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SUMMARY

The contribution of this thesis is an extended high-order sandwich panel the-

ory (EHSAPT) for sandwich beams/wide panels, in which the axial stresses are taken

into account as well as the shear and transverse normal stresses in the core, and its

validation. The general nonlinear formulation of EHSAPT is given in Chapter 2.

Validation of the present theory is made by comparison with elasticity solutions and

experimental data. The accuracy of EHSAPT is assessed for the standard class of

structural analysis problems which include: static loading, static instability (global

buckling and wrinkling), free vibrations, and dynamic loading. In Chapter 3 the

static response to a half-sine distributed load applied to the top face sheet of a simply

supported sandwich beam/wide panel is solved. Validation is made with elasticity,

and Euler-Bernoulli beam, first order shear deformation theory, and HSAPT were

also included for comparison. In Chapter 4 the static global buckling critical load is

determined for a simply supported sandwich beam/wide panel under edgewise load-

ing. Validation is made with elasticity, and Allen’s formula and HSAPT are included

for comparison. In Chapter 5 the static wrinkling critical load of a simply supported

sandwich beam/wide panel is investigated. Validation includes comparison with elas-

ticity, experimental results reported in literature, and recently acquired experimental

results. Results using Hoff-Mautner’s wrinkling formula and HSAPT are also shown.

In Chapter 6 the free vibrations of a simply supported sandwich beam/wide panel

are explored, and the predicted antisymmetric and symmetric natural frequencies are

compared to experimental results found in the literature and with elasticity. The last

validation of EHSAPT is made for the dynamic response to a half-sine distributed

x



load with an exponential time decay applied to the top face sheet of a simply sup-

ported sandwich beam. Results are compared with elasticity. The response from using

HSAPT is also shown. Chapter 8 presents results from an impact experiment upon

a sandwich panel and comparison with EHSAPT. Finally, Chapter 9 gives overall

comments on the future work that can be done with EHSAPT.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Typical sandwich panels consist of two stiff metallic or composite thin face sheets

separated by a thick, lightweight core. The core could be a stiff honeycomb, soft

foam, or anything in between. This configuration gives the sandwich material system

high stiffness and strength, low weight, and high-energy absorption capability. As a

result of these desirable properties, sandwich structures have found applications in

the construction of aerospace vehicles, naval vehicles, wind turbines and civil infras-

tructure. Structures in these applications may be subjected to highly transient loads

such as blast, gusts, or impact, with surface pressure spread over the entire structure

or over a concentrated area. A good understanding of the response of suddenly loaded

sandwich structural configurations is essential in ensuring their integrity.

It is common in the analysis of sandwich panels to neglect the transverse deforma-

tion of the core [33, 2, 38]. An early theory of sandwich structures, commonly known

as the First-Order Shear Deformation Theory (FOSDT), refines classic beam/plate

theories by taking into account the shear rigidity of the core, but this theory still

assumes that longitudinal deformation is linear in the thickness coordinate and the

core is infinitely rigid in the transverse direction. FOSDT assumes a uniform shear

strain through the height of the panel. Though this model is simple, its application

is acceptable when the sandwich core is very stiff vertically and statically loaded.

In general, and especially in modern sandwich panels with cores of foam type, the

core is flexible in all directions. Hence, the assumption of a stiff core in the vertical

direction is violated, but the assumption of negligible in-plane stresses is still valid

due to low in-plane rigidity with respect to that of the face sheets. When the core
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is not very stiff in the vertical direction, the FOSDT gives inaccurate predictions for

the transverse displacement under quasi-static loading [31]. More importantly, exper-

imental results [16, 21, 28, 37, 40] have shown that the core can undergo significant

transverse deformation when the sandwich structure experiences a sudden, impulsive

loading and the core plays an important role in the absorption of the impact energy.

Therefore, a more accurate sandwich panel model should account for the transverse

compressibility of the core. Consideration of the core compressibility implies that

the displacements of the upper and lower face sheets may not be identical. Another

important issue is the accurate representation of the core shear, which is a key com-

ponent in sandwich analysis since cores are typically of very low modulus and thus

transverse shear has a significant influence on the structural behavior.

Many refined theories exist in which various assumptions are made in order to

better model the stress, strain, and displacement distribution throughout the thick-

ness of a composite. Berdichevsky [3, 4] offers an approximate universal asymptotic

theory for linear and nonlinear sandwich beams and plates with geometric and ma-

terial symmetry about the mid-plane of the structure subject to static loads. This

theory can give accurate results for the structural response to a static loading or even

to a dynamic loading of long-duration, but is not suitable for highly transient loading

problems.

Numerous equivalent single layer, layer-wise, zig-zag, and mixed layer-wise theo-

ries have been proposed for the analysis of sandwich beams [1] and plates [8]. These

theories typically make the same assumption in each layer regarding the distribu-

tion of displacements and/or stresses through the thickness coordinate z, and enforce

compatibility and/or traction continuity at the interfaces. Layer-wise theories with

displacement and stress assumptions of O(z2) to O(z4) presented in [8] give accurate

displacements, stresses (longitudinal and shear), and natural frequencies compared to

elastostatic and elastodynamic benchmarks; however, transverse normal stress/strain
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results were not shown. Furthermore, these theories are often presented in an integral

sense because they rely on symbolic mathematical software to evaluate a particular

application [7].

Other theories do not make the same displacement/stress distribution assumption

for each layer of the sandwich. Hohe et al. [19] developed a model for sandwich plates

in which the transverse normal stress is constant along the transverse coordinate, z,

and the shearing stress is first order in z. A compressible sandwich panel theory

must allow for at least a linear distribution of transverse stress through the height of

the core if transverse loading is applied to just one face. Li and Kardomateas [27]

explored a higher-order theory for plates in which the transverse normal stress in

the core is of third order in z, and the shear stress in the core is of fourth order in

z. This theory gave inaccurate transverse stress distributions through the core for a

quasi-statically loaded problem.

In 1992, Frostig et al. developed the High-order Sandwich Panel Theory (HSAPT),

a compressible core theory which accounts for the transverse and shear stresses in the

core but neglects the in-plane stresses in the core [15]. Neglecting the in-plane stresses

in the core results in a constant shear stress distribution through the thickness of the

core which has been shown to be a good approximation for sandwich constructions

with very soft cores undergoing quasi-static loading [31]. Neglecting the axial stresses

in the core reduces the static equilibrium equation of elasticity to the following:

�
�
��

0
∂σxx
∂x

+
∂τxz
∂z

= 0 (1)

Therefore a constant shear stress distribution through the thickness of the core is a

good approximation for sandwich constructions with very soft cores in static problems

[31]. However, for dynamic problems the right hand side is no longer zero but equal to

the density of the core times the axial acceleration of the core. Therefore, in dynamic

problems, if the core’s density and axial acceleration are not negligible, the shear

3



stress may not always be constant through the thickness.

The static formulation of HSAPT has been used to solve numerous problems.

Comparison of HSAPT with elasticity [36] and experiment [5] has shown that HSAPT

accurately predicts displacements and axial strain concentrations in the faces adja-

cent to supports and concentrated load regions. With regard to the core, however,

though HSAPT is a good approximate theory away from supports, and concentrated

load regions, it can show inaccurate shear stress and axial strain through-thickness

distributions adjacent to regions of concentrated loads and supports [36]. HSAPT has

been used to study the global buckling and wrinkling behavior of soft core sandwich

composite beams [13] and plates [11].

There are two models of HSAPT that exist in literature for dynamic problems.

The original model [14] is a mixed formulation in which the five unknowns are from

generalized displacement varialbes are: the two axial displacements at the top and

bottom face sheet ut0(x, t), u
b
0(x, t), and the two transverse displacements at the top

and bottom face sheets wt(x, t), wb(x, t), plus the uniform shear stress in the core

τ c(x). In the mixed formulation model, the accelerations are assumed to vary linearly

through the core. The second model is a displacement-based formulation in which

the five generalized displacement variables are: ut0(x, t), u
b
0(x, t), w

t(x, t), wb(x, t),

and the mid-core transverse displacement wc0(x, t) (instead of the shear stress τ c(x)).

In this latter model, the accelerations in the core are allowed to be nonlinear through

the core. The mixed formulation of HSAPT has been used to study the free vibrations

of sandwich beams in [14, 35]. The mixed and displacement based formulations of

HSAPT have been used to study free vibrations of sandwich plates in [34].

The theories mentioned above make the usual assumption that the axial rigidity in

the core can be neglected for sandwich beams/wide panels with very soft cores com-

pared to the face sheets. Under some circumstances, such as improvement of impact

rigidity of the sandwich panel or introduction of axial loads into the core, the effect

4



of the axial rigidity of the core should be considered. Frostig [12] suggested a com-

putational model that takes into account the axial rigidity of the core for sandwich

beams/wide panels for stretchable electronic applications. Furthermore, the assump-

tion of constant shear stress through through the height of the core is one that is

reduced from static equilibrium when the axial stresses in the core are neglected (see

Eqn. (1)). Dynamic equilibrium equations in which the axial inertial terms of the core

are included will not yield a constant shear stress distribution through the height of

the core. For these reasons, the formulation and validation of the extended high-order

sandwich panel theory (EHSAPT) for beams/wide panels in which the axial rigidity

of the core is included is the focus of this thesis.
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CHAPTER II

GENERAL NONLINEAR FORMULATION OF EHSAPT

Figure 1 shows a sandwich beam/wide panel of length a with a core of thickness 2c

and top and bottom face sheet thicknesses ft and fb, respectively. The width of the

panel is b. A Cartesian coordinate system (x, y, z) is defined at one end of the panel

and its origin is placed at the middle of the core. The y-direction is not shown, but is

pointed into the page. Only loading in the x-z plane is considered to act on the panel

which solely causes displacements in the x and z directions designated by u and w,

respectively. Therefore any displacements, strains, stresses, or loads dependent upon

y are not considered. The superscripts t, b, and c shall refer to the top face sheet,

bottom face sheet, and core, respectively. The subscript 0 refers to the middle surface

of the corresponding phase.

Figure 1: Definition of the sandwich configuration

The displacement fields of the top and bottom face sheets are are assumed to

satisfy the Euler-Bernoulli assumptions: that plane sections remain plane and per-

pendicular to the constituent’s deformed axis, and that sections are infinitely rigid

in the y and z-directions. Therefore, the displacement field for the top face sheet,
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c ≤ z ≤ c+ ft, is:

wt(x, z, t) = wt(x, t) ; ut(x, z, t) = ut0(x, t)−
(
z − c− ft

2

)
wt,x(x, t) (2a)

and for the bottom face sheet, −(c+ fb) ≤ z ≤ −c:

wb(x, z, t) = wb(x, t) ; ub(x, z, t) = ub0(x, t)−
(
z + c+

fb
2

)
wb,x(x, t) (2b)

Since large displacements and moderate rotations are considered the non-linear strains

in the face sheets read:

εt,bxx(x, z, t) = ut,b,x (x, z, t) +
1

2
wt,b,x (x, t)2 (3)

If a linear analysis is pursued, the second (squared) term in Eqn. (3) is neglected.

While the face sheets can change their length only longitudinally, the core can

change its height and length. The displacement fields considered for the core follow

the resulting fields that are in the HSAPT model (see Frostig et al. [15]), and they

read:

wc(x, z, t) = wc0(x, t) + wc1(x, t)z + wc2(x, t)z
2 (4a)

uc(x, z, t) = uc0(x, t) + φc0(x, t)z + uc2(x, t)z
2 + uc3(x, t)z

3 (4b)

where wc0 and uc0 are the transverse and in-plane displacements, respectively, φc0 is

the slope at the centroid of the core, while wc1, w
c
2 are the transverse unknown func-

tions and uc2, u
c
3 are the in-plane unknown functions to be determined by enforcing

compatibility of the displacements at the upper, z = c, and lower, z = −c, face-core

interfaces. Hence, using the compatibility condition in the transverse direction at

the upper and the lower face core interfaces (same core and face sheet transverse

displacement) yields the following distribution of the transverse displacement:

wc(x, z, t) =

(
− z

2c
+

z2

2c2

)
wb(x, t) +

(
1− z2

c2

)
wc0(x, t) +

(
z

2c
+

z2

2c2

)
wt(x, t) (5a)

The in-plane displacement of the core uc(x, z, t), is determined through the fulfillment

of the compatibility conditions of the in-plane direction, see second equations in Eqns.
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(2a) and (2b) at z = c and −c (same core and face sheet in-plane displacement at the

interface). Hence, after some algebraic manipulation they read:

uc(x, z, t) =z

(
1− z2

c2

)
φc0(x, t) +

z2

2c2

(
1− z

c

)
ub0 +

(
1− z2

c2

)
uc0 +

z2

2c2

(
1 +

z

c

)
ut0

+
fbz

2

4c2

(
−1 +

z

c

)
wb,x +

ftz
2

4c2

(
1 +

z

c

)
wt,x

(5b)

Therefore, this theory is in terms of seven generalized displacement variables (un-

known functions of x and t): two for the top face sheet, wt0, u
t
0, two for the bottom

face sheet, wb0, u
b
0, and three for the core, wc0, u

c
0 and φc0. The strains can be obtained

from the displacements using the linear strain-displacement relations. Hence, the

transverse normal strain is:

εczz =
∂wc

∂z
=

(
z

c2
− 1

2c

)
wb − 2z

c2
wc0 +

(
z

c2
+

1

2c

)
wt (6a)

and the shear strain

γczx =
∂uc

∂z
+
∂wc

∂x
=

(
1− 3z2

c2

)
φc0 +

(
z

c2
− 3z2

2c3

)
ub0 −

(
2z

c2

)
uc0 +

(
z

c2
+

3z2

2c3

)
ut0+[

−
(
c+ fb

2c2

)
z +

(
2c+ 3fb

4c3

)
z2
]
wb,x +

(
1− z2

c2

)
wc0,x+[(

c+ ft
2c2

)
z +

(
2c+ 3ft

4c3

)
z2
]
wt,x

(6b)

There is also a linear axial plane strain in the core

εcxx =
∂uc

∂x
(6c)

which has the same structure as Eqn. (5b), but with the generalized function coor-

dinates replaced by one order higher derivative with respect to x. Nonlinear in-plane

strains in the core are neglected due to the core’s low in-plane rigidity as compared

with that of the face sheets.

In the following Ct,b,c
ij are the corresponding stiffness constants where we have used

the notation 1 ≡ x, 3 ≡ z, and 55 ≡ xz. Only orthotropic materials are considered.
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For the face sheets, the transverse stress that acts in the plane of the cross-section,

σt,bzz , is much smaller than the axial stresses σt,bxx. When this stress component in the

plane of the cross-section is assumed to be null, the constitutive laws lead to the

following reduced Hooke’s law:

σt,bxx = Ct,b
11 ε

t,b
xx (7)

where, in terms of the Young’s modulus, Et,b
1 the stiffness constant for a beam/wide

panel is: Ct,b
11 = Et,b

1 .

We also assume an orthotropic core with stress-strain relations:
σcxx

σczz

τ cxz

 =


Cc

11 Cc
13 0

Cc
13 Cc

33 0

0 0 Cc
55



εcxx

εczz

γcxz

 (8a)

where the components Cc
ij in Eqn. (8a) is the inverse of the compliance matrix, whose

components acij are expressed in terms of the Young’s and shear moduli and Poisson’s

ratio of the core as:

ac11 =
1

Ec
1

; ac13 = −ν
c
31

Ec
3

; ac33 =
1

Ec
3

; ac55 =
1

Gc
31

(8b)

The equations of motion and appropriate boundary conditions are derived from

Hamilton’s principle: ∫ t2

t1

δ(U + V − T )dt = 0 (9a)

where U is the strain energy of the sandwich panel, V is the potential due to the

applied loading, and T is the kinetic energy. The first variation of the strain energy

of the sandwich panel is:

δU =

∫ a

0

[ ∫ −c
−c+fb

b σbxxδε
b
xxdz +

∫ c

−c
b (σcxxδε

c
xx + σczzδε

c
zz + τ czxδγ

c
zx) dz

+

∫ c+ft

c

b σtxxδε
t
xxdz

]
dx

(9b)

and the first variation of the external potential due to several general loading condi-

tions shown in Figure 2 is:
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Figure 2: General loading on sandwich panel. Distributed loading of the core is only
shown at the edges.

δV =−
∫ a

0

∫ b

0

(
ñtδut0 + ñbδub0 + q̃tδwt + q̃bδwb + m̃tδwt,x + m̃bδwb,x

)
dy dx

+ Ñ t
0(t)δu

t
0(0, t)− Ñ t

a(t)δu
t
0(a, t)

+ Ñ b
0(t)δub0(0, t)− Ñ b

a(t)δu
b
0(a, t)

+ P̃ t
0(t)δwt(0, t)− P̃ t

a(t)δw
t(a, t)

+ P̃ b
0 (t)δwb(0, t)− P̃ b

a(t)δwb(a, t)

+ M̃ t
0(t)δw

t
,x(0, t)− M̃ t

a(t)δw
t
,x(a, t)

+ M̃ b
0(t)δwb,x(0, t)− M̃ b

a(t)δw
b
,x(a, t)

−
∫ b

0

∫ c

−c
(ñcδuc + ṽcδwc) dz dy

]a
x=0

(9c)

where ñt,b is the distributed in-plane force (along x), q̃t,b is the distributed transverse

force (along z) and m̃t,b is the distributed moment on the top and bottom face sheets.

Moreover, Ñ t,b
0 and Ñ t,b

a are the end axial force at x = 0 and x = a respectively, P̃ t,b
0

and P̃ t,b
a are the end shear force at x = 0 and x = a respectively, and M̃ t,b

0 and M̃ t,b
a

10



are the end moment at the top and bottom face sheets at the ends x = 0 and x = a,

respectively. Please notice the positive sense of the applied concentrated end loads

is chosen to be in the same direction as their equivalent end stress resultants. In

addition, ñc is the distributed end axial force and ṽc is the end distributed shear force

applied at the ends of the core at x = 0 and x = a. All the external loads considered

are uniformly distributed in the y-direction. Since the face sheets and the core do not

exhibit bend-twist coupling the external loads considered only cause deformations in

the x-z plane.

In the following we assume that b is constant and ñc and ṽc are constant and they

are only applied at the edges of the beam. In this case,∫ c

−c
b ñcδucdz = ñcbc

[
1

3

(
δub0 + δut0

)
+

4

3
(δuc0)−

fb
6
δwb,x +

ft
6
δwt,x

]
(9d)

∫ c

−c
b ṽcδwcdz = ṽcbc

(
1

3
δwb +

4

3
δwc0 +

1

3
δwt
)

(9e)

Of course, the theory can admit any variation of ñc and ṽc along z; for example, a

bending moment on the core would correspond to a linear variation of ñc with respect

to z. However, for most practical purposes, loads are applied to the face sheets and

not the core.

The first variation of the kinetic energy is:

δT =

∫ a

0

(∫ −c
−(c+fb)

b ρb(u̇bδu̇b + ẇbδẇb)dz +

∫ c

−c
b ρc(u̇cδu̇c + ẇcδẇc)dz

+

∫ c+ft

c

b ρt(u̇tδu̇t + +ẇtδẇt)dz

)
dx

(10)

For the sandwich panels made out of orthotropic materials, we can substitute the

stresses in terms of the strains from the constitutive relations, Eqns. (7) and (8a),

and then the strains, Eqns. (3) and (6), in terms of the displacements profiles, Eqns.

(2) and (5), and finally apply the variational principle, Eqns. (9); thus we can write

a set of non-linear governing equations in terms of the seven unknown generalized

displacement variables as follows:
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Top face sheet:

δut0 :

[
−
(

4

5
Cc

55 +
2c2

35
Cc

11

∂2

∂x2
− 2c2ρc

35

∂2

∂t2

)
φc0 −

(
7

30c
Cc

55 +
c

35
Cc

11

∂2

∂x2
− cρc

35

∂2

∂t2

)
ub0

−
(

4

3c
Cc

55 +
2c

15
Cc

11

∂2

∂x2
− 2cρc

15

∂2

∂t2

)
uc0 +

[
47

30c
Cc

55 − αt1
∂2

∂x2
+

(
6cρc

35
+ ftρ

t

)
∂2

∂t2

]
ut0

−
(
αb2

∂

∂x
− cfb

70
Cc

11

∂3

∂x3
+
cfbρ

c

70

∂3

∂x∂t2

)
wb +

(
β1

∂

∂x

)
wc0

+

(
αt3

∂

∂x
− 3cft

35
Cc

11

∂3

∂x3
+

3cftρ
c

35

∂3

∂x∂t2

)
wt
]
b = ñt + F t

u

(11a)

where F t
u is the nonlinear term:

F t
u = Ct

11bftw
t
,xw

t
,xx (11b)

and p̃t is the distributed in-plane force (along x) at the top face, and

δwt :

[(
αt4

∂

∂x
+
c2ft
35

Cc
11

∂3

∂x3
− c2ftρ

c

35

∂3

∂x∂t2

)
φc0 +

(
αt5

∂

∂x
+
cft
70
Cc

11

∂3

∂x3
− cftρ

c

70

∂3

∂x∂t2

)
ub0

+

(
αt6

∂

∂x
+
cft
15
Cc

11

∂3

∂x3
− cftρ

c

15

∂3

∂x∂t2

)
uc0 +

(
−αt3

∂

∂x
+

3cft
35

Cc
11

∂3

∂x3
− 3cftρ

c

35

∂3

∂x∂t2

)
ut0

+

(
1

6c
Cc

33 + β2
∂2

∂x2
− cfbft

140
Cc

11

∂4

∂x4
− cρc

15

∂2

∂t2
+
cfbftρ

c

140

∂4

∂x2∂t2

)
wb

+

(
− 4

3c
Cc

33 + αt7
∂2

∂x2
+

2cρc

15

∂2

∂t2

)
wc0

+

(
7

6c
Cc

33 + αt8
∂2

∂x2
+ αt9

∂4

∂x4
+

(
4cρc

15
+ ftρ

t

)
∂2

∂t2
−
(

3cf 2
t ρ

c

70
+
f 3
t ρ

t

12

)
∂4

∂x2∂t2

)
wt
]
b

= q̃t − m̃t
,x + F t

w

(12a)

where F t
w is the nonlinear term:

F t
w = Ct

11bft

[
wt,xu

t
0,xx + ut0,xw

t
,xx +

3

2
(wt,x)

2wt,xx

]
(12b)

and q̃t is the distributed transverse force and m̃t is the distributed moment along the

top face sheet.
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Core:

δuc0 :

[
−
(

4

3c
Cc

55 +
2c

15
Cc

11

∂2

∂x2
− 2cρc

15

∂2

∂t2

)
ub0 +

(
8

3c
Cc

55 −
16c

15
Cc

11

∂2

∂x2
+

16cρc

15

∂2

∂t2

)
uc0

−
(

4

3c
Cc

55 +
2c

15
Cc

11

∂2

∂x2
− 2cρc

15

∂2

∂t2

)
ut0 +

(
αb6

∂

∂x
+
cfb
15
Cc

11

∂3

∂x3
− cfbρ

c

15

∂3

∂x∂t2

)
wb

−
(
αt6

∂

∂x
+
cft
15
Cc

11

∂3

∂x3
− cftρ

c

15

∂3

∂x∂t2

)
wt
]
b = 0

(13)

δφc0 :

[(
8c

5
Cc

55 −
16c3

105
Cc

11

∂2

∂x2
+

16c3ρc

105

∂2

∂t2

)
φc0 +

(
4

5
Cc

55 +
2c2

35
Cc

11

∂2

∂x2
− 2c2ρc

35

∂2

∂t2

)
ub0

−
(

4

5
Cc

55 +
2c2

35
Cc

11

∂2

∂x2
− 2c2ρc

35

∂2

∂t2

)
ut0 −

(
αb4

∂

∂x
+
c2fb
35

Cc
11

∂3

∂x3
− c2fbρ

c

35

∂3

∂x∂t2

)
wb

+

(
β3

∂

∂x

)
wc0 −

(
αt4

∂

∂x
+
c2ft
35

Cc
11

∂3

∂x3
− c2ftρ

c

35

∂3

∂x∂t2

)
wt
]
b = 0

(14)

δwc0 :

[
−
(
β3

∂

∂x

)
φc0 +

(
β1

∂

∂x

)
ub0 −

(
β1

∂

∂x

)
ut0 +

(
− 4

3c
Cc

33 + αb7
∂2

∂x2
+

2cρc

15

∂2

∂t2

)
wb

+

(
8

3c
Cc

33 −
16c

15
Cc

55

∂2

∂x2
+

16cρc

15

∂2

∂t2

)
wc0 +

(
− 4

3c
Cc

33 + αt7
∂2

∂x2
+

2cρc

15

∂2

∂t2

)
wt
]
b = 0

(15)

Bottom face sheet:

δub0 :

[(
4

5
Cc

55 +
2c2

35
Cc

11

∂2

∂x2
− 2c2ρc

35

∂2

∂t2

)
φc0 +

(
47

30c
Cc

55 − αb1
∂2

∂x2
+

(
6cρc

35
+ fbρ

b

)
∂2

∂t2

)
ub0

−
(

4

3c
Cc

55 +
2c

15
Cc

11

∂2

∂x2
− 2cρc

15

∂2

∂t2

)
uc0 −

(
7

30c
Cc

55 +
c

35
Cc

11

∂2

∂x2
− cρc

35

∂2

∂t2

)
ut0

+

(
−αb3

∂

∂x
+

3cfb
35

Cc
11

∂3

∂x3
− 3cfbρ

c

35

∂3

∂x∂t2

)
wb −

(
β1

∂

∂x

)
wc0

+

(
αt2

∂

∂x
− cft

70
Cc

11

∂3

∂x3
+
cftρ

c

70

∂3

∂x∂t2

)
wt
]
b = ñb + F̂ b

u

(16a)

where F b
u is the nonlinear term:

F b
u = Cb

11bfbw
b
,xw

b
,xx (16b)
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and p̃b is the distributed in-plane force (along x) at the bottom face.

δwb :

[(
αb4

∂

∂x
+
c2fb
35

Cc
11

∂3

∂x3
− c2fbρ

c

35

∂3

∂x∂t2

)
φc0 +

(
αb3

∂

∂x
− 3cfb

35
Cc

11

∂3

∂x3
+

3cfbρ
c

35

∂3

∂x∂t2

)
ub0

−
(
αb6

∂

∂x
+
cfb
15
Cc

11

∂3

∂x3
− cfbρ

c

15

∂3

∂x∂t2

)
uc0 −

(
αb5

∂

∂x
+
cfb
70
Cc

11

∂3

∂x3
− cfbρ

c

70

∂3

∂x∂t2

)
ut0

+

(
7

6c
Cc

33 + αb8
∂2

∂x2
+ αb9

∂4

∂x4
+

(
4cρc

15
+ fbρ

b

)
∂2

∂t2
−
(

3cf 2
b ρ

c

70
+
f 3
b ρ

b

12

)
∂4

∂x2∂t2

)
wb

+

(
− 4

3c
Cc

33 + αb7
∂2

∂x2
+

2cρc

15

∂2

∂t2

)
wc0

+

(
1

6c
Cc

33 + β2
∂2

∂x2
− cfbft

140
Cc

11

∂4

∂x4
− cρc

15

∂2

∂t2
+
cfbftρ

c

140

∂4

∂x2∂t2

)
wt
]
b

= q̃b − m̃b
,x + F b

w

(17a)

where F b
w is the nonlinear term:

F b
w = Cb

11bfb

[
wb,xu

b
0,xx + ub0,xw

b
,xx +

3

2
(wb,x)

2wb,xx

]
(17b)

and q̃b is the distributed transverse force and m̃b is the distributed moment applied

along the bottom face sheet. In the above expressions, the following constants are

defined:

αi1 =
6c

35
Cc

11 + fiC
i
11 ; αi2 =

1

30
Cc

13 +

(
1

30
− 7fi

60c

)
Cc

55 (18a)

αi3 = −11

30
Cc

13 +

(
19

30
+

47fi
60c

)
Cc

55 ; αi4 =
4c

15
Cc

13 +

(
4c

15
+

2fi
5

)
Cc

55 , (18b)

αi5 = −αi2 ; αi6 =
2

3
Cc

13 +

(
2

3
+

2fi
3c

)
Cc

55 (18c)

αi7 = −fi
5
Cc

13 −
(

2c

15
+
fi
5

)
Cc

55 , (18d)

αi8 =
11fi
30

Cc
13 −

(
4c

15
+

19fi
30

+
47fi

2

120c

)
Cc

55 , (18e)

αi9 =
fi

3

12
Ci

11 +
3cfi

2

70
Cc

11 (18f)

and

β1 =
2

5
(Cc

13 + Cc
55) (19a)
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β2 =
fb + ft

60
Cc

13 +

(
c

15
+
fb + ft

60
− 7fbft

120c

)
Cc

55 (19b)

The corresponding boundary conditions at x = 0 and a, read as follows (at each

end there are nine boundary conditions, three for each face sheet and three for the

core):

For the top face sheet:

(i) Either δut0 = 0 or,[(
2c2

35
Cc

11

∂

∂x

)
φc0 +

(
c

35
Cc

11

∂

∂x

)
ub0 +

(
2c

15
Cc

11

∂

∂x

)
uc0 +

(
αt1

∂

∂x

)
ut0

+

(
1

30
Cc

13 −
cfb
70
Cc

11

∂2

∂x2

)
wb −

(
2

5
Cc

13

)
wc0 +

(
11

30
Cc

13 +
3cft
35

Cc
11

∂2

∂x2

)
wt
]
b

= Ñ t +
ñcc

3
+Bt

u

(20a)

where Ñ t is the end axial force at the top face and ñc is the end axial force at the

the core (at the end x = 0 or x = a) and the nonlinear term

Bt
u = −ftb

2
Ct

11(w
t
,x)

2 (20b)

(ii) Either δwt = 0 or,(
−
[

2(2c+ 3ft)

15
Cc

55 +
c2ft
35

Cc
11

∂2

∂x2

]
φc0 +

[
(2c− 7ft)

60c
Cc

55 −
cft
70
Cc

11

∂2

∂x2

]
ub0

−
[

2(c+ ft)

3c
Cc

55 +
cft
15
Cc

11

∂2

∂x2

]
uc0 +

[
(38c+ 47ft)

60c
Cc

55 −
3cft
35

Cc
11

∂2

∂x2

]
ut0

+

[(
fb
60
Cc

13 − β2
)

∂

∂x
+
cfbft
140

Cc
11

∂3

∂x3

]
wb −

(
αt7

∂

∂x

)
wc0

+

[(
11ft
60

Cc
13 − αt8

)
∂

∂x
− αt9

∂3

∂x3

]
wt + Ltw

)
b =

= P̃ t + m̃t +
ṽcc

3
+Bt

w

(21a)

where Ltw are the inertial terms in the boundary condition:

Ltw =
ft

420

[
35f 2

t ρ
t ∂

3wt

∂x∂t2
+ ρc

(
12c2

∂2φc0
∂t2

+ 6c
∂2ub0
∂t2

+ 28c
∂2uc0
∂t2

+ 36c
∂2ut0
∂t2

−3cfb
∂3wb

∂x∂t2
+ 18cft

∂3wt

∂x∂t2

)] (21b)
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Bt
w is the nonlinear term:

Bt
w = −ft

2
Ct

11w
t
,x

[
2ut0,x + (wt,x)

2
]

(21c)

and P̃ t is the end shear force at the top face and ṽc is the end shear force at the core

(at the end x = 0 or x = a).

(iii) Either δwt,x = 0 or,[(
c2ft
35

Cc
11

∂

∂x

)
φc0 +

(
cft
70
Cc

11

∂

∂x

)
ub0 +

(
cft
15
Cc

11

∂

∂x

)
uc0 +

(
3cft
35

Cc
11

∂

∂x

)
ut0

+

(
ft
60
Cc

13 −
cfbft
140

Cc
11

∂2

∂x2

)
wb −

(
ft
5
Cc

13

)
wc0 +

(
11ft
60

Cc
13 + αt9

∂2

∂x2

)
wt
]
b = M̃ t +

ñccft
6

(22)

where M̃ t is the end moment at the top face (at the end x = 0 or x = a).

For the core:

(i) Either δuc0 = 0 or,[(
2c

15
Cc

11

∂

∂x

)
ub0 +

(
16c

15
Cc

11

∂

∂x

)
uc0 +

(
2c

15
Cc

11

∂

∂x

)
ut0

−
(

2

3
Cc

13 +
cfb
15
Cc

11

∂2

∂x2

)
wb +

(
2

3
Cc

13 +
cft
15
Cc

11

∂2

∂x2

)
wt
]
b =

4ñcc

3

(23)

(ii) Either δφc0 = 0 or,[(
16c3

105
Cc

11

∂

∂x

)
φc0 −

(
2c2

35
Cc

11

∂

∂x

)
ub0 +

(
2c2

35
Cc

11

∂

∂x

)
ut0 +

(
4c

15
Cc

13 +
c2fb
35

Cc
11

∂2

∂x2

)
wb

−
(

8c

15
Cc

13

)
wc0 +

(
4c

15
Cc

13 +
c2ft
35

Cc
11

∂2

∂x2

)
wt
]
b = 0

(24)

(iii) Either δwc0 = 0 or,

Cc
55b

[
8c

15
φc0 −

2

5
ub0 +

2

5
ut0 +

(2c+ 3fb)

15
wb,x +

16c

15
wc0,x +

(2c+ 3ft)

15
wt,x

]
=

4

3
ṽcc (25)

For the bottom face sheet:
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(i) Either δub0 = 0 or,[
−
(

2c2

35
Cc

11

∂

∂x

)
φc0 +

(
αb1

∂

∂x

)
ub0 +

(
2c

15
Cc

11

∂

∂x

)
uc0 +

(
c

35
Cc

11

∂

∂x

)
ut0

−
(

11

30
Cc

13 +
3cfb
35

Cc
11

∂2

∂x2

)
wb +

(
2

5
Cc

13

)
wc0 +

(
− 1

30
Cc

13 +
cft
70
Cc

11

∂2

∂x2

)
wt
]

= Ñ b +
ñcc

3
+Bb

u

(26a)

where Ñ b is the end axial force at the bottom face and the nonlinear term,

Bb
u = −fbb

2
Cb

11(w
b
,x)

2 (26b)

(ii) Either δwb = 0 or,(
−
[

2(2c+ 3fb)

15
Cc

55 +
c2fb
35

Cc
11

∂2

∂x2

]
φc0 +

[
− (38c− 47fb)

60c
Cc

55 +
3cfb
35

Cc
11

∂2

∂x2

]
ub0

+

[
2(c+ fb)

3c
Cc

55 +
cfb
15
Cc

11

∂2

∂x2

]
uc0 +

[
(−2c+ 7fb)

60c
Cc

55 +
cfb
70
Cc

11

∂2

∂x2

]
ut0

+

[(
11fb
60

Cc
13 − αb8

)
∂

∂x
− αb9

∂3

∂x3

]
wb −

(
αb7

∂

∂x

)
wc0

+

[(
ft
60
Cc

13 − β2
)
∂

∂x
+
cfbft
140

Cc
11

∂3

∂x3

]
wt + Lbw

)
b

= P̃ b + m̃b +
ṽcc

3
+Bb

w

(27a)

where Lbw are the inertial terms in the boundary condition:

Lbw =
fb

420

[
35f 2

b ρ
b ∂

3wb

∂x∂t2
+ ρc

(
12c2ρc

∂2φc0
∂t2
− 36c

∂2ub0
∂t2
− 28c

∂2uc0
∂t2
− 6c

∂2ut0
∂t2

+18cfb
∂3wb

∂x∂t2
− 3cft

∂3wt

∂x∂t2

)] (27b)

where Bb
w is the nonlinear term:

Bb
w = −fbb

2
Cb

11w
b
,x

[
2ub0,x + (wb,x)

2

]
(27c)

and P̃ b is the end shear force at bottom face.
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(iii) Either δwb,x = 0 or,[(
c2fb
35

Cc
11

∂

∂x

)
φc0 −

(
3cfb
35

Cc
11

∂

∂x

)
ub0 −

(
cfb
15
Cc

11

∂

∂x

)
uc0 −

(
cfb
70
Cc

11

∂

∂x

)
ut0

+

(
11fb
60

Cc
13 + αb9

∂2

∂x2

)
wb −

(
fb
5
Cc

13

)
wc0 +

(
fb
60
Cc

13 −
cfbft
140

Cc
11

∂2

∂x2

)
wt
]
b = M̃ b − ñccfb

6

(28)

where M̃ b is the end moment at the bottom face. The superscript˜denotes in the

above equations the known external boundary values.

Hamilton’s principle results in seven coupled partial differential equations, Eqns.

(11)-(17), four of which are nonlinear due to the consideration of large displacements

and moderate rotations of the face sheets. The order of the equations of motion is

18 in x, and second order in time. Therefore, there are 18 boundary conditions, 9 at

each end at x = 0 and x = a given by Eqns. (20)-(28). Since the rotations of the

face sheets are assumed to be the derivatives of the transverse displacements with

respect to x, there exists inertial terms Ltw and Lbw in the boundary conditions in

Eqns. (21a) and (27a). The 7 generalized displacement variables of EHSAPT are:

ut0(x, t), u
c
0(x, t), u

b
0(x, t), φ

c
0(x, t), w

t(x, t), wc0(x, t), and wb(x, t).

We have also made use of the definitions of the axial stress resultants of the top

face, bottom face, and core respectively, N t,b,c, where these are defined as:

N t(x, t) =

∫ c+ft

c

bσtxxdz = Ct
11bftε

t
xx , N b

x(x, t) =

∫ −c
−c−fb

bσbxxdz = Cb
11bfbε

b
xx , (29a)

N c
x(x, t) =

∫ c

−c
bσcxxdz =

Cc
13b(w

t − wb) +
bcCc

11

3

(
ub0,x + 4uc0,x + ut0,x +

ft
2
wt,xx −

fb
2
wb,xx

)
,

(29b)

and where the nonlinear axial strains εt,bxx are given in Eqn. (3).

Also, M t,b,c are the moment stress resultants of the top face, bottom face, and

core about their own centroids, respectively, and are defined as:

M t(x, t) = −
∫ c+ft

c

bσtxx

(
z − c− ft

2

)
dz = Ct

11

bf 3
t

12
wt,xx , (29c)
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M b(x, t) = −
∫ −c
−c−fb

bσbxx

(
z + c+

fb
2

)
dz = Cb

11

bf 3
b

12
wb,xx , (29d)

M c(x, t) = −
∫ c

−c
bσcxxzdz =− 2cbCc

13

3

(
wb − 2wc0 + wt

)
− bc2Cc

11

30

[
8cφc0,x + 6(ut0,x − ub0,x) + 3(fbw

b
,xx + ftw

t
,xx)
]

(29e)

Finally, V c is the shear stress resultant of the core and is defined as:

V c(x, t) =

∫ c

−c
bτ czxdz =

Cc
55b

[(
ut0 − ub0

)
+
c

3

(
wb0,x + wt0,x

)
+

1

2

(
fbw

b
0,x + ftw

t
0,x

)
+ 8cwc0,x

]
.

(29f)

The general nonlinear governing equations and boundary conditions of EHSAPT

rewritten in terms of the stress resultants and the generalized coordinates are listed

in Appendix C. This formulation is useful when using the perturbation approach for

solving stability problems as demonstrated in Chapters 4 and 5.

19



CHAPTER III

STATIC LOADING PROBLEM

The solution to a simply-supported sandwich panel under the transversely applied

static load:

q̃t(x) = q0 sin
πx

a
. (30)

using the linear formulation of EHSAPT will be shown. The accuracy of EHSAPT

or any new composite model can be readily assessed if an elasticity solution exists.

Indeed, Pagano [30] presented the three-dimensional elasticity solution for a laminated

or sandwich beam for the case of a positive discriminant of the quadratic characteristic

equation, which is formed from the orthotropic material constants, and only when

these two real roots are positive. The isotropic case, in which there are two equal real

roots, was also outlined. Recently, Kardomateas and Phan [25] extended the Pagano

[30] solution to the case of (i) negative discriminant, which results in two complex

conjugate roots of the quadratic equation and (ii) positive discriminant but with real

negative roots. The case of a negative discriminant is actually frequently encountered

in sandwich construction where the orthotropic core is stiffer in the transverse than

the in-plane directions. Results from this elasticity solution showed that the core

transverse shear is nearly constant for the very soft cores but it acquires a pronounced

distribution, nearly parabolic, as the stiffness of the core increased. The transverse

normal strain in the core was found to be nearly linear in z. It should be mentioned

that elasticity solutions that address the complex roots for the two-dimensional case

(plate) have already been presented by Zenkour [41] and Demasi [9]; however the

present formulation of EHSAPT deals with a beam (one-dimensional) configuration.
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In the next section, the static formulation of EHSAPT will be solved. The numer-

ical results for several typical sandwich panel configurations with orthotropic phases

will be compared with the results using the elasticity solution [25], the classical model

and the first order shear model as well as the Frostig et al. high-order sandwich panel

theory [15].

3.1 Solution Procedure

In this case, the boundary conditions for x = 0, a are the three kinematic conditions:

wt = wb = wc0 = 0 (31)

and the right hand sides of the six natural boundary conditions in (20a), (22), (23),

(24), (26a), and (28) are equal to zero.

All these are satisfied by displacements in the form:

ut0 = U t
0 cos

πx

a
; uc0 = U c

0 cos
πx

a
; φc0 = Φc

0 cos
πx

a
; ub0 = U b

0 cos
πx

a
, (32a)

wt = W t sin
πx

a
; wc0 = W c

0 sin
πx

a
; wb = W b sin

πx

a
. (32b)

We consider the static linear problem, which means that the load is applied quasi-

statically such that the inertial terms can be neglected, and displacements are small so

nonlinear terms F t,b
u,w in the governing differential equations and the nonlinear terms

Bt,b
w in the boundary conditions can be neglected.

Substituting Eqn. (32) into Eqns. (11)-(17) results in a system of seven linear

equations for the seven unknown constants U t
0, U

c
0 , Φc

0, U
b
0 , W t, W c

0 , W b.

3.2 Numerical case study

We shall consider sandwich configurations consisting of faces made out of either

graphite/epoxy or e-glass/polyester unidirectional composite and core made out of

either hexagonal glass/phenolic honeycomb or balsa wood. The moduli and Poisson’s

ratios for these materials are given in Table 1.
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Table 1: Material properties. Moduli data are in GPa
Graphite E-Glass Balsa Glass-Phenolic
Epoxy Polyester Wood Honeycomb
FACE FACE CORE CORE

E1 181.0 40.0 0.671 0.032
E2 10.3 10.0 0.158 0.032
E3 10.3 10.0 7.72 0.300
G23 5.96 3.5 0.312 0.048
G31 7.17 4.5 0.312 0.048
G12 7.17 4.5 0.200 0.013
ν32 0.40 0.40 0.49 0.25
ν31 0.016 0.26 0.23 0.25
ν12 0.277 0.065 0.66 0.25

The two face sheets are assumed identical with thickness ft = fb = f = 2 mm.

The core thickness is 2c = 16 mm. The total thickness of the panel is defined as

htot = 2f + 2c and the length of the beam is a = 20htot and width b = 1 m. The load

parameter q0 = 109 N/m.

In the following results, the displacements are normalized with

wnorm =
3q0a

4

2π4Ef
1 bf

3
. (33)

and the stresses with q0/b.

Plotted in Figure 3 is the normalized displacement at the top face sheet as a

function of x, for the case of Graphite/Epoxy faces and Glass Phenolic Honeycomb

core; this core is very soft compared to the faces with an in-plane Young’s modulus

ratio of Ec
1/E

f
1 < 0.001. In this figure, we also show the predictions of the simple

Classical beam theory (CL), which does not include transverse shear, as well as the

First Order Shear theories (FOSD); for the latter, there are two versions: one that is

based only on the core shear stiffness (FOSD(c)) and one that includes the face sheet

stiffnesses (FOSD(f)). Both are outlined in Appendix A. In addition, we show the

predictions of the High-Order sandwich panel theory (HSAPT). This theory, which is

based on an assumption that the in-plane rigidity of the core is neglected and yields

a constant shear stress and zero axial stress in the core, is outlined in Appendix B.
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Figure 3: Transverse Displacement, w, at the top, z = c + f , for the case of
Graphite/Epoxy faces and Glass Phenolic Honeycomb core.

From Figure 3, we can see that both the Classical and FOSD (both versions) seem

to be inadequate. The Classical theory is too non-conservative and the First Order

Shear theory with face sheets included can hardly make a difference. On the other

hand, the FOSD theory where shear is assumed to be carried exclusively by the core

is too conservative; this clearly demonstrates the need for higher order theories in

dealing with sandwich structures. In this regard, both the Frostig et al. HSAPT

[15] and the present EHSAPT theories give a displacement profile which is essentially

identical to the elasticity solution. In Figure 3 we can also readily observe the large

effect of transverse shear, which is an important feature of sandwich structures. The

distribution of the axial stress in the core, σxx, as a function of z at the mid-span

location, x = a/2 (where the bending moment is maximum), is plotted in Figure

4, again for the case of Graphite/Epoxy faces and Glass Phenolic Honeycomb core.
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Figure 4: Through-thickness distribution in the core of the axial stress, σxx, at
x = a/2 for the case of Graphite/Epoxy faces and Glass Phenolic Honeycomb core.

The present Extended High Order theory predicts a stress very close to the elasticity.

Note that HSAPT neglects the axial rigidity of the core that yields a zero axial stress.

The Classical and FOSD theories give practically identical predictions but they are

in appreciable error by comparison to the elasticity, with the error increasing towards

the lower end of the core (z = −c). All curves are linear. Notice also that for the

elasticity and the Extended High Order theory there is not a symmetry with regard

to the mid line (z = 0) unlike the Classical and FOSD theories. Even though the

sandwich panel has symmetric geometry and material lay-up, the axis of zero axial

stress does not occur at the centroid of the core. This is a high-order effect that

EHSAPT captures.

The through-thickness distribution of the transverse normal stress in the core, σzz,
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Figure 5: Through-thickness distribution in the core of the transverse normal stress,
σzz, at x = a/2 for the case of E-glass/Polyester faces and Balsa Wood core.

at the midspan location, x = a/2, is shown in Figure 5 for the case of E-glass/Polyester

faces and Balsa Wood core. The E-glass/Balsa lay-up represents a panel in which

the core is moderately stiff with an in-plane Young’s modulus ratio of Ec
1/E

f
1 ∼ 0.02.

Only the profiles using elasticity and the Frostig et al. [15] and the Extended High

Order theories are presented, since the First Order Shear theory and the Classical

theory consider the core incompressible, i.e. zero σzz. Both high-order theories are

practically coinciding with the elasticity curve and all are nearly linear. However, the

theories differ when the transverse normal strain is examined in Figure 6 with the

present Extended High Order theory being very close to the elasticity.

Figures 7 and 8 show the through-thickness distribution of the transverse shear

stress in the core, τxz, at x = a/10, i.e. near the ends where shearing is expected to

be significant, for the cases of Graphite/Epoxy faces and Glass Phenolic Honeycomb

core (Figure 7) and E-glass/Polyester faces and Balsa Wood core (Figure 8). For
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Figure 6: Through-thickness distribution in the core of the transverse normal strain,
εzz, at x = a/2 for the case of E-glass/Polyester faces and Balsa Wood core.

the very soft core case of Figure 8, the shearing stress is nearly constant and thus

for all theories the difference from elasticity is practically negligible. Indeed, the

elasticity data show that the range of the shearing stress variation is about 0.05%

of the maximum value, i.e. the shearing stress is practically constant. This case of

a very soft core would justify the neglect of the in-plane rigidity of the core that is

associated with constant shear stresses in the core, made in the Frostig et al. [15]

theory. Still, in Figure 7 one can see that the EHSAPT is practically identical to the

elasticity whereas the HSAPT shows more difference.

For the case of the E-glass/Polyester faces and Balsa Wood core, however, the

shear stress shows a noticeable distribution (about 5%) through the thickness, which is

very nicely captured by the present Extended High Order theory, which is practically

identical to the elasticity. For this sandwich configuration, it is obvious that a theory
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Figure 7: Through-thickness distribution in the core of the transverse shear stress,
τxz, at x = a/10 for the case of Graphite/Epoxy faces and Glass Phenolic Honeycomb.

based on a constant shearing stress assumption (HSAPT) would not capture this

distribution.

This issue is further explored by considering a sandwich construction in which

both the face sheets and the core are isotropic. By varying the moduli ratio, we can

accordingly increase the shear stress range in the core. Thus, we assume that the

face sheets are made out of isotropic Aluminum Alloy with Ef = 100 GPa and the

core is made out of isotropic material having a modulus Ec such that the ratio Ef/Ec

assumes the values of 50, 5 and 2. The Poisson’s ratios are assumed νf = νc = 0.30.

Figure 9 shows the shear stress distribution through the thickness. For the moduli

ratio of 2 the range is very large, with the maximum over minimum shear stress ratio

27



τ x
zb

/q
0

z/c

High Order [5]
(HSAPT)

Elasticity

Extended High
Order (EHSAPT)

Figure 8: Through-thickness distribution in the core of the transverse shear stress,
τxz, at x = a/10 for the case of E-glass/Polyester faces and Balsa Wood core.

being about 2. On the contrary, for the moduli ratio of 50, the shear stress range is

very small, with the corresponding maximum over minimum shear stress ratio being

only about 1.04. The present Extended High Order theory is capable of capturing

the shear stress profile in all cases, even the most demanding case of Ef/Ec = 2, and

in all cases yields results that are practically identical to those from the elasticity

solution. On the contrary, a constant shear stress assumption would be applicable

only for the large ratios of Ef/Ec.

Carrera and Brischetto [8] have shown that equivalent single layer sandwich plate

theories have significant problems in terms of accuracy for very high skin-to-core

stiffness ratios. Although we cannot make a direct comparison with their data, since
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Figure 9: Through-thickness distribution in the core of the transverse shear stress,
τxz, at z = a/10 for the case of isotropic Aluminum Alloy faces and a wide range of
isotropic cores.

the study in [8] was done for plates, a similar table as Table 28 in [8] was made

to numerically assess the accuracy of EHSAPT with respect to elasticity for the

distributed loading problem shown in this paper. The widely followed First Order

Shear Deformation theory (FOSD) is also shown.

The material and geometry configurations were taken from [8]; each face sheet

has a thickness ft=fb=f=0.1 m, the total core thickness is 2c= 0.8m, and the total

height htot=ft + fb + 2c. A range of beam lengths, a, is examined, as denoted by

the parameter LTR = a/htot; this range of LTRs is {4, 10, 100, 1000}. The core is

isotropic with modulus Ec=1 GPa and Poisson’s ratio νc = 0.3. A range of isotropic

faces with modulus Ef and Poisson’s ratio νf = 0.3 is examined, as denoted by the

parameter FCSR = Ef/Ec; this range of FCSRs is 7.3 times {101, 104, 106 and 108}.
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Table 2: Normalized transverse displacement at mid-core (x = a/2, z = 0);
R=FCSR/LTR

FCSR LTR 4 10 100 1000

7.3E + 01 R 18.25 7.3 0.73 0.073
elasticity 0.0892 0.0269 0.0148 0.0147
EHSAPT 0.0907 0.0284 0.0163 0.0162

FOSD 0.1321 0.0337 0.0152 0.0150

7.3E + 04 R 18250 7300 730 73
elasticity 3.418 2.805 0.1333 0.0161
EHSAPT 3.725 3.013 0.1351 0.0176

FOSD 117.09 18.747 0.2023 0.0169

7.3E + 06 R 1.825E+06 7.3E+05 7.3E+04 7.3E+03
elasticity 3.576 3.619 2.811 0.1333
EHSAPT 3.914 3.973 3.021 0.1351

FOSD 1.171E+04 1873.0 18.748 0.2023

7.3E + 08 R 1.825E+08 7.3E+07 7.3E+06 7.3E+05
elasticity 3.577 3.630 3.629 2.811
EHSAPT 3.916 3.987 3.987 3.021

FOSD 1.171E+06 1.873E+05 1873.0 18.748

Tables 2 and 3 show the value of the normalized mid-span transverse displacement

at the mid-plane (x = a/2, z = 0) and at the top face sheet (x = a/2, z = c+ ft/2),

respectively. The transverse displacements at the mid-plane and top locations are

presented to show the compressibility of the core (i.e. when the two displacements are

not equal). The elasticity data in the two tables show that sandwich configurations

with high FCSR and low LTR combinations exhibit the most compressibility for

this particular static problem. For example, for FCSR=7.3 ∗ 108 and LTR=4, the

top face sheet has about twice as much displacement as that of the mid-plane. As

FCSR gets smaller (i.e. the core and face sheet properties become more similar)

and the LTR becomes higher (i.e. the beam becomes longer) the two displacements

become practically the same. Both tables also show that the FOSD theory is highly

inaccurate in predicting transverse displacement for all cases except for the low FCSR

and high LTR combinations. On the contrary, with regard to the two transverse

displacements, the EHSAPT provides results that are consistently close to those of
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Table 3: Normalized transverse displacement at top face (x = a/2, z = c + ft/2);
R=FCSR/LTR

FCSR LTR 4 10 100 1000

7.3E + 01 R 18.25 7.3 0.73 0.073
elasticity 0.0932 0.0270 0.0148 0.0147
EHSAPT 0.0956 0.0285 0.0163 0.0162

FOSD 0.1321 0.0337 0.0152 0.0150

7.3E + 04 R 18250 7300 730 73
elasticity 5.098 2.883 0.1333 0.0161
EHSAPT 5.664 3.108 0.1351 0.0176

FOSD 117.09 18.747 0.2023 0.0169

7.3E + 06 R 1.825E+06 7.3E+05 7.3E+04 7.3E+03
elasticity 7.244 6.038 2.812 0.1333
EHSAPT 7.952 6.725 3.022 0.1351

FOSD 1.171E+04 1873.0 18.748 0.2023

7.3E + 08 R 1.825E+08 7.3E+07 7.3E+06 7.3E+05
elasticity 7.291 7.263 3.698 2.811
EHSAPT 7.999 7.981 4.071 3.021

FOSD 1.171E+06 1.873E+05 1873.0 18.748

elasticity theory with the deviation from elasticity theory not exceeding 11%; in many

cases the EHSAPT is very accurate (< 2% deviation from elasticity). It should be

noted that Tables 2a and 2b only give transverse displacement data for two locations

and don’t capture the entire transverse displacement profile through the thickness.

Table 4 shows the the mid-plane normalized shear stress at (x=a/10, z = 0).

The EHSAPT is very accurate for low FCSR and the full range of LTRs, practi-

cally coinciding with elasticity; for the more demanding cases of higher FCSRs, the

EHSAPT is still quite accurate with the deviation from elasticity not exceeding 10%.

On the contrary, the FOSD is inaccurate in predicting shear stress for all cases; for

the high FSCRs and low LTRs, the FOSD stress values are, again, many orders of

magnitude that of elasticity. This numerical assessment (although not exhaustive

since it considers a fixed face-sheet-to-total-thickness ratio f/htot= 0.1 and does not

consider orthotropic materials) gives further insight into the accuracy of EHSAPT

with respect to elasticity.
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Table 4: Normalized shear stress, τxz/q0, at mid-core (x = a/2, z = 0);
R=FCSR/LTR

FCSR LTR 4 10 100 1000

7.3E + 01 R 18.25 7.3 0.73 0.073
elasticity 1.327 3.373 33.828 338.29
EHSAPT 1.327 3.373 33.828 338.29

FOSD 1.816 4.541 45.410 454.10

7.3E + 04 R 18250 7300 730 73
elasticity 0.0602 0.7651 32.406 334.88
EHSAPT 0.0656 0.8217 32.501 334.89

FOSD 1.8164 4.5410 45.410 454.10

7.3E + 06 R 1.825E+06 7.3E+05 7.3E+04 7.3E+03
elasticity 6.300E-4 9.890E-3 7.657 324.05
EHSAPT 6.890E-4 1.085E-2 8.229 325.01

FOSD 1.816 4.541 45.410 454.10

7.3E + 08 R 1.825E+08 7.3E+07 7.3E+06 7.3E+05
elasticity 6.301E-6 9.914E-5 0.0990 76.575
EHSAPT 6.894E-6 1.089E-4 0.1087 82.289

FOSD 1.816 4.541 45.410 454.10

3.3 Conclusions

Results have been presented for the case of transverse loading of a simply supported

sandwich beam by comparison to the elasticity, the Classical sandwich beam theory,

the FOSD theory and the HSAPT model, see Frostig et al. [15], for different face sheet

and core material combinations. The results show that the present extended high-

order theory is very close to the elasticity solution in terms of both the displacements

and the transverse stress or strain, as well as axial stress through the core, and, in

addition, the shear stress distributions in the core for core materials ranging from

very soft to almost half the stiffness of the face sheets. In particular, it captures the

very large range of core shear stress and the nearly parabolic profile in the cases of

cores that are not “soft”.
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CHAPTER IV

STATIC GLOBAL BUCKLING

The solution procedure using EHSAPT to determine the global buckling behavior for

a general asymmetric sandwich beam/wide plate with different face sheet materials

and face sheet thicknesses is presented. We have used EHSAPT to solve for three

cases:

Case (a): The axial load is applied exclusively to the face sheets. Large displacements

in the core are neglected (linear strain-displacement relations are modeled in

the core).

Case (b): Uniform axial strain is imposed through the entire height of the beam.

Again, large displacements in the core are neglected (linear strain-displacement

relations are modeling in the core).

Case (c): Uniform axial strain is imposed through the entire height of the beam.

Now, large displacements in the core are considered (nonlinear strain-displacement

relations are modeled in the core).

Cases (a) and (b) make use of the general nonlinear EHSAPT formulation given

in Chapter 2, while case (c) involves including non-linear axial strains in the core

that were not in the original formulation. It will be shown that the critical global

buckling load is nearly identical for cases (a) and (c) for a range of core materials

and geometry configurations but case (a) loading involves a simpler solution process.

Moreover, this critical load is very close to the elasticity prediction. Therefore, this

chapter will show in detail the solution procedure for finding the critical load of the

case (a) loading.
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As a benchmark, an elasticity solution for the global buckling of a sandwich

beam/wide plate was presented by Kardomateas (2010) [24]. In this paper, two

formulas were found to be the most accurate (by comparing to elasticity). These

were (a) the formula derived by Allen (1969) [2] for thick faces (note that there also

exist a corresponding formula by Allen for thin faces, but this was less accurate) and

(b) the Engesser’s (1891) [10] critical load formula where the shear correction factor

used is the one derived for sandwich sections by Huang and Kardomateas (2002) [20].

The latter shear correction formula is not exclusively based on the shear modulus

of the core, but instead includes the shear modulus of the faces and the extensional

modulus of the core, therefore, it can account for sandwich constructions with stiffer

cores and/or more compliant faces. In the analysis we shall use the Allen’s thick

faces formula as a representative of the simple formulas to compare with the High

Order theory results. Frostig’s proof that this formula would be the direct result of

the HSAPT for the case of an incompressible core will also be shown.

First the solution procedure for solving cases (a), (b), and (c), respectively, for

a simply-supported sandwich beam with general asymmetric geometry is presented.

Then results are shown for a soft and a moderate core sandwich configurations with

symmetric geometry, followed by conclusions.

4.1 Three Solution Approaches

Here we make use of the static formulation of EHSAPT that is written out in terms

of its stress resultants and generalized coordinate (see Appendix C).

4.1.1 Case (a): Loading on the Face Sheets with Linear Axial Strains in
the Core

In this case, Ñ t and Ñ b are applied on the top and bottom face sheets, respectively,

such that the axial strains are equal on the top and bottom faces, and the net axial

loading on each side of the beam is −P .
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Imposing the condition of the same axial strain and the condition that the sum

of the loads on the top and bottom face sheets equals −P provides two equations for

the unknown axial loads, which are found to be:

Ñ t
p = −κtP ; Ñ b

p = −κbP , (34a)

where

κt =
ab11ft

at11fb + ab11ft
, κb =

at11fb
at11fb + ab11ft

, (34b)

and ai11 = 1/Ei
1 is the compliance constant of the corresponding face sheet (i = t, b).

The critical load for an asymmetric geometry and material configuration can be

determined using the perturbation approach:

N i(x) = N i
p(x) + ξN i

s(x), (i = t, b, c) (35a)

ui0(x) = up(x) + ξui0s(x), wi0(x) = ξwi0s(x) (i = t, b) (35b)

M i(x) = ξM i
s(x), (i = t, b, c) (35c)

uc0(x) = ξuc0s(x), φc0(x) = ξφc0s(x), wc0 = wc0s(x), V c(x) = ξV c
s (x) . (35d)

The additional subscript p stands for primary, or the prebuckled state, while

the additional subscript s stands for secondary, or the perturbed state, and ξ is an

infinitesimally small quantity.

By considering Eqns. (34) and substituting the displacements, the stress resultants

of the face sheets, Eqn. (35a), can be written as:

N i = −κiP + ξ
(
Ci

11fiu
i
0s,x

)
(i = t, b) (36)

We assume global buckling modes for the simply-supported beam, as follows:

ut,b,c0s = U t,b,c
0 cos

πx

a
; φc0s = Φc

0 cos
πx

a
, (37a)

wt,bs = W t,b sin
πx

a
; wc0s = W c

0 sin
πx

a
(37b)
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Substitution of the secondary terms into the buckled state equations leads to seven

algebraic equations, and these are:

δut0 : U b
0

(
− 7

30c
Cc

55 +
cπ2

35a2
Cc

11

)
+ U c

0n

(
− 4

3c
Cc

55 +
2cπ2

15a2
Cc

11

)

+Φc
0

(
−4

5
Cc

55 +
2c2π2

35a2
Cc

11

)
+ U t

0

(
47

30c
Cc

55 +
6cπ2

35a2
Cc

11 +
ftπ

2

a2
Ct

11

)
+W b

(
−cfbπ

3

70a3
Cc

11 − ηb2
π

a

)
+W c

0

πβ1
a

+W t

(
3cftπ

3

35a3
Cc

11 + ηt3
π

a

)
= 0 (38a)

δwt0 : U b
0

(
cftπ

3

70a3
Cc

11 + ηt2
π

a

)
+ U c

0

(
cftπ

3

15a3
Cc

11 − ηt6
π

a

)
+ Φc

0

(
c2ftπ

3

35a3
Cc

11 − ηt4
π

a

)
+ U t

0

(
3cftπ

3

35a3
Cc

11 +
π

a
ηt3

)
+W b

(
Cc

33

6c
− cfbftπ

4

140a4
Cc

11 − β2
π2

a2

)
+W c

0

(
− 4

3c
Cc

33 − ηt7
π2

a2

)
+W t

(
−κtP π

2

a2
+

7

6c
Cc

33 +
3cf 2

t π
4

70a4
Cc

11 +
f 3
t π

4

12a4
Ct

11 − ηt8
π2

a2

)
= 0

(38b)

δuc0 : U b
0

(
− 4

3c
Cc

55 +
2cπ2

15a2
Cc

11

)
+U c

0

(
8

3c
Cc

55 +
16cπ2

15a2
Cc

11

)
+U t

0

(
− 4

3c
Cc

55 +
2cπ2

15a2
Cc

11

)

+W b

(
ηb6π

a
− cfbπ

3

15a3
Cc

11

)
+W t

0

(
cftπ

3

15a3
Cc

11 −
ηt6π

a

)
= 0 (38c)

δφc0 : U b
0

(
4

5
Cc

55 −
2c2π2

35a2
Cc

11

)
+Φc

0

(
8c

5
Cc

55 +
16c3π2

105a2
Cc

11

)
+U t

0

(
−4

5
Cc

55 +
2c2π2

35a2
Cc

11

)

+W b

(
c2fbπ

3

35a3
Cc

11 −
ηb4π

a

)
+W c

0n

(
4cβ1π

3a

)
+W t

0

(
c2ftπ

3

35a3
Cc

11 −
ηt4π

a

)
= 0 (38d)

δwc0 : −U b
0

(
β1π

a

)
+ Φc

0

(
4cβ1π

3a

)
+ U t

0

(
β1π

a

)
−W b

(
4

3c
Cc

33 +
ηi7π

2

a2

)

+W c
0

(
8

3c
Cc

33 +
16cπ2

15a2
Cc

55

)
−W t

(
4

3c
Cc

33 +
ηi7π

2

a2

)
= 0 (38e)
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δub0 : U b
0

(
47

30c
Cc

55 +
6cπ2

35a2
Cc

11 + fb
π2

a2
Cb

11

)
+ U c

0

(
− 4

3c
Cc

55 +
2cπ2

15a2
Cc

11

)
+Φc

0

(
4

5
Cc

55 −
2c2π2

35a2
Cc

11

)
+ U t

0

(
− 7

30c
Cc

55 +
cπ2

35a2
Cc

11

)
+W b

(
−3cfbπ

3

35a3
Cc

11 − ηb3
π

a

)
−W c

0

(π
a
β1

)
+W t

0

(
cftπ

3

70a3
Cc

11 + ηt2
π

a

)
= 0 (38f)

δwb0 : U b
0

(
−3cfbπ

3

35a3
Cc

11 − ηb3
π

a

)
+ U c

0

(
−cfbπ

3

15a3
Cc

11 − ηb6
π

a

)
+ Φc

0n

(
c2fbπ

3

35a3
Cc

11 − ηb4
π

a

)
+ U t

0

(
−cfbπ

3

70a3
Cc

11 − ηb2
π

a

)
+W b

(
−κbP π

2

a2
+

7

6c
Cc

33 +
3cf 2

b π
4

70a4
Cc

11 +
f 3
b π

4

12a4
Cb

11 − ηb8
π2

a2

)
+W c

0

(
− 4

3c
Cc

33 − ηb7
π2

a2

)
+W t

(
Cc

33

6c
− cfbftπ

4

140a4
Cc

11 − β2
π2

a2

)
= 0

(38g)

Notice that the loading P (eigenvalue) appears in the δwt0 Eqn. (38b) in the term

W t and in the δwb0 Eqn. (38g) in the term W b.

The equations can be cast in matrix form:

{[KLC ]− π2

a2
bGac[ I ]}{U} = {0} (39)

[KLC ] is a 7x7 matrix involving material stiffnesses and sandwich dimensions, and

each element is given in Appendix D. The subscript LC denotes that the sandwich

system has linear strains in the core. Later in this study another matrix, the KNLC

will represent additional terms that account for nonlinear axial strains in the core.

The loading vector is represented by bGac = b0, 0, 0, 0, κbP, 0, κtP c, if the equations

of the system are written in the order of Eqns. (16a), (13), (14), (11), (17a), (15),

(12a), respectively. Seven unknown displacement amplitudes make up the vector

{U} = bU b
0 , U

c
0 ,Φ

c
0, U

t
0,W

b,W c
0 ,W

tcT . The critical load is determined by finding the

value of P for which the system has a nontrivial solution, or finding P by zeroing the

determinant:

det{[KLC ]− π2

a2
bGac[ I ]} = 0 . (40)
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4.1.2 Case (b): Uniform Strain Loading with Linear Axial Strains in the
Core

In this case, both face sheets and the core have the same axial strain εixxp = σixxp/C
i
11

for i = t, b, c, and imposing that the net stress resultant at each end is −P , gives:

Ñ t = −κtP ; Ñ b = −κbP ; ñc = −κc P
2c

, (41a)

where

κt =
ab11a

c
11ft

ab11a
t
112c+ ab11a

c
11ft + at11a

c
11fb

, κb =
at11a

c
11fb

ab11a
t
112c+ ab11a

c
11ft + at11a

c
11fb

, (41b)

κc =
at11a

b
112c

ab11a
t
112c+ ab11a

c
11ft + at11a

c
11fb

. (41c)

and ai11 = 1/Ei
1 is the compliance of the top or bottom face or core (i = t, b, c).

When a uniform strain exists in the core, the face sheets have a nonzero transverse

displacement at the primary state, which is due to the Poisson’s effect on the core

during compression (as opposed to the previous case). Thus, the top and bottom

face sheets have primary state transverse displacements that are equal, yet opposite

in direction, i.e. wp and −wp, respectively; furthermore they are constant along x.

Moreover, when the loading is uniform strain, the axial displacement at the primary

state in the face sheets and the core is the same, denoted by up. Therefore, in this

case the displacements in the perturbation approach are

ui0(x) = up(x) + ξui0s(x) (i = t, b, c) (42a)

φc0(x) = ξφc0s(x) , (42b)

wt(x) = wp + ξW t
s(x) , (42c)

wc0(x) = ξwc0s(x) , (42d)

wb(x) = −wp + ξW b
s (x) . (42e)
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Since the axial stresses at the primary state are

σixxp = Ci
11up,x , i = t, b and σcxxp = Cc

11up,x + Cc
13

wp
c
, (43a)

the following relations hold true at the primary state:

Ct
11f

tup,x = −κtP ; Cb
11f

bup,x = −κbP ; 2Cc
13wp + 2cCc

11up,x = −κcP . (43b)

These relationships are also confirmed by solving the pre-buckling state equations.

Substituting these displacements into the EHSAPT governing equations again,

leads to the same system of equations as for case (a), but this time the κt,b are given

by Eqn. (41b) and include the contribution of the core.

Therefore, the critical load can be determined by solving the buckled state Eqns.

(38) which can be set in the form:

{[KLC ]− π2

a2
bGbc[ I ]}{U} = {0} (44a)

where [KLC ] is the same as that given in Case (a) because the core still has linear axial

strains, but now bGbc = b0, 0, 0, 0, κbP, 0, κtP c where the κi’s are those given in this

section, Eqns. (41b). Note that even though there is a distributed axial load on the

core, ñc = −κcP/(2c), it is not present in the loading vector because nonlinear axial

strains in the core were neglected. Again, the critical load is determined by solving

the value of P which gives a nontrivial solution to the buckled state equations, i.e.

by zeroing the determinant:

det{[KLC ]− π2

a2
bGbc[ I ]} = 0 . (44b)

4.1.3 Case (c): Uniform Strain Loading with Non-Linear Axial Strains
in the Core

If the nonlinear axial strain in the core is considered, the axial load appears in the

“buckled state” equations for the core as well. The nonlinear axial strain for the core
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is

εcxx(x, z) = uc,x(x, z) +
1

2

[
wc,x(x, z)

]2
, (45)

The axial stress resultant N c, Eqn. (29b) in Chapter 2, is based on the assumption

of linear strains for the core. When nonlinear strains are included in the core, the

following term is added to Eqn. (3):

N c
NL =

c

15
Cc

11

[
2wb,xw

c
0,x − wb,xwt,x + 2(wb,x)

2 + 2wc0,xw
t
,x + 8(wc0,x)

2 + 2(wt0,x)
2

]
. (46)

Again, the moment stress resultant of the core M c, Eqn. (29e) in Chapter 2, is

based on the assumption of linear strains for the core. When nonlinear strains are

included in the core, the following term is added to (29e):

M c
NL =

c2

30
Cc

11

(
wb,x − wt,x

) (
3wb,x + 4wc0,x + 3wt,x

)
. (47)

and involves many terms if expanded out in terms of the unknown displacement vari-

ables. We would like to note that the solution procedure for this case becomes quite

complicated because both primary and secondary unknown displacement variables

appear in the buckled state set of equations. Later the results section will show that

the extra work required to solve both sets of equations did not make significant gains

in accuracy. We shall summarize the solution procedure for this case, which involves

the perturbation approach with the same assumed deformation as in Case (b), and

neglecting higher order terms of ξ. The resulting buckled state equations is:

{[KLC ] + [KNLC ]− π2

a2
bGcc[ I ]}{U} = {0} , (48a)

where [KLC ] is the same as in Cases (a) and (b), and [KNLC ] contains the addi-

tional terms that account for nonlinear axial strains in the core:
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KNLC =
π2

a2
(cCc

11up,x + Cc
13wp)
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15
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. (48b)

Note that [KNLC ] depends on the primary state displacements, in particular, on

up,x, (the x-derivative of the uniform axial displacement) and wp (the uniform trans-

verse displacement of the top face sheet due to the Poisson’s effect in the axially

loaded core), see case (b). The solution to the primary state displacements can be

obtained by solving the prebuckled-state equations and are:

up = −κ
tP

Ct
11

x = −κ
bP

Cb
11

x = −κ
cP

Cc
11

x (48c)

wp = −cC
c
13

Cc
33

up,x (48d)

Now that the nonlinear axial strain of the core is considered, not only the loading

on the face sheets but also the loading on the core appears in the force vector:

Gc = [0, 0, 0, 0, κtP, κcP, κbP ]t (48e)

Again, the critical load is determined by solving the value of P which gives a

nontrivial solution to the buckled state equations, i.e. by zeroing the determinant:

det{[KLC ] + [KNLC ]− π2

a2
bGcc[ I ]} = 0 . (48f)

Finally, it should be noted that the solution procedure results in a usual eigen-

value problem and subsequently zeroing out a determinant. For Cases (a) and (b),

this results in a characteristic equation that is quadratic in P, and for Case (c) it

results in a cubic equation in P.
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4.2 Numerical case study

We consider a sandwich configuration with symmetric geometry (ft = fb = f) and

same face sheet material, leading to the loading condition Ñ t = Ñ b = −P/2 on the top

and bottom face sheets for Case (a) (loading on face sheets) and Ñ t = Ñ b = −κfP

and ñc = −κcP/(2c) for Cases (b) and (c) (Uniform Strain, Linear and Nonlinear

Core, respectively), where the κ’s are given in Eqns. (41b) and (41c).

Two material system sandwich configurations will be considered: (i) carbon/epoxy

unidirectional faces with hexagonal glass/phenolic honeycomb, which represents a

sandwich with a very Soft Core (axial stiffness of core very small compared to that

of the face sheets, Ec
1/E

f
1 < 0.001) and (ii) e-glass/polyester unidirectional faces with

balsa wood core, which represents a sandwich with a Moderate Core (Ec
1/E

f
1 on the

order of 0.01). The moduli and Poisson’s ratios for these materials were given in

Table 1 of Chapter 3.

The total thickness is considered constant at htot = 2f + 2c = 30 mm, the length

over total thickness a/htot = 30, and we examine a range of face thicknesses defined

by the ratio of face sheet thickness over total thickness, f/htot, between 0.02 and 0.20.

The results will be produced for (i) the simple sandwich buckling formula of Allen

(thick faces version), which has been proven to be the most accurate among the simple

sandwich buckling formulas, and which considers the transverse shear effects of the

core, (ii) the High Order Sandwich Panel theory (HSAPT), which takes into account

the core’s transverse shear and also the core’s transverse compressibility effects but

neglects the core’s axial stiffness effects and (iii) the present Extended High Order

Sandwich Panel Theory (EHSAPT), which takes into account all three effects, namely

the core’s transverse shear and transverse compressibility effects as well as the core’s

axial stiffness effects. The benchmark values are the critical loads from the elasticity

solution (Kardomateas, 2010) [24]. The global critical loads for the Allen thick faces

formula and the HSAPT are given in Appendix E. The results are normalized with
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the Euler load, PE0:

PE0 =
π2

a2
2

[
Ef

f 3

12
+ Eff

(
f

2
+ c

)2

+ Ec
c3

3

]
. (49a)

f/htot

EHSAPT, Case (b)

EHSAPT, Cases (a) and (c)

HSAPT
Allen

%
Er

ro
r

Figure 10: Percent Error (from elasticity) for the Critical Load of the various theories
for the case of Soft Core and length a = 30htot.

Figure 10 shows the comparison of the theories to elasticity for the case of Soft

Core and length ratio a/htot=30, as an Error %, calculated as

Error% =
Pcr,theory − Pcr,elasticity

Pcr,elasticity
∗ 100 . (49b)

We can see that the errors are of the order of ±0.5%, very small, i.e. for this

sandwich configuration all predictions are very close to the elasticity. For this mate-

rial system, the Allen thick faces formula, the HSAPT and the EHSAPT Cases (a)

(Loading on Faces, Linear Core) and (c) (Uniform Strain, Non-Linear Core) are all

conservative and give practically identical results for the entire range of face sheet

thicknesses. On the contrary, the EHSAPT Case (b) (Uniform Strain, Linear Core)
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approach is less conservative and even becomes non-conservative for the very small ra-

tios of f/htot. It should also be noted that the critical loads are significantly less than

the Euler critical load, thus showing the importance of transverse shear in sandwich

structures.

f/htot

P/
P E0 Elasticity

EHSAPT, Case (b)

EHSAPT, Cases (a) and (c)
HSAPT
Allen

Figure 11: Critical Load (normalized with the Euler load) for the various theories
for the case of Moderate Core and length a = 30htot.

Figure 11 shows that for the Moderate Core sandwich and length ratio a/htot=30,

the theories diverge as the face sheet thickness becomes thinner compared to the

overall thickness of the sandwich cross-section. The Allen’s formula and the HSAPT

give almost identical results and are the most conservative and can be as much as

15% below the elasticity value. The EHSAPT Cases (a) (Loading on Faces, Linear

Core) and (c) (Uniform Strain, Non-Linear Core) are the most accurate, within 1% of

the elasticity value, and on the conservative side. The EHSAPT Case (b) (Uniform

Strain, Linear Core) is quite non-conservative, and can be as much as 40% above the
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elasticity value, i.e. it is the most inaccurate. This result shows the importance of

including the nonlinear axial strain in the core for the actual uniform strain loading

solution. However, it is also remarkable that the simplified approach of Case (a)

(Loading on Faces, Linear Core) is identical to the most complex approach taken

with the EHSAPT Case (c) (Uniform Strain, Non-Linear Core).
P/

P E0

f/htot

EHSAPT, Case (b)

Elasticity

HSAPT
Allen

EHSAPT, Cases (a) and (c)

Figure 12: Critical Load (normalized with the Euler load) for the various theories
for the case of Moderate Core and length a = 20htot.

Figures 12 and 13 show the effect of length for the Moderate Core configuration,

i.e. results for a/htot = 20 and 10 respectively. For these shorter beam configurations,

the EHSAPT Cases (a) and (c) are consistently close to the elasticity solution for the

entire range of the face sheet thicknesses, and stay within about 1% error, i.e the most

accurate. The other theories all diverge from elasticity for small f/htot. The Allen

thick faces formula and the HSAPT are again identical and most conservative, and the

EHSAPT Case (b) is again non-conservative and most inaccurate. Moreover, as the
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P/
P E0

f/htot

EHSAPT, Case (b)

HSAPT
Allen

Elasticity
EHSAPT Cases (a) and (c)

Figure 13: Critical Load (normalized with the Euler load) for the various theories
for the case of Moderate Core and length a = 10htot.

beam length decreases, in all cases the predictions become somewhat less conservative.

For the soft core configuration the EHSAPT, HSAPT, and Allen formula all predict

practically the same critical load for all three length cases examined.

Thus, we can conclude that, when we deal with the critical load of sandwich

structures, the present EHSAPT produces results very close to the elasticity for a

wide range of cores, as opposed to the other theories of formulas, which seem to be

accurate only when the core is very soft. It is important, however, how this theory

is implemented, in the sense that this high accuracy is obtained for either Case (a)

(Loading on Faces, Linear Core) or Case (c) (Uniform Strain, Non-Linear Core), but

not for Case (b) (Uniform Strain, Linear Core).

An argument that explains the apparent inaccuracy of Case (b) can be made as

follows: In Case (b), loads are distributed to both the faces and the core, but the
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load vector Gb has only the stress resultants from the faces and does not have a

contribution from the core, thus the loads of Gb would sum to a value less than the

applied load P . On the contrary, in Case (c), the load vector Gc has stress resultants

from both faces and the core (because now nonlinear strains are considered in the

core) and these stress resultants would sum to P . In Case (a), loads were only applied

to the faces, so although the load vector Ga contains only the stress resultants in the

faces, these would again sum up to P .

Finally, a common observation in all these plots is that the Allen thick faces

formula and the HSAPT give almost identical predictions. In fact, it can be proven

that the HSAPT critical load resuces to that of the Allen thick faces formula if only

transverse shear effects are included (i.e. the HSAPT applied without the core’s

transverse compressibility effects). This derivation is outlined in Appendix E.

4.3 Conclusions

The following conclusions are drawn by comparing the critical loads from these dif-

ferent theories to the benchmark critical load predicted by elasticity:

(1) The EHSAPT Cases (a) (Loading on the Faces and Linear Core) and Case (c)

(Uniform Strain, Non-Linear Core) are nearly identical for both the Soft Core

and Moderate Core configurations.

(2) For the Soft Core sandwich configurations (Ec
1/E

f
1 ≤ 0.001) all three theories

(Allen thick faces formula, HSAPT and EHSAPT) predict the critical load

within 1% of the critical load from elasticity.

(3) For the Moderate Core sandwich configurations (Ec
1/E

f
1 ≤ 0.01), the EHSAPT

Cases (a) (Loading on the Faces and Linear Core) and Case (c) (Uniform Strain,

Non-Linear Core) are consistently within about 1% of the critical load from

elasticity. On the contrary, the Allen thick faces formula, the HSAPT, and the
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EHSAPT Case (b) (Uniform Strain and Linear Core) diverge from elasticity for

smaller f/htot. But the Allen thick faces formula and the HSAPT, diverge to

more conservative values whereas the EHSAPT Case (b) (Uniform Strain and

Linear Core) diverges to more nonconservative values for the smaller values of

the ratio f/htot (i.e. thinner faces). The latter is also the least accurate and

can be in significant error for these small f/htot ratios.

(4) In applying the various theories, it is important how the compressive loading

is implemented, in the sense that Loading on the Faces with a Linear Core

assumption gives almost identical results to the most complex case of Uniform

Strain loading and a Non-Linear Core assumption, but certainly not for Uniform

Strain loading and Linear Core assumption, for which quite inaccurate results

can be obtained for moderate cores.
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CHAPTER V

STATIC WRINKLING

The core compressibility has an important influence in the phenomenon known as

face wrinkling or local buckling. Wrinkling is a local instability phenomenon char-

acterized by short-wave buckling of the faces as opposed to global column buckling

(Euler buckling) as depicted in Figure 14. Typically, wrinkling loads are lower than

Euler Global buckling loads when the face sheets are very thin compared to the over-

all thickness of the panel. Wrinkling modes can be either symmetric or asymmetric

as shown in Figure 14. Several formulas can be found in literature for the critical

a

P

P

2c

z

x

Global
Buckling

Symmetric
Wrinkling

Antisymmetric
Wrinkling

fb ft

Figure 14: Global Buckling vs Wrinkling.

wrinkling load. A whole chapter is devoted to these different formulas in Carlsson

and Kardomateas [6]. Most notable among the simple formulas is the Hoff-Mautner

formula [18] and the Allen [2] formula and the former will be used in comparing with

our results.

Another relevant study is an analytical model derived by Vonach and Rammer-

storfer [39] that leads to a single explicit equation for the critical wrinkling load
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of sandwich plates with isotropic faces and thick orthotropic cores. The authors

performed a parametric study which showed that for highly orthotropic cores (e.g.

honeycombs) wrinkling depends strongly on the in-plane stiffness of the core. Their

results matched numerical solutions well for very thick cores that can be assumed

infinitely thick, and no interaction between the face sheets exist. This finding is

important because the main difference between the recent EHSAPT and the earlier

HSAPT is that the latter does not account for the in-plane stiffness of the core.

Validation of the wrinkling results from the high order theories can be achieved

by comparing to the elasticity solution for the wrinkling of a sandwich beam/wide

plate, which was derived by Kardomateas [23]. In addition, validation can be achieved

by comparing to experimental wrinkling loads. Historically, the success of compar-

isons of experimental results to analytical wrinkling models has been limited. Several

semi-empirical derivations have been compared to various sandwich structure exam-

ples however obtaining good correlation has been hampered by inadequate testing

conditions, conservative material assumptions and manufacturing flaws [26]. Due

to the sensitivity of buckling instability to the bond between the face sheet and core

constituent, many aspects of material manufacturing and specimen preparation affect

the variations in test results for determining the critical wrinkling stress. Wrinkling

failure is a common failure mode for sandwich structures with thin face sheets and

lightweight cores. During experimental tests sandwich structures may display no or

little post wrinkling load capacity, therefore catastrophic failure is common. Addi-

tionally, wrinkling refers to a local instability where the buckling wavelengths are

typically less than the core thickness, making detection and capture of such buckling

modes difficult.

In this section the critical wrinkling load is determined using the nonlinear dif-

ferential equations of the new EHSAPT. The case study of a simply supported (S-S)

sandwich beam undergoing compressive edgewise loading with symmetric geometry
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and same face sheet materials is used for validation with two different experiments.

The first set of these experiments was performed recently by Postdoctoral student

Nathan Bailey and Senior Research Associate Dr. Mark Battley at the Center for

Advanced Composite Materials (Auckland University, Auckland, NZ) using a thin

skin sandwich structure commonly used in interior aircraft structures, namely Glass

Face/Nomex Honeycomb Core. The second set of experiments are the ones performed

by Norris et al [29] Aluminum face/Granulated-cork core specimens.

In section 4 the global buckling of sandwich beams/ wide panels using three dif-

ferent solution procedures were presented using the EHSAPT [32]. It was found that

the EHSAPT Cases PFLC (Loading on Faces, Linear Core) and USNLC (Uniform

Strain, Non-Linear Core) are nearly identical for both the soft Core and moderate core

configurations and both are very close to elasticity predictions whereas case USLC

(Uniform Strain, Linear Core) diverges from elasticity to more nonconservative values

for moderate cores. These loading conditions are depicted in Figure 15.

This section presents the EHSAPT wrinkling formulations. Two methods of solv-

ing the EHSAPT differential equations for wrinkling were undertaken, the PFLC

(Loading on Faces, Linear Core) and USNLC (Uniform Strain, Non-Linear Core) as

described above. The two methods were investigated to see if the two approaches

would result in different wrinkling loads. Next the simple wrinkling formulas that

will be used for comparison are described. The results from the EHSAPT are com-

pared with these simple wrinkling formulas, as well as with the critical wrinkling

loads from elasticity. Moreover, compression experiments were recently conducted on

Glass Face/Nomex Honeycomb Core by Mr. Nathan Bailey and Dr. Mark Battley at

the Center for Advanced Composite Materials at University of Auckland, NZ. Their

experimental test setup is described followed by the results and conclusions.
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Figure 15: The two loading cases: (a) Loading on Faces, Linear Core (PFLC); (b)
Uniform Strain, Nonlinear Core (USNLC).

5.1 Two solution approaches using EHSAPT

In Chapter 4 the critical global buckling load was determined using EHSAPT. The

two most accurate approaches were case (a), in which concentrated compressive loads

were applied on the face sheets and the linear strains in the core were used, and

case (c), in which an edgewise loading was applied throughout the height of core

and nonlinear axial strains had to be taken into account in order to provide accurate

results. These two solution approaches are used again, now for the study of high-order

wrinkling. In this chapter case (a) is referred to as the PFLC approach for loading P

52



on the Face sheets and having Linear strains in the Core, see Figure 15a. Case (c) is

referred to as USNLC for Uniform Strain loading and NonLinear strains in the Core,

see Figure 15b.

The PFLC and USNLC solution approaches are exactly the same as that de-

scribed in sections 4.1.1 and 4.1.3, respectively, except that the global buckling mode

described by terms π
a

from the trigonometric functions that describe the buckled

shape need to replaced with the high-order wrinkling mode nπ
a

. The wave number n

is the number of half-sine waves that would appear in the wrinkled shape once the

sandwich beam/ wide panel has reached its critical load. In order to find out the

critical wrinkling load and mode, the solution to n = 1 to a high enough value N

needs to be solved and sorted. The lowest load and its corresponding mode number

is the critical condition at which the beam/ wide panel will wrinkle.

5.2 Critical Wrinkling Load from the HSAPT and other
Wrinkling Formulas

The wrinkling formulas from HSAPT are derived in [13]. In the case of a symmetrical

construction in which the two skins are identical, the symmetric wrinkling critical load

from the HSAPT in is:

Pcr,HSAPT,symm =
2[Ec

33 + c (EI) α4
n]

c α2
n

, (50a)

where

EI = Ef
11f

3/12 ; αn = nπ/a . (50b)

In the case of antisymmetric wrinkling, the critical load from the HSAPT is:

Pcr,HSAPT,antisymm = Pe

1 +
[
1 +

(2c)2Gc
31n

2π2

12Ec
3a

2

] (
Pef

Pc
− P 2

ef

PcPe

)
1 +

[
1 +

(2c)2Gc
31n

2π2

12Ec
3a

2

]
(Pe−Pef )

Pc

 , (51a)

where

Pe = Ef
11

n2π2

a2

[
f 3

6
+
f(2c+ f)2

2

]
, (51b)
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Pef = Ef
11

n2π2

a2
f 3

6
; Pc = Gc31

(2c+ f)2

2c
, (51c)

Among the other simple wrinkling formulas, which are outlined in Carlsson and

Kardomateas [6], Hoff and Mautner’s formula is mostly known and used in the form:

σcr,HoffMautner = 0.5(Ef
11E

c
33G

c
31)

(1/3) , (52)

where the critical stress refers to the face sheets. The cubic root form of the Hoff-

Mautner equation was derived using an energy approach for the problem of symmetric

wrinkling of a sandwich (with isotropic material and neglible axial rigidity in the core).

The theoretical approach led to a coefficient of 0.91 in front of the cubic root of the

Hoff-Mautner formulation Hoff and Mautner (1945) [18]. However, a conservative

version of the formula with a coefficient of 0.5 instead of 0.91 is commonly used. The

formula is independent of the sandwich geometry and mode of wrinkling, and has

been used as a wrinkling failure approximation for sandwich design. As can be seen

in Hoff-Mautner’s simple formula the transverse stiffness of the core in particular is

critical in improving the susceptibility of a sandwich material to wrinkling failure.

For the case of uniform strain loading on a sandwich with a symmetric configura-

tion, the Hoff-Mautner critical load can also be expressed as

Pcr,HoffMautner = σcr,HoffMautner(2fb) (53)

i.e., the entire load is assumed to be carried by the face sheets.

5.3 Comparison of Theories with elasticity

An elasticity solution to the wrinkling phenomenon of a simply supported sandwich

beam was presented by Kardomateas [23]. This elasticity solution can serve as a

benchmark to determine the accuracy of the different sandwich beam/ wide panel

theories and simple wrinkling formulas.

Tables 5 through 8 give the critical loads (normalized with the Euler load) for

sandwich beams with length ratio a/htot = 5 and varying thickness ratios f/htot,

54



where htot = 2(f + c) is the total beam thickness. The four tables correspond to the

following material configurations: Isotropic face and core with Ef/Ec=1,000, Isotropic

face and core with Ef/Ec=500, E-glass/polyester faces with PVC/R75 foam core, and

graphite/epoxy faces with glass/phenolic honeycomb core, respectively. These tables

compare the elasticity results to the wrinkling predictions from the two methods of

EHSAPT (PFLC and USNLC), the HSAPT, and the Hoff-Mautner (semi-empirical

constant=0.5). The tables also show the mode and percent Error with respect to

elasticity.

Table 5: Critical loads for Ef/Ec=1,000; normalized with the Euler load (w/o shear).
Superscripts a and b are for method PFLC and USNLC, respectively. A and S in the
wave numbers stand for Anti-symmetric and Symmetric, respectively

f/htot elasticity Hoff HSAPT EHSAPTa EHSAPTb

(n) (n) (n) (n) (n)
(Error%) (Error%) (Error%) (Error%)

0.01 0.07381 0.04038 0.02654 0.07909 0.08228
(A24) (27) (S20) (A22) (A22)

(-45.3%) (-64.0%) (+7.2%) (+11.5%)
0.02 0.07393 0.04154 0.03902 0.07080 0.07212

(A12) (13) (S12) (A12) (A12)
(-43.8%) (-47.2%) (-4.2%) (-2.5%)

0.03 0.07288 0.04251 0.04945 0.06967 0.07040
(A7) (9) (S9) (A8) (A8)

(-41.7%) (-32.2%) (-4.4%) (-3.4%)
0.04 0.06489 0.04345 0.05900 0.06389 0.06391

(A1) (7) (S7) (A1) (A1)
-(33.0%) (-9.1%) (-1.5%) (-1.5%)

0.05 0.05411 0.04439 0.05336 0.05336 0.05337
(A1) (5) (A1) (A1) (A1)

(-18.0%) (-1.4%) (-1.4%) (-1.4%)

For Tables 5 and 6, results are produced for the following configuration: isotropic

faces and core with Ef/Ec=1,000 and 500, νf = 0.35 and νc = 0. Table 7 gives results

for E-glass/polyester unidirectional facings and R75 cross-linked PVC foam core with

the facings moduli (in GPa): Ef
1 = 40, Ef

2 = Ef
3 = 10, Gf

23 = 3.5, Gf
12 = Gf

31 = 4.5;

and the facings Poisson’s ratios: νf12 = 0.26, νf23 = 0.40, νf31 = 0.065. The PVC core
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Table 6: Critical loads for Ef/Ec=500; normalized with the Euler load (w/o shear).
Superscripts a and b are for method PFLC and USNLC, respectively. A and S in the
wave numbers stand for Anti-symmetric and Symmetric, respectively

f/htot elasticity Hoff HSAPT EHSAPT a EHSAPT b

(n) (n) (n) (n) (n)
(Error%) (Error%) (Error%) (Error%)

0.01 0.1222 0.0631 0.0370 0.1370 0.1479
(A30) (34) (S24) (A26) (A26)

(-48.4%) (-69.8%) (+12.1%) (+21.1%)
0.02 0.1210 0.0654 0.0548 0.1162 0.1207

(A15) (17) (S14) (A15) (A15)
(-45.9%) (-54.7%) (-4.0%) (-0.3%)

0.03 0.1211 0.0672 0.0698 0.1143 0.1169
(A10) (11) (S11) (A10) (A10)

(-44.5%) (-42.3%) (-5.6%) (-3.4%)
0.04 0.1188 0.0687 0.0836 0.1128 0.1144

(A6) (9) (S9) (A7) (A7)
(-42.1%) (-29.6%) (-5.0%) (-3.7%)

0.05 0.1027 0.0703 0.0962 0.1003 0.1003
(A1) (7) (S7) (A1) (A1)

(-31.6%) (-6.3%) (-2.3%) (-2.3%)

is isotropic with modulus Ec = 0.075 GPa and Posson’s ratio νc = 0.3. The axial

modulus ratio of the facings and the core is close to 500. In general, we can make the

following conclusions for the isotropic core case:

(1) Sandwich structures will exhibit local wrinkling as f/htot becomes small (i.e. sand-

wiches with relatively thin faces), and global buckling as f/htot becomes bigger (i.e.

sandwiches with relatively thick faces).

(2) The semi-emprical Hoff-Mautner formula is always very conservative between 18%

to 50% under that of elasticity.

(3) The HSAPT is inaccurate in predicting wrinkling loads for sandwiches with very

thin faces, underpredicting the critical load by as much as 70% for the more moder-

ately stiffer core configuration with Ef/Ec = 500 and f/htot = 0.01.

(4) The EHSAPT is the more accurate with the USNLC approach (Uniform Strain,

Nonlinear Core) predicting slightly higher critical loads than the PFLC approach

56



Table 7: Critical loads for E-glass/polyester faces and PVC/R75 foam core; normal-
ized with the Euler load (w/o shear). Superscripts a and b are for method PFLC and
USNLC, respectively. A and S in the wave numbers stand for Anti-symmetric and
Symmetric, respectively

f/htot elasticity Hoff HSAPT EHSAPT a EHSAPT b

(n) (n) (n) (n) (n)
(Error%) (Error%) (Error%) (Error%)

0.01 0.10230 0.05549 0.03586 0.10775 0.11583
(A30) (32) (S23) (A25) (A25)

(-45.8%) (-65.0%) (+5.3%) (+13.2%)
0.02 0.10120 0.05749 0.05307 0.09593 0.09932

(A15) (16) (S14) (A14) (A14)
(-43.2%) (-47.6%) (-5.2%) (-1.9%)

0.03 0.10080 0.05898 0.06751 0.09533 0.09720
(A9) (11) (S10) (A9) (A9)

(-41.5%) (-33.0%) (-5.4%) (-3.6%)
0.04 0.09096 0.06035 0.08080 0.08953 0.08957

(A1) (8) (S8) (A1) (A1)
(-33.6%) (-11.2%) (-1.6%) (-1.5%)

0.05 0.07596 0.06170 0.07486 0.07495 0.07497
(A1) (6) (A1) (A1) (A1)

(-18.8%) (-1.4%) (-1.3%) (-1.3%)

(Loading on Faces, Linear Core). In general, USNLC is more accurate the PFLC

when the beam wrinkles for all f/htot other than 0.01. The deviation from elasticity

for the USNLC is no more than about 4%. (7) The EHSAPT PFLC approach has

good accuracy for the range of thickness ratios with at most 12% Error for the ex-

treme case of f/htot = 0.01 for isotropic face and core with Ef/Ec=500 (Table 6).

(8) The HSAPT predicts symmetric wrinkling modes, while the EHSAPT predicts

antisymmetric wrinkling modes, similar to elasticity.

Table 8 gives results for graphite/epoxy unidirectional facings and hexagonal

glass/phenolic honeycomb core with the facings moduli (in GPa): Ef
1 = 181, Ef

2 =

Ef
3 = 10.3, Gf

23 = 5.96, Gf
12 = Gf

31 = 7.17; and the facings Poisson’s ratios:

νf12 = 0.28, νf23 = 0.49, νf31 = 0.0159. The honeycomb core moduli are in (GPa):
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Table 8: Critical loads for graphite/epoxy faces and glass/phenolic honeycomb core;
normalized with the Euler load (w/o shear). Superscripts a and b are for method
PFLC and USNLC, respectively. A and S in the wave numbers stand for Anti-
symmetric and Symmetric, respectively

f/htot elasticity Hoff HSAPT EHSAPT a EHSAPT b

(n) (n) (n) (n) (n)
(Error%) (Error%) (Error%) (Error%)

0.01 0.07037 0.04277 0.03947 0.07099 0.07147
(A26) (15) (S24) (A25) (A25)

(-39.2%) (-43.9%) (+0.9%) (+1.6%)
0.02 0.06552 0.04371 0.05773 0.06506 0.06517

(A1) (7) (S14) (A9) (A9)
(-33.3%) (-11.9%) (-0.7%) (-0.5%)

0.03 0.04576 0.04463 0.04558 0.04559 0.04559
(A1) (5) (A1) (A1) (A1)

(-2.5%) (-0.4%) (-0.4%) (-0.4%)
0.04 0.03577 0.04556 0.03564 0.03564 0.03564

(A1) (4) (A1) (A1) (A1)
(+27.4%) (-0.4%) (-0.4%) (-0.4%)

0.05 0.02988 0.04652 0.02978 0.02978 0.02978
(A1) (3) (A1) (A1) (A1)

(+55.7%) (-0.3%) (-0.3%) (-0.3%)
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Ec
1 = Ec

2 = 0.032, Ec
3 = 0.390, Gc

23 = Gc
31 = 0.048, Gc

12 = 0.013; and the core Posson’s

ratio νc31 = νc32 = νc21 = 0.25. For this orthotropic core case, the following observations

are made:

(9) According to elasticity, the beam wrinkles only at f/htot = 0.01 and globally

buckles for the relatively thicker faces.

(10) The semi-empirical Hoff-Mautner formula is always very conservative with re-

spect to elasticity when the beam wrinkles, but can be nonconservative when the

beam globally buckles (it would not be expected to be applicable for global buckling,

anyway).

(11) The HSAPT is very conservative when the beam wrinkles, but becomes more

accurate for thicker faces.

(12) The EHSAPT (both PFLC and USNLC approaches) is very accurate even at

the extreme case of f/htot = 0.01.

The wrinkling results display some trends that were seen when studying the global

buckling phenomenon in Phan et al [32], such as that the HSAPT tends to become

less accurate and underpredicts critical loads for very thin faces, and that both the

HSAPT and the EHSAPT (PFLC and USNLC) converge for thicker faces (bigger

f/htot). The discrepancy between HSAPT and EHSAPT for very low f/htot (when

the beam is most susceptible to wrinkling), but convergence for higher f/htot (when

the beam tends to globally buckle), indicates that including the axial rigidity of the

core is important during wrinkling. Though both high order theories have the same

order of displacements in z in the core, the theories differ in shear stress distribution

through the core. The HSAPT ignores the axial rigidity of the core, which makes

the shear stress through the thickness constant. The EHSAPT accounts for the axial

rigidity in the core and the shear stress is parabolic. In Kardomateas [23], the most

accurate formula for wrinkling of isotropic faces and cores was that of Goodier and
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Neou [17], which accounts for the compressive axial stress in the core. However the

Goodier and Neou formula no longer exhibited good accuracy when the phases were

orthotropic. The EHSAPT, however, can show good accuracy in these cases.

5.3.1 Experimental Study

Figure 16: Details of the Test setup.

Sandwich construction consisting of a Nomex honeycomb core with a glass fiber

and phenolic resin face sheet are common in aerospace applications. The material

for this study is a beam/ wide panel consisting of 0.5 mm thick glass-phenolic face

sheets (L528-7781) and a 24.4 mm Nomex honeycomb core (HRH 10-3.0). Sandwich

beams/ wide panels were manufactured using layers of honeycomb core, adhesive

and pre-impregnated face sheets, which are consolidated in a heated press. Due to

the nature of honeycomb the core properties are anisotropic with a large transverse

stiffness compared to the in-plane properties. The stiffer ribbon direction of the

core was aligned with the loading or compression direction for all tests. Specimen

geometry is shown in Figure 16 and illustrates the area of core removed and replaced

with epoxy resin. This region of potting was required to prevent edge failure of the

structure during loading whereby the face sheet delaminates from the core at the
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Table 9: Material and Geometry Data for Glass-Phenolic Face sheet and Nomex
Honeycomb Core Sandwich

Face sheet Core
Glass-Phenolic Nomex Honeycomb 1/8-3.0

Thickness, mm 0.5 24.4
Width, mm 75 75
Length, mm 115 115
E1, MPa 22000 0.44
E2, MPa 22000 0.29
E3, MPa - 138
G13, MPa - 40
G23, MPa - 25
ν13 - 0.01
ν31 - 3.136
Longitudinal Tensile Strength σ1, MPa 300 -
In-Plane Transverse Tensile Strength σ2, MPa 300 -
Compressive Out-of-plane Strength σ3, MPa - 2.3

boundary due to the contact with the loading platen at this point. Premature edge

failure occurs at a significantly lower load than the anticipated failure mode of skin

wrinkling. After the edges were plotted they were post machined to ensure the ends

were parallel and square. The data for the materials used are in Table 9.

The residual strength testing was carried out using an edgewise compression test

method ASTM C364-07. The test fixture shown in Figure 16 was made of two identi-

cal loading plates with bars to lightly clamp the specimen to assist in preventing end

failures. A spherical head was used to evenly distribute the load over the top plate.

The load was applied at a displacement rate of 0.5 mm/min and wrinkling failure

occurred within three to six minutes.

Seven specimens were instrumented with strain gauges to measure longitudinal

or compressive strain in the center of the face sheets during edgewise loading. The

purpose of the direct strain measurement was to ensure even distribution of the load

between the face sheets. Strain was recorded to the data acquisition program in

real-time. Prior to testing, a 50 N compressive pre-load was applied and the strain
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Table 10: Wrinkling Experiments on Glass Face/ Nomex Honeycomb Core Sandwich
specimens and comparison with theories. Superscripts a and b are for method PFLC
and USNLC, respectively. A and S in the wave numbers stand for Anti-symmetric
and Symmetric, respectively

Sample Wrinkling Load (kN)

1 17.161
2 17.006
3 18.659
4 17.278
5 18.644
6 18.072
7 17.489

Average Experimental Hoff-Mautner HSAPT EHSAPT (PFLC) EHSAPT (USNLC)
(Standard Deviation)
17.758 18.57 15.281 17.158 17.164
(0.646) (4.6%) (-13.9%) (-3.4%) (-3.3%)

(S17) (S16) (S16)

in each face sheet was measured. The spherical head was then adjusted until the

strain distribution between the face sheets was within 5%. This pre-load ensured

that a more even loading distribution of the face sheets was achieved. Without this

pre-loading alignment, and adjustment of the spherical head, the average critical load

reduced by 12%.

Table 10 shows the measured critical loads P for the 7 specimens tested. The

average compressive critical load was 17.8 kN with a standard deviation of 0.646 kN.

The onset of wrinkling failure was catastrophic. The specimens were examined after

failure and the face sheets were observed to have failed between the loading platens

with a crack propagating from one edge of the specimen. It is believed that wrinkling

was the cause of failure and not face crushing because the compressive stress in the

face at the time of failure was 22% below the yield strength of the virgin face sheet

material. The variation in critical load was also very good with only a 3.6% coefficient

of variation from the seven tests (attributed to the careful alignment of the loading

platens via strain measurement). Though the variation in critical load among the
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seven specimens was small, scatter in the experimental results may be due to the

slight waviness of the face sheets that occur during manufacturing process of the

sandwich specimens.

In Table 10, the experimental results are compared with the predictions from the

various approaches. It should be noted that the theories do not take into account ini-

tial imperfections such as waviness of the faces that can occur during manufacturing.

Therefore perfect agreement between experiment and theory is not to be expected.

Yet, both EHSAPT approaches are remarkably close to the experimental data and

provide the most accurate predictions compared to all other available approaches. In

particular, the Hoff-Mautner’s conservative formula predicts a nonconservative crit-

ical stress in the face sheets, and is within 4.6% error. Both the HSAPT and the

EHSAPT predict the wrinkling mode to be symmetric and conservative loads. How-

ever, the EHSAPT is closest to experiments (within 3.4% error for both approaches),

while the HSAPT is more conservative (underpredicting by about 14%).

5.3.2 Comparison with Wrinkling Tests in the Literature

Experimental wrinkling stresses of sandwich beams/ wide panels with 24ST clad alu-

minum face sheets and granulated-cork core (with 0.35 specific gravity) are reported

in Norris et al [29] for three different geometric core-to-facesheet thickness ratios of

2c/f = {3.63, 2.87, 3.85}. The aluminum face sheets had a modulus Ef = 107 psi,

and the granulated-cork core had the following mechanical properties: Ec
1 = 1.18

ksi, Ec
3 = 0.52 ksi, Gc

31 = 0.33 ksi and νc31 = 0.06. The widths of all the specimens

were 2 inches. For a given sandwich configuration, only specimens that had the same

exact lengths were considered for comparison. Only 3 specimens had a length of

3.63 inches for the 2c/f ratio of 3.63, while there were 5 specimens each for config-

urations with 2c/f of 2.87 and 3.85. This set of experimental data was chosen for

comparison because it is known that wrinkling was the cause of failure and the tests
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Table 11: Comparison of the Theories with the Wrinkling Experiments of Norris et
al (1961) [32]. Aluminum Face/Granulated-Cork Core

Ratio Exper. Hoff- HSAPT EHSAPT EHSAPT
face core 2c/f Length Avg. Mautner (PFLC) (USNLC)

f , in. 2c, in. a, in. σcr, ksi σcr, ksi σcr, ksi σcr, ksi σcr, ksi
(% Error) (% Error) (% Error) (% Error)

(n) (n) (n)
0.0196 1 51.0 3.63 9.817 5.986 8.264 8.51 8.491

(-39.0%) (-15.8%) (-13.3%) (-13.5%)

(S4) (A2) (A2)
0.0120 0.75 62.5 2.87 10.422 5.986 7.452 9.19 9.175

(-42.6%) (-28.5%) (-11.8%) (-12.0%)

(S5) (A4) (A4)
0.0120 1 83.3 3.85 10.418 5.986 6.492 9.61 9.597

(-42.5%) (-37.7%) (-7.8%) (-7.9%)
(S6) (A6) (A6)

had good repeatability; the standard deviation is no greater than 0.78 ksi for all 3

configurations.

Table 11 shows the average wrinkling stress in the faces from the experiments

as well as those predicted from Hoff-Mautner, HSAPT, and EHSAPT (both PFLC

and USNLC methods). The Hoff-Mautner is very conservative (generally about 40%

lower) and is the same for the three configurations because the formula is independent

of the geometry. The EHSAPT is in best agreement with the experimental data,

staying within 14% of the experimental results for the three configurations and is

always conservative. Moreover, both EHSAPT approaches are close to each other for

all three configurations. The HSAPT is less accurate, being as much as 38% below

the experimental data and becomes less accurate as the ratio of 2c/f increases. The

predicted mode of the high-order theories are also shown in parenthesis. S and A

stand for symmetric and antisymmetric, respectively, and is followed the by the semi-

wave number. The HSAPT predicts symmetric wrinkling mode, unlike the EHSAPT,

which predicts antisymmetric wrinkling.
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5.3.3 Conclusions

The wrinkling predictions of the EHSAPT, the earlier High Order Sandwich Panel

theory (HSAPT), and the Hoff-Mautner’s semi-empirical formula are compared with

(a) predictions from elasticity and (b) wrinkling experiments. Two experimental sets

are chosen for comparison: one set is experiments conducted by the authors on Glass

face/Nomex Honeycomb core sandwich specimens and the other set is experiments

from the literature on Aluminum faces/granulated-cork core system.

In all cases the EHSAPT was the closest to both the elasticity predictions and the

experimental data. There was little difference between the two formulations of the

EHSAPT, which argues for the much simpler PFLC (Loading on Faces, Linear Core)

approach. The earlier HSAPT was in significant error for the relatively thinner faces.

The large discrepancy between HSAPT and EHSAPT for very low f/htot (when the

beam is most susceptible to wrinkling), and the associated smaller discrepancy for

higher f/htot (when the beam tends to buckle globally), indicates that including the

axial rigidity of the core is very important during wrinkling.

The comparison of the different wrinkling formulations with elasticity show that

in general the semi-empirical Hoff-Mautner formula is quite conservative, yet less so

than the HSAPT. The good agreement of the EHSAPT with the experiments on hon-

eycomb core sandwich specimens show that although the EHSAPT models the core

as a homogenous material with global properties, the theory can be used to predict

critical loads of nonhomogeneous honeycomb cores just as well as for homogeneous

solid cores.
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CHAPTER VI

FREE VIBRATIONS

In this section we shall study the free vibrations of a sandwich beam that is simply

supported throughout its thickness. First the solution procedure using the linear dy-

namic formulation of EHSAPT will be outlined followed by comments on finding the

natural frequencies and mode shapes using HSAPT, and FOSDT used for comparison.

Next numerical results for several sandwich configurations will demonstrate the pre-

dicted mode shapes that EHSAPT can capture. Also, comparison with experiments

from literature and elasticity will be made.

6.0.4 Solution Procedure using EHSAPT

For free vibrations of a simply supported sandwich beam we consider the unforced lin-

ear problem, which means that the right hand side in the governing differential equa-

tions (11) to (17) are zero. Since the sandwich beam is simply supported throughout

its height at both ends, the boundary conditions for x = 0, a are the three kinematic

conditions

wt = wb = wc0 = 0 , (54)

and the right hand side of the 6 natural boundary conditions in (20a), (22), (23),

(24), (26a), and (28) are equal to zero.

The seven displacement functions are assumed to have the form:

ut0 = U t
0n cos

nπx

a
eiωnt ; uc0 = U c

0n cos
nπx

a
eiωnt ; (55a)

φc0 = Φc
0n cos

nπx

a
eiωnt ; ub0 = U b

0n cos
nπx

a
eiωnt , (55b)

wt = W t
n sin

nπx

a
eiωnt ; wc0 = W c

0n sin
nπx

a
eiωnt ; wb = W b

n sin
nπx

a
eiωnt . (55c)
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which satisfy the governing equations and boundary conditions and are harmonic in

time with natural frequency ωn. The parameter n corresponds to the wave number

and how many half wavelengths occur in the mode shapes. After substituting these

displacement mode shapes into the linear governing equations (excluding the nonlin-

ear terms) and rearranging the equations into matrix form, the natural frequencies

can be found by solving the following eigenvalue problem:

(−λn[Mn] + [Kn]){Un} = {0} (56)

where the eigenvalue λn is related the natural frequency by λn = ω2
n. [Mn] and [Kn]

(given in Appendix F) are the mass and stiffness matrices, respectively, for a given

wave number n. The rows of the unforced equations of motion in (56) correspond to

Eqns. (16a), (13), (14), (11), (17a), (15), (12a), respectively. The eigenvector holds

the relative amplitude coefficients:

{Un} = {U b
0n, U

c
0n,Φ

c
0n, U

t
0n,W

b
n,W

c
0n,W

t
n}T (57)

In EHSAPT, [Mn] and [Kn] are 7x7 matrices, therefore there are 7 eigenval-

ues/natural frequencies and 7 eigenvectors/modes shapes for a given wave number

n.

6.0.5 Solution procedure for FOSDT and HSAPT

Classical FOSDT assumes that the sandwich composite is transversely incompressible,

and assumes a constant average value of shear strain (through the height) in the core.

In our solution procedure using FOSDT, in-plane stresses in the faces and the core

are taken into account. HSAPT accounts for the transverse compressibility and the

shear in the core, considers axial stresses in the faces but neglects axial stresses in

the core.

In our solution procedure we consider rotary inertia in all of the theories. The

solution to the eigenvalues and the modes shapes of FOSDT and HSAPT are very
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similar to that outlined in Section 6.0.4 for EHSAPT in that they result in the same

eigenvalue problem of the form shown in Eqn. (56). However, the size of matrices [Mn]

and [Kn] and eigenvector {Un} depend on each theory. In the appendix the details

of the mass and stiffness matrices and eigenvectors for the FOSDT and HSAPT are

given in Appendix F.1 and F.2, respectively. Once the mass and stiffness matrices

and the eigenvector are defined, the eigenvalue problem is ready to be solved.

It should be noted that [Mn] and [Kn] are the size N x N , where N is the number

of generalized coordinates of the theory, and n is the wave number. Therefore, for

FOSDT the matrices are size 3x3 because there are 3 generalized coordinates: u0, w0,

and φ0. Notice there are no superscripts because FOSDT is an equivalent single layer

theory. For HSAPT the matrices are 5x5 because there are 5 generalized coordinates:

ut0, u
b
0, w

t, wc0, and wb. For the simply supported sandwich case, these generalized

coordinates have the same form as those in Eqn. (55) (i.e. axial displacements u and

rotation φ have Cosine mode shapes and transverse displacements w have Sine mode

shapes).

6.0.6 Comparison with Experimental Results

The first comparison is made with the TV-holograph measurements of Jensen and

Irgens[22]. They measured and identified antisymmetric and symmetric modes of a

simply supported sandwich beam. The antisymmetric mode is characterized by dis-

placements that are antisymmetric with respect to the beam mid-height, that is, the

face sheets move in phase with each other. The symmetric mode has a displacement

pattern that is symmetric with respect to the mid-height, that is, the face sheets

move 180 deg out of phase with respect to each other. The beam was assembled by

two steel face sheets and an H60 Divinycell plastic foam core. The face sheets were

identical with ft = fb = f = 2 mm, while the core had a height of 2c = 30 mm.

The beam had a span a = 300 mm with a 10 mm free end (overhang) at each side,
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and width b = 50 mm. The face and core material are assumed to be isotropic, and

the material parameters from [22] are given in Table 12. Some ratios of interests are:

Ec/Ef = 0.00026 therefore the sandwich has a very soft core compared to the face

sheets, a/Htot = a/(2f + 2c) = 8.8 so the beam is short, and f/Htot = 0.06 so the

faces are thin compared to the total height of the beam.

Table 12: Material parameters of the sandwich beam from [22]

Young’s Shear
Modulus Modulus Poisson’s Density

Material E, Pa G, Pa Ratio, ν ρ kg/m3

Steel 210 x 109 81 x 109 0.30 7900
Divinycell H60 56 x 106 22 x 106 0.27 60

Table 13: Comparison of Experiment, High Order and Classical Theories for Anti-
symmetric modal natural frequencies
Mode Experiments [22] EHSAPT HSAPT FOSDT (k=5/6) FOSDT (k=1)

1 263 251 251 211 231
2 —— 535 535 427 467
3 889 868 868 641 702
4 1289 1269 1269 855 936
5 1774 1749 1749 1069 1171
6 —— 2318 2318 1283 1405
7 —— 2979 2979 1497 1640
8 3806 3737 3737 1711 1874
9 4621 4594 4593 1925 2108

Table 13 shows the first 9 antisymmetric frequencies from experiment, and the

predictions of EHSAPT, HSAPT, and FOSDT (when the shear correction factor

k=5/6 and k=1). It can be seen that EHSAPT and HSAPT predict practically

the same antisymmetric natural frequencies for the first 9 frequencies. The high-

order theories are within −5% of the experimentally found fundamental mode, and

are within -2% for the higher modes. Jensen and Irgens reported that they had to

slightly clamp the specimen at the supports to prevent it from sliding and this would

effect the fundamental mode more than higher modes, due to the number of nodal
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Table 14: Comparison of natural frequencies of a sandwich beam with a soft core,
Symmetric Modes

Mode Experiments [22] EHSAPT HSAPT
1 —— 2492 2424
2 —— 2499 2431
3 —— 2508 2464
4 —— 2569 2554
5 —— 2744 2734
6 3358 3056 3035
7 —— 3517 3473
8 —— 4127 4052
9 —— 4878 4767

points they affect (see [22]). Therefore, we believe that the slightly lower accuracy

at fundamental mode is due to the slightly clamped supports. The superiority of

the high-order theories is apparent when comparing the classical FOSDT with the

experimental results. FOSDT (k=5/6) and FOSDT (k=1) predict -20% and -12%

error, respectively, for the fundamental modes, and even greater error for the higher

modes, whereas EHSAPT and HSAPT improve in accuracy for higher modes.

Table 14 shows the comparison between the measured and predicted symmetric

vibrational modes. Only one symmetric mode was found in their experiments. Note

FOSDT is not shown for comparison because they treat the sandwich as transversely

incompressible. EHSAPT and HSAPT’s 6th symmetric natural frequency is within

-9% and -10% of the one experimentally found symmetric mode, respectively, whereas

EHSAPT and HSAPT’s 7th symmetric mode are within +5% and +3% of the ex-

perimentally found symmetric mode, respectively. Jenesn and Irgens did not report

the exact number of wavelength, therefore the exact mode is not known. It should

be noted that the first 4 symmetric natural frequencies predicted by EHSAPT and

HSAPT are relatively close to each other in the spectrum. When the modes are close,

they can mix and make it difficult for the TV-holograph instrument to identify the

mode. Jensen and Irgens gave this explanation for not being able to identify the

missing modes in the tables.
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It should be noted that the results were obtained from the solution procedure in

the previous section, in which the overhang was not modeled. Despite using a more

simplified model (without the overhang), the high-order theories give good results.

6.0.7 Mode shapes of EHSAPT

Figure 17: Predicted mode shapes and natural frequencies of EHSAPT (solid black
line) and HSAPT (II) (gray dash dotted line) when wave number is n=1.

In this section we shall show the predicted mode shapes of EHSAPT. We used the

same material and geometric parameters in the previous section and only consider

when the wave number n = 1. Figure 17 shows the seven predicted mode shapes of

the present theory EHSAPT (solid black lines) and the 5 predicted mode shapes of

the earlier HSAPT (dashed dotted gray lines). The mid-surface of the core is also

drawn because it is independent of the top and bottom face sheets. The un-deformed

shape and the simple supports at the edges are shown with dotted black lines.
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The first mode is antisymmetric, whereas the second mode is symmetric with re-

spect to the mid-height. EHSAPT and HSAPT predict an axial compressive mode

for mode 3, but differ in the mode shape. EHSAPT predicts that the shape is

parabolic through the height, while HSAPT compresses practically uniformly through

the height. For mode 4, EHSAPT and HSAPT predict that the top and bottom face

sheets stretch axially in opposite directions. For mode 5, EHSAPT predicts that

the mid-core axially stretches while the face sheets do not, and HSAPT predicts a

very different mode shape where the mid-core is vibrating transversely independent

of the faces. This last mode of HSAPT is actually the 6th mode of EHSAPT. Lastly,

EHSAPT’s 7th mode is one in which a cubic axial wave is vibrating though the height

of the beam.

6.0.8 Comparison with elasticity

Comparison of the fundamental mode between the different theories and elasticity is

made for several typical sandwich configurations. In the following study 12 symmetric

sandwich configurations are considered which result from considering two different

face-core material combinations, two different face to height ratios, and 3 different

length to height ratios. Since the sandwich is symmetric then Et
1 = Eb

1 = Ef
1 and

ft = fb = f . The first material combination is graphite-epoxy faces with a glass

phenolic honeycomb core which results in a modulus ratio of Ec
1/E

f
1 ∼ 0.0002. Since

the core is very soft compared to the faces this material combination is designated

as (SC) for soft-core. The second material combination is E-glass faces with a balsa

wood core and has a modulus ratio of Ec
1/E

f
1 ∼ 0.02. Since the core is moderately stiff

compared to the faces this material combination is designated as (MC) for moderate-

core. All the sandwich configurations in this study have a total thickness Htot =

(2f + 2c) = 25.4 mm. The two different face thickness to total height ratios are

foh = f/Ht = 0.02 or 0.2. These two ratios are considered as thin and thick face
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sheet configurations, respectively. Details of the geometric parameters and material

properties that were used can be found in Table 15 and Table 18, respectively. A

configuration with a soft core lay-up and thick face geometry is designated ”SCthick”,

and the other configurations follow this nomenclature. Three different length ratios

of a/Htot = {4, 10, 100} are also considered in our comparison study.

Table 15: Geometry parameters for Thinner and Thicker faces.

Thinner faces (foh=0.02) Thicker Faces (foh=0.2)
Ht = b (mm) 25.4 25.4
ft=fb=f (mm) 0.508 5.08

2*c (mm) 24.384 24.384
a = 30*Ht (mm) 762 762

Table 16: Material properties. Moduli data are in GPa. Densities are in kg/m3.

Graphite E-Glass Balsa Glass-Phenolic
Epoxy Polyester Wood Honeycomb
FACE FACE CORE CORE

E1 181.0 40.0 0.671 0.032
E2 10.3 10.0 0.158 0.032
E3 10.3 10.0 7.72 0.300
G23 5.96 3.5 0.312 0.048
G31 7.17 4.5 0.312 0.048
G12 7.17 4.5 0.200 0.013
ν32 0.40 0.40 0.49 0.25
ν31 0.016 0.26 0.23 0.25
ν12 0.277 0.065 0.66 0.25
ρ 1632 2000 250 64

Table 17 shows the comparison of fundamental frequency for the 12 different

configurations. The natural frequency given by elasticity is given in Hz, and the

percent error with respect to elasticity are given for the different theories.

For SCthin, EHSAPT and HSAPT are less than 0.1% in error from elasticity for

even a short sandwich with a/Htot = 4. For the longer SCthin beams, EHSAPT is

slightly more accurate than HSAPT. The SCthick configuration is most demanding

when it is short (a/Htot = 4). Here the high-order theories are within 2.4% error, and
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Table 17: Comparison of fundamental mode for several configurations. elasticity in
(Hz) and theories given as % Error with respect to elasticity

Config. a/htot 4 10 100

SCthin elasticity 2965.98 1071.62 22.57
EHSAPT < 0.1% < 0.1% -0.2%

HSAPT(II) < 0.1% -0.1% -0.3%
FOSDT(k=5/6) -10.3% -8.6% -0.6%

FOSDT(k=1) -2.0% -1.7% -0.3%

SCthick elasticity 2579.27 637.06 23.23
EHSAPT 2.4% 0.3% -0.2%

HSAPT(II) 2.4% 0.3% -0.2%
FOSDT(k=5/6) -64.5% -43.0% -9.7%

FOSDT(k=1) -61.1% -37.7% -7.1%

MCthin elasticity 3276.42 676.03 7.27
EHSAPT -0.4% -0.6% -1.0%

HSAPT(II) -3.7% -5.8% -6.9%
FOSDT(k=5/6) -5.4% -2.0% -1.1%

FOSDT(k=1) -1.2% -0.8% -1.0%

MCthick elasticity 2770.19 776.42 10.31
EHSAPT 0.9% 0.2% -0.7%

HSAPT(II) 0.9% 0.1% -0.9%
FOSDT(k=5/6) -31.3% -18.9% -1.1%

FOSDT(k=1) -25.4% -14.4% -1.0%

the first order shear theories have more than -60% error. For this demanding case

the length of the beam to the total thickness of the facesheets a/(2f) approaches 10.

Shear of the faces would become important as the beam becomes shorter.

For MCthin and different lengths, EHSAPT is the most accurate theory with

error between -1% to -0.4%. FOSDT (k=1) is slightly less accurate than EHSAPT.

FOSDT (k=5/6) and HSAPT are up to -5% and -7% in error, respectively. For

MCthick and different lengths, EHSAPT and HSAPT have error less than 1% error.

FOSDT (k=5/6) and (k=1) have up to -30% and -25% error, respectively, when the

length is short, but improve in accuracy up to about -1% error when the length is the

longest.

In general FOSDT with k=5/6 is more inaccurate than when k=1 for all the 12
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configurations studied. For one of the more demanding configurations of SCthick

and a/Htot = 100, FOSDT was up to -10% in error, while the high-order theories

were -0.2% in error. Table 17 shows that EHSAPT can give accurate fundamental

frequencies for a wide range of material and geometry configurations.

6.0.9 Conclusions

The dynamic formulation of EHSAPT is derived via Hamilton’s principle for a general

asymmetric sandwich configuration, and nonlinear axial strains of the face sheets are

taken into account. The solution procedure for using linear EHSAPT formulation to

determine the free vibrations of a sandwich beam/ wide panel that is simply supported

throughout its edges is explained. Comparison is made with experimental results

reported in literature for a nearly simply supported sandwich specimen. Results

show that EHSAPT give accurate results up to 2% error for higher frequencies. The

seven predicted mode shapes of EHSAPT were shown for wave number n = 1, and

revealed similar mode shapes of HSAPT plus two additional modes. Comparison is

also made with elasticity solution for the fundamental mode of 12 different sandwich

configurations that results from considering two face-core material combinations, thin

or thick faces, and three different length ratios. EHSAPT has been shown to have

good accuracy for the wide range of sandwich configurations, while FOSDT was shown

to have poor accuracy when the beam was not very long. EHSAPT was shown to

have better accuracy than HSAPT for the demanding case of sandwich beam/ wide

panel with a moderately stiff core and thin faces.
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CHAPTER VII

DYNAMIC LOADING PROBLEM

In this section we consider a simply supported sandwich beam/ wide panel that is

initially at rest, and then subjected to a load on the top face sheet of the form:

q̃t(x, t) = T (t)
∞∑
n=1

Qn sin (αnx) ; αn =
nπ

a
. (58)

The loading profile is symmetric about the mid-span yet takes a general form via a

Fourier series. The next section explains the solution approach using the EHSAPT

formulation, but with the nonlinear terms excluded. Afterwards, a particular case

study of a blast load with a half-sine profile (only n = 1) is investigated. The case

study is used to assess the accuracy of EHSAPT, and HSAPT with the elastodynamic

solution used as the benchmark.

7.0.10 Solution Approach

In this approach, the nonlinear strains of the face sheets are neglected so comparison

can be made with the linear elastodynamic benchmark. Therefore, the nonlinear

terms in the equations of motion and the boundary conditions are ignored. The

boundary conditions are simply supported at both ends and throughout the entire

beam/ wide panel thickness. Therefore the solution must satisfy at x = 0 and a, the

three kinematic boundary conditions:

wt0 = wb0 = wc0 = 0 (59)

and the right hand sides of the six natural boundary conditions in (20), (22), (23),

(24), (26a), and (28) are equal to zero.
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The following displacement shape functions satisfy these boundary conditions:

ut0 =
∞∑
n=1

U t
n(t) cos

πx

a
; uc0 =

∞∑
n=1

U c
n(t) cos

πx

a
;

φc0 =
∞∑
n=1

Φc
n(t) cos

πx

a
; ub0 =

∞∑
n=1

U b
n(t) cos

πx

a
,

wt =
∞∑
n=1

W t
n(t) sin

πx

a
; wc0 =

∞∑
n=1

W c
n(t) sin

πx

a
; wb=

∞∑
n=1

W b
n(t) sin

πx

a
. (60)

Substituting (7.0.10) into (11) to (17) (neglecting the nonlinear terms), turns the

governing partial differential equations into linear ordinary differential equations in

time, and can be cast in the following matrix form:

[Mn]{Ün(t)}+ [Kn]{Un(t)} = {Fn(t)} (61)

where [Mn] and [Kn] are the mass and the stiffness matrices, respectively, of the nth

Fourier term, and are each 7x7 and symmetric. The elements of the mass and stiffness

matrix are given in Appendix F. The mass and stiffness matrices were arranged such

that the rows of the system of equations in (61) correspond to Eqns. (16a), (13),

(14), (11), (17a), (15), (12a), respectively, and the vector of the unknown generalized

coordinates are

{Un(t)} = {U b
n(t), U c

n(t),Φc
n(t), U t

n(t),W b
n(t),W c

n(t),W t
n(t)}T (62)

and the load vector {Fn(t)} = T (t){0, 0, 0, 0, 0, 0, Qn}T . Eqn. (61) can be solved by

rearranging the equations into state space form (1st order differential equations in

time with the generalized coordinates and their first time derivatives as the states)

and using standard numerical integration methods to give the response in time.

In the next section we will use a particular blast loading case study to assess the

accuracy of EHSAPT as well as the earlier HSAPT that does not take into account

the in-plane stresses in the core. The solution procedure using displacements based

formulation of HSAPT[34] is outlined in Appendix F.2.
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7.0.11 Numerical Case Study of Blast

In this section the dynamic response of a simply supported sandwich panel, initially

at rest, then subjected to a temporal blast load that exponentially decays in time and

has a half-sine spatial profile along the beam/ wide panel is studied. Only the first

term in the Fourier series is needed. The applied load is:

q̃t(x, t) = e−(t∗1.25)ms510 sin (α1x)
kN

m
; α1 =

π

a
(63)

which decays to less than 0.1% of its original magnitude after 5.5 ms. The above

blast load parameters, as well as the material and geometry data were taken from

the experimental investigations of [16]. The faces are E-glass vinyl-ester composite:

Young’s modulus Ec
1 = 13, 600 MPa, density ρf = 1800 kg/m3. The isotropic core

is Corecell A300 styrene acrylonitrile (SAN) foam: Young’s modulus Ec = 32 MPa,

ρc = 58.5 kg/m3, Poisson’s ratio νc = 0.3, and shear modulus Gc = Ec/(2(1 + νc)).

The geometry of the sandwich configuration is: face thickness ft = fb = 5 mm,

core thickness 2c = 38 mm, width b = 102 mm, and span of beam/ wide panel

a = 152.4 mm.

The equations of motion of the form in Eqn. (61) for EHSAPT and HSAPT were

numerically integrated using ode45 function in the the commercial software Matlab.

The built-in function is based on an explict Runge-Kutta(4,5) formula which adapts

the time step until error tolerances are met. Default error tolerances were used:

relative error tolerance of 1e-3 and absolute error tolerance of 1e-6.

The transverse displacements wt, wc0, and wb at the mid-span location x = a/2

versus time are shown in Figure 18. In this figure we show the results from elasticity,

EHSAPT, and HSAPT. The two high-order sandwich beam/ wide panel theories are

practically on top of each other and display the same trend in behavior of the top,

core, and bottom displacements as elasticity, i.e. that the top face travels down first,

followed by the core, then the bottom face sheet. Differences between the high-order
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Figure 18: Transverse displacement of the top face, middle of the core, and bottom
face at the mid-span location for elasticity, EHSAPT,and HSAPT between t=0 to 2
ms (E-glass Vinyl-Ester faces/A300 Core)

theories and elasticity can be distinguished by focusing on the time between 0.4 and

1 ms when the different phases first reach their maximum values as shown in Figure

19. EHSAPT and HSAPT match the mid-height transverse displacement of elasticity.

The high-order theories over estimate the maximum displacement of the top face by

4%. The bottom face transverse displacements from EHSAPT and HSAPT do not

exactly follow elasticity, but give values within less than 6% error over the time range

in Figure 19.

Figure 20 shows the axial displacements ut0, u
c
0, and ub0 at the edge x = 0 versus

time. EHSAPT and HSAPT capture the high cyclic behavior of uc0 that elasticity

displays, with EHSAPT being closer in value to elasticity than HSAPT. The first

minimum in uc0 of EHSAPT is 10% under elasticity, while the first minimum in uc0 of

HSAPT is 32% under elasticity. Both high-order theories and elasticity predict very

similar behavior of ut0 and ub0 with time.
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Figure 19: Transverse displacement of the top face, middle of the core, and bottom
face at the mid-span location for elasticity, EHSAPT,and HSAPT between t=0.4 to
1 ms (E-glass Vinyl-Ester faces/A300 Core)

The transverse stress at the top and bottom face/core interfaces at the mid-

span are shown in Figure 21. EHSAPT and HSAPT predict similar behavior in

transverse stresses versus time. The high-order theories show that a tensile stress

wave occurs in the bottom face/core interface just after the blast (within the first

50 microseconds). Afterwards the compressive stress wave reaches the bottom face.

This is similar to the cavitation zone in water that occurs behind a shock wave

front. The numerical solution of elasticity could not recover this behavior so soon

after the initial blast due to numerical instabilities at very small time steps. This

cavitation phenomenon is further detailed in Figure 22 by showing that the core

moves upwards before moving downwards microseconds just after the initial blast.

The maximum compressive transverse stress at the top face/core interface predicted

by the high-order theories (at around 0.23 ms) overpredicts the elasticity value by

5%. The maximum compressive transverse stress at the bottom face/core interface

predicted by the high-order theories (at around 0.2 ms) overpredicts the elasticity
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Figure 20: Axial displacement of the top face, middle of the core, and bottom face
at the edge x=0 for elasticity, EHSAPT,and HSAPT between t=0 to 1.2 ms (E-glass
Vinyl-Ester faces/A300 Core)

value by 6%. The high-order theories correctly predict that the bottom face/core

interface undergoes a tensile stress at the bottom/face core interface over time. The

first maximum tensile transverse stress at the bottom face/core interface (after the

cavitation phenomenon) predicted by the high-order theories (at around 0.44 ms)

overpredicts the elasticity value by 14%.

The shear stress at the top and bottom face/core interfaces at x = 0 is shown in

Figure 23. EHSAPT is the only theory that can show the differences in the shear

stresses at the top and bottom face/core interfaces like elasticity, while HSAPT pre-

dicts that the shear stress is constant throughout the thickness and is the average

value of EHSAPT and elasticity. EHSAPT gives a minimum shear stress (most neg-

ative shear stress) at the top and bottom face/core interface under the minimum

elasticity values by -0.5%. HSAPT is within 3% and -6% of elasticity’s predictions of

minimum τ c(z = c) and τ c(z = −c), respectively.

It was shown in the author’s previous work on static stability using high-order
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Figure 21: Transverse stress of the top face, middle of the core, and bottom face
at the mid-span location for elasticity, EHSAPT,and HSAPT between t=0 to 1 ms
(E-glass Vinyl-Ester faces/A300 Core)

sandwich beam/ wide panel theories that HSAPT can be inaccurate for very thin face

configurations of face thickness to total height f/Htot = 0.02. Plotted in Figures 24

and 25 are the transverse shear stresses at the top and bottom face/core interfaces for

a soft core and moderate core configuration with thin face sheet ratios f/Htot = 0.02.

The soft core configuration is graphite epoxy faces with a glass phenolic honeycomb

core (Ef
1 /E

c
1 < 0.001) and the moderate core configuration is E-glass faces with a

Balsa wood core (Ef
1 /E

c
1 ∼ 0.02). See Table 18 for the material data for the soft core

and moderate core configurations. Both configurations have the same Htot = 48 mm

as before and all other geometric parameters kept the same except f/Htot is now

0.02. It can be seen from Figure 24 that for soft cores and thin faces the shear

stresses at the top and bottom face/core interfaces can be very different, as predicted

by EHSAPT. Though HSAPT predicts an average value of the shear stress at the top

and bottom face core interface for the E-glass vinyl face/A300 foam core and graphite

epoxy face/glass phenolic honeycomb core, HSAPT overpredicts the negative shear
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Figure 22: Transverse displacement of the top face, middle of the core, and bottom
face at the mid-span location for EHSAPT and HSAPT between t=0 to 50 microsec-
onds (E-glass Vinyl-Ester faces/A300 Core)

stress of the top and bottom face/core interfaces for the E-glass face/Balsa wood core

configuration by as must as 10%.

7.0.12 Discussion

In the previous numerical study it was shown that EHSAPT and HSAPT can give

reasonably close results to elasticity in the prediction of transverse displacements of

the top face, middle of the core, and the bottom face in time. Also, the high-order

theories give accurate results for the axial displacements of the top and bottom face

sheets. EHSAPT and HSAPT show different predictions for the mid-core axial dis-

placement with time, with EHSAPT being closer in value to elasticity. The high-order

theories were able to predict the cavitation phenomenon in the transverse stresses and

transverse displacements while the numerical method of the elasticity solution could

not capture this behavior so close to the initial blast. There also was a phase shift

between elasticity and the high-order theories for the prediction of the transverse

stresses. EHSAPT showed that it can capture the nonequal shear stresses at the top
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Figure 23: Shear stress at the top face and bottom face/core interfaces at the x=0 for
elasticity, EHSAPT,and HSAPT between t=0 to 1 ms (E-glass Vinyl-Ester faces/A300
Core)

and bottom face/core interface with time, while HSAPT predicts a constant value

through the height of the core. It was also shown that for sandwich beams/ wide

panels with very thin faces and very soft cores (Ef
1 /E

c
1 < 0.001) that the difference

between the shear stress at the top and bottom face/core interface can be much dif-

ferent. For sandwich beams/ wide panels with very thin faces and moderate cores

(Ef
1 /E

c
1 ∼ 0.02) HSAPT does not give the average value of the top and bottom

face/core interface shear stress.

7.0.13 Conclusions

The dynamic formulation of EHSAPT is presented for a general sandwich configu-

ration. The solution procedure for using EHSAPT to determine the linear dynamic

response of a sandwich beams/ wide panels that is simply supported throughout its

edges and loaded just on the top face sheet is explained. A numerical case study in-

volving the blast load with a temporal exponential decay and a spatial half-sine profile

across the top of the beam/ wide panel is used to compare EHSAPT, and HSAPT

84



Figure 24: Shear stress at the top face and bottom face/core interfaces at the x=0
for EHSAPT,and HSAPT between t=0 to 0.3 ms (SCthin configuration)

to an elasticity benchmark. HSAPT predicts well the transverse displacements of

the top sheet, middle of the core, and the bottom face sheet, as well as the in-plane

displacements of the top and bottom face sheets. EHSAPT does this as well, but is

also able to capture the non uniform shear stresses by showing that the shear stress

at the top and bottom face/core interfaces can be different, while HSAPT cannot.
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Figure 25: Shear stress at the top face and bottom face/core interfaces at the x=0
for EHSAPT,and HSAPT between t=0 to 0.3 ms (MCthin configuration)

Table 18: Material properties. Moduli data are in GPa. Densities are in kg/m3.

Graphite E-Glass Balsa Glass-Phenolic
Epoxy Polyester Wood Honeycomb
FACE FACE CORE CORE

E1 181.0 40.0 0.671 0.032
E2 10.3 10.0 0.158 0.032
E3 10.3 10.0 7.72 0.300
G23 5.96 3.5 0.312 0.048
G31 7.17 4.5 0.312 0.048
G12 7.17 4.5 0.200 0.013
ν32 0.40 0.40 0.49 0.25
ν31 0.016 0.26 0.23 0.25
ν12 0.277 0.065 0.66 0.25
ρ 1632 2000 250 64
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CHAPTER VIII

IMPACT LOADING PROBLEM

Impact upon sandwich beams/ wide panels can occur during their manufacturing

process from dropped tools, or in service depending on the application; possible bird

strike upon a wind turbine, or debris hitting an armored tank during a nearby ex-

plosion. An impact experiment was conducted upon a sandwich beam/ wide panel

to experimentally validate the dynamic formulation of EHSAPT. The three-point

bending impact experiment was conducted upon a symmetric sandwich beam/ wide

panel that consisted of Glass CSM faces and Airex T90.320 PET foam core. The me-

chanical properties of the top and bottom faces were: Young’s modulus of the faces

Ef
1 = 13.9 GPa and ρf = 1801.082 kg/m3. The mechanical properties of the isotropic

core were: Ec = 270 MPa and Poisson’s ratio ν = 0.3, and density ρc = 320 kg/m3.

The sandwich beam/ wide panel rested on two supports on the bottom face sheets as

depicted in Figure 26.

The beam had a total length of 451 mm, a width b = 60.85 mm, face thickness

fb = ft = f = 2.24 mm, and core thickness 2c = 18.5 mm. The beam was placed on

supports that were 400 mm apart, and the beam overhung 25.5 mm on both sides

of the supports (i.e. the supports were symmetric about the beam’s mid-span). A

composite tab of length 32 mm was glued to the top face sheet to distribute the

impact load, and prevent local damage from occurring at low impact energies. A

number of tests were conducted to ensure that the tab did not significantly effect the

stiffness of the beam.

Some ratios of interest are the face thickness to total height of the sandwich beam/

wide panel f/Htot = f/(2f + 2c) = 0.0975, so the beam had thin faces, and Young’s
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Sandwich panelImpact Hammer

Simple supports

Rubber
band

Figure 26: Experimental setup of Three point impact experiment

modulus ratio Ec/Ef
1 = 0.02, therefore the core did not have a negligible in-plane

rigidity compared to the faces.

The experiment was conducted using a Drop Weight Impact Tester from Imatek

Impact Test Systems (owned by the Centre for Advanced Composites Materials,

Auckland University, Auckland, NZ). The system includes the capability to record

transient force, displacement, velocity, energy and strains during the impact event.

The impact hammer spanned the entire width of the beam, so the loading was sym-

metric about the x− z plane of the beam. An impact mass of 10.494 kg was dropped

on the center of the beam with 1.005 m/s impact velocity, for a set impact energy of

6 Joules. The mass was allowed to hit the beam under its own weight and bounce

upwards. The test system automatically prevented it from striking the beam a second

time.

8.1 Results

A load cell recorded the force time history of the impact, shown in Figure 27. During

the 20 ms shown in the plot, the impact hammer was in contact with the specimen.
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Figure 27: Force versus time

Figure 28: Transverse displacement of impact hammer versus time, shown as positive,
though transverse displacement is downwards.
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The load profile shows oscillations in time due to the interaction of the mass with

the elastic structure. At around 10 ms, the load is maximum and afterwards the load

decreases. From looking at the transverse displacement of the hammer with time,

shown in Figure 28, the maximum load occurs around the same time as the maximum

displacement. Also shown in Figure 28 is the prediction from EHSAPT, which follow

the experimental value quite well. However oscillations are observed from the theory,

whereas the experimental values look quite smooth with time. It is believed that

the resolution of the Imatek system might be too coarse, or perhaps it smooths

the displacement data readout. It should be noted that the maximum measured

displacement is around 7 mm which has allowed us to use the linear formulation of

EHSAPT, since displacements are small.

Three strain gauges were placed on the top face sheet and two strain gauges were

placed on the bottom face sheet of the specimen at locations detailed in Figure 29.

Comparison between measured and predicted (from EHSAPT) strain for these five

locations are shown in Figures 30 to 34. It can be observed in all comparisons that

EHSAPT follows the measured data quite well for the first 2 ms. Beyond 2 ms

high frequency oscillation in EHSAPT are more apparent (have higher amplitudes)

than the experimental data. This is believed to be due to structural damping being

neglected in the model of EHSAPT. The fundamental period of the sandwich panel,

Figure 29: Locations of strain gauges A, B, C, D, and E
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Figure 30: Microstrain at location A

Figure 31: Microstrain at location B
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Figure 32: Microstrain at location C

Figure 33: Microstrain at location D
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Figure 34: Microstrain at location E

predicted from EHSAPT if it were assumed to be simply supported throughout at the

support locations, would be T1 = 2.3 ms. Therefore, the impact experiment spanned

about nine fundamental periods, and structural damping must have played a role

for the fundamental as well as higher frequencies in the beam. The predicted peak

strain values overestimate the measure peak strain values, which would can also be

explained by the lack of structural damping in the model.

One validation of the theory occurs in the first couple of ms just after impact.

Figure 35, shows that EHSAPT correctly predicts that the measured strain at location

C on the bottom ”tensile” side of the beam the face sheet undergoes a compressive

strain before becoming tensile. Also a similar observation is made at location E on the

top ”compressive” side of the beam, that the top face sheet undergoes a tensile strain

before becoming compressive. After about 2 ms EHSAPT seems to show similar

oscillations as experiment but with bigger amplitudes due to no structural damping.
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Figure 35: Microstrain at location C just after impact

Figure 36: Microstrain at location E just after impact

8.2 Conclusions

The impact experiment in some way validated EHSAPT in the first fundamental

period of the impact. EHSAPT was able to capture very detailed features such

as compressive strain on the ”tensile” side of the beam, and tensile strain on the
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”compressive” side of the beam. After about 2 ms, it is believed that neglecting

structural damping in the EHSAPT model caused high oscillation in the predicted

strains to never dissipate. Also since the beam was still being loaded during that time,

the total of energy of the beam continued to increase and in a sense kept ”feeding”

these higher modes of vibration of the beam. Therefore, it is recommended that a

structural damping model be included with comparison with real dynamic loading

experiments involving sandwich panels.
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CHAPTER IX

CONCLUSIONS

The Extended High-order SAndwich Panel Theory (EHSAPT) was presented for a

sandwich beam/wide panel that allows for the transverse shear distribution in the

core to acquire the proper distribution as the core stiffness increases as a result of

non-negligible axial stresses in the core. Thus, this theory is valid for weak or stiff

cores. The theory assumes a transverse displacement in the core that varies as a

second-order equation in z, and an axial displacement that is of third order in z,

following the displacement distributions of the High-order SAndwich Panel Theory

(HSAPT) model, see Frostig et al. [15]. The novelty of EHSAPT is that it allows

for three generalized displacement variables in the core (the axial and transverse

displacements at the centroid of the core, and the rotation at the centroid of the

core) instead of just one (mid-point transverse displacement) commonly adopted in

other available theories [19, 27]. The theory is formulated for a sandwich panel with

a general layout. The major assumptions of the theory are as follows:

(1) The face sheets satisfy the Euler-Bernoulli assumptions, and their thicknesses

are small compared with the overall thickness of the sandwich section. The face

sheets can be made of different materials and can have different thicknesses,

and they can undergo large displacements with moderate rotations.

(2) The core is compressible in the transverse and axial directions (transverse dis-

placement is 2nd order in z and axial displacement is 3rd order in z), following

the displacement distributions of the HSAPT model, see Frostig et al. [15].

The core has in-plane, transverse and shear rigidities, and it undergoes large

displacements while maintating the kinematic relations of small deformations
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due to its low in-plane rigidity as compared with that of the face sheets.

(3) The face sheets and core are perfectly bonded at their interfaces.

(4) The face sheets and core material do not exhibit bend-twist coupling.

(5) Only loads that do not cause displacements in the y-direction are considered.

Validation of the present theory was performed using several structural analysis

problems including static loading, static instability (global buckling and wrinkling),

free vibrations, and dynamic loading. The accuracy of the theory was assessed by

comparison with the elasticity solutions and with experimental data.

In the study of a static half-sine load applied to the top face sheet of a simply

supported sandwich beam/wide panel, the present extended-high order theory is very

close to the elasticity solution in terms of both the displacements and the transverse

stress or strain, as well as axial stress through the core, and, in addition, the shear

stress distributions in the core for core materials ranging from very soft to almost half

the stiffness of the face sheets. In particular, it captures the very large range of core

shear stress and the nearly parabolic profile in the cases of cores that are not ”soft”.

Results also show that the First-Order Shear Deformable Theory (FOSDT) can yield

very inaccurate results in terms of the transverse displacements and shear stress for

the range of material and geometry combinations considered.

In the study of global buckling of a simply supported sandwich panel undergo-

ing a static edgewise load, the nonlinear EHSAPT formulation was solved using a

perturbation approach, and the elasticity solution was used as the benchmark. The

results from three different solution approaches (in conjunction with the perturbation

approach) using EHSAPT revealed that accurate global buckling critical loads can

only be obtained by either applying the load to just the face sheets and only consid-

ering nonlinear deformations in the face sheets (Case(a)), or applying a more realistic

distributed load to the faces and the core and considering nonlinear deformations
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in the faces and the core (Case(c)). A third solution approach (Case(b)) in which

the load is applied to the faces and the core but large deformations in the core are

neglected give inaccurate critical loads. The accuracy of these solution approaches

using EHSAPT was examined for sandwich panels with a range of face sheet thick-

ness. HSAPT and FOSDT were shown to give less accurate critical loads as the face

sheets become thinner with respect to the total height of the sandwich panel.

PFLC (loading on the faces and linear strains in the core) and USNLC (uni-

form strain loading and nonlinear strains in the core) solution approaches, referred to

above as Case (a) and Case (c), respectively, are used to study wrinkling instability

of thin face sandwich panels. Predictions of critical wrinkling modes using these two

approaches with EHSAPT are compared to elasticity, experiments in literature, and

recent experiments that involve sandwich panels with homogeneous and honeycomb

type core material. In all sandwich panel configurations considered, including ones

with very soft and moderately soft cores, EHSAPT was closest to elasticity. The

large discrepancy between HSAPT and elasticity for configurations with very thin

face sheets indicate that the in-plane rigidity can play a significant role during wrin-

kling. Good agreement was found between EHSAPT and wrinkling experiments for

sandwich panels with solid and honeycomb cores.

The accuracy of EHSAPT for predicting antisymmetric and symmetric modal fre-

quencies is assessed by comparison with experimental results reported in literature.

The predicted modes shapes of EHSAPT are drawn and compared to HSAPT. Further

validation of the new theory is conducted by comparing the predicted fundamental

frequency with an elasticity solution. Twelve different sandwich configurations rang-

ing from soft to moderate core, thin to thick faces, and short to long beams/wide

panels are used as test cases. The classical FOSDT and HSAPT are also shown for

comparison. It is shown that EHSAPT yields accurate results for the wide range of

test cases.
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A numerical case study involving a blast load with a temporal exponential de-

cay and a spatial half-sine profile across the top of the panel is used to compare

EHSAPT and HSAPT to a dynamic elasticity benchmark. HSAPT accurately pre-

dicts the transverse displacements of the top sheet, middle of the core, and the bottom

face sheet, as well as the in-plane displacements of the top and bottom face sheets.

EHSAPT does this as well but is also able to capture the non-uniform shear stresses

by showing that the shear stress at the top and bottom face/core interfaces can be

different.

A three-point bending impact experiment was conducted on a sandwich panel

in order to validate the dynamic formulation of EHSAPT. The new sandwich panel

theory was able to accurately capture features of the collected strain gauge data on the

top and bottom face sheets within the first couple milliseconds of the impact. Beyond

this time, but still during impact, structural damping (not taken into account) was

believed to play a role.

EHSAPT has been formulated for sandwich beams/wide panel that only undergo

loads which make it deform only in the x − z plane. Future work can take the

displacement formulation of EHSAPT and extend it to account for deformation out

of the x − z plane, i.e., allow for bend-twist coupling, or loading in the y − z plane.

Also EHSAPT can be further formulated for plates and shells. EHSAPT in its current

or further extended form can be used to solve a number of other structural analysis

problems such as: thermal loading, effect of delamination, dynamic stability, to name

a few. EHSAPT can be turned into a finite element for use in commercial structural

analysis tools.
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APPENDIX A

CLASSICAL AND FOSDT

A.1 Classical Sandwich Beam Theory (without shear)

The Classical sandwich theory assumes that the core is transversely incompressible

and the displacement of the top and bottom face sheets and core are the same. The

governing differential equation is:

D11
∂4w(x)

∂x4
= q̃t(x) , (64)

where D11 is the bending stiffness per unit width of the beam.

In the general asymmetric case, the neutral axis of the sandwich section is defined

at a distance e from the x-axis (Figure 1):

e
(
Et

1ft + Eb
1fb
)

= Et
1ft

(
ft
2

+ c

)
− Eb

1fb

(
fb
2

+ c

)
. (65)

Therefore, the bending stiffness per unit width, D11, is:

D11 = Et
1

f 3
t

12
+ Et

1ft

(
ft
2

+ c− e
)2

+ Eb
1

f 3
b

12
+ Et

1fb

(
fb
2

+ c+ e

)2

. (66)

For the load of (23) the displacement is expressed as:

w(x) = W0 sin
πx

a
. (67)

Substituting into Eqn (A1) leads to:

W0 =
q0a

4

D11π4
. (68)
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A.2 First-Order Shear Sandwich Panel Theory

For the First Order Shear model, if we let ψ be the shear deformation then the

governing equations with shear effects can be written as:

D11ψ,xx(x)− κD55 [ψ(x) + w,x(x)] = 0 , (69)

κD55 [ψ,x(x) + w,xx(x)] + q̃t(x) = 0 , (70)

where κ = 5/6 is the shear correction factor and

D55 = Gc
13(2c) . (71a)

In some versions of the First Order Shear model, the shear of the face sheets is

included, i.e.

D55 = Gc
13(2c) +Gt

13ft +Gb
13fb . (71b)

Setting

w(x) = W0 sin
πx

a
; ψ(x) = Ψ0 cos

πx

a
. (72)

with the load in the same manner as Eqn (23), and substituting in (A5-6) leads to:

Ψ0 = − L13

L11L33 − L2
13

q0 ; W0 =
L11

L11L33 − L2
13

q0 , (73)

where

L11 = D11
π2

a2
+ κD55 ; L13 = κD55

π

a
; L33 = κD55

π2

a2
. (74)
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APPENDIX B

HSAPT

This theory was first presented in [15] is expressed in terms of five unknown dis-

placement variables, the ut0(x), wt0(x), ub0(x), wb0(x) and τ c(x). The five differential

equations, adapted from Frostig et al (1992) for the present sandwich geometric and

coordinate configuration, are as follows:

Top Face Sheet:

Ct
11ftu

t
0,xx(x)− τ c(x) = 0 , (75)

− Cc
33

2c
wb0(x) + Ct

11

f 3
t

12
wt0,xxxx(x) +

Cc
33

2c
wt0(x)− 2c+ ft

2
τ c,x(x) = q̃t(x) . (76)

Core:

ub0(x)−ut0(x)− 2c+ fb
2

wb0,x(x)− 2c+ ft
2

wt0,x(x)− (2c)3

12Cc
33

τ c,xx(x)+
2c

Cc
55

τ c(x) = 0 . (77)

Bottom Face Sheet:

Cb
11fbu

b
0,xx(x) + τ c(x) = 0 , (78)

Cb
11

f 3
b

12
wb0,xxxx(x) +

Cc
33

2c
wb0(x)− Cc

33

2c
wt0(x)− 2c+ fb

2
τ c,x(x) = 0 . (79)

By setting the unknown displacement variable profiles in the form

ut,b0 = U t,b
0 cos

(πx
a

)
; wt,b0 = W t,b

0 sin
(πx
a

)
; τ c = T c cos

(πx
a

)
, (80)

which satisfy the simply supported boundary conditions, and substituting q̃t(x) from

Eqn (23), we obtain a system of five linear equations for the U t,b
0 , W t,b

0 and T c.
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In this theory, the displacement field of the core depends on the unknown dis-

placement variables in the following way:

wc(x, z) = wb0(x) +
z + c

2c

[
wt0(x)− wb0(x)

]
− z2 − c2

2Cc
33

τ c,x(x) , (81)

and

uc(x, z) = ub0(x) +
z + c

Cc
55

τ c(x)− 1

2Cc
33

[
(z + c)2c− (z + c)3

3

]
τ c,xx(x)−

−(z + c)2

4c
wt0,x(x)−

[
ft
2
− (z + c)2

4c
+ (z + c)

]
wb0,x(x) . (82)
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APPENDIX C

EHSAPT WITH STRESS RESULTANTS

C.1 Governing differential equations of EHSAPT

Top face sheet:

δut0 : −N t
,x −

(
4

5
Cc

55 +
2c2

35
Cc

11

∂2

∂x2

)
φc0 −

(
7

30c
Cc

55 +
c

35
Cc

11

∂2

∂x2

)
ub0

−
(

4

3c
Cc

55 +
2c

15
Cc

11

∂2

∂x2

)
uc0 +

(
47

30c
Cc

55 −
6c

35
Cc

11

∂2

∂x2

)
ut0

−
(
ηb2
∂

∂x
− cfb

70
Cc

11

∂3

∂x3

)
wb0 + β1

∂wc0
∂x

+

(
ηt3
∂

∂x
− 3cft

35
Cc

11

∂3

∂x3

)
wt0 = 0 , (83a)

and

δwt0 : −N t
,xw

t
0,x+M

t
,xx−N twt0,xx+

(
ηt4
∂

∂x
+
c2ft
35

Cc
11

∂3

∂x3

)
φc0+

(
−ηt2

∂

∂x
+
cft
70
Cc

11

∂3

∂x3

)
ub0

+

(
ηt6
∂

∂x
+
cft
15
Cc

11

∂3

∂x3

)
uc0 +

(
−ηt3

∂

∂x
+

3cft
35

Cc
11

∂3

∂x3

)
ut0

+

(
1

6c
Cc

33 + β2
∂2

∂x2
− cfbft

140
Cc

11

∂4

∂x4

)
wb0 +

(
− 4

3c
Cc

33 + ηt7
∂2

∂x2

)
wc0

+

(
7

6c
Cc

33 + ηt8
∂2

∂x2
+

3cf 2
t

70
Cc

11

∂4

∂x4

)
wt0 = 0 . (83b)

Core:

δuc0 : −N c
,x +

(
− 4

3c
Cc

55 +
c

5
Cc

11

∂2

∂x2

)
ub0 +

(
8

3c
Cc

55 +
4c

15
Cc

11

∂2

∂x2

)
uc0

+

(
− 4

3c
Cc

55 +
c

5
Cc

11

∂2

∂x2

)
ut0 −

(
ηb6a

∂

∂x
+
cfb
10
Cc

11

∂3

∂x3

)
wb0

+

(
ηt6a

∂

∂x
+
cft
10
Cc

11

∂3

∂x3

)
wt0 = 0 , (84a)
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δφc0 : V c +M c
,x +

(
8c

5
Cc

55 +
4c3

35
Cc

11

∂2

∂x2

)
φc0 +

(
9

5
Cc

55 −
c2

7
Cc

11

∂2

∂x2

)
ub0

+

(
−9

5
Cc

55 +
c2

7
Cc

11

∂2

∂x2

)
ut0 +

(
3

2
ηb4a

∂

∂x
+
c2fb
14

Cc
11

∂3

∂x3

)
wb0

−2cβ1
∂wc0
∂x

+

(
3

2
ηt4a

∂

∂x
+
c2ft
14

Cc
11

∂3

∂x3

)
wt0 = 0 , (84b)

and

δwc0 : −V c
,x −

4c

3
β1
∂φc0
∂x

+ (β1 − Cc
55)

(
∂ub0
∂x
− ∂ut0

∂x

)
−
(

4

3c
Cc

33 − ηb7a
∂2

∂x2

)
wb0

+

(
8

3c
Cc

33 +
4c

15
Cc

55

∂2

∂x2

)
wc0 −

(
4

3c
Cc

33 − ηt7a
∂2

∂x2

)
wt0 = 0 . (84c)

Bottom face sheet:

δub0 : −N b
,x +

(
4

5
Cc

55 +
2c2

35
Cc

11

∂2

∂x2

)
φc0 +

(
47

30c
Cc

55 −
6c

35
Cc

11

∂2

∂x2

)
ub0

−
(

4

3c
Cc

55 +
2c

15
Cc

11

∂2

∂x2

)
uc0 −

(
7

30c
Cc

55 +
c

35
Cc

11

∂2

∂x2

)
ut0

+

(
−ηb3

∂

∂x
+

3cfb
35

Cc
11

∂3

∂x3

)
wb0 − β1

∂wc0
∂x

+

(
ηt2
∂

∂x
− cft

70
Cc

11

∂3

∂x3

)
wt0 = 0, (85a)

and

δwb0 : −N b
,xw

b
0,x+M

b
,xx−N bwb0,xx+

(
ηb4
∂

∂x
+
c2fb
35

Cc
11

∂3

∂x3

)
φc0+

(
ηb3
∂

∂x
− 3cfb

35
Cc

11

∂3

∂x3

)
ub0

−
(
ηb6
∂

∂x
+
cfb
15
Cc

11

∂3

∂x3

)
uc0 +

(
ηb2
∂

∂x
− cfb

70
Cc

11

∂3

∂x3

)
ut0

+

(
7

6c
Cc

33 + ηb8
∂2

∂x2
+

3cf 2
b

70
Cc

11

∂4

∂x4

)
wb0 +

(
− 4

3c
Cc

33 + ηb7
∂2

∂x2

)
wc0

+

(
1

6c
Cc

33 + β2
∂2

∂x2
− cfbft

140
Cc

11

∂4

∂x4

)
wt0 = 0, (85b)
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The following constants, which were used in the governing equations, are defined

(i = t, b):

ηi2 =
1

30
Cc

13 +

(
1

30
− 7fi

60c

)
Cc

55 , (86a)

ηi3 = −11

30
Cc

13 +

(
19

30
+

47fi
60c

)
Cc

55 , ηi4 =
4c

15
Cc

13 +

(
4c

15
+

2fi
5

)
Cc

55 , (86b)

ηi6 =
2

3
Cc

13 +

(
2

3
+

2fi
3c

)
Cc

55 , ηi7 = −fi
5
Cc

13 −
(

2c

15
+
fi
5

)
Cc

55 (86c)

ηi8 =
11fi
30

Cc
13 −

(
4c

15
+

19fi
30

+
47fi

2

120c

)
Cc

55 , ηi4a = ηi4 −
(

2c

3
+ fi

)
Cc

55 (86d)

ηi6a = Cc
13 − ηi6 , ηi7a =

2c+ 3fi
6

Cc
55 + ηi7 , ηi8a =

11fi
60

Cc
13 − ηi8 , (86e)

and

β1 =
2

5
(Cc

13 + Cc
55) , (86f)

β2 =
fb + ft

60
Cc

13 +

(
c

15
+
fb + ft

60
− 7fbft

120c

)
Cc

55 , (86g)

C.2 Boundary conditions of EHSAPT

At each end there are nine boundary conditions, three for each face sheet and three

for the core. The corresponding boundary conditions at x = 0 and x = a, read as

follows:

For the top face sheet:

(i) Either δut0 = 0 or,

N t +

(
2c2

35
Cc

11

)
φc0,x +

( c
35
Cc

11

)
ub0,x +

(
2c

15
Cc

11

)
uc0,x +

(
6c

35
Cc

11

)
ut0,x+

+

(
1

30
Cc

13 −
cfb
70
Cc

11

∂2

∂x2

)
wb0 −

2

5
Cc

13w
c
0 +

(
11

30
Cc

13 +
3cft
35

Cc
11

∂2

∂x2

)
wt0 = Ñ t +

ñcc

3
,

(87a)

where Ñ t is the end axial force per unit width at the top face.
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(ii) Either δwt0 = 0 or,

N twt0,x−M t
,x−

[
2(2c+ 3ft)

15
Cc

55 +
c2ft
35

Cc
11

∂2

∂x2

]
φc0 +

[
(2c− 7ft)

60c
Cc

55 −
cft
70
Cc

11

∂2

∂x2

]
ub0

−
[

2(c+ ft)

3c
Cc

55 +
cft
15
Cc

11

∂2

∂x2

]
uc0 +

[
(38c+ 47ft)

60c
Cc

55 −
3cft
35

Cc
11

∂2

∂x2

]
ut0

+

[(
fb
60
Cc

13 − β2
)

∂

∂x
+
cfbft
140

Cc
11

∂3

∂x3

]
wb0

−ηt7
∂wc0
∂x

+

[
ηt8a

∂

∂x
− 3cf 2

t

70
Cc

11

∂3

∂x3

]
wt0 = 0 , (87b)

(iii) Either: δwt0,x = 0 or,

M t +

(
c2ft
35

Cc
11

)
φc0,x +

(
cft
70
Cc

11

)
ub0,x +

(
cft
15
Cc

11

)
uc0,x +

(
3cft
35

Cc
11

)
ut0,x

+

(
ft
60
Cc

13−
cfbft
140

Cc
11

∂2

∂x2

)
wb0−

(
ft
5
Cc

13

)
wc0 +

(
11ft
60

Cc
13 +

3cf 2
t

70
Cc

11

∂2

∂x2

)
wt0 =

ñccft
6

,

(87c)

where M̃ t is the end moment per unit width at the top face (at the end x = 0 or

x = a).

For the core:

(i) Either δuc0 = 0 or,

N c −
(
c

5
Cc

11

)
ub0,x −

(
4c

15
Cc

11

)
uc0,x −

(
c

5
Cc

11

)
ut0,x

+

(
1

3
Cc

13 +
cfb
10
Cc

11

∂2

∂x2

)
wb0 −

(
1

3
Cc

13 +
cft
10
Cc

11

∂2

∂x2

)
wt0 =

4ñcc

3
. (88a)

(ii) Either δφc0 = 0 or,

−M c −
(

4c3

35
Cc

11

)
φc0,x +

(
c2

7
Cc

11

)
ub0,x −

(
c2

7
Cc

11

)
ut0,x −

(
2c

5
Cc

13 +
c2fb
14

Cc
11

∂2

∂x2

)
wb0

+
4c

5
Cc

13w
c
0 −

(
2c

5
Cc

13 +
c2ft
14

Cc
11

∂2

∂x2

)
wt0 = 0 . (88b)
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(iii) Either δwc0 = 0 or,

V c +

[
8c

15
φc0 +

3

5
ub0 −

3

5
ut0 −

(2c+ 3fb)

10
wb0,x −

4c

15
wc0,x −

(2c+ 3ft)

10
wt0,x

]
Cc

55 = 0 .

(88c)

For the bottom face sheet:

(i) Either δub0 = 0 or,

N b −
(

2c2

35
Cc

11

)
φc0,x +

(
6c

35
Cc

11

)
ub0,x +

(
2c

15
Cc

11

)
uc0,x +

( c
35
Cc

11

)
ut0,x

−
(

11

30
Cc

13 +
3cfb
35

Cc
11

∂2

∂x2

)
wb0 +

2

5
Cc

13w
c
0 +

(
− 1

30
Cc

13 +
cft
70
Cc

11

∂2

∂x2

)
wt0 = Ñ b +

ñcc

3
,

(89a)

where Ñ b is the end axial force per unit width at the bottom face

(ii) Either δwb0 = 0 or,

N bwb0,x−M b
,x−
[

2(2c+ 3fb)

15
Cc

55 +
c2fb
35

Cc
11

∂2

∂x2

]
φc0+

[
−(38c+ 47fb)

60c
Cc

55 +
3cfb
35

Cc
11

∂2

∂x2

]
ub0

+

[
2(c+ fb)

3c
Cc

55 +
cfb
15
Cc

11

∂2

∂x2

]
uc0 +

[
(−2c+ 7fb)

60c
Cc

55 +
cfb
70
Cc

11

∂2

∂x2

]
ut0

+

(
ηb8a

∂

∂x
− 3cf 2

b

70
Cc

11

∂3

∂x3

)
wb0 −

(
ηb7
∂

∂x

)
wc0

+

[(
ft
60
Cc

13 − β2
)
∂

∂x
+
cfbft
140

Cc
11

∂3

∂x3

]
wt0 = 0 , (89b)

(iii) Either δwb0,x = 0 or,

M b +

(
c2fb
35

Cc
11

)
φc0,x −

(
3cfb
35

Cc
11

)
ub0,x −

(
cfb
15
Cc

11

)
uc0,x −

(
cfb
70
Cc

11

)
ut0,x

+

(
11fb
60

Cc
13 +

3cf 2
b

70
Cc

11

∂2

∂x2

)
wb0 −

fb
5
Cc

13w
c
0 +

(
fb
60
Cc

13 −
cfbft
140

Cc
11

∂2

∂x2

)
wt0 = − ñ

ccfb
6

.

(89c)

In the above equations, the superscript˜denotes the known external boundary

values.
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APPENDIX D

KLC MATRIX OF EHSAPT

The [KLC ] matrix of EHSAPT is symmetric and has the following elements, kij,

i, j = 1, . . . 7:

k11 =
47

30c
Cc

55 +
6cπ2

35a2
Cc

11 + Cb
11fb

π2

a2
; k12 = − 4

3c
Cc

55 +
2cπ2

15a2
Cc

11 , (90a)

k13 =
4

5
Cc

55 −
2c2π2

35a2
Cc

11 ; k14 = − 7

30c
Cc

55 +
cπ2

35a2
Cc

11 , (90b)

k15 = −3cfbπ
3

35a3
Cc

11 − ηb3
π

a
; k16 = −π

a
β1 ; k17 =

cftπ
3

70a3
Cc

11 + ηt2
π

a
. (90c)

k22 =
8

3c
Cc

55 +
16cπ2

15a2
Cc

11 ; k23 = 0 ; k24 = k12 , (91a)

k25 = −cfbπ
3

15a3
Cc

11 + ηb6
π

a
; k26 = 0 ; k27 =

cftπ
3

15a3
Cc

11 − ηt6
π

a
. (91b)

k33 =
8c

5
Cc

55 +
16c3π2

105a2
Cc

11 ; k34 = −4

5
Cc

55 +
2c2π2

35a2
Cc

11 , (92a)

k35 =
c2fbπ

3

35a3
Cc

11 − ηb4
π

a
; k36 =

4cβ1π

3a
; k37 =

c2ftπ
3

35a3
Cc

11 − ηt4
π

a
. (92b)

k44 =
47

30c
Cc

55 +
6cπ2

35a2
Cc

11 + Ct
11ft

π2

a2
; k45 = −cfbπ

3

70a3
Cc

11 − ηb2
π

a
, (93a)

k46 = β1
π

a
; k47 =

3cftπ
3

35a3
Cc

11 + ηt3
π

a
. (93b)

k55 =
7

6c
Cc

33 +
3cf 2

b π
4

70a4
Cc

11 +
f 3
b π

4

12a4
Cb

11 − ηb8
π2

a2
; k56 = − 4

3c
Cc

33 − ηb7
π2

a2
, (94a)
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k57 =
1

6c
Cc

33 −
cfbftπ

4

140a4
Cc

11 − β2
π2

a2
. (94b)

k66 =
8

3c
Cc

33 +
16cπ2

15a2
Cc

55 ; k67 = − 4

3c
Cc

33 − ηt7
π2

a2
. (95)

k77 =
7

6c
Cc

33 +
3cf 2

t π
4

70a4
Cc

11 +
f 3
t π

4

12a4
Ct

11 − ηt8
π2

a2
. (96)

D.1 Elements of the KLC Matrix

The [KLC ] matrix is 7 × 7 symmetric matrix and has the following elements, kij,

i, j = 1, . . . 7:

k11 =
47

30c
Cc

55 +
6cα2

n

35
Cc

11 + Cb
11fbα

2
n ; k12 = − 4

3c
Cc

55 +
2cα2

n

15
Cc

11 , (97a)

k13 =
4

5
Cc

55 −
2c2α2

n

35
Cc

11 ; k14 = − 7

30c
Cc

55 +
cα2

n

35
Cc

11 , (97b)

k15 = −3cfbα
3
n

35
Cc

11 − ηb3αn ; k16 = −αnβ1 ; k17 =
cftα

3
n

70
Cc

11 + ηt2αn . (97c)

k22 =
8

3c
Cc

55 +
16cα2

n

15
Cc

11 ; k23 = 0 ; k24 = k12 , (98a)

k25 = −cfbα
3
n

15
Cc

11 + ηb6αn ; k26 = 0 ; k27 =
cftα

3
n

15
Cc

11 − ηt6αn . (98b)

k33 =
8c

5
Cc

55 +
16c3α2

n

105
Cc

11 ; k34 = −4

5
Cc

55 +
2c2α2

n

35
Cc

11 , (99a)

k35 =
c2fbα

3
n

35
Cc

11 − ηb4αn ; k36 =
4cβ1αn

3
; k37 =

c2ftα
3
n

35
Cc

11 − ηt4αn . (99b)

k44 =
47

30c
Cc

55 +
6cα2

n

35
Cc

11 + Ct
11ftα

2
n ; k45 = −cfbα

3
n

70
Cc

11 − ηb2αn , (100a)
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k46 = β1αn ; k47 =
3cftα

3
n

35
Cc

11 + ηt3αn . (100b)

k55 =
7

6c
Cc

33 +
3cf 2

b α
4
n

70
Cc

11 +
f 3
b α

4
n

12
Cb

11 − ηb8α2
n ; k56 = − 4

3c
Cc

33 − ηb7α2
n , (101a)

k57 =
1

6c
Cc

33 −
cfbftα

4
n

140
Cc

11 − β2α2
n . (101b)

k66 =
8

3c
Cc

33 +
16cα2

n

15
Cc

55 ; k67 = − 4

3c
Cc

33 − ηt7α2
n . (102)

k77 =
7

6c
Cc

33 +
3cf 2

t α
4
n

70
Cc

11 +
f 3
t α

4
n

12
Ct

11 − ηt8α2
n . (103)

where

αn =
nπ

a
, ηi2 =

1

30
Cc

13 +

(
1

30
− 7fi

60c

)
Cc

55 , (104a)

ηi3 = −11

30
Cc

13 +

(
19

30
+

47fi
60c

)
Cc

55 , ηi4 =
4c

15
Cc

13 +

(
4c

15
+

2fi
5

)
Cc

55 , (104b)

ηi6 =
2

3
Cc

13 +

(
2

3
+

2fi
3c

)
Cc

55 , ηi7 = −fi
5
Cc

13 −
(

2c

15
+
fi
5

)
Cc

55 (104c)

ηi8 =
11fi
30

Cc
13 −

(
4c

15
+

19fi
30

+
47fi

2

120c

)
Cc

55 , ηi4a = ηi4 −
(

2c

3
+ fi

)
Cc

55 (104d)

ηi6a = Cc
13 − ηi6, ηi7a =

2c+ 3fi
6

Cc
55 + ηi7

ηi8a =
11fi
60

Cc
13 − ηi8 , (104e)

and

β1 =
2

5
(Cc

13 + Cc
55) , (105a)

β2 =
fb + ft

60
Cc

13 +

(
c

15
+
fb + ft

60
− 7fbft

120c

)
Cc

55 , (105b)
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APPENDIX E

HSAPT & ALLEN’S BUCKLING FORMULA

The sandwich buckling formula of Allen (thick faces version) considers the shear stress

in the core, and neglects the axial and transverse stiffnesses of the core. The critical

load for global buckling from this formula is given in Allen (1969) [2] for a symmetric

configuration as:

Pcr,Allen = PE2

1 +
PEf

Pc
− P 2

Ef

PcPE2

1 + PE2

Pc
− PEf

Pc

 , (106a)

where

PE2 = Ef1
π2

a2

[
f 3

6
+
f(2c+ f)2

2

]
, (106b)

PEf = Ef1
π2

a2
f 3

6
; Pc = Gc31

(2c+ f)2

2c
, (106c)

i.e., PE2 respresents the Euler load of the sandwich column in the absence of core

shear strain with the bending stiffness of the core ignored, but with local bending

stiffness of the faces included; PEf represents the sum of the Euler loads of the two

faces when they buckle as independent struts (i.e., when the core is absent) and Pc

is the contribution to the buckling load due to shear.

The critical load from the High Order Sandwich Panel theory (HSAPT) is found

from solving for the load P in the governing equation for the nontrivial solution

(Frostig and Baruch, 1993) [13]:

Pcr,HSAPT =
2π2 [(EA)(EI)(2c)g1π

2 + 6Ec
3G

c
31g2a

2]

(EA)Gc
31(2c)

3π4 + 12(EA)Ec
3(2c)π

2a2 + 24Ec
3G

c
31a

4
, (107a)

where EA and EI are respectively, the axial and bending stiffnesses per unit width
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of a sandwich beam that is geometrically uniform along the span, i.e.,

EA = Ef
1 f, EI =

Ef
1 f

3

12
, (107b)

and we have defined

g1 = Gc
31(2c)

2π
2

a2
+12Ec

3 ; g2 = (EA)f 2+2(EA)(2c)f+(EA)(2c)2+4(EI) , (107c)

This original formulation of the critical global buckling load of HSAPT can be

algebraically manipulated by making use of the Allen thick parameters above to

appear in the following form:

Pcr,HSAPT = PE2

1 +
[
1 +

(2c)2Gc
31π

2

12Ec
3a

2

] (
PEf

Pc
− P 2

Ef

PcPE2

)
1 +

[
1 +

(2c)2Gc
31π

2

12Ec
3a

2

]
(PE2−PEf )

Pc

 . (108)

Thus, when Ec
3 goes to infinity (an incompressible core) the Pcr,HSAPT approaches

the Pcr,Allen formula.
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APPENDIX F

M & K MATRICES OF EHSAPT

The mass matrix matrix [Mn] of EHSAPT is symmetric and contains elements mij =

mji and αn = nπ
a

:

m11 = b

(
fbρ

b +
6cρc

35

)
; m12 =

2bcρc

15
, (109a)

m13 = −2bc2ρc

35
; m14 =

bcρc

35
, (109b)

m15 = −3bcfbρ
cαn

35
; m16 = 0 ; m17 =

bcftρ
cαn

70
. (109c)

m22 =
16bcρc

15
; m23 = 0 ; m24 = m12 , (109d)

m25 = −bcfbρ
cαn

15
; m26 = 0 ; m27 =

bcftρ
cαn

15
. (109e)

m33 =
16bc3ρc

105
; m34 =

2bc2ρc

35
, (109f)

m35 =
bc2fbρ

cαn
35

; m36 = 0 ; m37 =
bc2ftρ

cαn
35

. (109g)

m44 = b

(
6cρc

35
+ ftρ

t

)
; m45 = −bcfbρ

cαn
70

, (109h)

m46 = 0 ; m47 =
3bcftρ

cαn
35

. (109i)

m55 = b

(
fbρb +

4cρc

15
+

(
f 3
b ρb
12

+
3cf 2

b ρ
c

70

)
α2
n

)
; m56 = m12 , (109j)

m57 = b

(
−cρ

c

15
− cfbftρ

cα2
n

140

)
. (109k)

m66 =
16bcρc

15
; m67 = m12 . (109l)

m77 = b

(
4cρc
15

+ ftρ
t +

(
3cf 2

t ρ
c

70
+
f 3
t ρ

t

12

)
α2
n

)
. (109m)
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The stiffness matrix [Kn] of EHSAPT is also symmetric and contains elements kij =

kji:

k11 = b

(
47

30c
Cc

55 + αb1α
2
n

)
; k12 = b

(
− 4

3c
Cc

55 +
2cα2

n

15
Cc

11

)
, (110a)

k13 = b

(
4

5
Cc

55 −
2c2α2

n

35
Cc

11

)
; k14 = b

(
− 7

30c
Cc

55 +
cα2

n

35
Cc

11

)
, (110b)

k15 = −b
(

3cfbα
3
n

35
Cc

11 + ηb3αn

)
; k16 = −bβ1αn ; k17 = b

(
cftα

3
n

70
Cc

11 + ηt2αn

)
.

(110c)

k22 = b

(
8

3c
Cc

55 +
16cα2

n

15
Cc

11

)
; k23 = 0 ; k24 = k12 , (110d)

k25 = b

(
−cfbα

3
n

15
Cc

11 + ηb6αn

)
; k26 = 0 ; k27 = b

(
cftα

3
n

15
Cc

11 − ηt6αn
)
. (110e)

k33 = b

(
8c

5
Cc

55 +
16c3α2

n

105
Cc

11

)
; k34 = b

(
−4

5
Cc

55 +
2c2α2

n

35
Cc

11

)
, (110f)

k35 = b

(
c2fbα

3
n

35
Cc

11 − ηb4αn
)

; k36 =
4bcβ1αn

3
; k37 = b

(
c2ftα

3
n

35
Cc

11 − ηt4αn
)
.

(110g)

k44 = b

(
47

30c
Cc

55 + αt1α
2
n

)
; k45 = −b

(
cfbα

3
n

70
Cc

11 + ηb2αn

)
, (110h)

k46 = bβ1αn ; k47 = b

(
3cftα

3
n

35
Cc

11 + ηt3αn

)
. (110i)

k55 = b

(
7

6c
Cc

33 − ηb8α2
n + ηb9α

4
n

)
; k56 = −b

(
4

3c
Cc

33 + ηb7α
2
n

)
, (110j)

k57 = b

(
1

6c
Cc

33 −
cfbftα

4
n

140
Cc

11 − β2α2
n

)
. (110k)

k66 = b

(
8

3c
Cc

33 +
16cα2

n

15
Cc

55

)
; k67 = −b

(
4

3c
Cc

33 + ηt7α
2
n

)
. (110l)

k77 = b

(
7

6c
Cc

33 − ηt8α2
n + ηt9α

4
n

)
. (110m)
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F.1 First Order Shear Deformable Theory (FOSDT)

For the First Order Shear model, the transverse and axial displacement field are,

respectively:

w(x, z, t) = w(x, t); u(x, z, t) = u0 − zφ(x, t) (111)

The 3x3 symmetric mass matrix of FOSDT contains mij = mji and αn = nπ
a

:

m11 = b(fbρ
b + 2cρc + ftρ

t); (112a)

m12 =
b

2

(
2cfbρ

b + f 2
b ρ

b − 2cftρ
t − f 2

t ρt
)

; m13 = 0; (112b)

m22 =
b

3

(
f 3
b ρ

b + 2c3ρc + f 3
t ρ

t + 3c2
(
fbρ

b + ftρ
t
)

+ 3c
(
f 2
b ρ

b + f 2
t ρ

t
))

(112c)

m23 = 0; m33 = b(fbρ
b + 2cρc + ftρ

t) (112d)

and the 3x3 symmetric stiffness matrix of FOSDT with kij = kji contain:

k11 = bα2
n

(
2cEc

1 + Eb
1fb + Et

1ft
)

; (113a)

k12 =
bα2

n

2

(
2cEb

1fb + Eb
1f

2
b − 2cEt

1ft − Et
1f

2
t

)
; k13 = 0; (113b)

k22 =
b

6
(2α2

n(2c3Ec
1 + Eb

1f
3
b + Et

1f
3
t + 3c2(Eb

1fb + Et
1ft)

+3c(Eb
1f

2
b + Et

1f
2
t )) + 3(4c+ fb + ft)kG

c
31)

(113c)

k23 = −bαn
2

(4c+ fb + ft)kG
c
31; k33 = −αnk23 (113d)

where k with no subscript is the shear correction factor, taken as either k = 5/6 or

k = 1.

The eigenvector of FOSDT is

{Un(t)} = {U0n,Φ0n,W0n}T (114)
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F.2 High-Order Sandwich Panel Theory (HSAPT)

The High-Order Sandwich Panel Theory accounts for the shear and transverse normal

stresses in the core and assumes that the in-plane stresses in the core are null. The dis-

placements based formulation of HSAPT has the following 5 unknown displacements

variables: ut0(x), ub0(x), wt(x), wb(x), and wc0(x).

The axial and transverse displacement fields of the top and bottom face sheet, as

well as the transverse displacement field of the core are the same as ESHAPT shown

in Eqns. (2a), (2b), and (4a). However, this model differs from EHSAPT in that the

axial displacement field between −c < z < c is defined as:

uc(x, z, t) =

(
1

2
+

z

2c

)
ut0(x, t) +

(
1

2
− z

2c

)
ub0(x, t) +

(
−z

3
+

z3

3c2

)
wc0,x(x, t)

+

(
−
(
fb
4

+
c

4

)
+

(
1

6
+
fb
4c

)
z +

1

4c
z2 − 1

6c2
z3
)
wb,x(x, t)

+

((
ft
4

+
c

4

)
+

(
1

6
+
ft
4c

)
z − 1

4c
z2 − 1

6c2
z3
)
wt,x(x, t)

(115)

It should be noted that the the accelerations in the core are allowed to be nonlinear

throughout the height of the core. This distinguishes it from an earlier model of

HSAPT in which the accelerations were assumed to be linear through the height of

the core in [14].

The 5× 5 symmetric mass matrix of HSAPT has mij = mji and αn = nπ
a

:

m11 =
b

3

(
3fbρ

b + 2cρc
)

; m12 =
1

3
bcρc; (116a)

m13 = − 1

90
bcρcαn (30fb + 17c) ; m14

2

45
bc2ρcαn; (116b)

m15 =
1

90
bcρcαn (13c+ 15ft) ; (116c)

m22 =
1

3
b
(
2cρc + 3ftρ

t
)

; m23 = − 1

90
bcρcαn (15fb + 13c) ; (116d)

m24 = − 2

45
bc2ρcαn; m25 =

1

90
bcρcαn (17c+ 30ft) ; (116e)

m33 =
1

72
b

(
2α2

n

105

(
714c2fbρ

c + 630cf 2
b ρ

c + 315f 3
b ρ

b + 268c3ρc
)

+
24

5

(
15fbρ

b + 4cρc
))

;

(116f)
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m34 =
1

72
b

(
2

105

(
−84c2fbρ

cα2
n − 32c3ρcα2

n

)
+

48cρc

5

)
; (116g)

m35 =
1

72
b

(
− 2

105
cρcα2

n

(
273c (fb + ft) + 315fbft + 236c2

)
− 24cρc

5

)
; (116h)

m44 =
1

36
b

(
64

105
c3ρcα2

n +
192cρc

5

)
; (116i)

m45 =
1

36
b

(
24cρc

5
− 4

105
c2ρcα2

n (8c+ 21ft)

)
; (116j)

m55 =
bα2

n (2cρc (134c2 + 357cft + 315f 2
t ) + 315f 3

t ρ
t)

3780
+

1

15
b
(
4cρc + 15ftρ

t
)

; (116k)

and the 5× 5 symmetric stiffness matrix of HSAPT with kij = kji contain:

k11 =
bGc

31

2c
+ bfbE

b
1α

2
n; (117a)

k12 = −bG
c
31

2c
; k13 = −bG

c
31αn (3fb + 2c)

12c
; (117b)

k14 = −2

3
bGc

31αn; k15 = −bG
c
31αn (2c+ 3ft)

12c
; (117c)

k22 =
bGc

31

2c
+ bftα

2
nE

t
1; (117d)

k23 =
bGc

31αn (3fb + 2c)

12c
; k24 =

2

3
bGc

31αn; (117e)

k25 =
bGc

31αn (2c+ 3ft)

12c
; (117f)

k33 =
1

72
b

(
Gc

31α
2
n (3fb + 2c) 2

c
+ 6f 3

bE
b
1α

4
n +

84Ec
3

c

)
; (117g)

k34 =
1

72
b

(
8Gc

31α
2
n (3fb + 2c)− 96Ec

3

c

)
; (117h)

k35 =
1

72
b

(
Gc

31α
2
n (3fb + 2c) (2c+ 3ft)

c
+

12Ec
3

c

)
; (117i)

k44 =
1

36
b

(
32cGc

31α
2
n +

96Ec
3

c

)
; k45 =

1

36
b

(
4Gc

31α
2
n (2c+ 3ft)−

48Ec
3

c

)
; (117j)

k55 =
bGc

31α
2
n (2c+ 3ft)

2

72c
+

7bEc
3

6c
+

1

12
bf 3
t α

4
nE

t
1; (117k)

The eigenvector of HSAPT is

{Un} = {U b
0n, U

t
0n,W

b
n,W

c
0n,W

t
n}T (118)
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F.3 Mass and stiffness matrices for EHSAPT

The mass matrix matrix [Mn] is symmetric and contains elements mij = mji and

αn = nπ
a

:

m11 = b

(
fbρ

b +
6cρc

35

)
; m12 =

2bcρc

15
, (119a)

m13 = −2bc2ρc

35
; m14 =

bcρc

35
, (119b)

m15 = −3bcfbρ
cαn

35
; m16 = 0 ; m17 =

bcftρ
cαn

70
. (119c)

m22 =
16bcρc

15
; m23 = 0 ; m24 = k12 , (119d)

m25 = −bcfbρ
cαn

15
; m26 = 0 ; m27 =

bcftρ
cαn

15
. (119e)

m33 =
16bc3ρc

105
; m34 =

2bc2ρc

35
, (119f)

m35 =
bc2fbρ

cαn
35

; m36 = 0 ; m37 =
bc2ftρ

cαn
35

. (119g)

m44 = b

(
6cρc

35
+ ftρ

t

)
; m45 = −bcfbρ

cαn
70

, (119h)

m46 = 0 ; m47 =
3bcftρ

cαn
35

. (119i)

m55 = b

(
fbρb +

4cρc

15
+

(
f 3
b ρb
12

+
3cf 2

b ρ
c

70

)
α2
n

)
; m56 = m12 , (119j)

m57 = b

(
−cρ

c

15
− cfbftρ

cα2
n

140

)
. (119k)

m66 =
16bcρc

15
; m67 = k12 . (119l)

m77 = b

(
4cρc
15

+ ftρ
t +

(
3cf 2

t ρ
c

70
+
f 3
t ρ

t

12

)
α2
n

)
. (119m)

The stiffness matrix [Kn] is also symmetric and contains elements kij = kji:

k11 = b

(
47

30c
Cc

55 + αb1α
2
n

)
; k12 = b

(
− 4

3c
Cc

55 +
2cα2

n

15
Cc

11

)
, (120a)

k13 = b

(
4

5
Cc

55 −
2c2α2

n

35
Cc

11

)
; k14 = b

(
− 7

30c
Cc

55 +
cα2

n

35
Cc

11

)
, (120b)

k15 = −b
(

3cfbα
3
n

35
Cc

11 + ηb3αn

)
; k16 = −bβ1αn ; k17 = b

(
cftα

3
n

70
Cc

11 + ηt2αn

)
.

(120c)
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k22 = b

(
8

3c
Cc

55 +
16cα2

n

15
Cc

11

)
; k23 = 0 ; k24 = k12 , (120d)

k25 = b

(
−cfbα

3
n

15
Cc

11 + ηb6αn

)
; k26 = 0 ; k27 = b

(
cftα

3
n

15
Cc

11 − ηt6αn
)
. (120e)

k33 = b

(
8c

5
Cc

55 +
16c3α2

n

105
Cc

11

)
; k34 = b

(
−4

5
Cc

55 +
2c2α2

n

35
Cc

11

)
, (120f)

k35 = b

(
c2fbα

3
n

35
Cc

11 − ηb4αn
)

; k36 =
4bcβ1αn

3
; k37 = b

(
c2ftα

3
n

35
Cc

11 − ηt4αn
)
.

(120g)

k44 = b

(
47

30c
Cc

55 + αt1α
2
n

)
; k45 = −b

(
cfbα

3
n

70
Cc

11 + ηb2αn

)
, (120h)

k46 = bβ1αn ; k47 = b

(
3cftα

3
n

35
Cc

11 + ηt3αn

)
. (120i)

k55 = b

(
7

6c
Cc

33 − ηb8α2
n + ηb9α

4
n

)
; k56 = −b

(
4

3c
Cc

33 + ηb7α
2
n

)
, (120j)

k57 = b

(
1

6c
Cc

33 −
cfbftα

4
n

140
Cc

11 − β2α2
n

)
. (120k)

k66 = b

(
8

3c
Cc

33 +
16cα2

n

15
Cc

55

)
; k67 = −b

(
4

3c
Cc

33 + ηt7α
2
n

)
. (120l)

k77 = b

(
7

6c
Cc

33 − ηt8α2
n + ηt9α

4
n

)
. (120m)

F.4 High-Order Sandwich Panel Theory (HSAPT)

The High-Order Sandwich Panel Theory accounts for the shear and transverse normal

stresses in the core and assumes that the in-plane stresses in the core are null. The

displacements based formulation of HSAPT presented in [34] has the following 5

unknown displacements variables: ut0(x), ub0(x), wt(x), wb(x), and wc0(x).

The in-plane and transverse displacement fields of the top and bottom face sheet,

as well as the transverse displacement field of the core are the same as ESHAPT

shown in Eqns. (2a), (2b), and (4a). However, this model differs from EHSAPT in
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that the in-plane displacement field between −c < z < c is defined as:

uc(x, z, t) =

(
1

2
+

z

2c

)
ut0(x, t) +

(
1

2
− z

2c

)
ub0(x, t) +

(
−z

3
+

z3

3c2

)
wc0,x(x, t)

+

(
−
(
fb
4

+
c

4

)
+

(
1

6
+
fb
4c

)
z +

1

4c
z2 − 1

6c2
z3
)
wb,x(x, t)

+

((
ft
4

+
c

4

)
+

(
1

6
+
ft
4c

)
z − 1

4c
z2 − 1

6c2
z3
)
wt,x(x, t)

(121)

It should be noted that the the accelerations in the core are allowed to be nonlinear

throughout the height of the core. This distinguishes it from an earlier model of

HSAPT in which the accelerations were assumed to be linear through the height of

the core in [14]. The transverse strain in the same as EHSAPT shown in Eqn. and

shear strains in the core is given by the relation:

γczx =
∂uc(x, z)

∂z
+
∂wc(x, z)

∂x
(122)

The transverse and shear stresses in the core are found from the constitutive relation:

σczz = Ec
3ε
c
zz; τ czx = Gc

31γ
c
zx (123)

The governing equations of motion of a simply supported sandwich beam/ wide panel

undergoing the load in Eqn. (58) using HSAPT can be cast in the following matrix

form:

[Mn]{Ün(t)}+ [Kn]{Un(t)} = {Fn(t)} (124)

where [Mn] and [Kn] are the mass and stiffness matrices of the nth Fourier term,

respectively. The 5×5 symmetric mass matrix of HSAPT has mij = mji and αn = nπ
a

:

m11 =
b

3

(
3fbρ

b + 2cρc
)

; m12 =
1

3
bcρc; (125a)

m13 = − 1

90
bcρcαn (30fb + 17c) ; m14

2

45
bc2ρcαn; (125b)

m15 =
1

90
bcρcαn (13c+ 15ft) ; (125c)

m22 =
1

3
b
(
2cρc + 3ftρ

t
)

; m23 = − 1

90
bcρcαn (15fb + 13c) ; (125d)
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m24 = − 2

45
bc2ρcαn; m25 =

1

90
bcρcαn (17c+ 30ft) ; (125e)

m33 =
1

72
b

(
2α2

n

105

(
714c2fbρ

c + 630cf 2
b ρ

c + 315f 3
b ρ

b + 268c3ρc
)

+
24

5

(
15fbρ

b + 4cρc
))

;

(125f)

m34 =
1

72
b

(
2

105

(
−84c2fbρ

cα2
n − 32c3ρcα2

n

)
+

48cρc

5

)
; (125g)

m35 =
1

72
b

(
− 2

105
cρcα2

n

(
273c (fb + ft) + 315fbft + 236c2

)
− 24cρc

5

)
; (125h)

m44 =
1

36
b

(
64

105
c3ρcα2

n +
192cρc

5

)
; (125i)

m45 =
1

36
b

(
24cρc

5
− 4

105
c2ρcα2

n (8c+ 21ft)

)
; (125j)

m55 =
bα2

n (2cρc (134c2 + 357cft + 315f 2
t ) + 315f 3

t ρ
t)

3780
+

1

15
b
(
4cρc + 15ftρ

t
)

; (125k)

and the 5× 5 symmetric stiffness matrix of HSAPT with kij = kji contain:

k11 =
bGc

31

2c
+ bfbE

b
1α

2
n; (126a)

k12 = −bG
c
31

2c
; k13 = −bG

c
31αn (3fb + 2c)

12c
; (126b)

k14 = −2

3
bGc

31αn; k15 = −bG
c
31αn (2c+ 3ft)

12c
; (126c)

k22 =
bGc

31

2c
+ bftα

2
nE

t
1; (126d)

k23 =
bGc

31αn (3fb + 2c)

12c
; k24 =

2

3
bGc

31αn; (126e)

k25 =
bGc

31αn (2c+ 3ft)

12c
; (126f)

k33 =
1

72
b

(
Gc

31α
2
n (3fb + 2c) 2

c
+ 6f 3

bE
b
1α

4
n +

84Ec
3

c

)
; (126g)

k34 =
1

72
b

(
8Gc

31α
2
n (3fb + 2c)− 96Ec

3

c

)
; (126h)

k35 =
1

72
b

(
Gc

31α
2
n (3fb + 2c) (2c+ 3ft)

c
+

12Ec
3

c

)
; (126i)

k44 =
1

36
b

(
32cGc

31α
2
n +

96Ec
3

c

)
; k45 =

1

36
b

(
4Gc

31α
2
n (2c+ 3ft)−

48Ec
3

c

)
; (126j)
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k55 =
bGc

31α
2
n (2c+ 3ft)

2

72c
+

7bEc
3

6c
+

1

12
bf 3
t α

4
nE

t
1; (126k)

The vector of the unknown generalized coordinates in (124) are

{Un(t)} = {U b
n(t), U t

n(t),W b
n(t),W c

n(t),W t
n(t)}T (127)

and the load vector {Fn(t)} = T (t){0, 0, 0, 0, Qn}T . The ordinary differential equa-

tions in time (Eqn. (124) ) can be solved using standard numerical integration meth-

ods.
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