solution

r(τ) =
√
R2 − 25/231/2e−3τ/2 . (5.40)

In Figure 5.1 (b) we zoom in on some of the disk-type solutions in the far UV and plot the

solutions along with the asymptotic in (5.40). In the far IR region the cylinder-type solutions
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should be well approximated by the function δ(τ) in (5.25). In Figure 5.1 (c) we plot some

of the cylinder-type solutions along with the analytic approximation.

As was discussed in section 5.3, to calculate the renormalized entanglement entropy it is

sufficient to evaluate the entanglement entropy with a strict UV cut-off. We cut off the space

at a large τ value τUV. We then numerically integrate the area functional and differentiate

it to construct F . A plot of the renormalized entanglement entropy along the RG flow is

given in Figure 5.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
R0.0

0.2

0.4

0.6

0.8

1.0

F HRL

FUV

Figure 5.2: The renormalized entanglement entropy F(R) along the RG flow in the CGLP
theory plotted in orange. The left dotted black curve is the asymptotic UV approximation
to F(R) given in (5.43). The right dotted black curve is the IR approximation to F(R) given
in (5.44). The dotted red line marks the value R = Rcrit.

5.4.1 The renormalized entanglement entropy in the UV and the

IR

In the far UV we can treat the CGLP M-theory background as a perturbation of the

AdS4 × V5,2 background. From (6.23), we know that the UV fixed point has a renormalized

entanglement entropy

FUV =
16πN3/2

27
+O(N1/2) , (5.41)
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where we have used Vol(V5,2) = 27π4/128. To describe the RG flow in the vicinity of the UV

fixed point, it is convenient to use the effective 4-dimensional metric in the form of (6.17).

A straightforward calculation shows that at small y the function f(y) has the expansion

f(y) = 1 + 21/332/3y4/3 + · · · , (5.42)

which, using (6.28), implies the RG flow is driven by an operator in the UV field theory of

dimension ∆ = 7/3, which is consistent with [211]. Using (6.30), we then see that at small

R

F(R) =
16πN3/2

27

(
1− 3

7
21/332/3R4/3 + · · ·

)
. (5.43)

This function is plotted together with the numerical solution in Figure 5.2. Note that it is

a very good approximation to the actual renormalized entanglement entropy for R < Rcrit.

We also see explicitly that ∂RF = 0 at R = 0.

In the IR we may use (5.28) and (5.35) to get an asymptotic expression for the renor-

malized entanglement entropy, which gives

F ≈ 16πN3/2

27

(
0.1959

R
+

1.845× 10−2

R3
+O(1/R5)

)
. (5.44)

This function is plotted in Figure 5.2, which shows that it is a good approximation to the

actual renormalized entanglement entropy at large R.

5.4.2 Tests of the shape dependence of the entanglement entropy

In this section we will consider a more general spacelike entangling surface Σ1, specified by the

function R(θ) in polar coordinates. We want to check (5.34), which gives an approximation

to the cylinder-type solutions in the far IR. In particular, this equation claims that the
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variation of the bulk entangling surface Σ2 away from the straight cylinder is proportional

to the combination κ(θ)(
√
R(θ)2 +R′(θ)2/R(θ)).

As an example, we consider the entangling surface Σ1 plotted in Figure 5.3, which has a

small extrinsic curvature along the entire curve. A good way of measuring the accuracy of
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Figure 5.3: (a) A plot of an example entangling surface Σ1, described by the function
RUV(θ) in polar coordinates, in the CGLP theory. (b) The extrinsic curvature κUV(θ) for
the entangling surface RUV(θ). The extrinsic curvature is small over the whole curve.

the analytic approximation in (5.34) is to compare the function RUV(θ)−RIR(θ) as computed

1 2 3 4 5 6
Θ

-0.006

-0.004

-0.002

0.002

0.004
RUVHΘL-RIRHΘL

Figure 5.4: The function RUV(θ)−RIR(θ) in the CGLP theory, with RUV(θ) plotted in fig. 5.3.
The solid orange curve is computed by numerically solving the equation of motion for the
holographic entangling surface Σ2. The dotted black curve is an analytic approximation,
which is equal to −δ(τ = 0, θ), with δ(0, θ) given in (5.34).

both numerically and using (5.34), which is done in Figure 5.4. Here the function RIR(θ)

is the profile of the cylinder when it reaches τ = 0: RIR(θ) = r(τ = 0, θ). The analytic
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approximation simply gives RUV(θ) − RIR(θ) ≈ −δ(τ = 0, θ), with δ(0, θ) given in (5.34).

The two curves match extremely well.

5.5 Shape dependence of the entanglement entropy in

(3 + 1)-dimensional CFT

The entanglement entropy for a smooth entangling surface Σ in a (3 + 1)-dimensional CFT

is given in (5.1). However, if the surface is not smooth, for example if it has conical or wedge

singularities, then there may be additional contributions to (5.1). In this section we consider

the entanglement entropy for a wedge and a cone in a (3 + 1)-dimensional CFT through

both field theoretical and holographic computations. We find that wedge entanglement

entropy acquires a 1/ε divergence not present in (5.1). The cone entanglement entropy has

a log2 ε divergence as predicted by (5.1), but its correct coefficient is twice smaller than for

a regulated version of (5.1).

5.5.1 The entanglement entropy for a wedge

The wedge is the surface in (3 + 1)-dimensions given by (x1, x2, x3) = (r sinφ, r cosφ, z),

where 0 ≤ r < ∞, φ = 0 and Ω, and z ∼ z + L. We have compactified the z direction on

a large circle of length L to avoid unwanted infrared divergences. We begin by using the

replica trick to calculate the entanglement entropy with this geometry for a free scalar field,

and this is followed by a holographic computation.
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The free scalar field

Using the replica trick one can show that the entanglement entropy for the massive scalar

field is given by [212]

S =
1

1− α

α−1∑
k=0

logZk

∣∣∣
α→1

, (5.45)

where Zk is the partition function of a scalar field φk on 4-dimensional Euclidean space with

boundary conditions

φk(~x, t = 0+) = e2πi k
αφk(~x, t = 0−) , ~x ∈ A , (5.46)

where A is the region bounded by the wedge. Since the theory we consider is free, the

partition function Zk is obtained from the integral of the Green’s function:

∂

∂m2
logZk = −1

2

∫
dd+1X Gk( ~X, ~X) . (5.47)

The Green’s function is the two-point correlation function of the free massive scalar and is

subject to the following conditions:

(−∆ ~X +m2)Gk( ~X, ~X
′) = δ( ~X − ~X ′) ,

lim
ε→0+

Gk((~x, ε), ~X
′) = e2πi k

α lim
ε→0−

Gk(( ~X, ε), ~X
′) , ~x ∈ A .

(5.48)

We expand the Green’s function in Fourier modes along the z-direction. The problem of

finding the 4-dimensional Green’s function then reduces to that of finding the 3-dimensional

Green’s functions for a cusp entangling surface for a tower of massive fields, with masses

M2
n = m2 +

(
2πn

L

)2

, n ∈ Z . (5.49)
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Using the result in [187] for the Green’s function with a cusp entangling surface in 3-

dimensions, we find

Gk( ~X, ~X
′) =

2

L

∑
ν

∞∑
n=−∞

∫ ∞
0

dλ
λ

λ2 +M2
n

gn(~x)g∗n(~x) , (5.50)

where we use ~x to denote the 3-dimensional coordinates (t, x1, x2). The gn are the eigenfunc-

tions of the 3-dimensional Laplace operator (−∆~x + M2
n), whose eigenvalues we denote by

(λ2 + M2
n). Using spherical coordinates with (t, x1, x2) = (ρ cos θ, ρ sin θ sinφ, ρ sin θ cosφ),

the eigenfunctions are given explicitly by

gn(~x) = ψν(θ, φ)
J 1

2
+ν(λρ)
√
ρ

, (5.51)

where J is the Bessel function of the first kind. The functions ψν are the eigenfunctions of

the angular laplacian ∆Ω on the two-sphere,

∆Ωψν(θ, φ) = −ν(ν + 1)ψν(θ, φ) ,

∫
dθ dφ sin(θ)|ψν(θ, φ)|2 = 1 , (5.52)

subject to the boundary condition

lim
ε→0+

ψν(
π

2
+ ε, φ) = e2πi k

α lim
ε→0+

ψν(
π

2
− ε, φ) , φ ∈ [0,Ω] . (5.53)

Preforming the integral over λ in (5.50) and taking a derivative of the partition function

in (5.47) with respect to m2 gives [213]

∂

∂m2
logZk = − L

4m
coth

(
mL

2

)∑
ν

(
ν +

1

2

)
. (5.54)

The sum over the eigenvalues ν is divergent and needs regularization. The computation

of the sum was carried out in detail in [187], and one finds that the regularized sum only
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depends on k and the angle of the cusp Ω. After integrating (5.54) with respect to m2, we

find that the entanglement entropy for a wedge has the angle dependent UV divergence

Swedge =

∫ 1/ε2

dm2 1

α− 1

α−1∑
k=0

(
∂

∂m2
logZk

) ∣∣∣
α→1

= f (scalar)
cusp (Ω)

L

ε
+O(ε0) , (5.55)

where the function f
(scalar)
cusp (Ω) is the same function as for the cusp in (2 + 1)-dimensional

CFT [187]. It behaves as f
(scalar)
cusp (Ω) ∼ 1/Ω when the angle is very small, while it becomes

zero at Ω = π where there is no cusp in the entangling surface. The function fcusp(Ω) is not

universal and depends on the type of matter.

A holographic computation

Next we compute the holographic entanglement entropy for the wedge. To this end, we use

the following AdS5 metric,

ds2 =
dy2 − dt2 + dr2 + r2dφ2 + dz2

y2
. (5.56)

For simplicity, we have set the AdS radius to 1. The central charges a and c of the dual CFT4,

normalized as in (5.1), are then determined by the 5-dimensional Newton constant [214].

a = 3 c =
45π

G
(5)
N

. (5.57)

The wedge is defined by Σ = {0 ≤ r < rmax, φ = ±Ω
2
, z ∼ z + L} at the AdS boundary

y = 0. The large radius cut-off rmax and the length L are introduced to regularize the volume

of the wedge. As usual, to introduce a UV cut-off we will restrict y ≥ ε. The entanglement

entropy functional is given by

S =
L

4G
(5)
N

∫
dr

∫
dφ

1

y3(r, φ)

√
r2 + r2(∂ry)2 + (∂φy)2 , (5.58)
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where we take the holographic coordinate y to be a function of (r, φ).

We must find the function y(r, φ) which minimizes the entanglement entropy functional

and approaches the wedge at the boundary of AdS5. The scaling symmetry of the spacetime

and the wedge implies the following ansatz for the minimal surface [188,189]:

y(r, φ) =
r

g(φ)
. (5.59)

With this ansatz the initial value problem becomes first order3

dg

dφ
= g

√
(1 + g2)

(
g2(1 + g2)2

g2
0(1 + g2

0)2
− 1

)
, g0 = g(0) , g′(0) = 0 . (5.60)

It follows that the angle of the wedge determines g0 as

Ω

2
=

∫ ∞
g0

dg
1

g

√
(1 + g2)

(
g2(1+g2)2

g2
0(1+g2

0)2 − 1
) .

(5.61)

Integrating this equation we find that, as in the (2+1)-dimensional cusp calculation [188,189],

the limiting value where g0 = 0 is Ω = π.

The entanglement entropy is then found by evaluating the regularized functional in (5.58)

on the solution to the equation of motion:

S =
2L

4G
(5)
N

∫ rmax

g0ε

dr

r2

∫ r/ε

g0

dg h(g, g0)

=
2L

4G
(5)
N ε

∫ rmax/ε

g0

dr

r2

[
r2 − g2

0

2
+

∫ r

g0

dg (h(g, g0)− g)

]
=

1

4G
(5)
N

[
AΣ

2ε2
− f (hol)

wedge(Ω)
L

ε
+O(ε0)

]
.

(5.62)

3Note that one must first find the equation of motion for y(r, φ) and then subsequently substitute the
ansatz in (5.59).
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The functions h(g, g0) and f
(hol)
wedge(Ω) are defined by

h(g, g0) =
g2(1 + g2)√

g2(1 + g2)2 − g2
0(1 + g2

0)2
,

f
(hol)
wedge(Ω) = g0 −

∫ ∞
g0

dr

r2

∫ r

g0

dg (h(g, g0)− g) .

(5.63)

Just like the free scalar field calculation for the wedge, (5.55), the holographic result has

an L/ε divergence that was absent for smooth entangling surfaces.4 A numerical plot of the

function f
(hol)
wedge(Ω) is shown in Figure 5.5, where it can be seen that it goes to zero as Ω

approaches π. When Ω is small f
(hol)
wedge(Ω) diverges as

f
(hol)
wedge(Ω) ∼ 0.646

Ω
. (5.64)

A pole at Ω = 0 also appeared in the field theory computation (5.55). With that said, the

function f
(hol)
wedge(Ω) is different from that of the scalar field theory, f

(scalar)
cusp (Ω), which appeared

in (5.55).

A surprising result, however, is that after an overall rescaling the function f
(hol)
wedge(Ω)

agrees with function f
(hol)
cusp (Ω) in [189] describing the holographic cusp anomaly in (2 + 1)-

dimensions. The normalization of the function fwedge(Ω) depends on the choice of the UV

cut-off scale ε. We introduce the normalized function f̃
(hol)
wedge(Ω) = af

(hol)
wedge(Ω) by tuning the

constant a such that f̃
(hol)
wedge(Ω) agrees with f

(hol)
cusp (Ω) in the limit of Ω→ 0. We find a ∼ 1.11

numerically, and in Figure 5.5 we plot both f̃
(hol)
wedge(Ω) and f

(hol)
cusp (Ω). The plot shows that

in fact the normalized function f̃
(hol)
wedge(Ω) is the same (within the numerical accuracy) as

f
(hol)
cusp (Ω), although the definitions (5.61) and (5.63) appear quite different from those for

the cusp in [189]. For a free scalar field the function f
(scalar)
wedge (Ω) for the wedge also turned

out to be the same as f
(scalar)
cusp (Ω) for the cusp (see (5.55)). It is very interesting that the

4 Since on the sides of the wedge the extrinsic curvature vanishes, it is reasonable to think of this term
in the entanglement entropy as due to the wedge singularity.
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appropriately normalized functions f(Ω) agree for the cusp and wedge geometries both in

the free and in the strongly coupled theories that we have studied.

0.5 1.0 1.5 2.0 2.5 3.0
W

1
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3
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f HWL

Figure 5.5: The entanglement entropy for the wedge has a 1/ε divergent term, whose coef-

ficient depends on the angle of the wedge. This coefficient f
(hol)
wedge(Ω) is given explicitly in

(5.61) and (5.63), and its normalization depends on the UV cut-off ε. The black dotted

line is the normalized function f̃
(hol)
wedge(Ω) = af

(hol)
wedge(Ω) for the wedge with a ∼ 1.11 and the

orange line is the function f
(hol)
cusp (Ω) for the cusp in (2 + 1)-dimensions.

5.5.2 The entanglement entropy for a cone

In this section we show that when the entangling surface in (3 + 1)-dimensional CFT has

a conical singularity, the entanglement entropy acquires a log2(rmax/ε) divergence. We take

the entangling surface to be the cone defined by (r, θ, φ) = (r,Ω, φ), where 0 ≤ r < rmax,

φ ∼ φ+2π is the azimuthal angle, and Ω is the opening angle of the cone. The large distance

cut-off rmax regulates the area of the cone.

To begin, we will evaluate (5.1) for this surface. Even though this equation is only

valid for smooth entangling surfaces, it does provide a quick way of seeing how the log2 ε

divergence appears. The cone has two normal vectors in R1,3, given by n1
µ = (1, 0, 0, 0) and

n2
µ = (0, 0, r, 0) in (t, r, θ, φ) coordinates. Only the second fundamental form associated with

n2
µ is non-vanishing, with non-zero component k2

φφ = 1
2
r sin 2Ω. The c-anomaly term in (5.1)
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then contributes

c

480π
log ε

∫ rmax

r0

dr

∫ 2π

0

dφ r sin θ(k2
φφ)2(gφφ)2

= − c

240

cos2 Ω

sin Ω
log2 ε+ · · · .

(5.65)

In going from the first to the second line in (5.65), we assume that the tip of the cone is

cut-off at some short distance r0 ∝ ε. Note that the a-anomaly does not give an additional

contribution to the singularity because
∫
RΣ = 0. The new UV divergent term (5.65) vanishes

at Ω = π
2
, where there is no conical singularity, while its coefficient diverges as Ω goes to

zero.

A more heuristic way to obtain the log2 ε term, similar to an argument for the cusp

geometry in [187] is as follows. When Ω is small, the cone may be approximately decomposed

into a union of cylinders with radius R = L sin Ω and the length ∆L, where L is the length

from the apex of the cone to one of the cylinders and ∆L is supposed to be small. The

logarithmic term of the entanglement entropy of the cylinder comes from the c-anomaly

given in (5.1)

Scylinder =
c

240

∆L

R
log(R/ε) . (5.66)

It follows that the entanglement entropy of the cone has the square of the logarithmic

divergence

Scone ≈
∫ rmax

ε

dL
c

240

1

L sin Ω
log(L sin Ω/ε) = − c

480

1

sin Ω
log2(rmax/ε) + · · · , (5.67)

which reproduces the leading behavior of (5.65) in the small Ω limit, except it is smaller by

a factor of 2. We will see below that the factor in (5.67) is correct.
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We now present a more precise holographic derivation of the log2 ε divergence, which

correctly takes into account the conical singularity. We use the AdS5 metric

ds2 =
dy2 − dt2 + dr2 + r2(dθ2 + sin2 θdφ)

y2
, (5.68)

so that the entangling surface is given by the cone Σ = {0 ≤ r <∞, θ = Ω, 0 ≤ φ < 2π} at

the AdS boundary y = 0. Taking the holographic coordinate y to be a function of (r, θ), we

use the conformal and rotational symmetries of AdS spacetime and the entangling surface

to restrict the ansatz to

y(r, θ) =
r

g̃(θ)
. (5.69)

The entanglement entropy functional is then given by

S =
2π

4G
(5)
N

∫
dr

r

∫
dθ sin θ g̃

√
g̃4 + g̃2 + (g̃′)2

= − π

2G
(5)
N

∫
dr

r

∫
ds g

√
g4 + g2 + (1− s2)(g′)2

= − π

2G
(5)
N

∫
dr

r

∫
dg g

√
(g4 + g2)s′(g)2 + 1− s(g)2 ,

(5.70)

where we introduced the new variable s = cos θ, which runs from s0 ≡ cos Ω to unity, and

redefined g(s) = g̃(θ(s)). In the last equality, we changed the integration variable from s to

g.

The entanglement entropy is given by evaluating the EE functional in the last line

of (5.70) on the function s(g) which solves the Euler-Lagrange equation,

g s(g)√
(g4 + g2)s′(g)2 + 1− s(g)2

+
d

dg

[
g(g4 + g2)s′(g)√

(g4 + g2)s′(g)2 + 1− s(g)2

]
= 0 , (5.71)

167



subject to the boundary condition s(g = r/ε) = s0, where the UV cutoff is put at y = ε in

the AdS spacetime. However, to find the leading divergences in the entanglement entropy,

it only is necessary to know the function s(g) near the boundary at g = r/ε, which we

may assume is a large number. Taking the large g limit of (5.71), one may verify that the

asymptotic expansion for s(g) near the boundary is

s(g) = s0 +
s0

4g2
+O

(
log g

g4

)
. (5.72)

While the solution above only satisfies the boundary conditions up to a term of order (ε/r)2,

the difference does not affect the leading two singular terms in the EE. In evaluating the

entanglement entropy functional in (5.70) on the solution s(g) in (5.72), we must evaluate

the integral

∫ g0

r/ε

dg

[√
1− s2

0 g −
s2

0

8
√

1− s2
0

1

g
+O

(
log g

g3

)]
= −sin Ω

2

r2

ε2
+

cos2 Ω

8 sin Ω
log(r/ε) +O(ε0) ,

(5.73)

where g0 is the minimum value of g(s). Then, preforming the r integral from r = g0ε to

rmax, we obtain the entanglement entropy for the cone:

Scone =
1

4G
(5)
N

[
AΣ

2ε2
− π cos2 Ω

8 sin Ω
log2(rmax/ε) + . . .

]
. (5.74)

In order to compare this result with the naive calculation in (5.65), we use (5.57). One

then sees that (5.74) is smaller than (5.65) by a factor of 2. As stressed above, the approach

of (5.1) is not precise for singular entangling surfaces. It is nice, therefore, that it is only a

factor of 2 off from the precise holographic result (5.74).
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Chapter 6

Is Renormalized Entanglement

Entropy Stationary at RG Fixed

Points?

This chapter is a lightly-modified version of the paper [16].

6.1 Introduction

Zamolodchikov used the two-point functions of the stress-energy tensor to define a monotonic

c-function in 2 spacetime dimensions [3]. At RG fixed points the Zamolodchikov c-function

equals the Weyl anomaly coefficient c. An important property of the Zamolodchikov c-

function is that it is stationary at the fixed points. For example, if we consider perturbing

a CFT by a slightly relevant operator O of dimension 2− δ then

c(g) = cUV − g2δ +O(g3) , (6.1)
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where g is the renormalized dimensionless coupling. More generally, in a theory with more

than one coupling constant,

∂c

∂gi
= Gijβ

j , (6.2)

whereGij is the Zamolodchikov metric, and βj = µdg
j

dµ
is the beta-function for the coupling gj.

The fact that the metric Gij is non-singular guarantees the stationarity of the Zamolodchikov

c-function at any fixed point in two-dimensions.

It is of great interest to find out if these results extend to field theory in dimension d > 2.

In four-dimensional conformal field theory there are two Weyl anomaly coefficients, a and

c. Long ago Cardy conjectured [1] that it should be the a-coefficient that decreases under

RG flow. This coefficient can be calculated from the expectation of value of the trace of the

stress-energy tensor in the Euclidean theory on S4. Using conformal perturbation theory, it

is possible to establish the analogue of (6.1) in four-dimensions [1]:

c(g) = aUV − g2δ +O(g3) , (6.3)

where the perturbing operator O has dimension 4− δ.

In this chapter we address a question about the proposed C-function F(R) in three-

dimensions that has not yet been elucidated: namely, is it stationary for arbitrary pertur-

bations around a CFT?

In a general field theory which does not have a gravity dual, the calculation of REE is

a difficult problem even if we resort to numerical methods. In this chapter we consider a

particularly simple example of RG flow provided by a free massive scalar field on R2,1 with

the action

I = −1

2

∫
d3x

[
(∂µφ)2 +m2φ2

]
. (6.4)

In this case there are efficient numerical algorithms for calculating F [206, 215]. On dimen-

sional grounds, F must be a function of g = (mR)2, which is the dimensionless coupling

associated with the relevant perturbation m2φ2/2. The UV fixed point of this theory is that
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of a massless free scalar, for which the value of F is known analytically [9, 65]; therefore,

F(g = 0) = FUV =
ln 2

8
− 3ζ(3)

16π2
≈ 0.0638 . (6.5)

The stationarity of the c-function at the UV fixed point would require F ′(0) = 0. However,

our numerical calculation instead indicates that F ′(g) is negative at small g. In fact, it may

diverge in the limit g → 0, but the limitations of our numerical work do not allow us to

make a precise statement about the small g behavior of F ′(g).

Our numerical results suggest that REE does not in general define a c-function in the

Zamolodchikov sense, because it is not always stationary at conformal fixed points.1 It is

not clear how to compare this statement with the proof [12] of the monotonicity of F . If g

can have either sign, then F ′(0) 6= 0 would violate monotonicity. In the example we have

considered, however, insisting on a stable UV fixed point requires that g is positive. So,

there is no immediate conflict with the work of [44]. We note, however, that the absence of

stationarity means that an equation like (6.2) cannot in general apply to F .

Examination of other examples where the stationarity of F can be tested is highly desir-

able. In studies of holographic entanglement entropy [190, 191], F initially appeared to be

stationary [15,45]. However, a closer analysis showed that in fact the holographic EE is not

stationary [216]. The holographic calculations are presented in Sec. 6.4.

6.2 Strip entanglement entropy at small mass

Although the renormalized entanglement entropy across a circle is of our main interest, as

a warm-up we start with a slightly different but simpler quantity, the entanglement entropy

of a strip.

1In (1 + 1)-dimensions the monotonic c-function derived from the entanglement entropy of a segment [44]
is not stationary with respect to m2 either. In (1 + 1)-dimensions this is likely due to the fact that φ2 is not
a conformal primary field in the CFT of a massless scalar.
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The entanglement entropy between the strip of width R and its complement in (2 + 1)-

dimensional free field theory is simply related to the entanglement entropy between the

interval of length R and its complement in the (1 + 1)-dimensional theory. More precisely,

for the (2 + 1)-dimensional massive scalar field of mass m we have the relation [204]

S
(2+1)
strip (m,R) =

L

π

∫ ∞
0

dp S
(1+1)
interval

(√
p2 +m2, R

)
, (6.6)

where
√
p2 +m2 is the mass of the (1 + 1)-dimensional scalar field, and L is the length of

the strip. To derive this equation one first compactifies the direction parallel to the strip

to a large circle of length L. Decomposing the (2 + 1)-dimensional scalar field into angular

momentum modes along this circle and then taking L→∞ leads to (6.6).

It is useful to define the entropic c-function for the strip through

Cstrip ≡ R2 ∂R Ŝ
(2+1)
strip , (6.7)

where Ŝ
(2+1)
strip ≡ S

(2+1)
strip /L is the entanglement entropy per unit length. This function is

manifestly finite and cut-off independent [191–193, 203]. For the massive scalar field, Cstrip

is also simply related to the (1 + 1)-dimensional entropic c-function, defined [44] by c(t =

mR) ≡ R∂R S
(1+1)
interval, through (6.6):

Cstrip(mR) =
1

2π

∫ ∞
−∞

dx c(
√
x2 + (mR)2) . (6.8)

We should note, however, that in general Cstrip is not expected to be a good c-function; for

example, it is not constant along lines of fixed points.

The entropic c-function for the (1 + 1)-dimensional massive scalar field is a well studied

quantity (see [183] for a review). The function interpolates between 1/3 in the UV (t = 0)

and 0 in the IR (t → ∞). At small and large values of t one can calculate the leading
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behavior of c(t) analytically [204],

c(t) =
1

3
+

1

2 log t
+ · · · , t� 1 ,

c(t) =
t

4
K1(2t) + · · · , t� 1 .

(6.9)

Unfortunately there is no known closed form expression for c(t) along the entire RG flow.

The function may be constructed numerically by solving an infinite sequence of nonlinear

differential equations [204]. Following this procedure leads to the curve in figure 6.1.
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c

Figure 6.1: The entropic c-function c ≡ R∂R S
(1+1)
interval for the (1 + 1)-dimensional massive

scalar field as a function of t ≡ mR, where m is the mass and R is the length of the interval.
The black curve comes from a numerical calculation using the prescription in [204]. The
blue and orange curves are the analytic approximations in (6.9) at small and large values of
t, respectively. The dotted red line marks the conformal value c(0) = 1/3.

The function Cstrip(mR) is a monotonically decreasing function that approaches zero

exponentially fast in the IR. Using (6.8) one may determine numerically its value at mR =

0 [204],

Cstrip(0) =
1

π

∫ ∞
0

dt c(t) ≈ 3.97× 10−2 . (6.10)
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At large mR we may use the approximation for c(t) in the second line of (6.9) to write

Cstrip(mR) ≈ 1

16
e−2mR

(
mR +

1

2

)
, mR� 1 . (6.11)

In figure 6.2 we numerically plot Cstrip along the RG flow together with the IR analytic

approximation.

0.0 0.5 1.0 1.5 2.0
t

0.01

0.02

0.03

0.04
Cstrip

Figure 6.2: The function Cstrip ≡ R2 ∂R Ŝ
(2+1)
strip for the free massive scalar field in black, where

Ŝ
(2+1)
strip ≡ S

(2+1)
strip /L is the entanglement entropy per unit length across the strip of width R.

The orange curve is the IR approximation in (6.11). The dotted red line is the initial value
at t = mR = 0 given in (6.10).

It is interesting to ask whether Cstrip is stationary at mR = 0. The first derivative of the

entropic c-function (6.8) with respect to t = mR gives

C ′strip(t) =
1

2π

∫ ∞
−∞

dx
t√

x2 + t2
c′(
√
x2 + t2)

=
1

2π

∫ ∞
−∞

dx
1√

x2 + 1

[
− 1

2
√
x2 + 1 log2(t

√
x2 + 1)

+O
(
log−3 t

)]
−−→
t→0
− 1

4 log2 t
,

(6.12)

where we used the asymptotic form of the (1 + 1)-dimensional entropic c-function (6.9)

and rescaled x → tx in the second line. While this implies that C ′strip(0) = 0, stationarity
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additionally requires that C ′strip(t)/t vanishes at t = 0. This is clearly not the case since this

quantity diverges as −1/(4t log2 t) as t → 0. As can be seen in figure 6.3, we confirm this

behavior numerically by plotting C ′strip(t)/t along with the analytic prediction.
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t

-1.8
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-1.0

-0.8

-0.6

1

t
¶tCstrip

Figure 6.3: The first derivative C ′strip(t)/t as t = mR → 0. The black curve comes from
the numerical calculation, and the dotted orange curve comes from fitting the numerics to
the function C ′strip(t)/t ≈ a/(t log2 t) as t → 0. We find a ≈ −0.25, which agrees with the
analytic result in (6.12). This means that Cstrip is not stationary for the massive scalar field.

To summarize the results of this section, we have found that the small mass expansion

of the UV finite function (6.7) for a strip of width R is

Cstrip(mR) ≈ 0.0397− |mR|
4 log2(mR)

+ · · · . (6.13)

In the next section we will present evidence that the REE across a circle of radius R has a

similar structure, with dF/dg looking clearly negative at small g = (mR)2.

6.3 Disk entanglement entropy at small mass

The entanglement entropy for the massive scalar field across the circle of radius R may

be calculated numerically following the prescription in [183, 206, 215, 217]. This numerical

method has passed many non-trivial checks. For example, in [206] the terms proportional
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to (mR) and 1/(mR) in the large (mR) expansion of the disk entanglement entropy were

matched numerically to the analytic predictions to high accuracy. A similar analysis in [18]

matched the 1/(mR)3 term in the large mass expansion of the EE to the analytic prediction,

and in [45] the value of the REE at mR = 0 was shown to agree with (6.5).

The numerical procedure [183,206,215,217] expands the scalar field into modes of integer

angular momentum n. The radial direction is discretized into a lattice of N units. For each

n the discrete Hamiltonian takes the form Hn = 1
2

∑
i π

2
i + 1

2

∑
ij φiK

ij
n φj, where πi is the

conjugate momentum to φi and i = 1, . . . , N . The nonzero entries of the N ×N matrix Kn

are

K11
n =

3

2
+ n2 +m2 , Kii

n = 2 +
n2

i2
+m2 , Ki,i+1

n = Ki+1,i
n = − i+ 1/2√

i(i+ 1)
. (6.14)

To compute the entanglement entropy we need to know the two-point correlators X ≡

〈φiφj〉 = 1
2
(K−1/2)ij and P ≡ 〈πiπj〉 = 1

2
(K+1/2)ij. If the radius of the entangling circle R is

a half-integer in units of the lattice spacing, then we must reduce the matrices Xij and Pij

to the r × r matrices Xr
ij and P r

ij, which are defined by taking 1 ≤ i, j ≤ r with r = R − 1
2
.

The entanglement entropy is then given by

S(R) = S0 + 2
∞∑
n=1

Sn , (6.15)

with

Sn = tr

[(√
Xr
nP

r
n +

1

2

)
log

(√
Xr
nP

r
n +

1

2

)
−
(√

Xr
nP

r
n −

1

2

)
log

(√
Xr
nP

r
n −

1

2

)]
.

(6.16)

Further details of the numerical calculation can be found in [206].
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In order to achieve the continuum limit we need to take N � r � 1 and m� 1 (restoring

the lattice spacing, the latter condition is mε� 1). Then mR can be either small or large,

and we can explore the REE as a function of this parameter.

In our calculations we use a radial lattice consisting of N = 200 points. We want to

calculate the entanglement entropy for .06 < mR < 2, but to minimize lattice effects we

restrict 30 < r < 50 in lattice units. To accomplish this we calculate the entanglement

entropy for m = .002 · i in inverse lattice units, with i = 1, . . . , 20. To take into account

finite lattice effects, we follow [45] and for the lowest 10 angular momentum modes we repeat

the calculation on lattices of sizes N = 200 + 10 · j, with j = 0, . . . , 50, and then extrapolate

to N = ∞. We perform the numerical calculation for the first 3000 angular momentum

modes. We take into account higher angular momentum modes by using the asymptotic

behavior of Sn derived in the original paper [16].

From the entanglement entropy we construct the renormalized entanglement entropy F

along the RG flow. A plot of this function versus (mR)2 is given in figure 6.4. From this

0 1 2 3 4 HmRL20.00
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0.03

0.04
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F

Figure 6.4: The renormalized entanglement entropy F across the circle of radius R for the
massive real free scalar plotted in black as a function of (mR)2. In this plot it can clearly
be seen that ∂(mR)2F is negative and nonzero at (mR)2 = 0, which implies that the REE F
is not stationary at the UV fixed point of a free massless scalar field. The dotted red line is
the zero mass value FUV = ln 2

8
− 3ζ(3)

16π2 .

177



plot we can see that ∂(mR)2F is clearly negative and nonzero at (mR)2 = 0. Recent, more

precise numerical calculations suggest that F ≈ FUV − 0.133(mR)2 near mR = 0 [216].

6.4 Non-stationarity from holography

In this section we discuss the entanglement entropy of (2 + 1)-dimensional CFTs which have

gravitational duals, perturbed by relevant operators. This section is adapted from [15], but

importantly it is updated to include the recent stationarity observations found in [216]. We

will see that non-stationarity is also present in the holographic context.

We work with an effective (3 + 1)-dimensional gravitational theory, with metric

ds2
4 =

L2
UV

y2

(
dy2

f(y)
− dt2 + dr2 + r2dθ2

)
, y ≥ 0 , (6.17)

and we assume that in the UV (small y) the metric asymptotes to AdS4 with radius LUV,

i.e. f(y) = 1 + O(yα), α > 0. The entanglement entropy across a circle of radius R in the

boundary QFT is then given by the area functional

S(R) =
πL2

UV

2G
(4)
N

∫ yIR

ε

dy
r(y)

y2
√
f(y)

√
1 + f(y)(∂yr)2 , (6.18)

where the function r(y) satisfies the Euler-Lagrange equation, ε is the short-distance cut-off,

and yIR is the maximal value of y for the solution.

If the effective (3 + 1)-dimensional gravitational theory comes from an exact D-

dimensional string or M-theory background, with metric as in (5.15), then we may identify

f(y) = β(u)

(
∂y

∂u

)2

,
L2

UV

y2
=
V (u)

VUV

α(u)β(u) . (6.19)

Let us begin with the conformal limit, where we may take f(y) = 1. We also define the

(3 + 1)-dimensional Newton’s constant G
(4)
N = G

(D)
N /VUV, where, in 10- and 11-dimensions,

178



the Newton’s constant takes the values G
(10)
N = 8π6α′4g2

s and G
(11)
N = (32π2)−1(2π`p)

9, re-

spectively. The solution to the equation of motion is then r(y) =
√
R2 − y2. Evaluating the

area functional on this solution and expanding in ε gives

S(R) =
πL2

UV

2G
(4)
N

R

∫ R

ε

dy

y2
=
πRL2

UV

2G
(4)
N ε
− πL2

UV

2G
(4)
N

. (6.20)

Suppose that the 3-dimensional CFT comes from the near horizon limit of N M2-branes

at the tip of the cone CY = R× Y , where Y is some 7-dimensional internal Sasaki-Einstein

space. In the large N limit the theory is well described by the supergravity background

ds2
11 = ds2

AdS4
+ 4L2

UVds
2
Y , F4 =

3

LUV

volAdS4 , F7 = ∗11F4 = 384L6
UV volY , (6.21)

where the radius LUV of AdS4 is quantized in plank units:

N =
1

(2π`p)6

∫
Y

F7 =
6 Vol(Y )

π6

L6
UV

`6
p

. (6.22)

Substituting the relation between N and LUV in (6.22) into (6.20) gives the renormalized

entanglement entropy

FUV =
πL2

UV

2G
(4)
N

= N3/2

√
2π6

27 Vol(Y )
+O(N1/2) . (6.23)

As a consistency check, we may verify that this is equal to the finite part of the Euclidean

free energy of the theory on the 3-sphere [8,218], in agreement with the general result of [11].

Now suppose that there is an RG flow in the boundary QFT caused by perturbing the

UV CFT by a relevant scalar operator O of dimension 1/2 ≤ ∆ < 3. The operator O is dual

to a massive scalar field in the bulk, with ∆(∆− 3) = m2. The bulk action is then given by

I4 =
1

16πG
(4)
N

∫
d4x
√
−g
[
R +

6

L2
UV

− 1

2
gµν∂µφ∂νφ−

1

2
m2φ2 + · · ·

]
, (6.24)
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where the dots stand for higher order terms in φ and the contributions of other fields, which

won’t be relevant for this discussion. When the field φ vanishes the equation of motion for

the metric simply gives AdS4.

For each bulk mass m, there are two possible boundary dimensions ∆± [119]:

∆± =
3

2
±
√
m2 +

9

4
. (6.25)

Both boundary dimensions are allowed if 1
2
≤ ∆− ≤ 3

2
, while only ∆+ is allowed if ∆+ > 5/2.

The equations of motion for φ in the AdS4 background give the following asymptotic solution

at small y,

φ(y, x) = y3−∆+ [φ+
0 (~x) +O(y2)] + y3−∆− [φ−0 (~x) +O(y2)] . (6.26)

For 3/2 ≤ ∆+ < 3, taking the ∆+ boundary condition corresponds to perturbing the action

of the UV boundary CFT to

I3 = IUV +

∫
d3xφ+

0 (~x)O(~x) , (6.27)

where O has dimension ∆ = ∆+. For 1/2 ≤ ∆− < 3/2, the ∆− boundary condition has this

interpretation (with φ+
0 replaced by φ−0 in (6.27), and O an operator of dimension ∆ = ∆−).

The field φ has a back-reaction on the metric. Taking the ∆+ boundary condition and

setting φ+
0 (~x) = φ0 constant, we find that at small y the Einstein equation gives us

f(y) = 1 +
3−∆+

4
φ2

0 y
2(3−∆+) + · · · , (∆+ b.c.). (6.28)

Taking the ∆− boundary condition with φ−0 (~x) = φ0 gives [216]

f(y) = 1 +
∆−
4
φ

2∆−/(3−∆−)
0 y2∆− + · · · , (∆− b.c.). (6.29)
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To find the first correction to the renormalized entanglement entropy as a result of the

relevant deformation of the UV CFT, with ∆+ boundary condition, it is sufficient to evaluate

the action in (6.18) with f(y) given in (6.28) on the UV solution r(y) =
√
R2 − y2. A

straightforward calculation then gives

F(R) = FUV

(
1− (3−∆+)

8
(

7
2
−∆+

)φ2
0R

2(3−∆+) + · · ·

)
. (6.30)

The factor 3 − ∆+ plays an important role; it ensures that the renormalized entanglement

entropy is not changed by marginal perturbations. When instead we take the ∆− boundary

condition, we find that [216]

F(R) = FUV

(
1− ∆−

8
(

1
2

+ ∆−
)φ2∆−/(3−∆−)

0 R2∆− + · · ·

)
. (6.31)

Note that ∂φ0F only vanishes as φ0R
3−∆ → 0 if ∆ > 1. If the dimension ∆ of the perturbing

operator is 1
2
≤ ∆ ≤ 1, then the REE is not stationary at the UV fixed point [216].

In particular, the mass perturbation in the free scalar field theory corresponds to ∆ = 1,

and we expect ∂(mR)2F|mR=0 = const. Of course, we do not expect the overall coefficient of

(mR)2 to match the holographic calculation, since the free scalar field theory does not have

a simple gravitational dual.

6.5 A toy model: the massive scalar on H2 × S1

For a CFT in (2 + 1)-dimensions the calculation of the Rényi q-entropy of a disk may be

mapped to a calculation on H2 × S1 [11, 104], where q is the radius of the circle. For a free

scalar field of mass m the free energy on this space is [17]

Fq(m2) =

∫ ∞
0

dλD(λ)
[
log
(

1− e−2πq
√
λ+(mR)2

)
+ πq

√
λ+ (mR)2

]
, (6.32)
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where the density of states is given by

D(λ)dλ =
Vol(H2)

4π
tanh(π

√
λ)dλ , (6.33)

and the regularized volume of the hyperbolic space is Vol(H2) = −2π. The formula for the

finite part of entanglement entropy is

S1 =
∂Fq
∂q

∣∣∣∣
q=1

−F1 . (6.34)

Applying this relation at m = 0, which corresponds to a massless scalar on a disk, one

obtains S1 = − ln 2
8

+ 3ζ(3)
16π2 , in agreement with other methods [17].

The status of the calculation on H2 × S1 for m2 > 0 is less clear since this does not

correspond to turning on mass on the original disk geometry. It is still interesting to inquire

whether S1 defined above is stationary with respect to turning on m2. An explicit calculation

yields

∂S1

∂m2

∣∣∣∣
m2=0

=
π2

16
R2 . (6.35)

Similarly, the calculation of the Rényi entropy can be mapped to that on the q-fold covering

of S3 [17]. For a massive free scalar field of mass m on this space, the derivative of S1 with

respect to the mass of the scalar field is ∂S1

∂m2 |m2=0 = −π2

16
R2, which agrees in absolute value

with (4.4) but has a different sign. Either way, S1 is not stationary in these toy models.

This lack of stationarity of S1, which is easily established analytically, is reminiscent of the

numerical result for the disk entanglement found in the previous section.
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Chapter 7

Conclusion

In this Dissertation, I presented the F -theorem and some of its applications. The F -theorem

is useful because it orders the space of three-dimensional QFTs. If the unitary CFT A

has F -value FA, while the unitary CFT B has F = FB > FA, then there is no RG flow

that begins at A and ends at B. The CFT F -values may be computed in two equivalent

ways; F equals the renormalized free energy of the Euclidean CFT conformally mapped to

the three-sphere, and it also equals the renormalized entanglement entropy across a circle

in flat Minkowski space. Along the RG flow, the renormalized entanglement entropy is a

monotonically decreasing function. I demonstrated this explicitly in both holographic and

non-holographic examples.

The CFT F -values themselves are – apart from the F -theorem – useful quantities for

studying various aspects of QFT. For example, I demonstrated that they may be used as

a probe of the gauge-gravity correspondence, and I showed how they help determine the

scaling dimensions of monopole operators in N = 2 supersymmetric theories, through the

principle of F -maximization.

There remain many open and interesting problems related to the F -theorem. Foremost

among them, in my opinion, is physical application. Can F be measured in a lab? F

is an inherently non-local quantity, so doing this directly may be difficult. Perhaps it is
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possible to approximate F through more-easily measurable quantities. Entanglement entropy

is certainly measurable on the lattice. Numerical lattice simulations of physical systems may

be able to compute F in order to help identity the conformal fixed points.

At the conformal fixed points themselves, we have developed a large array of tools for

calculating F . While there is certainly more work that can be done here, it is also important

to understand the REE away from the fixed points. Currently we have two methods for

computing the REE in these cases: (i) numerical lattice techniques, and (ii) holographic

methods. These methods may, realistically, only be applied to a very small subset of physi-

cally interesting RG flows. Better tools are needed for calculating the REE. In fact, we do

not even know how to compute the REE in the vicinity of a conformal fixed point directly

in field theory.

Developing tools for calculating the REE perturbatively near conformal fixed points is

an outstanding problem. For example, I showed in chapter 6 that lattice calculations of the

real massive scalar field indicate that ∂m2F is non-vanishing at m2 = 0. This indicates that

the REE is non-stationary. Ultimately, however, we need analytic methods for calculating F

perturbatively in m2 near m2 = 0 in order to understand the meaning of the non-stationarity.

More generally, if we deform the action at a conformal fixed point by
∫
d3xλO, where O is a

relevant operator in the CFT of dimension ∆ < 3, how do we calculate F perturbatively in

λ? I answered this question in the holographic context in Sec. 6.4, following [216]. However,

a purely field theoretic understanding of this behavior would be instructive.

The tools for holographically calculating EE and F are often, as indicated above, much

more developed than their field theory counterparts. With that said, there remain many

interesting open problems on the gravity side. One such problem is the calculation of the

leading term in F , F0 = NFS, in the theory of N free fields. I showed in Sec. 4 how we

may calculate the first 1/N correction to F in the bulk Vasiliev theory. The bulk 1-loop

calculations have been further developed recently in [20, 219]. Still, it is fascinating, and

somewhat troubling, that we are unable to calculate the leading contribution to F in the
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bulk. Such a calculation would probably require knowing the action for Vasiliev’s higher-spin

theory.

Over the past few years, the role of the EE across the circle has emerged as a useful

probe of QFT. In Sec. 5 I briefly described EE for more general entangling surfaces in the

holographic framework. However, in general it is much less straightforward to calculate the

EE in QFT for non-spherical entangling surfaces, even at the conformal fixed points. At

four-dimensional conformal fixed points, the universal contribution to the EE, for general

entangling surfaces, has been worked out by Solodukhin [220]. I found a similar formula,

valid for any entangling geometry, in six spacetime dimensions [18]. However, both of our

calculations are indirect and rely heavily on holography. It would be extremely useful to find

an efficient field theory method for calculating the EE across general entangling surfaces.

The Rényi entropies are also much less explored than the EE. When the entangling surface

is spherical, these entropies are related to the thermal free energies on the hyperbolic space.

A holographic prescription for the spherical Rényi entropies also exists [221]. However, there

is no proposal for how to calculate the Rényi entropies holographically when the entangling

surface is not spherical. Recently it has been shown that derivatives of the spherical Rényi

entropies with respect to the Rényi parameter are proportional to integrated correlation

functions of stress tensors on the hyperbolic space [222]. With that said, the role of the

non-spherical Rényi entropies remains mysterious. Understanding what information may be

extracted from these entropies remains an open question.

I have shown that quantum entropy is a powerful probe of QFT. Yet I have the feeling

that we are only just beginning to understand its role in nature.
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