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SUMMARY 

 

 

Every year humanity reaches farther and faster than ever previously thought 

possible. We build planes bigger, computers smaller, and materials stronger than ever 

before. The methods for developing the complex systems that enable our rapid growth 

and achievements have similarly grown in complexity and fidelity in order to maintain 

this progress. In some cases the best course of action is to build upon current 

constructions, such as the addition of new technologies into existing aircraft. However; 

recently engineers have instead sought performance progress by an overhaul of the entire 

conceptual architecture. 

The current paradigm shift in engineering design is incorporating more and more 

information on the implications of vehicle configuration into conceptual design, taking 

advantage of the design freedom present within the conceptual stage to predict and 

address long-term feasibility and viability concerns. The complex and powerful tools this 

shift has inspired continue to enable valuable forecasting which goes above and beyond 

designing only for performance, to focus on designing for business. In pursuit of this new 

level of operational excellence, a design concept must not only be able to perform its 

intended mission, but also be constructed in the most intelligent manner possible by 

characterizing the implication of every detail of the design so that its continued operation 

can be achieved with the utmost efficiency. 
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Methods developed previously have used simple regressions based on gross 

vehicle weight or other high-level design characteristics and extensive databases of 

maintenance information from which to draw comparison. But what about when there is 

no such database? For the emerging commercial spaceflight industry, their vehicles and 

operational structure must be designed with utmost care, both to increase revenue and 

decrease overhead costs. However; information on the Shuttle, the only successful launch 

vehicle campaign to date, is mostly scattered and available only at highly aggregated 

levels. 

The effect of performing missions on a vehicle’s component subsystems is a 

subject which has received huge amounts of attention, and fully matured safety and 

reliability tools relating a vehicle’s design to its long-term performance take many forms. 

In many cases these operations prediction tools are capable of meaningful analysis of 

vehicles with no historical precedent, such as a commercial reusable launch vehicle. The 

human role in keeping everything in an aerospace architecture running smoothly, 

however, has received far less attention.  

Everything from air conditioners to cars to reusable launch vehicles to the 

International Space Station eventually requires maintenance. Each of these systems 

require technicians with specific skills relevant to that system, and in the case of very 

complex systems many different kinds of skillsets are required. During the Shuttle 

program operational costs ballooned due to lack of information and proper planning, but 

in the current commercial shift in spaceflight the emerging companies wish to 

approximate airline levels of operational efficiency in order to minimize their costs. One 
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way in which this can be achieved is the optimization of a maintenance workforce so that 

the allocation of their skills most effectively achieves vehicle turnaround. 

Over the course of this document, the paradigm shift in engineering design is 

expanded upon and used as justification for the inclusion of operations into the 

conceptual design of reusable launch vehicles. The issues currently facing those entities 

developing reusable launch vehicles is discussed, leading to the definition of fundamental 

research questions and the final aim of this work. The document then continues into 

describing the development of an experimental frame capable of variable fidelity 

investigation into the operations and maintenance of a reusable launch vehicle campaign, 

by comparing and contrasting a few of the methods and practices currently in use for 

modeling the operations of complex systems. Next, the structure of an efficiently high-

fidelity model constructed to investigate the human factor in operations is described 

which employs stochastic methods and the lessons learned from a literature review. The 

tool constructed is an integrated series of Python codes allowing for a high level of 

customization and expansion, by using code-writing code to change the structure of 

events taking place within simulation to whatever degree the simulator requires. The 

actions taking place within simulation are similarly drawn from a literature review, 

relying upon historical precedent and data whenever available. 

Finally, competing methods for finding the optimal maintenance skillset 

distribution are presented and compared by their ability to converge upon a skillset 

distribution which achieves reusable fleet operations in the most effective manner. This is 

accomplished by running a series of experiments designed to explore the possible 

operations & maintenance schemes available, by varying the quantities in which 
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maintenance resources, the technicians, are available for doing work on the subsystems 

making up a reusable launch vehicle. The first manner in which a maintenance workforce 

could be put together is to always have the maximum number of people needed to 

perform maintenance on one vehicle or as an extension enough to work on multiple 

vehicles. Another manner would be to have fewer than the maximum, in which case the 

overall efficiency of maintenance on that subsystem would be decreased, however the 

utilization of the technicians performing maintenance on that subsystem would be 

increased. Combinations between these two workforces are also possible, balancing 

workforce population with operational efficiency. In particular, the synthesis of a number 

of such schemes is of interest, as it is in the combination of several possible scenarios 

which is of particular interest. By sacrificing efficiency in some areas in order to achieve 

higher fleet operational efficiency, an intelligently allocated maintenance workforce 

skillset distribution is converged upon using simple overall evaluation criteria and the 

grid search method. 

For the optimization methods formulated for simulation, performance is compared 

to a baseline operations study using the maximum workforce for every subsystem. By 

having the maximum number of technicians available for each vehicle, maintenance is 

assumed to proceed at maximum efficiency, eliminating waiting time and minimizing 

necessary maintenance man-hours. The fleet-level performance metrics of annual flight 

rate, maintenance man-hours per vehicle, and total workforce are then compared with 

every alternate skillset distribution’s performance. A common first round of simulation is 

used for both methods, composed of many experimental runs varying the numbers of 

available technicians on each subsystem to represent combinations of the operational 



xv 

 

schemes outlined previously. Each optimization method then chooses particular skillset 

distributions from among this set according to its preferences, and centers the technician 

availability ranges for the next round on those values it finds optimal. 

In order to evaluate the varying operational architectures represented, workforce 

skillset distributions are judged according to their impact on fleet operations as a 

commercial entity would. In order to stay in business, a commercial entity doing reusable 

launch vehicle launches will seek to maximize its revenue by having as many launches as 

possible, using its workforce in the most efficient manner possible, minimizing the 

necessary maintenance man-hours while simultaneously minimizing the workforce to cut 

out as many costs as possible. To these companies, which are becoming more prevalent 

with every year, incorporating the maintenance on their vehicles into their design is not 

only practical, it is required by the FAA, which has for over a decade declared that just 

like an airline, space launch companies must have a plan for their maintenance. 

As the commercial space sector expands in the coming years, operations analysis 

will prove invaluable. The return on invested time and effort from performing the kind of 

maintenance optimization studies presented in this work during the conceptual design of 

an aerospace system is huge, and continues to grow with every year the system is in 

operation. The studies do not need to be very complex in order to provide meaningful 

insight either, showing that intelligently implementing knowledge of a system’s design 

during its development pays off in the long run. As shown in this work, taking advantage 

of the design freedom present within the conceptual design phase of a reusable launch 

vehicle to intelligently design each interacting mechanical and human part results in a 
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system of systems which performs more efficiently and longer than those lacking 

operations analysis.  



 

 

CHAPTER 1 

INTRODUCTION 

 

 

During conceptual design of a complex system, overall performance is the central 

concern of development. Whether the system is a mechanical assembly line, aircraft, or a 

reusable launch vehicle (RLV), its functional efficiency initially overshadows all other 

considerations. In the case of an aircraft or RLV, engineers explore multitudes of 

conceptual alternatives varying the size and shape of the vehicle to custom-tailor its 

physical configuration to suit a mission profile [18]. At this point of design the vehicle is 

unformed so its characteristics can be changed at very little cost. As development 

continues however, the ability to change vehicle characteristics decreases rapidly as the 

cost ‘sunk’ into design increases. Currently, a paradigm shift in engineering design is 

taking advantage of this fact rather than being victim to it, by bringing more and more 

computer-based analyses into conceptual design to increase a system’s long-term 

efficiency. 

In the second stage – preliminary design – the vehicle’s configuration is frozen 

while physical and computerized testing can take place, which continues the downward 

trend in design freedom and upward trend in sunk cost [18]. Here more fine details such 

as materials used take precedence, however still for the purposes of achieving a desired 

mission profile. Continuing with the example of a RLV, these considerations will include 

choosing a thermal protection system (TPS), a combination of different ceramic and 

metallic materials for handling the extreme thermal loads present within the launch and 

entry, descent, and landing (EDL) portions of its mission scenario. At the end of the 
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preliminary design phase, iterative analyses converge upon a vehicle whose size, shape, 

and subsystem configuration make it feasible for a mission profile. It is at this point in a 

vehicle’s development that a major decision must be made – whether the huge cost of 

manufacturing the vehicle is worth its potential revenue [18]. The paradigm shift shows 

its merit here by providing more information to the decision-maker than has ever before 

been available, where in the past the best performing vehicle was rarely ever the most 

cost-effective [8]. 

Before making the final decision on a system’s manufacture, the viability of the 

system must also be investigated. As an example of feasibility versus viability concerns, 

a RLV whose TPS utilizes thin sheets of Nickel super-alloys will have a reduced weight 

versus utilizing ceramics, a performance advantage, however at the cost of an increase in 

possibility of fatigue. Over many years of operation, the RLV’s operating cost due to TPS 

maintenance will result in a Life Cycle Cost (LCC) greater than that of a heavier 

conceptual alternative, which had not been considered during conceptual design because 

it decreased performance. It is in this manner that a conceptual alternative which was 

found to be feasible for a mission scenario may not be viable in the long-term [23]. This 

is of particular concern for aerospace vehicles, as only ~5% of the cost to produce the end 

product is involved with the design process, while the other 95% is from to the developed 

system’s construction [23], and its operations & maintenance (O&M) cost will comprise 

60-80% of its LCC [15]. Drawing from the example of the Shuttle program, the RLV will 

spend the majority of its time undergoing maintenance of some sort [13]. Optimizing 

operations performance from the conceptual design phase on is crucial in communicating 

the ramifications of design decisions, as bad decisions are paid for and good ones are 
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reaped in the much longer LCC of any product [54]. Specifically, poor planning can 

result in increased inventory holding costs, training costs, maintenance costs, support 

equipment costs, crew time costs, and operations costs [10]. 

Recently, the entities developing space vehicles have moved from strictly 

governmental agencies like the National Aeronautics and Space Administration (NASA) 

and the European Space Agency (ESA), to the military and commercial sectors. In 

particular these entities are pursuing RLVs because although they do require a higher 

development cost, when maintained properly they have a lower overall cost [49]. In 

particular, the turnaround time of a RLV must be quick enough to support the eventual 

increase in launch demand, while also being inexpensive enough to justify a higher 

development cost [34]. The military is interested in developing a quick-response sub-

orbital vehicle for fast deployment of troops across the world and to establish space 

superiority for the U.S.A., an effort which has been in development through the Air Force 

Research Lab (AFRL) for many years [49],[43],[55],[39].  Commercial entities such are 

also developing RLVs, such as the Sierra Nevada Corporation’s Dream Chaser [50], the 

SpaceX Dragon capsule [53], and Virgin Galactic’s SpaceShipOne and White Knight 

vehicles [58], for commercial launch missions ranging from space tourism to ISS 

resupply missions. These entities have different goals for the vehicle; therefore the 

designs chosen for each will be different. However; the issue of long-term O&M affects 

each of these entities, and is of central concern to the commercial sector [49]. In 

particular, lowering the turnaround time of a RLV achieves the military’s goal of a 

quickly deployable system, while also maximizing flight rate which is the source of 

revenue for a commercial entity. Looking further into the future, by considering the 
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effects of O&M in the preliminary design of a RLV its LCC can be greatly reduced. In 

the case of a commercial entity, this increase in profits can result in driving down ticket 

prices, which will eventually translate to driving down the cost-per-kilogram to orbit, 

enabling common access to space. 

In the present day with the advent of commercial spaceflight companies, the need 

for proper operations management has been recognized by the highest authorities. With 

the enactment of the Commercial Space Launch Act of 1998, the Federal Aviation 

Administration (FAA) was given statutory authority to regulate reentry and RLV 

activities, requiring a maintenance plan be “systematically formulated in the early 

conceptual design phase of the program to minimize problems during the operational 

phase.” [26] In the past, the logistical concerns of RLVs were not considered [13], 

however moving into the future they become centrally important. Therefore, not only is a 

system of modeling RLV O&M necessary from an economic long-term viability 

standpoint, but also from a legal standpoint. 

When considering the lengths of time performing design on an aerospace vehicle 

and its use and the rewards which can be reaped from bringing as much information as 

possible into the design phase, it is obvious that logistical concerns should be included to 

eliminate unrealistic expectations and point to where improvements can be made in a 

design. In adding this layer to design, money can be much more wisely spent where it can 

make the biggest difference and ultimately lead to a product which is more efficient 

overall [43]. In this manner the incorporation of more information into the conceptual 

design process is shifting the traditional notion of ‘design for performance’ to ‘design for 

business’ [8].  
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Modeling as a Design Tool 

Once a system in development has finished preliminary design, other crucial 

matters must be resolved, namely quantifying economic metrics such as theoretical first 

unit (TFU) and LCC. Due to the inherently stochastic nature of economic analysis, every 

alternative will then have risk introduced into the design. Tools such as the NASA-Air 

Force Cost Model (NAFCOM) and Aircraft Life Cycle Cost Analysis (ALCCA) utilize 

cost-estimating relationships (CER) based upon data from systems currently constructed 

and operating in order to construct estimates on TFU and maintenance costs. Since these 

relationships are built upon existing data however, they cannot be assumed to accurately 

predict the economic implications of the current state-of-the-art [40]. For example many 

CERs use gross system weight to make estimates, and may not be able to account for 

improvements which lower weight but increase long-term maintenance costs. In addition, 

consultation with subject matter experts (SME) have been utilized in the past [43],[55] to 

gather important information on system behavior, using the Delphi method [31] to 

standardize the qualitative inputs.  

In general the method of regressing historical data to produce mathematical 

relationships between system characteristics and performance estimates is called 

modeling. Although models are very useful for the initial stages of design of an aerospace 

vehicle, where there is no historical precedent there can be no model. This is a 

fundamental issue with the design of RLVs. The only existing historical data is for one 

system, the Space Transportation System (STS), and although it has been in operation for 

a long time most of its performance data is not publicly available, and that which is 

available exists at highly aggregated levels [5]. 
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There are three fundamental methods by which performance data can be gathered. 

The first is physical experimentation, where the system or a scale model of the system is 

built and tested. After conceptual design of a vehicle, physical tests are done either by 

computational fluid dynamics (CFD) calculations or by constructing a scale model of the 

vehicle to place in a wind tunnel for aerodynamics tests. In this case as long as the 

experimental apparatus is constructed as close to specifications as possible and any 

measuring apparatuses are calibrated correctly, then the results gathered are of the 

greatest fidelity and may be regarded as true. When many design configurations are in 

competition however, physical experimentation quickly becomes time-intensive and 

expensive, and in general engineering design desires to know as much as possible about 

the expected behavior of a concept before it exists in physical form [23]. To mitigate this 

issue, results from physical experiments were aggregated into databases from which 

overall trends between configurations and performance could be gleaned. These 

mathematical relationships or models capture overall trends but at the cost of fidelity. The 

monetary and time benefits usually outweigh the loss of accuracy however, and so 

models are widely used during conceptual design to use data gathered previously to 

decide on a system configuration. When the data required for modeling is either too 

scarce or unavailable, another option can be used: simulation. 

Ultimately a model is a mathematical construction dependent upon the sources of 

variation (wing area, wing sweep, fuselage shape, propulsion choice, etc.) within the 

system which characterize the effect of each source of variation on the system’s 

performance. The relationship between each source of variation and the system’s 

performance results from the interactions with underlying physical laws a physical 
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representation of the system would be subject to. Simulation takes this abstraction one 

step further, by applying a set of rules and relationships to approximate the dynamic 

behavior of the system with the goal of gaining insight on the system. In doing so fidelity 

is lost, however a higher level of abstraction allows the simulator to better define the 

model's behavior and prove properties of the system by manipulating the abstract model 

rules while addressing the problem at the right level of complexity, balancing time and 

required levels of fidelity [59]. These rules, when defined without the use of guiding 

models, must be defined in a robust and scale-able manner so that they may be easily 

modified.  

When abstracting the behavior of a complicated system to the point at which 

simulation operates, it becomes necessary to verify and validate both the simulation 

constructed and the results it is producing. Validation is the process of determining how 

well the constructed simulation and associated data are accurate representations of the 

real world, while verification is the process of determining how well the simulation and 

its associated data accurately captures the developer’s conceptual description and 

specifications [22]. Without extensive data by which to compare with simulation outputs, 

the simulation cannot be truly validated. Although there is a modicum of data available 

publicly, it is at such a high level that many possible configurations of the internal data of 

the simulation could reproduce it. Verification analysis however can come from a 

qualitative understanding of the real-world interactions captured within the simulation, 

and so by reproducing those interactions as faithfully as possible the simulation can be 

considered verified. Without validation however, the simulation’s results cannot be 

considered representative of a real-world system. 
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RLV Operations Modeling Problem Definition 

Five fundamental characteristics must be captured by whatever method of 

analysis is chosen. The first characteristic is that since the vehicles undergoing 

maintenance are reusable, this is a looping process which cannot be accurately captured 

by a single equation. At the very least, a recursive mathematical basis is required. 

Therefore, the method must allow for repetition and for separate entities within 

simulation to be on separate repeating paths. Secondly, there are entities constantly 

entering and leaving the loop. Examples of such would be loss of vehicle (LOV) at 

launch or EDL, and any parts which require replacements along with their replacement 

parts. For a model of high fidelity, each of these parts would need to be tracked for 

damage on each mission and subsequent cumulative failure modes. Other tools have 

spent years in development to achieve high fidelity in these areas of analysis [30] 

however this is out of the scope of this work. Therefore, the only entities entering or 

leaving the loop will be vehicles, based on the historical examples of the Challenger and 

Discovery accidents. Third, each vehicle and maintenance site involved has the potential 

for differing characteristics. Examples of this would be alternative mission profiles for 

the vehicles, and number of available technicians or subsystem specialty for the 

maintenance sites. The fourth consideration is that since the method is intended to capture 

the behavior of a real-world maintenance program which varies day to day due to 

technicians working faster or slower on specific tasks, then the method will likely be 

stochastic. This requires the inclusion and definition of uncertainty in the maintenance 

task list, and repetition of individual cases to gather statistical data. The fifth and final 

consideration has been touched upon already, that there is little historical data to validate 
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the simulation [16]. In order to mitigate this validation issue, the method must be verified 

as much as possible so that the relationships between variables can be considered 

accurate qualitatively. 

In such a system there are a multitude of potential sources of variation, and the 

more included the more accurate a model or simulation can be. Increasing the number of 

sources of variation will however adversely affect simulation time, and so a balance must 

be struck between accuracy and execution time [27]. Therefore, only those variables 

which are considered to have the largest effect on the major drivers of simulation metrics, 

and require the least amount of hard data or are based upon the bits of data known, will 

be included. By properly identifying these sources of variation and meaningful ranges 

they may be varied through, the fundamental behavior of this complex system can be 

uncovered [27]. 

To predict these sources of variation, an understanding of the interactions taking 

place within the system of interest must first be set down. For RLV O&M, vehicles are 

launched from some facility, perform a mission, return to a landing facility, and then 

undergo maintenance on each of their subsystems before they can be cleared to perform 

another mission. In order to represent this properly within a model, this maintenance 

cycle must be accurately captured. Maintenance on any aerospace vehicle can be 

assumed to proceed in roughly the same fashion. After a mission is performed regular 

maintenance is performed, and after a certain number of missions the vehicle undergoes 

scheduled maintenance which takes an in-depth look at the vehicle’s state. In practice, the 

skills utilized by technicians working on a vehicle can be applied to several of the 

subsystems comprising it, however for the purposes of simplicity these skills are assumed 
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to be mutually exclusive. Launch and landing sites may be at the same location or not, as 

the maintenance sites may also be located at either facility or elsewhere. In the case of 

maintenance sites placed at some distance from either launch or landing facilities, 

disassembly and/or integration facilities may be required. In order to capture the behavior 

of this complicated interconnected system of RLV O&M, as many of the potential 

procedural paths must be represented, and their calculable effects modeled to the greatest 

possible degree, which leads to the first research question of this study: 

Research Question 1: What is the proper modeling method for capturing RLV 

O&M? 

 



 

 

CHAPTER 2 

LITERATURE REVIEW – PHILISOPHICAL BACKGROUND AND 

STATE OF THE ART 

 

Previous research done on operations modeling, prediction, and optimization, has 

led to the inception of Operations Research (OR) as a practical application of state-of-

the-art modeling practices. At its basis, OR seeks to optimize operations schemes by 

answering complicated decision-making problems whose solution requires addressing 

three major questions. The first is: What are the design alternatives? By constructing a 

model of the system under consideration, the possible modes of solution must be 

identified. For the purposes of this study, the answer to the first question would be in the 

sources of variation identified previously. In particular, by optimally allocating a 

maintenance crew to the regular upkeep of a fleet of RLVs (assuming mutually exclusive 

skillsets), it is expected that the overall effort spent performing that upkeep will be 

minimized. However to prove this hypothesis, modeling methods of sufficient power and 

fidelity must be utilized in order to answer the first research question. The second 

question is: Under what restrictions is the decision made? Any decision-maker reviewing 

the results of operations analysis must be basing their decision on some quantitative or 

qualitative metric. To answer the second question, the requirements of entities 

performing these campaigns much be taken into account. For a commercial RLV 

company, the total MMH per flight spent on a vehicle should be minimized so that the 

maximum number of flights per year can take place, generating the most revenue 

possible. The third and final question is: What is an appropriate objective criterion for 
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evaluating the alternatives? In a situation with multiple metrics under consideration, 

particular decisions may produce a false optimum, where certain metrics are optimized 

while others are left non-optimal. In cases such as these, a proper way to compare and 

compromise these solutions is needed to give the decision-maker the most information 

possible. 

The development of OR has also been spurred by the mistakes made by NASA. 

Although presently operational models can learn from many more years of data and 

practices, the specifics of performing maintenance on a system as complicated as a 

launch vehicle was simply not known. In general, the larger the vehicle the larger 

maintenance will take for that vehicle [43], however before the inception of the more 

powerful and descriptive tools developed from OR, the Saturn launch vehicle concept 

was originally justified in military studies for 100 flights/year [32] without much detailed 

information on how the support for this flight rate could be achieved. Further down the 

line, the original Shuttle operational concept was planned to achieve 40 launches/year 

from Kennedy Space Center (KSC) and 20 launches from Vanderburg Air Force Base 

(VAFB), relying upon a 2-week turnaround time [16]. It was not until the Shuttle had 

entered physical model testing that the original predictions on turnaround time were first 

challenged [16].During its operation however, the turnaround time would average to 88 

days [15]. Due to this large gap in predictive ability, much effort was placed into the 

development of operational prediction models, each attempting to provide fidelity higher 

than previous models while incorporating the lessons learned from performing 

maintenance on the Shuttle. 
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As development in space continues into the future, the importance of considering 

the upkeep of complicated systems continues to gain credence. In particular, the 

International Space Station requires the longest logistical pipeline that has even been 

needed by a program developed by the U.S. [13]. There have even been reports of issues 

providing the correct amount of crew provisions [11]. Across the board there is a need for 

intelligent incorporation of operational concerns into the design of space systems, as 

unlike on the surface, once up into vacuum there are no corner stores with replacement or 

supplemental items when in a pinch.   

Past & Present RLV Operations Models 

As the prediction of RLV O&M is an important topic to many major companies in 

pursuit of spaceflight operations, there have been many tools constructed both by private 

and governmental entities over the years. What follows is a brief overview of several 

tools which have been developed in the past and continue to be used today. 

The use of discrete event simulation (DES) to model the Space Shuttle actually 

began in 1970 before the Shuttle was approved for development, and those initial efforts 

suffered from the lack of an established baseline as there was no existing system from 

which to draw a good comparison [20]. In 1981 another simulation model was developed, 

showing for the first time that the original predictions of the Shuttle’s flight rate were 

overly optimistic. It too suffered from lack of precedent and similarly relied heavily upon 

comparison to existing systems. 

Later in 1997, Vision Spaceport was developed for the Highly Reusable Space 

Transportation (HRST) study by the Spaceport Synergy Team [52]. Due to the problem 
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posed to the team during development, this tool is capable of predicting the effect of 

future concepts on operations, however there was a lack of relationships defined between 

functions for simulation modeling. Next, the Space Shuttle Ground Processing 

Simulation was developed at Kennedy Space Center (KSC), using all the information 

NASA had, which made it ideal for analyzing the Shuttle, however it had difficulty 

translating its results to other concepts [20]. It was so useful however that it was 

expanded around 2002 and is now known as the Generic Model for Future Launch 

Operations (GEM-FLO). Although this tool continues to be useful to NASA and its 

operations, it is only an upper-level view of RLV O&M, to such a point it was not 

deemed useful for the Air Force’s RLV development [43]. To answer this need the Air 

Force Research Laboratory (AFRL) commissioned Boeing to conduct a study which 

would yield highly detailed operational analysis, resulting in the construction of the 

Space Operations Vehicle Operable Configurations Study (SOV-OCS) [43]. This study 

was so successful that it is subject to International Trades in Arms Restrictions (ITAR); 

however it is a static study which cannot incorporate changes in the maintenance 

workforce.  

Another model which has undergone several stages was started by Dr. John Olds 

while he was still with the Aerospace Systems Design Laboratory (ASDL), called the 

Cost And Business Analysis Module (CABAM) [8]. Unlike previous studies, CABAM 

was based on fiscal units instead of labor metrics, and was capable of producing cost 

assessments for the entire life cycle of new launch vehicle concepts. It was extended later 

in 2009 by the team at SpaceWorks Enterprises, Inc. and renamed 

DESCARTES/Hyperport [34]. The finished model includes data gathered from several 
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NASA centers on not only the actions to be taken during maintenance, but also numbers 

of technicians normally allocated to these tasks. It is capable of approximating Shuttle 

operations, representing many different kinds of launch vehicles, and assessing the 

impact of future technology integration. 

Finally, the most recent model found in a literature review is another model made 

at KSC, called the Launch & Landing Effects Ground Operations (LLEGO), developed 

around 2010. LLEGO is a big improvement on GEM-FLO, as it can model many 

different launch vehicle variants, and can calculate high and mid-level economic metrics 

for generic launch vehicle concepts. 

Although each of these tools are very useful within their scope, most existing 

models are not robust enough or are too mired in detail and technical barriers to be useful 

[43]. In particular, these previous studies were only able to do rough order of magnitude 

(ROM) estimates for recurring costs, not detailed analysis [4], and don’t account for 

variance, instead being based on expected values [5]. There is therefore a need for 

conducting a study which focuses where these tools have not: fitting a maintenance 

workforce skillset distribution to maximize operational efficiency, and incorporating 

variation so that the conclusions gleaned from such analysis are robust. By considering 

the efforts made in the past, and the potential for improvement inherent in answering this 

problem, the second research question of this work was formulated. 

Research Question 2: How can the skillset of a RLV maintenance workforce be 

optimized?



 

 

CHAPTER 3 

THEORY AND FORMULATION 

 

In this chapter the overall methodology of the study performed will be presented 

and each portion justified. By its definition the third and final research question of this 

study will be addressed: 

Research Question 3: How can RLV O&M be effectively captured by a model? 

It is divided into three sections: describing the genesis of the study’s 

methodology, presenting and discussing the assumptions and limitations inherent in the 

study, and finally defining the methodology for this study. During the genesis section I 

will present those sources which sharpened the first formulated research question into an 

achievable set of experiments, and how they lead to the research questions the remainder 

of this work has been dedicated to answer. In the assumptions and limitations section the 

issues with putting together experiments of this type are presented, along with any work-

arounds identified either via a literature search or presented as a fundamental assumption 

of this work. Finally, the methodology for the study will be defined, including defining 

an overall evaluation criterion which will be applied to the results coming out of each 

experimental frame.  

Genesis of the Method 

During initial formulation of the work presented here, the possibilities of 

experimentation with RLV O&M allowed contained a multitude of potential paths. In 

particular, possible paths for investigation included, but were not limited to: combining 
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limited data with failure models of components similar to those used on the Shuttle to 

predict failure rates of components associated with a  subsystem (specifically the TPS), 

combining trajectory optimization software such as POST with current and future TPS 

materials to predict failure rates, investigating the potential benefits of a distributed 

maintenance workforce across sites across the country, the effect of increasing fleet size 

on a set maintenance workforce, and the optimization of a maintenance workforce 

skillset.  

Since many other previous efforts have focused on the maintenance of a vehicle 

according to its subsystem configuration and the potential trades which can be done with 

the components of each, and that these studies have in many cases had access to sources 

not personally available [16],[43], performing a study relating vehicle configuration to 

maintenance characteristics was removed from the list of potential studies. Although 

initially intriguing, the effect of a distributed maintenance workforce was also eliminated 

from the list after performing a literature review and finding several sources [13],[17] 

which have found previously that as a RLV program continues, a centralized 

maintenance scheme was ultimately the most efficient, as it minimized the operational 

cost of keeping facilities up and running, and prevented costly delays in the maintenance 

cycle [13]. 

Investigating the issue of increasing fleet size with a given maintenance skillset 

distribution was initially considered to be the most intriguing of those subjects left, 

however it was ultimately eliminated for the purposes of relevancy. The entities which 

would be most interested in making RLV O&M its most efficient would be commercial 

ones, as governmental and military groups have the benefit of funds being provided for 
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them, in contrast to commercial entities which have to generate their funds via launches 

to generate revenue. Commercial entities are just now beginning RLV campaigns, and 

those which are still attempting to get a single vehicle operating properly. It will likely be 

many years before any of these companies will have more than a handful of vehicles, and 

so maintenance skillset optimization for a small fleet was chosen as the path of 

investigation for this effort because it is currently relevant. Several studies have already 

been done attempting to do skillset optimization [38],[12], however these relied heavily 

on comparison with the currently existing B-2 and its maintenance workforce. 

Additionally, since several models are already performing very detailed analyses on 

vehicle configuration, studying the optimization of a maintenance skillset represents a 

relatively open field for development, and is considered to be an important field to 

explore [38]. 

Assumptions & Limitations 

The first and most obvious limitation on the work presented is the lack of 

historical data by which to base experiments on and validate their results by, a problem 

which has plagued most other RLV O&M efforts [5]. Most of the assumptions present in 

this section are a direct result of this fact. A high-fidelity model of RLV O&M would 

require information on the relationship between vehicle components and their failure 

modes. These failure modes could then be related to a mission profile in order to 

calculate part failure on a mission-to-mission basis. In order to service these failed parts, 

maintenance technicians would repair or replace these parts, which to model would 

require information on the numbers of technicians required to perform maintenance on 

each of a RLV’s subsystems, which is not available. In addition, the required amount of 



19 

 

time to finish these maintenance tasks is not available [3], and by extension neither is 

data on the variation present within these task times, which would be a great asset to this 

study. Furthermore, the effect of having fewer or less available technicians on task times 

is also not known for RLVs.  

In order to mitigate this lack of information, the work presented here has strived 

to use any and all historical data and relationships available, and to use as few 

assumptions as possible. When data is unavailable, the assumptions used are clearly 

defined and justified to the best possible degree. In this manner, while the experiments 

performed cannot be validated at the present time, they will be verifiable. As the issue of 

RLV O&M becomes more and more important and commercial entities performing RLV 

O&M compile data, the method constructed here will be equally applicable. 

The first big assumption is that RLVs undergo the same maintenance cycle as any 

aerospace vehicle. This is to say that for any mission, a RLV will depart from some 

launch site, perform a mission, and return to some landing facility, where it will enter 

maintenance. Maintenance is completed at one or several centralized locations. Upon 

completing maintenance, the vehicle embarks on another mission and the cycle repeats.  

Maintenance Task List 

The second assumption of this work is that the maintenance of a RLV can be 

represented by a task list comprising 16 subsystems. In this work the maintenance of a 

single RLV is divided into work on: Avionics, Communications, Crew systems, 

Electrical & Wiring, Engines, Environmental Controls, Flight Controls, Hydraulics, 

Landing & Recovery, Navigation, Pneumatics, Propellant Management, Software, 
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Structures, Thermal Protection System (TPS), and Tracking. Work on any of these 

subsystems is then subdivided into a set of tasks required for the subsystem to be 

properly checked out and maintained after each flight. Both the subsystems included and 

the tasks performed to maintain each of them come from the FAA’s Guide to 

Commercial Launch Vehicle Operations & Maintenance [26]. There are many variants of 

maintenance task lists which have been used in previous work, however the task list 

taken from the FAA’s guide is assumed here to be representative of a minimum task set, 

as they are listed in the guide because they have a direct impact on the safety of an RLV. 

A commercial entity would not only wish to cut maintenance costs by reducing their 

workforce while keeping them working efficiently to minimize the MMH spent, but also 

by performing the minimum amount of maintenance required to keep the vehicle 

operating safely. For this reason, the FAA guide task list was chosen to represent a bare-

bones maintenance task list. 

Maintenance Architecture 

The third assumption is that the tasks performed during maintenance of a RLV 

have different levels of complexity, resulting in shorter or longer completion times. The 

first justification for this assumption is purely qualitative: tasks on any subsystem will 

have higher or lower importance related to its continued safe functioning. Those tasks 

with higher importance will be under the most scrutiny and thus will take a longer 

amount of time. The second justification for this assumption is from the scattered amount 

of information available. In the literature found which contained some high-level 

aggregated maintenance information [16], [43], although the tasks represented are 

consistent they do show variation in the amount of time required for maintaining their 
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representative subsystems. For the purposes of this study, the line between abstraction 

and fidelity will be placed by defining each maintenance task identified from review of 

the FAA guide to requiring 1, 2, or 3 days to complete. To define these completion times, 

all documents containing information on tasks whose description approximates those 

defined in the FAA document were consulted. The full task list and the required time for 

completion for each are contained in appendix A. Most of the included tasks are set from 

considering multiple sources, however a few representative examples of this analysis are 

traced to specific entries within “Space Shuttle Operations and Infrastructure: A Systems 

Analysis of Design Root Causes and Effects.” McCleskey, C. M. April 2005. NASA/TP -

2005-211519. Task #301 included in the resource shows SSME inspection done by 

Rocketdyne to take 24 hours, and so the inspection of engines has been similarly set to 24 

hours (3 days) in this work’s task list. Wheel inspection & removal (tasks #340,341) take 

close to 8 hours each, and so the inspections in the landing & recovery subsystem are 

each set to 8 hours (1 day). The environmental purge recorded (task #382) is 16 hours, 

and so the Atmosphere related task in the Environmental system is set to 16 hours (2 

days). Finally, GPS troubleshooting (task #1036) is set to 8 hours, and so the GPS task in 

the Navigation subsystem is set to 8 hours (1 day). 

Just as the maintenance tasks to be performed have varying levels of complexity, 

the numbers of technicians allocated to maintenance on subsystems will present its own 

complexities in communicating effectively what tasks need to be performed, by whom, 

and at what pace. This leads to the next assumption that by allocating more technicians to 

maintenance on a subsystem, the total amount of time that maintenance will take is 

decreased. There is a limit however; as previous studies on maintenance workforce have 
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shown that increasing the workforce will only help up to a certain point [39], which leads 

to the next assumption: there is a maximum number of technicians that can work on a 

subsystem at a time. Without the example of previous models, this assumption can also 

make sense via a qualitative example: maintenance of the TPS subsystem of a RLV. 

While technicians are repairing or replacing tiles underneath the Shuttle, there is a 

physical limit to the amount of space within which they have to work. In order to increase 

the rate at which tile maintenance is done more technicians can be placed in the same 

area, but at some point there will be no more physical room for them to be placed. At this 

point, you have a ‘too many cooks in the kitchen’ situation, where placing more 

technicians on the task may actually hamper progress. 

In order to reduce model complexity, it will also be assumed that maintenance on 

any subsystem requires the use of a specific set of skills, which is mutually exclusive 

amongst subsystems. This assumption comes from the complexity of subsystems making 

up a RLV and the fact that they perform a variety of tasks, requiring at the very least 

separate tools to maintain. In addition, this assumption removes the problem of 

characterizing how technicians allocated to subsystems could interact with one another. 

Another limitation of this study resulting from lack of available information is the 

effect of allotting fewer technicians to a task on the task’s required time for completion. 

In general, it is expected that fewer technicians will result in an increase of required time. 

Two models were considered to answer this limitation, a linear and reciprocal model. 

There are a few issues with a linear model, first that the intercept will be nonsense, as the 

amount of time 0 technicians can perform any task would theoretically be infinite. 

Secondly, assuming that by allocating the maximum number of technicians to a task the 
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most efficient maintenance occurs resulting in the lowest amount of time yields a single 

point by which to base the model on, however a linear model requires at least two to 

define the slope. An assumption can be made here about the slope, however the alternate 

model was found to be superior. 

The second (reciprocal) model is a better fit for several reasons. In software 

engineering, there is an effect known as Brooks’ Law which in general states that at a 

certain point, including another person into the completion of a communal task will 

actually increase the amount of time to complete [42]. The phenomena is justified by 

stating that in any project requiring communal involvement, as the number of associated 

people increases the communications pathways required for efficiently working on the 

task becomes more and more complicated, resulting in diminishing returns as people are 

added onto a project. So according to Brooks’ Law which is based on observation, adding 

more people onto a project like a maintenance task will initially have a large decreasing 

effect on the completion time. With each person however, the increase in efficiency is 

reduced, until reaching an inflection point where more people will cause an increase in 

the completion time. In conjunction with the previous assumption that there is a 

maximum number of technicians which can physically work on a subsystem at a time, 

and that a reciprocal model only requires one point for regression, the reciprocal model 

on task completion time is seen as a better descriptor for this unknown effect. The model 

is shown pictorially below in Figure 1, showing a rapid decrease as technicians are added 

until the maximum number of technicians is reached, after which there is no further 

decrease in task time. The selection of this model is the next assumption of this study: the 

effect of reducing relevant workforce to the maintenance of a RLV subsystem’s 
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maintenance completion time follows a reciprocal trend. The reciprocal model will be 

used whenever applicable; however there will be one example problem which uses the 

linear model. 

 

 

Figure 1: Reciprocal task time model 

 

The fundamental equation for this model is shown below in Equation 1. 

                           

 
                                                         

                     
 

Equation 1: Task completion time model equation 

Although now the expected amount of time for a maintenance task has been 

modeled as a function of the number of available technicians, one of the fundamental 

aims of this work is to incorporate variation into the design so that the results gleaned can 
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be robust. To that end, the amount of time a task will actually take must change from one 

execution to another, requiring the inclusion of probabilistic methods, which will now be 

addressed. 

The log-Normal Distribution 

The log-normal distribution has a direct application to RLV operations modeling, 

as the time for completion of individual maintenance tasks roughly follows a log-normal 

distribution, as there is less chance of the task taking less time than the average amount of 

time than the chance of the task taking longer than expected. This is due to the log-

Normal distribution having tail behavior that is slower than exponential, allowing for data 

with a ‘heavy’ tail [28]. Some documents compiling task completion times have 

concluded that task time variation does in fact follow a log-Normal distribution [3], 

although this is based on only 29 of the 243 flights of the Shuttle program. Other 

modeling efforts have used a triangular distribution [55] with a ‘fat’ right tail, however 

NASA and military documents [37],[25] have chosen the log-Normal distribution to 

describe maintenance task completion times and the inter-arrival times of maintenance 

events [27]. 

Statistically speaking, the log-Normal distribution has positive skew (a fatter right 

tail) so more of the distribution lies to the right of the mean. It arises when the logarithm 

of a random variable is normally distributed, or the distribution of the random variable X 

when log(X) follows a Normal distribution with mean μ and variance σ
2
. The probability 

density function (PDF) of the log-normal distribution is 
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Equation 2: log-Normal PDF Equation 
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Equation 3: Mean and Variance of log-Normal Distribution 

Because the log-Normal distribution is used so widely in describing task times 

and has been empirically observed, it will be used for each of the maintenance tasks 

performed.  

The assumptions which have just been presented are the result of an extended 

literature search which has sought to find the best justification and precedent possible. 

When taken together, they constitute the answer to research question 2, and are 

summarized here. 

Answering Research Question 3: Maintenance of a RLV can be represented with the 

following 8 assumptions: 

1. RLVs undergo the same maintenance cycle as any aerospace vehicle 

2. RLV maintenance can be represented as composed of 16 subsystems 

3. Tasks performed during maintenance have different levels of complexity 

4. Allocating more technicians reducing the necessary maintenance time 

5. There is a maximum number of technicians which can work on a RLV at a time 

6. Maintenance on a subsystem requires unique skills 
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7. Changing the allotted number of technicians for a subsystem has a reciprocal 

effect on maintenance time 

8. The variation in a maintenance task's completion time follows a log-Normal 

distribution 

Methodology of Study 

There are several types of O&M schemes which are of interest to this study. Each 

has strengths and weaknesses for the overall scheme and it is the proper combination of 

these schemes which it is expected will produce an optimal maintenance skillset 

distribution. The first scheme is to perform maintenance on one vehicle at a time, 

allocating the maximum number of technicians to work on each of the subsystems. This 

has the advantage of utilizing the skills of each subsystem’s workforce to its maximum; 

however it maximizes the number of technicians kept on hand. In Figure 2 below, this 

sort of scheme is shown notionally with a subset of the total number of subsystems. In 

each of the following figures, green represents maintenance done on Vehicle 1, blue 

represents maintenance done on Vehicle 2, and orange represents maintenance done on 

Vehicle 3. 

 

 

Figure 2: One at a time maintenance with maximum technicians 

Vehicle 1 Launches Vehicle 2 Launches

Avionics

Communications

Electrical &Wiring

Engines

TPS

Maintenance Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Vehicle 3 Launches
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As can be seen, one subsystem (Engines) in particular drives the total amount of 

time required for satisfactory maintenance. An improvement on this scheme would be to 

reduce the number of technicians allotted to lower-time subsystems (Avionics, 

Communications), which would reduce the efficiency of maintenance on those 

subsystems and increase the time spent on them, but would reduce the total number of 

technicians required.  

An example of the reduced workforce scheme is shown below in Figure 3. The 

lower-time subsystems (Avionics, Communications) are taking longer than previously to 

complete due to fewer available technicians, and all others are still at their most efficient. 

As can be seen below, the higher time subsystems are still driving the launch rate. 

 

 

Figure 3: One vehicle at a time with reduced workforce 

 

To improve upon this scheme further, the benefit gained from having a smaller 

workforce can be redirected into allotting more technicians to those subsystems which 

drive launch rate. In this manner, multiple vehicles may be worked on simultaneously, 

depicted below in Figure 4. In rows where multiple colors are present multiple vehicle 

maintenance is being represented. 

Vehicle 1 Launches Vehicle 2 Launches

Avionics

Communications

Electrical &Wiring

Engines

TPS

Maintenance Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Vehicle 3 Launches



29 

 

 

Figure 4: Multiple vehicles at a time with optimized workforce 

 

By optimizing the maintenance workforce by allocating fewer technicians to those 

subsystems which require the least amount of time and do not drive launch rate, and 

allocating more to those which require the most amount of time so that multiple vehicle 

maintenance can take place, the launch rate can be improved upon while potentially 

reducing the overall workforce required. The highest-time subsystem (Engines) is still 

driving the launch rate of individual vehicles; however by performing overlapping 

maintenance this issue can be mitigated. 

Overall Evaluation Criterion 

In order to answer the second research question of this study, several competing 

methods for finding an optimal skillset distribution for RLV O&M will be presented and 

compared by the results they produce. As they are presented, the methods will grow in 

complexity and power, finally resulting in a justification for the use of discrete event 

simulation. For the final simulation constructed, a couple methods of optimization will be 

presented. To compare the results coming out of the competing optimization methods, a 

common basis is needed. To do so, an overall evaluation criterion (OEC) will be applied 

to the results coming out of each method in the simulation. An OEC is a method for 

solving multi-objective problems, by converting the original multiple objectives into a 

Maintenance Days 1 2 3 4 5 6 7 8 9 10 11 12
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single goal represented by a single equation, upon which minimization or maximization 

is sought [48]. The resulting solution coming from an OEC does not always yield a 

solution which is optimal in each of its components; however it is the most efficient 

solution because its use yields a solution which performs the best across all categories 

[56]. 

To define the components of the OEC, the optimal technician skillset allocation 

distribution will be considered as a commercial entity would. In particular, a commercial 

entity would strive to achieve two things: maximize revenue and minimize costs to 

maximize profit. To maximize revenue, a commercial RLV company would want to 

maximize their flight rate, and so the maximum achievable flight rate will be included as 

a factor in the OEC. Two factors go into minimizing costs. The first is operational costs, 

the cost of ‘keeping the lights on’, and the second is personnel costs, or the cost of 

compensating the maintenance workforce for their work. To minimize the first, a 

commercial entity would seek to minimize the MMH spent on a vehicle after every flight, 

and so the average MMH/Flight/Vehicle will be included in the OEC. Secondly, by 

minimizing the necessary workforce to achieve maximization of flight rate and 

minimization of MMH/Flight/Vehicle, a commercial entity can drive down its personnel 

cost, and so the number of technicians allotted to maintenance on each subsystem will 

also be included in the OEC. In concert, the metrics defined above are placed together 

into the OEC shown in Equation 4 below. In finding the proper experimental frame and 

method within that frame, the maximum value of the OEC will be sought. 
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Equation 4: Overall Evaluation Criterion 

 

 

 

 

 

 



 

 

CHAPTER 3 

EXPERIMENTAL DESIGN ALTERNATIVES 

 

Before deciding on a platform upon which to perform experiments with O&M 

schemes, several alternatives must be investigated. Operations research (OR) has been 

going on for over half a century, beginning in World War II with Leonid Kantorovich 

using linear programming (LP) for logistics planning to predict expenditures and 

maximize enemy losses [36]. Once the war was over, his methods were widely used in 

industry for daily planning. As the needs of industry grew more complex, so did the 

methods used grow in complexity. The computational ability of computers similarly 

grew, eventually leading to the formulation of simulation. In the present day, simulations 

are the most widely used tool for complex OR problems.  

The reason simulation is used so much is three-fold. First, simpler methods may 

not have the capability of solving the problem. This situation occurs when the effects a 

modeler is attempting to capture cannot be represented inside a LP formulation, such as 

the reciprocal dependency between technician availability and maintenance time 

presented in Figure 1. For many cases however, linear models are sufficient to perform 

rough order-of-magnitude (ROM) studies. Secondly, the problem may not have a closed-

form solution. This situation can occur when a system a modeler is examining is a 

repetitive cycle of relationships, such as the maintenance cycle an aerospace vehicle 

undergoes over the course of its life-cycle. In this case, the results from previous loops 

affect the parameters describing the maintenance system, which cannot be captured by 

simple methods. Finally, the problem itself may be dynamic. This point can also be 
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illustrated by the previous example, however it has another example. Over the course of 

an aerospace vehicle fleet campaign, individual vehicles or maintenance sites can change 

in time. For the vehicle these changes can take the form of replacing the TPS materials on 

a RLV, changing mission profiles, integrating new technologies, or retiring individual 

vehicles. For the maintenance sites the availability of technicians with certain skills can 

fluctuate, or new practices or tools can emerge which increase the efficiency of individual 

tasks. Any of these changes will fundamentally alter the way in which vehicles and 

maintenance interact, and without mechanisms to capture changes in time, simple 

methods cannot capture the effects of complicated behaviors. 

The construction and execution of a simulation is very useful for the examination 

of alternatives. Within a computer-based simulation model, the speed at which analysis 

can be accomplished is much higher than waiting for a physical system to operate. 

Simulations are also much easier to manipulate than physical systems, providing a 

framework for testing the desirability of system modifications. Simulation-generated data 

often can provide sufficiently accurate estimates on the performance of alternatives under 

consideration, allowing the operator to sharpen their understanding of the system as a 

whole. Predicting the performance characteristics of a system before it is a physical entity 

is very useful for aerospace vehicles as described previously in the introduction, as by 

bringing more information into the conceptual design phase via simulation, the risk 

associated with multitudes of design alternatives may be calculated and compared. 

In the conceptual construction of a simulation, several steps become important for 

making the simulation generic enough to capture many possible alternatives [54]. First, 

the domain of interest must be selected so that the objectives of the study may be 
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adequately represented. If the simulation is too general, its construction and execution 

time may render the simulation inefficient, and so the modeler must find a balance 

between fidelity and efficiency. For the problem at hand, O&M of RLVs is selected as 

the domain of interest.  

Second in a simulation’s conceptual construction, the processes and interactions 

of the model as entities flow through it must be identified. Another balance must be 

struck here between model usefulness and abstraction similar to the first step. In this case 

though, if the simulation is found to be insufficiently descriptive, the addition of details 

may increase fidelity. Walking the line between fidelity and abstraction here requires 

identifying those factors within RLV O&M which can be captured using the limited 

amount of data available. An example of such would be defining a default set of 

maintenance tasks a RLV will undergo in one cycle versus linking the individual 

components comprising the vehicle to tasks required for each of them. Another example 

would be either to define a default length of time the RLV is on mission according to a 

sampling of mission profiles, or to perform complex calculations requiring a detailed 

breakdown of the aerodynamic characteristics of the vehicle, its propulsion, and the 

propulsion system’s components, both for launch and EDL. Finally, the length of pre-

flight operations can similarly be set to a default value from historical data, or could 

similarly be calculated with complicated analysis which would require extensive 

managerial and logistical information. For the purposes of this study, historical precedent 

will be used wherever possible to increase computational efficiency. 

Third in conceptual construction, the constructs that make up the system must be 

characterized in the context of their interactions. In RLV O&M, these constructs would 
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be the vehicles undergoing and maintenance sites performing maintenance. As discussed 

previously, the general characteristics of RLV O&M are very similar to the maintenance 

of any aerospace vehicle. What specifically happens then is subject to the assumptions of 

the modeler attempting to balance abstraction and fidelity.  

Once the previous steps have completed, the system can then be represented by 

computer code which strikes the balances mentioned above. This step also requires 

selection of a simulation method, which will be expanded upon shortly. As a final step 

and to address the concerns of abstraction and fidelity previously discussed, the modeler 

must find any and all existing information about the behavior of the system to be 

simulated in order to base simulation in reality as much as possible.  

What follows is an overall review of some modeling & simulation methods used 

for investigating operations. Each method is very good within its own domain; however 

each require much more quantitative information about the system under consideration 

than is available. Although none of these models can satisfy the requirements posed in 

the previous section, elements of each are present within the method ultimately chosen: 

Discrete Event Simulation (DES). 

Linear Programming 

The simplest method in OR is LP, which is fundamentally a collection of 

mathematical modeling techniques designed to optimize the usage of limited resources. 

Although simple, LP models form the basis for more complicated models, and allow the 

characterization of steady-state or reduced forms of complex problems. Its basic 

assumption is that an objective function representing the goal of the modeler and 
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constraints on achieving that goal can be expressed as linear functions of decision 

variables representing the entities which affect the realization of that goal. The decision 

variables are the entities within the model which are controllable inputs to the system, 

and may be either an equation or inequality. The objective function or ‘goal’ of system 

effectiveness can then achieve optimality with limitations imposed by the constraints by 

varying the decision variables. Solving a LP problem thus requires finding the set of 

decision variable values which satisfy the objective function in the best possible manner. 

Each decision variable is represented in its most general form as  , so that the 

objective criterion is the minimization or maximization of some function 

                        ∑    

 

   

 

Equation 5: LP Objective function definition 

 

Where the    are problem-dependent constants. Resource limitations may 

sometimes restrict the values of the    , which can be represented as 

                      ∑      

 

   

 

Equation 6: LP constraint definition 

 

Where b quantizes the resource shortage. There are two types of resource 

restrictions: the first has all    positive and represents a resource usage maximum; the 

second has both positive and negative    , which states that the difference in the value of 
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those decision variables must satisfy the constraint. In addition, since the decision 

variables are to represent physical entities, non-negativity restrictions are placed on each: 

     

Equation 7: LP non-negativity constraint 

 

In many operations problems, the amount by which any quantity goes over or 

under a certain value is also of interest. For these cases slack and surplus variables are 

introduced into the formulation. A slack variable is used for constraints of Equation 6’s 

form,   to some constant. A slack represents the amount by which the available amount 

of a resource exceeds its usage, which is of great interest when the variable in question is 

representing the items in an inventory. A surplus variable is used in cases where the 

constraint is   some constant, representing the excess over a minimum requirement. By 

utilizing these two types of variables, the inequalities of Equation 5and Equation 6 can be 

made into equations. Defining    as either slack or surplus variables, Equation 6 can be 

re-formulated as 

                             (     ) 
                             (       ) 

     

Equation 8: Definition of LP slack & surplus variables 

 

Using this formulation, the inequalities have been transformed into equalities with 

extra constraints. In addition, the inclusion of slack and surplus variables changes the 
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objective criterion to the minimization or maximization of the slack and/or surplus 

variables. 

Any set of decision variable values satisfying both Equation 5 and Equation 6 is 

called a feasible solution; however the real interest is in identifying the optimum feasible 

solution which yields the maximum system effectiveness. In the case of a LP model with 

simple objective and resource constraints, the set of feasible solutions is infinite, and so 

efficient procedures for identifying the optimum feasible solution are required. 

Simplex Method 

The simplex method can be summarized as an algorithm for identifying the corner 

or extreme points of a solution space. As a first step toward constructing the simplex 

method, the general model must be converted to standard LP form, which utilizes the 

slack and surplus variables introduced in the previous section. From this conversion, the 

LP problem exhibits a basic solution which comprises all the corner spaces of the 

solution space. This method is so useful for solving LP problems that it has been used 

from its inception in the 1940’s to the present day [56],[24]. 

Converting into standard LP form has three steps. First, all the constraints must be 

equations with non-negative right hand side, non-negativity restrictions excluded. 

Because the value of z (Equation 5) may be negative, each decision variable is moved to 

the right-hand-side. Secondly, all variables must be non-negative. In cases where a 

variable must have the potential for negative values, a substitution is required. For any 

such variable, the substitution 
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Equation 9: Non-Negativity Conservation 

 

Is used to conserve non-negativity. Third, the objective function must be a 

maximization or minimization requirement. In cases where the problem calls for one 

while computational efficiency favors the other, a sign substitution may be made, as the 

maximization of a function  (    ) is equal to the minimization of  (    ). 

Once the above procedure is carried out, determination of basic solutions can 

proceed. The standard LP form includes m simultaneous linear equations or constraints in 

n unknowns or variables (m < n). In order to determine the corner points of this solution 

space, the n variables are divided into two groups: n-m variables which are set to 0; and 

the remaining variables are set by solving the resulting equations. If the reduced set of 

variables yields a unique feasible solution, they comprise a basic solution, and are called 

basic variables, while the zeroed variables are non-basic. In the case where there are few 

decision variables, this is equivalent to finding the constraint equation’s intercept on that 

variable’s axis. By iterating through each such set, the corner points of the problem at 

hand are identified. Based on the definition of the simplex method, the maximum number 

of possible basic solutions for m equations in n unknowns is 

(
 
 
)  

  

  (   ) 
 

Equation 10: Number of possible solutions for LP problem 
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Which is a far cry from the potentially infinite set of feasible solutions. It is in this 

manner that the simplex method reduces the set of feasible solutions to investigate to the 

value of Equation 10 for the problem at hand. 

In order to increase the efficiency of this process further, the simplex method 

provides an algorithm for moving closer to the optimal feasible solution with every 

iteration of analysis. In the first iteration, a basic solution is found which may or may not 

be optimal, and will have some number of decision variables non-basic. On the next 

iteration however, some basic variables will become non-basic, and vice versa. The basic 

variable which is zeroed is called the leaving variable, and the non-basic which becomes 

non-zero is the entering variable. In order to choose which will be which, the direction of 

greatest improvement in the objective criterion is chosen, which is the decision variable 

with the largest (in the case of a maximization problem) non-negative coefficient. The 

value of the entering variable is chosen by finding the ratio of each constraint equation’s 

right-hand-side value to the entering variable’s left-hand-side coefficient. The minimum 

non-negative value of these ratios represents an intercept of constraint equations, or a 

corner point of the solution space. At this point, the solution found may still not be 

optimal, and so Gauss-Jordan row operations [56],[24],[19] are performed in order to 

move from this corner point to one which is at least more optimal than the one found by 

the latest iteration. 

Altogether, the simplex algorithm is composed of 4 steps, subject to two 

conditions. The first, optimality, states that the entering variable in a maximization 

(minimization) problem is the non-basic variable having the most negative (positive) 

coefficient in the objective criterion equation. The second, feasibility, states that for 
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maximization and minimization problems, the leaving variable is the basic variable 

associated with the smallest non-negative ratio. In the first step, a basic feasible solution 

is found by zeroing decision variables. Second, an entering variable is selected using the 

optimality condition. If none satisfy the condition, the current solution is the most 

optimal. Third, a leaving variable is chosen via the feasibility condition. Fourth, a new 

basic solution is found using Gauss-Jordan row operations, and the process repeats at the 

second step. 

Inherent in the construction of a LP model are two properties: proportionality and 

additivity. The first; proportionality, requires that the contribution of each design variable 

in both the objective function and constraints to be directly proportional to the value of 

the variable. This property limits LP models to capturing effects which can be 

represented via a linear equation. LP methods cannot, for example, be used to investigate 

the effect of the reciprocal model on the relationship between available maintenance 

technicians and maintenance time. The second; additivity, requires that the total 

contribution of all variables and constraints be a direct sum. In cases where the objective 

function or constraints may have cross-effects or recursive ones, such as an increase in 

flight rate of a RLV fleet resulting from trading personnel allocated to shorter-length 

maintenance subsystems to a longer-length subsystem or working with a reduced number 

of technicians on an individual vehicle because more are being used in the maintenance 

of another vehicle.  

In cases where either proportionality or additivity is violated, then more complex 

methods are needed. In addition, the characterization of an optimal feasible solution 

requires that all    and    are constants known in advance. If there is any uncertainty in 
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any of these values, then more complex methods are needed to compensate. Therefore the 

algorithm for moving beyond LP would be to check that the relationships of decision 

variables, objectives, and constraints satisfy proportionality and additivity, and that all 

problem-specific coefficients are known. 

RLV O&M LP Model 

Due to the assumptions presented in the previous chapter, the ability of a LP 

model in capturing RLV O&M is very limited. Due to the proportionality property, a LP 

model is limited to the linear model of maintenance times. In addition, as the 

MMH/Flight is a non-linear function as multiple vehicles are incorporated, a LP model 

can only represent maintenance on one vehicle. An objective function for a RLV O&M 

LP problem could be defined 

             ∑ 
                       

                             
   

  

   

 

Equation 11: RLV O&M LP model objective function 

 

Where the    represent the number of available technicians for work on subsystem 

i. Factors in the objective function are all negative because by increasing the    associated 

with a subsystem, overall MMH decreases which drives the solution toward global 

minimum. 

For the LP model all 16 subsystems identified in the previous chapter are 

included, with the expected amount of time for individual tasks comprising maintenance 

on that subsystem added together to give an average time for maintenance on that 

subsystem. These average values are shown below in Table 1, whose values can be found 
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by adding together the number of days required for each subsystem and multiplying that 

number by 8, which assumes 1 8-hour maintenance shift per day. The values in the table 

comprise the ‘lowest time for subsystem i' variable in Equation 11, and the ‘Maximum 

techs for subsystem i' variable is assumed to be 15 in each case. 

 

Table 1: Expected times for maintenance actions by subsystem 

Maintenance time (Hours) 

Avionics 64 Landing & Recovery 88 

Communications 104 Navigation 72 

Crew 32 Pneumatic 104 

Electrical & 

Wiring 
152 

Propellant 

Management 
48 

Engines 120 Software 88 

Environmental 72 Structures 88 

Flight Controls 104 TPS 72 

Hydraulics 112 Tracking 80 

 

Constraints on each    restrict its value to be non-negative, and between 1 & 15, 

the maximum being the assumed maximum capable of performing maintenance on a 

subsystem, or                    . 

Due to the simplicity of the model up to this point of its construction, it is obvious 

that the solution which minimizes the MMH is to maximize all   , or          

        , and this result is found via the simplex method, resulting in a minimum MMH 

of 1400 hours. This is due to the fact that the model does not represent any point of 

diminishing returns from allotting more technicians to the maintenance of any subsystem. 

More interesting behavior can however be found by including another constraint. In 
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particular, the method present in the discussion with Figure 3 can be investigated, in 

which the technicians allotted to maintenance on lower-length subsystems are reduced 

since the higher-length subsystems are driving flight rate. Since the proportionality for 

each subsystem is common (scaled to the maximum of 15 technicians), the number of 

technicians allotted to each subsystem can be scaled by the subsystem with the longest 

necessary time. According to the task list defined previously, this subsystem is Electrical 

& Wiring, at requiring 19 days to complete. Therefore, an additional constraint can be 

added to the LP model of the form 

   
                       

                               
 

Which has the effect of trading individual subsystem maintenance efficiency for a 

reduced technician workforce. After solving this problem via the simplex method, the 

technician availability levels for each subsystem get as close as it can to the constraint 

above, resulting in the distribution shown below in Table 2. 
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Table 2: Improved LP model skillset distribution 

Available Technicians 

Avionics 6 Landing & Recovery 9 

Communications 10 Navigation 7 

Crew 3 Pneumatic 10 

Electrical & 

Wiring 
15 

Propellant 

Management 
5 

Engines 12 Software 9 

Environmental 7 Structures 9 

Flight Controls 10 TPS 7 

Hydraulics 11 Tracking 8 

 

Using the distribution above, the MMH required increases to 1912 hours, which is 

a 37% increase in MMH over the previous optimal solution maximizing the technicians 

available for maintenance on each subsystem, however with a 58% reduction in 

workforce. Here is where this simple model shows its merit: even with an oversimplified 

version of the system under consideration, with a few assumptions about how an optimal 

maintenance workforce would be constructed the method produces a skillset distribution 

which can do simple trades between workforce and performance efficiency. The 

computer codes used for both these calculations are included in the appendices. 

Conclusions 

Instead of using a modeling method, the tool must be a simulation of RLV O&M. 

The reasoning here is three-fold: the methods do not have the capability of solving the 

problem, the problem does not have a closed-form solution, and the problem itself is 

dynamic. In the case of RLV O&M, all three of these cases are true in addition to another 

motivating factor: lack of historical precedent. In addition, the information which is 

available is scattered and usually not very informative. An example of such would be the 
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average amount of time spent on the STS for O&M (88 days [15]) because there is no 

breakdown to individual task times or variance. In addition, as models previously used 

for predicting RLV O&M have normally used expected values instead of allowing for 

variation, a simulation which can incorporate uncertainty should be used in order to 

produce a solution which is robust. Such a solution would incorporate the variability 

inherent in RLV O&M and therefore would perform optimally with varying conditions. 

For all these reasons, the search for an experimental frame moves to simulation. There is 

still a chance that a simple method such as that shown above could find roughly the same 

optimal settings a more involved technique could, and so the technician availability levels 

found here will be investigated again when the full experimental frame is constructed. 

Monte Carlo Simulation 

A simple example of simulation is the Monte Carlo method, which tends to be 

used when it is infeasible to compute and exact result with a deterministic algorithm [29]. 

Essentially, the method uses random sampling in order to estimate the output of an 

experiment. Its inception and practice is thanks to improvements in computing 

technology allowing a multitude of computations to happen every second. As an example 

application, consider the task of approximating the value of π. To construct this problem, 

define a unit square within an xy-plane with corners at the origin and (1, 1), and then 

inscribe a quarter-circle centered at the origin of radius 1. The ratio of the two areas is 

then π/4. To proceed, the shape is randomly populated with a large number of points. By 

taking the ratio of the number of points which fall in the quarter-circle over those which 

fall outside but still within the square then multiplying by 4, the method yields an 
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estimate of π. After a sufficiently large number of points have been placed in the area, the 

approximation can come very close to the value of π.  

Without the requirements of proportionality and additivity, the Monte Carlo 

method is able to incorporate the reciprocal model of task times and the non-linear effect 

of multiple vehicle maintenance. The Monte Carlo method is also useful because of the 

fact that it can incorporate variation in its calculations. As a specific example, to improve 

upon the LP model constructed in the previous section, the number of hours required for 

maintenance on a specific subsystem can be allowed to vary within a particular range so 

that the inputs passed into the simulation the stochastic effects expected of the RLV 

O&M system. By incorporating this variation, results coming out of Monte Carlo can be 

more robust, however at a price. In stochastic systems, unless the optimum set of input 

variables is assumed to be one point, which in a stochastic system is likely to change 

from one run to the next, then it may not be possible to find a global minimum [60]. In 

addition, finding all minima to find global minimum is typically very difficult, and in 

some situations may be impossible. 

Monte Carlo Method Model 

The Monte Carlo simulation constructed over many repetitions attempts to find an 

optimum maintenance workforce which minimizes required workforce with the greatest 

possible flight rate. The scenario of this simulation is as such: a number of RLVs enter 

maintenance simultaneously, and the allocated workforce works on them assuming 1 8-

hour shift per day, 5 days per week, and 52 weeks per year. If a particular subsystem has 

been allocated enough technicians to work on multiple vehicles, then the first vehicle is 

allotted up to the maximum (always set to 15) number of technicians and any subsequent 
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vehicles are allotted the difference from the maximum. Each of the subsystems 

represented by the Monte Carlo model has the same time to complete as in the LP model, 

represented by ‘Lowest Hours’ in the equation below, however in this case the time to 

complete will be reciprocally related to the number of available technicians. The 

governing equation is 

                                         
                           

                           
 

Equation 12: Reciprocal completion time model for Monte Carlo 

 

After cycling through each vehicle for a particular subsystem, if the original 

allocation allowed for multiple vehicle maintenance, then the maximum time spent 

amongst the vehicles represents how far into the year maintenance on that subsystem has 

required. If only single vehicle maintenance occurs for that subsystem (original allocation 

for that subsystem of less than the maximum of 15), then the sum of required times 

represents how far into the year maintenance on that subsystem has required. The 

scenario is shown pictorially below in Figure 5. 

 

Figure 5: Comparison of single and multiple vehicle maintenance 

  

Maintenance Days 1 2 3 4 

Single Vehicle Subsystem 1 Vehicle 1 Vehicle 2 

Multiple Vehicle 

Max Speed 
Subsystem 1 

Vehicle 1 

 Vehicle 2 

 Multiple Vehicle 

Not Max 
Subsystem 1 

Vehicle 1 

 Vehicle 2 
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For Subsystem 1 shown notionally above, maintenance at maximum speed 

requires 2 days for a single vehicle. When allotted enough technicians for single-vehicle 

maintenance, the total amount of time required for 2 vehicles to complete maintenance on 

Subsystem 1 is 4 days, as shown in the ‘Single Vehicle’ row. However; if the subsystem 

was allotted enough technicians to perform multiple-vehicle maintenance at maximum 

speed, then maintenance on that subsystem is completed for all vehicles in only 2 days, as 

shown in the ‘Multiple Vehicle Max Speed’ row. Furthermore, if the subsystem is 

allotted more than enough technicians for work on one subsystem, but not enough to 

perform maintenance on subsequent vehicles at maximum speed, the vehicles which are 

worked on by the reduced leftover workforce will be completed later than those with 

maximum technicians applied. In this case, Subsystem 1 has been maintained across all 

vehicles after the maximum amount of time has elapsed, in this notional case 3 days into 

the year. Once maintenance on all subsystems have been addressed in this fashion, the 

subsystem with the longest required maintenance is that which drives the flight rate, and 

so the subsystem with the maximum required hours is selected, and divided by the total 

available hours per year (8 hours per day * 5 days per week * 52 weeks per year = 2080 

available hours) to calculate a flight rate associated with that maintenance distribution. 

To generate inputs for the Monte Carlo model, each of the 16 subsystems are on 

each run allotted an integer number of available technicians from 1 to 15x the number of 

vehicles so as to allow for multiple vehicle maintenance. After a randomly generated 

distribution is analyzed, its sum and flight rate are recorded. Initially, the best flight rate 

possible is set to 0 and the workforce distribution sum is set to the absolute maximum 

(16*15*number of vehicles). If on a certain run the randomly generated workforce 
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distribution is able to achieve a higher flight rate than the current maximum with a lower 

workforce distribution sum, it is recorded as the new best. The simulation code then 

repeats the analysis until 1,000,000 runs have completed since the last best distribution 

has been found. 

To characterize the results coming out of the Monte Carlo model, several 

representative cases are shown below. From the general formulation of the scenario this 

method is attempting to capture, it is expected that a randomly generated optimal case 

would allot fewer technicians to lower-time subsystems like Crew and Propellant 

Management, while allotting more to higher-time subsystems like Electrical & Wiring 

and Engines. Over 10 completed runs, the optimal settings which the Monte Carlo 

simulation has found without any variation in the amount of required time for a 

subsystem are shown below in Table 3. 

As stated earlier, Monte Carlo methods can also incorporate variation, which can 

be simply incorporated into the simulation already constructed by allowing the 

maintenance required for maintenance on a subsystem to vary within a certain range. The 

range chosen to exhibit optimization on a stochastic maintenance system is +10%. On 

each repetition of the simulation, the time for each subsystem is probabilistically 

calculated using the base values established previously, then adding up to 10% more time 

to the total. Over 10 completed runs, the optimal settings which the Monte Carlo 

simulation has found including variation are shown below in Table 4. 
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Table 3: Monte Carlo model sample runs 

 
Sample Runs 

  

 
1 2 3 4 5 6 7 8 9 10 μ σ 

Avionics 6 6 5 8 7 3 8 6 5 14 7 3 

Communications 20 14 20 23 7 14 10 5 11 22 15 6 

Crew 4 6 2 20 3 8 12 7 13 5 8 5 

Electrical & Wiring 12 12 9 13 9 12 24 7 15 10 12 4 

Engines 12 7 7 20 15 12 27 9 11 5 13 6 

Environmental 30 10 9 14 13 10 13 7 19 11 14 6 

Flight Controls 9 12 20 14 26 6 25 6 23 3 14 8 

Hydraulics 15 15 6 12 7 5 9 25 11 7 11 6 

Landing & Recovery 8 6 6 15 6 8 8 10 13 7 9 3 

Navigation 13 9 5 12 11 8 10 7 9 12 10 2 

Pneumatic 14 24 10 12 9 18 21 25 10 7 15 6 

Propellant 

Management 
5 4 3 17 13 2 10 17 7 2 8 6 

Software 21 13 5 10 5 5 9 6 9 3 9 5 

Structures 6 9 7 9 8 10 20 4 21 5 10 6 

TPS 5 6 8 18 24 9 7 3 7 3 9 6 

Tracking 7 21 9 9 8 12 7 6 7 12 10 4 

Workforce Sum 187 174 131 226 171 142 220 150 191 128 
17

2 

3

3 

Flight Rate 4.7 4 3.7 5.8 3.9 2.9 5.6 2.9 5.4 2 4 1 

Found on run 

(x10,000) 
96 16 105 2.3 21 20 20 109 130 37 

  

OEC 
3.0

1 

3.1

4 

4.0

2 

2.6

8 

3.1

8 

3.6

6 

2.7

2 

3.4

8 

3.0

3 

3.9

4   

 

In the above table, the randomly generated workforce skillset distribution for a 

run is shown in the top 16 rows. The average and standard deviation of each subsystem 

technician availability is shown in the rightmost columns. The bottom 4 rows of numbers 

in the above table show the sum of technicians, the flight rate the above distribution 

resulted in, and on what iteration of the code the ‘optimal’ distribution shown was found. 

Finally, at the bottom is a row evaluating the distribution according to its performance as 



52 

 

compared with the baseline study performed in DES. These numbers will be important 

later when Monte Carlo and LP are compared with the results coming from DES. 

 

 

Table 4: Monte Carlo model sample runs with variation 

 
Sample Runs with Variation 

  

 
1 2 3 4 5 6 7 8 9 10 μ σ 

Avionics 7 4 5 18 8 6 18 5 10 12 9 5 

Communications 9 13 12 6 12 7 10 13 9 15 11 3 

Crew 8 16 12 4 4 5 2 8 23 11 9 6 

Electrical & Wiring 12 24 13 8 13 12 10 9 14 14 13 4 

Engines 9 11 27 6 7 11 26 4 8 14 12 8 

Environmental 9 4 6 9 6 6 5 5 6 9 7 2 

Flight Controls 11 9 9 12 11 13 20 9 19 10 12 4 

Hydraulics 11 6 21 9 9 19 6 15 7 13 12 5 
Landing & 

Recovery 
11 5 8 6 5 23 7 3 10 19 10 6 

Navigation 18 9 8 12 10 6 4 5 4 8 8 4 

Pneumatic 8 8 10 7 6 7 9 6 7 11 8 2 
Propellant 

Management 
4 12 7 4 19 14 3 10 6 7 9 5 

Software 15 14 8 6 8 9 4 3 10 23 10 6 

Structures 11 7 19 30 19 14 9 7 12 26 15 8 

TPS 5 4 9 4 4 6 3 8 11 8 6 3 

Tracking 20 10 18 5 10 14 5 11 4 9 11 5 

Workforce Sum 168 156 192 146 151 172 141 121 160 209 
16

2 

2

4 

Flight Rate 4.5 3.5 5.1 3.2 3.6 4.2 2.8 2.2 3.3 5.9 4 1 

Found on run 

(x10,000) 
27 153 150 20 10 45 41 75 23 46 

  

OEC 
3.2

9 

3.4

1 

2.9

9 

3.5

9 

3.5

2 

3.1

9 

3.6

7 

4.1

8 

3.3

1 

2.8

6   
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Conclusions  

Although the Monte Carlo method is limited in the sense that it uses random input 

to find a result, which does not guarantee finding optimal settings for a given evaluation 

criterion in a stochastic system, it is very useful in performing a large number of 

experiments quickly. It is more important than ever to walk the line between abstraction 

and fidelity, as with every bit of information added into the simulation computational 

time is increased. Overall, the Monte Carlo method is very useful for getting an idea of 

how inputs relate to outputs in a complex system, however without extra supporting 

codes or nearly limitless computational time it is ultimately inefficient at arriving at 

optimal values. By random chance it may however land upon a workforce skillset 

distribution which can be found by more involved methods, and so the sample runs with 

the highest OEC values in the tables above will be considered alongside the results 

coming out of simulation. 

Discrete Event Simulation 

The final method considered is Discrete Event Simulation (DES), which has been 

the standard tool for evaluating operational scenarios for many years [5] because of its 

formulation as a sequential series of interconnected events. A properly constructed DES 

model can capture very complicated and time-dependent relationships because of this 

formulation, allowing it to capture the effects of future technologies and hybrid launch 

systems which have had very little physical use so far [7]. In fact, the use of DES to 

model Shuttle operations began as early as 1970, before the Shuttle program was even 

approved for development [47]. 
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In DES, the phenomena of interest change value or state at discrete points in time. 

Similar to network models [56], DES is primarily composed of actions (nodes) and flow 

paths (arcs) which represent the behavior of a complicated system. Unlike a network 

model, DES specifically represents the operation of the simulated system as a 

chronological series of events. One of DES’ attractive features is the fact that during 

simulation, the only points of time analyzed are those in which a discrete action or flow is 

taking place. The fundamental assumption here is that although time is continuous, only a 

finite number of events can occur in a given period [59].  

Each event that occurs causes the simulation to move from one system state to 

another, each of which is a collection of variables necessary to describe the system at a 

particular time [27]. Any one state would hold values for the amount of MMH spent on 

each subsystem of each vehicle both in total and since the last flight took place, the 

number of vehicles and maintenance sites, the mission status of vehicles, and so on. In 

particular if the only state variable considered was which maintenance site was working 

on which vehicle’s subsystem, the number of possible states assuming only true or false 

for values would be [(          )
           

]
                  

, which with only 2 

vehicles each with 16 subsystems and only 1 maintenance site, is close to 4.3 billion 

possible states. Therefore the DES methodology used should not be state-based. 

There are seven basic concepts DES embodies which are of particular use for 

RLV simulation: work, resources, routing, buffers, scheduling, sequencing, and 

performance [28]. Work denotes the entities moving through the system, such as 

customers arriving at a business or RLVs requiring maintenance. Resources are those 
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entities which can provide services to the work, such as the site which takes in a RLV for 

maintenance. With every batch of work there is a route by which the work gathers the 

resources required for completion, and the order in which the work will be done. Buffers 

are those entities which hold work while required and in-use resources complete their 

current work. These buffers may have an infinite or finite capacity, the latter requiring 

specific rules for their behavior when full. Scheduling takes the concept of a buffer and 

relates it to the real-world time the simulation is emulating, usually consisting of times at 

which resources become available. Finally, sequencing contains information dictating the 

order in which resources handle work waiting in buffers. This may be a first-come-first-

served order, or a hierarchical process, such as a RLV which must be launched sooner 

than others waiting in a queue for maintenance. 

When considered together, the concepts important to this work: time delay, 

number waiting, resource utilization, and entity throughput comprise a queuing model 

[56], [19][27], which may be either closed or open-loop. In an open-loop system, work 

arrives from outside the system at a rate independent of the state of the system. However, 

when one has control over work arrival times it is a closed-loop system. In the case of 

RLV O&M, the queuing model is of the closed-loop variety, as the arrival of RLVs either 

from mission completion or manufacture is known. 

There are two major forms of DES: the process-interaction and event-scheduling 

approaches [56]. The process-interaction approach provides a process for each entity in a 

system, essentially including the passage of time occurring during a process. Instead of 

focusing on the times events are started and finished, the process-interaction approach 

places more emphasis on the role of queue formation when resources are in use. The 
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event-scheduling approach on the other hand comes from the fact that every discrete-

event system has a collection of state variables that change values as time elapses. Each 

time one of these values changes it is called an event. It is primarily concerned with the 

timing of events and how they interact with one another through the use of a queuing 

system. The event-scheduling approach has several intrinsic properties. The first is that 

an event is executed if and only if a state change occurs, such as a vehicle being launched 

only after it has completed maintenance on each of its subsystems. The second is that 

simulated time remains constant while an event is being executed, which is especially 

useful for handling multiple vehicles and maintenance sites. Using this property, all 

events that would happen at a particular time in simulation can be handled sequentially in 

practice, while all still happening simultaneously from the perspective of simulation time. 

Third is the concept of a compound event, which is a recipe for executing a sequence of 

actions all at the same time such as gathering completion times of a subsystem’s tasks. 

Fourth, DES consists of a sequence of instances of compound events of possibly different 

types ordered according to their scheduled execution times, which may be randomly 

generated. This property allows for each of the compound events which describe how 

work (vehicles) will utilize resources (maintenance sites and technicians) to interact in a 

meaningful manner.  

Altogether, the event-scheduling approach lends itself best to the construction of 

an effective schedule for a simulated system in which the interactions between agents are 

considered to be instantaneous, which works well for RLV O&M simulation as the 

‘schedule’ can take the form of technician availability. If there are only enough 

technicians allotted to a particular subsystem’s maintenance for one vehicle, then the site 
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will operate off of a ‘first-come, first-served’ basis. However, if there are more than 

enough for one vehicle (up to enough for several vehicles) then the allotment (schedule) 

could be described as ‘first-come, first-served-best’, due to the relationship between 

technician availability and task time described previously. 

Software packages 

Since DES has been in wide use for important operations problems, several 

computer programs have been built specifically to capture its architecture. Some 

available packages are: Arena from Rockwell Automation [44], Vensim from Ventana 

Systems, Inc. [57], and the open-source SimPy [51], which is a collection of libraries 

written in python. Arena is widely in use presently for the construction of RLV O&M 

models [43],[39], however it requires purchase. Vensim is also in use for DES, and while 

setting up a simulation is fairly easy, personal experiences with the program have been 

plagued with difficulties retrieving important information back out of the program. In 

addition, the license previously accessible has lapsed. Finally, SimPy is attractive because 

of its $0 price tag, however part of this line of research has been to personally understand 

all the underlying processes happening during DES. 

The primary motivations for beginning this line of research & development is to 

increase the effectiveness of preliminary design by incorporating operations concerns into 

the design of an aerospace system as early as possible, with the most information 

possible. As outlined in the introduction, the construction of such a tool would be capable 

of optimizing on both the feasibility and long-term viability of a system before detailed 

design considerations came into play. In particular, the Aerospace Systems Design 

Laboratory (ASDL) at Georgia Tech has begun construction of an integrated RLV sizing 
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& synthesis (S&S) code with the potential of backing from the Air Force Research 

Laboratory (AFRL) with this very intent. Other portions of the S&S code include 

aerodynamics, propulsion, and other primary concerns for the feasibility of a RLV.  

The tool constructed as part of this research has been coded in the Python 

programming language in order to facilitate integration using an open-source integration 

framework called Open Multi-Disciplinary Analysis & Optimization (openMDAO), and 

for that reason the tool which is constructed utilizing the lessons learned from a literature 

review is also be coded in Python. The reasoning for using openMDAO comes from the 

want of general accessibility. Open-source software is by its definition able to be run and 

modified by any user who acquires it, which is an attractive feature for programmers and 

end-users alike. The only expenditure associated with such a tool is in the acquisition of 

the code itself, without requiring special costly operating software such as ModelCenter. 

In addition due to uncertainty in the final requirements for the tool, the tool built must be 

scale-able in order to facilitate the inclusion of multiple vehicles and/or maintenance sites 

with varying characteristics. Because of these concerns, the tool built must be highly 

customizable, and so it has been built from the ground up, requiring a fair bit of 

development and debugging time. 

After reviewing the methods of LP, Monte Carlo, and DES, and considering the 

long historical precedent of using DES for modeling RLV O&M, it has been selected for 

final consideration.  
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Answering Research Question 1: DES is the proper method for capturing RLV O&M, 

both in its power and by the precedent of its use. 

Using the DES framework, a simulation of RLV O&M has been made, as will be 

expanded upon in the next section. Once the experimental frame is constructed, 

interesting O&M scheme combinations can be explored, which will ultimately lead to 

answering the second research question. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 4 

WORKFORCE OPTIMIZATION EXPERIMENTS 

 

The overarching design of experiments (DOE) code begins by loading two Excel 

sheets of run inputs. The first sheet loaded contains information pertinent to the case 

study being performed. In particular, the case study on workforce utilization loads in, for 

each of the 16 subsystems included, the maximum number of technicians available and 

the maximum number of technicians that can work on a single vehicle's subsystem at a 

time. The second document loaded is for general inputs which are 

- Campaign years to simulate, defaulted to 20 

- Maximum launches per year, defaulted to 12 

- Vehicle characteristics 

o Initialization (Spawn) time, default is 1 

o Mission type 

 Satellite deployment 

 ISS resupply 

 Lunar mission 

 Extended on-orbit 

o Vehicle identification number, starting with 0 

- Maintenance Site Characteristics 

o Initialization (Spawn) time, default is 1 

o Technicians available 

o Distance to integration center in miles 
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o Road Rating of 1-5 

o Specialty which can be 'None', one, or multiple subsystems 

o Close time, default is 0 

The number of technicians available for each subsystem gathered from the case 

study spreadsheet are written to the corresponding maintenance site entries in the inputs 

spreadsheet. The maximum number of technicians which can work on a particular 

subsystem at once are also written to the corresponding spreadsheet containing pertinent 

data on that subsystem. Information contained within each subsystem spreadsheet: 

- Name of subsystem 

- Maximum number of technicians which can work at once 

- List of tasks to be performed 

- Descriptions of each task to be performed 

- Mean and variance of the log-Normal distribution applied to the 

time required for each task 

The tasks allotted to each subsystem come from the FAA’s Guide to Commercial 

Reusable Launch Vehicle Operations and Maintenance [26]. Each is set to a 1, 2, or 3-

day setting according to best guess according to the description of the task and its 

associated complexity. The settings for each log-Normal distribution follow in Table 5. 
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Table 5: Task time log-normal distribution settings 

 Mean Variance   

1-Day 2.15 0.2 → 8 hours average 

2-Day 2.8 0.1 → 16 hours average 

3-Day 3.3 0.1 → 24 hours average 

 

Once all the inputs for a single run have been set, the operations simulation itself 

is run. The simulation begins by defining class variables for instantiating vehicles and 

maintenance sites. For a vehicle, the class variables are: 

- Total number of technicians currently in use 

- System Check variable which tracks each subsystem, whether each have been 

cleared for the next launch, and how many hours have been spent on this cycle for 

maintenance. This is defaulted to each system being cleared for launch at 

initiation or True 

- Variables for each subsystem simulated tracking the total number of maintenance 

hours applied 

- TPS_Materials variable for potentially applying altering maintenance practices for 

different materials 

- Time_Initialized which controls when the vehicle will be instantiated 

- Default_Mission which controls how long missions will last 

- Return_Time variable which tracks when the vehicle will return from its latest 

mission 

- Num_Flights, the total number of flights the vehicle has performed 

- TotalMMH, the total maintenance man hours from all subsystems 
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- VID, the vehicle identification number 

- Maint_Site, a Maintenance Site variable which tracks which maintenance sites are 

working on which subsystem of that vehicle 

 For a maintenance site, the class variables are: 

- Available, a boolean. Starting value is True so that it can begin work immediately. 

- Techs, the maximum number of technicians available 

- Techs In Use, which tracks the current utilization of the maintenance site 

- WorkingOn, an array which keeps track of all the vehicles a maintenance site is 

working on, the subsystem for that vehicle it is working on, when work will be 

completed, and how many technicians are in use for the work 

- Int_Dist, the distance from the maintenance site to the integration center 

- Road_Rating, a 1-5 integer which along with Int_Dist dictates how much time is 

required for transportation to and from the integration center to the maintenance 

site 

o 1 assumes interstate travel, averaging 70 mph 

o 3 assumes highway travel, averaging 50 mph 

o 5 assumes country/urban travel, averaging 30 mph 

- TimeInUse, the total number of maintenance man-hours this site has performed 

- Specialty, which dictates which subsystems the site can work on. This can be 

'None' so that the site can work on any subsystem, or any number of subsystems 

 Once the classes are set up, a code-writing module is run. This module takes in 

the input data set by the DOE code into the Inputs spreadsheet and translates it into 
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python code which can be used by the simulation code. The code-writing module begins 

by sequentially loading each subsystem spreadsheet, and recording the maximum number 

of technicians which can work on that subsystem. Further detail on the subsystems 

module will follow shortly, for now the only information needed is that the name of the 

subsystem, along with the task names, descriptions, and statistical moments are taken 

from each subsystem spreadsheet and written to code. For in-depth descriptions of each 

subsystem and its tasks please refer to Appendix A. Once the subsystems module has 

been written, then vehicle and maintenance site input characteristics, number of years to 

simulate, and maximum number of launches per year are read from the Inputs 

spreadsheet and similarly written to an inputs module to be accessed by the simulation 

code. 

 Once the code-writing module has completed, the simulation loads the campaign 

years from the freshly written inputs module. The number of years dictates the total time 

of simulation, by assuming one 8-hour shift, 5 days per week, over the 52 weeks of a 

single year, which has been used in other analyses [6] basing their operational 

assumptions on Shuttle practices. The input characteristics of vehicles and maintenance 

sites are also read in and kept in separate arrays, MaintSite_Set and Vehicle_Set. Set here 

by the user is the frequency by which the simulation state will be recorded by a 

DataCollect module is set. Next, the DataCollect module is run to prepare an output file 

for the run. Preparing the output file does the tasks of creating a spreadsheet for housing 

the data for the run in progress, and records the input data from the two arrays of input 

characteristics to an inputs sheet. 
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 Once preparation of the output file has completed, arrays to hold instantiated 

vehicle and maintenance site objects are initialized, aptly named 'Vehicles' and 

'MaintSites'. At this point, a loop is started which will keep the remaining logic looping 

while the current time of simulation is less than the total time of simulation. An overall 

flowchart for what follow is shown below in Figure 6. 

At the beginning of every loop, the input characteristic arrays (MaintSite_Set, 

Vechicle_Set) are checked to see if any element within them is to be spawned at that 

timestep. The default start time is 1, so any vehicles or maintenance sites which have a 

default start time will begin directly at the beginning of simulation simultaneously. 

 

 

Figure 6: Simulation Events Flowchart 
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Next, all maintenance site resources are examined to find if the current time step 

is when work will be completed, thus requiring that resource to be released. If this 

condition is met, the maintenance site variables affected are: 

- TechsInUse has the number of technicians which have just finished work (stored 

within the WorkingOn variable) subtracted from it 

- Available is set to True 

- The entry in the WorkingOn variable that was tracking this particular job is 

removed from the array 

 Vehicle characteristics affected are: 

- Techs_In_Use variable has the number of technicians which have just finished 

work (stored within the MaintSite WorkingOn variable) subtracted from it 

- The System_Check entry for the subsystem tracking completed maintenance is 

set to True 

- Maint_Site entry tracking the work completed is removed from the array 

 Next, all vehicles are cycled through to determine what actions are required for 

them. The first check is to see whether any vehicles are returning from mission during 

this timestep. If the Return_Time variable matches the current time, then the vehicle 

lands by calling a 'Landing' function. In order to call this function however, the vehicle 

must exceed a 1/235 chance of breaking up during re-entry, which is based on STS 

history. If the vehicle does not pass this random chance, it is 'destroyed' by removing it 

from simulation. If the vehicle does pass the random chance, the Landing function cycles 

through the Vehicle's System_Check variable, setting each of the subsystems to 'False' - 
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meaning that maintenance is now required on each. Each entry in System_Check which 

has been tracking the MMH applied since the last launch are added to the aggregate 

variable for each subsystem, and then zeroed. Finally, the Return_Time variable is set to 

zero, meaning that it current has no return time as it is grounded. Other than these effects, 

the vehicles are essentially memoryless. Individual subsystems do not degrade over time 

and repeated launches. 

 After considering landing vehicles, vehicles requiring maintenance are examined. 

For a single vehicle, the System_Check variable is cycled through to first find whether it 

is currently undergoing work by searching through every maintenance site's WorkingOn 

variable to find if any maintenance site is specifically working on this vehicle, and on this 

particular vehicle's particular subsystem. If an entry is found, then the subsystem is 

passed over. During this operation, the availability of each maintenance site is also 

recorded so that further looping can be skipped if all maintenance sites are completely in 

use. Next, logic calls check to be certain that there are maintenance sites available, the 

subsystem in question is not being worked on by any of them, and that the subsystem has 

not already had work completed. Assuming all of these conditions are met, then the 

Subsystems module is called specifically for the subsystem under consideration. 

 The Subsystems module, written at the beginning of simulation code execution, 

dictates how the maintenance tasks required by vehicles and maintenance sites 

performing the tasks interact with one another. Each subsystem represented on a vehicle 

is a function call within the Subsystems module, each sharing many similarities. First, for 

an individual subsystem, the maximum number of people which can work on the 

subsystem is set. Next, the function searches through the total list of maintenance sites 
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first to find an available site, then checks to see if an available site can work on the 

subsystem currently requiring work by referencing that maintenance site's Specialty 

variable. If a maintenance site meets both requirements, its number of technicians in use 

is examined to determine if it is already at capacity. If it is, then that site's availability is 

set to False. If it isn't, then calculation can proceed. 

 First, the transportation time to and from the maintenance site is calculated by 

referencing the distance from the integration center (Int_Dist) and the Road_Rating 

variables. Next, each of the tasks associated with the particular subsystem are assigned a 

number of required hours by randomly pulling from a log-Normal distribution whose 

moments are determined by each Subsystem workbook referenced in the code-writing 

phase. Once the tasks have been calculated, the code looks to see if there is an expansion 

module present for that subsystem. The potential for expansion modules allows for 

increasing the fidelity of any subsystem's maintenance work easily and without requiring 

any changes to the existing code. Without an expansion module, nothing happens here. 

Next, the number of technicians currently available is referenced again, in this case to 

compare with the maximum number of technicians which can work on the subsystem at a 

time. If the technicians available variable is equal to or greater than the maximum, 

nothing happens. However, if there are fewer available, then a reciprocal dependency on 

the amount of time required for subsystem work completion is applied. The dependency 

assumes that fewer technicians available will cause the time required to rise very rapidly, 

following the reciprocal dependency in Equation 9. 

Once the total amount of hours has been set with this condition, maintenance site 

variables affected are: 
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- TechsInUse has the number of technicians beginning work added 

- WorkingOn array has an entry added which contains the vehicle's identification 

number, the subsystem it is beginning work on, the timestep work will be 

completed, and the number of technicians doing the work 

- TimeInUse variable has the maintenance man hours required added 

 Vehicle variables affected are: 

- Techs_In_Use variable has the number of technicians beginning work added 

- Maint_Site array has an entry added containing the maintenance site's 

identification number and the subsystem it is doing work on 

- The System_Check entry for the subsystem under consideration and TotalMMH 

variables have the total maintenance man hours added to them 

 Once the function call is completed, the Subsystems module returns back to the 

simulation code. 

 Once all possible maintenance actions have taken place, the vehicle is checked to 

see if it is ready for launch. It should be mentioned here that when a vehicle is first 

instantiated, its System_Check variable is defaulted to all True, so new vehicles will 

always skip through the code to this point, meaning that new vehicles go directly to 

launch. For all others, a vehicle's System_Check variable is examined for any entries 

which are False, indicating that maintenance work has not completed on that subsystem 

and so it is not cleared for launch. Concurrently, each subsystem is checked against all 

maintenance sites WorkingOn variable to ensure that maintenance is not ongoing 

somewhere (It certainly would not do to launch a RLV without its avionics system). 
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Assuming that both these conditions are met, the vehicle is ready for launch. Just like 

landing however, there is a 1/235 chance (according to STS history) that LOV will occur 

at launch. If the vehicle does not pass this chance, it is removed from simulation. 

Assuming it does pass, the Launch function is called to handle mission operations. The 

Launch function references the vehicle's Default_Mission variable to determine how 

many work hours will go by while the vehicle is performing its mission. Each of these 

numbers comes straight from NASA data and averages. For the Satellite mission, which 

is a 5-day mission, 40 work hours will go by. For an ISS mission, a 10-day mission, 80 

hours will go by. Lunar missions were historically done over 12 days, resulting in 96 

hours. Extended stay missions can last up to 15 days, resulting in 120 hours. Once this 

referencing has completed, the vehicle's Return_Time variable is set by adding its on-

mission time to the current timestep, and the vehicles num_flights variable is increased 

by 1. 

 After Launch is called and returns, the DataCollect module is called once again 

to record the state of simulation so that it is recorded at every launch along with it 

scheduled recordings. At this time, the workbook created at beginning of simulation is 

loaded, and the current state of simulation is recorded onto the next empty line of the 

workbook, split between sheets which contain data on each separate vehicle and 

maintenance site. Every variable within the class definitions is recorded on these sheets, 

along with the timestep it represents. Once writing is completed, the workbook is saved 

and simulation continues. 

 At this point, all previous discussion relating to vehicle activities will loop so that 

all vehicles will have all potential actions handles simultaneously in simulation time. 
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 Finally, the simulation chooses which timestep to advance to by creating an array 

Important_Times and adding all spawn times, work completion times, and vehicle return 

times which are greater than the current timestep. Next, if the minimum of these entries is 

greater than the timestep during which scheduled simulation state recording is to take 

place, the current time is changed to the timestep for recording. If not, then the current 

timestep CurrentTime is changed to the minimum of the Important_Times array, and then 

Important_Times is emptied. Once this action is completed, the loop starts back at the 

beginning with the new timestep. In the case of the timestep being the next recording, 

CurrentTime will not match with any other activities and so the only action which will 

happen is state recording and then the next simulation event will take precedence. Once 

the simulation has exhausted its set number of campaign years, the simulation state at 

completion is also recorded, and the operations simulation is completed. 

 Once one run of the simulation is completed, the DOE code once again takes 

precedence for recording of aggregate results for many runs of the simulation. First, the 

inputs module used by the last run of simulation is loaded for both the number and 

characteristics of vehicles and maintenance sites. Next, the run results workbook 

generated by the last run and an aggregate results workbook (if it exists, if not, create it) 

are loaded for referencing and writing, respectively. For each vehicle in simulation, the 

total number of flights, MMH for each subsystem, average MMH per launch of each 

subsystem, and total MMH are recorded. For each maintenance site, the total MMH 

performed is recorded. At this point, for memory conservation, the previous run's results 

file is deleted along with any compiled versions of the Inputs, Subsystems, and 

OperationsModel codes so that the next run can have different inputs. Finally, the entire 
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process repeats using the next row of inputs from the DOE spreadsheet until all runs have 

completed and the aggregate results workbook is completed. 

Definition of Scenario Experiments 

To find the optimal technician skillset distribution, the most complete method 

would be to construct a suitably high-fidelity simulation and conduct a full-factorial 

exploration. However; when simulating maintenance on 16 subsystems, each having a 

number of levels equal to 15x the number of vehicles, this method is computationally 

inefficient. In place of investigating the effect of each individual subsystem’s associated 

workforce individually varying, design of experiments (DOE) methods are employed. 

Using DOE, the maximum amount of information from a combination of experimental 

variables can be obtained in a reduced amount of runs by applying statistical formulae to 

the selection of experimental variable values [23]. In its application, DOE drastically cuts 

down the number of experimental runs from full-factorial to a much more 

computationally and information efficient set of runs. In particular, for the construction of 

DOE the statistical software JMP [33] is used to generate tables of values to run 

sequentially through simulation. 

Even by utilizing DOE the need to uncover gross trends in the metrics of interest 

and then find specific optimal values in those trends would still requires extensive testing. 

Therefore, the grid-search method will be used to iteratively zero in the technician 

availability levels that maximize the OEC. Grid search, depicted below in Figure 7, is a 

method for cutting down on the number of runs necessary for a DOE investigation to 

arrive at optimal settings by iteratively reducing the ranges through which experimental 

variables vary [9]. Grid search was chosen not only for reducing the number of required 
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runs to find optimality, but also because it tends to perform better than more complicated 

methods like genetic algorithms, with lower computational and set-up time cost [14]. In 

the first round of a grid search, representative values for each experimental variable are 

chosen which span the entire design space. To explore the O&M schemes discussed 

previously, the levels chosen are the maximum for performing maintenance on one (15 

technicians) and two vehicles (2x15=30 technicians), along with maintenance at a less 

efficient pace on one vehicle (7 technicians), performing maintenance efficiently on one 

vehicle and less efficiently on a second (22 technicians), and finally having more 

technicians than are usable for maintaining two vehicles (35 technicians), for a total of 

five levels for each variable. Choosing the values as such allows the simultaneous 

exploration of single and multiple vehicle maintenance for each subsystem while also 

allowing for workforce/efficiency trades. 

 

 

Figure 7: Grid search method depiction 

 

After each round of grid search, the ranges for each experimental variable are 

reduced, and another DOE guided set of experiments take place within the reduced 
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frame. In Figure 7 above, on the left is a representation of round 1 of a grid search 

method, and on the right is round 2. In the first round, the experiments of the design 

space of variables X1 & X2 each between values of one and five are performed. Once 

completed, the optimal settings for X1 and X2 are found by processing the outputs from 

experimentation. In the figure above, these settings would be X1 = 4, X2 = 2. In the 

second round, the experimental design space is contracted to those values around the 

optimal values in round 1. While compressed, the set of values still has the same number 

of points to explore, uncovering the optimal value of X2 = 2.5 which was not part of the 

original set of experiments. It is in this manner that each round of grid search closes in on 

more optimal values [1], by compressing the design space and including values not 

explored by previous rounds. 

In subsequent rounds of grid-search optimization two methods for choosing the 

reduced set for the next round of experimentation will be explored and compared. The 

first attempts to optimize on each subsystem individually to achieve an overall optimum, 

assuming that fleet operations will be optimized in flight rate and MMH/flight if each 

comprising maintenance component has been optimized. For selection of optimality, the 

OEC defined previously in Equation 4 will be applied to each subsystem to find its 

optimal value via the maximum found from experimental runs. In order to characterize 

the performance of the system at those settings, an additional set of 100 runs are 

completed at the ‘optimal’ settings to generate μ & σ for the fleet flight rate and 

MMH/Flight/Vehicle metrics. The other points in the reduced set will range from the 

technician availability levels just below and above the optimal setting, with two settings 
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added between the new maximum and minimum and the optimal central value as is 

depicted in Figure 7.  

The second method attempts to optimize fleet operations by optimizing on the 

entire maintenance skillset distribution simultaneously by applying the OEC across each 

subsystem to find the distribution which achieves the greatest efficiency in flight rate and 

MMH/flight with the smallest total workforce. Once gathered, the average (μ) and 

standard deviation (σ) of the top 10% distributions are calculated. The average μ for each 

subsystem becomes the central point for the next round of experimentation, with μ ± σ as 

the maximum and minimum values, and μ ± ½σ included to explore more settings. In 

both methods, as the number of available technicians is an integer, each optimized value 

is rounded to the nearest whole number. This restriction allows for a sharp cut-off of 

optimization rounds. If at some iteration the ranges for the next round are less than 1, 

then the optimal values have been found. 

For each round of optimization and for each optimization method 1,500 runs are 

performed using a ‘Custom Design’ DOE from JMP. 

Baseline Study 

A crucial step for any analysis project is to first establish a baseline for 

comparison with final results. The baseline study consists of 2 identical vehicles with 

identical mission profiles (ISS rendezvous), and 1 maintenance site which is at the same 

location as the launch & landing site. Each run represents a 20 year campaign. 

Maintenance on each subsystem is assumed to require unique skills so that there is no 

overlap in maintenance technician utilization. Maintenance on each subsystem is allotted 
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30 technicians, and 15 is set as the maximum number of technicians which can work on a 

particular subsystem at a time. These settings are such that maintenance can always 

proceed at full speed no matter whether another vehicle is already undergoing 

maintenance. 

 

Table 6: Baseline study technician availability levels 

Avionics 30 Landing & Recovery 30 

Communications 30 Navigation 30 

Crew 30 Pneumatic 30 

Electrical & 

Wiring 30 
Propellant 

Management 30 

Engines 30 Software 30 

Environmental 30 Structures 30 

Flight Controls 30 TPS 30 

Hydraulics 30 Tracking 30 

 

The overall results of the baseline study, shown below in Table 7 indicate that 

without any backup or lack of technicians with any subsystem, roughly 10 flights per 

year will be performed, with roughly 1,450 MMH spent on each vehicle after each flight. 

 

Table 7: Baseline Study Overall Results 

 

Flight 

Rate 

Vehicle1 

MMH/flight 

Vehicle2 

MMH/flight 
MMH/Flight/Veh. Workforce 

μ 10.5 1448 1449 1449 
480 

σ 0.01 3 4 3 

 

The values above are those which the two competing methods for optimization 

will be attempting to improve on, by simultaneously keeping the flight rate and 
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MMH/flight/Vehicle as close as possible to the baseline values while reducing the 

necessary workforce. As comparison, the results from each round and each method will 

be compared to their percentage increases or decreases from the values above. So for a 

method to be considered better than the other, it must converge on a maintenance 

workforce distribution which comes as close to possible to 0% deviation from the 

baseline values with the minimum workforce required. Over the next few sections the 

progression of grid search trials pursuing both methods of optimization will be presented 

and their results compared with baseline values. 

Common Basis of Optimization: Round 0 

Both methods of optimization have the same first round, as was outlined in the 

previous section concerning grid search. The levels are presented below in Table 8. Now 

after establishing the common basis for optimization so that the methods have no 

advantage over one another, the competing methods will be presented and explored. 
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Table 8: Round 1 Grid Search technician availability levels 

 

Technicians Available 

Avionics 5 15 22 30 35 

Communications 5 15 22 30 35 

Crew 5 15 22 30 35 

Electrical & Wiring 5 15 22 30 35 

Engines 5 15 22 30 35 

Environmental 5 15 22 30 35 

Flight Controls 5 15 22 30 35 

Hydraulics 5 15 22 30 35 

Landing & Recovery 5 15 22 30 35 

Navigation 5 15 22 30 35 

Pneumatic 5 15 22 30 35 

Propellant 

Management 5 15 22 30 35 

Software 5 15 22 30 35 

Structures 5 15 22 30 35 

TPS 5 15 22 30 35 

Tracking 5 15 22 30 35 

 

 

Experiment 1: Optimize subsystems individually 

Once the 1,500 runs were completed using the common settings of round 0, the 

results coming from simulation were analyzed using the subsystem overall evaluation 

criterion (SOEC) shown below in Equation 13. Once optimal values were found, the next 

round of grid search was begun using these values and reduced variable ranges. 

 

     
           

               
 
                  

              
 

          

             
 

Equation 13: Subsystem Overall Evaluation Criterion 
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Round 1 Results 

The results from applying the SOEC to the first round DOE study yield optimal 

subsystem technician availability levels which drastically reduce the number of 

technicians, however with a corresponding hit to flight rate and MMH. The settings from 

round 1 SOEC optimization are shown below in Table 9. 

 

Table 9: Round 1 SOEC Optimization Technician Availability Levels 

Avionics 5 Landing & Recovery 5 

Communications 5 Navigation 5 

Crew 5 Pneumatic 5 

Electrical & 

Wiring 15 
Propellant 

Management 5 

Engines 5 Software 5 

Environmental 5 Structures 5 

Flight Controls 5 TPS 5 

Hydraulics 5 Tracking 5 
 

 

By running a further 100 cases at these levels, the metrics presented in Table 10 

below were gleaned. From the gross reduction of available technicians across all 

subsystems, the flight rate is almost halved, while the MMM/Flight/Vehicle is over 250% 

of baseline values. 

 

Table 10: Round 1 SOEC Optimization results 

 
Fleet Flight 

Rate 

Vehicle0 

MMH/flight 

Vehicle1 

MMH/flight 
MMH/Flight/Vehicle 

μ 5.5 4022 4005 4014 

σ 0.03 31 37 19 
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Finally, comparing the results of one round of optimization with the baseline, it 

can be seen from Table 11 below that although there is an 80% reduction in workforce, 

there is a large corresponding increase in the MMH/Flight/Vehicle in comparison with 

the baseline. 

 

Table 11: Round 1 Optimization Comparison with Baseline 

Flight Rate (%) MMH/Flight/Veh. (%) Workforce (%) 

-47.62 177.02 -81.25 

 

Iterated SOEC Grid Search Results 

In the following figures the path of SOEC optimization is shown graphically. The 

axes are percentage comparisons between the results coming out of simulation and the 

baseline study values for flight rate and MMH/Flight/Vehicle. The 1
st
 round of 

optimization results from applying the SOEC to Round 0 in order to find optimal settings 

for technician availability on each subsystem individually. It is clearly visible in Figure 8 

that in the first round of optimization, the SOEC has produced wildly off-optimal results, 

yielding almost a 50% reduction in flight rate and 180% increase in MMH/Flight/Vehicle 

as compared with the baseline. In order to view the subsequent rounds more easily, 

Round 1 is removed from Figure 9, which shows the progression of SOEC optimization 

toward the origin (0% difference from the baseline in flight rate and 

MMH/Flight/Vehicle). 
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Figure 8: SOEC Round Results 

 

 

Figure 9: SOEC Round 2-5 Results 

 

After 5 rounds the application of the SOEC finds optimal settings from assuming 

that each component subsystem’s optimization will cause the optimization of fleet 

operations. Overall results for the iterative rounds of optimization are shown below in 
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Table 12. What is of interest for this version of optimization is that the numbers of 

technicians, shown in Table 13, are all at or below the number of technicians for work on 

only one vehicle. So the method of optimizing RLV O&M based upon the efficiencies of 

individual subsystem maintenance tends toward one vehicle-at-a-time maintenance, 

resulting here in a 60% reduction in workforce with an 8% reduction in flight rate and 

26% increase in MMH/Flight/Vehicle. 

An interesting characteristic of SOEC optimization is that due to working on each 

subsystem individually, the top 10% of cases for each subsystem never appear in concert 

using 1,500 runs. Another interesting feature of SOEC optimization is its tendency to 

rapidly work from a decidedly off-optimal skillset distribution (results from round 1) to 

optimal settings. This is shown pictorially in Figure 10 below, in the slope of % 

difference from baseline lines. This is of particular interest because of its effect on the 

second round of results. Due to the requirement that the skillset distribution must produce 

a minimum launch rate of 4 and the values used in the second round of SOEC 

optimization, < 2% of the DOE runs resulting from round 1 optimization meet this 

requirement and are discarded. It is from this result of SOEC optimization that the rapid 

increase of efficiency results.  
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Table 12: SOEC Optimization Round Results 

  
Round Results Compare with Baseline 

  
Flight 

Rate 

MMH/Flight/ 

Veh 

Flight 

Rate 

MMH/Flight/ 

Veh 
Workforce 

1st 

Round 

μ 5.5 4014 
-47.62 177.02 -81.25 

σ 0.03 19 

2nd 

Round 

μ 9.2 2338 
-12.38 61.35 -69.17 

σ 0.02 4 

3rd 

Round 

μ 10 1984 
-4.76 36.92 -63.75 

σ 0.02 4 

4th 

Round 

μ 10.1 1788 
-3.81 23.4 -59.38 

σ 0.02 4 

5th 

Round 

μ 9.7 1823 
-7.62 25.81 -60 

σ 0.02 3 

 

 

 

Figure 10: SOEC Optimization Evolution 
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As can be seen in Figure 10, round 1 is fairly off-optimal, as it has a very large 

difference from the baseline values of MMH/Flight/Vehicle and flight rate. Going from 

round 1 to round 2 however, due to the drastic reduction in cases to optimize on, only the 

most optimal are left which results in a large jump in similarity to the baseline. As the 

rounds continue, both these metrics get closer and closer to the baseline value much more 

slowly, ending within 8% of the original flight rate with a 60% reduction in workforce. 

The maintenance distribution which achieves this optimality is shown below in Table 13. 

 

Table 13: Optimal Levels from SOEC Optimization 

Avionics 12 Landing & Recovery 12 

Communications 13 Navigation 13 

Crew 13 Pneumatic 12 

Electrical & 

Wiring 
15 

Propellant 

Management 
10 

Engines 10 Software 10 

Environmental 11 Structures 11 

Flight Controls 13 TPS 13 

Hydraulics 14 Tracking 10 

 

Via optimization with the SOEC, the optimal levels found have effectively traded 

off flight rate efficiency for a large reduction in required workforce. For further details on 

each round of SOEC optimization, consult Appendix B. By considering the effectiveness 

of the distribution as a whole new tradeoffs emerge, as will now be presented. 
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Experiment 2: Optimize subsystems simultaneously 

 

As an alternative to optimizing on the performance of individual subsystems to 

find an optimum, the performance of a maintenance workforce could also be thought of 

as ‘more than the sum of its parts.’ This thinking inspired a second method of 

optimization, in which the entire distribution is optimized on simultaneously to achieve 

gross operational efficiency. In order to determine those distributions which are the most 

optimal, a gross overall evaluation criterion (GOEC) was applied to each distribution’s 

simulated results, shown below in Equation 14.  

 

     
           

               
 
                  

              
 

   (          )

   (             )
 

Equation 14: Gross Overall Evaluation Criterion 

 

The big difference here is that the evaluation of each case run compares the total 

number of technicians with the baseline, rather than comparing on a subsystem-to-

subsystem basis. This method similarly applies its optimization from the round 0 results, 

yielding the following results in round 1 of optimization. 

Round 1 Results 

After application of the GOEC to the results from round 0, the top 10% of 

performers were aggregated into the following levels shown below in Table 14. At first 

glance it can be seen that the GOEC produces a wide variety of availability levels across 

the subsystems, with a much larger standard deviation than the SOEC. 
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Table 14: Round 1 GOEC Optimization Technician Availability Levels 

 
μ σ 

 
μ σ 

Avionics 16 9 Landing & Recovery 18 8 

Communications 19 8 Navigation 17 8 

Crew 17 9 Pneumatic 19 8 

Electrical & 

Wiring 
20 7 

Propellant 

Management 
17 9 

Engines 20 7 Software 20 7 

Environmental 16 9 Structures 20 7 

Flight Controls 19 8 TPS 16 8 

Hydraulics 19 7 Tracking 19 8 

 

The results from round 1 of GOEC optimization show that this method initially 

favors multiple vehicle simultaneous maintenance in contrast to the SOEC which found 

optimality in single vehicle maintenance. The overall performance metrics of the 

distributions within the top 10% of performers is shown in Table 15 below, and 

compared with the baseline in Table 16. 

 

Table 15: Round 1 GOEC Optimization Results 

. 
Vehicle0 

MMH/flight 

Vehicle1 

MMH/flight 

MMH/Flight/ 

Veh. 

Flight 

Rate 

μ 1752 1754 1753 9.2 

σ 110 106 107 0.6 
 

 

In comparison with SOEC optimization, the first round of results only reduces the 

workforce by ½ as much, with a reduction close to 40%. However, the increased 

workforce results in a much smaller difference from the baseline in flight rate and 
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MMH/Flight/Vehicle. Specifically for MMH/Flight/Vehicle, GOEC optimization in 1 

round performs 150% better. 

 

Table 16: Round 1 GOEC Optimization Comparison with Baseline 

Flight Rate (%) MMH/Flight/Veh. (%) Workforce (%) 

-12.38 21.05 -39.17 

 

 

Iterated GOEC Grid Search Results 

In the following figures, the progression of GOEC optimization will be 

demonstrated by showing the performance improvement taking place in each round. The 

axes of each figure are percentage comparisons with the baseline study so that the 

MMH/Flight/Vehicle and flight rate of each experimental run can be compared on the 

same basis. The first round depicted below in Figure 11 results from choosing the top 

10% of performers in Round 0, whose average and standard deviation are used for 

choosing the technician availability ranges used in the next round of optimization. The 

same process is used in all succeeding rounds of optimization.  

In the 1
st
 round, the top 10% of performers according to the GOEC have flight 

rates from 0-22% lower than the baseline study, and 5-40% higher MMH/Flight/Vehicle. 

However, after applying the GOEC in the first round, the technician availability 

combinations indicated have shrunk down the ranges to 0-8% reduction in flight rate, 

with 0-30% increase in MMH/Flight/Vehicle. As can be seen in Figure 12 below, the 

trend of moving skillset performance toward that of the baseline continues in the next 
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round, as the flight rate is within 5%, and MMH/Flight/Vehicle is within 15% of the 

baseline.  

As optimization continues, each successive round shrinks down the range of 

comparison with the baseline until optimal values are found. On from round 2, flight rate 

goes from within 4% to within 3% to within 2.5% until finally settling at 2-2.5% 

reduction in flight rate with optimal values. MMH/Flight/Vehicle goes from 10% to 

within 7% to within 6% until settling at 2-5% increase in MMH/Flight/Vehicle with 

optimal values. A main difference between the SOEC and GOEC methods is that the 

latter took 7 rounds to reach optimal settings, under the assumption that optimal settings 

are found once the standard deviation of the top 10% is < 1 (cannot add or subtract a 

portion of a technician).  
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Figure 11: GOEC Optimization – Rounds 1 & 2 

 

Figure 12: GOEC Optimization – Rounds 2 & 3 
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Figure 13: GOEC Optimization: Rounds 3 & 4 

 

 

Figure 14: GOEC Optimization – Rounds 4 & 5 
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Figure 15: GOEC Optimization – Rounds 5 & 6 

 

Figure 16: GOEC Optimization – Rounds 6 & 7 
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An interesting feature of optimizing on the distribution as a whole is that in 

successive rounds of optimization the flight rate is optimized fairly quickly, but by 

making further trades in technician allocation, the MMH/Flight/Vehicle continues to be 

reduced along with the required workforce. This is where the GOEC method shows its 

merit: by considering the performance of the skillset distribution as a whole rather as a 

sum of parts, technicians may be allocated where their skills will produce the greatest 

overall performance. The optimal levels converged upon are shown below in Table 18. 

 

Table 17: GOEC Optimization Round Results 

  
Round Results Compare with Baseline 

  
Flight 

Rate 
MMH/Flight/Veh. 

Flight 

Rate 
MMH/Flight/Veh. Workforce 

1st 

Round 

μ 9.2 1754 
-12.38 21.05 -39.17 

σ 0.6 107 

2nd 

Round 

μ 10.2 1604 
-2.86 10.7 -40.21 

σ 0.2 73 

3rd 

Round 

μ 10.3 1551 
-1.9 7.04 -42.71 

σ 0.1 33 

4th 

Round 

μ 10.3 1524 
-1.9 5.18 -43.33 

σ 0.1 19 

5th 

Round 

μ 10.3 1506 
-1.9 3.93 -43.75 

σ 0.1 14 

6th 

Round 

μ 10.3 1503 
-1.9 3.73 -44.38 

σ 0 12 

7th 

Round 

μ 10.3 1494 
-1.9 3.11 -44.38 

σ 0 7 
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Table 18: Optimal Levels from GOEC Optimization 

Avionics 15 Landing & Recovery 16 

Communications 18 Navigation 15 

Crew 13 Pneumatic 15 

Electrical & 

Wiring 27 

Propellant 

Management 14 

Engines 19 Software 17 

Environmental 15 Structures 17 

Flight Controls 17 TPS 15 

Hydraulics 17 Tracking 17 

 

An added benefit to GOEC optimization is that in successive rounds it does not 

exhibit failed cases. Although in SOEC optimization the failed cases resulted in quicker 

convergence, it does so at a loss of statistical accuracy. In a stochastic system such as 

this, the more results there are to compile the more confidence one can have in their 

analysis. As shown in Figure 17 below, changes in comparison to the baseline do not 

change as rapidly as in SOEC optimization, and convergence on the optimum requires 

more rounds, however it results in a flight rate and MMH/Flight/Vehicle closer to the 

baseline. 

On a qualitative basis, the technician availability levels which GOEC 

optimization converges on make logical sense. The Electrical & Wiring subsystem is by 

far the most time-intensive subsystem, and it has the most technicians allocated to it, such 

that it can work on 2 vehicles simultaneously with small loss of efficiency. The Crew 

subsystem by contrast is the least time-intensive and is allocated the fewest number of 

technicians, less than the maximum for one vehicle. This kind of allocation captures the 

effect in discussion with Figure 4, showing notionally the value of trading individual 
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efficiency with overall efficiency. For further detail on GOEC optimization consult 

Appendix C. 

 

 

Figure 17: GOEC Optimization Evolution 
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settle on a workforce sum. GOEC optimization’s ability to hover around a certain sum 

comes from optimizing on the workforce as a whole: only those distributions which 

allocate technician skills more intelligently and with fewer technicians than before will 

improve on the previous round. SOEC optimization by comparison considers the skillsets 

one subsystem at a time, viewing the O&M scheme at a micro-level. Whereas the 

maintenance of individual subsystems is more efficient overall in terms of technician 

utilization, it does not consider potential trades between subsystems. 

As the trends of MMH/Flight/Vehicle and flight rate are based upon the same data 

they will be considered together. As can be seen in Figure 19 & Figure 20 below, like 

workforce optimization, MMH/flight/Vehicle and flight rate optimization occurs very 

rapidly at first for SOEC optimization, in comparison with GOEC optimization which 

starts at a value very close to its optimum. However in contrast to workforce 

optimization, MMH/Flight/Vehicle and flight rate optimization diverges in the final 

round. This result is due to the method by which the SOEC achieves optimization. By 

taking the flight rate into account in its OEC, SOEC optimization does somewhat take 

overall efficiency into account, however not in the same manner as GOEC optimization. 

In the case of SOEC optimization, the inclusion of flight rate in the OEC produces the 

technician availability level which while optimizing the efficiency of maintenance on that 

subsystem, preferentially chooses the availability which minimizes effect on flight rate. 

This in effect will push availability toward the level which maximizes individual 

subsystem efficiency but minimizes changes in flight rate. By comparison, GOEC 

optimization simultaneously attempts to decrease overall availability levels but seeks out 

those levels which increase flight rate. Said in a more concise manner, SOEC 
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optimization seeks out those technician availability levels with the highest gradient in 

subsystem efficiency and saddle points in flight rate. GOEC optimization in contrast 

seeks out the highest gradient levels in both subsystem efficiency and flight rate. 

 

 

Figure 18: Comparison of workforce optimization 
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Both methods have their strengths and weaknesses. SOEC optimization for one 

quickly eliminated the off-optimal levels it had originally found (round 1 – round 2), 

came to convergence more quickly than GOEC optimization, and converged upon a 

solution with fewer required technicians than GOEC optimization. However, the 

elimination of points decreased the statistical confidence of results coming out of round 2 

optimization, and convergence came to settings which performed worse than the 

competing method in fleet metrics (MMH/Flight/Vehicle, flight rate), without allowing 

for multiple vehicle maintenance. GOEC optimization on the other hand converges to 

values which perform very close to the baseline study with a 44% reduction in workforce, 

performs trades intelligently between the subsystem’s technicians, and allows for 

multiple vehicle maintenance. 

Ultimately the choice in optimization comes down to which is more important to 

the person performing the study. Both methods produce skillset allocation distributions 

with flight rates within 10% and MMH/Flight/Vehicle within 25% of the baseline study, 

which represents the performance which can be expected from always having enough 

technicians present to do maintenance in the most efficient manner on multiple vehicles. 

That said GOEC optimization performs better at aggregate levels, producing flight rates 

within 2% and MMH/Flight/Vehicle within 3% of the baseline, but with 20% more 

workforce than SOEC optimization. These comparative results are shown below in 

Figure 20. 
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Figure 19: Comparison of MMH/Flight/Vehicle optimization 

 

 

Figure 20: Comparison of flight rate optimization 

 

Table 19: Optimization Technique Convergence Comparison 
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The choice of optimization technique then comes down to whether the fleet 

operating at maximum capability is the most important, or if it operating at maximum 

workforce efficiency is. For the emerging spaceflight companies, customers requiring 

launches are still building up their confidence in the commercial sector, resulting in 

yearly launch rates that can fluctuate quarter by quarter. To them, maximizing a flight 

rate is not quite as important as keeping a particular flight rate. However; keeping 

maintenance operating at a high efficiency is a boon. The fewer overall hours 

maintenance takes place reduces the operational cost of ‘keeping the lights on’ in 

maintenance facilities, and minimizing the technicians necessary for this work reduces 

the associated personnel cost. In conjunction with these concerns, and noting that the 

GOEC method arrives at its converged values by quickly achieving an optimal flight rate 

and then trading technicians across subsystem specializations to achieve that same rate 

while increasing efficiency and minimizing necessary workforce, the GOEC method is 

the clear winner. 

In fact, GOEC optimization performs the best of all the tools and strategies 

employed within this work. To check that this is the case, the workforce skillset 

distributions resulting from the other methods presented are run through simulation 100 

times each. First off, the LP model was considered. Although the LP model only 

considers single-vehicle maintenance, the single-vehicle preference for optimization 

shown by the SOEC method hints that this sort of optimization could yield good results. 

As shown below in Table 20, the LP model yields a skillset distribution which when 

input into simulation yields only a 7% reduction in flight rate, which is just barely better 

than the SOEC method. However, the MMH/Flight/Vehicle is 75% higher. Inspired by 
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the performance yielded by such simple comparison, the distribution from the LP model 

was doubled (LP x2) and run again through simulation. 

 

Table 20: Algorithm Comparisons with Simulation Baseline Study 

 
Flight Rate 

(%) 

MMH/Flight/Veh. 

(%) 

Workforce 

(%) 

LP -7.37 75.20 -71.25 

LP x2 -3.60 10.77 -57.29 

Monte Carlo -33.09 122.44 -72.71 

Monte Carlo w/ Variation -58.02 142.70 -74.79 

DES SOEC -7.62 25.81 -60.00 

DES GOEC -1.90 3.11 -44.38 

 

As can be seen above, the LP x2 model outperforms the LP model and the SOEC 

method, yielding only a 4% decrease in flight rate with an 11% increase in 

MMH/Flight/Vehicle. However, the SOEC method does still beat the LPx2 model in its 

workforce reduction, beating LPx2 by 3%. To choose which distribution coming from 

Monte Carlo, the run with the highest OEC value is selected. The OEC equation in this 

case is the GOEC equation. The Monte Carlo methods, both with and without variation, 

do not work as well, which is to be expected as their inputs are randomly generated. If the 

Monte Carlo simulations were allowed to run for a very long time it is possible that either 

could produce the distribution found by the simulation methods, however they could not 

do so dependably. 

Overall, the DES GOEC method wins out by performing optimization in the most 

intelligent manner. Although the LP models were able to come close to its performance 

by adjusting the allocation of technicians to individual subsystems as per the strategy in 
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Figure 3, it was not able to account for multiple vehicle maintenance, which would allow 

it to employ the strategy in Figure 4. Although the case could be made for simply 

choosing the LP model distribution then scaling it to the number of vehicles present, the 

lack of uncertainty in the LP model implies that it is not robust to variation in the manner 

the GOEC distribution is, nor did it take into account the overall effect of the distribution 

in its formulation, which in the comparison between SOEC and GOEC methods it was 

seen that this feature is what defines GOEC’s success. In conclusion, the use of an 

optimization method which takes into account the entire 16-variable design space on the 

3-variable output space is superior, in its ability to find a global maximum, and its 

inclusion of variation, yielding a skillset distribution robust enough to handle multiple 

vehicle maintenance with a large reduction in the necessary workforce. 



 

 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

 Conclusions of Research 

 In this course of study, several fundamental research questions have been posed 

and now at the end may be answered completely. The first question required the selection 

of an experimental frame, i.e. a modeling method, which was both capable and efficient 

at capturing the effects and relationships present within RLV O&M.  

Answering Research Question 1: What is the proper modeling method for capturing RLV 

O&M? 

A literature review of previous efforts resulted in the selection of LP, Monte 

Carlo, and DES as the candidates, with the most historical precedent pointing toward 

DES. After constructing LP, Monte Carlo, and DES models of RLV O&M, DES is 

superior in its ability to model complex effects and its potential for expansion and 

customization.  

After comparing the methods of LP, Monte Carlo, and DES, the power and 

precedent of DES make it the clear winner for performing simulation of RLV O&M. 

During optimization, the GOEC method emerged as the superior method for optimizing a 

DES model of RLV O&M due to the fact that it is a multi-objective optimization method. 

In the introduction of this work, the importance of bringing more information into the 

conceptual design phase of development was expanded upon because it ultimately 

parallels the selection of the GOEC method. Just like considering the viability of an 
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aircraft while optimizing its feasibility improves the overall design by balancing the 

concerns of each area, so does considering the effect of the entire skillset distribution of 

technicians performing RLV O&M result in the greatest efficiency. After completing this 

analysis, the second research question can finally be answered. 

Answering Research Question 2: How can the skillset of a RLV maintenance workforce 

be optimized? 

Considering a maintenance workforce as more than the sum of its parts has 

resulted in a more intelligent skillset distribution. By optimizing on the entire distribution 

at once rather than one subsystem at a time, trades which are not available to the other 

method emerge which effectively balance the needs of a RLV O&M force. Finally, the 

third research question is also answered.  

Answering Research Question 3: How can RLV O&M be effectively captured by a 

model? 

The final research question is answered by making the following assumptions, 

each of which has been researched to find any existing precedent. 

1. RLVs undergo the same maintenance cycle as any aerospace vehicle 

2. RLV maintenance can be represented as composed of 16 subsystems 

3. Tasks performed during maintenance have different levels of complexity 

4. Allocating more technicians reducing the necessary maintenance time 

5. There is a maximum number of technicians which can work on a RLV at a 

time 
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6. Maintenance on a subsystem requires unique skills 

7. Changing the allotted number of technicians for a subsystem has a 

reciprocal effect on maintenance time 

8. The variation in a maintenance task's completion time follows a log-

Normal distribution 

 In performing this study, a generic method for optimizing a RLV O&M 

maintenance skillset distribution was shown which can be effective with the inclusion of 

more vehicles, more maintenance sites, and more maintenance detail. It is the hope of the 

author that as commercial entities move forward with their RLV campaigns, they will 

perform such analyses to make their ventures the most efficient, and move mankind 

amongst the stars. 

Recommendations for Future Research 

As with any simulation, increasing fidelity is of utmost concern. Specifically, the 

tasks required for each subsystem and the times associated with each of these tasks is 

very important if the simulation is to be used for future studies. To that end, the 

simulation has been coded with the potential for subsystem module extensions that 

require no changes to existing code. All one would have to do is code a module 

containing new tasks and times which can use vehicle and maintenance site 

characteristics, and have that code return an amount of time required. Another change 

which would improve fidelity on this front would be to distribute the subsystem 

spreadsheets themselves to commercial and government entities currently performing 

RLV maintenance, and to incorporate data found too late into this effort to include [16]. 

The code is currently designed to derive statistical moments from the columns associated 
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to each task, so if these entities could log the times they actually spend on individual 

tasks, or even on the entire subsystem itself, then the fidelity of the simulation would be 

greater with each new entry.  

Work which would require code changes include allowing complex interactions 

between maintenance work and technicians, and further probabilistic operational 

dependencies. The first would go hand in hand with the reciprocal relationship between 

task times and available workers. At present moment once the technician resource is 

released the remaining time on any work which started without the maximum number of 

technicians is not affected. In reality however, one can expect that if a team of 

technicians was split in two between maintaining two vehicles and work was completed 

on one, then their attention would be re-allocated so that work on the second vehicle 

could speed up. Along the same vein, one central assumption in the simulation is that 

maintenance skills are mutually exclusive which is not realistic. Further work on the 

simulation would allow for technicians to work on multiple subsystems, which would 

require further research and expert consultation. In addition to these two improvements, 

another modification having to do with vehicle to maintenance interactions would be 

including extra logic so that vehicle characteristics such as propulsion and TPS material 

choice will directly affect either the tasks done and/or the time they take to complete. For 

the second point, allowing for probabilistic launch window cancellations such as those 

employed in [5] would be helpful in producing a more robust workforce distribution. 

 

 

 



 

 

APPENDIX A: TASK LISTS 

 

The tasks associated with each subsystem come from the FAA’s Guide to 

Commercial Reusable Launch Vehicle Operations and Maintenance [26], and while they 

are not assumed to be a complete list for any of the subsystems, the lists represent an 

ultimately universal minimum task list, as they are specifically required by the FAA due 

to their potential for environmental impact if not carried out after each launch. In this 

manner, the task lists to follow are considered to be representative of a commercial entity 

attempting to minimize maintenance costs by performing the least amount of 

maintenance possible. Task lists, descriptions, and assumed time means follow. Tasks are 

divided into three categories: 1-day, 2-day, and 3-day, assuming 1 8-hour shift per day. 

Their statistical moments are: 

1-Day: µ = 2.15,  σ
2
 = 0.2 → ~8 hours average 

2-Day: µ = 2.8,  σ
2
 = 0.1 → ~16 hours average 

3-Day: µ = 3.3,  σ
2
 = 0.1 → ~24 hours average 
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Figure 21: Task Time Levels Probability Density Functions 

 

 

1. Avionics 

a. Inspection - Out-of-configuration Avionics conditions should be 

recognized and isolated upon activation – 1-day 

b. Maintenance check - Any software or hardware used to check avionics 

must itself be checked for errors – 1-day 

c. Intra-vehicle comms check - Communication between communications, 

guidance, navigation, environmental, and flight controls must be verified – 

1-day 

d. Test redundancy safing - Avionics are designed to handle multiple failures 

through redundant hardware and software – 3-day 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40

P
ro

b
ab

ili
ty

 

Task Hours 

One Day Task

Two Day Task

Three Day Task



108 

 

e. Test resource management - Software within avionics should give proper 

resource priority and deconfliction between different functions (time, data 

access, memory, display panels, etc) – 2-day 

2. Communications 

a. Wiring inspection - All hardware within the communications subsystem 

must be inspected for damage – 2-day 

b. External inspection - All external transmitters, receivers, and antennae 

must be inspected for damage – 1-day 

c. Test main RLV comms - Information sent to the RLV must be received 

properly – 1-day 

d. Test comms from RLV - Transmissions from the RLV to SGLS must be 

sent correctly – 1-day 

e. Test backup RLV comms - Information sent to the RLV must be received 

properly – 1-day 

f. Test backup from RLV comms - Transmissions from the RLV to SGLS 

must be sent correctly – 1-day 

g. Link analysis - All internal comms must also be functional – 1-day 

h. End to end testing - Internal to external and vice versa must be functional 

– 2-day 

i. Repair - Any required repairs – 3-day 

3. Crew Systems 

a. Inspection - Inspect cockpit equipment and crew restraint mechanisms for 

wear and damage – 1-day 



109 

 

b. Repair - Any equipment not meeting standards must be repaired or 

replaced – 3-day 

4. Electrical & Wiring 

a. Inspection - As much of the internal wiring of the RLV as possible must 

be inspected – 3-day 

b. APU Inspection - Auxiliary Power Units must be tested and refilled with 

Hydrazine – 1-day 

c. RTG Inspection - Radioisotope Thermoelectric Generators must be 

inspected for plutonium radiation leaks and refueled if necessary – 1-day 

d. RAT Inspection - Ram Air Turbines must be inspected for damage and 

repaired – 1-day 

e. Fuel Cell replacement - Any fuel cells used must be safely disposed of and 

replaced – 1-day 

f. Solar cell inspection - Any Solar cells used for power generation must be 

inspected for damage – 1-day 

g. Repairs - Any faulty wiring must be promptly replaced – 3-day 

h. Replacement - Any faulty devices must be replaced – 3-day 

i. Harness integrity - Post-repair inspection must ensure that all wiring 

harnesses removed during inspection & repair are replaced – 2-day 

j. Testing - After maintenance, entire system must be checked for faults – 3-

day 

5. Engines 
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a. Safe Removal - SSMEs must be completely removed from STS for 

maintenance – 1-day 

b. Mounting - Engines are then moved to their test facility and mounted for 

testing – 1-day 

c. Venting - Engines must be vented of toxic fluids and gases for 

maintenance – 1-day 

d. General Inspection - System testing and checkout of engines and thrusters 

to account for engine wear characteristics – 3-day 

e. Inspect nozzles - Nozzles must be checked for cracks and fatigue – 1-day 

f. Inspect feed lines - Feed lines must be checked for cracks and fatigue – 1-

day 

g. Inspect turbo pumps - Turbo-pump must be inspected for cracks and 

fatigue – 1-day 

h. Inspect igniter - Igniter must be inspected for cracks and fatigue – 1-day 

i. Repair - All damaged systems must be repaired or replaced – 3-day 

j. Testing - Activation of engines should produce the expected amount of 

thrust at the expected burn rate – 3-day 

6. Environmental 

a. Atmosphere - Atmospheric controls must be inspected and tested for 

proper operation – 2-day 

b. Water - Water treatment systems must be inspected and tested for proper 

operation – 1-day 
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c. Waste - Waste management systems must be inspected and tested for 

proper operation – 1-day 

d. Redundancy - Test redundant environmental systems – 1-day 

e. Suppression - Chemicals used for fire and explosion suppression must be 

checked for adequate pressure levels and freshness – 1-day 

f. Repair - Any systems needing repair must receive it – 3-day 

7. Flight Controls 

a. Inspection - Flight control hardware including propulsive engines, reaction 

control jets, and aerodynamic control surfaces must be inspected for 

damage – 3-day 

b. Testing - Control reactions and thrust vector alignments must be verified – 

2-day 

c. Software - All software components of flight control must be verified and 

maintained – 2-day 

d. Repair - Any misalignments must be corrected – 3-day 

e. Replacement - Any faulty control mechanisms must be replaced – 2-day 

f. Post-Inspection - Flight controls should undergo a post-maintenance 

inspection to ensure proper operation – 1-day 

8. Hydraulics 

a. Clean joints - To prevent contamination, areas immediately adjacent to 

joints to be separated for maintenance should be cleaned before loosened – 

1-day 

b. Gimbal - Thrust vector control of SSMEs must be verified – 1-day 
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c. Valves - Control of propellant valves must be verified – 1-day 

d. Orbiter Aerodynamics - Control of orbiter aero surfaces (elevons, body 

flap, rudder/speed brake) must be verified – 2-day 

e. Retractor - Retraction of external tank/orbiter LOX/LH2 disconnect 

umbilicals must be verified – 1-day 

f. Brakes - Main landing gear deployment verified – 1-day 

g. Nose - Nose wheel steering must be verified – 1-day 

h. Safing - Automatic safing procedure must be tested in case of low pressure 

situation – 1-day 

i. Clamps - Any and all clamps or line blocks removed during repair must be 

inspected for proper reinstallation – 2-day 

j. Replacement – 3-day 

9. Landing & Recovery 

a. Anti-Skid - Anti-Skid brakes and electrical power/pedal components must 

be inspected for wear and damage – 1-day 

b. Autonomy - Autonomous landing equipment must be inspected for wear 

and damage – 1-day 

c. Calibration - All components must be calibrated to flightworthiness 

standards – 2-day 

d. Stowage - Inspect systems for landing/recovery gear stowage – 1-day 

e. Tires - Check tires for wear – 1-day 

f. Repair - Any faulty systems must be repaired or replaced – 3-day 

g. Testing - After calibration, all systems must be tested again – 2-day 
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10. Navigation 

a. Test inertial measurement unit (IMU) - IMU must be functional for 

accurate navigation – 1-day 

b. Test global positioning system (GPS) - GPS must be functional for 

navigation – 1-day 

c. Calibrate IMU - Error inevitably crops up, account for this – 1-day 

d. Calibrate GPS - Error inevitably crops up, correct for this – 1-day 

e. Replace faulties - Any faulty hardware must be removed and replaced – 2-

day 

f. Test system - After calibration, test entire system again – 3-day 

11. Pneumatics 

a. Leaks - Check for leaks – 1-day 

b. Valves - Check for proper operation of shut-off valves – 1-day 

c. Contamination - Check for any contamination, and ensure that protection 

components are sound – 2-day 

d. Regulators - Ensure that temperature and pressure regulators are 

functioning properly – 1-day 

e. Pressure - Ensure that the proper pressure is held – 1-day 

f. Mounting - Ensure proper mounting of all units – 1-day 

g. Hoses - Inspect hoses for leaks and wear – 1-day 

h. Replacement - Any faulty components must be replaced – 3-day 

i. Testing - After inspection and repair, operational testing must ensure 

proper operation – 2-day 
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12. Propellant Management 

a. Inspection - Any and all feed lines, containers, and valves must be 

inspected for damage and leaks – 2-day 

b. Software - Onboard propellant management subsystems must remain 

within flightworthiness standards – 1-day 

c. Repair - Any faulty components must be repaired or replaced – 3-day 

13. Software 

a. Test System - System software manage a computer's basic tasks – 2-day 

b. Test Utility - Utility software performs day-to-day tasks – 2-day 

c. Test Applications - Application software perform specialized RLV 

controls – 1-day 

d. Test PASS - Primary Avionics Software System must pass rigorous testing 

– 3-day 

e. Test BFS - Backup flight systems must pass rigorous testing – 3-day 

14. Structures 

a. Inspect movables - All movable structures must pass integrity testing – 3-

day 

b. Inspect plume - All structures within the plume impingement area must 

pass inspection and testing – 2-day 

c. Metals inspect - Metal-based structures must be inspected for damage - 

visual may be sufficient – 1-day 

d. Composites inspect - Composite materials require other techniques for 

structural testing – 2-day 



115 

 

e. Repair - Any structures not meeting damage tolerance tests must be 

replaced – 3-day 

15. Thermal Protection System 

a. Inspection - Identify which tiles have been damaged by previous mission 

(sqft) – 1-day 

b. Tile removal - Removal of damaged tiles (hr/sqft) – 2-day 

c. Tile replacement - Replacing damaged tiles (hr/sqft) – 3-day 

d. New tile testing - Replacement tiles must be tested before vehicle 

operation to ensure proper operation – 3-day 

16. Tracking 

a. Inspection - Inspect all hardware responsible for reporting the RLVs 

position for damage – 2-day 

b. Antenna - Test gearing and encoders on antenna dishes – 1-day 

c. Waveguide - Waveguide alignment must occur for proper tracking – 1-day 

d. Transponder - Transponders must be calibrated for any errors – 1-day 

e. Repair - Any faulty systems must be replaced – 3-day 

f. Testing - After calibration, all systems must be tested again – 2-day 



 

 

APPENDIX B: SOEC OPTIMIZATION ROUND RESULTS 

 

What follows are the round by round results of optimizing on a RLV maintenance 

workforce skillset distribution by considering the efficiency of each subsystem 

individually. As rounds progress, the average setting (denoted by μ) gets closer to its 

optimal value, which is in round 5 where the standard deviation σ goes to 0.  

Round Levels 

 

Table 21: SOEC Optimization Round Results 

 
1st Round 2nd Round 3rd Round 4th Round 5th Round 

 
μ σ μ σ μ σ μ σ μ σ 

Avionics 5 4 9 2 11 2 13 1 12 0 

Communications 5 4 9 2 11 2 13 1 13 0 

Crew 5 4 9 2 11 2 13 1 13 0 

Electrical_Wiring 15 4 15 2 15 2 15 1 15 0 

Engines 5 4 9 2 11 2 11 1 10 0 

Environmental 5 4 9 2 9 2 10 1 11 0 

Flight_Controls 5 4 9 2 11 2 12 1 13 0 

Hydraulics 5 4 9 2 11 2 13 1 14 0 

Landing_Recovery 5 4 9 2 11 2 12 1 12 0 

Navigation 5 4 9 2 11 2 13 1 13 0 

Pneumatic 5 4 9 2 11 2 13 1 12 0 

Propellant_Management 5 4 7 2 9 2 11 1 10 0 

Software 5 4 9 2 11 2 11 1 10 0 

Structures 5 4 9 2 11 2 11 1 11 0 

TPS 5 4 9 2 11 2 13 1 13 0 

Tracking 5 4 9 2 9 2 11 1 10 0 

Flight Rate 5.5 0.03 9.2 0.02 10 0.02 10.1 0.02 9.7 0.02 

MMH/Flight/Veh 4014 19 2338 4 1984 4 1788 4 1823 3 
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Table 22: SOEC Optimization Comparison Round Comparison with Baseline 

 
Flight Rate (%) MMH/Flight/Veh (%) Workforce (%) 

1st Round -47.62 177.02 -81.25 

2nd Round -12.38 61.35 -69.17 

3rd Round -4.76 36.92 -63.75 

4th Round -3.81 23.4 -59.38 

5th Round -7.62 25.81 -60 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX C: GOEC OPTIMIZATION ROUND RESULTS 

 

What follows are the results coming from GOEC optimization, organized by the 

round in which they appear. As each round progresses, the technician availability levels 

get closer to their optimal values, taking 7 rounds to complete. At round 6 many of the 

subsystems have reached optimal values, and so are taken as constant in subsequent 

rounds. 

Round Results 

 

Table 23: GOEC Optimization Round Results 

 
1st Round 2nd Round 3rd Round 4th Round 

 
μ σ μ σ μ σ μ σ 

Avionics 16 9 17 6 16 4 16 3 

Communications 19 8 19 5 18 3 18 2 

Crew 17 9 15 6 14 4 14 3 

Electrical_Wiring 20 7 24 5 26 4 27 2 

Engines 20 7 20 5 19 3 19 2 

Environmental 16 9 16 5 15 3 15 2 

Flight_Controls 19 8 18 5 17 3 17 2 

Hydraulics 19 7 19 5 18 4 18 3 

Landing_Recovery 18 8 17 5 16 3 16 2 

Navigation 17 8 16 5 15 3 15 2 

Pneumatic 19 8 18 5 18 4 17 3 

Propellant_Management 17 9 16 6 15 4 14 3 

Software 20 7 19 5 18 3 17 2 

Structures 20 7 19 5 18 3 17 2 

TPS 16 8 16 5 15 3 15 2 

Tracking 19 8 18 5 17 3 17 2 

Flight Rate 9.2 0.6 10.2 0.2 10.3 0.1 10.3 0.1 

MMH/Flight/Veh 1754 107 1604 73 1551 33 1524 19 
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5th Round 6th Round 7th Round 

 
μ σ μ σ μ σ 

Avionics 16 2 15 1 15 0 

Communications 18 1 18 0 18 0 

Crew 14 2 13 1 13 0 

Electrical_Wiring 27 1 27 0 27 0 

Engines 19 1 19 0 19 0 

Environmental 15 1 15 0 15 0 

Flight_Controls 17 1 17 0 17 0 

Hydraulics 17 2 17 1 17 0 

Landing_Recovery 16 1 16 0 16 0 

Navigation 15 1 15 0 15 0 

Pneumatic 16 2 15 1 15 0 

Propellant_Management 14 2 14 1 14 0 

Software 17 1 17 0 17 0 

Structures 17 1 17 0 17 0 

TPS 15 1 15 0 15 0 

Tracking 17 1 17 0 17 0 

Flight Rate 10.3 0.1 10.3 0 10.3 0 

MMH/Flight/Veh 1506 14 1503 12 1494 7 

 

Table 24: GOEC Optimization Round Comparison with Baseline 

 
Flight Rate (%) MMH/Flight/Veh (%) Workforce (%) 

1st Round -12.38 21.05 -39.17 

2nd Round -2.86 10.7 -40.21 

3rd Round -1.9 7.04 -42.71 

4th Round -1.9 5.18 -43.33 

5th Round -1.9 3.93 -43.75 

6th Round -1.9 3.73 -44.38 

7th Round -1.9 3.11 -44.38 

 

 



 

 

APPENDIX D: MODEL CODES 

 

Linear Programming 

from SimplexAlgorithm import simplex 

#def simplex(f,contraints): 

 # Sample Use:    

"""print simplex([-52.4,-73.0,-83.4, -41.8], 

[([1.5,1.0,2.4,1.0],200.0), 

([1.0,5.0,1.0,3.5],800.0), 

([1.5,3.0,3.5,1.0],500.0)])""" 

#Subsystem times: (#Days)*(Hours/day)-> Hours 

Avionics = -(8.0*8.0)/15.0 

Communications = -(13.0*8.0)/15.0 

Crew = -(4.0*8.0)/15.0 

Electrical_Wiring = -(19.0*8.0)/15.0 

Engines = -(15.0*8.0)/15.0 

Environmental = -(9.0*8.0)/15.0 

Flight_Controls = -(13.0*8.0)/15.0 
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Hydraulics = -(14.0*8.0)/15.0 

Landing_Recovery = -(11.0*8.0)/15.0 

Navigation = -(9.0*8.0)/15.0 

Pneumatics = -(13.0*8.0)/15.0 

Propellant_Management = -(6.0*8.0)/15.0 

Software = -(11.0*8.0)/15.0 

Structures = -(11.0*8.0)/15.0 

TPS = -(9.0*8.0)/15.0 

Tracking = -(10.0*8.0)/15.0 

 

#xi are the number of technicians available for each subsystem 

function = 

[Avionics,Communications,Crew,Electrical_Wiring,Engines,Environmental,Flight_Contr

ols,Hydraulics,\ 

    

Landing_Recovery,Navigation,Pneumatics,Propellant_Management,Software,Structures,

TPS,Tracking,\ 

    1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 
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constraints = 

[([1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    
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([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.
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0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0],15.0),\  

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0],15.0),\ 

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0],15.0),\    

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0],15.0),\ 

([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0],15.0)] 

answer = simplex(function,constraints)[0:16] 

for i in range(len(answer)): 

    answer[i] = round(answer[i],0) 
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print "The optimal skillset distribution is:" 

print answer 

Second Linear Programming 

from SimplexAlgorithm import simplex 

#def simplex(f,contraints): 

 # Sample Use:    

"""print simplex([-52.4,-73.0,-83.4, -41.8], 

[([1.5,1.0,2.4,1.0],200.0), 

([1.0,5.0,1.0,3.5],800.0), 

([1.5,3.0,3.5,1.0],500.0)])""" 

#Subsystem times: (#Days)*(Hours/day)-> Hours 

Avionics = -(8.0*8.0)/15.0 

Communications = -(13.0*8.0)/15.0 

Crew = -(4.0*8.0)/15.0 

Electrical_Wiring = -(19.0*8.0)/15.0 

Engines = -(15.0*8.0)/15.0 

Environmental = -(9.0*8.0)/15.0 

Flight_Controls = -(13.0*8.0)/15.0 
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Hydraulics = -(14.0*8.0)/15.0 

Landing_Recovery = -(11.0*8.0)/15.0 

Navigation = -(9.0*8.0)/15.0 

Pneumatics = -(13.0*8.0)/15.0 

Propellant_Management = -(6.0*8.0)/15.0 

Software = -(11.0*8.0)/15.0 

Structures = -(11.0*8.0)/15.0 

TPS = -(9.0*8.0)/15.0 

Tracking = -(10.0*8.0)/15.0 

function = 

[Avionics,Communications,Crew,Electrical_Wiring,Engines,Environmental,Flight_Contr

ols,Hydraulics,\    

Landing_Recovery,Navigation,Pneumatics,Propellant_Management,Software,Structures,

TPS,Tracking] 

constraints = [([1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([1.0,0.0,0.0,-

Avionics/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 
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    ([0.0,1.0,0.0,-

Communications/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,1.0,-

Crew/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Engines/Electrical_Wiring,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Environmental/Electrical_Wiring,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Flight_Controls/Electrical_Wiring,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Hydraulics/Electrical_Wiring,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 
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    ([0.0,0.0,0.0,-

Landing_Recovery/Electrical_Wiring,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Navigation/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Pneumatics/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Propellant_Management/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0],

0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Software/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0],15.0),\ 

    ([0.0,0.0,0.0,-

Structures/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0],15.0),\ 
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    ([0.0,0.0,0.0,-

TPS/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0],0.0),\ 

    ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0],15.0),\ 

    ([0.0,0.0,0.0,-

Tracking/Electrical_Wiring,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0],0.0)] 

answer = simplex(function,constraints)[0:16] 

for i in range(len(answer)): 

    answer[i] = round(answer[i],0) 

print "The optimal skillset distribution is:" 

print answer 

 

Monte Carlo 

 

from random import randint 

#Subsystem times: (#Days)*(Hours/day)-> Hours 

Avionics = (8.0*8.0)*15.0 

Communications = (13.0*8.0)*15.0 

Crew = (4.0*8.0)*15.0 

Electrical_Wiring = (19.0*8.0)*15.0 
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Engines = (15.0*8.0)*15.0 

Environmental = (9.0*8.0)*15.0 

Flight_Controls = (13.0*8.0)*15.0 

Hydraulics = (14.0*8.0)*15.0 

Landing_Recovery = (11.0*8.0)*15.0 

Navigation = (9.0*8.0)*15.0 

Pneumatics = (13.0*8.0)*15.0 

Propellant_Management = (6.0*8.0)*15.0 

Software = (11.0*8.0)*15.0 

Structures = (11.0*8.0)*15.0 

TPS = (9.0*8.0)*15.0 

Tracking = (10.0*8.0)*15.0 

Subsystems = [Avionics, Communications, Crew, Electrical_Wiring, Engines, 

Environmental,\ 

    Flight_Controls, Hydraulics, Landing_Recovery, Navigation, Pneumatics, 

Propellant_Management,\ 

    Software, Structures, TPS, Tracking] 
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all_vehicles_launched_best = 10000 

num_vehicles = 2 

max_ppl = 15*num_vehicles 

distribution = 

[max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,\ 

    max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl] 

best_run = 0 

run = 0 

print "Performing Monte-Carlo simulation of " + str(num_vehicles) + " vehicles 

undergoing maintenance." 

while True: 

    MMH = 0 

    flight_rate = 0 

    people = 

[randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),\ 

        randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),\ 

        randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),\ 

        randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl)] 
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    ppl_this_run =[] 

    vehicles = [] 

    first = True 

    time_into_year = [] 

    for q in range(len(Subsystems)): 

        ppl_this_run.append(people[q]) 

        hit_max = False 

        subsystem = [] 

        if people[q] <= 15: 

            hit_max = True 

        for r in range(num_vehicles): 

            if people[q] >= 15: 

                available = 15 

                people[q] -= available                 

                subsystem.append(Subsystems[q]/available) 

            elif people[q] == 0: 

                subsystem.append(Subsystems[q]/last_available) 
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            else: 

                available = people[q] 

                last_available = available                 

                people[q] -= available 

                subsystem.append(Subsystems[q]/available)         

        if hit_max: 

            time_into_year.append(sum(subsystem)) 

        else: 

            time_into_year.append(max(subsystem))     

    all_vehicles_launched = max(time_into_year)     

    if sum(ppl_this_run) <= sum(distribution) and all_vehicles_launched <= 

all_vehicles_launched_best: 

        all_vehicles_launched_best = all_vehicles_launched 

        distribution = ppl_this_run 

        best_run = run 

        print "New best found! - run #" + str(run) 

        print "New best launch rate of " + str(round(2080.0/all_vehicles_launched_best,1)) 

+ \ 
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            " flights/year with a total of " + str(sum(distribution)) + " technicians." 

    run += 1     

    if run - best_run > 1000000: 

        print "Completed " + str(run) + " runs before completion." 

        print "Optimum found on run #" + str(best_run) 

        break 

print distribution 

print all_vehicles_launched_best 

 

Monte Carlo with Variation 

from random import randint 

#Subsystem times: (#Days)*(Hours/day)-> Hours 

all_vehicles_launched_best = 10000 

num_vehicles = 2 

max_ppl = 15*num_vehicles 

distribution = 

[max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,\ 

    max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl,max_ppl] 
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best_run = 0 

run = 0 

print "Performing Monte-Carlo simulation of " + str(num_vehicles) + " vehicles 

undergoing maintenance." 

while True: 

    Avionics = (8.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Communications = (13.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Crew = (4.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Electrical_Wiring = (19.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Engines = (15.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Environmental = (9.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Flight_Controls = (13.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Hydraulics = (14.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Landing_Recovery = (11.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Navigation = (9.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Pneumatics = (13.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Propellant_Management = (6.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Software = (11.0*8.0)*15.0*(1+randint(1,10)/100.0) 
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    Structures = (11.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    TPS = (9.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Tracking = (10.0*8.0)*15.0*(1+randint(1,10)/100.0) 

    Subsystems = [Avionics, Communications, Crew, Electrical_Wiring, Engines, 

Environmental,\ 

        Flight_Controls, Hydraulics, Landing_Recovery, Navigation, Pneumatics, 

Propellant_Management,\ 

        Software, Structures, TPS, Tracking]     

    MMH = 0 

    flight_rate = 0 

    people = 

[randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),\ 

        randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),\ 

        randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),\ 

        randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl),randint(1,max_ppl)] 

    ppl_this_run =[] 

    vehicles = [] 

    first = True 
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    time_into_year = [] 

    MMH_vehicles = [0,0]     

    for q in range(len(Subsystems)): 

        ppl_this_run.append(people[q]) 

        hit_max = False 

        subsystem = [] 

        if people[q] <= 15: 

            hit_max = True 

        for r in range(num_vehicles): 

            if people[q] >= 15: 

                available = 15 

                people[q] -= available                 

                subsystem.append(Subsystems[q]/available) 

                MMH_vehicles[r] += Subsystems[q]/available 

            elif people[q] == 0: 

                subsystem.append(Subsystems[q]/last_available) 

                MMH_vehicles[r] += Subsystems[q]/available 
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            else: 

                available = people[q] 

                last_available = available                 

                people[q] -= available 

                subsystem.append(Subsystems[q]/available) 

                MMH_vehicles[r] += Subsystems[q]/available             

        if hit_max: 

            time_into_year.append(sum(subsystem)) 

        else: 

            time_into_year.append(max(subsystem))     

    all_vehicles_launched = max(time_into_year) 

    MMH_per_veh = sum(MMH_vehicles)/len(MMH_vehicles) 

    if sum(ppl_this_run) <= sum(distribution) and all_vehicles_launched <= 

all_vehicles_launched_best: 

        all_vehicles_launched_best = all_vehicles_launched 

        distribution = ppl_this_run 

        MMH_per_veh_best = MMH_per_veh 

        best_run = run 
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        print "New best found! - run #" + str(run) 

        print "New best launch rate of " + str(round(2080.0/all_vehicles_launched_best,1)) 

+ \ 

            " flights/year with a total of " + str(sum(distribution)) + " technicians." 

    run += 1 

    if run - best_run > 1000000: 

        print "Completed " + str(run) + " runs before completion." 

        print "Optimum found on run #" + str(best_run) 

        break 

print distribution 

print all_vehicles_launched_best 

print MMH_per_veh 
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