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The increase in complexity of optimization problems results in an emerging need 

for simpler, faster and non-classical solutions. One of the options is conversion of a 

traditional non-hierarchical optimization system to a hierarchical system using an 

approach called multi-level (ML) decomposition (for optimization). Most of the work in 

the literature deals with the application of multi-level approach to deterministic 

optimization problems. But, in nature, many applications are uncertain, and hence, it is 

realistic to introduce uncertainty in the analysis and optimization. The first part of the 

present research deals with the development of a multi-level optimization procedure for 

uncertain engineering systems. The uncertainty in the problem is assumed to be 

stochastic and interval in nature. The methodology developed is illustrated by considering 

the optimization of structural and mechanical engineering problems. The second part of 

the present study deals in modifying a relatively new swarm intelligence technique based 

on the foraging behavior of ants called Ant Colony Optimization (ACO). A new multi-

objective ant colony optimization algorithm is developed and applied to structural and 

mechanical engineering problems. The illustrative examples in the present research 

include the design optimization of an electric transmission tower (space truss), plane 

truss, gear box and the combustion chamber of an internal combustion engine. The third 

part of the research attempts to apply optimization techniques to practical engineering 



 
 

 
 

systems in the field of Heating Ventilation and Air Conditioning (HVAC) and Micro-

Electronics. Novel design optimization models are created and hybrid optimization 

algorithms are developed for chiller plants and micro-channel heat exchangers used in 

electronic cooling. Illustrative case studies are performed. 
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CHAPTER 1 - INTRODUCTION AND LITERATURE REVIEW 

Optimization is the act of obtaining the best solution under given circumstances. This 

technique provides a powerful tool in improving the engineering design in a rational 

manner and has been proved to be much more efficient than the traditional trial-and-error 

design process. Today, the optimization tool has become a part of every engineering 

industry for design improvement. Higher customer expectations and tighter industry 

standards require more efficient designs. Developments in faster digital computers, 

sophisticated computing techniques and more frequent use of finite element methods 

facilitate this to a certain extent, but there arises a need to explore approaches which 

could use these aids in a better way and solve complex engineering problems. The 

present research investigates two of the recently developed alternative approaches, 

namely the Multi-level optimization (MLO) and the Ant Colony Optimization (ACO). 

There are many classical optimization techniques developed and extensively used in the 

literature. These methods are based on mathematical programming techniques and cover 

a wide range, including linear, non-linear, geometric and quadratic programming. The 

more recent methods, like neural networks, simulated annealing and genetic algorithms 

are called non-classical optimization methods. One of the most recent methods is the use 

of swarm intelligence techniques in the design optimization of mechanical and structural 

engineering systems. Present research explores one such technique called Ant Colony 

Optimization. This algorithm is based on the foraging behavior of ants. 

In traditional optimization procedure, the designs are often considered at a stretch or all-

in-one approach which is non-hierarchical. This method suits well for problems of 

average size which include a few design variables and constraints. But this is not often 
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the case. Large scale engineering problems like design of an airplane or a power plant 

require the satisfaction of a large number of constraints and deal with many design 

variables. Most of them also have subparts or disciplines which might have no direct 

effect on other disciplines, but indirectly contribute to the overall convergence of the 

system. Such problems, called multidisciplinary optimization problems, can be easily 

solved using a different approach. This is done by a non-traditional hierarchical 

decomposition based optimization strategy also known as multilevel decomposition. 

Present research aims at developing a modified Multi-level (ML) technique for use in 

structural and mechanical engineering problems involving uncertainties. 

As an inherent characteristic of nature, uncertainty appears everywhere and cannot be 

avoided. Uncertainties in engineering systems arise due to imprecise or vagueness of 

information. For example, in structural engineering, many types of loads such as wind, 

earthquake and snow loads acting on the structures are never known exactly. Only their 

past data is available in imprecise terms. The experimental results obtained for material 

properties like Young's modulus of elasticity and yield strength are often scattered and 

inexact. Also, mechanical components are subjected to errors in manufacturing or 

machining and hence, tolerance and nominal values are specified instead of the exact 

dimensions. Hence, it becomes essential to include uncertainties in the design and 

optimization. This aspect of uncertainty analysis is also considered in present research. In 

the literature, uncertainties are mainly grouped and modeled as stochastic and 

fuzzy/interval quantities. Present research aims at developing algorithms and solutions 

accounting for these types of uncertainties using the multilevel strategy.  
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Dealing with multiple and sometimes conflicting objectives in an optimization problem 

has always been a challenge for engineers. The widely accepted and used solution is the 

game theory approach. Game theory approach has been used for solving single level or 

general optimization problems. The present research develops a procedure to extend the 

game theory for solving multi-objective, multilevel and ant colony optimization 

problems. 

One of the important contributions of the present research is a novel application of 

optimization in the Heating Ventilation and Air Conditioning (HVAC) systems and 

thermal management in micro-electronic systems. A novel chiller plant optimization 

formulation is made and a hybrid solution strategy is developed. The hybrid technique 

uses the classical method of sequential quadratic programing combined with a modified 

branch and bound method of integer programing. Also, a micro-channel heat exchanger 

embedded in Low Temperature Co-fired Ceramic (LTCC), used for cooling in electronic 

components, is optimized for maximum heat transfer. 

A brief literature review of the important topics of the present work is given next. 

1.1 Multi-objective Optimization (MOO) 

Many practical applications in engineering (with optimization) often involve models with 

many goals to be satisfied simultaneously. Hence, the optimization of multiple objectives 

is necessary to solve such problems. In most cases, the objectives are conflicting, and so 

the minimization of one objective results in an increase in the value of the other. For 

example, in structural optimization of a truss, three objectives can be considered, namely, 

minimization of the total weight of the truss, minimization of the maximum nodal 
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displacement and maximization of the fundamental natural frequency of vibration. It is 

evident that the first two objectives are non-conflicting (both are to be minimized) 

whereas the third objective conflicts with the first two because it is to be maximized. 

Similarly, the design optimization of an automobile could be seen as a multi-objective 

problem with two conflicting objectives, namely, the minimization of weight and the 

maximization of the crash resistance. However, a decrease in the weight of the 

automobile would result in an increase in the crash resistance, and vice-versa.  

The multi-objective optimization methods are broadly divided into three major 

categories: methods with priori articulation of preferences, methods with postpriori 

articulation of preferences and methods requiring no articulation of preferences. There 

are several techniques developed for multi-objective optimization, like the weighted sum 

method, lexicographic method, min-max method, global criterion method, goal 

programming method, bounded objective method and normal constraint method.  

The concept of optimizing multiple objectives (in decision making) in mathematical 

programing was first introduced by Kuhn and Tucker (1951). The procedure is referred as 

Vector Maximization. One of the earliest and simplest methods used to deal with multiple 

objectives is the formation of a single overall objective function combining individual 

objectives. This is usually done by a linear combination of the objectives by allocating 

weights to the individual objectives (Walley (1991), Salama et al., (1988)). This type of 

formulation assumes that the objectives are independent which might be unreal in some 

cases. Also, this procedure might not span the entire region of optimization.  
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Kioski and Silvennoinen (1987) present a partial weighing method in which the original 

objective functions are grouped as sets involving common features. Each set is then used 

to form an independent weighted sum function with a unique set of weights and thus 

reduced the total number of objective functions. Steuer (1989) mathematically related the 

weights to the designer's preference function. Das and Dennis (1997) provided a 

graphical representation of the weighted sum method using bi-objective problems. In 

addition, they explained some of the deficiencies of the weighing method. Eschenauer et 

al., (1990) gave a brief overview of the weighed sum method. Koski and Silvennoinen 

(1987) illustrated the weighted sum method as a special case of another method called the 

p-norm method. 

The selection of weights is an important aspect of the weighing method. 

Misinterpretation of the theoretical and practical meaning of the weights can mislead the 

efficient selection based on intuition. Many authors have focused on this aspect. A survey 

of works based on the systematic selection of weights, was provided by Eckenrode 

(1965), Hobbs (1980) and Hwong (1981).  

Rao and Roy (1989) provided a method for determining the weights based on fuzzy set 

theory. For cases in which the relative importance of objective functions is unclear, 

Wierzbicki (1986) provided an algorithm that calculated weights based on feasible and 

infeasible points. 

The limitations and difficulties involved in the weighted sum approach were detailed by 

many authors (Koski (1985), Stadler (1995), Athan and Papalambros (1996). Messac 

(1996) concluded that, in order for a weighted sum method to mimic a preference 
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function accurately, the weights must be functions of original objective, not constraints. 

Other important limitation concluded by Messac (1996) was that, despite the many 

methods for determining weights, a satisfactory pre-selection of weights did not 

necessarily guarantee the final solution to be acceptable. 

A final difficulty with the weighted sum approach is that varying the weights consistently 

and continuously may not necessarily result in an even distribution of Pareto optimal 

(compromise) points, and an accurate, complete representation of the Pareto optimal set. 

Das and Dennis (1997) discussed this topic in detail. They suggested the necessary 

conditions for a series of weighted sum iterations to yield an even spread of Pareto 

optimal points.  

Although, several approaches have been suggested for solving multi-objective 

optimization problems, the best approach would be to use the techniques of operations 

research originally designed for solving such problems, and modifying them based on the 

applications. In case of engineering applications, the game theory approach has been 

proven to be more efficient than many other techniques (Rao (1987)). This is due to its 

capability to not only find the best compromise (Pareto-optimal) solution but also the 

relative contribution of the individual objectives for the best solution. Hence, the present 

research uses modified game theory approach for solving multi-objective optimization 

problems. 

1.2 Multilevel Optimization (MLO) 

The design of complex engineering problems involves a large number of design variables 

and constraints. Optimization of such systems requires a greater computational effort and 
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often the problem is less tractable. One of the viable solutions is to split the complex 

problem into smaller fragments and solve the smaller problems either separately or in 

parallel. This strategy is the basis for decomposition based multilevel optimization (ML). 

The ML approach decomposes a primary problem into a system level design problem and 

a set of uncoupled component level sub problems. The solution is obtained by repeated 

iterations between the two levels.  

The basics of multilevel optimization come from Calculus of Variations and Theoretical 

Mechanics. Initially, it was developed in the period after 1960 and was used to simplify 

the optimization of large scale industrial systems. It's applications in engineering were 

developed and reported almost four decades ago. Some of the earliest works were by 

Kirsh (1975, 1978). Kirsch proposed a multilevel approach to optimum structural design 

(1978). Two methods were used for the solution procedure. These were the goal 

coordination and the modal coordination methods. Illustrative examples included trusses, 

beams and columns. Schmidt and Ramanathan (1978) proposed a ML approach for the 

optimization of truss structures and wing structures using local buckling constraints. 

Sobiesczanski et al., (1985) redefined and applied the multi-level decomposition to a 

portal frame problem. Initially, a two level decomposition technique was used 

(Sobiesczanski et al., (1985)). Later on, it was generalized to a three level technique 

(Sobiesczanski et al., (1995)). In the numerical example, a portal frame was decomposed 

into beams. Each beam was considered to be a box, which was further decomposed into 

stiffened plates. The solution obtained using the three-level technique was compared to 

that obtained using a single (one) level optimization. Multilevel optimization required 

more time in dealing with the coupling of the sub problems. This limitation was dealt by 
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Barthelemy and Riley (1988). They tried to reduce the computational effort by using 

constraint approximation and temporary constraint deletion techniques used in single 

level optimization. The new procedure was tested on three, ten and fifty-two bar plane 

trusses. It was concluded that multilevel approach was economical for large scale 

problems if parallel processing was used for the analysis. Rohl and Schrage (1992) 

applied multilevel optimization to a large scale problem. A preliminary design of a high 

speed civil transport aircraft wing structure was described. Three levels were used for 

decomposition. Optimization results were verified with the experimental data obtained 

earlier. They reported minimization of weight and an increase in the productivity index of 

the aircraft wing structure. Another large scale example problem using a multi-level 

approach was considered by Walsh et al., (1994). Integrated aerodynamic, dynamic and 

structural optimization was done for helicopter rotor blades. Two levels were considered 

using decomposition in which the upper level performed aerodynamic and dynamic 

design and the lower level performed a detailed structural design with some coupling 

between levels. This approach was suggested to be compatible with industrial design 

practices. Recently, Zeljkovic and Maksimovic (2005) solved a large scale 

multidisciplinary structural optimization problem using a multi-level approach. They 

applied the multilevel approach to optimization of an aircraft nose landing gear. Li et al., 

(1999) used multilevel optimization for multi-objective problems. Steel frames under 

gravity and earthquake loads were designed for minimum weight and maximum strain 

energy. A numerical comparison of the various multilevel optimization techniques based 

on a small truss example was done by Wit and Keulen (2007).  
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In most multilevel decomposition based optimization procedures, the system level 

problem acts only as a coordinator between the various sub problems (disciplines) and 

helps in the overall convergence of the system. It rarely does any optimization by itself. 

On the other hand, the multilevel based collaborative optimization (CO) procedure does 

optimization in both the system and the disciplinary levels and thus provides more 

flexibility and effectiveness in the convergence. Also, CO (Kroo et al., (1994)) was 

developed to capture the multidisciplinary characteristics of engineering design. Braun at 

al., (1995) employed the CO framework for the launch vehicle design. Sobieski and Kroo 

(1995) used it for the aircraft configuration. CO has been widely used in decision making 

(Gu at al., (2002)) and conceptual design Rawling and Balling (1998)). CO with multiple 

objectives was considered by Tappeta and Renaund (1997). Three different types of multi 

objective collaborative optimization formulations were developed and tested for the 

sizing optimization of an aircraft. The analytical and computational aspects of CO were 

studied by Alexandrov and Lewis (2002). Goal programming based multi-disciplinary 

optimization with collaborative optimization was developed by Allister and Simpson 

(2003).  

Design optimization of multilevel systems with uncertainty has been studied by various 

researches (Antonsson and Otto (1995), Su and Renauld (1997), Du and Chen (2000), 

Kokkolaras et al., (2006).  Uncertainty in the multidisciplinary mechanical systems was 

studied by Oakley et al., (1998). Sues et al, (2001) studied reliability based optimization 

considering manufacturing and operational uncertainties in the design process. Recently, 

Sakalkar and Hajela (2008) introduced stochasticity (probability) in the multilevel 

optimization. A portal frame example problem was solved. The stochastic methods 
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require mean and standard deviation of the input data which in some situations might not 

be readily available. In such cases, the uncertain variables are stated as intervals and 

interval arithmetic is used for design analysis and optimization. This concept of interval 

based uncertainty analysis and optimization is introduced in present work. To the best of 

the author's knowledge, no research work addressing the multilevel multidisciplinary 

optimization with interval based uncertainty is reported in the literature. The scope of 

present work is to develop a multi-level collaborative optimization based optimization 

method to account for interval based uncertainties. Also, a stochastic multi-level 

collaborative optimization method has been proposed for suitable comparison with the 

deterministic and interval based formulations. The stochastic method uses a modified 

form of the approach suggested by Schmidt and Ramanathan (1978). It is to be noted that 

the words multi-level and bi-level are assumed to have the same meaning in the context 

of the present work as two levels have been considered in the ML approach. 

1.3 Ant Colony Optimization (ACO)  

The basic behavior of a group of birds, ants, insects or fish, is used to develop algorithms 

to solve optimization problems. These algorithms are known as evolutionary algorithms 

in general, or swarm intelligence techniques in particular. Swarm intelligence is an 

artificial intelligence based on the collective behavior of decentralized, self-organized 

systems. The agents in the system interact locally and develop simple rules in their 

struggle for survival. This leads to a global set of rules for the colony, even if there is no 

central agent commanding them. The expression for swarm intelligence was first quoted 

by Gerardo Beni and Jing Wang in 1989. Some of the swarm intelligence algorithms are 
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Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and stochastic 

diffusion search. Present work uses ACO. 

ACO is an optimization technique which uses the basic behavior of ants in searching for 

food. ACO was first developed by Marco Dorigo (Dorigo et al., (1991)). Since then it has 

been applied to a variety of problems. Initially, it was used to solve combinatorial 

optimization problems. One of the earliest examples included the traveling salesman 

problem (TSP). The other applications of ACO included various assignment, scheduling, 

network routing and machine learning problems (Dorigo and Stutzle (2004)).        

Engineering applications of ACO are very recent. Aditya et al., (2004) used it to solve an 

engineering mechanics problem. Two types of algorithms, based on the foraging behavior 

of two different types of ants, were developed. The first type used the pheromone trail 

and solved TSP. This was mostly based on the basic ant colony algorithm called the Ant 

System (AS) algorithm. They solved two-dimensional and three-dimensional TSP 

problems with a size of almost 50 cities. The second type of ants, called the 

Pachycondyla Apicalis (API) ants, made use of visual landmarks for feedback as opposed 

to a pheromone trail.  Aditya et al., (2004) used two strategies, one for local search and 

another for global search. The second type of ants was used to solve function 

minimization related to a spring mass system with no constraints. 

Serra and Venini (2005) used ACO metaheuristic to solve structural optimization 

problems. An ACO algorithm was proposed and implemented for discrete optimization of 

plane trusses. Two examples were solved. One was a seven bar statically determinate 

truss and the other was a ten bar statically indeterminate planar truss. A simple algorithm 



12 
 

 
 

was suggested for ACO. Camp et al., (2004) used a modified version of the TSP ACO to 

design space trusses. It was based on the rank based Ant Colony Optimization. The 

design of space trusses using discrete variables was transformed into a modified TSP 

where the network of the TSP reflected the structural topology and the length of the tour 

represented the weight of the structure. The resulting truss, mapped into a TSP, was 

minimized using an ACO algorithm. The results obtained from ACO were compared with 

those given by Genetic Algorithms (GA) and classical continuous optimization methods. 

Fonseca et al., (2007) used a variant of ACO called Rank Based Ant System (RBAS) for 

structural optimization using discrete variables. Penalty function method was used in 

handling the constraints in the optimization problem. In a subsequent work, Fonseca et 

al., (2007) used the same Rank Based ACO for the minimum weight design with discrete 

variables. The stochastic ranking approach was used to balance the objective and penalty 

functions stochastically. This was to overcome the difficulty of calculating penalty 

parameters in constrained optimization problems. The balancing technique resulted in an 

improved search performance thereby leading to better solutions when compared to the 

standard penalty technique. 

Kaveh et al., (2007) designed skeletal structures using ACO. Sizing of space trusses was 

considered. Examples included 10 bar, 25 bar and 244 bar trusses. Also, a single bay 

eight storey frame, a braced frame of a 26-storey building and an industrial building were 

designed using ACO. This reference mainly applied ACO to large scale problems to 

demonstrate its ability. Sandesh et al., (2007) did structural identification using ant 

colony optimization in the time domain. This was a new area for solving inverse 

problems using ACO. A parametric structural identification using ACO-SI technique was 
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developed for multi-degree of freedom dynamic system in time domain. Sameer et al., 

(2007) applied ACO to structural and mechanical engineering applications. An I-beam 

was designed for minimum weight under bending, shear and deflection constraints. Also, 

an air storage tank (pressure vessel) was designed for minimum cost. 

ACO has also been applied to solve several types of multi-objective (MO) optimization 

problems. Based on the modifications of the initial AS and ACS algorithms different 

kinds of algorithms have been proposed by many researchers in literature. Due to the 

nature of ACO in constructing feasible solutions, it was employed as an alternative tool 

instead of an exact method for solving MO problems. ACO is suitable for solving MO 

problems where a larger number of non-dominated solutions are needed. Iredi et al., 

(2001) developed a MO ACO algorithm on the basis of AS for bi-criteria vehicle routing 

problem. Each objective had its own pheromone trail and information on pheromone 

trails was combined for calculating the probability distribution of the transition rule. In 

order to force the ants to search in different regions of solution space, they defined a 

parameter that differs with the index of ants in the colony. This parameter was used as a 

weighing factor in transition rule. Doerner et al., (2004), designed a MO ACO algorithm 

on the basis of ACS. Several pheromone matrices were considered for each objective. 

The ants used maximum selection method for selecting next node and they combined the 

pheromone trails information of different objectives to calculate the probability 

distribution of transition rule. At the end of each iteration, best ant and the second best 

ant generated in the current iteration updated the pheromone trails. Multiple ant colony 

system proposed in Baran and Schaerer (2003) was devised for vehicle routing problem 

with time windows based on ACS. It used only one pheromone matrix but multiple 
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heuristic parameters based on the number of objectives. The transition rule used both the 

pheromone and heuristic information. Also, a parameter based on the index of ants, 

forced the ants to search in a different region of solution space. Doerner et al., (2003), 

proposed the COMPETants algorithm for bi-objective transportation problem. The 

algorithm worked on the basis of rank-based AS and used two colonies of ants, two 

pheromone trail matrices and two heuristic parameters, one for each objective.  This 

method differed from the others in selecting non-fixed number of ants in each colony 

based on the solutions that the ants constructed. The colony that built better solution got 

more ants in the next iteration. Also, some of the ants in each colony were designated as 

spy ants which mixed the pheromone trails and the heuristic information of all colonies to 

search in the central areas of Pareto-frontier. Garcia et al., (2007), recently proposed a 

taxonomy and analysis of the performance of various existing multi-objective ant colony 

optimization algorithms in comparison with multi-objective genetic algorithms.  

Recently, some researchers have developed hybrid optimization algorithms combining 

ACO and other methods like PSO and GA. Panahi et al., (2011) solved a multi-objective 

open shop scheduling problem by a novel hybrid optimization algorithm. An efficient 

method based on multi-objective ACO and simulated annealing has been proposed. 

Initially, the ant colony optimization algorithm was applied to the problem and due to the 

sensitivity of the ultimate solution's quality to the quality of the initial solutions; another 

algorithm (multi-objective) simulated annealing has been used. A decoding operator has 

been used and the results obtained were compared with those obtained from the standard 

algorithms.   
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An improved ACO combined with PSO for multi-objective flexible job shop scheduling 

problems has been presented by Li et al., (2010). The developed algorithm involved two 

parts. The first part used the fast convergence property of PSO to search the particle's 

optimum and took that as an initial design for ACO. The second part used the merit of 

positive feedback and the structure of the solution set provided by ACO, to search for the 

global optimum. 

An efficient ACO algorithm for multi-objective resource allocation problem was 

addressed by Chaharsooghi et al., (2008). In order to obtain a set of Pareto solutions 

effectively, a modified ACO was proposed. It was based on a concept in which the ants 

were considered smart and had increased learning.  

Bi-objective ACO approach was applied to optimize production and maintenance 

scheduling by Berrichi et al., (2010). Two objectives were considered and tradeoff 

solutions were found between the two objectives of production and maintenance. To 

improve the quality of solutions, a multi-objective ACO was considered and the 

experimental results were compared to those obtained by multi-objective genetic 

algorithms. 

An application of multi-objective ACO in emergency evacuation process was proposed 

by Zong et al., (2010). The two objectives considered were the total evacuation time of 

all the people and the path crowding degree in the building. The aim was to develop an 

optimization method based on ACO for efficient, rapid and reasonable plans for complex 

evacuation routing problems. 
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A disassembly line balancing problem was solved using multi-objective ACO by Ding et 

al., (2010). A multi-objective mathematical model was created based on three objectives 

and an improved ACO based on Pareto-set was developed. A practical case was 

considered for illustration. Another application of multi-objective ACO for flow shop 

scheduling problem was studied by Yagmahan et al. (2010). Two objectives were 

considered, namely, the make span and the total flow-time. The developed ACO 

combined the ant algorithms with a local search strategy in order to solve the problem.  

ACO for assembly line balancing was studied by Chica et al., (2010). Two new multi-

objective proposals were presented based on ACO and random greedy search algorithms. 

Some variants of these algorithms were compared to find out the impact of different 

design choices based on heuristic information. Benchmark example problems and real 

world automobile case studies were provided. 

Dispatch problems in environmental and economic dispatch (EED) were solved using 

ACO by Cai et al., (2010). A multi-objective chaotic ant swarm optimization algorithm 

was developed for solving the dispatch problems of thermal generators in power systems. 

Chaotic ant colony optimization was based on a combination or balance between the 

chaotic (unorganized) and organized nature of ants.  

Multi-colony ant algorithms were used for multi-objective optimization by Reddy and 

Kumar (2007) for application in multi-purpose reservoir operation. The paper presented a 

non-dominated archiving ant colony optimization method, which benefited from the 

concept of multiple colonies and a new information exchange policy. After a certain 

number of iterations, the ant colonies exchanged information on the assigned objective 
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which resulted in a set of non-dominated solutions. These solutions were then sent to an 

offline achieve for further pheromone updating. Performance of the new method was 

tested and applied to the reservoir operation. 

Recently, the optimization of laminate stacking sequence using ACO was performed by 

Hemmatiana et al., (2013). Elitist ant algorithms were used to optimize the stacking 

sequence with weight and cost objectives. Multi-objective ACO was applied to injection 

molding process by Huang et al., (2011). The developed hybrid method used ACO with 

crossover and mutation feature (generally used in GA) to generate the Pareto solutions. 

The parameters (results) obtained from the ACO were used to manufacture actual 

samples in injection molding process. 

Aerodynamic shape optimization of an airfoil was performed by Kumar et al., (2011) 

using multi-objective ant colony optimization. In this method, the multi-objective 

optimization problem was converted into a single objective optimization problem using 

goal vector optimization by scalarization strategy. The ACO algorithm was integrated 

with a mesh less computational fluid dynamics solver to perform the shape optimization. 

Optimal mechanism design of shearing machine using multi objective ant colony 

optimization was done by Zhou et al., (2011). The paper presented the basic ACO 

method with modifications. It dispersed a search space of the design variables by setting 

several design search steps and the ACO algorithm was adopted to search the best 

searching step of each design variable dynamically throughout the optimization process.  

A new multi-objective resolution method was suggested by Hicham et al., (2010) and 

applied to buffer sizing in assembly lines. The method was based on a multi-objective ant 



18 
 

 
 

colony optimization but using a Lorenz dominance criterion instead of Pareto dominance. 

This provided a better dominance area by rejecting the solutions found on the extreme 

sides of the Pareto front. The results obtained were compared with those of the classical 

multi-objective methods and showed the advantages of the method. 

A review of the literature indicates that each of the works used its own version of ACO 

modified to the needs. The present research develops a new multi-objective ACO 

technique for solving multi-objective optimization problems in engineering design 

optimization.  

In this chapter, an introduction to the present research work is given. A brief literature 

review of the multi-objective, multi-level and ant colony optimization is provided.    
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CHAPTER 2 - OPTIMIZATION METHODS 

Optimization methods are used to formulate and solve different types of optimization 

problems. In this chapter, single and multi-objective optimization problem formulations 

are explained and various approaches used to solve multi-objective optimization 

problems are indicated briefly. Game theory method for solving multi-objective 

optimization problems is described in detail. Also, the concepts of multi-level 

optimization and ant colony optimization are detailed. The developed procedures for 

multi-level and ACO in the present work are explained. 

2.1 Single objective optimization  

A general optimization problem can be stated as  

Find 	 	…	 	 which minimizes                                                          (2.1) 

subject to  

  0,										 1,2, … ,                                                                (2.2) 

  0,										 1,2, … ,                                                                (2.3) 

  	 	 	 	 											 1,2, … , 	                                                  (2.4) 

Where  is the design variable,  is the objective function,  and  are the 

constraints.   and  denote the lower and upper bounds on . The above problem 

is called a single objective optimization problem, since there is only one objective to be 

minimized.  
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2.2 Multi-objective optimization 

When the number of objective functions is more than one, then the single objective 

optimization problem converts into a multi-objective optimization problem. Usually, the 

objective functions are conflicting. Some are to be minimized while the others are to be 

maximized. Hence, it is not possible to find a single solution that is optimal for all the 

objective functions simultaneously. The main aim is to provide a rational approach to 

find optimal design solutions in the presence of conflicting objective functions.  

Multi-objective optimization problems are solved using several approaches. Most of the 

methods used in literature are broadly classified into three categories as:         

 Pareto-optimal set generation methods – In these methods, the decision maker 

or the designer chooses one of the alternative optimal solutions within the 

Pareto-optimal set (section 2.2.2) after the set is generated. 

 Preference-based methods – In these methods, the preference of the decision 

maker or the designer is taken into consideration before the optimization 

process.  

 Interactive methods – In these methods, the preference of the decision maker 

or the designer is considered during the course of the optimization process. 

Generally, each of these methods is problem specific and can be combined, if necessary, 

to develop hybrid methods of solutions for the multi-objective optimization problems. 

Irrespective of the method, there exists a generic procedure for solving various multi-

objective optimization problems. Various steps involved in the generic procedure are 

given as: 
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 Step 1: Problem formulation 

 Step 2: Computing the feasible design variables domain 

 Step 3: Performing global sensitivity analysis (loop between 1 and 3) 

 Step 4: Computation of Pareto-optimal set 

 Step 5: Performing design synthesis 

2.2.1 Multi-objective formulation 

A general multi-objective optimization problem can be stated as  

Minimize , , . . . , 	                                 (2.5) 

subject to 	 0	; 				 1,2,… ,            (2.6) 

and 0	; 				 1,2, … ,               (2.7) 

where  T
nxxxX ...21


 is an n-component design vector. , , . . . ,  are 

the multiple objective functions. Many procedures are available in literature for solving 

multi-objective optimization problems. Some of them are the weighted sum, global 

criterion, bounded objective, lexicographic, goal programming, goal attainment and 

trade–off curve methods. In this work, a modified cooperative game theory approach, is 

used for the solution of the multi-objective optimization problem. The basic concept of 

game theory approach is presented below. 

2.2.2 Game theory approach for solving a multi-objective optimization problem 

The basics of game theory are based on the behavior of a group of players interacting 

with each other in a game. Two main theories have been developed for interacting 
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systems. These are the non-cooperative game theory and the cooperative game theory.  A 

multi-objective optimization problem can be seen as a game in which the players 

represent the objective functions and the resources available represent the constraints. 

Each player competes to optimize his/her own standing in the system. 

The non-cooperative game theory is based on the concept of Nash Equilibrium and the 

cooperative game theory is based on the concept of Pareto minimum solution. In the non-

cooperative game theory, the players do not cooperative/agree with each other initially.  

This means that each player is interested in reaching his own goal (minimizing or 

maximizing his objective) irrespective of the others. With this interest he selects his own 

share of resources. Once this is done, the players bargain/exchange resources among 

themselves until they reach an equilibrium state. This is called the Nash Equilibrium 

solution. It is a solution where there is a stable equilibrium condition in such a way that 

no player deviates unilaterally (by exchanging resources) from this point for further 

improvement of his own objective without effecting the objectives of any/all other 

players (Rao and Hati (1979), Rao (1987)). This is a possible solution, but there can be 

solutions where the players have better objective function values than the Nash 

equilibrium solution. This situation is addressed using the cooperative game theory 

approach. 

In the cooperative game theory approach, all the players are willing to agree/cooperate 

with each other. Each player is ready to compromise on his own objective in improving 

the team's (multi-objective) solution. The willingness to cooperate and compromise 

among themselves results in a set of solutions but not a single solution. Hence, a set of 

feasible solutions called Pareto optimal (non-inferior) solutions are found to eliminate 
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many of these solutions. A feasible solution is called Pareto optimal if there is no other 

feasible solution that would reduce some objective function without causing a 

simultaneous increase in at least one other objective function. Thus, in a Pareto optimal 

solution, the team allocates the resources such that the players are as optimal as possible. 

Then, the resources are distributed in a way that no single player's gain results in an 

unacceptable loss to the other player(s). Hence, after determining the Pareto optimal set, a 

particular element (unique solution) is to be selected from it. One method to do that is to 

take the players far from their worst cases. To do this, a supercriterion or a bargaining 

model is to be specified as a measure of compromise. This supercriterion is generally a 

function of the objectives, penalizing solutions with objectives that are very near to their 

previously defined worst cases. 

Thus, solving a multi-objective optimization problem using cooperative game theory 

involves two steps. The first step generates the set of Pareto optimal solutions and the 

second step selects an element from the Pareto optimal set. A procedure for implementing 

these steps, termed as modified or extended game theory approach, is presented next.  

2.2.2.1 Modified game theory 

The modified game theory approach is used for solving multi-objective optimization 

problem. In the present study the modified game theory approach is coupled with the 

SQP method to handle multiple objectives. This approach converts the multiple objective 

optimization problem to an equivalent single objective optimization problem. The 

resulting problem is then solved using the SQP algorithm to find the compromise 

solution. The step-by-step procedure of the modified game theory is given below: 
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1. Each of the k objectives is minimized separately using a common initial design 

vector:  

Minimize	f
subject	to	 	 	S

						 				 ; 									 1, 2, … ,                                                        (2.8)   

where  denotes the feasible design space. If *
iX


 denotes the minimum of )(Xfi



, the values of the other (remaining) objectives at the  optimal design vector are 

recorded as kiijXf ij ...,,1,1...,,2,1;)( * 


for ni ...,,2,1 . 

2. All the objectives are normalized so that no objective, due to its magnitude, is 

favored. The following normalization procedure is used: 

 

																							
∗

∗ 																																																																					 2.9  

where  is the worst value, and ∗  is the optimum (best) value of the  

objective. 

3. A super criterion S is formulated as  

						 1 																																																																														 2.10  

where 0 ≤S ≤1 due to the normalization of objective functions. 

4. A Pareto optimal objective, FC is defined using normalized objectives.  The 

weighted sum method is used so that :  

																						 																																																																			 2.11  

subject to the normalization of the weights  as   ∑ 1.        
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5. The Pareto optimal objective FC is to be minimized and the supercriterion S is to 

be maximized. Hence, they are combined to generate a new objective for 

minimization as : 	

OBJ FC S

						subject	to		

X	 	S	and

0 1	; 	 1,2, … ,

                                       (2.12) 

The solution of the problem stated in Eq. (2.12) gives the desired compromise 

(Pareto optimal) solution of the multi-objective optimization problem. 

2.3 Multi-level approach 

Multilevel optimization is a process in which a bigger problem is fractioned into smaller 

and simpler problems. The smaller problems (also called sub problems) are solved 

separately. Finally, all of them are integrated or coordinated by a system level problem 

which optimizes the required objective(s). For a clear understanding of the procedure, it 

is explained in the form of equations.  

In this, the design vector X is partitioned into two subvecters Y and Z:  

  	                                                                                               (2.13) 

where Y denotes the vector of system level design variables and Z denotes the vector of 

component level design variables (specific to the subsystems). The vector Z is further 

partitioned as 
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⋮

⋮
                                                                                           (2.14) 

where  represents the variables associated with the  subsystem only and K denotes 

the number of subsystems. Now, the constraints are also partitioned as  

, 0; 			 ∈ 		and , , 0; 		 ∈ ; 		 ∈                                        (2.15) 

where Q denotes the set of system level constraints and L denotes a set of local 

constraints of the  subsystem problem, and  

 	 	 	 	 ;	 	 	 	 	 	; 	 1,2, … ,                                              (2.16) 

After redefining the problem, the two levels can be stated as: 

System level: The system level problem is given as 

Find Y which minimizes 	 ∑ , ∗ 	       (2.17) 

subject to  

, ∗ 0; 			 ∈ 		 and 	 	 	 	                                             (2.18) 

Subproblem/component level: In this level the values of the components of the vector Y 

are fixed and the main problem is decomposed into K independent subproblems, each of 

which is stated as  

Find  which minimizes ∗,  = [ ∗ 	 ]       (2.19) 
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where S denotes a function of the problem parameters (like stiffness) in terms of the 

design variables in each level, subject to  

  ∗, 	 0                                                                                (2.20) 

  ∗, 0                                                                                 (2.21) 

 	 	 	 	 											 1,2, … ,                                                            (2.22)        

Each of these sub-problems is solved and summed to get the minimum of the overall 

objective function given by 

 , 	 ∑ 1 , 	                                                                      (2.23) 

Thus, the system level specifies an overall design, while the component level gives a 

detailed design. 

 

Figure 2.1 Block diagram for multilevel optimization 
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An extension of the multilevel optimization methodology shown in Figure 2.1 is used in 

present work. A multi-level collaborative optimization frame work is developed to 

consider discipline specific sub-problems or constraints. Instead of the inequality 

constraints in the system level, a set of equality constraints matching the system and 

component (discipline) levels are taken into account. That is done to assign target values 

for the design variables. The system level optimization maintains the compatibility 

among the sub-problems and minimizes the overall objective function. Each disciplinary 

sub problem design satisfies local constraints while satisfying the discipline specific 

objective discrepancy function.  

2.4 Ant colony approach 

The basic ideas of ACO are taken from how ants move and behave to search for food. In 

nature, ants wander randomly to locate food. Once they find food, they return to their nest 

or colony. During their journey, they secrete a chemical (called pheromone) on their 

paths. Other ants behind them tend to follow the same path instead of searching here and 

there. This is because they smell the pheromone. In this way, they reinforce the path for 

the next set of ants. However, after a certain amount of time the pheromone starts to 

evaporate. So, if the path is longer, the pheromone on it evaporates because it takes more 

time to travel by that path. The shorter paths in turn are left with higher concentration of 

pheromone because they retain larger amount of pheromone than the amount that is 

evaporated. So, the chances of following the shorter paths increase with time. In the 

language of ACO algorithm, evaporation process helps in avoiding convergence to a 

local minimum. In the absence of evaporation, the path taken by the initial ants is 
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obviously followed by other ants and so the search is not effective. Hence, when ants find 

shorter paths from nest to food, other ants follow them. This leads to a positive feedback 

and finally all ants follow the same shortest path. The ACO algorithm simulates this 

behavior assuming "artificial ants" to be walking in the search space.        

2.4.1 Basic Procedure of ant colony optimization  

ACO is basically a discrete optimization technique. Its basic procedure can easily be 

explained using a relevant example from literature, the Traveling Salesman Problem 

(TSP). Suppose that a salesman has to travel through n cities making sure that he doesn't 

stop in any city more than once. The problem is to find the shortest path through all the n 

cities. ACO algorithm assumes that there are m ants. Each of the m ants constructs a 

solution through all the n cities. This process is repeated for all iterations. These solutions 

are called ant tables. At each city an ant randomly chooses the next city based on a 

probabilistic rule. The probabilities are calculated based on heuristic and pheromone 

values. The heuristic information is denoted by  (from city i to city j) and the 

pheromone values are denoted by  .  shows the desirability of the travel and τ gives 

the effectiveness of the past choice. The probability to move from city i to city j is 

computed as 

																																			
∑

																																																																																					 2.24  

where α and β are the control parameters that determine the relative influences of the 

heuristic and the pheromone values on the ant's decision and the summation extends over 

the neighborhood of city j (over all permissible discrete values of the  design variable). 
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Once the ants construct solutions, the pheromone values are updated for the best ant's 

path. This is done as  

																																		 ∆ 		; 	where	∆ 																																																							 2.25  

and q is a constant and L is the length or the distance between the two cities. After a 

certain number of iterations, the pheromone is evaporated. This is to avoid convergence 

to local minimum and to favor the exploration of new regions. The evaporation equation 

is given by 

																																					 1 																																																																																			 2.26  

where ρ is the evaporation constant with 0 < ρ <1. 

This cycle of solution construction (tour), updating the paths and evaporation of the 

pheromone, is continued until all the ants converge to a single path or a few best paths 

which represent the final solution (shortest path). 

Many forms of ACO are available in literature. Some of the important ones are the Ant 

System, Elitist Ant System, Ant Colony System, Max-Min Ant System and the Rank-

Based Ant System (Dorigo, (2004)). These versions differ from the basic ACO in the 

pheromone updating process, pheromone evaporation process or the probabilistic node 

selection process.  
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2.4.2 ACO for engineering design optimization 

Most of the problems in the engineering design optimization deal with minimizing an 

objective function such as cost, weight or volume of a system subjected to constraints 

such as deflections, stresses and/or torques.  

The ACO procedure explained previously for the case of TSP problem is modified with 

assumptions and applied to engineering problems. The major assumptions are 

summarized as: The cities/nodes in the TSP represent the design variables in the case of 

an engineering design problem. In TSP, only one path exists between two cities, but in 

the case of the engineering design problem, many paths exist between any two design 

variables (because of the discrete values of the design variables). In TSP, the order of 

visiting the cities is important, but in the engineering design problems, it is not. In TSP, 

the tour (objective) is always feasible whereas in an engineering design problem, the 

solution obtained by a set of design variables need not always be feasible. With these 

assumptions, a new multi-objective ACO algorithm is developed in this study and is 

applied to multi-objective engineering optimization examples. 

Developed Multi-objective ACO algorithm for engineering design optimization 

The step-by-step Multi-objective ACO procedure used to solve the objective 

function	 , containing all the multiple objectives, and subject to the constraints 

0	,				 1,2, … ,  , where   is an n component design vector, is given as 

below. 

1. Start with a random initial design which need not satisfy the behavior constraints. 

For simplicity, the lower bounds on the design variables are chosen as the starting 
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values i.e. 	  and  	  where  indicates the initial/starting 

design vector and  denotes the design vector containing lower bound values of 

the design variables.  Indicates the initial value of the objective functions 

calculated using lower bound values of the design variables. 

2. Initialize the number of ants N and the maximum number of iterations permitted 

for termination I. 

3. For each of the N ants carry out steps 4 through 6.  

4. Initialize the pheromone matrix  τ  where  and  extend over the number of 

discrete values of the design variables and the number of design variables, 

respectively. For simplicity, choose all the elements of the initial pheromone 

matrix equal to 1. 

5. Compute the probabilities with the current pheromone matrix using  

∑
                (2.27)   

where the summation extends over the neighborhood of each design variable. The 

constraints are handled using the penalty approach (Rao, (2009)) as  

	 	 	                                    (2.28) 

where 	is the penalized value of the objective function,  is the actual (current) 

value of the objective function and 1 ∑  where ∑  is the cumulative 

constraint violation (with constraints normalized) with  denoting the magnitude 

of violation of constraint. 
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6. Build a design (path) randomly based on the calculated probabilities. For this, 

cumulative probabilities are calculated and random numbers are generated. Then 

the values of the design variables are chosen based on the roulette wheel selection 

process. Finally, the value of the objective functions (length of tour) is evaluated 

which represents an initial solution set. 

7. Now, a new solution set is created using the following equation 

	 ⋯ 	             (2.29) 

Where the values of the weights are randomly assigned based on ∑ 1. 

8. Check the designs corresponding to all ants for feasibility/optimality. Satisfaction 

of the constraints is checked and then among the selected designs, the best h 

designs are chosen in the vector  based on the values of the objective 

functions in   and those h paths are updated using step 12. 

9. Test the current best design vector for convergence. 

 If 	   where  denotes the value of the best 

design vector obtained so far for all the iterations, then go to step 

10. 

 Else if iteration = I then print the best solution so far and terminate 

the program. 

 Else go to step 1. 

10. Check for termination condition. 
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 If for a certain number of iterations the design does not change 

(stagnation) or  

 If the number of iterations reaches the maximum allowable number 

of iterations. 

11.  If step 10 is satisfied then stop the iterative process and terminate the program by 

printing the best solution; or else go to step 12. 

12. Update the pheromone matrix of all the ants using the best ant's path as: 

τ τ ∆τ                (2.30)   

where ∆τ 	  and b is a constant whose value is to be suitably chosen 

according to the problem, and go to step 3. 

The above-mentioned algorithm is used for solving the engineering design optimization 

problems. 

Different optimization methods are considered in this chapter. Formulations for single 

and multi-objective optimization are given. Game theory approach and modified game 

theory approach for solving multi-objective optimization problems are discussed. Basic 

concepts of multi-level and ant colony optimization techniques are explained. Developed 

multi-objective ant colony optimization approach for engineering design is discussed. 

Uncertainty based models for multi-level optimization, are discussed in the next chapter.  
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CHAPTER 3 - UNCERTAINTY MODELS 

In engineering design optimization, the design data are often assumed to be precisely 

known and the constraints are assumed to delimit a well-defined set of feasible solutions. 

However, incompleteness and uncertainty of input information are often encountered in 

practical situations. For example, the geometric parameters of components obtained 

through construction/manufacturability/machining process, are usually specified in terms 

of nominal values with tolerances. Many types of loads, such as wind, earthquake and 

snow loads are not know in precise but information from the past is available. Similarly, 

when material properties such as yield strength and young's modulus are experimentally 

determined, their values are found to exhibit scatter. Thus, all or most parameters 

involved in engineering design optimization problems are uncertain. Hence, it is 

important to consider uncertainty in the design and optimization of engineering systems. 

There exist various mathematical models of uncertainty in engineering design 

optimization. These models can be broadly classified into probabilistic or stochastic 

models and non-probabilistic models which include fuzzy and interval models. A brief 

description of each of these models is given in this chapter. The uncertainty models are 

developed for the multi-level optimization and are detailed in this chapter. 

3.1  Probabilistic/stochastic model 

In the probabilistic model, the uncertain parameters are treated as random variables, 

which are described by suitable probability distributions. The prevailing model for 

uncertainties in engineering, especially structural engineering is stochastic model. The 

Probability Distribution Function (PDF) and Cumulative Distribution Function (CDF) are 
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used to define the occurrence properties of uncertain quantities which are random in 

nature.   

3.1.1  Stochastic optimization 

In some situations, the behavior or the distribution of the design data is known based on 

experiments. In such cases, it is easy to define the problem as a stochastic optimization 

problem. There are different methods available in literature to solve stochastic 

optimization problems. One of the methods is the conversion of a stochastic optimization 

problem to a deterministic optimization problem using chance constrained programming 

technique. In this method, objective function and constraints are expanded about their 

mean values and are redefined in terms of the mean and standard deviation of random 

variables. The resulting problem is an equivalent deterministic problem of the original 

stochastic problem. Present work uses this technique. A brief mathematical formulation 

of the stochastic approach is given next. 

A stochastic nonlinear optimization problem can be stated as 

Find  which minimizes , subject to  

  	 		0 	 		 ,											 1,2, … ,             (3.1) 

Where Y is the vector of n random variables , , … ,  and includes the decision 

variables	 , , … , .The constraint equation indicates that the probability of the 

constraint being satisfied is greater than a certain specified probability.  

The objective function  is expanded about the mean values of , , as 
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	∑ higher	order	derivative	terms       (3.2) 

Assuming that the standard deviations of	 , , are small,  is approximated using the 

first two terms as 

≅ 	∑ ∑ ≡ 	          (3.3) 

	  is assumed to follow normal distribution and hence,  also follows normal 

distribution and its mean and variance are  

	                                                    (3.4) 

	 ∑                          (3.5) 

Using these values, a new objective function for the equivalent deterministic problem is 

given  

	 	             (3.6) 

Where  and  are positive constants and give the relative importance of the mean and 

standard deviation. 

Similar to the objective function f, the constraint functions  can also be expanded 

around their mean values and approximated as: 

	∑           (3.7) 
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From the above equation, the mean value,	 ̅ , and the standard deviation, , of ̅  can 

be obtained as  

̅ 	              (3.8) 

∑             (3.9) 

The constraints are to be satisfied with a minimum probability. This condition is stated as  

	 		0 	 		 ,											 1,2, … ,         (3.10) 

or 

	 		 	 		 ,											 1,2,… ,        (3.11) 

Considering   

	 ; 	           (3.12) 

Eq. (3.11) becomes 

	 		 	 		 ,											 1,2, … ,          (3.13) 

or 

	 	           (3.14) 

Where 

 ∅ 		           (3.15) 
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 ∅  is the value of the standard normal variate corresponding to the probability . 

The normal density functions are shown in Figure 3.1. 

Thus, 

	 		             (3.16) 

Substituting Eq. (3.12) and Eq. (3.15) in Eq. (3.16), the constraint is obtained as 

̅ 	∅ 	 	 0,					 1,2, … ,       ..(3.17) 

Hence, the stochastic optimization problem is converted into an equivalent deterministic 

optimization problem given by Eq. (3.6) and Eq. (3.17). 

 

Figure 3.1 Normal density functions 

3.2 Interval model 

In some situations, the probability variation of the design data is unavailable and hence, 

the mean and standard deviation of the design variables cannot be determined. In such 

cases, the imprecision in the system can be defined by assuming a set of interval 

parameters for the design data.  Hence, all the parameters are treated as interval numbers 

as A= [A-∆A, A+∆A] with A denoting the mean value and ∆A the deviation from the 

mean on either side. For example, the mean diameter of a shell, P can vary between  
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and  and hence, can be taken as an interval	 ,  . Also, it is to be noted that the 

interval parameters result in interval arithmetic being used in all the steps for calculation. 

When the parameters of a system contain information and features that are vague, 

qualitative and linguistic, a fuzzy approach is used to predict the response. In the fuzzy 

model of engineering design problems, the uncertainty is modeled as fuzzy numbers 

rather than random values with certain distribution. In other words, the fuzzy model 

presents a possibility rather than a probability description of uncertainty. In order to 

develop a suitable method for processing convex fuzzy input parameters, the concept of 

α-level discretization is adopted (Rao and Sawyer (1995), Rao and Berke (1997)). This 

method ensures ease of numerical processing of fuzzy information. The core procedure is 

called α-level optimization (Mullen and Muhanna (1995, 1996, and 1999)). This 

procedure results in different levels and at each level there is a range of interval. This 

means that the fuzzy uncertainties are converted to interval uncertainties and hence, these 

uncertainties are bounded within a specified interval.   

3.2.1 Interval optimization 

In this procedure all the parameters are defined as interval numbers. Thus, the objective 

function and constraints are rewritten in terms of intervals. This requires solving the 

problem using interval arithmetic. A brief description of the interval arithmetic operations 

is given below. 

Consider an interval number as    21,,~ xxxxx   where the lower bound is given by 

xxxx o  1  and the upper bound is given by xxxx o  2 . The value ox  

represents the crisp or nominal value and x  the tolerance on x . The set 
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 21| xxxx oo    is a set of all real numbers between and including the endpoints 1x  

and 2x .  

Let ' ' denote any one of the arithmetic operations   ,,,  on real numbers x and ,y  

then the corresponding interval arithmetic operation is given by

 YyXxyxYX  ,|  where the interval YX  contains every possible number 

that can be formed as yx   from the two intervals  21, XXX   and  21,YYY  .  The 

basic interval arithmetic operations are given by 

 2211 , YXYXYX             (3.18) 

 1221 , YXYXYX            (3.19) 

    2212211122122111 ,,,max,,,,min. YXYXYXYXYXYXYXYXYX     (3.20) 

   1221 /1,/1, YYXXYX            (3.21) 

Note that the division operation YX  is not defined if  21,0 YY . We can see that 

interval addition and interval multiplication are both associative and commutative. 

Interval computation can also be extended to matrices. This is given by: 

     ijcCBA      rp            (3.22) 

With  A  =  ijijij aaa ,   qp ,    ijijij bbbB ,  rq , and the elements of the 

matrix  C  are given by: 



42 
 

 
 

;
1




q

k
kjikij bac   ,,,2,1 pi     ,,,2,1 ri        (3.23) 

where the multiplication rule is to be used for each product kjik ba .  

It is to be noted that after a certain number of interval operations, the width of the interval 

increases which makes it difficult to compare the numerical results. This is particularly a 

problem in complex engineering problems with several variables and parameters. To 

avoid this, a combinatorial approach or an interval-truncation approach (Rao and Berke 

(1997)) can be used. The truncation method is based on a comparison of the ranges of the 

input and output ranges of the parameters and computed responses. 

There are several steps associated with solving problems with interval computations and 

in some of the steps using interval arithmetic may not only seem to be redundant, but also 

could result in an erroneous result, according to physics of the problem. In such cases, a 

combinatorial approach is used instead of the interval operation in order to comply with 

the physical logic of the problem. Hence, it is essential to develop the computational 

procedure based on the complexity of the equations in terms of the interval parameters.  

In the interval optimization problems, since the objective functions and the design 

variables are all defined as interval functions, the solution of such problems requires 

interval computations at each and every step. Hence, during actual programming, order of 

the different interval parameters is adjusted in any specific equation. This is required 

during the execution of the program with the interval equations since the new order 

minimizes the computational time and leads to reduced and realistic interval ranges and 

hence, reasonably accurate solutions.  
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3.3 Multi-level stochastic optimization model 

In present work, the multi-level optimization formulation under stochastic uncertainty is 

done using the chance constrained technique as described in section 3.1.1. The stochastic 

optimization problem at the system and component (disciple) level is converted to an 

equivalent deterministic optimization problem and then solved using the classical 

optimization algorithm (sequential quadratic programming (SQP)). The basic block 

diagram of the multi-level formulation is as shown in Figure 3.2. The system level 

stochastic objective function is a combination of the mean and standard deviation of the 

deterministic objective function. The stochastic constraints are to be satisfied with a 

certain level of probability. The system level equality constraints are approximated to 

deal with the uncertainty propagation between two levels. 

 

Figure 3.2 Block diagram for multilevel stochastic optimization  
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3.4 Multilevel interval optimization model 

The concept of interval optimization (section 3.2.1) is used in the multi-level approach. 

The block diagram for ML Interval optimization developed in this work is shown in 

Figure 3.3. The system level and the component levels consist of interval functions. This 

is different from the deterministic multi-level approach. It can be seen from the figure 

that the deterministic variables as mentioned in the ML optimization, are changed to 

interval variables in the ML interval optimization with minimum and maximum values. 

In the multilevel interval optimization it is evident that the objective function and 

constraint values are all interval numbers. Hence, an overall objective function is 

constructed, which is minimized (or maximized) based on the mean values of the 

intervals. The interval values at the constraints are considered as extra sets of constraints 

to be satisfied. 

 

Figure 3.3  Block diagram for multilevel interval optimization  
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In this chapter, uncertainty models (stochastic and interval) are explained. The developed 

multi-level optimization models with stochastic and interval uncertainties are discussed. 

These models are applied to structural engineering problems in the next chapter. 
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CHAPTER 4 - STRUCTURAL DESIGN PROBLEMS 

In this chapter, benchmark examples in structural design are considered. These problems 

are solved using the ant colony and multi-level approaches and the results are compared 

to those obtained using classical methods. The classical method used to solve these 

problems is Sequential Quadratic Programming (SQP) (Rao, (2009)). The structural 

examples considered are a ten bar plane truss and a twenty-five bar space truss. 

4.1 Example 1:  Ten bar plane truss 

A ten bar plane truss example, taken from literature (Rajeev and Krishnamoorty (1992)), 

is solved using the classical method SQP for deterministic and stochastic formulations. 

Multi-level approach is then used to solve the problem and the sensitivity analysis is 

performed. 

4.1.1 Deterministic formulation 

Consider the ten bar plane truss, shown in Figure 4.1. This truss is required to support the 

given load condition shown in Table 4.1. It is to be designed with constraints on the 

member stresses as well as nodal displacements. The cross sectional areas of the 

members ( ) are taken as the design variables with lower and upper bounds. The 

minimum allowable stresses for all members are specified by s in both tension and 

compression. The nodal coordinates and the design data for the truss are given in Table 

4.2 and Table 4.3 respectively. 

The vector of design variables is given as  

  ; i=1,2,…10.             (4.1) 

The objective function is total weight of the truss and is given by  
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∑                        (4.2)                         

Stress and displacement constraints are 

					; 1,2, … , 10                 (4.3) 

		 			; 1,2,… , 4	; 1,2                      (4.4)  

Where  is the stress in member i, given by  

  10.....,,2,1;  iA
PX

i

ai
i                     (4.5) 

where  is the load ,  is the nodal displacement of node k along direction j (j = 1 for 

x, 2 for y), s is the allowable stress,  is the allowable nodal displacement of each node in 

both x and y directions,  is the density of the material and li represents the length of the 

ith member. 

 

Figure 4.1  Ten bar plane truss  
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4.1.2 Stochastic formulation 

The deterministic optimization problem for the ten bar truss is converted into a stochastic 

problem assuming the cross sectional areas of the truss members ( ) density of the 

material (ρ), modulus of elasticity (E), allowable stress (s) and loads ( ) (as shown in 

Figure 4.1) on the members to be probabilistic, following normal distribution. The 

coefficient of variation of E,   and s is assumed to be 0.1(i.e. the standard deviation is 

10% of the mean value). The coefficient of variation of , and ρ is assumed to be 0.01. 

The objective is to minimize the sum of mean and standard deviation of the weight of the 

truss subjected to stress and displacement constraints. Constraints are assumed to be 

satisfied with a probability of at least 0.95. The vector of random variables (Y) is given by 

    ; i = 1 to 10           (4.6) 

As indicated earlier, ((Eq. (3.6)), the stochastic objective function is taken as  

	 	             (4.7) 

where  and  are constants equal to 1. Similar to the objective function f, the 

constraint functions  are also expanded about their mean values and approximated as 

outlined in section 3.1.1 (Eq. (3.7)). The new constraints are constructed as 

̅ 	1.645	 	 0,																												 1,2, … ,           (4.8) 
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4.1.3 Multilevel deterministic formulation 

In the multi-level deterministic formulation of the 10 bar truss, two levels are considered. 

These two levels are specified as  

a) System level: Design variables are taken as areas and the objective function is to 

minimize the weight. Constraints are that the nodal displacement of each node is less than 

or equal to 2.0 in in x and y directions. 

 b) Component level: Design variables are thickness ( ) and mean diameter ( ) (average 

of inner diameter ( ) and outer diameter ( )) of the tubular cross section of the 

bars. Constraint is that stress in each member is less than the allowable stress. Objective 

function is obtained by taking the summation of the squares of the difference between the 

areas calculated using the areas (fixed) obtained from system level and the areas 

calculated using the thickness and mean diameter (design variables in component level).  

Formulation used in the multi-level process is given below: 

System level problem: 

Minimize  	 ∑               (4.9) 

Subject to  

		2			; 1,2, … , 4	; 1,2             (4.10) 

and 	   ; 		 1,2, … ,10         (4.11) 

Component level problem: 

Minimize  	 ∑         (4.12) 
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Subject to  

25000					; 1,2, … , 10 ;		                  (4.13)  

and  , 	   ; 		 1,2, … ,10             (4.14) 

where           (4.15) 

Algorithm/Procedure 

1. Find the areas to minimize the weight with displacement constraint. 

2. Find the mean diameter of each member with constraint as the stress constraint and 

objective function as the square of the difference in areas obtained from the design 

variables in the two levels.  

3. Calculate the areas from the mean diameters (and the corresponding thicknesses) 

obtained in step 2 and check for convergence with areas in step 1. Stop if converged. 

Else take the calculated areas as the initial values and  

4. Repeat steps 1 to 3 until convergence. The convergence criterion used in this example 

is based on the change in the system level objective function value during consecutive 

cycles (iterations between the two levels). 

It is to be noted that in the above algorithm, only the mean diameter ( ) is considered as 

a design variable in the system level since, the ratio  is fixed as 20. 

4.1.4 Multilevel stochastic formulation 

In this approach, both the levels in the multilevel process are considered as stochastic. At 

each level, the probabilistic problem is converted into an equivalent deterministic 
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problem and then solved. At the system level, the objective is to minimize the sum of 

mean and standard deviation of the weight of the truss. Constraints at the system level are 

the displacement constraints which are to be satisfied with a probability of at least 0.95. 

Design variables are taken as cross section areas of each member. At the component 

level, the objective is to minimize the discrepancy between the areas obtained from the 

system level and the areas calculated at the component level. At the component level, the 

stress constraints are probabilistic and are to be satisfied with a probability of at least 

0.95. Component level design variables are the mean diameter and thickness of each 

member. 

System level problem: 

Minimize  	 	              (4.16) 

Subject to  

		2 0.95			; 1,2, … , 4	; 1,2                    (4.17) 

and 	   ; 		 1,2, … ,10         (4.18) 

Component level problem: 

Minimize  	 ∑         (4.19) 

Subject to  

25000 0.95					; 1,2, … , 10 ;		                  (4.20)     

and  , 	   ; 		 1,2, … ,10             (4.21) 
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The results obtained by the deterministic approach, for the 10-bar truss, are tabulated in 

Table 4.4. Both discrete and continuous variables are considered. For continuous 

optimization, SQP is used and for discrete optimization ACO is used in the present work. 

The results are compared with those in literature (Rajeev and Krishnamoorthy (1992)). 

Although buckling is an important consideration in the design of truss structures, it is not 

considered in the present work because the original reference (Rajeev and 

Krishnamoorthy (1992)) did not consider buckling. The purpose of this example is to 

compare the results obtained by the present methods (continuous and discrete 

optimization) with those given by Rajeev and Krishnamoorthy (1992) and to demonstrate 

the developed ML deterministic and stochastic approaches. 

It can be seen from the table , that the minimum weight obtained using the discrete 

variable values is 5536.6276 lb. whereas the minimum weight obtained using the 

continuous variables is 5482.6314 lb. Also, the minimum weights obtained in both the 

cases (discrete and continuous) are lower than that reported by Rajeev and 

Krishnamoorthy (1992) (5613.8413 lb). In SQP, the initial design value is randomly 

chosen as 2 in2 for each of the design variables and the initial weight is obtained as 

839.2319 lb. At the initial point, there are no active constraints. In SQP, the number of 

iterations and the number of function evaluations for convergence is 22 and 246 

respectively. The discrete set used for ACO is given in Table 4.5. In ACO, a set of 25 

ants is used and it took 550 iterations to converge.  

Multi-level approach (ML) is used to solve the 10-bar truss problem and the results 

obtained are compared with those of the deterministic approach or the All-in-one (AIO) 

approach as shown in Table 4.6. Both AIO and ML methods use SQP for their solution. It 
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can be seen from the table that the minimum weight obtained by AIO approach is 

5482.6314 lb. while the minimum weight obtained using the present ML approach is 

5482.8334 lb. The number of iterations taken to reach the optimum design in AIO 

approach is 23 while in ML approach it is 24. Also, the number of objective function 

evaluations is 255 in AIO and 807 in ML. The initial design for the AIO and ML 

approaches is randomly chosen with area as 2 in2 for each of the design variable. Initial 

value of the objective function (weight) is 839.2319 lb. There are no active constraints at 

the initial design point. At the optimum solution (both AIO and ML approaches), the 

displacement along y direction is active for node 2. Details of convergence of the ML 

deterministic optimization are given in Table 4.7 and Table 4.8. Table 4.7 shows the 

convergence of the design variables for every iteration between the system and the 

component levels. From the table it is evident that the convergence in the ML process is 

achieved in 9 cycles (iterations between the levels). Variation of the weight at the end of 

every iteration between the two levels is given in Table 4.8. The convergence is evident 

with equal values of weight in both the levels at the final design. 

Table 4.1 Load conditions for 10 bar truss 

Node  (lb)  (lb) 

2 
4 

0 
0 

-100000 
-100000 

Table 4.2 Nodal coordinates for 10 bar truss 

Node  (in)  (in) 
1 
2 
3 
4 
5 
6 

720 
720 
360 
360 

0 
0 

360 
0 

360 
0 

360 
0 
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Table 4.3 Design data for 10 bar truss 

Young's modulus   ( ) =  107 psi 
Material density (ρ) = 0.1 lb/in3 

Lower bounds on the area of cross section  = 1.62 in2  

Upper bounds on the area of cross section  = 33.5 in2  

Lower bounds  on the mean diameter  = 3.21 in  

Upper bounds on the mean diameter  = 14.6 in  

20 

Maximum allowable stress (s) = ±25000 psi 
Maximum allowable nodal displacement ( ) = 2 in  
 

Table 4.4 Results obtained for 10-bar bar truss (deterministic optimization) 

Quantity Rajeev and 
Krishnamoorty 
(1992) 

Present work 
(discrete) 

Present work 
(continuous) 

Design variables: 
(in2) 

   

A1 33.5000 33.5000 32.2357 

A2 1.6200 1.6200 1.6200 

A3 22.0000 22.9000 23.2959 

A4 15.5000 14.2000 15.2624 

A5 1.6200 1.6200 1.6200 

A6 1.6200 1.6200 1.6200 

A7 14.2000 11.5000 8.3064 

A8 

A9 

A10 

19.9000 

19.9000 

2.6200 

22.0000 

19.9000 

1.9900 

22.6870 

21.5843 

1.6200 

Objective  
function: 

   

weight (lb)  5613.8413  5536.6276 5482.6314 
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Table 4.5 Discrete variable set for 10-bar truss  

 

S1 

{ 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 

3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 

5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 

19.9, 22.0, 22.9, 26.5, 30.0, 33.5} 

Table 4.6  Results of AIO and multilevel deterministic optimization of 10-bar truss 

                              AIO approach                     ML approach 

Quantity Initial design Optimum design Initial design Optimum design

Design variables: 
(areas in in2) 

    

 

 

 

 

 

 

 

 

 

 

Objective function: 

Weight (lb) 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

 

839.2319  

32.2357 

1.6200 

23.2959 

15.2624 

1.6200 

1.6200 

8.3064 

22.6870 

21.5843 

1.6200   

 

5482.6314  

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

 

839. 2319  

32.2354 

1.6200 

23.2958 

15.2624 

1.6200 

1.6200 

8.3063 

22.6872 

21.5844 

1.6200 

 

5482.8334 
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Table 4.7 Optimum design vectors at each cycle in the multi-level deterministic 
optimization of 10 bar truss  

cycle optimum design vectors at system level and component level 

1 x* 

d*  

{4.3021, 1.6200, 6.1951, 1.6200, 1.6200, 1.6200, 1.6200, 2.9502, 1.6200, 1.6200} 

{6.5910, 3.3915, 7.6432, 4.2244, 3.3914, 3.2504, 6.8267, 5.0576, 5.0237, 3.5999} 

2 x* 

d*  

{14.4896, 1.6200, 13.0617, 4.6637, 1.6200, 1.6200, 5.3582, 16.3488, 6.5780, 2.2339} 

{9.6044, 3.2116, 9.1188, 3.2116, 9.6044, 3.2114, 5.8405, 10.2019, 6.4712, 3.7714} 

3 x* 

d*  

{16.8721, 1.6200, 19.4950, 5.0304, 1.7748, 1.6200, 7.2727, 13.0755, 6.7651, 2.3326} 

{10.3639, 3.2114, 11.1405, 5.6590, 3.3614, 3.2114, 6.8044, 9.1237,  6.5626, 3.8535} 

4 x* 

d*  

{22.4291, 1.6200, 19.6018, 11.7403, 1.6200, 1.6200, 7.3040, 14.9384, 20.5186, 1.6200} 

{11.9494, 3.2115, 11.1709, 8.6453, 11.9494, 3.2113, 6.8190, 9.7520, 11.4292, 3.2115} 

5 x*  

d*  

{33.2304, 1.6200, 23.5700, 10.2469, 1.6200, 1.6200, 9.5976, 20.9939, 16.7425, 1.6200} 

{14.5448, 3.2114, 12.2496, 8.0768, 3.2114, 3.2114, 7.8167, 11.5608, 10.3240, 3.2114} 

6 x*  

d*  

{27.4168, 1.6200, 22.3436, 15.6417, 1.6200, 1.6200, 6.9561, 25.5262, 22.1660, 1.6200} 

{13.2114, 3.2115, 11.9266, 9.9789, 3.2115, 3.2115,  6.6546, 12.7478, 11.8791, 3.2113} 

7 x*  

d* 

{32.1050, 1.6200, 23.2814, 15.0664, 1.6200, 1.6200, 8.6258, 22.5563, 21.6120, 1.6200} 

{14.2964, 3.2114, 12.1743, 9.7936, 3.2114, 3.2114, 7.4104, 11.9832, 11.7297, 3.2114} 

8 x*  

d* 

{32.2521, 1.6200, 23.2732, 15.2828, 1.6200, 1.6200, 8.3099, 22.6672, 21.5905, 1.6200} 

{14.3291, 3.2115, 12.1722, 9.8637, 3.2115, 3.2115, 7.2735, 12.0126, 11.7239, 3.2115} 

9 x*  

d* 

{32.2354, 1.6200, 23.2958, 15.2624, 1.6200, 1.6200, 8.3063, 22.6872, 21.5844, 1.6200} 

{14.3254, 3.2115, 12.1781, 9.8572, 3.2115, 3.2115, 7.2720, 12.0180, 11.7222, 3.2115} 

x*- system level areas in in2; d*- component level mean diameters in in 

Table 4.8 Convergence results of multi-level deterministic optimization of 10 bar 
truss 

cycle f * (system 
level) 

f (0) (component 
level) 

f * (component 
level) 

Weight 
(component level) 

1 1008.8090 294.8124 47.2356 1749.4751 
2 2888.4713 306.3289 1.7133e-07 2888.5031 
3 3169.9863 398.1729 8.94888e-09 3169.9855 
4 4370.2372 739.8193 3.5017e-08 4370.2412 
5 5080.9941 1320.3768 6.3799e-10 5080.9930 
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6 5394.1405 1342.0169 3.1148e-08 5394.1400 
7 5481.5733 1455.9496 7.9532e-09 5481.5668 
8 5482.8306 1468.3549 1.1976e-07 5482.8602 
9 5482.8334 1468.3545 8.1974e-08 5482.8602 

f * - optimum value ; f (0) - initial value 

The results obtained by the stochastic optimization using both the AIO and ML 

approaches are given in Table 4.9. Two cases are considered. Case 1 denotes the 

minimization of the mean value of the weight of the truss and Case 2 denotes the 

minimization of the linear sum of mean and standard deviation of the weight. It can be 

seen that the minimum value of the objective function obtained using the AIO approach 

in both the cases, is greater than the deterministic value of 5482.6314 lb. This is as 

expected because of the randomness of the variables in stochastic optimization. When 

comparing the optimized weights in the AIO and ML stochastic optimizations, it is 

evident that the ML approach converged to greater values (6482.4012 lb and 6552.5127 

lb) than the AIO approach (5692.1382 lb and 5753.6054 lb). Also, the number of 

iterations and number of function evaluations for ML approach with combined objective 

function are 34 and 189 respectively. In the case of AIO approach, the corresponding 

numbers are found to be 26 and 290. For the AIO and ML stochastic approaches, the 

initial design is chosen randomly with area as 2 in2 for each of the design variables. The 

mean value of the objective function at the initial design point is 839.2319 lb and the 

standard deviation is 8.8763 lb. There are no active constraints at the initial design point. 

At the optimum designs, the displacement along y direction for node 2 is active. The 

mean value and standard deviation of the weight at the final design are found to be 

5692.1 lb and 61.5 lb for the AIO approach and 6482.4 lb and 70.1 lb for the ML 

approach.  
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Details of convergence of the ML stochastic optimization are given in Table 4.10  and 

Table 4.11. Variation of the weight at the end of each iteration between the two levels is 

given in Table 4.10. Table 4.11 shows the convergence of the design variables for every 

iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 7 cycles (iterations between the levels).  

Table 4.9  Results of AIO and multilevel stochastic optimization of 10-bar truss 

AIO approach ML approach 

Quantity Initial  
design 

Optimum design Initial 
design 

Optimum design 

Case 1@ Case 2 & Case 1 Case 2 

Design  
Variables: 
(area in in2) 

      

 2 33.5033 33.5033 2 33.4898 33.5033 

 2 1.6184 1.6184 2 1.6184 1.6184 

 2 24.3474 24.3516 2 28.6743 28.6792 

 2 16.0015 16.0057 2 19.1785 19.1838 

 2 1.6184 1.6184 2 1.6184 1.6184 

 2 1.6184 1.6184 2 1.6184 1.6184 

 2 8.5298 8.5372 2 9.8335 9.8420 

 2 23.6446 23.6355 2 27.8539 27.8438 

 2 22.3545 22.3503 2 27.0597 27.0541 

 2 1.6184 1.6184 2 1.6184 1.6184 

Objective 
function: 
( ) 

848.108 5692.1382 5753.6056 848.108 6482.4012 6552.5127 

 @ mean of weight, & linear sum of mean and standard deviation of weight (Eq. 3.6) 
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Table 4.10 Convergence results of multi-level stochastic optimization of 10 bar truss 

cycle 
f * (system 

level) 
f (0) (component 

level) 
f * (component level) 

weight 
(component level) 

1 1028.8023 292.6415 0.0976 2095.6345 

2 3520.7134 468.9023 1.2346e-04 3483.0845 

3 4482.7845 841.2034 4.2159e-05 4434.5671 

4 5310.4675 1170.2936 3.5601e-06 5253.7812 

5 6436.7982 2094.8734 4.7675e-03 6367.4563 

6 6552.2017 2168.6532 6.2502e-09 6481.5643 

7 6552.5127 2171.1098 1.7309e-06 6481.9029 

f * - optimum value ; f (0) - initial value 

Table 4.11  Optimum design vectors at each cycle in the multi-level stochastic 
optimization of 10 bar truss 

cycle optimum design vectors at system level and component level 

1 x* {4.5260, 1.6184, 1.6184, 1.6184, 1.6184, 1.6184, 3.1071, 1.6184, 1.6184, 1.6184}

d* {7.3234, 3.5769, 8.3976, 4.7569, 3.2127, 3.5771, 7.3919, 5.6079, 5.6140, 3.9052}

2 x*  

 

d*  

{18.7818, 1.6184, 15.5933,  1.6184, 1.6184, 1.6184, 5.9682, 19.5846, 8.0035, 

2.4928} 

{10.9347, 3.2099, 9.9634, 6.4516, 3.2101, 3.2099, 6.1640, 11.1660, 7.1380, 

3.9838} 

3 x*  

  

d*  

{22.2766, 1.6184, 19.9571, 1.6184, 1.6184, 1.6184, 7.7246, 25.0699, 10.9228, 

1.6184} 

{11.9087, 3.2098, 11.2717, 8.7327, 3.2098, 3.2098, 7.0126, 12.6333, 8.3389, 

3.2098} 

4 x*  

 

{27.7009, 1.6184, 20.2112, 1.6184, 1.6184, 10.3562, 22.6258, 22.1200, 1.6184}    

{13.2797, 3.2096, 11.3432, 3.2096, 3.2100, 3.2096, 8.1197, 12.0017, 11.8668, 
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cycle optimum design vectors at system level and component level 

d*  3.2101} 

5 x*  

 

d*  

{33.5033, 17.4770, 29.9912, 17.4770, 1.6184, 1.6184, 10.6137, 27.4819, 

24.6745, 1.6184} 

{14.6015, 3.2098, 13.8177, 10.5480, 3.2099, 3.2099, 8.2200, 13.2271, 12.5333, 

3.2097} 

6 x*  

 

d*  

{33.5033, 1.6184, 28.8024, 19.1390, 1.6184, 1.6184, 9.9636, 27.7448, 26.9690, 

1.6184} 

{14.6015, 3.2098, 13.5411, 11.0382, 3.2097, 3.2097, 7.9644, 13.2902, 13.1030, 

3.2098} 

7 x*  

 

d* 

{33.5033, 1.6184, 28.6792, 19.1838, 1.6184, 1.6184, 9.8420, 27.8438, 27.0541, 

1.6184} 

{14.6015, 3.2098, 13.5121, 11.0511, 3.2098, 3.2098, 7.9156, 13.3139, 13.1237, 

3.2098}  

x*- system level areas in in2; d*- component level mean diameters in in 

4.1.5 Sensitivity analysis 

In order to study the effect of randomness of the uncertain parameters in the ML 

approach, different numerical experiments were conducted for the 10 bar truss example. 

The standard deviation (SD) of all the random variables was changed from 1% to 10% of 

the corresponding mean values. The results obtained from the multilevel optimization 

with new values of standard deviation of random variables are shown in the Figure 4.2 

and the corresponding values are given in Table 4.12. Two cases are considered. Case 1 

denotes the minimization of the mean value of the weight of the truss and Case 2 denotes 

the minimization of the linear sum of mean and standard deviation of the weight.  
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*Case 1- mean of weight, Case 2 - linear sum of mean and standard deviation of weight (Eq. 3.6). 

Figure 4.2  Sensitivity of objective function to changes in standard deviation of 
random variables in ML stochastic approach 

Table 4.12 Variation of objective function to changes in standard deviation of 
random variables in ML stochastic approach 

SD* 
(%) 

Case 1@ Case 2& Mean of 
weight 

SD of 
weight 

1.0 5692.0 5753.6 5692.0 61.6 

2.0 5891.9 6019.3 5891.9 127.4 

5.0 6450.0 6798.7 6450.0 348.7 

10.0 7265.6 8051.6 7265.6 785.9 
* standard deviation, @ mean of weight, & linear sum of mean and standard deviation of weight (Eq. 3.6).  

It can be seen from Figure 4.2 that, the optimized objective function value increases with 

an increase in the standard deviation (%) of the random variables from 1% to 10%, in 

both cases. Also, at 1% standard deviation of random variables, the difference between 

the optimum values of the objective functions (5692.0 lb and 5753.6 lb), in both cases, is 

less and increases with an increase in the standard deviation (%) of the random variables.  

The values of the optimized objective functions, in both cases, for the ML and AIO 

approaches are given in Table 4.12 . 
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*Case 1- mean of weight, Case 2 - linear sum of mean and standard deviation of weight (Eq. 3.6). 

Figure 4.3  Sensitivity of objective function with respect to the probability of 
constraint satisfaction 

Further, the variation of the optimal objective function value with respect to the minimum 

probability level at which the constraints are satisfied is shown in Figure 4.3. The 

corresponding values (of the optimum objective function) along with the mean and 

standard deviation are given in Table 4.13.  Similar to the previous analysis (sensitivity 

with variation in standard deviation), two cases are considered with mean value of weight 

and a linear sum of mean and standard deviation of weight as objective functions. From 

Figure 4.3, it is evident that the AIO approach gives an optimum value lower than the ML 

approach in both the cases. It can be noticed that in both the approaches, the optimum 

objective function value increases with increase in the probability level of constraint 

satisfaction. 
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Table 4.13 Variation of objective function with probability of constraint satisfaction 

Probability Case 1 
(AIO) 

Case 2 
(AIO) 

Mean SD Case 1 
(ML) 

Case 2 
(ML) 

Mean SD 

0.80 5589.7 5650.2 5589.8 60.4 5981.8 6046.5 5981.8 64.7 

0.85 5614.6 5675.3 5614.6 60.7 6100.7 6166.7 6100.7 66.0 

0.90 5645.8 5706.8 5645.8 61.0 6252.7 6320.3 6252.7 67.6 

0.95 5692.0 5753.5 5692.0 61.5 6482.4 6552.5 6482.4 70.1 

0.96 5705.5 5767.2 5705.5 61.7 6550.3 6621.1 6550.3 70.9 

0.97 5722.1 5784.0 5722.2 61.8 6634.5 6706.2 6634.5 71.8 

0.98 5744.2 5806.4 5744.3 62.1 6747.5 6820.5 6747.5 73.0 

0.99 5779.2 5841.7 5779.2 62.5 6928.5 7003.5 6928.5 75.0 
Case 1- mean of weight, Case 2 - linear sum of mean and standard deviation of weight (Eq. 3.6),              
SD – standard deviation  

4.2 Example 2: Twenty-five bar space truss 

The 25-bar space truss shown in Figure 4.4 is to be optimized for three objectives with 

constraints on the member stresses as well as Euler buckling (Rao (2009)). The member 

areas are linked to define the design variables as shown in Table 4.14. Thus, there are 

eight independent areas considered as design variables with lower and upper bounds on 

each of the variables. The nodal coordinates and the design data for the truss are given in 

Table 4.15 and Table 4.16. Two load conditions are considered at nodes 1, 2, 3 and 6 in 

the x, y and z directions Table 4.17. Members are assumed to be tubular with nominal 

diameter (di) and thickness (ti). Three objective functions considered are: minimization of 

weight, minimization of deflection of node 1 under both load conditions and 

maximization of fundamental natural frequency of vibration (  of the truss. 

The objective functions can be expressed as: 

																														 ∑ 																																																																		     (4.22) 

																														 ∑ 																																																				             (4.23) 



64 
 

 
 

																														 																																																				        (4.24) 

where  and  are the area of cross section and length of the ith member respectively. 

, 	and	 	are the x, y and z components of displacement of node 1 for load 

condition i (i =1,2). Stress and buckling constraints on members are stated as: 

40000	  (tension and compression) 	; 		 1,2, … ,25; 		 1,2              (4.25)                         

	   ; 		 1,2, … ,25; 		 1,2                     (4.26)    

where  is the stress in member i for load condition j and  is the buckling 

stress in member i (i=1,2,…,25) given by  

100.01
8 																																																														                                     (4.27) 

The buckling stress in Eq. 4.27 is derived as below: 

/              (4.28) 

where  is the buckling load and is given by     

	             (4.29) 

where  is the area moment of inertia of each member i and is given by  

	             (4.30) 

Substituting  Eq. 4.29, Eq. 4.30 and 100  in Eq. 4.28 gives Eq. 4.31.  
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Also, the mean diameter (di) and thickness (ti) are derived in terms of the member areas 

(Ai) as below: 

	             (4.31) 

since  100           (4.32) 

	 ∗ 100 ∗             (4.33) 

               (4.34) 

Similarly,              (4.35) 
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Figure 4.4  Twenty-five bar space truss (Rao (2009)) 

Table 4.14  Design variables corresponding to areas of truss members 

Design Variable Member Area 
x1 A1

x2 A2, A3, A4, A5 
x3 A6, A7, A8, A9

x4 A10, A11 
x5 A12, A13 
x6 A14, A15, A16, A17 
x7 A18, A19, A20, A21 
x8 A22, A23, A24, A25 

Table 4.15 Coordinates for 25 bar truss 

Node  (in)  (in)  (in)
1 
2 
3 
4 
5 
6 

-37.5 
37.5 

-37.5 
37.5 
37.5 

-37.5 

0.0 
0.0 

37.5 
37.5 

-37.5 
-37.5 

200.0 
200.0 
100.0 
100.0 
100.0 
100.0 
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Node  (in)  (in)  (in)
7 
8 
9 

10 

-100.0 
100.0 
100.0 

-100.0 

100.0 
100.0 

-100.0 
-100.0

0.0 
0.0 
0.0 
0.0

Table 4.16 Design data for 25 bar truss 

Young's modulus   ( ) =  107 psi 
Material density (ρ) = 0.1 lb/in3 

Lower bounds on the area of cross section  = 0.1 in2  

Upper bounds on the area of cross section  = 5 in2  
Maximum allowable stress (s) = ±40,000 psi 

Table 4.17  Load conditions for 25-bar truss  

 Joint 
1 2 3 6 

Load Condition 1, Loads in Pounds 
Fx 0 0 0 0 
Fy 20,000 -20,000 0 0 
Fz -5,000 -5,000 0 0 
 Load Condition 2, Loads in Pounds 

Fx 1,000 0 500 500 
Fy 10,000 10,000 0 0 
Fz -5,000 -5,000 0 0 

The 25-bar truss optimization problem is solved using the SQP procedure considering 

each of the objectives separately. The results obtained are given in Table 4.18. These 

results are compared to those given by Rao (2009) Table 4.19. It can be seen that the 

minimum weight obtained in the present method is 232.3612 lb and the minimum weight 

obtained by Rao (2009) is 233.07265 lb. Minimum deflection obtained in the present 

method is 0.30931 in and that obtained by Rao (2009) is 0.30834 in and the maximum 

frequency obtained by the present work is 113.8905 Hz whereas the maximum frequency 

obtained in Rao (2009) is 108.6224 Hz. Hence, the minimum weight and deflection 

obtained by both methods is almost the same whereas the frequency is slightly higher in 

the present work. This is due to more number of active constraints at the optimum point. 
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The number of iterations for convergence, in the minimization of weight is 10, in the 

minimization of deflection is 4 and in maximization of frequency is 16. The 

corresponding values for the number of objective function evaluations are 90, 36 and 145 

respectively. 

Table 4.18 Results of single objective optimization of 25-bar truss (SQP) 

Quantity Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency 

Design variables: 
(in2) 

   

x1 0.1 0.4550 0.1021 

x2 0.8008 5.0 0.7789 

x3 0.7438 5.0 0.7564 

x4 0.1 0.1115 1.2030 

x5 0.1288 0.8194 0.1 

x6 0.5690 5.0 5.0 

x7 0.9737 5.0 3.1062 

x8 0.8023 5.0 5.0 

Objective 
functions: 

   

weight  (lb) 232.3612 1483.5389 947.5341 

deflection  
(in) 

1.9311 0.30931 1.2772 

frequency  
(Hz) 

73.4926 73.1503 113.8905 
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Constraints:    

number of active 
behavior 

constraints 

9§ 

 

0 

 

5$ 

§ buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1 and in members 12, 16 and 24 in load 
condition 2. $ buckling stress in members 1, 2, 5, 7 and 8 in load condition1. 

Table 4.19 Results of single objective optimization of 25-bar truss (Rao (2009)) 

Quantity Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency  

Design variables: 

(in2) 

   

x1 0.1 3.7931 0.1 

x2 0.80228 5.0 0.79769 

x3 0.74789 5.0 0.74605 

x4 0.1 3.3183 0.72817 

x5 0.12452 5.0 0.84836 

x6 0.57117 5.0 1.9944 

x7 0.97851 5.0 1.9176 

x8 0.80247 5.0 4.1119 

Objective 
functions: 

   

weight  (lb) 233.07265 1619.3258 600.87891 

deflection  
(in) 

1.924989 0.30834 1.35503 

frequency  
(Hz) 

73.25348 70.2082 108.6224 



70 
 

 
 

Quantity Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency  

Constraints:    

number of active 
behavior 

constraints 

9§ 0 4$ 

§ buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1 and in members 13, 16 and 24 in load 
condition 2. $ buckling stress in members 2, 5, 7 and 8 in load condition1. 
 

The 25-bar truss design considered in Figure 4.4 is a benchmark example and does not 

represent a practical case. Hence, in the present work, a new 25-bar truss design is 

formulated (with modifications to the existing truss) to represent a design closer to a 

practical case. The new truss is shown in Figure 4.5. The mean diameter (di) to thickness 

(ti) ratio for each member of the new 25-bar truss is fixed to 20. The optimization 

problem formulation for the new truss is similar to the original truss (given by Eq. (4.22 – 

4.26)) with the buckling stress  for the new 25-bar truss design, for di/ti = 20, is 

given by  

. 																																																														                  (4.36) 

It is to be noted that Eq. 4.36 is derived similar to Eq. 4.27 using di/ti = 20.  
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Figure 4.5 New Twenty-five bar space truss  

In the new design, the upper and lower bounds for the design variables (areas) are taken 

as 5 in2 and 1 in2 respectively. For any area of cross-section of member i, the mean 

diameter and thickness of the member are given by 	  and 	  .The 

load conditions are given in Table 4.17 and the member areas are grouped as given in 

Table 4.14. The nodal coordinates for the new 25 bar truss are given in Table 4.20. The 

new 25-bar truss optimization problem is solved using the ML and ACO approaches. 

Table 4.20 Coordinates for the new 25 bar truss 

Node  (in)  (in)  (in)
1 
2 
3 
4 

-29.5 
29.5 

-29.5 
29.5 

0.0 
0.0 

29.5 
29.5 

118.0 
118.0 
59.0 
59.0 
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Node  (in)  (in)  (in)
5 
6 
7 
8 
9 

10 

29.5 
-29.5 
-79.0 
79.0 
79.0 

-79.0 

-29.5 
-29.5 
79.0 
79.0 

-79.0 
-79.0

59.0 
59.0 

0.0 
0.0 
0.0 
0.0

 

4.2.1 Multilevel multi-objective optimization of the new 25-bar truss 

In the multi-level deterministic formulation of the new 25-bar truss (Figure 4.5), two 

levels are considered. These two levels are specified as  

a) System level: Design variables are areas and the objective function is a combination of 

weight, deflection and frequency and is obtained using the modified game theory 

approach previously discussed (section 2.2.2). Constraint is that stress in each member is 

less than the allowable stress.  

b) Component level: Design variables are mean diameter and thickness of the cross 

section of the bars. Constraint is the Euler buckling constraint. Objective function is 

obtained by taking the summation of the squares of the difference between the areas 

(fixed) obtained from system level and the areas calculated using the thickness and mean 

diameter (design variables in component level).  

Formulation used in the multi-level process is given below: 

System level problem: 

Minimize  	 ∑             (4.37) 
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Where  represents the weight assigned to each of the objective (taken as 0.8, 0.1 and 0.1 

for l = 1, 2, and 3 respectively) and  represents the normalized objective function 

for weight, deflection and frequency (Eq. (2.9)). 

Subject to  

40000	  (tension and compression) 	; 		 1,2, … ,25; 		 1,2              (4.38) 

and 	   ; 		 1,2, … ,25         (4.39) 

Component level problem: 

Minimize  	 ∑         (4.40) 

Subject to  

	   ; 		 1,2, … ,25; 		 1,2                 (4.41)     

and  , 	   ; 		 1,2, … ,25             (4.42) 

Algorithm/Procedure 

1. Find the areas to minimize the combined objective function with allowable stress 

constraint. 

2. Find the mean diameter for each member with constraint as the buckling 

constraint and objective function as the square of the difference in areas obtained 

from the design variables in the two levels. 

3. Calculate the areas from the mean diameter (and the corresponding thickness) 

obtained in step 2 and check for convergence with areas in step 1. Stop if 

converged. Else take the calculated areas as the initial values and  
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4. Repeat steps 1 to 3 until convergence. The convergence criterion used in this 

example is based on the change in the system level objective function value 

during consecutive cycles (iterations between the two levels). 

Table 4.21 Convergence results of multi-level multi-objective optimization of the 
new 25-bar truss  

cycle$ f * (system 
level) 

weight (lb) 
(component level) 

deflection (in) 
(component level) 

frequency (Hz) 
(component level) 

1 0.1326 588.8250 1.3444 52.1827 
2 0.1491 610.7532 1.3012 52.8434 
3 0.1165 670.2452 1.2189 60.0270 
4 0.1021 637.0586 1.2568 57.3962 
5 0.1003 651.8492 1.2347 58.4533 
6 0.0998 647.8943 1.2325 57.6134 
7 0.0984 639.7831 1.2469 57.1084 
8 0.0975 619.0975 1.2823 55.0390 
9 0.0972 626.4161 1.2696 55.8419 

10 0.0972 627.2229 1.2685 55.9373 
$ iteration between the two levels; f * - optimum value  

Table 4.22 Optimum design vectors at each cycle in the multi-level multi-objective 
optimization of the new 25 bar truss 

cycle$ optimum design vectors at system level and component level 

1  x*  

 d*  

 {1.0000, 1.4952, 1.4952, 1.0000, 1.0000, 1.0000, 1.4952, 1.4952} 

{ 2.5219, 3.7180, 3.7382, 2.5218, 2.5288, 2.8543, 3.6890, 3.5232} 

2 x*  

d*  

{1.0000, 1.0000, 1.8178, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000} 

{ 2.5218, 3.6932, 3.9231, 2.5224, 2.5311, 2.9517, 3.6995, 3.5097} 

3 x*  

d*  

{ 1.0000, 1.9903, 2.2014, 1.0000, 1.0000, 1.0000, 1.0000, 1.9903} 

{ 2.5218, 3.8682, 3.7276, 2.5218, 2.5218, 2.9489, 3.6752, 3.6565} 

4 x*  

d*  

{1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 3.3481} 

{2.5220, 3.7591, 3.7078, 2.5218, 2.5221, 2.9352, 3.6495, 4.6445} 

5 x*  

d*  

{1.0000, 1.0000, 1.5748, 1.0000, 1.0000, 1.0000, 1.0000, 2.8156} 

{2.5219, 3.7456, 3.7180, 2.5219, 2.5221, 2.8755, 3.6623, 4.2488} 
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cycle$ optimum design vectors at system level and component level 

6 x*  

d*  

{1.0000, 1.3056, 1.2943, 1.0000, 1.0000, 1.0000, 1.0000, 3.0222} 

{2.5223, 3.7609, 3.7269, 2.5218, 2.5218, 2.8915, 3.6569, 4.4200} 

7 x*  

d*  

{1.0000, 1.3718, 1.3940, 1.0000, 1.0000, 1.0000, 1.0000, 2.8896} 

{2.5222, 3.7842, 3.7559, 2.5218, 2.5218, 2.8903, 3.6600, 4.3233} 

8 x*  

d*  

{1.0000, 1.1856, 1.4845, 1.0000, 1.0000, 1.0000, 1.0000, 2.7674} 

{2.5218, 3.7429, 3.7659, 2.5218, 2.5218, 2.9028, 3.6662, 4.2242} 

9 x*  

d*  

{1.0000, 1.1877, 1.3865, 1.0000, 1.0000, 1.0000, 1.0000, 2.3631} 

{2.5218, 3.7321, 3.7669, 2.5218, 2.5218, 2.9176, 3.6764, 3.9134} 

10 x*  

d*  

{1.0000, 1.1849, 1.3748, 1.0000, 1.0000, 1.0000, 1.0000, 2.5082} 

{2.5218, 3.7360, 3.7624, 2.5218, 2.5218, 2.9136, 3.6723, 4.0288} 

$ iteration between the two levels; x*- system level areas in in2; d*- component level mean 
diameters in in 

The convergence results of multi-objective multi-level optimization for the new 25-bar 

space truss are as shown in Table 4.21 and Table 4.22. Table 4.21 gives the convergence 

values of each of the objective function for each iteration during the multi-level process. 

It is evident that it takes 10 iterations for the multi-objective problem to converge. It can 

be seen that the optimum objective function values of the weight, deflection and 

frequency at the end of 10 iterations in the ML process are 627.22 lb, 1.2685 in and 55.93 

Hz respectively. Also, bucking stress constraints in members 2, 5, 7, 8, 19 and 20 are 

active for load condition 1. Optimum design vectors in each iteration are given in Table 

4.22.  
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4.2.2 Ant colony optimization of the new 25-bar truss 

In this section, the new 25-bar truss optimization problem is solved using the ACO 

approach. Initially, single objective optimization of each of the three objectives is solved 

using SQP (by treating all the design variables as continuous) and ACO (by treating all 

the design variables as discrete). The results obtained by both methods are given in Table 

4.23 and Table 4.24. In the case of SQP, the minimum weight obtained is 588.0126 lb 

and the minimum deflection obtained is 0.5673 in and the maximum frequency obtained 

is 68.4845 Hz. The corresponding values for ACO are 618.2454 lb, 0.5653 in and 

69.0329 Hz. Thus, the SQP method reduces the weight by 5.2 % when compared to the 

ACO method. This is as expected because SQP uses continuous variables and hence 

better solutions. The difference in the minimum deflection and maximum frequency 

obtained by SQP and ACO is negligible. For minimization of weight using SQP, 

buckling constraints in members 2, 5, 7, 8, 19 and 20 in load condition1 and in members 

16 and 24 in load condition 2, are active. In ACO, buckling constraints in members 2, 5, 

7, 8, 19 and 20 in load condition1 are active. For maximization of frequency, buckling 

constraints in members 2 and 5 in load condition1 are active in SQP and buckling 

constraints in members 2, 5, 7 and 8 are active in load condition1 in ACO. The discrete 

design variable set used for ACO is given by S = {1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 

4.6, 5.0}. Thus, each of the design variables is permitted to take values from the set S. A 

colony size of 50 ants is used and the convergence is achieved in about 1150 iterations 

for minimization of weight, 250 iterations for minimization of deflection and 550 

iterations for maximization of frequency as shown in Figure 4.6, Figure 4.7 and Figure 

4.8 respectively. In SQP, the number of iterations and the number of objective function 
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evaluations for each objective are 7, 2, 51 and 182, 52, 1547 respectively. The initial 

design vector for SQP is taken as the lower bound values of the design variables and 

there are no active constraints at the initial design. In ACO, the initial design vector is 

chosen randomly. 

Table 4.23 Results of single objective optimization of the new 25-bar truss (SQP) 

Quantity Initial Design 

 

Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency  

Design variables: 

(in2) 

    

x1 1.0 1.0000 1.0000 1.2019 

x2 1.0 2.1722 5.0000 2.1942 

x3 1.0 2.1963 5.0000 2.1808 

x4 1.0 1.0000 2.5253 4.9999 

x5 1.0 1.0000 5.0000 4.9999 

x6 1.0 1.2751 5.0000 4.9301 

x7 1.0 2.1390 5.0000 3.8760 

x8 1.0 1.9433 5.0000 5.0000 

Objective 
functions: 

    

weight  (lb) 320.3812 588.0126 1540.6097 1157.7150 

deflection  
(in) 

2.8262 1.3461 0.5673 1.0591 
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Quantity Initial Design 

 

Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency  

Design variables: 

(in2) 

    

frequency  
(Hz) 

54.1321 52.1163 56.6731 68.4845 

Constraints:     

number of active 
behavior 

constraints 

0 8§ 0 2$ 

§ buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1 and in members 16 and 24 in load 
condition 2. 
$ buckling stress in members 7 and 8 in load condition1. 

Table 4.24 Results of single objective optimization of the new 25-bar truss (ACO) 

Quantity Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency  

Design variables: 

(in2) 

   

x1 1.0 1.0 1.0 

x2 2.2 5.0 2.2 

x3 2.2 5.0 2.2 

x4 1.0 5.0 3.0 

x5 1.0 5.0 1.8 

x6 1.4 5.0 5.0 

x7 2.2 5.0 3.4 

x8 2.2 5.0 5.0 
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Quantity Minimization 
of weight 

Minimization 
of deflection 

Maximization 
of frequency  

Objective 
functions: 

   

weight  (lb) 618.2454 1584.0491 1127.08913 

deflection  
(in) 

1.2992 0.5653 1.0629 

frequency  
(Hz) 

54.0229 56.9705 69.0329 

Constraints:    

number of active 
behavior 

constraints 

6§ 

 

0 4§ 

§ buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1. 
$ buckling stress in members 2, 5, 7 and 8 in load condition1. 

 
*cycle = number of iterations/number of ants; number of ants = 50 

Figure 4.6 Convergence history for minimum weight of the new 25 bar truss 
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*cycle = number of iterations/number of ants; number of ants = 50 

Figure 4.7 Convergence history for minimum deflection of the new 25 bar truss 

    
*cycle = number of iterations/number of ants; number of ants = 50 

Figure 4.8 Convergence history for maximum frequency of the new 25 bar truss 
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SQP solution resulted in a lighter truss by 3.48 %.  The maximum frequency obtained by 

SQP is 55.8035 Hz whereas the maximum frequency obtained by ACO is 56.3163 Hz. 

Hence, both the methods result in almost the same frequency. The minimum deflection 

obtained by ACO is 1.2598 in and the minimum deflection obtained by SQP is 1.2795 in. 

Hence, the ACO solution resulted in a decrease in minimum deflection by 1.30 % when 

compared to the SQP solution. Also, the buckling stress constraints in members 2, 5, 7, 8, 

19 and 20 in load condition1 and in member 16 in load condition 2 are active in case of 

SQP. In ACO, the buckling constraints in members 2, 5, 7, 8, 19 and 20 are active in load 

condition1. For ACO, a colony size of 50 ants was used. The discrete variable set used in 

ACO is S = {1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 5.0}. The convergence is 

achieved in 1200 iterations as shown in Figure 4.9. 

Table 4.25 Comparison of results of multi-objective optimization of the new 25-bar 
truss 

Quantity SQP  ACO* 

Initial design Optimum design 

Design variables: 

(in2) 

   

x1 1.0 1.0000 1.0 

x2 1.0 2.1959 2.2 

x3 1.0 2.1791 2.2 

x4 1.0 1.0000 1.0 

x5 1.0 1.0000 1.0 

x6 1.0 1.2524 1.4 
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Quantity SQP  ACO* 

Initial design Optimum design 

x7 1.0 2.1166 2.2 

x8 1.0 2.5555 2.6 

Objective 
functions: 

   

weight  (lb) 320.3812 618.9315 640.1884 

deflection  
(in) 

2.8262 1.2795 1.2598 

frequency  
(Hz) 

54.1387 55.8035 56.3163 

Constraints:    

number of active 
behavior 

constraints 

0 7§ 6& 

* initial design vector is chosen randomly in ACO 
§ buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1 and 16 in load condition 2. 
& buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1. 
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*combined objective is calculated using Eq. (2.29) with normalized individual objectives 

Figure 4.9 Convergence history for multi-objective ACO of the new 25 bar truss 

Different sets of weights are considered in the multi-objective ACO optimization to study 

the effect of the influence of weights on the final solution. Results are given in Table 

4.26. Three sets of weights are considered as w1, w2 and w3 which represent the 

importance of the three objectives, weight, deflection and frequency respectively (Eq. 

2.29). The discrete set used in ACO is S = {1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 

5.0} and a colony size of 50 ants is used. It is evident from Table 4.26  that the minimum 

weight obtained is 640.1884 lb when w1 is 0.8 and the minimum weight obtained is 

1108.173 lb when w1=0.2. This is as expected, because with an increase in the value of 

w1, preference is given to the objective (weight) and hence better solution. Similarly, a 

maximum value of frequency (68.9776 Hz) is obtained when w3 is 0.6. The number of 
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results validate the present ACO approach for solving multi-objective optimization 
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Table 4.26  Results of multi-objective ACO of the new 25-bar truss using different 
sets of weights 

 

Quantity 

Sets of weights 

w1=0.8;w2=0.1;w3=0.1 w1=0.4;w2=0.4;w3=0.2 w1=0.2,w2=0.2;w3=0.6

Design 
variables: 

(in2) 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

Objective 
functions: 

weight  
(lb) 

deflection 
 (in) 

frequency 
 (Hz) 

number of 
active 

behavior 
constraints 

 

 

1.0 

2.2 

2.2 

1.0 

1.0 

1.4 

2.2 

2.6 

 

 

640.1884 

 

1.2598 

 

56.3163 

 

6§ 

 

 

1.0 

2.6 

3.0 

1.0 

1.0 

1.4 

2.2 

5.0 

 

 

832.5799 

 

0.9606 

 

61.9974 

 

2& 

 

 

1.0 

2.2 

2.2 

2.2 

1.0 

5.0 

3.4 

5.0 

 

 

1108.173 

 

1.0629 

 

68.9776 

 

4$ 

§ buckling stress in members 2, 5, 7, 8, 19 and 20 in load condition1. 
& buckling stress in members 19 and 20 in load condition1. 
$ buckling stress in members 2, 5, 7 and 8 in load condition1. 
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Sensitivity of the ACO results to variation in the discrete variable sets is also studied. 

Two discrete sets each with 15 values of the design variables are considered (Table 4.27). 

Results obtained by the two discrete sets are given in Table 4.28. A colony size of 50 ants 

is considered. It is evident from the table, that the discrete set S2 resulted in a lighter truss 

when compared to discrete set S1. Also, there is an increase in the maximum frequency in 

the discrete set S2. The minimum deflection in the case of discrete set S1 is less than the 

minimum deflection in the case of S2. Also, the same set of buckling constraints is active 

in both the cases. It is observed that with increase in the number of values in the discrete 

variable set, the solution is more accurate and the constraints are tighter in ACO and the 

ACO solution is closer to the solution obtained by SQP which uses continuous variables. 

Table 4.27 Discrete variable sets in ACO 

S1 { 1.0, 1.2, 1.5, 1.7, 2.0, 2.2, 2.5, 2.7, 3.0, 3.5, 3.7, 4.0, 4.5, 4.7, 5} 

S2 { 1.0, 1.2, 1.4, 1.8, 2.0, 2.2, 2.4, 2.8, 3.2, 3.4, 3.8, 4.2, 4.4, 4.8, 5} 

 

Table 4.28 Results of multi-objective ACO of the new 25-bar truss using different 
discrete variable  

Quantity Discrete Set  

S1 

Discrete Set  

S2 

Design variables 

(in2) 

  

x1 1.0 1.0 

x2 2.5 2.2 

x3 2.5 2.2 
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Quantity Discrete Set  

S1 

Discrete Set  

S2 

x4 1.0 1.0 

x5 1.0 1.0 

x6 1.5 1.4 

x7 2.5 2.2 

x8 2.5 2.4 

Objective 
functions: 

  

weight  (lb) 689.93 626.95 

deflection  
(in) 

1.1456 1.2795 

frequency  
(Hz) 

53.99 53.21 

Constraints:   

number of active 
behavior 

constraints 

6§ 6& 

§ buckling stress in members 2, 5, 7, 8, 9, and 10 in load condition1. 
& buckling stress in members 2, 5, 7, 8, 9, and 10 in load condition1. 
 
Performance of ACO is studied by varying the size of the ant colony keeping the 

maximum number of cycles fixed. Three different colony sizes of 25, 50 and 100 ants are 

considered. The convergence results are shown in Figure 4.10, Figure 4.11 and Figure 

4.12. It can be seen that for the minimization of weight (objective), a colony size of 50 

ants converges to the optimum in about 20 cycles while a colony size of 25 ants 

converges to the optimum value in 23 cycles. The colony size of 100 ants did not 
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converge until the maximum number of cycles. Also, the starting vector is chosen 

randomly in each case. For the minimization of deflection, as a special case, the same 

starting vector is chosen. The results are shown in Fig 2. In this case, the colony size of 

25 ants performed better with convergence in 6 cycles. The colony with 50 ants 

converged in 8 cycles. The colony of 100 ants converged in 9 cycles. Convergence of 

frequency is shown in Fig. In this case, the results are closer because all the different ant 

colonies take about the same number of cycles to converge.  

 

Figure 4.10 Convergence of minimum weight with changes in the number of ants for 
the new 25 bar truss 
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Figure 4.11 Convergence of minimum deflection with changes in the number of ants 
for the new 25 bar truss 

 

 

Figure 4.12 Convergence of maximum frequency with changes in the number of 
ants for the new 25 bar truss 
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4.2.3 Multi-objective ant colony optimization using modified game theory of the new 

25-bar truss 

In this section, ant colony optimization method is used to solve the multi-objective 

optimization problem of the 25 bar truss using modified game theory approach. The 

problem is given as: 

Minimize 	           (4.43) 

where   	∑   and          (4.44) 

∏ 1 	          (4.45) 

Where  represents the weight assigned to each of the objective and  represents 

the normalized objective function for weight, deflection and frequency (Eq. (2.9)). 

Subject to  

40000	  (tension and compression) ; 		 1,2, … ,25; 		 1,2    (4.32) 

	   ; 		 1,2, … ,25; 		 1,2              (4.46)      

 where  	   ; 		 1,2, … ,25.           (4.47) 

The results obtained by the multi-objective ant colony optimization using modified game 

theory are given in Table 4.29.  As seen from the table, the minimum weight obtained by 

ACO is 810.9083 lb, the minimum deflection obtained is 1.0078 in and the maximum 

frequency obtained is 62.8084 Hz. The results obtained by ACO are compared with those 

obtained using SQP (using modified game theory). The minimum weight obtained by 

SQP is 1157.878 lb, the minimum deflection obtained is 0.7086 in and the maximum 
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frequency obtained is 59.2179 Hz. Hence, the ACO solution resulted in a lighter truss by 

29.96%. The tradeoff is with an increase in the minimum deflection in ACO. This is 

because of the different weights obtained in the modified game theory (c1, c2 and c3 in 

Table 4.29. Hence, the modified game theory resulted in a compromise solution. Also, 

the buckling constraints 2, 5, 19 and 20 in load condition 1 are active in the case of ACO 

and the buckling constraints 19 and 20 in load condition 1 and 16 in load condition 2 are 

active in SQP. For SQP, the number of iterations for convergence is 15 and the number of 

function evaluations is 187. At the starting point in SQP, no constraints are active.  For 

ACO, a colony size of 50 ants is used. The discrete set of design variables used for ACO 

is the set S = {1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 5.0}. The convergence in ACO 

is achieved in 37 cycles as shown in Figure 4.13. 

Table 4.29 Comparison of results of multi-objective ACO and SQP using modified 
game theory for the new 25 bar truss 

Quantity SQP (MGT) ACO 

(MGT) Initial design Optimum design 

Design variables: 
(in2) 

   

x1 1.0 1.0000 1.0 

x2 1.0 3.4236 2.2 

x3 1.0 4.1932 3.0 

x4 1.0 1.0000 1.0 

x5 1.0 1.0000 1.0 

x6 1.0 3.1194 1.4 

x7 1.0 3.7876 2.2 
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Quantity SQP (MGT) ACO 

(MGT) Initial design Optimum design 

x8 

C1 

C2 

C3 

1.0 

0.3 

0.4 

0.3 

5.0000 

0.1 

0.8 

0.1 

5 

0.7 

0.2 

0.1 

Objective 
functions: 

   

weight  (lb) 320.3812 1157.878 810.9083 

deflection  
(in) 

2.8262 0.7086 1.0078 

frequency  
(Hz) 

54.1387 59.2179 62.8084 

Constraints:    

number of active 
behavior 

constraints 

0 3§ 4& 

§ buckling stress in members 19 and 20 in load condition1 and 16 in load condition 2 
& buckling stress in members 2, 5, 19 and 20 in load condition1 
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Figure 4.13  Convergence graph for multi-objective ACO using modified game 
theory for the new 25 bar truss 

Table 4.30 Designs for the best 5 ants in multi-objective ACO using modified game 
theory for the new 25 bar truss 

Quantity Ant 1 

 

Ant 2 Ant 3 Ant 4 Ant 5 

Design 
variables: 

(in2) 

     

x1 1.0 1.0 1.0 1.0 1.0 

x2 2.6 2.6 2.2 2.2 3.0 

x3 2.6 3.0 3.0 3.0 3.0 

x4 1.0 1.0 1.0 1.0 1.0 

x5 1.0 1.0 1.0 1.0 1.8 

x6 1.8 1.8 1.8 1.4 3.0 

x7 2.2 2.6 2.2 2.2 3.0 
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Quantity Ant 1 

 

Ant 2 Ant 3 Ant 4 Ant 5 

x8 

c1 

c2 

c3 

5.0 

0.5 

0.3 

0.2 

5.0 

0.6 

0.3 

0.1 

5.0 

0.7 

0.2 

1.0 

5 

0.7 

0.2 

0.1 

5.0 

0.5 

0.3 

0.2 

Combined 
objective 
function  

  

0.1419 0.1385 0.1083 0.1014 0.20157 

 

Constraints:      

number of 
active 

behavior 
constraints 

0 0 4&  4$ 0 

& buckling stress in members 2, 5, 19 and 20 in load condition1 
$ buckling stress in members 2, 5, 19 and 20 in load condition1 
 
Details of the best 5 final designs (corresponding to the best 5 ants) are given in Table 

4.30. Among all the designs, the one with minimum combined objective function value is 

chosen as the final design in ACO. It can be seen from the table, that the design 

corresponding to ant 4 has the minimum combined objective function value. The design 

vectors corresponding to each of the final designs, the objective function value and the 

constant (c1 ,c2, c3) obtained in the modified game theory are also listed in Table 4.30. 

4.2.4 Multilevel Ant Colony Optimization of 25-bar truss 

In this section, a new multi-level ant colony optimization method is developed to solve 

the 25 bar truss. The new multi-level method consists of two levels and each level solves 

an optimization problem using the Ant Colony Approach and the SQP approach. For the 
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25 bar truss, the height and span dimensions of the truss are also considered as design 

variables in addition to the areas. Hence, a total of 13 design variables are considered. 

The bounds on the design variables are given in Table 4.31. 

In the new multi-level formulation of the 25-bar truss, two levels are considered. These 

two levels are specified as  

a) System level: Design variables are the heights (h1 and h2), base dimensions (b1 and b2) 

and the mid span (s1). Objective function is weight. Constraints are the allowable stress 

and buckling stress constraints.  

b) Component level: Design variables are the areas of cross section of the bars. Objective 

function is weight. Constraints are the allowable stress and buckling stress constraints.   

Formulation used in the multi-level process is given below: 

System level problem: 

Minimize ∑ 						            (4.48) 

Subject to  

40000	  (tension and compression) 	; 		 1,2, … ,25; 		 1,2     (4.49) 

	   ; 		 1,2, … ,25; 		 1,2                     (4.50) 

and 	 , , , ,   ; 		 1,2, … ,25          (4.51) 

Component level problem: 

Minimize  ∑ 						            (4.52) 
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Subject to  

40000	  (tension and compression) 	; 		 1,2, … ,25; 		 1,2          (4.53) 

	   ; 		 1,2, … ,25; 		 1,2                     (4.54) 

and    ; 		 1,2, … ,25           (4.55) 

Algorithm/Procedure 

1. Find the heights (h1 and h2), base dimensions (b1 and b2) and the mid span (s1) to 

minimize the objective function (weight) with allowable stress and buckling stress 

constraints using initial trial values for the areas. 

2. Find the area of each member to minimize the objective function (weight) with 

allowable stress and buckling stress constraints using the heights, base dimensions 

and mid span obtained from step 1. 

3. Check for convergence of the objective function in step 1 with that obtained in 

step 2. Stop if converged. Else take the areas obtained in step 2 as constants in 

step 1 and  

4. Repeat steps 1 to 3 until convergence. The convergence criterion used is the 

change in the objective function value between the two levels. 

The new ML optimization method is used to solve the single objective optimization of 

minimization of weight, minimization of deflection and maximization of frequency of the 

25 bar truss. Both, SQP and Ant Colony Optimization methods are used. 

Results obtained by the new ML SQP for minimization of weight are given in Table 4.32 

and Table 4.33. Table 4.32 shows the convergence of the design variables for every 
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iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 3 iterations. Variation of the weight at 

the end of every iteration between the two levels is given in Table 4.33. It is evident that 

the weight reduced from an initial value of 292.2777 lb to a final minimum value of 

181.7240 lb in 3 iterations between the system and the component levels. The 

convergence is evident with equal values of weight in both the levels at the final design.  

The total number of function evaluations in SQP is 222 and the total number of iterations 

for convergence of the ML process is 18. At the initial design, there are no active 

constraints whereas at the final design, allowable stress constraints in members 7 and 8 

for load condition 1 and the buckling constraints in members 1, 2, 5, 19 and 20 for load 

condition 1 and buckling constraints in member 24 for load condition 2 are active.  

Table 4.31 Bounds on the design variables for the 25 bar truss 

Design 
variable 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 

Lower 
bound 

160 144 80 72 60 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Upper 
bound 

240 216 120 108 90 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

 

Table 4.32 New Multi-level SQP results for single objective minimization of weight   

Iteration Optimum design vectors at system level and component level 

1  x*  

 A*  

{218.6693, 144.0000, 80.0000, 95.8379, 60.0000} 

{0.1059, 1.0047, 0.8670, 0.1000, 0.1000, 0.6310, 1.0479, 0.9927} 

2  x*  

 A*  

{204.7371, 144.0000, 80.0000, 72.0000, 60.0000} 

{0.1024, 0.7355, 0.6418, 0.1000, 0.1000, 0.4057, 1.0203, 0.8689} 

3  x*  {204.7370, 144.0000, 80.0000, 72.0000, 60.0000} 
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 A*  {0.1024, 0.7355, 0.6418, 0.1000, 0.1000, 0.4057, 1.0203, 0.8689} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2 

Table 4.33 New Multi-level SQP results for single objective minimization of weight 

Iteration f * (system  level) f * (component level) 

1 292.2777 240.5903 
2 220.2519 181.7240 
3 181.7240 181.7240 
f * - optimum value (weight in lb) 

Results obtained by the new ML SQP for minimization of deflection are given in Table 

4.34 and Table 4.35. Table 4.34 shows the convergence of the design variables for every 

iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 3 iterations. Variation of the deflection 

at the end of every iteration between the two levels is given in Table 4.35. It is evident, 

that the deflection reduced from an initial value of 3.0265   in to a final minimum value 

of 0.2474 in in 3 iterations between the system and the component levels. The 

convergence is evident with equal value of deflection in both the levels at the final 

design.  The total number of function evaluations in SQP is 162 and the total number of 

iterations for convergence of the ML process is 18. No constraints are active in the initial 

and final designs.  

Table 4.34 New Multi-level SQP results for single objective minimization of 
deflection   

Iteration Optimum design vectors at system level and component level 

1  x*  

 A*  

{218.6693, 144.0000, 80.0000, 95.8379, 60.0000} 

{5.0000, 5.0000, 5.0000, 0.4661, 2.6678, 5.0000, 5.0000, 5.0000} 

2  x*  {216.6140, 144.0008, 81.8232, 82.9610, 75.7799} 
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 A*  {5.0000, 5.0000, 5.0000, 0.4661, 2.6678, 5.0000, 5.0000, 5.0000} 

3  x*  

 A*  

{214.7465, 144.7412, 81.8854, 72.0000, 84.1482} 

{5.0000, 5.0000, 5.0000, 0.4661, 2.6678, 5.0000, 5.0000, 5.0000} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2. 

Table 4.35 New Multi-level SQP results for single objective minimization of 
deflection 

Iteration f * (system level) f * (component level) 

1 3.0265     0.6055 
2 0.3396     0.3396 
3 0.2474     0.2474 
f *  - optimum value (deflection in in) 

Results obtained by the new ML SQP for maximization of frequency are given in Table 

4.36 and Table 4.37. Table 4.36 shows the convergence of the design variables for every 

iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 7 iterations. Variation of the frequency 

at the end of every iteration between the two levels is given in Table 4.37. It is evident, 

that the frequency increased from an initial value of 62.2896 Hz to a final value of 

164.2267 Hz in 7 iterations between the system and the component levels. The 

convergence is evident with equal value of frequency in both the levels at the final 

design.  The total number of function evaluations in SQP is 1821and the total number of 

iterations for convergence of the ML process is 144. At the initial design, there are no 

active constraints whereas at the final design, buckling constraints in members 2 and 5 

are active for load condition 1.  
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Table 4.36 New Multi-level SQP results for single objective maximization of 
frequency 

Iteration Optimum design vectors at system level and component level 

1  x*  

 A*  

{218.6693, 144.0000, 80.0000, 95.8379, 60.0000} 

{0.1004, 0.9581, 0.8998, 1.0647, 0.1000, 5.0000, 5.0000, 5.0000} 

2  x*  

 A*  

{215.1449, 144.0000, 84.6827, 72.0000, 64.1295} 

{0.1000, 0.6669, 0.7550, 0.1000, 0.1051, 5.0000, 3.7996, 5.0000} 

3  x*  

 A*  

{209.4678, 144.0000, 80.0000, 72.0000, 64.8245} 

{0.1000, 0.6591, 0.7729, 0.1000, 0.1000, 5.0000, 4.0998, 5.0000} 

4  x*  

 A*  

{194.1813, 146.1304, 80.1896, 72.0000, 66.8672} 

{00.1000, 0.6486, 0.7642, 0.2148, 0.1834, 5.0000, 4.2569, 5.0000} 

5  x*  

 A*  

{178.4132, 156.6992, 80.0000, 72.0000, 67.3553}     

{0.1060, 0.6604, 0.6876, 0.6965, 0.1000, 5.0000, 5.0000, 5.0000} 

6  x*  

 A*  

{178.3065, 155.6373, 80.0000, 72.0000, 67.3571}    

{0.1060, 0.6604, 0.6876, 0.7424, 0.1181, 5.0000, 5.0000, 5.0000} 

7  x*  

 A*  

{178.3065, 155.6373, 80.0000, 72.0000, 67.3571}   

 {0.1060, 0.6604, 0.6877, 0.7424, 0.1181, 5.0000, 5.0000, 5.0000} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2. 

Table 4.37 New Multi-level SQP results for single objective maximization of 
frequency 

Iteration f * (system 
level) 

f * (component level) 
 

1 62.2896  104.8622 
2 132.9182  143.7044 
3 148.8049  150.1132 
4 155.4710  158.1940 
5 160.5125  163.9858 
6 164.1131  164.2267 
7 164.2267  164.2268 
f * - optimum value (frequency in Hz) 
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In the single objective minimization of weight, using the ML ACO approach, the discrete 

variable set is obtained by taking 20 values equally distributed between the bounds for 

each design variable (Table 4.38) and the number of ants used for ACO is 50. Results 

obtained by the new ML ACO for minimization of weight are given in Table 4.39 and 

Table 4.40. Table 4.39 shows the convergence of the design variables for every iteration 

between the system and the component levels. From the table, it is evident that the 

convergence in the ML process is achieved in 3 iterations. Variation of the weight at the 

end of every iteration between the two levels is given in Table 4.40. It is evident that the 

weight reduced from an initial value of 294.8969 lb to a final minimum value of 

205.4903 lb in 3 iterations between the system and the component levels. The 

convergence is evident with equal values of weight in both the levels at the final design. 

At the final design, allowable stress constraints in members 7 and 8 for load condition 

1and buckling constraints in members 7, 8, 19 and 20 in load condition1 and member 16 

in load condition 2 are active. The convergence in ACO is achieved in 68 cycles (3400 

iterations). 

Table 4.38 Discrete values for the design variables for 25 bar truss 

x1 {160.0000, 164.2105, 168.4211, 172.6316, 176.8421, 181.0526, 185.2632, 189.4737, 

193.6842, 197.8947, 202.1053, 206.3158, 210.5263, 214.7368, 218.9474, 223.1579, 

227.3684, 231.5789, 235.7895, 240.0000} 

x2 {144.0000, 147.7895, 151.5789, 155.3684, 159.1579, 162.9474, 166.7368, 170.5263, 

174.3158, 178.1053, 181.8947, 185.6842, 189.4737, 193.2632, 197.0526, 200.8421, 

204.6316, 208.4211, 212.2105, 216.0000} 

x3 {80.0000, 82.1053, 84.2105, 86.3158, 88.4211, 90.5263, 92.6316, 94.7368, 96.8421, 
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98.9474, 101.0526, 103.1579, 105.2632, 107.3684, 109.4737, 111.5789, 113.6842, 

115.7895, 117.8947, 120.0000} 

x4 {72.0000, 73.8947, 75.7895, 77.6842, 79.5789, 81.4737, 83.3684, 85.2632, 87.1579, 

89.0526, 90.9474, 92.8421, 94.7368, 96.6316, 98.5263, 100.4211, 102.3158, 104.2105, 

106.1053, 108.0000} 

x5 {60.0000, 61.5789, 63.1579, 64.7368, 66.3158, 67.8947, 69.4737, 71.0526, 72.6316, 

74.2105, 75.7895, 77.3684, 78.9474, 80.5263, 82.1053, 83.6842, 85.2632, 86.8421, 

88.4211, 90.0000} 

x6 - 

x13 

{0.1000, 0.3579, 0.6158, 0.8737, 1.1316, 1.3895, 1.6474, 1.9053, 2.1632, 2.4211, 2.6789, 

2.9368, 3.1947, 3.4526, 3.7105, 3.9684, 4.2263, 4.4842, 4.7421, 5.0000} 

Table 4.39 New Multi-level ACO results for single objective minimization of weight 

Iteration Optimum design vectors at system level and component level 

1  x*  

 A*  

{168.4211, 151.5789, 90.5263, 102.3158, 67.8947} 

{0.6158, 3.1947, 0.8737, 0.1000, 0.1000, 0.6158, 0.8737, 2.6789} 

2  x*  

 A*  

{160.0000, 144.0000, 80.0000, 72.0000, 60.0000} 

{0.3579, 1.3895, 0.6158, 0.1000, 0.1000, 0.3579, 0.8737, 1.3895} 

3  x*  

 A*  

{160.0000, 144.0000, 80.0000, 72.0000, 60.0000} 

{0.3579, 1.3895, 0.6158, 0.1000, 0.1000, 0.3579, 0.8737, 1.3895} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2.  

 

Table 4.40 New Multi-level ACO results for single objective minimization of weight 

Iteration f * (system level) f * (component level) 
 

1 294.8969   418.2428 
2 353.7359   205.4903 
3 205.4903   205.4903   
f * - optimum value (weight in lb) 
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Table 4.41 New Multi-level ACO results for single objective minimization of 
deflection 

Iteration Optimum design vectors at system level and component level 

1  x*  

 A*  

{240.0000, 147.7895, 96.8421, 75.7895, 90.0000} 

{5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000} 

2  x*  

 A*  

{160.0000, 193.2632, 80.0000, 72.0000, 90.0000} 

{5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000} 

3  x*  

 A*  

{160.0000, 174.3158, 80.0000, 72.0000, 90.0000} 

{5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2.  

Table 4.42 New Multi-level ACO results for single objective minimization of 
deflection 

Iteration f * (system level) f * (component level) 

1 1.6110 0.3222 
2 0.2251  0.2251 
3 0.2231     0.2231 
f * - optimum value (deflection in in) 

Results obtained by the new ML ACO for minimization of deflection are given in Table 

4.41 and Table 4.42. Table 4.41 shows the convergence of the design variables for every 

iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 3 iterations. Variation of the deflection 

at the end of every iteration between the two levels is given in Table 4.42. It is evident 

that the weight reduced from an initial value of 1.6110 in to a final minimum value of 

0.2231 in in 3 iterations between the system and the component levels. The convergence 

is evident with equal values of deflection in both the levels at the final design. At the final 

design, no constraints are active. The number of ants used in ACO is 50 and the discrete 
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variable set is obtained by taking 20 values equally distributed between the bounds for 

each design variable. The convergence in ACO is achieved in 24 cycles (1200 iterations). 

Results obtained by the new ML ACO for maximization of frequency are given in Table 

4.43 and Table 4.44. Table 4.43 shows the convergence of the design variables for every 

iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 5 iterations. Variation of the frequency 

at the end of every iteration between the two levels is given in Table 4.44. It is evident 

that the frequency increased from an initial value of 74.1132 Hz to a final value of 

158.8843 Hz in 5 iterations between the system and the component levels. The 

convergence is evident with equal values of frequency in both the levels at the final 

design. At the final design buckling constraints in members 2 and 5 for load condition 1 

are active. The number of ants used in ACO is 50 and the discrete variable set is obtained 

by taking 20 values equally distributed between the bounds for each design variable. The 

convergence in ACO is achieved in 86 cycles (4300 iterations). 

Table 4.43 New Multi-level ACO results for single objective maximization of 
frequency 

Iteration Optimum design vectors at system level and component level 

1  x*  

 A*  

{189.4737, 162.9474, 113.6842, 87.1579, 88.4211} 

{0.3579, 0.8737, 1.3895, 1.6474, 0.6158, 5.0000, 3.7105, 5.0000} 

2  x*  

 A*  

{160.0000, 144.0000, 80.0000, 72.0000, 69.4737} 

{0.3579, 0.8737, 1.1316, 2.6789, 0.1000, 4.4842, 3.9684, 5.0000} 

3  x*  

 A*  

{168.4211, 147.7895, 80.0000, 72.0000, 71.0526} 

{0.3579, 0.8737, 1.1316, 2.9368, 0.1000, 5.0000, 3.7105, 5.0000} 
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4  x*  

 A*  

{168.4211, 147.7895, 80.0000, 72.0000, 72.6316} 

{0.3579, 0.8737, 0.8737, 2.1632, 0.1000, 4.7421, 3.4526, 5.0000} 

5  x*  

 A*  

{168.4211, 147.7895, 80.0000, 72.0000, 72.6316}     

{0.3579, 0.8737, 0.8737, 2.1632, 0.3579, 4.7421, 3.7105, 5.0000} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2.  

Table 4.44 New Multi-level ACO results for single objective maximization of 
frequency 

Iteration f * (system level) f *  (component level) 
 

1 74.1132  115.1384 
2 150.6809  155.3210 
3 155.7106  155.9729 
4 156.0388  158.8824 
5 158.8824  158.8843 
f * - optimum value (frequency in Hz) 

ML ACO results for single objective weight minimization are compared to the ML SQP 

results in Table 4.45. It is evident from the table that the minimum weight obtained by 

SQP is 181.7240 lb whereas the minimum weight obtained by ACO is 205.4903 lb. 

Hence, SQP resulted in a lighter truss by 11.5%. This is as expected because SQP is 

continuous and ACO is discrete optimization. Both SQP and ACO converged in 3 cycles 

and the number of active constraints is 8 and 7 respectively.  

Table 4.45 Comparison of results for ML ACO and ML SQP for single objective 
weight minimization 

 

Quantity 

SQP  ACO 

 Initial design Optimum design 

Design variables: 
(in2) 

   

x1 240 204.7370 160.0000 
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Quantity 

SQP  ACO 

 Initial design Optimum design 

x2 150 144.0000 144.0000 

x3 110 80.0000 80.0000 

x4 100 72.0000 72.0000 

x5 69 60.0000 60.0000 

x6 0.1 0.1024 0.3579 

x7 0.1 0.7355 1.3895 

x8 0.1 0.6418 0.6158 

x9 0.1 0.1000 0.1000 

x10 0.1 0.1000 0.1000 

x11 0.1 0.4057 0.3579 

x12 0.1 1.0203 0.8737 

x13 0.1 0.8689 1.3895 

Objective 
function: 

   

weight  (lb) 33.3823 181.7240 205.4903   

Constraints:    

number of active 
behavior 

constraints 

0 8 7 

ML ACO results for single objective deflection minimization are compared to the ML 

SQP results in Table 4.46. It is evident from the table that the minimum deflection 
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obtained by SQP is 0.2474 in whereas the minimum deflection obtained by ACO is 

0.2231 in. Hence, ACO resulted in a better solution. Both SQP and ACO converged in 3 

cycles and the there are no active constraints in both the cases.  

Table 4.46 Comparison of results for ML ACO and ML SQP for single objective 
deflection minimization 

 

Quantity 

SQP  ACO 

 Initial design Optimum design 

Design variables: 
(in2) 

   

x1 240 214.7465 160.0000 

x2 150 144.7412 174.3158 

x3 110 81.8854 80.0000 

x4 100 72.0000 72.0000 

x5 69 84.1482 90.0000 

x6 0.1 5.0000 5.0000 

x7 0.1 5.0000 5.0000 

x8 0.1 5.0000 5.0000 

x9 0.1 0.4661 5.0000 

x10 0.1 2.6678 5.0000 

x11 0.1 5.0000 5.0000 

x12 0.1 5.0000 5.0000 

x13 0.1 5.0000 5.0000 
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Quantity 

SQP  ACO 

 Initial design Optimum design 

Objective 
function: 

   

deflection  
(in) 

27.28 0.2472 0.2231 

Constraints:    

number of active 
behavior 

constraints 

0 0 0 

 

ML ACO results for single objective frequency maximization are compared to the ML 

SQP results in Table 4.47. It is evident from the table that the minimum frequency 

obtained by SQP is 164.2267 Hz whereas the minimum frequency obtained by ACO is 

158.8843 Hz. Hence, SQP resulted in a better solution. This is as expected because SQP 

is continuous and ACO is discrete optimization. SQP converged in 7 cycles and ACO 

converged in 5 cycles and the number of active constraints is 2 in both cases.  

Table 4.47 Comparison of results for ML ACO and ML SQP for single objective 
frequency minimization 

 

Quantity 

SQP  ACO 

 Initial design Optimum design 

Design variables: 
(in2) 

   

x1 240 178.3065 168.4211 
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Quantity 

SQP  ACO 

 Initial design Optimum design 

x2 150 155.6373 147.7895 

x3 110 80.0000 80.0000 

x4 100 72.0000 72.0000 

x5 69 67.3571 72.6316 

x6 0.1 0.1060 0.3579 

x7 0.1 0.6604 0.8737 

x8 0.1 0.6877 0.8737 

x9 0.1 0.7424 2.1632 

x10 0.1 0.1181 4.7421 

x11 0.1 5.0000 0.3579 

x12 0.1 5.0000 3.7105 

x13 0.1 5.0000 5.0000 

Objective 
function: 

   

frequency  
(Hz) 

58.54 164.2267    158.8843 

Constraints:    

number of active 
behavior 

constraints 

0 2 2 
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4.2.5 Multilevel multi-objective ant colony optimization of 25-bar truss using 

modified game theory 

In this section, the multi-level ant colony optimization procedure is used to solve the 

multi-objective problem using modified game theory. At the system and component 

levels, the combined objective function is formulated and the optimization problem is 

solved using the ant colony approach. 

Formulation used in the multi-level multi-objective ant colony optimization is given 

below: 

System level problem: 

Minimize 	           (4.56) 

where   	∑   and            (4.57) 

∏ 1 	            (4.58) 

where  represents the weight assigned to each of the objective and  represents the 

normalized objective function for weight, deflection and frequency (Eq. (2.9)) 

Subject to  

40000	  (tension and compression) 	; 		 1,2, … ,25; 		 1,2     (4.59) 

	   ; 		 1,2, … ,25; 		 1,2                     (4.60) 

and 	 , , , ,   ; 		 1,2, … ,25          (4.61) 
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Component level problem: 

Minimize 	           (4.62) 

where   	∑   and          (4.63) 

∏ 1 	            (4.64) 

where  represents the weight assigned to each of the objective and  represents the 

normalized objective function for weight, deflection and frequency (Eq. (2.9)) 

Subject to  

40000	  (tension and compression) 	; 		 1,2, … ,25; 		 1,2      (4.65) 

	   ; 		 1,2, … ,25; 		 1,2                     (4.66) 

and    ; 		 1,2, … ,25            (4.67) 

Table 4.48 Optimum design vectors at each cycle in the multi-level multi-objective 
ant colony optimization using modified game theory of 25 bar truss 

Iteration Optimum design vectors at system level and component level 

1  x*  

  

A*  

{227.3684, 212.2105, 84.2105, 106.1053, 78.9474, 0.2000, 0.3000, 0.5000} 

{0.3579, 1.3895, 1.1316, 0.1000, 0.1000, 5.0000, 5.0000, 5.0000} 

2  x*  

 

 A*  

{231.5789, 151.5789, 94.7368, 104.2105, 85.2632, 0.1000, 0.7000, 0.2000} 

{0.3579, 1.1316, 1.3895, 0.3579, 0.1000, 5.0000, 4.2263, 5.0000} 

3  x*  

 

{227.3684, 151.5789, 94.7368, 102.3158, 88.4211, 0.1000, 0.7000, 0.2000} 

{0.3579, 1.1316, 1.3895, 0.3579, 0.1000, 5.0000, 3.7105, 5.0000} 
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 A*  

4  x*  

 

 A*  

{160.0000, 144.0000, 86.3158, 72.0000, 80.5263, 0.1000, 0.1000, 0.8000}     

{0.3579, 0.8737, 0.8737, 1.3895, 0.6158, 4.7421, 4.4842, 5.0000}  

5  x*  

 

 A*  

{164.2105, 144.0000, 80.0000, 72.0000, 74.2105, 0.1000, 0.1000, 0.8000} 

 {0.3579, 0.8737, 0.8737, 2.1632, 0.3579, 5.0000, 3.9684, 5.0000} 

6  x*  

 

 A*  

{168.4211, 147.7895, 80.0000, 72.0000, 72.6316, 0.1000, 0.1000, 0.8000} 

{0.3579, 0.8737, 0.8737, 2.1632, 0.3579, 4.7421, 3.7105, 5.0000} 

7  x*  

 

 A*  

{168.4211, 147.7895, 80.0000, 72.0000, 72.6316, 0.1000, 0.1000, 0.8000} 

{0.3579, 0.8737, 0.8737, 2.1632, 0.3579, 4.7421, 3.7105, 5.0000} 

x*- system level design vector in in;  A*- component level design vector (areas) in in2.  

Table 4.49 Convergence results of multi-level multi-objective ant colony 
optimization using modified game theory of 25 bar truss 

Iteration f * (system 
level) 

f *  (component level) 
 

1 0.9310 0.8502 
2 0.7661 0.7367 
3 0.6697 0.6722 
4 0.1119 -0.0459 
5 -0.1552 -0.1637 
6 -0.1554 -0.1691 
7 -0.1691 -0.1691 

f * - optimum value    

Results obtained by the multi-level multi-objective ant colony optimization using 

modified game theory are given in Table 4.48 and Table 4.49. Variation of optimum 

design vectors at each iteration is given in Table 4.48 and the variation of the objective 

function in the modified game theory is given in Table 4.49. Convergence of the ML 
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process is evident with equal value of the objective function in the two levels. As seen 

from the two tables, the number of iterations for convergence is 7. 

4.2.6 Single objective optimization  

The single objective optimization of the 25-bar space truss, shown in Figure 4.4, is solved 

for minimum weight with constraints on elemental stresses and nodal displacements. 

Note that the load conditions (Table 4.50) and the constraint sets are different from the 

one described previously. This problem is solved for a comparative study of different 

optimization methods. The optimization problem can be stated as follows:  

Minimize the weight 

 	 ∑ 																																																																																				     (4.68) 

Stress and displacements constraints are 

40000	 	; 	 1, 2, … , 25					                                         (4.69)                         

0.35	 	; 		 1, 2		; 	 1, 2            (4.70) 

where  indicates the magnitude of stress in element i and  the displacement of node i 

along direction  j (j = 1 for x, 2 for y, 3 for z). Upper and lower bounds on the design 

variables are taken as 3.4 in2 and 0.1 in2, respectively.  

This problem is described in Camp and Bichon (2004) and Rajeev and Krishnamoorthy 

(1992). The design variables are assumed to be discrete in present ACO approach with 

the discrete variable set given by S = {0.1*i where i=1, 2…34}. A colony size of 50 ants 

is used and the convergence is achieved in about 22 cycles. Table 4.51 compares the 
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present results with those reported by different studies in literature. The ACO resulted in 

a lighter design by 16.6 % and 13.09 % compared to those of Zhu (1986) and Rajeev and 

Krishnamoorthy (1992) respectively. The SQP method gave a minimum weight of 468.5 

lb. The comparative results indicate that the present ACO is comparable with other 

approaches.  

Table 4.50 Load conditions for 25 bar truss  

Node  (lb)  (lb)  (lb) 
1 
2 
3 
6 

1000 
0 

500 
600 

-10000 
-10000 

0 
0 

-10000 
-10000 

0 
0 

Table 4.51  Comparison of results of minimization of weight of truss 

 
Quantity 

Zhu 
(1986) 

(discrete) 

Rajeev and 
Krishnamurthy 

(1992) 
(discrete) 

Camp and 
Bichon (2004) 

(ACO) 
(discrete) 

Present 
work (SQP) 
(continuous) 

Present 
work 

(ACO) 
(discrete) 

Design 
variables: 

(in2) 

     

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

Objective 
function: 

weight(lb) 

0.1 

1.9 

2.6 

0.1 

0.1 

0.8 

2.1 

2.6 

 

 

562.93 

0.1 

1.8 

2.3 

0.2 

0.1 

0.8 

1.8 

3.0 

 

 

546.01 

0.1 

0.5 

3.4 

0.1 

1.9 

0.9 

0.5 

3.4 

 

 

485.05 

0.1000 

0.1000 

3.6000 

0.1000 

1.9700 

0.7784 

0.1501 

3.9291 

 

 

468.50 

0.1 

0.3 

3.4 

0.1 

1.7 

1.1 

0.5 

3.4 

 

 

486.09 
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Quantity 

Zhu 
(1986) 

(discrete) 

Rajeev and 
Krishnamurthy 

(1992) 
(discrete) 

Camp and 
Bichon (2004) 

(ACO) 
(discrete) 

Present 
work (SQP) 
(continuous) 

Present 
work 

(ACO) 
(discrete) 

 

This chapter applies the developed multi-level and ant colony approaches to structural 

engineering example problems. Multi-level uncertainty models and multi-objective ant 

colony optimization models are considered. Results indicate the validity of the methods. 

Next chapter considers the application in Mechanical Engineering problems. 
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CHAPTER 5 - MECHANICAL DESIGN PROBLEMS 

In this chapter, benchmark examples in mechanical design are considered. These 

optimization problems are solved using the ant colony and multi-level approaches and the 

results are compared to those obtained using classical methods. The classical method 

used to solve these problems is Sequential Quadratic Programming (SQP). Mechanical 

engineering example problems considered are a gear box and the cylinder block of an 

internal combustion engine. 

5.1 Example 1: Design optimization of a gear box 

The volume of the gear box, stress in shaft 1 and stress in shaft 2 are to be minimized 

subjected to stress, displacement and torque constraints for the gear box shown in Figure 

5.1(Huang et al., (2006)). There are 7 design variables and 11 constraints.  

 

Figure 5.1  Speed reducer / gear box (Huang et al., (2006))    
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The design variables are the face width of the gears ( ), teeth module ( ), number of 

pinion teeth ( ), length of shaft 1 between bearings ( ), length of shaft 2 between 

bearings ( ), diameter of shaft 1 ( ), diameter of shaft 2 ( ). The problem can be 

stated as follows: 

Minimize the objective functions: 

Volume of the gear box   

	 0.7854 14.9334 43.0934 1.508

7.4777 0.785            (5.1) 

Stress in shaft 1  

												 745 1.69 10
0.1                                   (5.2)                         

Stress in shaft 2 

								 	 745 1.575 10
0.1 															      (5.3) 

Subject to   

a) Stresses in shafts  

	 745 1.69 10
0.1 1300				        (5.4) 
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	 745 1.575 10
0.1 1100				       (5.5) 

b) Bending and contact stress (in teeth) constraints  

	 27 1 0				            (5.6) 

397.5 1 0																													         (5.7) 

c) Transverse displacement (of shafts 1 and 2) constraints 

1.93 1 0           (5.8) 

1.93 1 0                                  (5.9) 

d) Torque constraints  

40 1 0           (5.10) 

12 1 0           (5.11) 

	 1 /5 0											         (5.12) 

/1.9 1.5 /1.9 1 0         (5.13) 

 /1.9 1.1 /1.9 1 0                          (5.14) 

5.1.1 Single-objective ant colony optimization 

In this section, single objective optimization of each of the three objectives is solved 

using SQP (by treating all the design variables as continuous) and ACO (by treating all 

the design variables as discrete). The objective function for the single objective 
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optimization problem is to minimize the volume of the gear box (Eq. 5.1) with constraints 

as stress, displacement and torque constraints (Eq. 5.4 - Eq. 5.14). The results obtained by 

both methods are given in Table 5.1 and Table 5.2. In SQP, the minimum volume 

obtained is 2770.6 cm3 and the minimum stress in shaft 1 is obtained as 1300 kgf/cm2 

(12.7 × 107 N/m2) and the minimum stress in shaft 2 is obtained to be 1004.0 kgf/cm2 

(9.8 × 107 N/m2). The corresponding values for ACO are 2869.2 cm3, 1144.0 kgf/cm2 

(11.2 × 107 N/m2) and 1004.0 kgf/cm2 (9.8 × 107 N/m2)@. Thus, the SQP method reduces 

the weight by 3.55 % and the minimum stress in shaft 1 by 13.9 % when compared to the 

ACO method. This is as expected because SQP uses continuous variables and hence 

better solutions. The minimum stress in shaft 2 is the same in both cases. For 

minimization of volume using SQP, torque constraints 9, 11 and in stress constraint in 

shaft are active. In ACO, torque constraints 9 and 11 are active. For minimization of 

stress in shaft 1, torque constraints 9 and 10 are active are active in both SQP and ACO. 

The discrete set of design variables used for ACO is a set of 6 values distributed between 

the bounds of the corresponding design variables. A colony size of 25 ants is used and the 

convergence is achieved in about 8 cycles for minimization of volume, 6 cycles for 

minimization of stress in shaft 1 and 6 cycles for minimization of stress in shaft 2, as 

shown in Figure 5.2, Figure 5.3 and Figure 5.4. In SQP, the number of iterations and the 

number of objective function evaluations for each objective are 7, 8, 7 and 59, 64, 56 

respectively.  Also, the results obtained by the SQP and ACO approaches for single 

objective minimization of volume of the gear box are compared to those available in 

                                                 
 

@ The problem formulation, originally given by Huang et al., (2006), contained empirical/experimental constants valid 
in Kgf and cm2 units. As such, the optimization study was conducted in the same units, and the results are reported in 
the same units with their equivalent values in SI units indicated in parentheses. 
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literature. The comparative results are given in Table 5.3. The minimum volume of the 

gear box obtained by Ray (2003) is 2996 cm3 and the present ACO algorithm gives a 

minimum volume of 2869.2 cm3. Hence, there is a reduction in the minimum volume by 

about 4.23 % by using ACO. The reason for the improvement of the optimum objective 

value can be attributed to tighter (more critical) torque constraints in ACO compared to 

that of Ray (2003). The SQP gives better result than ACO (3.56 %). This is because of 

two active torque constraints and active stress constraint in shaft 1. 

Table 5.1 Results of single objective optimization of the gear box (SQP) 

Quantity Initial Design 
Minimization 
of volume 

Minimization 
of stress in 
shaft 1 

Minimization of 
stress in shaft 2 

Design Variables:     

x1 (cm) 2.6 3.5 3.6 3.6 

x2 (cm) 0.8 0.7 0.72 0.72 

x3 (integer) 23 17 23 23 

x4 (cm) 7.9 7.3 7.75 7.9 

x5 (cm) 7.6 7.4 7.6 7.95 

x6 (cm) 3.6 3.1623 3.9 3.6 

x7 (cm) 5.0 5.0 5.0 5.5 

Objective 
Functions: 

    

volume  
(cm3) 

4061.5 2770.6 4439.7 4652.9 

stress 1  
(kgf/cm2)@ 881.12 1300 693.03 881.13 
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Quantity Initial Design 
Minimization 
of volume 

Minimization 
of stress in 
shaft 1 

Minimization of 
stress in shaft 2 

stress 2  
(kgf/cm2) 

1004.01 1004.01 995.64 754.31 

Constraints:     

number of active 
behavior 
constraints 

0 3§ 2* 2$ 

@1kgf/cm2=9.8×107N/m2;† 	 2.6 3.6;0.7 0.8; 17 28; 7.3 ,
8.3; 2.9 3.9; 5 5.5 ; § torque constraints 9, 11 and stress constraint in shaft 1; * torque 
constraints 9 and 10; $ torque constraints 9 and 11 

Table 5.2 Results of single objective optimization of the gear box (ACO) 

Quantity 

 

Minimization 
of volume 

Minimization 
of stress in 

shaft 1 

Minimization 
of stress in 

shaft 2 

Design variables: 
 

   

x1 (cm) 3.6 3.6 3.6 

x2 (cm) 0.7 0.72 0.72 

x3 (integer) 17 28 28 

x3 (cm) 8.3 8.1 8.3 

x4 (cm) 8.3 8.3 8.1 

x5 (cm) 3.3 3.9 3.9 

x6 (cm) 5.0 5.5 5.5 

Objective 
functions: 

   

volume  
(cm3) 

2869.2 6115.0 6112.7 



121 
 

 
 

Quantity 

 

Minimization 
of volume 

Minimization 
of stress in 

shaft 1 

Minimization 
of stress in 

shaft 2 

stress 1  
(kgf/cm2) 

1144.0 693.0 693.0 

stress 2  
(kgf/cm2) 

1004.0 754.3 754.3 

Constraints:    

number of active 
behavior 

constraints 

2§ 2* 2$ 

@1kgf/cm2=9.8×107N/m2;† 	 2.6 3.6;0.7 0.8; 17 28; 7.3 ,
8.3; 2.9 3.9; 5 5.5 ; § torque constraints 9 and 11; * torque constraints 9 and 10; $ torque 
constraints 9 and 11. 
 
 
 

      
*cycle =number of iterations/number of ants; number of ants = 25 

Figure 5.2 Convergence history for minimum volume of the gear box 
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*cycle =number of iterations/number of ants; number of ants = 25; @1kgf/cm2=9.8×107N/m2 

Figure 5.3 Convergence history for minimum stress in shaft 1 of the gear box 

      
*cycle =number of iterations/number of ants; number of ants = 25; @1kgf/cm2=9.8×107N/m2 

Figure 5.4 Convergence history for minimum stress in shaft 2 of the gear box 
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Table 5.3 Comparison of results of minimization of volume of gear box 

Quantity Ray (2003) SQP 

(continuous variables) 

ACO 

(discrete variables) 

Design variables:    

x1 (cm) 

x2 (cm) 

x3 (integer) 

x4 (cm) 

x5 (cm) 

x6 (cm) 

x7 (cm) 

Objective function: 

volume  (cm3) 

Constraints: 

number of active 
behavior constraints 

3.5 

0.7 

17 

7.3 

7.8 

3.3 

5.3 

 

2996 

 

1§ 

 

3.5 

0.7 

17 

7.3 

7.4 

3.1623 

5.0 

 

2770.6 

 

3£ 

3.6 

0.7 

17 

8.3 

8.3 

3.3 

5 

 

2869.2 

 

2$ 

† 	 2.6 3.6;0.7 0.8; 17 28; 7.3 , 8.3; 2.9 3.9; 5
5.5 ; § torque constraint; £ torque constraints 9, 11 and stress in shaft 1; $ torque constraints 9 and 11 
 
 
5.1.2 Multi objective ant colony optimization using weighted sum approach 

Multi-objective optimization problem of gear box is solved using SQP and ACO using 

weighted sum approach.  The problem is defined as  

Minimize  	 ∑             (5.15) 

Where  represents the weight assigned to each of the objective (taken as 0.8, 0.1 and 0.1 

for l = 1, 2, and 3 respectively) and  represents the normalized objective function 

for volume, stress in shaft 1 and stress in shaft 2 (Eq. (2.9)). 
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The constraints are stress, displacement and torque constraints defined by Eq. 5.4 to Eq. 

5.14. The results are given in Table 5.4. The minimum volume obtained by SQP is 

3310.7 cm3 whereas the minimum volume obtained by ACO is 3354.4 cm3. Hence, the 

SQP solution resulted in a lighter truss by 1.32 %. The minimum stresses in shafts 1 and 

2 obtained by SQP and ACO are the same. Also, the torque constraints 9, 10 and 11 are 

active in both cases. For ACO, a colony size of 25 ants is used. The discrete set of design 

variables used for ACO is a set of 6 values distributed between the bounds of the 

corresponding design variables. The convergence is achieved in 12 cycles as shown in 

Figure 5.5. 

Also, the results of multi-objective optimization of the gear box problem are compared 

with those available in literature in Table 5.4. Huang et al., (2006) used a fuzzy approach 

with continuous design variables, to solve the multi-objective gear box optimization 

problem. A relevant set of their results is presented in Table 5.4 along with those 

obtained in present work (using both SQP and ACO approaches). A direct comparison is 

not possible between the various sets of results shown. The results of the fuzzy approach 

indicate the optimum design vector and the corresponding objective functions with a 

satisfaction (membership) level of 0.8 (less than one), and the results of SQP denote the 

optimum design vector and the corresponding objective functions which are expected to 

be equal or better than those obtained with ACO. The results are presented for an order-

of-magnitude type of comparison. It can be seen from the results shown in Table 5.4 that 

the minimum volume obtained by the ACO is less than the volume reported by Huang et 

al., (2006) by 2.1 %. One of the stresses (stress in shaft 2) remained almost the same and 

the stress in shaft 1 decreased.   
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Table 5.4 Comparison of results of multi-objective optimization of the gear box 

Quantity SQP  ACO Huang et al., 
(2006) 

Design variables:    

x1 (cm) 3.5 3.6 3.5 

x2 (cm) 0.7 0.7 0.71 

x3 (integer) 17 17 18 

x4 (cm) 7.75 7.9 8.24 

x5 (cm) 7.95 8.1 8.23 

x6 (cm) 3.9 3.9 3.61 

x7 (cm) 5.5 5.5 5.4 

Objective 
functions: 

   

volume  
(cm3) 

3310.71 3354.43 3425.1 

Stress 1  
(kgf/cm2) 

693.03 693.03 879.8 

Stress 2  
(kgf/cm2) 

754.31 754.31 797.6 

Constraints:    

number of active 
behavior 

constraints 

3§ 

 

3& 

 

0 

@1kgf/cm2=9.8×107N/m2;† 	 2.6 3.6;0.7 0.8; 17 28; 7.3 , 8.3; 2.9
3.9; 5 5.5 ;§ torque constraints 9, 10, 11; & torque constraints 9, 10, 11. 
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*combined objective is calculated using Eq. (2.29) with normalized individual objectives 

Figure 5.5 Convergence history for multi-objective ACO of the gear box 

Performance of ACO is studied by varying the size of the ant colony keeping the 

maximum number of cycles fixed. Three different colony sizes of 25, 50 and 75 ants are 

considered. The convergence results are shown in Figure 5.6, Figure 5.7 and Figure 5.8. 

It can be seen that for the minimization of volume (objective), a colony size of 25 ants 

converges to the optimum in about 8 cycles while a colony size of 50 ants converges to 

the optimum value in 6 cycles. The colony size of 75 ants converges to about 10 cycles. 

But in all the cases, the converged volume is different. The minimum volume is obtained 

with 25 ants. Also, the starting vector is chosen randomly in each case. For the 

minimization of stress in shaft 1, the colony size of 25 and 50 ant size colonies converge 

in about 5 cycles. The colony with 75 ants converged in 7 cycles. Convergence of stress 

in shaft 2 is shown in Figure 5.8. In this case, 25 and 50 ant size colonies take 5 cycles to 

converge while the colony with 75 ants converges in 13 cycles.  
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Figure 5.6 Convergence of minimum volume with changes in the number of ants for 
the gear box 

@1kgf/cm2=9.8×107N/m2  

Figure 5.7 Convergence of stress in shaft 1with changes in the number of ants for 
the gear box 
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@1kgf/cm2=9.8×107N/m2 

Figure 5.8 Convergence of stress in shaft 2 with changes in the number of ants for 
the gear box 

5.1.3 Multi-objective ant colony optimization using modified game theory approach 

In this section, ant colony optimization method is used to solve the multi-objective 

optimization problem of the gear box using modified game theory approach. The multi-

objective problem is defined as  

Minimize 	           (5.16) 

where   	∑   and          (5.17) 

∏ 1 	          (5.18) 

Where  represents the weight assigned to each of the objective and  represents 

the normalized objective function for volume, stress in shaft1 and stress in shaft (Eq. 

(2.9)). 
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The constraints are stress, displacement and torque constraints defined by Eq. 5.4 to Eq. 

5.14. The results obtained by the multi-objective ant colony optimization using modified 

game theory are given in Table 5.5. As seen from the table, the minimum volume 

obtained by ACO is 3890.46 cm3, the minimum stress in shaft 1 is 1143.92 kgf/cm2 (11.2 

× 107 N/m2) and the minimum stress in shaft 2 is 797.00 kgf/cm2 (7.8 × 107 N/m2). The 

results obtained by ACO are compared with those obtained using SQP (using modified 

game theory). The minimum volume obtained by SQP is 3310.70 cm3, the minimum 

stress in shaft 1 is 693.03 kgf/cm2 (6.7 × 107 N/m2) and the minimum stress in shaft 2 is 

754.31 kgf/cm2 (7.3 × 107 N/m2). Hence, the SQP solution resulted in a lesser volume by 

14.13 %. The stresses in shaft 1 and shaft 2 also decreased by 39.42 % and 5.3 % 

respectively. Hence, the SQP resulted in a better solution in all the three objectives when 

compared to ACO. Also, the torque constraints 9, 10 and 11 are active in the case of SQP 

and the torque constraints 9 and 11 are active in ACO. For SQP, the number of iterations 

for convergence is 12 and the number of function evaluations is 132. The discrete set of 

design variables used for ACO (with 25 ants) is a set of 6 values distributed between the 

bounds. The convergence in ACO is achieved in 10 cycles as shown in Figure 5.9. 

Table 5.5 Comparison of results of multi-objective ACO and SQP using modified 
game theory for the gear box 

 

Quantity 

 

SQP (MGT) ACO* 

(MGT) Initial design Optimum design 

Design variables:    

x1 (cm) 2.7 3.5 3.6 
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Quantity 

 

SQP (MGT) ACO* 

(MGT) Initial design Optimum design 

x2 (cm) 0.73 0.7 0.7 

x3 (integer) 25 17 21 

x4 (cm) 7.3 7.75 8.1 

x5 (cm) 7.6 7.95 7.9 

x6 (cm) 3.6 3.9 3.3 

x7 (cm) 5.3 5.5 5.4 

C1 

C2 

C3 

0.3 

0.3 

0.4 

0.1 

0.25 

0.65 

0.4 

0.4 

0.2 

Objective 
functions: 

   

volume  
(cm3) 

4264.51 3310.70 3890.46 

stress 1,   
(kgf/cm2) 

881.12 693.03 1143.92 

stress 2,  
(kgf/cm2) 

842.97 754.31 797.00 

Constraints:    

number of active 
behavior 

constraints 

1 3§ 2& 

@1kgf/cm2=9.8×107N/m2 
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Figure 5.9 Convergence graph for multi-objective ACO using modified game theory 
for the gear box 

Table 5.6 Designs for the best 5 ants in multi-objective ACO using modified game 
theory for the gear box 

Quantity Ant 1 Ant 2 Ant 3 Ant 4 Ant 5 

Design 
variables: 

     

x1(cm) 3.2 3.4 3.6 3.6 3.2 

x2 (cm) 0.72 0.72 0.7 0.7 0.72 

x3 (integer) 24 24 24 21 24 

x4 (cm) 8.3 8.3 8.1 8.1 8.3 

x5 (cm) 7.9 7.9 8.1 7.9 7.9 

x6 (cm) 3.3 3.3 3.3 3.3 3.1 

x7 5.4 5.4 5.4 7.4 5.4 

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

co
m
b
in
e
d
 o
b
je
ct
iv
e
 f
u
n
ct
io
n
(m

u
lt
i‐

o
b
je
ct
iv
e
) 

number of cycles



132 
 

 
 

Quantity Ant 1 Ant 2 Ant 3 Ant 4 Ant 5 

c1 

c2 

c3 

0.4 

0.4 

0.2 

0.4 

0.4 

0.2 

0.4 

0.4 

0.2 

0.4 

0.4 

0.2 

0.4 

0.4 

0.2 

Combined 
objective 
function  

  

0.7019 0.7599 0.7561 0.5205 0.8773 

Constraints:      

number of 
active 

behavior 
constraints 

0 1& 1$ 1§ 0 

& torque constraint 7; $ torque constraint 9; § torque constraint 7 

Details of the best 5 final designs (corresponding to the best 5 ants) are given in Table 

5.6. Among all the designs, the one with minimum combined objective function value is 

chosen as the final design in ACO. It can be seen from the table, that the design 

corresponding to ant 4 has the minimum combined objective function value with torque 

constraint 7 as active constraint. In this problem, all the constants (c1, c2 and c3) 

converged to the same values of 0.4, 0.4 and 0.2 respectively.  

5.2 Example 2: Design optimization of combustion chamber of an internal 
combustion engine  

To illustrate multi-level multidisciplinary design optimization framework with 

uncertainties, the design of an internal combustion engine combustion chamber is 

proposed. The problem is detailed in Papalambros and Wilde (2000). The model is based 

on fundamental thermodynamic relations and assumes some empirical data. A flat head 
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design is considered as shown in Figure 5.10. The model has five design variables. They 

are the cylinder bore (b), compression ratio (cr), exhaust valve diameter (de), intake valve 

diameter (di), and the engine's revolutions per minute at peak power (w). The objective is 

to maximize the break power per unit engine displacement. The constraints represent the 

fuel economy and packaging specifications. The mathematical optimization problem is 

given as 

Minimize , , , 	 , , , ,     (5.19) 

Subject to the following constraints 

a) Constraint for the bore wall thickness is given 

														 0		          (5.20) 

b) Constraint for the engine height  

													 0																																																										      (5.21) 

c) Constraint for the valve structure  

														 , , 0																																												     (5.22) 

d) Constraint for the ratio of minimum valve diameter  

														 , 0								           (5.23) 

e) Constraint for the ratio of maximum valve diameter 

															 , 0	        (5.24) 

f) Constraint for the maximum Mach index  



134 
 

 
 

														 , 0					        (5.25) 

g) Constraint for the knock-limited compression  

														 , 	13.2 0.045 	 0	             (5.26) 

h) Constraint for the maximum torque convertor rpm 

															 0	         (5.27) 

i) Constraint for the fuel economy  

														 , 0.8595 1 . , 0	     (5.28) 

where all the variables are positive and 0,1,… ,4  ,	 0,2,3,4,5,7  are 

parametric values given in Papalambros and Wilde (2000). FMEP represents the friction 

mean effective pressure,  and  are the thermal and volumetric efficiencies,  is the 

surface to volume ratio and s is the stroke length. It is to be noted that complete 

formulations and other parameters not shown in these equations, are detailed in 

Papalambros and Wilde (2000). 
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Figure 5.10  Combustion chamber (Papalambros and Wilde (2000)) 

5.2.1 Multi-level formulation (approach 1) 

The multilevel formulation of the model is based on defining two sub-problems 

(disciplines), namely, the geometry sub-problem and the thermodynamics sub-problem as 

shown in Figure 5.11. Each sub-problem has its own design variables and constraints 

along with the common system level shared design variables. The objective of the sub-

problem is to minimize the discrepancy function. At the system level the objective is to 

minimize the negative specific power and assign target values to the shared variables. 

The coordination between levels is obtained by repeated iterations between both levels to 

satisfy the equality constraints. 

Formulation used in the multi-level process is given below: 

System level problem: 

Minimize  	 	power           (5.29) 
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subject to  

0;            (5.30) 

0;            (5.31) 

where               (5.32) 

Component level problem (geometry discipline): 

Minimize  	 ∗ ∗        (5.33) 

subject to  

0		           (5.34) 

0																																																										      (5.35) 

, , 0																																												                 (5.36) 

, 0								                          (5.37) 

	 , 0	          (5.38) 

where 	              (5.39) 

Component level problem (thermodynamics discipline): 

Minimize  ∗ 	 ∗            (5.40) 
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subject to  

, 0					                    (5.41) 

, 	13.2 0.045 	 0	                         (5.42) 

0	                     (5.43) 

	 , 0.8595 1 . , 0	                    (5.44) 

where   and 	                       (5.45) 

 

Figure 5.11  Multi-level combustion chamber design 

5.2.2 Multi-level stochastic formulation 

To account for stochastic uncertainty in the engine's chamber design, the two level 

formulations ares made similar to the previous deterministic case but with modifications. 

The design variables in this case are considered as the random variables. The standard 
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deviation of the random variables is assumed to be about 1% of the mean value and the 

constraints are satisfied with 0.95 probability level. The procedure described in the earlier 

section is used to convert the stochastic optimization problem into an equivalent 

deterministic optimization using the chance constrained optimization. In this case, the 

system level objective is the combined specific power obtained by considering the mean 

and standard deviation of the design variables. The target variables are assigned and 

matched by the equality constraints. At the sub-problem levels, the objective is to match 

the shared variables while satisfying the discipline specific constraints. Also, it is to be 

noted that the constraints are stochastic as opposed to deterministic. 

5.2.3 Multi-level interval formulation 

For interval based multi-level optimization, the mathematical formulation for the 

multilevel system is based on the interval analysis and optimization. The design variables 

at both levels are intervals. For the optimization, the minimum and maximum values of 

each of the five initial design variables , , , ,  are taken as the design variables 

in the interval formulation. Hence, a total of 10 design variables are used to minimize the 

mean specific power using interval calculations. Also, extra sets of discipline specific 

constraints are obtained because of the minimum and maximum values. The results 

obtained for deterministic, stochastic and interval optimizations are tabulated in Table 

5.7, Table 5.10 and Table 5.11 respectively. For each of the three cases, the deterministic, 

stochastic and interval approaches, the results were obtained using different starting 

points chosen randomly. It was found that, the starting point did not have much influence 

on the converged designs. It is to be noted that in all the three cases, SQP method is used 

to solve the optimization problems in each level. 
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Table 5.7  Results of deterministic optimization (single and multilevel) 

Quantity Initial Design
Bounds Optimum Design 

Lower            Upper Single level* Multi-level **

Design variables: 

b (cm) 

di (cm) 

de (cm) 

          cr 

 w (rpm) 

 

75 

27 

35 

6.5 

5200 

   

   70                 90 

   25                 50 

   25                 50 

   6                   12 

   5000           6500 

 

83.33 

37.33 

30.99 

9.45 

6070 

 

83.34 

37.35 

30.99 

9.45 

6071 

Objective function:  

(power in bhp) 
25.03 17.47             77.55 55.65 55.71 

* ( , , 	 	 ) are active at optimum point; converged in 7 iterations and 48 function evaluations. 

** ( , , 	 	 ) are active at optimum point; converged in 8 iterations and 56 function evaluations. 

Table 5.8 Convergence results of the deterministic multi-level optimization  

cycle f * 
(system 
level) 

f (0) 
(geometry 
component) 

 f *  
(geometry 
component) 

f (0) 
(thermodynamics 
component) 

f * 
(thermodynamics 
component) 

Power  
(bhp) 

1 38.3339 20.3536 11.2397 5.6924 5.4213 34.5738 
2 52.3522 78.1485 0.1440 26.4289 2.1245 49.6936 
3 61.3554 162.6573 5.2880 36.9312 5.8486 53.6992 
4 65.4466 250.8627 10.0033 37.1671 6.4904 55.709 
f * - optimum value ; f (0) - initial value 

Table 5.9 Optimum design vectors at each cycle in the deterministic multi-level 
optimization  

cycle optimum design vectors at system level and component levels 

1  ∗ 

 ∗  

 ∗  

 {75.3218, 31.5000, 35.0000, 8.3838, 5000} 

{ 78.4165, 32.7895, 31.5348} 

{ 75.3218, 31.5000, 6.0000, 4802} 

2  ∗  {79.2809, 34.6952, 30.3124, 9.6467, 5653} 
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cycle optimum design vectors at system level and component levels 

 ∗  

 ∗  

{ 79.2809, 34.6952, 30.3124} 

{ 78.9628, 34.9022, 9.6467, 5653} 

3  ∗ 

 ∗  

 ∗  

 {81.3488, 36.4514, 30.2547, 9.5816, 6065} 

{ 81.3488, 36.4514, 30.2547} 

{ 80.4088, 38.5500, 9.5816, 6065} 

4  ∗ 

 ∗  

 ∗  

 {83.3300, 37.3391, 30.9915, 9.4524, 6071} 

{ 83.3300, 37.3391, 30.9915} 

{ 83.2808, 40.5015, 9.4524, 6071} 

∗- system level design vector ; 1
∗ - component level (geometry) design vector; 2

∗- component level 
(geometry) design vector 

 

Table 5.10  Results of stochastic multi-level optimization 

Quantity Initial Design 
Bounds Optimum Design 

Lower          Upper    Multi-level ** 

Design variables: 

 (cm) 

(cm) 

(cm) 

 	

 (rpm) 

 

75 

27 

35 

6.5 

5200 

    

   70                 90 

   25                 50 

   25                 50 

   6                   12 

   5000         6500 

 

82.46 

34.32 

30.19 

9.86 

5128 

Combined objective 
function* (bhp) 

25.03 17.47          77.55 48.27 

*linear sum of mean and standard deviation of power (Eq. 3.6) 

** ( , , 	 ) are active at optimum point; converged in 7 iterations with 46 function evaluations. 
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Table 5.11  Results of interval multi-level optimization 

Quantity 
Initial Design 

(intervals) 

Bounds Optimum Design

Lower           Upper
Multi-level * 

(intervals) 

Design variables: 

 (cm) 

(cm) 

(cm) 

	

 (rpm) 

 

[75    85] 

[26    35] 

[30    37] 

[6.1  6.7] 

[4800 5400] 

   

   70                 90 

   25                 50 

   25                 50 

   6                   12 

   5000         6500 

 

[84.75    88.88] 

[39.51    39.59] 

[31.03    32.49] 

[6.92        8.22] 

[5512     6457] 

Objective function: 

(interval of power in bhp) 
[21.98  44.29]  17.47           77.55 [50.97   57.53] 

*( , , 	 ) are active at optimum point; converged in 24 iterations and 461 function evaluations 

Table 5.7 shows the results obtained by the deterministic case with one level and two 

level optimizations. The single level optimization results are shown to validate the bi-

level procedure described in present work. The details of the iterative procedure are given 

in Table 5.8 and Table 5.9. It can be seen that both the algorithms converge to the same 

design. The bi-level algorithm requires slightly more number of function evaluations and 

iterations for its convergence. Three of the geometry constraints ( , ,  are active 

indicating that the valve and engine geometry are tightly constrained. Also, the 

thermodynamics constraint related to knocking (  is active. The power obtained by the 

multi-level deterministic approach is 55.7 bhp and lies in the interval result with lower 

value of 50.97 bhp and upper value of 57.53 bhp. As expected the brake power obtained 

by the stochastic optimization is slightly lower because of the design feasibility.  Also, 

the mean and standard deviation values in stochastic multi-level optimization at the initial 
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design are 24.73 bhp and 0.294 bhp. The corresponding values for the final design are 

47.69 bhp and 0.574 bhp respectively. The same set of constraints is active within 

tolerances in all the three cases. Deterministic and stochastic algorithms took almost the 

same number of iterations and objective function evaluations for convergence. But, 

interval optimization algorithm took about three times the number of iterations to 

converge. This might be because of double the number of design variables and 

constraints when compared to the deterministic and stochastic designs.  

5.2.4 Sensitivity analysis 

To further understand the effect of uncertainty on the design optimization, sensitivity 

analysis of the optimum designs is considered. Variation of the objective function (brake 

power) with changes in the optimum values of the design variables is studied. In all the 

three cases, the diameter of the inlet valve was most sensitive to the brake power. This is 

as expected because the inlet valve design controls the amount of fuel into the 

combustion chamber in turn influencing the engine power. The variable most insensitive 

to power was the exhaust valve diameter. As The sensitivity results for the deterministic, 

stochastic and interval approaches are shown in Figure 5.12, Figure 5.13, Figure 5.14 

and Figure 5.15 respectively. As seen in Figure 5.12 for the deterministic design, there is 

not much variation in the brake power until almost 10% change in the design variable 

values from the optimum design. But with further increase in the percentage change, the 

brake power widely varies especially with change in the rpm which could be the 

operating conditions. This data could be used by the designer for initial designs. For the 

stochastic design, the change in percentage of the design variables had similar effects as 

in the deterministic design but with slightly less scatter in the design points. The same is 
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true for interval optimization results with the lower intervals. The upper interval values of 

the interval design behaved similar to the deterministic optimization results with more 

scattered points and sensitivity with the change in design variables. 

 

Figure 5.12  Sensitivity of power in deterministic optimization 

Also, it is observed that the constraints g1, g3, g4 and g7 were active until about 10% 

change in the design variables in the case of deterministic, stochastic and lower interval 

designs. In the case of upper interval design, g4 was not active. This is because of the 

restrictions in the valve diameter ratios. With 15 % change in the design variables, the 

constraints  and  were no longer active in the case of deterministic and upper interval 

design. This is because of the knock limited compression with changes in engine rpm. 

With further increase in percentage change of the design variables, the constraints , , 

 and   were violated. Hence, the sensitivity results indicate that the designs can be 

changed until about 15 % changes in the design variables based on the designer's intent.  
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*linear sum of mean and standard deviation of power (Eq. 3.6) 

Figure 5.13  Sensitivity of combined power in stochastic optimization 

 

Figure 5.14  Sensitivity of power in interval optimization (lower value of the 
interval) 
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Figure 5.15  Sensitivity of power in interval optimization (upper value of the 
interval) 

5.2.5 Multi-level formulation (approach 2) 

The multilevel formulation of the model is based on defining two sub-problems 

(disciplines), namely, the geometry sub-problem and the thermodynamics sub-problem. 

Each sub-problem has its own design variables and constraints. The objective is to 

minimize the negative specific power and the system level assigns target values to the 

component level variables. The coordination between levels is obtained by repeated 

iterations between both levels to satisfy the equality constraints at the system level. 

Formulation used in the multi-level process is given below: 

System level problem: 

Minimize  	 	power           (5.46)  

subject to  
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0;            (5.47) 

0;            (5.48) 

where             (5.49) 

Component level problem (geometry discipline): 

Minimize  	          (5.50) 

subject to  

0		             (5.51) 

0																																																										      (5.52)    

, , 0																																												      (5.53)               

, 0								               (5.54)    

	 , 0	          (5.55) 

where 	            (5.56) 

Component level problem (thermodynamics discipline): 

Minimize  	          (5.57) 

subject to  
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, 0					         (5.58)    

, 	13.2 0.045 	 0	              (5.59)    

0	          (5.60)    

	 , 0.8595 1 . , 0	      (5.61)  

where   and 	            (5.62)  

Results obtained by the new ML SQP for maximization of bhp are given in Table 5.12 

and Table 5.13. Table 5.12 shows the convergence of the design variables for every 

iteration between the system and the component levels. From the table it is evident that 

the convergence in the ML process is achieved in 5 iterations. Variation of the power 

(bhp) at the end of every iteration between the two levels is given in Table 5.13. It is 

evident that the power increased from an initial value of 38.3339 bhp to a final value of 

59.7832 bhp in 5 iterations between the system and the component levels. The 

convergence is evident with no further change in the value of the maximum bhp after 5 

iterations. The total number of function evaluations in SQP is 301 and the total number of 

iterations for convergence of the ML process is 15. At the initial design, there are no 

active constraints whereas at the final design, the constraints , ,  and   are 

active.  

Table 5.12 New Multi-level SQP results for maximization of power 

Iteration Optimum design vectors at system level and component levels 

1  ∗ 

 ∗  

 {75.3218, 31.5000, 35.0000, 8.3838, 5000} 

{76.8531, 32.2266, 30.8052} 



148 
 

 
 

 ∗  {9.7132, 5632.4} 

2  ∗ 

 ∗  

 ∗  

 {77.4836, 34.8362, 30.8052, 11.4546, 6019.9} 

{78.6219, 35.3510, 29.1193} 

{9.6105, 6067.4} 

3  ∗ 

 ∗  

 ∗  

 {79.7673, 38.7062, 29.1193, 12.0000, 6111.0} 

{80.3686, 36.0152, 29.8870} 

{9.3478, 6232.5} 

4  ∗ 

 ∗  

 ∗  

 {85.6046, 40.0169, 29.8870, 12.0000, 6394.5} 

{83.3300, 37.3392, 30.9914} 

{9.3478, 6232.5} 

5  ∗ 

 ∗  

 ∗  

 {83.3300, 37.3391, 30.9915, 9.1500, 6323.0} 

{83.3300, 37.3391, 30.9915} 

{9.1500, 6323.0} 

∗- system level optimum design vector ;  ∗- component level (geometry) design vector; 
∗- component level (geometry) design vector 

Table 5.13 New Multi-level SQP results for maximization of power 

Iteration f * (system 
level) 

f * (component level) 
(geometry) 
 

f * (component level) 
(thermodynamics) 

1 38.3339   40.0594   32.0002 
2 52.2336   53.7935   49.4795 
3 61.4177   56.5048   57.1115 
4 65.2612   59.6064   60.3822 
5 59.7832 59.7832 59.7832 
f * - optimum value  

Results obtained by the new ML ACO for maximization of power (bhp) are given in 

Table 5.14 and Table 5.15. Table 5.14 shows the convergence of the design variables for 

every iteration between the system and the component levels. From the table it is evident 

that the convergence in the ML process is achieved in 6 iterations. Variation of bhp at the 
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end of every iteration between the two levels is given in Table 5.15. It is evident that the 

bhp reduced from an initial value of 9.6706 bhp to a final minimum value of 56.1934 bhp 

in 6 iterations between the system and the component levels. The convergence is evident 

with no further change in the value of the maximum bhp after 6 iterations. At the final 

design, the constraints , ,  and  active. The number of ants used in ACO is 25 

and the discrete variable set is obtained by taking 20 values equally distributed between 

the bounds for each design variable. The convergence in ACO is achieved in 44 cycles 

(1100 iterations). 

Table 5.14 New Multi-level ACO results for maximization of power 

Iteration Optimum design vectors at system level and component levels 

1  ∗ 

 ∗  

 ∗  

{84.7368, 30.2632, 27.6316, 9.7895, 8315.8} 

{82.6316, 35.5263, 30.2632} 

{9.1579, 5000} 

2  ∗ 

 ∗  

 ∗  

{76.3158, 32.8947, 48.6842, 7.2632, 7578.9} 

{82.6316, 35.5263, 31.5789} 

{9.4737, 5000} 

3  ∗ 

 ∗  

 ∗  

{76.3158, 35.5263, 27.6316, 8.2105, 6473.7} 

{82.6316, 35.5263, 31.5789} 

{9.4737, 5736.8} 

4  ∗ 

 ∗  

 ∗  

{78.4211, 39.4737, 25.0000, 8.8421, 5000} 

{82.6316, 35.5263, 31.5789} 

{9.4737, 6105.3} 

5  ∗ {86.8421, 39.4737, 25.0000, 12.0000, 5368.4} 
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 ∗  

 ∗  

{82.6316, 35.5263, 31.5789} 

{9.1579, 6473.7} 

6  ∗ 

 ∗  

 ∗  

{82.6316, 35.5263, 31.5789, 9.1579, 6105.3} 

{82.6316, 35.5263, 31.5789} 

{9.1579, 6105.3} 

∗- system level optimum design vector ;  ∗- component level (geometry) design vector; 
∗- component level (geometry) design vector 

Table 5.15 New Multi-level ACO results for maximization of power   

Iteration f *  (system 
level) 

f *  (component level) 
(geometry) 
 

f *  (component level) 
(thermodynamics) 

1 9.6706     4.9663   39.3903 
2 18.8258   28.6240   42.9708 
3 45.3467   48.0248   49.9879 
4 50.5549   47.2282   57.5009 
5 61.4257   54.9891   59.4063 
6 56.1934   56.1934   56.1934 
 

In this chapter, mechanical engineering example problems are solved using the multi-

level and ant colony approaches. Examples considered are combustion chamber of an 

internal combustion engine and a speed reducer/gear box. Results obtained are compared 

to those in literature. Practical application of chiller optimization is reported in the next 

chapter.   
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CHAPTER 6 - PRACTICAL APPLICATION – DESIGN OPTIMIZATION OF 
CHILLER PLANTS 

This chapter is concentrated on the application of design optimization in large-scale 

industrial problems. Chiller plants in the Heating Ventilation and Air Conditioning 

(HVAC) Systems are considered. A brief introduction of chiller plants is given followed 

by a literature review. Chiller plant optimization model is formulated and a hybrid 

solution technique is developed to solve the optimization problem. Case study is 

performed and the results are analyzed. 

6.1 Introductory remarks 

Conservation of energy has always been a topic of concern and research. Among the 

various energy sources, electrical energy is one of the most used forms of energy. Most 

of the activities people are involved are related to devices that use electric power. The 

buildings we live in require air conditioning systems. The HVAC systems are among the 

major power or energy consuming units of a building. Increased emphasis on energy 

conservation leads to the development of better and optimal ways of using energy. 

Hence, in this research, optimization of a chiller plant is considered as a practical 

industrial application. 

A chilled water plant is one of the largest electric power consuming units in a typical 

building in the United States. Depending on the type of facility, a chiller plant can 

consume electricity ranging from 10% to 50% of the total energy consumption (DOE 

2003). Hence, even a small amount of savings in energy (using optimization) would 

result in a significant savings in cost.  
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A chiller plant provides the necessary cooling through chilled water to a building. Its 

main components are chillers, cooling towers, and pumps, which are often grouped 

together to form the condenser loop and the chilled water loop. Figure 6.1  shows a 

schematic of a typical chiller plant (HVAC system). The condenser loop consists of 

chiller condensers, pumps, cooling towers and fans. Similarly, the major components of 

the chilled water loop are the chiller evaporators and chilled water pumps. The 

performance of a chiller plant is usually given as kw/ton which indicates the ratio of 

electric power consumed to the required input load. 

 

Figure 6.1  Schematic of a HVAC system (Lu et al., (2004)) 

6.2 Literature review 

The aspects of energy conservation and optimal control of chiller plants have been 

considered by many researchers in literature (Chang (2007), Chang (2009), Wang and Ma 

(2008)). Some of the works emphasized the study of individual component efficiencies 

and others have targeted on partial systems. Some works elaborate on the condenser loop 

(Braun and Doderrich (1990), Shelton and Joyce (1991), Kirsner (1996)) while others 

have emphasized the chilled water loop (Kirsner (1998), Braun et al., (1989), Olson and 
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Liebman (1990), Chang (2007)). Most of the chiller plants are either controlled manually 

or automatically by adjusting the temperature or pressure settings (Hartman (2006, 2007), 

Christopher (2010)). Also, in a chiller plant, chillers consume a major fraction of the 

power, and are the most expensive components. Hence, optimizing the performance of 

chillers is crucial for power and ultimately the cost savings. The pioneering work in this 

area was done by Hartmann with the promotion of variable speed drive chillers, pumps 

and cooling tower fans (Hartman (2001, 2005)). This work was followed by Yu and Chan 

(2009) and Zheng and Wang (2009). The overall system performance of the chiller plants 

was studied by Austin (1993) and Flake (1998).  

The various methodologies used for the optimization and control of chiller plants can 

broadly be classified as enumeration-based and simulation based methods. The 

enumeration based optimization (Austin (1991), Bellenger et al., (1996), Avery (2001)) is 

based on an exhaustive simulation or monitoring based on the entire performance map of 

the system. This method, by default, involves no mathematical optimization techniques. 

Using this methodology, Avery (2001) suggested ways to improve the generally accepted 

and practiced primary/secondary loop systems. It was shown that by making physical 

changes to the plant like installing temperature and pressure sensors and valves at certain 

places would increase the efficiency of the plant. Bellenger et al., (1996) developed a 

spreadsheet based chiller optimization model using manufacturer's data. This uses a 

systems approach in selecting cost-efficient chillers based on the chiller performance 

data, cooling tower and the pumping system. Recently, Hydeman and Zhou (2007) used a 

parametric analysis technique to optimize the control sequence of chilled water plants. A 

spreadsheet based optimization tool was created for a chiller plant by Morris and Blaine 
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(2008). The interactions between the components were modeled considering the plant's 

response to load and outside air conditions. A set of quick look-up tables were created 

which could help the operators to run the plant efficiently. This study involved no 

mathematical optimization techniques and was a basic model. 

The simulation based methods, on the other hand, use systems optimization theory with 

mathematical formulations. Olson and Liebman (1990) used a heuristic search and 

sequential quadratic programming to solve the chiller plant problem. In this study, the 

optimization is mainly focused on the sequence of operation of the equipment but not on 

the performance levels of the equipment. Later, Sun and Reddy (2005) have used 

sequential quadratic programming based method to design optimal heating and cooling 

systems for buildings. The study uses a two stage optimization approach for the chiller 

plant. The global optimization of an overall HVAC system is studied by Lu et al., (2004, 

2005). In their work, the basic chiller plant model developed by Stoecker (1975) has been 

modified, and the component interactions are shown. The artificial neural networks are 

used to determine the set points of components wherever required. This developed model 

is optimized using genetic algorithms by Lu et al., (2004). The artificial neural networks 

might rely too much on the input data for training and are often unable to extrapolate 

beyond the calibration range. Ma and Wang (2011) present a model-based supervisory 

and optimal control strategy based on genetic algorithms. System performance is 

predicted using simplified models based on recursive least squares estimation. Genetic 

algorithms sometimes have the limitation of convergence issues because of the evolution 

from a bad result. Multiple chiller management for dynamic loading is researched by 

Beghi et al., (2011). A multi-phase genetic algorithm model is used to simultaneously 
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solve the optimal chiller loading and optimal chiller sequencing problems. Chang et al., 

(2005), solved the optimal chiller sequencing problem using the branch and bound and 

the Lagrangian method of optimization. Only the chillers were considered in the studies 

but not the entire chiller plant. 

Most studies in literature use either the enumeration based models or the simulation 

based models. The enumeration based models have no mathematical basis while the 

simulation based models might not span the entire performance of the components and 

sometimes lead to infeasible solutions. Also, in enumeration based models, there is no 

validity for the results, unless the changes are physically made to the plant. In order to 

overcome these difficulties, a novel formulation technique, combining the two methods 

has been developed in this study. This method uses the performance map of the 

equipment (to build the models and ensure the spanning of the entire feasible region) 

along with the systems optimization theory (using a hybrid optimization method) to 

optimize chiller plants. With this model, the effects/results could be predicted before 

actual changes are implemented in the plant. A preliminary software model is developed 

which could be directly installed in the HVAC plant for energy savings.  

Chiller plant optimization is a mixed-integer programming problem and hence continuous 

optimization strategies cannot be implemented directly. This is addressed in literature 

using two different types of optimization: operation mode optimization (which defines 

the set of equipment to be operated as discrete/integer optimization) and the set points 

optimization (which computes the optimal values of the design variables for minimum 

power consumption as continuous optimization). This two stage optimization is 

computationally expensive and requires both stages to be converged for the overall plant 
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optimization. Hence, in present study, a hybrid algorithm is developed which overcomes 

the drawbacks of the two stage optimization. This algorithm uses only one optimization 

problem to be solved instead of two optimizations for the set point and the operation 

modes. One of the robust and proven classical optimization techniques-the sequential 

quadratic programing (SQP) - has been combined with a modified branch and bound 

method (B&B) of integer optimization (Rao, 2009) to solve the chiller plant optimization 

model.  

6.3 Algorithm steps for chiller plant optimization 

 Simulation of the system  

 Formulation of the optimization problem  

 Solution of the optimization problem using SQP and modified B & B method 

The flowchart of the chiller plant optimization procedure is given in Figure 6.2.  Initially, 

regression models for the components, the chiller, the cooling tower fans and the pumps 

are generated (Details are given in section 6.7). The chiller plant optimization problem is 

formulated based on the generated models. As stated earlier, the solution procedure for 

the chiller plant optimization problem involves two main stages. In the first stage the 

optimization problem is solved using SQP, assuming all the variables to be continuous in 

nature. Once the optimum solution to stage one is obtained, the design variables are 

checked for discreteness (integer in this case). If the condition is satisfied, then the 

program is terminated and the results printed. Else, the next stage of the algorithm is 

implemented which involves the branch and bound method with modifications. The 

discrete variable is set for lower and upper bound integers based on the results obtained 

in the continuous optimization (stage one). In this way, two sub problems for 
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optimization are formed. These sub problems have the same objective and constrains as 

the initial problem except for an extra equality constraint. Then the two sub problems are 

solved using SQP. At each stage the branching (dividing into sub problems) is continued 

until an infeasible solution is found. Each time, the best feasible solution obtained until 

then is updated and the branching and bounding and the SQP optimization is continued 

until the optimum solution is obtained.  
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Figure 6.2  Flowchart for the chiller plant optimization (hybrid solution method) 
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6.3.1 Simulation of the system: Developing multivariable regression models  

The chiller plant model simulation involves developing multivariable regression models 

for the system. These regression models are developed based on thermodynamics, heat 

transfer, energy and mass balance relations. For the model generation, dependent and 

independent variables are recognized. In general, the system performance of the chiller 

and the total plant are identified as the dependent variables. Independent variables are 

identified as the percentage load of the chiller ( ), the mass flow rate of fluid (water) 

into the condenser ( ), the condenser entering fluid temperature ( ), wet bulb 

temperature (WBT), the percentage speed of the fan ( ).  

6.3.1.1 Chiller Model 

The energy model of a chiller is usually based on the coefficient of performance (COP) 

of the chiller (Browne and Bansal (1998)). The COP is a function of the Partial Load 

Rate or the percentage load ( ) and the entering temperatures of the fluid in the 

evaporator and the condenser. In the present model, system performance (SP) of the 

chiller, defined as 1/COP, is taken as a function of percentage load of the chiller ( ) 

and the condenser entering water temperature ( ) in the form  

                 

(6.1) 

Power consumed ( ) by the chiller is calculated as  

∗ ∗ /100                 (6.2) 
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Thus, given the condenser entering fluid temperature and the percentage load at which 

the chiller operates, the present chiller model can predict the required power consumption 

of the chiller. In this model, the dependent variable is chiller power and the independent 

variable are the percentage load and the condenser entering fluid temperature. The 

maximum rated load ( ) is based on the type of chiller.  

6.3.1.2 Cooling tower fan model 

The power consumed by a fan ( ) is dependent on its speed (rpm) and is taken as  

∗                        (6.3) 

6.3.1.3 Pump model 

The pump power ( ) is modeled as  

	 ∗ /                              (6.4) 

where H is assumed to be a function of the flow rate , and  is treated as a constant. 

Hence,  becomes a function of flow rate  only. Based on the regression analysis of 

the manufacturer's data, the model for pump is chosen as 

	 ∗ 	 ∗ ∗                              (6.5) 

The mathematical basis of the regression models and the values of the coefficients 

( , , … 	and	 , , 	are given in section 6.7.  

6.4 Chiller plant optimization problem formulation 

For the overall chiller plant optimization, the objective is to minimize the total power 

consumed by the main components. The main energy consuming components in a chiller 
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plant are the chillers, pumps and the cooling tower fans. In this study, the condenser 

water loop is considered for optimization of power based on the input load requirement 

and the outside air temperatures. Design variables are the number of chillers, percentage 

load of the chillers, condenser entering water (fluid) temperature and the percentage of 

cooling tower fan speed. The problem can be expressed as   

Min                      (6.6)        

where                             (6.7) 

with the following constraints 

a) Input load equilibrium constraint  

This constraint ensures that the total input load required (as an input variable) matches 

with the load obtained for the optimum number of chillers and the percentage loading of 

each chiller and the maximum capacity of the chiller. 

∗ /100                      (6.8) 

where  is the maximum chiller capacity 

b) Energy balance in chiller and cooling tower  

The temperature of the water entering into the chiller (condenser) is equated to the 

temperature of the water leaving the cooling tower. This is essential for energy balance. 
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	 ∆ ∆ 					 

           (6.9)      

where   is the wet bulb temperature of the outside air. ∆  is the difference in 

temperature of water entering and leaving the condenser and , , , … ,  are constants 

determined by the regression models. 

The design variables have to be limited to certain bounds of operation based on the 

overall chiller plant and the equipment specifications indicated by the manufacturer. In 

this problem, the bounds are specified as  

40 	 100         (6.10) 

1 	 4                   (6.11) 

60 	 	 85           (6.12) 

30 	 	 100            (6.13) 

6.5 Illustrative example  

To investigate the validity of the optimization model developed, a typical chiller plant 

(Figure 6.3) is considered.  The sample plant is a water cooled HVAC system and it 

consists of 4 centrifugal chillers with Variable Flow Devices (VFD) and 4 cooling towers 

with two cells each. The maximum cooling capacity (tonnage) for each of the chillers is 

1500 tons. The system consists of 4 condenser water pumps and 4 chilled water pumps. 

The rated mass flow rate of water being circulated through each condenser pump is 

4500gpm. The assumptions made in the formulation are: the condenser pumps have 

variable flow rates, evaporator leaving fluid temperature is 40 , cooling tower fans blow 
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air at 100% speed, maximum number of cooling towers are operated for a given number 

of chillers operating, cooling towers can handle water flow rates greater than 80% of their 

maximum capacity and the fluid flow rate is constant on the condenser side. 

 

Figure 6.3  Layout of a typical chiller plant (ESI Consulting Engineers (2012)) 

Table 6.1 shows a sample chiller part load performance data (based on the American 

Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) standards). 

It basically gives the power consumed by the chiller at different percentage loads, the 
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entering and leaving fluid temperatures at that point for both the condenser and the 

evaporator of the chiller. It also gives the pressure drop and the evaporator flow rate at 

that point. It is evident that the data is based on intervals of 10% of part load. In order to 

find the exact performance of the chiller at any load condition and temperature, the 

regression models are developed based on the manufacturer's data. Similarly, the cooling 

tower performance at different temperature ranges is shown in Figure 6.4.  

 

Figure 6.4  Typical cooling tower performance (ESI Consulting Engineers (2012)) 

Table 6.1  Typical chiller performance (ESI Consulting Engineers (2012)) 

Part  
Load 
(%) 

Load 
(Ton) 

Input 
Power(kW) 

EEFT 
(oF) 

ELFT 
(oF) 

Evaporater 
Pressure 

Drop 
Flow 
(gpm) 

CEFT 
(oF) 

CLFT 
(oF) 

SP 
(KW/TR) 

100 1500 524 55.98 40 25 2250 60 68.72 0.3493 

90 1350 460 55.98 40 20.8 2025 60 67.83 0.3407 

80 1200 364 55.98 40 16.9 1800 60 66.89 0.3033 

70 1050 305 55.98 40 13.4 1575 60 66.01 0.2905 

60 900 260 55.98 40 10.2 1350 60 65.15 0.2889 

50 750 218 55.98 40 7.4 1125 60 64.28 0.2907 

40 600 187 55.98 40 4.7 900 60 63.44 0.3117 

30 450 165 55.98 40 2.7 675 60 62.61 0.3667 

20 300 131 50.64 40 2.7 675.9 60 61.76 0.4367 

15 225.6 114 48 40 2.7 675.9 60 61.33 0.5053 
EEFT – Evaporator Entering Fluid Temperature   ELFT – Evaporator Leaving Fluid Temperature C – Condenser 
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6.6 Results   

Sample input data is collected from the sample chiller plant for a certain amount of time 

and the optimization algorithm developed in present study is used to simulate the results. 

Four different sets of input load, dry bulb temperature and percentage relative humidity 

are considered as input conditions for optimization and the results are given in Table 6.3 

and Table 6.4. Since the plant has four chillers, the data points are taken to span the cases 

of two, three, and four chiller usage. It can be seen that when the load is 1812 Tons, the 

optimization results show that two chillers are to be run at 60.4% load. When two chillers 

are run for a water flow rate condition of 80% or more, two cooling towers and one cell 

have to be operating to maximize the efficiency of the towers. Also, it can be seen that 

the fan speed should be 65.7% of maximum speed to maintain 68.2  for the condenser 

water supply. Similarly, for the other cases, the number of chillers and fan speed and 

other optimal operating conditions are obtained based on the input conditions. Table 6.4 

also shows the energy (KW) consumed by the chillers, the cooling towers and the 

condenser water pumps and the system performance.  

The optimization results for a particular sample load condition of 2647 tons are shown in 

Table 6.2. The initial design represents the actual current operating conditions in the 

plant. It is seen that the objective function value (the power consumed in KW) is reduced 

from 2412.42 KW to about 2009.77 KW. So, the power savings of about 402.65 KW 

(16.69%) is possible with optimization for this particular input load. Similar savings can 

be expected for other load conditions (for the dynamically changing load conditions) in 

the actual chiller plant.   
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Table 6.2  Optimization results for input load condition of 2647 tons 

Quantity 

 

Initial Design 

 

         Bounds 

Lower        Upper 

Optimum Design 

Design Variables:    

	 %  58.80 40                100 58.80 

	  78.00 60                  85 72.68 

	 integer  3 1                    4 3 

	 %  100 30                  100 68.04 

        Objective: 

(Total power in KW) 

2412.42 646.56     644.02 2009.77 

# of iterations to converge is 19; # of function evaluations is 252 

The power consumed by the chiller during the optimum and normal modes of operation is 

shown in Figure 6.5 for three different load conditions. It is seen that the average is 475 

KW for the normal mode while the optimum design averages at 375 KW. Hence, there is 

an average savings of about 100 KW (about 21%) in the chiller with the optimum design. 

Table 6.3  Optimum design variable values for different input load conditions 

Input load 
(ton) 

DBT 
 

 
 

PRH 
%  

 
integer 

 
(%) 

 
 

 
%  

1812 66.4 81.8 2 60.4 68.20 65.74 

2647 78.1 62.4 3 58.8 72.68 68.04 

3108 83.2 62.8 4 51.8 76.66 70.21 

5040 92.8 57.6 4 84.0 84.15 75.26 
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Table 6.4  Optimum power consumed at different input load conditions  

Chiller 
Power 
(KW) 

Fan Power 
(KW) 

Condenser 
Pump Power 

(KW) 

Chill Water Pump 
Power 
(KW) 

System Performance 

332.35 52.98 160.20 350 0.7215 

376.85 82.21 272.01 525 0.8369 

387.75 103.22 511.41 700 1.0201 

748.64 127.14 511.41 700 0.9351 

 

In addition, the variation of one of the design variables, the percentage of fan speed, is 

shown graphically (Figure 6.6) for the normal and optimal modes. Savings are quite 

evident because of the speeds. Also, the pump power consumption is shown in Figure 6.7 

for the three load cases. The energy consumed by each of the components, chillers, 

cooling tower fans and the pumps are shown in the bar charts of Figure 6.8 and Figure 

6.9. Figure 6.8 corresponds to the normal modes of operation while Figure 6.9 

corresponds to the optimal modes of operation as proposed in this study. These results 

can be used for analysis to decide on the type and quantity of equipment to be purchased 

while a new plant is installed. This information could also be used to decide on the 

modifications to be made on an existing plant in order to achieve power savings based on 

the equipment maps and performances. It can be seen from Figure 6.8 and Figure 6.9 that 

the chillers are the main power consuming units followed by the pumps and then the 

cooling tower fans. This shows that by optimizing the number of chillers and operating 

them at the optimal load conditions, the energy savings could be maximized in certain 

cases.  
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Figure 6.5  Chiller power consumption in normal and optimal modes 

 

Figure 6.6  Fan speed variation in normal and optimal modes 
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Figure 6.7  Variation of pump power in normal and optimal modes 

An important factor in the chiller plant operation is the condenser entering water 

temperature which in normal operating cycle (without optimization) is set to a constant 

value by the operator, either manually or automatically. But, in present study, this 

parameter is also varied and its optimal value is found by the algorithm. The simulation 

results are shown in Figure 6.10. Figure 6.11 shows the variation of chiller power 

consumption for different time intervals. It is evident that the chiller power curve has 

peaks and valleys to accommodate the input load requirement. The chiller power varies 

from about 300 KW to about 550 KW depending on the tonnage. This large variation in 

the power accounts for the savings due to the VFD's on the chillers which allow them to 

be loaded at different levels. The variation of the cooling tower fan speed based on input 

conditions is shown in Figure 6.12.  From the figure it can be seen that when two chillers 

operate, the fan speed is about 30% and when 3 chillers operate, the fan speed is higher. 

This is to adjust to the load conditions and cool down the water in the cooling towers. 
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The graph in Figure 6.13 compares the system performance of the chiller plant for both 

normal (actual) and simulated operating modes for a certain time in the winter. It is 

evident that the optimal mode has a better performance than the normal mode since it has 

a lower system performance. The lower the value of the system performance, the better is 

the plant. The average system performance for the normal operating mode is 1.01 kw/ton 

whereas the optimization results gave an average value of 0.7 kw/ton. This shows the 

amount of savings in power and subsequently, the operating costs of the chiller plant.  

The summer data for the chiller plant is also considered because the input load and the 

outside air conditions differ from the winter data. A typical week in the summer is chosen 

and the comparison of data corresponding to the normal and the optimal operating modes 

is shown in Figure 6.14. It is evident that the system performance in the optimal mode of 

operation is significantly better than that in the normal mode of operation. The savings in 

all the cases could be attributed mainly to the optimal chiller loading and the number of 

chillers operated at any instant. Also, the number of cooling tower fans running and their 

speeds are related to the energy savings. The power consumed by the condenser water 

pumps also contributes to the savings because the number of pumps operated depends on 

the number of chillers. 
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Figure 6.8  Power consumption in the normal mode of operation 

 

Figure 6.9  Power consumption in the optimum design mode 
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Figure 6.10  Variation of condenser entering fluid temperature with time  

 

 

Figure 6.11  Chiller power variation with time 
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Figure 6.12  Variation of fan speed with time in normal and optimum mode 

 

Figure 6.13  Chiller plant system performance in winter 
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Figure 6.14  Chiller plant system performance in summer 

6.7 Details of regression models 

Regression Analysis (Rao, (2001)) based models were developed based on the physics of 

the problem and the actual operating conditions of the chiller plants. Initially, linear 

models are assumed followed by quadratic and cubic models to achieve the best fit for 

any specific performance characteristic. The measure of accuracy of the model is 

indicated by the term R, a larger value of R implies a more accurate fit.  

Chiller Model 

Initially, a linear model is considered for regression. The linear model considered for 

regression is given as 

                                                                           (6.14) 

The values of the coefficients are obtained by solving the linear model. The value of  is 

obtained to be -0.3523, the value of  is obtained to be -0.0023 and the value of  is 
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obtained to be 0.0136. An R value of 0.7694 is obtained. Since, the R value is less that 

about 0.95 (which is considered a reasonably good fit) a quadratic model is assumed. 

Quadratic model is given by  

                                         (6.15)      

For the quadratic model, the value of  is obtained to be 0.0765, the value of  is 

obtained to be -0.0120, the value of  is obtained to be 0.0076, the value of  is 

obtained to be 0.0001 and the value of  is obtained to be 0.000001. An R value of 

0.9492 is obtained. Since, the R value is less that about 0.95 (which is considered a 

reasonably good fit) a cubic model is assumed for further accuracy. The cubic model 

assumed is given by 

	          

(6.16) 

For the cubic model, the value of  is obtained to be  0.3093, the value of  is obtained 

to be  -0.0131, the value of  is obtained to be  -0.0023, the value of  is obtained to be  

0.0003, the value of  is obtained to be  0.0002 and the value of  is obtained to be  -

0.000001. An R value of 0.9902 is obtained. Since, the R value is greater than 0.95, the 

cubic model is considered in the optimization problem formulation.  

Pump Model 

Initially, a linear model is considered for regression. The linear model considered for 

regression is given as 

	 ∗                                                    (6.17) 
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The values of the coefficients are obtained by solving the linear model. The value of C is 

obtained to be -48.9641 and the value of  is obtained to be 0.0361. An R value of 

0.9276 is obtained. Since, the R value is less that about 0.95 (which is considered a 

reasonably good fit) a quadratic model is assumed. Quadratic model is given by  

	 ∗ 	 ∗           (6.18) 

For the quadratic model, the value of C is obtained to be 44.3844, the value of  is 

obtained to be -0.0333 and the value of  is obtained to be 0.0000001. An R value of 

0.9934 is obtained. Although, the R value is greater than 0.95 (which is considered a 

reasonably good fit) a cubic model is assumed for further accuracy. The cubic model 

assumed is given by 

	 ∗ 	 ∗ ∗               (6.19) 

For the cubic model, the value of C is obtained to be -63.08, the value of  is obtained to 

be 0.080645, the value of  is obtained to be -3.2*10-5 and the value of  is obtained to 

be 4.799*10-9. An R value of 0.9992 is obtained which is very accurate and hence, the 

cubic model is considered in the optimization problem formulation.  

6.8 Discrete optimization using the proposed hybrid method 

To demonstrate the effectiveness and convergence of the hybrid branch and bound 

method, the following standard problem is considered (Beckmann and Kunzi (1980)).  

Maximize: 120 ∗ 	 	             (6.20) 

with constraints:  
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4 	 0            (6.21) 

6.429 	 0           (6.22) 

6.429 	 0           (6.23) 

321.14 	 0           (6.24) 

0 	 	 2            (6.25) 

0.1 ∗ ; 		 0, 1, … , 20	         (6.26) 

15 	 	 60;	 ∈ 15, 25, 40,60 	        (6.27) 

The convergence of the hybrid method is shown in Table 6.5. The branching of the nodes 

using the proposed hybrid method is shown in detail as a flow-diagram in Figure 6.15.  

Table 6.5  Convergence of the hybrid optimization algorithm  

Exit flag -f(x)   Iterations 
function 

evaluations 
1 -101.30 0.63 25.32 11 36 
1 -101.76 0.60 29.76 3 12 
-2 -97.00 0.60 25.00 1 4 
1 -105.24 0.54 40.00 4 15 
1 -111.43 0.50 51.43 2 9 
-2 -100.00 0.50 40.00 2 7 
1 -116.99 0.47 60.00 4 15 
-2 -108.00 0.40 60.00 1 4 
1 -120.00 0.50 60.00 2 8 
1 -112.00 0.60 40.00 2 9 
1 -105.41 0.70 21.41 5 18 
0 -186.27 1.42 15.00 22 200 
-2 -183.14 1.40 15.14 3 10 
1 -195.00 1.50 15.00 1 6 
1 -109.00 0.70 25.00 1 6 

 



178 
 

 
 

It is to be noted that Exit flag 1 (Table 6.5) represents that SQP algorithm converged and 

the solution is feasible, exit flag 2 represents that the SQP algorithm did not converge and 

the solution is infeasible and exit flag 0 represents the number of iterations exceeded the 

maximum allowable number of iterations in the SQP algorithm. 

 

Figure 6.15   Convergence flow-diagram (hybrid optimization method) 

An industrial application of chiller plant optimization is considered in this chapter. A 

novel optimization model is created for the plant and a hybrid optimization technique is 

developed to solve the model. This application would result in large energy savings in the 

HVAC industry.  
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CHAPTER 7 - PRACTICAL APPLICATION - DESIGN OPTIMIZATION OF 
MICRO-CHANNEL HEAT EXCHANGERS 

Optimization of thermal management in micro-electronics is considered in this chapter. A 

brief introduction and literature review is provided. Design optimization of a novel 

micro-channel heat exchanger in Low Temperature Co-fired Ceramic (LTCC) is detailed. 

7.1 Introductory remarks  

Increased device density, switching speeds of integrated circuits and decrease in 

electronic package size is placing new demands for high power thermal-management. 

The thermal management system considers the complete thermal path from heat source to 

the heat sink. It requires optimization of the heat removal by conduction and convection 

with the lowest possible thermal resistance at all levels of assembly. Depending on the 

application, a wide range of cooling methods are in use. These include forced air 

convection, external heat pipes, water cooled heat sinks, immersion cooling and 

refrigeration cycles. 

The conventional method of forced air cooling with passive heat sink can handle heat 

fluxes up-to 3-5W/cm2. However, current microprocessors are operating at levels of 

100W/cm2. This demands the usage of novel thermal-management systems. In present 

research work, a heat exchanger system designed and fabricated by Adluru (2003) is 

optimized for maximum energy transfer. The design consists of a water-cooling system, 

with active in-built heat sink and uses vertical free standing silver columns acting as pin 

fins. These columns are embedded in the Low Temperature Co-fire Ceramic (LTCC) 

substrate.  
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7.2 Literature review 

Heat transfer in micro-channel heat sinks has been studied for almost three decades now. 

Tuckerman and Pease (1981) were the first to experimentally study the heat removed 

using three different micro-channel heat sinks with varying channels heights and widths. 

Their work was followed by many researchers performing experimental and theoretical 

studies on micro-channel heat sinks. Kleiner et al., (1995) used a parallel plate-fin heat 

sink to perform experimental and theoretical investigation in micro-channels. Philips 

(1990) suggested an analytical model for the estimation of thermal resistance in a micro-

channel and validated the model with experiments. Theory based correlations for thermal 

resistances in micro-channels were reported by Samalam (1989). Numerical simulation of 

heat transfer in solid and liquid substrate micro-channel heat exchangers was conducted 

by Weisburg et al., (1992).  Manifold micro-channel heat sinks were first proposed by 

Harpole and Eninger (1991), and numerically studied in Ng and Poh (1999). The studies 

conclude that the manifold micro-channel heat sinks have a less pressure drop when 

compared to the conventional micro-channels heat sinks for a fixed flow rate. Different 

geometries of micro-channels like grooves, pin-fins, dimples and ribs have also been 

studied by many researchers (Wei and Joshi (2003), Ndao et al., (2009)). A comparative 

analysis of studies on heat transfer and fluid flow in micro-channels is detailed in 

Shobhan and Garimella (2001). 

Although a lot of research has been going on, in the field of thermal management since 

early 70's due to tremendous growth in electronic field with increased transistor densities 

(following Moore's law), decrease in package size and increased power densities, in the 

initial stages, heat was removed using classical techniques such as surface mounted heat 
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sinks or forced air convection cooling. Due to the high power density requirement, these 

classical ways of cooling do not meet the requirements and so new methods of thermal 

management are to be employed. A brief literature review indicates that no work existed 

to integrate a micro heat exchanger using silver columns in the substrate itself.  

A study in three-dimensional fluid flows and heat transfer in a rectangular micro-channel 

heat sink are analyzed numerically using water as coolant, was done by Issam Mudawar 

et al., (2002). In this, the heat sink was made of a 1-cm2 silicon wafer with micro-

channels of width 57 µm and a depth of 180 µm and is separated by a 43-µm wall. A 

large number of flow channels with characteristic dimensions ranging from 10 to 

1000 µm are fabricated in a solid substrate, which usually has high thermal conductivity 

such as silicon or copper. Figure 7.1 shows the schematic of micro-channel heat sink used 

and its unit cell. An electronic component is then mounted on the base surface of the heat 

sink. The heat generated by the component is first transferred to the channels by heat 

conduction through the solid, and removed by the cooling fluid, which is forced to flow 

through the channels. 
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Figure 7.1  Schematic of micro-channel heat sink (Mudawar et al., (2002)). 

Micro heat pipe heat spreaders (MHPHS) with three copper foil layers was studied by 

Kang et al., (2003) to allow liquid and vapor flow separation to reduce viscous shear 

force. Two wick designs, one using 200 µm wide etched radial groves and other with 100 

mesh screens was investigated. The foils were vacuum diffusion bonded to form 31 x 31 

x 2.7 mm3 heat spreader. Thermal performance of the MHPHS was evaluated 

experimentally in a fan-heat sink CPU test apparatus with a heating area of 13.97 mm x 

13.97 mm. 

Another study of using micro channels to cool microprocessors by Transmission-Line-

Matrix (TLM) technique was done by Belhardj et al., (2003). The Figure 7.2 shows the 
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packaging structure for heat removal considered in this work. In this structure, the 

primary mode of heat removal is from the back surface of the silicon die. The die is 

attached to a heat spreader through an interfacial material, which is either thermal 

conductive gel or epoxy. 

 

Figure 7.2  Structure with packaging and micro-channels (Belhardj et al., (2003)).  

The geometry considered was silicon die 2 mm thick with a surface of 20 x 20 mm2. 

Micro-channels of various depths and widths are introduced on the backside of the 

microprocessor silicon die. These micro channels are micro-machined in the silicon 

substrate using Micro Electro Mechanical Systems (MEMS) technology. In this study, 

the TLM technique was used to simulate the effect of micro-channels on the temperature 

distribution in the active region. To minimize the interface heat resistance various micro-

channel and patterns are examined. In this work, the micro channels are filled with the 

heat spreader material copper or aluminum. 



184 
 

 
 

Another similar type of work was done by Kreutz et al., (2000), on Simulation of micro-

channel heat sinks for Optoelectronic Microsystems. Water cooled heat sinks are 

investigated both experimentally and theoretically as model systems to simulate the 

energy and mass transportation in devices used for cooling of Optoelectronic 

micro-systems such as diode lasers. The design of micro-channel heat sinks resulted in a 

decrease of their thermal resistance and of the pressure drop of the coolant allowing an 

increased heat load of an optoelectronic micro-system. 

Another interesting study was done by Jang et al., (2003) on experimental investigation 

of thermal characteristics for a micro-channel heat sink subjected to an impinging jet, 

using a micro-thermal sensor array. In this study, a micro-channel heat sink was 

introduced which is subject to an impinging jet, which has a small pressure drop. It 

experimentally investigated the heat transfer enhancement of the micro-channel heat sink 

subject to jet impingement. Temperature distributions at the base of the micro-channel 

heat sink are measured for evaluating the thermal resistance by using a micro-thermal 

sensor array. 

Zampino (2001) developed the heat pipes embedded into the ceramic substrates that 

provide a thermal transport mechanism capable of transporting heat over the length of the 

substrate at an effective thermal conductivity at least ten times higher than typical metals 

and over 100 times that of the substrate material. The heat pipes described serve to spread 

heat over a large area, utilizing more of the heat sink if the substrate is bonded to a heat 

sink material resulting in smaller temperature rise across the substrate. The most 

powerful use of heat pipe described is in applications where cooling can only be provided 

along an edge of the substrate (Ravindra (2002)). 
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Amey (2000) and Ravindra (2002) developed high density thermal vias in 

Low Temperature Co-fired Ceramics. Their work show that denser thermal vias can be 

fabricated in the substrates thus reducing the in line resistance of the substrate. These vias 

also help in efficiently carrying heat on to the surface of the substrate, which can be 

further removed by a passive heat sink. 

From the literature review, it can be concluded that most designs for micro-channel heat 

exchangers have the heat transferring source surface mounted on the substrate, which 

means another passive heat sink. Since, thermal management requires optimization of the 

heat removal by conduction and convection with the lowest possible thermal resistance at 

all levels of assembly, first it is required to minimize the thermal resistance of the 

substrate itself. Even though the passive heat sinks are efficient, the resistance of the 

system increases due to the use of thermal glues or epoxies. Also, most of the heat 

exchangers were tested for silicon devices. These are expensive when compared to LTCC 

substrates. Furthermore, it is concluded from the literature review, that fabricating an 

integrated micro-channel heat-exchanger with freestanding silver (Ag) columns in it, was 

the first of its kind. Hence, the optimization of such a breakthrough technology has been 

performed in present research.  

7.3 Analytical treatment of the problem  

One-dimensional heat transfer relations are used to analyze the heat exchanger model. It 

gives an estimate of how heat is transferred in the model. The thermal resistance for 

conduction is defined as L/kA, where L is the length of the thermal path, k is the thermal 

conductivity of the material, and A is the cross-sectional area through which heat is 

transferred. For convective heat transfer, the thermal resistance is defined as 1/hA, where 
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h is the average convective heat transfer coefficient. The basic thermodynamic, heat 

transfer and fluid flow relations used for calculations are given as below. 

Total heat transferred from the source to the coolant ( heatP ), is a function of the total 

thermal resistance ( TotalR ) and the difference in temperature between the two ( T ). 

Hence, 

Total
heat R

TP               (7.1) 

where the total thermal resistance is calculated as a summation of the conductive and 

convective resistances and is given by 

convectionAgpadconductionTotal RRRR              (7.2) 

Also, the rate of heat transfer (Q ) is calculated as 

avgTAhQ                (7.3) 

where the convective heat transfer coefficient h  is a function of Nusselt number ( Nu ) 

and is given by 

x

KN
h u                        (7.4) 

avgT  is calculated using the constant wall source temperature 1T  and the bulk mean 

temperature of the coolant bulkmeanT . 

bulkmeanavg TTT  1              (7.5)  
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bulkmeanT  denotes the average of the inlet ( inT ) and outlet ( outT ) temperatures of the 

coolant. 

2
outin

bulkmean

TT
T


              (7.6)       

Energy balance equation gives 

 dATThdTCm p  1                    (7.7) 

where m denotes the mass flow rate and pC is the specific heat of the coolant. 

Hence, Tout is given by  

  pmC

hA

inout eTTTT


 11                        (7.8) 

The pumping power ( pP ) is given by  


PmPp

                             (7.9) 

where the pressure drop across the system ( P ), is given by  

.
2

...
2V

D

L
fNP

eq

                       (7.10) 

N is the number of Ag columns in a row, f is the friction factor, L is the length of the 

duct and  is the equivalent diameter of the duct, V is the velocity of the coolant and 

is the density of the coolant and   is the efficiency of the pump. 
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Figure 7.3 shows the cross sectional schematic of the LTCC heat exchanger and its 

equivalent thermal resistance network. A constant amount of heat is provided using a 

heater mounted on top of the copper shim. Silver columns inside the LTCC material form 

the thermal vias (paths for heat to transfer). Coolant is pumped into the rectangular duct 

at the center. A silver pad is inserted at the inner surface of the rectangular duct for 

increasing the heat transfer area. In the figure,  is the temperature at the top surface of 

the LTCC,  is the temperature at the top surface of the silver pad, and  is the 

temperature at the bottom surface of the silver pad.  is the bulk mean 

temperature of the coolant.   

 

Figure 7.3   Schematic and equivalent thermal resistance network of the LTCC heat 
exchanger (Adluru, (2003)) 
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7.4 LTCC heat exchanger optimization problem formulation 

In the optimization of the LTCC heat exchanger, the main aim is to design an energy 

efficient heat exchanger configuration based on the maximum possible heat transfer from 

the source to the heat sink while minimizing the coolant pumping power. In present 

example, heat source is the top surface of the LTCC sample and the heat sink is the 

cooling liquid (water). The design variables considered for optimization are diameter of 

the silver columns ( ), pitch of the silver columns ( ), height of the duct ( ), 

number of silver columns ( ) and the mass flow rate of coolant ( ). 

The Multi-objective optimization problem can be expressed as   

Min                      (7.11)        

where                                     (7.12) 

 with the following constraints 

Pressure drop across the duct 

∆ ∆ ∆                   (7.13)  

Volume of silver metal used  

           (7.14) 
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 is the amount of heat transferred and  is the power consumed by the coolant 

pump. Design variables have to be limited to certain bounds based on manufacturability 

and size restrictions. In this problem, the bounds are specified as  

0.6 	 1.0             (7.15) 

1.5 2.5                (7.16) 

1.5 	 	 2.5           (7.17) 

6 	 	 10           (7.18) 

 4.03 	 	 20.5          (7.19) 

For geometric feasibility, additional geometric constraint is imposed. This constraint 

ensures that radius of the silver column does not exceed the pitch.  

	 0           (7.20) 

For a better understanding, the single objective optimization of each of the objectives is 

solved separately and the results are analyzed. 

a)  Maximization of heat transfer 

Min                   (7.21)        

where                             (7.22)          
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 with the following constraints 

Pressure drop across the duct 

∆ ∆ ∆            (7.23)  

Volume of silver metal  

              (7.24) 

The design variables have to be limited to certain bounds based on manufacturability and 

size restrictions. In this problem, the bounds are specified as  

0.6 	 1.0             (7.25) 

1.5 2.5                (7.26) 

1.5 	 	 2.5           (7.27) 

6 	 	 10           (7.28) 

4.03 	 	 20.5          (7.29) 

For geometric feasibility, additional geometric constraint is imposed. This constraint 

ensures that radius of the silver column does not exceed the pitch.  

	 0           (7.30) 

b) Minimization of pumping power 

Min                     (7.31)        
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where                                    (7.32) 

The constraints used are given by  

Pressure drop across the duct 

∆ ∆ ∆            (7.33)  

Volume of silver metal  

              (7.34) 

The design variables have to be limited to certain bounds based on manufacturability and 

size restrictions. In this problem, the bounds are specified as  

0.6 	 1.0             (7.35) 

1.5 2.5                (7.36) 

1.5 	 	 2.5           (7.37) 

6 	 	 10           (7.38) 

4.03 	 	 20.5          (7.39) 

For geometric feasibility, additional geometric constraint is imposed. This constraint 

ensures that radius of the silver column does not exceed the pitch.  

	 0           (7.40) 
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c) Minimization of the volume of silver   

Min                  (7.41)   

            

where                              (7.42)        

Pressure drop across the duct 

∆ ∆ ∆            (7.43)  

The design variables have to be limited to certain bounds based on manufacturability and 

size restrictions. In this problem, the bounds are specified as  

0.6 	 1.0             (7.44) 

1.5 2.5                (7.45) 

1.5 	 	 2.5           (7.46) 

6 	 	 10           (7.47) 

4.03 	 	 20.5          (7.48) 

For geometric feasibility, additional geometric constraint is imposed. This constraint 

ensures that radius of the silver column does not exceed the pitch.  

	 0           (7.49) 
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7.5 Optimization results 

Single objective optimization of maximization of heat transfer is considered first. The 

rate of heat transfer is to be increased while making sure that the pressure drop and 

volume of silver are within limits. A random initial design is considered with a heat 

transfer of 34.72W. Since, it is a maximization problem. The objective function is taken 

with a negative sign for minimization. The results are tabulated in Table 7.1. It is seen 

that at the optimum design, when the heat transfer is maximum, the diameter of the silver 

columns is 0.0006 m and pitch is 0.001 m. The duct height and number of columns are 

active constraints (reaching the upper bounds). This is due to the fact that in order to have 

the maximum heat transfer from the heat source point to the cooling liquid the material 

with maximum thermal conductivity is needed. Since, silver is a very good conductor of 

heat when compared to LTCC material, so the optimization converges to the maximum 

limits for the silver metal. So, the number of silver columns and duct height reach 

maximum. It is to be noted that the diameter of silver columns does not reach the 

maximum because of the geometric feasibility constraint. The maximum heat transferred 

at this point is 43.64W which evidently lies between 1.25W and 46.42W (lower and 

upper limits of the design variables).  

Table 7.1  Optimization results for maximization of heat transfer 

Quantity 

 

Initial Design 

 

      Bounds 

Lower           Upper 

Optimum Design 

Design Variables:    

 (m) 0.0008 0.0002         0.0010 0.0006 

 (m) 0.0016 0.0005         0.0020 0.0010 
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Quantity 

 

Initial Design 

 

      Bounds 

Lower           Upper 

Optimum Design 

 (m) 0.0020 0.0015         0.0025 0.0025 

 8   4                    10 10 

 (kg/s) 0.00567 0.00487       0.0205 0.0205 

Objective function:    

Heat transfer (W) 34.72  1.25               46.42 43.64 

 

Design of a heat exchanger with maximum heat transfer is not the only important 

objective in a heat exchanger with a cooling fluid passing through it. It is essential to 

consider the power required to pump the fluid and the type of fluid.  In this research, the 

coolant is fixed to water and so the pumping power of water is considered as an objective 

function. The second single objective optimization problem minimizes the pumping 

power subjected to constraints on the volume of silver and geometry of the heat 

exchanger. In this case, there is no need for pressure drop constraint as the pressure drop 

indirectly relates to the pumping power. The design variables and the initial design point 

remain same as in the previous case. The optimum results (Table 7.2) show that the 

coolant flow rate design variable is active which means optimum  value reaches 

the lower bound. This is because, with minimum pump power, the flow rate has a 

minimum value for a particular design (with fixed number of silver columns). The 

optimum number of silver columns is eight and the duct height is at its upper bound 

because larger height means larger volume for the coolant. Hence, more fluid is to be 

pumped slowly to minimize the pump power. Also, more fluid stays in the duct and so 

lesser number of silver columns are needed for cooling. 
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Table 7.2  Optimization results for minimization of pumping power  

Quantity 

 

Initial Design 

 

         Bounds 

Lower              Upper 

Optimum Design 

Design Variables:    

 (m) 0.0008 0.0002            0.0010 0.0007 

(m) 0.0016 0.0005            0.0020 0.0012 

 (m) 0.0020 0.0015            0.0025 0.0025 

 8    4                      10 8 

 (kg/s) 0.00487 0.00487          0.0205 0.0049 

Objective function:    

 Pump power (W) 6.5 3.0                   10.0 5.4 

Table 7.3  Optimization results for minimization of volume of silver 

Quantity 

 

Initial Design 

 

         Bounds 

Lower               Upper 

Optimum Design 

Design Variables:    

 (m) 0.0008 0.0002              0.0010 0.0006 

 (m) 0.0016 0.0005              0.0020 0.0011 

 (m) 0.0020 0.0015              0.0025 0.0022 

 8 4                          10 8 

 (kg/s) 0.00567 0.00487            0.0205 0.00487 

Objective function:    

Volume of silver (m3) 99.69*10-9 4.68*10-9       296.7*10-9 73*10-9 
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For the cost analysis the volume of silver metal used for cooling becomes an important 

factor. Hence, the third single objective optimization problem considers the volume of the 

silver metal subjected to pressure drop and geometric constraints. The results are shown 

in Figure 7.3. The optimum number of silver columns needed is eight. The coolant flow 

rate is at its lower bound (0.00487 kg/s). It is no be noted that the diameter and number of 

silver column variables are not active at the optimum design. After analyzing the results 

of the single objective optimization problems, the multi-objective optimization problem 

is formulated. Two objectives are considered for the multi-objective formulation namely, 

the maximization of heat transfer and the minimization of pumping power. Constraints 

are the pressure drop, silver volume and geometric constraints. 

Table 7.4  Optimization results for combined heat transfer and pumping power 

Quantity 

 

Initial Design 

 

           Bounds 

Lower         Upper 

Optimum Design 

Design Variables:    

 (m) 0.0008 0.0002        0.0010 0.0006 

 (m) 0.0016 0.0005        0.0020 0.0010 

 (m) 0.0020 0.0015        0.0025 0.0025 

  8 4                     10 10 

 (kg/s) 0.00567 0.00487     0.0205 0.018 

Objective function:    

Total Power (W ) 34.72 1.25             46.42 37.32 
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The multi-objective optimization problem is solved using a hybrid optimization algorithm 

using SQP and modified branch and bound method as discussed in Section 6.3 (HVAC 

optimization). The optimum results are given in Table 7.4. The optimum diameter of 

silver columns is found to be 0.0006m while the pitch is 0.0010m. Two of the design 

variables, duct height and the number of silver columns, are at their upper bounds. This 

means that for maximum heat transfer the duct area is to be maximized and maximum 

allowable number of silver columns is to be used. Also, the coolant mass flow rate 

(0.018kg/s) is closer to its maximum value (0.0205kg/s). This validates the results, 

because the flow rate is proportional to the heat transfer.  

 

Figure 7.4  Convergence of the objective function  
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Figure 7.5  Variation of total thermal resistance  

 

Figure 7.6  Variation of pumping power with number of iterations 

The convergence of the optimization algorithm is shown in Figure 7.4, Figure 7.5 and 

Figure 7.6. The variation of the objective function value (combined heat transfer and 

pumping power) with number of iterations is shown in Figure 7.4. It is to be noted that 
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the objective function value is negative because the heat dissipated is to be maximized 

and the pumping power is to be minimized. The total number of iterations required for 

convergence to the optimum solution is 21. The variation of total thermal resistance and 

the pumping power during the optimization is shown in Figure 7.5 and Figure 7.6 .The 

pump power varied from an initial value of 6.5 W to an optimum value of 5.38 W. This 

value is in agreement with the range of the pump chosen in this study and also with the 

current microelectronics standards. The total thermal resistance value at the optimum 

point is found to be 0.325 ⁄ . Thus, this optimum design gives a very low thermal 

resistance. 

In this chapter, optimization procedure is applied to cooling in micro-electronics. A novel 

optimization model is created for thermal management in an LTCC heat exchanger. 

Hybrid optimization model developed for chiller plant optimization is used in this 

application also. Results obtained prove that more heat can be transferred from the micro-

electronics without compromising their performance.  
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CHAPTER 8 - CONCLUSIONS AND FUTURE WORK 

Present research work aims at investigating into two non-traditional optimization 

techniques necessary for solving complex engineering problems. A Multi-level 

optimization method is developed to solve uncertainty based engineering systems.  Two 

types of uncertainties considered are the probabilistic and the interval uncertainty. 

Modified Ant Colony Optimization and Multi-Level Ant Colony Optimization 

procedures are developed for multi-objective problems. The developed methods are 

illustrated using structural and mechanical engineering problems. Results obtained 

indicate the validity of the methods. 

Practical applications demonstrate the credibility of any original contributions in 

research.  Hence, in present research, novel optimization models have been developed for 

application in HVAC and micro-heat exchangers for electronics cooling. Case studies are 

performed and the results indicate the validity of the developed methods. 

In future, the developed ACO and ML methods can be applied to large complex 

engineering problems like the chiller plant model. Uncertainty based models for practical 

examples solved in present research would be a new topic for research. Developing 

hybrid algorithms with a combination of ACO and ML optimization for engineering 

systems, under uncertainty, would be useful for designers to make various choices. 

With knowledge and experience gained from the present research, optimization 

techniques could be extended to broad areas in engineering such as bio-engineering, 

micro-electromechanical systems and renewable energy systems, which have scope for 

optimization.  
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